My Marlin configs for Fabrikator Mini and CTC i3 Pro B
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

Marlin_main.cpp 125KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763
  1. /* -*- c++ -*- */
  2. /*
  3. Reprap firmware based on Sprinter and grbl.
  4. Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  5. This program is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. This program is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with this program. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. /*
  17. This firmware is a mashup between Sprinter and grbl.
  18. (https://github.com/kliment/Sprinter)
  19. (https://github.com/simen/grbl/tree)
  20. It has preliminary support for Matthew Roberts advance algorithm
  21. http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  22. */
  23. #include "Marlin.h"
  24. #ifdef ENABLE_AUTO_BED_LEVELING
  25. #include "vector_3.h"
  26. #ifdef AUTO_BED_LEVELING_GRID
  27. #include "qr_solve.h"
  28. #endif
  29. #endif // ENABLE_AUTO_BED_LEVELING
  30. #include "ultralcd.h"
  31. #include "planner.h"
  32. #include "stepper.h"
  33. #include "temperature.h"
  34. #include "motion_control.h"
  35. #include "cardreader.h"
  36. #include "watchdog.h"
  37. #include "ConfigurationStore.h"
  38. #include "language.h"
  39. #include "pins_arduino.h"
  40. #include "math.h"
  41. #ifdef BLINKM
  42. #include "BlinkM.h"
  43. #include "Wire.h"
  44. #endif
  45. #if NUM_SERVOS > 0
  46. #include "Servo.h"
  47. #endif
  48. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  49. #include <SPI.h>
  50. #endif
  51. #define VERSION_STRING "1.0.0"
  52. // look here for descriptions of G-codes: http://linuxcnc.org/handbook/gcode/g-code.html
  53. // http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  54. //Implemented Codes
  55. //-------------------
  56. // G0 -> G1
  57. // G1 - Coordinated Movement X Y Z E
  58. // G2 - CW ARC
  59. // G3 - CCW ARC
  60. // G4 - Dwell S<seconds> or P<milliseconds>
  61. // G10 - retract filament according to settings of M207
  62. // G11 - retract recover filament according to settings of M208
  63. // G28 - Home all Axis
  64. // G29 - Detailed Z-Probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  65. // G30 - Single Z Probe, probes bed at current XY location.
  66. // G31 - Dock sled (Z_PROBE_SLED only)
  67. // G32 - Undock sled (Z_PROBE_SLED only)
  68. // G90 - Use Absolute Coordinates
  69. // G91 - Use Relative Coordinates
  70. // G92 - Set current position to coordinates given
  71. // M Codes
  72. // M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
  73. // M1 - Same as M0
  74. // M17 - Enable/Power all stepper motors
  75. // M18 - Disable all stepper motors; same as M84
  76. // M20 - List SD card
  77. // M21 - Init SD card
  78. // M22 - Release SD card
  79. // M23 - Select SD file (M23 filename.g)
  80. // M24 - Start/resume SD print
  81. // M25 - Pause SD print
  82. // M26 - Set SD position in bytes (M26 S12345)
  83. // M27 - Report SD print status
  84. // M28 - Start SD write (M28 filename.g)
  85. // M29 - Stop SD write
  86. // M30 - Delete file from SD (M30 filename.g)
  87. // M31 - Output time since last M109 or SD card start to serial
  88. // M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  89. // syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  90. // Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
  91. // The '#' is necessary when calling from within sd files, as it stops buffer prereading
  92. // M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  93. // M80 - Turn on Power Supply
  94. // M81 - Turn off Power Supply
  95. // M82 - Set E codes absolute (default)
  96. // M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  97. // M84 - Disable steppers until next move,
  98. // or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  99. // M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  100. // M92 - Set axis_steps_per_unit - same syntax as G92
  101. // M104 - Set extruder target temp
  102. // M105 - Read current temp
  103. // M106 - Fan on
  104. // M107 - Fan off
  105. // M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  106. // Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  107. // IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  108. // M112 - Emergency stop
  109. // M114 - Output current position to serial port
  110. // M115 - Capabilities string
  111. // M117 - display message
  112. // M119 - Output Endstop status to serial port
  113. // M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  114. // M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  115. // M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  116. // M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  117. // M140 - Set bed target temp
  118. // M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  119. // M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  120. // Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  121. // M200 D<millimeters>- set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  122. // M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  123. // M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  124. // M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  125. // M204 - Set default acceleration: S normal moves T filament only moves (M204 S3000 T7000) in mm/sec^2 also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  126. // M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
  127. // M206 - set additional homing offset
  128. // M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
  129. // M208 - set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
  130. // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  131. // M218 - set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  132. // M220 S<factor in percent>- set speed factor override percentage
  133. // M221 S<factor in percent>- set extrude factor override percentage
  134. // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  135. // M240 - Trigger a camera to take a photograph
  136. // M250 - Set LCD contrast C<contrast value> (value 0..63)
  137. // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  138. // M300 - Play beep sound S<frequency Hz> P<duration ms>
  139. // M301 - Set PID parameters P I and D
  140. // M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  141. // M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  142. // M304 - Set bed PID parameters P I and D
  143. // M400 - Finish all moves
  144. // M401 - Lower z-probe if present
  145. // M402 - Raise z-probe if present
  146. // M500 - stores parameters in EEPROM
  147. // M501 - reads parameters from EEPROM (if you need reset them after you changed them temporarily).
  148. // M502 - reverts to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  149. // M503 - print the current settings (from memory not from EEPROM)
  150. // M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  151. // M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  152. // M665 - set delta configurations
  153. // M666 - set delta endstop adjustment
  154. // M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  155. // M907 - Set digital trimpot motor current using axis codes.
  156. // M908 - Control digital trimpot directly.
  157. // M350 - Set microstepping mode.
  158. // M351 - Toggle MS1 MS2 pins directly.
  159. // M928 - Start SD logging (M928 filename.g) - ended by M29
  160. // M999 - Restart after being stopped by error
  161. //Stepper Movement Variables
  162. //===========================================================================
  163. //=============================imported variables============================
  164. //===========================================================================
  165. //===========================================================================
  166. //=============================public variables=============================
  167. //===========================================================================
  168. #ifdef SDSUPPORT
  169. CardReader card;
  170. #endif
  171. float homing_feedrate[] = HOMING_FEEDRATE;
  172. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  173. int feedmultiply=100; //100->1 200->2
  174. int saved_feedmultiply;
  175. int extrudemultiply=100; //100->1 200->2
  176. int extruder_multiply[EXTRUDERS] = {100
  177. #if EXTRUDERS > 1
  178. , 100
  179. #if EXTRUDERS > 2
  180. , 100
  181. #endif
  182. #endif
  183. };
  184. float volumetric_multiplier[EXTRUDERS] = {1.0
  185. #if EXTRUDERS > 1
  186. , 1.0
  187. #if EXTRUDERS > 2
  188. , 1.0
  189. #endif
  190. #endif
  191. };
  192. float current_position[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0 };
  193. float add_homeing[3]={0,0,0};
  194. #ifdef DELTA
  195. float endstop_adj[3]={0,0,0};
  196. #endif
  197. float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  198. float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  199. bool axis_known_position[3] = {false, false, false};
  200. float zprobe_zoffset;
  201. // Extruder offset
  202. #if EXTRUDERS > 1
  203. #ifndef DUAL_X_CARRIAGE
  204. #define NUM_EXTRUDER_OFFSETS 2 // only in XY plane
  205. #else
  206. #define NUM_EXTRUDER_OFFSETS 3 // supports offsets in XYZ plane
  207. #endif
  208. float extruder_offset[NUM_EXTRUDER_OFFSETS][EXTRUDERS] = {
  209. #if defined(EXTRUDER_OFFSET_X) && defined(EXTRUDER_OFFSET_Y)
  210. EXTRUDER_OFFSET_X, EXTRUDER_OFFSET_Y
  211. #endif
  212. };
  213. #endif
  214. uint8_t active_extruder = 0;
  215. int fanSpeed=0;
  216. #ifdef SERVO_ENDSTOPS
  217. int servo_endstops[] = SERVO_ENDSTOPS;
  218. int servo_endstop_angles[] = SERVO_ENDSTOP_ANGLES;
  219. #endif
  220. #ifdef BARICUDA
  221. int ValvePressure=0;
  222. int EtoPPressure=0;
  223. #endif
  224. #ifdef FWRETRACT
  225. bool autoretract_enabled=false;
  226. bool retracted[EXTRUDERS]={false
  227. #if EXTRUDERS > 1
  228. , false
  229. #if EXTRUDERS > 2
  230. , false
  231. #endif
  232. #endif
  233. };
  234. bool retracted_swap[EXTRUDERS]={false
  235. #if EXTRUDERS > 1
  236. , false
  237. #if EXTRUDERS > 2
  238. , false
  239. #endif
  240. #endif
  241. };
  242. float retract_length = RETRACT_LENGTH;
  243. float retract_length_swap = RETRACT_LENGTH_SWAP;
  244. float retract_feedrate = RETRACT_FEEDRATE;
  245. float retract_zlift = RETRACT_ZLIFT;
  246. float retract_recover_length = RETRACT_RECOVER_LENGTH;
  247. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  248. float retract_recover_feedrate = RETRACT_RECOVER_FEEDRATE;
  249. #endif
  250. #ifdef ULTIPANEL
  251. #ifdef PS_DEFAULT_OFF
  252. bool powersupply = false;
  253. #else
  254. bool powersupply = true;
  255. #endif
  256. #endif
  257. #ifdef DELTA
  258. float delta[3] = {0.0, 0.0, 0.0};
  259. #define SIN_60 0.8660254037844386
  260. #define COS_60 0.5
  261. // these are the default values, can be overriden with M665
  262. float delta_radius= DELTA_RADIUS;
  263. float delta_tower1_x= -SIN_60*delta_radius; // front left tower
  264. float delta_tower1_y= -COS_60*delta_radius;
  265. float delta_tower2_x= SIN_60*delta_radius; // front right tower
  266. float delta_tower2_y= -COS_60*delta_radius;
  267. float delta_tower3_x= 0.0; // back middle tower
  268. float delta_tower3_y= delta_radius;
  269. float delta_diagonal_rod= DELTA_DIAGONAL_ROD;
  270. float delta_diagonal_rod_2= sq(delta_diagonal_rod);
  271. float delta_segments_per_second= DELTA_SEGMENTS_PER_SECOND;
  272. #endif
  273. bool cancel_heatup = false ;
  274. //===========================================================================
  275. //=============================Private Variables=============================
  276. //===========================================================================
  277. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  278. static float destination[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0};
  279. static float offset[3] = {0.0, 0.0, 0.0};
  280. static bool home_all_axis = true;
  281. static float feedrate = 1500.0, next_feedrate, saved_feedrate;
  282. static long gcode_N, gcode_LastN, Stopped_gcode_LastN = 0;
  283. static bool relative_mode = false; //Determines Absolute or Relative Coordinates
  284. static char cmdbuffer[BUFSIZE][MAX_CMD_SIZE];
  285. static bool fromsd[BUFSIZE];
  286. static int bufindr = 0;
  287. static int bufindw = 0;
  288. static int buflen = 0;
  289. //static int i = 0;
  290. static char serial_char;
  291. static int serial_count = 0;
  292. static boolean comment_mode = false;
  293. static char *strchr_pointer; // just a pointer to find chars in the command string like X, Y, Z, E, etc
  294. const int sensitive_pins[] = SENSITIVE_PINS; // Sensitive pin list for M42
  295. //static float tt = 0;
  296. //static float bt = 0;
  297. //Inactivity shutdown variables
  298. static unsigned long previous_millis_cmd = 0;
  299. static unsigned long max_inactive_time = 0;
  300. static unsigned long stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME*1000l;
  301. unsigned long starttime=0;
  302. unsigned long stoptime=0;
  303. static uint8_t tmp_extruder;
  304. bool Stopped=false;
  305. #if NUM_SERVOS > 0
  306. Servo servos[NUM_SERVOS];
  307. #endif
  308. bool CooldownNoWait = true;
  309. bool target_direction;
  310. //Insert variables if CHDK is defined
  311. #ifdef CHDK
  312. unsigned long chdkHigh = 0;
  313. boolean chdkActive = false;
  314. #endif
  315. //===========================================================================
  316. //=============================Routines======================================
  317. //===========================================================================
  318. void get_arc_coordinates();
  319. bool setTargetedHotend(int code);
  320. void serial_echopair_P(const char *s_P, float v)
  321. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  322. void serial_echopair_P(const char *s_P, double v)
  323. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  324. void serial_echopair_P(const char *s_P, unsigned long v)
  325. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  326. extern "C"{
  327. extern unsigned int __bss_end;
  328. extern unsigned int __heap_start;
  329. extern void *__brkval;
  330. int freeMemory() {
  331. int free_memory;
  332. if((int)__brkval == 0)
  333. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  334. else
  335. free_memory = ((int)&free_memory) - ((int)__brkval);
  336. return free_memory;
  337. }
  338. }
  339. //adds an command to the main command buffer
  340. //thats really done in a non-safe way.
  341. //needs overworking someday
  342. void enquecommand(const char *cmd)
  343. {
  344. if(buflen < BUFSIZE)
  345. {
  346. //this is dangerous if a mixing of serial and this happens
  347. strcpy(&(cmdbuffer[bufindw][0]),cmd);
  348. SERIAL_ECHO_START;
  349. SERIAL_ECHOPGM("enqueing \"");
  350. SERIAL_ECHO(cmdbuffer[bufindw]);
  351. SERIAL_ECHOLNPGM("\"");
  352. bufindw= (bufindw + 1)%BUFSIZE;
  353. buflen += 1;
  354. }
  355. }
  356. void enquecommand_P(const char *cmd)
  357. {
  358. if(buflen < BUFSIZE)
  359. {
  360. //this is dangerous if a mixing of serial and this happens
  361. strcpy_P(&(cmdbuffer[bufindw][0]),cmd);
  362. SERIAL_ECHO_START;
  363. SERIAL_ECHOPGM("enqueing \"");
  364. SERIAL_ECHO(cmdbuffer[bufindw]);
  365. SERIAL_ECHOLNPGM("\"");
  366. bufindw= (bufindw + 1)%BUFSIZE;
  367. buflen += 1;
  368. }
  369. }
  370. void setup_killpin()
  371. {
  372. #if defined(KILL_PIN) && KILL_PIN > -1
  373. pinMode(KILL_PIN,INPUT);
  374. WRITE(KILL_PIN,HIGH);
  375. #endif
  376. }
  377. void setup_photpin()
  378. {
  379. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  380. SET_OUTPUT(PHOTOGRAPH_PIN);
  381. WRITE(PHOTOGRAPH_PIN, LOW);
  382. #endif
  383. }
  384. void setup_powerhold()
  385. {
  386. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  387. SET_OUTPUT(SUICIDE_PIN);
  388. WRITE(SUICIDE_PIN, HIGH);
  389. #endif
  390. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  391. SET_OUTPUT(PS_ON_PIN);
  392. #if defined(PS_DEFAULT_OFF)
  393. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  394. #else
  395. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  396. #endif
  397. #endif
  398. }
  399. void suicide()
  400. {
  401. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  402. SET_OUTPUT(SUICIDE_PIN);
  403. WRITE(SUICIDE_PIN, LOW);
  404. #endif
  405. }
  406. void servo_init()
  407. {
  408. #if (NUM_SERVOS >= 1) && defined(SERVO0_PIN) && (SERVO0_PIN > -1)
  409. servos[0].attach(SERVO0_PIN);
  410. #endif
  411. #if (NUM_SERVOS >= 2) && defined(SERVO1_PIN) && (SERVO1_PIN > -1)
  412. servos[1].attach(SERVO1_PIN);
  413. #endif
  414. #if (NUM_SERVOS >= 3) && defined(SERVO2_PIN) && (SERVO2_PIN > -1)
  415. servos[2].attach(SERVO2_PIN);
  416. #endif
  417. #if (NUM_SERVOS >= 4) && defined(SERVO3_PIN) && (SERVO3_PIN > -1)
  418. servos[3].attach(SERVO3_PIN);
  419. #endif
  420. #if (NUM_SERVOS >= 5)
  421. #error "TODO: enter initalisation code for more servos"
  422. #endif
  423. // Set position of Servo Endstops that are defined
  424. #ifdef SERVO_ENDSTOPS
  425. for(int8_t i = 0; i < 3; i++)
  426. {
  427. if(servo_endstops[i] > -1) {
  428. servos[servo_endstops[i]].write(servo_endstop_angles[i * 2 + 1]);
  429. }
  430. }
  431. #endif
  432. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  433. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  434. servos[servo_endstops[Z_AXIS]].detach();
  435. #endif
  436. }
  437. void setup()
  438. {
  439. setup_killpin();
  440. setup_powerhold();
  441. MYSERIAL.begin(BAUDRATE);
  442. SERIAL_PROTOCOLLNPGM("start");
  443. SERIAL_ECHO_START;
  444. // Check startup - does nothing if bootloader sets MCUSR to 0
  445. byte mcu = MCUSR;
  446. if(mcu & 1) SERIAL_ECHOLNPGM(MSG_POWERUP);
  447. if(mcu & 2) SERIAL_ECHOLNPGM(MSG_EXTERNAL_RESET);
  448. if(mcu & 4) SERIAL_ECHOLNPGM(MSG_BROWNOUT_RESET);
  449. if(mcu & 8) SERIAL_ECHOLNPGM(MSG_WATCHDOG_RESET);
  450. if(mcu & 32) SERIAL_ECHOLNPGM(MSG_SOFTWARE_RESET);
  451. MCUSR=0;
  452. SERIAL_ECHOPGM(MSG_MARLIN);
  453. SERIAL_ECHOLNPGM(VERSION_STRING);
  454. #ifdef STRING_VERSION_CONFIG_H
  455. #ifdef STRING_CONFIG_H_AUTHOR
  456. SERIAL_ECHO_START;
  457. SERIAL_ECHOPGM(MSG_CONFIGURATION_VER);
  458. SERIAL_ECHOPGM(STRING_VERSION_CONFIG_H);
  459. SERIAL_ECHOPGM(MSG_AUTHOR);
  460. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  461. SERIAL_ECHOPGM("Compiled: ");
  462. SERIAL_ECHOLNPGM(__DATE__);
  463. #endif
  464. #endif
  465. SERIAL_ECHO_START;
  466. SERIAL_ECHOPGM(MSG_FREE_MEMORY);
  467. SERIAL_ECHO(freeMemory());
  468. SERIAL_ECHOPGM(MSG_PLANNER_BUFFER_BYTES);
  469. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  470. for(int8_t i = 0; i < BUFSIZE; i++)
  471. {
  472. fromsd[i] = false;
  473. }
  474. // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  475. Config_RetrieveSettings();
  476. tp_init(); // Initialize temperature loop
  477. plan_init(); // Initialize planner;
  478. watchdog_init();
  479. st_init(); // Initialize stepper, this enables interrupts!
