My Marlin configs for Fabrikator Mini and CTC i3 Pro B
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

temperature.h 19KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650
  1. /**
  2. * Marlin 3D Printer Firmware
  3. * Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
  4. *
  5. * Based on Sprinter and grbl.
  6. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  7. *
  8. * This program is free software: you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation, either version 3 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  20. *
  21. */
  22. /**
  23. * temperature.h - temperature controller
  24. */
  25. #ifndef TEMPERATURE_H
  26. #define TEMPERATURE_H
  27. #include "thermistor/thermistors.h"
  28. #include "../inc/MarlinConfig.h"
  29. #if ENABLED(BABYSTEPPING)
  30. extern bool axis_known_position[XYZ];
  31. #endif
  32. #if ENABLED(AUTO_POWER_CONTROL)
  33. #include "../feature/power.h"
  34. #endif
  35. #if ENABLED(PID_EXTRUSION_SCALING)
  36. #include "stepper.h"
  37. #endif
  38. #ifndef SOFT_PWM_SCALE
  39. #define SOFT_PWM_SCALE 0
  40. #endif
  41. /**
  42. * States for ADC reading in the ISR
  43. */
  44. enum ADCSensorState : char {
  45. #if HAS_TEMP_ADC_0
  46. PrepareTemp_0,
  47. MeasureTemp_0,
  48. #endif
  49. #if HAS_TEMP_ADC_1
  50. PrepareTemp_1,
  51. MeasureTemp_1,
  52. #endif
  53. #if HAS_TEMP_ADC_2
  54. PrepareTemp_2,
  55. MeasureTemp_2,
  56. #endif
  57. #if HAS_TEMP_ADC_3
  58. PrepareTemp_3,
  59. MeasureTemp_3,
  60. #endif
  61. #if HAS_TEMP_ADC_4
  62. PrepareTemp_4,
  63. MeasureTemp_4,
  64. #endif
  65. #if HAS_HEATED_BED
  66. PrepareTemp_BED,
  67. MeasureTemp_BED,
  68. #endif
  69. #if HAS_TEMP_CHAMBER
  70. PrepareTemp_CHAMBER,
  71. MeasureTemp_CHAMBER,
  72. #endif
  73. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  74. Prepare_FILWIDTH,
  75. Measure_FILWIDTH,
  76. #endif
  77. #if ENABLED(ADC_KEYPAD)
  78. Prepare_ADC_KEY,
  79. Measure_ADC_KEY,
  80. #endif
  81. SensorsReady, // Temperatures ready. Delay the next round of readings to let ADC pins settle.
  82. StartupDelay // Startup, delay initial temp reading a tiny bit so the hardware can settle
  83. };
  84. // Minimum number of Temperature::ISR loops between sensor readings.
  85. // Multiplied by 16 (OVERSAMPLENR) to obtain the total time to
  86. // get all oversampled sensor readings
  87. #define MIN_ADC_ISR_LOOPS 10
  88. #define ACTUAL_ADC_SAMPLES max(int(MIN_ADC_ISR_LOOPS), int(SensorsReady))
  89. #if HAS_PID_HEATING
  90. #define PID_K2 (1.0-PID_K1)
  91. #define PID_dT ((OVERSAMPLENR * float(ACTUAL_ADC_SAMPLES)) / TEMP_TIMER_FREQUENCY)
  92. // Apply the scale factors to the PID values
  93. #define scalePID_i(i) ( (i) * PID_dT )
  94. #define unscalePID_i(i) ( (i) / PID_dT )
  95. #define scalePID_d(d) ( (d) / PID_dT )
  96. #define unscalePID_d(d) ( (d) * PID_dT )
  97. #endif
  98. class Temperature {
  99. public:
  100. static volatile bool in_temp_isr;
  101. static float current_temperature[HOTENDS];
  102. static int16_t current_temperature_raw[HOTENDS],
  103. target_temperature[HOTENDS];
  104. static uint8_t soft_pwm_amount[HOTENDS];
  105. #if ENABLED(AUTO_POWER_E_FANS)
  106. static int16_t autofan_speed[HOTENDS];
  107. #endif
  108. #if ENABLED(FAN_SOFT_PWM)
  109. static uint8_t soft_pwm_amount_fan[FAN_COUNT],
  110. soft_pwm_count_fan[FAN_COUNT];
  111. #endif
  112. #if ENABLED(PIDTEMP)
