My Marlin configs for Fabrikator Mini and CTC i3 Pro B
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

ubl_motion.cpp 27KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635
  1. /**
  2. * Marlin 3D Printer Firmware
  3. * Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
  4. *
  5. * Based on Sprinter and grbl.
  6. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  7. *
  8. * This program is free software: you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation, either version 3 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  20. *
  21. */
  22. #include "../../../inc/MarlinConfig.h"
  23. #if ENABLED(AUTO_BED_LEVELING_UBL)
  24. #include "../bedlevel.h"
  25. #include "../../../module/planner.h"
  26. #include "../../../module/stepper.h"
  27. #include "../../../module/motion.h"
  28. #if ENABLED(DELTA)
  29. #include "../../../module/delta.h"
  30. #endif
  31. #include "../../../Marlin.h"
  32. #include <math.h>
  33. #if AVR_AT90USB1286_FAMILY // Teensyduino & Printrboard IDE extensions have compile errors without this
  34. inline void set_current_from_destination() { COPY(current_position, destination); }
  35. #else
  36. extern void set_current_from_destination();
  37. #endif
  38. #if !UBL_SEGMENTED
  39. void unified_bed_leveling::line_to_destination_cartesian(const float &feed_rate, const uint8_t extruder) {
  40. /**
  41. * Much of the nozzle movement will be within the same cell. So we will do as little computation
  42. * as possible to determine if this is the case. If this move is within the same cell, we will
  43. * just do the required Z-Height correction, call the Planner's buffer_line() routine, and leave
  44. */
  45. #if ENABLED(SKEW_CORRECTION)
  46. // For skew correction just adjust the destination point and we're done
  47. float start[XYZE] = { current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS] },
  48. end[XYZE] = { destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS] };
  49. planner.skew(start[X_AXIS], start[Y_AXIS], start[Z_AXIS]);
  50. planner.skew(end[X_AXIS], end[Y_AXIS], end[Z_AXIS]);
  51. #else
  52. const float (&start)[XYZE] = current_position,
  53. (&end)[XYZE] = destination;
  54. #endif
  55. const int cell_start_xi = get_cell_index_x(start[X_AXIS]),
  56. cell_start_yi = get_cell_index_y(start[Y_AXIS]),
  57. cell_dest_xi = get_cell_index_x(end[X_AXIS]),
  58. cell_dest_yi = get_cell_index_y(end[Y_AXIS]);
  59. if (g26_debug_flag) {
  60. SERIAL_ECHOPAIR(" ubl.line_to_destination_cartesian(xe=", destination[X_AXIS]);
  61. SERIAL_ECHOPAIR(", ye=", destination[Y_AXIS]);
  62. SERIAL_ECHOPAIR(", ze=", destination[Z_AXIS]);
  63. SERIAL_ECHOPAIR(", ee=", destination[E_AXIS]);
  64. SERIAL_CHAR(')');
  65. SERIAL_EOL();
  66. debug_current_and_destination(PSTR("Start of ubl.line_to_destination_cartesian()"));
  67. }
  68. if (cell_start_xi == cell_dest_xi && cell_start_yi == cell_dest_yi) { // if the whole move is within the same cell,
  69. /**
  70. * we don't need to break up the move
  71. *
  72. * If we are moving off the print bed, we are going to allow the move at this level.
  73. * But we detect it and isolate it. For now, we just pass along the request.
  74. */
  75. if (!WITHIN(cell_dest_xi, 0, GRID_MAX_POINTS_X - 1) || !WITHIN(cell_dest_yi, 0, GRID_MAX_POINTS_Y - 1)) {
  76. // Note: There is no Z Correction in this case. We are off the grid and don't know what
  77. // a reasonable correction would be. If the user has specified a UBL_Z_RAISE_WHEN_OFF_MESH
  78. // value, that will be used instead of a calculated (Bi-Linear interpolation) correction.
