My Marlin configs for Fabrikator Mini and CTC i3 Pro B
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

Marlin_main.cpp 146KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410
  1. /* -*- c++ -*- */
  2. /*
  3. Reprap firmware based on Sprinter and grbl.
  4. Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  5. This program is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. This program is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with this program. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. /*
  17. This firmware is a mashup between Sprinter and grbl.
  18. (https://github.com/kliment/Sprinter)
  19. (https://github.com/simen/grbl/tree)
  20. It has preliminary support for Matthew Roberts advance algorithm
  21. http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  22. */
  23. #include "Marlin.h"
  24. #ifdef ENABLE_AUTO_BED_LEVELING
  25. #include "vector_3.h"
  26. #ifdef AUTO_BED_LEVELING_GRID
  27. #include "qr_solve.h"
  28. #endif
  29. #endif // ENABLE_AUTO_BED_LEVELING
  30. #include "ultralcd.h"
  31. #include "planner.h"
  32. #include "stepper.h"
  33. #include "temperature.h"
  34. #include "motion_control.h"
  35. #include "cardreader.h"
  36. #include "watchdog.h"
  37. #include "ConfigurationStore.h"
  38. #include "language.h"
  39. #include "pins_arduino.h"
  40. #include "math.h"
  41. #ifdef BLINKM
  42. #include "BlinkM.h"
  43. #include "Wire.h"
  44. #endif
  45. #if NUM_SERVOS > 0
  46. #include "Servo.h"
  47. #endif
  48. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  49. #include <SPI.h>
  50. #endif
  51. #define VERSION_STRING "1.0.0"
  52. // look here for descriptions of G-codes: http://linuxcnc.org/handbook/gcode/g-code.html
  53. // http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  54. //Implemented Codes
  55. //-------------------
  56. // G0 -> G1
  57. // G1 - Coordinated Movement X Y Z E
  58. // G2 - CW ARC
  59. // G3 - CCW ARC
  60. // G4 - Dwell S<seconds> or P<milliseconds>
  61. // G10 - retract filament according to settings of M207
  62. // G11 - retract recover filament according to settings of M208
  63. // G28 - Home all Axis
  64. // G29 - Detailed Z-Probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  65. // G30 - Single Z Probe, probes bed at current XY location.
  66. // G31 - Dock sled (Z_PROBE_SLED only)
  67. // G32 - Undock sled (Z_PROBE_SLED only)
  68. // G90 - Use Absolute Coordinates
  69. // G91 - Use Relative Coordinates
  70. // G92 - Set current position to coordinates given
  71. // M Codes
  72. // M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
  73. // M1 - Same as M0
  74. // M17 - Enable/Power all stepper motors
  75. // M18 - Disable all stepper motors; same as M84
  76. // M20 - List SD card
  77. // M21 - Init SD card
  78. // M22 - Release SD card
  79. // M23 - Select SD file (M23 filename.g)
  80. // M24 - Start/resume SD print
  81. // M25 - Pause SD print
  82. // M26 - Set SD position in bytes (M26 S12345)
  83. // M27 - Report SD print status
  84. // M28 - Start SD write (M28 filename.g)
  85. // M29 - Stop SD write
  86. // M30 - Delete file from SD (M30 filename.g)
  87. // M31 - Output time since last M109 or SD card start to serial
  88. // M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  89. // syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  90. // Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
  91. // The '#' is necessary when calling from within sd files, as it stops buffer prereading
  92. // M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  93. // M80 - Turn on Power Supply
  94. // M81 - Turn off Power Supply
  95. // M82 - Set E codes absolute (default)
  96. // M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  97. // M84 - Disable steppers until next move,
  98. // or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  99. // M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  100. // M92 - Set axis_steps_per_unit - same syntax as G92
  101. // M104 - Set extruder target temp
  102. // M105 - Read current temp
  103. // M106 - Fan on
  104. // M107 - Fan off
  105. // M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  106. // Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  107. // IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  108. // M112 - Emergency stop
  109. // M114 - Output current position to serial port
  110. // M115 - Capabilities string
  111. // M117 - display message
  112. // M119 - Output Endstop status to serial port
  113. // M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  114. // M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  115. // M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  116. // M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  117. // M140 - Set bed target temp
  118. // M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  119. // M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  120. // Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  121. // M200 D<millimeters>- set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  122. // M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  123. // M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  124. // M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  125. // M204 - Set default acceleration: S normal moves T filament only moves (M204 S3000 T7000) in mm/sec^2 also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  126. // M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
  127. // M206 - set additional homing offset
  128. // M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
  129. // M208 - set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
  130. // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  131. // M218 - set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  132. // M220 S<factor in percent>- set speed factor override percentage
  133. // M221 S<factor in percent>- set extrude factor override percentage
  134. // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  135. // M240 - Trigger a camera to take a photograph
  136. // M250 - Set LCD contrast C<contrast value> (value 0..63)
  137. // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  138. // M300 - Play beep sound S<frequency Hz> P<duration ms>
  139. // M301 - Set PID parameters P I and D
  140. // M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  141. // M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  142. // M304 - Set bed PID parameters P I and D
  143. // M400 - Finish all moves
  144. // M401 - Lower z-probe if present
  145. // M402 - Raise z-probe if present
  146. // M500 - stores parameters in EEPROM
  147. // M501 - reads parameters from EEPROM (if you need reset them after you changed them temporarily).
  148. // M502 - reverts to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  149. // M503 - print the current settings (from memory not from EEPROM)
  150. // M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  151. // M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  152. // M665 - set delta configurations
  153. // M666 - set delta endstop adjustment
  154. // M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  155. // M907 - Set digital trimpot motor current using axis codes.
  156. // M908 - Control digital trimpot directly.
  157. // M350 - Set microstepping mode.
  158. // M351 - Toggle MS1 MS2 pins directly.
  159. // ************ SCARA Specific - This can change to suit future G-code regulations
  160. // M360 - SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  161. // M361 - SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  162. // M362 - SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  163. // M363 - SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  164. // M364 - SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
  165. // M365 - SCARA calibration: Scaling factor, X, Y, Z axis
  166. //************* SCARA End ***************
  167. // M928 - Start SD logging (M928 filename.g) - ended by M29
  168. // M999 - Restart after being stopped by error
  169. //Stepper Movement Variables
  170. //===========================================================================
  171. //=============================imported variables============================
  172. //===========================================================================
  173. //===========================================================================
  174. //=============================public variables=============================
  175. //===========================================================================
  176. #ifdef SDSUPPORT
  177. CardReader card;
  178. #endif
  179. float homing_feedrate[] = HOMING_FEEDRATE;
  180. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  181. int feedmultiply=100; //100->1 200->2
  182. int saved_feedmultiply;
  183. int extrudemultiply=100; //100->1 200->2
  184. int extruder_multiply[EXTRUDERS] = {100
  185. #if EXTRUDERS > 1
  186. , 100
  187. #if EXTRUDERS > 2
  188. , 100
  189. #endif
  190. #endif
  191. };
  192. float volumetric_multiplier[EXTRUDERS] = {1.0
  193. #if EXTRUDERS > 1
  194. , 1.0
  195. #if EXTRUDERS > 2
  196. , 1.0
  197. #endif
  198. #endif
  199. };
  200. float current_position[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0 };
  201. float add_homeing[3]={0,0,0};
  202. #ifdef DELTA
  203. float endstop_adj[3]={0,0,0};
  204. #endif
  205. float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  206. float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  207. bool axis_known_position[3] = {false, false, false};
  208. float zprobe_zoffset;
  209. // Extruder offset
  210. #if EXTRUDERS > 1
  211. #ifndef DUAL_X_CARRIAGE
  212. #define NUM_EXTRUDER_OFFSETS 2 // only in XY plane
  213. #else
  214. #define NUM_EXTRUDER_OFFSETS 3 // supports offsets in XYZ plane
  215. #endif
  216. float extruder_offset[NUM_EXTRUDER_OFFSETS][EXTRUDERS] = {
  217. #if defined(EXTRUDER_OFFSET_X) && defined(EXTRUDER_OFFSET_Y)
  218. EXTRUDER_OFFSET_X, EXTRUDER_OFFSET_Y
  219. #endif
  220. };
  221. #endif
  222. uint8_t active_extruder = 0;
  223. int fanSpeed=0;
  224. #ifdef SERVO_ENDSTOPS
  225. int servo_endstops[] = SERVO_ENDSTOPS;
  226. int servo_endstop_angles[] = SERVO_ENDSTOP_ANGLES;
  227. #endif
  228. #ifdef BARICUDA
  229. int ValvePressure=0;
  230. int EtoPPressure=0;
  231. #endif
  232. #ifdef FWRETRACT
  233. bool autoretract_enabled=false;
  234. bool retracted[EXTRUDERS]={false
  235. #if EXTRUDERS > 1
  236. , false
  237. #if EXTRUDERS > 2
  238. , false
  239. #endif
  240. #endif
  241. };
  242. bool retracted_swap[EXTRUDERS]={false
  243. #if EXTRUDERS > 1
  244. , false
  245. #if EXTRUDERS > 2
  246. , false
  247. #endif
  248. #endif
  249. };
  250. float retract_length = RETRACT_LENGTH;
  251. float retract_length_swap = RETRACT_LENGTH_SWAP;
  252. float retract_feedrate = RETRACT_FEEDRATE;
  253. float retract_zlift = RETRACT_ZLIFT;
  254. float retract_recover_length = RETRACT_RECOVER_LENGTH;
  255. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  256. float retract_recover_feedrate = RETRACT_RECOVER_FEEDRATE;
  257. #endif
  258. #ifdef ULTIPANEL
  259. #ifdef PS_DEFAULT_OFF
  260. bool powersupply = false;
  261. #else
  262. bool powersupply = true;
  263. #endif
  264. #endif
  265. #ifdef DELTA
  266. float delta[3] = {0.0, 0.0, 0.0};
  267. #define SIN_60 0.8660254037844386
  268. #define COS_60 0.5
  269. // these are the default values, can be overriden with M665
  270. float delta_radius= DELTA_RADIUS;
  271. float delta_tower1_x= -SIN_60*delta_radius; // front left tower
  272. float delta_tower1_y= -COS_60*delta_radius;
  273. float delta_tower2_x= SIN_60*delta_radius; // front right tower
  274. float delta_tower2_y= -COS_60*delta_radius;
  275. float delta_tower3_x= 0.0; // back middle tower
  276. float delta_tower3_y= delta_radius;
  277. float delta_diagonal_rod= DELTA_DIAGONAL_ROD;
  278. float delta_diagonal_rod_2= sq(delta_diagonal_rod);
  279. float delta_segments_per_second= DELTA_SEGMENTS_PER_SECOND;
  280. #endif
  281. #ifdef SCARA // Build size scaling
  282. float axis_scaling[3]={1,1,1}; // Build size scaling, default to 1
  283. #endif
  284. bool cancel_heatup = false ;
  285. //===========================================================================
  286. //=============================Private Variables=============================
  287. //===========================================================================
  288. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  289. static float destination[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0};
  290. static float delta[3] = {0.0, 0.0, 0.0};
  291. static float offset[3] = {0.0, 0.0, 0.0};
  292. static bool home_all_axis = true;
  293. static float feedrate = 1500.0, next_feedrate, saved_feedrate;
  294. static long gcode_N, gcode_LastN, Stopped_gcode_LastN = 0;
  295. static bool relative_mode = false; //Determines Absolute or Relative Coordinates
  296. static char cmdbuffer[BUFSIZE][MAX_CMD_SIZE];
  297. static bool fromsd[BUFSIZE];
  298. static int bufindr = 0;
  299. static int bufindw = 0;
  300. static int buflen = 0;
  301. //static int i = 0;
  302. static char serial_char;
  303. static int serial_count = 0;
  304. static boolean comment_mode = false;
  305. static char *strchr_pointer; // just a pointer to find chars in the command string like X, Y, Z, E, etc
  306. const int sensitive_pins[] = SENSITIVE_PINS; // Sensitive pin list for M42
  307. //static float tt = 0;
  308. //static float bt = 0;
  309. //Inactivity shutdown variables
  310. static unsigned long previous_millis_cmd = 0;
  311. static unsigned long max_inactive_time = 0;
  312. static unsigned long stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME*1000l;
  313. unsigned long starttime=0;
  314. unsigned long stoptime=0;
  315. static uint8_t tmp_extruder;
  316. bool Stopped=false;
  317. #if NUM_SERVOS > 0
  318. Servo servos[NUM_SERVOS];
  319. #endif
  320. bool CooldownNoWait = true;
  321. bool target_direction;
  322. //Insert variables if CHDK is defined
  323. #ifdef CHDK
  324. unsigned long chdkHigh = 0;
  325. boolean chdkActive = false;
  326. #endif
  327. //===========================================================================
  328. //=============================Routines======================================
  329. //===========================================================================
  330. void get_arc_coordinates();
  331. bool setTargetedHotend(int code);
  332. void serial_echopair_P(const char *s_P, float v)
  333. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  334. void serial_echopair_P(const char *s_P, double v)
  335. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  336. void serial_echopair_P(const char *s_P, unsigned long v)
  337. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  338. extern "C"{
  339. extern unsigned int __bss_end;
  340. extern unsigned int __heap_start;
  341. extern void *__brkval;
  342. int freeMemory() {
  343. int free_memory;
  344. if((int)__brkval == 0)
  345. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  346. else
  347. free_memory = ((int)&free_memory) - ((int)__brkval);
  348. return free_memory;
  349. }
  350. }
  351. //adds an command to the main command buffer
  352. //thats really done in a non-safe way.