  480. setup_photpin();
  481. servo_init();
  482. lcd_init();
  483. _delay_ms(1000); // wait 1sec to display the splash screen
  484. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  485. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  486. #endif
  487. #ifdef DIGIPOT_I2C
  488. digipot_i2c_init();
  489. #endif
  490. #ifdef Z_PROBE_SLED
  491. pinMode(SERVO0_PIN, OUTPUT);
  492. digitalWrite(SERVO0_PIN, LOW); // turn it off
  493. #endif // Z_PROBE_SLED
  494. }
  495. void loop()
  496. {
  497. if(buflen < (BUFSIZE-1))
  498. get_command();
  499. #ifdef SDSUPPORT
  500. card.checkautostart(false);
  501. #endif
  502. if(buflen)
  503. {
  504. #ifdef SDSUPPORT
  505. if(card.saving)
  506. {
  507. if(strstr_P(cmdbuffer[bufindr], PSTR("M29")) == NULL)
  508. {
  509. card.write_command(cmdbuffer[bufindr]);
  510. if(card.logging)
  511. {
  512. process_commands();
  513. }
  514. else
  515. {
  516. SERIAL_PROTOCOLLNPGM(MSG_OK);
  517. }
  518. }
  519. else
  520. {
  521. card.closefile();
  522. SERIAL_PROTOCOLLNPGM(MSG_FILE_SAVED);
  523. }
  524. }
  525. else
  526. {
  527. process_commands();
  528. }
  529. #else
  530. process_commands();
  531. #endif //SDSUPPORT
  532. buflen = (buflen-1);
  533. bufindr = (bufindr + 1)%BUFSIZE;
  534. }
  535. //check heater every n milliseconds
  536. manage_heater();
  537. manage_inactivity();
  538. checkHitEndstops();
  539. lcd_update();
  540. }
  541. void get_command()
  542. {
  543. while( MYSERIAL.available() > 0 && buflen < BUFSIZE) {
  544. serial_char = MYSERIAL.read();
  545. if(serial_char == '\n' ||
  546. serial_char == '\r' ||
  547. (serial_char == ':' && comment_mode == false) ||
  548. serial_count >= (MAX_CMD_SIZE - 1) )
  549. {
  550. if(!serial_count) { //if empty line
  551. comment_mode = false; //for new command
  552. return;
  553. }
  554. cmdbuffer[bufindw][serial_count] = 0; //terminate string
  555. if(!comment_mode){
  556. comment_mode = false; //for new command
  557. fromsd[bufindw] = false;
  558. if(strchr(cmdbuffer[bufindw], 'N') != NULL)
  559. {
  560. strchr_pointer = strchr(cmdbuffer[bufindw], 'N');
  561. gcode_N = (strtol(&cmdbuffer[bufindw][strchr_pointer - cmdbuffer[bufindw] + 1], NULL, 10));
  562. if(gcode_N != gcode_LastN+1 && (strstr_P(cmdbuffer[bufindw], PSTR("M110")) == NULL) ) {
  563. SERIAL_ERROR_START;
  564. SERIAL_ERRORPGM(MSG_ERR_LINE_NO);
  565. SERIAL_ERRORLN(gcode_LastN);
  566. //Serial.println(gcode_N);
  567. FlushSerialRequestResend();
  568. serial_count = 0;
  569. return;
  570. }
  571. if(strchr(cmdbuffer[bufindw], '*') != NULL)
  572. {
  573. byte checksum = 0;
  574. byte count = 0;
  575. while(cmdbuffer[bufindw][count] != '*') checksum = checksum^cmdbuffer[bufindw][count++];
  576. strchr_pointer = strchr(cmdbuffer[bufindw], '*');
  577. if( (int)(strtod(&cmdbuffer[bufindw][strchr_pointer - cmdbuffer[bufindw] + 1], NULL)) != checksum) {
  578. SERIAL_ERROR_START;
  579. SERIAL_ERRORPGM(MSG_ERR_CHECKSUM_MISMATCH);
  580. SERIAL_ERRORLN(gcode_LastN);
  581. FlushSerialRequestResend();
  582. serial_count = 0;
  583. return;
  584. }
  585. //if no errors, continue parsing
  586. }
  587. else
  588. {
  589. SERIAL_ERROR_START;
  590. SERIAL_ERRORPGM(MSG_ERR_NO_CHECKSUM);
  591. SERIAL_ERRORLN(gcode_LastN);
  592. FlushSerialRequestResend();
  593. serial_count = 0;
  594. return;
  595. }
  596. gcode_LastN = gcode_N;
  597. //if no errors, continue parsing
  598. }
  599. else // if we don't receive 'N' but still see '*'
  600. {
  601. if((strchr(cmdbuffer[bufindw], '*') != NULL))
  602. {
  603. SERIAL_ERROR_START;
  604. SERIAL_ERRORPGM(MSG_ERR_NO_LINENUMBER_WITH_CHECKSUM);
  605. SERIAL_ERRORLN(gcode_LastN);
  606. serial_count = 0;
  607. return;
  608. }
  609. }
  610. if((strchr(cmdbuffer[bufindw], 'G') != NULL)){
  611. strchr_pointer = strchr(cmdbuffer[bufindw], 'G');
  612. switch((int)((strtod(&cmdbuffer[bufindw][strchr_pointer - cmdbuffer[bufindw] + 1], NULL)))){
  613. case 0:
  614. case 1:
  615. case 2:
  616. case 3:
  617. if(Stopped == false) { // If printer is stopped by an error the G[0-3] codes are ignored.
  618. #ifdef SDSUPPORT
  619. if(card.saving)
  620. break;
  621. #endif //SDSUPPORT
  622. SERIAL_PROTOCOLLNPGM(MSG_OK);
  623. }
  624. else {
  625. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  626. LCD_MESSAGEPGM(MSG_STOPPED);
  627. }
  628. break;
  629. default:
  630. break;
  631. }
  632. }
  633. //If command was e-stop process now
  634. if(strcmp(cmdbuffer[bufindw], "M112") == 0)
  635. kill();
  636. bufindw = (bufindw + 1)%BUFSIZE;
  637. buflen += 1;
  638. }
  639. serial_count = 0; //clear buffer
  640. }
  641. else
  642. {
  643. if(serial_char == ';') comment_mode = true;
  644. if(!comment_mode) cmdbuffer[bufindw][serial_count++] = serial_char;
  645. }
  646. }
  647. #ifdef SDSUPPORT
  648. if(!card.sdprinting || serial_count!=0){
  649. return;
  650. }
  651. //'#' stops reading from SD to the buffer prematurely, so procedural macro calls are possible
  652. // if it occurs, stop_buffering is triggered and the buffer is ran dry.
  653. // this character _can_ occur in serial com, due to checksums. however, no checksums are used in SD printing
  654. static bool stop_buffering=false;
  655. if(buflen==0) stop_buffering=false;
  656. while( !card.eof() && buflen < BUFSIZE && !stop_buffering) {
  657. int16_t n=card.get();
  658. serial_char = (char)n;
  659. if(serial_char == '\n' ||
  660. serial_char == '\r' ||
  661. (serial_char == '#' && comment_mode == false) ||
  662. (serial_char == ':' && comment_mode == false) ||
  663. serial_count >= (MAX_CMD_SIZE - 1)||n==-1)
  664. {
  665. if(card.eof()){
  666. SERIAL_PROTOCOLLNPGM(MSG_FILE_PRINTED);
  667. stoptime=millis();
  668. char time[30];
  669. unsigned long t=(stoptime-starttime)/1000;
  670. int hours, minutes;
  671. minutes=(t/60)%60;
  672. hours=t/60/60;
  673. sprintf_P(time, PSTR("%i hours %i minutes"),hours, minutes);
  674. SERIAL_ECHO_START;
  675. SERIAL_ECHOLN(time);
  676. lcd_setstatus(time);
  677. card.printingHasFinished();
  678. card.checkautostart(true);
  679. }
  680. if(serial_char=='#')
  681. stop_buffering=true;
  682. if(!serial_count)
  683. {
  684. comment_mode = false; //for new command
  685. return; //if empty line
  686. }
  687. cmdbuffer[bufindw][serial_count] = 0; //terminate string
  688. // if(!comment_mode){
  689. fromsd[bufindw] = true;
  690. buflen += 1;
  691. bufindw = (bufindw + 1)%BUFSIZE;
  692. // }
  693. comment_mode = false; //for new command
  694. serial_count = 0; //clear buffer
  695. }
  696. else
  697. {
  698. if(serial_char == ';') comment_mode = true;
  699. if(!comment_mode) cmdbuffer[bufindw][serial_count++] = serial_char;
  700. }
  701. }
  702. #endif //SDSUPPORT
  703. }
  704. float code_value()
  705. {
  706. return (strtod(&cmdbuffer[bufindr][strchr_pointer - cmdbuffer[bufindr] + 1], NULL));
  707. }
  708. long code_value_long()
  709. {
  710. return (strtol(&cmdbuffer[bufindr][strchr_pointer - cmdbuffer[bufindr] + 1], NULL, 10));
  711. }
  712. bool code_seen(char code)
  713. {
  714. strchr_pointer = strchr(cmdbuffer[bufindr], code);
  715. return (strchr_pointer != NULL); //Return True if a character was found
  716. }
  717. #define DEFINE_PGM_READ_ANY(type, reader) \
  718. static inline type pgm_read_any(const type *p) \
  719. { return pgm_read_##reader##_near(p); }
  720. DEFINE_PGM_READ_ANY(float, float);
  721. DEFINE_PGM_READ_ANY(signed char, byte);
  722. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  723. static const PROGMEM type array##_P[3] = \
  724. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  725. static inline type array(int axis) \
  726. { return pgm_read_any(&array##_P[axis]); }
  727. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  728. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  729. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  730. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  731. XYZ_CONSTS_FROM_CONFIG(float, home_retract_mm, HOME_RETRACT_MM);
  732. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  733. #ifdef DUAL_X_CARRIAGE
  734. #if EXTRUDERS == 1 || defined(COREXY) \
  735. || !defined(X2_ENABLE_PIN) || !defined(X2_STEP_PIN) || !defined(X2_DIR_PIN) \
  736. || !defined(X2_HOME_POS) || !defined(X2_MIN_POS) || !defined(X2_MAX_POS) \
  737. || !defined(X_MAX_PIN) || X_MAX_PIN < 0
  738. #error "Missing or invalid definitions for DUAL_X_CARRIAGE mode."
  739. #endif
  740. #if X_HOME_DIR != -1 || X2_HOME_DIR != 1
  741. #error "Please use canonical x-carriage assignment" // the x-carriages are defined by their homing directions
  742. #endif
  743. #define DXC_FULL_CONTROL_MODE 0
  744. #define DXC_AUTO_PARK_MODE 1
  745. #define DXC_DUPLICATION_MODE 2
  746. static int dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  747. static float x_home_pos(int extruder) {
  748. if (extruder == 0)
  749. return base_home_pos(X_AXIS) + add_homeing[X_AXIS];
  750. else
  751. // In dual carriage mode the extruder offset provides an override of the
  752. // second X-carriage offset when homed - otherwise X2_HOME_POS is used.
  753. // This allow soft recalibration of the second extruder offset position without firmware reflash
  754. // (through the M218 command).
  755. return (extruder_offset[X_AXIS][1] > 0) ? extruder_offset[X_AXIS][1] : X2_HOME_POS;
  756. }
  757. static int x_home_dir(int extruder) {
  758. return (extruder == 0) ? X_HOME_DIR : X2_HOME_DIR;
  759. }
  760. static float inactive_extruder_x_pos = X2_MAX_POS; // used in mode 0 & 1
  761. static bool active_extruder_parked = false; // used in mode 1 & 2
  762. static float raised_parked_position[NUM_AXIS]; // used in mode 1
  763. static unsigned long delayed_move_time = 0; // used in mode 1
  764. static float duplicate_extruder_x_offset = DEFAULT_DUPLICATION_X_OFFSET; // used in mode 2
  765. static float duplicate_extruder_temp_offset = 0; // used in mode 2
  766. bool extruder_duplication_enabled = false; // used in mode 2
  767. #endif //DUAL_X_CARRIAGE
  768. static void axis_is_at_home(int axis) {
  769. #ifdef DUAL_X_CARRIAGE
  770. if (axis == X_AXIS) {
  771. if (active_extruder != 0) {
  772. current_position[X_AXIS] = x_home_pos(active_extruder);
  773. min_pos[X_AXIS] = X2_MIN_POS;
  774. max_pos[X_AXIS] = max(extruder_offset[X_AXIS][1], X2_MAX_POS);
  775. return;
  776. }
  777. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && active_extruder == 0) {
  778. current_position[X_AXIS] = base_home_pos(X_AXIS) + add_homeing[X_AXIS];
  779. min_pos[X_AXIS] = base_min_pos(X_AXIS) + add_homeing[X_AXIS];
  780. max_pos[X_AXIS] = min(base_max_pos(X_AXIS) + add_homeing[X_AXIS],
  781. max(extruder_offset[X_AXIS][1], X2_MAX_POS) - duplicate_extruder_x_offset);
  782. return;
  783. }
  784. }
  785. #endif
  786. current_position[axis] = base_home_pos(axis) + add_homeing[axis];
  787. min_pos[axis] = base_min_pos(axis) + add_homeing[axis];
  788. max_pos[axis] = base_max_pos(axis) + add_homeing[axis];
  789. }
  790. #ifdef ENABLE_AUTO_BED_LEVELING
  791. #ifdef AUTO_BED_LEVELING_GRID
  792. static void set_bed_level_equation_lsq(double *plane_equation_coefficients)
  793. {
  794. vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
  795. planeNormal.debug("planeNormal");
  796. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  797. //bedLevel.debug("bedLevel");
  798. //plan_bed_level_matrix.debug("bed level before");
  799. //vector_3 uncorrected_position = plan_get_position_mm();
  800. //uncorrected_position.debug("position before");
  801. vector_3 corrected_position = plan_get_position();
  802. // corrected_position.debug("position after");
  803. current_position[X_AXIS] = corrected_position.x;
  804. current_position[Y_AXIS] = corrected_position.y;
  805. current_position[Z_AXIS] = corrected_position.z;
  806. // but the bed at 0 so we don't go below it.
  807. current_position[Z_AXIS] = zprobe_zoffset; // in the lsq we reach here after raising the extruder due to the loop structure
  808. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  809. }
  810. #else // not AUTO_BED_LEVELING_GRID
  811. static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
  812. plan_bed_level_matrix.set_to_identity();
  813. vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
  814. vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
  815. vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
  816. vector_3 from_2_to_1 = (pt1 - pt2).get_normal();
  817. vector_3 from_2_to_3 = (pt3 - pt2).get_normal();
  818. vector_3 planeNormal = vector_3::cross(from_2_to_1, from_2_to_3).get_normal();
  819. planeNormal = vector_3(planeNormal.x, planeNormal.y, abs(planeNormal.z));
  820. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  821. vector_3 corrected_position = plan_get_position();
  822. current_position[X_AXIS] = corrected_position.x;
  823. current_position[Y_AXIS] = corrected_position.y;
  824. current_position[Z_AXIS] = corrected_position.z;
  825. // put the bed at 0 so we don't go below it.
  826. current_position[Z_AXIS] = zprobe_zoffset;
  827. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  828. }
  829. #endif // AUTO_BED_LEVELING_GRID
  830. static void run_z_probe() {
  831. plan_bed_level_matrix.set_to_identity();
  832. feedrate = homing_feedrate[Z_AXIS];
  833. // move down until you find the bed
  834. float zPosition = -10;
  835. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  836. st_synchronize();
  837. // we have to let the planner know where we are right now as it is not where we said to go.