  113. #if ENABLED(PID_PARAMS_PER_HOTEND) && HOTENDS > 1
  114. static float Kp[HOTENDS], Ki[HOTENDS], Kd[HOTENDS];
  115. #if ENABLED(PID_EXTRUSION_SCALING)
  116. static float Kc[HOTENDS];
  117. #endif
  118. #define PID_PARAM(param, h) Temperature::param[h]
  119. #else
  120. static float Kp, Ki, Kd;
  121. #if ENABLED(PID_EXTRUSION_SCALING)
  122. static float Kc;
  123. #endif
  124. #define PID_PARAM(param, h) Temperature::param
  125. #endif // PID_PARAMS_PER_HOTEND
  126. #endif
  127. #if HAS_HEATED_BED
  128. static float current_temperature_bed;
  129. static int16_t current_temperature_bed_raw, target_temperature_bed;
  130. static uint8_t soft_pwm_amount_bed;
  131. #if ENABLED(PIDTEMPBED)
  132. static float bedKp, bedKi, bedKd;
  133. #endif
  134. #endif
  135. #if ENABLED(BABYSTEPPING)
  136. static volatile int babystepsTodo[3];
  137. #endif
  138. #if ENABLED(PREVENT_COLD_EXTRUSION)
  139. static bool allow_cold_extrude;
  140. static int16_t extrude_min_temp;
  141. FORCE_INLINE static bool tooCold(const int16_t temp) { return allow_cold_extrude ? false : temp < extrude_min_temp; }
  142. FORCE_INLINE static bool tooColdToExtrude(const uint8_t e) {
  143. #if HOTENDS == 1
  144. UNUSED(e);
  145. #endif
  146. return tooCold(degHotend(HOTEND_INDEX));
  147. }
  148. FORCE_INLINE static bool targetTooColdToExtrude(const uint8_t e) {
  149. #if HOTENDS == 1
  150. UNUSED(e);
  151. #endif
  152. return tooCold(degTargetHotend(HOTEND_INDEX));
  153. }
  154. #else
  155. FORCE_INLINE static bool tooColdToExtrude(const uint8_t e) { UNUSED(e); return false; }
  156. FORCE_INLINE static bool targetTooColdToExtrude(const uint8_t e) { UNUSED(e); return false; }
  157. #endif
  158. FORCE_INLINE static bool hotEnoughToExtrude(const uint8_t e) { return !tooColdToExtrude(e); }
  159. FORCE_INLINE static bool targetHotEnoughToExtrude(const uint8_t e) { return !targetTooColdToExtrude(e); }
  160. private:
  161. #if EARLY_WATCHDOG
  162. static bool inited; // If temperature controller is running
  163. #endif
  164. static volatile bool temp_meas_ready;
  165. static uint16_t raw_temp_value[MAX_EXTRUDERS];
  166. #if WATCH_HOTENDS
  167. static uint16_t watch_target_temp[HOTENDS];
  168. static millis_t watch_heater_next_ms[HOTENDS];
  169. #endif
  170. #if ENABLED(TEMP_SENSOR_1_AS_REDUNDANT)
  171. static uint16_t redundant_temperature_raw;
  172. static float redundant_temperature;
  173. #endif
  174. #if ENABLED(PIDTEMP)
  175. static float temp_iState[HOTENDS],
  176. temp_dState[HOTENDS],
  177. pTerm[HOTENDS],
  178. iTerm[HOTENDS],
  179. dTerm[HOTENDS];
  180. #if ENABLED(PID_EXTRUSION_SCALING)
  181. static float cTerm[HOTENDS];
  182. static long last_e_position;
  183. static long lpq[LPQ_MAX_LEN];
  184. static int lpq_ptr;
  185. #endif
  186. static float pid_error[HOTENDS];
  187. static bool pid_reset[HOTENDS];
  188. #endif
  189. // Init min and max temp with extreme values to prevent false errors during startup
  190. static int16_t minttemp_raw[HOTENDS],
  191. maxttemp_raw[HOTENDS],
  192. minttemp[HOTENDS],
  193. maxttemp[HOTENDS];
  194. #if HAS_HEATED_BED
  195. static uint16_t raw_temp_bed_value;
  196. #if WATCH_THE_BED
  197. static uint16_t watch_target_bed_temp;
  198. static millis_t watch_bed_next_ms;
  199. #endif
  200. #if ENABLED(PIDTEMPBED)
  201. static float temp_iState_bed,
  202. temp_dState_bed,
