My Marlin configs for Fabrikator Mini and CTC i3 Pro B
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

stepper.cpp 41KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366
  1. /*
  2. stepper.c - stepper motor driver: executes motion plans using stepper motors
  3. Part of Grbl
  4. Copyright (c) 2009-2011 Simen Svale Skogsrud
  5. Grbl is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. Grbl is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with Grbl. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. /* The timer calculations of this module informed by the 'RepRap cartesian firmware' by Zack Smith
  17. and Philipp Tiefenbacher. */
  18. #include "Marlin.h"
  19. #include "stepper.h"
  20. #include "planner.h"
  21. #include "temperature.h"
  22. #include "ultralcd.h"
  23. #include "language.h"
  24. #include "cardreader.h"
  25. #include "speed_lookuptable.h"
  26. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  27. #include <SPI.h>
  28. #endif
  29. //===========================================================================
  30. //=============================public variables ============================
  31. //===========================================================================
  32. block_t *current_block; // A pointer to the block currently being traced
  33. //===========================================================================
  34. //=============================private variables ============================
  35. //===========================================================================
  36. //static makes it impossible to be called from outside of this file by extern.!
  37. // Variables used by The Stepper Driver Interrupt
  38. static unsigned char out_bits; // The next stepping-bits to be output
  39. static long counter_x, // Counter variables for the bresenham line tracer
  40. counter_y,
  41. counter_z,
  42. counter_e;
  43. volatile static unsigned long step_events_completed; // The number of step events executed in the current block
  44. #ifdef ADVANCE
  45. static long advance_rate, advance, final_advance = 0;
  46. static long old_advance = 0;
  47. static long e_steps[4];
  48. #endif
  49. static long acceleration_time, deceleration_time;
  50. //static unsigned long accelerate_until, decelerate_after, acceleration_rate, initial_rate, final_rate, nominal_rate;
  51. static unsigned short acc_step_rate; // needed for deccelaration start point
  52. static char step_loops;
  53. static unsigned short OCR1A_nominal;
  54. static unsigned short step_loops_nominal;
  55. volatile long endstops_trigsteps[3]={0,0,0};
  56. volatile long endstops_stepsTotal,endstops_stepsDone;
  57. static volatile bool endstop_x_hit=false;
  58. static volatile bool endstop_y_hit=false;
  59. static volatile bool endstop_z_hit=false;
  60. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  61. bool abort_on_endstop_hit = false;
  62. #endif
  63. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  64. int motor_current_setting[3] = DEFAULT_PWM_MOTOR_CURRENT;
  65. #endif
  66. static bool old_x_min_endstop=false;
  67. static bool old_x_max_endstop=false;
  68. static bool old_y_min_endstop=false;
  69. static bool old_y_max_endstop=false;
  70. static bool old_z_min_endstop=false;
  71. static bool old_z_max_endstop=false;
  72. static bool check_endstops = true;
  73. volatile long count_position[NUM_AXIS] = { 0, 0, 0, 0};
  74. volatile signed char count_direction[NUM_AXIS] = { 1, 1, 1, 1};
  75. //===========================================================================
  76. //=============================functions ============================
  77. //===========================================================================
  78. #define CHECK_ENDSTOPS if(check_endstops)
  79. // intRes = intIn1 * intIn2 >> 16
  80. // uses:
  81. // r26 to store 0
  82. // r27 to store the byte 1 of the 24 bit result
  83. #define MultiU16X8toH16(intRes, charIn1, intIn2) \
  84. asm volatile ( \
  85. "clr r26 \n\t" \
  86. "mul %A1, %B2 \n\t" \
  87. "movw %A0, r0 \n\t" \
  88. "mul %A1, %A2 \n\t" \
  89. "add %A0, r1 \n\t" \
  90. "adc %B0, r26 \n\t" \
  91. "lsr r0 \n\t" \
  92. "adc %A0, r26 \n\t" \
  93. "adc %B0, r26 \n\t" \
  94. "clr r1 \n\t" \
  95. : \
  96. "=&r" (intRes) \
  97. : \
  98. "d" (charIn1), \
  99. "d" (intIn2) \
  100. : \
  101. "r26" \
  102. )
  103. // intRes = longIn1 * longIn2 >> 24
  104. // uses:
  105. // r26 to store 0
  106. // r27 to store the byte 1 of the 48bit result
  107. #define MultiU24X24toH16(intRes, longIn1, longIn2) \
  108. asm volatile ( \
  109. "clr r26 \n\t" \
  110. "mul %A1, %B2 \n\t" \
  111. "mov r27, r1 \n\t" \
  112. "mul %B1, %C2 \n\t" \
  113. "movw %A0, r0 \n\t" \
  114. "mul %C1, %C2 \n\t" \
  115. "add %B0, r0 \n\t" \
  116. "mul %C1, %B2 \n\t" \
  117. "add %A0, r0 \n\t" \
  118. "adc %B0, r1 \n\t" \
  119. "mul %A1, %C2 \n\t" \
  120. "add r27, r0 \n\t" \
  121. "adc %A0, r1 \n\t" \
  122. "adc %B0, r26 \n\t" \
  123. "mul %B1, %B2 \n\t" \
  124. "add r27, r0 \n\t" \
  125. "adc %A0, r1 \n\t" \
  126. "adc %B0, r26 \n\t" \
  127. "mul %C1, %A2 \n\t" \
  128. "add r27, r0 \n\t" \
  129. "adc %A0, r1 \n\t" \
  130. "adc %B0, r26 \n\t" \
  131. "mul %B1, %A2 \n\t" \
  132. "add r27, r1 \n\t" \
  133. "adc %A0, r26 \n\t" \
  134. "adc %B0, r26 \n\t" \
  135. "lsr r27 \n\t" \
  136. "adc %A0, r26 \n\t" \
  137. "adc %B0, r26 \n\t" \
  138. "clr r1 \n\t" \
  139. : \
  140. "=&r" (intRes) \
  141. : \
  142. "d" (longIn1), \
  143. "d" (longIn2) \
  144. : \
  145. "r26" , "r27" \
  146. )
  147. // Some useful constants
  148. #define ENABLE_STEPPER_DRIVER_INTERRUPT() TIMSK1 |= (1<<OCIE1A)
  149. #define DISABLE_STEPPER_DRIVER_INTERRUPT() TIMSK1 &= ~(1<<OCIE1A)
  150. void checkHitEndstops()
  151. {
  152. if( endstop_x_hit || endstop_y_hit || endstop_z_hit) {
  153. SERIAL_ECHO_START;
  154. SERIAL_ECHOPGM(MSG_ENDSTOPS_HIT);
  155. if(endstop_x_hit) {
  156. SERIAL_ECHOPAIR(" X:",(float)endstops_trigsteps[X_AXIS]/axis_steps_per_unit[X_AXIS]);
  157. LCD_MESSAGEPGM(MSG_ENDSTOPS_HIT "X");
  158. }
  159. if(endstop_y_hit) {
  160. SERIAL_ECHOPAIR(" Y:",(float)endstops_trigsteps[Y_AXIS]/axis_steps_per_unit[Y_AXIS]);
  161. LCD_MESSAGEPGM(MSG_ENDSTOPS_HIT "Y");
  162. }
  163. if(endstop_z_hit) {
  164. SERIAL_ECHOPAIR(" Z:",(float)endstops_trigsteps[Z_AXIS]/axis_steps_per_unit[Z_AXIS]);
  165. LCD_MESSAGEPGM(MSG_ENDSTOPS_HIT "Z");
  166. }
  167. SERIAL_EOL;
  168. endstop_x_hit=false;
  169. endstop_y_hit=false;
  170. endstop_z_hit=false;
  171. #if defined(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED) && defined(SDSUPPORT)
  172. if (abort_on_endstop_hit)
  173. {
  174. card.sdprinting = false;
  175. card.closefile();
  176. quickStop();
  177. setTargetHotend0(0);
  178. setTargetHotend1(0);
  179. setTargetHotend2(0);
  180. setTargetHotend3(0);
  181. setTargetBed(0);
  182. }
  183. #endif
  184. }
  185. }
  186. void endstops_hit_on_purpose()
  187. {
  188. endstop_x_hit=false;
  189. endstop_y_hit=false;
  190. endstop_z_hit=false;
  191. }
  192. void enable_endstops(bool check)
  193. {
  194. check_endstops = check;
  195. }
  196. // __________________________
  197. // /| |\ _________________ ^
  198. // / | | \ /| |\ |
  199. // / | | \ / | | \ s
  200. // / | | | | | \ p
  201. // / | | | | | \ e
  202. // +-----+------------------------+---+--+---------------+----+ e
  203. // | BLOCK 1 | BLOCK 2 | d
  204. //
  205. // time ----->
  206. //
  207. // The trapezoid is the shape the speed curve over time. It starts at block->initial_rate, accelerates
  208. // first block->accelerate_until step_events_completed, then keeps going at constant speed until
  209. // step_events_completed reaches block->decelerate_after after which it decelerates until the trapezoid generator is reset.
