My Marlin configs for Fabrikator Mini and CTC i3 Pro B
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

Marlin_main.cpp 121KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632
  1. /* -*- c++ -*- */
  2. /*
  3. Reprap firmware based on Sprinter and grbl.
  4. Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  5. This program is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. This program is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with this program. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. /*
  17. This firmware is a mashup between Sprinter and grbl.
  18. (https://github.com/kliment/Sprinter)
  19. (https://github.com/simen/grbl/tree)
  20. It has preliminary support for Matthew Roberts advance algorithm
  21. http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  22. */
  23. #include "Marlin.h"
  24. #ifdef ENABLE_AUTO_BED_LEVELING
  25. #include "vector_3.h"
  26. #ifdef AUTO_BED_LEVELING_GRID
  27. #include "qr_solve.h"
  28. #endif
  29. #endif // ENABLE_AUTO_BED_LEVELING
  30. #include "ultralcd.h"
  31. #include "planner.h"
  32. #include "stepper.h"
  33. #include "temperature.h"
  34. #include "motion_control.h"
  35. #include "cardreader.h"
  36. #include "watchdog.h"
  37. #include "ConfigurationStore.h"
  38. #include "language.h"
  39. #include "pins_arduino.h"
  40. #include "math.h"
  41. #ifdef BLINKM
  42. #include "BlinkM.h"
  43. #include "Wire.h"
  44. #endif
  45. #if NUM_SERVOS > 0
  46. #include "Servo.h"
  47. #endif
  48. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  49. #include <SPI.h>
  50. #endif
  51. #define VERSION_STRING "1.0.0"
  52. // look here for descriptions of G-codes: http://linuxcnc.org/handbook/gcode/g-code.html
  53. // http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  54. //Implemented Codes
  55. //-------------------
  56. // G0 -> G1
  57. // G1 - Coordinated Movement X Y Z E
  58. // G2 - CW ARC
  59. // G3 - CCW ARC
  60. // G4 - Dwell S<seconds> or P<milliseconds>
  61. // G10 - retract filament according to settings of M207
  62. // G11 - retract recover filament according to settings of M208
  63. // G28 - Home all Axis
  64. // G29 - Detailed Z-Probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  65. // G30 - Single Z Probe, probes bed at current XY location.
  66. // G90 - Use Absolute Coordinates
  67. // G91 - Use Relative Coordinates
  68. // G92 - Set current position to coordinates given
  69. // M Codes
  70. // M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
  71. // M1 - Same as M0
  72. // M17 - Enable/Power all stepper motors
  73. // M18 - Disable all stepper motors; same as M84
  74. // M20 - List SD card
  75. // M21 - Init SD card
  76. // M22 - Release SD card
  77. // M23 - Select SD file (M23 filename.g)
  78. // M24 - Start/resume SD print
  79. // M25 - Pause SD print
  80. // M26 - Set SD position in bytes (M26 S12345)
  81. // M27 - Report SD print status
  82. // M28 - Start SD write (M28 filename.g)
  83. // M29 - Stop SD write
  84. // M30 - Delete file from SD (M30 filename.g)
  85. // M31 - Output time since last M109 or SD card start to serial
  86. // M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  87. // syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  88. // Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
  89. // The '#' is necessary when calling from within sd files, as it stops buffer prereading
  90. // M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  91. // M80 - Turn on Power Supply
  92. // M81 - Turn off Power Supply
  93. // M82 - Set E codes absolute (default)
  94. // M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  95. // M84 - Disable steppers until next move,
  96. // or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  97. // M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  98. // M92 - Set axis_steps_per_unit - same syntax as G92
  99. // M104 - Set extruder target temp
  100. // M105 - Read current temp
  101. // M106 - Fan on
  102. // M107 - Fan off
  103. // M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  104. // Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  105. // IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  106. // M114 - Output current position to serial port
  107. // M115 - Capabilities string
  108. // M117 - display message
  109. // M119 - Output Endstop status to serial port
  110. // M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  111. // M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  112. // M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  113. // M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  114. // M140 - Set bed target temp
  115. // M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  116. // M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  117. // Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  118. // M200 D<millimeters>- set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  119. // M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  120. // M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  121. // M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  122. // M204 - Set default acceleration: S normal moves T filament only moves (M204 S3000 T7000) in mm/sec^2 also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  123. // M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
  124. // M206 - set additional homing offset
  125. // M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
  126. // M208 - set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
  127. // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  128. // M218 - set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  129. // M220 S<factor in percent>- set speed factor override percentage
  130. // M221 S<factor in percent>- set extrude factor override percentage
  131. // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  132. // M240 - Trigger a camera to take a photograph
  133. // M250 - Set LCD contrast C<contrast value> (value 0..63)
  134. // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  135. // M300 - Play beep sound S<frequency Hz> P<duration ms>
  136. // M301 - Set PID parameters P I and D
  137. // M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  138. // M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  139. // M304 - Set bed PID parameters P I and D
  140. // M400 - Finish all moves
  141. // M401 - Lower z-probe if present
  142. // M402 - Raise z-probe if present
  143. // M500 - stores parameters in EEPROM
  144. // M501 - reads parameters from EEPROM (if you need reset them after you changed them temporarily).
  145. // M502 - reverts to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  146. // M503 - print the current settings (from memory not from EEPROM)
  147. // M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  148. // M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  149. // M665 - set delta configurations
  150. // M666 - set delta endstop adjustment
  151. // M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  152. // M907 - Set digital trimpot motor current using axis codes.
  153. // M908 - Control digital trimpot directly.
  154. // M350 - Set microstepping mode.
  155. // M351 - Toggle MS1 MS2 pins directly.
  156. // M928 - Start SD logging (M928 filename.g) - ended by M29
  157. // M999 - Restart after being stopped by error
  158. //Stepper Movement Variables
  159. //===========================================================================
  160. //=============================imported variables============================
  161. //===========================================================================
  162. //===========================================================================
  163. //=============================public variables=============================
  164. //===========================================================================
  165. #ifdef SDSUPPORT
  166. CardReader card;
  167. #endif
  168. float homing_feedrate[] = HOMING_FEEDRATE;
  169. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  170. int feedmultiply=100; //100->1 200->2
  171. int saved_feedmultiply;
  172. int extrudemultiply=100; //100->1 200->2
  173. int extruder_multiply[EXTRUDERS] = {100
  174. #if EXTRUDERS > 1
  175. , 100
  176. #if EXTRUDERS > 2
  177. , 100
  178. #endif
  179. #endif
  180. };
  181. float volumetric_multiplier[EXTRUDERS] = {1.0
  182. #if EXTRUDERS > 1
  183. , 1.0
  184. #if EXTRUDERS > 2
  185. , 1.0
  186. #endif
  187. #endif
  188. };
  189. float current_position[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0 };
  190. float add_homeing[3]={0,0,0};
  191. #ifdef DELTA
  192. float endstop_adj[3]={0,0,0};
  193. #endif
  194. float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  195. float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  196. bool axis_known_position[3] = {false, false, false};
  197. float zprobe_zoffset;
  198. // Extruder offset
  199. #if EXTRUDERS > 1
  200. #ifndef DUAL_X_CARRIAGE
  201. #define NUM_EXTRUDER_OFFSETS 2 // only in XY plane
  202. #else
  203. #define NUM_EXTRUDER_OFFSETS 3 // supports offsets in XYZ plane
  204. #endif
  205. float extruder_offset[NUM_EXTRUDER_OFFSETS][EXTRUDERS] = {
  206. #if defined(EXTRUDER_OFFSET_X) && defined(EXTRUDER_OFFSET_Y)
  207. EXTRUDER_OFFSET_X, EXTRUDER_OFFSET_Y
  208. #endif
  209. };
  210. #endif
  211. uint8_t active_extruder = 0;
  212. int fanSpeed=0;
  213. #ifdef SERVO_ENDSTOPS
  214. int servo_endstops[] = SERVO_ENDSTOPS;
  215. int servo_endstop_angles[] = SERVO_ENDSTOP_ANGLES;
  216. #endif
  217. #ifdef BARICUDA
  218. int ValvePressure=0;
  219. int EtoPPressure=0;
  220. #endif
  221. #ifdef FWRETRACT
  222. bool autoretract_enabled=false;
  223. bool retracted=false;
  224. float retract_length = RETRACT_LENGTH;
  225. float retract_feedrate = RETRACT_FEEDRATE;
  226. float retract_zlift = RETRACT_ZLIFT;
  227. float retract_recover_length = RETRACT_RECOVER_LENGTH;
  228. float retract_recover_feedrate = RETRACT_RECOVER_FEEDRATE;
  229. #endif
  230. #ifdef ULTIPANEL
  231. #ifdef PS_DEFAULT_OFF
  232. bool powersupply = false;
  233. #else
  234. bool powersupply = true;
  235. #endif
  236. #endif
  237. #ifdef DELTA
  238. float delta[3] = {0.0, 0.0, 0.0};
  239. #define SIN_60 0.8660254037844386
  240. #define COS_60 0.5
  241. // these are the default values, can be overriden with M665
  242. float delta_radius= DELTA_RADIUS;
  243. float delta_tower1_x= -SIN_60*delta_radius; // front left tower
  244. float delta_tower1_y= -COS_60*delta_radius;
  245. float delta_tower2_x= SIN_60*delta_radius; // front right tower
  246. float delta_tower2_y= -COS_60*delta_radius;
  247. float delta_tower3_x= 0.0; // back middle tower
  248. float delta_tower3_y= delta_radius;
  249. float delta_diagonal_rod= DELTA_DIAGONAL_ROD;
  250. float delta_diagonal_rod_2= sq(delta_diagonal_rod);
  251. float delta_segments_per_second= DELTA_SEGMENTS_PER_SECOND;
  252. #endif
  253. //===========================================================================
  254. //=============================Private Variables=============================
  255. //===========================================================================
  256. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  257. static float destination[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0};
  258. static float offset[3] = {0.0, 0.0, 0.0};
  259. static bool home_all_axis = true;
  260. static float feedrate = 1500.0, next_feedrate, saved_feedrate;
  261. static long gcode_N, gcode_LastN, Stopped_gcode_LastN = 0;
  262. static bool relative_mode = false; //Determines Absolute or Relative Coordinates
  263. static char cmdbuffer[BUFSIZE][MAX_CMD_SIZE];
  264. static bool fromsd[BUFSIZE];
  265. static int bufindr = 0;
  266. static int bufindw = 0;
  267. static int buflen = 0;
  268. //static int i = 0;
  269. static char serial_char;
  270. static int serial_count = 0;
  271. static boolean comment_mode = false;
  272. static char *strchr_pointer; // just a pointer to find chars in the command string like X, Y, Z, E, etc
  273. const int sensitive_pins[] = SENSITIVE_PINS; // Sensitive pin list for M42
  274. //static float tt = 0;
  275. //static float bt = 0;
  276. //Inactivity shutdown variables
  277. static unsigned long previous_millis_cmd = 0;
  278. static unsigned long max_inactive_time = 0;
  279. static unsigned long stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME*1000l;
  280. unsigned long starttime=0;
  281. unsigned long stoptime=0;
  282. static uint8_t tmp_extruder;
  283. bool Stopped=false;
  284. #if NUM_SERVOS > 0
  285. Servo servos[NUM_SERVOS];
  286. #endif
  287. bool CooldownNoWait = true;
  288. bool target_direction;
  289. //Insert variables if CHDK is defined
  290. #ifdef CHDK
  291. unsigned long chdkHigh = 0;
  292. boolean chdkActive = false;
  293. #endif
  294. //===========================================================================
  295. //=============================Routines======================================
  296. //===========================================================================
  297. void get_arc_coordinates();
  298. bool setTargetedHotend(int code);
  299. void serial_echopair_P(const char *s_P, float v)
  300. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  301. void serial_echopair_P(const char *s_P, double v)
  302. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  303. void serial_echopair_P(const char *s_P, unsigned long v)
  304. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  305. extern "C"{
  306. extern unsigned int __bss_end;
  307. extern unsigned int __heap_start;
  308. extern void *__brkval;
  309. int freeMemory() {
  310. int free_memory;
  311. if((int)__brkval == 0)
  312. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  313. else
  314. free_memory = ((int)&free_memory) - ((int)__brkval);
  315. return free_memory;
  316. }
  317. }
  318. //adds an command to the main command buffer
  319. //thats really done in a non-safe way.
  320. //needs overworking someday
  321. void enquecommand(const char *cmd)
  322. {
  323. if(buflen < BUFSIZE)
  324. {
  325. //this is dangerous if a mixing of serial and this happens
  326. strcpy(&(cmdbuffer[bufindw][0]),cmd);
  327. SERIAL_ECHO_START;
  328. SERIAL_ECHOPGM("enqueing \"");
  329. SERIAL_ECHO(cmdbuffer[bufindw]);
  330. SERIAL_ECHOLNPGM("\"");
  331. bufindw= (bufindw + 1)%BUFSIZE;
  332. buflen += 1;
  333. }
  334. }
  335. void enquecommand_P(const char *cmd)
  336. {
  337. if(buflen < BUFSIZE)
  338. {
  339. //this is dangerous if a mixing of serial and this happens
  340. strcpy_P(&(cmdbuffer[bufindw][0]),cmd);
  341. SERIAL_ECHO_START;
  342. SERIAL_ECHOPGM("enqueing \"");
  343. SERIAL_ECHO(cmdbuffer[bufindw]);
  344. SERIAL_ECHOLNPGM("\"");
  345. bufindw= (bufindw + 1)%BUFSIZE;
  346. buflen += 1;
  347. }
  348. }
  349. void setup_killpin()
  350. {
  351. #if defined(KILL_PIN) && KILL_PIN > -1
  352. pinMode(KILL_PIN,INPUT);
  353. WRITE(KILL_PIN,HIGH);
  354. #endif
  355. }
  356. void setup_photpin()
  357. {
  358. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  359. SET_OUTPUT(PHOTOGRAPH_PIN);
  360. WRITE(PHOTOGRAPH_PIN, LOW);
  361. #endif
  362. }
  363. void setup_powerhold()
  364. {
  365. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  366. SET_OUTPUT(SUICIDE_PIN);
  367. WRITE(SUICIDE_PIN, HIGH);
  368. #endif
  369. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  370. SET_OUTPUT(PS_ON_PIN);
  371. #if defined(PS_DEFAULT_OFF)
  372. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  373. #else
  374. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  375. #endif
  376. #endif
  377. }
  378. void suicide()
  379. {
  380. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  381. SET_OUTPUT(SUICIDE_PIN);
  382. WRITE(SUICIDE_PIN, LOW);
  383. #endif
  384. }
  385. void servo_init()
  386. {
  387. #if (NUM_SERVOS >= 1) && defined(SERVO0_PIN) && (SERVO0_PIN > -1)
  388. servos[0].attach(SERVO0_PIN);
  389. #endif
  390. #if (NUM_SERVOS >= 2) && defined(SERVO1_PIN) && (SERVO1_PIN > -1)
  391. servos[1].attach(SERVO1_PIN);
  392. #endif
  393. #if (NUM_SERVOS >= 3) && defined(SERVO2_PIN) && (SERVO2_PIN > -1)
  394. servos[2].attach(SERVO2_PIN);
  395. #endif
  396. #if (NUM_SERVOS >= 4) && defined(SERVO3_PIN) && (SERVO3_PIN > -1)
  397. servos[3].attach(SERVO3_PIN);
  398. #endif
  399. #if (NUM_SERVOS >= 5)
  400. #error "TODO: enter initalisation code for more servos"
  401. #endif
  402. // Set position of Servo Endstops that are defined
  403. #ifdef SERVO_ENDSTOPS
  404. for(int8_t i = 0; i < 3; i++)
  405. {
  406. if(servo_endstops[i] > -1) {
  407. servos[servo_endstops[i]].write(servo_endstop_angles[i * 2 + 1]);
  408. }
  409. }
  410. #endif
  411. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  412. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  413. servos[servo_endstops[Z_AXIS]].detach();
  414. #endif
  415. }
  416. void setup()
  417. {
  418. setup_killpin();
  419. setup_powerhold();
  420. MYSERIAL.begin(BAUDRATE);
  421. SERIAL_PROTOCOLLNPGM("start");
  422. SERIAL_ECHO_START;
  423. // Check startup - does nothing if bootloader sets MCUSR to 0
  424. byte mcu = MCUSR;
  425. if(mcu & 1) SERIAL_ECHOLNPGM(MSG_POWERUP);
  426. if(mcu & 2) SERIAL_ECHOLNPGM(MSG_EXTERNAL_RESET);
  427. if(mcu & 4) SERIAL_ECHOLNPGM(MSG_BROWNOUT_RESET);
  428. if(mcu & 8) SERIAL_ECHOLNPGM(MSG_WATCHDOG_RESET);
  429. if(mcu & 32) SERIAL_ECHOLNPGM(MSG_SOFTWARE_RESET);
  430. MCUSR=0;
  431. SERIAL_ECHOPGM(MSG_MARLIN);
  432. SERIAL_ECHOLNPGM(VERSION_STRING);
  433. #ifdef STRING_VERSION_CONFIG_H
  434. #ifdef STRING_CONFIG_H_AUTHOR
  435. SERIAL_ECHO_START;
  436. SERIAL_ECHOPGM(MSG_CONFIGURATION_VER);
  437. SERIAL_ECHOPGM(STRING_VERSION_CONFIG_H);
  438. SERIAL_ECHOPGM(MSG_AUTHOR);
  439. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  440. SERIAL_ECHOPGM("Compiled: ");
  441. SERIAL_ECHOLNPGM(__DATE__);
  442. #endif
  443. #endif
  444. SERIAL_ECHO_START;
  445. SERIAL_ECHOPGM(MSG_FREE_MEMORY);
  446. SERIAL_ECHO(freeMemory());
  447. SERIAL_ECHOPGM(MSG_PLANNER_BUFFER_BYTES);
  448. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  449. for(int8_t i = 0; i < BUFSIZE; i++)
  450. {
  451. fromsd[i] = false;
  452. }
  453. // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  454. Config_RetrieveSettings();
  455. tp_init(); // Initialize temperature loop
  456. plan_init(); // Initialize planner;
  457. watchdog_init();
  458. st_init(); // Initialize stepper, this enables interrupts!