  353. //needs overworking someday
  354. void enquecommand(const char *cmd)
  355. {
  356. if(buflen < BUFSIZE)
  357. {
  358. //this is dangerous if a mixing of serial and this happens
  359. strcpy(&(cmdbuffer[bufindw][0]),cmd);
  360. SERIAL_ECHO_START;
  361. SERIAL_ECHOPGM("enqueing \"");
  362. SERIAL_ECHO(cmdbuffer[bufindw]);
  363. SERIAL_ECHOLNPGM("\"");
  364. bufindw= (bufindw + 1)%BUFSIZE;
  365. buflen += 1;
  366. }
  367. }
  368. void enquecommand_P(const char *cmd)
  369. {
  370. if(buflen < BUFSIZE)
  371. {
  372. //this is dangerous if a mixing of serial and this happens
  373. strcpy_P(&(cmdbuffer[bufindw][0]),cmd);
  374. SERIAL_ECHO_START;
  375. SERIAL_ECHOPGM("enqueing \"");
  376. SERIAL_ECHO(cmdbuffer[bufindw]);
  377. SERIAL_ECHOLNPGM("\"");
  378. bufindw= (bufindw + 1)%BUFSIZE;
  379. buflen += 1;
  380. }
  381. }
  382. void setup_killpin()
  383. {
  384. #if defined(KILL_PIN) && KILL_PIN > -1
  385. pinMode(KILL_PIN,INPUT);
  386. WRITE(KILL_PIN,HIGH);
  387. #endif
  388. }
  389. void setup_photpin()
  390. {
  391. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  392. SET_OUTPUT(PHOTOGRAPH_PIN);
  393. WRITE(PHOTOGRAPH_PIN, LOW);
  394. #endif
  395. }
  396. void setup_powerhold()
  397. {
  398. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  399. SET_OUTPUT(SUICIDE_PIN);
  400. WRITE(SUICIDE_PIN, HIGH);
  401. #endif
  402. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  403. SET_OUTPUT(PS_ON_PIN);
  404. #if defined(PS_DEFAULT_OFF)
  405. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  406. #else
  407. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  408. #endif
  409. #endif
  410. }
  411. void suicide()
  412. {
  413. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  414. SET_OUTPUT(SUICIDE_PIN);
  415. WRITE(SUICIDE_PIN, LOW);
  416. #endif
  417. }
  418. void servo_init()
  419. {
  420. #if (NUM_SERVOS >= 1) && defined(SERVO0_PIN) && (SERVO0_PIN > -1)
  421. servos[0].attach(SERVO0_PIN);
  422. #endif
  423. #if (NUM_SERVOS >= 2) && defined(SERVO1_PIN) && (SERVO1_PIN > -1)
  424. servos[1].attach(SERVO1_PIN);
  425. #endif
  426. #if (NUM_SERVOS >= 3) && defined(SERVO2_PIN) && (SERVO2_PIN > -1)
  427. servos[2].attach(SERVO2_PIN);
  428. #endif
  429. #if (NUM_SERVOS >= 4) && defined(SERVO3_PIN) && (SERVO3_PIN > -1)
  430. servos[3].attach(SERVO3_PIN);
  431. #endif
  432. #if (NUM_SERVOS >= 5)
  433. #error "TODO: enter initalisation code for more servos"
  434. #endif
  435. // Set position of Servo Endstops that are defined
  436. #ifdef SERVO_ENDSTOPS
  437. for(int8_t i = 0; i < 3; i++)
  438. {
  439. if(servo_endstops[i] > -1) {
  440. servos[servo_endstops[i]].write(servo_endstop_angles[i * 2 + 1]);
  441. }
  442. }
  443. #endif
  444. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  445. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  446. servos[servo_endstops[Z_AXIS]].detach();
  447. #endif
  448. }
  449. void setup()
  450. {
  451. setup_killpin();
  452. setup_powerhold();
  453. MYSERIAL.begin(BAUDRATE);
  454. SERIAL_PROTOCOLLNPGM("start");
  455. SERIAL_ECHO_START;
  456. // Check startup - does nothing if bootloader sets MCUSR to 0
  457. byte mcu = MCUSR;
  458. if(mcu & 1) SERIAL_ECHOLNPGM(MSG_POWERUP);
  459. if(mcu & 2) SERIAL_ECHOLNPGM(MSG_EXTERNAL_RESET);
  460. if(mcu & 4) SERIAL_ECHOLNPGM(MSG_BROWNOUT_RESET);
  461. if(mcu & 8) SERIAL_ECHOLNPGM(MSG_WATCHDOG_RESET);
  462. if(mcu & 32) SERIAL_ECHOLNPGM(MSG_SOFTWARE_RESET);
  463. MCUSR=0;
  464. SERIAL_ECHOPGM(MSG_MARLIN);
  465. SERIAL_ECHOLNPGM(VERSION_STRING);
  466. #ifdef STRING_VERSION_CONFIG_H
  467. #ifdef STRING_CONFIG_H_AUTHOR
  468. SERIAL_ECHO_START;
  469. SERIAL_ECHOPGM(MSG_CONFIGURATION_VER);
  470. SERIAL_ECHOPGM(STRING_VERSION_CONFIG_H);
  471. SERIAL_ECHOPGM(MSG_AUTHOR);
  472. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  473. SERIAL_ECHOPGM("Compiled: ");
  474. SERIAL_ECHOLNPGM(__DATE__);
  475. #endif
  476. #endif
  477. SERIAL_ECHO_START;
  478. SERIAL_ECHOPGM(MSG_FREE_MEMORY);
  479. SERIAL_ECHO(freeMemory());
  480. SERIAL_ECHOPGM(MSG_PLANNER_BUFFER_BYTES);
  481. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  482. for(int8_t i = 0; i < BUFSIZE; i++)
  483. {
  484. fromsd[i] = false;
  485. }
  486. // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  487. Config_RetrieveSettings();
  488. tp_init(); // Initialize temperature loop
  489. plan_init(); // Initialize planner;
  490. watchdog_init();
  491. st_init(); // Initialize stepper, this enables interrupts!
  492. setup_photpin();
  493. servo_init();
  494. lcd_init();
  495. _delay_ms(1000); // wait 1sec to display the splash screen
  496. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  497. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  498. #endif
  499. #ifdef DIGIPOT_I2C
  500. digipot_i2c_init();
  501. #endif
  502. #ifdef Z_PROBE_SLED
  503. pinMode(SERVO0_PIN, OUTPUT);
  504. digitalWrite(SERVO0_PIN, LOW); // turn it off
  505. #endif // Z_PROBE_SLED
  506. }
  507. void loop()
  508. {
  509. if(buflen < (BUFSIZE-1))
  510. get_command();
  511. #ifdef SDSUPPORT
  512. card.checkautostart(false);
  513. #endif
  514. if(buflen)
  515. {
  516. #ifdef SDSUPPORT
  517. if(card.saving)
  518. {
  519. if(strstr_P(cmdbuffer[bufindr], PSTR("M29")) == NULL)
  520. {
  521. card.write_command(cmdbuffer[bufindr]);
  522. if(card.logging)
  523. {
  524. process_commands();
  525. }
  526. else
  527. {
  528. SERIAL_PROTOCOLLNPGM(MSG_OK);
  529. }
  530. }
  531. else
  532. {
  533. card.closefile();
  534. SERIAL_PROTOCOLLNPGM(MSG_FILE_SAVED);
  535. }
  536. }
  537. else
  538. {
  539. process_commands();
  540. }
  541. #else
  542. process_commands();
  543. #endif //SDSUPPORT
  544. buflen = (buflen-1);
  545. bufindr = (bufindr + 1)%BUFSIZE;
  546. }
  547. //check heater every n milliseconds
  548. manage_heater();
  549. manage_inactivity();
  550. checkHitEndstops();
  551. lcd_update();
  552. }
  553. void get_command()
  554. {
  555. while( MYSERIAL.available() > 0 && buflen < BUFSIZE) {
  556. serial_char = MYSERIAL.read();
  557. if(serial_char == '\n' ||
  558. serial_char == '\r' ||
  559. (serial_char == ':' && comment_mode == false) ||
  560. serial_count >= (MAX_CMD_SIZE - 1) )
  561. {
  562. if(!serial_count) { //if empty line
  563. comment_mode = false; //for new command
  564. return;
  565. }
  566. cmdbuffer[bufindw][serial_count] = 0; //terminate string
  567. if(!comment_mode){
  568. comment_mode = false; //for new command
  569. fromsd[bufindw] = false;
  570. if(strchr(cmdbuffer[bufindw], 'N') != NULL)
  571. {
  572. strchr_pointer = strchr(cmdbuffer[bufindw], 'N');
  573. gcode_N = (strtol(&cmdbuffer[bufindw][strchr_pointer - cmdbuffer[bufindw] + 1], NULL, 10));
  574. if(gcode_N != gcode_LastN+1 && (strstr_P(cmdbuffer[bufindw], PSTR("M110")) == NULL) ) {
  575. SERIAL_ERROR_START;
  576. SERIAL_ERRORPGM(MSG_ERR_LINE_NO);
  577. SERIAL_ERRORLN(gcode_LastN);
  578. //Serial.println(gcode_N);
  579. FlushSerialRequestResend();
  580. serial_count = 0;
  581. return;
  582. }
  583. if(strchr(cmdbuffer[bufindw], '*') != NULL)
  584. {
  585. byte checksum = 0;
  586. byte count = 0;
  587. while(cmdbuffer[bufindw][count] != '*') checksum = checksum^cmdbuffer[bufindw][count++];
  588. strchr_pointer = strchr(cmdbuffer[bufindw], '*');
  589. if( (int)(strtod(&cmdbuffer[bufindw][strchr_pointer - cmdbuffer[bufindw] + 1], NULL)) != checksum) {
  590. SERIAL_ERROR_START;
  591. SERIAL_ERRORPGM(MSG_ERR_CHECKSUM_MISMATCH);
  592. SERIAL_ERRORLN(gcode_LastN);
  593. FlushSerialRequestResend();
  594. serial_count = 0;
  595. return;
  596. }
  597. //if no errors, continue parsing
  598. }
  599. else
  600. {
  601. SERIAL_ERROR_START;
  602. SERIAL_ERRORPGM(MSG_ERR_NO_CHECKSUM);
  603. SERIAL_ERRORLN(gcode_LastN);
  604. FlushSerialRequestResend();
  605. serial_count = 0;
  606. return;
  607. }
  608. gcode_LastN = gcode_N;
  609. //if no errors, continue parsing
  610. }
  611. else // if we don't receive 'N' but still see '*'
  612. {
  613. if((strchr(cmdbuffer[bufindw], '*') != NULL))
  614. {
  615. SERIAL_ERROR_START;
  616. SERIAL_ERRORPGM(MSG_ERR_NO_LINENUMBER_WITH_CHECKSUM);
  617. SERIAL_ERRORLN(gcode_LastN);
  618. serial_count = 0;
  619. return;
  620. }
  621. }
  622. if((strchr(cmdbuffer[bufindw], 'G') != NULL)){
  623. strchr_pointer = strchr(cmdbuffer[bufindw], 'G');
  624. switch((int)((strtod(&cmdbuffer[bufindw][strchr_pointer - cmdbuffer[bufindw] + 1], NULL)))){
  625. case 0:
  626. case 1:
  627. case 2:
  628. case 3:
  629. if(Stopped == false) { // If printer is stopped by an error the G[0-3] codes are ignored.
  630. #ifdef SDSUPPORT
  631. if(card.saving)
  632. break;
  633. #endif //SDSUPPORT
  634. SERIAL_PROTOCOLLNPGM(MSG_OK);
  635. }
  636. else {
  637. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  638. LCD_MESSAGEPGM(MSG_STOPPED);
  639. }
  640. break;
  641. default:
  642. break;
  643. }
  644. }
  645. //If command was e-stop process now
  646. if(strcmp(cmdbuffer[bufindw], "M112") == 0)
  647. kill();
  648. bufindw = (bufindw + 1)%BUFSIZE;
  649. buflen += 1;
  650. }
  651. serial_count = 0; //clear buffer
  652. }
  653. else
  654. {
  655. if(serial_char == ';') comment_mode = true;
  656. if(!comment_mode) cmdbuffer[bufindw][serial_count++] = serial_char;
  657. }
  658. }
  659. #ifdef SDSUPPORT
  660. if(!card.sdprinting || serial_count!=0){
  661. return;
  662. }
  663. //'#' stops reading from SD to the buffer prematurely, so procedural macro calls are possible
  664. // if it occurs, stop_buffering is triggered and the buffer is ran dry.