  79. const float z_raise = 0.0
  80. #ifdef UBL_Z_RAISE_WHEN_OFF_MESH
  81. + UBL_Z_RAISE_WHEN_OFF_MESH
  82. #endif
  83. ;
  84. planner.buffer_segment(end[X_AXIS], end[Y_AXIS], end[Z_AXIS] + z_raise, end[E_AXIS], feed_rate, extruder);
  85. set_current_from_destination();
  86. if (g26_debug_flag)
  87. debug_current_and_destination(PSTR("out of bounds in ubl.line_to_destination_cartesian()"));
  88. return;
  89. }
  90. FINAL_MOVE:
  91. /**
  92. * Optimize some floating point operations here. We could call float get_z_correction(float x0, float y0) to
  93. * generate the correction for us. But we can lighten the load on the CPU by doing a modified version of the function.
  94. * We are going to only calculate the amount we are from the first mesh line towards the second mesh line once.
  95. * We will use this fraction in both of the original two Z Height calculations for the bi-linear interpolation. And,
  96. * instead of doing a generic divide of the distance, we know the distance is MESH_X_DIST so we can use the preprocessor
  97. * to create a 1-over number for us. That will allow us to do a floating point multiply instead of a floating point divide.
  98. */
  99. const float xratio = (end[X_AXIS] - mesh_index_to_xpos(cell_dest_xi)) * (1.0 / (MESH_X_DIST));
  100. float z1 = z_values[cell_dest_xi ][cell_dest_yi ] + xratio *
  101. (z_values[cell_dest_xi + 1][cell_dest_yi ] - z_values[cell_dest_xi][cell_dest_yi ]),
  102. z2 = z_values[cell_dest_xi ][cell_dest_yi + 1] + xratio *
  103. (z_values[cell_dest_xi + 1][cell_dest_yi + 1] - z_values[cell_dest_xi][cell_dest_yi + 1]);
  104. if (cell_dest_xi >= GRID_MAX_POINTS_X - 1) z1 = z2 = 0.0;
  105. // we are done with the fractional X distance into the cell. Now with the two Z-Heights we have calculated, we
  106. // are going to apply the Y-Distance into the cell to interpolate the final Z correction.
  107. const float yratio = (end[Y_AXIS] - mesh_index_to_ypos(cell_dest_yi)) * (1.0 / (MESH_Y_DIST));
  108. float z0 = cell_dest_yi < GRID_MAX_POINTS_Y - 1 ? (z1 + (z2 - z1) * yratio) * planner.fade_scaling_factor_for_z(end[Z_AXIS]) : 0.0;
  109. /**
  110. * If part of the Mesh is undefined, it will show up as NAN
  111. * in z_values[][] and propagate through the
  112. * calculations. If our correction is NAN, we throw it out
  113. * because part of the Mesh is undefined and we don't have the
  114. * information we need to complete the height correction.
  115. */
  116. if (isnan(z0)) z0 = 0.0;
  117. planner.buffer_segment(end[X_AXIS], end[Y_AXIS], end[Z_AXIS] + z0, end[E_AXIS], feed_rate, extruder);
  118. if (g26_debug_flag)
  119. debug_current_and_destination(PSTR("FINAL_MOVE in ubl.line_to_destination_cartesian()"));
  120. set_current_from_destination();
  121. return;
  122. }
  123. /**
  124. * If we get here, we are processing a move that crosses at least one Mesh Line. We will check
  125. * for the simple case of just crossing X or just crossing Y Mesh Lines after we get all the details
  126. * of the move figured out. We can process the easy case of just crossing an X or Y Mesh Line with less
  127. * computation and in fact most lines are of this nature. We will check for that in the following
  128. * blocks of code:
  129. */
  130. const float dx = end[X_AXIS] - start[X_AXIS],
  131. dy = end[Y_AXIS] - start[Y_AXIS];
  132. const int left_flag = dx < 0.0 ? 1 : 0,
  133. down_flag = dy < 0.0 ? 1 : 0;
  134. const float adx = left_flag ? -dx : dx,
  135. ady = down_flag ? -dy : dy;
  136. const int dxi = cell_start_xi == cell_dest_xi ? 0 : left_flag ? -1 : 1,
  137. dyi = cell_start_yi == cell_dest_yi ? 0 : down_flag ? -1 : 1;
  138. /**
  139. * Compute the scaling factor for the extruder for each partial move.