  838. zPosition = st_get_position_mm(Z_AXIS);
  839. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]);
  840. // move up the retract distance
  841. zPosition += home_retract_mm(Z_AXIS);
  842. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  843. st_synchronize();
  844. // move back down slowly to find bed
  845. feedrate = homing_feedrate[Z_AXIS]/4;
  846. zPosition -= home_retract_mm(Z_AXIS) * 2;
  847. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  848. st_synchronize();
  849. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  850. // make sure the planner knows where we are as it may be a bit different than we last said to move to
  851. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  852. }
  853. static void do_blocking_move_to(float x, float y, float z) {
  854. float oldFeedRate = feedrate;
  855. feedrate = XY_TRAVEL_SPEED;
  856. current_position[X_AXIS] = x;
  857. current_position[Y_AXIS] = y;
  858. current_position[Z_AXIS] = z;
  859. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  860. st_synchronize();
  861. feedrate = oldFeedRate;
  862. }
  863. static void do_blocking_move_relative(float offset_x, float offset_y, float offset_z) {
  864. do_blocking_move_to(current_position[X_AXIS] + offset_x, current_position[Y_AXIS] + offset_y, current_position[Z_AXIS] + offset_z);
  865. }
  866. static void setup_for_endstop_move() {
  867. saved_feedrate = feedrate;
  868. saved_feedmultiply = feedmultiply;
  869. feedmultiply = 100;
  870. previous_millis_cmd = millis();
  871. enable_endstops(true);
  872. }
  873. static void clean_up_after_endstop_move() {
  874. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  875. enable_endstops(false);
  876. #endif
  877. feedrate = saved_feedrate;
  878. feedmultiply = saved_feedmultiply;
  879. previous_millis_cmd = millis();
  880. }
  881. static void engage_z_probe() {
  882. // Engage Z Servo endstop if enabled
  883. #ifdef SERVO_ENDSTOPS
  884. if (servo_endstops[Z_AXIS] > -1) {
  885. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  886. servos[servo_endstops[Z_AXIS]].attach(0);
  887. #endif
  888. servos[servo_endstops[Z_AXIS]].write(servo_endstop_angles[Z_AXIS * 2]);
  889. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  890. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  891. servos[servo_endstops[Z_AXIS]].detach();
  892. #endif
  893. }
  894. #endif
  895. }
  896. static void retract_z_probe() {
  897. // Retract Z Servo endstop if enabled
  898. #ifdef SERVO_ENDSTOPS
  899. if (servo_endstops[Z_AXIS] > -1) {
  900. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  901. servos[servo_endstops[Z_AXIS]].attach(0);
  902. #endif
  903. servos[servo_endstops[Z_AXIS]].write(servo_endstop_angles[Z_AXIS * 2 + 1]);
  904. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  905. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  906. servos[servo_endstops[Z_AXIS]].detach();
  907. #endif
  908. }
  909. #endif
  910. }
  911. /// Probe bed height at position (x,y), returns the measured z value
  912. static float probe_pt(float x, float y, float z_before) {
  913. // move to right place
  914. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_before);
  915. do_blocking_move_to(x - X_PROBE_OFFSET_FROM_EXTRUDER, y - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
  916. #ifndef Z_PROBE_SLED
  917. engage_z_probe(); // Engage Z Servo endstop if available
  918. #endif // Z_PROBE_SLED
  919. run_z_probe();
  920. float measured_z = current_position[Z_AXIS];
  921. #ifndef Z_PROBE_SLED
  922. retract_z_probe();
  923. #endif // Z_PROBE_SLED
  924. SERIAL_PROTOCOLPGM(MSG_BED);
  925. SERIAL_PROTOCOLPGM(" x: ");
  926. SERIAL_PROTOCOL(x);
  927. SERIAL_PROTOCOLPGM(" y: ");
  928. SERIAL_PROTOCOL(y);
  929. SERIAL_PROTOCOLPGM(" z: ");
  930. SERIAL_PROTOCOL(measured_z);
  931. SERIAL_PROTOCOLPGM("\n");
  932. return measured_z;
  933. }
  934. #endif // #ifdef ENABLE_AUTO_BED_LEVELING
  935. static void homeaxis(int axis) {
  936. #define HOMEAXIS_DO(LETTER) \
  937. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  938. if (axis==X_AXIS ? HOMEAXIS_DO(X) :
  939. axis==Y_AXIS ? HOMEAXIS_DO(Y) :
  940. axis==Z_AXIS ? HOMEAXIS_DO(Z) :
  941. 0) {
  942. int axis_home_dir = home_dir(axis);
  943. #ifdef DUAL_X_CARRIAGE
  944. if (axis == X_AXIS)
  945. axis_home_dir = x_home_dir(active_extruder);
  946. #endif
  947. current_position[axis] = 0;
  948. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  949. #ifndef Z_PROBE_SLED
  950. // Engage Servo endstop if enabled
  951. #ifdef SERVO_ENDSTOPS
  952. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  953. if (axis==Z_AXIS) {
  954. engage_z_probe();
  955. }
  956. else
  957. #endif
  958. if (servo_endstops[axis] > -1) {
  959. servos[servo_endstops[axis]].write(servo_endstop_angles[axis * 2]);
  960. }
  961. #endif
  962. #endif // Z_PROBE_SLED
  963. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  964. feedrate = homing_feedrate[axis];
  965. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  966. st_synchronize();
  967. current_position[axis] = 0;
  968. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  969. destination[axis] = -home_retract_mm(axis) * axis_home_dir;
  970. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  971. st_synchronize();
  972. destination[axis] = 2*home_retract_mm(axis) * axis_home_dir;
  973. #ifdef DELTA
  974. feedrate = homing_feedrate[axis]/10;
  975. #else
  976. feedrate = homing_feedrate[axis]/2 ;
  977. #endif
  978. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  979. st_synchronize();
  980. #ifdef DELTA
  981. // retrace by the amount specified in endstop_adj
  982. if (endstop_adj[axis] * axis_home_dir < 0) {
  983. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  984. destination[axis] = endstop_adj[axis];
  985. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  986. st_synchronize();
  987. }
  988. #endif
  989. axis_is_at_home(axis);
  990. destination[axis] = current_position[axis];
  991. feedrate = 0.0;
  992. endstops_hit_on_purpose();
  993. axis_known_position[axis] = true;
  994. // Retract Servo endstop if enabled
  995. #ifdef SERVO_ENDSTOPS
  996. if (servo_endstops[axis] > -1) {
  997. servos[servo_endstops[axis]].write(servo_endstop_angles[axis * 2 + 1]);
  998. }
  999. #endif
  1000. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  1001. // if (axis==Z_AXIS) retract_z_probe();
  1002. #endif
  1003. }
  1004. }
  1005. #define HOMEAXIS(LETTER) homeaxis(LETTER##_AXIS)
  1006. void refresh_cmd_timeout(void)
  1007. {
  1008. previous_millis_cmd = millis();
  1009. }
  1010. #ifdef FWRETRACT
  1011. void retract(bool retracting, bool swapretract = false) {
  1012. if(retracting && !retracted[active_extruder]) {
  1013. destination[X_AXIS]=current_position[X_AXIS];
  1014. destination[Y_AXIS]=current_position[Y_AXIS];
  1015. destination[Z_AXIS]=current_position[Z_AXIS];
  1016. destination[E_AXIS]=current_position[E_AXIS];
  1017. if (swapretract) {
  1018. current_position[E_AXIS]+=retract_length_swap/volumetric_multiplier[active_extruder];
  1019. } else {
  1020. current_position[E_AXIS]+=retract_length/volumetric_multiplier[active_extruder];
  1021. }
  1022. plan_set_e_position(current_position[E_AXIS]);
  1023. float oldFeedrate = feedrate;
  1024. feedrate=retract_feedrate*60;
  1025. retracted[active_extruder]=true;
  1026. prepare_move();
  1027. current_position[Z_AXIS]-=retract_zlift;
  1028. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1029. prepare_move();
  1030. feedrate = oldFeedrate;
  1031. } else if(!retracting && retracted[active_extruder]) {
  1032. destination[X_AXIS]=current_position[X_AXIS];
  1033. destination[Y_AXIS]=current_position[Y_AXIS];
  1034. destination[Z_AXIS]=current_position[Z_AXIS];
  1035. destination[E_AXIS]=current_position[E_AXIS];
  1036. current_position[Z_AXIS]+=retract_zlift;
  1037. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1038. //prepare_move();
  1039. if (swapretract) {
  1040. current_position[E_AXIS]-=(retract_length_swap+retract_recover_length_swap)/volumetric_multiplier[active_extruder];
  1041. } else {
  1042. current_position[E_AXIS]-=(retract_length+retract_recover_length)/volumetric_multiplier[active_extruder];
  1043. }
  1044. plan_set_e_position(current_position[E_AXIS]);
  1045. float oldFeedrate = feedrate;
  1046. feedrate=retract_recover_feedrate*60;
  1047. retracted[active_extruder]=false;
  1048. prepare_move();
  1049. feedrate = oldFeedrate;
  1050. }
  1051. } //retract
  1052. #endif //FWRETRACT
  1053. #ifdef ENABLE_AUTO_BED_LEVELING
  1054. //
  1055. // Method to dock/undock a sled designed by Charles Bell.
  1056. //
  1057. // dock[in] If true, move to MAX_X and engage the electromagnet
  1058. // offset[in] The additional distance to move to adjust docking location
  1059. //
  1060. static void dock_sled(bool dock, int offset=0) {
  1061. int z_loc;
  1062. if (!((axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]))) {
  1063. LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN);
  1064. SERIAL_ECHO_START;
  1065. SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN);
  1066. return;
  1067. }
  1068. if (dock) {
  1069. do_blocking_move_to(X_MAX_POS + SLED_DOCKING_OFFSET + offset,
  1070. current_position[Y_AXIS],
  1071. current_position[Z_AXIS]);
  1072. // turn off magnet
  1073. digitalWrite(SERVO0_PIN, LOW);
  1074. } else {
  1075. if (current_position[Z_AXIS] < (Z_RAISE_BEFORE_PROBING + 5))
  1076. z_loc = Z_RAISE_BEFORE_PROBING;
  1077. else
  1078. z_loc = current_position[Z_AXIS];
  1079. do_blocking_move_to(X_MAX_POS + SLED_DOCKING_OFFSET + offset,
  1080. Y_PROBE_OFFSET_FROM_EXTRUDER, z_loc);
  1081. // turn on magnet
  1082. digitalWrite(SERVO0_PIN, HIGH);
  1083. }
  1084. }
  1085. #endif
  1086. void process_commands()
  1087. {
  1088. unsigned long codenum; //throw away variable
  1089. char *starpos = NULL;
  1090. #ifdef ENABLE_AUTO_BED_LEVELING
  1091. float x_tmp, y_tmp, z_tmp, real_z;
  1092. #endif
  1093. if(code_seen('G'))
  1094. {
  1095. switch((int)code_value())
  1096. {
  1097. case 0: // G0 -> G1
  1098. case 1: // G1
  1099. if(Stopped == false) {
  1100. get_coordinates(); // For X Y Z E F
  1101. #ifdef FWRETRACT
  1102. if(autoretract_enabled)
  1103. if( !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  1104. float echange=destination[E_AXIS]-current_position[E_AXIS];
  1105. if((echange<-MIN_RETRACT && !retracted) || (echange>MIN_RETRACT && retracted)) { //move appears to be an attempt to retract or recover
  1106. current_position[E_AXIS] = destination[E_AXIS]; //hide the slicer-generated retract/recover from calculations
  1107. plan_set_e_position(current_position[E_AXIS]); //AND from the planner
  1108. retract(!retracted);
  1109. return;
  1110. }
  1111. }
  1112. #endif //FWRETRACT
  1113. prepare_move();
  1114. //ClearToSend();
  1115. return;
  1116. }
  1117. break;
  1118. case 2: // G2 - CW ARC
  1119. if(Stopped == false) {
  1120. get_arc_coordinates();
  1121. prepare_arc_move(true);
  1122. return;
  1123. }
  1124. break;
  1125. case 3: // G3 - CCW ARC
  1126. if(Stopped == false) {
  1127. get_arc_coordinates();
  1128. prepare_arc_move(false);
  1129. return;
  1130. }
  1131. break;
  1132. case 4: // G4 dwell
  1133. LCD_MESSAGEPGM(MSG_DWELL);
  1134. codenum = 0;
  1135. if(code_seen('P')) codenum = code_value(); // milliseconds to wait
  1136. if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait
  1137. st_synchronize();
  1138. codenum += millis(); // keep track of when we started waiting
  1139. previous_millis_cmd = millis();
  1140. while(millis() < codenum ){
  1141. manage_heater();
  1142. manage_inactivity();
  1143. lcd_update();
  1144. }
  1145. break;
  1146. #ifdef FWRETRACT
  1147. case 10: // G10 retract
  1148. #if EXTRUDERS > 1
  1149. retracted_swap[active_extruder]=(code_seen('S') && code_value_long() == 1); // checks for swap retract argument
  1150. retract(true,retracted_swap[active_extruder]);
  1151. #else
  1152. retract(true);
  1153. #endif
  1154. break;
  1155. case 11: // G11 retract_recover
  1156. #if EXTRUDERS > 1
  1157. retract(false,retracted_swap[active_extruder]);
  1158. #else
  1159. retract(false);
  1160. #endif
  1161. break;
  1162. #endif //FWRETRACT
  1163. case 28: //G28 Home all Axis one at a time
  1164. #ifdef ENABLE_AUTO_BED_LEVELING
  1165. plan_bed_level_matrix.set_to_identity(); //Reset the plane ("erase" all leveling data)
  1166. #endif //ENABLE_AUTO_BED_LEVELING
  1167. saved_feedrate = feedrate;
  1168. saved_feedmultiply = feedmultiply;
  1169. feedmultiply = 100;
  1170. previous_millis_cmd = millis();
  1171. enable_endstops(true);
  1172. for(int8_t i=0; i < NUM_AXIS; i++) {
  1173. destination[i] = current_position[i];
  1174. }
  1175. feedrate = 0.0;
  1176. #ifdef DELTA
  1177. // A delta can only safely home all axis at the same time
  1178. // all axis have to home at the same time
  1179. // Move all carriages up together until the first endstop is hit.
  1180. current_position[X_AXIS] = 0;
  1181. current_position[Y_AXIS] = 0;
  1182. current_position[Z_AXIS] = 0;
  1183. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1184. destination[X_AXIS] = 3 * Z_MAX_LENGTH;
  1185. destination[Y_AXIS] = 3 * Z_MAX_LENGTH;
  1186. destination[Z_AXIS] = 3 * Z_MAX_LENGTH;
  1187. feedrate = 1.732 * homing_feedrate[X_AXIS];
  1188. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1189. st_synchronize();
  1190. endstops_hit_on_purpose();
  1191. current_position[X_AXIS] = destination[X_AXIS];
  1192. current_position[Y_AXIS] = destination[Y_AXIS];
  1193. current_position[Z_AXIS] = destination[Z_AXIS];
  1194. // take care of back off and rehome now we are all at the top
  1195. HOMEAXIS(X);
  1196. HOMEAXIS(Y);
  1197. HOMEAXIS(Z);
  1198. calculate_delta(current_position);
  1199. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
  1200. #else // NOT DELTA
  1201. home_all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS])));
  1202. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  1203. if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
  1204. HOMEAXIS(Z);
  1205. }
  1206. #endif
  1207. #ifdef QUICK_HOME
  1208. if((home_all_axis)||( code_seen(axis_codes[X_AXIS]) && code_seen(axis_codes[Y_AXIS])) ) //first diagonal move
  1209. {
  1210. current_position[X_AXIS] = 0;current_position[Y_AXIS] = 0;
  1211. #ifndef DUAL_X_CARRIAGE
  1212. int x_axis_home_dir = home_dir(X_AXIS);
  1213. #else
  1214. int x_axis_home_dir = x_home_dir(active_extruder);
  1215. extruder_duplication_enabled = false;
  1216. #endif
  1217. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1218. destination[X_AXIS] = 1.5 * max_length(X_AXIS) * x_axis_home_dir;destination[Y_AXIS] = 1.5 * max_length(Y_AXIS) * home_dir(Y_AXIS);
  1219. feedrate = homing_feedrate[X_AXIS];
  1220. if(homing_feedrate[Y_AXIS]<feedrate)
  1221. feedrate = homing_feedrate[Y_AXIS];
  1222. if (max_length(X_AXIS) > max_length(Y_AXIS)) {
  1223. feedrate *= sqrt(pow(max_length(Y_AXIS) / max_length(X_AXIS), 2) + 1);
  1224. } else {
  1225. feedrate *= sqrt(pow(max_length(X_AXIS) / max_length(Y_AXIS), 2) + 1);
  1226. }
  1227. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1228. st_synchronize();
  1229. axis_is_at_home(X_AXIS);
  1230. axis_is_at_home(Y_AXIS);
  1231. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1232. destination[X_AXIS] = current_position[X_AXIS];
  1233. destination[Y_AXIS] = current_position[Y_AXIS];
  1234. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1235. feedrate = 0.0;
  1236. st_synchronize();
  1237. endstops_hit_on_purpose();
  1238. current_position[X_AXIS] = destination[X_AXIS];
  1239. current_position[Y_AXIS] = destination[Y_AXIS];
  1240. current_position[Z_AXIS] = destination[Z_AXIS];
  1241. }
  1242. #endif
  1243. if((home_all_axis) || (code_seen(axis_codes[X_AXIS])))
  1244. {
  1245. #ifdef DUAL_X_CARRIAGE
  1246. int tmp_extruder = active_extruder;
  1247. extruder_duplication_enabled = false;
  1248. active_extruder = !active_extruder;
  1249. HOMEAXIS(X);
  1250. inactive_extruder_x_pos = current_position[X_AXIS];
  1251. active_extruder = tmp_extruder;
  1252. HOMEAXIS(X);
  1253. // reset state used by the different modes
  1254. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  1255. delayed_move_time = 0;
  1256. active_extruder_parked = true;
  1257. #else
  1258. HOMEAXIS(X);
  1259. #endif
  1260. }
  1261. if((home_all_axis) || (code_seen(axis_codes[Y_AXIS]))) {
  1262. HOMEAXIS(Y);
  1263. }
  1264. if(code_seen(axis_codes[X_AXIS]))
  1265. {
  1266. if(code_value_long() != 0) {
  1267. current_position[X_AXIS]=code_value()+add_homeing[0];
  1268. }
  1269. }
  1270. if(code_seen(axis_codes[Y_AXIS])) {
  1271. if(code_value_long() != 0) {
  1272. current_position[Y_AXIS]=code_value()+add_homeing[1];
  1273. }
  1274. }
  1275. #if Z_HOME_DIR < 0 // If homing towards BED do Z last
  1276. #ifndef Z_SAFE_HOMING
  1277. if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
  1278. #if defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  1279. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  1280. feedrate = max_feedrate[Z_AXIS];
  1281. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  1282. st_synchronize();
  1283. #endif
  1284. HOMEAXIS(Z);
  1285. }
  1286. #else // Z Safe mode activated.