  665. // this character _can_ occur in serial com, due to checksums. however, no checksums are used in SD printing
  666. static bool stop_buffering=false;
  667. if(buflen==0) stop_buffering=false;
  668. while( !card.eof() && buflen < BUFSIZE && !stop_buffering) {
  669. int16_t n=card.get();
  670. serial_char = (char)n;
  671. if(serial_char == '\n' ||
  672. serial_char == '\r' ||
  673. (serial_char == '#' && comment_mode == false) ||
  674. (serial_char == ':' && comment_mode == false) ||
  675. serial_count >= (MAX_CMD_SIZE - 1)||n==-1)
  676. {
  677. if(card.eof()){
  678. SERIAL_PROTOCOLLNPGM(MSG_FILE_PRINTED);
  679. stoptime=millis();
  680. char time[30];
  681. unsigned long t=(stoptime-starttime)/1000;
  682. int hours, minutes;
  683. minutes=(t/60)%60;
  684. hours=t/60/60;
  685. sprintf_P(time, PSTR("%i hours %i minutes"),hours, minutes);
  686. SERIAL_ECHO_START;
  687. SERIAL_ECHOLN(time);
  688. lcd_setstatus(time);
  689. card.printingHasFinished();
  690. card.checkautostart(true);
  691. }
  692. if(serial_char=='#')
  693. stop_buffering=true;
  694. if(!serial_count)
  695. {
  696. comment_mode = false; //for new command
  697. return; //if empty line
  698. }
  699. cmdbuffer[bufindw][serial_count] = 0; //terminate string
  700. // if(!comment_mode){
  701. fromsd[bufindw] = true;
  702. buflen += 1;
  703. bufindw = (bufindw + 1)%BUFSIZE;
  704. // }
  705. comment_mode = false; //for new command
  706. serial_count = 0; //clear buffer
  707. }
  708. else
  709. {
  710. if(serial_char == ';') comment_mode = true;
  711. if(!comment_mode) cmdbuffer[bufindw][serial_count++] = serial_char;
  712. }
  713. }
  714. #endif //SDSUPPORT
  715. }
  716. float code_value()
  717. {
  718. return (strtod(&cmdbuffer[bufindr][strchr_pointer - cmdbuffer[bufindr] + 1], NULL));
  719. }
  720. long code_value_long()
  721. {
  722. return (strtol(&cmdbuffer[bufindr][strchr_pointer - cmdbuffer[bufindr] + 1], NULL, 10));
  723. }
  724. bool code_seen(char code)
  725. {
  726. strchr_pointer = strchr(cmdbuffer[bufindr], code);
  727. return (strchr_pointer != NULL); //Return True if a character was found
  728. }
  729. #define DEFINE_PGM_READ_ANY(type, reader) \
  730. static inline type pgm_read_any(const type *p) \
  731. { return pgm_read_##reader##_near(p); }
  732. DEFINE_PGM_READ_ANY(float, float);
  733. DEFINE_PGM_READ_ANY(signed char, byte);
  734. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  735. static const PROGMEM type array##_P[3] = \
  736. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  737. static inline type array(int axis) \
  738. { return pgm_read_any(&array##_P[axis]); }
  739. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  740. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  741. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  742. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  743. XYZ_CONSTS_FROM_CONFIG(float, home_retract_mm, HOME_RETRACT_MM);
  744. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  745. #ifdef DUAL_X_CARRIAGE
  746. #if EXTRUDERS == 1 || defined(COREXY) \
  747. || !defined(X2_ENABLE_PIN) || !defined(X2_STEP_PIN) || !defined(X2_DIR_PIN) \
  748. || !defined(X2_HOME_POS) || !defined(X2_MIN_POS) || !defined(X2_MAX_POS) \
  749. || !defined(X_MAX_PIN) || X_MAX_PIN < 0
  750. #error "Missing or invalid definitions for DUAL_X_CARRIAGE mode."
  751. #endif
  752. #if X_HOME_DIR != -1 || X2_HOME_DIR != 1
  753. #error "Please use canonical x-carriage assignment" // the x-carriages are defined by their homing directions
  754. #endif
  755. #define DXC_FULL_CONTROL_MODE 0
  756. #define DXC_AUTO_PARK_MODE 1
  757. #define DXC_DUPLICATION_MODE 2
  758. static int dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  759. static float x_home_pos(int extruder) {
  760. if (extruder == 0)
  761. return base_home_pos(X_AXIS) + add_homeing[X_AXIS];
  762. else
  763. // In dual carriage mode the extruder offset provides an override of the
  764. // second X-carriage offset when homed - otherwise X2_HOME_POS is used.
  765. // This allow soft recalibration of the second extruder offset position without firmware reflash
  766. // (through the M218 command).
  767. return (extruder_offset[X_AXIS][1] > 0) ? extruder_offset[X_AXIS][1] : X2_HOME_POS;
  768. }
  769. static int x_home_dir(int extruder) {
  770. return (extruder == 0) ? X_HOME_DIR : X2_HOME_DIR;
  771. }
  772. static float inactive_extruder_x_pos = X2_MAX_POS; // used in mode 0 & 1
  773. static bool active_extruder_parked = false; // used in mode 1 & 2
  774. static float raised_parked_position[NUM_AXIS]; // used in mode 1
  775. static unsigned long delayed_move_time = 0; // used in mode 1
  776. static float duplicate_extruder_x_offset = DEFAULT_DUPLICATION_X_OFFSET; // used in mode 2
  777. static float duplicate_extruder_temp_offset = 0; // used in mode 2
  778. bool extruder_duplication_enabled = false; // used in mode 2
  779. #endif //DUAL_X_CARRIAGE
  780. static void axis_is_at_home(int axis) {
  781. #ifdef DUAL_X_CARRIAGE
  782. if (axis == X_AXIS) {
  783. if (active_extruder != 0) {
  784. current_position[X_AXIS] = x_home_pos(active_extruder);
  785. min_pos[X_AXIS] = X2_MIN_POS;
  786. max_pos[X_AXIS] = max(extruder_offset[X_AXIS][1], X2_MAX_POS);
  787. return;
  788. }
  789. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && active_extruder == 0) {
  790. current_position[X_AXIS] = base_home_pos(X_AXIS) + add_homeing[X_AXIS];
  791. min_pos[X_AXIS] = base_min_pos(X_AXIS) + add_homeing[X_AXIS];
  792. max_pos[X_AXIS] = min(base_max_pos(X_AXIS) + add_homeing[X_AXIS],
  793. max(extruder_offset[X_AXIS][1], X2_MAX_POS) - duplicate_extruder_x_offset);
  794. return;
  795. }
  796. }
  797. #endif
  798. #ifdef SCARA
  799. float homeposition[3];
  800. char i;
  801. if (axis < 2)
  802. {
  803. for (i=0; i<3; i++)
  804. {
  805. homeposition[i] = base_home_pos(i);
  806. }
  807. // SERIAL_ECHOPGM("homeposition[x]= "); SERIAL_ECHO(homeposition[0]);
  808. // SERIAL_ECHOPGM("homeposition[y]= "); SERIAL_ECHOLN(homeposition[1]);
  809. // Works out real Homeposition angles using inverse kinematics,
  810. // and calculates homing offset using forward kinematics
  811. calculate_delta(homeposition);
  812. // SERIAL_ECHOPGM("base Theta= "); SERIAL_ECHO(delta[X_AXIS]);
  813. // SERIAL_ECHOPGM(" base Psi+Theta="); SERIAL_ECHOLN(delta[Y_AXIS]);
  814. for (i=0; i<2; i++)
  815. {
  816. delta[i] -= add_homeing[i];
  817. }
  818. // SERIAL_ECHOPGM("addhome X="); SERIAL_ECHO(add_homeing[X_AXIS]);
  819. // SERIAL_ECHOPGM(" addhome Y="); SERIAL_ECHO(add_homeing[Y_AXIS]);
  820. // SERIAL_ECHOPGM(" addhome Theta="); SERIAL_ECHO(delta[X_AXIS]);
  821. // SERIAL_ECHOPGM(" addhome Psi+Theta="); SERIAL_ECHOLN(delta[Y_AXIS]);
  822. calculate_SCARA_forward_Transform(delta);
  823. // SERIAL_ECHOPGM("Delta X="); SERIAL_ECHO(delta[X_AXIS]);
  824. // SERIAL_ECHOPGM(" Delta Y="); SERIAL_ECHOLN(delta[Y_AXIS]);
  825. current_position[axis] = delta[axis];
  826. // SCARA home positions are based on configuration since the actual limits are determined by the
  827. // inverse kinematic transform.
  828. min_pos[axis] = base_min_pos(axis); // + (delta[axis] - base_home_pos(axis));
  829. max_pos[axis] = base_max_pos(axis); // + (delta[axis] - base_home_pos(axis));
  830. }
  831. else
  832. {
  833. current_position[axis] = base_home_pos(axis) + add_homeing[axis];
  834. min_pos[axis] = base_min_pos(axis) + add_homeing[axis];
  835. max_pos[axis] = base_max_pos(axis) + add_homeing[axis];
  836. }
  837. #else
  838. current_position[axis] = base_home_pos(axis) + add_homeing[axis];
  839. min_pos[axis] = base_min_pos(axis) + add_homeing[axis];
  840. max_pos[axis] = base_max_pos(axis) + add_homeing[axis];
  841. #endif
  842. }
  843. #ifdef ENABLE_AUTO_BED_LEVELING
  844. #ifdef AUTO_BED_LEVELING_GRID
  845. static void set_bed_level_equation_lsq(double *plane_equation_coefficients)
  846. {
  847. vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
  848. planeNormal.debug("planeNormal");
  849. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  850. //bedLevel.debug("bedLevel");
  851. //plan_bed_level_matrix.debug("bed level before");
  852. //vector_3 uncorrected_position = plan_get_position_mm();
  853. //uncorrected_position.debug("position before");
  854. vector_3 corrected_position = plan_get_position();
  855. // corrected_position.debug("position after");
  856. current_position[X_AXIS] = corrected_position.x;
  857. current_position[Y_AXIS] = corrected_position.y;
  858. current_position[Z_AXIS] = corrected_position.z;
  859. // put the bed at 0 so we don't go below it.
  860. current_position[Z_AXIS] = zprobe_zoffset; // in the lsq we reach here after raising the extruder due to the loop structure
  861. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  862. }
  863. #else // not AUTO_BED_LEVELING_GRID
  864. static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
  865. plan_bed_level_matrix.set_to_identity();
  866. vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
  867. vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
  868. vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
  869. vector_3 from_2_to_1 = (pt1 - pt2).get_normal();
  870. vector_3 from_2_to_3 = (pt3 - pt2).get_normal();
  871. vector_3 planeNormal = vector_3::cross(from_2_to_1, from_2_to_3).get_normal();
  872. planeNormal = vector_3(planeNormal.x, planeNormal.y, abs(planeNormal.z));
  873. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  874. vector_3 corrected_position = plan_get_position();
  875. current_position[X_AXIS] = corrected_position.x;
  876. current_position[Y_AXIS] = corrected_position.y;
  877. current_position[Z_AXIS] = corrected_position.z;
  878. // put the bed at 0 so we don't go below it.
  879. current_position[Z_AXIS] = zprobe_zoffset;
  880. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  881. }
  882. #endif // AUTO_BED_LEVELING_GRID
  883. static void run_z_probe() {
  884. plan_bed_level_matrix.set_to_identity();
  885. feedrate = homing_feedrate[Z_AXIS];
  886. // move down until you find the bed
  887. float zPosition = -10;
  888. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  889. st_synchronize();
  890. // we have to let the planner know where we are right now as it is not where we said to go.