  459. setup_photpin();
  460. servo_init();
  461. lcd_init();
  462. _delay_ms(1000); // wait 1sec to display the splash screen
  463. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  464. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  465. #endif
  466. #ifdef DIGIPOT_I2C
  467. digipot_i2c_init();
  468. #endif
  469. }
  470. void loop()
  471. {
  472. if(buflen < (BUFSIZE-1))
  473. get_command();
  474. #ifdef SDSUPPORT
  475. card.checkautostart(false);
  476. #endif
  477. if(buflen)
  478. {
  479. #ifdef SDSUPPORT
  480. if(card.saving)
  481. {
  482. if(strstr_P(cmdbuffer[bufindr], PSTR("M29")) == NULL)
  483. {
  484. card.write_command(cmdbuffer[bufindr]);
  485. if(card.logging)
  486. {
  487. process_commands();
  488. }
  489. else
  490. {
  491. SERIAL_PROTOCOLLNPGM(MSG_OK);
  492. }
  493. }
  494. else
  495. {
  496. card.closefile();
  497. SERIAL_PROTOCOLLNPGM(MSG_FILE_SAVED);
  498. }
  499. }
  500. else
  501. {
  502. process_commands();
  503. }
  504. #else
  505. process_commands();
  506. #endif //SDSUPPORT
  507. buflen = (buflen-1);
  508. bufindr = (bufindr + 1)%BUFSIZE;
  509. }
  510. //check heater every n milliseconds
  511. manage_heater();
  512. manage_inactivity();
  513. checkHitEndstops();
  514. lcd_update();
  515. }
  516. void get_command()
  517. {
  518. while( MYSERIAL.available() > 0 && buflen < BUFSIZE) {
  519. serial_char = MYSERIAL.read();
  520. if(serial_char == '\n' ||
  521. serial_char == '\r' ||
  522. (serial_char == ':' && comment_mode == false) ||
  523. serial_count >= (MAX_CMD_SIZE - 1) )
  524. {
  525. if(!serial_count) { //if empty line
  526. comment_mode = false; //for new command
  527. return;
  528. }
  529. cmdbuffer[bufindw][serial_count] = 0; //terminate string
  530. if(!comment_mode){
  531. comment_mode = false; //for new command
  532. fromsd[bufindw] = false;
  533. if(strchr(cmdbuffer[bufindw], 'N') != NULL)
  534. {
  535. strchr_pointer = strchr(cmdbuffer[bufindw], 'N');
  536. gcode_N = (strtol(&cmdbuffer[bufindw][strchr_pointer - cmdbuffer[bufindw] + 1], NULL, 10));
  537. if(gcode_N != gcode_LastN+1 && (strstr_P(cmdbuffer[bufindw], PSTR("M110")) == NULL) ) {
  538. SERIAL_ERROR_START;
  539. SERIAL_ERRORPGM(MSG_ERR_LINE_NO);
  540. SERIAL_ERRORLN(gcode_LastN);
  541. //Serial.println(gcode_N);
  542. FlushSerialRequestResend();
  543. serial_count = 0;
  544. return;
  545. }
  546. if(strchr(cmdbuffer[bufindw], '*') != NULL)
  547. {
  548. byte checksum = 0;
  549. byte count = 0;
  550. while(cmdbuffer[bufindw][count] != '*') checksum = checksum^cmdbuffer[bufindw][count++];
  551. strchr_pointer = strchr(cmdbuffer[bufindw], '*');
  552. if( (int)(strtod(&cmdbuffer[bufindw][strchr_pointer - cmdbuffer[bufindw] + 1], NULL)) != checksum) {
  553. SERIAL_ERROR_START;
  554. SERIAL_ERRORPGM(MSG_ERR_CHECKSUM_MISMATCH);
  555. SERIAL_ERRORLN(gcode_LastN);
  556. FlushSerialRequestResend();
  557. serial_count = 0;
  558. return;
  559. }
  560. //if no errors, continue parsing
  561. }
  562. else
  563. {
  564. SERIAL_ERROR_START;
  565. SERIAL_ERRORPGM(MSG_ERR_NO_CHECKSUM);
  566. SERIAL_ERRORLN(gcode_LastN);
  567. FlushSerialRequestResend();
  568. serial_count = 0;
  569. return;
  570. }
  571. gcode_LastN = gcode_N;
  572. //if no errors, continue parsing
  573. }
  574. else // if we don't receive 'N' but still see '*'
  575. {
  576. if((strchr(cmdbuffer[bufindw], '*') != NULL))
  577. {
  578. SERIAL_ERROR_START;
  579. SERIAL_ERRORPGM(MSG_ERR_NO_LINENUMBER_WITH_CHECKSUM);
  580. SERIAL_ERRORLN(gcode_LastN);
  581. serial_count = 0;
  582. return;
  583. }
  584. }
  585. if((strchr(cmdbuffer[bufindw], 'G') != NULL)){
  586. strchr_pointer = strchr(cmdbuffer[bufindw], 'G');
  587. switch((int)((strtod(&cmdbuffer[bufindw][strchr_pointer - cmdbuffer[bufindw] + 1], NULL)))){
  588. case 0:
  589. case 1:
  590. case 2:
  591. case 3:
  592. if(Stopped == false) { // If printer is stopped by an error the G[0-3] codes are ignored.
  593. #ifdef SDSUPPORT
  594. if(card.saving)
  595. break;
  596. #endif //SDSUPPORT
  597. SERIAL_PROTOCOLLNPGM(MSG_OK);
  598. }
  599. else {
  600. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  601. LCD_MESSAGEPGM(MSG_STOPPED);
  602. }
  603. break;
  604. default:
  605. break;
  606. }
  607. }
  608. bufindw = (bufindw + 1)%BUFSIZE;
  609. buflen += 1;
  610. }
  611. serial_count = 0; //clear buffer
  612. }
  613. else
  614. {
  615. if(serial_char == ';') comment_mode = true;
  616. if(!comment_mode) cmdbuffer[bufindw][serial_count++] = serial_char;
  617. }
  618. }
  619. #ifdef SDSUPPORT
  620. if(!card.sdprinting || serial_count!=0){
  621. return;
  622. }
  623. //'#' stops reading from SD to the buffer prematurely, so procedural macro calls are possible
  624. // if it occurs, stop_buffering is triggered and the buffer is ran dry.
  625. // this character _can_ occur in serial com, due to checksums. however, no checksums are used in SD printing
  626. static bool stop_buffering=false;
  627. if(buflen==0) stop_buffering=false;
  628. while( !card.eof() && buflen < BUFSIZE && !stop_buffering) {
  629. int16_t n=card.get();
  630. serial_char = (char)n;
  631. if(serial_char == '\n' ||
  632. serial_char == '\r' ||
  633. (serial_char == '#' && comment_mode == false) ||
  634. (serial_char == ':' && comment_mode == false) ||
  635. serial_count >= (MAX_CMD_SIZE - 1)||n==-1)
  636. {
  637. if(card.eof()){
  638. SERIAL_PROTOCOLLNPGM(MSG_FILE_PRINTED);
  639. stoptime=millis();
  640. char time[30];
  641. unsigned long t=(stoptime-starttime)/1000;
  642. int hours, minutes;
  643. minutes=(t/60)%60;
  644. hours=t/60/60;
  645. sprintf_P(time, PSTR("%i hours %i minutes"),hours, minutes);
  646. SERIAL_ECHO_START;
  647. SERIAL_ECHOLN(time);
  648. lcd_setstatus(time);
  649. card.printingHasFinished();
  650. card.checkautostart(true);
  651. }
  652. if(serial_char=='#')
  653. stop_buffering=true;
  654. if(!serial_count)
  655. {
  656. comment_mode = false; //for new command
  657. return; //if empty line
  658. }
  659. cmdbuffer[bufindw][serial_count] = 0; //terminate string
  660. // if(!comment_mode){
  661. fromsd[bufindw] = true;
  662. buflen += 1;
  663. bufindw = (bufindw + 1)%BUFSIZE;
  664. // }
  665. comment_mode = false; //for new command
  666. serial_count = 0; //clear buffer
  667. }
  668. else
  669. {
  670. if(serial_char == ';') comment_mode = true;
  671. if(!comment_mode) cmdbuffer[bufindw][serial_count++] = serial_char;
  672. }
  673. }
  674. #endif //SDSUPPORT
  675. }
  676. float code_value()
  677. {
  678. return (strtod(&cmdbuffer[bufindr][strchr_pointer - cmdbuffer[bufindr] + 1], NULL));
  679. }
  680. long code_value_long()
  681. {
  682. return (strtol(&cmdbuffer[bufindr][strchr_pointer - cmdbuffer[bufindr] + 1], NULL, 10));
  683. }
  684. bool code_seen(char code)
  685. {
  686. strchr_pointer = strchr(cmdbuffer[bufindr], code);
  687. return (strchr_pointer != NULL); //Return True if a character was found
  688. }
  689. #define DEFINE_PGM_READ_ANY(type, reader) \
  690. static inline type pgm_read_any(const type *p) \
  691. { return pgm_read_##reader##_near(p); }
  692. DEFINE_PGM_READ_ANY(float, float);
  693. DEFINE_PGM_READ_ANY(signed char, byte);
  694. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  695. static const PROGMEM type array##_P[3] = \
  696. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  697. static inline type array(int axis) \
  698. { return pgm_read_any(&array##_P[axis]); }
  699. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  700. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  701. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  702. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  703. XYZ_CONSTS_FROM_CONFIG(float, home_retract_mm, HOME_RETRACT_MM);
  704. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  705. #ifdef DUAL_X_CARRIAGE
  706. #if EXTRUDERS == 1 || defined(COREXY) \
  707. || !defined(X2_ENABLE_PIN) || !defined(X2_STEP_PIN) || !defined(X2_DIR_PIN) \
  708. || !defined(X2_HOME_POS) || !defined(X2_MIN_POS) || !defined(X2_MAX_POS) \
  709. || !defined(X_MAX_PIN) || X_MAX_PIN < 0
  710. #error "Missing or invalid definitions for DUAL_X_CARRIAGE mode."
  711. #endif
  712. #if X_HOME_DIR != -1 || X2_HOME_DIR != 1
  713. #error "Please use canonical x-carriage assignment" // the x-carriages are defined by their homing directions
  714. #endif
  715. #define DXC_FULL_CONTROL_MODE 0
  716. #define DXC_AUTO_PARK_MODE 1
  717. #define DXC_DUPLICATION_MODE 2
  718. static int dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  719. static float x_home_pos(int extruder) {
  720. if (extruder == 0)
  721. return base_home_pos(X_AXIS) + add_homeing[X_AXIS];
  722. else
  723. // In dual carriage mode the extruder offset provides an override of the
  724. // second X-carriage offset when homed - otherwise X2_HOME_POS is used.
  725. // This allow soft recalibration of the second extruder offset position without firmware reflash
  726. // (through the M218 command).
  727. return (extruder_offset[X_AXIS][1] > 0) ? extruder_offset[X_AXIS][1] : X2_HOME_POS;
  728. }
  729. static int x_home_dir(int extruder) {
  730. return (extruder == 0) ? X_HOME_DIR : X2_HOME_DIR;
  731. }
  732. static float inactive_extruder_x_pos = X2_MAX_POS; // used in mode 0 & 1
  733. static bool active_extruder_parked = false; // used in mode 1 & 2
  734. static float raised_parked_position[NUM_AXIS]; // used in mode 1
  735. static unsigned long delayed_move_time = 0; // used in mode 1
  736. static float duplicate_extruder_x_offset = DEFAULT_DUPLICATION_X_OFFSET; // used in mode 2
  737. static float duplicate_extruder_temp_offset = 0; // used in mode 2
  738. bool extruder_duplication_enabled = false; // used in mode 2
  739. #endif //DUAL_X_CARRIAGE
  740. static void axis_is_at_home(int axis) {
  741. #ifdef DUAL_X_CARRIAGE
  742. if (axis == X_AXIS) {
  743. if (active_extruder != 0) {
  744. current_position[X_AXIS] = x_home_pos(active_extruder);
  745. min_pos[X_AXIS] = X2_MIN_POS;
  746. max_pos[X_AXIS] = max(extruder_offset[X_AXIS][1], X2_MAX_POS);
  747. return;
  748. }
  749. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && active_extruder == 0) {
  750. current_position[X_AXIS] = base_home_pos(X_AXIS) + add_homeing[X_AXIS];
  751. min_pos[X_AXIS] = base_min_pos(X_AXIS) + add_homeing[X_AXIS];
  752. max_pos[X_AXIS] = min(base_max_pos(X_AXIS) + add_homeing[X_AXIS],
  753. max(extruder_offset[X_AXIS][1], X2_MAX_POS) - duplicate_extruder_x_offset);
  754. return;
  755. }
  756. }
  757. #endif
  758. current_position[axis] = base_home_pos(axis) + add_homeing[axis];
  759. min_pos[axis] = base_min_pos(axis) + add_homeing[axis];
  760. max_pos[axis] = base_max_pos(axis) + add_homeing[axis];
  761. }
  762. #ifdef ENABLE_AUTO_BED_LEVELING
  763. #ifdef AUTO_BED_LEVELING_GRID
  764. static void set_bed_level_equation_lsq(double *plane_equation_coefficients)
  765. {
  766. vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
  767. planeNormal.debug("planeNormal");
  768. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  769. //bedLevel.debug("bedLevel");
  770. //plan_bed_level_matrix.debug("bed level before");
  771. //vector_3 uncorrected_position = plan_get_position_mm();
  772. //uncorrected_position.debug("position before");
  773. vector_3 corrected_position = plan_get_position();
  774. // corrected_position.debug("position after");
  775. current_position[X_AXIS] = corrected_position.x;
  776. current_position[Y_AXIS] = corrected_position.y;
  777. current_position[Z_AXIS] = corrected_position.z;
  778. // but the bed at 0 so we don't go below it.
  779. current_position[Z_AXIS] = zprobe_zoffset; // in the lsq we reach here after raising the extruder due to the loop structure
  780. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  781. }
  782. #else // not AUTO_BED_LEVELING_GRID
  783. static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
  784. plan_bed_level_matrix.set_to_identity();
  785. vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
  786. vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
  787. vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
  788. vector_3 from_2_to_1 = (pt1 - pt2).get_normal();
  789. vector_3 from_2_to_3 = (pt3 - pt2).get_normal();
  790. vector_3 planeNormal = vector_3::cross(from_2_to_1, from_2_to_3).get_normal();
  791. planeNormal = vector_3(planeNormal.x, planeNormal.y, abs(planeNormal.z));
  792. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  793. vector_3 corrected_position = plan_get_position();
  794. current_position[X_AXIS] = corrected_position.x;
  795. current_position[Y_AXIS] = corrected_position.y;
  796. current_position[Z_AXIS] = corrected_position.z;
  797. // put the bed at 0 so we don't go below it.
  798. current_position[Z_AXIS] = zprobe_zoffset;
  799. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  800. }
  801. #endif // AUTO_BED_LEVELING_GRID
  802. static void run_z_probe() {
  803. plan_bed_level_matrix.set_to_identity();
  804. feedrate = homing_feedrate[Z_AXIS];
  805. // move down until you find the bed
  806. float zPosition = -10;
  807. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  808. st_synchronize();
  809. // we have to let the planner know where we are right now as it is not where we said to go.