  1287. if(home_all_axis) {
  1288. destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - X_PROBE_OFFSET_FROM_EXTRUDER);
  1289. destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - Y_PROBE_OFFSET_FROM_EXTRUDER);
  1290. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  1291. feedrate = XY_TRAVEL_SPEED;
  1292. current_position[Z_AXIS] = 0;
  1293. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1294. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  1295. st_synchronize();
  1296. current_position[X_AXIS] = destination[X_AXIS];
  1297. current_position[Y_AXIS] = destination[Y_AXIS];
  1298. HOMEAXIS(Z);
  1299. }
  1300. // Let's see if X and Y are homed and probe is inside bed area.
  1301. if(code_seen(axis_codes[Z_AXIS])) {
  1302. if ( (axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]) \
  1303. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER >= X_MIN_POS) \
  1304. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER <= X_MAX_POS) \
  1305. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER >= Y_MIN_POS) \
  1306. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER <= Y_MAX_POS)) {
  1307. current_position[Z_AXIS] = 0;
  1308. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1309. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  1310. feedrate = max_feedrate[Z_AXIS];
  1311. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  1312. st_synchronize();
  1313. HOMEAXIS(Z);
  1314. } else if (!((axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]))) {
  1315. LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN);
  1316. SERIAL_ECHO_START;
  1317. SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN);
  1318. } else {
  1319. LCD_MESSAGEPGM(MSG_ZPROBE_OUT);
  1320. SERIAL_ECHO_START;
  1321. SERIAL_ECHOLNPGM(MSG_ZPROBE_OUT);
  1322. }
  1323. }
  1324. #endif
  1325. #endif
  1326. if(code_seen(axis_codes[Z_AXIS])) {
  1327. if(code_value_long() != 0) {
  1328. current_position[Z_AXIS]=code_value()+add_homeing[2];
  1329. }
  1330. }
  1331. #ifdef ENABLE_AUTO_BED_LEVELING
  1332. if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
  1333. current_position[Z_AXIS] += zprobe_zoffset; //Add Z_Probe offset (the distance is negative)
  1334. }
  1335. #endif
  1336. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1337. #endif // else DELTA
  1338. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1339. enable_endstops(false);
  1340. #endif
  1341. feedrate = saved_feedrate;
  1342. feedmultiply = saved_feedmultiply;
  1343. previous_millis_cmd = millis();
  1344. endstops_hit_on_purpose();
  1345. break;
  1346. #ifdef ENABLE_AUTO_BED_LEVELING
  1347. case 29: // G29 Detailed Z-Probe, probes the bed at 3 or more points.
  1348. {
  1349. #if Z_MIN_PIN == -1
  1350. #error "You must have a Z_MIN endstop in order to enable Auto Bed Leveling feature!!! Z_MIN_PIN must point to a valid hardware pin."
  1351. #endif
  1352. // Prevent user from running a G29 without first homing in X and Y
  1353. if (! (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS]) )
  1354. {
  1355. LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN);
  1356. SERIAL_ECHO_START;
  1357. SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN);
  1358. break; // abort G29, since we don't know where we are
  1359. }
  1360. #ifdef Z_PROBE_SLED
  1361. dock_sled(false);
  1362. #endif // Z_PROBE_SLED
  1363. st_synchronize();
  1364. // make sure the bed_level_rotation_matrix is identity or the planner will get it incorectly
  1365. //vector_3 corrected_position = plan_get_position_mm();
  1366. //corrected_position.debug("position before G29");
  1367. plan_bed_level_matrix.set_to_identity();
  1368. vector_3 uncorrected_position = plan_get_position();
  1369. //uncorrected_position.debug("position durring G29");
  1370. current_position[X_AXIS] = uncorrected_position.x;
  1371. current_position[Y_AXIS] = uncorrected_position.y;
  1372. current_position[Z_AXIS] = uncorrected_position.z;
  1373. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1374. setup_for_endstop_move();
  1375. feedrate = homing_feedrate[Z_AXIS];
  1376. #ifdef AUTO_BED_LEVELING_GRID
  1377. // probe at the points of a lattice grid
  1378. int xGridSpacing = (RIGHT_PROBE_BED_POSITION - LEFT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  1379. int yGridSpacing = (BACK_PROBE_BED_POSITION - FRONT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  1380. // solve the plane equation ax + by + d = z
  1381. // A is the matrix with rows [x y 1] for all the probed points
  1382. // B is the vector of the Z positions
  1383. // the normal vector to the plane is formed by the coefficients of the plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  1384. // so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  1385. // "A" matrix of the linear system of equations
  1386. double eqnAMatrix[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS*3];
  1387. // "B" vector of Z points
  1388. double eqnBVector[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS];
  1389. int probePointCounter = 0;
  1390. bool zig = true;
  1391. for (int yProbe=FRONT_PROBE_BED_POSITION; yProbe <= BACK_PROBE_BED_POSITION; yProbe += yGridSpacing)
  1392. {
  1393. int xProbe, xInc;
  1394. if (zig)
  1395. {
  1396. xProbe = LEFT_PROBE_BED_POSITION;
  1397. //xEnd = RIGHT_PROBE_BED_POSITION;
  1398. xInc = xGridSpacing;
  1399. zig = false;
  1400. } else // zag
  1401. {
  1402. xProbe = RIGHT_PROBE_BED_POSITION;
  1403. //xEnd = LEFT_PROBE_BED_POSITION;
  1404. xInc = -xGridSpacing;
  1405. zig = true;
  1406. }
  1407. for (int xCount=0; xCount < AUTO_BED_LEVELING_GRID_POINTS; xCount++)
  1408. {
  1409. float z_before;
  1410. if (probePointCounter == 0)
  1411. {
  1412. // raise before probing
  1413. z_before = Z_RAISE_BEFORE_PROBING;
  1414. } else
  1415. {
  1416. // raise extruder
  1417. z_before = current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS;
  1418. }
  1419. float measured_z = probe_pt(xProbe, yProbe, z_before);
  1420. eqnBVector[probePointCounter] = measured_z;
  1421. eqnAMatrix[probePointCounter + 0*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = xProbe;
  1422. eqnAMatrix[probePointCounter + 1*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = yProbe;
  1423. eqnAMatrix[probePointCounter + 2*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = 1;
  1424. probePointCounter++;
  1425. xProbe += xInc;
  1426. }
  1427. }
  1428. clean_up_after_endstop_move();
  1429. // solve lsq problem
  1430. double *plane_equation_coefficients = qr_solve(AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS, 3, eqnAMatrix, eqnBVector);
  1431. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  1432. SERIAL_PROTOCOL(plane_equation_coefficients[0]);
  1433. SERIAL_PROTOCOLPGM(" b: ");
  1434. SERIAL_PROTOCOL(plane_equation_coefficients[1]);
  1435. SERIAL_PROTOCOLPGM(" d: ");
  1436. SERIAL_PROTOCOLLN(plane_equation_coefficients[2]);
  1437. set_bed_level_equation_lsq(plane_equation_coefficients);
  1438. free(plane_equation_coefficients);
  1439. #else // AUTO_BED_LEVELING_GRID not defined
  1440. // Probe at 3 arbitrary points
  1441. // probe 1
  1442. float z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING);
  1443. // probe 2
  1444. float z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  1445. // probe 3
  1446. float z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  1447. clean_up_after_endstop_move();
  1448. set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
  1449. #endif // AUTO_BED_LEVELING_GRID
  1450. st_synchronize();
  1451. // The following code correct the Z height difference from z-probe position and hotend tip position.
  1452. // The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
  1453. // When the bed is uneven, this height must be corrected.
  1454. real_z = float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]; //get the real Z (since the auto bed leveling is already correcting the plane)
  1455. x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER;
  1456. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER;
  1457. z_tmp = current_position[Z_AXIS];
  1458. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); //Apply the correction sending the probe offset
  1459. current_position[Z_AXIS] = z_tmp - real_z + current_position[Z_AXIS]; //The difference is added to current position and sent to planner.
  1460. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1461. #ifdef Z_PROBE_SLED
  1462. dock_sled(true, -SLED_DOCKING_OFFSET); // correct for over travel.
  1463. #endif // Z_PROBE_SLED
  1464. }
  1465. break;
  1466. #ifndef Z_PROBE_SLED
  1467. case 30: // G30 Single Z Probe
  1468. {
  1469. engage_z_probe(); // Engage Z Servo endstop if available
  1470. st_synchronize();
  1471. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  1472. setup_for_endstop_move();
  1473. feedrate = homing_feedrate[Z_AXIS];
  1474. run_z_probe();
  1475. SERIAL_PROTOCOLPGM(MSG_BED);
  1476. SERIAL_PROTOCOLPGM(" X: ");
  1477. SERIAL_PROTOCOL(current_position[X_AXIS]);
  1478. SERIAL_PROTOCOLPGM(" Y: ");
  1479. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  1480. SERIAL_PROTOCOLPGM(" Z: ");
  1481. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  1482. SERIAL_PROTOCOLPGM("\n");
  1483. clean_up_after_endstop_move();
  1484. retract_z_probe(); // Retract Z Servo endstop if available
  1485. }
  1486. break;
  1487. #else
  1488. case 31: // dock the sled
  1489. dock_sled(true);
  1490. break;
  1491. case 32: // undock the sled
  1492. dock_sled(false);
  1493. break;
  1494. #endif // Z_PROBE_SLED
  1495. #endif // ENABLE_AUTO_BED_LEVELING
  1496. case 90: // G90
  1497. relative_mode = false;
  1498. break;
  1499. case 91: // G91
  1500. relative_mode = true;
  1501. break;
  1502. case 92: // G92
  1503. if(!code_seen(axis_codes[E_AXIS]))
  1504. st_synchronize();
  1505. for(int8_t i=0; i < NUM_AXIS; i++) {
  1506. if(code_seen(axis_codes[i])) {
  1507. if(i == E_AXIS) {
  1508. current_position[i] = code_value();
  1509. plan_set_e_position(current_position[E_AXIS]);
  1510. }
  1511. else {
  1512. current_position[i] = code_value()+add_homeing[i];
  1513. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1514. }
  1515. }
  1516. }
  1517. break;
  1518. }
  1519. }
  1520. else if(code_seen('M'))
  1521. {
  1522. switch( (int)code_value() )
  1523. {
  1524. #ifdef ULTIPANEL
  1525. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  1526. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  1527. {
  1528. LCD_MESSAGEPGM(MSG_USERWAIT);
  1529. codenum = 0;
  1530. if(code_seen('P')) codenum = code_value(); // milliseconds to wait
  1531. if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait
  1532. st_synchronize();
  1533. previous_millis_cmd = millis();
  1534. if (codenum > 0){
  1535. codenum += millis(); // keep track of when we started waiting
  1536. while(millis() < codenum && !lcd_clicked()){
  1537. manage_heater();
  1538. manage_inactivity();
  1539. lcd_update();
  1540. }
  1541. }else{
  1542. while(!lcd_clicked()){
  1543. manage_heater();
  1544. manage_inactivity();
  1545. lcd_update();
  1546. }
  1547. }
  1548. LCD_MESSAGEPGM(MSG_RESUMING);
  1549. }
  1550. break;
  1551. #endif
  1552. case 17:
  1553. LCD_MESSAGEPGM(MSG_NO_MOVE);
  1554. enable_x();
  1555. enable_y();
  1556. enable_z();
  1557. enable_e0();
  1558. enable_e1();
  1559. enable_e2();
  1560. break;
  1561. #ifdef SDSUPPORT
  1562. case 20: // M20 - list SD card
  1563. SERIAL_PROTOCOLLNPGM(MSG_BEGIN_FILE_LIST);
  1564. card.ls();
  1565. SERIAL_PROTOCOLLNPGM(MSG_END_FILE_LIST);
  1566. break;
  1567. case 21: // M21 - init SD card
  1568. card.initsd();
  1569. break;
  1570. case 22: //M22 - release SD card
  1571. card.release();
  1572. break;
  1573. case 23: //M23 - Select file
  1574. starpos = (strchr(strchr_pointer + 4,'*'));
  1575. if(starpos!=NULL)
  1576. *(starpos)='\0';
  1577. card.openFile(strchr_pointer + 4,true);
  1578. break;
  1579. case 24: //M24 - Start SD print
  1580. card.startFileprint();
  1581. starttime=millis();
  1582. break;
  1583. case 25: //M25 - Pause SD print
  1584. card.pauseSDPrint();
  1585. break;
  1586. case 26: //M26 - Set SD index
  1587. if(card.cardOK && code_seen('S')) {
  1588. card.setIndex(code_value_long());
  1589. }
  1590. break;
  1591. case 27: //M27 - Get SD status
  1592. card.getStatus();
  1593. break;
  1594. case 28: //M28 - Start SD write
  1595. starpos = (strchr(strchr_pointer + 4,'*'));
  1596. if(starpos != NULL){
  1597. char* npos = strchr(cmdbuffer[bufindr], 'N');
  1598. strchr_pointer = strchr(npos,' ') + 1;
  1599. *(starpos) = '\0';
  1600. }
  1601. card.openFile(strchr_pointer+4,false);
  1602. break;
  1603. case 29: //M29 - Stop SD write
  1604. //processed in write to file routine above
  1605. //card,saving = false;
  1606. break;
  1607. case 30: //M30 <filename> Delete File
  1608. if (card.cardOK){
  1609. card.closefile();
  1610. starpos = (strchr(strchr_pointer + 4,'*'));
  1611. if(starpos != NULL){
  1612. char* npos = strchr(cmdbuffer[bufindr], 'N');
  1613. strchr_pointer = strchr(npos,' ') + 1;
  1614. *(starpos) = '\0';
  1615. }
  1616. card.removeFile(strchr_pointer + 4);
  1617. }
  1618. break;
  1619. case 32: //M32 - Select file and start SD print
  1620. {
  1621. if(card.sdprinting) {
  1622. st_synchronize();
  1623. }
  1624. starpos = (strchr(strchr_pointer + 4,'*'));
  1625. char* namestartpos = (strchr(strchr_pointer + 4,'!')); //find ! to indicate filename string start.
  1626. if(namestartpos==NULL)
  1627. {
  1628. namestartpos=strchr_pointer + 4; //default name position, 4 letters after the M
  1629. }
  1630. else
  1631. namestartpos++; //to skip the '!'
  1632. if(starpos!=NULL)
  1633. *(starpos)='\0';
  1634. bool call_procedure=(code_seen('P'));
  1635. if(strchr_pointer>namestartpos)
  1636. call_procedure=false; //false alert, 'P' found within filename
  1637. if( card.cardOK )
  1638. {
  1639. card.openFile(namestartpos,true,!call_procedure);
  1640. if(code_seen('S'))
  1641. if(strchr_pointer<namestartpos) //only if "S" is occuring _before_ the filename
  1642. card.setIndex(code_value_long());
  1643. card.startFileprint();
  1644. if(!call_procedure)
  1645. starttime=millis(); //procedure calls count as normal print time.