  140. * We need to watch out for zero length moves because it will cause us to
  141. * have an infinate scaling factor. We are stuck doing a floating point
  142. * divide to get our scaling factor, but after that, we just multiply by this
  143. * number. We also pick our scaling factor based on whether the X or Y
  144. * component is larger. We use the biggest of the two to preserve precision.
  145. */
  146. const bool use_x_dist = adx > ady;
  147. float on_axis_distance = use_x_dist ? dx : dy,
  148. e_position = end[E_AXIS] - start[E_AXIS],
  149. z_position = end[Z_AXIS] - start[Z_AXIS];
  150. const float e_normalized_dist = e_position / on_axis_distance,
  151. z_normalized_dist = z_position / on_axis_distance;
  152. int current_xi = cell_start_xi,
  153. current_yi = cell_start_yi;
  154. const float m = dy / dx,
  155. c = start[Y_AXIS] - m * start[X_AXIS];
  156. const bool inf_normalized_flag = (isinf(e_normalized_dist) != 0),
  157. inf_m_flag = (isinf(m) != 0);
  158. /**
  159. * This block handles vertical lines. These are lines that stay within the same
  160. * X Cell column. They do not need to be perfectly vertical. They just can
  161. * not cross into another X Cell column.
  162. */
  163. if (dxi == 0) { // Check for a vertical line
  164. current_yi += down_flag; // Line is heading down, we just want to go to the bottom
  165. while (current_yi != cell_dest_yi + down_flag) {
  166. current_yi += dyi;
  167. const float next_mesh_line_y = mesh_index_to_ypos(current_yi);
  168. /**
  169. * if the slope of the line is infinite, we won't do the calculations
  170. * else, we know the next X is the same so we can recover and continue!
  171. * Calculate X at the next Y mesh line
  172. */
  173. const float rx = inf_m_flag ? start[X_AXIS] : (next_mesh_line_y - c) / m;
  174. float z0 = z_correction_for_x_on_horizontal_mesh_line(rx, current_xi, current_yi)
  175. * planner.fade_scaling_factor_for_z(end[Z_AXIS]);
  176. /**
  177. * If part of the Mesh is undefined, it will show up as NAN
  178. * in z_values[][] and propagate through the
  179. * calculations. If our correction is NAN, we throw it out
  180. * because part of the Mesh is undefined and we don't have the
  181. * information we need to complete the height correction.
  182. */
  183. if (isnan(z0)) z0 = 0.0;
  184. const float ry = mesh_index_to_ypos(current_yi);
  185. /**
  186. * Without this check, it is possible for the algorithm to generate a zero length move in the case
  187. * where the line is heading down and it is starting right on a Mesh Line boundary. For how often that
  188. * happens, it might be best to remove the check and always 'schedule' the move because
  189. * the planner.buffer_segment() routine will filter it if that happens.
  190. */
  191. if (ry != start[Y_AXIS]) {
  192. if (!inf_normalized_flag) {
  193. on_axis_distance = use_x_dist ? rx - start[X_AXIS] : ry - start[Y_AXIS];
  194. e_position = start[E_AXIS] + on_axis_distance * e_normalized_dist;
  195. z_position = start[Z_AXIS] + on_axis_distance * z_normalized_dist;
  196. }
  197. else {
  198. e_position = end[E_AXIS];
  199. z_position = end[Z_AXIS];
  200. }
  201. planner.buffer_segment(rx, ry, z_position + z0, e_position, feed_rate, extruder);
  202. } //else printf("FIRST MOVE PRUNED ");
  203. }
  204. if (g26_debug_flag)
  205. debug_current_and_destination(PSTR("vertical move done in ubl.line_to_destination_cartesian()"));
  206. //
  207. // Check if we are at the final destination. Usually, we won't be, but if it is on a Y Mesh Line, we are done.