  891. zPosition = st_get_position_mm(Z_AXIS);
  892. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]);
  893. // move up the retract distance
  894. zPosition += home_retract_mm(Z_AXIS);
  895. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  896. st_synchronize();
  897. // move back down slowly to find bed
  898. feedrate = homing_feedrate[Z_AXIS]/4;
  899. zPosition -= home_retract_mm(Z_AXIS) * 2;
  900. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  901. st_synchronize();
  902. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  903. // make sure the planner knows where we are as it may be a bit different than we last said to move to
  904. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  905. }
  906. static void do_blocking_move_to(float x, float y, float z) {
  907. float oldFeedRate = feedrate;
  908. feedrate = XY_TRAVEL_SPEED;
  909. current_position[X_AXIS] = x;
  910. current_position[Y_AXIS] = y;
  911. current_position[Z_AXIS] = z;
  912. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  913. st_synchronize();
  914. feedrate = oldFeedRate;
  915. }
  916. static void do_blocking_move_relative(float offset_x, float offset_y, float offset_z) {
  917. do_blocking_move_to(current_position[X_AXIS] + offset_x, current_position[Y_AXIS] + offset_y, current_position[Z_AXIS] + offset_z);
  918. }
  919. static void setup_for_endstop_move() {
  920. saved_feedrate = feedrate;
  921. saved_feedmultiply = feedmultiply;
  922. feedmultiply = 100;
  923. previous_millis_cmd = millis();
  924. enable_endstops(true);
  925. }
  926. static void clean_up_after_endstop_move() {
  927. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  928. enable_endstops(false);
  929. #endif
  930. feedrate = saved_feedrate;
  931. feedmultiply = saved_feedmultiply;
  932. previous_millis_cmd = millis();
  933. }
  934. static void engage_z_probe() {
  935. // Engage Z Servo endstop if enabled
  936. #ifdef SERVO_ENDSTOPS
  937. if (servo_endstops[Z_AXIS] > -1) {
  938. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  939. servos[servo_endstops[Z_AXIS]].attach(0);
  940. #endif
  941. servos[servo_endstops[Z_AXIS]].write(servo_endstop_angles[Z_AXIS * 2]);
  942. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  943. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  944. servos[servo_endstops[Z_AXIS]].detach();
  945. #endif
  946. }
  947. #endif
  948. }
  949. static void retract_z_probe() {
  950. // Retract Z Servo endstop if enabled
  951. #ifdef SERVO_ENDSTOPS
  952. if (servo_endstops[Z_AXIS] > -1) {
  953. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  954. servos[servo_endstops[Z_AXIS]].attach(0);
  955. #endif
  956. servos[servo_endstops[Z_AXIS]].write(servo_endstop_angles[Z_AXIS * 2 + 1]);
  957. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  958. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  959. servos[servo_endstops[Z_AXIS]].detach();
  960. #endif
  961. }
  962. #endif
  963. }
  964. /// Probe bed height at position (x,y), returns the measured z value
  965. static float probe_pt(float x, float y, float z_before) {
  966. // move to right place
  967. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_before);
  968. do_blocking_move_to(x - X_PROBE_OFFSET_FROM_EXTRUDER, y - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
  969. #ifndef Z_PROBE_SLED
  970. engage_z_probe(); // Engage Z Servo endstop if available
  971. #endif // Z_PROBE_SLED
  972. run_z_probe();
  973. float measured_z = current_position[Z_AXIS];
  974. #ifndef Z_PROBE_SLED
  975. retract_z_probe();
  976. #endif // Z_PROBE_SLED
  977. SERIAL_PROTOCOLPGM(MSG_BED);
  978. SERIAL_PROTOCOLPGM(" x: ");
  979. SERIAL_PROTOCOL(x);
  980. SERIAL_PROTOCOLPGM(" y: ");
  981. SERIAL_PROTOCOL(y);
  982. SERIAL_PROTOCOLPGM(" z: ");
  983. SERIAL_PROTOCOL(measured_z);
  984. SERIAL_PROTOCOLPGM("\n");
  985. return measured_z;
  986. }
  987. #endif // #ifdef ENABLE_AUTO_BED_LEVELING
  988. static void homeaxis(int axis) {
  989. #define HOMEAXIS_DO(LETTER) \
  990. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  991. if (axis==X_AXIS ? HOMEAXIS_DO(X) :
  992. axis==Y_AXIS ? HOMEAXIS_DO(Y) :
  993. axis==Z_AXIS ? HOMEAXIS_DO(Z) :
  994. 0) {
  995. int axis_home_dir = home_dir(axis);
  996. #ifdef DUAL_X_CARRIAGE
  997. if (axis == X_AXIS)
  998. axis_home_dir = x_home_dir(active_extruder);
  999. #endif
  1000. current_position[axis] = 0;
  1001. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1002. #ifndef Z_PROBE_SLED
  1003. // Engage Servo endstop if enabled
  1004. #ifdef SERVO_ENDSTOPS
  1005. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  1006. if (axis==Z_AXIS) {
  1007. engage_z_probe();
  1008. }
  1009. else
  1010. #endif
  1011. if (servo_endstops[axis] > -1) {
  1012. servos[servo_endstops[axis]].write(servo_endstop_angles[axis * 2]);
  1013. }
  1014. #endif
  1015. #endif // Z_PROBE_SLED
  1016. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  1017. feedrate = homing_feedrate[axis];
  1018. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1019. st_synchronize();
  1020. current_position[axis] = 0;
  1021. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1022. destination[axis] = -home_retract_mm(axis) * axis_home_dir;
  1023. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1024. st_synchronize();
  1025. destination[axis] = 2*home_retract_mm(axis) * axis_home_dir;
  1026. #ifdef DELTA
  1027. feedrate = homing_feedrate[axis]/10;
  1028. #else
  1029. feedrate = homing_feedrate[axis]/2 ;
  1030. #endif
  1031. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1032. st_synchronize();
  1033. #ifdef DELTA
  1034. // retrace by the amount specified in endstop_adj
  1035. if (endstop_adj[axis] * axis_home_dir < 0) {
  1036. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1037. destination[axis] = endstop_adj[axis];
  1038. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1039. st_synchronize();
  1040. }
  1041. #endif
  1042. axis_is_at_home(axis);
  1043. destination[axis] = current_position[axis];
  1044. feedrate = 0.0;
  1045. endstops_hit_on_purpose();
  1046. axis_known_position[axis] = true;
  1047. // Retract Servo endstop if enabled
  1048. #ifdef SERVO_ENDSTOPS
  1049. if (servo_endstops[axis] > -1) {
  1050. servos[servo_endstops[axis]].write(servo_endstop_angles[axis * 2 + 1]);
  1051. }
  1052. #endif
  1053. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  1054. #ifndef Z_PROBE_SLED
  1055. if (axis==Z_AXIS) retract_z_probe();
  1056. #endif
  1057. #endif
  1058. }
  1059. }
  1060. #define HOMEAXIS(LETTER) homeaxis(LETTER##_AXIS)
  1061. void refresh_cmd_timeout(void)
  1062. {
  1063. previous_millis_cmd = millis();
  1064. }
  1065. #ifdef FWRETRACT
  1066. void retract(bool retracting, bool swapretract = false) {
  1067. if(retracting && !retracted[active_extruder]) {
  1068. destination[X_AXIS]=current_position[X_AXIS];
  1069. destination[Y_AXIS]=current_position[Y_AXIS];
  1070. destination[Z_AXIS]=current_position[Z_AXIS];
  1071. destination[E_AXIS]=current_position[E_AXIS];
  1072. if (swapretract) {
  1073. current_position[E_AXIS]+=retract_length_swap/volumetric_multiplier[active_extruder];
  1074. } else {
  1075. current_position[E_AXIS]+=retract_length/volumetric_multiplier[active_extruder];
  1076. }
  1077. plan_set_e_position(current_position[E_AXIS]);
  1078. float oldFeedrate = feedrate;
  1079. feedrate=retract_feedrate*60;
  1080. retracted[active_extruder]=true;
  1081. prepare_move();
  1082. current_position[Z_AXIS]-=retract_zlift;
  1083. #ifdef DELTA
  1084. calculate_delta(current_position); // change cartesian kinematic to delta kinematic;
  1085. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
  1086. #else
  1087. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1088. #endif
  1089. prepare_move();
  1090. feedrate = oldFeedrate;
  1091. } else if(!retracting && retracted[active_extruder]) {
  1092. destination[X_AXIS]=current_position[X_AXIS];
  1093. destination[Y_AXIS]=current_position[Y_AXIS];
  1094. destination[Z_AXIS]=current_position[Z_AXIS];
  1095. destination[E_AXIS]=current_position[E_AXIS];
  1096. current_position[Z_AXIS]+=retract_zlift;
  1097. #ifdef DELTA
  1098. calculate_delta(current_position); // change cartesian kinematic to delta kinematic;
  1099. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
  1100. #else
  1101. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1102. #endif
  1103. //prepare_move();
  1104. if (swapretract) {
  1105. current_position[E_AXIS]-=(retract_length_swap+retract_recover_length_swap)/volumetric_multiplier[active_extruder];
  1106. } else {
  1107. current_position[E_AXIS]-=(retract_length+retract_recover_length)/volumetric_multiplier[active_extruder];
  1108. }
  1109. plan_set_e_position(current_position[E_AXIS]);
  1110. float oldFeedrate = feedrate;
  1111. feedrate=retract_recover_feedrate*60;
  1112. retracted[active_extruder]=false;
  1113. prepare_move();
  1114. feedrate = oldFeedrate;
  1115. }
  1116. } //retract
  1117. #endif //FWRETRACT
  1118. #ifdef Z_PROBE_SLED
  1119. //
  1120. // Method to dock/undock a sled designed by Charles Bell.
  1121. //
  1122. // dock[in] If true, move to MAX_X and engage the electromagnet
  1123. // offset[in] The additional distance to move to adjust docking location
  1124. //
  1125. static void dock_sled(bool dock, int offset=0) {
  1126. int z_loc;
  1127. if (!((axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]))) {
  1128. LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN);
  1129. SERIAL_ECHO_START;
  1130. SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN);
  1131. return;
  1132. }
  1133. if (dock) {
  1134. do_blocking_move_to(X_MAX_POS + SLED_DOCKING_OFFSET + offset,
  1135. current_position[Y_AXIS],
  1136. current_position[Z_AXIS]);
  1137. // turn off magnet
  1138. digitalWrite(SERVO0_PIN, LOW);
  1139. } else {
  1140. if (current_position[Z_AXIS] < (Z_RAISE_BEFORE_PROBING + 5))
  1141. z_loc = Z_RAISE_BEFORE_PROBING;
  1142. else
  1143. z_loc = current_position[Z_AXIS];
  1144. do_blocking_move_to(X_MAX_POS + SLED_DOCKING_OFFSET + offset,
  1145. Y_PROBE_OFFSET_FROM_EXTRUDER, z_loc);
  1146. // turn on magnet
  1147. digitalWrite(SERVO0_PIN, HIGH);
  1148. }
  1149. }
  1150. #endif
  1151. void process_commands()
  1152. {
  1153. unsigned long codenum; //throw away variable
  1154. char *starpos = NULL;
  1155. #ifdef ENABLE_AUTO_BED_LEVELING
  1156. float x_tmp, y_tmp, z_tmp, real_z;
  1157. #endif
  1158. if(code_seen('G'))
  1159. {
  1160. switch((int)code_value())
  1161. {
  1162. case 0: // G0 -> G1
  1163. case 1: // G1
  1164. if(Stopped == false) {
  1165. get_coordinates(); // For X Y Z E F
  1166. #ifdef FWRETRACT
  1167. if(autoretract_enabled)
  1168. if( !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  1169. float echange=destination[E_AXIS]-current_position[E_AXIS];
  1170. if((echange<-MIN_RETRACT && !retracted) || (echange>MIN_RETRACT && retracted)) { //move appears to be an attempt to retract or recover
  1171. current_position[E_AXIS] = destination[E_AXIS]; //hide the slicer-generated retract/recover from calculations
  1172. plan_set_e_position(current_position[E_AXIS]); //AND from the planner
  1173. retract(!retracted);
  1174. return;
  1175. }
  1176. }
  1177. #endif //FWRETRACT
  1178. prepare_move();
  1179. //ClearToSend();
  1180. return;
  1181. }
  1182. break;
  1183. #ifndef SCARA //disable arc support
  1184. case 2: // G2 - CW ARC
  1185. if(Stopped == false) {
  1186. get_arc_coordinates();
  1187. prepare_arc_move(true);
  1188. return;
  1189. }
  1190. break;
  1191. case 3: // G3 - CCW ARC
  1192. if(Stopped == false) {
  1193. get_arc_coordinates();
  1194. prepare_arc_move(false);
  1195. return;
  1196. }
  1197. break;
  1198. #endif
  1199. case 4: // G4 dwell
  1200. LCD_MESSAGEPGM(MSG_DWELL);
  1201. codenum = 0;
  1202. if(code_seen('P')) codenum = code_value(); // milliseconds to wait
  1203. if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait
  1204. st_synchronize();
  1205. codenum += millis(); // keep track of when we started waiting
  1206. previous_millis_cmd = millis();
  1207. while(millis() < codenum) {
  1208. manage_heater();
  1209. manage_inactivity();
  1210. lcd_update();
  1211. }
  1212. break;
  1213. #ifdef FWRETRACT
  1214. case 10: // G10 retract
  1215. #if EXTRUDERS > 1
  1216. retracted_swap[active_extruder]=(code_seen('S') && code_value_long() == 1); // checks for swap retract argument
  1217. retract(true,retracted_swap[active_extruder]);
  1218. #else
  1219. retract(true);
  1220. #endif
  1221. break;
  1222. case 11: // G11 retract_recover
  1223. #if EXTRUDERS > 1
  1224. retract(false,retracted_swap[active_extruder]);
  1225. #else
  1226. retract(false);
  1227. #endif
  1228. break;
  1229. #endif //FWRETRACT
  1230. case 28: //G28 Home all Axis one at a time
  1231. #ifdef ENABLE_AUTO_BED_LEVELING
  1232. plan_bed_level_matrix.set_to_identity(); //Reset the plane ("erase" all leveling data)
  1233. #endif //ENABLE_AUTO_BED_LEVELING
  1234. saved_feedrate = feedrate;
  1235. saved_feedmultiply = feedmultiply;
  1236. feedmultiply = 100;
  1237. previous_millis_cmd = millis();
  1238. enable_endstops(true);
  1239. for(int8_t i=0; i < NUM_AXIS; i++) {
  1240. destination[i] = current_position[i];
  1241. }
  1242. feedrate = 0.0;
  1243. #ifdef DELTA
  1244. // A delta can only safely home all axis at the same time
  1245. // all axis have to home at the same time
  1246. // Move all carriages up together until the first endstop is hit.