  810. zPosition = st_get_position_mm(Z_AXIS);
  811. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]);
  812. // move up the retract distance
  813. zPosition += home_retract_mm(Z_AXIS);
  814. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  815. st_synchronize();
  816. // move back down slowly to find bed
  817. feedrate = homing_feedrate[Z_AXIS]/4;
  818. zPosition -= home_retract_mm(Z_AXIS) * 2;
  819. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  820. st_synchronize();
  821. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  822. // make sure the planner knows where we are as it may be a bit different than we last said to move to
  823. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  824. }
  825. static void do_blocking_move_to(float x, float y, float z) {
  826. float oldFeedRate = feedrate;
  827. feedrate = XY_TRAVEL_SPEED;
  828. current_position[X_AXIS] = x;
  829. current_position[Y_AXIS] = y;
  830. current_position[Z_AXIS] = z;
  831. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  832. st_synchronize();
  833. feedrate = oldFeedRate;
  834. }
  835. static void do_blocking_move_relative(float offset_x, float offset_y, float offset_z) {
  836. do_blocking_move_to(current_position[X_AXIS] + offset_x, current_position[Y_AXIS] + offset_y, current_position[Z_AXIS] + offset_z);
  837. }
  838. static void setup_for_endstop_move() {
  839. saved_feedrate = feedrate;
  840. saved_feedmultiply = feedmultiply;
  841. feedmultiply = 100;
  842. previous_millis_cmd = millis();
  843. enable_endstops(true);
  844. }
  845. static void clean_up_after_endstop_move() {
  846. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  847. enable_endstops(false);
  848. #endif
  849. feedrate = saved_feedrate;
  850. feedmultiply = saved_feedmultiply;
  851. previous_millis_cmd = millis();
  852. }
  853. static void engage_z_probe() {
  854. // Engage Z Servo endstop if enabled
  855. #ifdef SERVO_ENDSTOPS
  856. if (servo_endstops[Z_AXIS] > -1) {
  857. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  858. servos[servo_endstops[Z_AXIS]].attach(0);
  859. #endif
  860. servos[servo_endstops[Z_AXIS]].write(servo_endstop_angles[Z_AXIS * 2]);
  861. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  862. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  863. servos[servo_endstops[Z_AXIS]].detach();
  864. #endif
  865. }
  866. #endif
  867. }
  868. static void retract_z_probe() {
  869. // Retract Z Servo endstop if enabled
  870. #ifdef SERVO_ENDSTOPS
  871. if (servo_endstops[Z_AXIS] > -1) {
  872. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  873. servos[servo_endstops[Z_AXIS]].attach(0);
  874. #endif
  875. servos[servo_endstops[Z_AXIS]].write(servo_endstop_angles[Z_AXIS * 2 + 1]);
  876. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  877. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  878. servos[servo_endstops[Z_AXIS]].detach();
  879. #endif
  880. }
  881. #endif
  882. }
  883. /// Probe bed height at position (x,y), returns the measured z value
  884. static float probe_pt(float x, float y, float z_before) {
  885. // move to right place
  886. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_before);
  887. do_blocking_move_to(x - X_PROBE_OFFSET_FROM_EXTRUDER, y - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
  888. engage_z_probe(); // Engage Z Servo endstop if available
  889. run_z_probe();
  890. float measured_z = current_position[Z_AXIS];
  891. retract_z_probe();
  892. SERIAL_PROTOCOLPGM(MSG_BED);
  893. SERIAL_PROTOCOLPGM(" x: ");
  894. SERIAL_PROTOCOL(x);
  895. SERIAL_PROTOCOLPGM(" y: ");
  896. SERIAL_PROTOCOL(y);
  897. SERIAL_PROTOCOLPGM(" z: ");
  898. SERIAL_PROTOCOL(measured_z);
  899. SERIAL_PROTOCOLPGM("\n");
  900. return measured_z;
  901. }
  902. #endif // #ifdef ENABLE_AUTO_BED_LEVELING
  903. static void homeaxis(int axis) {
  904. #define HOMEAXIS_DO(LETTER) \
  905. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  906. if (axis==X_AXIS ? HOMEAXIS_DO(X) :
  907. axis==Y_AXIS ? HOMEAXIS_DO(Y) :
  908. axis==Z_AXIS ? HOMEAXIS_DO(Z) :
  909. 0) {
  910. int axis_home_dir = home_dir(axis);
  911. #ifdef DUAL_X_CARRIAGE
  912. if (axis == X_AXIS)
  913. axis_home_dir = x_home_dir(active_extruder);
  914. #endif
  915. current_position[axis] = 0;
  916. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  917. // Engage Servo endstop if enabled
  918. #ifdef SERVO_ENDSTOPS
  919. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  920. if (axis==Z_AXIS) {
  921. engage_z_probe();
  922. }
  923. else
  924. #endif
  925. if (servo_endstops[axis] > -1) {
  926. servos[servo_endstops[axis]].write(servo_endstop_angles[axis * 2]);
  927. }
  928. #endif
  929. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  930. feedrate = homing_feedrate[axis];
  931. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  932. st_synchronize();
  933. current_position[axis] = 0;
  934. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  935. destination[axis] = -home_retract_mm(axis) * axis_home_dir;
  936. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  937. st_synchronize();
  938. destination[axis] = 2*home_retract_mm(axis) * axis_home_dir;
  939. #ifdef DELTA
  940. feedrate = homing_feedrate[axis]/10;
  941. #else
  942. feedrate = homing_feedrate[axis]/2 ;
  943. #endif
  944. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  945. st_synchronize();
  946. #ifdef DELTA
  947. // retrace by the amount specified in endstop_adj
  948. if (endstop_adj[axis] * axis_home_dir < 0) {
  949. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  950. destination[axis] = endstop_adj[axis];
  951. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  952. st_synchronize();
  953. }
  954. #endif
  955. axis_is_at_home(axis);
  956. destination[axis] = current_position[axis];
  957. feedrate = 0.0;
  958. endstops_hit_on_purpose();
  959. axis_known_position[axis] = true;
  960. // Retract Servo endstop if enabled
  961. #ifdef SERVO_ENDSTOPS
  962. if (servo_endstops[axis] > -1) {
  963. servos[servo_endstops[axis]].write(servo_endstop_angles[axis * 2 + 1]);
  964. }
  965. #endif
  966. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  967. if (axis==Z_AXIS) retract_z_probe();
  968. #endif
  969. }
  970. }
  971. #define HOMEAXIS(LETTER) homeaxis(LETTER##_AXIS)
  972. void refresh_cmd_timeout(void)
  973. {
  974. previous_millis_cmd = millis();
  975. }
  976. #ifdef FWRETRACT
  977. void retract(bool retracting) {
  978. if(retracting && !retracted) {
  979. destination[X_AXIS]=current_position[X_AXIS];
  980. destination[Y_AXIS]=current_position[Y_AXIS];
  981. destination[Z_AXIS]=current_position[Z_AXIS];
  982. destination[E_AXIS]=current_position[E_AXIS];
  983. current_position[E_AXIS]+=retract_length/volumetric_multiplier[active_extruder];
  984. plan_set_e_position(current_position[E_AXIS]);
  985. float oldFeedrate = feedrate;
  986. feedrate=retract_feedrate*60;
  987. retracted=true;
  988. prepare_move();
  989. current_position[Z_AXIS]-=retract_zlift;
  990. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  991. prepare_move();
  992. feedrate = oldFeedrate;
  993. } else if(!retracting && retracted) {
  994. destination[X_AXIS]=current_position[X_AXIS];
  995. destination[Y_AXIS]=current_position[Y_AXIS];
  996. destination[Z_AXIS]=current_position[Z_AXIS];
  997. destination[E_AXIS]=current_position[E_AXIS];
  998. current_position[Z_AXIS]+=retract_zlift;
  999. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1000. //prepare_move();
  1001. current_position[E_AXIS]-=(retract_length+retract_recover_length)/volumetric_multiplier[active_extruder];
  1002. plan_set_e_position(current_position[E_AXIS]);
  1003. float oldFeedrate = feedrate;
  1004. feedrate=retract_recover_feedrate*60;
  1005. retracted=false;
  1006. prepare_move();
  1007. feedrate = oldFeedrate;
  1008. }
  1009. } //retract
  1010. #endif //FWRETRACT
  1011. void process_commands()
  1012. {
  1013. unsigned long codenum; //throw away variable
  1014. char *starpos = NULL;
  1015. #ifdef ENABLE_AUTO_BED_LEVELING
  1016. float x_tmp, y_tmp, z_tmp, real_z;
  1017. #endif
  1018. if(code_seen('G'))
  1019. {
  1020. switch((int)code_value())
  1021. {
  1022. case 0: // G0 -> G1
  1023. case 1: // G1
  1024. if(Stopped == false) {
  1025. get_coordinates(); // For X Y Z E F
  1026. #ifdef FWRETRACT
  1027. if(autoretract_enabled)
  1028. if( !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  1029. float echange=destination[E_AXIS]-current_position[E_AXIS];
  1030. if((echange<-MIN_RETRACT && !retracted) || (echange>MIN_RETRACT && retracted)) { //move appears to be an attempt to retract or recover
  1031. current_position[E_AXIS] = destination[E_AXIS]; //hide the slicer-generated retract/recover from calculations
  1032. plan_set_e_position(current_position[E_AXIS]); //AND from the planner
  1033. retract(!retracted);
  1034. return;
  1035. }
  1036. }
  1037. #endif //FWRETRACT
  1038. prepare_move();
  1039. //ClearToSend();
  1040. return;
  1041. }
  1042. break;
  1043. case 2: // G2 - CW ARC
  1044. if(Stopped == false) {
  1045. get_arc_coordinates();
  1046. prepare_arc_move(true);
  1047. return;
  1048. }
  1049. break;
  1050. case 3: // G3 - CCW ARC
  1051. if(Stopped == false) {
  1052. get_arc_coordinates();
  1053. prepare_arc_move(false);
  1054. return;
  1055. }
  1056. break;
  1057. case 4: // G4 dwell
  1058. LCD_MESSAGEPGM(MSG_DWELL);
  1059. codenum = 0;
  1060. if(code_seen('P')) codenum = code_value(); // milliseconds to wait
  1061. if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait
  1062. st_synchronize();
  1063. codenum += millis(); // keep track of when we started waiting
  1064. previous_millis_cmd = millis();
  1065. while(millis() < codenum ){
  1066. manage_heater();
  1067. manage_inactivity();
  1068. lcd_update();
  1069. }
  1070. break;
  1071. #ifdef FWRETRACT
  1072. case 10: // G10 retract
  1073. retract(true);
  1074. break;
  1075. case 11: // G11 retract_recover
  1076. retract(false);
  1077. break;
  1078. #endif //FWRETRACT
  1079. case 28: //G28 Home all Axis one at a time
  1080. #ifdef ENABLE_AUTO_BED_LEVELING
  1081. plan_bed_level_matrix.set_to_identity(); //Reset the plane ("erase" all leveling data)
  1082. #endif //ENABLE_AUTO_BED_LEVELING
  1083. saved_feedrate = feedrate;
  1084. saved_feedmultiply = feedmultiply;
  1085. feedmultiply = 100;
  1086. previous_millis_cmd = millis();
  1087. enable_endstops(true);
  1088. for(int8_t i=0; i < NUM_AXIS; i++) {
  1089. destination[i] = current_position[i];
  1090. }
  1091. feedrate = 0.0;
  1092. #ifdef DELTA
  1093. // A delta can only safely home all axis at the same time
  1094. // all axis have to home at the same time
  1095. // Move all carriages up together until the first endstop is hit.
  1096. current_position[X_AXIS] = 0;
  1097. current_position[Y_AXIS] = 0;
  1098. current_position[Z_AXIS] = 0;
  1099. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1100. destination[X_AXIS] = 3 * Z_MAX_LENGTH;
  1101. destination[Y_AXIS] = 3 * Z_MAX_LENGTH;
  1102. destination[Z_AXIS] = 3 * Z_MAX_LENGTH;
  1103. feedrate = 1.732 * homing_feedrate[X_AXIS];
  1104. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1105. st_synchronize();
  1106. endstops_hit_on_purpose();
  1107. current_position[X_AXIS] = destination[X_AXIS];
  1108. current_position[Y_AXIS] = destination[Y_AXIS];
  1109. current_position[Z_AXIS] = destination[Z_AXIS];
  1110. // take care of back off and rehome now we are all at the top
  1111. HOMEAXIS(X);
  1112. HOMEAXIS(Y);
  1113. HOMEAXIS(Z);
  1114. calculate_delta(current_position);
  1115. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
  1116. #else // NOT DELTA
  1117. home_all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS])));
  1118. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  1119. if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
  1120. HOMEAXIS(Z);
  1121. }
  1122. #endif
  1123. #ifdef QUICK_HOME
  1124. if((home_all_axis)||( code_seen(axis_codes[X_AXIS]) && code_seen(axis_codes[Y_AXIS])) ) //first diagonal move
  1125. {
  1126. current_position[X_AXIS] = 0;current_position[Y_AXIS] = 0;
  1127. #ifndef DUAL_X_CARRIAGE
  1128. int x_axis_home_dir = home_dir(X_AXIS);
  1129. #else
  1130. int x_axis_home_dir = x_home_dir(active_extruder);
  1131. extruder_duplication_enabled = false;
  1132. #endif
  1133. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1134. destination[X_AXIS] = 1.5 * max_length(X_AXIS) * x_axis_home_dir;destination[Y_AXIS] = 1.5 * max_length(Y_AXIS) * home_dir(Y_AXIS);
  1135. feedrate = homing_feedrate[X_AXIS];
  1136. if(homing_feedrate[Y_AXIS]<feedrate)
  1137. feedrate = homing_feedrate[Y_AXIS];
  1138. if (max_length(X_AXIS) > max_length(Y_AXIS)) {
  1139. feedrate *= sqrt(pow(max_length(Y_AXIS) / max_length(X_AXIS), 2) + 1);
  1140. } else {
  1141. feedrate *= sqrt(pow(max_length(X_AXIS) / max_length(Y_AXIS), 2) + 1);
  1142. }
  1143. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1144. st_synchronize();
  1145. axis_is_at_home(X_AXIS);
  1146. axis_is_at_home(Y_AXIS);
  1147. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1148. destination[X_AXIS] = current_position[X_AXIS];
  1149. destination[Y_AXIS] = current_position[Y_AXIS];
  1150. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1151. feedrate = 0.0;
  1152. st_synchronize();
  1153. endstops_hit_on_purpose();
  1154. current_position[X_AXIS] = destination[X_AXIS];
  1155. current_position[Y_AXIS] = destination[Y_AXIS];
  1156. current_position[Z_AXIS] = destination[Z_AXIS];
  1157. }
  1158. #endif
  1159. if((home_all_axis) || (code_seen(axis_codes[X_AXIS])))
  1160. {
  1161. #ifdef DUAL_X_CARRIAGE
  1162. int tmp_extruder = active_extruder;
  1163. extruder_duplication_enabled = false;
  1164. active_extruder = !active_extruder;
  1165. HOMEAXIS(X);
  1166. inactive_extruder_x_pos = current_position[X_AXIS];
  1167. active_extruder = tmp_extruder;
  1168. HOMEAXIS(X);
  1169. // reset state used by the different modes
  1170. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  1171. delayed_move_time = 0;
  1172. active_extruder_parked = true;
  1173. #else
  1174. HOMEAXIS(X);
  1175. #endif
  1176. }
  1177. if((home_all_axis) || (code_seen(axis_codes[Y_AXIS]))) {
  1178. HOMEAXIS(Y);
  1179. }
  1180. if(code_seen(axis_codes[X_AXIS]))
  1181. {
  1182. if(code_value_long() != 0) {
  1183. current_position[X_AXIS]=code_value()+add_homeing[0];
  1184. }
  1185. }
  1186. if(code_seen(axis_codes[Y_AXIS])) {
  1187. if(code_value_long() != 0) {
  1188. current_position[Y_AXIS]=code_value()+add_homeing[1];
  1189. }
  1190. }
  1191. #if Z_HOME_DIR < 0 // If homing towards BED do Z last
  1192. #ifndef Z_SAFE_HOMING
  1193. if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
  1194. #if defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  1195. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  1196. feedrate = max_feedrate[Z_AXIS];
  1197. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  1198. st_synchronize();
  1199. #endif
  1200. HOMEAXIS(Z);
  1201. }
  1202. #else // Z Safe mode activated.
  1203. if(home_all_axis) {
  1204. destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - X_PROBE_OFFSET_FROM_EXTRUDER);
  1205. destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - Y_PROBE_OFFSET_FROM_EXTRUDER);
  1206. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  1207. feedrate = XY_TRAVEL_SPEED;
  1208. current_position[Z_AXIS] = 0;
  1209. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1210. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  1211. st_synchronize();
  1212. current_position[X_AXIS] = destination[X_AXIS];
  1213. current_position[Y_AXIS] = destination[Y_AXIS];
  1214. HOMEAXIS(Z);
  1215. }
  1216. // Let's see if X and Y are homed and probe is inside bed area.
