My Marlin configs for Fabrikator Mini and CTC i3 Pro B
您最多选择25个主题 主题必须以字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符

Marlin_main.cpp 266KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530753175327533753475357536753775387539754075417542754375447545754675477548754975507551755275537554755575567557755875597560756175627563756475657566756775687569757075717572757375747575757675777578757975807581758275837584758575867587758875897590759175927593759475957596759775987599760076017602760376047605760676077608760976107611761276137614761576167617761876197620762176227623762476257626762776287629763076317632763376347635763676377638763976407641764276437644764576467647764876497650765176527653765476557656765776587659766076617662766376647665766676677668766976707671767276737674767576767677767876797680768176827683768476857686768776887689769076917692769376947695769676977698769977007701770277037704770577067707770877097710771177127713771477157716771777187719772077217722772377247725772677277728772977307731773277337734773577367737773877397740774177427743774477457746774777487749775077517752775377547755775677577758775977607761776277637764776577667767776877697770777177727773777477757776777777787779778077817782778377847785778677877788778977907791779277937794779577967797779877997800780178027803780478057806780778087809781078117812781378147815781678177818781978207821782278237824782578267827782878297830783178327833783478357836783778387839784078417842784378447845784678477848784978507851785278537854785578567857785878597860786178627863786478657866786778687869787078717872787378747875787678777878787978807881788278837884788578867887788878897890789178927893789478957896789778987899790079017902790379047905790679077908790979107911791279137914791579167917791879197920792179227923792479257926792779287929793079317932793379347935793679377938793979407941794279437944794579467947794879497950795179527953795479557956795779587959796079617962796379647965796679677968796979707971797279737974797579767977797879797980798179827983798479857986798779887989799079917992799379947995799679977998799980008001800280038004800580068007800880098010801180128013801480158016801780188019802080218022802380248025802680278028802980308031803280338034803580368037803880398040804180428043804480458046804780488049805080518052805380548055805680578058805980608061806280638064806580668067806880698070807180728073807480758076807780788079808080818082808380848085808680878088808980908091809280938094809580968097809880998100810181028103810481058106810781088109811081118112811381148115811681178118811981208121812281238124812581268127812881298130813181328133813481358136813781388139814081418142814381448145814681478148814981508151815281538154815581568157815881598160816181628163816481658166816781688169817081718172817381748175817681778178817981808181818281838184818581868187818881898190819181928193819481958196819781988199820082018202820382048205820682078208820982108211821282138214821582168217821882198220822182228223822482258226822782288229823082318232823382348235823682378238823982408241824282438244824582468247824882498250825182528253825482558256825782588259826082618262826382648265826682678268826982708271827282738274827582768277827882798280828182828283828482858286828782888289829082918292829382948295829682978298829983008301830283038304830583068307830883098310831183128313831483158316831783188319832083218322832383248325832683278328832983308331833283338334833583368337833883398340834183428343834483458346834783488349835083518352835383548355835683578358835983608361836283638364836583668367836883698370837183728373837483758376837783788379838083818382838383848385838683878388838983908391839283938394839583968397839883998400840184028403840484058406840784088409841084118412841384148415841684178418841984208421842284238424842584268427842884298430843184328433843484358436843784388439844084418442844384448445844684478448844984508451845284538454845584568457845884598460846184628463846484658466846784688469847084718472847384748475847684778478847984808481
  1. /**
  2. * Marlin 3D Printer Firmware
  3. * Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
  4. *
  5. * Based on Sprinter and grbl.
  6. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  7. *
  8. * This program is free software: you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation, either version 3 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  20. *
  21. */
  22. /**
  23. *
  24. * About Marlin
  25. *
  26. * This firmware is a mashup between Sprinter and grbl.
  27. * - https://github.com/kliment/Sprinter
  28. * - https://github.com/simen/grbl/tree
  29. *
  30. * It has preliminary support for Matthew Roberts advance algorithm
  31. * - http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  32. */
  33. #include "Marlin.h"
  34. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  35. #include "vector_3.h"
  36. #if ENABLED(AUTO_BED_LEVELING_GRID)
  37. #include "qr_solve.h"
  38. #endif
  39. #endif // AUTO_BED_LEVELING_FEATURE
  40. #if ENABLED(MESH_BED_LEVELING)
  41. #include "mesh_bed_leveling.h"
  42. #endif
  43. #if ENABLED(BEZIER_CURVE_SUPPORT)
  44. #include "planner_bezier.h"
  45. #endif
  46. #include "ultralcd.h"
  47. #include "planner.h"
  48. #include "stepper.h"
  49. #include "endstops.h"
  50. #include "temperature.h"
  51. #include "cardreader.h"
  52. #include "configuration_store.h"
  53. #include "language.h"
  54. #include "pins_arduino.h"
  55. #include "math.h"
  56. #if ENABLED(USE_WATCHDOG)
  57. #include "watchdog.h"
  58. #endif
  59. #if ENABLED(BLINKM)
  60. #include "blinkm.h"
  61. #include "Wire.h"
  62. #endif
  63. #if HAS_SERVOS
  64. #include "servo.h"
  65. #endif
  66. #if HAS_DIGIPOTSS
  67. #include <SPI.h>
  68. #endif
  69. #if ENABLED(DAC_STEPPER_CURRENT)
  70. #include "stepper_dac.h"
  71. #endif
  72. #if ENABLED(EXPERIMENTAL_I2CBUS)
  73. #include "twibus.h"
  74. #endif
  75. /**
  76. * Look here for descriptions of G-codes:
  77. * - http://linuxcnc.org/handbook/gcode/g-code.html
  78. * - http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  79. *
  80. * Help us document these G-codes online:
  81. * - https://github.com/MarlinFirmware/Marlin/wiki/G-Code-in-Marlin
  82. * - http://reprap.org/wiki/G-code
  83. *
  84. * -----------------
  85. * Implemented Codes
  86. * -----------------
  87. *
  88. * "G" Codes
  89. *
  90. * G0 -> G1
  91. * G1 - Coordinated Movement X Y Z E
  92. * G2 - CW ARC
  93. * G3 - CCW ARC
  94. * G4 - Dwell S<seconds> or P<milliseconds>
  95. * G5 - Cubic B-spline with XYZE destination and IJPQ offsets
  96. * G10 - Retract filament according to settings of M207
  97. * G11 - Retract recover filament according to settings of M208
  98. * G12 - Clean tool
  99. * G20 - Set input units to inches
  100. * G21 - Set input units to millimeters
  101. * G28 - Home one or more axes
  102. * G29 - Detailed Z probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  103. * G30 - Single Z probe, probes bed at current XY location.
  104. * G31 - Dock sled (Z_PROBE_SLED only)
  105. * G32 - Undock sled (Z_PROBE_SLED only)
  106. * G90 - Use Absolute Coordinates
  107. * G91 - Use Relative Coordinates
  108. * G92 - Set current position to coordinates given
  109. *
  110. * "M" Codes
  111. *
  112. * M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
  113. * M1 - Same as M0
  114. * M17 - Enable/Power all stepper motors
  115. * M18 - Disable all stepper motors; same as M84
  116. * M20 - List SD card
  117. * M21 - Init SD card
  118. * M22 - Release SD card
  119. * M23 - Select SD file (M23 filename.g)
  120. * M24 - Start/resume SD print
  121. * M25 - Pause SD print
  122. * M26 - Set SD position in bytes (M26 S12345)
  123. * M27 - Report SD print status
  124. * M28 - Start SD write (M28 filename.g)
  125. * M29 - Stop SD write
  126. * M30 - Delete file from SD (M30 filename.g)
  127. * M31 - Output time since last M109 or SD card start to serial
  128. * M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  129. * syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  130. * Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
  131. * The '#' is necessary when calling from within sd files, as it stops buffer prereading
  132. * M33 - Get the longname version of a path
  133. * M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  134. * M48 - Measure Z_Probe repeatability. M48 [P # of points] [X position] [Y position] [V_erboseness #] [E_ngage Probe] [L # of legs of travel]
  135. * M75 - Start the print job timer
  136. * M76 - Pause the print job timer
  137. * M77 - Stop the print job timer
  138. * M78 - Show statistical information about the print jobs
  139. * M80 - Turn on Power Supply
  140. * M81 - Turn off Power Supply
  141. * M82 - Set E codes absolute (default)
  142. * M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  143. * M84 - Disable steppers until next move,
  144. * or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  145. * M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  146. * M92 - Set planner.axis_steps_per_mm - same syntax as G92
  147. * M104 - Set extruder target temp
  148. * M105 - Read current temp
  149. * M106 - Fan on
  150. * M107 - Fan off
  151. * M108 - Stop the waiting for heaters in M109, M190, M303. Does not affect the target temperature.
  152. * M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  153. * Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  154. * IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  155. * M110 - Set the current line number
  156. * M111 - Set debug flags with S<mask>. See flag bits defined in Marlin.h.
  157. * M112 - Emergency stop
  158. * M113 - Get or set the timeout interval for Host Keepalive "busy" messages
  159. * M114 - Output current position to serial port
  160. * M115 - Capabilities string
  161. * M117 - Display a message on the controller screen
  162. * M119 - Output Endstop status to serial port
  163. * M120 - Enable endstop detection
  164. * M121 - Disable endstop detection
  165. * M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  166. * M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  167. * M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  168. * M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  169. * M140 - Set bed target temp
  170. * M145 - Set the heatup state H<hotend> B<bed> F<fan speed> for S<material> (0=PLA, 1=ABS)
  171. * M149 - Set temperature units
  172. * M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  173. * M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  174. * Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  175. * M200 - Set filament diameter, D<diameter>, setting E axis units to cubic. (Use S0 to revert to linear units.)
  176. * M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  177. * M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  178. * M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in units/sec
  179. * M204 - Set default acceleration: P for Printing moves, R for Retract only (no X, Y, Z) moves and T for Travel (non printing) moves (ex. M204 P800 T3000 R9000) in units/sec^2
  180. * M205 - Set advanced settings. Current units apply:
  181. S<print> T<travel> minimum speeds
  182. B<minimum segment time>
  183. X<max xy jerk>, Z<max Z jerk>, E<max E jerk>
  184. * M206 - Set additional homing offset
  185. * M207 - Set Retract Length: S<length>, Feedrate: F<units/min>, and Z lift: Z<distance>
  186. * M208 - Set Recover (unretract) Additional (!) Length: S<length> and Feedrate: F<units/min>
  187. * M209 - Turn Automatic Retract Detection on/off: S<bool> (For slicers that don't support G10/11).
  188. Every normal extrude-only move will be classified as retract depending on the direction.
  189. * M218 - Set a tool offset: T<index> X<offset> Y<offset>
  190. * M220 - Set Feedrate Percentage: S<percent> ("FR" on your LCD)
  191. * M221 - Set Flow Percentage: S<percent>
  192. * M226 - Wait until the specified pin reaches the state required: P<pin number> S<pin state>
  193. * M240 - Trigger a camera to take a photograph
  194. * M250 - Set LCD contrast C<contrast value> (value 0..63)
  195. * M280 - Set servo position absolute. P: servo index, S: angle or microseconds
  196. * M300 - Play beep sound S<frequency Hz> P<duration ms>
  197. * M301 - Set PID parameters P I and D
  198. * M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  199. * M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  200. * M304 - Set bed PID parameters P I and D
  201. * M380 - Activate solenoid on active extruder
  202. * M381 - Disable all solenoids
  203. * M400 - Finish all moves
  204. * M401 - Lower Z probe if present
  205. * M402 - Raise Z probe if present
  206. * M404 - Display or set the Nominal Filament Width: [ N<diameter> ]
  207. * M405 - Enable Filament Sensor extrusion control. Optional delay between sensor and extruder: D<cm>
  208. * M406 - Disable Filament Sensor extrusion control
  209. * M407 - Display measured filament diameter in millimeters
  210. * M410 - Quickstop. Abort all the planned moves
  211. * M420 - Enable/Disable Mesh Leveling (with current values) S1=enable S0=disable
  212. * M421 - Set a single Z coordinate in the Mesh Leveling grid. X<units> Y<units> Z<units>
  213. * M428 - Set the home_offset logically based on the current_position
  214. * M500 - Store parameters in EEPROM
  215. * M501 - Read parameters from EEPROM (if you need reset them after you changed them temporarily).
  216. * M502 - Revert to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  217. * M503 - Print the current settings (from memory not from EEPROM). Use S0 to leave off headings.
  218. * M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  219. * M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  220. * M665 - Set delta configurations: L<diagonal rod> R<delta radius> S<segments/s>
  221. * M666 - Set delta endstop adjustment
  222. * M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  223. * M851 - Set Z probe's Z offset in current units. (Negative values apply to probes that extend below the nozzle.)
  224. * M907 - Set digital trimpot motor current using axis codes.
  225. * M908 - Control digital trimpot directly.
  226. * M909 - DAC_STEPPER_CURRENT: Print digipot/DAC current value
  227. * M910 - DAC_STEPPER_CURRENT: Commit digipot/DAC value to external EEPROM via I2C
  228. * M350 - Set microstepping mode.
  229. * M351 - Toggle MS1 MS2 pins directly.
  230. *
  231. * ************ SCARA Specific - This can change to suit future G-code regulations
  232. * M360 - SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  233. * M361 - SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  234. * M362 - SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  235. * M363 - SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  236. * M364 - SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
  237. * M365 - SCARA calibration: Scaling factor, X, Y, Z axis
  238. * ************* SCARA End ***************
  239. *
  240. * ************ Custom codes - This can change to suit future G-code regulations
  241. * M100 - Watch Free Memory (For Debugging Only)
  242. * M928 - Start SD logging (M928 filename.g) - ended by M29
  243. * M999 - Restart after being stopped by error
  244. *
  245. * "T" Codes
  246. *
  247. * T0-T3 - Select a tool by index (usually an extruder) [ F<units/min> ]
  248. *
  249. */
  250. #if ENABLED(M100_FREE_MEMORY_WATCHER)
  251. void gcode_M100();
  252. #endif
  253. #if ENABLED(SDSUPPORT)
  254. CardReader card;
  255. #endif
  256. #if ENABLED(EXPERIMENTAL_I2CBUS)
  257. TWIBus i2c;
  258. #endif
  259. bool Running = true;
  260. uint8_t marlin_debug_flags = DEBUG_NONE;
  261. static float feedrate = 1500.0, saved_feedrate;
  262. float current_position[NUM_AXIS] = { 0.0 };
  263. static float destination[NUM_AXIS] = { 0.0 };
  264. bool axis_known_position[3] = { false };
  265. bool axis_homed[3] = { false };
  266. static long gcode_N, gcode_LastN, Stopped_gcode_LastN = 0;
  267. static char command_queue[BUFSIZE][MAX_CMD_SIZE];
  268. static char* current_command, *current_command_args;
  269. static uint8_t cmd_queue_index_r = 0,
  270. cmd_queue_index_w = 0,
  271. commands_in_queue = 0;
  272. #if ENABLED(INCH_MODE_SUPPORT)
  273. float linear_unit_factor = 1.0;
  274. float volumetric_unit_factor = 1.0;
  275. #endif
  276. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  277. TempUnit input_temp_units = TEMPUNIT_C;
  278. #endif
  279. const float homing_feedrate[] = HOMING_FEEDRATE;
  280. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  281. int feedrate_multiplier = 100; //100->1 200->2
  282. int saved_feedrate_multiplier;
  283. int extruder_multiplier[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(100);
  284. bool volumetric_enabled = false;
  285. float filament_size[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(DEFAULT_NOMINAL_FILAMENT_DIA);
  286. float volumetric_multiplier[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(1.0);
  287. // The distance that XYZ has been offset by G92. Reset by G28.
  288. float position_shift[3] = { 0 };
  289. // This offset is added to the configured home position.
  290. // Set by M206, M428, or menu item. Saved to EEPROM.
  291. float home_offset[3] = { 0 };
  292. #define RAW_POSITION(POS, AXIS) (POS - home_offset[AXIS] - position_shift[AXIS])
  293. #define RAW_CURRENT_POSITION(AXIS) (RAW_POSITION(current_position[AXIS], AXIS))
  294. // Software Endstops. Default to configured limits.
  295. float sw_endstop_min[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  296. float sw_endstop_max[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  297. #if ENABLED(DELTA)
  298. float delta_clip_start_height = Z_MAX_POS;
  299. #endif
  300. #if FAN_COUNT > 0
  301. int fanSpeeds[FAN_COUNT] = { 0 };
  302. #endif
  303. // The active extruder (tool). Set with T<extruder> command.
  304. uint8_t active_extruder = 0;
  305. // Relative Mode. Enable with G91, disable with G90.
  306. static bool relative_mode = false;
  307. volatile bool wait_for_heatup = true;
  308. const char errormagic[] PROGMEM = "Error:";
  309. const char echomagic[] PROGMEM = "echo:";
  310. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  311. static int serial_count = 0;
  312. // GCode parameter pointer used by code_seen(), code_value_float(), etc.
  313. static char* seen_pointer;
  314. // Next Immediate GCode Command pointer. NULL if none.
  315. const char* queued_commands_P = NULL;
  316. const int sensitive_pins[] = SENSITIVE_PINS; ///< Sensitive pin list for M42
  317. // Inactivity shutdown
  318. millis_t previous_cmd_ms = 0;
  319. static millis_t max_inactive_time = 0;
  320. static millis_t stepper_inactive_time = (DEFAULT_STEPPER_DEACTIVE_TIME) * 1000UL;
  321. // Print Job Timer
  322. #if ENABLED(PRINTCOUNTER)
  323. PrintCounter print_job_timer = PrintCounter();
  324. #else
  325. Stopwatch print_job_timer = Stopwatch();
  326. #endif
  327. // Buzzer
  328. #if HAS_BUZZER
  329. #if ENABLED(SPEAKER)
  330. Speaker buzzer;
  331. #else
  332. Buzzer buzzer;
  333. #endif
  334. #endif
  335. static uint8_t target_extruder;
  336. #if HAS_BED_PROBE
  337. float zprobe_zoffset = Z_PROBE_OFFSET_FROM_EXTRUDER;
  338. #endif
  339. #define PLANNER_XY_FEEDRATE() (min(planner.max_feedrate[X_AXIS], planner.max_feedrate[Y_AXIS]))
  340. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  341. int xy_probe_speed = XY_PROBE_SPEED;
  342. bool bed_leveling_in_progress = false;
  343. #define XY_PROBE_FEEDRATE xy_probe_speed
  344. #elif defined(XY_PROBE_SPEED)
  345. #define XY_PROBE_FEEDRATE XY_PROBE_SPEED
  346. #else
  347. #define XY_PROBE_FEEDRATE (PLANNER_XY_FEEDRATE() * 60)
  348. #endif
  349. #if ENABLED(Z_DUAL_ENDSTOPS) && DISABLED(DELTA)
  350. float z_endstop_adj = 0;
  351. #endif
  352. // Extruder offsets
  353. #if HOTENDS > 1
  354. #ifndef HOTEND_OFFSET_X
  355. #define HOTEND_OFFSET_X { 0 } // X offsets for each extruder
  356. #endif
  357. #ifndef HOTEND_OFFSET_Y
  358. #define HOTEND_OFFSET_Y { 0 } // Y offsets for each extruder
  359. #endif
  360. float hotend_offset[][HOTENDS] = {
  361. HOTEND_OFFSET_X,
  362. HOTEND_OFFSET_Y
  363. #if ENABLED(DUAL_X_CARRIAGE)
  364. , { 0 } // Z offsets for each extruder
  365. #endif
  366. };
  367. #endif
  368. #if HAS_Z_SERVO_ENDSTOP
  369. const int z_servo_angle[2] = Z_SERVO_ANGLES;
  370. #endif
  371. #if ENABLED(BARICUDA)
  372. int baricuda_valve_pressure = 0;
  373. int baricuda_e_to_p_pressure = 0;
  374. #endif
  375. #if ENABLED(FWRETRACT)
  376. bool autoretract_enabled = false;
  377. bool retracted[EXTRUDERS] = { false };
  378. bool retracted_swap[EXTRUDERS] = { false };
  379. float retract_length = RETRACT_LENGTH;
  380. float retract_length_swap = RETRACT_LENGTH_SWAP;
  381. float retract_feedrate_mm_s = RETRACT_FEEDRATE;
  382. float retract_zlift = RETRACT_ZLIFT;
  383. float retract_recover_length = RETRACT_RECOVER_LENGTH;
  384. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  385. float retract_recover_feedrate = RETRACT_RECOVER_FEEDRATE;
  386. #endif // FWRETRACT
  387. #if ENABLED(ULTIPANEL) && HAS_POWER_SWITCH
  388. bool powersupply =
  389. #if ENABLED(PS_DEFAULT_OFF)
  390. false
  391. #else
  392. true
  393. #endif
  394. ;
  395. #endif
  396. #if ENABLED(DELTA)
  397. #define TOWER_1 X_AXIS
  398. #define TOWER_2 Y_AXIS
  399. #define TOWER_3 Z_AXIS
  400. float delta[3] = { 0 };
  401. #define SIN_60 0.8660254037844386
  402. #define COS_60 0.5
  403. float endstop_adj[3] = { 0 };
  404. // these are the default values, can be overriden with M665
  405. float delta_radius = DELTA_RADIUS;
  406. float delta_tower1_x = -SIN_60 * (delta_radius + DELTA_RADIUS_TRIM_TOWER_1); // front left tower
  407. float delta_tower1_y = -COS_60 * (delta_radius + DELTA_RADIUS_TRIM_TOWER_1);
  408. float delta_tower2_x = SIN_60 * (delta_radius + DELTA_RADIUS_TRIM_TOWER_2); // front right tower
  409. float delta_tower2_y = -COS_60 * (delta_radius + DELTA_RADIUS_TRIM_TOWER_2);
  410. float delta_tower3_x = 0; // back middle tower
  411. float delta_tower3_y = (delta_radius + DELTA_RADIUS_TRIM_TOWER_3);
  412. float delta_diagonal_rod = DELTA_DIAGONAL_ROD;
  413. float delta_diagonal_rod_trim_tower_1 = DELTA_DIAGONAL_ROD_TRIM_TOWER_1;
  414. float delta_diagonal_rod_trim_tower_2 = DELTA_DIAGONAL_ROD_TRIM_TOWER_2;
  415. float delta_diagonal_rod_trim_tower_3 = DELTA_DIAGONAL_ROD_TRIM_TOWER_3;
  416. float delta_diagonal_rod_2_tower_1 = sq(delta_diagonal_rod + delta_diagonal_rod_trim_tower_1);
  417. float delta_diagonal_rod_2_tower_2 = sq(delta_diagonal_rod + delta_diagonal_rod_trim_tower_2);
  418. float delta_diagonal_rod_2_tower_3 = sq(delta_diagonal_rod + delta_diagonal_rod_trim_tower_3);
  419. //float delta_diagonal_rod_2 = sq(delta_diagonal_rod);
  420. float delta_segments_per_second = DELTA_SEGMENTS_PER_SECOND;
  421. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  422. int delta_grid_spacing[2] = { 0, 0 };
  423. float bed_level[AUTO_BED_LEVELING_GRID_POINTS][AUTO_BED_LEVELING_GRID_POINTS];
  424. #endif
  425. #else
  426. static bool home_all_axis = true;
  427. #endif
  428. #if ENABLED(SCARA)
  429. float delta_segments_per_second = SCARA_SEGMENTS_PER_SECOND;
  430. static float delta[3] = { 0 };
  431. float axis_scaling[3] = { 1, 1, 1 }; // Build size scaling, default to 1
  432. #endif
  433. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  434. //Variables for Filament Sensor input
  435. float filament_width_nominal = DEFAULT_NOMINAL_FILAMENT_DIA; //Set nominal filament width, can be changed with M404
  436. bool filament_sensor = false; //M405 turns on filament_sensor control, M406 turns it off
  437. float filament_width_meas = DEFAULT_MEASURED_FILAMENT_DIA; //Stores the measured filament diameter
  438. int8_t measurement_delay[MAX_MEASUREMENT_DELAY + 1]; //ring buffer to delay measurement store extruder factor after subtracting 100
  439. int filwidth_delay_index1 = 0; //index into ring buffer
  440. int filwidth_delay_index2 = -1; //index into ring buffer - set to -1 on startup to indicate ring buffer needs to be initialized
  441. int meas_delay_cm = MEASUREMENT_DELAY_CM; //distance delay setting
  442. #endif
  443. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  444. static bool filament_ran_out = false;
  445. #endif
  446. #if ENABLED(FILAMENT_CHANGE_FEATURE)
  447. FilamentChangeMenuResponse filament_change_menu_response;
  448. #endif
  449. static bool send_ok[BUFSIZE];
  450. #if HAS_SERVOS
  451. Servo servo[NUM_SERVOS];
  452. #define MOVE_SERVO(I, P) servo[I].move(P)
  453. #if HAS_Z_SERVO_ENDSTOP
  454. #define DEPLOY_Z_SERVO() MOVE_SERVO(Z_ENDSTOP_SERVO_NR, z_servo_angle[0])
  455. #define STOW_Z_SERVO() MOVE_SERVO(Z_ENDSTOP_SERVO_NR, z_servo_angle[1])
  456. #endif
  457. #endif
  458. #ifdef CHDK
  459. millis_t chdkHigh = 0;
  460. boolean chdkActive = false;
  461. #endif
  462. #if ENABLED(PID_ADD_EXTRUSION_RATE)
  463. int lpq_len = 20;
  464. #endif
  465. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  466. // States for managing Marlin and host communication
  467. // Marlin sends messages if blocked or busy
  468. enum MarlinBusyState {
  469. NOT_BUSY, // Not in a handler
  470. IN_HANDLER, // Processing a GCode
  471. IN_PROCESS, // Known to be blocking command input (as in G29)
  472. PAUSED_FOR_USER, // Blocking pending any input
  473. PAUSED_FOR_INPUT // Blocking pending text input (concept)
  474. };
  475. static MarlinBusyState busy_state = NOT_BUSY;
  476. static millis_t next_busy_signal_ms = 0;
  477. uint8_t host_keepalive_interval = DEFAULT_KEEPALIVE_INTERVAL;
  478. #define KEEPALIVE_STATE(n) do{ busy_state = n; }while(0)
  479. #else
  480. #define host_keepalive() ;
  481. #define KEEPALIVE_STATE(n) ;
  482. #endif // HOST_KEEPALIVE_FEATURE
  483. /**
  484. * ***************************************************************************
  485. * ******************************** FUNCTIONS ********************************
  486. * ***************************************************************************
  487. */
  488. void stop();
  489. void get_available_commands();
  490. void process_next_command();
  491. void prepare_move_to_destination();
  492. #if ENABLED(ARC_SUPPORT)
  493. void plan_arc(float target[NUM_AXIS], float* offset, uint8_t clockwise);
  494. #endif
  495. #if ENABLED(BEZIER_CURVE_SUPPORT)
  496. void plan_cubic_move(const float offset[4]);
  497. #endif
  498. void serial_echopair_P(const char* s_P, int v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  499. void serial_echopair_P(const char* s_P, long v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  500. void serial_echopair_P(const char* s_P, float v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  501. void serial_echopair_P(const char* s_P, double v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  502. void serial_echopair_P(const char* s_P, unsigned long v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  503. static void report_current_position();
  504. #if ENABLED(DEBUG_LEVELING_FEATURE)
  505. void print_xyz(const char* prefix, const char* suffix, const float x, const float y, const float z) {
  506. serialprintPGM(prefix);
  507. SERIAL_ECHOPAIR("(", x);
  508. SERIAL_ECHOPAIR(", ", y);
  509. SERIAL_ECHOPAIR(", ", z);
  510. SERIAL_ECHOPGM(")");
  511. serialprintPGM(suffix);
  512. }
  513. void print_xyz(const char* prefix,const char* suffix, const float xyz[]) {
  514. print_xyz(prefix, suffix, xyz[X_AXIS], xyz[Y_AXIS], xyz[Z_AXIS]);
  515. }
  516. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  517. void print_xyz(const char* prefix,const char* suffix, const vector_3 &xyz) {
  518. print_xyz(prefix, suffix, xyz.x, xyz.y, xyz.z);
  519. }
  520. #endif
  521. #define DEBUG_POS(SUFFIX,VAR) do{ print_xyz(PSTR(STRINGIFY(VAR) "="), PSTR(" : " SUFFIX "\n"), VAR); }while(0)
  522. #endif
  523. #if ENABLED(DELTA) || ENABLED(SCARA)
  524. inline void sync_plan_position_delta() {
  525. #if ENABLED(DEBUG_LEVELING_FEATURE)
  526. if (DEBUGGING(LEVELING)) DEBUG_POS("sync_plan_position_delta", current_position);
  527. #endif
  528. calculate_delta(current_position);
  529. planner.set_position_mm(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
  530. }
  531. #define SYNC_PLAN_POSITION_KINEMATIC() sync_plan_position_delta()
  532. #else
  533. #define SYNC_PLAN_POSITION_KINEMATIC() sync_plan_position()
  534. #endif
  535. #if ENABLED(SDSUPPORT)
  536. #include "SdFatUtil.h"
  537. int freeMemory() { return SdFatUtil::FreeRam(); }
  538. #else
  539. extern "C" {
  540. extern unsigned int __bss_end;
  541. extern unsigned int __heap_start;
  542. extern void* __brkval;
  543. int freeMemory() {
  544. int free_memory;
  545. if ((int)__brkval == 0)
  546. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  547. else
  548. free_memory = ((int)&free_memory) - ((int)__brkval);
  549. return free_memory;
  550. }
  551. }
  552. #endif //!SDSUPPORT
  553. #if ENABLED(DIGIPOT_I2C)
  554. extern void digipot_i2c_set_current(int channel, float current);
  555. extern void digipot_i2c_init();
  556. #endif
  557. /**
  558. * Inject the next "immediate" command, when possible.
  559. * Return true if any immediate commands remain to inject.
  560. */
  561. static bool drain_queued_commands_P() {
  562. if (queued_commands_P != NULL) {
  563. size_t i = 0;
  564. char c, cmd[30];
  565. strncpy_P(cmd, queued_commands_P, sizeof(cmd) - 1);
  566. cmd[sizeof(cmd) - 1] = '\0';
  567. while ((c = cmd[i]) && c != '\n') i++; // find the end of this gcode command
  568. cmd[i] = '\0';
  569. if (enqueue_and_echo_command(cmd)) { // success?
  570. if (c) // newline char?
  571. queued_commands_P += i + 1; // advance to the next command
  572. else
  573. queued_commands_P = NULL; // nul char? no more commands
  574. }
  575. }
  576. return (queued_commands_P != NULL); // return whether any more remain
  577. }
  578. /**
  579. * Record one or many commands to run from program memory.
  580. * Aborts the current queue, if any.
  581. * Note: drain_queued_commands_P() must be called repeatedly to drain the commands afterwards
  582. */
  583. void enqueue_and_echo_commands_P(const char* pgcode) {
  584. queued_commands_P = pgcode;
  585. drain_queued_commands_P(); // first command executed asap (when possible)
  586. }
  587. void clear_command_queue() {
  588. cmd_queue_index_r = cmd_queue_index_w;
  589. commands_in_queue = 0;
  590. }
  591. /**
  592. * Once a new command is in the ring buffer, call this to commit it
  593. */
  594. inline void _commit_command(bool say_ok) {
  595. send_ok[cmd_queue_index_w] = say_ok;
  596. cmd_queue_index_w = (cmd_queue_index_w + 1) % BUFSIZE;
  597. commands_in_queue++;
  598. }
  599. /**
  600. * Copy a command directly into the main command buffer, from RAM.
  601. * Returns true if successfully adds the command
  602. */
  603. inline bool _enqueuecommand(const char* cmd, bool say_ok=false) {
  604. if (*cmd == ';' || commands_in_queue >= BUFSIZE) return false;
  605. strcpy(command_queue[cmd_queue_index_w], cmd);
  606. _commit_command(say_ok);
  607. return true;
  608. }
  609. void enqueue_and_echo_command_now(const char* cmd) {
  610. while (!enqueue_and_echo_command(cmd)) idle();
  611. }
  612. /**
  613. * Enqueue with Serial Echo
  614. */
  615. bool enqueue_and_echo_command(const char* cmd, bool say_ok/*=false*/) {
  616. if (_enqueuecommand(cmd, say_ok)) {
  617. SERIAL_ECHO_START;
  618. SERIAL_ECHOPGM(MSG_Enqueueing);
  619. SERIAL_ECHO(cmd);
  620. SERIAL_ECHOLNPGM("\"");
  621. return true;
  622. }
  623. return false;
  624. }
  625. void setup_killpin() {
  626. #if HAS_KILL
  627. SET_INPUT(KILL_PIN);
  628. WRITE(KILL_PIN, HIGH);
  629. #endif
  630. }
  631. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  632. void setup_filrunoutpin() {
  633. pinMode(FIL_RUNOUT_PIN, INPUT);
  634. #if ENABLED(ENDSTOPPULLUP_FIL_RUNOUT)
  635. WRITE(FIL_RUNOUT_PIN, HIGH);
  636. #endif
  637. }
  638. #endif
  639. // Set home pin
  640. void setup_homepin(void) {
  641. #if HAS_HOME
  642. SET_INPUT(HOME_PIN);
  643. WRITE(HOME_PIN, HIGH);
  644. #endif
  645. }
  646. void setup_photpin() {
  647. #if HAS_PHOTOGRAPH
  648. OUT_WRITE(PHOTOGRAPH_PIN, LOW);
  649. #endif
  650. }
  651. void setup_powerhold() {
  652. #if HAS_SUICIDE
  653. OUT_WRITE(SUICIDE_PIN, HIGH);
  654. #endif
  655. #if HAS_POWER_SWITCH
  656. #if ENABLED(PS_DEFAULT_OFF)
  657. OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  658. #else
  659. OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE);
  660. #endif
  661. #endif
  662. }
  663. void suicide() {
  664. #if HAS_SUICIDE
  665. OUT_WRITE(SUICIDE_PIN, LOW);
  666. #endif
  667. }
  668. void servo_init() {
  669. #if NUM_SERVOS >= 1 && HAS_SERVO_0
  670. servo[0].attach(SERVO0_PIN);
  671. servo[0].detach(); // Just set up the pin. We don't have a position yet. Don't move to a random position.
  672. #endif
  673. #if NUM_SERVOS >= 2 && HAS_SERVO_1
  674. servo[1].attach(SERVO1_PIN);
  675. servo[1].detach();
  676. #endif
  677. #if NUM_SERVOS >= 3 && HAS_SERVO_2
  678. servo[2].attach(SERVO2_PIN);
  679. servo[2].detach();
  680. #endif
  681. #if NUM_SERVOS >= 4 && HAS_SERVO_3
  682. servo[3].attach(SERVO3_PIN);
  683. servo[3].detach();
  684. #endif
  685. #if HAS_Z_SERVO_ENDSTOP
  686. /**
  687. * Set position of Z Servo Endstop
  688. *
  689. * The servo might be deployed and positioned too low to stow
  690. * when starting up the machine or rebooting the board.
  691. * There's no way to know where the nozzle is positioned until
  692. * homing has been done - no homing with z-probe without init!
  693. *
  694. */
  695. STOW_Z_SERVO();
  696. #endif
  697. #if HAS_BED_PROBE
  698. endstops.enable_z_probe(false);
  699. #endif
  700. }
  701. /**
  702. * Stepper Reset (RigidBoard, et.al.)
  703. */
  704. #if HAS_STEPPER_RESET
  705. void disableStepperDrivers() {
  706. pinMode(STEPPER_RESET_PIN, OUTPUT);
  707. digitalWrite(STEPPER_RESET_PIN, LOW); // drive it down to hold in reset motor driver chips
  708. }
  709. void enableStepperDrivers() { pinMode(STEPPER_RESET_PIN, INPUT); } // set to input, which allows it to be pulled high by pullups
  710. #endif
  711. /**
  712. * Marlin entry-point: Set up before the program loop
  713. * - Set up the kill pin, filament runout, power hold
  714. * - Start the serial port
  715. * - Print startup messages and diagnostics
  716. * - Get EEPROM or default settings
  717. * - Initialize managers for:
  718. * • temperature
  719. * • planner
  720. * • watchdog
  721. * • stepper
  722. * • photo pin
  723. * • servos
  724. * • LCD controller
  725. * • Digipot I2C
  726. * • Z probe sled
  727. * • status LEDs
  728. */
  729. void setup() {
  730. #ifdef DISABLE_JTAG
  731. // Disable JTAG on AT90USB chips to free up pins for IO
  732. MCUCR = 0x80;
  733. MCUCR = 0x80;
  734. #endif
  735. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  736. setup_filrunoutpin();
  737. #endif
  738. setup_killpin();
  739. setup_powerhold();
  740. #if HAS_STEPPER_RESET
  741. disableStepperDrivers();
  742. #endif
  743. MYSERIAL.begin(BAUDRATE);
  744. SERIAL_PROTOCOLLNPGM("start");
  745. SERIAL_ECHO_START;
  746. // Check startup - does nothing if bootloader sets MCUSR to 0
  747. byte mcu = MCUSR;
  748. if (mcu & 1) SERIAL_ECHOLNPGM(MSG_POWERUP);
  749. if (mcu & 2) SERIAL_ECHOLNPGM(MSG_EXTERNAL_RESET);
  750. if (mcu & 4) SERIAL_ECHOLNPGM(MSG_BROWNOUT_RESET);
  751. if (mcu & 8) SERIAL_ECHOLNPGM(MSG_WATCHDOG_RESET);
  752. if (mcu & 32) SERIAL_ECHOLNPGM(MSG_SOFTWARE_RESET);
  753. MCUSR = 0;
  754. SERIAL_ECHOPGM(MSG_MARLIN);
  755. SERIAL_ECHOLNPGM(" " SHORT_BUILD_VERSION);
  756. #ifdef STRING_DISTRIBUTION_DATE
  757. #ifdef STRING_CONFIG_H_AUTHOR
  758. SERIAL_ECHO_START;
  759. SERIAL_ECHOPGM(MSG_CONFIGURATION_VER);
  760. SERIAL_ECHOPGM(STRING_DISTRIBUTION_DATE);
  761. SERIAL_ECHOPGM(MSG_AUTHOR);
  762. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  763. SERIAL_ECHOPGM("Compiled: ");
  764. SERIAL_ECHOLNPGM(__DATE__);
  765. #endif // STRING_CONFIG_H_AUTHOR
  766. #endif // STRING_DISTRIBUTION_DATE
  767. SERIAL_ECHO_START;
  768. SERIAL_ECHOPGM(MSG_FREE_MEMORY);
  769. SERIAL_ECHO(freeMemory());
  770. SERIAL_ECHOPGM(MSG_PLANNER_BUFFER_BYTES);
  771. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  772. // Send "ok" after commands by default
  773. for (int8_t i = 0; i < BUFSIZE; i++) send_ok[i] = true;
  774. // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  775. Config_RetrieveSettings();
  776. // Initialize current position based on home_offset
  777. memcpy(current_position, home_offset, sizeof(home_offset));
  778. #if ENABLED(DELTA) || ENABLED(SCARA)
  779. // Vital to init kinematic equivalent for X0 Y0 Z0
  780. SYNC_PLAN_POSITION_KINEMATIC();
  781. #endif
  782. thermalManager.init(); // Initialize temperature loop
  783. #if ENABLED(USE_WATCHDOG)
  784. watchdog_init();
  785. #endif
  786. stepper.init(); // Initialize stepper, this enables interrupts!
  787. setup_photpin();
  788. servo_init();
  789. #if HAS_CONTROLLERFAN
  790. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  791. #endif
  792. #if HAS_STEPPER_RESET
  793. enableStepperDrivers();
  794. #endif
  795. #if ENABLED(DIGIPOT_I2C)
  796. digipot_i2c_init();
  797. #endif
  798. #if ENABLED(DAC_STEPPER_CURRENT)
  799. dac_init();
  800. #endif
  801. #if ENABLED(Z_PROBE_SLED)
  802. pinMode(SLED_PIN, OUTPUT);
  803. digitalWrite(SLED_PIN, LOW); // turn it off
  804. #endif // Z_PROBE_SLED
  805. setup_homepin();
  806. #ifdef STAT_LED_RED
  807. pinMode(STAT_LED_RED, OUTPUT);
  808. digitalWrite(STAT_LED_RED, LOW); // turn it off
  809. #endif
  810. #ifdef STAT_LED_BLUE
  811. pinMode(STAT_LED_BLUE, OUTPUT);
  812. digitalWrite(STAT_LED_BLUE, LOW); // turn it off
  813. #endif
  814. lcd_init();
  815. #if ENABLED(SHOW_BOOTSCREEN)
  816. #if ENABLED(DOGLCD)
  817. delay(1000);
  818. #elif ENABLED(ULTRA_LCD)
  819. bootscreen();
  820. lcd_init();
  821. #endif
  822. #endif
  823. }
  824. /**
  825. * The main Marlin program loop
  826. *
  827. * - Save or log commands to SD
  828. * - Process available commands (if not saving)
  829. * - Call heater manager
  830. * - Call inactivity manager
  831. * - Call endstop manager
  832. * - Call LCD update
  833. */
  834. void loop() {
  835. if (commands_in_queue < BUFSIZE) get_available_commands();
  836. #if ENABLED(SDSUPPORT)
  837. card.checkautostart(false);
  838. #endif
  839. if (commands_in_queue) {
  840. #if ENABLED(SDSUPPORT)
  841. if (card.saving) {
  842. char* command = command_queue[cmd_queue_index_r];
  843. if (strstr_P(command, PSTR("M29"))) {
  844. // M29 closes the file
  845. card.closefile();
  846. SERIAL_PROTOCOLLNPGM(MSG_FILE_SAVED);
  847. ok_to_send();
  848. }
  849. else {
  850. // Write the string from the read buffer to SD
  851. card.write_command(command);
  852. if (card.logging)
  853. process_next_command(); // The card is saving because it's logging
  854. else
  855. ok_to_send();
  856. }
  857. }
  858. else
  859. process_next_command();
  860. #else
  861. process_next_command();
  862. #endif // SDSUPPORT
  863. // The queue may be reset by a command handler or by code invoked by idle() within a handler
  864. if (commands_in_queue) {
  865. --commands_in_queue;
  866. cmd_queue_index_r = (cmd_queue_index_r + 1) % BUFSIZE;
  867. }
  868. }
  869. endstops.report_state();
  870. idle();
  871. }
  872. void gcode_line_error(const char* err, bool doFlush = true) {
  873. SERIAL_ERROR_START;
  874. serialprintPGM(err);
  875. SERIAL_ERRORLN(gcode_LastN);
  876. //Serial.println(gcode_N);
  877. if (doFlush) FlushSerialRequestResend();
  878. serial_count = 0;
  879. }
  880. inline void get_serial_commands() {
  881. static char serial_line_buffer[MAX_CMD_SIZE];
  882. static boolean serial_comment_mode = false;
  883. // If the command buffer is empty for too long,
  884. // send "wait" to indicate Marlin is still waiting.