  210. // The slope of acceleration is calculated with the leib ramp alghorithm.
  211. void st_wake_up() {
  212. // TCNT1 = 0;
  213. ENABLE_STEPPER_DRIVER_INTERRUPT();
  214. }
  215. FORCE_INLINE unsigned short calc_timer(unsigned short step_rate) {
  216. unsigned short timer;
  217. if(step_rate > MAX_STEP_FREQUENCY) step_rate = MAX_STEP_FREQUENCY;
  218. if(step_rate > 20000) { // If steprate > 20kHz >> step 4 times
  219. step_rate = (step_rate >> 2)&0x3fff;
  220. step_loops = 4;
  221. }
  222. else if(step_rate > 10000) { // If steprate > 10kHz >> step 2 times
  223. step_rate = (step_rate >> 1)&0x7fff;
  224. step_loops = 2;
  225. }
  226. else {
  227. step_loops = 1;
  228. }
  229. if(step_rate < (F_CPU/500000)) step_rate = (F_CPU/500000);
  230. step_rate -= (F_CPU/500000); // Correct for minimal speed
  231. if(step_rate >= (8*256)){ // higher step rate
  232. unsigned short table_address = (unsigned short)&speed_lookuptable_fast[(unsigned char)(step_rate>>8)][0];
  233. unsigned char tmp_step_rate = (step_rate & 0x00ff);
  234. unsigned short gain = (unsigned short)pgm_read_word_near(table_address+2);
  235. MultiU16X8toH16(timer, tmp_step_rate, gain);
  236. timer = (unsigned short)pgm_read_word_near(table_address) - timer;
  237. }
  238. else { // lower step rates
  239. unsigned short table_address = (unsigned short)&speed_lookuptable_slow[0][0];
  240. table_address += ((step_rate)>>1) & 0xfffc;
  241. timer = (unsigned short)pgm_read_word_near(table_address);
  242. timer -= (((unsigned short)pgm_read_word_near(table_address+2) * (unsigned char)(step_rate & 0x0007))>>3);
  243. }
  244. if(timer < 100) { timer = 100; MYSERIAL.print(MSG_STEPPER_TOO_HIGH); MYSERIAL.println(step_rate); }//(20kHz this should never happen)
  245. return timer;
  246. }
  247. // Initializes the trapezoid generator from the current block. Called whenever a new
  248. // block begins.
  249. FORCE_INLINE void trapezoid_generator_reset() {
  250. #ifdef ADVANCE
  251. advance = current_block->initial_advance;
  252. final_advance = current_block->final_advance;
  253. // Do E steps + advance steps
  254. e_steps[current_block->active_extruder] += ((advance >>8) - old_advance);
  255. old_advance = advance >>8;
  256. #endif
  257. deceleration_time = 0;
  258. // step_rate to timer interval
  259. OCR1A_nominal = calc_timer(current_block->nominal_rate);
  260. // make a note of the number of step loops required at nominal speed
  261. step_loops_nominal = step_loops;
  262. acc_step_rate = current_block->initial_rate;
  263. acceleration_time = calc_timer(acc_step_rate);
  264. OCR1A = acceleration_time;
  265. // SERIAL_ECHO_START;
  266. // SERIAL_ECHOPGM("advance :");
  267. // SERIAL_ECHO(current_block->advance/256.0);
  268. // SERIAL_ECHOPGM("advance rate :");
  269. // SERIAL_ECHO(current_block->advance_rate/256.0);
  270. // SERIAL_ECHOPGM("initial advance :");
  271. // SERIAL_ECHO(current_block->initial_advance/256.0);
  272. // SERIAL_ECHOPGM("final advance :");
  273. // SERIAL_ECHOLN(current_block->final_advance/256.0);
  274. }
  275. // "The Stepper Driver Interrupt" - This timer interrupt is the workhorse.
  276. // It pops blocks from the block_buffer and executes them by pulsing the stepper pins appropriately.
  277. ISR(TIMER1_COMPA_vect)
  278. {
  279. // If there is no current block, attempt to pop one from the buffer
  280. if (current_block == NULL) {
  281. // Anything in the buffer?
  282. current_block = plan_get_current_block();
  283. if (current_block != NULL) {
  284. current_block->busy = true;
  285. trapezoid_generator_reset();
  286. counter_x = -(current_block->step_event_count >> 1);
  287. counter_y = counter_x;
  288. counter_z = counter_x;
  289. counter_e = counter_x;
  290. step_events_completed = 0;
  291. #ifdef Z_LATE_ENABLE
  292. if(current_block->steps_z > 0) {
  293. enable_z();
  294. OCR1A = 2000; //1ms wait
  295. return;
  296. }
  297. #endif
  298. // #ifdef ADVANCE
  299. // e_steps[current_block->active_extruder] = 0;