  1217. if(code_seen(axis_codes[Z_AXIS])) {
  1218. if ( (axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]) \
  1219. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER >= X_MIN_POS) \
  1220. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER <= X_MAX_POS) \
  1221. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER >= Y_MIN_POS) \
  1222. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER <= Y_MAX_POS)) {
  1223. current_position[Z_AXIS] = 0;
  1224. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1225. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  1226. feedrate = max_feedrate[Z_AXIS];
  1227. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  1228. st_synchronize();
  1229. HOMEAXIS(Z);
  1230. } else if (!((axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]))) {
  1231. LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN);
  1232. SERIAL_ECHO_START;
  1233. SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN);
  1234. } else {
  1235. LCD_MESSAGEPGM(MSG_ZPROBE_OUT);
  1236. SERIAL_ECHO_START;
  1237. SERIAL_ECHOLNPGM(MSG_ZPROBE_OUT);
  1238. }
  1239. }
  1240. #endif
  1241. #endif
  1242. if(code_seen(axis_codes[Z_AXIS])) {
  1243. if(code_value_long() != 0) {
  1244. current_position[Z_AXIS]=code_value()+add_homeing[2];
  1245. }
  1246. }
  1247. #ifdef ENABLE_AUTO_BED_LEVELING
  1248. if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
  1249. current_position[Z_AXIS] += zprobe_zoffset; //Add Z_Probe offset (the distance is negative)
  1250. }
  1251. #endif
  1252. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1253. #endif // else DELTA
  1254. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1255. enable_endstops(false);
  1256. #endif
  1257. feedrate = saved_feedrate;
  1258. feedmultiply = saved_feedmultiply;
  1259. previous_millis_cmd = millis();
  1260. endstops_hit_on_purpose();
  1261. break;
  1262. #ifdef ENABLE_AUTO_BED_LEVELING
  1263. case 29: // G29 Detailed Z-Probe, probes the bed at 3 or more points.
  1264. {
  1265. #if Z_MIN_PIN == -1
  1266. #error "You must have a Z_MIN endstop in order to enable Auto Bed Leveling feature!!! Z_MIN_PIN must point to a valid hardware pin."
  1267. #endif
  1268. // Prevent user from running a G29 without first homing in X and Y
  1269. if (! (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS]) )
  1270. {
  1271. LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN);
  1272. SERIAL_ECHO_START;
  1273. SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN);
  1274. break; // abort G29, since we don't know where we are
  1275. }
  1276. st_synchronize();
  1277. // make sure the bed_level_rotation_matrix is identity or the planner will get it incorectly
  1278. //vector_3 corrected_position = plan_get_position_mm();
  1279. //corrected_position.debug("position before G29");
  1280. plan_bed_level_matrix.set_to_identity();
  1281. vector_3 uncorrected_position = plan_get_position();
  1282. //uncorrected_position.debug("position durring G29");
  1283. current_position[X_AXIS] = uncorrected_position.x;
  1284. current_position[Y_AXIS] = uncorrected_position.y;
  1285. current_position[Z_AXIS] = uncorrected_position.z;
  1286. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1287. setup_for_endstop_move();
  1288. feedrate = homing_feedrate[Z_AXIS];
  1289. #ifdef AUTO_BED_LEVELING_GRID
  1290. // probe at the points of a lattice grid
  1291. int xGridSpacing = (RIGHT_PROBE_BED_POSITION - LEFT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  1292. int yGridSpacing = (BACK_PROBE_BED_POSITION - FRONT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  1293. // solve the plane equation ax + by + d = z
  1294. // A is the matrix with rows [x y 1] for all the probed points
  1295. // B is the vector of the Z positions
  1296. // the normal vector to the plane is formed by the coefficients of the plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  1297. // so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  1298. // "A" matrix of the linear system of equations
  1299. double eqnAMatrix[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS*3];
  1300. // "B" vector of Z points
  1301. double eqnBVector[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS];
  1302. int probePointCounter = 0;
  1303. bool zig = true;
  1304. for (int yProbe=FRONT_PROBE_BED_POSITION; yProbe <= BACK_PROBE_BED_POSITION; yProbe += yGridSpacing)
  1305. {
  1306. int xProbe, xInc;
  1307. if (zig)
  1308. {
  1309. xProbe = LEFT_PROBE_BED_POSITION;
  1310. //xEnd = RIGHT_PROBE_BED_POSITION;
  1311. xInc = xGridSpacing;
  1312. zig = false;
  1313. } else // zag
  1314. {
  1315. xProbe = RIGHT_PROBE_BED_POSITION;
  1316. //xEnd = LEFT_PROBE_BED_POSITION;
  1317. xInc = -xGridSpacing;
  1318. zig = true;
  1319. }
  1320. for (int xCount=0; xCount < AUTO_BED_LEVELING_GRID_POINTS; xCount++)
  1321. {
  1322. float z_before;
  1323. if (probePointCounter == 0)
  1324. {
  1325. // raise before probing
  1326. z_before = Z_RAISE_BEFORE_PROBING;
  1327. } else
  1328. {
  1329. // raise extruder
  1330. z_before = current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS;
  1331. }
  1332. float measured_z = probe_pt(xProbe, yProbe, z_before);
  1333. eqnBVector[probePointCounter] = measured_z;
  1334. eqnAMatrix[probePointCounter + 0*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = xProbe;
  1335. eqnAMatrix[probePointCounter + 1*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = yProbe;
  1336. eqnAMatrix[probePointCounter + 2*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = 1;
  1337. probePointCounter++;
  1338. xProbe += xInc;
  1339. }
  1340. }
  1341. clean_up_after_endstop_move();
  1342. // solve lsq problem
  1343. double *plane_equation_coefficients = qr_solve(AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS, 3, eqnAMatrix, eqnBVector);
  1344. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  1345. SERIAL_PROTOCOL(plane_equation_coefficients[0]);
  1346. SERIAL_PROTOCOLPGM(" b: ");
  1347. SERIAL_PROTOCOL(plane_equation_coefficients[1]);
  1348. SERIAL_PROTOCOLPGM(" d: ");
  1349. SERIAL_PROTOCOLLN(plane_equation_coefficients[2]);
  1350. set_bed_level_equation_lsq(plane_equation_coefficients);
  1351. free(plane_equation_coefficients);
  1352. #else // AUTO_BED_LEVELING_GRID not defined
  1353. // Probe at 3 arbitrary points
  1354. // probe 1
  1355. float z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING);
  1356. // probe 2
  1357. float z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  1358. // probe 3
  1359. float z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  1360. clean_up_after_endstop_move();
  1361. set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
  1362. #endif // AUTO_BED_LEVELING_GRID
  1363. st_synchronize();
  1364. // The following code correct the Z height difference from z-probe position and hotend tip position.
  1365. // The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
  1366. // When the bed is uneven, this height must be corrected.
  1367. real_z = float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]; //get the real Z (since the auto bed leveling is already correcting the plane)
  1368. x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER;
  1369. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER;
  1370. z_tmp = current_position[Z_AXIS];
  1371. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); //Apply the correction sending the probe offset
  1372. current_position[Z_AXIS] = z_tmp - real_z + current_position[Z_AXIS]; //The difference is added to current position and sent to planner.
  1373. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1374. }
  1375. break;
  1376. case 30: // G30 Single Z Probe
  1377. {
  1378. engage_z_probe(); // Engage Z Servo endstop if available
  1379. st_synchronize();
  1380. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  1381. setup_for_endstop_move();
  1382. feedrate = homing_feedrate[Z_AXIS];
  1383. run_z_probe();
  1384. SERIAL_PROTOCOLPGM(MSG_BED);
  1385. SERIAL_PROTOCOLPGM(" X: ");
  1386. SERIAL_PROTOCOL(current_position[X_AXIS]);
  1387. SERIAL_PROTOCOLPGM(" Y: ");
  1388. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  1389. SERIAL_PROTOCOLPGM(" Z: ");
  1390. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  1391. SERIAL_PROTOCOLPGM("\n");
  1392. clean_up_after_endstop_move();
  1393. retract_z_probe(); // Retract Z Servo endstop if available
  1394. }
  1395. break;
  1396. #endif // ENABLE_AUTO_BED_LEVELING
  1397. case 90: // G90
  1398. relative_mode = false;
  1399. break;
  1400. case 91: // G91
  1401. relative_mode = true;
  1402. break;
  1403. case 92: // G92
  1404. if(!code_seen(axis_codes[E_AXIS]))
  1405. st_synchronize();
  1406. for(int8_t i=0; i < NUM_AXIS; i++) {
  1407. if(code_seen(axis_codes[i])) {
  1408. if(i == E_AXIS) {
  1409. current_position[i] = code_value();
  1410. plan_set_e_position(current_position[E_AXIS]);
  1411. }
  1412. else {
  1413. current_position[i] = code_value()+add_homeing[i];
  1414. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1415. }
  1416. }
  1417. }
  1418. break;
  1419. }
  1420. }
  1421. else if(code_seen('M'))
  1422. {
  1423. switch( (int)code_value() )
  1424. {
  1425. #ifdef ULTIPANEL
  1426. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  1427. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  1428. {
  1429. LCD_MESSAGEPGM(MSG_USERWAIT);
  1430. codenum = 0;
  1431. if(code_seen('P')) codenum = code_value(); // milliseconds to wait
  1432. if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait
  1433. st_synchronize();
  1434. previous_millis_cmd = millis();
  1435. if (codenum > 0){
  1436. codenum += millis(); // keep track of when we started waiting
  1437. while(millis() < codenum && !lcd_clicked()){
  1438. manage_heater();
  1439. manage_inactivity();
  1440. lcd_update();
  1441. }
  1442. }else{
  1443. while(!lcd_clicked()){
  1444. manage_heater();
  1445. manage_inactivity();
  1446. lcd_update();
  1447. }
  1448. }
  1449. LCD_MESSAGEPGM(MSG_RESUMING);
  1450. }
  1451. break;
  1452. #endif
  1453. case 17:
  1454. LCD_MESSAGEPGM(MSG_NO_MOVE);
  1455. enable_x();
  1456. enable_y();
  1457. enable_z();
  1458. enable_e0();
  1459. enable_e1();
  1460. enable_e2();
  1461. break;
  1462. #ifdef SDSUPPORT
  1463. case 20: // M20 - list SD card
  1464. SERIAL_PROTOCOLLNPGM(MSG_BEGIN_FILE_LIST);
  1465. card.ls();
  1466. SERIAL_PROTOCOLLNPGM(MSG_END_FILE_LIST);
  1467. break;
  1468. case 21: // M21 - init SD card
  1469. card.initsd();
  1470. break;
  1471. case 22: //M22 - release SD card
  1472. card.release();
  1473. break;
  1474. case 23: //M23 - Select file
  1475. starpos = (strchr(strchr_pointer + 4,'*'));
  1476. if(starpos!=NULL)
  1477. *(starpos-1)='\0';
  1478. card.openFile(strchr_pointer + 4,true);
  1479. break;
  1480. case 24: //M24 - Start SD print
  1481. card.startFileprint();
  1482. starttime=millis();
  1483. break;
  1484. case 25: //M25 - Pause SD print
  1485. card.pauseSDPrint();
  1486. break;
  1487. case 26: //M26 - Set SD index
  1488. if(card.cardOK && code_seen('S')) {
  1489. card.setIndex(code_value_long());
  1490. }
  1491. break;
  1492. case 27: //M27 - Get SD status
  1493. card.getStatus();
  1494. break;
  1495. case 28: //M28 - Start SD write
  1496. starpos = (strchr(strchr_pointer + 4,'*'));
  1497. if(starpos != NULL){
  1498. char* npos = strchr(cmdbuffer[bufindr], 'N');
  1499. strchr_pointer = strchr(npos,' ') + 1;
  1500. *(starpos-1) = '\0';
  1501. }
  1502. card.openFile(strchr_pointer+4,false);
  1503. break;
  1504. case 29: //M29 - Stop SD write
  1505. //processed in write to file routine above
  1506. //card,saving = false;
  1507. break;
  1508. case 30: //M30 <filename> Delete File
  1509. if (card.cardOK){
  1510. card.closefile();
  1511. starpos = (strchr(strchr_pointer + 4,'*'));
  1512. if(starpos != NULL){
  1513. char* npos = strchr(cmdbuffer[bufindr], 'N');
  1514. strchr_pointer = strchr(npos,' ') + 1;
  1515. *(starpos-1) = '\0';
  1516. }
  1517. card.removeFile(strchr_pointer + 4);
  1518. }
  1519. break;
  1520. case 32: //M32 - Select file and start SD print
  1521. {
  1522. if(card.sdprinting) {
  1523. st_synchronize();
  1524. }
  1525. starpos = (strchr(strchr_pointer + 4,'*'));
  1526. char* namestartpos = (strchr(strchr_pointer + 4,'!')); //find ! to indicate filename string start.
  1527. if(namestartpos==NULL)
  1528. {
  1529. namestartpos=strchr_pointer + 4; //default name position, 4 letters after the M
  1530. }
  1531. else
  1532. namestartpos++; //to skip the '!'
  1533. if(starpos!=NULL)
  1534. *(starpos-1)='\0';
  1535. bool call_procedure=(code_seen('P'));
  1536. if(strchr_pointer>namestartpos)
  1537. call_procedure=false; //false alert, 'P' found within filename
  1538. if( card.cardOK )
  1539. {
  1540. card.openFile(namestartpos,true,!call_procedure);
  1541. if(code_seen('S'))
  1542. if(strchr_pointer<namestartpos) //only if "S" is occuring _before_ the filename
  1543. card.setIndex(code_value_long());
  1544. card.startFileprint();
  1545. if(!call_procedure)
  1546. starttime=millis(); //procedure calls count as normal print time.
  1547. }
  1548. } break;
  1549. case 928: //M928 - Start SD write
  1550. starpos = (strchr(strchr_pointer + 5,'*'));
  1551. if(starpos != NULL){
  1552. char* npos = strchr(cmdbuffer[bufindr], 'N');
  1553. strchr_pointer = strchr(npos,' ') + 1;
  1554. *(starpos-1) = '\0';
  1555. }
  1556. card.openLogFile(strchr_pointer+5);
  1557. break;
  1558. #endif //SDSUPPORT
  1559. case 31: //M31 take time since the start of the SD print or an M109 command
  1560. {
  1561. stoptime=millis();
  1562. char time[30];
  1563. unsigned long t=(stoptime-starttime)/1000;
  1564. int sec,min;
  1565. min=t/60;
  1566. sec=t%60;
  1567. sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
  1568. SERIAL_ECHO_START;
  1569. SERIAL_ECHOLN(time);
  1570. lcd_setstatus(time);
  1571. autotempShutdown();
  1572. }
  1573. break;
  1574. case 42: //M42 -Change pin status via gcode
  1575. if (code_seen('S'))
  1576. {
  1577. int pin_status = code_value();
  1578. int pin_number = LED_PIN;
  1579. if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
  1580. pin_number = code_value();
  1581. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  1582. {
  1583. if (sensitive_pins[i] == pin_number)
  1584. {
  1585. pin_number = -1;
  1586. break;
  1587. }
  1588. }
  1589. #if defined(FAN_PIN) && FAN_PIN > -1
  1590. if (pin_number == FAN_PIN)
  1591. fanSpeed = pin_status;
  1592. #endif
  1593. if (pin_number > -1)
  1594. {
  1595. pinMode(pin_number, OUTPUT);
  1596. digitalWrite(pin_number, pin_status);
  1597. analogWrite(pin_number, pin_status);
  1598. }
  1599. }
  1600. break;
  1601. case 104: // M104
  1602. if(setTargetedHotend(104)){
  1603. break;
  1604. }
  1605. if (code_seen('S')) setTargetHotend(code_value(), tmp_extruder);
  1606. #ifdef DUAL_X_CARRIAGE
  1607. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && tmp_extruder == 0)
  1608. setTargetHotend1(code_value() == 0.0 ? 0.0 : code_value() + duplicate_extruder_temp_offset);
  1609. #endif
  1610. setWatch();
  1611. break;
  1612. case 140: // M140 set bed temp
  1613. if (code_seen('S')) setTargetBed(code_value());
  1614. break;
  1615. case 105 : // M105
  1616. if(setTargetedHotend(105)){
  1617. break;
  1618. }
  1619. #if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
  1620. SERIAL_PROTOCOLPGM("ok T:");
  1621. SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
  1622. SERIAL_PROTOCOLPGM(" /");
  1623. SERIAL_PROTOCOL_F(degTargetHotend(tmp_extruder),1);
  1624. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  1625. SERIAL_PROTOCOLPGM(" B:");
  1626. SERIAL_PROTOCOL_F(degBed(),1);
  1627. SERIAL_PROTOCOLPGM(" /");
  1628. SERIAL_PROTOCOL_F(degTargetBed(),1);
  1629. #endif //TEMP_BED_PIN
  1630. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  1631. SERIAL_PROTOCOLPGM(" T");
  1632. SERIAL_PROTOCOL(cur_extruder);
  1633. SERIAL_PROTOCOLPGM(":");
  1634. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  1635. SERIAL_PROTOCOLPGM(" /");
  1636. SERIAL_PROTOCOL_F(degTargetHotend(cur_extruder),1);
  1637. }
  1638. #else
  1639. SERIAL_ERROR_START;
  1640. SERIAL_ERRORLNPGM(MSG_ERR_NO_THERMISTORS);
  1641. #endif
  1642. SERIAL_PROTOCOLPGM(" @:");
  1643. #ifdef EXTRUDER_WATTS
  1644. SERIAL_PROTOCOL((EXTRUDER_WATTS * getHeaterPower(tmp_extruder))/127);
  1645. SERIAL_PROTOCOLPGM("W");
  1646. #else
  1647. SERIAL_PROTOCOL(getHeaterPower(tmp_extruder));
  1648. #endif
  1649. SERIAL_PROTOCOLPGM(" B@:");
  1650. #ifdef BED_WATTS
  1651. SERIAL_PROTOCOL((BED_WATTS * getHeaterPower(-1))/127);
  1652. SERIAL_PROTOCOLPGM("W");
  1653. #else
  1654. SERIAL_PROTOCOL(getHeaterPower(-1));
  1655. #endif
  1656. #ifdef SHOW_TEMP_ADC_VALUES
  1657. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  1658. SERIAL_PROTOCOLPGM(" ADC B:");
  1659. SERIAL_PROTOCOL_F(degBed(),1);
  1660. SERIAL_PROTOCOLPGM("C->");
  1661. SERIAL_PROTOCOL_F(rawBedTemp()/OVERSAMPLENR,0);
  1662. #endif
  1663. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  1664. SERIAL_PROTOCOLPGM(" T");
  1665. SERIAL_PROTOCOL(cur_extruder);
  1666. SERIAL_PROTOCOLPGM(":");
  1667. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  1668. SERIAL_PROTOCOLPGM("C->");
  1669. SERIAL_PROTOCOL_F(rawHotendTemp(cur_extruder)/OVERSAMPLENR,0);
  1670. }
  1671. #endif
  1672. SERIAL_PROTOCOLLN("");
  1673. return;
  1674. break;
  1675. case 109:
  1676. {// M109 - Wait for extruder heater to reach target.