  885. #if defined(NO_TIMEOUTS) && NO_TIMEOUTS > 0
  886. static millis_t last_command_time = 0;
  887. millis_t ms = millis();
  888. if (commands_in_queue == 0 && !MYSERIAL.available() && ELAPSED(ms, last_command_time + NO_TIMEOUTS)) {
  889. SERIAL_ECHOLNPGM(MSG_WAIT);
  890. last_command_time = ms;
  891. }
  892. #endif
  893. /**
  894. * Loop while serial characters are incoming and the queue is not full
  895. */
  896. while (commands_in_queue < BUFSIZE && MYSERIAL.available() > 0) {
  897. char serial_char = MYSERIAL.read();
  898. /**
  899. * If the character ends the line
  900. */
  901. if (serial_char == '\n' || serial_char == '\r') {
  902. serial_comment_mode = false; // end of line == end of comment
  903. if (!serial_count) continue; // skip empty lines
  904. serial_line_buffer[serial_count] = 0; // terminate string
  905. serial_count = 0; //reset buffer
  906. char* command = serial_line_buffer;
  907. while (*command == ' ') command++; // skip any leading spaces
  908. char* npos = (*command == 'N') ? command : NULL; // Require the N parameter to start the line
  909. char* apos = strchr(command, '*');
  910. if (npos) {
  911. boolean M110 = strstr_P(command, PSTR("M110")) != NULL;
  912. if (M110) {
  913. char* n2pos = strchr(command + 4, 'N');
  914. if (n2pos) npos = n2pos;
  915. }
  916. gcode_N = strtol(npos + 1, NULL, 10);
  917. if (gcode_N != gcode_LastN + 1 && !M110) {
  918. gcode_line_error(PSTR(MSG_ERR_LINE_NO));
  919. return;
  920. }
  921. if (apos) {
  922. byte checksum = 0, count = 0;
  923. while (command[count] != '*') checksum ^= command[count++];
  924. if (strtol(apos + 1, NULL, 10) != checksum) {
  925. gcode_line_error(PSTR(MSG_ERR_CHECKSUM_MISMATCH));
  926. return;
  927. }
  928. // if no errors, continue parsing
  929. }
  930. else {
  931. gcode_line_error(PSTR(MSG_ERR_NO_CHECKSUM));
  932. return;
  933. }
  934. gcode_LastN = gcode_N;
  935. // if no errors, continue parsing
  936. }
  937. else if (apos) { // No '*' without 'N'
  938. gcode_line_error(PSTR(MSG_ERR_NO_LINENUMBER_WITH_CHECKSUM), false);
  939. return;
  940. }
  941. // Movement commands alert when stopped
  942. if (IsStopped()) {
  943. char* gpos = strchr(command, 'G');
  944. if (gpos) {
  945. int codenum = strtol(gpos + 1, NULL, 10);
  946. switch (codenum) {
  947. case 0:
  948. case 1:
  949. case 2:
  950. case 3:
  951. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  952. LCD_MESSAGEPGM(MSG_STOPPED);
  953. break;
  954. }
  955. }
  956. }
  957. #if DISABLED(EMERGENCY_PARSER)
  958. // If command was e-stop process now
  959. if (strcmp(command, "M108") == 0) wait_for_heatup = false;
  960. if (strcmp(command, "M112") == 0) kill(PSTR(MSG_KILLED));
  961. if (strcmp(command, "M410") == 0) { quickstop_stepper(); }
  962. #endif
  963. #if defined(NO_TIMEOUTS) && NO_TIMEOUTS > 0
  964. last_command_time = ms;
  965. #endif
  966. // Add the command to the queue
  967. _enqueuecommand(serial_line_buffer, true);
  968. }
  969. else if (serial_count >= MAX_CMD_SIZE - 1) {
  970. // Keep fetching, but ignore normal characters beyond the max length
  971. // The command will be injected when EOL is reached
  972. }
  973. else if (serial_char == '\\') { // Handle escapes
  974. if (MYSERIAL.available() > 0) {
  975. // if we have one more character, copy it over
  976. serial_char = MYSERIAL.read();
  977. if (!serial_comment_mode) serial_line_buffer[serial_count++] = serial_char;
  978. }
  979. // otherwise do nothing
  980. }
  981. else { // it's not a newline, carriage return or escape char
  982. if (serial_char == ';') serial_comment_mode = true;
  983. if (!serial_comment_mode) serial_line_buffer[serial_count++] = serial_char;
  984. }
  985. } // queue has space, serial has data
  986. }
  987. #if ENABLED(SDSUPPORT)
  988. inline void get_sdcard_commands() {
  989. static bool stop_buffering = false,
  990. sd_comment_mode = false;
  991. if (!card.sdprinting) return;
  992. /**
  993. * '#' stops reading from SD to the buffer prematurely, so procedural
  994. * macro calls are possible. If it occurs, stop_buffering is triggered
  995. * and the buffer is run dry; this character _can_ occur in serial com
  996. * due to checksums, however, no checksums are used in SD printing.
  997. */
  998. if (commands_in_queue == 0) stop_buffering = false;
  999. uint16_t sd_count = 0;
  1000. bool card_eof = card.eof();
  1001. while (commands_in_queue < BUFSIZE && !card_eof && !stop_buffering) {
  1002. int16_t n = card.get();
  1003. char sd_char = (char)n;
  1004. card_eof = card.eof();
  1005. if (card_eof || n == -1
  1006. || sd_char == '\n' || sd_char == '\r'
  1007. || ((sd_char == '#' || sd_char == ':') && !sd_comment_mode)
  1008. ) {
  1009. if (card_eof) {
  1010. SERIAL_PROTOCOLLNPGM(MSG_FILE_PRINTED);
  1011. card.printingHasFinished();
  1012. card.checkautostart(true);
  1013. }
  1014. else if (n == -1) {
  1015. SERIAL_ERROR_START;
  1016. SERIAL_ECHOLNPGM(MSG_SD_ERR_READ);
  1017. }
  1018. if (sd_char == '#') stop_buffering = true;
  1019. sd_comment_mode = false; //for new command
  1020. if (!sd_count) continue; //skip empty lines
  1021. command_queue[cmd_queue_index_w][sd_count] = '\0'; //terminate string
  1022. sd_count = 0; //clear buffer
  1023. _commit_command(false);
  1024. }
  1025. else if (sd_count >= MAX_CMD_SIZE - 1) {
  1026. /**
  1027. * Keep fetching, but ignore normal characters beyond the max length
  1028. * The command will be injected when EOL is reached
  1029. */
  1030. }
  1031. else {
  1032. if (sd_char == ';') sd_comment_mode = true;
  1033. if (!sd_comment_mode) command_queue[cmd_queue_index_w][sd_count++] = sd_char;
  1034. }
  1035. }
  1036. }
  1037. #endif // SDSUPPORT
  1038. /**
  1039. * Add to the circular command queue the next command from:
  1040. * - The command-injection queue (queued_commands_P)
  1041. * - The active serial input (usually USB)
  1042. * - The SD card file being actively printed
  1043. */
  1044. void get_available_commands() {
  1045. // if any immediate commands remain, don't get other commands yet
  1046. if (drain_queued_commands_P()) return;
  1047. get_serial_commands();
  1048. #if ENABLED(SDSUPPORT)
  1049. get_sdcard_commands();
  1050. #endif
  1051. }
  1052. inline bool code_has_value() {
  1053. int i = 1;
  1054. char c = seen_pointer[i];
  1055. while (c == ' ') c = seen_pointer[++i];
  1056. if (c == '-' || c == '+') c = seen_pointer[++i];
  1057. if (c == '.') c = seen_pointer[++i];
  1058. return NUMERIC(c);
  1059. }
  1060. inline float code_value_float() {
  1061. float ret;
  1062. char* e = strchr(seen_pointer, 'E');
  1063. if (e) {
  1064. *e = 0;
  1065. ret = strtod(seen_pointer + 1, NULL);
  1066. *e = 'E';
  1067. }
  1068. else
  1069. ret = strtod(seen_pointer + 1, NULL);
  1070. return ret;
  1071. }
  1072. inline unsigned long code_value_ulong() { return strtoul(seen_pointer + 1, NULL, 10); }
  1073. inline long code_value_long() { return strtol(seen_pointer + 1, NULL, 10); }
  1074. inline int code_value_int() { return (int)strtol(seen_pointer + 1, NULL, 10); }
  1075. inline uint16_t code_value_ushort() { return (uint16_t)strtoul(seen_pointer + 1, NULL, 10); }
  1076. inline uint8_t code_value_byte() { return (uint8_t)(constrain(strtol(seen_pointer + 1, NULL, 10), 0, 255)); }
  1077. inline bool code_value_bool() { return code_value_byte() > 0; }
  1078. #if ENABLED(INCH_MODE_SUPPORT)
  1079. inline void set_input_linear_units(LinearUnit units) {
  1080. switch (units) {
  1081. case LINEARUNIT_INCH:
  1082. linear_unit_factor = 25.4;
  1083. break;
  1084. case LINEARUNIT_MM:
  1085. default:
  1086. linear_unit_factor = 1.0;
  1087. break;
  1088. }
  1089. volumetric_unit_factor = pow(linear_unit_factor, 3.0);
  1090. }
  1091. inline float axis_unit_factor(int axis) {
  1092. return (axis == E_AXIS && volumetric_enabled ? volumetric_unit_factor : linear_unit_factor);
  1093. }
  1094. inline float code_value_linear_units() { return code_value_float() * linear_unit_factor; }
  1095. inline float code_value_axis_units(int axis) { return code_value_float() * axis_unit_factor(axis); }
  1096. inline float code_value_per_axis_unit(int axis) { return code_value_float() / axis_unit_factor(axis); }
  1097. #else
  1098. inline float code_value_linear_units() { return code_value_float(); }
  1099. inline float code_value_axis_units(int axis) { UNUSED(axis); return code_value_float(); }
  1100. inline float code_value_per_axis_unit(int axis) { UNUSED(axis); return code_value_float(); }
  1101. #endif
  1102. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  1103. inline void set_input_temp_units(TempUnit units) { input_temp_units = units; }
  1104. float code_value_temp_abs() {
  1105. switch (input_temp_units) {
  1106. case TEMPUNIT_C:
  1107. return code_value_float();
  1108. case TEMPUNIT_F:
  1109. return (code_value_float() - 32) / 1.8;
  1110. case TEMPUNIT_K:
  1111. return code_value_float() - 272.15;
  1112. default:
  1113. return code_value_float();
  1114. }
  1115. }
  1116. float code_value_temp_diff() {
  1117. switch (input_temp_units) {
  1118. case TEMPUNIT_C:
  1119. case TEMPUNIT_K:
  1120. return code_value_float();
  1121. case TEMPUNIT_F:
  1122. return code_value_float() / 1.8;
  1123. default:
  1124. return code_value_float();
  1125. }
  1126. }
  1127. #else
  1128. float code_value_temp_abs() { return code_value_float(); }
  1129. float code_value_temp_diff() { return code_value_float(); }
  1130. #endif
  1131. FORCE_INLINE millis_t code_value_millis() { return code_value_ulong(); }
  1132. inline millis_t code_value_millis_from_seconds() { return code_value_float() * 1000; }
  1133. bool code_seen(char code) {
  1134. seen_pointer = strchr(current_command_args, code);
  1135. return (seen_pointer != NULL); // Return TRUE if the code-letter was found
  1136. }
  1137. /**
  1138. * Set target_extruder from the T parameter or the active_extruder
  1139. *
  1140. * Returns TRUE if the target is invalid
  1141. */
  1142. bool get_target_extruder_from_command(int code) {
  1143. if (code_seen('T')) {
  1144. if (code_value_byte() >= EXTRUDERS) {
  1145. SERIAL_ECHO_START;
  1146. SERIAL_CHAR('M');
  1147. SERIAL_ECHO(code);
  1148. SERIAL_ECHOPAIR(" " MSG_INVALID_EXTRUDER " ", code_value_byte());
  1149. SERIAL_EOL;
  1150. return true;
  1151. }
  1152. target_extruder = code_value_byte();
  1153. }
  1154. else
  1155. target_extruder = active_extruder;
  1156. return false;
  1157. }
  1158. #define DEFINE_PGM_READ_ANY(type, reader) \
  1159. static inline type pgm_read_any(const type *p) \
  1160. { return pgm_read_##reader##_near(p); }
  1161. DEFINE_PGM_READ_ANY(float, float);
  1162. DEFINE_PGM_READ_ANY(signed char, byte);
  1163. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  1164. static const PROGMEM type array##_P[3] = \
  1165. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  1166. static inline type array(int axis) \
  1167. { return pgm_read_any(&array##_P[axis]); }
  1168. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  1169. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  1170. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  1171. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  1172. XYZ_CONSTS_FROM_CONFIG(float, home_bump_mm, HOME_BUMP_MM);
  1173. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  1174. #if ENABLED(DUAL_X_CARRIAGE)
  1175. #define DXC_FULL_CONTROL_MODE 0
  1176. #define DXC_AUTO_PARK_MODE 1
  1177. #define DXC_DUPLICATION_MODE 2
  1178. static int dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  1179. static float x_home_pos(int extruder) {
  1180. if (extruder == 0)
  1181. return base_home_pos(X_AXIS) + home_offset[X_AXIS];
  1182. else
  1183. /**
  1184. * In dual carriage mode the extruder offset provides an override of the
  1185. * second X-carriage offset when homed - otherwise X2_HOME_POS is used.
  1186. * This allow soft recalibration of the second extruder offset position
  1187. * without firmware reflash (through the M218 command).
  1188. */
  1189. return (hotend_offset[X_AXIS][1] > 0) ? hotend_offset[X_AXIS][1] : X2_HOME_POS;
  1190. }
  1191. static int x_home_dir(int extruder) {
  1192. return (extruder == 0) ? X_HOME_DIR : X2_HOME_DIR;
  1193. }
  1194. static float inactive_extruder_x_pos = X2_MAX_POS; // used in mode 0 & 1
  1195. static bool active_extruder_parked = false; // used in mode 1 & 2
  1196. static float raised_parked_position[NUM_AXIS]; // used in mode 1
  1197. static millis_t delayed_move_time = 0; // used in mode 1
  1198. static float duplicate_extruder_x_offset = DEFAULT_DUPLICATION_X_OFFSET; // used in mode 2
  1199. static float duplicate_extruder_temp_offset = 0; // used in mode 2
  1200. bool extruder_duplication_enabled = false; // used in mode 2
  1201. #endif //DUAL_X_CARRIAGE
  1202. /**
  1203. * Software endstops can be used to monitor the open end of
  1204. * an axis that has a hardware endstop on the other end. Or
  1205. * they can prevent axes from moving past endstops and grinding.
  1206. *
  1207. * To keep doing their job as the coordinate system changes,
  1208. * the software endstop positions must be refreshed to remain
  1209. * at the same positions relative to the machine.
  1210. */
  1211. static void update_software_endstops(AxisEnum axis) {
  1212. float offs = home_offset[axis] + position_shift[axis];
  1213. #if ENABLED(DUAL_X_CARRIAGE)
  1214. if (axis == X_AXIS) {
  1215. float dual_max_x = max(hotend_offset[X_AXIS][1], X2_MAX_POS);
  1216. if (active_extruder != 0) {
  1217. sw_endstop_min[X_AXIS] = X2_MIN_POS + offs;
  1218. sw_endstop_max[X_AXIS] = dual_max_x + offs;
  1219. return;
  1220. }
  1221. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE) {
  1222. sw_endstop_min[X_AXIS] = base_min_pos(X_AXIS) + offs;
  1223. sw_endstop_max[X_AXIS] = min(base_max_pos(X_AXIS), dual_max_x - duplicate_extruder_x_offset) + offs;
  1224. return;
  1225. }
  1226. }
  1227. else
  1228. #endif
  1229. {
  1230. sw_endstop_min[axis] = base_min_pos(axis) + offs;
  1231. sw_endstop_max[axis] = base_max_pos(axis) + offs;
  1232. }
  1233. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1234. if (DEBUGGING(LEVELING)) {
  1235. SERIAL_ECHOPAIR("For ", axis_codes[axis]);
  1236. SERIAL_ECHOPAIR(" axis:\n home_offset = ", home_offset[axis]);
  1237. SERIAL_ECHOPAIR("\n position_shift = ", position_shift[axis]);
  1238. SERIAL_ECHOPAIR("\n sw_endstop_min = ", sw_endstop_min[axis]);
  1239. SERIAL_ECHOPAIR("\n sw_endstop_max = ", sw_endstop_max[axis]);
  1240. SERIAL_EOL;
  1241. }
  1242. #endif
  1243. #if ENABLED(DELTA)
  1244. if (axis == Z_AXIS) {
  1245. delta_clip_start_height = sw_endstop_max[axis] - delta_safe_distance_from_top();
  1246. }
  1247. #endif
  1248. }
  1249. /**
  1250. * Change the home offset for an axis, update the current
  1251. * position and the software endstops to retain the same
  1252. * relative distance to the new home.
  1253. *
  1254. * Since this changes the current_position, code should
  1255. * call sync_plan_position soon after this.
  1256. */
  1257. static void set_home_offset(AxisEnum axis, float v) {
  1258. current_position[axis] += v - home_offset[axis];
  1259. home_offset[axis] = v;
  1260. update_software_endstops(axis);
  1261. }
  1262. static void set_axis_is_at_home(AxisEnum axis) {
  1263. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1264. if (DEBUGGING(LEVELING)) {
  1265. SERIAL_ECHOPAIR(">>> set_axis_is_at_home(", axis);
  1266. SERIAL_ECHOLNPGM(")");
  1267. }
  1268. #endif
  1269. position_shift[axis] = 0;
  1270. #if ENABLED(DUAL_X_CARRIAGE)
  1271. if (axis == X_AXIS && (active_extruder != 0 || dual_x_carriage_mode == DXC_DUPLICATION_MODE)) {
  1272. if (active_extruder != 0)
  1273. current_position[X_AXIS] = x_home_pos(active_extruder);
  1274. else
  1275. current_position[X_AXIS] = base_home_pos(X_AXIS) + home_offset[X_AXIS];
  1276. update_software_endstops(X_AXIS);
  1277. return;
  1278. }
  1279. #endif
  1280. #if ENABLED(SCARA)
  1281. if (axis == X_AXIS || axis == Y_AXIS) {
  1282. float homeposition[3];
  1283. for (int i = 0; i < 3; i++) homeposition[i] = base_home_pos(i);
  1284. // SERIAL_ECHOPGM("homeposition[x]= "); SERIAL_ECHO(homeposition[0]);
  1285. // SERIAL_ECHOPGM("homeposition[y]= "); SERIAL_ECHOLN(homeposition[1]);
  1286. /**
  1287. * Works out real Homeposition angles using inverse kinematics,
  1288. * and calculates homing offset using forward kinematics
  1289. */
  1290. calculate_delta(homeposition);
  1291. // SERIAL_ECHOPGM("base Theta= "); SERIAL_ECHO(delta[X_AXIS]);
  1292. // SERIAL_ECHOPGM(" base Psi+Theta="); SERIAL_ECHOLN(delta[Y_AXIS]);
  1293. for (int i = 0; i < 2; i++) delta[i] -= home_offset[i];
  1294. // SERIAL_ECHOPGM("addhome X="); SERIAL_ECHO(home_offset[X_AXIS]);
  1295. // SERIAL_ECHOPGM(" addhome Y="); SERIAL_ECHO(home_offset[Y_AXIS]);
  1296. // SERIAL_ECHOPGM(" addhome Theta="); SERIAL_ECHO(delta[X_AXIS]);
  1297. // SERIAL_ECHOPGM(" addhome Psi+Theta="); SERIAL_ECHOLN(delta[Y_AXIS]);
  1298. calculate_SCARA_forward_Transform(delta);
  1299. // SERIAL_ECHOPGM("Delta X="); SERIAL_ECHO(delta[X_AXIS]);
  1300. // SERIAL_ECHOPGM(" Delta Y="); SERIAL_ECHOLN(delta[Y_AXIS]);
  1301. current_position[axis] = delta[axis];
  1302. /**
  1303. * SCARA home positions are based on configuration since the actual
  1304. * limits are determined by the inverse kinematic transform.
  1305. */
  1306. sw_endstop_min[axis] = base_min_pos(axis); // + (delta[axis] - base_home_pos(axis));
  1307. sw_endstop_max[axis] = base_max_pos(axis); // + (delta[axis] - base_home_pos(axis));
  1308. }
  1309. else
  1310. #endif
  1311. {
  1312. current_position[axis] = base_home_pos(axis) + home_offset[axis];
  1313. update_software_endstops(axis);
  1314. #if HAS_BED_PROBE && Z_HOME_DIR < 0 && DISABLED(Z_MIN_PROBE_ENDSTOP)
  1315. if (axis == Z_AXIS) {
  1316. current_position[Z_AXIS] -= zprobe_zoffset;
  1317. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1318. if (DEBUGGING(LEVELING)) {
  1319. SERIAL_ECHOPAIR("> zprobe_zoffset = ", zprobe_zoffset);
  1320. SERIAL_EOL;
  1321. }
  1322. #endif
  1323. }
  1324. #endif
  1325. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1326. if (DEBUGGING(LEVELING)) {
  1327. SERIAL_ECHOPAIR("> home_offset[", axis_codes[axis]);
  1328. SERIAL_ECHOPAIR("] = ", home_offset[axis]);
  1329. SERIAL_EOL;
  1330. DEBUG_POS("", current_position);
  1331. }
  1332. #endif
  1333. }
  1334. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1335. if (DEBUGGING(LEVELING)) {
  1336. SERIAL_ECHOPAIR("<<< set_axis_is_at_home(", axis);
  1337. SERIAL_ECHOLNPGM(")");
  1338. }
  1339. #endif
  1340. }
  1341. /**
  1342. * Some planner shorthand inline functions
  1343. */
  1344. inline void set_homing_bump_feedrate(AxisEnum axis) {
  1345. const int homing_bump_divisor[] = HOMING_BUMP_DIVISOR;
  1346. int hbd = homing_bump_divisor[axis];
  1347. if (hbd < 1) {
  1348. hbd = 10;
  1349. SERIAL_ECHO_START;
  1350. SERIAL_ECHOLNPGM("Warning: Homing Bump Divisor < 1");
  1351. }
  1352. feedrate = homing_feedrate[axis] / hbd;
  1353. }
  1354. //
  1355. // line_to_current_position
  1356. // Move the planner to the current position from wherever it last moved
  1357. // (or from wherever it has been told it is located).
  1358. //
  1359. inline void line_to_current_position() {
  1360. planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate / 60, active_extruder);
  1361. }
  1362. inline void line_to_z(float zPosition) {
  1363. planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate / 60, active_extruder);
  1364. }
  1365. //
  1366. // line_to_destination
  1367. // Move the planner, not necessarily synced with current_position
  1368. //
  1369. inline void line_to_destination(float mm_m) {
  1370. planner.buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], mm_m / 60, active_extruder);
  1371. }
  1372. inline void line_to_destination() { line_to_destination(feedrate); }
  1373. /**
  1374. * sync_plan_position
  1375. * Set planner / stepper positions to the cartesian current_position.
  1376. * The stepper code translates these coordinates into step units.
  1377. * Allows translation between steps and millimeters for cartesian & core robots
  1378. */
  1379. inline void sync_plan_position() {
  1380. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1381. if (DEBUGGING(LEVELING)) DEBUG_POS("sync_plan_position", current_position);
  1382. #endif
  1383. planner.set_position_mm(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1384. }
  1385. inline void sync_plan_position_e() { planner.set_e_position_mm(current_position[E_AXIS]); }
  1386. inline void set_current_to_destination() { memcpy(current_position, destination, sizeof(current_position)); }
  1387. inline void set_destination_to_current() { memcpy(destination, current_position, sizeof(destination)); }
  1388. //
  1389. // Prepare to do endstop or probe moves
  1390. // with custom feedrates.
  1391. //
  1392. // - Save current feedrates
  1393. // - Reset the rate multiplier
  1394. // - Reset the command timeout
  1395. // - Enable the endstops (for endstop moves)
  1396. //
  1397. static void setup_for_endstop_or_probe_move() {
  1398. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1399. if (DEBUGGING(LEVELING)) DEBUG_POS("setup_for_endstop_or_probe_move", current_position);
  1400. #endif
  1401. saved_feedrate = feedrate;
  1402. saved_feedrate_multiplier = feedrate_multiplier;
  1403. feedrate_multiplier = 100;
  1404. refresh_cmd_timeout();
  1405. }
  1406. static void clean_up_after_endstop_or_probe_move() {
  1407. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1408. if (DEBUGGING(LEVELING)) DEBUG_POS("clean_up_after_endstop_or_probe_move", current_position);
  1409. #endif
  1410. feedrate = saved_feedrate;
  1411. feedrate_multiplier = saved_feedrate_multiplier;
  1412. refresh_cmd_timeout();
  1413. }
  1414. #if ENABLED(DELTA)
  1415. /**
  1416. * Calculate delta, start a line, and set current_position to destination
  1417. */
  1418. void prepare_move_to_destination_raw() {
  1419. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1420. if (DEBUGGING(LEVELING)) DEBUG_POS("prepare_move_to_destination_raw", destination);
  1421. #endif
  1422. refresh_cmd_timeout();
  1423. calculate_delta(destination);
  1424. planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], destination[E_AXIS], (feedrate / 60) * (feedrate_multiplier / 100.0), active_extruder);
  1425. set_current_to_destination();
  1426. }
  1427. #endif
  1428. /**
  1429. * Plan a move to (X, Y, Z) and set the current_position
  1430. * The final current_position may not be the one that was requested
  1431. */
  1432. static void do_blocking_move_to(float x, float y, float z, float feed_rate = 0.0) {
  1433. float old_feedrate = feedrate;
  1434. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1435. if (DEBUGGING(LEVELING)) print_xyz(PSTR("do_blocking_move_to"), "", x, y, z);
  1436. #endif
  1437. #if ENABLED(DELTA)
  1438. feedrate = (feed_rate != 0.0) ? feed_rate : XY_PROBE_FEEDRATE;
  1439. destination[X_AXIS] = x;
  1440. destination[Y_AXIS] = y;
  1441. destination[Z_AXIS] = z;
  1442. if (x == current_position[X_AXIS] && y == current_position[Y_AXIS])
  1443. prepare_move_to_destination_raw(); // this will also set_current_to_destination
  1444. else
  1445. prepare_move_to_destination(); // this will also set_current_to_destination
  1446. #else
  1447. // If Z needs to raise, do it before moving XY
  1448. if (current_position[Z_AXIS] < z) {
  1449. feedrate = (feed_rate != 0.0) ? feed_rate : homing_feedrate[Z_AXIS];
  1450. current_position[Z_AXIS] = z;
  1451. line_to_current_position();
  1452. }
  1453. feedrate = (feed_rate != 0.0) ? feed_rate : XY_PROBE_FEEDRATE;
  1454. current_position[X_AXIS] = x;
  1455. current_position[Y_AXIS] = y;
  1456. line_to_current_position();
  1457. // If Z needs to lower, do it after moving XY
  1458. if (current_position[Z_AXIS] > z) {
  1459. feedrate = (feed_rate != 0.0) ? feed_rate : homing_feedrate[Z_AXIS];
  1460. current_position[Z_AXIS] = z;
  1461. line_to_current_position();
  1462. }
  1463. #endif
  1464. stepper.synchronize();
  1465. feedrate = old_feedrate;
  1466. }
  1467. inline void do_blocking_move_to_x(float x, float feed_rate = 0.0) {
  1468. do_blocking_move_to(x, current_position[Y_AXIS], current_position[Z_AXIS], feed_rate);
  1469. }
  1470. inline void do_blocking_move_to_y(float y) {
  1471. do_blocking_move_to(current_position[X_AXIS], y, current_position[Z_AXIS]);
  1472. }
  1473. inline void do_blocking_move_to_z(float z, float feed_rate = 0.0) {
  1474. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z, feed_rate);
  1475. }
  1476. #if HAS_BED_PROBE
  1477. /**
  1478. * Raise Z to a minimum height to make room for a probe to move
  1479. */
  1480. inline void do_probe_raise(float z_raise) {
  1481. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1482. if (DEBUGGING(LEVELING)) {
  1483. SERIAL_ECHOPAIR("do_probe_raise(", z_raise);
  1484. SERIAL_ECHOLNPGM(")");
  1485. }
  1486. #endif
  1487. float z_dest = home_offset[Z_AXIS] + z_raise;
  1488. if (zprobe_zoffset < 0)
  1489. z_dest -= zprobe_zoffset;
  1490. if (z_dest > current_position[Z_AXIS])
  1491. do_blocking_move_to_z(z_dest);
  1492. }
  1493. #endif //HAS_BED_PROBE
  1494. #if ENABLED(Z_PROBE_ALLEN_KEY) || ENABLED(Z_PROBE_SLED) || ENABLED(Z_SAFE_HOMING) || HAS_PROBING_PROCEDURE || HOTENDS > 1
  1495. static bool axis_unhomed_error(const bool x, const bool y, const bool z) {
  1496. const bool xx = x && !axis_homed[X_AXIS],
  1497. yy = y && !axis_homed[Y_AXIS],
  1498. zz = z && !axis_homed[Z_AXIS];
  1499. if (xx || yy || zz) {
  1500. SERIAL_ECHO_START;
  1501. SERIAL_ECHOPGM(MSG_HOME " ");
  1502. if (xx) SERIAL_ECHOPGM(MSG_X);
  1503. if (yy) SERIAL_ECHOPGM(MSG_Y);
  1504. if (zz) SERIAL_ECHOPGM(MSG_Z);
  1505. SERIAL_ECHOLNPGM(" " MSG_FIRST);
  1506. #if ENABLED(ULTRA_LCD)
  1507. char message[3 * (LCD_WIDTH) + 1] = ""; // worst case is kana.utf with up to 3*LCD_WIDTH+1
  1508. strcat_P(message, PSTR(MSG_HOME " "));
  1509. if (xx) strcat_P(message, PSTR(MSG_X));
  1510. if (yy) strcat_P(message, PSTR(MSG_Y));
  1511. if (zz) strcat_P(message, PSTR(MSG_Z));
  1512. strcat_P(message, PSTR(" " MSG_FIRST));
  1513. lcd_setstatus(message);
  1514. #endif
  1515. return true;
  1516. }
  1517. return false;
  1518. }
  1519. #endif
  1520. #if ENABLED(Z_PROBE_SLED)
  1521. #ifndef SLED_DOCKING_OFFSET
  1522. #define SLED_DOCKING_OFFSET 0
  1523. #endif
  1524. /**
  1525. * Method to dock/undock a sled designed by Charles Bell.
  1526. *
  1527. * stow[in] If false, move to MAX_X and engage the solenoid
  1528. * If true, move to MAX_X and release the solenoid
  1529. */
  1530. static void dock_sled(bool stow) {
  1531. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1532. if (DEBUGGING(LEVELING)) {
  1533. SERIAL_ECHOPAIR("dock_sled(", stow);
  1534. SERIAL_ECHOLNPGM(")");
  1535. }
  1536. #endif
  1537. // Dock sled a bit closer to ensure proper capturing
  1538. do_blocking_move_to_x(X_MAX_POS + SLED_DOCKING_OFFSET - ((stow) ? 1 : 0));
  1539. digitalWrite(SLED_PIN, !stow); // switch solenoid
  1540. }
  1541. #endif // Z_PROBE_SLED
  1542. #if ENABLED(Z_PROBE_ALLEN_KEY)
  1543. void run_deploy_moves_script() {
  1544. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_1_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_1_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_1_Z)
  1545. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_X
  1546. #define Z_PROBE_ALLEN_KEY_DEPLOY_1_X current_position[X_AXIS]
  1547. #endif
  1548. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_Y
  1549. #define Z_PROBE_ALLEN_KEY_DEPLOY_1_Y current_position[Y_AXIS]
  1550. #endif
  1551. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_Z
  1552. #define Z_PROBE_ALLEN_KEY_DEPLOY_1_Z current_position[Z_AXIS]
  1553. #endif
  1554. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE
  1555. #define Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE 0.0
  1556. #endif
  1557. do_blocking_move_to(Z_PROBE_ALLEN_KEY_DEPLOY_1_X, Z_PROBE_ALLEN_KEY_DEPLOY_1_Y, Z_PROBE_ALLEN_KEY_DEPLOY_1_Z, Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE);
  1558. #endif
  1559. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_2_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_2_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_2_Z)
  1560. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_X
  1561. #define Z_PROBE_ALLEN_KEY_DEPLOY_2_X current_position[X_AXIS]
  1562. #endif
  1563. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_Y
  1564. #define Z_PROBE_ALLEN_KEY_DEPLOY_2_Y current_position[Y_AXIS]
  1565. #endif
  1566. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_Z
  1567. #define Z_PROBE_ALLEN_KEY_DEPLOY_2_Z current_position[Z_AXIS]
  1568. #endif
  1569. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE
  1570. #define Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE 0.0
  1571. #endif
  1572. do_blocking_move_to(Z_PROBE_ALLEN_KEY_DEPLOY_2_X, Z_PROBE_ALLEN_KEY_DEPLOY_2_Y, Z_PROBE_ALLEN_KEY_DEPLOY_2_Z, Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE);
  1573. #endif
  1574. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_3_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_3_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_3_Z)
  1575. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_X
  1576. #define Z_PROBE_ALLEN_KEY_DEPLOY_3_X current_position[X_AXIS]
  1577. #endif
  1578. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_Y
  1579. #define Z_PROBE_ALLEN_KEY_DEPLOY_3_Y current_position[Y_AXIS]
  1580. #endif
  1581. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_Z
  1582. #define Z_PROBE_ALLEN_KEY_DEPLOY_3_Z current_position[Z_AXIS]
  1583. #endif
  1584. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE
  1585. #define Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE 0.0
  1586. #endif
  1587. do_blocking_move_to(Z_PROBE_ALLEN_KEY_DEPLOY_3_X, Z_PROBE_ALLEN_KEY_DEPLOY_3_Y, Z_PROBE_ALLEN_KEY_DEPLOY_3_Z, Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE);
  1588. #endif
  1589. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_4_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_4_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_4_Z)
  1590. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_X
  1591. #define Z_PROBE_ALLEN_KEY_DEPLOY_4_X current_position[X_AXIS]
  1592. #endif
  1593. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_Y
  1594. #define Z_PROBE_ALLEN_KEY_DEPLOY_4_Y current_position[Y_AXIS]
  1595. #endif
  1596. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_Z
  1597. #define Z_PROBE_ALLEN_KEY_DEPLOY_4_Z current_position[Z_AXIS]
  1598. #endif
  1599. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_FEEDRATE
  1600. #define Z_PROBE_ALLEN_KEY_DEPLOY_4_FEEDRATE 0.0
  1601. #endif
  1602. do_blocking_move_to(Z_PROBE_ALLEN_KEY_DEPLOY_4_X, Z_PROBE_ALLEN_KEY_DEPLOY_4_Y, Z_PROBE_ALLEN_KEY_DEPLOY_4_Z, Z_PROBE_ALLEN_KEY_DEPLOY_4_FEEDRATE);
  1603. #endif
  1604. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_5_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_5_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_5_Z)
  1605. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_X
  1606. #define Z_PROBE_ALLEN_KEY_DEPLOY_5_X current_position[X_AXIS]
  1607. #endif
  1608. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_Y
  1609. #define Z_PROBE_ALLEN_KEY_DEPLOY_5_Y current_position[Y_AXIS]
  1610. #endif
  1611. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_Z
  1612. #define Z_PROBE_ALLEN_KEY_DEPLOY_5_Z current_position[Z_AXIS]
  1613. #endif
  1614. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_FEEDRATE
  1615. #define Z_PROBE_ALLEN_KEY_DEPLOY_5_FEEDRATE 0.0
  1616. #endif
  1617. do_blocking_move_to(Z_PROBE_ALLEN_KEY_DEPLOY_5_X, Z_PROBE_ALLEN_KEY_DEPLOY_5_Y, Z_PROBE_ALLEN_KEY_DEPLOY_5_Z, Z_PROBE_ALLEN_KEY_DEPLOY_5_FEEDRATE);
  1618. #endif
  1619. }
  1620. void run_stow_moves_script() {
  1621. #if defined(Z_PROBE_ALLEN_KEY_STOW_1_X) || defined(Z_PROBE_ALLEN_KEY_STOW_1_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_1_Z)
  1622. #ifndef Z_PROBE_ALLEN_KEY_STOW_1_X
  1623. #define Z_PROBE_ALLEN_KEY_STOW_1_X current_position[X_AXIS]
  1624. #endif
  1625. #ifndef Z_PROBE_ALLEN_KEY_STOW_1_Y
  1626. #define Z_PROBE_ALLEN_KEY_STOW_1_Y current_position[Y_AXIS]
  1627. #endif
  1628. #ifndef Z_PROBE_ALLEN_KEY_STOW_1_Z
  1629. #define Z_PROBE_ALLEN_KEY_STOW_1_Z current_position[Z_AXIS]
  1630. #endif
  1631. #ifndef Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE
  1632. #define Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE 0.0
  1633. #endif
  1634. do_blocking_move_to(Z_PROBE_ALLEN_KEY_STOW_1_X, Z_PROBE_ALLEN_KEY_STOW_1_Y, Z_PROBE_ALLEN_KEY_STOW_1_Z, Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE);
  1635. #endif
  1636. #if defined(Z_PROBE_ALLEN_KEY_STOW_2_X) || defined(Z_PROBE_ALLEN_KEY_STOW_2_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_2_Z)
  1637. #ifndef Z_PROBE_ALLEN_KEY_STOW_2_X
  1638. #define Z_PROBE_ALLEN_KEY_STOW_2_X current_position[X_AXIS]
  1639. #endif
  1640. #ifndef Z_PROBE_ALLEN_KEY_STOW_2_Y
  1641. #define Z_PROBE_ALLEN_KEY_STOW_2_Y current_position[Y_AXIS]
  1642. #endif
  1643. #ifndef Z_PROBE_ALLEN_KEY_STOW_2_Z
  1644. #define Z_PROBE_ALLEN_KEY_STOW_2_Z current_position[Z_AXIS]
  1645. #endif
  1646. #ifndef Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE
  1647. #define Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE 0.0
  1648. #endif
  1649. do_blocking_move_to(Z_PROBE_ALLEN_KEY_STOW_2_X, Z_PROBE_ALLEN_KEY_STOW_2_Y, Z_PROBE_ALLEN_KEY_STOW_2_Z, Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE);
  1650. #endif
  1651. #if defined(Z_PROBE_ALLEN_KEY_STOW_3_X) || defined(Z_PROBE_ALLEN_KEY_STOW_3_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_3_Z)
  1652. #ifndef Z_PROBE_ALLEN_KEY_STOW_3_X
  1653. #define Z_PROBE_ALLEN_KEY_STOW_3_X current_position[X_AXIS]
  1654. #endif
  1655. #ifndef Z_PROBE_ALLEN_KEY_STOW_3_Y
  1656. #define Z_PROBE_ALLEN_KEY_STOW_3_Y current_position[Y_AXIS]
  1657. #endif
  1658. #ifndef Z_PROBE_ALLEN_KEY_STOW_3_Z
  1659. #define Z_PROBE_ALLEN_KEY_STOW_3_Z current_position[Z_AXIS]
  1660. #endif
  1661. #ifndef Z_PROBE_ALLEN_KEY_STOW_3_FEEDRATE
  1662. #define Z_PROBE_ALLEN_KEY_STOW_3_FEEDRATE 0.0
  1663. #endif
  1664. do_blocking_move_to(Z_PROBE_ALLEN_KEY_STOW_3_X, Z_PROBE_ALLEN_KEY_STOW_3_Y, Z_PROBE_ALLEN_KEY_STOW_3_Z, Z_PROBE_ALLEN_KEY_STOW_3_FEEDRATE);
  1665. #endif
  1666. #if defined(Z_PROBE_ALLEN_KEY_STOW_4_X) || defined(Z_PROBE_ALLEN_KEY_STOW_4_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_4_Z)
  1667. #ifndef Z_PROBE_ALLEN_KEY_STOW_4_X
  1668. #define Z_PROBE_ALLEN_KEY_STOW_4_X current_position[X_AXIS]
  1669. #endif
  1670. #ifndef Z_PROBE_ALLEN_KEY_STOW_4_Y
  1671. #define Z_PROBE_ALLEN_KEY_STOW_4_Y current_position[Y_AXIS]
  1672. #endif
  1673. #ifndef Z_PROBE_ALLEN_KEY_STOW_4_Z
  1674. #define Z_PROBE_ALLEN_KEY_STOW_4_Z current_position[Z_AXIS]
  1675. #endif
  1676. #ifndef Z_PROBE_ALLEN_KEY_STOW_4_FEEDRATE
  1677. #define Z_PROBE_ALLEN_KEY_STOW_4_FEEDRATE 0.0
  1678. #endif
  1679. do_blocking_move_to(Z_PROBE_ALLEN_KEY_STOW_4_X, Z_PROBE_ALLEN_KEY_STOW_4_Y, Z_PROBE_ALLEN_KEY_STOW_4_Z, Z_PROBE_ALLEN_KEY_STOW_4_FEEDRATE);
  1680. #endif
  1681. #if defined(Z_PROBE_ALLEN_KEY_STOW_5_X) || defined(Z_PROBE_ALLEN_KEY_STOW_5_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_5_Z)
  1682. #ifndef Z_PROBE_ALLEN_KEY_STOW_5_X
  1683. #define Z_PROBE_ALLEN_KEY_STOW_5_X current_position[X_AXIS]
  1684. #endif
  1685. #ifndef Z_PROBE_ALLEN_KEY_STOW_5_Y
  1686. #define Z_PROBE_ALLEN_KEY_STOW_5_Y current_position[Y_AXIS]
  1687. #endif
  1688. #ifndef Z_PROBE_ALLEN_KEY_STOW_5_Z
  1689. #define Z_PROBE_ALLEN_KEY_STOW_5_Z current_position[Z_AXIS]
  1690. #endif
  1691. #ifndef Z_PROBE_ALLEN_KEY_STOW_5_FEEDRATE
  1692. #define Z_PROBE_ALLEN_KEY_STOW_5_FEEDRATE 0.0
  1693. #endif
  1694. do_blocking_move_to(Z_PROBE_ALLEN_KEY_STOW_5_X, Z_PROBE_ALLEN_KEY_STOW_5_Y, Z_PROBE_ALLEN_KEY_STOW_5_Z, Z_PROBE_ALLEN_KEY_STOW_5_FEEDRATE);
  1695. #endif
  1696. }
  1697. #endif
  1698. #if HAS_BED_PROBE
  1699. // TRIGGERED_WHEN_STOWED_TEST can easily be extended to servo probes, ... if needed.
  1700. #if ENABLED(PROBE_IS_TRIGGERED_WHEN_STOWED_TEST)
  1701. #if ENABLED(Z_MIN_PROBE_ENDSTOP)
  1702. #define _TRIGGERED_WHEN_STOWED_TEST (READ(Z_MIN_PROBE_PIN) != Z_MIN_PROBE_ENDSTOP_INVERTING)
  1703. #else
  1704. #define _TRIGGERED_WHEN_STOWED_TEST (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING)
  1705. #endif
  1706. #endif
  1707. #define DEPLOY_PROBE() set_probe_deployed( true )
  1708. #define STOW_PROBE() set_probe_deployed( false )
  1709. // returns false for ok and true for failure
  1710. static bool set_probe_deployed(bool deploy) {
  1711. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1712. if (DEBUGGING(LEVELING)) {
  1713. DEBUG_POS("set_probe_deployed", current_position);
  1714. SERIAL_ECHOPAIR("deploy: ", deploy);
  1715. }
  1716. #endif
  1717. if (endstops.z_probe_enabled == deploy) return false;
  1718. // Make room for probe
  1719. do_probe_raise(_Z_RAISE_PROBE_DEPLOY_STOW);
  1720. #if ENABLED(Z_PROBE_SLED)
  1721. if (axis_unhomed_error(true, false, false)) { stop(); return true; }
  1722. #elif ENABLED(Z_PROBE_ALLEN_KEY)
  1723. if (axis_unhomed_error(true, true, true )) { stop(); return true; }
  1724. #endif
  1725. float oldXpos = current_position[X_AXIS]; // save x position
  1726. float oldYpos = current_position[Y_AXIS]; // save y position
  1727. #ifdef _TRIGGERED_WHEN_STOWED_TEST
  1728. // If endstop is already false, the Z probe is deployed
  1729. if (_TRIGGERED_WHEN_STOWED_TEST == deploy) { // closed after the probe specific actions.