  300. // #endif
  301. }
  302. else {
  303. OCR1A=2000; // 1kHz.
  304. }
  305. }
  306. if (current_block != NULL) {
  307. // Set directions TO DO This should be done once during init of trapezoid. Endstops -> interrupt
  308. out_bits = current_block->direction_bits;
  309. // Set the direction bits (X_AXIS=A_AXIS and Y_AXIS=B_AXIS for COREXY)
  310. if((out_bits & (1<<X_AXIS))!=0){
  311. #ifdef DUAL_X_CARRIAGE
  312. if (extruder_duplication_enabled){
  313. WRITE(X_DIR_PIN, INVERT_X_DIR);
  314. WRITE(X2_DIR_PIN, INVERT_X_DIR);
  315. }
  316. else{
  317. if (current_block->active_extruder != 0)
  318. WRITE(X2_DIR_PIN, INVERT_X_DIR);
  319. else
  320. WRITE(X_DIR_PIN, INVERT_X_DIR);
  321. }
  322. #else
  323. WRITE(X_DIR_PIN, INVERT_X_DIR);
  324. #endif
  325. count_direction[X_AXIS]=-1;
  326. }
  327. else{
  328. #ifdef DUAL_X_CARRIAGE
  329. if (extruder_duplication_enabled){
  330. WRITE(X_DIR_PIN, !INVERT_X_DIR);
  331. WRITE(X2_DIR_PIN, !INVERT_X_DIR);
  332. }
  333. else{
  334. if (current_block->active_extruder != 0)
  335. WRITE(X2_DIR_PIN, !INVERT_X_DIR);
  336. else
  337. WRITE(X_DIR_PIN, !INVERT_X_DIR);
  338. }
  339. #else
  340. WRITE(X_DIR_PIN, !INVERT_X_DIR);
  341. #endif
  342. count_direction[X_AXIS]=1;
  343. }
  344. if((out_bits & (1<<Y_AXIS))!=0){
  345. WRITE(Y_DIR_PIN, INVERT_Y_DIR);
  346. #ifdef Y_DUAL_STEPPER_DRIVERS
  347. WRITE(Y2_DIR_PIN, !(INVERT_Y_DIR == INVERT_Y2_VS_Y_DIR));
  348. #endif
  349. count_direction[Y_AXIS]=-1;
  350. }
  351. else{
  352. WRITE(Y_DIR_PIN, !INVERT_Y_DIR);
  353. #ifdef Y_DUAL_STEPPER_DRIVERS
  354. WRITE(Y2_DIR_PIN, (INVERT_Y_DIR == INVERT_Y2_VS_Y_DIR));
  355. #endif
  356. count_direction[Y_AXIS]=1;
  357. }
  358. if(check_endstops) // check X and Y Endstops
  359. {
  360. #ifndef COREXY
  361. if ((out_bits & (1<<X_AXIS)) != 0) // stepping along -X axis (regular cartesians bot)
  362. #else
  363. if (!((current_block->steps_x == current_block->steps_y) && ((out_bits & (1<<X_AXIS))>>X_AXIS != (out_bits & (1<<Y_AXIS))>>Y_AXIS))) // AlexBorro: If DeltaX == -DeltaY, the movement is only in Y axis
  364. if ((out_bits & (1<<X_HEAD)) != 0) //AlexBorro: Head direction in -X axis for CoreXY bots.
  365. #endif
  366. { // -direction
  367. #ifdef DUAL_X_CARRIAGE
  368. // with 2 x-carriages, endstops are only checked in the homing direction for the active extruder
  369. if ((current_block->active_extruder == 0 && X_HOME_DIR == -1) || (current_block->active_extruder != 0 && X2_HOME_DIR == -1))
  370. #endif
  371. {
  372. #if defined(X_MIN_PIN) && X_MIN_PIN > -1
  373. bool x_min_endstop=(READ(X_MIN_PIN) != X_MIN_ENDSTOP_INVERTING);
  374. if(x_min_endstop && old_x_min_endstop && (current_block->steps_x > 0))
  375. {
  376. endstops_trigsteps[X_AXIS] = count_position[X_AXIS];
  377. endstop_x_hit=true;
  378. step_events_completed = current_block->step_event_count;
  379. }
  380. old_x_min_endstop = x_min_endstop;
  381. #endif
  382. }
  383. }
  384. else
  385. { // +direction
  386. #ifdef DUAL_X_CARRIAGE
  387. // with 2 x-carriages, endstops are only checked in the homing direction for the active extruder
  388. if ((current_block->active_extruder == 0 && X_HOME_DIR == 1) || (current_block->active_extruder != 0 && X2_HOME_DIR == 1))
  389. #endif
  390. {
  391. #if defined(X_MAX_PIN) && X_MAX_PIN > -1
  392. bool x_max_endstop=(READ(X_MAX_PIN) != X_MAX_ENDSTOP_INVERTING);
  393. if(x_max_endstop && old_x_max_endstop && (current_block->steps_x > 0))
  394. {
  395. endstops_trigsteps[X_AXIS] = count_position[X_AXIS];
  396. endstop_x_hit=true;
  397. step_events_completed = current_block->step_event_count;
  398. }
  399. old_x_max_endstop = x_max_endstop;
  400. #endif
  401. }
  402. }
  403. #ifndef COREXY
  404. if ((out_bits & (1<<Y_AXIS)) != 0) // -direction
  405. #else
  406. if (!((current_block->steps_x == current_block->steps_y) && ((out_bits & (1<<X_AXIS))>>X_AXIS == (out_bits & (1<<Y_AXIS))>>Y_AXIS))) // AlexBorro: If DeltaX == DeltaY, the movement is only in X axis
  407. if ((out_bits & (1<<Y_HEAD)) != 0) //AlexBorro: Head direction in -Y axis for CoreXY bots.
  408. #endif
  409. { // -direction
  410. #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
  411. bool y_min_endstop=(READ(Y_MIN_PIN) != Y_MIN_ENDSTOP_INVERTING);
  412. if(y_min_endstop && old_y_min_endstop && (current_block->steps_y > 0))
  413. {
  414. endstops_trigsteps[Y_AXIS] = count_position[Y_AXIS];
  415. endstop_y_hit=true;
  416. step_events_completed = current_block->step_event_count;
  417. }
  418. old_y_min_endstop = y_min_endstop;
  419. #endif
  420. }
  421. else
  422. { // +direction
  423. #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
  424. bool y_max_endstop=(READ(Y_MAX_PIN) != Y_MAX_ENDSTOP_INVERTING);
  425. if(y_max_endstop && old_y_max_endstop && (current_block->steps_y > 0))
  426. {
  427. endstops_trigsteps[Y_AXIS] = count_position[Y_AXIS];
  428. endstop_y_hit=true;
  429. step_events_completed = current_block->step_event_count;
  430. }
  431. old_y_max_endstop = y_max_endstop;
  432. #endif
  433. }
  434. }
  435. if ((out_bits & (1<<Z_AXIS)) != 0) { // -direction
  436. WRITE(Z_DIR_PIN,INVERT_Z_DIR);
  437. #ifdef Z_DUAL_STEPPER_DRIVERS
  438. WRITE(Z2_DIR_PIN,INVERT_Z_DIR);
  439. #endif
  440. count_direction[Z_AXIS]=-1;
  441. CHECK_ENDSTOPS
  442. {
  443. #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
  444. bool z_min_endstop=(READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
  445. if(z_min_endstop && old_z_min_endstop && (current_block->steps_z > 0)) {
  446. endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS];
  447. endstop_z_hit=true;
  448. step_events_completed = current_block->step_event_count;
  449. }
  450. old_z_min_endstop = z_min_endstop;
  451. #endif
  452. }
  453. }
  454. else { // +direction
  455. WRITE(Z_DIR_PIN,!INVERT_Z_DIR);
  456. #ifdef Z_DUAL_STEPPER_DRIVERS
  457. WRITE(Z2_DIR_PIN,!INVERT_Z_DIR);
  458. #endif
  459. count_direction[Z_AXIS]=1;
  460. CHECK_ENDSTOPS
  461. {
  462. #if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
  463. bool z_max_endstop=(READ(Z_MAX_PIN) != Z_MAX_ENDSTOP_INVERTING);
  464. if(z_max_endstop && old_z_max_endstop && (current_block->steps_z > 0)) {
  465. endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS];
  466. endstop_z_hit=true;
  467. step_events_completed = current_block->step_event_count;
  468. }
  469. old_z_max_endstop = z_max_endstop;
  470. #endif
  471. }
  472. }
  473. #ifndef ADVANCE
  474. if ((out_bits & (1<<E_AXIS)) != 0) { // -direction
  475. REV_E_DIR();
  476. count_direction[E_AXIS]=-1;
  477. }
  478. else { // +direction
  479. NORM_E_DIR();
  480. count_direction[E_AXIS]=1;
  481. }
  482. #endif //!ADVANCE
  483. for(int8_t i=0; i < step_loops; i++) { // Take multiple steps per interrupt (For high speed moves)
  484. #ifndef AT90USB
  485. MSerial.checkRx(); // Check for serial chars.
  486. #endif
  487. #ifdef ADVANCE
  488. counter_e += current_block->steps_e;
  489. if (counter_e > 0) {
  490. counter_e -= current_block->step_event_count;
  491. if ((out_bits & (1<<E_AXIS)) != 0) { // - direction
  492. e_steps[current_block->active_extruder]--;
  493. }
  494. else {
  495. e_steps[current_block->active_extruder]++;
  496. }
  497. }
  498. #endif //ADVANCE
  499. counter_x += current_block->steps_x;
  500. #ifdef CONFIG_STEPPERS_TOSHIBA
  501. /* The Toshiba stepper controller require much longer pulses.