  1247. current_position[X_AXIS] = 0;
  1248. current_position[Y_AXIS] = 0;
  1249. current_position[Z_AXIS] = 0;
  1250. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1251. destination[X_AXIS] = 3 * Z_MAX_LENGTH;
  1252. destination[Y_AXIS] = 3 * Z_MAX_LENGTH;
  1253. destination[Z_AXIS] = 3 * Z_MAX_LENGTH;
  1254. feedrate = 1.732 * homing_feedrate[X_AXIS];
  1255. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1256. st_synchronize();
  1257. endstops_hit_on_purpose();
  1258. current_position[X_AXIS] = destination[X_AXIS];
  1259. current_position[Y_AXIS] = destination[Y_AXIS];
  1260. current_position[Z_AXIS] = destination[Z_AXIS];
  1261. // take care of back off and rehome now we are all at the top
  1262. HOMEAXIS(X);
  1263. HOMEAXIS(Y);
  1264. HOMEAXIS(Z);
  1265. calculate_delta(current_position);
  1266. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
  1267. #else // NOT DELTA
  1268. home_all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS])));
  1269. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  1270. if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
  1271. HOMEAXIS(Z);
  1272. }
  1273. #endif
  1274. #ifdef QUICK_HOME
  1275. if((home_all_axis)||( code_seen(axis_codes[X_AXIS]) && code_seen(axis_codes[Y_AXIS])) ) //first diagonal move
  1276. {
  1277. current_position[X_AXIS] = 0;current_position[Y_AXIS] = 0;
  1278. #ifndef DUAL_X_CARRIAGE
  1279. int x_axis_home_dir = home_dir(X_AXIS);
  1280. #else
  1281. int x_axis_home_dir = x_home_dir(active_extruder);
  1282. extruder_duplication_enabled = false;
  1283. #endif
  1284. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1285. destination[X_AXIS] = 1.5 * max_length(X_AXIS) * x_axis_home_dir;destination[Y_AXIS] = 1.5 * max_length(Y_AXIS) * home_dir(Y_AXIS);
  1286. feedrate = homing_feedrate[X_AXIS];
  1287. if(homing_feedrate[Y_AXIS]<feedrate)
  1288. feedrate = homing_feedrate[Y_AXIS];
  1289. if (max_length(X_AXIS) > max_length(Y_AXIS)) {
  1290. feedrate *= sqrt(pow(max_length(Y_AXIS) / max_length(X_AXIS), 2) + 1);
  1291. } else {
  1292. feedrate *= sqrt(pow(max_length(X_AXIS) / max_length(Y_AXIS), 2) + 1);
  1293. }
  1294. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1295. st_synchronize();
  1296. axis_is_at_home(X_AXIS);
  1297. axis_is_at_home(Y_AXIS);
  1298. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1299. destination[X_AXIS] = current_position[X_AXIS];
  1300. destination[Y_AXIS] = current_position[Y_AXIS];
  1301. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1302. feedrate = 0.0;
  1303. st_synchronize();
  1304. endstops_hit_on_purpose();
  1305. current_position[X_AXIS] = destination[X_AXIS];
  1306. current_position[Y_AXIS] = destination[Y_AXIS];
  1307. #ifndef SCARA
  1308. current_position[Z_AXIS] = destination[Z_AXIS];
  1309. #endif
  1310. }
  1311. #endif
  1312. if((home_all_axis) || (code_seen(axis_codes[X_AXIS])))
  1313. {
  1314. #ifdef DUAL_X_CARRIAGE
  1315. int tmp_extruder = active_extruder;
  1316. extruder_duplication_enabled = false;
  1317. active_extruder = !active_extruder;
  1318. HOMEAXIS(X);
  1319. inactive_extruder_x_pos = current_position[X_AXIS];
  1320. active_extruder = tmp_extruder;
  1321. HOMEAXIS(X);
  1322. // reset state used by the different modes
  1323. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  1324. delayed_move_time = 0;
  1325. active_extruder_parked = true;
  1326. #else
  1327. HOMEAXIS(X);
  1328. #endif
  1329. }
  1330. if((home_all_axis) || (code_seen(axis_codes[Y_AXIS]))) {
  1331. HOMEAXIS(Y);
  1332. }
  1333. if(code_seen(axis_codes[X_AXIS]))
  1334. {
  1335. if(code_value_long() != 0) {
  1336. #ifdef SCARA
  1337. current_position[X_AXIS]=code_value();
  1338. #else
  1339. current_position[X_AXIS]=code_value()+add_homeing[0];
  1340. #endif
  1341. }
  1342. }
  1343. if(code_seen(axis_codes[Y_AXIS])) {
  1344. if(code_value_long() != 0) {
  1345. #ifdef SCARA
  1346. current_position[Y_AXIS]=code_value();
  1347. #else
  1348. current_position[Y_AXIS]=code_value()+add_homeing[1];
  1349. #endif
  1350. }
  1351. }
  1352. #if Z_HOME_DIR < 0 // If homing towards BED do Z last
  1353. #ifndef Z_SAFE_HOMING
  1354. if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
  1355. #if defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  1356. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  1357. feedrate = max_feedrate[Z_AXIS];
  1358. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  1359. st_synchronize();
  1360. #endif
  1361. HOMEAXIS(Z);
  1362. }
  1363. #else // Z Safe mode activated.
  1364. if(home_all_axis) {
  1365. destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - X_PROBE_OFFSET_FROM_EXTRUDER);
  1366. destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - Y_PROBE_OFFSET_FROM_EXTRUDER);
  1367. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  1368. feedrate = XY_TRAVEL_SPEED;
  1369. current_position[Z_AXIS] = 0;
  1370. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1371. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  1372. st_synchronize();
  1373. current_position[X_AXIS] = destination[X_AXIS];
  1374. current_position[Y_AXIS] = destination[Y_AXIS];
  1375. HOMEAXIS(Z);
  1376. }
  1377. // Let's see if X and Y are homed and probe is inside bed area.
  1378. if(code_seen(axis_codes[Z_AXIS])) {
  1379. if ( (axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]) \
  1380. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER >= X_MIN_POS) \
  1381. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER <= X_MAX_POS) \
  1382. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER >= Y_MIN_POS) \
  1383. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER <= Y_MAX_POS)) {
  1384. current_position[Z_AXIS] = 0;
  1385. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1386. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  1387. feedrate = max_feedrate[Z_AXIS];
  1388. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  1389. st_synchronize();
  1390. HOMEAXIS(Z);
  1391. } else if (!((axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]))) {
  1392. LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN);
  1393. SERIAL_ECHO_START;
  1394. SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN);
  1395. } else {
  1396. LCD_MESSAGEPGM(MSG_ZPROBE_OUT);
  1397. SERIAL_ECHO_START;
  1398. SERIAL_ECHOLNPGM(MSG_ZPROBE_OUT);
  1399. }
  1400. }
  1401. #endif
  1402. #endif
  1403. if(code_seen(axis_codes[Z_AXIS])) {
  1404. if(code_value_long() != 0) {
  1405. current_position[Z_AXIS]=code_value()+add_homeing[2];
  1406. }
  1407. }
  1408. #ifdef ENABLE_AUTO_BED_LEVELING
  1409. if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
  1410. current_position[Z_AXIS] += zprobe_zoffset; //Add Z_Probe offset (the distance is negative)
  1411. }
  1412. #endif
  1413. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1414. #endif // else DELTA
  1415. #ifdef SCARA
  1416. calculate_delta(current_position);
  1417. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
  1418. #endif SCARA
  1419. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1420. enable_endstops(false);
  1421. #endif
  1422. feedrate = saved_feedrate;
  1423. feedmultiply = saved_feedmultiply;
  1424. previous_millis_cmd = millis();
  1425. endstops_hit_on_purpose();
  1426. break;
  1427. #ifdef ENABLE_AUTO_BED_LEVELING
  1428. case 29: // G29 Detailed Z-Probe, probes the bed at 3 or more points.
  1429. {
  1430. #if Z_MIN_PIN == -1
  1431. #error "You must have a Z_MIN endstop in order to enable Auto Bed Leveling feature!!! Z_MIN_PIN must point to a valid hardware pin."
  1432. #endif
  1433. // Prevent user from running a G29 without first homing in X and Y
  1434. if (! (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS]) )
  1435. {
  1436. LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN);
  1437. SERIAL_ECHO_START;
  1438. SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN);
  1439. break; // abort G29, since we don't know where we are
  1440. }
  1441. #ifdef Z_PROBE_SLED
  1442. dock_sled(false);
  1443. #endif // Z_PROBE_SLED
  1444. st_synchronize();
  1445. // make sure the bed_level_rotation_matrix is identity or the planner will get it incorectly
  1446. //vector_3 corrected_position = plan_get_position_mm();
  1447. //corrected_position.debug("position before G29");
  1448. plan_bed_level_matrix.set_to_identity();
  1449. vector_3 uncorrected_position = plan_get_position();
  1450. //uncorrected_position.debug("position durring G29");
  1451. current_position[X_AXIS] = uncorrected_position.x;
  1452. current_position[Y_AXIS] = uncorrected_position.y;
  1453. current_position[Z_AXIS] = uncorrected_position.z;
  1454. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1455. setup_for_endstop_move();
  1456. feedrate = homing_feedrate[Z_AXIS];
  1457. #ifdef AUTO_BED_LEVELING_GRID
  1458. // probe at the points of a lattice grid
  1459. int xGridSpacing = (RIGHT_PROBE_BED_POSITION - LEFT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  1460. int yGridSpacing = (BACK_PROBE_BED_POSITION - FRONT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  1461. // solve the plane equation ax + by + d = z
  1462. // A is the matrix with rows [x y 1] for all the probed points
  1463. // B is the vector of the Z positions
  1464. // the normal vector to the plane is formed by the coefficients of the plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  1465. // so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  1466. // "A" matrix of the linear system of equations
  1467. double eqnAMatrix[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS*3];
  1468. // "B" vector of Z points
  1469. double eqnBVector[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS];
  1470. int probePointCounter = 0;
  1471. bool zig = true;
  1472. for (int yProbe=FRONT_PROBE_BED_POSITION; yProbe <= BACK_PROBE_BED_POSITION; yProbe += yGridSpacing)
  1473. {
  1474. int xProbe, xInc;
  1475. if (zig)
  1476. {
  1477. xProbe = LEFT_PROBE_BED_POSITION;
  1478. //xEnd = RIGHT_PROBE_BED_POSITION;
  1479. xInc = xGridSpacing;
  1480. zig = false;
  1481. } else // zag
  1482. {
  1483. xProbe = RIGHT_PROBE_BED_POSITION;
  1484. //xEnd = LEFT_PROBE_BED_POSITION;
  1485. xInc = -xGridSpacing;
  1486. zig = true;
  1487. }
  1488. for (int xCount=0; xCount < AUTO_BED_LEVELING_GRID_POINTS; xCount++)
  1489. {
  1490. float z_before;
  1491. if (probePointCounter == 0)
  1492. {
  1493. // raise before probing
  1494. z_before = Z_RAISE_BEFORE_PROBING;
  1495. } else
  1496. {
  1497. // raise extruder
  1498. z_before = current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS;
  1499. }
  1500. float measured_z = probe_pt(xProbe, yProbe, z_before);
  1501. eqnBVector[probePointCounter] = measured_z;
  1502. eqnAMatrix[probePointCounter + 0*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = xProbe;
  1503. eqnAMatrix[probePointCounter + 1*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = yProbe;
  1504. eqnAMatrix[probePointCounter + 2*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = 1;
  1505. probePointCounter++;
  1506. xProbe += xInc;
  1507. }
  1508. }
  1509. clean_up_after_endstop_move();
  1510. // solve lsq problem
  1511. double *plane_equation_coefficients = qr_solve(AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS, 3, eqnAMatrix, eqnBVector);
  1512. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  1513. SERIAL_PROTOCOL(plane_equation_coefficients[0]);
  1514. SERIAL_PROTOCOLPGM(" b: ");
  1515. SERIAL_PROTOCOL(plane_equation_coefficients[1]);
  1516. SERIAL_PROTOCOLPGM(" d: ");
  1517. SERIAL_PROTOCOLLN(plane_equation_coefficients[2]);
  1518. set_bed_level_equation_lsq(plane_equation_coefficients);
  1519. free(plane_equation_coefficients);
  1520. #else // AUTO_BED_LEVELING_GRID not defined
  1521. // Probe at 3 arbitrary points
  1522. // probe 1
  1523. float z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING);
  1524. // probe 2
  1525. float z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  1526. // probe 3
  1527. float z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  1528. clean_up_after_endstop_move();
  1529. set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
  1530. #endif // AUTO_BED_LEVELING_GRID
  1531. st_synchronize();
  1532. // The following code correct the Z height difference from z-probe position and hotend tip position.
  1533. // The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
  1534. // When the bed is uneven, this height must be corrected.
  1535. real_z = float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]; //get the real Z (since the auto bed leveling is already correcting the plane)
  1536. x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER;
  1537. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER;
  1538. z_tmp = current_position[Z_AXIS];
  1539. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); //Apply the correction sending the probe offset
  1540. current_position[Z_AXIS] = z_tmp - real_z + current_position[Z_AXIS]; //The difference is added to current position and sent to planner.
  1541. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1542. #ifdef Z_PROBE_SLED
  1543. dock_sled(true, -SLED_DOCKING_OFFSET); // correct for over travel.