  1730. // Would a goto be less ugly?
  1731. //while (!_TRIGGERED_WHEN_STOWED_TEST) { idle(); // would offer the opportunity
  1732. // for a triggered when stowed manual probe.
  1733. #endif
  1734. #if ENABLED(Z_PROBE_SLED)
  1735. dock_sled(!deploy);
  1736. #elif HAS_Z_SERVO_ENDSTOP
  1737. servo[Z_ENDSTOP_SERVO_NR].move(z_servo_angle[((deploy) ? 0 : 1)]);
  1738. #elif ENABLED(Z_PROBE_ALLEN_KEY)
  1739. if (!deploy) run_stow_moves_script();
  1740. else run_deploy_moves_script();
  1741. #else
  1742. // Nothing to be done. Just enable_z_probe below...
  1743. #endif
  1744. #ifdef _TRIGGERED_WHEN_STOWED_TEST
  1745. }; // opened before the probe specific actions
  1746. if (_TRIGGERED_WHEN_STOWED_TEST == deploy) {
  1747. if (IsRunning()) {
  1748. SERIAL_ERROR_START;
  1749. SERIAL_ERRORLNPGM("Z-Probe failed");
  1750. LCD_ALERTMESSAGEPGM("Err: ZPROBE");
  1751. }
  1752. stop();
  1753. return true;
  1754. }
  1755. #endif
  1756. do_blocking_move_to(oldXpos, oldYpos, current_position[Z_AXIS]); // return to position before deploy
  1757. endstops.enable_z_probe( deploy );
  1758. return false;
  1759. }
  1760. // Do a single Z probe and return with current_position[Z_AXIS]
  1761. // at the height where the probe triggered.
  1762. static float run_z_probe() {
  1763. float old_feedrate = feedrate;
  1764. // Prevent stepper_inactive_time from running out and EXTRUDER_RUNOUT_PREVENT from extruding
  1765. refresh_cmd_timeout();
  1766. #if ENABLED(DELTA)
  1767. float start_z = current_position[Z_AXIS];
  1768. long start_steps = stepper.position(Z_AXIS);
  1769. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1770. if (DEBUGGING(LEVELING)) DEBUG_POS("run_z_probe (DELTA) 1", current_position);
  1771. #endif
  1772. // move down slowly until you find the bed
  1773. feedrate = homing_feedrate[Z_AXIS] / 4;
  1774. destination[Z_AXIS] = -10;
  1775. prepare_move_to_destination_raw(); // this will also set_current_to_destination
  1776. stepper.synchronize();
  1777. endstops.hit_on_purpose(); // clear endstop hit flags
  1778. /**
  1779. * We have to let the planner know where we are right now as it
  1780. * is not where we said to go.
  1781. */
  1782. long stop_steps = stepper.position(Z_AXIS);
  1783. float mm = start_z - float(start_steps - stop_steps) / planner.axis_steps_per_mm[Z_AXIS];
  1784. current_position[Z_AXIS] = mm;
  1785. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1786. if (DEBUGGING(LEVELING)) DEBUG_POS("run_z_probe (DELTA) 2", current_position);
  1787. #endif
  1788. #else // !DELTA
  1789. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  1790. planner.bed_level_matrix.set_to_identity();
  1791. #endif
  1792. feedrate = homing_feedrate[Z_AXIS];
  1793. // Move down until the Z probe (or endstop?) is triggered
  1794. float zPosition = -(Z_MAX_LENGTH + 10);
  1795. line_to_z(zPosition);
  1796. stepper.synchronize();
  1797. // Tell the planner where we ended up - Get this from the stepper handler
  1798. zPosition = stepper.get_axis_position_mm(Z_AXIS);
  1799. planner.set_position_mm(
  1800. current_position[X_AXIS], current_position[Y_AXIS], zPosition,
  1801. current_position[E_AXIS]
  1802. );
  1803. // move up the retract distance
  1804. zPosition += home_bump_mm(Z_AXIS);
  1805. line_to_z(zPosition);
  1806. stepper.synchronize();
  1807. endstops.hit_on_purpose(); // clear endstop hit flags
  1808. // move back down slowly to find bed
  1809. set_homing_bump_feedrate(Z_AXIS);
  1810. zPosition -= home_bump_mm(Z_AXIS) * 2;
  1811. line_to_z(zPosition);
  1812. stepper.synchronize();
  1813. endstops.hit_on_purpose(); // clear endstop hit flags
  1814. // Get the current stepper position after bumping an endstop
  1815. current_position[Z_AXIS] = stepper.get_axis_position_mm(Z_AXIS);
  1816. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1817. if (DEBUGGING(LEVELING)) DEBUG_POS("run_z_probe", current_position);
  1818. #endif
  1819. #endif // !DELTA
  1820. SYNC_PLAN_POSITION_KINEMATIC();
  1821. feedrate = old_feedrate;
  1822. return current_position[Z_AXIS];
  1823. }
  1824. inline void do_blocking_move_to_xy(float x, float y, float feed_rate = 0.0) {
  1825. do_blocking_move_to(x, y, current_position[Z_AXIS], feed_rate);
  1826. }
  1827. //
  1828. // - Move to the given XY
  1829. // - Deploy the probe, if not already deployed
  1830. // - Probe the bed, get the Z position
  1831. // - Depending on the 'stow' flag
  1832. // - Stow the probe, or
  1833. // - Raise to the BETWEEN height
  1834. // - Return the probed Z position
  1835. //
  1836. static float probe_pt(float x, float y, bool stow = true, int verbose_level = 1) {
  1837. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1838. if (DEBUGGING(LEVELING)) {
  1839. SERIAL_ECHOPAIR(">>> probe_pt(", x);
  1840. SERIAL_ECHOPAIR(", ", y);
  1841. SERIAL_ECHOPAIR(", ", stow ? "stow" : "no stow");
  1842. SERIAL_ECHOLNPGM(")");
  1843. DEBUG_POS("", current_position);
  1844. }
  1845. #endif
  1846. float old_feedrate = feedrate;
  1847. // Ensure a minimum height before moving the probe
  1848. do_probe_raise(Z_RAISE_BETWEEN_PROBINGS);
  1849. // Move to the XY where we shall probe
  1850. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1851. if (DEBUGGING(LEVELING)) {
  1852. SERIAL_ECHOPAIR("> do_blocking_move_to_xy(", x - (X_PROBE_OFFSET_FROM_EXTRUDER));
  1853. SERIAL_ECHOPAIR(", ", y - (Y_PROBE_OFFSET_FROM_EXTRUDER));
  1854. SERIAL_ECHOLNPGM(")");
  1855. }
  1856. #endif
  1857. feedrate = XY_PROBE_FEEDRATE;
  1858. do_blocking_move_to_xy(x - (X_PROBE_OFFSET_FROM_EXTRUDER), y - (Y_PROBE_OFFSET_FROM_EXTRUDER));
  1859. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1860. if (DEBUGGING(LEVELING)) SERIAL_ECHOPGM("> ");
  1861. #endif
  1862. if (DEPLOY_PROBE()) return NAN;
  1863. float measured_z = run_z_probe();
  1864. if (stow) {
  1865. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1866. if (DEBUGGING(LEVELING)) SERIAL_ECHOPGM("> ");
  1867. #endif
  1868. if (STOW_PROBE()) return NAN;
  1869. }
  1870. else {
  1871. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1872. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> do_probe_raise");
  1873. #endif
  1874. do_probe_raise(Z_RAISE_BETWEEN_PROBINGS);
  1875. }
  1876. if (verbose_level > 2) {
  1877. SERIAL_PROTOCOLPGM("Bed X: ");
  1878. SERIAL_PROTOCOL_F(x, 3);
  1879. SERIAL_PROTOCOLPGM(" Y: ");
  1880. SERIAL_PROTOCOL_F(y, 3);
  1881. SERIAL_PROTOCOLPGM(" Z: ");
  1882. SERIAL_PROTOCOL_F(measured_z, 3);
  1883. SERIAL_EOL;
  1884. }
  1885. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1886. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< probe_pt");
  1887. #endif
  1888. feedrate = old_feedrate;
  1889. return measured_z;
  1890. }
  1891. #endif // HAS_BED_PROBE
  1892. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  1893. #if ENABLED(AUTO_BED_LEVELING_GRID)
  1894. #if DISABLED(DELTA)
  1895. static void set_bed_level_equation_lsq(double* plane_equation_coefficients) {
  1896. //planner.bed_level_matrix.debug("bed level before");
  1897. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1898. planner.bed_level_matrix.set_to_identity();
  1899. if (DEBUGGING(LEVELING)) {
  1900. vector_3 uncorrected_position = planner.adjusted_position();
  1901. DEBUG_POS(">>> set_bed_level_equation_lsq", uncorrected_position);
  1902. DEBUG_POS(">>> set_bed_level_equation_lsq", current_position);
  1903. }
  1904. #endif
  1905. vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
  1906. planner.bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1907. vector_3 corrected_position = planner.adjusted_position();
  1908. current_position[X_AXIS] = corrected_position.x;
  1909. current_position[Y_AXIS] = corrected_position.y;
  1910. current_position[Z_AXIS] = corrected_position.z;
  1911. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1912. if (DEBUGGING(LEVELING)) DEBUG_POS("<<< set_bed_level_equation_lsq", corrected_position);
  1913. #endif
  1914. SYNC_PLAN_POSITION_KINEMATIC();
  1915. }
  1916. #endif // !DELTA
  1917. #else // !AUTO_BED_LEVELING_GRID
  1918. static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
  1919. planner.bed_level_matrix.set_to_identity();
  1920. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1921. if (DEBUGGING(LEVELING)) {
  1922. vector_3 uncorrected_position = planner.adjusted_position();
  1923. DEBUG_POS("set_bed_level_equation_3pts", uncorrected_position);
  1924. }
  1925. #endif
  1926. vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
  1927. vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
  1928. vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
  1929. vector_3 planeNormal = vector_3::cross(pt1 - pt2, pt3 - pt2).get_normal();
  1930. if (planeNormal.z < 0) {
  1931. planeNormal.x = -planeNormal.x;
  1932. planeNormal.y = -planeNormal.y;
  1933. planeNormal.z = -planeNormal.z;
  1934. }
  1935. planner.bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1936. vector_3 corrected_position = planner.adjusted_position();
  1937. current_position[X_AXIS] = corrected_position.x;
  1938. current_position[Y_AXIS] = corrected_position.y;
  1939. current_position[Z_AXIS] = corrected_position.z;
  1940. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1941. if (DEBUGGING(LEVELING)) DEBUG_POS("set_bed_level_equation_3pts", corrected_position);
  1942. #endif
  1943. SYNC_PLAN_POSITION_KINEMATIC();
  1944. }
  1945. #endif // !AUTO_BED_LEVELING_GRID
  1946. #if ENABLED(DELTA)
  1947. /**
  1948. * All DELTA leveling in the Marlin uses NONLINEAR_BED_LEVELING
  1949. */
  1950. static void extrapolate_one_point(int x, int y, int xdir, int ydir) {
  1951. if (bed_level[x][y] != 0.0) {
  1952. return; // Don't overwrite good values.
  1953. }
  1954. float a = 2 * bed_level[x + xdir][y] - bed_level[x + xdir * 2][y]; // Left to right.
  1955. float b = 2 * bed_level[x][y + ydir] - bed_level[x][y + ydir * 2]; // Front to back.
  1956. float c = 2 * bed_level[x + xdir][y + ydir] - bed_level[x + xdir * 2][y + ydir * 2]; // Diagonal.
  1957. float median = c; // Median is robust (ignores outliers).
  1958. if (a < b) {
  1959. if (b < c) median = b;
  1960. if (c < a) median = a;
  1961. }
  1962. else { // b <= a
  1963. if (c < b) median = b;
  1964. if (a < c) median = a;
  1965. }
  1966. bed_level[x][y] = median;
  1967. }
  1968. /**
  1969. * Fill in the unprobed points (corners of circular print surface)
  1970. * using linear extrapolation, away from the center.
  1971. */
  1972. static void extrapolate_unprobed_bed_level() {
  1973. int half = (AUTO_BED_LEVELING_GRID_POINTS - 1) / 2;
  1974. for (int y = 0; y <= half; y++) {
  1975. for (int x = 0; x <= half; x++) {
  1976. if (x + y < 3) continue;
  1977. extrapolate_one_point(half - x, half - y, x > 1 ? +1 : 0, y > 1 ? +1 : 0);
  1978. extrapolate_one_point(half + x, half - y, x > 1 ? -1 : 0, y > 1 ? +1 : 0);
  1979. extrapolate_one_point(half - x, half + y, x > 1 ? +1 : 0, y > 1 ? -1 : 0);
  1980. extrapolate_one_point(half + x, half + y, x > 1 ? -1 : 0, y > 1 ? -1 : 0);
  1981. }
  1982. }
  1983. }
  1984. /**
  1985. * Print calibration results for plotting or manual frame adjustment.
  1986. */
  1987. static void print_bed_level() {
  1988. for (int y = 0; y < AUTO_BED_LEVELING_GRID_POINTS; y++) {
  1989. for (int x = 0; x < AUTO_BED_LEVELING_GRID_POINTS; x++) {
  1990. SERIAL_PROTOCOL_F(bed_level[x][y], 2);
  1991. SERIAL_PROTOCOLCHAR(' ');
  1992. }
  1993. SERIAL_EOL;
  1994. }
  1995. }
  1996. /**
  1997. * Reset calibration results to zero.
  1998. */
  1999. void reset_bed_level() {
  2000. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2001. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("reset_bed_level");
  2002. #endif
  2003. for (int y = 0; y < AUTO_BED_LEVELING_GRID_POINTS; y++) {
  2004. for (int x = 0; x < AUTO_BED_LEVELING_GRID_POINTS; x++) {
  2005. bed_level[x][y] = 0.0;
  2006. }
  2007. }
  2008. }
  2009. #endif // DELTA
  2010. #endif // AUTO_BED_LEVELING_FEATURE
  2011. /**
  2012. * Home an individual axis
  2013. */
  2014. #define HOMEAXIS(LETTER) homeaxis(LETTER##_AXIS)
  2015. static void homeaxis(AxisEnum axis) {
  2016. #define HOMEAXIS_DO(LETTER) \
  2017. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  2018. if (!(axis == X_AXIS ? HOMEAXIS_DO(X) : axis == Y_AXIS ? HOMEAXIS_DO(Y) : axis == Z_AXIS ? HOMEAXIS_DO(Z) : 0)) return;
  2019. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2020. if (DEBUGGING(LEVELING)) {
  2021. SERIAL_ECHOPAIR(">>> homeaxis(", axis);
  2022. SERIAL_ECHOLNPGM(")");
  2023. }
  2024. #endif
  2025. int axis_home_dir =
  2026. #if ENABLED(DUAL_X_CARRIAGE)
  2027. (axis == X_AXIS) ? x_home_dir(active_extruder) :
  2028. #endif
  2029. home_dir(axis);
  2030. // Homing Z towards the bed? Deploy the Z probe or endstop.
  2031. #if HAS_BED_PROBE && DISABLED(Z_MIN_PROBE_ENDSTOP)
  2032. if (axis == Z_AXIS && axis_home_dir < 0) {
  2033. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2034. if (DEBUGGING(LEVELING)) SERIAL_ECHOPGM("> ");
  2035. #endif
  2036. if (DEPLOY_PROBE()) return;
  2037. }
  2038. #endif
  2039. // Set the axis position as setup for the move
  2040. current_position[axis] = 0;
  2041. sync_plan_position();
  2042. // Set a flag for Z motor locking
  2043. #if ENABLED(Z_DUAL_ENDSTOPS)
  2044. if (axis == Z_AXIS) stepper.set_homing_flag(true);
  2045. #endif
  2046. // Move towards the endstop until an endstop is triggered
  2047. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  2048. feedrate = homing_feedrate[axis];
  2049. line_to_destination();
  2050. stepper.synchronize();
  2051. // Set the axis position as setup for the move
  2052. current_position[axis] = 0;
  2053. sync_plan_position();
  2054. // Move away from the endstop by the axis HOME_BUMP_MM
  2055. destination[axis] = -home_bump_mm(axis) * axis_home_dir;
  2056. line_to_destination();
  2057. stepper.synchronize();
  2058. // Slow down the feedrate for the next move
  2059. set_homing_bump_feedrate(axis);
  2060. // Move slowly towards the endstop until triggered
  2061. destination[axis] = 2 * home_bump_mm(axis) * axis_home_dir;
  2062. line_to_destination();
  2063. stepper.synchronize();
  2064. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2065. if (DEBUGGING(LEVELING)) DEBUG_POS("> TRIGGER ENDSTOP", current_position);
  2066. #endif
  2067. #if ENABLED(Z_DUAL_ENDSTOPS)
  2068. if (axis == Z_AXIS) {
  2069. float adj = fabs(z_endstop_adj);
  2070. bool lockZ1;
  2071. if (axis_home_dir > 0) {
  2072. adj = -adj;
  2073. lockZ1 = (z_endstop_adj > 0);
  2074. }
  2075. else
  2076. lockZ1 = (z_endstop_adj < 0);
  2077. if (lockZ1) stepper.set_z_lock(true); else stepper.set_z2_lock(true);
  2078. sync_plan_position();
  2079. // Move to the adjusted endstop height
  2080. feedrate = homing_feedrate[axis];
  2081. destination[Z_AXIS] = adj;
  2082. line_to_destination();
  2083. stepper.synchronize();
  2084. if (lockZ1) stepper.set_z_lock(false); else stepper.set_z2_lock(false);
  2085. stepper.set_homing_flag(false);
  2086. } // Z_AXIS
  2087. #endif
  2088. #if ENABLED(DELTA)
  2089. // retrace by the amount specified in endstop_adj
  2090. if (endstop_adj[axis] * axis_home_dir < 0) {
  2091. sync_plan_position();
  2092. destination[axis] = endstop_adj[axis];
  2093. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2094. if (DEBUGGING(LEVELING)) {
  2095. SERIAL_ECHOPAIR("> endstop_adj = ", endstop_adj[axis]);
  2096. DEBUG_POS("", destination);
  2097. }
  2098. #endif
  2099. line_to_destination();
  2100. stepper.synchronize();
  2101. }
  2102. #endif
  2103. // Set the axis position to its home position (plus home offsets)
  2104. set_axis_is_at_home(axis);
  2105. SYNC_PLAN_POSITION_KINEMATIC();
  2106. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2107. if (DEBUGGING(LEVELING)) DEBUG_POS("> AFTER set_axis_is_at_home", current_position);
  2108. #endif
  2109. destination[axis] = current_position[axis];
  2110. endstops.hit_on_purpose(); // clear endstop hit flags
  2111. axis_known_position[axis] = true;
  2112. axis_homed[axis] = true;
  2113. // Put away the Z probe
  2114. #if HAS_BED_PROBE && DISABLED(Z_MIN_PROBE_ENDSTOP)
  2115. if (axis == Z_AXIS && axis_home_dir < 0) {
  2116. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2117. if (DEBUGGING(LEVELING)) SERIAL_ECHOPGM("> ");
  2118. #endif
  2119. if (STOW_PROBE()) return;
  2120. }
  2121. #endif
  2122. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2123. if (DEBUGGING(LEVELING)) {
  2124. SERIAL_ECHOPAIR("<<< homeaxis(", axis);
  2125. SERIAL_ECHOLNPGM(")");
  2126. }
  2127. #endif
  2128. }
  2129. #if ENABLED(FWRETRACT)
  2130. void retract(bool retracting, bool swapping = false) {
  2131. if (retracting == retracted[active_extruder]) return;
  2132. float old_feedrate = feedrate;
  2133. set_destination_to_current();
  2134. if (retracting) {
  2135. feedrate = retract_feedrate_mm_s * 60;
  2136. current_position[E_AXIS] += (swapping ? retract_length_swap : retract_length) / volumetric_multiplier[active_extruder];
  2137. sync_plan_position_e();
  2138. prepare_move_to_destination();
  2139. if (retract_zlift > 0.01) {
  2140. current_position[Z_AXIS] -= retract_zlift;
  2141. SYNC_PLAN_POSITION_KINEMATIC();
  2142. prepare_move_to_destination();
  2143. }
  2144. }
  2145. else {
  2146. if (retract_zlift > 0.01) {
  2147. current_position[Z_AXIS] += retract_zlift;
  2148. SYNC_PLAN_POSITION_KINEMATIC();
  2149. }
  2150. feedrate = retract_recover_feedrate * 60;
  2151. float move_e = swapping ? retract_length_swap + retract_recover_length_swap : retract_length + retract_recover_length;
  2152. current_position[E_AXIS] -= move_e / volumetric_multiplier[active_extruder];
  2153. sync_plan_position_e();
  2154. prepare_move_to_destination();
  2155. }
  2156. feedrate = old_feedrate;
  2157. retracted[active_extruder] = retracting;
  2158. } // retract()
  2159. #endif // FWRETRACT
  2160. /**
  2161. * ***************************************************************************
  2162. * ***************************** G-CODE HANDLING *****************************
  2163. * ***************************************************************************
  2164. */
  2165. /**
  2166. * Set XYZE destination and feedrate from the current GCode command
  2167. *
  2168. * - Set destination from included axis codes
  2169. * - Set to current for missing axis codes
  2170. * - Set the feedrate, if included
  2171. */
  2172. void gcode_get_destination() {
  2173. for (int i = 0; i < NUM_AXIS; i++) {
  2174. if (code_seen(axis_codes[i]))
  2175. destination[i] = code_value_axis_units(i) + (axis_relative_modes[i] || relative_mode ? current_position[i] : 0);
  2176. else
  2177. destination[i] = current_position[i];
  2178. }
  2179. if (code_seen('F') && code_value_linear_units() > 0.0)
  2180. feedrate = code_value_linear_units();
  2181. }
  2182. void unknown_command_error() {
  2183. SERIAL_ECHO_START;
  2184. SERIAL_ECHOPGM(MSG_UNKNOWN_COMMAND);
  2185. SERIAL_ECHO(current_command);
  2186. SERIAL_ECHOLNPGM("\"");
  2187. }
  2188. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  2189. /**
  2190. * Output a "busy" message at regular intervals
  2191. * while the machine is not accepting commands.
  2192. */
  2193. void host_keepalive() {
  2194. millis_t ms = millis();
  2195. if (host_keepalive_interval && busy_state != NOT_BUSY) {
  2196. if (PENDING(ms, next_busy_signal_ms)) return;
  2197. switch (busy_state) {
  2198. case IN_HANDLER:
  2199. case IN_PROCESS:
  2200. SERIAL_ECHO_START;
  2201. SERIAL_ECHOLNPGM(MSG_BUSY_PROCESSING);
  2202. break;
  2203. case PAUSED_FOR_USER:
  2204. SERIAL_ECHO_START;
  2205. SERIAL_ECHOLNPGM(MSG_BUSY_PAUSED_FOR_USER);
  2206. break;
  2207. case PAUSED_FOR_INPUT:
  2208. SERIAL_ECHO_START;
  2209. SERIAL_ECHOLNPGM(MSG_BUSY_PAUSED_FOR_INPUT);
  2210. break;
  2211. default:
  2212. break;
  2213. }
  2214. }
  2215. next_busy_signal_ms = ms + host_keepalive_interval * 1000UL;
  2216. }
  2217. #endif //HOST_KEEPALIVE_FEATURE
  2218. /**
  2219. * G0, G1: Coordinated movement of X Y Z E axes
  2220. */
  2221. inline void gcode_G0_G1() {
  2222. if (IsRunning()) {
  2223. gcode_get_destination(); // For X Y Z E F
  2224. #if ENABLED(FWRETRACT)
  2225. if (autoretract_enabled && !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  2226. float echange = destination[E_AXIS] - current_position[E_AXIS];
  2227. // Is this move an attempt to retract or recover?
  2228. if ((echange < -MIN_RETRACT && !retracted[active_extruder]) || (echange > MIN_RETRACT && retracted[active_extruder])) {
  2229. current_position[E_AXIS] = destination[E_AXIS]; // hide the slicer-generated retract/recover from calculations
  2230. sync_plan_position_e(); // AND from the planner
  2231. retract(!retracted[active_extruder]);
  2232. return;
  2233. }
  2234. }
  2235. #endif //FWRETRACT
  2236. prepare_move_to_destination();
  2237. }
  2238. }
  2239. /**
  2240. * G2: Clockwise Arc
  2241. * G3: Counterclockwise Arc
  2242. */
  2243. #if ENABLED(ARC_SUPPORT)
  2244. inline void gcode_G2_G3(bool clockwise) {
  2245. if (IsRunning()) {
  2246. #if ENABLED(SF_ARC_FIX)
  2247. bool relative_mode_backup = relative_mode;
  2248. relative_mode = true;
  2249. #endif
  2250. gcode_get_destination();
  2251. #if ENABLED(SF_ARC_FIX)
  2252. relative_mode = relative_mode_backup;
  2253. #endif
  2254. // Center of arc as offset from current_position
  2255. float arc_offset[2] = {
  2256. code_seen('I') ? code_value_axis_units(X_AXIS) : 0,
  2257. code_seen('J') ? code_value_axis_units(Y_AXIS) : 0
  2258. };
  2259. // Send an arc to the planner
  2260. plan_arc(destination, arc_offset, clockwise);
  2261. refresh_cmd_timeout();
  2262. }
  2263. }
  2264. #endif
  2265. /**
  2266. * G4: Dwell S<seconds> or P<milliseconds>
  2267. */
  2268. inline void gcode_G4() {
  2269. millis_t codenum = 0;
  2270. if (code_seen('P')) codenum = code_value_millis(); // milliseconds to wait
  2271. if (code_seen('S')) codenum = code_value_millis_from_seconds(); // seconds to wait
  2272. stepper.synchronize();
  2273. refresh_cmd_timeout();
  2274. codenum += previous_cmd_ms; // keep track of when we started waiting
  2275. if (!lcd_hasstatus()) LCD_MESSAGEPGM(MSG_DWELL);
  2276. while (PENDING(millis(), codenum)) idle();
  2277. }
  2278. #if ENABLED(BEZIER_CURVE_SUPPORT)
  2279. /**
  2280. * Parameters interpreted according to:
  2281. * http://linuxcnc.org/docs/2.6/html/gcode/gcode.html#sec:G5-Cubic-Spline
  2282. * However I, J omission is not supported at this point; all
  2283. * parameters can be omitted and default to zero.
  2284. */
  2285. /**
  2286. * G5: Cubic B-spline
  2287. */
  2288. inline void gcode_G5() {
  2289. if (IsRunning()) {
  2290. gcode_get_destination();
  2291. float offset[] = {
  2292. code_seen('I') ? code_value_axis_units(X_AXIS) : 0.0,
  2293. code_seen('J') ? code_value_axis_units(Y_AXIS) : 0.0,
  2294. code_seen('P') ? code_value_axis_units(X_AXIS) : 0.0,
  2295. code_seen('Q') ? code_value_axis_units(Y_AXIS) : 0.0
  2296. };
  2297. plan_cubic_move(offset);
  2298. }
  2299. }
  2300. #endif // BEZIER_CURVE_SUPPORT
  2301. #if ENABLED(FWRETRACT)
  2302. /**
  2303. * G10 - Retract filament according to settings of M207
  2304. * G11 - Recover filament according to settings of M208
  2305. */
  2306. inline void gcode_G10_G11(bool doRetract=false) {
  2307. #if EXTRUDERS > 1
  2308. if (doRetract) {
  2309. retracted_swap[active_extruder] = (code_seen('S') && code_value_bool()); // checks for swap retract argument
  2310. }
  2311. #endif
  2312. retract(doRetract
  2313. #if EXTRUDERS > 1
  2314. , retracted_swap[active_extruder]
  2315. #endif
  2316. );
  2317. }
  2318. #endif //FWRETRACT
  2319. #if ENABLED(NOZZLE_CLEAN_FEATURE) && ENABLED(AUTO_BED_LEVELING_FEATURE)
  2320. #include "nozzle.h"
  2321. inline void gcode_G12() {
  2322. // Don't allow nozzle cleaning without homing first
  2323. if (axis_unhomed_error(true, true, true)) { return; }
  2324. uint8_t const pattern = code_seen('P') ? code_value_ushort() : 0;
  2325. uint8_t const strokes = code_seen('S') ? code_value_ushort() : NOZZLE_CLEAN_STROKES;
  2326. uint8_t const objects = code_seen('T') ? code_value_ushort() : 3;
  2327. Nozzle::clean(pattern, strokes, objects);
  2328. }
  2329. #endif
  2330. #if ENABLED(INCH_MODE_SUPPORT)
  2331. /**
  2332. * G20: Set input mode to inches
  2333. */
  2334. inline void gcode_G20() {
  2335. set_input_linear_units(LINEARUNIT_INCH);
  2336. }
  2337. /**
  2338. * G21: Set input mode to millimeters
  2339. */
  2340. inline void gcode_G21() {
  2341. set_input_linear_units(LINEARUNIT_MM);
  2342. }
  2343. #endif
  2344. #if ENABLED(QUICK_HOME)
  2345. static void quick_home_xy() {
  2346. current_position[X_AXIS] = current_position[Y_AXIS] = 0;
  2347. #if ENABLED(DUAL_X_CARRIAGE)
  2348. int x_axis_home_dir = x_home_dir(active_extruder);
  2349. extruder_duplication_enabled = false;
  2350. #else
  2351. int x_axis_home_dir = home_dir(X_AXIS);
  2352. #endif
  2353. float mlx = max_length(X_AXIS), mly = max_length(Y_AXIS),
  2354. mlratio = mlx > mly ? mly / mlx : mlx / mly;
  2355. destination[X_AXIS] = 1.5 * mlx * x_axis_home_dir;
  2356. destination[Y_AXIS] = 1.5 * mly * home_dir(Y_AXIS);
  2357. feedrate = min(homing_feedrate[X_AXIS], homing_feedrate[Y_AXIS]) * sqrt(mlratio * mlratio + 1);
  2358. line_to_destination();
  2359. stepper.synchronize();
  2360. endstops.hit_on_purpose(); // clear endstop hit flags
  2361. destination[X_AXIS] = destination[Y_AXIS] = 0;
  2362. }
  2363. #endif // QUICK_HOME
  2364. /**
  2365. * G28: Home all axes according to settings
  2366. *
  2367. * Parameters
  2368. *
  2369. * None Home to all axes with no parameters.
  2370. * With QUICK_HOME enabled XY will home together, then Z.
  2371. *
  2372. * Cartesian parameters
  2373. *
  2374. * X Home to the X endstop
  2375. * Y Home to the Y endstop
  2376. * Z Home to the Z endstop
  2377. *
  2378. */
  2379. inline void gcode_G28() {
  2380. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2381. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM(">>> gcode_G28");
  2382. #endif
  2383. // Wait for planner moves to finish!
  2384. stepper.synchronize();
  2385. // For auto bed leveling, clear the level matrix
  2386. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  2387. planner.bed_level_matrix.set_to_identity();
  2388. #if ENABLED(DELTA)
  2389. reset_bed_level();
  2390. #endif
  2391. #endif
  2392. /**
  2393. * For mesh bed leveling deactivate the mesh calculations, will be turned
  2394. * on again when homing all axis
  2395. */
  2396. #if ENABLED(MESH_BED_LEVELING)
  2397. float pre_home_z = MESH_HOME_SEARCH_Z;
  2398. if (mbl.active()) {
  2399. // Save known Z position if already homed
  2400. if (axis_homed[X_AXIS] && axis_homed[Y_AXIS] && axis_homed[Z_AXIS]) {
  2401. pre_home_z = current_position[Z_AXIS];
  2402. pre_home_z += mbl.get_z(RAW_CURRENT_POSITION(X_AXIS), RAW_CURRENT_POSITION(Y_AXIS));
  2403. }
  2404. mbl.set_active(false);
  2405. current_position[Z_AXIS] = pre_home_z;
  2406. }
  2407. #endif
  2408. setup_for_endstop_or_probe_move();
  2409. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2410. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> endstops.enable(true)");
  2411. #endif
  2412. endstops.enable(true); // Enable endstops for next homing move
  2413. #if ENABLED(DELTA)
  2414. /**
  2415. * A delta can only safely home all axes at the same time
  2416. */
  2417. // Pretend the current position is 0,0,0
  2418. for (int i = X_AXIS; i <= Z_AXIS; i++) current_position[i] = 0;
  2419. sync_plan_position();
  2420. // Move all carriages up together until the first endstop is hit.
  2421. for (int i = X_AXIS; i <= Z_AXIS; i++) destination[i] = 3 * (Z_MAX_LENGTH);
  2422. feedrate = 1.732 * homing_feedrate[X_AXIS];
  2423. line_to_destination();
  2424. stepper.synchronize();
  2425. endstops.hit_on_purpose(); // clear endstop hit flags
  2426. // Destination reached
  2427. for (int i = X_AXIS; i <= Z_AXIS; i++) current_position[i] = destination[i];
  2428. // take care of back off and rehome now we are all at the top
  2429. HOMEAXIS(X);
  2430. HOMEAXIS(Y);
  2431. HOMEAXIS(Z);
  2432. SYNC_PLAN_POSITION_KINEMATIC();
  2433. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2434. if (DEBUGGING(LEVELING)) DEBUG_POS("(DELTA)", current_position);
  2435. #endif
  2436. #else // NOT DELTA
  2437. bool homeX = code_seen('X'), homeY = code_seen('Y'), homeZ = code_seen('Z');
  2438. home_all_axis = (!homeX && !homeY && !homeZ) || (homeX && homeY && homeZ);
  2439. set_destination_to_current();
  2440. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  2441. if (home_all_axis || homeZ) {
  2442. HOMEAXIS(Z);
  2443. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2444. if (DEBUGGING(LEVELING)) DEBUG_POS("> HOMEAXIS(Z)", current_position);
  2445. #endif
  2446. }
  2447. #else
  2448. if (home_all_axis || homeX || homeY) {
  2449. // Raise Z before homing any other axes and z is not already high enough (never lower z)
  2450. float z_dest = home_offset[Z_AXIS] + MIN_Z_HEIGHT_FOR_HOMING;
  2451. if (z_dest > current_position[Z_AXIS]) {
  2452. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2453. if (DEBUGGING(LEVELING)) {
  2454. SERIAL_ECHOPAIR("Raise Z (before homing) to ", z_dest);
  2455. SERIAL_EOL;
  2456. }
  2457. #endif
  2458. feedrate = homing_feedrate[Z_AXIS];
  2459. line_to_z(z_dest);
  2460. stepper.synchronize();
  2461. destination[Z_AXIS] = current_position[Z_AXIS] = z_dest;
  2462. }
  2463. }
  2464. #endif
  2465. #if ENABLED(QUICK_HOME)
  2466. if (home_all_axis || (homeX && homeY)) quick_home_xy();
  2467. #endif
  2468. #if ENABLED(HOME_Y_BEFORE_X)
  2469. // Home Y
  2470. if (home_all_axis || homeY) {
  2471. HOMEAXIS(Y);
  2472. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2473. if (DEBUGGING(LEVELING)) DEBUG_POS("> homeY", current_position);
  2474. #endif
  2475. }
  2476. #endif
  2477. // Home X
  2478. if (home_all_axis || homeX) {
  2479. #if ENABLED(DUAL_X_CARRIAGE)
  2480. int tmp_extruder = active_extruder;
  2481. extruder_duplication_enabled = false;
  2482. active_extruder = !active_extruder;
  2483. HOMEAXIS(X);
  2484. inactive_extruder_x_pos = current_position[X_AXIS];
  2485. active_extruder = tmp_extruder;
  2486. HOMEAXIS(X);
  2487. // reset state used by the different modes
  2488. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  2489. delayed_move_time = 0;
  2490. active_extruder_parked = true;
  2491. #else
  2492. HOMEAXIS(X);
  2493. #endif
  2494. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2495. if (DEBUGGING(LEVELING)) DEBUG_POS("> homeX", current_position);
  2496. #endif
  2497. }
  2498. #if DISABLED(HOME_Y_BEFORE_X)
  2499. // Home Y
  2500. if (home_all_axis || homeY) {
  2501. HOMEAXIS(Y);
  2502. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2503. if (DEBUGGING(LEVELING)) DEBUG_POS("> homeY", current_position);
  2504. #endif
  2505. }
  2506. #endif
  2507. // Home Z last if homing towards the bed
  2508. #if Z_HOME_DIR < 0
  2509. if (home_all_axis || homeZ) {
  2510. #if ENABLED(Z_SAFE_HOMING)
  2511. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2512. if (DEBUGGING(LEVELING)) {
  2513. SERIAL_ECHOLNPGM("> Z_SAFE_HOMING >>>");
  2514. }
  2515. #endif
  2516. if (home_all_axis) {
  2517. /**
  2518. * At this point we already have Z at MIN_Z_HEIGHT_FOR_HOMING height
  2519. * No need to move Z any more as this height should already be safe
  2520. * enough to reach Z_SAFE_HOMING XY positions.
  2521. * Just make sure the planner is in sync.
  2522. */
  2523. SYNC_PLAN_POSITION_KINEMATIC();
  2524. /**
  2525. * Set the Z probe (or just the nozzle) destination to the safe
  2526. * homing point
  2527. */
  2528. destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - (X_PROBE_OFFSET_FROM_EXTRUDER));
  2529. destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - (Y_PROBE_OFFSET_FROM_EXTRUDER));
  2530. destination[Z_AXIS] = current_position[Z_AXIS]; //z is already at the right height
  2531. feedrate = XY_PROBE_FEEDRATE;
  2532. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2533. if (DEBUGGING(LEVELING)) {
  2534. DEBUG_POS("> Z_SAFE_HOMING > home_all_axis", current_position);
  2535. DEBUG_POS("> Z_SAFE_HOMING > home_all_axis", destination);
  2536. }
  2537. #endif
  2538. // Move in the XY plane
  2539. line_to_destination();
  2540. stepper.synchronize();
  2541. /**
  2542. * Update the current positions for XY, Z is still at least at
  2543. * MIN_Z_HEIGHT_FOR_HOMING height, no changes there.
  2544. */
  2545. current_position[X_AXIS] = destination[X_AXIS];
  2546. current_position[Y_AXIS] = destination[Y_AXIS];
  2547. }
  2548. // Let's see if X and Y are homed
  2549. if (axis_unhomed_error(true, true, false)) return;
  2550. /**
  2551. * Make sure the Z probe is within the physical limits
  2552. * NOTE: This doesn't necessarily ensure the Z probe is also
  2553. * within the bed!
  2554. */
  2555. float cpx = current_position[X_AXIS], cpy = current_position[Y_AXIS];
  2556. if ( cpx >= X_MIN_POS - (X_PROBE_OFFSET_FROM_EXTRUDER)
  2557. && cpx <= X_MAX_POS - (X_PROBE_OFFSET_FROM_EXTRUDER)
  2558. && cpy >= Y_MIN_POS - (Y_PROBE_OFFSET_FROM_EXTRUDER)
  2559. && cpy <= Y_MAX_POS - (Y_PROBE_OFFSET_FROM_EXTRUDER)) {
  2560. // Home the Z axis
  2561. HOMEAXIS(Z);
  2562. }
  2563. else {
  2564. LCD_MESSAGEPGM(MSG_ZPROBE_OUT);
  2565. SERIAL_ECHO_START;
  2566. SERIAL_ECHOLNPGM(MSG_ZPROBE_OUT);
  2567. }
  2568. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2569. if (DEBUGGING(LEVELING)) {
  2570. SERIAL_ECHOLNPGM("<<< Z_SAFE_HOMING");
  2571. }
  2572. #endif
  2573. #else // !Z_SAFE_HOMING
  2574. HOMEAXIS(Z);
  2575. #endif // !Z_SAFE_HOMING
  2576. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2577. if (DEBUGGING(LEVELING)) DEBUG_POS("> (home_all_axis || homeZ) > final", current_position);
  2578. #endif
  2579. } // home_all_axis || homeZ
  2580. #endif // Z_HOME_DIR < 0
  2581. SYNC_PLAN_POSITION_KINEMATIC();
  2582. #endif // !DELTA (gcode_G28)
  2583. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2584. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> endstops.not_homing()");
  2585. #endif
  2586. endstops.not_homing();
  2587. endstops.hit_on_purpose(); // clear endstop hit flags
  2588. // Enable mesh leveling again
  2589. #if ENABLED(MESH_BED_LEVELING)
  2590. if (mbl.has_mesh()) {
  2591. if (home_all_axis || (axis_homed[X_AXIS] && axis_homed[Y_AXIS] && homeZ)) {
  2592. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z
  2593. #if Z_HOME_DIR > 0
  2594. + Z_MAX_POS
  2595. #endif
  2596. ;
  2597. SYNC_PLAN_POSITION_KINEMATIC();
  2598. mbl.set_active(true);
  2599. #if ENABLED(MESH_G28_REST_ORIGIN)
  2600. current_position[Z_AXIS] = 0.0;
  2601. set_destination_to_current();
  2602. feedrate = homing_feedrate[Z_AXIS];
  2603. line_to_destination();
  2604. stepper.synchronize();
  2605. #else
  2606. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z -
  2607. mbl.get_z(RAW_CURRENT_POSITION(X_AXIS), RAW_CURRENT_POSITION(Y_AXIS))
  2608. #if Z_HOME_DIR > 0
  2609. + Z_MAX_POS
  2610. #endif
  2611. ;
  2612. #endif
  2613. }
  2614. else if ((axis_homed[X_AXIS] && axis_homed[Y_AXIS] && axis_homed[Z_AXIS]) && (homeX || homeY)) {
  2615. current_position[Z_AXIS] = pre_home_z;
  2616. SYNC_PLAN_POSITION_KINEMATIC();
  2617. mbl.set_active(true);
  2618. current_position[Z_AXIS] = pre_home_z -
  2619. mbl.get_z(RAW_CURRENT_POSITION(X_AXIS), RAW_CURRENT_POSITION(Y_AXIS));
  2620. }
  2621. }
  2622. #endif
  2623. #if ENABLED(DELTA)
  2624. // move to a height where we can use the full xy-area
  2625. do_blocking_move_to_z(delta_clip_start_height);
  2626. #endif
  2627. clean_up_after_endstop_or_probe_move();
  2628. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2629. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< gcode_G28");
  2630. #endif
  2631. report_current_position();
  2632. }
  2633. #if HAS_PROBING_PROCEDURE
  2634. void out_of_range_error(const char* p_edge) {
  2635. SERIAL_PROTOCOLPGM("?Probe ");
  2636. serialprintPGM(p_edge);
  2637. SERIAL_PROTOCOLLNPGM(" position out of range.");
  2638. }
  2639. #endif
  2640. #if ENABLED(MESH_BED_LEVELING)
  2641. enum MeshLevelingState { MeshReport, MeshStart, MeshNext, MeshSet, MeshSetZOffset, MeshReset };
  2642. inline void _mbl_goto_xy(float x, float y) {
  2643. float old_feedrate = feedrate;
  2644. feedrate = homing_feedrate[X_AXIS];
  2645. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z
  2646. #if Z_RAISE_BETWEEN_PROBINGS > MIN_Z_HEIGHT_FOR_HOMING
  2647. + Z_RAISE_BETWEEN_PROBINGS
  2648. #elif MIN_Z_HEIGHT_FOR_HOMING > 0
  2649. + MIN_Z_HEIGHT_FOR_HOMING
  2650. #endif
  2651. ;
  2652. line_to_current_position();
  2653. current_position[X_AXIS] = x + home_offset[X_AXIS];
  2654. current_position[Y_AXIS] = y + home_offset[Y_AXIS];
  2655. line_to_current_position();
  2656. #if Z_RAISE_BETWEEN_PROBINGS > 0 || MIN_Z_HEIGHT_FOR_HOMING > 0
  2657. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z;
  2658. line_to_current_position();
  2659. #endif
  2660. feedrate = old_feedrate;
  2661. stepper.synchronize();
  2662. }
  2663. /**
  2664. * G29: Mesh-based Z probe, probes a grid and produces a
  2665. * mesh to compensate for variable bed height
  2666. *
  2667. * Parameters With MESH_BED_LEVELING:
  2668. *
  2669. * S0 Produce a mesh report
  2670. * S1 Start probing mesh points
  2671. * S2 Probe the next mesh point
  2672. * S3 Xn Yn Zn.nn Manually modify a single point
  2673. * S4 Zn.nn Set z offset. Positive away from bed, negative closer to bed.