  203. pTerm_bed,
  204. iTerm_bed,
  205. dTerm_bed,
  206. pid_error_bed;
  207. #else
  208. static millis_t next_bed_check_ms;
  209. #endif
  210. #if HEATER_IDLE_HANDLER
  211. static millis_t bed_idle_timeout_ms;
  212. static bool bed_idle_timeout_exceeded;
  213. #endif
  214. #ifdef BED_MINTEMP
  215. static int16_t bed_minttemp_raw;
  216. #endif
  217. #ifdef BED_MAXTEMP
  218. static int16_t bed_maxttemp_raw;
  219. #endif
  220. #endif
  221. #if HAS_TEMP_CHAMBER
  222. static uint16_t raw_temp_chamber_value;
  223. static float current_temperature_chamber;
  224. static int16_t current_temperature_chamber_raw;
  225. #endif
  226. #ifdef MAX_CONSECUTIVE_LOW_TEMPERATURE_ERROR_ALLOWED
  227. static uint8_t consecutive_low_temperature_error[HOTENDS];
  228. #endif
  229. #ifdef MILLISECONDS_PREHEAT_TIME
  230. static millis_t preheat_end_time[HOTENDS];
  231. #endif
  232. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  233. static int8_t meas_shift_index; // Index of a delayed sample in buffer
  234. #endif
  235. #if HAS_AUTO_FAN
  236. static millis_t next_auto_fan_check_ms;
  237. #endif
  238. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  239. static uint16_t current_raw_filwidth; // Measured filament diameter - one extruder only
  240. #endif
  241. #if ENABLED(PROBING_HEATERS_OFF)
  242. static bool paused;
  243. #endif
  244. #if HEATER_IDLE_HANDLER
  245. static millis_t heater_idle_timeout_ms[HOTENDS];
  246. static bool heater_idle_timeout_exceeded[HOTENDS];
  247. #endif
  248. public:
  249. #if ENABLED(ADC_KEYPAD)
  250. static uint32_t current_ADCKey_raw;
  251. static uint8_t ADCKey_count;
  252. #endif
  253. /**
  254. * Instance Methods
  255. */
  256. Temperature();
  257. void init();
  258. /**
  259. * Static (class) methods
  260. */
  261. static float analog2temp(const int raw, const uint8_t e);
  262. #if HAS_HEATED_BED
  263. static float analog2tempBed(const int raw);
  264. #endif
  265. #if HAS_TEMP_CHAMBER
  266. static float analog2tempChamber(const int raw);
  267. #endif
  268. /**
  269. * Called from the Temperature ISR
  270. */
  271. static void isr();
  272. /**
  273. * Call periodically to manage heaters
  274. */
  275. static void manage_heater() _O2; // Added _O2 to work around a compiler error
  276. /**
  277. * Preheating hotends
  278. */
  279. #ifdef MILLISECONDS_PREHEAT_TIME
  280. static bool is_preheating(const uint8_t e) {
  281. #if HOTENDS == 1
  282. UNUSED(e);
  283. #endif
  284. return preheat_end_time[HOTEND_INDEX] && PENDING(millis(), preheat_end_time[HOTEND_INDEX]);
  285. }
  286. static void start_preheat_time(const uint8_t e) {
  287. #if HOTENDS == 1
  288. UNUSED(e);
  289. #endif
  290. preheat_end_time[HOTEND_INDEX] = millis() + MILLISECONDS_PREHEAT_TIME;
  291. }
  292. static void reset_preheat_time(const uint8_t e) {
  293. #if HOTENDS == 1
  294. UNUSED(e);
  295. #endif
  296. preheat_end_time[HOTEND_INDEX] = 0;
  297. }
  298. #else
  299. #define is_preheating(n) (false)
  300. #endif
  301. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  302. static float analog2widthFil(); // Convert raw Filament Width to millimeters
  303. static int8_t widthFil_to_size_ratio(); // Convert Filament Width (mm) to an extrusion ratio
  304. #endif
  305. //high level conversion routines, for use outside of temperature.cpp
  306. //inline so that there is no performance decrease.