  1677. if(setTargetedHotend(109)){
  1678. break;
  1679. }
  1680. LCD_MESSAGEPGM(MSG_HEATING);
  1681. #ifdef AUTOTEMP
  1682. autotemp_enabled=false;
  1683. #endif
  1684. if (code_seen('S')) {
  1685. setTargetHotend(code_value(), tmp_extruder);
  1686. #ifdef DUAL_X_CARRIAGE
  1687. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && tmp_extruder == 0)
  1688. setTargetHotend1(code_value() == 0.0 ? 0.0 : code_value() + duplicate_extruder_temp_offset);
  1689. #endif
  1690. CooldownNoWait = true;
  1691. } else if (code_seen('R')) {
  1692. setTargetHotend(code_value(), tmp_extruder);
  1693. #ifdef DUAL_X_CARRIAGE
  1694. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && tmp_extruder == 0)
  1695. setTargetHotend1(code_value() == 0.0 ? 0.0 : code_value() + duplicate_extruder_temp_offset);
  1696. #endif
  1697. CooldownNoWait = false;
  1698. }
  1699. #ifdef AUTOTEMP
  1700. if (code_seen('S')) autotemp_min=code_value();
  1701. if (code_seen('B')) autotemp_max=code_value();
  1702. if (code_seen('F'))
  1703. {
  1704. autotemp_factor=code_value();
  1705. autotemp_enabled=true;
  1706. }
  1707. #endif
  1708. setWatch();
  1709. codenum = millis();
  1710. /* See if we are heating up or cooling down */
  1711. target_direction = isHeatingHotend(tmp_extruder); // true if heating, false if cooling
  1712. #ifdef TEMP_RESIDENCY_TIME
  1713. long residencyStart;
  1714. residencyStart = -1;
  1715. /* continue to loop until we have reached the target temp
  1716. _and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
  1717. while((residencyStart == -1) ||
  1718. (residencyStart >= 0 && (((unsigned int) (millis() - residencyStart)) < (TEMP_RESIDENCY_TIME * 1000UL))) ) {
  1719. #else
  1720. while ( target_direction ? (isHeatingHotend(tmp_extruder)) : (isCoolingHotend(tmp_extruder)&&(CooldownNoWait==false)) ) {
  1721. #endif //TEMP_RESIDENCY_TIME
  1722. if( (millis() - codenum) > 1000UL )
  1723. { //Print Temp Reading and remaining time every 1 second while heating up/cooling down
  1724. SERIAL_PROTOCOLPGM("T:");
  1725. SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
  1726. SERIAL_PROTOCOLPGM(" E:");
  1727. SERIAL_PROTOCOL((int)tmp_extruder);
  1728. #ifdef TEMP_RESIDENCY_TIME
  1729. SERIAL_PROTOCOLPGM(" W:");
  1730. if(residencyStart > -1)
  1731. {
  1732. codenum = ((TEMP_RESIDENCY_TIME * 1000UL) - (millis() - residencyStart)) / 1000UL;
  1733. SERIAL_PROTOCOLLN( codenum );
  1734. }
  1735. else
  1736. {
  1737. SERIAL_PROTOCOLLN( "?" );
  1738. }
  1739. #else
  1740. SERIAL_PROTOCOLLN("");
  1741. #endif
  1742. codenum = millis();
  1743. }
  1744. manage_heater();
  1745. manage_inactivity();
  1746. lcd_update();
  1747. #ifdef TEMP_RESIDENCY_TIME
  1748. /* start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
  1749. or when current temp falls outside the hysteresis after target temp was reached */
  1750. if ((residencyStart == -1 && target_direction && (degHotend(tmp_extruder) >= (degTargetHotend(tmp_extruder)-TEMP_WINDOW))) ||
  1751. (residencyStart == -1 && !target_direction && (degHotend(tmp_extruder) <= (degTargetHotend(tmp_extruder)+TEMP_WINDOW))) ||
  1752. (residencyStart > -1 && labs(degHotend(tmp_extruder) - degTargetHotend(tmp_extruder)) > TEMP_HYSTERESIS) )
  1753. {
  1754. residencyStart = millis();
  1755. }
  1756. #endif //TEMP_RESIDENCY_TIME
  1757. }
  1758. LCD_MESSAGEPGM(MSG_HEATING_COMPLETE);
  1759. starttime=millis();
  1760. previous_millis_cmd = millis();
  1761. }
  1762. break;
  1763. case 190: // M190 - Wait for bed heater to reach target.
  1764. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  1765. LCD_MESSAGEPGM(MSG_BED_HEATING);
  1766. if (code_seen('S')) {
  1767. setTargetBed(code_value());
  1768. CooldownNoWait = true;
  1769. } else if (code_seen('R')) {
  1770. setTargetBed(code_value());
  1771. CooldownNoWait = false;
  1772. }
  1773. codenum = millis();
  1774. target_direction = isHeatingBed(); // true if heating, false if cooling
  1775. while ( target_direction ? (isHeatingBed()) : (isCoolingBed()&&(CooldownNoWait==false)) )
  1776. {
  1777. if(( millis() - codenum) > 1000 ) //Print Temp Reading every 1 second while heating up.
  1778. {
  1779. float tt=degHotend(active_extruder);
  1780. SERIAL_PROTOCOLPGM("T:");
  1781. SERIAL_PROTOCOL(tt);
  1782. SERIAL_PROTOCOLPGM(" E:");
  1783. SERIAL_PROTOCOL((int)active_extruder);
  1784. SERIAL_PROTOCOLPGM(" B:");
  1785. SERIAL_PROTOCOL_F(degBed(),1);
  1786. SERIAL_PROTOCOLLN("");
  1787. codenum = millis();
  1788. }
  1789. manage_heater();
  1790. manage_inactivity();
  1791. lcd_update();
  1792. }
  1793. LCD_MESSAGEPGM(MSG_BED_DONE);
  1794. previous_millis_cmd = millis();
  1795. #endif
  1796. break;
  1797. #if defined(FAN_PIN) && FAN_PIN > -1
  1798. case 106: //M106 Fan On
  1799. if (code_seen('S')){
  1800. fanSpeed=constrain(code_value(),0,255);
  1801. }
  1802. else {
  1803. fanSpeed=255;
  1804. }
  1805. break;
  1806. case 107: //M107 Fan Off
  1807. fanSpeed = 0;
  1808. break;
  1809. #endif //FAN_PIN
  1810. #ifdef BARICUDA
  1811. // PWM for HEATER_1_PIN
  1812. #if defined(HEATER_1_PIN) && HEATER_1_PIN > -1
  1813. case 126: //M126 valve open
  1814. if (code_seen('S')){
  1815. ValvePressure=constrain(code_value(),0,255);
  1816. }
  1817. else {
  1818. ValvePressure=255;
  1819. }
  1820. break;
  1821. case 127: //M127 valve closed
  1822. ValvePressure = 0;
  1823. break;
  1824. #endif //HEATER_1_PIN
  1825. // PWM for HEATER_2_PIN
  1826. #if defined(HEATER_2_PIN) && HEATER_2_PIN > -1
  1827. case 128: //M128 valve open
  1828. if (code_seen('S')){
  1829. EtoPPressure=constrain(code_value(),0,255);
  1830. }
  1831. else {
  1832. EtoPPressure=255;
  1833. }
  1834. break;
  1835. case 129: //M129 valve closed
  1836. EtoPPressure = 0;
  1837. break;
  1838. #endif //HEATER_2_PIN
  1839. #endif
  1840. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  1841. case 80: // M80 - Turn on Power Supply
  1842. SET_OUTPUT(PS_ON_PIN); //GND
  1843. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  1844. // If you have a switch on suicide pin, this is useful
  1845. // if you want to start another print with suicide feature after
  1846. // a print without suicide...
  1847. #if defined SUICIDE_PIN && SUICIDE_PIN > -1
  1848. SET_OUTPUT(SUICIDE_PIN);
  1849. WRITE(SUICIDE_PIN, HIGH);
  1850. #endif
  1851. #ifdef ULTIPANEL
  1852. powersupply = true;
  1853. LCD_MESSAGEPGM(WELCOME_MSG);
  1854. lcd_update();
  1855. #endif
  1856. break;
  1857. #endif
  1858. case 81: // M81 - Turn off Power Supply
  1859. disable_heater();
  1860. st_synchronize();
  1861. disable_e0();
  1862. disable_e1();
  1863. disable_e2();
  1864. finishAndDisableSteppers();
  1865. fanSpeed = 0;
  1866. delay(1000); // Wait a little before to switch off
  1867. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  1868. st_synchronize();
  1869. suicide();
  1870. #elif defined(PS_ON_PIN) && PS_ON_PIN > -1
  1871. SET_OUTPUT(PS_ON_PIN);
  1872. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  1873. #endif
  1874. #ifdef ULTIPANEL
  1875. powersupply = false;
  1876. LCD_MESSAGEPGM(MACHINE_NAME" "MSG_OFF".");
  1877. lcd_update();
  1878. #endif
  1879. break;
  1880. case 82:
  1881. axis_relative_modes[3] = false;
  1882. break;
  1883. case 83:
  1884. axis_relative_modes[3] = true;
  1885. break;
  1886. case 18: //compatibility
  1887. case 84: // M84
  1888. if(code_seen('S')){
  1889. stepper_inactive_time = code_value() * 1000;
  1890. }
  1891. else
  1892. {
  1893. bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS]))|| (code_seen(axis_codes[E_AXIS])));
  1894. if(all_axis)
  1895. {
  1896. st_synchronize();
  1897. disable_e0();
  1898. disable_e1();
  1899. disable_e2();
  1900. finishAndDisableSteppers();
  1901. }
  1902. else
  1903. {
  1904. st_synchronize();
  1905. if(code_seen('X')) disable_x();
  1906. if(code_seen('Y')) disable_y();
  1907. if(code_seen('Z')) disable_z();
  1908. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  1909. if(code_seen('E')) {
  1910. disable_e0();
  1911. disable_e1();
  1912. disable_e2();
  1913. }
  1914. #endif
  1915. }
  1916. }
  1917. break;
  1918. case 85: // M85
  1919. if(code_seen('S')) {
  1920. max_inactive_time = code_value() * 1000;
  1921. }
  1922. break;
  1923. case 92: // M92
  1924. for(int8_t i=0; i < NUM_AXIS; i++)
  1925. {
  1926. if(code_seen(axis_codes[i]))
  1927. {
  1928. if(i == 3) { // E
  1929. float value = code_value();
  1930. if(value < 20.0) {
  1931. float factor = axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
  1932. max_e_jerk *= factor;
  1933. max_feedrate[i] *= factor;
  1934. axis_steps_per_sqr_second[i] *= factor;
  1935. }
  1936. axis_steps_per_unit[i] = value;
  1937. }
  1938. else {
  1939. axis_steps_per_unit[i] = code_value();
  1940. }
  1941. }
  1942. }
  1943. break;
  1944. case 115: // M115
  1945. SERIAL_PROTOCOLPGM(MSG_M115_REPORT);
  1946. break;
  1947. case 117: // M117 display message
  1948. starpos = (strchr(strchr_pointer + 5,'*'));
  1949. if(starpos!=NULL)
  1950. *(starpos-1)='\0';
  1951. lcd_setstatus(strchr_pointer + 5);
  1952. break;
  1953. case 114: // M114
  1954. SERIAL_PROTOCOLPGM("X:");
  1955. SERIAL_PROTOCOL(current_position[X_AXIS]);
  1956. SERIAL_PROTOCOLPGM(" Y:");
  1957. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  1958. SERIAL_PROTOCOLPGM(" Z:");
  1959. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  1960. SERIAL_PROTOCOLPGM(" E:");
  1961. SERIAL_PROTOCOL(current_position[E_AXIS]);
  1962. SERIAL_PROTOCOLPGM(MSG_COUNT_X);
  1963. SERIAL_PROTOCOL(float(st_get_position(X_AXIS))/axis_steps_per_unit[X_AXIS]);
  1964. SERIAL_PROTOCOLPGM(" Y:");
  1965. SERIAL_PROTOCOL(float(st_get_position(Y_AXIS))/axis_steps_per_unit[Y_AXIS]);
  1966. SERIAL_PROTOCOLPGM(" Z:");
  1967. SERIAL_PROTOCOL(float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]);
  1968. SERIAL_PROTOCOLLN("");
  1969. break;
  1970. case 120: // M120
  1971. enable_endstops(false) ;
  1972. break;
  1973. case 121: // M121
  1974. enable_endstops(true) ;
  1975. break;
  1976. case 119: // M119
  1977. SERIAL_PROTOCOLLN(MSG_M119_REPORT);
  1978. #if defined(X_MIN_PIN) && X_MIN_PIN > -1
  1979. SERIAL_PROTOCOLPGM(MSG_X_MIN);
  1980. SERIAL_PROTOCOLLN(((READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  1981. #endif
  1982. #if defined(X_MAX_PIN) && X_MAX_PIN > -1
  1983. SERIAL_PROTOCOLPGM(MSG_X_MAX);
  1984. SERIAL_PROTOCOLLN(((READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  1985. #endif
  1986. #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
  1987. SERIAL_PROTOCOLPGM(MSG_Y_MIN);
  1988. SERIAL_PROTOCOLLN(((READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  1989. #endif
  1990. #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
  1991. SERIAL_PROTOCOLPGM(MSG_Y_MAX);
  1992. SERIAL_PROTOCOLLN(((READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  1993. #endif
  1994. #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
  1995. SERIAL_PROTOCOLPGM(MSG_Z_MIN);
  1996. SERIAL_PROTOCOLLN(((READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  1997. #endif
  1998. #if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
  1999. SERIAL_PROTOCOLPGM(MSG_Z_MAX);
  2000. SERIAL_PROTOCOLLN(((READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  2001. #endif
  2002. break;
  2003. //TODO: update for all axis, use for loop
  2004. #ifdef BLINKM
  2005. case 150: // M150
  2006. {
  2007. byte red;
  2008. byte grn;
  2009. byte blu;
  2010. if(code_seen('R')) red = code_value();
  2011. if(code_seen('U')) grn = code_value();
  2012. if(code_seen('B')) blu = code_value();
  2013. SendColors(red,grn,blu);
  2014. }
  2015. break;
  2016. #endif //BLINKM
  2017. case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  2018. {
  2019. float area = .0;
  2020. float radius = .0;
  2021. if(code_seen('D')) {
  2022. radius = (float)code_value() * .5;
  2023. if(radius == 0) {
  2024. area = 1;
  2025. } else {
  2026. area = M_PI * pow(radius, 2);
  2027. }
  2028. } else {
  2029. //reserved for setting filament diameter via UFID or filament measuring device
  2030. break;
  2031. }
  2032. tmp_extruder = active_extruder;
  2033. if(code_seen('T')) {
  2034. tmp_extruder = code_value();
  2035. if(tmp_extruder >= EXTRUDERS) {
  2036. SERIAL_ECHO_START;
  2037. SERIAL_ECHO(MSG_M200_INVALID_EXTRUDER);
  2038. break;
  2039. }
  2040. }
  2041. volumetric_multiplier[tmp_extruder] = 1 / area;
  2042. }
  2043. break;
  2044. case 201: // M201
  2045. for(int8_t i=0; i < NUM_AXIS; i++)
  2046. {
  2047. if(code_seen(axis_codes[i]))
  2048. {
  2049. max_acceleration_units_per_sq_second[i] = code_value();
  2050. }
  2051. }
  2052. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  2053. reset_acceleration_rates();
  2054. break;
  2055. #if 0 // Not used for Sprinter/grbl gen6
  2056. case 202: // M202
  2057. for(int8_t i=0; i < NUM_AXIS; i++) {
  2058. if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
  2059. }
  2060. break;
  2061. #endif
  2062. case 203: // M203 max feedrate mm/sec
  2063. for(int8_t i=0; i < NUM_AXIS; i++) {