  2674. * S5 Reset and disable mesh
  2675. *
  2676. * The S0 report the points as below
  2677. *
  2678. * +----> X-axis 1-n
  2679. * |
  2680. * |
  2681. * v Y-axis 1-n
  2682. *
  2683. */
  2684. inline void gcode_G29() {
  2685. static int probe_point = -1;
  2686. MeshLevelingState state = code_seen('S') ? (MeshLevelingState)code_value_byte() : MeshReport;
  2687. if (state < 0 || state > 5) {
  2688. SERIAL_PROTOCOLLNPGM("S out of range (0-5).");
  2689. return;
  2690. }
  2691. int8_t px, py;
  2692. switch (state) {
  2693. case MeshReport:
  2694. if (mbl.has_mesh()) {
  2695. SERIAL_PROTOCOLPAIR("State: ", mbl.active() ? "On" : "Off");
  2696. SERIAL_PROTOCOLPAIR("\nNum X,Y: ", MESH_NUM_X_POINTS);
  2697. SERIAL_PROTOCOLCHAR(','); SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  2698. SERIAL_PROTOCOLPAIR("\nZ search height: ", MESH_HOME_SEARCH_Z);
  2699. SERIAL_PROTOCOLPGM("\nZ offset: "); SERIAL_PROTOCOL_F(mbl.z_offset, 5);
  2700. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  2701. for (py = 0; py < MESH_NUM_Y_POINTS; py++) {
  2702. for (px = 0; px < MESH_NUM_X_POINTS; px++) {
  2703. SERIAL_PROTOCOLPGM(" ");
  2704. SERIAL_PROTOCOL_F(mbl.z_values[py][px], 5);
  2705. }
  2706. SERIAL_EOL;
  2707. }
  2708. }
  2709. else
  2710. SERIAL_PROTOCOLLNPGM("Mesh bed leveling not active.");
  2711. break;
  2712. case MeshStart:
  2713. mbl.reset();
  2714. probe_point = 0;
  2715. enqueue_and_echo_commands_P(PSTR("G28\nG29 S2"));
  2716. break;
  2717. case MeshNext:
  2718. if (probe_point < 0) {
  2719. SERIAL_PROTOCOLLNPGM("Start mesh probing with \"G29 S1\" first.");
  2720. return;
  2721. }
  2722. // For each G29 S2...
  2723. if (probe_point == 0) {
  2724. // For the intial G29 S2 make Z a positive value (e.g., 4.0)
  2725. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z
  2726. #if Z_HOME_DIR > 0
  2727. + Z_MAX_POS
  2728. #endif
  2729. ;
  2730. SYNC_PLAN_POSITION_KINEMATIC();
  2731. }
  2732. else {
  2733. // For G29 S2 after adjusting Z.
  2734. mbl.set_zigzag_z(probe_point - 1, current_position[Z_AXIS]);
  2735. }
  2736. // If there's another point to sample, move there with optional lift.
  2737. if (probe_point < (MESH_NUM_X_POINTS) * (MESH_NUM_Y_POINTS)) {
  2738. mbl.zigzag(probe_point, px, py);
  2739. _mbl_goto_xy(mbl.get_probe_x(px), mbl.get_probe_y(py));
  2740. probe_point++;
  2741. }
  2742. else {
  2743. // One last "return to the bed" (as originally coded) at completion
  2744. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z
  2745. #if Z_RAISE_BETWEEN_PROBINGS > MIN_Z_HEIGHT_FOR_HOMING
  2746. + Z_RAISE_BETWEEN_PROBINGS
  2747. #elif MIN_Z_HEIGHT_FOR_HOMING > 0
  2748. + MIN_Z_HEIGHT_FOR_HOMING
  2749. #endif
  2750. ;
  2751. line_to_current_position();
  2752. stepper.synchronize();
  2753. // After recording the last point, activate the mbl and home
  2754. SERIAL_PROTOCOLLNPGM("Mesh probing done.");
  2755. probe_point = -1;
  2756. mbl.set_has_mesh(true);
  2757. enqueue_and_echo_commands_P(PSTR("G28"));
  2758. }
  2759. break;
  2760. case MeshSet:
  2761. if (code_seen('X')) {
  2762. px = code_value_int() - 1;
  2763. if (px < 0 || px >= MESH_NUM_X_POINTS) {
  2764. SERIAL_PROTOCOLLNPGM("X out of range (1-" STRINGIFY(MESH_NUM_X_POINTS) ").");
  2765. return;
  2766. }
  2767. }
  2768. else {
  2769. SERIAL_PROTOCOLLNPGM("X not entered.");
  2770. return;
  2771. }
  2772. if (code_seen('Y')) {
  2773. py = code_value_int() - 1;
  2774. if (py < 0 || py >= MESH_NUM_Y_POINTS) {
  2775. SERIAL_PROTOCOLLNPGM("Y out of range (1-" STRINGIFY(MESH_NUM_Y_POINTS) ").");
  2776. return;
  2777. }
  2778. }
  2779. else {
  2780. SERIAL_PROTOCOLLNPGM("Y not entered.");
  2781. return;
  2782. }
  2783. if (code_seen('Z')) {
  2784. mbl.z_values[py][px] = code_value_axis_units(Z_AXIS);
  2785. }
  2786. else {
  2787. SERIAL_PROTOCOLLNPGM("Z not entered.");
  2788. return;
  2789. }
  2790. break;
  2791. case MeshSetZOffset:
  2792. if (code_seen('Z')) {
  2793. mbl.z_offset = code_value_axis_units(Z_AXIS);
  2794. }
  2795. else {
  2796. SERIAL_PROTOCOLLNPGM("Z not entered.");
  2797. return;
  2798. }
  2799. break;
  2800. case MeshReset:
  2801. if (mbl.active()) {
  2802. current_position[Z_AXIS] +=
  2803. mbl.get_z(RAW_CURRENT_POSITION(X_AXIS), RAW_CURRENT_POSITION(Y_AXIS)) - MESH_HOME_SEARCH_Z;
  2804. mbl.reset();
  2805. SYNC_PLAN_POSITION_KINEMATIC();
  2806. }
  2807. else
  2808. mbl.reset();
  2809. } // switch(state)
  2810. report_current_position();
  2811. }
  2812. #elif ENABLED(AUTO_BED_LEVELING_FEATURE)
  2813. /**
  2814. * G29: Detailed Z probe, probes the bed at 3 or more points.
  2815. * Will fail if the printer has not been homed with G28.
  2816. *
  2817. * Enhanced G29 Auto Bed Leveling Probe Routine
  2818. *
  2819. * Parameters With AUTO_BED_LEVELING_GRID:
  2820. *
  2821. * P Set the size of the grid that will be probed (P x P points).
  2822. * Not supported by non-linear delta printer bed leveling.
  2823. * Example: "G29 P4"
  2824. *
  2825. * S Set the XY travel speed between probe points (in units/min)
  2826. *
  2827. * D Dry-Run mode. Just evaluate the bed Topology - Don't apply
  2828. * or clean the rotation Matrix. Useful to check the topology
  2829. * after a first run of G29.
  2830. *
  2831. * V Set the verbose level (0-4). Example: "G29 V3"
  2832. *
  2833. * T Generate a Bed Topology Report. Example: "G29 P5 T" for a detailed report.
  2834. * This is useful for manual bed leveling and finding flaws in the bed (to
  2835. * assist with part placement).
  2836. * Not supported by non-linear delta printer bed leveling.
  2837. *
  2838. * F Set the Front limit of the probing grid
  2839. * B Set the Back limit of the probing grid
  2840. * L Set the Left limit of the probing grid
  2841. * R Set the Right limit of the probing grid
  2842. *
  2843. * Global Parameters:
  2844. *
  2845. * E/e By default G29 will engage the Z probe, test the bed, then disengage.
  2846. * Include "E" to engage/disengage the Z probe for each sample.
  2847. * There's no extra effect if you have a fixed Z probe.
  2848. * Usage: "G29 E" or "G29 e"
  2849. *
  2850. */
  2851. inline void gcode_G29() {
  2852. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2853. if (DEBUGGING(LEVELING)) {
  2854. SERIAL_ECHOLNPGM(">>> gcode_G29");
  2855. DEBUG_POS("", current_position);
  2856. }
  2857. #endif
  2858. // Don't allow auto-leveling without homing first
  2859. if (axis_unhomed_error(true, true, true)) return;
  2860. int verbose_level = code_seen('V') ? code_value_int() : 1;
  2861. if (verbose_level < 0 || verbose_level > 4) {
  2862. SERIAL_ECHOLNPGM("?(V)erbose Level is implausible (0-4).");
  2863. return;
  2864. }
  2865. bool dryrun = code_seen('D');
  2866. bool stow_probe_after_each = code_seen('E');
  2867. #if ENABLED(AUTO_BED_LEVELING_GRID)
  2868. #if DISABLED(DELTA)
  2869. bool do_topography_map = verbose_level > 2 || code_seen('T');
  2870. #endif
  2871. if (verbose_level > 0) {
  2872. SERIAL_PROTOCOLLNPGM("G29 Auto Bed Leveling");
  2873. if (dryrun) SERIAL_PROTOCOLLNPGM("Running in DRY-RUN mode");
  2874. }
  2875. int auto_bed_leveling_grid_points = AUTO_BED_LEVELING_GRID_POINTS;
  2876. #if DISABLED(DELTA)
  2877. if (code_seen('P')) auto_bed_leveling_grid_points = code_value_int();
  2878. if (auto_bed_leveling_grid_points < 2) {
  2879. SERIAL_PROTOCOLLNPGM("?Number of probed (P)oints is implausible (2 minimum).");
  2880. return;
  2881. }
  2882. #endif
  2883. xy_probe_speed = code_seen('S') ? (int)code_value_linear_units() : XY_PROBE_SPEED;
  2884. int left_probe_bed_position = code_seen('L') ? (int)code_value_axis_units(X_AXIS) : LEFT_PROBE_BED_POSITION,
  2885. right_probe_bed_position = code_seen('R') ? (int)code_value_axis_units(X_AXIS) : RIGHT_PROBE_BED_POSITION,
  2886. front_probe_bed_position = code_seen('F') ? (int)code_value_axis_units(Y_AXIS) : FRONT_PROBE_BED_POSITION,
  2887. back_probe_bed_position = code_seen('B') ? (int)code_value_axis_units(Y_AXIS) : BACK_PROBE_BED_POSITION;
  2888. bool left_out_l = left_probe_bed_position < MIN_PROBE_X,
  2889. left_out = left_out_l || left_probe_bed_position > right_probe_bed_position - (MIN_PROBE_EDGE),
  2890. right_out_r = right_probe_bed_position > MAX_PROBE_X,
  2891. right_out = right_out_r || right_probe_bed_position < left_probe_bed_position + MIN_PROBE_EDGE,
  2892. front_out_f = front_probe_bed_position < MIN_PROBE_Y,
  2893. front_out = front_out_f || front_probe_bed_position > back_probe_bed_position - (MIN_PROBE_EDGE),
  2894. back_out_b = back_probe_bed_position > MAX_PROBE_Y,
  2895. back_out = back_out_b || back_probe_bed_position < front_probe_bed_position + MIN_PROBE_EDGE;
  2896. if (left_out || right_out || front_out || back_out) {
  2897. if (left_out) {
  2898. out_of_range_error(PSTR("(L)eft"));
  2899. left_probe_bed_position = left_out_l ? MIN_PROBE_X : right_probe_bed_position - (MIN_PROBE_EDGE);
  2900. }
  2901. if (right_out) {
  2902. out_of_range_error(PSTR("(R)ight"));
  2903. right_probe_bed_position = right_out_r ? MAX_PROBE_X : left_probe_bed_position + MIN_PROBE_EDGE;
  2904. }
  2905. if (front_out) {
  2906. out_of_range_error(PSTR("(F)ront"));
  2907. front_probe_bed_position = front_out_f ? MIN_PROBE_Y : back_probe_bed_position - (MIN_PROBE_EDGE);
  2908. }
  2909. if (back_out) {
  2910. out_of_range_error(PSTR("(B)ack"));
  2911. back_probe_bed_position = back_out_b ? MAX_PROBE_Y : front_probe_bed_position + MIN_PROBE_EDGE;
  2912. }
  2913. return;
  2914. }
  2915. #endif // AUTO_BED_LEVELING_GRID
  2916. if (!dryrun) {
  2917. #if ENABLED(DEBUG_LEVELING_FEATURE) && DISABLED(DELTA)
  2918. if (DEBUGGING(LEVELING)) {
  2919. vector_3 corrected_position = planner.adjusted_position();
  2920. DEBUG_POS("BEFORE matrix.set_to_identity", corrected_position);
  2921. DEBUG_POS("BEFORE matrix.set_to_identity", current_position);
  2922. }
  2923. #endif
  2924. // make sure the bed_level_rotation_matrix is identity or the planner will get it wrong
  2925. planner.bed_level_matrix.set_to_identity();
  2926. #if ENABLED(DELTA)
  2927. reset_bed_level();
  2928. #else //!DELTA
  2929. //vector_3 corrected_position = planner.adjusted_position();
  2930. //corrected_position.debug("position before G29");
  2931. vector_3 uncorrected_position = planner.adjusted_position();
  2932. //uncorrected_position.debug("position during G29");
  2933. current_position[X_AXIS] = uncorrected_position.x;
  2934. current_position[Y_AXIS] = uncorrected_position.y;
  2935. current_position[Z_AXIS] = uncorrected_position.z;
  2936. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2937. if (DEBUGGING(LEVELING)) DEBUG_POS("AFTER matrix.set_to_identity", uncorrected_position);
  2938. #endif
  2939. SYNC_PLAN_POSITION_KINEMATIC();
  2940. #endif // !DELTA
  2941. }
  2942. stepper.synchronize();
  2943. setup_for_endstop_or_probe_move();
  2944. // Deploy the probe. Probe will raise if needed.
  2945. if (DEPLOY_PROBE()) return;
  2946. bed_leveling_in_progress = true;
  2947. #if ENABLED(AUTO_BED_LEVELING_GRID)
  2948. // probe at the points of a lattice grid
  2949. const int xGridSpacing = (right_probe_bed_position - left_probe_bed_position) / (auto_bed_leveling_grid_points - 1),
  2950. yGridSpacing = (back_probe_bed_position - front_probe_bed_position) / (auto_bed_leveling_grid_points - 1);
  2951. #if ENABLED(DELTA)
  2952. delta_grid_spacing[0] = xGridSpacing;
  2953. delta_grid_spacing[1] = yGridSpacing;
  2954. float zoffset = zprobe_zoffset;
  2955. if (code_seen('Z')) zoffset += code_value_axis_units(Z_AXIS);
  2956. #else // !DELTA
  2957. /**
  2958. * solve the plane equation ax + by + d = z
  2959. * A is the matrix with rows [x y 1] for all the probed points
  2960. * B is the vector of the Z positions
  2961. * the normal vector to the plane is formed by the coefficients of the
  2962. * plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  2963. * so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  2964. */
  2965. int abl2 = auto_bed_leveling_grid_points * auto_bed_leveling_grid_points;
  2966. double eqnAMatrix[abl2 * 3], // "A" matrix of the linear system of equations
  2967. eqnBVector[abl2], // "B" vector of Z points
  2968. mean = 0.0;
  2969. int8_t indexIntoAB[auto_bed_leveling_grid_points][auto_bed_leveling_grid_points];
  2970. #endif // !DELTA
  2971. int probePointCounter = 0;
  2972. bool zig = (auto_bed_leveling_grid_points & 1) ? true : false; //always end at [RIGHT_PROBE_BED_POSITION, BACK_PROBE_BED_POSITION]
  2973. for (int yCount = 0; yCount < auto_bed_leveling_grid_points; yCount++) {
  2974. double yProbe = front_probe_bed_position + yGridSpacing * yCount;
  2975. int xStart, xStop, xInc;
  2976. if (zig) {
  2977. xStart = 0;
  2978. xStop = auto_bed_leveling_grid_points;
  2979. xInc = 1;
  2980. }
  2981. else {
  2982. xStart = auto_bed_leveling_grid_points - 1;
  2983. xStop = -1;
  2984. xInc = -1;
  2985. }
  2986. zig = !zig;
  2987. for (int xCount = xStart; xCount != xStop; xCount += xInc) {
  2988. double xProbe = left_probe_bed_position + xGridSpacing * xCount;
  2989. #if ENABLED(DELTA)
  2990. // Avoid probing the corners (outside the round or hexagon print surface) on a delta printer.
  2991. float distance_from_center = sqrt(xProbe * xProbe + yProbe * yProbe);
  2992. if (distance_from_center > DELTA_PROBEABLE_RADIUS) continue;
  2993. #endif //DELTA
  2994. float measured_z = probe_pt(xProbe, yProbe, stow_probe_after_each, verbose_level);
  2995. #if DISABLED(DELTA)
  2996. mean += measured_z;
  2997. eqnBVector[probePointCounter] = measured_z;
  2998. eqnAMatrix[probePointCounter + 0 * abl2] = xProbe;
  2999. eqnAMatrix[probePointCounter + 1 * abl2] = yProbe;
  3000. eqnAMatrix[probePointCounter + 2 * abl2] = 1;
  3001. indexIntoAB[xCount][yCount] = probePointCounter;
  3002. #else
  3003. bed_level[xCount][yCount] = measured_z + zoffset;
  3004. #endif
  3005. probePointCounter++;
  3006. idle();
  3007. } //xProbe
  3008. } //yProbe
  3009. #else // !AUTO_BED_LEVELING_GRID
  3010. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3011. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> 3-point Leveling");
  3012. #endif
  3013. // Probe at 3 arbitrary points
  3014. float z_at_pt_1 = probe_pt( ABL_PROBE_PT_1_X + home_offset[X_AXIS],
  3015. ABL_PROBE_PT_1_Y + home_offset[Y_AXIS],
  3016. stow_probe_after_each, verbose_level),
  3017. z_at_pt_2 = probe_pt( ABL_PROBE_PT_2_X + home_offset[X_AXIS],
  3018. ABL_PROBE_PT_2_Y + home_offset[Y_AXIS],
  3019. stow_probe_after_each, verbose_level),
  3020. z_at_pt_3 = probe_pt( ABL_PROBE_PT_3_X + home_offset[X_AXIS],
  3021. ABL_PROBE_PT_3_Y + home_offset[Y_AXIS],
  3022. stow_probe_after_each, verbose_level);
  3023. if (!dryrun) set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
  3024. #endif // !AUTO_BED_LEVELING_GRID
  3025. // Raise to _Z_RAISE_PROBE_DEPLOY_STOW. Stow the probe.
  3026. if (STOW_PROBE()) return;
  3027. // Restore state after probing
  3028. clean_up_after_endstop_or_probe_move();
  3029. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3030. if (DEBUGGING(LEVELING)) DEBUG_POS("> probing complete", current_position);
  3031. #endif
  3032. // Calculate leveling, print reports, correct the position
  3033. #if ENABLED(AUTO_BED_LEVELING_GRID)
  3034. #if ENABLED(DELTA)
  3035. if (!dryrun) extrapolate_unprobed_bed_level();
  3036. print_bed_level();
  3037. #else // !DELTA
  3038. // solve lsq problem
  3039. double plane_equation_coefficients[3];
  3040. qr_solve(plane_equation_coefficients, abl2, 3, eqnAMatrix, eqnBVector);
  3041. mean /= abl2;
  3042. if (verbose_level) {
  3043. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  3044. SERIAL_PROTOCOL_F(plane_equation_coefficients[0], 8);
  3045. SERIAL_PROTOCOLPGM(" b: ");
  3046. SERIAL_PROTOCOL_F(plane_equation_coefficients[1], 8);
  3047. SERIAL_PROTOCOLPGM(" d: ");
  3048. SERIAL_PROTOCOL_F(plane_equation_coefficients[2], 8);
  3049. SERIAL_EOL;
  3050. if (verbose_level > 2) {
  3051. SERIAL_PROTOCOLPGM("Mean of sampled points: ");
  3052. SERIAL_PROTOCOL_F(mean, 8);
  3053. SERIAL_EOL;
  3054. }
  3055. }
  3056. if (!dryrun) set_bed_level_equation_lsq(plane_equation_coefficients);
  3057. // Show the Topography map if enabled
  3058. if (do_topography_map) {
  3059. SERIAL_PROTOCOLLNPGM("\nBed Height Topography:\n"
  3060. " +--- BACK --+\n"
  3061. " | |\n"
  3062. " L | (+) | R\n"
  3063. " E | | I\n"
  3064. " F | (-) N (+) | G\n"
  3065. " T | | H\n"
  3066. " | (-) | T\n"
  3067. " | |\n"
  3068. " O-- FRONT --+\n"
  3069. " (0,0)");
  3070. float min_diff = 999;
  3071. for (int yy = auto_bed_leveling_grid_points - 1; yy >= 0; yy--) {
  3072. for (int xx = 0; xx < auto_bed_leveling_grid_points; xx++) {
  3073. int ind = indexIntoAB[xx][yy];
  3074. float diff = eqnBVector[ind] - mean;
  3075. float x_tmp = eqnAMatrix[ind + 0 * abl2],
  3076. y_tmp = eqnAMatrix[ind + 1 * abl2],
  3077. z_tmp = 0;
  3078. apply_rotation_xyz(planner.bed_level_matrix, x_tmp, y_tmp, z_tmp);
  3079. NOMORE(min_diff, eqnBVector[ind] - z_tmp);
  3080. if (diff >= 0.0)
  3081. SERIAL_PROTOCOLPGM(" +"); // Include + for column alignment
  3082. else
  3083. SERIAL_PROTOCOLCHAR(' ');
  3084. SERIAL_PROTOCOL_F(diff, 5);
  3085. } // xx
  3086. SERIAL_EOL;
  3087. } // yy
  3088. SERIAL_EOL;
  3089. if (verbose_level > 3) {
  3090. SERIAL_PROTOCOLLNPGM("\nCorrected Bed Height vs. Bed Topology:");
  3091. for (int yy = auto_bed_leveling_grid_points - 1; yy >= 0; yy--) {
  3092. for (int xx = 0; xx < auto_bed_leveling_grid_points; xx++) {
  3093. int ind = indexIntoAB[xx][yy];
  3094. float x_tmp = eqnAMatrix[ind + 0 * abl2],
  3095. y_tmp = eqnAMatrix[ind + 1 * abl2],
  3096. z_tmp = 0;
  3097. apply_rotation_xyz(planner.bed_level_matrix, x_tmp, y_tmp, z_tmp);
  3098. float diff = eqnBVector[ind] - z_tmp - min_diff;
  3099. if (diff >= 0.0)
  3100. SERIAL_PROTOCOLPGM(" +");
  3101. // Include + for column alignment
  3102. else
  3103. SERIAL_PROTOCOLCHAR(' ');
  3104. SERIAL_PROTOCOL_F(diff, 5);
  3105. } // xx
  3106. SERIAL_EOL;
  3107. } // yy
  3108. SERIAL_EOL;
  3109. }
  3110. } //do_topography_map
  3111. #endif //!DELTA
  3112. #endif // AUTO_BED_LEVELING_GRID
  3113. #if DISABLED(DELTA)
  3114. if (verbose_level > 0)
  3115. planner.bed_level_matrix.debug("\n\nBed Level Correction Matrix:");
  3116. if (!dryrun) {
  3117. /**
  3118. * Correct the Z height difference from Z probe position and nozzle tip position.
  3119. * The Z height on homing is measured by Z probe, but the Z probe is quite far
  3120. * from the nozzle. When the bed is uneven, this height must be corrected.
  3121. */
  3122. float x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER,
  3123. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER,
  3124. z_tmp = current_position[Z_AXIS],
  3125. stepper_z = stepper.get_axis_position_mm(Z_AXIS); //get the real Z (since planner.adjusted_position is now correcting the plane)
  3126. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3127. if (DEBUGGING(LEVELING)) {
  3128. SERIAL_ECHOPAIR("> BEFORE apply_rotation_xyz > stepper_z = ", stepper_z);
  3129. SERIAL_ECHOPAIR(" ... z_tmp = ", z_tmp);
  3130. SERIAL_EOL;
  3131. }
  3132. #endif
  3133. // Apply the correction sending the Z probe offset
  3134. apply_rotation_xyz(planner.bed_level_matrix, x_tmp, y_tmp, z_tmp);
  3135. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3136. if (DEBUGGING(LEVELING)) {
  3137. SERIAL_ECHOPAIR("> AFTER apply_rotation_xyz > z_tmp = ", z_tmp);
  3138. SERIAL_EOL;
  3139. }
  3140. #endif
  3141. // Adjust the current Z and send it to the planner.
  3142. current_position[Z_AXIS] += z_tmp - stepper_z;
  3143. SYNC_PLAN_POSITION_KINEMATIC();
  3144. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3145. if (DEBUGGING(LEVELING)) DEBUG_POS("> corrected Z in G29", current_position);
  3146. #endif
  3147. }
  3148. #endif // !DELTA
  3149. #ifdef Z_PROBE_END_SCRIPT
  3150. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3151. if (DEBUGGING(LEVELING)) {
  3152. SERIAL_ECHOPGM("Z Probe End Script: ");
  3153. SERIAL_ECHOLNPGM(Z_PROBE_END_SCRIPT);
  3154. }
  3155. #endif
  3156. enqueue_and_echo_commands_P(PSTR(Z_PROBE_END_SCRIPT));
  3157. stepper.synchronize();
  3158. #endif
  3159. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3160. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< gcode_G29");
  3161. #endif
  3162. bed_leveling_in_progress = false;
  3163. report_current_position();
  3164. KEEPALIVE_STATE(IN_HANDLER);
  3165. }
  3166. #endif //AUTO_BED_LEVELING_FEATURE
  3167. #if HAS_BED_PROBE
  3168. /**
  3169. * G30: Do a single Z probe at the current XY
  3170. */
  3171. inline void gcode_G30() {
  3172. setup_for_endstop_or_probe_move();
  3173. // TODO: clear the leveling matrix or the planner will be set incorrectly
  3174. float measured_z = probe_pt(current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER,
  3175. current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER,
  3176. true, 1);
  3177. SERIAL_PROTOCOLPGM("Bed X: ");
  3178. SERIAL_PROTOCOL(current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER + 0.0001);
  3179. SERIAL_PROTOCOLPGM(" Y: ");
  3180. SERIAL_PROTOCOL(current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER + 0.0001);
  3181. SERIAL_PROTOCOLPGM(" Z: ");
  3182. SERIAL_PROTOCOL(measured_z + 0.0001);
  3183. SERIAL_EOL;
  3184. clean_up_after_endstop_or_probe_move();
  3185. report_current_position();
  3186. }
  3187. #if ENABLED(Z_PROBE_SLED)
  3188. /**
  3189. * G31: Deploy the Z probe
  3190. */
  3191. inline void gcode_G31() { DEPLOY_PROBE(); }
  3192. /**
  3193. * G32: Stow the Z probe
  3194. */
  3195. inline void gcode_G32() { STOW_PROBE(); }
  3196. #endif // Z_PROBE_SLED
  3197. #endif // HAS_BED_PROBE
  3198. /**
  3199. * G92: Set current position to given X Y Z E
  3200. */
  3201. inline void gcode_G92() {
  3202. bool didE = code_seen('E');
  3203. if (!didE) stepper.synchronize();
  3204. bool didXYZ = false;
  3205. for (int i = 0; i < NUM_AXIS; i++) {
  3206. if (code_seen(axis_codes[i])) {
  3207. float p = current_position[i],
  3208. v = code_value_axis_units(i);
  3209. current_position[i] = v;
  3210. if (i != E_AXIS) {
  3211. position_shift[i] += v - p; // Offset the coordinate space
  3212. update_software_endstops((AxisEnum)i);
  3213. didXYZ = true;
  3214. }
  3215. }
  3216. }
  3217. if (didXYZ)
  3218. SYNC_PLAN_POSITION_KINEMATIC();
  3219. else if (didE)
  3220. sync_plan_position_e();
  3221. }
  3222. #if ENABLED(ULTIPANEL)
  3223. /**
  3224. * M0: Unconditional stop - Wait for user button press on LCD
  3225. * M1: Conditional stop - Wait for user button press on LCD
  3226. */
  3227. inline void gcode_M0_M1() {
  3228. char* args = current_command_args;
  3229. millis_t codenum = 0;
  3230. bool hasP = false, hasS = false;
  3231. if (code_seen('P')) {
  3232. codenum = code_value_millis(); // milliseconds to wait
  3233. hasP = codenum > 0;
  3234. }
  3235. if (code_seen('S')) {
  3236. codenum = code_value_millis_from_seconds(); // seconds to wait
  3237. hasS = codenum > 0;
  3238. }
  3239. if (!hasP && !hasS && *args != '\0')
  3240. lcd_setstatus(args, true);
  3241. else {
  3242. LCD_MESSAGEPGM(MSG_USERWAIT);
  3243. #if ENABLED(LCD_PROGRESS_BAR) && PROGRESS_MSG_EXPIRE > 0
  3244. dontExpireStatus();
  3245. #endif
  3246. }
  3247. lcd_ignore_click();
  3248. stepper.synchronize();
  3249. refresh_cmd_timeout();
  3250. if (codenum > 0) {
  3251. codenum += previous_cmd_ms; // wait until this time for a click
  3252. KEEPALIVE_STATE(PAUSED_FOR_USER);
  3253. while (PENDING(millis(), codenum) && !lcd_clicked()) idle();
  3254. KEEPALIVE_STATE(IN_HANDLER);
  3255. lcd_ignore_click(false);
  3256. }
  3257. else {
  3258. if (!lcd_detected()) return;
  3259. KEEPALIVE_STATE(PAUSED_FOR_USER);
  3260. while (!lcd_clicked()) idle();
  3261. KEEPALIVE_STATE(IN_HANDLER);
  3262. }
  3263. if (IS_SD_PRINTING)
  3264. LCD_MESSAGEPGM(MSG_RESUMING);
  3265. else
  3266. LCD_MESSAGEPGM(WELCOME_MSG);
  3267. }
  3268. #endif // ULTIPANEL
  3269. /**
  3270. * M17: Enable power on all stepper motors
  3271. */
  3272. inline void gcode_M17() {
  3273. LCD_MESSAGEPGM(MSG_NO_MOVE);
  3274. enable_all_steppers();
  3275. }
  3276. #if ENABLED(SDSUPPORT)
  3277. /**
  3278. * M20: List SD card to serial output
  3279. */
  3280. inline void gcode_M20() {
  3281. SERIAL_PROTOCOLLNPGM(MSG_BEGIN_FILE_LIST);
  3282. card.ls();
  3283. SERIAL_PROTOCOLLNPGM(MSG_END_FILE_LIST);
  3284. }
  3285. /**
  3286. * M21: Init SD Card
  3287. */
  3288. inline void gcode_M21() {
  3289. card.initsd();
  3290. }
  3291. /**
  3292. * M22: Release SD Card
  3293. */
  3294. inline void gcode_M22() {
  3295. card.release();
  3296. }
  3297. /**
  3298. * M23: Open a file
  3299. */
  3300. inline void gcode_M23() {
  3301. card.openFile(current_command_args, true);
  3302. }
  3303. /**
  3304. * M24: Start SD Print
  3305. */
  3306. inline void gcode_M24() {
  3307. card.startFileprint();
  3308. print_job_timer.start();
  3309. }
  3310. /**
  3311. * M25: Pause SD Print
  3312. */
  3313. inline void gcode_M25() {
  3314. card.pauseSDPrint();
  3315. }
  3316. /**
  3317. * M26: Set SD Card file index
  3318. */
  3319. inline void gcode_M26() {
  3320. if (card.cardOK && code_seen('S'))
  3321. card.setIndex(code_value_long());
  3322. }
  3323. /**
  3324. * M27: Get SD Card status
  3325. */
  3326. inline void gcode_M27() {
  3327. card.getStatus();
  3328. }
  3329. /**
  3330. * M28: Start SD Write
  3331. */
  3332. inline void gcode_M28() {
  3333. card.openFile(current_command_args, false);
  3334. }
  3335. /**
  3336. * M29: Stop SD Write
  3337. * Processed in write to file routine above
  3338. */
  3339. inline void gcode_M29() {
  3340. // card.saving = false;
  3341. }
  3342. /**
  3343. * M30 <filename>: Delete SD Card file
  3344. */
  3345. inline void gcode_M30() {
  3346. if (card.cardOK) {
  3347. card.closefile();
  3348. card.removeFile(current_command_args);
  3349. }
  3350. }
  3351. #endif //SDSUPPORT
  3352. /**
  3353. * M31: Get the time since the start of SD Print (or last M109)
  3354. */
  3355. inline void gcode_M31() {
  3356. millis_t t = print_job_timer.duration();
  3357. int d = int(t / 60 / 60 / 24),
  3358. h = int(t / 60 / 60) % 60,
  3359. m = int(t / 60) % 60,
  3360. s = int(t % 60);
  3361. char time[18]; // 123456789012345678
  3362. if (d)
  3363. sprintf_P(time, PSTR("%id %ih %im %is"), d, h, m, s); // 99d 23h 59m 59s
  3364. else
  3365. sprintf_P(time, PSTR("%ih %im %is"), h, m, s); // 23h 59m 59s
  3366. lcd_setstatus(time);
  3367. SERIAL_ECHO_START;
  3368. SERIAL_ECHOPGM(MSG_PRINT_TIME " ");
  3369. SERIAL_ECHOLN(time);
  3370. thermalManager.autotempShutdown();
  3371. }
  3372. #if ENABLED(SDSUPPORT)
  3373. /**
  3374. * M32: Select file and start SD Print
  3375. */
  3376. inline void gcode_M32() {
  3377. if (card.sdprinting)
  3378. stepper.synchronize();
  3379. char* namestartpos = strchr(current_command_args, '!'); // Find ! to indicate filename string start.
  3380. if (!namestartpos)
  3381. namestartpos = current_command_args; // Default name position, 4 letters after the M
  3382. else
  3383. namestartpos++; //to skip the '!'
  3384. bool call_procedure = code_seen('P') && (seen_pointer < namestartpos);
  3385. if (card.cardOK) {
  3386. card.openFile(namestartpos, true, call_procedure);
  3387. if (code_seen('S') && seen_pointer < namestartpos) // "S" (must occur _before_ the filename!)
  3388. card.setIndex(code_value_long());
  3389. card.startFileprint();
  3390. // Procedure calls count as normal print time.
  3391. if (!call_procedure) print_job_timer.start();
  3392. }
  3393. }
  3394. #if ENABLED(LONG_FILENAME_HOST_SUPPORT)
  3395. /**
  3396. * M33: Get the long full path of a file or folder
  3397. *
  3398. * Parameters:
  3399. * <dospath> Case-insensitive DOS-style path to a file or folder
  3400. *
  3401. * Example:
  3402. * M33 miscel~1/armchair/armcha~1.gco
  3403. *
  3404. * Output:
  3405. * /Miscellaneous/Armchair/Armchair.gcode
  3406. */
  3407. inline void gcode_M33() {
  3408. card.printLongPath(current_command_args);
  3409. }
  3410. #endif
  3411. /**
  3412. * M928: Start SD Write
  3413. */
  3414. inline void gcode_M928() {
  3415. card.openLogFile(current_command_args);
  3416. }
  3417. #endif // SDSUPPORT
  3418. /**
  3419. * M42: Change pin status via GCode
  3420. *
  3421. * P<pin> Pin number (LED if omitted)
  3422. * S<byte> Pin status from 0 - 255
  3423. */
  3424. inline void gcode_M42() {
  3425. if (!code_seen('S')) return;
  3426. int pin_status = code_value_int();
  3427. if (pin_status < 0 || pin_status > 255) return;
  3428. int pin_number = code_seen('P') ? code_value_int() : LED_PIN;
  3429. if (pin_number < 0) return;
  3430. for (uint8_t i = 0; i < COUNT(sensitive_pins); i++)
  3431. if (pin_number == sensitive_pins[i]) return;
  3432. pinMode(pin_number, OUTPUT);
  3433. digitalWrite(pin_number, pin_status);
  3434. analogWrite(pin_number, pin_status);
  3435. #if FAN_COUNT > 0
  3436. switch (pin_number) {
  3437. #if HAS_FAN0
  3438. case FAN_PIN: fanSpeeds[0] = pin_status; break;
  3439. #endif
  3440. #if HAS_FAN1
  3441. case FAN1_PIN: fanSpeeds[1] = pin_status; break;
  3442. #endif
  3443. #if HAS_FAN2
  3444. case FAN2_PIN: fanSpeeds[2] = pin_status; break;
  3445. #endif
  3446. }
  3447. #endif
  3448. }
  3449. #if ENABLED(Z_MIN_PROBE_REPEATABILITY_TEST)
  3450. /**
  3451. * M48: Z probe repeatability measurement function.
  3452. *
  3453. * Usage:
  3454. * M48 <P#> <X#> <Y#> <V#> <E> <L#>
  3455. * P = Number of sampled points (4-50, default 10)
  3456. * X = Sample X position
  3457. * Y = Sample Y position
  3458. * V = Verbose level (0-4, default=1)
  3459. * E = Engage Z probe for each reading
  3460. * L = Number of legs of movement before probe
  3461. * S = Schizoid (Or Star if you prefer)
  3462. *
  3463. * This function assumes the bed has been homed. Specifically, that a G28 command
  3464. * as been issued prior to invoking the M48 Z probe repeatability measurement function.
  3465. * Any information generated by a prior G29 Bed leveling command will be lost and need to be
  3466. * regenerated.
  3467. */
  3468. inline void gcode_M48() {
  3469. if (axis_unhomed_error(true, true, true)) return;
  3470. int8_t verbose_level = code_seen('V') ? code_value_byte() : 1;
  3471. if (verbose_level < 0 || verbose_level > 4) {
  3472. SERIAL_PROTOCOLLNPGM("?Verbose Level not plausible (0-4).");
  3473. return;
  3474. }
  3475. if (verbose_level > 0)
  3476. SERIAL_PROTOCOLLNPGM("M48 Z-Probe Repeatability test");
  3477. int8_t n_samples = code_seen('P') ? code_value_byte() : 10;
  3478. if (n_samples < 4 || n_samples > 50) {
  3479. SERIAL_PROTOCOLLNPGM("?Sample size not plausible (4-50).");
  3480. return;
  3481. }
  3482. float X_current = current_position[X_AXIS],
  3483. Y_current = current_position[Y_AXIS];
  3484. bool stow_probe_after_each = code_seen('E');
  3485. float X_probe_location = code_seen('X') ? code_value_axis_units(X_AXIS) : X_current + X_PROBE_OFFSET_FROM_EXTRUDER;
  3486. #if DISABLED(DELTA)
  3487. if (X_probe_location < MIN_PROBE_X || X_probe_location > MAX_PROBE_X) {
  3488. out_of_range_error(PSTR("X"));
  3489. return;
  3490. }
  3491. #endif
  3492. float Y_probe_location = code_seen('Y') ? code_value_axis_units(Y_AXIS) : Y_current + Y_PROBE_OFFSET_FROM_EXTRUDER;
  3493. #if DISABLED(DELTA)
  3494. if (Y_probe_location < MIN_PROBE_Y || Y_probe_location > MAX_PROBE_Y) {
  3495. out_of_range_error(PSTR("Y"));
  3496. return;
  3497. }
  3498. #else
  3499. if (sqrt(X_probe_location * X_probe_location + Y_probe_location * Y_probe_location) > DELTA_PROBEABLE_RADIUS) {
  3500. SERIAL_PROTOCOLLNPGM("? (X,Y) location outside of probeable radius.");
  3501. return;
  3502. }
  3503. #endif
  3504. bool seen_L = code_seen('L');
  3505. uint8_t n_legs = seen_L ? code_value_byte() : 0;
  3506. if (n_legs > 15) {
  3507. SERIAL_PROTOCOLLNPGM("?Number of legs in movement not plausible (0-15).");
  3508. return;
  3509. }
  3510. if (n_legs == 1) n_legs = 2;
  3511. bool schizoid_flag = code_seen('S');
  3512. if (schizoid_flag && !seen_L) n_legs = 7;
  3513. /**
  3514. * Now get everything to the specified probe point So we can safely do a
  3515. * probe to get us close to the bed. If the Z-Axis is far from the bed,
  3516. * we don't want to use that as a starting point for each probe.
  3517. */
  3518. if (verbose_level > 2)
  3519. SERIAL_PROTOCOLLNPGM("Positioning the probe...");
  3520. #if ENABLED(DELTA)
  3521. // we don't do bed level correction in M48 because we want the raw data when we probe
  3522. reset_bed_level();
  3523. #elif ENABLED(AUTO_BED_LEVELING_FEATURE)
  3524. // we don't do bed level correction in M48 because we want the raw data when we probe
  3525. planner.bed_level_matrix.set_to_identity();
  3526. #endif
  3527. setup_for_endstop_or_probe_move();
  3528. // Move to the first point, deploy, and probe
  3529. probe_pt(X_probe_location, Y_probe_location, stow_probe_after_each, verbose_level);
  3530. randomSeed(millis());
  3531. double mean = 0, sigma = 0, sample_set[n_samples];
  3532. for (uint8_t n = 0; n < n_samples; n++) {
  3533. if (n_legs) {
  3534. int dir = (random(0, 10) > 5.0) ? -1 : 1; // clockwise or counter clockwise
  3535. float angle = random(0.0, 360.0),
  3536. radius = random(
  3537. #if ENABLED(DELTA)
  3538. DELTA_PROBEABLE_RADIUS / 8, DELTA_PROBEABLE_RADIUS / 3
  3539. #else
  3540. 5, X_MAX_LENGTH / 8
  3541. #endif
  3542. );
  3543. if (verbose_level > 3) {
  3544. SERIAL_ECHOPAIR("Starting radius: ", radius);
  3545. SERIAL_ECHOPAIR(" angle: ", angle);
  3546. SERIAL_ECHOPGM(" Direction: ");
  3547. if (dir > 0) SERIAL_ECHOPGM("Counter-");
  3548. SERIAL_ECHOLNPGM("Clockwise");
  3549. }
  3550. for (uint8_t l = 0; l < n_legs - 1; l++) {
  3551. double delta_angle;
  3552. if (schizoid_flag)
  3553. // The points of a 5 point star are 72 degrees apart. We need to
  3554. // skip a point and go to the next one on the star.
  3555. delta_angle = dir * 2.0 * 72.0;
  3556. else
  3557. // If we do this line, we are just trying to move further
  3558. // around the circle.