  307. //deg=degreeCelsius
  308. FORCE_INLINE static float degHotend(const uint8_t e) {
  309. #if HOTENDS == 1
  310. UNUSED(e);
  311. #endif
  312. return current_temperature[HOTEND_INDEX];
  313. }
  314. #if ENABLED(SHOW_TEMP_ADC_VALUES)
  315. FORCE_INLINE static int16_t rawHotendTemp(const uint8_t e) {
  316. #if HOTENDS == 1
  317. UNUSED(e);
  318. #endif
  319. return current_temperature_raw[HOTEND_INDEX];
  320. }
  321. #endif
  322. FORCE_INLINE static int16_t degTargetHotend(const uint8_t e) {
  323. #if HOTENDS == 1
  324. UNUSED(e);
  325. #endif
  326. return target_temperature[HOTEND_INDEX];
  327. }
  328. #if WATCH_HOTENDS
  329. static void start_watching_heater(const uint8_t e = 0);
  330. #endif
  331. static void setTargetHotend(const int16_t celsius, const uint8_t e) {
  332. #if HOTENDS == 1
  333. UNUSED(e);
  334. #endif
  335. #ifdef MILLISECONDS_PREHEAT_TIME
  336. if (celsius == 0)
  337. reset_preheat_time(HOTEND_INDEX);
  338. else if (target_temperature[HOTEND_INDEX] == 0)
  339. start_preheat_time(HOTEND_INDEX);
  340. #endif
  341. #if ENABLED(AUTO_POWER_CONTROL)
  342. powerManager.power_on();
  343. #endif
  344. target_temperature[HOTEND_INDEX] = celsius;
  345. #if WATCH_HOTENDS
  346. start_watching_heater(HOTEND_INDEX);
  347. #endif
  348. }
  349. FORCE_INLINE static bool isHeatingHotend(const uint8_t e) {
  350. #if HOTENDS == 1
  351. UNUSED(e);
  352. #endif
  353. return target_temperature[HOTEND_INDEX] > current_temperature[HOTEND_INDEX];
  354. }
  355. FORCE_INLINE static bool isCoolingHotend(const uint8_t e) {
  356. #if HOTENDS == 1
  357. UNUSED(e);
  358. #endif
  359. return target_temperature[HOTEND_INDEX] < current_temperature[HOTEND_INDEX];
  360. }
  361. #if HAS_HEATED_BED
  362. #if ENABLED(SHOW_TEMP_ADC_VALUES)
  363. FORCE_INLINE static int16_t rawBedTemp() { return current_temperature_bed_raw; }
  364. #endif
  365. FORCE_INLINE static float degBed() { return current_temperature_bed; }
  366. FORCE_INLINE static int16_t degTargetBed() { return target_temperature_bed; }
  367. FORCE_INLINE static bool isHeatingBed() { return target_temperature_bed > current_temperature_bed; }
  368. FORCE_INLINE static bool isCoolingBed() { return target_temperature_bed < current_temperature_bed; }
  369. static void setTargetBed(const int16_t celsius) {
  370. #if ENABLED(AUTO_POWER_CONTROL)
  371. powerManager.power_on();
  372. #endif
  373. target_temperature_bed =
  374. #ifdef BED_MAXTEMP
  375. min(celsius, BED_MAXTEMP)
  376. #else
  377. celsius
  378. #endif
  379. ;
  380. #if WATCH_THE_BED
  381. start_watching_bed();
  382. #endif
  383. }
  384. #if WATCH_THE_BED
  385. static void start_watching_bed();
  386. #endif
  387. #endif
  388. #if HAS_TEMP_CHAMBER
  389. #if ENABLED(SHOW_TEMP_ADC_VALUES)
  390. FORCE_INLINE static int16_t rawChamberTemp() { return current_temperature_chamber_raw; }