  1544. #endif // Z_PROBE_SLED
  1545. }
  1546. break;
  1547. #ifndef Z_PROBE_SLED
  1548. case 30: // G30 Single Z Probe
  1549. {
  1550. engage_z_probe(); // Engage Z Servo endstop if available
  1551. st_synchronize();
  1552. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  1553. setup_for_endstop_move();
  1554. feedrate = homing_feedrate[Z_AXIS];
  1555. run_z_probe();
  1556. SERIAL_PROTOCOLPGM(MSG_BED);
  1557. SERIAL_PROTOCOLPGM(" X: ");
  1558. SERIAL_PROTOCOL(current_position[X_AXIS]);
  1559. SERIAL_PROTOCOLPGM(" Y: ");
  1560. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  1561. SERIAL_PROTOCOLPGM(" Z: ");
  1562. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  1563. SERIAL_PROTOCOLPGM("\n");
  1564. clean_up_after_endstop_move();
  1565. retract_z_probe(); // Retract Z Servo endstop if available
  1566. }
  1567. break;
  1568. #else
  1569. case 31: // dock the sled
  1570. dock_sled(true);
  1571. break;
  1572. case 32: // undock the sled
  1573. dock_sled(false);
  1574. break;
  1575. #endif // Z_PROBE_SLED
  1576. #endif // ENABLE_AUTO_BED_LEVELING
  1577. case 90: // G90
  1578. relative_mode = false;
  1579. break;
  1580. case 91: // G91
  1581. relative_mode = true;
  1582. break;
  1583. case 92: // G92
  1584. if(!code_seen(axis_codes[E_AXIS]))
  1585. st_synchronize();
  1586. for(int8_t i=0; i < NUM_AXIS; i++) {
  1587. if(code_seen(axis_codes[i])) {
  1588. if(i == E_AXIS) {
  1589. current_position[i] = code_value();
  1590. plan_set_e_position(current_position[E_AXIS]);
  1591. }
  1592. else {
  1593. #ifdef SCARA
  1594. if (i == X_AXIS || i == Y_AXIS) {
  1595. current_position[i] = code_value();
  1596. }
  1597. else {
  1598. current_position[i] = code_value()+add_homeing[i];
  1599. }
  1600. #else
  1601. current_position[i] = code_value()+add_homeing[i];
  1602. #endif
  1603. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1604. }
  1605. }
  1606. }
  1607. break;
  1608. }
  1609. }
  1610. else if(code_seen('M'))
  1611. {
  1612. switch( (int)code_value() )
  1613. {
  1614. #ifdef ULTIPANEL
  1615. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  1616. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  1617. {
  1618. char *src = strchr_pointer + 2;
  1619. codenum = 0;
  1620. bool hasP = false, hasS = false;
  1621. if (code_seen('P')) {
  1622. codenum = code_value(); // milliseconds to wait
  1623. hasP = codenum > 0;
  1624. }
  1625. if (code_seen('S')) {
  1626. codenum = code_value() * 1000; // seconds to wait
  1627. hasS = codenum > 0;
  1628. }
  1629. if (!hasP && !hasS && *src != '\0') {
  1630. starpos = strchr(src, '*');
  1631. if (starpos != NULL) *(starpos) = '\0';
  1632. while (*src == ' ') ++src;
  1633. lcd_setstatus(src);
  1634. } else {
  1635. LCD_MESSAGEPGM(MSG_USERWAIT);
  1636. }
  1637. lcd_ignore_click();
  1638. st_synchronize();
  1639. previous_millis_cmd = millis();
  1640. if (codenum > 0){
  1641. codenum += millis(); // keep track of when we started waiting
  1642. while(millis() < codenum && !lcd_clicked()){
  1643. manage_heater();
  1644. manage_inactivity();
  1645. lcd_update();
  1646. }
  1647. lcd_ignore_click(false);
  1648. }else{
  1649. while(!lcd_clicked()){
  1650. manage_heater();
  1651. manage_inactivity();
  1652. lcd_update();
  1653. }
  1654. }
  1655. if (IS_SD_PRINTING)
  1656. LCD_MESSAGEPGM(MSG_RESUMING);
  1657. else
  1658. LCD_MESSAGEPGM(WELCOME_MSG);
  1659. }
  1660. break;
  1661. #endif
  1662. case 17:
  1663. LCD_MESSAGEPGM(MSG_NO_MOVE);
  1664. enable_x();
  1665. enable_y();
  1666. enable_z();
  1667. enable_e0();
  1668. enable_e1();
  1669. enable_e2();
  1670. break;
  1671. #ifdef SDSUPPORT
  1672. case 20: // M20 - list SD card
  1673. SERIAL_PROTOCOLLNPGM(MSG_BEGIN_FILE_LIST);
  1674. card.ls();
  1675. SERIAL_PROTOCOLLNPGM(MSG_END_FILE_LIST);
  1676. break;
  1677. case 21: // M21 - init SD card
  1678. card.initsd();
  1679. break;
  1680. case 22: //M22 - release SD card
  1681. card.release();
  1682. break;
  1683. case 23: //M23 - Select file
  1684. starpos = (strchr(strchr_pointer + 4,'*'));
  1685. if(starpos!=NULL)
  1686. *(starpos)='\0';
  1687. card.openFile(strchr_pointer + 4,true);
  1688. break;
  1689. case 24: //M24 - Start SD print
  1690. card.startFileprint();
  1691. starttime=millis();
  1692. break;
  1693. case 25: //M25 - Pause SD print
  1694. card.pauseSDPrint();
  1695. break;
  1696. case 26: //M26 - Set SD index
  1697. if(card.cardOK && code_seen('S')) {
  1698. card.setIndex(code_value_long());
  1699. }
  1700. break;
  1701. case 27: //M27 - Get SD status
  1702. card.getStatus();
  1703. break;
  1704. case 28: //M28 - Start SD write
  1705. starpos = (strchr(strchr_pointer + 4,'*'));
  1706. if(starpos != NULL){
  1707. char* npos = strchr(cmdbuffer[bufindr], 'N');
  1708. strchr_pointer = strchr(npos,' ') + 1;
  1709. *(starpos) = '\0';
  1710. }
  1711. card.openFile(strchr_pointer+4,false);
  1712. break;
  1713. case 29: //M29 - Stop SD write
  1714. //processed in write to file routine above
  1715. //card,saving = false;
  1716. break;
  1717. case 30: //M30 <filename> Delete File
  1718. if (card.cardOK){
  1719. card.closefile();
  1720. starpos = (strchr(strchr_pointer + 4,'*'));
  1721. if(starpos != NULL){
  1722. char* npos = strchr(cmdbuffer[bufindr], 'N');
  1723. strchr_pointer = strchr(npos,' ') + 1;
  1724. *(starpos) = '\0';
  1725. }
  1726. card.removeFile(strchr_pointer + 4);
  1727. }
  1728. break;
  1729. case 32: //M32 - Select file and start SD print
  1730. {
  1731. if(card.sdprinting) {
  1732. st_synchronize();
  1733. }
  1734. starpos = (strchr(strchr_pointer + 4,'*'));
  1735. char* namestartpos = (strchr(strchr_pointer + 4,'!')); //find ! to indicate filename string start.
  1736. if(namestartpos==NULL)
  1737. {
  1738. namestartpos=strchr_pointer + 4; //default name position, 4 letters after the M
  1739. }
  1740. else
  1741. namestartpos++; //to skip the '!'
  1742. if(starpos!=NULL)
  1743. *(starpos)='\0';
  1744. bool call_procedure=(code_seen('P'));
  1745. if(strchr_pointer>namestartpos)
  1746. call_procedure=false; //false alert, 'P' found within filename
  1747. if( card.cardOK )
  1748. {
  1749. card.openFile(namestartpos,true,!call_procedure);
  1750. if(code_seen('S'))
  1751. if(strchr_pointer<namestartpos) //only if "S" is occuring _before_ the filename
  1752. card.setIndex(code_value_long());
  1753. card.startFileprint();
  1754. if(!call_procedure)
  1755. starttime=millis(); //procedure calls count as normal print time.
  1756. }
  1757. } break;
  1758. case 928: //M928 - Start SD write
  1759. starpos = (strchr(strchr_pointer + 5,'*'));
  1760. if(starpos != NULL){
  1761. char* npos = strchr(cmdbuffer[bufindr], 'N');
  1762. strchr_pointer = strchr(npos,' ') + 1;
  1763. *(starpos) = '\0';
  1764. }
  1765. card.openLogFile(strchr_pointer+5);
  1766. break;
  1767. #endif //SDSUPPORT
  1768. case 31: //M31 take time since the start of the SD print or an M109 command
  1769. {
  1770. stoptime=millis();
  1771. char time[30];
  1772. unsigned long t=(stoptime-starttime)/1000;
  1773. int sec,min;
  1774. min=t/60;
  1775. sec=t%60;
  1776. sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
  1777. SERIAL_ECHO_START;
  1778. SERIAL_ECHOLN(time);
  1779. lcd_setstatus(time);
  1780. autotempShutdown();
  1781. }
  1782. break;
  1783. case 42: //M42 -Change pin status via gcode
  1784. if (code_seen('S'))
  1785. {
  1786. int pin_status = code_value();
  1787. int pin_number = LED_PIN;
  1788. if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
  1789. pin_number = code_value();
  1790. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  1791. {
  1792. if (sensitive_pins[i] == pin_number)
  1793. {
  1794. pin_number = -1;
  1795. break;
  1796. }
  1797. }
  1798. #if defined(FAN_PIN) && FAN_PIN > -1
  1799. if (pin_number == FAN_PIN)
  1800. fanSpeed = pin_status;
  1801. #endif
  1802. if (pin_number > -1)
  1803. {
  1804. pinMode(pin_number, OUTPUT);
  1805. digitalWrite(pin_number, pin_status);
  1806. analogWrite(pin_number, pin_status);
  1807. }
  1808. }
  1809. break;
  1810. // M48 Z-Probe repeatability measurement function.
  1811. //
  1812. // Usage: M48 <n #_samples> <X X_position_for_samples> <Y Y_position_for_samples> <V Verbose_Level> <Engage_probe_for_each_reading> <L legs_of_movement_prior_to_doing_probe>
  1813. //
  1814. // This function assumes the bed has been homed. Specificaly, that a G28 command
  1815. // as been issued prior to invoking the M48 Z-Probe repeatability measurement function.
  1816. // Any information generated by a prior G29 Bed leveling command will be lost and need to be
  1817. // regenerated.
  1818. //
  1819. // The number of samples will default to 10 if not specified. You can use upper or lower case
  1820. // letters for any of the options EXCEPT n. n must be in lower case because Marlin uses a capital
  1821. // N for its communication protocol and will get horribly confused if you send it a capital N.
  1822. //
  1823. #ifdef ENABLE_AUTO_BED_LEVELING
  1824. #ifdef Z_PROBE_REPEATABILITY_TEST
  1825. case 48: // M48 Z-Probe repeatability
  1826. {
  1827. #if Z_MIN_PIN == -1
  1828. #error "You must have a Z_MIN endstop in order to enable calculation of Z-Probe repeatability."
  1829. #endif
  1830. double sum=0.0;
  1831. double mean=0.0;
  1832. double sigma=0.0;
  1833. double sample_set[50];
  1834. int verbose_level=1, n=0, j, n_samples = 10, n_legs=0, engage_probe_for_each_reading=0 ;
  1835. double X_current, Y_current, Z_current;
  1836. double X_probe_location, Y_probe_location, Z_start_location, ext_position;
  1837. if (code_seen('V') || code_seen('v')) {
  1838. verbose_level = code_value();
  1839. if (verbose_level<0 || verbose_level>4 ) {
  1840. SERIAL_PROTOCOLPGM("?Verbose Level not plausable.\n");
  1841. goto Sigma_Exit;
  1842. }
  1843. }
  1844. if (verbose_level > 0) {
  1845. SERIAL_PROTOCOLPGM("M48 Z-Probe Repeatability test. Version 2.00\n");
  1846. SERIAL_PROTOCOLPGM("Full support at: http://3dprintboard.com/forum.php\n");
  1847. }
  1848. if (code_seen('n')) {
  1849. n_samples = code_value();
  1850. if (n_samples<4 || n_samples>50 ) {
  1851. SERIAL_PROTOCOLPGM("?Specified sample size not plausable.\n");
  1852. goto Sigma_Exit;
  1853. }
  1854. }
  1855. X_current = X_probe_location = st_get_position_mm(X_AXIS);
  1856. Y_current = Y_probe_location = st_get_position_mm(Y_AXIS);
  1857. Z_current = st_get_position_mm(Z_AXIS);
  1858. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  1859. ext_position = st_get_position_mm(E_AXIS);
  1860. if (code_seen('E') || code_seen('e') )
  1861. engage_probe_for_each_reading++;
  1862. if (code_seen('X') || code_seen('x') ) {
  1863. X_probe_location = code_value() - X_PROBE_OFFSET_FROM_EXTRUDER;
  1864. if (X_probe_location<X_MIN_POS || X_probe_location>X_MAX_POS ) {
  1865. SERIAL_PROTOCOLPGM("?Specified X position out of range.\n");
  1866. goto Sigma_Exit;
  1867. }
  1868. }
  1869. if (code_seen('Y') || code_seen('y') ) {
  1870. Y_probe_location = code_value() - Y_PROBE_OFFSET_FROM_EXTRUDER;
  1871. if (Y_probe_location<Y_MIN_POS || Y_probe_location>Y_MAX_POS ) {
  1872. SERIAL_PROTOCOLPGM("?Specified Y position out of range.\n");
  1873. goto Sigma_Exit;
  1874. }
  1875. }
  1876. if (code_seen('L') || code_seen('l') ) {
  1877. n_legs = code_value();
  1878. if ( n_legs==1 )
  1879. n_legs = 2;
  1880. if ( n_legs<0 || n_legs>15 ) {
  1881. SERIAL_PROTOCOLPGM("?Specified number of legs in movement not plausable.\n");
  1882. goto Sigma_Exit;
  1883. }
  1884. }
  1885. //
  1886. // Do all the preliminary setup work. First raise the probe.
  1887. //
  1888. st_synchronize();
  1889. plan_bed_level_matrix.set_to_identity();
  1890. plan_buffer_line( X_current, Y_current, Z_start_location,
  1891. ext_position,
  1892. homing_feedrate[Z_AXIS]/60,
  1893. active_extruder);
  1894. st_synchronize();
  1895. //
  1896. // Now get everything to the specified probe point So we can safely do a probe to
  1897. // get us close to the bed. If the Z-Axis is far from the bed, we don't want to
  1898. // use that as a starting point for each probe.
  1899. //
  1900. if (verbose_level > 2)
  1901. SERIAL_PROTOCOL("Positioning probe for the test.\n");
  1902. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  1903. ext_position,
  1904. homing_feedrate[X_AXIS]/60,
  1905. active_extruder);
  1906. st_synchronize();
  1907. current_position[X_AXIS] = X_current = st_get_position_mm(X_AXIS);
  1908. current_position[Y_AXIS] = Y_current = st_get_position_mm(Y_AXIS);
  1909. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  1910. current_position[E_AXIS] = ext_position = st_get_position_mm(E_AXIS);
  1911. //
  1912. // OK, do the inital probe to get us close to the bed.