  502. * So we 'stage' decompose the pulses between high and low
  503. * instead of doing each in turn. The extra tests add enough
  504. * lag to allow it work with without needing NOPs
  505. */
  506. if (counter_x > 0) WRITE(X_STEP_PIN, HIGH);
  507. counter_y += current_block->steps_y;
  508. if (counter_y > 0) WRITE(Y_STEP_PIN, HIGH);
  509. counter_z += current_block->steps_z;
  510. if (counter_z > 0) WRITE(Z_STEP_PIN, HIGH);
  511. #ifndef ADVANCE
  512. counter_e += current_block->steps_e;
  513. if (counter_e > 0) WRITE_E_STEP(HIGH);
  514. #endif //!ADVANCE
  515. if (counter_x > 0) {
  516. counter_x -= current_block->step_event_count;
  517. count_position[X_AXIS] += count_direction[X_AXIS];
  518. WRITE(X_STEP_PIN, LOW);
  519. }
  520. if (counter_y > 0) {
  521. counter_y -= current_block->step_event_count;
  522. count_position[Y_AXIS] += count_direction[Y_AXIS];
  523. WRITE(Y_STEP_PIN, LOW);
  524. }
  525. if (counter_z > 0) {
  526. counter_z -= current_block->step_event_count;
  527. count_position[Z_AXIS] += count_direction[Z_AXIS];
  528. WRITE(Z_STEP_PIN, LOW);
  529. }
  530. #ifndef ADVANCE
  531. if (counter_e > 0) {
  532. counter_e -= current_block->step_event_count;
  533. count_position[E_AXIS] += count_direction[E_AXIS];
  534. WRITE_E_STEP(LOW);
  535. }
  536. #endif //!ADVANCE
  537. #else
  538. if (counter_x > 0) {
  539. #ifdef DUAL_X_CARRIAGE
  540. if (extruder_duplication_enabled){
  541. WRITE(X_STEP_PIN, !INVERT_X_STEP_PIN);
  542. WRITE(X2_STEP_PIN, !INVERT_X_STEP_PIN);
  543. }
  544. else {
  545. if (current_block->active_extruder != 0)
  546. WRITE(X2_STEP_PIN, !INVERT_X_STEP_PIN);
  547. else
  548. WRITE(X_STEP_PIN, !INVERT_X_STEP_PIN);
  549. }
  550. #else
  551. WRITE(X_STEP_PIN, !INVERT_X_STEP_PIN);
  552. #endif
  553. counter_x -= current_block->step_event_count;
  554. count_position[X_AXIS] += count_direction[X_AXIS];
  555. #ifdef DUAL_X_CARRIAGE
  556. if (extruder_duplication_enabled){
  557. WRITE(X_STEP_PIN, INVERT_X_STEP_PIN);
  558. WRITE(X2_STEP_PIN, INVERT_X_STEP_PIN);
  559. }
  560. else {
  561. if (current_block->active_extruder != 0)
  562. WRITE(X2_STEP_PIN, INVERT_X_STEP_PIN);
  563. else
  564. WRITE(X_STEP_PIN, INVERT_X_STEP_PIN);
  565. }
  566. #else
  567. WRITE(X_STEP_PIN, INVERT_X_STEP_PIN);
  568. #endif
  569. }
  570. counter_y += current_block->steps_y;
  571. if (counter_y > 0) {
  572. WRITE(Y_STEP_PIN, !INVERT_Y_STEP_PIN);
  573. #ifdef Y_DUAL_STEPPER_DRIVERS
  574. WRITE(Y2_STEP_PIN, !INVERT_Y_STEP_PIN);
  575. #endif
  576. counter_y -= current_block->step_event_count;
  577. count_position[Y_AXIS] += count_direction[Y_AXIS];
  578. WRITE(Y_STEP_PIN, INVERT_Y_STEP_PIN);
  579. #ifdef Y_DUAL_STEPPER_DRIVERS
  580. WRITE(Y2_STEP_PIN, INVERT_Y_STEP_PIN);
  581. #endif
  582. }
  583. counter_z += current_block->steps_z;
  584. if (counter_z > 0) {
  585. WRITE(Z_STEP_PIN, !INVERT_Z_STEP_PIN);
  586. #ifdef Z_DUAL_STEPPER_DRIVERS
  587. WRITE(Z2_STEP_PIN, !INVERT_Z_STEP_PIN);
  588. #endif
  589. counter_z -= current_block->step_event_count;
  590. count_position[Z_AXIS] += count_direction[Z_AXIS];
  591. WRITE(Z_STEP_PIN, INVERT_Z_STEP_PIN);
  592. #ifdef Z_DUAL_STEPPER_DRIVERS
  593. WRITE(Z2_STEP_PIN, INVERT_Z_STEP_PIN);
  594. #endif
  595. }
  596. #ifndef ADVANCE
  597. counter_e += current_block->steps_e;
  598. if (counter_e > 0) {
  599. WRITE_E_STEP(!INVERT_E_STEP_PIN);
  600. counter_e -= current_block->step_event_count;
  601. count_position[E_AXIS] += count_direction[E_AXIS];
  602. WRITE_E_STEP(INVERT_E_STEP_PIN);
  603. }
  604. #endif //!ADVANCE
  605. #endif // CONFIG_STEPPERS_TOSHIBA
  606. step_events_completed += 1;
  607. if(step_events_completed >= current_block->step_event_count) break;
  608. }
  609. // Calculare new timer value
  610. unsigned short timer;
  611. unsigned short step_rate;
  612. if (step_events_completed <= (unsigned long int)current_block->accelerate_until) {
  613. MultiU24X24toH16(acc_step_rate, acceleration_time, current_block->acceleration_rate);
  614. acc_step_rate += current_block->initial_rate;
  615. // upper limit
  616. if(acc_step_rate > current_block->nominal_rate)
  617. acc_step_rate = current_block->nominal_rate;
  618. // step_rate to timer interval
  619. timer = calc_timer(acc_step_rate);
  620. OCR1A = timer;
  621. acceleration_time += timer;
  622. #ifdef ADVANCE
  623. for(int8_t i=0; i < step_loops; i++) {
  624. advance += advance_rate;
  625. }
  626. //if(advance > current_block->advance) advance = current_block->advance;
  627. // Do E steps + advance steps
  628. e_steps[current_block->active_extruder] += ((advance >>8) - old_advance);
  629. old_advance = advance >>8;
  630. #endif
  631. }
  632. else if (step_events_completed > (unsigned long int)current_block->decelerate_after) {
  633. MultiU24X24toH16(step_rate, deceleration_time, current_block->acceleration_rate);
  634. if(step_rate > acc_step_rate) { // Check step_rate stays positive
  635. step_rate = current_block->final_rate;
  636. }
  637. else {
  638. step_rate = acc_step_rate - step_rate; // Decelerate from aceleration end point.