  1646. }
  1647. } break;
  1648. case 928: //M928 - Start SD write
  1649. starpos = (strchr(strchr_pointer + 5,'*'));
  1650. if(starpos != NULL){
  1651. char* npos = strchr(cmdbuffer[bufindr], 'N');
  1652. strchr_pointer = strchr(npos,' ') + 1;
  1653. *(starpos) = '\0';
  1654. }
  1655. card.openLogFile(strchr_pointer+5);
  1656. break;
  1657. #endif //SDSUPPORT
  1658. case 31: //M31 take time since the start of the SD print or an M109 command
  1659. {
  1660. stoptime=millis();
  1661. char time[30];
  1662. unsigned long t=(stoptime-starttime)/1000;
  1663. int sec,min;
  1664. min=t/60;
  1665. sec=t%60;
  1666. sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
  1667. SERIAL_ECHO_START;
  1668. SERIAL_ECHOLN(time);
  1669. lcd_setstatus(time);
  1670. autotempShutdown();
  1671. }
  1672. break;
  1673. case 42: //M42 -Change pin status via gcode
  1674. if (code_seen('S'))
  1675. {
  1676. int pin_status = code_value();
  1677. int pin_number = LED_PIN;
  1678. if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
  1679. pin_number = code_value();
  1680. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  1681. {
  1682. if (sensitive_pins[i] == pin_number)
  1683. {
  1684. pin_number = -1;
  1685. break;
  1686. }
  1687. }
  1688. #if defined(FAN_PIN) && FAN_PIN > -1
  1689. if (pin_number == FAN_PIN)
  1690. fanSpeed = pin_status;
  1691. #endif
  1692. if (pin_number > -1)
  1693. {
  1694. pinMode(pin_number, OUTPUT);
  1695. digitalWrite(pin_number, pin_status);
  1696. analogWrite(pin_number, pin_status);
  1697. }
  1698. }
  1699. break;
  1700. case 104: // M104
  1701. if(setTargetedHotend(104)){
  1702. break;
  1703. }
  1704. if (code_seen('S')) setTargetHotend(code_value(), tmp_extruder);
  1705. #ifdef DUAL_X_CARRIAGE
  1706. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && tmp_extruder == 0)
  1707. setTargetHotend1(code_value() == 0.0 ? 0.0 : code_value() + duplicate_extruder_temp_offset);
  1708. #endif
  1709. setWatch();
  1710. break;
  1711. case 112: // M112 -Emergency Stop
  1712. kill();
  1713. break;
  1714. case 140: // M140 set bed temp
  1715. if (code_seen('S')) setTargetBed(code_value());
  1716. break;
  1717. case 105 : // M105
  1718. if(setTargetedHotend(105)){
  1719. break;
  1720. }
  1721. #if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
  1722. SERIAL_PROTOCOLPGM("ok T:");
  1723. SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
  1724. SERIAL_PROTOCOLPGM(" /");
  1725. SERIAL_PROTOCOL_F(degTargetHotend(tmp_extruder),1);
  1726. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  1727. SERIAL_PROTOCOLPGM(" B:");
  1728. SERIAL_PROTOCOL_F(degBed(),1);
  1729. SERIAL_PROTOCOLPGM(" /");
  1730. SERIAL_PROTOCOL_F(degTargetBed(),1);
  1731. #endif //TEMP_BED_PIN
  1732. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  1733. SERIAL_PROTOCOLPGM(" T");
  1734. SERIAL_PROTOCOL(cur_extruder);
  1735. SERIAL_PROTOCOLPGM(":");
  1736. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  1737. SERIAL_PROTOCOLPGM(" /");
  1738. SERIAL_PROTOCOL_F(degTargetHotend(cur_extruder),1);
  1739. }
  1740. #else
  1741. SERIAL_ERROR_START;
  1742. SERIAL_ERRORLNPGM(MSG_ERR_NO_THERMISTORS);
  1743. #endif
  1744. SERIAL_PROTOCOLPGM(" @:");
  1745. #ifdef EXTRUDER_WATTS
  1746. SERIAL_PROTOCOL((EXTRUDER_WATTS * getHeaterPower(tmp_extruder))/127);
  1747. SERIAL_PROTOCOLPGM("W");
  1748. #else
  1749. SERIAL_PROTOCOL(getHeaterPower(tmp_extruder));
  1750. #endif
  1751. SERIAL_PROTOCOLPGM(" B@:");
  1752. #ifdef BED_WATTS
  1753. SERIAL_PROTOCOL((BED_WATTS * getHeaterPower(-1))/127);
  1754. SERIAL_PROTOCOLPGM("W");
  1755. #else
  1756. SERIAL_PROTOCOL(getHeaterPower(-1));
  1757. #endif
  1758. #ifdef SHOW_TEMP_ADC_VALUES
  1759. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  1760. SERIAL_PROTOCOLPGM(" ADC B:");
  1761. SERIAL_PROTOCOL_F(degBed(),1);
  1762. SERIAL_PROTOCOLPGM("C->");
  1763. SERIAL_PROTOCOL_F(rawBedTemp()/OVERSAMPLENR,0);
  1764. #endif
  1765. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  1766. SERIAL_PROTOCOLPGM(" T");
  1767. SERIAL_PROTOCOL(cur_extruder);
  1768. SERIAL_PROTOCOLPGM(":");
  1769. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  1770. SERIAL_PROTOCOLPGM("C->");
  1771. SERIAL_PROTOCOL_F(rawHotendTemp(cur_extruder)/OVERSAMPLENR,0);
  1772. }
  1773. #endif
  1774. SERIAL_PROTOCOLLN("");
  1775. return;
  1776. break;
  1777. case 109:
  1778. {// M109 - Wait for extruder heater to reach target.
  1779. if(setTargetedHotend(109)){
  1780. break;
  1781. }
  1782. LCD_MESSAGEPGM(MSG_HEATING);
  1783. #ifdef AUTOTEMP
  1784. autotemp_enabled=false;
  1785. #endif
  1786. if (code_seen('S')) {
  1787. setTargetHotend(code_value(), tmp_extruder);
  1788. #ifdef DUAL_X_CARRIAGE
  1789. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && tmp_extruder == 0)
  1790. setTargetHotend1(code_value() == 0.0 ? 0.0 : code_value() + duplicate_extruder_temp_offset);
  1791. #endif
  1792. CooldownNoWait = true;
  1793. } else if (code_seen('R')) {
  1794. setTargetHotend(code_value(), tmp_extruder);
  1795. #ifdef DUAL_X_CARRIAGE
  1796. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && tmp_extruder == 0)
  1797. setTargetHotend1(code_value() == 0.0 ? 0.0 : code_value() + duplicate_extruder_temp_offset);
  1798. #endif
  1799. CooldownNoWait = false;
  1800. }
  1801. #ifdef AUTOTEMP
  1802. if (code_seen('S')) autotemp_min=code_value();
  1803. if (code_seen('B')) autotemp_max=code_value();
  1804. if (code_seen('F'))
  1805. {
  1806. autotemp_factor=code_value();
  1807. autotemp_enabled=true;
  1808. }
  1809. #endif
  1810. setWatch();
  1811. codenum = millis();
  1812. /* See if we are heating up or cooling down */
  1813. target_direction = isHeatingHotend(tmp_extruder); // true if heating, false if cooling
  1814. cancel_heatup = false;
  1815. #ifdef TEMP_RESIDENCY_TIME
  1816. long residencyStart;
  1817. residencyStart = -1;
  1818. /* continue to loop until we have reached the target temp
  1819. _and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
  1820. while((!cancel_heatup)&&((residencyStart == -1) ||
  1821. (residencyStart >= 0 && (((unsigned int) (millis() - residencyStart)) < (TEMP_RESIDENCY_TIME * 1000UL)))) ) {
  1822. #else
  1823. while ( target_direction ? (isHeatingHotend(tmp_extruder)) : (isCoolingHotend(tmp_extruder)&&(CooldownNoWait==false)) ) {
  1824. #endif //TEMP_RESIDENCY_TIME
  1825. if( (millis() - codenum) > 1000UL )
  1826. { //Print Temp Reading and remaining time every 1 second while heating up/cooling down
  1827. SERIAL_PROTOCOLPGM("T:");
  1828. SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
  1829. SERIAL_PROTOCOLPGM(" E:");
  1830. SERIAL_PROTOCOL((int)tmp_extruder);
  1831. #ifdef TEMP_RESIDENCY_TIME
  1832. SERIAL_PROTOCOLPGM(" W:");
  1833. if(residencyStart > -1)
  1834. {
  1835. codenum = ((TEMP_RESIDENCY_TIME * 1000UL) - (millis() - residencyStart)) / 1000UL;
  1836. SERIAL_PROTOCOLLN( codenum );
  1837. }
  1838. else
  1839. {
  1840. SERIAL_PROTOCOLLN( "?" );
  1841. }
  1842. #else
  1843. SERIAL_PROTOCOLLN("");
  1844. #endif
  1845. codenum = millis();
  1846. }
  1847. manage_heater();
  1848. manage_inactivity();
  1849. lcd_update();
  1850. #ifdef TEMP_RESIDENCY_TIME
  1851. /* start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
  1852. or when current temp falls outside the hysteresis after target temp was reached */
  1853. if ((residencyStart == -1 && target_direction && (degHotend(tmp_extruder) >= (degTargetHotend(tmp_extruder)-TEMP_WINDOW))) ||
  1854. (residencyStart == -1 && !target_direction && (degHotend(tmp_extruder) <= (degTargetHotend(tmp_extruder)+TEMP_WINDOW))) ||
  1855. (residencyStart > -1 && labs(degHotend(tmp_extruder) - degTargetHotend(tmp_extruder)) > TEMP_HYSTERESIS) )
  1856. {
  1857. residencyStart = millis();
  1858. }
  1859. #endif //TEMP_RESIDENCY_TIME
  1860. }
  1861. LCD_MESSAGEPGM(MSG_HEATING_COMPLETE);
  1862. starttime=millis();
  1863. previous_millis_cmd = millis();
  1864. }
  1865. break;
  1866. case 190: // M190 - Wait for bed heater to reach target.
  1867. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  1868. LCD_MESSAGEPGM(MSG_BED_HEATING);
  1869. if (code_seen('S')) {
  1870. setTargetBed(code_value());
  1871. CooldownNoWait = true;
  1872. } else if (code_seen('R')) {
  1873. setTargetBed(code_value());
  1874. CooldownNoWait = false;
  1875. }
  1876. codenum = millis();
  1877. cancel_heatup = false;
  1878. target_direction = isHeatingBed(); // true if heating, false if cooling
  1879. while ( (target_direction)&&(!cancel_heatup) ? (isHeatingBed()) : (isCoolingBed()&&(CooldownNoWait==false)) )
  1880. {
  1881. if(( millis() - codenum) > 1000 ) //Print Temp Reading every 1 second while heating up.
  1882. {
  1883. float tt=degHotend(active_extruder);
  1884. SERIAL_PROTOCOLPGM("T:");
  1885. SERIAL_PROTOCOL(tt);
  1886. SERIAL_PROTOCOLPGM(" E:");
  1887. SERIAL_PROTOCOL((int)active_extruder);
  1888. SERIAL_PROTOCOLPGM(" B:");
  1889. SERIAL_PROTOCOL_F(degBed(),1);
  1890. SERIAL_PROTOCOLLN("");
  1891. codenum = millis();
  1892. }
  1893. manage_heater();
  1894. manage_inactivity();
  1895. lcd_update();
  1896. }
  1897. LCD_MESSAGEPGM(MSG_BED_DONE);
  1898. previous_millis_cmd = millis();
  1899. #endif
  1900. break;
  1901. #if defined(FAN_PIN) && FAN_PIN > -1
  1902. case 106: //M106 Fan On
  1903. if (code_seen('S')){
  1904. fanSpeed=constrain(code_value(),0,255);
  1905. }
  1906. else {
  1907. fanSpeed=255;
  1908. }
  1909. break;
  1910. case 107: //M107 Fan Off
  1911. fanSpeed = 0;
  1912. break;
  1913. #endif //FAN_PIN
  1914. #ifdef BARICUDA
  1915. // PWM for HEATER_1_PIN
  1916. #if defined(HEATER_1_PIN) && HEATER_1_PIN > -1
  1917. case 126: //M126 valve open
  1918. if (code_seen('S')){
  1919. ValvePressure=constrain(code_value(),0,255);
  1920. }
  1921. else {
  1922. ValvePressure=255;
  1923. }
  1924. break;
  1925. case 127: //M127 valve closed
  1926. ValvePressure = 0;
  1927. break;
  1928. #endif //HEATER_1_PIN
  1929. // PWM for HEATER_2_PIN
  1930. #if defined(HEATER_2_PIN) && HEATER_2_PIN > -1
  1931. case 128: //M128 valve open
  1932. if (code_seen('S')){
  1933. EtoPPressure=constrain(code_value(),0,255);
  1934. }
  1935. else {
  1936. EtoPPressure=255;
  1937. }
  1938. break;
  1939. case 129: //M129 valve closed
  1940. EtoPPressure = 0;
  1941. break;
  1942. #endif //HEATER_2_PIN
  1943. #endif
  1944. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  1945. case 80: // M80 - Turn on Power Supply
  1946. SET_OUTPUT(PS_ON_PIN); //GND
  1947. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  1948. // If you have a switch on suicide pin, this is useful
  1949. // if you want to start another print with suicide feature after
  1950. // a print without suicide...
  1951. #if defined SUICIDE_PIN && SUICIDE_PIN > -1
  1952. SET_OUTPUT(SUICIDE_PIN);
  1953. WRITE(SUICIDE_PIN, HIGH);
  1954. #endif
  1955. #ifdef ULTIPANEL
  1956. powersupply = true;
  1957. LCD_MESSAGEPGM(WELCOME_MSG);
  1958. lcd_update();
  1959. #endif
  1960. break;
  1961. #endif
  1962. case 81: // M81 - Turn off Power Supply
  1963. disable_heater();
  1964. st_synchronize();
  1965. disable_e0();
  1966. disable_e1();
  1967. disable_e2();
  1968. finishAndDisableSteppers();
  1969. fanSpeed = 0;
  1970. delay(1000); // Wait a little before to switch off
  1971. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  1972. st_synchronize();
  1973. suicide();
  1974. #elif defined(PS_ON_PIN) && PS_ON_PIN > -1
  1975. SET_OUTPUT(PS_ON_PIN);
  1976. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  1977. #endif
  1978. #ifdef ULTIPANEL
  1979. powersupply = false;
  1980. LCD_MESSAGEPGM(MACHINE_NAME" "MSG_OFF".");
  1981. lcd_update();
  1982. #endif
  1983. break;
  1984. case 82:
  1985. axis_relative_modes[3] = false;
  1986. break;
  1987. case 83:
  1988. axis_relative_modes[3] = true;
  1989. break;
  1990. case 18: //compatibility
  1991. case 84: // M84
  1992. if(code_seen('S')){
  1993. stepper_inactive_time = code_value() * 1000;
  1994. }
  1995. else
  1996. {
  1997. bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS]))|| (code_seen(axis_codes[E_AXIS])));
  1998. if(all_axis)
  1999. {
  2000. st_synchronize();
  2001. disable_e0();
  2002. disable_e1();
  2003. disable_e2();
  2004. finishAndDisableSteppers();
  2005. }
  2006. else
  2007. {
  2008. st_synchronize();
  2009. if(code_seen('X')) disable_x();
  2010. if(code_seen('Y')) disable_y();
  2011. if(code_seen('Z')) disable_z();
  2012. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  2013. if(code_seen('E')) {
  2014. disable_e0();
  2015. disable_e1();
  2016. disable_e2();
  2017. }
  2018. #endif
  2019. }
  2020. }
  2021. break;
  2022. case 85: // M85
  2023. if(code_seen('S')) {
  2024. max_inactive_time = code_value() * 1000;
  2025. }
  2026. break;
  2027. case 92: // M92
  2028. for(int8_t i=0; i < NUM_AXIS; i++)
  2029. {
  2030. if(code_seen(axis_codes[i]))
  2031. {
  2032. if(i == 3) { // E
  2033. float value = code_value();
  2034. if(value < 20.0) {
  2035. float factor = axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
  2036. max_e_jerk *= factor;
  2037. max_feedrate[i] *= factor;
  2038. axis_steps_per_sqr_second[i] *= factor;
  2039. }
  2040. axis_steps_per_unit[i] = value;
  2041. }
  2042. else {
  2043. axis_steps_per_unit[i] = code_value();
  2044. }
  2045. }
  2046. }
  2047. break;
  2048. case 115: // M115
  2049. SERIAL_PROTOCOLPGM(MSG_M115_REPORT);
  2050. break;
  2051. case 117: // M117 display message
  2052. starpos = (strchr(strchr_pointer + 5,'*'));
  2053. if(starpos!=NULL)
  2054. *(starpos)='\0';
  2055. lcd_setstatus(strchr_pointer + 5);
  2056. break;
  2057. case 114: // M114
  2058. SERIAL_PROTOCOLPGM("X:");
  2059. SERIAL_PROTOCOL(current_position[X_AXIS]);
  2060. SERIAL_PROTOCOLPGM(" Y:");
  2061. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  2062. SERIAL_PROTOCOLPGM(" Z:");
  2063. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  2064. SERIAL_PROTOCOLPGM(" E:");
  2065. SERIAL_PROTOCOL(current_position[E_AXIS]);
  2066. SERIAL_PROTOCOLPGM(MSG_COUNT_X);
  2067. SERIAL_PROTOCOL(float(st_get_position(X_AXIS))/axis_steps_per_unit[X_AXIS]);
  2068. SERIAL_PROTOCOLPGM(" Y:");
  2069. SERIAL_PROTOCOL(float(st_get_position(Y_AXIS))/axis_steps_per_unit[Y_AXIS]);
  2070. SERIAL_PROTOCOLPGM(" Z:");
  2071. SERIAL_PROTOCOL(float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]);
  2072. SERIAL_PROTOCOLLN("");
  2073. break;
  2074. case 120: // M120
  2075. enable_endstops(false) ;
  2076. break;
  2077. case 121: // M121
  2078. enable_endstops(true) ;
  2079. break;
  2080. case 119: // M119
  2081. SERIAL_PROTOCOLLN(MSG_M119_REPORT);
  2082. #if defined(X_MIN_PIN) && X_MIN_PIN > -1