  208. //
  209. if (current_position[X_AXIS] != end[X_AXIS] || current_position[Y_AXIS] != end[Y_AXIS])
  210. goto FINAL_MOVE;
  211. set_current_from_destination();
  212. return;
  213. }
  214. /**
  215. *
  216. * This block handles horizontal lines. These are lines that stay within the same
  217. * Y Cell row. They do not need to be perfectly horizontal. They just can
  218. * not cross into another Y Cell row.
  219. *
  220. */
  221. if (dyi == 0) { // Check for a horizontal line
  222. current_xi += left_flag; // Line is heading left, we just want to go to the left
  223. // edge of this cell for the first move.
  224. while (current_xi != cell_dest_xi + left_flag) {
  225. current_xi += dxi;
  226. const float next_mesh_line_x = mesh_index_to_xpos(current_xi),
  227. ry = m * next_mesh_line_x + c; // Calculate Y at the next X mesh line
  228. float z0 = z_correction_for_y_on_vertical_mesh_line(ry, current_xi, current_yi)
  229. * planner.fade_scaling_factor_for_z(end[Z_AXIS]);
  230. /**
  231. * If part of the Mesh is undefined, it will show up as NAN
  232. * in z_values[][] and propagate through the
  233. * calculations. If our correction is NAN, we throw it out
  234. * because part of the Mesh is undefined and we don't have the
  235. * information we need to complete the height correction.
  236. */
  237. if (isnan(z0)) z0 = 0.0;
  238. const float rx = mesh_index_to_xpos(current_xi);
  239. /**
  240. * Without this check, it is possible for the algorithm to generate a zero length move in the case
  241. * where the line is heading left and it is starting right on a Mesh Line boundary. For how often
  242. * that happens, it might be best to remove the check and always 'schedule' the move because
  243. * the planner.buffer_segment() routine will filter it if that happens.
  244. */
  245. if (rx != start[X_AXIS]) {
  246. if (!inf_normalized_flag) {
  247. on_axis_distance = use_x_dist ? rx - start[X_AXIS] : ry - start[Y_AXIS];
  248. e_position = start[E_AXIS] + on_axis_distance * e_normalized_dist; // is based on X or Y because this is a horizontal move
  249. z_position = start[Z_AXIS] + on_axis_distance * z_normalized_dist;
  250. }
  251. else {
  252. e_position = end[E_AXIS];
  253. z_position = end[Z_AXIS];
  254. }
  255. planner.buffer_segment(rx, ry, z_position + z0, e_position, feed_rate, extruder);
  256. } //else printf("FIRST MOVE PRUNED ");
  257. }
  258. if (g26_debug_flag)
  259. debug_current_and_destination(PSTR("horizontal move done in ubl.line_to_destination_cartesian()"));
  260. if (current_position[X_AXIS] != end[X_AXIS] || current_position[Y_AXIS] != end[Y_AXIS])
  261. goto FINAL_MOVE;
  262. set_current_from_destination();
  263. return;
  264. }
  265. /**
  266. *
  267. * This block handles the generic case of a line crossing both X and Y Mesh lines.