  3559. delta_angle = dir * (float) random(25, 45);
  3560. angle += delta_angle;
  3561. while (angle > 360.0) // We probably do not need to keep the angle between 0 and 2*PI, but the
  3562. angle -= 360.0; // Arduino documentation says the trig functions should not be given values
  3563. while (angle < 0.0) // outside of this range. It looks like they behave correctly with
  3564. angle += 360.0; // numbers outside of the range, but just to be safe we clamp them.
  3565. X_current = X_probe_location - (X_PROBE_OFFSET_FROM_EXTRUDER) + cos(RADIANS(angle)) * radius;
  3566. Y_current = Y_probe_location - (Y_PROBE_OFFSET_FROM_EXTRUDER) + sin(RADIANS(angle)) * radius;
  3567. #if DISABLED(DELTA)
  3568. X_current = constrain(X_current, X_MIN_POS, X_MAX_POS);
  3569. Y_current = constrain(Y_current, Y_MIN_POS, Y_MAX_POS);
  3570. #else
  3571. // If we have gone out too far, we can do a simple fix and scale the numbers
  3572. // back in closer to the origin.
  3573. while (sqrt(X_current * X_current + Y_current * Y_current) > DELTA_PROBEABLE_RADIUS) {
  3574. X_current /= 1.25;
  3575. Y_current /= 1.25;
  3576. if (verbose_level > 3) {
  3577. SERIAL_ECHOPAIR("Pulling point towards center:", X_current);
  3578. SERIAL_ECHOPAIR(", ", Y_current);
  3579. SERIAL_EOL;
  3580. }
  3581. }
  3582. #endif
  3583. if (verbose_level > 3) {
  3584. SERIAL_PROTOCOLPGM("Going to:");
  3585. SERIAL_ECHOPAIR(" X", X_current);
  3586. SERIAL_ECHOPAIR(" Y", Y_current);
  3587. SERIAL_ECHOPAIR(" Z", current_position[Z_AXIS]);
  3588. SERIAL_EOL;
  3589. }
  3590. do_blocking_move_to_xy(X_current, Y_current);
  3591. } // n_legs loop
  3592. } // n_legs
  3593. // Probe a single point
  3594. sample_set[n] = probe_pt(X_probe_location, Y_probe_location, stow_probe_after_each, verbose_level);
  3595. /**
  3596. * Get the current mean for the data points we have so far
  3597. */
  3598. double sum = 0.0;
  3599. for (uint8_t j = 0; j <= n; j++) sum += sample_set[j];
  3600. mean = sum / (n + 1);
  3601. /**
  3602. * Now, use that mean to calculate the standard deviation for the
  3603. * data points we have so far
  3604. */
  3605. sum = 0.0;
  3606. for (uint8_t j = 0; j <= n; j++) {
  3607. float ss = sample_set[j] - mean;
  3608. sum += ss * ss;
  3609. }
  3610. sigma = sqrt(sum / (n + 1));
  3611. if (verbose_level > 0) {
  3612. if (verbose_level > 1) {
  3613. SERIAL_PROTOCOL(n + 1);
  3614. SERIAL_PROTOCOLPGM(" of ");
  3615. SERIAL_PROTOCOL((int)n_samples);
  3616. SERIAL_PROTOCOLPGM(" z: ");
  3617. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
  3618. if (verbose_level > 2) {
  3619. SERIAL_PROTOCOLPGM(" mean: ");
  3620. SERIAL_PROTOCOL_F(mean, 6);
  3621. SERIAL_PROTOCOLPGM(" sigma: ");
  3622. SERIAL_PROTOCOL_F(sigma, 6);
  3623. }
  3624. }
  3625. SERIAL_EOL;
  3626. }
  3627. } // End of probe loop
  3628. if (STOW_PROBE()) return;
  3629. if (verbose_level > 0) {
  3630. SERIAL_PROTOCOLPGM("Mean: ");
  3631. SERIAL_PROTOCOL_F(mean, 6);
  3632. SERIAL_EOL;
  3633. }
  3634. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  3635. SERIAL_PROTOCOL_F(sigma, 6);
  3636. SERIAL_EOL; SERIAL_EOL;
  3637. clean_up_after_endstop_or_probe_move();
  3638. report_current_position();
  3639. }
  3640. #endif // Z_MIN_PROBE_REPEATABILITY_TEST
  3641. /**
  3642. * M75: Start print timer
  3643. */
  3644. inline void gcode_M75() { print_job_timer.start(); }
  3645. /**
  3646. * M76: Pause print timer
  3647. */
  3648. inline void gcode_M76() { print_job_timer.pause(); }
  3649. /**
  3650. * M77: Stop print timer
  3651. */
  3652. inline void gcode_M77() { print_job_timer.stop(); }
  3653. #if ENABLED(PRINTCOUNTER)
  3654. /*+
  3655. * M78: Show print statistics
  3656. */
  3657. inline void gcode_M78() {
  3658. // "M78 S78" will reset the statistics
  3659. if (code_seen('S') && code_value_int() == 78)
  3660. print_job_timer.initStats();
  3661. else print_job_timer.showStats();
  3662. }
  3663. #endif
  3664. /**
  3665. * M104: Set hot end temperature
  3666. */
  3667. inline void gcode_M104() {
  3668. if (get_target_extruder_from_command(104)) return;
  3669. if (DEBUGGING(DRYRUN)) return;
  3670. #if ENABLED(SINGLENOZZLE)
  3671. if (target_extruder != active_extruder) return;
  3672. #endif
  3673. if (code_seen('S')) {
  3674. thermalManager.setTargetHotend(code_value_temp_abs(), target_extruder);
  3675. #if ENABLED(DUAL_X_CARRIAGE)
  3676. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && target_extruder == 0)
  3677. thermalManager.setTargetHotend(code_value_temp_abs() == 0.0 ? 0.0 : code_value_temp_abs() + duplicate_extruder_temp_offset, 1);
  3678. #endif
  3679. #if ENABLED(PRINTJOB_TIMER_AUTOSTART)
  3680. /**
  3681. * Stop the timer at the end of print, starting is managed by
  3682. * 'heat and wait' M109.
  3683. * We use half EXTRUDE_MINTEMP here to allow nozzles to be put into hot
  3684. * stand by mode, for instance in a dual extruder setup, without affecting
  3685. * the running print timer.
  3686. */
  3687. if (code_value_temp_abs() <= (EXTRUDE_MINTEMP)/2) {
  3688. print_job_timer.stop();
  3689. LCD_MESSAGEPGM(WELCOME_MSG);
  3690. }
  3691. #endif
  3692. if (code_value_temp_abs() > thermalManager.degHotend(target_extruder)) LCD_MESSAGEPGM(MSG_HEATING);
  3693. }
  3694. }
  3695. #if HAS_TEMP_HOTEND || HAS_TEMP_BED
  3696. void print_heaterstates() {
  3697. #if HAS_TEMP_HOTEND
  3698. SERIAL_PROTOCOLPGM(" T:");
  3699. SERIAL_PROTOCOL_F(thermalManager.degHotend(target_extruder), 1);
  3700. SERIAL_PROTOCOLPGM(" /");
  3701. SERIAL_PROTOCOL_F(thermalManager.degTargetHotend(target_extruder), 1);
  3702. #endif
  3703. #if HAS_TEMP_BED
  3704. SERIAL_PROTOCOLPGM(" B:");
  3705. SERIAL_PROTOCOL_F(thermalManager.degBed(), 1);
  3706. SERIAL_PROTOCOLPGM(" /");
  3707. SERIAL_PROTOCOL_F(thermalManager.degTargetBed(), 1);
  3708. #endif
  3709. #if HOTENDS > 1
  3710. HOTEND_LOOP() {
  3711. SERIAL_PROTOCOLPGM(" T");
  3712. SERIAL_PROTOCOL(e);
  3713. SERIAL_PROTOCOLCHAR(':');
  3714. SERIAL_PROTOCOL_F(thermalManager.degHotend(e), 1);
  3715. SERIAL_PROTOCOLPGM(" /");
  3716. SERIAL_PROTOCOL_F(thermalManager.degTargetHotend(e), 1);
  3717. }
  3718. #endif
  3719. #if HAS_TEMP_BED
  3720. SERIAL_PROTOCOLPGM(" B@:");
  3721. #ifdef BED_WATTS
  3722. SERIAL_PROTOCOL(((BED_WATTS) * thermalManager.getHeaterPower(-1)) / 127);
  3723. SERIAL_PROTOCOLCHAR('W');
  3724. #else
  3725. SERIAL_PROTOCOL(thermalManager.getHeaterPower(-1));
  3726. #endif
  3727. #endif
  3728. SERIAL_PROTOCOLPGM(" @:");
  3729. #ifdef EXTRUDER_WATTS
  3730. SERIAL_PROTOCOL(((EXTRUDER_WATTS) * thermalManager.getHeaterPower(target_extruder)) / 127);
  3731. SERIAL_PROTOCOLCHAR('W');
  3732. #else
  3733. SERIAL_PROTOCOL(thermalManager.getHeaterPower(target_extruder));
  3734. #endif
  3735. #if HOTENDS > 1
  3736. HOTEND_LOOP() {
  3737. SERIAL_PROTOCOLPGM(" @");
  3738. SERIAL_PROTOCOL(e);
  3739. SERIAL_PROTOCOLCHAR(':');
  3740. #ifdef EXTRUDER_WATTS
  3741. SERIAL_PROTOCOL(((EXTRUDER_WATTS) * thermalManager.getHeaterPower(e)) / 127);
  3742. SERIAL_PROTOCOLCHAR('W');
  3743. #else
  3744. SERIAL_PROTOCOL(thermalManager.getHeaterPower(e));
  3745. #endif
  3746. }
  3747. #endif
  3748. #if ENABLED(SHOW_TEMP_ADC_VALUES)
  3749. #if HAS_TEMP_BED
  3750. SERIAL_PROTOCOLPGM(" ADC B:");
  3751. SERIAL_PROTOCOL_F(thermalManager.degBed(), 1);
  3752. SERIAL_PROTOCOLPGM("C->");
  3753. SERIAL_PROTOCOL_F(thermalManager.rawBedTemp() / OVERSAMPLENR, 0);
  3754. #endif
  3755. HOTEND_LOOP() {
  3756. SERIAL_PROTOCOLPGM(" T");
  3757. SERIAL_PROTOCOL(e);
  3758. SERIAL_PROTOCOLCHAR(':');
  3759. SERIAL_PROTOCOL_F(thermalManager.degHotend(e), 1);
  3760. SERIAL_PROTOCOLPGM("C->");
  3761. SERIAL_PROTOCOL_F(thermalManager.rawHotendTemp(e) / OVERSAMPLENR, 0);
  3762. }
  3763. #endif
  3764. }
  3765. #endif
  3766. /**
  3767. * M105: Read hot end and bed temperature
  3768. */
  3769. inline void gcode_M105() {
  3770. if (get_target_extruder_from_command(105)) return;
  3771. #if HAS_TEMP_HOTEND || HAS_TEMP_BED
  3772. SERIAL_PROTOCOLPGM(MSG_OK);
  3773. print_heaterstates();
  3774. #else // !HAS_TEMP_HOTEND && !HAS_TEMP_BED
  3775. SERIAL_ERROR_START;
  3776. SERIAL_ERRORLNPGM(MSG_ERR_NO_THERMISTORS);
  3777. #endif
  3778. SERIAL_EOL;
  3779. }
  3780. #if FAN_COUNT > 0
  3781. /**
  3782. * M106: Set Fan Speed
  3783. *
  3784. * S<int> Speed between 0-255
  3785. * P<index> Fan index, if more than one fan
  3786. */
  3787. inline void gcode_M106() {
  3788. uint16_t s = code_seen('S') ? code_value_ushort() : 255,
  3789. p = code_seen('P') ? code_value_ushort() : 0;
  3790. NOMORE(s, 255);
  3791. if (p < FAN_COUNT) fanSpeeds[p] = s;
  3792. }
  3793. /**
  3794. * M107: Fan Off
  3795. */
  3796. inline void gcode_M107() {
  3797. uint16_t p = code_seen('P') ? code_value_ushort() : 0;
  3798. if (p < FAN_COUNT) fanSpeeds[p] = 0;
  3799. }
  3800. #endif // FAN_COUNT > 0
  3801. #if DISABLED(EMERGENCY_PARSER)
  3802. /**
  3803. * M108: Stop the waiting for heaters in M109, M190, M303. Does not affect the target temperature.
  3804. */
  3805. inline void gcode_M108() { wait_for_heatup = false; }
  3806. /**
  3807. * M112: Emergency Stop
  3808. */
  3809. inline void gcode_M112() { kill(PSTR(MSG_KILLED)); }
  3810. /**
  3811. * M410: Quickstop - Abort all planned moves
  3812. *
  3813. * This will stop the carriages mid-move, so most likely they
  3814. * will be out of sync with the stepper position after this.
  3815. */
  3816. inline void gcode_M410() { quickstop_stepper(); }
  3817. #endif
  3818. #ifndef MIN_COOLING_SLOPE_DEG
  3819. #define MIN_COOLING_SLOPE_DEG 1.50
  3820. #endif
  3821. #ifndef MIN_COOLING_SLOPE_TIME
  3822. #define MIN_COOLING_SLOPE_TIME 60
  3823. #endif
  3824. /**
  3825. * M109: Sxxx Wait for extruder(s) to reach temperature. Waits only when heating.
  3826. * Rxxx Wait for extruder(s) to reach temperature. Waits when heating and cooling.
  3827. */
  3828. inline void gcode_M109() {
  3829. if (get_target_extruder_from_command(109)) return;
  3830. if (DEBUGGING(DRYRUN)) return;
  3831. #if ENABLED(SINGLENOZZLE)
  3832. if (target_extruder != active_extruder) return;
  3833. #endif
  3834. bool no_wait_for_cooling = code_seen('S');
  3835. if (no_wait_for_cooling || code_seen('R')) {
  3836. thermalManager.setTargetHotend(code_value_temp_abs(), target_extruder);
  3837. #if ENABLED(DUAL_X_CARRIAGE)
  3838. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && target_extruder == 0)
  3839. thermalManager.setTargetHotend(code_value_temp_abs() == 0.0 ? 0.0 : code_value_temp_abs() + duplicate_extruder_temp_offset, 1);
  3840. #endif
  3841. #if ENABLED(PRINTJOB_TIMER_AUTOSTART)
  3842. /**
  3843. * We use half EXTRUDE_MINTEMP here to allow nozzles to be put into hot
  3844. * stand by mode, for instance in a dual extruder setup, without affecting
  3845. * the running print timer.
  3846. */
  3847. if (code_value_temp_abs() <= (EXTRUDE_MINTEMP)/2) {
  3848. print_job_timer.stop();
  3849. LCD_MESSAGEPGM(WELCOME_MSG);
  3850. }
  3851. /**
  3852. * We do not check if the timer is already running because this check will
  3853. * be done for us inside the Stopwatch::start() method thus a running timer
  3854. * will not restart.
  3855. */
  3856. else print_job_timer.start();
  3857. #endif
  3858. if (thermalManager.isHeatingHotend(target_extruder)) LCD_MESSAGEPGM(MSG_HEATING);
  3859. }
  3860. #if ENABLED(AUTOTEMP)
  3861. planner.autotemp_M109();
  3862. #endif
  3863. #if TEMP_RESIDENCY_TIME > 0
  3864. millis_t residency_start_ms = 0;
  3865. // Loop until the temperature has stabilized
  3866. #define TEMP_CONDITIONS (!residency_start_ms || PENDING(now, residency_start_ms + (TEMP_RESIDENCY_TIME) * 1000UL))
  3867. #else
  3868. // Loop until the temperature is very close target
  3869. #define TEMP_CONDITIONS (wants_to_cool ? thermalManager.isCoolingHotend(target_extruder) : thermalManager.isHeatingHotend(target_extruder))
  3870. #endif //TEMP_RESIDENCY_TIME > 0
  3871. float theTarget = -1.0, old_temp = 9999.0;
  3872. bool wants_to_cool = false;
  3873. wait_for_heatup = true;
  3874. millis_t now, next_temp_ms = 0, next_cool_check_ms = 0;
  3875. KEEPALIVE_STATE(NOT_BUSY);
  3876. do {
  3877. // Target temperature might be changed during the loop
  3878. if (theTarget != thermalManager.degTargetHotend(target_extruder)) {
  3879. wants_to_cool = thermalManager.isCoolingHotend(target_extruder);
  3880. theTarget = thermalManager.degTargetHotend(target_extruder);
  3881. // Exit if S<lower>, continue if S<higher>, R<lower>, or R<higher>
  3882. if (no_wait_for_cooling && wants_to_cool) break;
  3883. }
  3884. now = millis();
  3885. if (ELAPSED(now, next_temp_ms)) { //Print temp & remaining time every 1s while waiting
  3886. next_temp_ms = now + 1000UL;
  3887. print_heaterstates();
  3888. #if TEMP_RESIDENCY_TIME > 0
  3889. SERIAL_PROTOCOLPGM(" W:");
  3890. if (residency_start_ms) {
  3891. long rem = (((TEMP_RESIDENCY_TIME) * 1000UL) - (now - residency_start_ms)) / 1000UL;
  3892. SERIAL_PROTOCOLLN(rem);
  3893. }
  3894. else {
  3895. SERIAL_PROTOCOLLNPGM("?");
  3896. }
  3897. #else
  3898. SERIAL_EOL;
  3899. #endif
  3900. }
  3901. idle();
  3902. refresh_cmd_timeout(); // to prevent stepper_inactive_time from running out
  3903. float temp = thermalManager.degHotend(target_extruder);
  3904. #if TEMP_RESIDENCY_TIME > 0
  3905. float temp_diff = fabs(theTarget - temp);
  3906. if (!residency_start_ms) {
  3907. // Start the TEMP_RESIDENCY_TIME timer when we reach target temp for the first time.
  3908. if (temp_diff < TEMP_WINDOW) residency_start_ms = now;
  3909. }
  3910. else if (temp_diff > TEMP_HYSTERESIS) {
  3911. // Restart the timer whenever the temperature falls outside the hysteresis.
  3912. residency_start_ms = now;
  3913. }
  3914. #endif //TEMP_RESIDENCY_TIME > 0
  3915. // Prevent a wait-forever situation if R is misused i.e. M109 R0
  3916. if (wants_to_cool) {
  3917. // break after MIN_COOLING_SLOPE_TIME seconds
  3918. // if the temperature did not drop at least MIN_COOLING_SLOPE_DEG
  3919. if (!next_cool_check_ms || ELAPSED(now, next_cool_check_ms)) {
  3920. if (old_temp - temp < MIN_COOLING_SLOPE_DEG) break;
  3921. next_cool_check_ms = now + 1000UL * MIN_COOLING_SLOPE_TIME;
  3922. old_temp = temp;
  3923. }
  3924. }
  3925. } while (wait_for_heatup && TEMP_CONDITIONS);
  3926. LCD_MESSAGEPGM(MSG_HEATING_COMPLETE);
  3927. KEEPALIVE_STATE(IN_HANDLER);
  3928. }
  3929. #if HAS_TEMP_BED
  3930. #ifndef MIN_COOLING_SLOPE_DEG_BED
  3931. #define MIN_COOLING_SLOPE_DEG_BED 1.50
  3932. #endif
  3933. #ifndef MIN_COOLING_SLOPE_TIME_BED
  3934. #define MIN_COOLING_SLOPE_TIME_BED 60
  3935. #endif
  3936. /**
  3937. * M190: Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  3938. * Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  3939. */
  3940. inline void gcode_M190() {
  3941. if (DEBUGGING(DRYRUN)) return;
  3942. LCD_MESSAGEPGM(MSG_BED_HEATING);
  3943. bool no_wait_for_cooling = code_seen('S');
  3944. if (no_wait_for_cooling || code_seen('R')) {
  3945. thermalManager.setTargetBed(code_value_temp_abs());
  3946. #if ENABLED(PRINTJOB_TIMER_AUTOSTART)
  3947. if (code_value_temp_abs() > BED_MINTEMP) {
  3948. /**
  3949. * We start the timer when 'heating and waiting' command arrives, LCD
  3950. * functions never wait. Cooling down managed by extruders.
  3951. *
  3952. * We do not check if the timer is already running because this check will
  3953. * be done for us inside the Stopwatch::start() method thus a running timer
  3954. * will not restart.
  3955. */
  3956. print_job_timer.start();
  3957. }
  3958. #endif
  3959. }
  3960. #if TEMP_BED_RESIDENCY_TIME > 0
  3961. millis_t residency_start_ms = 0;
  3962. // Loop until the temperature has stabilized
  3963. #define TEMP_BED_CONDITIONS (!residency_start_ms || PENDING(now, residency_start_ms + (TEMP_BED_RESIDENCY_TIME) * 1000UL))
  3964. #else
  3965. // Loop until the temperature is very close target
  3966. #define TEMP_BED_CONDITIONS (wants_to_cool ? thermalManager.isCoolingBed() : thermalManager.isHeatingBed())
  3967. #endif //TEMP_BED_RESIDENCY_TIME > 0
  3968. float theTarget = -1.0, old_temp = 9999.0;
  3969. bool wants_to_cool = false;
  3970. wait_for_heatup = true;
  3971. millis_t now, next_temp_ms = 0, next_cool_check_ms = 0;
  3972. KEEPALIVE_STATE(NOT_BUSY);
  3973. do {
  3974. // Target temperature might be changed during the loop
  3975. if (theTarget != thermalManager.degTargetBed()) {
  3976. wants_to_cool = thermalManager.isCoolingBed();
  3977. theTarget = thermalManager.degTargetBed();
  3978. // Exit if S<lower>, continue if S<higher>, R<lower>, or R<higher>
  3979. if (no_wait_for_cooling && wants_to_cool) break;
  3980. }
  3981. now = millis();
  3982. if (ELAPSED(now, next_temp_ms)) { //Print Temp Reading every 1 second while heating up.
  3983. next_temp_ms = now + 1000UL;
  3984. print_heaterstates();
  3985. #if TEMP_BED_RESIDENCY_TIME > 0
  3986. SERIAL_PROTOCOLPGM(" W:");
  3987. if (residency_start_ms) {
  3988. long rem = (((TEMP_BED_RESIDENCY_TIME) * 1000UL) - (now - residency_start_ms)) / 1000UL;
  3989. SERIAL_PROTOCOLLN(rem);
  3990. }
  3991. else {
  3992. SERIAL_PROTOCOLLNPGM("?");
  3993. }
  3994. #else
  3995. SERIAL_EOL;
  3996. #endif
  3997. }
  3998. idle();
  3999. refresh_cmd_timeout(); // to prevent stepper_inactive_time from running out
  4000. float temp = thermalManager.degBed();
  4001. #if TEMP_BED_RESIDENCY_TIME > 0
  4002. float temp_diff = fabs(theTarget - temp);
  4003. if (!residency_start_ms) {
  4004. // Start the TEMP_BED_RESIDENCY_TIME timer when we reach target temp for the first time.
  4005. if (temp_diff < TEMP_BED_WINDOW) residency_start_ms = now;
  4006. }
  4007. else if (temp_diff > TEMP_BED_HYSTERESIS) {
  4008. // Restart the timer whenever the temperature falls outside the hysteresis.
  4009. residency_start_ms = now;
  4010. }
  4011. #endif //TEMP_BED_RESIDENCY_TIME > 0
  4012. // Prevent a wait-forever situation if R is misused i.e. M190 R0
  4013. if (wants_to_cool) {
  4014. // break after MIN_COOLING_SLOPE_TIME_BED seconds
  4015. // if the temperature did not drop at least MIN_COOLING_SLOPE_DEG_BED
  4016. if (!next_cool_check_ms || ELAPSED(now, next_cool_check_ms)) {
  4017. if (old_temp - temp < MIN_COOLING_SLOPE_DEG_BED) break;
  4018. next_cool_check_ms = now + 1000UL * MIN_COOLING_SLOPE_TIME_BED;
  4019. old_temp = temp;
  4020. }
  4021. }
  4022. } while (wait_for_heatup && TEMP_BED_CONDITIONS);
  4023. LCD_MESSAGEPGM(MSG_BED_DONE);
  4024. KEEPALIVE_STATE(IN_HANDLER);
  4025. }
  4026. #endif // HAS_TEMP_BED
  4027. /**
  4028. * M110: Set Current Line Number
  4029. */
  4030. inline void gcode_M110() {
  4031. if (code_seen('N')) gcode_N = code_value_long();
  4032. }
  4033. /**
  4034. * M111: Set the debug level
  4035. */
  4036. inline void gcode_M111() {
  4037. marlin_debug_flags = code_seen('S') ? code_value_byte() : (uint8_t) DEBUG_NONE;
  4038. const static char str_debug_1[] PROGMEM = MSG_DEBUG_ECHO;
  4039. const static char str_debug_2[] PROGMEM = MSG_DEBUG_INFO;
  4040. const static char str_debug_4[] PROGMEM = MSG_DEBUG_ERRORS;
  4041. const static char str_debug_8[] PROGMEM = MSG_DEBUG_DRYRUN;
  4042. const static char str_debug_16[] PROGMEM = MSG_DEBUG_COMMUNICATION;
  4043. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4044. const static char str_debug_32[] PROGMEM = MSG_DEBUG_LEVELING;
  4045. #endif
  4046. const static char* const debug_strings[] PROGMEM = {
  4047. str_debug_1, str_debug_2, str_debug_4, str_debug_8, str_debug_16,
  4048. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4049. str_debug_32
  4050. #endif
  4051. };
  4052. SERIAL_ECHO_START;
  4053. SERIAL_ECHOPGM(MSG_DEBUG_PREFIX);
  4054. if (marlin_debug_flags) {
  4055. uint8_t comma = 0;
  4056. for (uint8_t i = 0; i < COUNT(debug_strings); i++) {
  4057. if (TEST(marlin_debug_flags, i)) {
  4058. if (comma++) SERIAL_CHAR(',');
  4059. serialprintPGM((char*)pgm_read_word(&(debug_strings[i])));
  4060. }
  4061. }
  4062. }
  4063. else {
  4064. SERIAL_ECHOPGM(MSG_DEBUG_OFF);
  4065. }
  4066. SERIAL_EOL;
  4067. }
  4068. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  4069. /**
  4070. * M113: Get or set Host Keepalive interval (0 to disable)
  4071. *
  4072. * S<seconds> Optional. Set the keepalive interval.
  4073. */
  4074. inline void gcode_M113() {
  4075. if (code_seen('S')) {
  4076. host_keepalive_interval = code_value_byte();
  4077. NOMORE(host_keepalive_interval, 60);
  4078. }
  4079. else {
  4080. SERIAL_ECHO_START;
  4081. SERIAL_ECHOPAIR("M113 S", (unsigned long)host_keepalive_interval);
  4082. SERIAL_EOL;
  4083. }
  4084. }
  4085. #endif
  4086. #if ENABLED(BARICUDA)
  4087. #if HAS_HEATER_1
  4088. /**
  4089. * M126: Heater 1 valve open
  4090. */
  4091. inline void gcode_M126() { baricuda_valve_pressure = code_seen('S') ? code_value_byte() : 255; }
  4092. /**
  4093. * M127: Heater 1 valve close
  4094. */
  4095. inline void gcode_M127() { baricuda_valve_pressure = 0; }
  4096. #endif
  4097. #if HAS_HEATER_2
  4098. /**
  4099. * M128: Heater 2 valve open
  4100. */
  4101. inline void gcode_M128() { baricuda_e_to_p_pressure = code_seen('S') ? code_value_byte() : 255; }
  4102. /**
  4103. * M129: Heater 2 valve close
  4104. */
  4105. inline void gcode_M129() { baricuda_e_to_p_pressure = 0; }
  4106. #endif
  4107. #endif //BARICUDA
  4108. /**
  4109. * M140: Set bed temperature
  4110. */
  4111. inline void gcode_M140() {
  4112. if (DEBUGGING(DRYRUN)) return;
  4113. if (code_seen('S')) thermalManager.setTargetBed(code_value_temp_abs());
  4114. }
  4115. #if ENABLED(ULTIPANEL)
  4116. /**
  4117. * M145: Set the heatup state for a material in the LCD menu
  4118. * S<material> (0=PLA, 1=ABS)
  4119. * H<hotend temp>
  4120. * B<bed temp>
  4121. * F<fan speed>
  4122. */
  4123. inline void gcode_M145() {
  4124. int8_t material = code_seen('S') ? (int8_t)code_value_int() : 0;
  4125. if (material < 0 || material > 1) {
  4126. SERIAL_ERROR_START;
  4127. SERIAL_ERRORLNPGM(MSG_ERR_MATERIAL_INDEX);
  4128. }
  4129. else {
  4130. int v;
  4131. switch (material) {
  4132. case 0:
  4133. if (code_seen('H')) {
  4134. v = code_value_int();
  4135. preheatHotendTemp1 = constrain(v, EXTRUDE_MINTEMP, HEATER_0_MAXTEMP - 15);
  4136. }
  4137. if (code_seen('F')) {
  4138. v = code_value_int();
  4139. preheatFanSpeed1 = constrain(v, 0, 255);
  4140. }
  4141. #if TEMP_SENSOR_BED != 0
  4142. if (code_seen('B')) {
  4143. v = code_value_int();
  4144. preheatBedTemp1 = constrain(v, BED_MINTEMP, BED_MAXTEMP - 15);
  4145. }
  4146. #endif
  4147. break;
  4148. case 1:
  4149. if (code_seen('H')) {
  4150. v = code_value_int();
  4151. preheatHotendTemp2 = constrain(v, EXTRUDE_MINTEMP, HEATER_0_MAXTEMP - 15);
  4152. }
  4153. if (code_seen('F')) {
  4154. v = code_value_int();
  4155. preheatFanSpeed2 = constrain(v, 0, 255);
  4156. }
  4157. #if TEMP_SENSOR_BED != 0
  4158. if (code_seen('B')) {
  4159. v = code_value_int();
  4160. preheatBedTemp2 = constrain(v, BED_MINTEMP, BED_MAXTEMP - 15);
  4161. }
  4162. #endif
  4163. break;
  4164. }
  4165. }
  4166. }
  4167. #endif
  4168. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  4169. /**
  4170. * M149: Set temperature units
  4171. */
  4172. inline void gcode_M149() {
  4173. if (code_seen('C')) {
  4174. set_input_temp_units(TEMPUNIT_C);
  4175. } else if (code_seen('K')) {
  4176. set_input_temp_units(TEMPUNIT_K);
  4177. } else if (code_seen('F')) {
  4178. set_input_temp_units(TEMPUNIT_F);
  4179. }
  4180. }
  4181. #endif
  4182. #if HAS_POWER_SWITCH
  4183. /**
  4184. * M80: Turn on Power Supply
  4185. */
  4186. inline void gcode_M80() {
  4187. OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE); //GND
  4188. /**
  4189. * If you have a switch on suicide pin, this is useful
  4190. * if you want to start another print with suicide feature after
  4191. * a print without suicide...
  4192. */
  4193. #if HAS_SUICIDE
  4194. OUT_WRITE(SUICIDE_PIN, HIGH);
  4195. #endif
  4196. #if ENABLED(ULTIPANEL)
  4197. powersupply = true;
  4198. LCD_MESSAGEPGM(WELCOME_MSG);
  4199. lcd_update();
  4200. #endif
  4201. }
  4202. #endif // HAS_POWER_SWITCH
  4203. /**
  4204. * M81: Turn off Power, including Power Supply, if there is one.
  4205. *
  4206. * This code should ALWAYS be available for EMERGENCY SHUTDOWN!
  4207. */
  4208. inline void gcode_M81() {
  4209. thermalManager.disable_all_heaters();
  4210. stepper.finish_and_disable();
  4211. #if FAN_COUNT > 0
  4212. #if FAN_COUNT > 1
  4213. for (uint8_t i = 0; i < FAN_COUNT; i++) fanSpeeds[i] = 0;
  4214. #else
  4215. fanSpeeds[0] = 0;
  4216. #endif
  4217. #endif
  4218. delay(1000); // Wait 1 second before switching off
  4219. #if HAS_SUICIDE
  4220. stepper.synchronize();
  4221. suicide();
  4222. #elif HAS_POWER_SWITCH
  4223. OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  4224. #endif
  4225. #if ENABLED(ULTIPANEL)
  4226. #if HAS_POWER_SWITCH
  4227. powersupply = false;
  4228. #endif
  4229. LCD_MESSAGEPGM(MACHINE_NAME " " MSG_OFF ".");
  4230. lcd_update();
  4231. #endif
  4232. }
  4233. /**
  4234. * M82: Set E codes absolute (default)
  4235. */
  4236. inline void gcode_M82() { axis_relative_modes[E_AXIS] = false; }
  4237. /**
  4238. * M83: Set E codes relative while in Absolute Coordinates (G90) mode
  4239. */
  4240. inline void gcode_M83() { axis_relative_modes[E_AXIS] = true; }
  4241. /**
  4242. * M18, M84: Disable all stepper motors
  4243. */
  4244. inline void gcode_M18_M84() {
  4245. if (code_seen('S')) {
  4246. stepper_inactive_time = code_value_millis_from_seconds();
  4247. }
  4248. else {
  4249. bool all_axis = !((code_seen('X')) || (code_seen('Y')) || (code_seen('Z')) || (code_seen('E')));
  4250. if (all_axis) {
  4251. stepper.finish_and_disable();
  4252. }
  4253. else {
  4254. stepper.synchronize();
  4255. if (code_seen('X')) disable_x();
  4256. if (code_seen('Y')) disable_y();
  4257. if (code_seen('Z')) disable_z();
  4258. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  4259. if (code_seen('E')) {
  4260. disable_e0();
  4261. disable_e1();
  4262. disable_e2();
  4263. disable_e3();
  4264. }
  4265. #endif
  4266. }
  4267. }
  4268. }
  4269. /**
  4270. * M85: Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  4271. */
  4272. inline void gcode_M85() {
  4273. if (code_seen('S')) max_inactive_time = code_value_millis_from_seconds();
  4274. }
  4275. /**
  4276. * M92: Set axis steps-per-unit for one or more axes, X, Y, Z, and E.
  4277. * (Follows the same syntax as G92)
  4278. */
  4279. inline void gcode_M92() {
  4280. for (int8_t i = 0; i < NUM_AXIS; i++) {
  4281. if (code_seen(axis_codes[i])) {
  4282. if (i == E_AXIS) {
  4283. float value = code_value_per_axis_unit(i);
  4284. if (value < 20.0) {
  4285. float factor = planner.axis_steps_per_mm[i] / value; // increase e constants if M92 E14 is given for netfab.
  4286. planner.max_e_jerk *= factor;
  4287. planner.max_feedrate[i] *= factor;
  4288. planner.max_acceleration_steps_per_s2[i] *= factor;
  4289. }
  4290. planner.axis_steps_per_mm[i] = value;
  4291. }
  4292. else {
  4293. planner.axis_steps_per_mm[i] = code_value_per_axis_unit(i);
  4294. }
  4295. }
  4296. }
  4297. }
  4298. /**
  4299. * Output the current position to serial
  4300. */
  4301. static void report_current_position() {
  4302. SERIAL_PROTOCOLPGM("X:");
  4303. SERIAL_PROTOCOL(current_position[X_AXIS]);
  4304. SERIAL_PROTOCOLPGM(" Y:");
  4305. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  4306. SERIAL_PROTOCOLPGM(" Z:");
  4307. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  4308. SERIAL_PROTOCOLPGM(" E:");
  4309. SERIAL_PROTOCOL(current_position[E_AXIS]);
  4310. stepper.report_positions();
  4311. #if ENABLED(SCARA)
  4312. SERIAL_PROTOCOLPGM("SCARA Theta:");
  4313. SERIAL_PROTOCOL(delta[X_AXIS]);
  4314. SERIAL_PROTOCOLPGM(" Psi+Theta:");
  4315. SERIAL_PROTOCOL(delta[Y_AXIS]);
  4316. SERIAL_EOL;
  4317. SERIAL_PROTOCOLPGM("SCARA Cal - Theta:");
  4318. SERIAL_PROTOCOL(delta[X_AXIS] + home_offset[X_AXIS]);
  4319. SERIAL_PROTOCOLPGM(" Psi+Theta (90):");
  4320. SERIAL_PROTOCOL(delta[Y_AXIS] - delta[X_AXIS] - 90 + home_offset[Y_AXIS]);
  4321. SERIAL_EOL;
  4322. SERIAL_PROTOCOLPGM("SCARA step Cal - Theta:");
  4323. SERIAL_PROTOCOL(delta[X_AXIS] / 90 * planner.axis_steps_per_mm[X_AXIS]);
  4324. SERIAL_PROTOCOLPGM(" Psi+Theta:");
  4325. SERIAL_PROTOCOL((delta[Y_AXIS] - delta[X_AXIS]) / 90 * planner.axis_steps_per_mm[Y_AXIS]);
  4326. SERIAL_EOL; SERIAL_EOL;
  4327. #endif
  4328. }
  4329. /**
  4330. * M114: Output current position to serial port
  4331. */
  4332. inline void gcode_M114() { report_current_position(); }
  4333. /**
  4334. * M115: Capabilities string
  4335. */
  4336. inline void gcode_M115() {
  4337. SERIAL_PROTOCOLPGM(MSG_M115_REPORT);
  4338. }
  4339. /**
  4340. * M117: Set LCD Status Message
  4341. */
  4342. inline void gcode_M117() {
  4343. lcd_setstatus(current_command_args);
  4344. }
  4345. /**
  4346. * M119: Output endstop states to serial output
  4347. */
  4348. inline void gcode_M119() { endstops.M119(); }
  4349. /**
  4350. * M120: Enable endstops and set non-homing endstop state to "enabled"
  4351. */
  4352. inline void gcode_M120() { endstops.enable_globally(true); }
  4353. /**
  4354. * M121: Disable endstops and set non-homing endstop state to "disabled"
  4355. */
  4356. inline void gcode_M121() { endstops.enable_globally(false); }
  4357. #if ENABLED(BLINKM)
  4358. /**
  4359. * M150: Set Status LED Color - Use R-U-B for R-G-B
  4360. */
  4361. inline void gcode_M150() {
  4362. SendColors(
  4363. code_seen('R') ? code_value_byte() : 0,
  4364. code_seen('U') ? code_value_byte() : 0,
  4365. code_seen('B') ? code_value_byte() : 0
  4366. );
  4367. }
  4368. #endif // BLINKM
  4369. #if ENABLED(EXPERIMENTAL_I2CBUS)
  4370. /**
  4371. * M155: Send data to a I2C slave device
  4372. *
  4373. * This is a PoC, the formating and arguments for the GCODE will
  4374. * change to be more compatible, the current proposal is:
  4375. *
  4376. * M155 A<slave device address base 10> ; Sets the I2C slave address the data will be sent to
  4377. *
  4378. * M155 B<byte-1 value in base 10>
  4379. * M155 B<byte-2 value in base 10>
  4380. * M155 B<byte-3 value in base 10>
  4381. *
  4382. * M155 S1 ; Send the buffered data and reset the buffer
  4383. * M155 R1 ; Reset the buffer without sending data
  4384. *
  4385. */
  4386. inline void gcode_M155() {
  4387. // Set the target address
  4388. if (code_seen('A'))
  4389. i2c.address(code_value_byte());
  4390. // Add a new byte to the buffer
  4391. else if (code_seen('B'))
  4392. i2c.addbyte(code_value_int());
  4393. // Flush the buffer to the bus
  4394. else if (code_seen('S')) i2c.send();
  4395. // Reset and rewind the buffer
  4396. else if (code_seen('R')) i2c.reset();
  4397. }
  4398. /**
  4399. * M156: Request X bytes from I2C slave device
  4400. *
  4401. * Usage: M156 A<slave device address base 10> B<number of bytes>
  4402. */
  4403. inline void gcode_M156() {
  4404. uint8_t addr = code_seen('A') ? code_value_byte() : 0;
  4405. int bytes = code_seen('B') ? code_value_int() : 1;
  4406. if (addr && bytes > 0 && bytes <= 32) {
  4407. i2c.address(addr);
  4408. i2c.reqbytes(bytes);
  4409. }
  4410. else {
  4411. SERIAL_ERROR_START;
  4412. SERIAL_ERRORLN("Bad i2c request");
  4413. }
  4414. }
  4415. #endif //EXPERIMENTAL_I2CBUS
  4416. /**
  4417. * M200: Set filament diameter and set E axis units to cubic units
  4418. *
  4419. * T<extruder> - Optional extruder number. Current extruder if omitted.
  4420. * D<linear> - Diameter of the filament. Use "D0" to switch back to linear units on the E axis.
  4421. */
  4422. inline void gcode_M200() {
  4423. if (get_target_extruder_from_command(200)) return;
  4424. if (code_seen('D')) {
  4425. // setting any extruder filament size disables volumetric on the assumption that
  4426. // slicers either generate in extruder values as cubic mm or as as filament feeds
  4427. // for all extruders
  4428. volumetric_enabled = (code_value_linear_units() != 0.0);
  4429. if (volumetric_enabled) {
  4430. filament_size[target_extruder] = code_value_linear_units();
  4431. // make sure all extruders have some sane value for the filament size
  4432. for (int i = 0; i < EXTRUDERS; i++)
  4433. if (! filament_size[i]) filament_size[i] = DEFAULT_NOMINAL_FILAMENT_DIA;
  4434. }
  4435. }
  4436. else {
  4437. //reserved for setting filament diameter via UFID or filament measuring device
  4438. return;
  4439. }
  4440. calculate_volumetric_multipliers();
  4441. }
  4442. /**
  4443. * M201: Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  4444. */
  4445. inline void gcode_M201() {
  4446. for (int8_t i = 0; i < NUM_AXIS; i++) {
  4447. if (code_seen(axis_codes[i])) {
  4448. planner.max_acceleration_mm_per_s2[i] = code_value_axis_units(i);
  4449. }
  4450. }
  4451. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  4452. planner.reset_acceleration_rates();
  4453. }
  4454. #if 0 // Not used for Sprinter/grbl gen6
  4455. inline void gcode_M202() {
  4456. for (int8_t i = 0; i < NUM_AXIS; i++) {
  4457. if (code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value_axis_units(i) * planner.axis_steps_per_mm[i];
  4458. }
  4459. }
  4460. #endif
  4461. /**
  4462. * M203: Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in units/sec
  4463. */
  4464. inline void gcode_M203() {
  4465. for (int8_t i = 0; i < NUM_AXIS; i++)
  4466. if (code_seen(axis_codes[i]))
  4467. planner.max_feedrate[i] = code_value_axis_units(i);
  4468. }
  4469. /**
  4470. * M204: Set Accelerations in units/sec^2 (M204 P1200 R3000 T3000)
  4471. *
  4472. * P = Printing moves
  4473. * R = Retract only (no X, Y, Z) moves
  4474. * T = Travel (non printing) moves
  4475. *
  4476. * Also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  4477. */
  4478. inline void gcode_M204() {
  4479. if (code_seen('S')) { // Kept for legacy compatibility. Should NOT BE USED for new developments.