  2083. SERIAL_PROTOCOLPGM(MSG_X_MIN);
  2084. SERIAL_PROTOCOLLN(((READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  2085. #endif
  2086. #if defined(X_MAX_PIN) && X_MAX_PIN > -1
  2087. SERIAL_PROTOCOLPGM(MSG_X_MAX);
  2088. SERIAL_PROTOCOLLN(((READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  2089. #endif
  2090. #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
  2091. SERIAL_PROTOCOLPGM(MSG_Y_MIN);
  2092. SERIAL_PROTOCOLLN(((READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  2093. #endif
  2094. #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
  2095. SERIAL_PROTOCOLPGM(MSG_Y_MAX);
  2096. SERIAL_PROTOCOLLN(((READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  2097. #endif
  2098. #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
  2099. SERIAL_PROTOCOLPGM(MSG_Z_MIN);
  2100. SERIAL_PROTOCOLLN(((READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  2101. #endif
  2102. #if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
  2103. SERIAL_PROTOCOLPGM(MSG_Z_MAX);
  2104. SERIAL_PROTOCOLLN(((READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  2105. #endif
  2106. break;
  2107. //TODO: update for all axis, use for loop
  2108. #ifdef BLINKM
  2109. case 150: // M150
  2110. {
  2111. byte red;
  2112. byte grn;
  2113. byte blu;
  2114. if(code_seen('R')) red = code_value();
  2115. if(code_seen('U')) grn = code_value();
  2116. if(code_seen('B')) blu = code_value();
  2117. SendColors(red,grn,blu);
  2118. }
  2119. break;
  2120. #endif //BLINKM
  2121. case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  2122. {
  2123. float area = .0;
  2124. float radius = .0;
  2125. if(code_seen('D')) {
  2126. radius = (float)code_value() * .5;
  2127. if(radius == 0) {
  2128. area = 1;
  2129. } else {
  2130. area = M_PI * pow(radius, 2);
  2131. }
  2132. } else {
  2133. //reserved for setting filament diameter via UFID or filament measuring device
  2134. break;
  2135. }
  2136. tmp_extruder = active_extruder;
  2137. if(code_seen('T')) {
  2138. tmp_extruder = code_value();
  2139. if(tmp_extruder >= EXTRUDERS) {
  2140. SERIAL_ECHO_START;
  2141. SERIAL_ECHO(MSG_M200_INVALID_EXTRUDER);
  2142. break;
  2143. }
  2144. }
  2145. volumetric_multiplier[tmp_extruder] = 1 / area;
  2146. }
  2147. break;
  2148. case 201: // M201
  2149. for(int8_t i=0; i < NUM_AXIS; i++)
  2150. {
  2151. if(code_seen(axis_codes[i]))
  2152. {
  2153. max_acceleration_units_per_sq_second[i] = code_value();
  2154. }
  2155. }
  2156. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  2157. reset_acceleration_rates();
  2158. break;
  2159. #if 0 // Not used for Sprinter/grbl gen6
  2160. case 202: // M202
  2161. for(int8_t i=0; i < NUM_AXIS; i++) {
  2162. if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
  2163. }
  2164. break;
  2165. #endif
  2166. case 203: // M203 max feedrate mm/sec
  2167. for(int8_t i=0; i < NUM_AXIS; i++) {
  2168. if(code_seen(axis_codes[i])) max_feedrate[i] = code_value();
  2169. }
  2170. break;
  2171. case 204: // M204 acclereration S normal moves T filmanent only moves
  2172. {
  2173. if(code_seen('S')) acceleration = code_value() ;
  2174. if(code_seen('T')) retract_acceleration = code_value() ;
  2175. }
  2176. break;
  2177. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  2178. {
  2179. if(code_seen('S')) minimumfeedrate = code_value();
  2180. if(code_seen('T')) mintravelfeedrate = code_value();
  2181. if(code_seen('B')) minsegmenttime = code_value() ;
  2182. if(code_seen('X')) max_xy_jerk = code_value() ;
  2183. if(code_seen('Z')) max_z_jerk = code_value() ;
  2184. if(code_seen('E')) max_e_jerk = code_value() ;
  2185. }
  2186. break;
  2187. case 206: // M206 additional homeing offset
  2188. for(int8_t i=0; i < 3; i++)
  2189. {
  2190. if(code_seen(axis_codes[i])) add_homeing[i] = code_value();
  2191. }
  2192. break;
  2193. #ifdef DELTA
  2194. case 665: // M665 set delta configurations L<diagonal_rod> R<delta_radius> S<segments_per_sec>
  2195. if(code_seen('L')) {
  2196. delta_diagonal_rod= code_value();
  2197. }
  2198. if(code_seen('R')) {
  2199. delta_radius= code_value();
  2200. }
  2201. if(code_seen('S')) {
  2202. delta_segments_per_second= code_value();
  2203. }
  2204. recalc_delta_settings(delta_radius, delta_diagonal_rod);
  2205. break;
  2206. case 666: // M666 set delta endstop adjustemnt
  2207. for(int8_t i=0; i < 3; i++)
  2208. {
  2209. if(code_seen(axis_codes[i])) endstop_adj[i] = code_value();
  2210. }
  2211. break;
  2212. #endif
  2213. #ifdef FWRETRACT
  2214. case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
  2215. {
  2216. if(code_seen('S'))
  2217. {
  2218. retract_length = code_value() ;
  2219. }
  2220. if(code_seen('F'))
  2221. {
  2222. retract_feedrate = code_value()/60 ;
  2223. }
  2224. if(code_seen('Z'))
  2225. {
  2226. retract_zlift = code_value() ;
  2227. }
  2228. }break;
  2229. case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  2230. {
  2231. if(code_seen('S'))
  2232. {
  2233. retract_recover_length = code_value() ;
  2234. }
  2235. if(code_seen('F'))
  2236. {
  2237. retract_recover_feedrate = code_value()/60 ;
  2238. }
  2239. }break;
  2240. case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  2241. {
  2242. if(code_seen('S'))
  2243. {
  2244. int t= code_value() ;
  2245. switch(t)
  2246. {
  2247. case 0:
  2248. {
  2249. autoretract_enabled=false;
  2250. retracted[0]=false;
  2251. #if EXTRUDERS > 1
  2252. retracted[1]=false;
  2253. #endif
  2254. #if EXTRUDERS > 2
  2255. retracted[2]=false;
  2256. #endif
  2257. }break;
  2258. case 1:
  2259. {
  2260. autoretract_enabled=true;
  2261. retracted[0]=false;
  2262. #if EXTRUDERS > 1
  2263. retracted[1]=false;
  2264. #endif
  2265. #if EXTRUDERS > 2
  2266. retracted[2]=false;
  2267. #endif
  2268. }break;
  2269. default:
  2270. SERIAL_ECHO_START;
  2271. SERIAL_ECHOPGM(MSG_UNKNOWN_COMMAND);
  2272. SERIAL_ECHO(cmdbuffer[bufindr]);
  2273. SERIAL_ECHOLNPGM("\"");
  2274. }
  2275. }
  2276. }break;
  2277. #endif // FWRETRACT
  2278. #if EXTRUDERS > 1
  2279. case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  2280. {
  2281. if(setTargetedHotend(218)){
  2282. break;
  2283. }
  2284. if(code_seen('X'))
  2285. {
  2286. extruder_offset[X_AXIS][tmp_extruder] = code_value();
  2287. }
  2288. if(code_seen('Y'))
  2289. {
  2290. extruder_offset[Y_AXIS][tmp_extruder] = code_value();
  2291. }
  2292. #ifdef DUAL_X_CARRIAGE
  2293. if(code_seen('Z'))
  2294. {
  2295. extruder_offset[Z_AXIS][tmp_extruder] = code_value();
  2296. }
  2297. #endif
  2298. SERIAL_ECHO_START;
  2299. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  2300. for(tmp_extruder = 0; tmp_extruder < EXTRUDERS; tmp_extruder++)
  2301. {
  2302. SERIAL_ECHO(" ");
  2303. SERIAL_ECHO(extruder_offset[X_AXIS][tmp_extruder]);
  2304. SERIAL_ECHO(",");
  2305. SERIAL_ECHO(extruder_offset[Y_AXIS][tmp_extruder]);
  2306. #ifdef DUAL_X_CARRIAGE
  2307. SERIAL_ECHO(",");
  2308. SERIAL_ECHO(extruder_offset[Z_AXIS][tmp_extruder]);
  2309. #endif
  2310. }
  2311. SERIAL_ECHOLN("");
  2312. }break;
  2313. #endif
  2314. case 220: // M220 S<factor in percent>- set speed factor override percentage
  2315. {
  2316. if(code_seen('S'))
  2317. {
  2318. feedmultiply = code_value() ;
  2319. }
  2320. }
  2321. break;
  2322. case 221: // M221 S<factor in percent>- set extrude factor override percentage
  2323. {
  2324. if(code_seen('S'))
  2325. {
  2326. int tmp_code = code_value();
  2327. if (code_seen('T'))
  2328. {
  2329. if(setTargetedHotend(221)){
  2330. break;
  2331. }
  2332. extruder_multiply[tmp_extruder] = tmp_code;
  2333. }
  2334. else
  2335. {
  2336. extrudemultiply = tmp_code ;
  2337. }
  2338. }
  2339. }
  2340. break;
  2341. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  2342. {
  2343. if(code_seen('P')){
  2344. int pin_number = code_value(); // pin number
  2345. int pin_state = -1; // required pin state - default is inverted
  2346. if(code_seen('S')) pin_state = code_value(); // required pin state
  2347. if(pin_state >= -1 && pin_state <= 1){
  2348. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  2349. {
  2350. if (sensitive_pins[i] == pin_number)
  2351. {
  2352. pin_number = -1;
  2353. break;
  2354. }
  2355. }
  2356. if (pin_number > -1)
  2357. {
  2358. st_synchronize();
  2359. pinMode(pin_number, INPUT);
  2360. int target;
  2361. switch(pin_state){
  2362. case 1:
  2363. target = HIGH;
  2364. break;
  2365. case 0:
  2366. target = LOW;
  2367. break;
  2368. case -1:
  2369. target = !digitalRead(pin_number);
  2370. break;
  2371. }
  2372. while(digitalRead(pin_number) != target){
  2373. manage_heater();
  2374. manage_inactivity();
  2375. lcd_update();
  2376. }
  2377. }
  2378. }
  2379. }
  2380. }
  2381. break;
  2382. #if NUM_SERVOS > 0
  2383. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  2384. {
  2385. int servo_index = -1;
  2386. int servo_position = 0;
  2387. if (code_seen('P'))
  2388. servo_index = code_value();
  2389. if (code_seen('S')) {
  2390. servo_position = code_value();
  2391. if ((servo_index >= 0) && (servo_index < NUM_SERVOS)) {
  2392. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  2393. servos[servo_index].attach(0);
  2394. #endif
  2395. servos[servo_index].write(servo_position);
  2396. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  2397. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  2398. servos[servo_index].detach();
  2399. #endif
  2400. }
  2401. else {
  2402. SERIAL_ECHO_START;
  2403. SERIAL_ECHO("Servo ");
  2404. SERIAL_ECHO(servo_index);
  2405. SERIAL_ECHOLN(" out of range");
  2406. }
  2407. }
  2408. else if (servo_index >= 0) {
  2409. SERIAL_PROTOCOL(MSG_OK);
  2410. SERIAL_PROTOCOL(" Servo ");
  2411. SERIAL_PROTOCOL(servo_index);
  2412. SERIAL_PROTOCOL(": ");
  2413. SERIAL_PROTOCOL(servos[servo_index].read());
  2414. SERIAL_PROTOCOLLN("");
  2415. }
  2416. }
  2417. break;
  2418. #endif // NUM_SERVOS > 0
  2419. #if (LARGE_FLASH == true && ( BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER)))
  2420. case 300: // M300
  2421. {
  2422. int beepS = code_seen('S') ? code_value() : 110;
  2423. int beepP = code_seen('P') ? code_value() : 1000;
  2424. if (beepS > 0)
  2425. {
  2426. #if BEEPER > 0
  2427. tone(BEEPER, beepS);
  2428. delay(beepP);
  2429. noTone(BEEPER);
  2430. #elif defined(ULTRALCD)
  2431. lcd_buzz(beepS, beepP);
  2432. #elif defined(LCD_USE_I2C_BUZZER)
  2433. lcd_buzz(beepP, beepS);
  2434. #endif
  2435. }
  2436. else
  2437. {
  2438. delay(beepP);
  2439. }
  2440. }
  2441. break;
  2442. #endif // M300
  2443. #ifdef PIDTEMP
  2444. case 301: // M301
  2445. {
  2446. if(code_seen('P')) Kp = code_value();
  2447. if(code_seen('I')) Ki = scalePID_i(code_value());
  2448. if(code_seen('D')) Kd = scalePID_d(code_value());
  2449. #ifdef PID_ADD_EXTRUSION_RATE
  2450. if(code_seen('C')) Kc = code_value();
  2451. #endif
  2452. updatePID();
  2453. SERIAL_PROTOCOL(MSG_OK);
  2454. SERIAL_PROTOCOL(" p:");
  2455. SERIAL_PROTOCOL(Kp);
  2456. SERIAL_PROTOCOL(" i:");
  2457. SERIAL_PROTOCOL(unscalePID_i(Ki));
  2458. SERIAL_PROTOCOL(" d:");
  2459. SERIAL_PROTOCOL(unscalePID_d(Kd));
  2460. #ifdef PID_ADD_EXTRUSION_RATE
  2461. SERIAL_PROTOCOL(" c:");
  2462. //Kc does not have scaling applied above, or in resetting defaults
  2463. SERIAL_PROTOCOL(Kc);
  2464. #endif
  2465. SERIAL_PROTOCOLLN("");
  2466. }
  2467. break;
  2468. #endif //PIDTEMP
  2469. #ifdef PIDTEMPBED
  2470. case 304: // M304
  2471. {
  2472. if(code_seen('P')) bedKp = code_value();
  2473. if(code_seen('I')) bedKi = scalePID_i(code_value());
  2474. if(code_seen('D')) bedKd = scalePID_d(code_value());
  2475. updatePID();
  2476. SERIAL_PROTOCOL(MSG_OK);
  2477. SERIAL_PROTOCOL(" p:");
  2478. SERIAL_PROTOCOL(bedKp);
  2479. SERIAL_PROTOCOL(" i:");
  2480. SERIAL_PROTOCOL(unscalePID_i(bedKi));
  2481. SERIAL_PROTOCOL(" d:");
  2482. SERIAL_PROTOCOL(unscalePID_d(bedKd));
  2483. SERIAL_PROTOCOLLN("");
  2484. }
  2485. break;
  2486. #endif //PIDTEMP
  2487. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  2488. {
  2489. #ifdef CHDK
  2490. SET_OUTPUT(CHDK);
  2491. WRITE(CHDK, HIGH);
  2492. chdkHigh = millis();
  2493. chdkActive = true;
  2494. #else
  2495. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  2496. const uint8_t NUM_PULSES=16;
  2497. const float PULSE_LENGTH=0.01524;
  2498. for(int i=0; i < NUM_PULSES; i++) {
  2499. WRITE(PHOTOGRAPH_PIN, HIGH);
  2500. _delay_ms(PULSE_LENGTH);
  2501. WRITE(PHOTOGRAPH_PIN, LOW);
  2502. _delay_ms(PULSE_LENGTH);
  2503. }
  2504. delay(7.33);
  2505. for(int i=0; i < NUM_PULSES; i++) {
  2506. WRITE(PHOTOGRAPH_PIN, HIGH);
  2507. _delay_ms(PULSE_LENGTH);
  2508. WRITE(PHOTOGRAPH_PIN, LOW);
  2509. _delay_ms(PULSE_LENGTH);
  2510. }
  2511. #endif
  2512. #endif //chdk end if
  2513. }
  2514. break;
  2515. #ifdef DOGLCD
  2516. case 250: // M250 Set LCD contrast value: C<value> (value 0..63)
  2517. {
  2518. if (code_seen('C')) {
  2519. lcd_setcontrast( ((int)code_value())&63 );
  2520. }
  2521. SERIAL_PROTOCOLPGM("lcd contrast value: ");
  2522. SERIAL_PROTOCOL(lcd_contrast);
  2523. SERIAL_PROTOCOLLN("");
  2524. }
  2525. break;
  2526. #endif
  2527. #ifdef PREVENT_DANGEROUS_EXTRUDE
  2528. case 302: // allow cold extrudes, or set the minimum extrude temperature
  2529. {
  2530. float temp = .0;
  2531. if (code_seen('S')) temp=code_value();
  2532. set_extrude_min_temp(temp);
  2533. }
  2534. break;
  2535. #endif
  2536. case 303: // M303 PID autotune
  2537. {
  2538. float temp = 150.0;
  2539. int e=0;
  2540. int c=5;
  2541. if (code_seen('E')) e=code_value();
  2542. if (e<0)
  2543. temp=70;
  2544. if (code_seen('S')) temp=code_value();
  2545. if (code_seen('C')) c=code_value();
  2546. PID_autotune(temp, e, c);
  2547. }
  2548. break;
  2549. case 400: // M400 finish all moves
  2550. {
  2551. st_synchronize();
  2552. }
  2553. break;
  2554. #if defined(ENABLE_AUTO_BED_LEVELING) && defined(SERVO_ENDSTOPS) && not defined(Z_PROBE_SLED)
  2555. case 401:
  2556. {
  2557. engage_z_probe(); // Engage Z Servo endstop if available
  2558. }
  2559. break;
  2560. case 402:
  2561. {
  2562. retract_z_probe(); // Retract Z Servo endstop if enabled
  2563. }
  2564. break;
  2565. #endif
  2566. case 500: // M500 Store settings in EEPROM
  2567. {
  2568. Config_StoreSettings();
  2569. }
  2570. break;
  2571. case 501: // M501 Read settings from EEPROM
  2572. {
  2573. Config_RetrieveSettings();
  2574. }
  2575. break;
  2576. case 502: // M502 Revert to default settings
  2577. {
  2578. Config_ResetDefault();
  2579. }
  2580. break;
  2581. case 503: // M503 print settings currently in memory
  2582. {
  2583. Config_PrintSettings();
  2584. }