  268. *
  269. */
  270. int xi_cnt = cell_start_xi - cell_dest_xi,
  271. yi_cnt = cell_start_yi - cell_dest_yi;
  272. if (xi_cnt < 0) xi_cnt = -xi_cnt;
  273. if (yi_cnt < 0) yi_cnt = -yi_cnt;
  274. current_xi += left_flag;
  275. current_yi += down_flag;
  276. while (xi_cnt > 0 || yi_cnt > 0) {
  277. const float next_mesh_line_x = mesh_index_to_xpos(current_xi + dxi),
  278. next_mesh_line_y = mesh_index_to_ypos(current_yi + dyi),
  279. ry = m * next_mesh_line_x + c, // Calculate Y at the next X mesh line
  280. rx = (next_mesh_line_y - c) / m; // Calculate X at the next Y mesh line
  281. // (No need to worry about m being zero.
  282. // If that was the case, it was already detected
  283. // as a vertical line move above.)
  284. if (left_flag == (rx > next_mesh_line_x)) { // Check if we hit the Y line first
  285. // Yes! Crossing a Y Mesh Line next
  286. float z0 = z_correction_for_x_on_horizontal_mesh_line(rx, current_xi - left_flag, current_yi + dyi)
  287. * planner.fade_scaling_factor_for_z(end[Z_AXIS]);
  288. /**
  289. * If part of the Mesh is undefined, it will show up as NAN
  290. * in z_values[][] and propagate through the
  291. * calculations. If our correction is NAN, we throw it out
  292. * because part of the Mesh is undefined and we don't have the
  293. * information we need to complete the height correction.
  294. */
  295. if (isnan(z0)) z0 = 0.0;
  296. if (!inf_normalized_flag) {
  297. on_axis_distance = use_x_dist ? rx - start[X_AXIS] : next_mesh_line_y - start[Y_AXIS];
  298. e_position = start[E_AXIS] + on_axis_distance * e_normalized_dist;
  299. z_position = start[Z_AXIS] + on_axis_distance * z_normalized_dist;
  300. }
  301. else {
  302. e_position = end[E_AXIS];
  303. z_position = end[Z_AXIS];
  304. }
  305. planner.buffer_segment(rx, next_mesh_line_y, z_position + z0, e_position, feed_rate, extruder);
  306. current_yi += dyi;
  307. yi_cnt--;
  308. }
  309. else {
  310. // Yes! Crossing a X Mesh Line next
  311. float z0 = z_correction_for_y_on_vertical_mesh_line(ry, current_xi + dxi, current_yi - down_flag)
  312. * planner.fade_scaling_factor_for_z(end[Z_AXIS]);
  313. /**
  314. * If part of the Mesh is undefined, it will show up as NAN
  315. * in z_values[][] and propagate through the
  316. * calculations. If our correction is NAN, we throw it out
  317. * because part of the Mesh is undefined and we don't have the
  318. * information we need to complete the height correction.
  319. */
  320. if (isnan(z0)) z0 = 0.0;
  321. if (!inf_normalized_flag) {
  322. on_axis_distance = use_x_dist ? next_mesh_line_x - start[X_AXIS] : ry - start[Y_AXIS];
  323. e_position = start[E_AXIS] + on_axis_distance * e_normalized_dist;
  324. z_position = start[Z_AXIS] + on_axis_distance * z_normalized_dist;
  325. }
  326. else {
  327. e_position = end[E_AXIS];
  328. z_position = end[Z_AXIS];
  329. }
  330. planner.buffer_segment(next_mesh_line_x, ry, z_position + z0, e_position, feed_rate, extruder);
  331. current_xi += dxi;
  332. xi_cnt--;
  333. }
  334. if (xi_cnt < 0 || yi_cnt < 0) break; // we've gone too far, so exit the loop and move on to FINAL_MOVE
  335. }
  336. if (g26_debug_flag)
  337. debug_current_and_destination(PSTR("generic move done in ubl.line_to_destination_cartesian()"));
  338. if (current_position[X_AXIS] != end[X_AXIS] || current_position[Y_AXIS] != end[Y_AXIS])
  339. goto FINAL_MOVE;
  340. set_current_from_destination();
  341. }
  342. #else // UBL_SEGMENTED
  343. #if IS_SCARA // scale the feed rate from mm/s to degrees/s
  344. static float scara_feed_factor, scara_oldA, scara_oldB;
  345. #endif
  346. // We don't want additional apply_leveling() performed by regular buffer_line or buffer_line_kinematic,
  347. // so we call buffer_segment directly here. Per-segmented leveling and kinematics performed first.