  4480. planner.travel_acceleration = planner.acceleration = code_value_linear_units();
  4481. SERIAL_ECHOPAIR("Setting Print and Travel Acceleration: ", planner.acceleration);
  4482. SERIAL_EOL;
  4483. }
  4484. if (code_seen('P')) {
  4485. planner.acceleration = code_value_linear_units();
  4486. SERIAL_ECHOPAIR("Setting Print Acceleration: ", planner.acceleration);
  4487. SERIAL_EOL;
  4488. }
  4489. if (code_seen('R')) {
  4490. planner.retract_acceleration = code_value_linear_units();
  4491. SERIAL_ECHOPAIR("Setting Retract Acceleration: ", planner.retract_acceleration);
  4492. SERIAL_EOL;
  4493. }
  4494. if (code_seen('T')) {
  4495. planner.travel_acceleration = code_value_linear_units();
  4496. SERIAL_ECHOPAIR("Setting Travel Acceleration: ", planner.travel_acceleration);
  4497. SERIAL_EOL;
  4498. }
  4499. }
  4500. /**
  4501. * M205: Set Advanced Settings
  4502. *
  4503. * S = Min Feed Rate (units/s)
  4504. * T = Min Travel Feed Rate (units/s)
  4505. * B = Min Segment Time (µs)
  4506. * X = Max XY Jerk (units/sec^2)
  4507. * Z = Max Z Jerk (units/sec^2)
  4508. * E = Max E Jerk (units/sec^2)
  4509. */
  4510. inline void gcode_M205() {
  4511. if (code_seen('S')) planner.min_feedrate = code_value_linear_units();
  4512. if (code_seen('T')) planner.min_travel_feedrate = code_value_linear_units();
  4513. if (code_seen('B')) planner.min_segment_time = code_value_millis();
  4514. if (code_seen('X')) planner.max_xy_jerk = code_value_linear_units();
  4515. if (code_seen('Z')) planner.max_z_jerk = code_value_axis_units(Z_AXIS);
  4516. if (code_seen('E')) planner.max_e_jerk = code_value_axis_units(E_AXIS);
  4517. }
  4518. /**
  4519. * M206: Set Additional Homing Offset (X Y Z). SCARA aliases T=X, P=Y
  4520. */
  4521. inline void gcode_M206() {
  4522. for (int8_t i = X_AXIS; i <= Z_AXIS; i++)
  4523. if (code_seen(axis_codes[i]))
  4524. set_home_offset((AxisEnum)i, code_value_axis_units(i));
  4525. #if ENABLED(SCARA)
  4526. if (code_seen('T')) set_home_offset(X_AXIS, code_value_axis_units(X_AXIS)); // Theta
  4527. if (code_seen('P')) set_home_offset(Y_AXIS, code_value_axis_units(Y_AXIS)); // Psi
  4528. #endif
  4529. SYNC_PLAN_POSITION_KINEMATIC();
  4530. report_current_position();
  4531. }
  4532. #if ENABLED(DELTA)
  4533. /**
  4534. * M665: Set delta configurations
  4535. *
  4536. * L = diagonal rod
  4537. * R = delta radius
  4538. * S = segments per second
  4539. * A = Alpha (Tower 1) diagonal rod trim
  4540. * B = Beta (Tower 2) diagonal rod trim
  4541. * C = Gamma (Tower 3) diagonal rod trim
  4542. */
  4543. inline void gcode_M665() {
  4544. if (code_seen('L')) delta_diagonal_rod = code_value_linear_units();
  4545. if (code_seen('R')) delta_radius = code_value_linear_units();
  4546. if (code_seen('S')) delta_segments_per_second = code_value_float();
  4547. if (code_seen('A')) delta_diagonal_rod_trim_tower_1 = code_value_linear_units();
  4548. if (code_seen('B')) delta_diagonal_rod_trim_tower_2 = code_value_linear_units();
  4549. if (code_seen('C')) delta_diagonal_rod_trim_tower_3 = code_value_linear_units();
  4550. recalc_delta_settings(delta_radius, delta_diagonal_rod);
  4551. }
  4552. /**
  4553. * M666: Set delta endstop adjustment
  4554. */
  4555. inline void gcode_M666() {
  4556. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4557. if (DEBUGGING(LEVELING)) {
  4558. SERIAL_ECHOLNPGM(">>> gcode_M666");
  4559. }
  4560. #endif
  4561. for (int8_t i = X_AXIS; i <= Z_AXIS; i++) {
  4562. if (code_seen(axis_codes[i])) {
  4563. endstop_adj[i] = code_value_axis_units(i);
  4564. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4565. if (DEBUGGING(LEVELING)) {
  4566. SERIAL_ECHOPGM("endstop_adj[");
  4567. SERIAL_ECHO(axis_codes[i]);
  4568. SERIAL_ECHOPAIR("] = ", endstop_adj[i]);
  4569. SERIAL_EOL;
  4570. }
  4571. #endif
  4572. }
  4573. }
  4574. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4575. if (DEBUGGING(LEVELING)) {
  4576. SERIAL_ECHOLNPGM("<<< gcode_M666");
  4577. }
  4578. #endif
  4579. }
  4580. #elif ENABLED(Z_DUAL_ENDSTOPS) // !DELTA && ENABLED(Z_DUAL_ENDSTOPS)
  4581. /**
  4582. * M666: For Z Dual Endstop setup, set z axis offset to the z2 axis.
  4583. */
  4584. inline void gcode_M666() {
  4585. if (code_seen('Z')) z_endstop_adj = code_value_axis_units(Z_AXIS);
  4586. SERIAL_ECHOPAIR("Z Endstop Adjustment set to (mm):", z_endstop_adj);
  4587. SERIAL_EOL;
  4588. }
  4589. #endif // !DELTA && Z_DUAL_ENDSTOPS
  4590. #if ENABLED(FWRETRACT)
  4591. /**
  4592. * M207: Set firmware retraction values
  4593. *
  4594. * S[+units] retract_length
  4595. * W[+units] retract_length_swap (multi-extruder)
  4596. * F[units/min] retract_feedrate_mm_s
  4597. * Z[units] retract_zlift
  4598. */
  4599. inline void gcode_M207() {
  4600. if (code_seen('S')) retract_length = code_value_axis_units(E_AXIS);
  4601. if (code_seen('F')) retract_feedrate_mm_s = code_value_axis_units(E_AXIS) / 60;
  4602. if (code_seen('Z')) retract_zlift = code_value_axis_units(Z_AXIS);
  4603. #if EXTRUDERS > 1
  4604. if (code_seen('W')) retract_length_swap = code_value_axis_units(E_AXIS);
  4605. #endif
  4606. }
  4607. /**
  4608. * M208: Set firmware un-retraction values
  4609. *
  4610. * S[+units] retract_recover_length (in addition to M207 S*)
  4611. * W[+units] retract_recover_length_swap (multi-extruder)
  4612. * F[units/min] retract_recover_feedrate
  4613. */
  4614. inline void gcode_M208() {
  4615. if (code_seen('S')) retract_recover_length = code_value_axis_units(E_AXIS);
  4616. if (code_seen('F')) retract_recover_feedrate = code_value_axis_units(E_AXIS) / 60;
  4617. #if EXTRUDERS > 1
  4618. if (code_seen('W')) retract_recover_length_swap = code_value_axis_units(E_AXIS);
  4619. #endif
  4620. }
  4621. /**
  4622. * M209: Enable automatic retract (M209 S1)
  4623. * detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  4624. */
  4625. inline void gcode_M209() {
  4626. if (code_seen('S')) {
  4627. int t = code_value_int();
  4628. switch (t) {
  4629. case 0:
  4630. autoretract_enabled = false;
  4631. break;
  4632. case 1:
  4633. autoretract_enabled = true;
  4634. break;
  4635. default:
  4636. unknown_command_error();
  4637. return;
  4638. }
  4639. for (int i = 0; i < EXTRUDERS; i++) retracted[i] = false;
  4640. }
  4641. }
  4642. #endif // FWRETRACT
  4643. #if HOTENDS > 1
  4644. /**
  4645. * M218 - set hotend offset (in linear units)
  4646. *
  4647. * T<tool>
  4648. * X<xoffset>
  4649. * Y<yoffset>
  4650. * Z<zoffset> - Available with DUAL_X_CARRIAGE
  4651. */
  4652. inline void gcode_M218() {
  4653. if (get_target_extruder_from_command(218)) return;
  4654. if (code_seen('X')) hotend_offset[X_AXIS][target_extruder] = code_value_axis_units(X_AXIS);
  4655. if (code_seen('Y')) hotend_offset[Y_AXIS][target_extruder] = code_value_axis_units(Y_AXIS);
  4656. #if ENABLED(DUAL_X_CARRIAGE)
  4657. if (code_seen('Z')) hotend_offset[Z_AXIS][target_extruder] = code_value_axis_units(Z_AXIS);
  4658. #endif
  4659. SERIAL_ECHO_START;
  4660. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  4661. HOTEND_LOOP() {
  4662. SERIAL_CHAR(' ');
  4663. SERIAL_ECHO(hotend_offset[X_AXIS][e]);
  4664. SERIAL_CHAR(',');
  4665. SERIAL_ECHO(hotend_offset[Y_AXIS][e]);
  4666. #if ENABLED(DUAL_X_CARRIAGE)
  4667. SERIAL_CHAR(',');
  4668. SERIAL_ECHO(hotend_offset[Z_AXIS][e]);
  4669. #endif
  4670. }
  4671. SERIAL_EOL;
  4672. }
  4673. #endif // HOTENDS > 1
  4674. /**
  4675. * M220: Set speed percentage factor, aka "Feed Rate" (M220 S95)
  4676. */
  4677. inline void gcode_M220() {
  4678. if (code_seen('S')) feedrate_multiplier = code_value_int();
  4679. }
  4680. /**
  4681. * M221: Set extrusion percentage (M221 T0 S95)
  4682. */
  4683. inline void gcode_M221() {
  4684. if (get_target_extruder_from_command(221)) return;
  4685. if (code_seen('S'))
  4686. extruder_multiplier[target_extruder] = code_value_int();
  4687. }
  4688. /**
  4689. * M226: Wait until the specified pin reaches the state required (M226 P<pin> S<state>)
  4690. */
  4691. inline void gcode_M226() {
  4692. if (code_seen('P')) {
  4693. int pin_number = code_value_int();
  4694. int pin_state = code_seen('S') ? code_value_int() : -1; // required pin state - default is inverted
  4695. if (pin_state >= -1 && pin_state <= 1) {
  4696. for (uint8_t i = 0; i < COUNT(sensitive_pins); i++) {
  4697. if (sensitive_pins[i] == pin_number) {
  4698. pin_number = -1;
  4699. break;
  4700. }
  4701. }
  4702. if (pin_number > -1) {
  4703. int target = LOW;
  4704. stepper.synchronize();
  4705. pinMode(pin_number, INPUT);
  4706. switch (pin_state) {
  4707. case 1:
  4708. target = HIGH;
  4709. break;
  4710. case 0:
  4711. target = LOW;
  4712. break;
  4713. case -1:
  4714. target = !digitalRead(pin_number);
  4715. break;
  4716. }
  4717. while (digitalRead(pin_number) != target) idle();
  4718. } // pin_number > -1
  4719. } // pin_state -1 0 1
  4720. } // code_seen('P')
  4721. }
  4722. #if HAS_SERVOS
  4723. /**
  4724. * M280: Get or set servo position. P<index> [S<angle>]
  4725. */
  4726. inline void gcode_M280() {
  4727. if (!code_seen('P')) return;
  4728. int servo_index = code_value_int();
  4729. if (servo_index >= 0 && servo_index < NUM_SERVOS) {
  4730. if (code_seen('S'))
  4731. MOVE_SERVO(servo_index, code_value_int());
  4732. else {
  4733. SERIAL_ECHO_START;
  4734. SERIAL_ECHOPGM(" Servo ");
  4735. SERIAL_ECHO(servo_index);
  4736. SERIAL_ECHOPGM(": ");
  4737. SERIAL_ECHOLN(servo[servo_index].read());
  4738. }
  4739. }
  4740. else {
  4741. SERIAL_ERROR_START;
  4742. SERIAL_ERROR("Servo ");
  4743. SERIAL_ERROR(servo_index);
  4744. SERIAL_ERRORLN(" out of range");
  4745. }
  4746. }
  4747. #endif // HAS_SERVOS
  4748. #if HAS_BUZZER
  4749. /**
  4750. * M300: Play beep sound S<frequency Hz> P<duration ms>
  4751. */
  4752. inline void gcode_M300() {
  4753. uint16_t const frequency = code_seen('S') ? code_value_ushort() : 260;
  4754. uint16_t duration = code_seen('P') ? code_value_ushort() : 1000;
  4755. // Limits the tone duration to 0-5 seconds.
  4756. NOMORE(duration, 5000);
  4757. buzzer.tone(duration, frequency);
  4758. }
  4759. #endif // HAS_BUZZER
  4760. #if ENABLED(PIDTEMP)
  4761. /**
  4762. * M301: Set PID parameters P I D (and optionally C, L)
  4763. *
  4764. * P[float] Kp term
  4765. * I[float] Ki term (unscaled)
  4766. * D[float] Kd term (unscaled)
  4767. *
  4768. * With PID_ADD_EXTRUSION_RATE:
  4769. *
  4770. * C[float] Kc term
  4771. * L[float] LPQ length
  4772. */
  4773. inline void gcode_M301() {
  4774. // multi-extruder PID patch: M301 updates or prints a single extruder's PID values
  4775. // default behaviour (omitting E parameter) is to update for extruder 0 only
  4776. int e = code_seen('E') ? code_value_int() : 0; // extruder being updated
  4777. if (e < HOTENDS) { // catch bad input value
  4778. if (code_seen('P')) PID_PARAM(Kp, e) = code_value_float();
  4779. if (code_seen('I')) PID_PARAM(Ki, e) = scalePID_i(code_value_float());
  4780. if (code_seen('D')) PID_PARAM(Kd, e) = scalePID_d(code_value_float());
  4781. #if ENABLED(PID_ADD_EXTRUSION_RATE)
  4782. if (code_seen('C')) PID_PARAM(Kc, e) = code_value_float();
  4783. if (code_seen('L')) lpq_len = code_value_float();
  4784. NOMORE(lpq_len, LPQ_MAX_LEN);
  4785. #endif
  4786. thermalManager.updatePID();
  4787. SERIAL_ECHO_START;
  4788. #if ENABLED(PID_PARAMS_PER_HOTEND)
  4789. SERIAL_ECHOPGM(" e:"); // specify extruder in serial output
  4790. SERIAL_ECHO(e);
  4791. #endif // PID_PARAMS_PER_HOTEND
  4792. SERIAL_ECHOPGM(" p:");
  4793. SERIAL_ECHO(PID_PARAM(Kp, e));
  4794. SERIAL_ECHOPGM(" i:");
  4795. SERIAL_ECHO(unscalePID_i(PID_PARAM(Ki, e)));
  4796. SERIAL_ECHOPGM(" d:");
  4797. SERIAL_ECHO(unscalePID_d(PID_PARAM(Kd, e)));
  4798. #if ENABLED(PID_ADD_EXTRUSION_RATE)
  4799. SERIAL_ECHOPGM(" c:");
  4800. //Kc does not have scaling applied above, or in resetting defaults
  4801. SERIAL_ECHO(PID_PARAM(Kc, e));
  4802. #endif
  4803. SERIAL_EOL;
  4804. }
  4805. else {
  4806. SERIAL_ERROR_START;
  4807. SERIAL_ERRORLN(MSG_INVALID_EXTRUDER);
  4808. }
  4809. }
  4810. #endif // PIDTEMP
  4811. #if ENABLED(PIDTEMPBED)
  4812. inline void gcode_M304() {
  4813. if (code_seen('P')) thermalManager.bedKp = code_value_float();
  4814. if (code_seen('I')) thermalManager.bedKi = scalePID_i(code_value_float());
  4815. if (code_seen('D')) thermalManager.bedKd = scalePID_d(code_value_float());
  4816. thermalManager.updatePID();
  4817. SERIAL_ECHO_START;
  4818. SERIAL_ECHOPGM(" p:");
  4819. SERIAL_ECHO(thermalManager.bedKp);
  4820. SERIAL_ECHOPGM(" i:");
  4821. SERIAL_ECHO(unscalePID_i(thermalManager.bedKi));
  4822. SERIAL_ECHOPGM(" d:");
  4823. SERIAL_ECHOLN(unscalePID_d(thermalManager.bedKd));
  4824. }
  4825. #endif // PIDTEMPBED
  4826. #if defined(CHDK) || HAS_PHOTOGRAPH
  4827. /**
  4828. * M240: Trigger a camera by emulating a Canon RC-1
  4829. * See http://www.doc-diy.net/photo/rc-1_hacked/
  4830. */
  4831. inline void gcode_M240() {
  4832. #ifdef CHDK
  4833. OUT_WRITE(CHDK, HIGH);
  4834. chdkHigh = millis();
  4835. chdkActive = true;
  4836. #elif HAS_PHOTOGRAPH
  4837. const uint8_t NUM_PULSES = 16;
  4838. const float PULSE_LENGTH = 0.01524;
  4839. for (int i = 0; i < NUM_PULSES; i++) {
  4840. WRITE(PHOTOGRAPH_PIN, HIGH);
  4841. _delay_ms(PULSE_LENGTH);
  4842. WRITE(PHOTOGRAPH_PIN, LOW);
  4843. _delay_ms(PULSE_LENGTH);
  4844. }
  4845. delay(7.33);
  4846. for (int i = 0; i < NUM_PULSES; i++) {
  4847. WRITE(PHOTOGRAPH_PIN, HIGH);
  4848. _delay_ms(PULSE_LENGTH);
  4849. WRITE(PHOTOGRAPH_PIN, LOW);
  4850. _delay_ms(PULSE_LENGTH);
  4851. }
  4852. #endif // !CHDK && HAS_PHOTOGRAPH
  4853. }
  4854. #endif // CHDK || PHOTOGRAPH_PIN
  4855. #if HAS_LCD_CONTRAST
  4856. /**
  4857. * M250: Read and optionally set the LCD contrast
  4858. */
  4859. inline void gcode_M250() {
  4860. if (code_seen('C')) set_lcd_contrast(code_value_int());
  4861. SERIAL_PROTOCOLPGM("lcd contrast value: ");
  4862. SERIAL_PROTOCOL(lcd_contrast);
  4863. SERIAL_EOL;
  4864. }
  4865. #endif // HAS_LCD_CONTRAST
  4866. #if ENABLED(PREVENT_DANGEROUS_EXTRUDE)
  4867. /**
  4868. * M302: Allow cold extrudes, or set the minimum extrude temperature
  4869. *
  4870. * S<temperature> sets the minimum extrude temperature
  4871. * P<bool> enables (1) or disables (0) cold extrusion
  4872. *
  4873. * Examples:
  4874. *
  4875. * M302 ; report current cold extrusion state
  4876. * M302 P0 ; enable cold extrusion checking
  4877. * M302 P1 ; disables cold extrusion checking
  4878. * M302 S0 ; always allow extrusion (disables checking)
  4879. * M302 S170 ; only allow extrusion above 170
  4880. * M302 S170 P1 ; set min extrude temp to 170 but leave disabled
  4881. */
  4882. inline void gcode_M302() {
  4883. bool seen_S = code_seen('S');
  4884. if (seen_S) {
  4885. thermalManager.extrude_min_temp = code_value_temp_abs();
  4886. thermalManager.allow_cold_extrude = (thermalManager.extrude_min_temp == 0);
  4887. }
  4888. if (code_seen('P'))
  4889. thermalManager.allow_cold_extrude = (thermalManager.extrude_min_temp == 0) || code_value_bool();
  4890. else if (!seen_S) {
  4891. // Report current state
  4892. SERIAL_ECHO_START;
  4893. SERIAL_ECHOPAIR("Cold extrudes are ", (thermalManager.allow_cold_extrude ? "en" : "dis"));
  4894. SERIAL_ECHOPAIR("abled (min temp ", int(thermalManager.extrude_min_temp + 0.5));
  4895. SERIAL_ECHOLNPGM("C)");
  4896. }
  4897. }
  4898. #endif // PREVENT_DANGEROUS_EXTRUDE
  4899. /**
  4900. * M303: PID relay autotune
  4901. *
  4902. * S<temperature> sets the target temperature. (default 150C)
  4903. * E<extruder> (-1 for the bed) (default 0)
  4904. * C<cycles>
  4905. * U<bool> with a non-zero value will apply the result to current settings
  4906. */
  4907. inline void gcode_M303() {
  4908. #if HAS_PID_HEATING
  4909. int e = code_seen('E') ? code_value_int() : 0;
  4910. int c = code_seen('C') ? code_value_int() : 5;
  4911. bool u = code_seen('U') && code_value_bool();
  4912. float temp = code_seen('S') ? code_value_temp_abs() : (e < 0 ? 70.0 : 150.0);
  4913. if (e >= 0 && e < HOTENDS)
  4914. target_extruder = e;
  4915. KEEPALIVE_STATE(NOT_BUSY); // don't send "busy: processing" messages during autotune output
  4916. thermalManager.PID_autotune(temp, e, c, u);
  4917. KEEPALIVE_STATE(IN_HANDLER);
  4918. #else
  4919. SERIAL_ERROR_START;
  4920. SERIAL_ERRORLNPGM(MSG_ERR_M303_DISABLED);
  4921. #endif
  4922. }
  4923. #if ENABLED(SCARA)
  4924. bool SCARA_move_to_cal(uint8_t delta_x, uint8_t delta_y) {
  4925. //SoftEndsEnabled = false; // Ignore soft endstops during calibration
  4926. //SERIAL_ECHOLNPGM(" Soft endstops disabled");
  4927. if (IsRunning()) {
  4928. //gcode_get_destination(); // For X Y Z E F
  4929. delta[X_AXIS] = delta_x;
  4930. delta[Y_AXIS] = delta_y;
  4931. calculate_SCARA_forward_Transform(delta);
  4932. destination[X_AXIS] = delta[X_AXIS] / axis_scaling[X_AXIS];
  4933. destination[Y_AXIS] = delta[Y_AXIS] / axis_scaling[Y_AXIS];
  4934. prepare_move_to_destination();
  4935. //ok_to_send();
  4936. return true;
  4937. }
  4938. return false;
  4939. }
  4940. /**
  4941. * M360: SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  4942. */
  4943. inline bool gcode_M360() {
  4944. SERIAL_ECHOLNPGM(" Cal: Theta 0");
  4945. return SCARA_move_to_cal(0, 120);
  4946. }
  4947. /**
  4948. * M361: SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  4949. */
  4950. inline bool gcode_M361() {
  4951. SERIAL_ECHOLNPGM(" Cal: Theta 90");
  4952. return SCARA_move_to_cal(90, 130);
  4953. }
  4954. /**
  4955. * M362: SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  4956. */
  4957. inline bool gcode_M362() {
  4958. SERIAL_ECHOLNPGM(" Cal: Psi 0");
  4959. return SCARA_move_to_cal(60, 180);
  4960. }
  4961. /**
  4962. * M363: SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  4963. */
  4964. inline bool gcode_M363() {
  4965. SERIAL_ECHOLNPGM(" Cal: Psi 90");
  4966. return SCARA_move_to_cal(50, 90);
  4967. }
  4968. /**
  4969. * M364: SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
  4970. */
  4971. inline bool gcode_M364() {
  4972. SERIAL_ECHOLNPGM(" Cal: Theta-Psi 90");
  4973. return SCARA_move_to_cal(45, 135);
  4974. }
  4975. /**
  4976. * M365: SCARA calibration: Scaling factor, X, Y, Z axis
  4977. */
  4978. inline void gcode_M365() {
  4979. for (int8_t i = X_AXIS; i <= Z_AXIS; i++)
  4980. if (code_seen(axis_codes[i]))
  4981. axis_scaling[i] = code_value_float();
  4982. }
  4983. #endif // SCARA
  4984. #if ENABLED(EXT_SOLENOID)
  4985. void enable_solenoid(uint8_t num) {
  4986. switch (num) {
  4987. case 0:
  4988. OUT_WRITE(SOL0_PIN, HIGH);
  4989. break;
  4990. #if HAS_SOLENOID_1
  4991. case 1:
  4992. OUT_WRITE(SOL1_PIN, HIGH);
  4993. break;
  4994. #endif
  4995. #if HAS_SOLENOID_2
  4996. case 2:
  4997. OUT_WRITE(SOL2_PIN, HIGH);
  4998. break;
  4999. #endif
  5000. #if HAS_SOLENOID_3
  5001. case 3:
  5002. OUT_WRITE(SOL3_PIN, HIGH);
  5003. break;
  5004. #endif
  5005. default:
  5006. SERIAL_ECHO_START;
  5007. SERIAL_ECHOLNPGM(MSG_INVALID_SOLENOID);
  5008. break;
  5009. }
  5010. }
  5011. void enable_solenoid_on_active_extruder() { enable_solenoid(active_extruder); }
  5012. void disable_all_solenoids() {
  5013. OUT_WRITE(SOL0_PIN, LOW);
  5014. OUT_WRITE(SOL1_PIN, LOW);
  5015. OUT_WRITE(SOL2_PIN, LOW);
  5016. OUT_WRITE(SOL3_PIN, LOW);
  5017. }
  5018. /**
  5019. * M380: Enable solenoid on the active extruder
  5020. */
  5021. inline void gcode_M380() { enable_solenoid_on_active_extruder(); }
  5022. /**
  5023. * M381: Disable all solenoids
  5024. */
  5025. inline void gcode_M381() { disable_all_solenoids(); }
  5026. #endif // EXT_SOLENOID
  5027. /**
  5028. * M400: Finish all moves
  5029. */
  5030. inline void gcode_M400() { stepper.synchronize(); }
  5031. #if HAS_BED_PROBE
  5032. /**
  5033. * M401: Engage Z Servo endstop if available
  5034. */
  5035. inline void gcode_M401() { DEPLOY_PROBE(); }
  5036. /**
  5037. * M402: Retract Z Servo endstop if enabled
  5038. */
  5039. inline void gcode_M402() { STOW_PROBE(); }
  5040. #endif // HAS_BED_PROBE
  5041. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  5042. /**
  5043. * M404: Display or set (in current units) the nominal filament width (3mm, 1.75mm ) W<3.0>
  5044. */
  5045. inline void gcode_M404() {
  5046. if (code_seen('W')) {
  5047. filament_width_nominal = code_value_linear_units();
  5048. }
  5049. else {
  5050. SERIAL_PROTOCOLPGM("Filament dia (nominal mm):");
  5051. SERIAL_PROTOCOLLN(filament_width_nominal);
  5052. }
  5053. }
  5054. /**
  5055. * M405: Turn on filament sensor for control
  5056. */
  5057. inline void gcode_M405() {
  5058. // This is technically a linear measurement, but since it's quantized to centimeters and is a different unit than
  5059. // everything else, it uses code_value_int() instead of code_value_linear_units().
  5060. if (code_seen('D')) meas_delay_cm = code_value_int();
  5061. NOMORE(meas_delay_cm, MAX_MEASUREMENT_DELAY);
  5062. if (filwidth_delay_index2 == -1) { // Initialize the ring buffer if not done since startup
  5063. int temp_ratio = thermalManager.widthFil_to_size_ratio();
  5064. for (uint8_t i = 0; i < COUNT(measurement_delay); ++i)
  5065. measurement_delay[i] = temp_ratio - 100; // Subtract 100 to scale within a signed byte
  5066. filwidth_delay_index1 = filwidth_delay_index2 = 0;
  5067. }
  5068. filament_sensor = true;
  5069. //SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  5070. //SERIAL_PROTOCOL(filament_width_meas);
  5071. //SERIAL_PROTOCOLPGM("Extrusion ratio(%):");
  5072. //SERIAL_PROTOCOL(extruder_multiplier[active_extruder]);
  5073. }
  5074. /**
  5075. * M406: Turn off filament sensor for control
  5076. */
  5077. inline void gcode_M406() { filament_sensor = false; }
  5078. /**
  5079. * M407: Get measured filament diameter on serial output
  5080. */
  5081. inline void gcode_M407() {
  5082. SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  5083. SERIAL_PROTOCOLLN(filament_width_meas);
  5084. }
  5085. #endif // FILAMENT_WIDTH_SENSOR
  5086. void quickstop_stepper() {
  5087. stepper.quick_stop();
  5088. #if DISABLED(DELTA) && DISABLED(SCARA)
  5089. stepper.synchronize();
  5090. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  5091. vector_3 pos = planner.adjusted_position(); // values directly from steppers...
  5092. current_position[X_AXIS] = pos.x;
  5093. current_position[Y_AXIS] = pos.y;
  5094. current_position[Z_AXIS] = pos.z;
  5095. #else
  5096. current_position[X_AXIS] = stepper.get_axis_position_mm(X_AXIS);
  5097. current_position[Y_AXIS] = stepper.get_axis_position_mm(Y_AXIS);
  5098. current_position[Z_AXIS] = stepper.get_axis_position_mm(Z_AXIS);
  5099. #endif
  5100. sync_plan_position(); // ...re-apply to planner position
  5101. #endif
  5102. }
  5103. #if ENABLED(MESH_BED_LEVELING)
  5104. /**
  5105. * M420: Enable/Disable Mesh Bed Leveling
  5106. */
  5107. inline void gcode_M420() { if (code_seen('S') && code_has_value()) mbl.set_has_mesh(code_value_bool()); }
  5108. /**
  5109. * M421: Set a single Mesh Bed Leveling Z coordinate
  5110. * Use either 'M421 X<linear> Y<linear> Z<linear>' or 'M421 I<xindex> J<yindex> Z<linear>'
  5111. */
  5112. inline void gcode_M421() {
  5113. int8_t px = 0, py = 0;
  5114. float z = 0;
  5115. bool hasX, hasY, hasZ, hasI, hasJ;
  5116. if ((hasX = code_seen('X'))) px = mbl.probe_index_x(code_value_axis_units(X_AXIS));
  5117. if ((hasY = code_seen('Y'))) py = mbl.probe_index_y(code_value_axis_units(Y_AXIS));
  5118. if ((hasI = code_seen('I'))) px = code_value_axis_units(X_AXIS);
  5119. if ((hasJ = code_seen('J'))) py = code_value_axis_units(Y_AXIS);
  5120. if ((hasZ = code_seen('Z'))) z = code_value_axis_units(Z_AXIS);
  5121. if (hasX && hasY && hasZ) {
  5122. if (px >= 0 && py >= 0)
  5123. mbl.set_z(px, py, z);
  5124. else {
  5125. SERIAL_ERROR_START;
  5126. SERIAL_ERRORLNPGM(MSG_ERR_MESH_XY);
  5127. }
  5128. }
  5129. else if (hasI && hasJ && hasZ) {
  5130. if (px >= 0 && px < MESH_NUM_X_POINTS && py >= 0 && py < MESH_NUM_Y_POINTS)
  5131. mbl.set_z(px, py, z);
  5132. else {
  5133. SERIAL_ERROR_START;
  5134. SERIAL_ERRORLNPGM(MSG_ERR_MESH_XY);
  5135. }
  5136. }
  5137. else {
  5138. SERIAL_ERROR_START;
  5139. SERIAL_ERRORLNPGM(MSG_ERR_M421_PARAMETERS);
  5140. }
  5141. }
  5142. #endif
  5143. /**
  5144. * M428: Set home_offset based on the distance between the
  5145. * current_position and the nearest "reference point."
  5146. * If an axis is past center its endstop position
  5147. * is the reference-point. Otherwise it uses 0. This allows
  5148. * the Z offset to be set near the bed when using a max endstop.
  5149. *
  5150. * M428 can't be used more than 2cm away from 0 or an endstop.
  5151. *
  5152. * Use M206 to set these values directly.
  5153. */
  5154. inline void gcode_M428() {
  5155. bool err = false;
  5156. for (int8_t i = X_AXIS; i <= Z_AXIS; i++) {
  5157. if (axis_homed[i]) {
  5158. float base = (current_position[i] > (sw_endstop_min[i] + sw_endstop_max[i]) / 2) ? base_home_pos(i) : 0,
  5159. diff = current_position[i] - base;
  5160. if (diff > -20 && diff < 20) {
  5161. set_home_offset((AxisEnum)i, home_offset[i] - diff);
  5162. }
  5163. else {
  5164. SERIAL_ERROR_START;
  5165. SERIAL_ERRORLNPGM(MSG_ERR_M428_TOO_FAR);
  5166. LCD_ALERTMESSAGEPGM("Err: Too far!");
  5167. #if HAS_BUZZER
  5168. buzzer.tone(200, 40);
  5169. #endif
  5170. err = true;
  5171. break;
  5172. }
  5173. }
  5174. }
  5175. if (!err) {
  5176. SYNC_PLAN_POSITION_KINEMATIC();
  5177. report_current_position();
  5178. LCD_MESSAGEPGM(MSG_HOME_OFFSETS_APPLIED);
  5179. #if HAS_BUZZER
  5180. buzzer.tone(200, 659);
  5181. buzzer.tone(200, 698);
  5182. #endif
  5183. }
  5184. }
  5185. /**
  5186. * M500: Store settings in EEPROM
  5187. */
  5188. inline void gcode_M500() {
  5189. Config_StoreSettings();
  5190. }
  5191. /**
  5192. * M501: Read settings from EEPROM
  5193. */
  5194. inline void gcode_M501() {
  5195. Config_RetrieveSettings();
  5196. }
  5197. /**
  5198. * M502: Revert to default settings
  5199. */
  5200. inline void gcode_M502() {
  5201. Config_ResetDefault();
  5202. }
  5203. /**
  5204. * M503: print settings currently in memory
  5205. */
  5206. inline void gcode_M503() {
  5207. Config_PrintSettings(code_seen('S') && !code_value_bool());
  5208. }
  5209. #if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  5210. /**
  5211. * M540: Set whether SD card print should abort on endstop hit (M540 S<0|1>)
  5212. */
  5213. inline void gcode_M540() {
  5214. if (code_seen('S')) stepper.abort_on_endstop_hit = code_value_bool();
  5215. }
  5216. #endif // ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  5217. #if HAS_BED_PROBE
  5218. inline void gcode_M851() {
  5219. SERIAL_ECHO_START;
  5220. SERIAL_ECHOPGM(MSG_ZPROBE_ZOFFSET);
  5221. SERIAL_CHAR(' ');
  5222. if (code_seen('Z')) {
  5223. float value = code_value_axis_units(Z_AXIS);
  5224. if (Z_PROBE_OFFSET_RANGE_MIN <= value && value <= Z_PROBE_OFFSET_RANGE_MAX) {
  5225. zprobe_zoffset = value;
  5226. SERIAL_ECHO(zprobe_zoffset);
  5227. }
  5228. else {
  5229. SERIAL_ECHOPGM(MSG_Z_MIN);
  5230. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
  5231. SERIAL_CHAR(' ');
  5232. SERIAL_ECHOPGM(MSG_Z_MAX);
  5233. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
  5234. }
  5235. }
  5236. else {
  5237. SERIAL_ECHOPAIR(": ", zprobe_zoffset);
  5238. }
  5239. SERIAL_EOL;
  5240. }
  5241. #endif // HAS_BED_PROBE
  5242. #if ENABLED(FILAMENT_CHANGE_FEATURE)
  5243. /**
  5244. * M600: Pause for filament change
  5245. *
  5246. * E[distance] - Retract the filament this far (negative value)
  5247. * Z[distance] - Move the Z axis by this distance
  5248. * X[position] - Move to this X position, with Y
  5249. * Y[position] - Move to this Y position, with X
  5250. * L[distance] - Retract distance for removal (manual reload)
  5251. *
  5252. * Default values are used for omitted arguments.
  5253. *
  5254. */
  5255. inline void gcode_M600() {
  5256. if (thermalManager.tooColdToExtrude(active_extruder)) {
  5257. SERIAL_ERROR_START;
  5258. SERIAL_ERRORLNPGM(MSG_TOO_COLD_FOR_M600);
  5259. return;
  5260. }
  5261. // Show initial message and wait for synchronize steppers
  5262. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_INIT);
  5263. stepper.synchronize();
  5264. float lastpos[NUM_AXIS];
  5265. // Save current position of all axes
  5266. for (uint8_t i = 0; i < NUM_AXIS; i++)
  5267. lastpos[i] = destination[i] = current_position[i];
  5268. // Define runplan for move axes
  5269. #if ENABLED(DELTA)
  5270. #define RUNPLAN(RATE) calculate_delta(destination); \
  5271. planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], destination[E_AXIS], RATE, active_extruder);
  5272. #else
  5273. #define RUNPLAN(RATE) line_to_destination(RATE * 60);
  5274. #endif
  5275. KEEPALIVE_STATE(IN_HANDLER);
  5276. // Initial retract before move to filament change position
  5277. if (code_seen('E')) destination[E_AXIS] += code_value_axis_units(E_AXIS);
  5278. #if defined(FILAMENT_CHANGE_RETRACT_LENGTH) && FILAMENT_CHANGE_RETRACT_LENGTH > 0
  5279. else destination[E_AXIS] -= FILAMENT_CHANGE_RETRACT_LENGTH;
  5280. #endif
  5281. RUNPLAN(FILAMENT_CHANGE_RETRACT_FEEDRATE);
  5282. // Lift Z axis
  5283. float z_lift = code_seen('Z') ? code_value_axis_units(Z_AXIS) :
  5284. #if defined(FILAMENT_CHANGE_Z_ADD) && FILAMENT_CHANGE_Z_ADD > 0
  5285. FILAMENT_CHANGE_Z_ADD
  5286. #else
  5287. 0
  5288. #endif
  5289. ;
  5290. if (z_lift > 0) {
  5291. destination[Z_AXIS] += z_lift;
  5292. NOMORE(destination[Z_AXIS], Z_MAX_POS);
  5293. RUNPLAN(FILAMENT_CHANGE_Z_FEEDRATE);
  5294. }
  5295. // Move XY axes to filament exchange position
  5296. if (code_seen('X')) destination[X_AXIS] = code_value_axis_units(X_AXIS);
  5297. #ifdef FILAMENT_CHANGE_X_POS
  5298. else destination[X_AXIS] = FILAMENT_CHANGE_X_POS;
  5299. #endif
  5300. if (code_seen('Y')) destination[Y_AXIS] = code_value_axis_units(Y_AXIS);
  5301. #ifdef FILAMENT_CHANGE_Y_POS
  5302. else destination[Y_AXIS] = FILAMENT_CHANGE_Y_POS;
  5303. #endif
  5304. RUNPLAN(FILAMENT_CHANGE_XY_FEEDRATE);
  5305. stepper.synchronize();
  5306. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_UNLOAD);
  5307. // Unload filament
  5308. if (code_seen('L')) destination[E_AXIS] += code_value_axis_units(E_AXIS);
  5309. #if defined(FILAMENT_CHANGE_UNLOAD_LENGTH) && FILAMENT_CHANGE_UNLOAD_LENGTH > 0
  5310. else destination[E_AXIS] -= FILAMENT_CHANGE_UNLOAD_LENGTH;
  5311. #endif
  5312. RUNPLAN(FILAMENT_CHANGE_UNLOAD_FEEDRATE);
  5313. // Synchronize steppers and then disable extruders steppers for manual filament changing
  5314. stepper.synchronize();
  5315. disable_e0();
  5316. disable_e1();
  5317. disable_e2();
  5318. disable_e3();
  5319. delay(100);
  5320. #if HAS_BUZZER
  5321. millis_t next_tick = 0;
  5322. #endif
  5323. // Wait for filament insert by user and press button
  5324. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_INSERT);
  5325. while (!lcd_clicked()) {
  5326. #if HAS_BUZZER
  5327. millis_t ms = millis();
  5328. if (ms >= next_tick) {
  5329. buzzer.tone(300, 2000);
  5330. next_tick = ms + 2500; // Beep every 2.5s while waiting
  5331. }
  5332. #endif
  5333. idle(true);
  5334. }
  5335. delay(100);
  5336. while (lcd_clicked()) idle(true);
  5337. delay(100);
  5338. // Show load message
  5339. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_LOAD);
  5340. // Load filament
  5341. if (code_seen('L')) destination[E_AXIS] -= code_value_axis_units(E_AXIS);
  5342. #if defined(FILAMENT_CHANGE_LOAD_LENGTH) && FILAMENT_CHANGE_LOAD_LENGTH > 0
  5343. else destination[E_AXIS] += FILAMENT_CHANGE_LOAD_LENGTH;
  5344. #endif
  5345. RUNPLAN(FILAMENT_CHANGE_LOAD_FEEDRATE);
  5346. stepper.synchronize();
  5347. #if defined(FILAMENT_CHANGE_EXTRUDE_LENGTH) && FILAMENT_CHANGE_EXTRUDE_LENGTH > 0
  5348. do {
  5349. // Extrude filament to get into hotend
  5350. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_EXTRUDE);
  5351. destination[E_AXIS] += FILAMENT_CHANGE_EXTRUDE_LENGTH;
  5352. RUNPLAN(FILAMENT_CHANGE_EXTRUDE_FEEDRATE);
  5353. stepper.synchronize();
  5354. // Ask user if more filament should be extruded
  5355. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5356. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_OPTION);
  5357. while (filament_change_menu_response == FILAMENT_CHANGE_RESPONSE_WAIT_FOR) idle(true);
  5358. KEEPALIVE_STATE(IN_HANDLER);
  5359. } while (filament_change_menu_response != FILAMENT_CHANGE_RESPONSE_RESUME_PRINT);
  5360. #endif
  5361. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_RESUME);
  5362. KEEPALIVE_STATE(IN_HANDLER);
  5363. // Set extruder to saved position
  5364. current_position[E_AXIS] = lastpos[E_AXIS];
  5365. destination[E_AXIS] = lastpos[E_AXIS];
  5366. planner.set_e_position_mm(current_position[E_AXIS]);
  5367. #if ENABLED(DELTA)
  5368. // Move XYZ to starting position, then E
  5369. calculate_delta(lastpos);
  5370. planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], destination[E_AXIS], FILAMENT_CHANGE_XY_FEEDRATE, active_extruder);
  5371. planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], lastpos[E_AXIS], FILAMENT_CHANGE_XY_FEEDRATE, active_extruder);
  5372. #else
  5373. // Move XY to starting position, then Z, then E
  5374. destination[X_AXIS] = lastpos[X_AXIS];
  5375. destination[Y_AXIS] = lastpos[Y_AXIS];
  5376. RUNPLAN(FILAMENT_CHANGE_XY_FEEDRATE);
  5377. destination[Z_AXIS] = lastpos[Z_AXIS];
  5378. RUNPLAN(FILAMENT_CHANGE_Z_FEEDRATE);
  5379. #endif
  5380. stepper.synchronize();
  5381. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  5382. filament_ran_out = false;
  5383. #endif
  5384. // Show status screen
  5385. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_STATUS);
  5386. }
  5387. #endif // FILAMENT_CHANGE_FEATURE
  5388. #if ENABLED(DUAL_X_CARRIAGE)
  5389. /**
  5390. * M605: Set dual x-carriage movement mode
  5391. *
  5392. * M605 S0: Full control mode. The slicer has full control over x-carriage movement
  5393. * M605 S1: Auto-park mode. The inactive head will auto park/unpark without slicer involvement
  5394. * M605 S2 [Xnnn] [Rmmm]: Duplication mode. The second extruder will duplicate the first with nnn
  5395. * units x-offset and an optional differential hotend temperature of
  5396. * mmm degrees. E.g., with "M605 S2 X100 R2" the second extruder will duplicate
  5397. * the first with a spacing of 100mm in the x direction and 2 degrees hotter.
  5398. *
  5399. * Note: the X axis should be homed after changing dual x-carriage mode.