  1913. // Then retrace the right amount and use that in subsequent probes
  1914. //
  1915. engage_z_probe();
  1916. setup_for_endstop_move();
  1917. run_z_probe();
  1918. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  1919. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  1920. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  1921. ext_position,
  1922. homing_feedrate[X_AXIS]/60,
  1923. active_extruder);
  1924. st_synchronize();
  1925. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  1926. if (engage_probe_for_each_reading)
  1927. retract_z_probe();
  1928. for( n=0; n<n_samples; n++) {
  1929. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Make sure we are at the probe location
  1930. if ( n_legs) {
  1931. double radius=0.0, theta=0.0, x_sweep, y_sweep;
  1932. int rotational_direction, l;
  1933. rotational_direction = (unsigned long) millis() & 0x0001; // clockwise or counter clockwise
  1934. radius = (unsigned long) millis() % (long) (X_MAX_LENGTH/4); // limit how far out to go
  1935. theta = (float) ((unsigned long) millis() % (long) 360) / (360./(2*3.1415926)); // turn into radians
  1936. //SERIAL_ECHOPAIR("starting radius: ",radius);
  1937. //SERIAL_ECHOPAIR(" theta: ",theta);
  1938. //SERIAL_ECHOPAIR(" direction: ",rotational_direction);
  1939. //SERIAL_PROTOCOLLNPGM("");
  1940. for( l=0; l<n_legs-1; l++) {
  1941. if (rotational_direction==1)
  1942. theta += (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  1943. else
  1944. theta -= (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  1945. radius += (float) ( ((long) ((unsigned long) millis() % (long) 10)) - 5);
  1946. if ( radius<0.0 )
  1947. radius = -radius;
  1948. X_current = X_probe_location + cos(theta) * radius;
  1949. Y_current = Y_probe_location + sin(theta) * radius;
  1950. if ( X_current<X_MIN_POS) // Make sure our X & Y are sane
  1951. X_current = X_MIN_POS;
  1952. if ( X_current>X_MAX_POS)
  1953. X_current = X_MAX_POS;
  1954. if ( Y_current<Y_MIN_POS) // Make sure our X & Y are sane
  1955. Y_current = Y_MIN_POS;
  1956. if ( Y_current>Y_MAX_POS)
  1957. Y_current = Y_MAX_POS;
  1958. if (verbose_level>3 ) {
  1959. SERIAL_ECHOPAIR("x: ", X_current);
  1960. SERIAL_ECHOPAIR("y: ", Y_current);
  1961. SERIAL_PROTOCOLLNPGM("");
  1962. }
  1963. do_blocking_move_to( X_current, Y_current, Z_current );
  1964. }
  1965. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Go back to the probe location
  1966. }
  1967. if (engage_probe_for_each_reading) {
  1968. engage_z_probe();
  1969. delay(1000);
  1970. }
  1971. setup_for_endstop_move();
  1972. run_z_probe();
  1973. sample_set[n] = current_position[Z_AXIS];
  1974. //
  1975. // Get the current mean for the data points we have so far
  1976. //
  1977. sum=0.0;
  1978. for( j=0; j<=n; j++) {
  1979. sum = sum + sample_set[j];
  1980. }
  1981. mean = sum / (double (n+1));
  1982. //
  1983. // Now, use that mean to calculate the standard deviation for the
  1984. // data points we have so far
  1985. //
  1986. sum=0.0;
  1987. for( j=0; j<=n; j++) {
  1988. sum = sum + (sample_set[j]-mean) * (sample_set[j]-mean);
  1989. }
  1990. sigma = sqrt( sum / (double (n+1)) );
  1991. if (verbose_level > 1) {
  1992. SERIAL_PROTOCOL(n+1);
  1993. SERIAL_PROTOCOL(" of ");
  1994. SERIAL_PROTOCOL(n_samples);
  1995. SERIAL_PROTOCOLPGM(" z: ");
  1996. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
  1997. }
  1998. if (verbose_level > 2) {
  1999. SERIAL_PROTOCOL(" mean: ");
  2000. SERIAL_PROTOCOL_F(mean,6);
  2001. SERIAL_PROTOCOL(" sigma: ");
  2002. SERIAL_PROTOCOL_F(sigma,6);
  2003. }
  2004. if (verbose_level > 0)
  2005. SERIAL_PROTOCOLPGM("\n");
  2006. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  2007. current_position[E_AXIS], homing_feedrate[Z_AXIS]/60, active_extruder);
  2008. st_synchronize();
  2009. if (engage_probe_for_each_reading) {
  2010. retract_z_probe();
  2011. delay(1000);
  2012. }
  2013. }
  2014. retract_z_probe();
  2015. delay(1000);
  2016. clean_up_after_endstop_move();
  2017. // enable_endstops(true);
  2018. if (verbose_level > 0) {
  2019. SERIAL_PROTOCOLPGM("Mean: ");
  2020. SERIAL_PROTOCOL_F(mean, 6);
  2021. SERIAL_PROTOCOLPGM("\n");
  2022. }
  2023. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  2024. SERIAL_PROTOCOL_F(sigma, 6);
  2025. SERIAL_PROTOCOLPGM("\n\n");
  2026. Sigma_Exit:
  2027. break;
  2028. }
  2029. #endif // Z_PROBE_REPEATABILITY_TEST
  2030. #endif // ENABLE_AUTO_BED_LEVELING
  2031. case 104: // M104
  2032. if(setTargetedHotend(104)){
  2033. break;
  2034. }
  2035. if (code_seen('S')) setTargetHotend(code_value(), tmp_extruder);
  2036. #ifdef DUAL_X_CARRIAGE
  2037. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && tmp_extruder == 0)
  2038. setTargetHotend1(code_value() == 0.0 ? 0.0 : code_value() + duplicate_extruder_temp_offset);
  2039. #endif
  2040. setWatch();
  2041. break;
  2042. case 112: // M112 -Emergency Stop
  2043. kill();
  2044. break;
  2045. case 140: // M140 set bed temp
  2046. if (code_seen('S')) setTargetBed(code_value());
  2047. break;
  2048. case 105 : // M105
  2049. if(setTargetedHotend(105)){
  2050. break;
  2051. }
  2052. #if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
  2053. SERIAL_PROTOCOLPGM("ok T:");
  2054. SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
  2055. SERIAL_PROTOCOLPGM(" /");
  2056. SERIAL_PROTOCOL_F(degTargetHotend(tmp_extruder),1);
  2057. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  2058. SERIAL_PROTOCOLPGM(" B:");
  2059. SERIAL_PROTOCOL_F(degBed(),1);
  2060. SERIAL_PROTOCOLPGM(" /");
  2061. SERIAL_PROTOCOL_F(degTargetBed(),1);
  2062. #endif //TEMP_BED_PIN
  2063. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  2064. SERIAL_PROTOCOLPGM(" T");
  2065. SERIAL_PROTOCOL(cur_extruder);
  2066. SERIAL_PROTOCOLPGM(":");
  2067. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  2068. SERIAL_PROTOCOLPGM(" /");
  2069. SERIAL_PROTOCOL_F(degTargetHotend(cur_extruder),1);
  2070. }
  2071. #else
  2072. SERIAL_ERROR_START;
  2073. SERIAL_ERRORLNPGM(MSG_ERR_NO_THERMISTORS);
  2074. #endif
  2075. SERIAL_PROTOCOLPGM(" @:");
  2076. #ifdef EXTRUDER_WATTS
  2077. SERIAL_PROTOCOL((EXTRUDER_WATTS * getHeaterPower(tmp_extruder))/127);
  2078. SERIAL_PROTOCOLPGM("W");
  2079. #else
  2080. SERIAL_PROTOCOL(getHeaterPower(tmp_extruder));
  2081. #endif
  2082. SERIAL_PROTOCOLPGM(" B@:");
  2083. #ifdef BED_WATTS
  2084. SERIAL_PROTOCOL((BED_WATTS * getHeaterPower(-1))/127);
  2085. SERIAL_PROTOCOLPGM("W");
  2086. #else
  2087. SERIAL_PROTOCOL(getHeaterPower(-1));
  2088. #endif
  2089. #ifdef SHOW_TEMP_ADC_VALUES
  2090. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  2091. SERIAL_PROTOCOLPGM(" ADC B:");
  2092. SERIAL_PROTOCOL_F(degBed(),1);
  2093. SERIAL_PROTOCOLPGM("C->");
  2094. SERIAL_PROTOCOL_F(rawBedTemp()/OVERSAMPLENR,0);
  2095. #endif
  2096. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  2097. SERIAL_PROTOCOLPGM(" T");
  2098. SERIAL_PROTOCOL(cur_extruder);
  2099. SERIAL_PROTOCOLPGM(":");
  2100. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  2101. SERIAL_PROTOCOLPGM("C->");
  2102. SERIAL_PROTOCOL_F(rawHotendTemp(cur_extruder)/OVERSAMPLENR,0);
  2103. }
  2104. #endif
  2105. SERIAL_PROTOCOLLN("");
  2106. return;
  2107. break;
  2108. case 109:
  2109. {// M109 - Wait for extruder heater to reach target.
  2110. if(setTargetedHotend(109)){
  2111. break;
  2112. }
  2113. LCD_MESSAGEPGM(MSG_HEATING);
  2114. #ifdef AUTOTEMP
  2115. autotemp_enabled=false;
  2116. #endif
  2117. if (code_seen('S')) {
  2118. setTargetHotend(code_value(), tmp_extruder);
  2119. #ifdef DUAL_X_CARRIAGE
  2120. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && tmp_extruder == 0)
  2121. setTargetHotend1(code_value() == 0.0 ? 0.0 : code_value() + duplicate_extruder_temp_offset);
  2122. #endif
  2123. CooldownNoWait = true;
  2124. } else if (code_seen('R')) {
  2125. setTargetHotend(code_value(), tmp_extruder);
  2126. #ifdef DUAL_X_CARRIAGE
  2127. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && tmp_extruder == 0)
  2128. setTargetHotend1(code_value() == 0.0 ? 0.0 : code_value() + duplicate_extruder_temp_offset);
  2129. #endif
  2130. CooldownNoWait = false;
  2131. }
  2132. #ifdef AUTOTEMP
  2133. if (code_seen('S')) autotemp_min=code_value();
  2134. if (code_seen('B')) autotemp_max=code_value();
  2135. if (code_seen('F'))
  2136. {
  2137. autotemp_factor=code_value();
  2138. autotemp_enabled=true;
  2139. }
  2140. #endif
  2141. setWatch();
  2142. codenum = millis();
  2143. /* See if we are heating up or cooling down */
  2144. target_direction = isHeatingHotend(tmp_extruder); // true if heating, false if cooling
  2145. cancel_heatup = false;
  2146. #ifdef TEMP_RESIDENCY_TIME
  2147. long residencyStart;
  2148. residencyStart = -1;
  2149. /* continue to loop until we have reached the target temp
  2150. _and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
  2151. while((!cancel_heatup)&&((residencyStart == -1) ||
  2152. (residencyStart >= 0 && (((unsigned int) (millis() - residencyStart)) < (TEMP_RESIDENCY_TIME * 1000UL)))) ) {
  2153. #else
  2154. while ( target_direction ? (isHeatingHotend(tmp_extruder)) : (isCoolingHotend(tmp_extruder)&&(CooldownNoWait==false)) ) {
  2155. #endif //TEMP_RESIDENCY_TIME
  2156. if( (millis() - codenum) > 1000UL )
  2157. { //Print Temp Reading and remaining time every 1 second while heating up/cooling down
  2158. SERIAL_PROTOCOLPGM("T:");
  2159. SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
  2160. SERIAL_PROTOCOLPGM(" E:");
  2161. SERIAL_PROTOCOL((int)tmp_extruder);
  2162. #ifdef TEMP_RESIDENCY_TIME
  2163. SERIAL_PROTOCOLPGM(" W:");
  2164. if(residencyStart > -1)
  2165. {
  2166. codenum = ((TEMP_RESIDENCY_TIME * 1000UL) - (millis() - residencyStart)) / 1000UL;
  2167. SERIAL_PROTOCOLLN( codenum );
  2168. }
  2169. else
  2170. {
  2171. SERIAL_PROTOCOLLN( "?" );
  2172. }
  2173. #else
  2174. SERIAL_PROTOCOLLN("");
  2175. #endif
  2176. codenum = millis();
  2177. }
  2178. manage_heater();
  2179. manage_inactivity();
  2180. lcd_update();
  2181. #ifdef TEMP_RESIDENCY_TIME
  2182. /* start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
  2183. or when current temp falls outside the hysteresis after target temp was reached */
  2184. if ((residencyStart == -1 && target_direction && (degHotend(tmp_extruder) >= (degTargetHotend(tmp_extruder)-TEMP_WINDOW))) ||
  2185. (residencyStart == -1 && !target_direction && (degHotend(tmp_extruder) <= (degTargetHotend(tmp_extruder)+TEMP_WINDOW))) ||
  2186. (residencyStart > -1 && labs(degHotend(tmp_extruder) - degTargetHotend(tmp_extruder)) > TEMP_HYSTERESIS) )
  2187. {
  2188. residencyStart = millis();
  2189. }
  2190. #endif //TEMP_RESIDENCY_TIME
  2191. }
  2192. LCD_MESSAGEPGM(MSG_HEATING_COMPLETE);
  2193. starttime=millis();
  2194. previous_millis_cmd = millis();
  2195. }
  2196. break;
  2197. case 190: // M190 - Wait for bed heater to reach target.