  348. inline void _O2 ubl_buffer_segment_raw(const float (&in_raw)[XYZE], const float &fr) {
  349. #if ENABLED(SKEW_CORRECTION)
  350. float raw[XYZE] = { in_raw[X_AXIS], in_raw[Y_AXIS], in_raw[Z_AXIS] };
  351. planner.skew(raw[X_AXIS], raw[Y_AXIS], raw[Z_AXIS]);
  352. #else
  353. const float (&raw)[XYZE] = in_raw;
  354. #endif
  355. #if ENABLED(DELTA) // apply delta inverse_kinematics
  356. DELTA_IK(raw);
  357. planner.buffer_segment(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], in_raw[E_AXIS], fr, active_extruder);
  358. #elif IS_SCARA // apply scara inverse_kinematics (should be changed to save raw->logical->raw)
  359. inverse_kinematics(raw); // this writes delta[ABC] from raw[XYZE]
  360. // should move the feedrate scaling to scara inverse_kinematics
  361. const float adiff = FABS(delta[A_AXIS] - scara_oldA),
  362. bdiff = FABS(delta[B_AXIS] - scara_oldB);
  363. scara_oldA = delta[A_AXIS];
  364. scara_oldB = delta[B_AXIS];
  365. float s_feedrate = max(adiff, bdiff) * scara_feed_factor;
  366. planner.buffer_segment(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], in_raw[E_AXIS], s_feedrate, active_extruder);
  367. #else // CARTESIAN
  368. planner.buffer_segment(raw[X_AXIS], raw[Y_AXIS], raw[Z_AXIS], in_raw[E_AXIS], fr, active_extruder);
  369. #endif
  370. }
  371. #if IS_SCARA
  372. #define DELTA_SEGMENT_MIN_LENGTH 0.25 // SCARA minimum segment size is 0.25mm
  373. #elif ENABLED(DELTA)
  374. #define DELTA_SEGMENT_MIN_LENGTH 0.10 // mm (still subject to DELTA_SEGMENTS_PER_SECOND)
  375. #else // CARTESIAN
  376. #ifdef LEVELED_SEGMENT_LENGTH
  377. #define DELTA_SEGMENT_MIN_LENGTH LEVELED_SEGMENT_LENGTH
  378. #else
  379. #define DELTA_SEGMENT_MIN_LENGTH 1.00 // mm (similar to G2/G3 arc segmentation)
  380. #endif
  381. #endif
  382. /**
  383. * Prepare a segmented linear move for DELTA/SCARA/CARTESIAN with UBL and FADE semantics.
  384. * This calls planner.buffer_segment multiple times for small incremental moves.
  385. * Returns true if did NOT move, false if moved (requires current_position update).