  5400. */
  5401. inline void gcode_M605() {
  5402. stepper.synchronize();
  5403. if (code_seen('S')) dual_x_carriage_mode = code_value_byte();
  5404. switch (dual_x_carriage_mode) {
  5405. case DXC_DUPLICATION_MODE:
  5406. if (code_seen('X')) duplicate_extruder_x_offset = max(code_value_axis_units(X_AXIS), X2_MIN_POS - x_home_pos(0));
  5407. if (code_seen('R')) duplicate_extruder_temp_offset = code_value_temp_diff();
  5408. SERIAL_ECHO_START;
  5409. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  5410. SERIAL_CHAR(' ');
  5411. SERIAL_ECHO(hotend_offset[X_AXIS][0]);
  5412. SERIAL_CHAR(',');
  5413. SERIAL_ECHO(hotend_offset[Y_AXIS][0]);
  5414. SERIAL_CHAR(' ');
  5415. SERIAL_ECHO(duplicate_extruder_x_offset);
  5416. SERIAL_CHAR(',');
  5417. SERIAL_ECHOLN(hotend_offset[Y_AXIS][1]);
  5418. break;
  5419. case DXC_FULL_CONTROL_MODE:
  5420. case DXC_AUTO_PARK_MODE:
  5421. break;
  5422. default:
  5423. dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  5424. break;
  5425. }
  5426. active_extruder_parked = false;
  5427. extruder_duplication_enabled = false;
  5428. delayed_move_time = 0;
  5429. }
  5430. #endif // DUAL_X_CARRIAGE
  5431. #if ENABLED(LIN_ADVANCE)
  5432. /**
  5433. * M905: Set advance factor
  5434. */
  5435. inline void gcode_M905() {
  5436. stepper.synchronize();
  5437. stepper.advance_M905(code_seen('K') ? code_value_float() : -1.0);
  5438. }
  5439. #endif
  5440. /**
  5441. * M907: Set digital trimpot motor current using axis codes X, Y, Z, E, B, S
  5442. */
  5443. inline void gcode_M907() {
  5444. #if HAS_DIGIPOTSS
  5445. for (int i = 0; i < NUM_AXIS; i++)
  5446. if (code_seen(axis_codes[i])) stepper.digipot_current(i, code_value_int());
  5447. if (code_seen('B')) stepper.digipot_current(4, code_value_int());
  5448. if (code_seen('S')) for (int i = 0; i <= 4; i++) stepper.digipot_current(i, code_value_int());
  5449. #endif
  5450. #if PIN_EXISTS(MOTOR_CURRENT_PWM_XY)
  5451. if (code_seen('X')) stepper.digipot_current(0, code_value_int());
  5452. #endif
  5453. #if PIN_EXISTS(MOTOR_CURRENT_PWM_Z)
  5454. if (code_seen('Z')) stepper.digipot_current(1, code_value_int());
  5455. #endif
  5456. #if PIN_EXISTS(MOTOR_CURRENT_PWM_E)
  5457. if (code_seen('E')) stepper.digipot_current(2, code_value_int());
  5458. #endif
  5459. #if ENABLED(DIGIPOT_I2C)
  5460. // this one uses actual amps in floating point
  5461. for (int i = 0; i < NUM_AXIS; i++) if (code_seen(axis_codes[i])) digipot_i2c_set_current(i, code_value_float());
  5462. // for each additional extruder (named B,C,D,E..., channels 4,5,6,7...)
  5463. for (int i = NUM_AXIS; i < DIGIPOT_I2C_NUM_CHANNELS; i++) if (code_seen('B' + i - (NUM_AXIS))) digipot_i2c_set_current(i, code_value_float());
  5464. #endif
  5465. #if ENABLED(DAC_STEPPER_CURRENT)
  5466. if (code_seen('S')) {
  5467. float dac_percent = code_value_float();
  5468. for (uint8_t i = 0; i <= 4; i++) dac_current_percent(i, dac_percent);
  5469. }
  5470. for (uint8_t i = 0; i < NUM_AXIS; i++) if (code_seen(axis_codes[i])) dac_current_percent(i, code_value_float());
  5471. #endif
  5472. }
  5473. #if HAS_DIGIPOTSS || ENABLED(DAC_STEPPER_CURRENT)
  5474. /**
  5475. * M908: Control digital trimpot directly (M908 P<pin> S<current>)
  5476. */
  5477. inline void gcode_M908() {
  5478. #if HAS_DIGIPOTSS
  5479. stepper.digitalPotWrite(
  5480. code_seen('P') ? code_value_int() : 0,
  5481. code_seen('S') ? code_value_int() : 0
  5482. );
  5483. #endif
  5484. #ifdef DAC_STEPPER_CURRENT
  5485. dac_current_raw(
  5486. code_seen('P') ? code_value_byte() : -1,
  5487. code_seen('S') ? code_value_ushort() : 0
  5488. );
  5489. #endif
  5490. }
  5491. #if ENABLED(DAC_STEPPER_CURRENT) // As with Printrbot RevF
  5492. inline void gcode_M909() { dac_print_values(); }
  5493. inline void gcode_M910() { dac_commit_eeprom(); }
  5494. #endif
  5495. #endif // HAS_DIGIPOTSS || DAC_STEPPER_CURRENT
  5496. #if HAS_MICROSTEPS
  5497. // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  5498. inline void gcode_M350() {
  5499. if (code_seen('S')) for (int i = 0; i <= 4; i++) stepper.microstep_mode(i, code_value_byte());
  5500. for (int i = 0; i < NUM_AXIS; i++) if (code_seen(axis_codes[i])) stepper.microstep_mode(i, code_value_byte());
  5501. if (code_seen('B')) stepper.microstep_mode(4, code_value_byte());
  5502. stepper.microstep_readings();
  5503. }
  5504. /**
  5505. * M351: Toggle MS1 MS2 pins directly with axis codes X Y Z E B
  5506. * S# determines MS1 or MS2, X# sets the pin high/low.
  5507. */
  5508. inline void gcode_M351() {
  5509. if (code_seen('S')) switch (code_value_byte()) {
  5510. case 1:
  5511. for (int i = 0; i < NUM_AXIS; i++) if (code_seen(axis_codes[i])) stepper.microstep_ms(i, code_value_byte(), -1);
  5512. if (code_seen('B')) stepper.microstep_ms(4, code_value_byte(), -1);
  5513. break;
  5514. case 2:
  5515. for (int i = 0; i < NUM_AXIS; i++) if (code_seen(axis_codes[i])) stepper.microstep_ms(i, -1, code_value_byte());
  5516. if (code_seen('B')) stepper.microstep_ms(4, -1, code_value_byte());
  5517. break;
  5518. }
  5519. stepper.microstep_readings();
  5520. }
  5521. #endif // HAS_MICROSTEPS
  5522. /**
  5523. * M999: Restart after being stopped
  5524. *
  5525. * Default behaviour is to flush the serial buffer and request
  5526. * a resend to the host starting on the last N line received.
  5527. *
  5528. * Sending "M999 S1" will resume printing without flushing the
  5529. * existing command buffer.
  5530. *
  5531. */
  5532. inline void gcode_M999() {
  5533. Running = true;
  5534. lcd_reset_alert_level();
  5535. if (code_seen('S') && code_value_bool()) return;
  5536. // gcode_LastN = Stopped_gcode_LastN;
  5537. FlushSerialRequestResend();
  5538. }
  5539. /**
  5540. * T0-T3: Switch tool, usually switching extruders
  5541. *
  5542. * F[units/min] Set the movement feedrate
  5543. * S1 Don't move the tool in XY after change
  5544. */
  5545. inline void gcode_T(uint8_t tmp_extruder) {
  5546. if (tmp_extruder >= EXTRUDERS) {
  5547. SERIAL_ECHO_START;
  5548. SERIAL_CHAR('T');
  5549. SERIAL_PROTOCOL_F(tmp_extruder, DEC);
  5550. SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
  5551. return;
  5552. }
  5553. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5554. if (DEBUGGING(LEVELING)) {
  5555. SERIAL_ECHOLNPGM(">>> gcode_T");
  5556. DEBUG_POS("BEFORE", current_position);
  5557. }
  5558. #endif
  5559. #if HOTENDS > 1
  5560. float old_feedrate = feedrate;
  5561. if (code_seen('F')) {
  5562. float next_feedrate = code_value_axis_units(X_AXIS);
  5563. if (next_feedrate > 0.0) old_feedrate = feedrate = next_feedrate;
  5564. }
  5565. else
  5566. feedrate = XY_PROBE_FEEDRATE;
  5567. if (tmp_extruder != active_extruder) {
  5568. bool no_move = code_seen('S') && code_value_bool();
  5569. if (!no_move && axis_unhomed_error(true, true, true)) {
  5570. SERIAL_ECHOLNPGM("No move on toolchange");
  5571. no_move = true;
  5572. }
  5573. // Save current position to destination, for use later
  5574. set_destination_to_current();
  5575. #if ENABLED(DUAL_X_CARRIAGE)
  5576. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5577. if (DEBUGGING(LEVELING)) {
  5578. SERIAL_ECHOPGM("Dual X Carriage Mode ");
  5579. switch (dual_x_carriage_mode) {
  5580. case DXC_DUPLICATION_MODE: SERIAL_ECHOLNPGM("DXC_DUPLICATION_MODE"); break;
  5581. case DXC_AUTO_PARK_MODE: SERIAL_ECHOLNPGM("DXC_AUTO_PARK_MODE"); break;
  5582. case DXC_FULL_CONTROL_MODE: SERIAL_ECHOLNPGM("DXC_FULL_CONTROL_MODE"); break;
  5583. }
  5584. }
  5585. #endif
  5586. if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE && IsRunning()
  5587. && (delayed_move_time || current_position[X_AXIS] != x_home_pos(active_extruder))
  5588. ) {
  5589. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5590. if (DEBUGGING(LEVELING)) {
  5591. SERIAL_ECHOPAIR("Raise to ", current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT); SERIAL_EOL;
  5592. SERIAL_ECHOPAIR("MoveX to ", x_home_pos(active_extruder)); SERIAL_EOL;
  5593. SERIAL_ECHOPAIR("Lower to ", current_position[Z_AXIS]); SERIAL_EOL;
  5594. }
  5595. #endif
  5596. // Park old head: 1) raise 2) move to park position 3) lower
  5597. planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
  5598. current_position[E_AXIS], planner.max_feedrate[Z_AXIS], active_extruder);
  5599. planner.buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
  5600. current_position[E_AXIS], planner.max_feedrate[X_AXIS], active_extruder);
  5601. planner.buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS],
  5602. current_position[E_AXIS], planner.max_feedrate[Z_AXIS], active_extruder);
  5603. stepper.synchronize();
  5604. }
  5605. // apply Y & Z extruder offset (x offset is already used in determining home pos)
  5606. current_position[Y_AXIS] -= hotend_offset[Y_AXIS][active_extruder] - hotend_offset[Y_AXIS][tmp_extruder];
  5607. current_position[Z_AXIS] -= hotend_offset[Z_AXIS][active_extruder] - hotend_offset[Z_AXIS][tmp_extruder];
  5608. active_extruder = tmp_extruder;
  5609. // This function resets the max/min values - the current position may be overwritten below.
  5610. set_axis_is_at_home(X_AXIS);
  5611. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5612. if (DEBUGGING(LEVELING)) DEBUG_POS("New Extruder", current_position);
  5613. #endif
  5614. switch (dual_x_carriage_mode) {
  5615. case DXC_FULL_CONTROL_MODE:
  5616. current_position[X_AXIS] = inactive_extruder_x_pos;
  5617. inactive_extruder_x_pos = destination[X_AXIS];
  5618. break;
  5619. case DXC_DUPLICATION_MODE:
  5620. active_extruder_parked = (active_extruder == 0); // this triggers the second extruder to move into the duplication position
  5621. if (active_extruder_parked)
  5622. current_position[X_AXIS] = inactive_extruder_x_pos;
  5623. else
  5624. current_position[X_AXIS] = destination[X_AXIS] + duplicate_extruder_x_offset;
  5625. inactive_extruder_x_pos = destination[X_AXIS];
  5626. extruder_duplication_enabled = false;
  5627. break;
  5628. default:
  5629. // record raised toolhead position for use by unpark
  5630. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  5631. raised_parked_position[Z_AXIS] += TOOLCHANGE_UNPARK_ZLIFT;
  5632. active_extruder_parked = true;
  5633. delayed_move_time = 0;
  5634. break;
  5635. }
  5636. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5637. if (DEBUGGING(LEVELING)) {
  5638. SERIAL_ECHOPAIR("Active extruder parked: ", active_extruder_parked ? "yes" : "no");
  5639. SERIAL_EOL;
  5640. DEBUG_POS("New extruder (parked)", current_position);
  5641. }
  5642. #endif
  5643. // No extra case for AUTO_BED_LEVELING_FEATURE in DUAL_X_CARRIAGE. Does that mean they don't work together?
  5644. #else // !DUAL_X_CARRIAGE
  5645. /**
  5646. * Set current_position to the position of the new nozzle.
  5647. * Offsets are based on linear distance, so we need to get
  5648. * the resulting position in coordinate space.
  5649. *
  5650. * - With grid or 3-point leveling, offset XYZ by a tilted vector
  5651. * - With mesh leveling, update Z for the new position
  5652. * - Otherwise, just use the raw linear distance
  5653. *
  5654. * Software endstops are altered here too. Consider a case where:
  5655. * E0 at X=0 ... E1 at X=10
  5656. * When we switch to E1 now X=10, but E1 can't move left.
  5657. * To express this we apply the change in XY to the software endstops.
  5658. * E1 can move farther right than E0, so the right limit is extended.
  5659. *
  5660. * Note that we don't adjust the Z software endstops. Why not?
  5661. * Consider a case where Z=0 (here) and switching to E1 makes Z=1
  5662. * because the bed is 1mm lower at the new position. As long as
  5663. * the first nozzle is out of the way, the carriage should be
  5664. * allowed to move 1mm lower. This technically "breaks" the
  5665. * Z software endstop. But this is technically correct (and
  5666. * there is no viable alternative).
  5667. */
  5668. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  5669. // Offset extruder, make sure to apply the bed level rotation matrix
  5670. vector_3 tmp_offset_vec = vector_3(hotend_offset[X_AXIS][tmp_extruder],
  5671. hotend_offset[Y_AXIS][tmp_extruder],
  5672. 0),
  5673. act_offset_vec = vector_3(hotend_offset[X_AXIS][active_extruder],
  5674. hotend_offset[Y_AXIS][active_extruder],
  5675. 0),
  5676. offset_vec = tmp_offset_vec - act_offset_vec;
  5677. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5678. if (DEBUGGING(LEVELING)) {
  5679. tmp_offset_vec.debug("tmp_offset_vec");
  5680. act_offset_vec.debug("act_offset_vec");
  5681. offset_vec.debug("offset_vec (BEFORE)");
  5682. }
  5683. #endif
  5684. offset_vec.apply_rotation(planner.bed_level_matrix.transpose(planner.bed_level_matrix));
  5685. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5686. if (DEBUGGING(LEVELING)) offset_vec.debug("offset_vec (AFTER)");
  5687. #endif
  5688. // Adjustments to the current position
  5689. float xydiff[2] = { offset_vec.x, offset_vec.y };
  5690. current_position[Z_AXIS] += offset_vec.z;
  5691. #else // !AUTO_BED_LEVELING_FEATURE
  5692. float xydiff[2] = {
  5693. hotend_offset[X_AXIS][tmp_extruder] - hotend_offset[X_AXIS][active_extruder],
  5694. hotend_offset[Y_AXIS][tmp_extruder] - hotend_offset[Y_AXIS][active_extruder]
  5695. };
  5696. #if ENABLED(MESH_BED_LEVELING)
  5697. if (mbl.active()) {
  5698. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5699. if (DEBUGGING(LEVELING)) SERIAL_ECHOPAIR("Z before MBL: ", current_position[Z_AXIS]);
  5700. #endif
  5701. float xpos = RAW_CURRENT_POSITION(X_AXIS),
  5702. ypos = RAW_CURRENT_POSITION(Y_AXIS);
  5703. current_position[Z_AXIS] += mbl.get_z(xpos + xydiff[X_AXIS], ypos + xydiff[Y_AXIS]) - mbl.get_z(xpos, ypos);
  5704. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5705. if (DEBUGGING(LEVELING)) {
  5706. SERIAL_ECHOPAIR(" after: ", current_position[Z_AXIS]);
  5707. SERIAL_EOL;
  5708. }
  5709. #endif
  5710. }
  5711. #endif // MESH_BED_LEVELING
  5712. #endif // !AUTO_BED_LEVELING_FEATURE
  5713. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5714. if (DEBUGGING(LEVELING)) {
  5715. SERIAL_ECHOPAIR("Offset Tool XY by { ", xydiff[X_AXIS]);
  5716. SERIAL_ECHOPAIR(", ", xydiff[X_AXIS]);
  5717. SERIAL_ECHOLNPGM(" }");
  5718. }
  5719. #endif
  5720. // The newly-selected extruder XY is actually at...
  5721. current_position[X_AXIS] += xydiff[X_AXIS];
  5722. current_position[Y_AXIS] += xydiff[Y_AXIS];
  5723. for (uint8_t i = X_AXIS; i <= Y_AXIS; i++) {
  5724. position_shift[i] += xydiff[i];
  5725. update_software_endstops((AxisEnum)i);
  5726. }
  5727. // Set the new active extruder
  5728. active_extruder = tmp_extruder;
  5729. #endif // !DUAL_X_CARRIAGE
  5730. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5731. if (DEBUGGING(LEVELING)) DEBUG_POS("Sync After Toolchange", current_position);
  5732. #endif
  5733. // Tell the planner the new "current position"
  5734. SYNC_PLAN_POSITION_KINEMATIC();
  5735. // Move to the "old position" (move the extruder into place)
  5736. if (!no_move && IsRunning()) {
  5737. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5738. if (DEBUGGING(LEVELING)) DEBUG_POS("Move back", destination);
  5739. #endif
  5740. prepare_move_to_destination();
  5741. }
  5742. } // (tmp_extruder != active_extruder)
  5743. stepper.synchronize();
  5744. #if ENABLED(EXT_SOLENOID)
  5745. disable_all_solenoids();
  5746. enable_solenoid_on_active_extruder();
  5747. #endif // EXT_SOLENOID
  5748. feedrate = old_feedrate;
  5749. #else // !HOTENDS > 1
  5750. // Set the new active extruder
  5751. active_extruder = tmp_extruder;
  5752. #endif
  5753. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5754. if (DEBUGGING(LEVELING)) {
  5755. DEBUG_POS("AFTER", current_position);
  5756. SERIAL_ECHOLNPGM("<<< gcode_T");
  5757. }
  5758. #endif
  5759. SERIAL_ECHO_START;
  5760. SERIAL_ECHOPGM(MSG_ACTIVE_EXTRUDER);
  5761. SERIAL_PROTOCOLLN((int)active_extruder);
  5762. }
  5763. /**
  5764. * Process a single command and dispatch it to its handler
  5765. * This is called from the main loop()
  5766. */
  5767. void process_next_command() {
  5768. current_command = command_queue[cmd_queue_index_r];
  5769. if (DEBUGGING(ECHO)) {
  5770. SERIAL_ECHO_START;
  5771. SERIAL_ECHOLN(current_command);
  5772. }
  5773. // Sanitize the current command:
  5774. // - Skip leading spaces
  5775. // - Bypass N[-0-9][0-9]*[ ]*
  5776. // - Overwrite * with nul to mark the end
  5777. while (*current_command == ' ') ++current_command;
  5778. if (*current_command == 'N' && NUMERIC_SIGNED(current_command[1])) {
  5779. current_command += 2; // skip N[-0-9]
  5780. while (NUMERIC(*current_command)) ++current_command; // skip [0-9]*
  5781. while (*current_command == ' ') ++current_command; // skip [ ]*
  5782. }
  5783. char* starpos = strchr(current_command, '*'); // * should always be the last parameter
  5784. if (starpos) while (*starpos == ' ' || *starpos == '*') *starpos-- = '\0'; // nullify '*' and ' '
  5785. char *cmd_ptr = current_command;
  5786. // Get the command code, which must be G, M, or T
  5787. char command_code = *cmd_ptr++;
  5788. // Skip spaces to get the numeric part
  5789. while (*cmd_ptr == ' ') cmd_ptr++;
  5790. uint16_t codenum = 0; // define ahead of goto
  5791. // Bail early if there's no code
  5792. bool code_is_good = NUMERIC(*cmd_ptr);
  5793. if (!code_is_good) goto ExitUnknownCommand;
  5794. // Get and skip the code number
  5795. do {
  5796. codenum = (codenum * 10) + (*cmd_ptr - '0');
  5797. cmd_ptr++;
  5798. } while (NUMERIC(*cmd_ptr));
  5799. // Skip all spaces to get to the first argument, or nul
  5800. while (*cmd_ptr == ' ') cmd_ptr++;
  5801. // The command's arguments (if any) start here, for sure!
  5802. current_command_args = cmd_ptr;
  5803. KEEPALIVE_STATE(IN_HANDLER);
  5804. // Handle a known G, M, or T
  5805. switch (command_code) {
  5806. case 'G': switch (codenum) {
  5807. // G0, G1
  5808. case 0:
  5809. case 1:
  5810. gcode_G0_G1();
  5811. break;
  5812. // G2, G3
  5813. #if ENABLED(ARC_SUPPORT) && DISABLED(SCARA)
  5814. case 2: // G2 - CW ARC
  5815. case 3: // G3 - CCW ARC
  5816. gcode_G2_G3(codenum == 2);
  5817. break;
  5818. #endif
  5819. // G4 Dwell
  5820. case 4:
  5821. gcode_G4();
  5822. break;
  5823. #if ENABLED(BEZIER_CURVE_SUPPORT)
  5824. // G5
  5825. case 5: // G5 - Cubic B_spline
  5826. gcode_G5();
  5827. break;
  5828. #endif // BEZIER_CURVE_SUPPORT
  5829. #if ENABLED(FWRETRACT)
  5830. case 10: // G10: retract
  5831. case 11: // G11: retract_recover
  5832. gcode_G10_G11(codenum == 10);
  5833. break;
  5834. #endif // FWRETRACT
  5835. #if ENABLED(NOZZLE_CLEAN_FEATURE) && HAS_BED_PROBE
  5836. case 12:
  5837. gcode_G12(); // G12: Clean Nozzle
  5838. break;
  5839. #endif // NOZZLE_CLEAN_FEATURE
  5840. #if ENABLED(INCH_MODE_SUPPORT)
  5841. case 20: //G20: Inch Mode
  5842. gcode_G20();
  5843. break;
  5844. case 21: //G21: MM Mode
  5845. gcode_G21();
  5846. break;
  5847. #endif // INCH_MODE_SUPPORT
  5848. case 28: // G28: Home all axes, one at a time
  5849. gcode_G28();
  5850. break;
  5851. #if ENABLED(AUTO_BED_LEVELING_FEATURE) || ENABLED(MESH_BED_LEVELING)
  5852. case 29: // G29 Detailed Z probe, probes the bed at 3 or more points.
  5853. gcode_G29();
  5854. break;
  5855. #endif // AUTO_BED_LEVELING_FEATURE
  5856. #if HAS_BED_PROBE
  5857. case 30: // G30 Single Z probe
  5858. gcode_G30();
  5859. break;
  5860. #if ENABLED(Z_PROBE_SLED)
  5861. case 31: // G31: dock the sled
  5862. gcode_G31();
  5863. break;
  5864. case 32: // G32: undock the sled
  5865. gcode_G32();
  5866. break;
  5867. #endif // Z_PROBE_SLED
  5868. #endif // HAS_BED_PROBE
  5869. case 90: // G90
  5870. relative_mode = false;
  5871. break;
  5872. case 91: // G91
  5873. relative_mode = true;
  5874. break;
  5875. case 92: // G92
  5876. gcode_G92();
  5877. break;
  5878. }
  5879. break;
  5880. case 'M': switch (codenum) {
  5881. #if ENABLED(ULTIPANEL)
  5882. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  5883. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  5884. gcode_M0_M1();
  5885. break;
  5886. #endif // ULTIPANEL
  5887. case 17:
  5888. gcode_M17();
  5889. break;
  5890. #if ENABLED(SDSUPPORT)
  5891. case 20: // M20 - list SD card
  5892. gcode_M20(); break;
  5893. case 21: // M21 - init SD card
  5894. gcode_M21(); break;
  5895. case 22: //M22 - release SD card
  5896. gcode_M22(); break;
  5897. case 23: //M23 - Select file
  5898. gcode_M23(); break;
  5899. case 24: //M24 - Start SD print
  5900. gcode_M24(); break;
  5901. case 25: //M25 - Pause SD print
  5902. gcode_M25(); break;
  5903. case 26: //M26 - Set SD index
  5904. gcode_M26(); break;
  5905. case 27: //M27 - Get SD status
  5906. gcode_M27(); break;
  5907. case 28: //M28 - Start SD write
  5908. gcode_M28(); break;
  5909. case 29: //M29 - Stop SD write
  5910. gcode_M29(); break;
  5911. case 30: //M30 <filename> Delete File
  5912. gcode_M30(); break;
  5913. case 32: //M32 - Select file and start SD print
  5914. gcode_M32(); break;
  5915. #if ENABLED(LONG_FILENAME_HOST_SUPPORT)
  5916. case 33: //M33 - Get the long full path to a file or folder
  5917. gcode_M33(); break;
  5918. #endif // LONG_FILENAME_HOST_SUPPORT
  5919. case 928: //M928 - Start SD write
  5920. gcode_M928(); break;
  5921. #endif //SDSUPPORT
  5922. case 31: //M31 take time since the start of the SD print or an M109 command
  5923. gcode_M31();
  5924. break;
  5925. case 42: //M42 -Change pin status via gcode
  5926. gcode_M42();
  5927. break;
  5928. #if ENABLED(Z_MIN_PROBE_REPEATABILITY_TEST)
  5929. case 48: // M48 Z probe repeatability
  5930. gcode_M48();
  5931. break;
  5932. #endif // Z_MIN_PROBE_REPEATABILITY_TEST
  5933. case 75: // Start print timer
  5934. gcode_M75();
  5935. break;
  5936. case 76: // Pause print timer
  5937. gcode_M76();
  5938. break;
  5939. case 77: // Stop print timer
  5940. gcode_M77();
  5941. break;
  5942. #if ENABLED(PRINTCOUNTER)
  5943. case 78: // Show print statistics
  5944. gcode_M78();
  5945. break;
  5946. #endif
  5947. #if ENABLED(M100_FREE_MEMORY_WATCHER)
  5948. case 100:
  5949. gcode_M100();
  5950. break;
  5951. #endif
  5952. case 104: // M104
  5953. gcode_M104();
  5954. break;
  5955. case 110: // M110: Set Current Line Number
  5956. gcode_M110();
  5957. break;
  5958. case 111: // M111: Set debug level
  5959. gcode_M111();
  5960. break;
  5961. #if DISABLED(EMERGENCY_PARSER)
  5962. case 108: // M108: Cancel Waiting
  5963. gcode_M108();
  5964. break;
  5965. case 112: // M112: Emergency Stop
  5966. gcode_M112();
  5967. break;
  5968. case 410: // M410 quickstop - Abort all the planned moves.
  5969. gcode_M410();
  5970. break;
  5971. #endif
  5972. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  5973. case 113: // M113: Set Host Keepalive interval
  5974. gcode_M113();
  5975. break;
  5976. #endif
  5977. case 140: // M140: Set bed temp
  5978. gcode_M140();
  5979. break;
  5980. case 105: // M105: Read current temperature
  5981. gcode_M105();
  5982. KEEPALIVE_STATE(NOT_BUSY);
  5983. return; // "ok" already printed
  5984. case 109: // M109: Wait for temperature
  5985. gcode_M109();
  5986. break;
  5987. #if HAS_TEMP_BED
  5988. case 190: // M190: Wait for bed heater to reach target
  5989. gcode_M190();
  5990. break;
  5991. #endif // HAS_TEMP_BED
  5992. #if FAN_COUNT > 0
  5993. case 106: // M106: Fan On
  5994. gcode_M106();
  5995. break;
  5996. case 107: // M107: Fan Off
  5997. gcode_M107();
  5998. break;
  5999. #endif // FAN_COUNT > 0
  6000. #if ENABLED(BARICUDA)
  6001. // PWM for HEATER_1_PIN
  6002. #if HAS_HEATER_1
  6003. case 126: // M126: valve open
  6004. gcode_M126();
  6005. break;
  6006. case 127: // M127: valve closed
  6007. gcode_M127();
  6008. break;
  6009. #endif // HAS_HEATER_1
  6010. // PWM for HEATER_2_PIN
  6011. #if HAS_HEATER_2
  6012. case 128: // M128: valve open
  6013. gcode_M128();
  6014. break;
  6015. case 129: // M129: valve closed
  6016. gcode_M129();
  6017. break;
  6018. #endif // HAS_HEATER_2
  6019. #endif // BARICUDA
  6020. #if HAS_POWER_SWITCH
  6021. case 80: // M80: Turn on Power Supply
  6022. gcode_M80();
  6023. break;
  6024. #endif // HAS_POWER_SWITCH
  6025. case 81: // M81: Turn off Power, including Power Supply, if possible
  6026. gcode_M81();
  6027. break;
  6028. case 82:
  6029. gcode_M82();
  6030. break;
  6031. case 83:
  6032. gcode_M83();
  6033. break;
  6034. case 18: // (for compatibility)
  6035. case 84: // M84
  6036. gcode_M18_M84();
  6037. break;
  6038. case 85: // M85
  6039. gcode_M85();
  6040. break;
  6041. case 92: // M92: Set the steps-per-unit for one or more axes
  6042. gcode_M92();
  6043. break;
  6044. case 115: // M115: Report capabilities
  6045. gcode_M115();
  6046. break;
  6047. case 117: // M117: Set LCD message text, if possible
  6048. gcode_M117();
  6049. break;
  6050. case 114: // M114: Report current position
  6051. gcode_M114();
  6052. break;
  6053. case 120: // M120: Enable endstops
  6054. gcode_M120();
  6055. break;
  6056. case 121: // M121: Disable endstops
  6057. gcode_M121();
  6058. break;
  6059. case 119: // M119: Report endstop states
  6060. gcode_M119();
  6061. break;
  6062. #if ENABLED(ULTIPANEL)
  6063. case 145: // M145: Set material heatup parameters
  6064. gcode_M145();
  6065. break;
  6066. #endif
  6067. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  6068. case 149:
  6069. gcode_M149();
  6070. break;
  6071. #endif
  6072. #if ENABLED(BLINKM)
  6073. case 150: // M150
  6074. gcode_M150();
  6075. break;
  6076. #endif //BLINKM
  6077. #if ENABLED(EXPERIMENTAL_I2CBUS)
  6078. case 155:
  6079. gcode_M155();
  6080. break;
  6081. case 156:
  6082. gcode_M156();
  6083. break;
  6084. #endif //EXPERIMENTAL_I2CBUS
  6085. case 200: // M200 D<diameter> Set filament diameter and set E axis units to cubic. (Use S0 to revert to linear units.)
  6086. gcode_M200();
  6087. break;
  6088. case 201: // M201
  6089. gcode_M201();
  6090. break;
  6091. #if 0 // Not used for Sprinter/grbl gen6
  6092. case 202: // M202
  6093. gcode_M202();
  6094. break;
  6095. #endif
  6096. case 203: // M203 max feedrate units/sec
  6097. gcode_M203();
  6098. break;
  6099. case 204: // M204 acclereration S normal moves T filmanent only moves
  6100. gcode_M204();
  6101. break;
  6102. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  6103. gcode_M205();
  6104. break;
  6105. case 206: // M206 additional homing offset
  6106. gcode_M206();
  6107. break;
  6108. #if ENABLED(DELTA)
  6109. case 665: // M665 set delta configurations L<diagonal_rod> R<delta_radius> S<segments_per_sec>
  6110. gcode_M665();
  6111. break;
  6112. #endif
  6113. #if ENABLED(DELTA) || ENABLED(Z_DUAL_ENDSTOPS)
  6114. case 666: // M666 set delta / dual endstop adjustment
  6115. gcode_M666();
  6116. break;
  6117. #endif
  6118. #if ENABLED(FWRETRACT)
  6119. case 207: // M207 - Set Retract Length: S<length>, Feedrate: F<units/min>, and Z lift: Z<distance>
  6120. gcode_M207();
  6121. break;
  6122. case 208: // M208 - Set Recover (unretract) Additional (!) Length: S<length> and Feedrate: F<units/min>
  6123. gcode_M208();
  6124. break;
  6125. case 209: // M209 - Turn Automatic Retract Detection on/off: S<bool> (For slicers that don't support G10/11). Every normal extrude-only move will be classified as retract depending on the direction.
  6126. gcode_M209();
  6127. break;
  6128. #endif // FWRETRACT
  6129. #if HOTENDS > 1
  6130. case 218: // M218 - Set a tool offset: T<index> X<offset> Y<offset>
  6131. gcode_M218();
  6132. break;
  6133. #endif
  6134. case 220: // M220 - Set Feedrate Percentage: S<percent> ("FR" on your LCD)
  6135. gcode_M220();
  6136. break;
  6137. case 221: // M221 - Set Flow Percentage: S<percent>
  6138. gcode_M221();
  6139. break;
  6140. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  6141. gcode_M226();
  6142. break;
  6143. #if HAS_SERVOS
  6144. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  6145. gcode_M280();
  6146. break;
  6147. #endif // HAS_SERVOS
  6148. #if HAS_BUZZER
  6149. case 300: // M300 - Play beep tone
  6150. gcode_M300();
  6151. break;
  6152. #endif // HAS_BUZZER
  6153. #if ENABLED(PIDTEMP)
  6154. case 301: // M301
  6155. gcode_M301();
  6156. break;
  6157. #endif // PIDTEMP
  6158. #if ENABLED(PIDTEMPBED)
  6159. case 304: // M304
  6160. gcode_M304();
  6161. break;
  6162. #endif // PIDTEMPBED
  6163. #if defined(CHDK) || HAS_PHOTOGRAPH
  6164. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  6165. gcode_M240();
  6166. break;
  6167. #endif // CHDK || PHOTOGRAPH_PIN
  6168. #if HAS_LCD_CONTRAST
  6169. case 250: // M250 Set LCD contrast value: C<value> (value 0..63)
  6170. gcode_M250();
  6171. break;
  6172. #endif // HAS_LCD_CONTRAST
  6173. #if ENABLED(PREVENT_DANGEROUS_EXTRUDE)
  6174. case 302: // allow cold extrudes, or set the minimum extrude temperature
  6175. gcode_M302();
  6176. break;
  6177. #endif // PREVENT_DANGEROUS_EXTRUDE
  6178. case 303: // M303 PID autotune
  6179. gcode_M303();
  6180. break;
  6181. #if ENABLED(SCARA)
  6182. case 360: // M360 SCARA Theta pos1
  6183. if (gcode_M360()) return;
  6184. break;
  6185. case 361: // M361 SCARA Theta pos2
  6186. if (gcode_M361()) return;
  6187. break;
  6188. case 362: // M362 SCARA Psi pos1
  6189. if (gcode_M362()) return;
  6190. break;
  6191. case 363: // M363 SCARA Psi pos2
  6192. if (gcode_M363()) return;
  6193. break;
  6194. case 364: // M364 SCARA Psi pos3 (90 deg to Theta)
  6195. if (gcode_M364()) return;
  6196. break;
  6197. case 365: // M365 Set SCARA scaling for X Y Z
  6198. gcode_M365();
  6199. break;
  6200. #endif // SCARA
  6201. case 400: // M400 finish all moves
  6202. gcode_M400();
  6203. break;
  6204. #if HAS_BED_PROBE
  6205. case 401:
  6206. gcode_M401();
  6207. break;
  6208. case 402:
  6209. gcode_M402();
  6210. break;
  6211. #endif // HAS_BED_PROBE
  6212. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  6213. case 404: //M404 Enter the nominal filament width (3mm, 1.75mm ) N<3.0> or display nominal filament width
  6214. gcode_M404();
  6215. break;
  6216. case 405: //M405 Turn on filament sensor for control
  6217. gcode_M405();
  6218. break;
  6219. case 406: //M406 Turn off filament sensor for control
  6220. gcode_M406();
  6221. break;
  6222. case 407: //M407 Display measured filament diameter
  6223. gcode_M407();
  6224. break;
  6225. #endif // ENABLED(FILAMENT_WIDTH_SENSOR)
  6226. #if ENABLED(MESH_BED_LEVELING)
  6227. case 420: // M420 Enable/Disable Mesh Bed Leveling
  6228. gcode_M420();
  6229. break;
  6230. case 421: // M421 Set a Mesh Bed Leveling Z coordinate
  6231. gcode_M421();
  6232. break;
  6233. #endif
  6234. case 428: // M428 Apply current_position to home_offset
  6235. gcode_M428();
  6236. break;
  6237. case 500: // M500 Store settings in EEPROM
  6238. gcode_M500();
  6239. break;
  6240. case 501: // M501 Read settings from EEPROM
  6241. gcode_M501();
  6242. break;
  6243. case 502: // M502 Revert to default settings
  6244. gcode_M502();
  6245. break;
  6246. case 503: // M503 print settings currently in memory
  6247. gcode_M503();
  6248. break;
  6249. #if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  6250. case 540:
  6251. gcode_M540();
  6252. break;
  6253. #endif
  6254. #if HAS_BED_PROBE
  6255. case 851:
  6256. gcode_M851();
  6257. break;
  6258. #endif // HAS_BED_PROBE
  6259. #if ENABLED(FILAMENT_CHANGE_FEATURE)
  6260. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  6261. gcode_M600();
  6262. break;
  6263. #endif // FILAMENT_CHANGE_FEATURE
  6264. #if ENABLED(DUAL_X_CARRIAGE)
  6265. case 605:
  6266. gcode_M605();
  6267. break;
  6268. #endif // DUAL_X_CARRIAGE
  6269. #if ENABLED(LIN_ADVANCE)
  6270. case 905: // M905 Set advance factor.
  6271. gcode_M905();
  6272. break;
  6273. #endif
  6274. case 907: // M907 Set digital trimpot motor current using axis codes.
  6275. gcode_M907();
  6276. break;
  6277. #if HAS_DIGIPOTSS || ENABLED(DAC_STEPPER_CURRENT)
  6278. case 908: // M908 Control digital trimpot directly.
  6279. gcode_M908();
  6280. break;
  6281. #if ENABLED(DAC_STEPPER_CURRENT) // As with Printrbot RevF
  6282. case 909: // M909 Print digipot/DAC current value
  6283. gcode_M909();
  6284. break;
  6285. case 910: // M910 Commit digipot/DAC value to external EEPROM
  6286. gcode_M910();
  6287. break;
  6288. #endif
  6289. #endif // HAS_DIGIPOTSS || DAC_STEPPER_CURRENT
  6290. #if HAS_MICROSTEPS
  6291. case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  6292. gcode_M350();
  6293. break;
  6294. case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  6295. gcode_M351();
  6296. break;
  6297. #endif // HAS_MICROSTEPS
  6298. case 999: // M999: Restart after being Stopped
  6299. gcode_M999();
  6300. break;
  6301. }
  6302. break;
  6303. case 'T':
  6304. gcode_T(codenum);
  6305. break;
  6306. default: code_is_good = false;
  6307. }
  6308. KEEPALIVE_STATE(NOT_BUSY);
  6309. ExitUnknownCommand:
  6310. // Still unknown command? Throw an error
  6311. if (!code_is_good) unknown_command_error();
  6312. ok_to_send();
  6313. }
  6314. void FlushSerialRequestResend() {
  6315. //char command_queue[cmd_queue_index_r][100]="Resend:";
  6316. MYSERIAL.flush();
  6317. SERIAL_PROTOCOLPGM(MSG_RESEND);
  6318. SERIAL_PROTOCOLLN(gcode_LastN + 1);
  6319. ok_to_send();
  6320. }
  6321. void ok_to_send() {
  6322. refresh_cmd_timeout();
  6323. if (!send_ok[cmd_queue_index_r]) return;
  6324. SERIAL_PROTOCOLPGM(MSG_OK);
  6325. #if ENABLED(ADVANCED_OK)
  6326. char* p = command_queue[cmd_queue_index_r];
  6327. if (*p == 'N') {
  6328. SERIAL_PROTOCOL(' ');
  6329. SERIAL_ECHO(*p++);
  6330. while (NUMERIC_SIGNED(*p))
  6331. SERIAL_ECHO(*p++);
  6332. }
  6333. SERIAL_PROTOCOLPGM(" P"); SERIAL_PROTOCOL(int(BLOCK_BUFFER_SIZE - planner.movesplanned() - 1));
  6334. SERIAL_PROTOCOLPGM(" B"); SERIAL_PROTOCOL(BUFSIZE - commands_in_queue);
  6335. #endif
  6336. SERIAL_EOL;
  6337. }
  6338. void clamp_to_software_endstops(float target[3]) {
  6339. if (min_software_endstops) {
  6340. NOLESS(target[X_AXIS], sw_endstop_min[X_AXIS]);
  6341. NOLESS(target[Y_AXIS], sw_endstop_min[Y_AXIS]);
  6342. NOLESS(target[Z_AXIS], sw_endstop_min[Z_AXIS]);
  6343. }
  6344. if (max_software_endstops) {
  6345. NOMORE(target[X_AXIS], sw_endstop_max[X_AXIS]);
  6346. NOMORE(target[Y_AXIS], sw_endstop_max[Y_AXIS]);
  6347. NOMORE(target[Z_AXIS], sw_endstop_max[Z_AXIS]);
  6348. }
  6349. }
  6350. #if ENABLED(DELTA)
  6351. void recalc_delta_settings(float radius, float diagonal_rod) {
  6352. delta_tower1_x = -SIN_60 * (radius + DELTA_RADIUS_TRIM_TOWER_1); // front left tower
  6353. delta_tower1_y = -COS_60 * (radius + DELTA_RADIUS_TRIM_TOWER_1);
  6354. delta_tower2_x = SIN_60 * (radius + DELTA_RADIUS_TRIM_TOWER_2); // front right tower
  6355. delta_tower2_y = -COS_60 * (radius + DELTA_RADIUS_TRIM_TOWER_2);
  6356. delta_tower3_x = 0.0; // back middle tower
  6357. delta_tower3_y = (radius + DELTA_RADIUS_TRIM_TOWER_3);
  6358. delta_diagonal_rod_2_tower_1 = sq(diagonal_rod + delta_diagonal_rod_trim_tower_1);
  6359. delta_diagonal_rod_2_tower_2 = sq(diagonal_rod + delta_diagonal_rod_trim_tower_2);
  6360. delta_diagonal_rod_2_tower_3 = sq(diagonal_rod + delta_diagonal_rod_trim_tower_3);
  6361. }
  6362. void calculate_delta(float cartesian[3]) {
  6363. delta[TOWER_1] = sqrt(delta_diagonal_rod_2_tower_1
  6364. - sq(delta_tower1_x - cartesian[X_AXIS])
  6365. - sq(delta_tower1_y - cartesian[Y_AXIS])
  6366. ) + cartesian[Z_AXIS];
  6367. delta[TOWER_2] = sqrt(delta_diagonal_rod_2_tower_2
  6368. - sq(delta_tower2_x - cartesian[X_AXIS])
  6369. - sq(delta_tower2_y - cartesian[Y_AXIS])
  6370. ) + cartesian[Z_AXIS];
  6371. delta[TOWER_3] = sqrt(delta_diagonal_rod_2_tower_3
  6372. - sq(delta_tower3_x - cartesian[X_AXIS])
  6373. - sq(delta_tower3_y - cartesian[Y_AXIS])
  6374. ) + cartesian[Z_AXIS];
  6375. /**
  6376. SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);
  6377. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]);
  6378. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]);
  6379. SERIAL_ECHOPGM("delta a="); SERIAL_ECHO(delta[TOWER_1]);
  6380. SERIAL_ECHOPGM(" b="); SERIAL_ECHO(delta[TOWER_2]);
  6381. SERIAL_ECHOPGM(" c="); SERIAL_ECHOLN(delta[TOWER_3]);
  6382. */
  6383. }
  6384. float delta_safe_distance_from_top() {
  6385. float cartesian[3] = { 0 };
  6386. calculate_delta(cartesian);
  6387. float distance = delta[TOWER_3];
  6388. cartesian[Y_AXIS] = DELTA_PRINTABLE_RADIUS;
  6389. calculate_delta(cartesian);
  6390. return abs(distance - delta[TOWER_3]);
  6391. }
  6392. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  6393. // Adjust print surface height by linear interpolation over the bed_level array.