  639. }
  640. // lower limit
  641. if(step_rate < current_block->final_rate)
  642. step_rate = current_block->final_rate;
  643. // step_rate to timer interval
  644. timer = calc_timer(step_rate);
  645. OCR1A = timer;
  646. deceleration_time += timer;
  647. #ifdef ADVANCE
  648. for(int8_t i=0; i < step_loops; i++) {
  649. advance -= advance_rate;
  650. }
  651. if(advance < final_advance) advance = final_advance;
  652. // Do E steps + advance steps
  653. e_steps[current_block->active_extruder] += ((advance >>8) - old_advance);
  654. old_advance = advance >>8;
  655. #endif //ADVANCE
  656. }
  657. else {
  658. OCR1A = OCR1A_nominal;
  659. // ensure we're running at the correct step rate, even if we just came off an acceleration
  660. step_loops = step_loops_nominal;
  661. }
  662. // If current block is finished, reset pointer
  663. if (step_events_completed >= current_block->step_event_count) {
  664. current_block = NULL;
  665. plan_discard_current_block();
  666. }
  667. }
  668. }
  669. #ifdef ADVANCE
  670. unsigned char old_OCR0A;
  671. // Timer interrupt for E. e_steps is set in the main routine;
  672. // Timer 0 is shared with millies
  673. ISR(TIMER0_COMPA_vect)
  674. {
  675. old_OCR0A += 52; // ~10kHz interrupt (250000 / 26 = 9615kHz)
  676. OCR0A = old_OCR0A;
  677. // Set E direction (Depends on E direction + advance)
  678. for(unsigned char i=0; i<4;i++) {
  679. if (e_steps[0] != 0) {
  680. WRITE(E0_STEP_PIN, INVERT_E_STEP_PIN);
  681. if (e_steps[0] < 0) {
  682. WRITE(E0_DIR_PIN, INVERT_E0_DIR);
  683. e_steps[0]++;
  684. WRITE(E0_STEP_PIN, !INVERT_E_STEP_PIN);
  685. }
  686. else if (e_steps[0] > 0) {
  687. WRITE(E0_DIR_PIN, !INVERT_E0_DIR);
  688. e_steps[0]--;
  689. WRITE(E0_STEP_PIN, !INVERT_E_STEP_PIN);
  690. }
  691. }
  692. #if EXTRUDERS > 1
  693. if (e_steps[1] != 0) {
  694. WRITE(E1_STEP_PIN, INVERT_E_STEP_PIN);
  695. if (e_steps[1] < 0) {
  696. WRITE(E1_DIR_PIN, INVERT_E1_DIR);
  697. e_steps[1]++;
  698. WRITE(E1_STEP_PIN, !INVERT_E_STEP_PIN);
  699. }
  700. else if (e_steps[1] > 0) {
  701. WRITE(E1_DIR_PIN, !INVERT_E1_DIR);
  702. e_steps[1]--;
  703. WRITE(E1_STEP_PIN, !INVERT_E_STEP_PIN);
  704. }
  705. }
  706. #endif
  707. #if EXTRUDERS > 2
  708. if (e_steps[2] != 0) {
  709. WRITE(E2_STEP_PIN, INVERT_E_STEP_PIN);
  710. if (e_steps[2] < 0) {
  711. WRITE(E2_DIR_PIN, INVERT_E2_DIR);
  712. e_steps[2]++;
  713. WRITE(E2_STEP_PIN, !INVERT_E_STEP_PIN);
  714. }
  715. else if (e_steps[2] > 0) {
  716. WRITE(E2_DIR_PIN, !INVERT_E2_DIR);
  717. e_steps[2]--;
  718. WRITE(E2_STEP_PIN, !INVERT_E_STEP_PIN);
  719. }
  720. }
  721. #endif
  722. #if EXTRUDERS > 3
  723. if (e_steps[3] != 0) {
  724. WRITE(E3_STEP_PIN, INVERT_E_STEP_PIN);
  725. if (e_steps[3] < 0) {
  726. WRITE(E3_DIR_PIN, INVERT_E3_DIR);
  727. e_steps[3]++;
  728. WRITE(E3_STEP_PIN, !INVERT_E_STEP_PIN);
  729. }
  730. else if (e_steps[3] > 0) {
  731. WRITE(E3_DIR_PIN, !INVERT_E3_DIR);
  732. e_steps[3]--;
  733. WRITE(E3_STEP_PIN, !INVERT_E_STEP_PIN);
  734. }
  735. }
  736. #endif
  737. }
  738. }
  739. #endif // ADVANCE
  740. void st_init()
  741. {
  742. digipot_init(); //Initialize Digipot Motor Current
  743. microstep_init(); //Initialize Microstepping Pins
  744. //Initialize Dir Pins
  745. #if defined(X_DIR_PIN) && X_DIR_PIN > -1
  746. SET_OUTPUT(X_DIR_PIN);
  747. #endif
  748. #if defined(X2_DIR_PIN) && X2_DIR_PIN > -1
  749. SET_OUTPUT(X2_DIR_PIN);
  750. #endif
  751. #if defined(Y_DIR_PIN) && Y_DIR_PIN > -1
  752. SET_OUTPUT(Y_DIR_PIN);
  753. #if defined(Y_DUAL_STEPPER_DRIVERS) && defined(Y2_DIR_PIN) && (Y2_DIR_PIN > -1)
  754. SET_OUTPUT(Y2_DIR_PIN);
  755. #endif
  756. #endif
  757. #if defined(Z_DIR_PIN) && Z_DIR_PIN > -1
  758. SET_OUTPUT(Z_DIR_PIN);
  759. #if defined(Z_DUAL_STEPPER_DRIVERS) && defined(Z2_DIR_PIN) && (Z2_DIR_PIN > -1)
  760. SET_OUTPUT(Z2_DIR_PIN);
  761. #endif
  762. #endif
  763. #if defined(E0_DIR_PIN) && E0_DIR_PIN > -1
  764. SET_OUTPUT(E0_DIR_PIN);
  765. #endif
  766. #if defined(E1_DIR_PIN) && (E1_DIR_PIN > -1)
  767. SET_OUTPUT(E1_DIR_PIN);
  768. #endif
  769. #if defined(E2_DIR_PIN) && (E2_DIR_PIN > -1)
  770. SET_OUTPUT(E2_DIR_PIN);
  771. #endif
  772. #if defined(E3_DIR_PIN) && (E3_DIR_PIN > -1)
  773. SET_OUTPUT(E3_DIR_PIN);
  774. #endif
  775. //Initialize Enable Pins - steppers default to disabled.