  2064. if(code_seen(axis_codes[i])) max_feedrate[i] = code_value();
  2065. }
  2066. break;
  2067. case 204: // M204 acclereration S normal moves T filmanent only moves
  2068. {
  2069. if(code_seen('S')) acceleration = code_value() ;
  2070. if(code_seen('T')) retract_acceleration = code_value() ;
  2071. }
  2072. break;
  2073. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  2074. {
  2075. if(code_seen('S')) minimumfeedrate = code_value();
  2076. if(code_seen('T')) mintravelfeedrate = code_value();
  2077. if(code_seen('B')) minsegmenttime = code_value() ;
  2078. if(code_seen('X')) max_xy_jerk = code_value() ;
  2079. if(code_seen('Z')) max_z_jerk = code_value() ;
  2080. if(code_seen('E')) max_e_jerk = code_value() ;
  2081. }
  2082. break;
  2083. case 206: // M206 additional homeing offset
  2084. for(int8_t i=0; i < 3; i++)
  2085. {
  2086. if(code_seen(axis_codes[i])) add_homeing[i] = code_value();
  2087. }
  2088. break;
  2089. #ifdef DELTA
  2090. case 665: // M665 set delta configurations L<diagonal_rod> R<delta_radius> S<segments_per_sec>
  2091. if(code_seen('L')) {
  2092. delta_diagonal_rod= code_value();
  2093. }
  2094. if(code_seen('R')) {
  2095. delta_radius= code_value();
  2096. }
  2097. if(code_seen('S')) {
  2098. delta_segments_per_second= code_value();
  2099. }
  2100. recalc_delta_settings(delta_radius, delta_diagonal_rod);
  2101. break;
  2102. case 666: // M666 set delta endstop adjustemnt
  2103. for(int8_t i=0; i < 3; i++)
  2104. {
  2105. if(code_seen(axis_codes[i])) endstop_adj[i] = code_value();
  2106. }
  2107. break;
  2108. #endif
  2109. #ifdef FWRETRACT
  2110. case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
  2111. {
  2112. if(code_seen('S'))
  2113. {
  2114. retract_length = code_value() ;
  2115. }
  2116. if(code_seen('F'))
  2117. {
  2118. retract_feedrate = code_value()/60 ;
  2119. }
  2120. if(code_seen('Z'))
  2121. {
  2122. retract_zlift = code_value() ;
  2123. }
  2124. }break;
  2125. case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  2126. {
  2127. if(code_seen('S'))
  2128. {
  2129. retract_recover_length = code_value() ;
  2130. }
  2131. if(code_seen('F'))
  2132. {
  2133. retract_recover_feedrate = code_value()/60 ;
  2134. }
  2135. }break;
  2136. case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  2137. {
  2138. if(code_seen('S'))
  2139. {
  2140. int t= code_value() ;
  2141. switch(t)
  2142. {
  2143. case 0: autoretract_enabled=false;retracted=false;break;
  2144. case 1: autoretract_enabled=true;retracted=false;break;
  2145. default:
  2146. SERIAL_ECHO_START;
  2147. SERIAL_ECHOPGM(MSG_UNKNOWN_COMMAND);
  2148. SERIAL_ECHO(cmdbuffer[bufindr]);
  2149. SERIAL_ECHOLNPGM("\"");
  2150. }
  2151. }
  2152. }break;
  2153. #endif // FWRETRACT
  2154. #if EXTRUDERS > 1
  2155. case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  2156. {
  2157. if(setTargetedHotend(218)){
  2158. break;
  2159. }
  2160. if(code_seen('X'))
  2161. {
  2162. extruder_offset[X_AXIS][tmp_extruder] = code_value();
  2163. }
  2164. if(code_seen('Y'))
  2165. {
  2166. extruder_offset[Y_AXIS][tmp_extruder] = code_value();
  2167. }
  2168. #ifdef DUAL_X_CARRIAGE
  2169. if(code_seen('Z'))
  2170. {
  2171. extruder_offset[Z_AXIS][tmp_extruder] = code_value();
  2172. }
  2173. #endif
  2174. SERIAL_ECHO_START;
  2175. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  2176. for(tmp_extruder = 0; tmp_extruder < EXTRUDERS; tmp_extruder++)
  2177. {
  2178. SERIAL_ECHO(" ");
  2179. SERIAL_ECHO(extruder_offset[X_AXIS][tmp_extruder]);
  2180. SERIAL_ECHO(",");
  2181. SERIAL_ECHO(extruder_offset[Y_AXIS][tmp_extruder]);
  2182. #ifdef DUAL_X_CARRIAGE
  2183. SERIAL_ECHO(",");
  2184. SERIAL_ECHO(extruder_offset[Z_AXIS][tmp_extruder]);
  2185. #endif
  2186. }
  2187. SERIAL_ECHOLN("");
  2188. }break;
  2189. #endif
  2190. case 220: // M220 S<factor in percent>- set speed factor override percentage
  2191. {
  2192. if(code_seen('S'))
  2193. {
  2194. feedmultiply = code_value() ;
  2195. }
  2196. }
  2197. break;
  2198. case 221: // M221 S<factor in percent>- set extrude factor override percentage
  2199. {
  2200. if(code_seen('S'))
  2201. {
  2202. int tmp_code = code_value();
  2203. if (code_seen('T'))
  2204. {
  2205. if(setTargetedHotend(221)){
  2206. break;
  2207. }
  2208. extruder_multiply[tmp_extruder] = tmp_code;
  2209. }
  2210. else
  2211. {
  2212. extrudemultiply = tmp_code ;
  2213. }
  2214. }
  2215. }
  2216. break;
  2217. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  2218. {
  2219. if(code_seen('P')){
  2220. int pin_number = code_value(); // pin number
  2221. int pin_state = -1; // required pin state - default is inverted
  2222. if(code_seen('S')) pin_state = code_value(); // required pin state
  2223. if(pin_state >= -1 && pin_state <= 1){
  2224. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  2225. {
  2226. if (sensitive_pins[i] == pin_number)
  2227. {
  2228. pin_number = -1;
  2229. break;
  2230. }
  2231. }
  2232. if (pin_number > -1)
  2233. {
  2234. st_synchronize();
  2235. pinMode(pin_number, INPUT);
  2236. int target;
  2237. switch(pin_state){
  2238. case 1:
  2239. target = HIGH;
  2240. break;
  2241. case 0:
  2242. target = LOW;
  2243. break;
  2244. case -1:
  2245. target = !digitalRead(pin_number);
  2246. break;
  2247. }
  2248. while(digitalRead(pin_number) != target){
  2249. manage_heater();
  2250. manage_inactivity();
  2251. lcd_update();
  2252. }
  2253. }
  2254. }
  2255. }
  2256. }
  2257. break;
  2258. #if NUM_SERVOS > 0
  2259. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  2260. {
  2261. int servo_index = -1;
  2262. int servo_position = 0;
  2263. if (code_seen('P'))
  2264. servo_index = code_value();
  2265. if (code_seen('S')) {
  2266. servo_position = code_value();
  2267. if ((servo_index >= 0) && (servo_index < NUM_SERVOS)) {
  2268. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  2269. servos[servo_index].attach(0);
  2270. #endif
  2271. servos[servo_index].write(servo_position);
  2272. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  2273. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  2274. servos[servo_index].detach();
  2275. #endif
  2276. }
  2277. else {
  2278. SERIAL_ECHO_START;
  2279. SERIAL_ECHO("Servo ");
  2280. SERIAL_ECHO(servo_index);
  2281. SERIAL_ECHOLN(" out of range");
  2282. }
  2283. }
  2284. else if (servo_index >= 0) {
  2285. SERIAL_PROTOCOL(MSG_OK);
  2286. SERIAL_PROTOCOL(" Servo ");
  2287. SERIAL_PROTOCOL(servo_index);
  2288. SERIAL_PROTOCOL(": ");
  2289. SERIAL_PROTOCOL(servos[servo_index].read());
  2290. SERIAL_PROTOCOLLN("");
  2291. }
  2292. }
  2293. break;
  2294. #endif // NUM_SERVOS > 0
  2295. #if (LARGE_FLASH == true && ( BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER)))
  2296. case 300: // M300
  2297. {
  2298. int beepS = code_seen('S') ? code_value() : 110;
  2299. int beepP = code_seen('P') ? code_value() : 1000;
  2300. if (beepS > 0)
  2301. {
  2302. #if BEEPER > 0
  2303. tone(BEEPER, beepS);
  2304. delay(beepP);
  2305. noTone(BEEPER);
  2306. #elif defined(ULTRALCD)
  2307. lcd_buzz(beepS, beepP);
  2308. #elif defined(LCD_USE_I2C_BUZZER)
  2309. lcd_buzz(beepP, beepS);
  2310. #endif
  2311. }
  2312. else
  2313. {
  2314. delay(beepP);
  2315. }
  2316. }
  2317. break;
  2318. #endif // M300
  2319. #ifdef PIDTEMP
  2320. case 301: // M301
  2321. {
  2322. if(code_seen('P')) Kp = code_value();
  2323. if(code_seen('I')) Ki = scalePID_i(code_value());
  2324. if(code_seen('D')) Kd = scalePID_d(code_value());
  2325. #ifdef PID_ADD_EXTRUSION_RATE
  2326. if(code_seen('C')) Kc = code_value();
  2327. #endif
  2328. updatePID();
  2329. SERIAL_PROTOCOL(MSG_OK);
  2330. SERIAL_PROTOCOL(" p:");
  2331. SERIAL_PROTOCOL(Kp);
  2332. SERIAL_PROTOCOL(" i:");
  2333. SERIAL_PROTOCOL(unscalePID_i(Ki));
  2334. SERIAL_PROTOCOL(" d:");
  2335. SERIAL_PROTOCOL(unscalePID_d(Kd));
  2336. #ifdef PID_ADD_EXTRUSION_RATE
  2337. SERIAL_PROTOCOL(" c:");
  2338. //Kc does not have scaling applied above, or in resetting defaults
  2339. SERIAL_PROTOCOL(Kc);
  2340. #endif
  2341. SERIAL_PROTOCOLLN("");
  2342. }
  2343. break;
  2344. #endif //PIDTEMP
  2345. #ifdef PIDTEMPBED
  2346. case 304: // M304
  2347. {
  2348. if(code_seen('P')) bedKp = code_value();
  2349. if(code_seen('I')) bedKi = scalePID_i(code_value());
  2350. if(code_seen('D')) bedKd = scalePID_d(code_value());
  2351. updatePID();
  2352. SERIAL_PROTOCOL(MSG_OK);
  2353. SERIAL_PROTOCOL(" p:");
  2354. SERIAL_PROTOCOL(bedKp);
  2355. SERIAL_PROTOCOL(" i:");
  2356. SERIAL_PROTOCOL(unscalePID_i(bedKi));
  2357. SERIAL_PROTOCOL(" d:");
  2358. SERIAL_PROTOCOL(unscalePID_d(bedKd));
  2359. SERIAL_PROTOCOLLN("");
  2360. }
  2361. break;
  2362. #endif //PIDTEMP
  2363. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  2364. {
  2365. #ifdef CHDK
  2366. SET_OUTPUT(CHDK);
  2367. WRITE(CHDK, HIGH);
  2368. chdkHigh = millis();
  2369. chdkActive = true;
  2370. #else
  2371. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  2372. const uint8_t NUM_PULSES=16;
  2373. const float PULSE_LENGTH=0.01524;
  2374. for(int i=0; i < NUM_PULSES; i++) {
  2375. WRITE(PHOTOGRAPH_PIN, HIGH);
  2376. _delay_ms(PULSE_LENGTH);
  2377. WRITE(PHOTOGRAPH_PIN, LOW);
  2378. _delay_ms(PULSE_LENGTH);
  2379. }
  2380. delay(7.33);
  2381. for(int i=0; i < NUM_PULSES; i++) {
  2382. WRITE(PHOTOGRAPH_PIN, HIGH);
  2383. _delay_ms(PULSE_LENGTH);
  2384. WRITE(PHOTOGRAPH_PIN, LOW);
  2385. _delay_ms(PULSE_LENGTH);
  2386. }
  2387. #endif
  2388. #endif //chdk end if
  2389. }
  2390. break;
  2391. #ifdef DOGLCD
  2392. case 250: // M250 Set LCD contrast value: C<value> (value 0..63)
  2393. {
  2394. if (code_seen('C')) {
  2395. lcd_setcontrast( ((int)code_value())&63 );
  2396. }
  2397. SERIAL_PROTOCOLPGM("lcd contrast value: ");
  2398. SERIAL_PROTOCOL(lcd_contrast);
  2399. SERIAL_PROTOCOLLN("");
  2400. }
  2401. break;
  2402. #endif
  2403. #ifdef PREVENT_DANGEROUS_EXTRUDE
  2404. case 302: // allow cold extrudes, or set the minimum extrude temperature
  2405. {
  2406. float temp = .0;
  2407. if (code_seen('S')) temp=code_value();
  2408. set_extrude_min_temp(temp);
  2409. }
  2410. break;
  2411. #endif
  2412. case 303: // M303 PID autotune
  2413. {
  2414. float temp = 150.0;
  2415. int e=0;
  2416. int c=5;
  2417. if (code_seen('E')) e=code_value();
  2418. if (e<0)
  2419. temp=70;
  2420. if (code_seen('S')) temp=code_value();
  2421. if (code_seen('C')) c=code_value();
  2422. PID_autotune(temp, e, c);
  2423. }
  2424. break;
  2425. case 400: // M400 finish all moves
  2426. {
  2427. st_synchronize();
  2428. }
  2429. break;
  2430. #if defined(ENABLE_AUTO_BED_LEVELING) && defined(SERVO_ENDSTOPS)
  2431. case 401:
  2432. {
  2433. engage_z_probe(); // Engage Z Servo endstop if available
  2434. }
  2435. break;
  2436. case 402:
  2437. {
  2438. retract_z_probe(); // Retract Z Servo endstop if enabled
  2439. }
  2440. break;
  2441. #endif
  2442. case 500: // M500 Store settings in EEPROM
  2443. {
  2444. Config_StoreSettings();
  2445. }
  2446. break;
  2447. case 501: // M501 Read settings from EEPROM
  2448. {
  2449. Config_RetrieveSettings();
  2450. }
  2451. break;
  2452. case 502: // M502 Revert to default settings
  2453. {
  2454. Config_ResetDefault();
  2455. }
  2456. break;
  2457. case 503: // M503 print settings currently in memory
  2458. {
  2459. Config_PrintSettings();
  2460. }
  2461. break;
  2462. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  2463. case 540:
  2464. {
  2465. if(code_seen('S')) abort_on_endstop_hit = code_value() > 0;
  2466. }
  2467. break;
  2468. #endif
  2469. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  2470. case CUSTOM_M_CODE_SET_Z_PROBE_OFFSET:
  2471. {
  2472. float value;
  2473. if (code_seen('Z'))
  2474. {
  2475. value = code_value();
  2476. if ((Z_PROBE_OFFSET_RANGE_MIN <= value) && (value <= Z_PROBE_OFFSET_RANGE_MAX))
  2477. {
  2478. zprobe_zoffset = -value; // compare w/ line 278 of ConfigurationStore.cpp
  2479. SERIAL_ECHO_START;
  2480. SERIAL_ECHOLNPGM(MSG_ZPROBE_ZOFFSET " " MSG_OK);
  2481. SERIAL_PROTOCOLLN("");
  2482. }
  2483. else
  2484. {
  2485. SERIAL_ECHO_START;
  2486. SERIAL_ECHOPGM(MSG_ZPROBE_ZOFFSET);
  2487. SERIAL_ECHOPGM(MSG_Z_MIN);
  2488. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
  2489. SERIAL_ECHOPGM(MSG_Z_MAX);
  2490. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
  2491. SERIAL_PROTOCOLLN("");
  2492. }
  2493. }
  2494. else
  2495. {
  2496. SERIAL_ECHO_START;
  2497. SERIAL_ECHOLNPGM(MSG_ZPROBE_ZOFFSET " : ");
  2498. SERIAL_ECHO(-zprobe_zoffset);
  2499. SERIAL_PROTOCOLLN("");
  2500. }
  2501. break;
  2502. }
  2503. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  2504. #ifdef FILAMENTCHANGEENABLE
  2505. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  2506. {
  2507. float target[4];
  2508. float lastpos[4];
  2509. target[X_AXIS]=current_position[X_AXIS];
  2510. target[Y_AXIS]=current_position[Y_AXIS];
  2511. target[Z_AXIS]=current_position[Z_AXIS];
  2512. target[E_AXIS]=current_position[E_AXIS];