  391. #endif
  392. FORCE_INLINE static float degChamber() { return current_temperature_chamber; }
  393. #endif
  394. FORCE_INLINE static bool wait_for_heating(const uint8_t e) {
  395. return degTargetHotend(e) > TEMP_HYSTERESIS && abs(degHotend(e) - degTargetHotend(e)) > TEMP_HYSTERESIS;
  396. }
  397. /**
  398. * The software PWM power for a heater
  399. */
  400. static int getHeaterPower(const int heater);
  401. /**
  402. * Switch off all heaters, set all target temperatures to 0
  403. */
  404. static void disable_all_heaters();
  405. /**
  406. * Perform auto-tuning for hotend or bed in response to M303
  407. */
  408. #if HAS_PID_HEATING
  409. static void PID_autotune(const float &target, const int8_t hotend, const int8_t ncycles, const bool set_result=false);
  410. /**
  411. * Update the temp manager when PID values change
  412. */
  413. #if ENABLED(PIDTEMP)
  414. FORCE_INLINE static void updatePID() {
  415. #if ENABLED(PID_EXTRUSION_SCALING)
  416. last_e_position = 0;
  417. #endif
  418. }
  419. #endif
  420. #endif
  421. #if ENABLED(BABYSTEPPING)
  422. static void babystep_axis(const AxisEnum axis, const int16_t distance) {
  423. if (axis_known_position[axis]) {
  424. #if IS_CORE
  425. #if ENABLED(BABYSTEP_XY)
  426. switch (axis) {
  427. case CORE_AXIS_1: // X on CoreXY and CoreXZ, Y on CoreYZ
  428. babystepsTodo[CORE_AXIS_1] += distance * 2;
  429. babystepsTodo[CORE_AXIS_2] += distance * 2;
  430. break;
  431. case CORE_AXIS_2: // Y on CoreXY, Z on CoreXZ and CoreYZ
  432. babystepsTodo[CORE_AXIS_1] += CORESIGN(distance * 2);
  433. babystepsTodo[CORE_AXIS_2] -= CORESIGN(distance * 2);
  434. break;
  435. case NORMAL_AXIS: // Z on CoreXY, Y on CoreXZ, X on CoreYZ
  436. babystepsTodo[NORMAL_AXIS] += distance;
  437. break;
  438. }
  439. #elif CORE_IS_XZ || CORE_IS_YZ
  440. // Only Z stepping needs to be handled here
  441. babystepsTodo[CORE_AXIS_1] += CORESIGN(distance * 2);
  442. babystepsTodo[CORE_AXIS_2] -= CORESIGN(distance * 2);
  443. #else
  444. babystepsTodo[Z_AXIS] += distance;
  445. #endif
  446. #else
  447. babystepsTodo[axis] += distance;
  448. #endif
  449. }
  450. }
  451. #endif // BABYSTEPPING
  452. #if ENABLED(PROBING_HEATERS_OFF)
  453. static void pause(const bool p);
  454. FORCE_INLINE static bool is_paused() { return paused; }
  455. #endif
  456. #if HEATER_IDLE_HANDLER
  457. static void start_heater_idle_timer(const uint8_t e, const millis_t timeout_ms) {
  458. #if HOTENDS == 1
  459. UNUSED(e);
  460. #endif
  461. heater_idle_timeout_ms[HOTEND_INDEX] = millis() + timeout_ms;
  462. heater_idle_timeout_exceeded[HOTEND_INDEX] = false;
  463. }
  464. static void reset_heater_idle_timer(const uint8_t e) {
  465. #if HOTENDS == 1
  466. UNUSED(e);
  467. #endif
  468. heater_idle_timeout_ms[HOTEND_INDEX] = 0;
  469. heater_idle_timeout_exceeded[HOTEND_INDEX] = false;