  776. #if defined(X_ENABLE_PIN) && X_ENABLE_PIN > -1
  777. SET_OUTPUT(X_ENABLE_PIN);
  778. if(!X_ENABLE_ON) WRITE(X_ENABLE_PIN,HIGH);
  779. #endif
  780. #if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1
  781. SET_OUTPUT(X2_ENABLE_PIN);
  782. if(!X_ENABLE_ON) WRITE(X2_ENABLE_PIN,HIGH);
  783. #endif
  784. #if defined(Y_ENABLE_PIN) && Y_ENABLE_PIN > -1
  785. SET_OUTPUT(Y_ENABLE_PIN);
  786. if(!Y_ENABLE_ON) WRITE(Y_ENABLE_PIN,HIGH);
  787. #if defined(Y_DUAL_STEPPER_DRIVERS) && defined(Y2_ENABLE_PIN) && (Y2_ENABLE_PIN > -1)
  788. SET_OUTPUT(Y2_ENABLE_PIN);
  789. if(!Y_ENABLE_ON) WRITE(Y2_ENABLE_PIN,HIGH);
  790. #endif
  791. #endif
  792. #if defined(Z_ENABLE_PIN) && Z_ENABLE_PIN > -1
  793. SET_OUTPUT(Z_ENABLE_PIN);
  794. if(!Z_ENABLE_ON) WRITE(Z_ENABLE_PIN,HIGH);
  795. #if defined(Z_DUAL_STEPPER_DRIVERS) && defined(Z2_ENABLE_PIN) && (Z2_ENABLE_PIN > -1)
  796. SET_OUTPUT(Z2_ENABLE_PIN);
  797. if(!Z_ENABLE_ON) WRITE(Z2_ENABLE_PIN,HIGH);
  798. #endif
  799. #endif
  800. #if defined(E0_ENABLE_PIN) && (E0_ENABLE_PIN > -1)
  801. SET_OUTPUT(E0_ENABLE_PIN);
  802. if(!E_ENABLE_ON) WRITE(E0_ENABLE_PIN,HIGH);
  803. #endif
  804. #if defined(E1_ENABLE_PIN) && (E1_ENABLE_PIN > -1)
  805. SET_OUTPUT(E1_ENABLE_PIN);
  806. if(!E_ENABLE_ON) WRITE(E1_ENABLE_PIN,HIGH);
  807. #endif
  808. #if defined(E2_ENABLE_PIN) && (E2_ENABLE_PIN > -1)
  809. SET_OUTPUT(E2_ENABLE_PIN);
  810. if(!E_ENABLE_ON) WRITE(E2_ENABLE_PIN,HIGH);
  811. #endif
  812. #if defined(E3_ENABLE_PIN) && (E3_ENABLE_PIN > -1)
  813. SET_OUTPUT(E3_ENABLE_PIN);
  814. if(!E_ENABLE_ON) WRITE(E3_ENABLE_PIN,HIGH);
  815. #endif
  816. //endstops and pullups
  817. #if defined(X_MIN_PIN) && X_MIN_PIN > -1
  818. SET_INPUT(X_MIN_PIN);
  819. #ifdef ENDSTOPPULLUP_XMIN
  820. WRITE(X_MIN_PIN,HIGH);
  821. #endif
  822. #endif
  823. #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
  824. SET_INPUT(Y_MIN_PIN);
  825. #ifdef ENDSTOPPULLUP_YMIN
  826. WRITE(Y_MIN_PIN,HIGH);
  827. #endif
  828. #endif
  829. #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
  830. SET_INPUT(Z_MIN_PIN);
  831. #ifdef ENDSTOPPULLUP_ZMIN
  832. WRITE(Z_MIN_PIN,HIGH);
  833. #endif
  834. #endif
  835. #if defined(X_MAX_PIN) && X_MAX_PIN > -1
  836. SET_INPUT(X_MAX_PIN);
  837. #ifdef ENDSTOPPULLUP_XMAX
  838. WRITE(X_MAX_PIN,HIGH);
  839. #endif
  840. #endif
  841. #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
  842. SET_INPUT(Y_MAX_PIN);
  843. #ifdef ENDSTOPPULLUP_YMAX
  844. WRITE(Y_MAX_PIN,HIGH);
  845. #endif
  846. #endif
  847. #if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
  848. SET_INPUT(Z_MAX_PIN);
  849. #ifdef ENDSTOPPULLUP_ZMAX
  850. WRITE(Z_MAX_PIN,HIGH);
  851. #endif
  852. #endif
  853. //Initialize Step Pins
  854. #if defined(X_STEP_PIN) && (X_STEP_PIN > -1)
  855. OUT_WRITE(X_STEP_PIN,INVERT_X_STEP_PIN);
  856. disable_x();
  857. #endif
  858. #if defined(X2_STEP_PIN) && (X2_STEP_PIN > -1)
  859. OUT_WRITE(X2_STEP_PIN,INVERT_X_STEP_PIN);
  860. disable_x();
  861. #endif
  862. #if defined(Y_STEP_PIN) && (Y_STEP_PIN > -1)
  863. OUT_WRITE(Y_STEP_PIN,INVERT_Y_STEP_PIN);
  864. #if defined(Y_DUAL_STEPPER_DRIVERS) && defined(Y2_STEP_PIN) && (Y2_STEP_PIN > -1)
  865. OUT_WRITE(Y2_STEP_PIN,INVERT_Y_STEP_PIN);
  866. #endif
  867. disable_y();
  868. #endif
  869. #if defined(Z_STEP_PIN) && (Z_STEP_PIN > -1)
  870. OUT_WRITE(Z_STEP_PIN,INVERT_Z_STEP_PIN);
  871. #if defined(Z_DUAL_STEPPER_DRIVERS) && defined(Z2_STEP_PIN) && (Z2_STEP_PIN > -1)
  872. OUT_WRITE(Z2_STEP_PIN,INVERT_Z_STEP_PIN);
  873. #endif
  874. disable_z();
  875. #endif
  876. #if defined(E0_STEP_PIN) && (E0_STEP_PIN > -1)
  877. OUT_WRITE(E0_STEP_PIN,INVERT_E_STEP_PIN);
  878. disable_e0();
  879. #endif
  880. #if defined(E1_STEP_PIN) && (E1_STEP_PIN > -1)
  881. OUT_WRITE(E1_STEP_PIN,INVERT_E_STEP_PIN);
  882. disable_e1();
  883. #endif
  884. #if defined(E2_STEP_PIN) && (E2_STEP_PIN > -1)
  885. OUT_WRITE(E2_STEP_PIN,INVERT_E_STEP_PIN);
  886. disable_e2();
  887. #endif
  888. #if defined(E3_STEP_PIN) && (E3_STEP_PIN > -1)
  889. OUT_WRITE(E3_STEP_PIN,INVERT_E_STEP_PIN);
  890. disable_e3();
  891. #endif
  892. // waveform generation = 0100 = CTC
  893. TCCR1B &= ~(1<<WGM13);
  894. TCCR1B |= (1<<WGM12);
  895. TCCR1A &= ~(1<<WGM11);
  896. TCCR1A &= ~(1<<WGM10);
  897. // output mode = 00 (disconnected)
  898. TCCR1A &= ~(3<<COM1A0);
  899. TCCR1A &= ~(3<<COM1B0);
  900. // Set the timer pre-scaler
  901. // Generally we use a divider of 8, resulting in a 2MHz timer
  902. // frequency on a 16MHz MCU. If you are going to change this, be
  903. // sure to regenerate speed_lookuptable.h with
  904. // create_speed_lookuptable.py
  905. TCCR1B = (TCCR1B & ~(0x07<<CS10)) | (2<<CS10);
  906. OCR1A = 0x4000;
  907. TCNT1 = 0;
  908. ENABLE_STEPPER_DRIVER_INTERRUPT();
  909. #ifdef ADVANCE
  910. #if defined(TCCR0A) && defined(WGM01)
  911. TCCR0A &= ~(1<<WGM01);
  912. TCCR0A &= ~(1<<WGM00);
  913. #endif
  914. e_steps[0] = 0;
  915. e_steps[1] = 0;
  916. e_steps[2] = 0;
  917. e_steps[3] = 0;
  918. TIMSK0 |= (1<<OCIE0A);
  919. #endif //ADVANCE
  920. enable_endstops(true); // Start with endstops active. After homing they can be disabled
  921. sei();
  922. }
  923. // Block until all buffered steps are executed
  924. void st_synchronize()
  925. {
  926. while( blocks_queued()) {
  927. manage_heater();
  928. manage_inactivity();
  929. lcd_update();
  930. }
  931. }
  932. void st_set_position(const long &x, const long &y, const long &z, const long &e)
  933. {
  934. CRITICAL_SECTION_START;
  935. count_position[X_AXIS] = x;
  936. count_position[Y_AXIS] = y;
  937. count_position[Z_AXIS] = z;
  938. count_position[E_AXIS] = e;
  939. CRITICAL_SECTION_END;
  940. }
  941. void st_set_e_position(const long &e)
  942. {
  943. CRITICAL_SECTION_START;
  944. count_position[E_AXIS] = e;
  945. CRITICAL_SECTION_END;
  946. }
  947. long st_get_position(uint8_t axis)
  948. {
  949. long count_pos;
  950. CRITICAL_SECTION_START;
  951. count_pos = count_position[axis];
  952. CRITICAL_SECTION_END;
  953. return count_pos;
  954. }
  955. #ifdef ENABLE_AUTO_BED_LEVELING
  956. float st_get_position_mm(uint8_t axis)
  957. {
  958. float steper_position_in_steps = st_get_position(axis);
  959. return steper_position_in_steps / axis_steps_per_unit[axis];
  960. }
  961. #endif // ENABLE_AUTO_BED_LEVELING
  962. void finishAndDisableSteppers()
  963. {
  964. st_synchronize();
  965. disable_x();
  966. disable_y();
  967. disable_z();
  968. disable_e0();
  969. disable_e1();
  970. disable_e2();
  971. disable_e3();
  972. }
  973. void quickStop()
  974. {
  975. DISABLE_STEPPER_DRIVER_INTERRUPT();
  976. while(blocks_queued())
  977. plan_discard_current_block();
  978. current_block = NULL;
  979. ENABLE_STEPPER_DRIVER_INTERRUPT();
  980. }
  981. #ifdef BABYSTEPPING
  982. void babystep(const uint8_t axis,const bool direction)
  983. {
  984. //MUST ONLY BE CALLED BY A ISR, it depends on that no other ISR interrupts this
  985. //store initial pin states
  986. switch(axis)
  987. {
  988. case X_AXIS:
  989. {
  990. enable_x();
  991. uint8_t old_x_dir_pin= READ(X_DIR_PIN); //if dualzstepper, both point to same direction.