  386. */
  387. bool _O2 unified_bed_leveling::prepare_segmented_line_to(const float (&rtarget)[XYZE], const float &feedrate) {
  388. if (!position_is_reachable(rtarget[X_AXIS], rtarget[Y_AXIS])) // fail if moving outside reachable boundary
  389. return true; // did not move, so current_position still accurate
  390. const float total[XYZE] = {
  391. rtarget[X_AXIS] - current_position[X_AXIS],
  392. rtarget[Y_AXIS] - current_position[Y_AXIS],
  393. rtarget[Z_AXIS] - current_position[Z_AXIS],
  394. rtarget[E_AXIS] - current_position[E_AXIS]
  395. };
  396. const float cartesian_xy_mm = HYPOT(total[X_AXIS], total[Y_AXIS]); // total horizontal xy distance
  397. #if IS_KINEMATIC
  398. const float seconds = cartesian_xy_mm / feedrate; // seconds to move xy distance at requested rate
  399. uint16_t segments = lroundf(delta_segments_per_second * seconds), // preferred number of segments for distance @ feedrate
  400. seglimit = lroundf(cartesian_xy_mm * (1.0 / (DELTA_SEGMENT_MIN_LENGTH))); // number of segments at minimum segment length
  401. NOMORE(segments, seglimit); // limit to minimum segment length (fewer segments)
  402. #else
  403. uint16_t segments = lroundf(cartesian_xy_mm * (1.0 / (DELTA_SEGMENT_MIN_LENGTH))); // cartesian fixed segment length
  404. #endif
  405. NOLESS(segments, 1); // must have at least one segment
  406. const float inv_segments = 1.0 / segments; // divide once, multiply thereafter
  407. #if IS_SCARA // scale the feed rate from mm/s to degrees/s
  408. scara_feed_factor = cartesian_xy_mm * inv_segments * feedrate;
  409. scara_oldA = stepper.get_axis_position_degrees(A_AXIS);
  410. scara_oldB = stepper.get_axis_position_degrees(B_AXIS);
  411. #endif
  412. const float diff[XYZE] = {
  413. total[X_AXIS] * inv_segments,
  414. total[Y_AXIS] * inv_segments,
  415. total[Z_AXIS] * inv_segments,
  416. total[E_AXIS] * inv_segments
  417. };
  418. // Note that E segment distance could vary slightly as z mesh height
  419. // changes for each segment, but small enough to ignore.
  420. float raw[XYZE] = {
  421. current_position[X_AXIS],
  422. current_position[Y_AXIS],
  423. current_position[Z_AXIS],
  424. current_position[E_AXIS]
  425. };
  426. // Only compute leveling per segment if ubl active and target below z_fade_height.
  427. if (!planner.leveling_active || !planner.leveling_active_at_z(rtarget[Z_AXIS])) { // no mesh leveling
  428. while (--segments) {
  429. LOOP_XYZE(i) raw[i] += diff[i];
  430. ubl_buffer_segment_raw(raw, feedrate);
  431. }
  432. ubl_buffer_segment_raw(rtarget, feedrate);
  433. return false; // moved but did not set_current_from_destination();
  434. }
  435. // Otherwise perform per-segment leveling
  436. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  437. const float fade_scaling_factor = planner.fade_scaling_factor_for_z(rtarget[Z_AXIS]);
  438. #endif
  439. // increment to first segment destination
  440. LOOP_XYZE(i) raw[i] += diff[i];
  441. for (;;) { // for each mesh cell encountered during the move
  442. // Compute mesh cell invariants that remain constant for all segments within cell.
  443. // Note for cell index, if point is outside the mesh grid (in MESH_INSET perimeter)
  444. // the bilinear interpolation from the adjacent cell within the mesh will still work.
  445. // Inner loop will exit each time (because out of cell bounds) but will come back
  446. // in top of loop and again re-find same adjacent cell and use it, just less efficient
  447. // for mesh inset area.