  2513. lastpos[X_AXIS]=current_position[X_AXIS];
  2514. lastpos[Y_AXIS]=current_position[Y_AXIS];
  2515. lastpos[Z_AXIS]=current_position[Z_AXIS];
  2516. lastpos[E_AXIS]=current_position[E_AXIS];
  2517. //retract by E
  2518. if(code_seen('E'))
  2519. {
  2520. target[E_AXIS]+= code_value();
  2521. }
  2522. else
  2523. {
  2524. #ifdef FILAMENTCHANGE_FIRSTRETRACT
  2525. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  2526. #endif
  2527. }
  2528. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder);
  2529. //lift Z
  2530. if(code_seen('Z'))
  2531. {
  2532. target[Z_AXIS]+= code_value();
  2533. }
  2534. else
  2535. {
  2536. #ifdef FILAMENTCHANGE_ZADD
  2537. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  2538. #endif
  2539. }
  2540. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder);
  2541. //move xy
  2542. if(code_seen('X'))
  2543. {
  2544. target[X_AXIS]+= code_value();
  2545. }
  2546. else
  2547. {
  2548. #ifdef FILAMENTCHANGE_XPOS
  2549. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  2550. #endif
  2551. }
  2552. if(code_seen('Y'))
  2553. {
  2554. target[Y_AXIS]= code_value();
  2555. }
  2556. else
  2557. {
  2558. #ifdef FILAMENTCHANGE_YPOS
  2559. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  2560. #endif
  2561. }
  2562. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder);
  2563. if(code_seen('L'))
  2564. {
  2565. target[E_AXIS]+= code_value();
  2566. }
  2567. else
  2568. {
  2569. #ifdef FILAMENTCHANGE_FINALRETRACT
  2570. target[E_AXIS]+= FILAMENTCHANGE_FINALRETRACT ;
  2571. #endif
  2572. }
  2573. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder);
  2574. //finish moves
  2575. st_synchronize();
  2576. //disable extruder steppers so filament can be removed
  2577. disable_e0();
  2578. disable_e1();
  2579. disable_e2();
  2580. delay(100);
  2581. LCD_ALERTMESSAGEPGM(MSG_FILAMENTCHANGE);
  2582. uint8_t cnt=0;
  2583. while(!lcd_clicked()){
  2584. cnt++;
  2585. manage_heater();
  2586. manage_inactivity();
  2587. lcd_update();
  2588. if(cnt==0)
  2589. {
  2590. #if BEEPER > 0
  2591. SET_OUTPUT(BEEPER);
  2592. WRITE(BEEPER,HIGH);
  2593. delay(3);
  2594. WRITE(BEEPER,LOW);
  2595. delay(3);
  2596. #else
  2597. #if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)
  2598. lcd_buzz(1000/6,100);
  2599. #else
  2600. lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS,LCD_FEEDBACK_FREQUENCY_HZ);
  2601. #endif
  2602. #endif
  2603. }
  2604. }
  2605. //return to normal
  2606. if(code_seen('L'))
  2607. {
  2608. target[E_AXIS]+= -code_value();
  2609. }
  2610. else
  2611. {
  2612. #ifdef FILAMENTCHANGE_FINALRETRACT
  2613. target[E_AXIS]+=(-1)*FILAMENTCHANGE_FINALRETRACT ;
  2614. #endif
  2615. }
  2616. current_position[E_AXIS]=target[E_AXIS]; //the long retract of L is compensated by manual filament feeding
  2617. plan_set_e_position(current_position[E_AXIS]);
  2618. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder); //should do nothing
  2619. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder); //move xy back
  2620. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder); //move z back
  2621. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], lastpos[E_AXIS], feedrate/60, active_extruder); //final untretract
  2622. }
  2623. break;
  2624. #endif //FILAMENTCHANGEENABLE
  2625. #ifdef DUAL_X_CARRIAGE
  2626. case 605: // Set dual x-carriage movement mode:
  2627. // M605 S0: Full control mode. The slicer has full control over x-carriage movement
  2628. // M605 S1: Auto-park mode. The inactive head will auto park/unpark without slicer involvement
  2629. // M605 S2 [Xnnn] [Rmmm]: Duplication mode. The second extruder will duplicate the first with nnn
  2630. // millimeters x-offset and an optional differential hotend temperature of
  2631. // mmm degrees. E.g., with "M605 S2 X100 R2" the second extruder will duplicate
  2632. // the first with a spacing of 100mm in the x direction and 2 degrees hotter.
  2633. //
  2634. // Note: the X axis should be homed after changing dual x-carriage mode.
  2635. {
  2636. st_synchronize();
  2637. if (code_seen('S'))
  2638. dual_x_carriage_mode = code_value();
  2639. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE)
  2640. {
  2641. if (code_seen('X'))
  2642. duplicate_extruder_x_offset = max(code_value(),X2_MIN_POS - x_home_pos(0));
  2643. if (code_seen('R'))
  2644. duplicate_extruder_temp_offset = code_value();
  2645. SERIAL_ECHO_START;
  2646. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  2647. SERIAL_ECHO(" ");
  2648. SERIAL_ECHO(extruder_offset[X_AXIS][0]);
  2649. SERIAL_ECHO(",");
  2650. SERIAL_ECHO(extruder_offset[Y_AXIS][0]);
  2651. SERIAL_ECHO(" ");
  2652. SERIAL_ECHO(duplicate_extruder_x_offset);
  2653. SERIAL_ECHO(",");
  2654. SERIAL_ECHOLN(extruder_offset[Y_AXIS][1]);
  2655. }
  2656. else if (dual_x_carriage_mode != DXC_FULL_CONTROL_MODE && dual_x_carriage_mode != DXC_AUTO_PARK_MODE)
  2657. {
  2658. dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  2659. }
  2660. active_extruder_parked = false;
  2661. extruder_duplication_enabled = false;
  2662. delayed_move_time = 0;
  2663. }
  2664. break;
  2665. #endif //DUAL_X_CARRIAGE
  2666. case 907: // M907 Set digital trimpot motor current using axis codes.
  2667. {
  2668. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  2669. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_current(i,code_value());
  2670. if(code_seen('B')) digipot_current(4,code_value());
  2671. if(code_seen('S')) for(int i=0;i<=4;i++) digipot_current(i,code_value());
  2672. #endif
  2673. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  2674. if(code_seen('X')) digipot_current(0, code_value());
  2675. #endif
  2676. #ifdef MOTOR_CURRENT_PWM_Z_PIN
  2677. if(code_seen('Z')) digipot_current(1, code_value());
  2678. #endif
  2679. #ifdef MOTOR_CURRENT_PWM_E_PIN
  2680. if(code_seen('E')) digipot_current(2, code_value());
  2681. #endif
  2682. #ifdef DIGIPOT_I2C
  2683. // this one uses actual amps in floating point
  2684. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_i2c_set_current(i, code_value());
  2685. // for each additional extruder (named B,C,D,E..., channels 4,5,6,7...)
  2686. for(int i=NUM_AXIS;i<DIGIPOT_I2C_NUM_CHANNELS;i++) if(code_seen('B'+i-NUM_AXIS)) digipot_i2c_set_current(i, code_value());
  2687. #endif
  2688. }
  2689. break;
  2690. case 908: // M908 Control digital trimpot directly.
  2691. {
  2692. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  2693. uint8_t channel,current;
  2694. if(code_seen('P')) channel=code_value();
  2695. if(code_seen('S')) current=code_value();
  2696. digitalPotWrite(channel, current);
  2697. #endif
  2698. }
  2699. break;
  2700. case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  2701. {
  2702. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  2703. if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value());
  2704. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_mode(i,(uint8_t)code_value());
  2705. if(code_seen('B')) microstep_mode(4,code_value());
  2706. microstep_readings();
  2707. #endif
  2708. }
  2709. break;
  2710. case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  2711. {
  2712. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  2713. if(code_seen('S')) switch((int)code_value())
  2714. {
  2715. case 1:
  2716. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,code_value(),-1);
  2717. if(code_seen('B')) microstep_ms(4,code_value(),-1);
  2718. break;
  2719. case 2:
  2720. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,-1,code_value());
  2721. if(code_seen('B')) microstep_ms(4,-1,code_value());
  2722. break;
  2723. }
  2724. microstep_readings();
  2725. #endif
  2726. }
  2727. break;
  2728. case 999: // M999: Restart after being stopped
  2729. Stopped = false;
  2730. lcd_reset_alert_level();
  2731. gcode_LastN = Stopped_gcode_LastN;
  2732. FlushSerialRequestResend();
  2733. break;
  2734. }
  2735. }
  2736. else if(code_seen('T'))
  2737. {
  2738. tmp_extruder = code_value();
  2739. if(tmp_extruder >= EXTRUDERS) {
  2740. SERIAL_ECHO_START;
  2741. SERIAL_ECHO("T");
  2742. SERIAL_ECHO(tmp_extruder);
  2743. SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
  2744. }
  2745. else {
  2746. boolean make_move = false;
  2747. if(code_seen('F')) {
  2748. make_move = true;
  2749. next_feedrate = code_value();
  2750. if(next_feedrate > 0.0) {
  2751. feedrate = next_feedrate;
  2752. }
  2753. }
  2754. #if EXTRUDERS > 1
  2755. if(tmp_extruder != active_extruder) {
  2756. // Save current position to return to after applying extruder offset
  2757. memcpy(destination, current_position, sizeof(destination));
  2758. #ifdef DUAL_X_CARRIAGE
  2759. if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE && Stopped == false &&
  2760. (delayed_move_time != 0 || current_position[X_AXIS] != x_home_pos(active_extruder)))
  2761. {
  2762. // Park old head: 1) raise 2) move to park position 3) lower
  2763. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
  2764. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  2765. plan_buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
  2766. current_position[E_AXIS], max_feedrate[X_AXIS], active_extruder);
  2767. plan_buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS],
  2768. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  2769. st_synchronize();
  2770. }
  2771. // apply Y & Z extruder offset (x offset is already used in determining home pos)
  2772. current_position[Y_AXIS] = current_position[Y_AXIS] -
  2773. extruder_offset[Y_AXIS][active_extruder] +
  2774. extruder_offset[Y_AXIS][tmp_extruder];
  2775. current_position[Z_AXIS] = current_position[Z_AXIS] -
  2776. extruder_offset[Z_AXIS][active_extruder] +
  2777. extruder_offset[Z_AXIS][tmp_extruder];
  2778. active_extruder = tmp_extruder;
  2779. // This function resets the max/min values - the current position may be overwritten below.
  2780. axis_is_at_home(X_AXIS);
  2781. if (dual_x_carriage_mode == DXC_FULL_CONTROL_MODE)
  2782. {
  2783. current_position[X_AXIS] = inactive_extruder_x_pos;
  2784. inactive_extruder_x_pos = destination[X_AXIS];
  2785. }
  2786. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE)
  2787. {
  2788. active_extruder_parked = (active_extruder == 0); // this triggers the second extruder to move into the duplication position
  2789. if (active_extruder == 0 || active_extruder_parked)
  2790. current_position[X_AXIS] = inactive_extruder_x_pos;
  2791. else
  2792. current_position[X_AXIS] = destination[X_AXIS] + duplicate_extruder_x_offset;
  2793. inactive_extruder_x_pos = destination[X_AXIS];
  2794. extruder_duplication_enabled = false;
  2795. }
  2796. else
  2797. {
  2798. // record raised toolhead position for use by unpark
  2799. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  2800. raised_parked_position[Z_AXIS] += TOOLCHANGE_UNPARK_ZLIFT;
  2801. active_extruder_parked = true;
  2802. delayed_move_time = 0;
  2803. }
  2804. #else
  2805. // Offset extruder (only by XY)
  2806. int i;
  2807. for(i = 0; i < 2; i++) {
  2808. current_position[i] = current_position[i] -
  2809. extruder_offset[i][active_extruder] +
  2810. extruder_offset[i][tmp_extruder];
  2811. }
  2812. // Set the new active extruder and position
  2813. active_extruder = tmp_extruder;
  2814. #endif //else DUAL_X_CARRIAGE
  2815. #ifdef DELTA
  2816. calculate_delta(current_position); // change cartesian kinematic to delta kinematic;
  2817. //sent position to plan_set_position();
  2818. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS],current_position[E_AXIS]);
  2819. #else
  2820. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2821. #endif
  2822. // Move to the old position if 'F' was in the parameters
  2823. if(make_move && Stopped == false) {
  2824. prepare_move();
  2825. }
  2826. }
  2827. #endif
  2828. SERIAL_ECHO_START;
  2829. SERIAL_ECHO(MSG_ACTIVE_EXTRUDER);
  2830. SERIAL_PROTOCOLLN((int)active_extruder);
  2831. }
  2832. }
  2833. else
  2834. {
  2835. SERIAL_ECHO_START;
  2836. SERIAL_ECHOPGM(MSG_UNKNOWN_COMMAND);
  2837. SERIAL_ECHO(cmdbuffer[bufindr]);
  2838. SERIAL_ECHOLNPGM("\"");
  2839. }
  2840. ClearToSend();
  2841. }
  2842. void FlushSerialRequestResend()
  2843. {
  2844. //char cmdbuffer[bufindr][100]="Resend:";
  2845. MYSERIAL.flush();
  2846. SERIAL_PROTOCOLPGM(MSG_RESEND);
  2847. SERIAL_PROTOCOLLN(gcode_LastN + 1);
  2848. ClearToSend();
  2849. }
  2850. void ClearToSend()
  2851. {
  2852. previous_millis_cmd = millis();
  2853. #ifdef SDSUPPORT
  2854. if(fromsd[bufindr])
  2855. return;
  2856. #endif //SDSUPPORT
  2857. SERIAL_PROTOCOLLNPGM(MSG_OK);
  2858. }
  2859. void get_coordinates()
  2860. {
  2861. bool seen[4]={false,false,false,false};
  2862. for(int8_t i=0; i < NUM_AXIS; i++) {
  2863. if(code_seen(axis_codes[i]))
  2864. {
  2865. destination[i] = (float)code_value() + (axis_relative_modes[i] || relative_mode)*current_position[i];
  2866. seen[i]=true;
  2867. }
  2868. else destination[i] = current_position[i]; //Are these else lines really needed?