  992. //setup new step
  993. WRITE(X_DIR_PIN,(INVERT_X_DIR)^direction);
  994. #ifdef DUAL_X_CARRIAGE
  995. WRITE(X2_DIR_PIN,(INVERT_X_DIR)^direction);
  996. #endif
  997. //perform step
  998. WRITE(X_STEP_PIN, !INVERT_X_STEP_PIN);
  999. #ifdef DUAL_X_CARRIAGE
  1000. WRITE(X2_STEP_PIN, !INVERT_X_STEP_PIN);
  1001. #endif
  1002. _delay_us(1U); // wait 1 microsecond
  1003. WRITE(X_STEP_PIN, INVERT_X_STEP_PIN);
  1004. #ifdef DUAL_X_CARRIAGE
  1005. WRITE(X2_STEP_PIN, INVERT_X_STEP_PIN);
  1006. #endif
  1007. //get old pin state back.
  1008. WRITE(X_DIR_PIN,old_x_dir_pin);
  1009. #ifdef DUAL_X_CARRIAGE
  1010. WRITE(X2_DIR_PIN,old_x_dir_pin);
  1011. #endif
  1012. }
  1013. break;
  1014. case Y_AXIS:
  1015. {
  1016. enable_y();
  1017. uint8_t old_y_dir_pin= READ(Y_DIR_PIN); //if dualzstepper, both point to same direction.
  1018. //setup new step
  1019. WRITE(Y_DIR_PIN,(INVERT_Y_DIR)^direction);
  1020. #ifdef DUAL_Y_CARRIAGE
  1021. WRITE(Y2_DIR_PIN,(INVERT_Y_DIR)^direction);
  1022. #endif
  1023. //perform step
  1024. WRITE(Y_STEP_PIN, !INVERT_Y_STEP_PIN);
  1025. #ifdef DUAL_Y_CARRIAGE
  1026. WRITE(Y2_STEP_PIN, !INVERT_Y_STEP_PIN);
  1027. #endif
  1028. _delay_us(1U); // wait 1 microsecond
  1029. WRITE(Y_STEP_PIN, INVERT_Y_STEP_PIN);
  1030. #ifdef DUAL_Y_CARRIAGE
  1031. WRITE(Y2_STEP_PIN, INVERT_Y_STEP_PIN);
  1032. #endif
  1033. //get old pin state back.
  1034. WRITE(Y_DIR_PIN,old_y_dir_pin);
  1035. #ifdef DUAL_Y_CARRIAGE
  1036. WRITE(Y2_DIR_PIN,old_y_dir_pin);
  1037. #endif
  1038. }
  1039. break;
  1040. #ifndef DELTA
  1041. case Z_AXIS:
  1042. {
  1043. enable_z();
  1044. uint8_t old_z_dir_pin= READ(Z_DIR_PIN); //if dualzstepper, both point to same direction.
  1045. //setup new step
  1046. WRITE(Z_DIR_PIN,(INVERT_Z_DIR)^direction^BABYSTEP_INVERT_Z);
  1047. #ifdef Z_DUAL_STEPPER_DRIVERS
  1048. WRITE(Z2_DIR_PIN,(INVERT_Z_DIR)^direction^BABYSTEP_INVERT_Z);
  1049. #endif
  1050. //perform step
  1051. WRITE(Z_STEP_PIN, !INVERT_Z_STEP_PIN);
  1052. #ifdef Z_DUAL_STEPPER_DRIVERS
  1053. WRITE(Z2_STEP_PIN, !INVERT_Z_STEP_PIN);
  1054. #endif
  1055. _delay_us(1U); // wait 1 microsecond
  1056. WRITE(Z_STEP_PIN, INVERT_Z_STEP_PIN);
  1057. #ifdef Z_DUAL_STEPPER_DRIVERS
  1058. WRITE(Z2_STEP_PIN, INVERT_Z_STEP_PIN);
  1059. #endif
  1060. //get old pin state back.
  1061. WRITE(Z_DIR_PIN,old_z_dir_pin);
  1062. #ifdef Z_DUAL_STEPPER_DRIVERS
  1063. WRITE(Z2_DIR_PIN,old_z_dir_pin);
  1064. #endif
  1065. }
  1066. break;
  1067. #else //DELTA
  1068. case Z_AXIS:
  1069. {
  1070. enable_x();
  1071. enable_y();
  1072. enable_z();
  1073. uint8_t old_x_dir_pin= READ(X_DIR_PIN);
  1074. uint8_t old_y_dir_pin= READ(Y_DIR_PIN);
  1075. uint8_t old_z_dir_pin= READ(Z_DIR_PIN);
  1076. //setup new step
  1077. WRITE(X_DIR_PIN,(INVERT_X_DIR)^direction^BABYSTEP_INVERT_Z);
  1078. WRITE(Y_DIR_PIN,(INVERT_Y_DIR)^direction^BABYSTEP_INVERT_Z);
  1079. WRITE(Z_DIR_PIN,(INVERT_Z_DIR)^direction^BABYSTEP_INVERT_Z);
  1080. //perform step
  1081. WRITE(X_STEP_PIN, !INVERT_X_STEP_PIN);
  1082. WRITE(Y_STEP_PIN, !INVERT_Y_STEP_PIN);
  1083. WRITE(Z_STEP_PIN, !INVERT_Z_STEP_PIN);
  1084. _delay_us(1U); // wait 1 microsecond
  1085. WRITE(X_STEP_PIN, INVERT_X_STEP_PIN);
  1086. WRITE(Y_STEP_PIN, INVERT_Y_STEP_PIN);
  1087. WRITE(Z_STEP_PIN, INVERT_Z_STEP_PIN);
  1088. //get old pin state back.