  470. #if WATCH_HOTENDS
  471. start_watching_heater(HOTEND_INDEX);
  472. #endif
  473. }
  474. FORCE_INLINE static bool is_heater_idle(const uint8_t e) {
  475. #if HOTENDS == 1
  476. UNUSED(e);
  477. #endif
  478. return heater_idle_timeout_exceeded[HOTEND_INDEX];
  479. }
  480. #if HAS_HEATED_BED
  481. static void start_bed_idle_timer(const millis_t timeout_ms) {
  482. bed_idle_timeout_ms = millis() + timeout_ms;
  483. bed_idle_timeout_exceeded = false;
  484. }
  485. static void reset_bed_idle_timer() {
  486. bed_idle_timeout_ms = 0;
  487. bed_idle_timeout_exceeded = false;
  488. #if WATCH_THE_BED
  489. start_watching_bed();
  490. #endif
  491. }
  492. FORCE_INLINE static bool is_bed_idle() { return bed_idle_timeout_exceeded; }
  493. #endif
  494. #endif // HEATER_IDLE_HANDLER
  495. #if HAS_TEMP_SENSOR
  496. static void print_heaterstates(
  497. #if NUM_SERIAL > 1
  498. const int8_t port = -1
  499. #endif
  500. );
  501. #if ENABLED(AUTO_REPORT_TEMPERATURES)
  502. static uint8_t auto_report_temp_interval;
  503. static millis_t next_temp_report_ms;
  504. static void auto_report_temperatures(void);
  505. FORCE_INLINE void set_auto_report_interval(uint8_t v) {
  506. NOMORE(v, 60);
  507. auto_report_temp_interval = v;
  508. next_temp_report_ms = millis() + 1000UL * v;
  509. }
  510. #endif
  511. #endif
  512. private:
  513. #if ENABLED(FAST_PWM_FAN)
  514. static void setPwmFrequency(const pin_t pin, int val);
  515. #endif
  516. static void set_current_temp_raw();
  517. static void updateTemperaturesFromRawValues();
  518. #if ENABLED(HEATER_0_USES_MAX6675)
  519. static int read_max6675();
  520. #endif
  521. static void checkExtruderAutoFans();
  522. static float get_pid_output(const int8_t e);
  523. #if ENABLED(PIDTEMPBED)
  524. static float get_pid_output_bed();
  525. #endif
  526. static void _temp_error(const int8_t e, const char * const serial_msg, const char * const lcd_msg);
  527. static void min_temp_error(const int8_t e);
  528. static void max_temp_error(const int8_t e);
  529. #if ENABLED(THERMAL_PROTECTION_HOTENDS) || HAS_THERMALLY_PROTECTED_BED
  530. enum TRState : char { TRInactive, TRFirstHeating, TRStable, TRRunaway };
  531. static void thermal_runaway_protection(TRState * const state, millis_t * const timer, const float &current, const float &target, const int8_t heater_id, const uint16_t period_seconds, const uint16_t hysteresis_degc);
  532. #if ENABLED(THERMAL_PROTECTION_HOTENDS)
  533. static TRState thermal_runaway_state_machine[HOTENDS];
  534. static millis_t thermal_runaway_timer[HOTENDS];
  535. #endif
  536. #if HAS_THERMALLY_PROTECTED_BED
  537. static TRState thermal_runaway_bed_state_machine;
  538. static millis_t thermal_runaway_bed_timer;
  539. #endif
  540. #endif // THERMAL_PROTECTION
  541. };
  542. extern Temperature thermalManager;
  543. #endif // TEMPERATURE_H