  2869. }
  2870. if(code_seen('F')) {
  2871. next_feedrate = code_value();
  2872. if(next_feedrate > 0.0) feedrate = next_feedrate;
  2873. }
  2874. }
  2875. void get_arc_coordinates()
  2876. {
  2877. #ifdef SF_ARC_FIX
  2878. bool relative_mode_backup = relative_mode;
  2879. relative_mode = true;
  2880. #endif
  2881. get_coordinates();
  2882. #ifdef SF_ARC_FIX
  2883. relative_mode=relative_mode_backup;
  2884. #endif
  2885. if(code_seen('I')) {
  2886. offset[0] = code_value();
  2887. }
  2888. else {
  2889. offset[0] = 0.0;
  2890. }
  2891. if(code_seen('J')) {
  2892. offset[1] = code_value();
  2893. }
  2894. else {
  2895. offset[1] = 0.0;
  2896. }
  2897. }
  2898. void clamp_to_software_endstops(float target[3])
  2899. {
  2900. if (min_software_endstops) {
  2901. if (target[X_AXIS] < min_pos[X_AXIS]) target[X_AXIS] = min_pos[X_AXIS];
  2902. if (target[Y_AXIS] < min_pos[Y_AXIS]) target[Y_AXIS] = min_pos[Y_AXIS];
  2903. if (target[Z_AXIS] < min_pos[Z_AXIS]) target[Z_AXIS] = min_pos[Z_AXIS];
  2904. }
  2905. if (max_software_endstops) {
  2906. if (target[X_AXIS] > max_pos[X_AXIS]) target[X_AXIS] = max_pos[X_AXIS];
  2907. if (target[Y_AXIS] > max_pos[Y_AXIS]) target[Y_AXIS] = max_pos[Y_AXIS];
  2908. if (target[Z_AXIS] > max_pos[Z_AXIS]) target[Z_AXIS] = max_pos[Z_AXIS];
  2909. }
  2910. }
  2911. #ifdef DELTA
  2912. void recalc_delta_settings(float radius, float diagonal_rod)
  2913. {
  2914. delta_tower1_x= -SIN_60*radius; // front left tower
  2915. delta_tower1_y= -COS_60*radius;
  2916. delta_tower2_x= SIN_60*radius; // front right tower
  2917. delta_tower2_y= -COS_60*radius;
  2918. delta_tower3_x= 0.0; // back middle tower
  2919. delta_tower3_y= radius;
  2920. delta_diagonal_rod_2= sq(diagonal_rod);
  2921. }
  2922. void calculate_delta(float cartesian[3])
  2923. {
  2924. delta[X_AXIS] = sqrt(delta_diagonal_rod_2
  2925. - sq(delta_tower1_x-cartesian[X_AXIS])
  2926. - sq(delta_tower1_y-cartesian[Y_AXIS])
  2927. ) + cartesian[Z_AXIS];
  2928. delta[Y_AXIS] = sqrt(delta_diagonal_rod_2
  2929. - sq(delta_tower2_x-cartesian[X_AXIS])
  2930. - sq(delta_tower2_y-cartesian[Y_AXIS])
  2931. ) + cartesian[Z_AXIS];
  2932. delta[Z_AXIS] = sqrt(delta_diagonal_rod_2
  2933. - sq(delta_tower3_x-cartesian[X_AXIS])
  2934. - sq(delta_tower3_y-cartesian[Y_AXIS])
  2935. ) + cartesian[Z_AXIS];
  2936. /*
  2937. SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);
  2938. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]);
  2939. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]);
  2940. SERIAL_ECHOPGM("delta x="); SERIAL_ECHO(delta[X_AXIS]);
  2941. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(delta[Y_AXIS]);
  2942. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(delta[Z_AXIS]);
  2943. */
  2944. }
  2945. #endif
  2946. void prepare_move()
  2947. {
  2948. clamp_to_software_endstops(destination);
  2949. previous_millis_cmd = millis();
  2950. #ifdef DELTA
  2951. float difference[NUM_AXIS];
  2952. for (int8_t i=0; i < NUM_AXIS; i++) {
  2953. difference[i] = destination[i] - current_position[i];
  2954. }
  2955. float cartesian_mm = sqrt(sq(difference[X_AXIS]) +
  2956. sq(difference[Y_AXIS]) +
  2957. sq(difference[Z_AXIS]));
  2958. if (cartesian_mm < 0.000001) { cartesian_mm = abs(difference[E_AXIS]); }
  2959. if (cartesian_mm < 0.000001) { return; }
  2960. float seconds = 6000 * cartesian_mm / feedrate / feedmultiply;
  2961. int steps = max(1, int(delta_segments_per_second * seconds));
  2962. // SERIAL_ECHOPGM("mm="); SERIAL_ECHO(cartesian_mm);
  2963. // SERIAL_ECHOPGM(" seconds="); SERIAL_ECHO(seconds);
  2964. // SERIAL_ECHOPGM(" steps="); SERIAL_ECHOLN(steps);
  2965. for (int s = 1; s <= steps; s++) {
  2966. float fraction = float(s) / float(steps);
  2967. for(int8_t i=0; i < NUM_AXIS; i++) {
  2968. destination[i] = current_position[i] + difference[i] * fraction;
  2969. }
  2970. calculate_delta(destination);
  2971. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS],
  2972. destination[E_AXIS], feedrate*feedmultiply/60/100.0,
  2973. active_extruder);
  2974. }
  2975. #else
  2976. #ifdef DUAL_X_CARRIAGE
  2977. if (active_extruder_parked)
  2978. {
  2979. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && active_extruder == 0)
  2980. {
  2981. // move duplicate extruder into correct duplication position.
  2982. plan_set_position(inactive_extruder_x_pos, current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2983. plan_buffer_line(current_position[X_AXIS] + duplicate_extruder_x_offset, current_position[Y_AXIS], current_position[Z_AXIS],
  2984. current_position[E_AXIS], max_feedrate[X_AXIS], 1);
  2985. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2986. st_synchronize();
  2987. extruder_duplication_enabled = true;
  2988. active_extruder_parked = false;
  2989. }
  2990. else if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE) // handle unparking of head
  2991. {
  2992. if (current_position[E_AXIS] == destination[E_AXIS])
  2993. {
  2994. // this is a travel move - skit it but keep track of current position (so that it can later
  2995. // be used as start of first non-travel move)
  2996. if (delayed_move_time != 0xFFFFFFFFUL)
  2997. {
  2998. memcpy(current_position, destination, sizeof(current_position));
  2999. if (destination[Z_AXIS] > raised_parked_position[Z_AXIS])
  3000. raised_parked_position[Z_AXIS] = destination[Z_AXIS];
  3001. delayed_move_time = millis();
  3002. return;
  3003. }
  3004. }
  3005. delayed_move_time = 0;
  3006. // unpark extruder: 1) raise, 2) move into starting XY position, 3) lower
  3007. plan_buffer_line(raised_parked_position[X_AXIS], raised_parked_position[Y_AXIS], raised_parked_position[Z_AXIS], current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  3008. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], raised_parked_position[Z_AXIS],
  3009. current_position[E_AXIS], min(max_feedrate[X_AXIS],max_feedrate[Y_AXIS]), active_extruder);
  3010. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS],
  3011. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  3012. active_extruder_parked = false;
  3013. }
  3014. }
  3015. #endif //DUAL_X_CARRIAGE
  3016. // Do not use feedmultiply for E or Z only moves
  3017. if( (current_position[X_AXIS] == destination [X_AXIS]) && (current_position[Y_AXIS] == destination [Y_AXIS])) {
  3018. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  3019. }
  3020. else {
  3021. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply/60/100.0, active_extruder);
  3022. }
  3023. #endif //else DELTA
  3024. for(int8_t i=0; i < NUM_AXIS; i++) {
  3025. current_position[i] = destination[i];
  3026. }
  3027. }
  3028. void prepare_arc_move(char isclockwise) {
  3029. float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
  3030. // Trace the arc
  3031. mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedmultiply/60/100.0, r, isclockwise, active_extruder);
  3032. // As far as the parser is concerned, the position is now == target. In reality the
  3033. // motion control system might still be processing the action and the real tool position
  3034. // in any intermediate location.
  3035. for(int8_t i=0; i < NUM_AXIS; i++) {
  3036. current_position[i] = destination[i];
  3037. }
  3038. previous_millis_cmd = millis();
  3039. }
  3040. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  3041. #if defined(FAN_PIN)
  3042. #if CONTROLLERFAN_PIN == FAN_PIN
  3043. #error "You cannot set CONTROLLERFAN_PIN equal to FAN_PIN"
  3044. #endif
  3045. #endif
  3046. unsigned long lastMotor = 0; //Save the time for when a motor was turned on last
  3047. unsigned long lastMotorCheck = 0;
  3048. void controllerFan()
  3049. {
  3050. if ((millis() - lastMotorCheck) >= 2500) //Not a time critical function, so we only check every 2500ms
  3051. {
  3052. lastMotorCheck = millis();
  3053. if(!READ(X_ENABLE_PIN) || !READ(Y_ENABLE_PIN) || !READ(Z_ENABLE_PIN) || (soft_pwm_bed > 0)
  3054. #if EXTRUDERS > 2
  3055. || !READ(E2_ENABLE_PIN)
  3056. #endif
  3057. #if EXTRUDER > 1
  3058. #if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1
  3059. || !READ(X2_ENABLE_PIN)
  3060. #endif
  3061. || !READ(E1_ENABLE_PIN)
  3062. #endif
  3063. || !READ(E0_ENABLE_PIN)) //If any of the drivers are enabled...
  3064. {
  3065. lastMotor = millis(); //... set time to NOW so the fan will turn on
  3066. }
  3067. if ((millis() - lastMotor) >= (CONTROLLERFAN_SECS*1000UL) || lastMotor == 0) //If the last time any driver was enabled, is longer since than CONTROLLERSEC...
  3068. {
  3069. digitalWrite(CONTROLLERFAN_PIN, 0);
  3070. analogWrite(CONTROLLERFAN_PIN, 0);
  3071. }
  3072. else
  3073. {
  3074. // allows digital or PWM fan output to be used (see M42 handling)
  3075. digitalWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  3076. analogWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  3077. }
  3078. }
  3079. }
  3080. #endif
  3081. #ifdef TEMP_STAT_LEDS
  3082. static bool blue_led = false;
  3083. static bool red_led = false;
  3084. static uint32_t stat_update = 0;
  3085. void handle_status_leds(void) {
  3086. float max_temp = 0.0;
  3087. if(millis() > stat_update) {
  3088. stat_update += 500; // Update every 0.5s
  3089. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  3090. max_temp = max(max_temp, degHotend(cur_extruder));
  3091. max_temp = max(max_temp, degTargetHotend(cur_extruder));
  3092. }
  3093. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  3094. max_temp = max(max_temp, degTargetBed());
  3095. max_temp = max(max_temp, degBed());
  3096. #endif
  3097. if((max_temp > 55.0) && (red_led == false)) {
  3098. digitalWrite(STAT_LED_RED, 1);
  3099. digitalWrite(STAT_LED_BLUE, 0);
  3100. red_led = true;
  3101. blue_led = false;
  3102. }
  3103. if((max_temp < 54.0) && (blue_led == false)) {
  3104. digitalWrite(STAT_LED_RED, 0);
  3105. digitalWrite(STAT_LED_BLUE, 1);
  3106. red_led = false;
  3107. blue_led = true;
  3108. }
  3109. }
  3110. }
  3111. #endif
  3112. void manage_inactivity()
  3113. {
  3114. if( (millis() - previous_millis_cmd) > max_inactive_time )
  3115. if(max_inactive_time)
  3116. kill();
  3117. if(stepper_inactive_time) {
  3118. if( (millis() - previous_millis_cmd) > stepper_inactive_time )
  3119. {
  3120. if(blocks_queued() == false) {
  3121. disable_x();
  3122. disable_y();
  3123. disable_z();
  3124. disable_e0();
  3125. disable_e1();
  3126. disable_e2();
  3127. }
  3128. }
  3129. }
  3130. #ifdef CHDK //Check if pin should be set to LOW after M240 set it to HIGH
  3131. if (chdkActive)
  3132. {
  3133. chdkActive = false;
  3134. if (millis()-chdkHigh < CHDK_DELAY) return;
  3135. WRITE(CHDK, LOW);
  3136. }
  3137. #endif
  3138. #if defined(KILL_PIN) && KILL_PIN > -1
  3139. if( 0 == READ(KILL_PIN) )
  3140. kill();
  3141. #endif
  3142. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  3143. controllerFan(); //Check if fan should be turned on to cool stepper drivers down
  3144. #endif
  3145. #ifdef EXTRUDER_RUNOUT_PREVENT
  3146. if( (millis() - previous_millis_cmd) > EXTRUDER_RUNOUT_SECONDS*1000 )
  3147. if(degHotend(active_extruder)>EXTRUDER_RUNOUT_MINTEMP)
  3148. {
  3149. bool oldstatus=READ(E0_ENABLE_PIN);
  3150. enable_e0();
  3151. float oldepos=current_position[E_AXIS];
  3152. float oldedes=destination[E_AXIS];
  3153. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
  3154. destination[E_AXIS]+EXTRUDER_RUNOUT_EXTRUDE*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS],
  3155. EXTRUDER_RUNOUT_SPEED/60.*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS], active_extruder);
  3156. current_position[E_AXIS]=oldepos;
  3157. destination[E_AXIS]=oldedes;
  3158. plan_set_e_position(oldepos);
  3159. previous_millis_cmd=millis();
  3160. st_synchronize();
  3161. WRITE(E0_ENABLE_PIN,oldstatus);
  3162. }
  3163. #endif
  3164. #if defined(DUAL_X_CARRIAGE)
  3165. // handle delayed move timeout
  3166. if (delayed_move_time != 0 && (millis() - delayed_move_time) > 1000 && Stopped == false)
  3167. {
  3168. // travel moves have been received so enact them
  3169. delayed_move_time = 0xFFFFFFFFUL; // force moves to be done
  3170. memcpy(destination,current_position,sizeof(destination));
  3171. prepare_move();
  3172. }
  3173. #endif
  3174. #ifdef TEMP_STAT_LEDS
  3175. handle_status_leds();
  3176. #endif
  3177. check_axes_activity();
  3178. }
  3179. void kill()
  3180. {
  3181. cli(); // Stop interrupts
  3182. disable_heater();
  3183. disable_x();
  3184. disable_y();
  3185. disable_z();
  3186. disable_e0();
  3187. disable_e1();
  3188. disable_e2();
  3189. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  3190. pinMode(PS_ON_PIN,INPUT);
  3191. #endif
  3192. SERIAL_ERROR_START;
  3193. SERIAL_ERRORLNPGM(MSG_ERR_KILLED);
  3194. LCD_ALERTMESSAGEPGM(MSG_KILLED);
  3195. suicide();
  3196. while(1) { /* Intentionally left empty */ } // Wait for reset
  3197. }
  3198. void Stop()
  3199. {
  3200. disable_heater();
  3201. if(Stopped == false) {
  3202. Stopped = true;
  3203. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  3204. SERIAL_ERROR_START;
  3205. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  3206. LCD_MESSAGEPGM(MSG_STOPPED);
  3207. }
  3208. }
  3209. bool IsStopped() { return Stopped; };
  3210. #ifdef FAST_PWM_FAN
  3211. void setPwmFrequency(uint8_t pin, int val)
  3212. {
  3213. val &= 0x07;
  3214. switch(digitalPinToTimer(pin))
  3215. {
  3216. #if defined(TCCR0A)
  3217. case TIMER0A:
  3218. case TIMER0B:
  3219. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  3220. // TCCR0B |= val;
  3221. break;
  3222. #endif
  3223. #if defined(TCCR1A)
  3224. case TIMER1A:
  3225. case TIMER1B:
  3226. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  3227. // TCCR1B |= val;
  3228. break;
  3229. #endif
  3230. #if defined(TCCR2)
  3231. case TIMER2:
  3232. case TIMER2:
  3233. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  3234. TCCR2 |= val;
  3235. break;
  3236. #endif
  3237. #if defined(TCCR2A)
  3238. case TIMER2A:
  3239. case TIMER2B:
  3240. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  3241. TCCR2B |= val;
  3242. break;
  3243. #endif
  3244. #if defined(TCCR3A)
  3245. case TIMER3A:
  3246. case TIMER3B:
  3247. case TIMER3C:
  3248. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  3249. TCCR3B |= val;
  3250. break;
  3251. #endif
  3252. #if defined(TCCR4A)
  3253. case TIMER4A:
  3254. case TIMER4B:
  3255. case TIMER4C:
  3256. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  3257. TCCR4B |= val;
  3258. break;
  3259. #endif
  3260. #if defined(TCCR5A)
  3261. case TIMER5A:
  3262. case TIMER5B:
  3263. case TIMER5C:
  3264. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  3265. TCCR5B |= val;
  3266. break;
  3267. #endif
  3268. }
  3269. }
  3270. #endif //FAST_PWM_FAN
  3271. bool setTargetedHotend(int code){
  3272. tmp_extruder = active_extruder;
  3273. if(code_seen('T')) {
  3274. tmp_extruder = code_value();
  3275. if(tmp_extruder >= EXTRUDERS) {
  3276. SERIAL_ECHO_START;
  3277. switch(code){
  3278. case 104:
  3279. SERIAL_ECHO(MSG_M104_INVALID_EXTRUDER);
  3280. break;
  3281. case 105:
  3282. SERIAL_ECHO(MSG_M105_INVALID_EXTRUDER);
  3283. break;
  3284. case 109:
  3285. SERIAL_ECHO(MSG_M109_INVALID_EXTRUDER);
  3286. break;
  3287. case 218:
  3288. SERIAL_ECHO(MSG_M218_INVALID_EXTRUDER);
  3289. break;
  3290. case 221:
  3291. SERIAL_ECHO(MSG_M221_INVALID_EXTRUDER);
  3292. break;
  3293. }
  3294. SERIAL_ECHOLN(tmp_extruder);
  3295. return true;
  3296. }
  3297. }
  3298. return false;
  3299. }