  448. int8_t cell_xi = (raw[X_AXIS] - (MESH_MIN_X)) * (1.0 / (MESH_X_DIST)),
  449. cell_yi = (raw[Y_AXIS] - (MESH_MIN_Y)) * (1.0 / (MESH_Y_DIST));
  450. cell_xi = constrain(cell_xi, 0, (GRID_MAX_POINTS_X) - 1);
  451. cell_yi = constrain(cell_yi, 0, (GRID_MAX_POINTS_Y) - 1);
  452. const float x0 = mesh_index_to_xpos(cell_xi), // 64 byte table lookup avoids mul+add
  453. y0 = mesh_index_to_ypos(cell_yi);
  454. float z_x0y0 = z_values[cell_xi ][cell_yi ], // z at lower left corner
  455. z_x1y0 = z_values[cell_xi+1][cell_yi ], // z at upper left corner
  456. z_x0y1 = z_values[cell_xi ][cell_yi+1], // z at lower right corner
  457. z_x1y1 = z_values[cell_xi+1][cell_yi+1]; // z at upper right corner
  458. if (isnan(z_x0y0)) z_x0y0 = 0; // ideally activating planner.leveling_active (G29 A)
  459. if (isnan(z_x1y0)) z_x1y0 = 0; // should refuse if any invalid mesh points
  460. if (isnan(z_x0y1)) z_x0y1 = 0; // in order to avoid isnan tests per cell,
  461. if (isnan(z_x1y1)) z_x1y1 = 0; // thus guessing zero for undefined points
  462. float cx = raw[X_AXIS] - x0, // cell-relative x and y
  463. cy = raw[Y_AXIS] - y0;
  464. const float z_xmy0 = (z_x1y0 - z_x0y0) * (1.0 / (MESH_X_DIST)), // z slope per x along y0 (lower left to lower right)
  465. z_xmy1 = (z_x1y1 - z_x0y1) * (1.0 / (MESH_X_DIST)); // z slope per x along y1 (upper left to upper right)
  466. float z_cxy0 = z_x0y0 + z_xmy0 * cx; // z height along y0 at cx (changes for each cx in cell)
  467. const float z_cxy1 = z_x0y1 + z_xmy1 * cx, // z height along y1 at cx
  468. z_cxyd = z_cxy1 - z_cxy0; // z height difference along cx from y0 to y1
  469. float z_cxym = z_cxyd * (1.0 / (MESH_Y_DIST)); // z slope per y along cx from y0 to y1 (changes for each cx in cell)
  470. // float z_cxcy = z_cxy0 + z_cxym * cy; // interpolated mesh z height along cx at cy (do inside the segment loop)
  471. // As subsequent segments step through this cell, the z_cxy0 intercept will change
  472. // and the z_cxym slope will change, both as a function of cx within the cell, and
  473. // each change by a constant for fixed segment lengths.
  474. const float z_sxy0 = z_xmy0 * diff[X_AXIS], // per-segment adjustment to z_cxy0
  475. z_sxym = (z_xmy1 - z_xmy0) * (1.0 / (MESH_Y_DIST)) * diff[X_AXIS]; // per-segment adjustment to z_cxym
  476. for (;;) { // for all segments within this mesh cell
  477. if (--segments == 0) // if this is last segment, use rtarget for exact
  478. COPY(raw, rtarget);
  479. const float z_cxcy = (z_cxy0 + z_cxym * cy) // interpolated mesh z height along cx at cy
  480. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  481. * fade_scaling_factor // apply fade factor to interpolated mesh height
  482. #endif
  483. ;
  484. const float z = raw[Z_AXIS];
  485. raw[Z_AXIS] += z_cxcy;
  486. ubl_buffer_segment_raw(raw, feedrate);
  487. raw[Z_AXIS] = z;
  488. if (segments == 0) // done with last segment
  489. return false; // did not set_current_from_destination()
  490. LOOP_XYZE(i) raw[i] += diff[i];
  491. cx += diff[X_AXIS];
  492. cy += diff[Y_AXIS];
  493. if (!WITHIN(cx, 0, MESH_X_DIST) || !WITHIN(cy, 0, MESH_Y_DIST)) // done within this cell, break to next
  494. break;
  495. // Next segment still within same mesh cell, adjust the per-segment
  496. // slope and intercept to compute next z height.
  497. z_cxy0 += z_sxy0; // adjust z_cxy0 by per-segment z_sxy0
  498. z_cxym += z_sxym; // adjust z_cxym by per-segment z_sxym
  499. } // segment loop
  500. } // cell loop
  501. return false; // caller will update current_position
  502. }
  503. #endif // UBL_SEGMENTED
  504. #endif // AUTO_BED_LEVELING_UBL