  1089. WRITE(X_DIR_PIN,old_x_dir_pin);
  1090. WRITE(Y_DIR_PIN,old_y_dir_pin);
  1091. WRITE(Z_DIR_PIN,old_z_dir_pin);
  1092. }
  1093. break;
  1094. #endif
  1095. default: break;
  1096. }
  1097. }
  1098. #endif //BABYSTEPPING
  1099. void digitalPotWrite(int address, int value) // From Arduino DigitalPotControl example
  1100. {
  1101. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  1102. digitalWrite(DIGIPOTSS_PIN,LOW); // take the SS pin low to select the chip
  1103. SPI.transfer(address); // send in the address and value via SPI:
  1104. SPI.transfer(value);
  1105. digitalWrite(DIGIPOTSS_PIN,HIGH); // take the SS pin high to de-select the chip:
  1106. //delay(10);
  1107. #endif
  1108. }
  1109. void digipot_init() //Initialize Digipot Motor Current
  1110. {
  1111. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  1112. const uint8_t digipot_motor_current[] = DIGIPOT_MOTOR_CURRENT;
  1113. SPI.begin();
  1114. pinMode(DIGIPOTSS_PIN, OUTPUT);
  1115. for(int i=0;i<=4;i++)
  1116. //digitalPotWrite(digipot_ch[i], digipot_motor_current[i]);
  1117. digipot_current(i,digipot_motor_current[i]);
  1118. #endif
  1119. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  1120. pinMode(MOTOR_CURRENT_PWM_XY_PIN, OUTPUT);
  1121. pinMode(MOTOR_CURRENT_PWM_Z_PIN, OUTPUT);
  1122. pinMode(MOTOR_CURRENT_PWM_E_PIN, OUTPUT);
  1123. digipot_current(0, motor_current_setting[0]);
  1124. digipot_current(1, motor_current_setting[1]);
  1125. digipot_current(2, motor_current_setting[2]);
  1126. //Set timer5 to 31khz so the PWM of the motor power is as constant as possible. (removes a buzzing noise)
  1127. TCCR5B = (TCCR5B & ~(_BV(CS50) | _BV(CS51) | _BV(CS52))) | _BV(CS50);
  1128. #endif
  1129. }
  1130. void digipot_current(uint8_t driver, int current)
  1131. {
  1132. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  1133. const uint8_t digipot_ch[] = DIGIPOT_CHANNELS;
  1134. digitalPotWrite(digipot_ch[driver], current);
  1135. #endif
  1136. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  1137. if (driver == 0) analogWrite(MOTOR_CURRENT_PWM_XY_PIN, (long)current * 255L / (long)MOTOR_CURRENT_PWM_RANGE);
  1138. if (driver == 1) analogWrite(MOTOR_CURRENT_PWM_Z_PIN, (long)current * 255L / (long)MOTOR_CURRENT_PWM_RANGE);
  1139. if (driver == 2) analogWrite(MOTOR_CURRENT_PWM_E_PIN, (long)current * 255L / (long)MOTOR_CURRENT_PWM_RANGE);
  1140. #endif
  1141. }
  1142. void microstep_init()
  1143. {
  1144. const uint8_t microstep_modes[] = MICROSTEP_MODES;
  1145. #if defined(E1_MS1_PIN) && E1_MS1_PIN > -1
  1146. pinMode(E1_MS1_PIN,OUTPUT);
  1147. pinMode(E1_MS2_PIN,OUTPUT);
  1148. #endif
  1149. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  1150. pinMode(X_MS1_PIN,OUTPUT);
  1151. pinMode(X_MS2_PIN,OUTPUT);
  1152. pinMode(Y_MS1_PIN,OUTPUT);
  1153. pinMode(Y_MS2_PIN,OUTPUT);
  1154. pinMode(Z_MS1_PIN,OUTPUT);
  1155. pinMode(Z_MS2_PIN,OUTPUT);
  1156. pinMode(E0_MS1_PIN,OUTPUT);
  1157. pinMode(E0_MS2_PIN,OUTPUT);
  1158. for(int i=0;i<=4;i++) microstep_mode(i,microstep_modes[i]);
  1159. #endif
  1160. }
  1161. void microstep_ms(uint8_t driver, int8_t ms1, int8_t ms2)
  1162. {
  1163. if(ms1 > -1) switch(driver)
  1164. {
  1165. case 0: digitalWrite( X_MS1_PIN,ms1); break;
  1166. case 1: digitalWrite( Y_MS1_PIN,ms1); break;
  1167. case 2: digitalWrite( Z_MS1_PIN,ms1); break;
  1168. case 3: digitalWrite(E0_MS1_PIN,ms1); break;
  1169. #if defined(E1_MS1_PIN) && E1_MS1_PIN > -1
  1170. case 4: digitalWrite(E1_MS1_PIN,ms1); break;
  1171. #endif
  1172. }
  1173. if(ms2 > -1) switch(driver)
  1174. {
  1175. case 0: digitalWrite( X_MS2_PIN,ms2); break;
  1176. case 1: digitalWrite( Y_MS2_PIN,ms2); break;
  1177. case 2: digitalWrite( Z_MS2_PIN,ms2); break;
  1178. case 3: digitalWrite(E0_MS2_PIN,ms2); break;
  1179. #if defined(E1_MS2_PIN) && E1_MS2_PIN > -1
  1180. case 4: digitalWrite(E1_MS2_PIN,ms2); break;
  1181. #endif
  1182. }
  1183. }
  1184. void microstep_mode(uint8_t driver, uint8_t stepping_mode)
  1185. {
  1186. switch(stepping_mode)
  1187. {
  1188. case 1: microstep_ms(driver,MICROSTEP1); break;
  1189. case 2: microstep_ms(driver,MICROSTEP2); break;
  1190. case 4: microstep_ms(driver,MICROSTEP4); break;
  1191. case 8: microstep_ms(driver,MICROSTEP8); break;
  1192. case 16: microstep_ms(driver,MICROSTEP16); break;
  1193. }
  1194. }
  1195. void microstep_readings()
  1196. {
  1197. SERIAL_PROTOCOLPGM("MS1,MS2 Pins\n");
  1198. SERIAL_PROTOCOLPGM("X: ");
  1199. SERIAL_PROTOCOL( digitalRead(X_MS1_PIN));
  1200. SERIAL_PROTOCOLLN( digitalRead(X_MS2_PIN));
  1201. SERIAL_PROTOCOLPGM("Y: ");
  1202. SERIAL_PROTOCOL( digitalRead(Y_MS1_PIN));
  1203. SERIAL_PROTOCOLLN( digitalRead(Y_MS2_PIN));
  1204. SERIAL_PROTOCOLPGM("Z: ");
  1205. SERIAL_PROTOCOL( digitalRead(Z_MS1_PIN));
  1206. SERIAL_PROTOCOLLN( digitalRead(Z_MS2_PIN));
  1207. SERIAL_PROTOCOLPGM("E0: ");
  1208. SERIAL_PROTOCOL( digitalRead(E0_MS1_PIN));
  1209. SERIAL_PROTOCOLLN( digitalRead(E0_MS2_PIN));
  1210. #if defined(E1_MS1_PIN) && E1_MS1_PIN > -1
  1211. SERIAL_PROTOCOLPGM("E1: ");
  1212. SERIAL_PROTOCOL( digitalRead(E1_MS1_PIN));
  1213. SERIAL_PROTOCOLLN( digitalRead(E1_MS2_PIN));
  1214. #endif
  1215. }