  2585. break;
  2586. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  2587. case 540:
  2588. {
  2589. if(code_seen('S')) abort_on_endstop_hit = code_value() > 0;
  2590. }
  2591. break;
  2592. #endif
  2593. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  2594. case CUSTOM_M_CODE_SET_Z_PROBE_OFFSET:
  2595. {
  2596. float value;
  2597. if (code_seen('Z'))
  2598. {
  2599. value = code_value();
  2600. if ((Z_PROBE_OFFSET_RANGE_MIN <= value) && (value <= Z_PROBE_OFFSET_RANGE_MAX))
  2601. {
  2602. zprobe_zoffset = -value; // compare w/ line 278 of ConfigurationStore.cpp
  2603. SERIAL_ECHO_START;
  2604. SERIAL_ECHOLNPGM(MSG_ZPROBE_ZOFFSET " " MSG_OK);
  2605. SERIAL_PROTOCOLLN("");
  2606. }
  2607. else
  2608. {
  2609. SERIAL_ECHO_START;
  2610. SERIAL_ECHOPGM(MSG_ZPROBE_ZOFFSET);
  2611. SERIAL_ECHOPGM(MSG_Z_MIN);
  2612. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
  2613. SERIAL_ECHOPGM(MSG_Z_MAX);
  2614. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
  2615. SERIAL_PROTOCOLLN("");
  2616. }
  2617. }
  2618. else
  2619. {
  2620. SERIAL_ECHO_START;
  2621. SERIAL_ECHOLNPGM(MSG_ZPROBE_ZOFFSET " : ");
  2622. SERIAL_ECHO(-zprobe_zoffset);
  2623. SERIAL_PROTOCOLLN("");
  2624. }
  2625. break;
  2626. }
  2627. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  2628. #ifdef FILAMENTCHANGEENABLE
  2629. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  2630. {
  2631. float target[4];
  2632. float lastpos[4];
  2633. target[X_AXIS]=current_position[X_AXIS];
  2634. target[Y_AXIS]=current_position[Y_AXIS];
  2635. target[Z_AXIS]=current_position[Z_AXIS];
  2636. target[E_AXIS]=current_position[E_AXIS];
  2637. lastpos[X_AXIS]=current_position[X_AXIS];
  2638. lastpos[Y_AXIS]=current_position[Y_AXIS];
  2639. lastpos[Z_AXIS]=current_position[Z_AXIS];
  2640. lastpos[E_AXIS]=current_position[E_AXIS];
  2641. //retract by E
  2642. if(code_seen('E'))
  2643. {
  2644. target[E_AXIS]+= code_value();
  2645. }
  2646. else
  2647. {
  2648. #ifdef FILAMENTCHANGE_FIRSTRETRACT
  2649. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  2650. #endif
  2651. }
  2652. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder);
  2653. //lift Z
  2654. if(code_seen('Z'))
  2655. {
  2656. target[Z_AXIS]+= code_value();
  2657. }
  2658. else
  2659. {
  2660. #ifdef FILAMENTCHANGE_ZADD
  2661. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  2662. #endif
  2663. }
  2664. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder);
  2665. //move xy
  2666. if(code_seen('X'))
  2667. {
  2668. target[X_AXIS]+= code_value();
  2669. }
  2670. else
  2671. {
  2672. #ifdef FILAMENTCHANGE_XPOS
  2673. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  2674. #endif
  2675. }
  2676. if(code_seen('Y'))
  2677. {
  2678. target[Y_AXIS]= code_value();
  2679. }
  2680. else
  2681. {
  2682. #ifdef FILAMENTCHANGE_YPOS
  2683. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  2684. #endif
  2685. }
  2686. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder);
  2687. if(code_seen('L'))
  2688. {
  2689. target[E_AXIS]+= code_value();
  2690. }
  2691. else
  2692. {
  2693. #ifdef FILAMENTCHANGE_FINALRETRACT
  2694. target[E_AXIS]+= FILAMENTCHANGE_FINALRETRACT ;
  2695. #endif
  2696. }
  2697. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder);
  2698. //finish moves
  2699. st_synchronize();
  2700. //disable extruder steppers so filament can be removed
  2701. disable_e0();
  2702. disable_e1();
  2703. disable_e2();
  2704. delay(100);
  2705. LCD_ALERTMESSAGEPGM(MSG_FILAMENTCHANGE);
  2706. uint8_t cnt=0;
  2707. while(!lcd_clicked()){
  2708. cnt++;
  2709. manage_heater();
  2710. manage_inactivity();
  2711. lcd_update();
  2712. if(cnt==0)
  2713. {
  2714. #if BEEPER > 0
  2715. SET_OUTPUT(BEEPER);
  2716. WRITE(BEEPER,HIGH);
  2717. delay(3);
  2718. WRITE(BEEPER,LOW);
  2719. delay(3);
  2720. #else
  2721. #if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)
  2722. lcd_buzz(1000/6,100);
  2723. #else
  2724. lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS,LCD_FEEDBACK_FREQUENCY_HZ);
  2725. #endif
  2726. #endif
  2727. }
  2728. }
  2729. //return to normal
  2730. if(code_seen('L'))
  2731. {
  2732. target[E_AXIS]+= -code_value();
  2733. }
  2734. else
  2735. {
  2736. #ifdef FILAMENTCHANGE_FINALRETRACT
  2737. target[E_AXIS]+=(-1)*FILAMENTCHANGE_FINALRETRACT ;
  2738. #endif
  2739. }
  2740. current_position[E_AXIS]=target[E_AXIS]; //the long retract of L is compensated by manual filament feeding
  2741. plan_set_e_position(current_position[E_AXIS]);
  2742. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder); //should do nothing
  2743. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder); //move xy back
  2744. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder); //move z back
  2745. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], lastpos[E_AXIS], feedrate/60, active_extruder); //final untretract
  2746. }
  2747. break;
  2748. #endif //FILAMENTCHANGEENABLE
  2749. #ifdef DUAL_X_CARRIAGE
  2750. case 605: // Set dual x-carriage movement mode:
  2751. // M605 S0: Full control mode. The slicer has full control over x-carriage movement
  2752. // M605 S1: Auto-park mode. The inactive head will auto park/unpark without slicer involvement
  2753. // M605 S2 [Xnnn] [Rmmm]: Duplication mode. The second extruder will duplicate the first with nnn
  2754. // millimeters x-offset and an optional differential hotend temperature of
  2755. // mmm degrees. E.g., with "M605 S2 X100 R2" the second extruder will duplicate
  2756. // the first with a spacing of 100mm in the x direction and 2 degrees hotter.
  2757. //
  2758. // Note: the X axis should be homed after changing dual x-carriage mode.
  2759. {
  2760. st_synchronize();
  2761. if (code_seen('S'))
  2762. dual_x_carriage_mode = code_value();
  2763. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE)
  2764. {
  2765. if (code_seen('X'))
  2766. duplicate_extruder_x_offset = max(code_value(),X2_MIN_POS - x_home_pos(0));
  2767. if (code_seen('R'))
  2768. duplicate_extruder_temp_offset = code_value();
  2769. SERIAL_ECHO_START;
  2770. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  2771. SERIAL_ECHO(" ");
  2772. SERIAL_ECHO(extruder_offset[X_AXIS][0]);
  2773. SERIAL_ECHO(",");
  2774. SERIAL_ECHO(extruder_offset[Y_AXIS][0]);
  2775. SERIAL_ECHO(" ");
  2776. SERIAL_ECHO(duplicate_extruder_x_offset);
  2777. SERIAL_ECHO(",");
  2778. SERIAL_ECHOLN(extruder_offset[Y_AXIS][1]);
  2779. }
  2780. else if (dual_x_carriage_mode != DXC_FULL_CONTROL_MODE && dual_x_carriage_mode != DXC_AUTO_PARK_MODE)
  2781. {
  2782. dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  2783. }
  2784. active_extruder_parked = false;
  2785. extruder_duplication_enabled = false;
  2786. delayed_move_time = 0;
  2787. }
  2788. break;
  2789. #endif //DUAL_X_CARRIAGE
  2790. case 907: // M907 Set digital trimpot motor current using axis codes.
  2791. {
  2792. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  2793. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_current(i,code_value());
  2794. if(code_seen('B')) digipot_current(4,code_value());
  2795. if(code_seen('S')) for(int i=0;i<=4;i++) digipot_current(i,code_value());
  2796. #endif
  2797. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  2798. if(code_seen('X')) digipot_current(0, code_value());
  2799. #endif
  2800. #ifdef MOTOR_CURRENT_PWM_Z_PIN
  2801. if(code_seen('Z')) digipot_current(1, code_value());
  2802. #endif
  2803. #ifdef MOTOR_CURRENT_PWM_E_PIN
  2804. if(code_seen('E')) digipot_current(2, code_value());
  2805. #endif
  2806. #ifdef DIGIPOT_I2C
  2807. // this one uses actual amps in floating point
  2808. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_i2c_set_current(i, code_value());
  2809. // for each additional extruder (named B,C,D,E..., channels 4,5,6,7...)
  2810. for(int i=NUM_AXIS;i<DIGIPOT_I2C_NUM_CHANNELS;i++) if(code_seen('B'+i-NUM_AXIS)) digipot_i2c_set_current(i, code_value());
  2811. #endif
  2812. }
  2813. break;
  2814. case 908: // M908 Control digital trimpot directly.
  2815. {
  2816. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  2817. uint8_t channel,current;
  2818. if(code_seen('P')) channel=code_value();
  2819. if(code_seen('S')) current=code_value();
  2820. digitalPotWrite(channel, current);
  2821. #endif
  2822. }
  2823. break;
  2824. case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  2825. {
  2826. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  2827. if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value());
  2828. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_mode(i,(uint8_t)code_value());
  2829. if(code_seen('B')) microstep_mode(4,code_value());
  2830. microstep_readings();
  2831. #endif
  2832. }
  2833. break;
  2834. case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  2835. {
  2836. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  2837. if(code_seen('S')) switch((int)code_value())
  2838. {
  2839. case 1:
  2840. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,code_value(),-1);
  2841. if(code_seen('B')) microstep_ms(4,code_value(),-1);
  2842. break;
  2843. case 2:
  2844. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,-1,code_value());
  2845. if(code_seen('B')) microstep_ms(4,-1,code_value());
  2846. break;
  2847. }
  2848. microstep_readings();
  2849. #endif
  2850. }
  2851. break;
  2852. case 999: // M999: Restart after being stopped
  2853. Stopped = false;
  2854. lcd_reset_alert_level();
  2855. gcode_LastN = Stopped_gcode_LastN;
  2856. FlushSerialRequestResend();
  2857. break;
  2858. }
  2859. }
  2860. else if(code_seen('T'))
  2861. {
  2862. tmp_extruder = code_value();
  2863. if(tmp_extruder >= EXTRUDERS) {
  2864. SERIAL_ECHO_START;
  2865. SERIAL_ECHO("T");
  2866. SERIAL_ECHO(tmp_extruder);
  2867. SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
  2868. }
  2869. else {
  2870. boolean make_move = false;
  2871. if(code_seen('F')) {
  2872. make_move = true;
  2873. next_feedrate = code_value();
  2874. if(next_feedrate > 0.0) {
  2875. feedrate = next_feedrate;
  2876. }
  2877. }
  2878. #if EXTRUDERS > 1
  2879. if(tmp_extruder != active_extruder) {
  2880. // Save current position to return to after applying extruder offset
  2881. memcpy(destination, current_position, sizeof(destination));
  2882. #ifdef DUAL_X_CARRIAGE
  2883. if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE && Stopped == false &&
  2884. (delayed_move_time != 0 || current_position[X_AXIS] != x_home_pos(active_extruder)))
  2885. {
  2886. // Park old head: 1) raise 2) move to park position 3) lower
  2887. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
  2888. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  2889. plan_buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
  2890. current_position[E_AXIS], max_feedrate[X_AXIS], active_extruder);
  2891. plan_buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS],
  2892. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  2893. st_synchronize();
  2894. }
  2895. // apply Y & Z extruder offset (x offset is already used in determining home pos)
  2896. current_position[Y_AXIS] = current_position[Y_AXIS] -
  2897. extruder_offset[Y_AXIS][active_extruder] +
  2898. extruder_offset[Y_AXIS][tmp_extruder];
  2899. current_position[Z_AXIS] = current_position[Z_AXIS] -
  2900. extruder_offset[Z_AXIS][active_extruder] +
  2901. extruder_offset[Z_AXIS][tmp_extruder];
  2902. active_extruder = tmp_extruder;
  2903. // This function resets the max/min values - the current position may be overwritten below.
  2904. axis_is_at_home(X_AXIS);
  2905. if (dual_x_carriage_mode == DXC_FULL_CONTROL_MODE)
  2906. {
  2907. current_position[X_AXIS] = inactive_extruder_x_pos;
  2908. inactive_extruder_x_pos = destination[X_AXIS];
  2909. }
  2910. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE)
  2911. {
  2912. active_extruder_parked = (active_extruder == 0); // this triggers the second extruder to move into the duplication position
  2913. if (active_extruder == 0 || active_extruder_parked)
  2914. current_position[X_AXIS] = inactive_extruder_x_pos;
  2915. else
  2916. current_position[X_AXIS] = destination[X_AXIS] + duplicate_extruder_x_offset;
  2917. inactive_extruder_x_pos = destination[X_AXIS];
  2918. extruder_duplication_enabled = false;
  2919. }
  2920. else
  2921. {
  2922. // record raised toolhead position for use by unpark
  2923. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  2924. raised_parked_position[Z_AXIS] += TOOLCHANGE_UNPARK_ZLIFT;
  2925. active_extruder_parked = true;
  2926. delayed_move_time = 0;
  2927. }
  2928. #else
  2929. // Offset extruder (only by XY)
  2930. int i;
  2931. for(i = 0; i < 2; i++) {
  2932. current_position[i] = current_position[i] -
  2933. extruder_offset[i][active_extruder] +
  2934. extruder_offset[i][tmp_extruder];
  2935. }
  2936. // Set the new active extruder and position
  2937. active_extruder = tmp_extruder;
  2938. #endif //else DUAL_X_CARRIAGE
  2939. #ifdef DELTA
  2940. calculate_delta(current_position); // change cartesian kinematic to delta kinematic;
  2941. //sent position to plan_set_position();
  2942. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS],current_position[E_AXIS]);
  2943. #else
  2944. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2945. #endif
  2946. // Move to the old position if 'F' was in the parameters
  2947. if(make_move && Stopped == false) {
  2948. prepare_move();
  2949. }
  2950. }
  2951. #endif
  2952. SERIAL_ECHO_START;
  2953. SERIAL_ECHO(MSG_ACTIVE_EXTRUDER);
  2954. SERIAL_PROTOCOLLN((int)active_extruder);
  2955. }
  2956. }
  2957. else
  2958. {
  2959. SERIAL_ECHO_START;
  2960. SERIAL_ECHOPGM(MSG_UNKNOWN_COMMAND);
  2961. SERIAL_ECHO(cmdbuffer[bufindr]);
  2962. SERIAL_ECHOLNPGM("\"");
  2963. }
  2964. ClearToSend();
  2965. }
  2966. void FlushSerialRequestResend()
  2967. {
  2968. //char cmdbuffer[bufindr][100]="Resend:";
  2969. MYSERIAL.flush();
  2970. SERIAL_PROTOCOLPGM(MSG_RESEND);
  2971. SERIAL_PROTOCOLLN(gcode_LastN + 1);
  2972. ClearToSend();
  2973. }
  2974. void ClearToSend()
  2975. {
  2976. previous_millis_cmd = millis();
  2977. #ifdef SDSUPPORT
  2978. if(fromsd[bufindr])
  2979. return;
  2980. #endif //SDSUPPORT
  2981. SERIAL_PROTOCOLLNPGM(MSG_OK);
  2982. }
  2983. void get_coordinates()
  2984. {
  2985. bool seen[4]={false,false,false,false};
  2986. for(int8_t i=0; i < NUM_AXIS; i++) {
  2987. if(code_seen(axis_codes[i]))
  2988. {
  2989. destination[i] = (float)code_value() + (axis_relative_modes[i] || relative_mode)*current_position[i];
  2990. seen[i]=true;
  2991. }
  2992. else destination[i] = current_position[i]; //Are these else lines really needed?