  6394. void adjust_delta(float cartesian[3]) {
  6395. if (delta_grid_spacing[0] == 0 || delta_grid_spacing[1] == 0) return; // G29 not done!
  6396. int half = (AUTO_BED_LEVELING_GRID_POINTS - 1) / 2;
  6397. float h1 = 0.001 - half, h2 = half - 0.001,
  6398. grid_x = max(h1, min(h2, cartesian[X_AXIS] / delta_grid_spacing[0])),
  6399. grid_y = max(h1, min(h2, cartesian[Y_AXIS] / delta_grid_spacing[1]));
  6400. int floor_x = floor(grid_x), floor_y = floor(grid_y);
  6401. float ratio_x = grid_x - floor_x, ratio_y = grid_y - floor_y,
  6402. z1 = bed_level[floor_x + half][floor_y + half],
  6403. z2 = bed_level[floor_x + half][floor_y + half + 1],
  6404. z3 = bed_level[floor_x + half + 1][floor_y + half],
  6405. z4 = bed_level[floor_x + half + 1][floor_y + half + 1],
  6406. left = (1 - ratio_y) * z1 + ratio_y * z2,
  6407. right = (1 - ratio_y) * z3 + ratio_y * z4,
  6408. offset = (1 - ratio_x) * left + ratio_x * right;
  6409. delta[X_AXIS] += offset;
  6410. delta[Y_AXIS] += offset;
  6411. delta[Z_AXIS] += offset;
  6412. /**
  6413. SERIAL_ECHOPGM("grid_x="); SERIAL_ECHO(grid_x);
  6414. SERIAL_ECHOPGM(" grid_y="); SERIAL_ECHO(grid_y);
  6415. SERIAL_ECHOPGM(" floor_x="); SERIAL_ECHO(floor_x);
  6416. SERIAL_ECHOPGM(" floor_y="); SERIAL_ECHO(floor_y);
  6417. SERIAL_ECHOPGM(" ratio_x="); SERIAL_ECHO(ratio_x);
  6418. SERIAL_ECHOPGM(" ratio_y="); SERIAL_ECHO(ratio_y);
  6419. SERIAL_ECHOPGM(" z1="); SERIAL_ECHO(z1);
  6420. SERIAL_ECHOPGM(" z2="); SERIAL_ECHO(z2);
  6421. SERIAL_ECHOPGM(" z3="); SERIAL_ECHO(z3);
  6422. SERIAL_ECHOPGM(" z4="); SERIAL_ECHO(z4);
  6423. SERIAL_ECHOPGM(" left="); SERIAL_ECHO(left);
  6424. SERIAL_ECHOPGM(" right="); SERIAL_ECHO(right);
  6425. SERIAL_ECHOPGM(" offset="); SERIAL_ECHOLN(offset);
  6426. */
  6427. }
  6428. #endif // AUTO_BED_LEVELING_FEATURE
  6429. #endif // DELTA
  6430. #if ENABLED(MESH_BED_LEVELING)
  6431. // This function is used to split lines on mesh borders so each segment is only part of one mesh area
  6432. void mesh_buffer_line(float x, float y, float z, const float e, float feed_rate, const uint8_t& extruder, uint8_t x_splits = 0xff, uint8_t y_splits = 0xff) {
  6433. if (!mbl.active()) {
  6434. planner.buffer_line(x, y, z, e, feed_rate, extruder);
  6435. set_current_to_destination();
  6436. return;
  6437. }
  6438. int pcx = mbl.cell_index_x(RAW_CURRENT_POSITION(X_AXIS)),
  6439. pcy = mbl.cell_index_y(RAW_CURRENT_POSITION(Y_AXIS)),
  6440. cx = mbl.cell_index_x(RAW_POSITION(x, X_AXIS)),
  6441. cy = mbl.cell_index_y(RAW_POSITION(y, Y_AXIS));
  6442. NOMORE(pcx, MESH_NUM_X_POINTS - 2);
  6443. NOMORE(pcy, MESH_NUM_Y_POINTS - 2);
  6444. NOMORE(cx, MESH_NUM_X_POINTS - 2);
  6445. NOMORE(cy, MESH_NUM_Y_POINTS - 2);
  6446. if (pcx == cx && pcy == cy) {
  6447. // Start and end on same mesh square
  6448. planner.buffer_line(x, y, z, e, feed_rate, extruder);
  6449. set_current_to_destination();
  6450. return;
  6451. }
  6452. float nx, ny, nz, ne, normalized_dist;
  6453. if (cx > pcx && TEST(x_splits, cx)) {
  6454. nx = mbl.get_probe_x(cx) + home_offset[X_AXIS];
  6455. normalized_dist = (nx - current_position[X_AXIS]) / (x - current_position[X_AXIS]);
  6456. ny = current_position[Y_AXIS] + (y - current_position[Y_AXIS]) * normalized_dist;
  6457. nz = current_position[Z_AXIS] + (z - current_position[Z_AXIS]) * normalized_dist;
  6458. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  6459. CBI(x_splits, cx);
  6460. }
  6461. else if (cx < pcx && TEST(x_splits, pcx)) {
  6462. nx = mbl.get_probe_x(pcx) + home_offset[X_AXIS];
  6463. normalized_dist = (nx - current_position[X_AXIS]) / (x - current_position[X_AXIS]);
  6464. ny = current_position[Y_AXIS] + (y - current_position[Y_AXIS]) * normalized_dist;
  6465. nz = current_position[Z_AXIS] + (z - current_position[Z_AXIS]) * normalized_dist;
  6466. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  6467. CBI(x_splits, pcx);
  6468. }
  6469. else if (cy > pcy && TEST(y_splits, cy)) {
  6470. ny = mbl.get_probe_y(cy) + home_offset[Y_AXIS];
  6471. normalized_dist = (ny - current_position[Y_AXIS]) / (y - current_position[Y_AXIS]);
  6472. nx = current_position[X_AXIS] + (x - current_position[X_AXIS]) * normalized_dist;
  6473. nz = current_position[Z_AXIS] + (z - current_position[Z_AXIS]) * normalized_dist;
  6474. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  6475. CBI(y_splits, cy);
  6476. }
  6477. else if (cy < pcy && TEST(y_splits, pcy)) {
  6478. ny = mbl.get_probe_y(pcy) + home_offset[Y_AXIS];
  6479. normalized_dist = (ny - current_position[Y_AXIS]) / (y - current_position[Y_AXIS]);
  6480. nx = current_position[X_AXIS] + (x - current_position[X_AXIS]) * normalized_dist;
  6481. nz = current_position[Z_AXIS] + (z - current_position[Z_AXIS]) * normalized_dist;
  6482. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  6483. CBI(y_splits, pcy);
  6484. }
  6485. else {
  6486. // Already split on a border
  6487. planner.buffer_line(x, y, z, e, feed_rate, extruder);
  6488. set_current_to_destination();
  6489. return;
  6490. }
  6491. // Do the split and look for more borders
  6492. destination[X_AXIS] = nx;
  6493. destination[Y_AXIS] = ny;
  6494. destination[Z_AXIS] = nz;
  6495. destination[E_AXIS] = ne;
  6496. mesh_buffer_line(nx, ny, nz, ne, feed_rate, extruder, x_splits, y_splits);
  6497. destination[X_AXIS] = x;
  6498. destination[Y_AXIS] = y;
  6499. destination[Z_AXIS] = z;
  6500. destination[E_AXIS] = e;
  6501. mesh_buffer_line(x, y, z, e, feed_rate, extruder, x_splits, y_splits);
  6502. }
  6503. #endif // MESH_BED_LEVELING
  6504. #if ENABLED(DELTA) || ENABLED(SCARA)
  6505. inline bool prepare_delta_move_to(float target[NUM_AXIS]) {
  6506. float difference[NUM_AXIS];
  6507. for (int8_t i = 0; i < NUM_AXIS; i++) difference[i] = target[i] - current_position[i];
  6508. float cartesian_mm = sqrt(sq(difference[X_AXIS]) + sq(difference[Y_AXIS]) + sq(difference[Z_AXIS]));
  6509. if (cartesian_mm < 0.000001) cartesian_mm = abs(difference[E_AXIS]);
  6510. if (cartesian_mm < 0.000001) return false;
  6511. float _feedrate = feedrate * feedrate_multiplier / 6000.0;
  6512. float seconds = cartesian_mm / _feedrate;
  6513. int steps = max(1, int(delta_segments_per_second * seconds));
  6514. float inv_steps = 1.0/steps;
  6515. // SERIAL_ECHOPGM("mm="); SERIAL_ECHO(cartesian_mm);
  6516. // SERIAL_ECHOPGM(" seconds="); SERIAL_ECHO(seconds);
  6517. // SERIAL_ECHOPGM(" steps="); SERIAL_ECHOLN(steps);
  6518. for (int s = 1; s <= steps; s++) {
  6519. float fraction = float(s) * inv_steps;
  6520. for (int8_t i = 0; i < NUM_AXIS; i++)
  6521. target[i] = current_position[i] + difference[i] * fraction;
  6522. calculate_delta(target);
  6523. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  6524. if (!bed_leveling_in_progress) adjust_delta(target);
  6525. #endif
  6526. //DEBUG_POS("prepare_delta_move_to", target);
  6527. //DEBUG_POS("prepare_delta_move_to", delta);
  6528. planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], target[E_AXIS], _feedrate, active_extruder);
  6529. }
  6530. return true;
  6531. }
  6532. #endif // DELTA || SCARA
  6533. #if ENABLED(SCARA)
  6534. inline bool prepare_scara_move_to(float target[NUM_AXIS]) { return prepare_delta_move_to(target); }
  6535. #endif
  6536. #if ENABLED(DUAL_X_CARRIAGE)
  6537. inline bool prepare_move_to_destination_dualx() {
  6538. if (active_extruder_parked) {
  6539. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && active_extruder == 0) {
  6540. // move duplicate extruder into correct duplication position.
  6541. planner.set_position_mm(inactive_extruder_x_pos, current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  6542. planner.buffer_line(current_position[X_AXIS] + duplicate_extruder_x_offset,
  6543. current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], planner.max_feedrate[X_AXIS], 1);
  6544. SYNC_PLAN_POSITION_KINEMATIC();
  6545. stepper.synchronize();
  6546. extruder_duplication_enabled = true;
  6547. active_extruder_parked = false;
  6548. }
  6549. else if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE) { // handle unparking of head
  6550. if (current_position[E_AXIS] == destination[E_AXIS]) {
  6551. // This is a travel move (with no extrusion)
  6552. // Skip it, but keep track of the current position
  6553. // (so it can be used as the start of the next non-travel move)
  6554. if (delayed_move_time != 0xFFFFFFFFUL) {
  6555. set_current_to_destination();
  6556. NOLESS(raised_parked_position[Z_AXIS], destination[Z_AXIS]);
  6557. delayed_move_time = millis();
  6558. return false;
  6559. }
  6560. }
  6561. delayed_move_time = 0;
  6562. // unpark extruder: 1) raise, 2) move into starting XY position, 3) lower
  6563. planner.buffer_line(raised_parked_position[X_AXIS], raised_parked_position[Y_AXIS], raised_parked_position[Z_AXIS], current_position[E_AXIS], planner.max_feedrate[Z_AXIS], active_extruder);
  6564. planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], raised_parked_position[Z_AXIS], current_position[E_AXIS], PLANNER_XY_FEEDRATE(), active_extruder);
  6565. planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], planner.max_feedrate[Z_AXIS], active_extruder);
  6566. active_extruder_parked = false;
  6567. }
  6568. }
  6569. return true;
  6570. }
  6571. #endif // DUAL_X_CARRIAGE
  6572. #if DISABLED(DELTA) && DISABLED(SCARA)
  6573. inline bool prepare_move_to_destination_cartesian() {
  6574. // Do not use feedrate_multiplier for E or Z only moves
  6575. if (current_position[X_AXIS] == destination[X_AXIS] && current_position[Y_AXIS] == destination[Y_AXIS]) {
  6576. line_to_destination();
  6577. }
  6578. else {
  6579. #if ENABLED(MESH_BED_LEVELING)
  6580. mesh_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], (feedrate / 60) * (feedrate_multiplier / 100.0), active_extruder);
  6581. return false;
  6582. #else
  6583. line_to_destination(feedrate * feedrate_multiplier / 100.0);
  6584. #endif
  6585. }
  6586. return true;
  6587. }
  6588. #endif // !DELTA && !SCARA
  6589. #if ENABLED(PREVENT_DANGEROUS_EXTRUDE)
  6590. inline void prevent_dangerous_extrude(float& curr_e, float& dest_e) {
  6591. if (DEBUGGING(DRYRUN)) return;
  6592. float de = dest_e - curr_e;
  6593. if (de) {
  6594. if (thermalManager.tooColdToExtrude(active_extruder)) {
  6595. curr_e = dest_e; // Behave as if the move really took place, but ignore E part
  6596. SERIAL_ECHO_START;
  6597. SERIAL_ECHOLNPGM(MSG_ERR_COLD_EXTRUDE_STOP);
  6598. }
  6599. #if ENABLED(PREVENT_LENGTHY_EXTRUDE)
  6600. if (labs(de) > EXTRUDE_MAXLENGTH) {
  6601. curr_e = dest_e; // Behave as if the move really took place, but ignore E part
  6602. SERIAL_ECHO_START;
  6603. SERIAL_ECHOLNPGM(MSG_ERR_LONG_EXTRUDE_STOP);
  6604. }
  6605. #endif
  6606. }
  6607. }
  6608. #endif // PREVENT_DANGEROUS_EXTRUDE
  6609. /**
  6610. * Prepare a single move and get ready for the next one
  6611. *
  6612. * (This may call planner.buffer_line several times to put
  6613. * smaller moves into the planner for DELTA or SCARA.)
  6614. */
  6615. void prepare_move_to_destination() {
  6616. clamp_to_software_endstops(destination);
  6617. refresh_cmd_timeout();
  6618. #if ENABLED(PREVENT_DANGEROUS_EXTRUDE)
  6619. prevent_dangerous_extrude(current_position[E_AXIS], destination[E_AXIS]);
  6620. #endif
  6621. #if ENABLED(SCARA)
  6622. if (!prepare_scara_move_to(destination)) return;
  6623. #elif ENABLED(DELTA)
  6624. if (!prepare_delta_move_to(destination)) return;
  6625. #else
  6626. #if ENABLED(DUAL_X_CARRIAGE)
  6627. if (!prepare_move_to_destination_dualx()) return;
  6628. #endif
  6629. if (!prepare_move_to_destination_cartesian()) return;
  6630. #endif
  6631. set_current_to_destination();
  6632. }
  6633. #if ENABLED(ARC_SUPPORT)
  6634. /**
  6635. * Plan an arc in 2 dimensions
  6636. *
  6637. * The arc is approximated by generating many small linear segments.
  6638. * The length of each segment is configured in MM_PER_ARC_SEGMENT (Default 1mm)
  6639. * Arcs should only be made relatively large (over 5mm), as larger arcs with
  6640. * larger segments will tend to be more efficient. Your slicer should have
  6641. * options for G2/G3 arc generation. In future these options may be GCode tunable.
  6642. */
  6643. void plan_arc(
  6644. float target[NUM_AXIS], // Destination position
  6645. float* offset, // Center of rotation relative to current_position
  6646. uint8_t clockwise // Clockwise?
  6647. ) {
  6648. float radius = hypot(offset[X_AXIS], offset[Y_AXIS]),
  6649. center_X = current_position[X_AXIS] + offset[X_AXIS],
  6650. center_Y = current_position[Y_AXIS] + offset[Y_AXIS],
  6651. linear_travel = target[Z_AXIS] - current_position[Z_AXIS],
  6652. extruder_travel = target[E_AXIS] - current_position[E_AXIS],
  6653. r_X = -offset[X_AXIS], // Radius vector from center to current location
  6654. r_Y = -offset[Y_AXIS],
  6655. rt_X = target[X_AXIS] - center_X,
  6656. rt_Y = target[Y_AXIS] - center_Y;
  6657. // CCW angle of rotation between position and target from the circle center. Only one atan2() trig computation required.
  6658. float angular_travel = atan2(r_X * rt_Y - r_Y * rt_X, r_X * rt_X + r_Y * rt_Y);
  6659. if (angular_travel < 0) angular_travel += RADIANS(360);
  6660. if (clockwise) angular_travel -= RADIANS(360);
  6661. // Make a circle if the angular rotation is 0
  6662. if (angular_travel == 0 && current_position[X_AXIS] == target[X_AXIS] && current_position[Y_AXIS] == target[Y_AXIS])
  6663. angular_travel += RADIANS(360);
  6664. float mm_of_travel = hypot(angular_travel * radius, fabs(linear_travel));
  6665. if (mm_of_travel < 0.001) return;
  6666. uint16_t segments = floor(mm_of_travel / (MM_PER_ARC_SEGMENT));
  6667. if (segments == 0) segments = 1;
  6668. float theta_per_segment = angular_travel / segments;
  6669. float linear_per_segment = linear_travel / segments;
  6670. float extruder_per_segment = extruder_travel / segments;
  6671. /**
  6672. * Vector rotation by transformation matrix: r is the original vector, r_T is the rotated vector,
  6673. * and phi is the angle of rotation. Based on the solution approach by Jens Geisler.
  6674. * r_T = [cos(phi) -sin(phi);
  6675. * sin(phi) cos(phi] * r ;
  6676. *
  6677. * For arc generation, the center of the circle is the axis of rotation and the radius vector is
  6678. * defined from the circle center to the initial position. Each line segment is formed by successive
  6679. * vector rotations. This requires only two cos() and sin() computations to form the rotation
  6680. * matrix for the duration of the entire arc. Error may accumulate from numerical round-off, since
  6681. * all double numbers are single precision on the Arduino. (True double precision will not have
  6682. * round off issues for CNC applications.) Single precision error can accumulate to be greater than
  6683. * tool precision in some cases. Therefore, arc path correction is implemented.
  6684. *
  6685. * Small angle approximation may be used to reduce computation overhead further. This approximation
  6686. * holds for everything, but very small circles and large MM_PER_ARC_SEGMENT values. In other words,
  6687. * theta_per_segment would need to be greater than 0.1 rad and N_ARC_CORRECTION would need to be large
  6688. * to cause an appreciable drift error. N_ARC_CORRECTION~=25 is more than small enough to correct for
  6689. * numerical drift error. N_ARC_CORRECTION may be on the order a hundred(s) before error becomes an
  6690. * issue for CNC machines with the single precision Arduino calculations.
  6691. *
  6692. * This approximation also allows plan_arc to immediately insert a line segment into the planner
  6693. * without the initial overhead of computing cos() or sin(). By the time the arc needs to be applied
  6694. * a correction, the planner should have caught up to the lag caused by the initial plan_arc overhead.
  6695. * This is important when there are successive arc motions.
  6696. */
  6697. // Vector rotation matrix values
  6698. float cos_T = 1 - 0.5 * theta_per_segment * theta_per_segment; // Small angle approximation
  6699. float sin_T = theta_per_segment;
  6700. float arc_target[NUM_AXIS];
  6701. float sin_Ti, cos_Ti, r_new_Y;
  6702. uint16_t i;
  6703. int8_t count = 0;
  6704. // Initialize the linear axis
  6705. arc_target[Z_AXIS] = current_position[Z_AXIS];
  6706. // Initialize the extruder axis
  6707. arc_target[E_AXIS] = current_position[E_AXIS];
  6708. float feed_rate = feedrate * feedrate_multiplier / 60 / 100.0;
  6709. millis_t next_idle_ms = millis() + 200UL;
  6710. for (i = 1; i < segments; i++) { // Iterate (segments-1) times
  6711. thermalManager.manage_heater();
  6712. millis_t now = millis();
  6713. if (ELAPSED(now, next_idle_ms)) {
  6714. next_idle_ms = now + 200UL;
  6715. idle();
  6716. }
  6717. if (++count < N_ARC_CORRECTION) {
  6718. // Apply vector rotation matrix to previous r_X / 1
  6719. r_new_Y = r_X * sin_T + r_Y * cos_T;
  6720. r_X = r_X * cos_T - r_Y * sin_T;
  6721. r_Y = r_new_Y;
  6722. }
  6723. else {
  6724. // Arc correction to radius vector. Computed only every N_ARC_CORRECTION increments.
  6725. // Compute exact location by applying transformation matrix from initial radius vector(=-offset).
  6726. // To reduce stuttering, the sin and cos could be computed at different times.
  6727. // For now, compute both at the same time.
  6728. cos_Ti = cos(i * theta_per_segment);
  6729. sin_Ti = sin(i * theta_per_segment);
  6730. r_X = -offset[X_AXIS] * cos_Ti + offset[Y_AXIS] * sin_Ti;
  6731. r_Y = -offset[X_AXIS] * sin_Ti - offset[Y_AXIS] * cos_Ti;
  6732. count = 0;
  6733. }
  6734. // Update arc_target location
  6735. arc_target[X_AXIS] = center_X + r_X;
  6736. arc_target[Y_AXIS] = center_Y + r_Y;
  6737. arc_target[Z_AXIS] += linear_per_segment;
  6738. arc_target[E_AXIS] += extruder_per_segment;
  6739. clamp_to_software_endstops(arc_target);
  6740. #if ENABLED(DELTA) || ENABLED(SCARA)
  6741. calculate_delta(arc_target);
  6742. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  6743. adjust_delta(arc_target);
  6744. #endif
  6745. planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], arc_target[E_AXIS], feed_rate, active_extruder);
  6746. #else
  6747. planner.buffer_line(arc_target[X_AXIS], arc_target[Y_AXIS], arc_target[Z_AXIS], arc_target[E_AXIS], feed_rate, active_extruder);
  6748. #endif
  6749. }
  6750. // Ensure last segment arrives at target location.
  6751. #if ENABLED(DELTA) || ENABLED(SCARA)
  6752. calculate_delta(target);
  6753. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  6754. adjust_delta(target);
  6755. #endif
  6756. planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], target[E_AXIS], feed_rate, active_extruder);
  6757. #else
  6758. planner.buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feed_rate, active_extruder);
  6759. #endif
  6760. // As far as the parser is concerned, the position is now == target. In reality the
  6761. // motion control system might still be processing the action and the real tool position
  6762. // in any intermediate location.
  6763. set_current_to_destination();
  6764. }
  6765. #endif
  6766. #if ENABLED(BEZIER_CURVE_SUPPORT)
  6767. void plan_cubic_move(const float offset[4]) {
  6768. cubic_b_spline(current_position, destination, offset, feedrate * feedrate_multiplier / 60 / 100.0, active_extruder);
  6769. // As far as the parser is concerned, the position is now == target. In reality the
  6770. // motion control system might still be processing the action and the real tool position
  6771. // in any intermediate location.
  6772. set_current_to_destination();
  6773. }
  6774. #endif // BEZIER_CURVE_SUPPORT
  6775. #if HAS_CONTROLLERFAN
  6776. void controllerFan() {
  6777. static millis_t lastMotorOn = 0; // Last time a motor was turned on
  6778. static millis_t nextMotorCheck = 0; // Last time the state was checked
  6779. millis_t ms = millis();
  6780. if (ELAPSED(ms, nextMotorCheck)) {
  6781. nextMotorCheck = ms + 2500UL; // Not a time critical function, so only check every 2.5s
  6782. if (X_ENABLE_READ == X_ENABLE_ON || Y_ENABLE_READ == Y_ENABLE_ON || Z_ENABLE_READ == Z_ENABLE_ON || thermalManager.soft_pwm_bed > 0
  6783. || E0_ENABLE_READ == E_ENABLE_ON // If any of the drivers are enabled...
  6784. #if EXTRUDERS > 1
  6785. || E1_ENABLE_READ == E_ENABLE_ON
  6786. #if HAS_X2_ENABLE
  6787. || X2_ENABLE_READ == X_ENABLE_ON
  6788. #endif
  6789. #if EXTRUDERS > 2
  6790. || E2_ENABLE_READ == E_ENABLE_ON
  6791. #if EXTRUDERS > 3
  6792. || E3_ENABLE_READ == E_ENABLE_ON
  6793. #endif
  6794. #endif
  6795. #endif
  6796. ) {
  6797. lastMotorOn = ms; //... set time to NOW so the fan will turn on
  6798. }
  6799. // Fan off if no steppers have been enabled for CONTROLLERFAN_SECS seconds
  6800. uint8_t speed = (!lastMotorOn || ELAPSED(ms, lastMotorOn + (CONTROLLERFAN_SECS) * 1000UL)) ? 0 : CONTROLLERFAN_SPEED;
  6801. // allows digital or PWM fan output to be used (see M42 handling)
  6802. digitalWrite(CONTROLLERFAN_PIN, speed);
  6803. analogWrite(CONTROLLERFAN_PIN, speed);
  6804. }
  6805. }
  6806. #endif // HAS_CONTROLLERFAN
  6807. #if ENABLED(SCARA)
  6808. void calculate_SCARA_forward_Transform(float f_scara[3]) {
  6809. // Perform forward kinematics, and place results in delta[3]
  6810. // The maths and first version has been done by QHARLEY . Integrated into masterbranch 06/2014 and slightly restructured by Joachim Cerny in June 2014
  6811. float x_sin, x_cos, y_sin, y_cos;
  6812. //SERIAL_ECHOPGM("f_delta x="); SERIAL_ECHO(f_scara[X_AXIS]);
  6813. //SERIAL_ECHOPGM(" y="); SERIAL_ECHO(f_scara[Y_AXIS]);
  6814. x_sin = sin(f_scara[X_AXIS] / SCARA_RAD2DEG) * Linkage_1;
  6815. x_cos = cos(f_scara[X_AXIS] / SCARA_RAD2DEG) * Linkage_1;
  6816. y_sin = sin(f_scara[Y_AXIS] / SCARA_RAD2DEG) * Linkage_2;
  6817. y_cos = cos(f_scara[Y_AXIS] / SCARA_RAD2DEG) * Linkage_2;
  6818. //SERIAL_ECHOPGM(" x_sin="); SERIAL_ECHO(x_sin);
  6819. //SERIAL_ECHOPGM(" x_cos="); SERIAL_ECHO(x_cos);
  6820. //SERIAL_ECHOPGM(" y_sin="); SERIAL_ECHO(y_sin);
  6821. //SERIAL_ECHOPGM(" y_cos="); SERIAL_ECHOLN(y_cos);
  6822. delta[X_AXIS] = x_cos + y_cos + SCARA_offset_x; //theta
  6823. delta[Y_AXIS] = x_sin + y_sin + SCARA_offset_y; //theta+phi
  6824. //SERIAL_ECHOPGM(" delta[X_AXIS]="); SERIAL_ECHO(delta[X_AXIS]);
  6825. //SERIAL_ECHOPGM(" delta[Y_AXIS]="); SERIAL_ECHOLN(delta[Y_AXIS]);
  6826. }
  6827. void calculate_delta(float cartesian[3]) {
  6828. //reverse kinematics.
  6829. // Perform reversed kinematics, and place results in delta[3]
  6830. // The maths and first version has been done by QHARLEY . Integrated into masterbranch 06/2014 and slightly restructured by Joachim Cerny in June 2014
  6831. float SCARA_pos[2];
  6832. static float SCARA_C2, SCARA_S2, SCARA_K1, SCARA_K2, SCARA_theta, SCARA_psi;
  6833. SCARA_pos[X_AXIS] = cartesian[X_AXIS] * axis_scaling[X_AXIS] - SCARA_offset_x; //Translate SCARA to standard X Y
  6834. SCARA_pos[Y_AXIS] = cartesian[Y_AXIS] * axis_scaling[Y_AXIS] - SCARA_offset_y; // With scaling factor.
  6835. #if (Linkage_1 == Linkage_2)
  6836. SCARA_C2 = ((sq(SCARA_pos[X_AXIS]) + sq(SCARA_pos[Y_AXIS])) / (2 * (float)L1_2)) - 1;
  6837. #else
  6838. SCARA_C2 = (sq(SCARA_pos[X_AXIS]) + sq(SCARA_pos[Y_AXIS]) - (float)L1_2 - (float)L2_2) / 45000;
  6839. #endif
  6840. SCARA_S2 = sqrt(1 - sq(SCARA_C2));
  6841. SCARA_K1 = Linkage_1 + Linkage_2 * SCARA_C2;
  6842. SCARA_K2 = Linkage_2 * SCARA_S2;
  6843. SCARA_theta = (atan2(SCARA_pos[X_AXIS], SCARA_pos[Y_AXIS]) - atan2(SCARA_K1, SCARA_K2)) * -1;
  6844. SCARA_psi = atan2(SCARA_S2, SCARA_C2);
  6845. delta[X_AXIS] = SCARA_theta * SCARA_RAD2DEG; // Multiply by 180/Pi - theta is support arm angle
  6846. delta[Y_AXIS] = (SCARA_theta + SCARA_psi) * SCARA_RAD2DEG; // - equal to sub arm angle (inverted motor)
  6847. delta[Z_AXIS] = cartesian[Z_AXIS];
  6848. /**
  6849. SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);
  6850. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]);
  6851. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]);
  6852. SERIAL_ECHOPGM("scara x="); SERIAL_ECHO(SCARA_pos[X_AXIS]);
  6853. SERIAL_ECHOPGM(" y="); SERIAL_ECHOLN(SCARA_pos[Y_AXIS]);
  6854. SERIAL_ECHOPGM("delta x="); SERIAL_ECHO(delta[X_AXIS]);
  6855. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(delta[Y_AXIS]);
  6856. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(delta[Z_AXIS]);
  6857. SERIAL_ECHOPGM("C2="); SERIAL_ECHO(SCARA_C2);
  6858. SERIAL_ECHOPGM(" S2="); SERIAL_ECHO(SCARA_S2);
  6859. SERIAL_ECHOPGM(" Theta="); SERIAL_ECHO(SCARA_theta);
  6860. SERIAL_ECHOPGM(" Psi="); SERIAL_ECHOLN(SCARA_psi);
  6861. SERIAL_EOL;
  6862. */
  6863. }
  6864. #endif // SCARA
  6865. #if ENABLED(TEMP_STAT_LEDS)
  6866. static bool red_led = false;
  6867. static millis_t next_status_led_update_ms = 0;
  6868. void handle_status_leds(void) {
  6869. float max_temp = 0.0;
  6870. if (ELAPSED(millis(), next_status_led_update_ms)) {
  6871. next_status_led_update_ms += 500; // Update every 0.5s
  6872. HOTEND_LOOP() {
  6873. max_temp = max(max(max_temp, thermalManager.degHotend(e)), thermalManager.degTargetHotend(e));
  6874. }
  6875. #if HAS_TEMP_BED
  6876. max_temp = max(max(max_temp, thermalManager.degTargetBed()), thermalManager.degBed());
  6877. #endif
  6878. bool new_led = (max_temp > 55.0) ? true : (max_temp < 54.0) ? false : red_led;
  6879. if (new_led != red_led) {
  6880. red_led = new_led;
  6881. digitalWrite(STAT_LED_RED, new_led ? HIGH : LOW);
  6882. digitalWrite(STAT_LED_BLUE, new_led ? LOW : HIGH);
  6883. }
  6884. }
  6885. }
  6886. #endif
  6887. void enable_all_steppers() {
  6888. enable_x();
  6889. enable_y();
  6890. enable_z();
  6891. enable_e0();
  6892. enable_e1();
  6893. enable_e2();
  6894. enable_e3();
  6895. }
  6896. void disable_all_steppers() {
  6897. disable_x();
  6898. disable_y();
  6899. disable_z();
  6900. disable_e0();
  6901. disable_e1();
  6902. disable_e2();
  6903. disable_e3();
  6904. }
  6905. /**
  6906. * Standard idle routine keeps the machine alive
  6907. */
  6908. void idle(
  6909. #if ENABLED(FILAMENT_CHANGE_FEATURE)
  6910. bool no_stepper_sleep/*=false*/
  6911. #endif
  6912. ) {
  6913. lcd_update();
  6914. host_keepalive();
  6915. manage_inactivity(
  6916. #if ENABLED(FILAMENT_CHANGE_FEATURE)
  6917. no_stepper_sleep
  6918. #endif
  6919. );
  6920. thermalManager.manage_heater();
  6921. #if ENABLED(PRINTCOUNTER)
  6922. print_job_timer.tick();
  6923. #endif
  6924. #if HAS_BUZZER
  6925. buzzer.tick();
  6926. #endif
  6927. }
  6928. /**
  6929. * Manage several activities:
  6930. * - Check for Filament Runout
  6931. * - Keep the command buffer full
  6932. * - Check for maximum inactive time between commands
  6933. * - Check for maximum inactive time between stepper commands
  6934. * - Check if pin CHDK needs to go LOW
  6935. * - Check for KILL button held down
  6936. * - Check for HOME button held down
  6937. * - Check if cooling fan needs to be switched on
  6938. * - Check if an idle but hot extruder needs filament extruded (EXTRUDER_RUNOUT_PREVENT)
  6939. */
  6940. void manage_inactivity(bool ignore_stepper_queue/*=false*/) {
  6941. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  6942. if ((IS_SD_PRINTING || print_job_timer.isRunning()) && !(READ(FIL_RUNOUT_PIN) ^ FIL_RUNOUT_INVERTING))
  6943. handle_filament_runout();
  6944. #endif
  6945. if (commands_in_queue < BUFSIZE) get_available_commands();
  6946. millis_t ms = millis();
  6947. if (max_inactive_time && ELAPSED(ms, previous_cmd_ms + max_inactive_time)) kill(PSTR(MSG_KILLED));
  6948. if (stepper_inactive_time && ELAPSED(ms, previous_cmd_ms + stepper_inactive_time)
  6949. && !ignore_stepper_queue && !planner.blocks_queued()) {
  6950. #if ENABLED(DISABLE_INACTIVE_X)
  6951. disable_x();
  6952. #endif
  6953. #if ENABLED(DISABLE_INACTIVE_Y)
  6954. disable_y();
  6955. #endif
  6956. #if ENABLED(DISABLE_INACTIVE_Z)
  6957. disable_z();
  6958. #endif
  6959. #if ENABLED(DISABLE_INACTIVE_E)
  6960. disable_e0();
  6961. disable_e1();
  6962. disable_e2();
  6963. disable_e3();
  6964. #endif
  6965. }
  6966. #ifdef CHDK // Check if pin should be set to LOW after M240 set it to HIGH
  6967. if (chdkActive && PENDING(ms, chdkHigh + CHDK_DELAY)) {
  6968. chdkActive = false;
  6969. WRITE(CHDK, LOW);
  6970. }
  6971. #endif
  6972. #if HAS_KILL
  6973. // Check if the kill button was pressed and wait just in case it was an accidental
  6974. // key kill key press
  6975. // -------------------------------------------------------------------------------
  6976. static int killCount = 0; // make the inactivity button a bit less responsive
  6977. const int KILL_DELAY = 750;
  6978. if (!READ(KILL_PIN))
  6979. killCount++;
  6980. else if (killCount > 0)
  6981. killCount--;
  6982. // Exceeded threshold and we can confirm that it was not accidental
  6983. // KILL the machine
  6984. // ----------------------------------------------------------------
  6985. if (killCount >= KILL_DELAY) kill(PSTR(MSG_KILLED));
  6986. #endif
  6987. #if HAS_HOME
  6988. // Check to see if we have to home, use poor man's debouncer
  6989. // ---------------------------------------------------------
  6990. static int homeDebounceCount = 0; // poor man's debouncing count
  6991. const int HOME_DEBOUNCE_DELAY = 2500;
  6992. if (!READ(HOME_PIN)) {
  6993. if (!homeDebounceCount) {
  6994. enqueue_and_echo_commands_P(PSTR("G28"));
  6995. LCD_MESSAGEPGM(MSG_AUTO_HOME);
  6996. }
  6997. if (homeDebounceCount < HOME_DEBOUNCE_DELAY)
  6998. homeDebounceCount++;
  6999. else
  7000. homeDebounceCount = 0;
  7001. }
  7002. #endif
  7003. #if HAS_CONTROLLERFAN
  7004. controllerFan(); // Check if fan should be turned on to cool stepper drivers down
  7005. #endif
  7006. #if ENABLED(EXTRUDER_RUNOUT_PREVENT)
  7007. if (ELAPSED(ms, previous_cmd_ms + (EXTRUDER_RUNOUT_SECONDS) * 1000UL))
  7008. if (thermalManager.degHotend(active_extruder) > EXTRUDER_RUNOUT_MINTEMP) {
  7009. bool oldstatus;
  7010. switch (active_extruder) {
  7011. case 0:
  7012. oldstatus = E0_ENABLE_READ;
  7013. enable_e0();
  7014. break;
  7015. #if EXTRUDERS > 1
  7016. case 1:
  7017. oldstatus = E1_ENABLE_READ;
  7018. enable_e1();
  7019. break;
  7020. #if EXTRUDERS > 2
  7021. case 2:
  7022. oldstatus = E2_ENABLE_READ;
  7023. enable_e2();
  7024. break;
  7025. #if EXTRUDERS > 3
  7026. case 3:
  7027. oldstatus = E3_ENABLE_READ;
  7028. enable_e3();
  7029. break;
  7030. #endif
  7031. #endif
  7032. #endif
  7033. }
  7034. float oldepos = current_position[E_AXIS], oldedes = destination[E_AXIS];
  7035. planner.buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
  7036. destination[E_AXIS] + (EXTRUDER_RUNOUT_EXTRUDE) * (EXTRUDER_RUNOUT_ESTEPS) / planner.axis_steps_per_mm[E_AXIS],
  7037. (EXTRUDER_RUNOUT_SPEED) / 60. * (EXTRUDER_RUNOUT_ESTEPS) / planner.axis_steps_per_mm[E_AXIS], active_extruder);
  7038. current_position[E_AXIS] = oldepos;
  7039. destination[E_AXIS] = oldedes;
  7040. planner.set_e_position_mm(oldepos);
  7041. previous_cmd_ms = ms; // refresh_cmd_timeout()
  7042. stepper.synchronize();
  7043. switch (active_extruder) {
  7044. case 0:
  7045. E0_ENABLE_WRITE(oldstatus);
  7046. break;
  7047. #if EXTRUDERS > 1
  7048. case 1:
  7049. E1_ENABLE_WRITE(oldstatus);
  7050. break;
  7051. #if EXTRUDERS > 2
  7052. case 2:
  7053. E2_ENABLE_WRITE(oldstatus);
  7054. break;
  7055. #if EXTRUDERS > 3
  7056. case 3:
  7057. E3_ENABLE_WRITE(oldstatus);
  7058. break;
  7059. #endif
  7060. #endif
  7061. #endif
  7062. }
  7063. }
  7064. #endif
  7065. #if ENABLED(DUAL_X_CARRIAGE)
  7066. // handle delayed move timeout
  7067. if (delayed_move_time && ELAPSED(ms, delayed_move_time + 1000UL) && IsRunning()) {
  7068. // travel moves have been received so enact them
  7069. delayed_move_time = 0xFFFFFFFFUL; // force moves to be done
  7070. set_destination_to_current();
  7071. prepare_move_to_destination();
  7072. }
  7073. #endif
  7074. #if ENABLED(TEMP_STAT_LEDS)
  7075. handle_status_leds();
  7076. #endif
  7077. planner.check_axes_activity();
  7078. }
  7079. void kill(const char* lcd_msg) {
  7080. SERIAL_ERROR_START;
  7081. SERIAL_ERRORLNPGM(MSG_ERR_KILLED);
  7082. #if ENABLED(ULTRA_LCD)
  7083. kill_screen(lcd_msg);
  7084. #else
  7085. UNUSED(lcd_msg);
  7086. #endif
  7087. for (int i = 5; i--;) delay(100); // Wait a short time
  7088. cli(); // Stop interrupts
  7089. thermalManager.disable_all_heaters();
  7090. disable_all_steppers();
  7091. #if HAS_POWER_SWITCH
  7092. pinMode(PS_ON_PIN, INPUT);
  7093. #endif
  7094. suicide();
  7095. while (1) {
  7096. #if ENABLED(USE_WATCHDOG)
  7097. watchdog_reset();
  7098. #endif
  7099. } // Wait for reset
  7100. }
  7101. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  7102. void handle_filament_runout() {
  7103. if (!filament_ran_out) {
  7104. filament_ran_out = true;
  7105. enqueue_and_echo_commands_P(PSTR(FILAMENT_RUNOUT_SCRIPT));
  7106. stepper.synchronize();
  7107. }
  7108. }
  7109. #endif // FILAMENT_RUNOUT_SENSOR
  7110. #if ENABLED(FAST_PWM_FAN)
  7111. void setPwmFrequency(uint8_t pin, int val) {
  7112. val &= 0x07;
  7113. switch (digitalPinToTimer(pin)) {
  7114. #if defined(TCCR0A)
  7115. case TIMER0A:
  7116. case TIMER0B:
  7117. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  7118. // TCCR0B |= val;
  7119. break;
  7120. #endif
  7121. #if defined(TCCR1A)
  7122. case TIMER1A:
  7123. case TIMER1B:
  7124. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  7125. // TCCR1B |= val;
  7126. break;
  7127. #endif
  7128. #if defined(TCCR2)
  7129. case TIMER2:
  7130. case TIMER2:
  7131. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  7132. TCCR2 |= val;
  7133. break;
  7134. #endif
  7135. #if defined(TCCR2A)
  7136. case TIMER2A:
  7137. case TIMER2B:
  7138. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  7139. TCCR2B |= val;
  7140. break;
  7141. #endif
  7142. #if defined(TCCR3A)
  7143. case TIMER3A:
  7144. case TIMER3B:
  7145. case TIMER3C:
  7146. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  7147. TCCR3B |= val;
  7148. break;
  7149. #endif
  7150. #if defined(TCCR4A)
  7151. case TIMER4A:
  7152. case TIMER4B:
  7153. case TIMER4C:
  7154. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  7155. TCCR4B |= val;
  7156. break;
  7157. #endif
  7158. #if defined(TCCR5A)
  7159. case TIMER5A:
  7160. case TIMER5B:
  7161. case TIMER5C:
  7162. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  7163. TCCR5B |= val;
  7164. break;
  7165. #endif
  7166. }
  7167. }
  7168. #endif // FAST_PWM_FAN
  7169. void stop() {
  7170. thermalManager.disable_all_heaters();
  7171. if (IsRunning()) {
  7172. Running = false;
  7173. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  7174. SERIAL_ERROR_START;
  7175. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  7176. LCD_MESSAGEPGM(MSG_STOPPED);
  7177. }
  7178. }
  7179. float calculate_volumetric_multiplier(float diameter) {
  7180. if (!volumetric_enabled || diameter == 0) return 1.0;
  7181. float d2 = diameter * 0.5;
  7182. return 1.0 / (M_PI * d2 * d2);
  7183. }
  7184. void calculate_volumetric_multipliers() {
  7185. for (int i = 0; i < EXTRUDERS; i++)
  7186. volumetric_multiplier[i] = calculate_volumetric_multiplier(filament_size[i]);
  7187. }