  2993. }
  2994. if(code_seen('F')) {
  2995. next_feedrate = code_value();
  2996. if(next_feedrate > 0.0) feedrate = next_feedrate;
  2997. }
  2998. }
  2999. void get_arc_coordinates()
  3000. {
  3001. #ifdef SF_ARC_FIX
  3002. bool relative_mode_backup = relative_mode;
  3003. relative_mode = true;
  3004. #endif
  3005. get_coordinates();
  3006. #ifdef SF_ARC_FIX
  3007. relative_mode=relative_mode_backup;
  3008. #endif
  3009. if(code_seen('I')) {
  3010. offset[0] = code_value();
  3011. }
  3012. else {
  3013. offset[0] = 0.0;
  3014. }
  3015. if(code_seen('J')) {
  3016. offset[1] = code_value();
  3017. }
  3018. else {
  3019. offset[1] = 0.0;
  3020. }
  3021. }
  3022. void clamp_to_software_endstops(float target[3])
  3023. {
  3024. if (min_software_endstops) {
  3025. if (target[X_AXIS] < min_pos[X_AXIS]) target[X_AXIS] = min_pos[X_AXIS];
  3026. if (target[Y_AXIS] < min_pos[Y_AXIS]) target[Y_AXIS] = min_pos[Y_AXIS];
  3027. if (target[Z_AXIS] < min_pos[Z_AXIS]) target[Z_AXIS] = min_pos[Z_AXIS];
  3028. }
  3029. if (max_software_endstops) {
  3030. if (target[X_AXIS] > max_pos[X_AXIS]) target[X_AXIS] = max_pos[X_AXIS];
  3031. if (target[Y_AXIS] > max_pos[Y_AXIS]) target[Y_AXIS] = max_pos[Y_AXIS];
  3032. if (target[Z_AXIS] > max_pos[Z_AXIS]) target[Z_AXIS] = max_pos[Z_AXIS];
  3033. }
  3034. }
  3035. #ifdef DELTA
  3036. void recalc_delta_settings(float radius, float diagonal_rod)
  3037. {
  3038. delta_tower1_x= -SIN_60*radius; // front left tower
  3039. delta_tower1_y= -COS_60*radius;
  3040. delta_tower2_x= SIN_60*radius; // front right tower
  3041. delta_tower2_y= -COS_60*radius;
  3042. delta_tower3_x= 0.0; // back middle tower
  3043. delta_tower3_y= radius;
  3044. delta_diagonal_rod_2= sq(diagonal_rod);
  3045. }
  3046. void calculate_delta(float cartesian[3])
  3047. {
  3048. delta[X_AXIS] = sqrt(delta_diagonal_rod_2
  3049. - sq(delta_tower1_x-cartesian[X_AXIS])
  3050. - sq(delta_tower1_y-cartesian[Y_AXIS])
  3051. ) + cartesian[Z_AXIS];
  3052. delta[Y_AXIS] = sqrt(delta_diagonal_rod_2
  3053. - sq(delta_tower2_x-cartesian[X_AXIS])
  3054. - sq(delta_tower2_y-cartesian[Y_AXIS])
  3055. ) + cartesian[Z_AXIS];
  3056. delta[Z_AXIS] = sqrt(delta_diagonal_rod_2
  3057. - sq(delta_tower3_x-cartesian[X_AXIS])
  3058. - sq(delta_tower3_y-cartesian[Y_AXIS])
  3059. ) + cartesian[Z_AXIS];
  3060. /*
  3061. SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);
  3062. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]);
  3063. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]);
  3064. SERIAL_ECHOPGM("delta x="); SERIAL_ECHO(delta[X_AXIS]);
  3065. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(delta[Y_AXIS]);
  3066. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(delta[Z_AXIS]);
  3067. */
  3068. }
  3069. #endif
  3070. void prepare_move()
  3071. {
  3072. clamp_to_software_endstops(destination);
  3073. previous_millis_cmd = millis();
  3074. #ifdef DELTA
  3075. float difference[NUM_AXIS];
  3076. for (int8_t i=0; i < NUM_AXIS; i++) {
  3077. difference[i] = destination[i] - current_position[i];
  3078. }
  3079. float cartesian_mm = sqrt(sq(difference[X_AXIS]) +
  3080. sq(difference[Y_AXIS]) +
  3081. sq(difference[Z_AXIS]));
  3082. if (cartesian_mm < 0.000001) { cartesian_mm = abs(difference[E_AXIS]); }
  3083. if (cartesian_mm < 0.000001) { return; }
  3084. float seconds = 6000 * cartesian_mm / feedrate / feedmultiply;
  3085. int steps = max(1, int(delta_segments_per_second * seconds));
  3086. // SERIAL_ECHOPGM("mm="); SERIAL_ECHO(cartesian_mm);
  3087. // SERIAL_ECHOPGM(" seconds="); SERIAL_ECHO(seconds);
  3088. // SERIAL_ECHOPGM(" steps="); SERIAL_ECHOLN(steps);
  3089. for (int s = 1; s <= steps; s++) {
  3090. float fraction = float(s) / float(steps);
  3091. for(int8_t i=0; i < NUM_AXIS; i++) {
  3092. destination[i] = current_position[i] + difference[i] * fraction;
  3093. }
  3094. calculate_delta(destination);
  3095. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS],
  3096. destination[E_AXIS], feedrate*feedmultiply/60/100.0,
  3097. active_extruder);
  3098. }
  3099. #else
  3100. #ifdef DUAL_X_CARRIAGE
  3101. if (active_extruder_parked)
  3102. {
  3103. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && active_extruder == 0)
  3104. {
  3105. // move duplicate extruder into correct duplication position.
  3106. plan_set_position(inactive_extruder_x_pos, current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  3107. plan_buffer_line(current_position[X_AXIS] + duplicate_extruder_x_offset, current_position[Y_AXIS], current_position[Z_AXIS],
  3108. current_position[E_AXIS], max_feedrate[X_AXIS], 1);
  3109. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  3110. st_synchronize();
  3111. extruder_duplication_enabled = true;
  3112. active_extruder_parked = false;
  3113. }
  3114. else if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE) // handle unparking of head
  3115. {
  3116. if (current_position[E_AXIS] == destination[E_AXIS])
  3117. {
  3118. // this is a travel move - skit it but keep track of current position (so that it can later
  3119. // be used as start of first non-travel move)
  3120. if (delayed_move_time != 0xFFFFFFFFUL)
  3121. {
  3122. memcpy(current_position, destination, sizeof(current_position));
  3123. if (destination[Z_AXIS] > raised_parked_position[Z_AXIS])
  3124. raised_parked_position[Z_AXIS] = destination[Z_AXIS];
  3125. delayed_move_time = millis();
  3126. return;
  3127. }
  3128. }
  3129. delayed_move_time = 0;
  3130. // unpark extruder: 1) raise, 2) move into starting XY position, 3) lower
  3131. plan_buffer_line(raised_parked_position[X_AXIS], raised_parked_position[Y_AXIS], raised_parked_position[Z_AXIS], current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  3132. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], raised_parked_position[Z_AXIS],
  3133. current_position[E_AXIS], min(max_feedrate[X_AXIS],max_feedrate[Y_AXIS]), active_extruder);
  3134. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS],
  3135. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  3136. active_extruder_parked = false;
  3137. }
  3138. }
  3139. #endif //DUAL_X_CARRIAGE
  3140. // Do not use feedmultiply for E or Z only moves
  3141. if( (current_position[X_AXIS] == destination [X_AXIS]) && (current_position[Y_AXIS] == destination [Y_AXIS])) {
  3142. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  3143. }
  3144. else {
  3145. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply/60/100.0, active_extruder);
  3146. }
  3147. #endif //else DELTA
  3148. for(int8_t i=0; i < NUM_AXIS; i++) {
  3149. current_position[i] = destination[i];
  3150. }
  3151. }
  3152. void prepare_arc_move(char isclockwise) {
  3153. float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
  3154. // Trace the arc
  3155. mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedmultiply/60/100.0, r, isclockwise, active_extruder);
  3156. // As far as the parser is concerned, the position is now == target. In reality the
  3157. // motion control system might still be processing the action and the real tool position
  3158. // in any intermediate location.
  3159. for(int8_t i=0; i < NUM_AXIS; i++) {
  3160. current_position[i] = destination[i];
  3161. }
  3162. previous_millis_cmd = millis();
  3163. }
  3164. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  3165. #if defined(FAN_PIN)
  3166. #if CONTROLLERFAN_PIN == FAN_PIN
  3167. #error "You cannot set CONTROLLERFAN_PIN equal to FAN_PIN"
  3168. #endif
  3169. #endif
  3170. unsigned long lastMotor = 0; //Save the time for when a motor was turned on last
  3171. unsigned long lastMotorCheck = 0;
  3172. void controllerFan()
  3173. {
  3174. if ((millis() - lastMotorCheck) >= 2500) //Not a time critical function, so we only check every 2500ms
  3175. {
  3176. lastMotorCheck = millis();
  3177. if(!READ(X_ENABLE_PIN) || !READ(Y_ENABLE_PIN) || !READ(Z_ENABLE_PIN) || (soft_pwm_bed > 0)
  3178. #if EXTRUDERS > 2
  3179. || !READ(E2_ENABLE_PIN)
  3180. #endif
  3181. #if EXTRUDER > 1
  3182. #if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1
  3183. || !READ(X2_ENABLE_PIN)
  3184. #endif
  3185. || !READ(E1_ENABLE_PIN)
  3186. #endif
  3187. || !READ(E0_ENABLE_PIN)) //If any of the drivers are enabled...
  3188. {
  3189. lastMotor = millis(); //... set time to NOW so the fan will turn on
  3190. }
  3191. if ((millis() - lastMotor) >= (CONTROLLERFAN_SECS*1000UL) || lastMotor == 0) //If the last time any driver was enabled, is longer since than CONTROLLERSEC...
  3192. {
  3193. digitalWrite(CONTROLLERFAN_PIN, 0);
  3194. analogWrite(CONTROLLERFAN_PIN, 0);
  3195. }
  3196. else
  3197. {
  3198. // allows digital or PWM fan output to be used (see M42 handling)
  3199. digitalWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  3200. analogWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  3201. }
  3202. }
  3203. }
  3204. #endif
  3205. #ifdef TEMP_STAT_LEDS
  3206. static bool blue_led = false;
  3207. static bool red_led = false;
  3208. static uint32_t stat_update = 0;
  3209. void handle_status_leds(void) {
  3210. float max_temp = 0.0;
  3211. if(millis() > stat_update) {
  3212. stat_update += 500; // Update every 0.5s
  3213. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  3214. max_temp = max(max_temp, degHotend(cur_extruder));
  3215. max_temp = max(max_temp, degTargetHotend(cur_extruder));
  3216. }
  3217. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  3218. max_temp = max(max_temp, degTargetBed());
  3219. max_temp = max(max_temp, degBed());
  3220. #endif
  3221. if((max_temp > 55.0) && (red_led == false)) {
  3222. digitalWrite(STAT_LED_RED, 1);
  3223. digitalWrite(STAT_LED_BLUE, 0);
  3224. red_led = true;
  3225. blue_led = false;
  3226. }
  3227. if((max_temp < 54.0) && (blue_led == false)) {
  3228. digitalWrite(STAT_LED_RED, 0);
  3229. digitalWrite(STAT_LED_BLUE, 1);
  3230. red_led = false;
  3231. blue_led = true;
  3232. }
  3233. }
  3234. }
  3235. #endif
  3236. void manage_inactivity()
  3237. {
  3238. if(buflen < (BUFSIZE-1))
  3239. get_command();
  3240. if( (millis() - previous_millis_cmd) > max_inactive_time )
  3241. if(max_inactive_time)
  3242. kill();
  3243. if(stepper_inactive_time) {
  3244. if( (millis() - previous_millis_cmd) > stepper_inactive_time )
  3245. {
  3246. if(blocks_queued() == false) {
  3247. disable_x();
  3248. disable_y();
  3249. disable_z();
  3250. disable_e0();
  3251. disable_e1();
  3252. disable_e2();
  3253. }
  3254. }
  3255. }
  3256. #ifdef CHDK //Check if pin should be set to LOW after M240 set it to HIGH
  3257. if (chdkActive)
  3258. {
  3259. chdkActive = false;
  3260. if (millis()-chdkHigh < CHDK_DELAY) return;
  3261. WRITE(CHDK, LOW);
  3262. }
  3263. #endif
  3264. #if defined(KILL_PIN) && KILL_PIN > -1
  3265. if( 0 == READ(KILL_PIN) )
  3266. kill();
  3267. #endif
  3268. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  3269. controllerFan(); //Check if fan should be turned on to cool stepper drivers down
  3270. #endif
  3271. #ifdef EXTRUDER_RUNOUT_PREVENT
  3272. if( (millis() - previous_millis_cmd) > EXTRUDER_RUNOUT_SECONDS*1000 )
  3273. if(degHotend(active_extruder)>EXTRUDER_RUNOUT_MINTEMP)
  3274. {
  3275. bool oldstatus=READ(E0_ENABLE_PIN);
  3276. enable_e0();
  3277. float oldepos=current_position[E_AXIS];
  3278. float oldedes=destination[E_AXIS];
  3279. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
  3280. destination[E_AXIS]+EXTRUDER_RUNOUT_EXTRUDE*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS],
  3281. EXTRUDER_RUNOUT_SPEED/60.*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS], active_extruder);
  3282. current_position[E_AXIS]=oldepos;
  3283. destination[E_AXIS]=oldedes;
  3284. plan_set_e_position(oldepos);
  3285. previous_millis_cmd=millis();
  3286. st_synchronize();
  3287. WRITE(E0_ENABLE_PIN,oldstatus);
  3288. }
  3289. #endif
  3290. #if defined(DUAL_X_CARRIAGE)
  3291. // handle delayed move timeout
  3292. if (delayed_move_time != 0 && (millis() - delayed_move_time) > 1000 && Stopped == false)
  3293. {
  3294. // travel moves have been received so enact them
  3295. delayed_move_time = 0xFFFFFFFFUL; // force moves to be done
  3296. memcpy(destination,current_position,sizeof(destination));
  3297. prepare_move();
  3298. }
  3299. #endif
  3300. #ifdef TEMP_STAT_LEDS
  3301. handle_status_leds();
  3302. #endif
  3303. check_axes_activity();
  3304. }
  3305. void kill()
  3306. {
  3307. cli(); // Stop interrupts
  3308. disable_heater();
  3309. disable_x();
  3310. disable_y();
  3311. disable_z();
  3312. disable_e0();
  3313. disable_e1();
  3314. disable_e2();
  3315. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  3316. pinMode(PS_ON_PIN,INPUT);
  3317. #endif
  3318. SERIAL_ERROR_START;
  3319. SERIAL_ERRORLNPGM(MSG_ERR_KILLED);
  3320. LCD_ALERTMESSAGEPGM(MSG_KILLED);
  3321. suicide();
  3322. while(1) { /* Intentionally left empty */ } // Wait for reset
  3323. }
  3324. void Stop()
  3325. {
  3326. disable_heater();
  3327. if(Stopped == false) {
  3328. Stopped = true;
  3329. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  3330. SERIAL_ERROR_START;
  3331. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  3332. LCD_MESSAGEPGM(MSG_STOPPED);
  3333. }
  3334. }
  3335. bool IsStopped() { return Stopped; };
  3336. #ifdef FAST_PWM_FAN
  3337. void setPwmFrequency(uint8_t pin, int val)
  3338. {
  3339. val &= 0x07;
  3340. switch(digitalPinToTimer(pin))
  3341. {
  3342. #if defined(TCCR0A)
  3343. case TIMER0A:
  3344. case TIMER0B:
  3345. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  3346. // TCCR0B |= val;
  3347. break;
  3348. #endif
  3349. #if defined(TCCR1A)
  3350. case TIMER1A:
  3351. case TIMER1B:
  3352. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  3353. // TCCR1B |= val;
  3354. break;
  3355. #endif
  3356. #if defined(TCCR2)
  3357. case TIMER2:
  3358. case TIMER2:
  3359. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  3360. TCCR2 |= val;
  3361. break;
  3362. #endif
  3363. #if defined(TCCR2A)
  3364. case TIMER2A:
  3365. case TIMER2B:
  3366. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  3367. TCCR2B |= val;
  3368. break;
  3369. #endif
  3370. #if defined(TCCR3A)
  3371. case TIMER3A:
  3372. case TIMER3B:
  3373. case TIMER3C:
  3374. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  3375. TCCR3B |= val;
  3376. break;
  3377. #endif
  3378. #if defined(TCCR4A)
  3379. case TIMER4A:
  3380. case TIMER4B:
  3381. case TIMER4C:
  3382. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  3383. TCCR4B |= val;
  3384. break;
  3385. #endif
  3386. #if defined(TCCR5A)
  3387. case TIMER5A:
  3388. case TIMER5B:
  3389. case TIMER5C:
  3390. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  3391. TCCR5B |= val;
  3392. break;
  3393. #endif
  3394. }
  3395. }
  3396. #endif //FAST_PWM_FAN
  3397. bool setTargetedHotend(int code){
  3398. tmp_extruder = active_extruder;
  3399. if(code_seen('T')) {
  3400. tmp_extruder = code_value();
  3401. if(tmp_extruder >= EXTRUDERS) {
  3402. SERIAL_ECHO_START;
  3403. switch(code){
  3404. case 104:
  3405. SERIAL_ECHO(MSG_M104_INVALID_EXTRUDER);
  3406. break;
  3407. case 105:
  3408. SERIAL_ECHO(MSG_M105_INVALID_EXTRUDER);
  3409. break;
  3410. case 109:
  3411. SERIAL_ECHO(MSG_M109_INVALID_EXTRUDER);
  3412. break;
  3413. case 218:
  3414. SERIAL_ECHO(MSG_M218_INVALID_EXTRUDER);
  3415. break;
  3416. case 221:
  3417. SERIAL_ECHO(MSG_M221_INVALID_EXTRUDER);
  3418. break;
  3419. }
  3420. SERIAL_ECHOLN(tmp_extruder);
  3421. return true;
  3422. }
  3423. }
  3424. return false;
  3425. }