  2198. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  2199. LCD_MESSAGEPGM(MSG_BED_HEATING);
  2200. if (code_seen('S')) {
  2201. setTargetBed(code_value());
  2202. CooldownNoWait = true;
  2203. } else if (code_seen('R')) {
  2204. setTargetBed(code_value());
  2205. CooldownNoWait = false;
  2206. }
  2207. codenum = millis();
  2208. cancel_heatup = false;
  2209. target_direction = isHeatingBed(); // true if heating, false if cooling
  2210. while ( (target_direction)&&(!cancel_heatup) ? (isHeatingBed()) : (isCoolingBed()&&(CooldownNoWait==false)) )
  2211. {
  2212. if(( millis() - codenum) > 1000 ) //Print Temp Reading every 1 second while heating up.
  2213. {
  2214. float tt=degHotend(active_extruder);
  2215. SERIAL_PROTOCOLPGM("T:");
  2216. SERIAL_PROTOCOL(tt);
  2217. SERIAL_PROTOCOLPGM(" E:");
  2218. SERIAL_PROTOCOL((int)active_extruder);
  2219. SERIAL_PROTOCOLPGM(" B:");
  2220. SERIAL_PROTOCOL_F(degBed(),1);
  2221. SERIAL_PROTOCOLLN("");
  2222. codenum = millis();
  2223. }
  2224. manage_heater();
  2225. manage_inactivity();
  2226. lcd_update();
  2227. }
  2228. LCD_MESSAGEPGM(MSG_BED_DONE);
  2229. previous_millis_cmd = millis();
  2230. #endif
  2231. break;
  2232. #if defined(FAN_PIN) && FAN_PIN > -1
  2233. case 106: //M106 Fan On
  2234. if (code_seen('S')){
  2235. fanSpeed=constrain(code_value(),0,255);
  2236. }
  2237. else {
  2238. fanSpeed=255;
  2239. }
  2240. break;
  2241. case 107: //M107 Fan Off
  2242. fanSpeed = 0;
  2243. break;
  2244. #endif //FAN_PIN
  2245. #ifdef BARICUDA
  2246. // PWM for HEATER_1_PIN
  2247. #if defined(HEATER_1_PIN) && HEATER_1_PIN > -1
  2248. case 126: //M126 valve open
  2249. if (code_seen('S')){
  2250. ValvePressure=constrain(code_value(),0,255);
  2251. }
  2252. else {
  2253. ValvePressure=255;
  2254. }
  2255. break;
  2256. case 127: //M127 valve closed
  2257. ValvePressure = 0;
  2258. break;
  2259. #endif //HEATER_1_PIN
  2260. // PWM for HEATER_2_PIN
  2261. #if defined(HEATER_2_PIN) && HEATER_2_PIN > -1
  2262. case 128: //M128 valve open
  2263. if (code_seen('S')){
  2264. EtoPPressure=constrain(code_value(),0,255);
  2265. }
  2266. else {
  2267. EtoPPressure=255;
  2268. }
  2269. break;
  2270. case 129: //M129 valve closed
  2271. EtoPPressure = 0;
  2272. break;
  2273. #endif //HEATER_2_PIN
  2274. #endif
  2275. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  2276. case 80: // M80 - Turn on Power Supply
  2277. SET_OUTPUT(PS_ON_PIN); //GND
  2278. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  2279. // If you have a switch on suicide pin, this is useful
  2280. // if you want to start another print with suicide feature after
  2281. // a print without suicide...
  2282. #if defined SUICIDE_PIN && SUICIDE_PIN > -1
  2283. SET_OUTPUT(SUICIDE_PIN);
  2284. WRITE(SUICIDE_PIN, HIGH);
  2285. #endif
  2286. #ifdef ULTIPANEL
  2287. powersupply = true;
  2288. LCD_MESSAGEPGM(WELCOME_MSG);
  2289. lcd_update();
  2290. #endif
  2291. break;
  2292. #endif
  2293. case 81: // M81 - Turn off Power Supply
  2294. disable_heater();
  2295. st_synchronize();
  2296. disable_e0();
  2297. disable_e1();
  2298. disable_e2();
  2299. finishAndDisableSteppers();
  2300. fanSpeed = 0;
  2301. delay(1000); // Wait a little before to switch off
  2302. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  2303. st_synchronize();
  2304. suicide();
  2305. #elif defined(PS_ON_PIN) && PS_ON_PIN > -1
  2306. SET_OUTPUT(PS_ON_PIN);
  2307. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  2308. #endif
  2309. #ifdef ULTIPANEL
  2310. powersupply = false;
  2311. LCD_MESSAGEPGM(MACHINE_NAME" "MSG_OFF".");
  2312. lcd_update();
  2313. #endif
  2314. break;
  2315. case 82:
  2316. axis_relative_modes[3] = false;
  2317. break;
  2318. case 83:
  2319. axis_relative_modes[3] = true;
  2320. break;
  2321. case 18: //compatibility
  2322. case 84: // M84
  2323. if(code_seen('S')){
  2324. stepper_inactive_time = code_value() * 1000;
  2325. }
  2326. else
  2327. {
  2328. bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS]))|| (code_seen(axis_codes[E_AXIS])));
  2329. if(all_axis)
  2330. {
  2331. st_synchronize();
  2332. disable_e0();
  2333. disable_e1();
  2334. disable_e2();
  2335. finishAndDisableSteppers();
  2336. }
  2337. else
  2338. {
  2339. st_synchronize();
  2340. if(code_seen('X')) disable_x();
  2341. if(code_seen('Y')) disable_y();
  2342. if(code_seen('Z')) disable_z();
  2343. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  2344. if(code_seen('E')) {
  2345. disable_e0();
  2346. disable_e1();
  2347. disable_e2();
  2348. }
  2349. #endif
  2350. }
  2351. }
  2352. break;
  2353. case 85: // M85
  2354. if(code_seen('S')) {
  2355. max_inactive_time = code_value() * 1000;
  2356. }
  2357. break;
  2358. case 92: // M92
  2359. for(int8_t i=0; i < NUM_AXIS; i++)
  2360. {
  2361. if(code_seen(axis_codes[i]))
  2362. {
  2363. if(i == 3) { // E
  2364. float value = code_value();
  2365. if(value < 20.0) {
  2366. float factor = axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
  2367. max_e_jerk *= factor;
  2368. max_feedrate[i] *= factor;
  2369. axis_steps_per_sqr_second[i] *= factor;
  2370. }
  2371. axis_steps_per_unit[i] = value;
  2372. }
  2373. else {
  2374. axis_steps_per_unit[i] = code_value();
  2375. }
  2376. }
  2377. }
  2378. break;
  2379. case 115: // M115
  2380. SERIAL_PROTOCOLPGM(MSG_M115_REPORT);
  2381. break;
  2382. case 117: // M117 display message
  2383. starpos = (strchr(strchr_pointer + 5,'*'));
  2384. if(starpos!=NULL)
  2385. *(starpos)='\0';
  2386. lcd_setstatus(strchr_pointer + 5);
  2387. break;
  2388. case 114: // M114
  2389. SERIAL_PROTOCOLPGM("X:");
  2390. SERIAL_PROTOCOL(current_position[X_AXIS]);
  2391. SERIAL_PROTOCOLPGM(" Y:");
  2392. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  2393. SERIAL_PROTOCOLPGM(" Z:");
  2394. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  2395. SERIAL_PROTOCOLPGM(" E:");
  2396. SERIAL_PROTOCOL(current_position[E_AXIS]);
  2397. SERIAL_PROTOCOLPGM(MSG_COUNT_X);
  2398. SERIAL_PROTOCOL(float(st_get_position(X_AXIS))/axis_steps_per_unit[X_AXIS]);
  2399. SERIAL_PROTOCOLPGM(" Y:");
  2400. SERIAL_PROTOCOL(float(st_get_position(Y_AXIS))/axis_steps_per_unit[Y_AXIS]);
  2401. SERIAL_PROTOCOLPGM(" Z:");
  2402. SERIAL_PROTOCOL(float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]);
  2403. SERIAL_PROTOCOLLN("");
  2404. #ifdef SCARA
  2405. SERIAL_PROTOCOLPGM("SCARA Theta:");
  2406. SERIAL_PROTOCOL(delta[X_AXIS]);
  2407. SERIAL_PROTOCOLPGM(" Psi+Theta:");
  2408. SERIAL_PROTOCOL(delta[Y_AXIS]);
  2409. SERIAL_PROTOCOLLN("");
  2410. SERIAL_PROTOCOLPGM("SCARA Cal - Theta:");
  2411. SERIAL_PROTOCOL(delta[X_AXIS]+add_homeing[0]);
  2412. SERIAL_PROTOCOLPGM(" Psi+Theta (90):");
  2413. SERIAL_PROTOCOL(delta[Y_AXIS]-delta[X_AXIS]-90+add_homeing[1]);
  2414. SERIAL_PROTOCOLLN("");
  2415. SERIAL_PROTOCOLPGM("SCARA step Cal - Theta:");
  2416. SERIAL_PROTOCOL(delta[X_AXIS]/90*axis_steps_per_unit[X_AXIS]);
  2417. SERIAL_PROTOCOLPGM(" Psi+Theta:");
  2418. SERIAL_PROTOCOL((delta[Y_AXIS]-delta[X_AXIS])/90*axis_steps_per_unit[Y_AXIS]);
  2419. SERIAL_PROTOCOLLN("");
  2420. SERIAL_PROTOCOLLN("");
  2421. #endif
  2422. break;
  2423. case 120: // M120
  2424. enable_endstops(false) ;
  2425. break;
  2426. case 121: // M121
  2427. enable_endstops(true) ;
  2428. break;
  2429. case 119: // M119
  2430. SERIAL_PROTOCOLLN(MSG_M119_REPORT);
  2431. #if defined(X_MIN_PIN) && X_MIN_PIN > -1
  2432. SERIAL_PROTOCOLPGM(MSG_X_MIN);
  2433. SERIAL_PROTOCOLLN(((READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  2434. #endif
  2435. #if defined(X_MAX_PIN) && X_MAX_PIN > -1
  2436. SERIAL_PROTOCOLPGM(MSG_X_MAX);
  2437. SERIAL_PROTOCOLLN(((READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  2438. #endif
  2439. #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
  2440. SERIAL_PROTOCOLPGM(MSG_Y_MIN);
  2441. SERIAL_PROTOCOLLN(((READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  2442. #endif
  2443. #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
  2444. SERIAL_PROTOCOLPGM(MSG_Y_MAX);
  2445. SERIAL_PROTOCOLLN(((READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  2446. #endif
  2447. #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
  2448. SERIAL_PROTOCOLPGM(MSG_Z_MIN);
  2449. SERIAL_PROTOCOLLN(((READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  2450. #endif
  2451. #if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
  2452. SERIAL_PROTOCOLPGM(MSG_Z_MAX);
  2453. SERIAL_PROTOCOLLN(((READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  2454. #endif
  2455. break;
  2456. //TODO: update for all axis, use for loop
  2457. #ifdef BLINKM
  2458. case 150: // M150
  2459. {
  2460. byte red;
  2461. byte grn;
  2462. byte blu;
  2463. if(code_seen('R')) red = code_value();
  2464. if(code_seen('U')) grn = code_value();
  2465. if(code_seen('B')) blu = code_value();
  2466. SendColors(red,grn,blu);
  2467. }
  2468. break;
  2469. #endif //BLINKM
  2470. case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  2471. {
  2472. float area = .0;
  2473. float radius = .0;
  2474. if(code_seen('D')) {
  2475. radius = (float)code_value() * .5;
  2476. if(radius == 0) {
  2477. area = 1;
  2478. } else {
  2479. area = M_PI * pow(radius, 2);
  2480. }
  2481. } else {
  2482. //reserved for setting filament diameter via UFID or filament measuring device
  2483. break;
  2484. }
  2485. tmp_extruder = active_extruder;
  2486. if(code_seen('T')) {
  2487. tmp_extruder = code_value();
  2488. if(tmp_extruder >= EXTRUDERS) {
  2489. SERIAL_ECHO_START;
  2490. SERIAL_ECHO(MSG_M200_INVALID_EXTRUDER);
  2491. break;
  2492. }
  2493. }
  2494. volumetric_multiplier[tmp_extruder] = 1 / area;
  2495. }
  2496. break;
  2497. case 201: // M201
  2498. for(int8_t i=0; i < NUM_AXIS; i++)
  2499. {
  2500. if(code_seen(axis_codes[i]))
  2501. {
  2502. max_acceleration_units_per_sq_second[i] = code_value();
  2503. }
  2504. }
  2505. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  2506. reset_acceleration_rates();
  2507. break;
  2508. #if 0 // Not used for Sprinter/grbl gen6
  2509. case 202: // M202
  2510. for(int8_t i=0; i < NUM_AXIS; i++) {
  2511. if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
  2512. }
  2513. break;
  2514. #endif
  2515. case 203: // M203 max feedrate mm/sec
  2516. for(int8_t i=0; i < NUM_AXIS; i++) {
  2517. if(code_seen(axis_codes[i])) max_feedrate[i] = code_value();
  2518. }
  2519. break;
  2520. case 204: // M204 acclereration S normal moves T filmanent only moves
  2521. {
  2522. if(code_seen('S')) acceleration = code_value() ;
  2523. if(code_seen('T')) retract_acceleration = code_value() ;
  2524. }
  2525. break;
  2526. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  2527. {
  2528. if(code_seen('S')) minimumfeedrate = code_value();
  2529. if(code_seen('T')) mintravelfeedrate = code_value();
  2530. if(code_seen('B')) minsegmenttime = code_value() ;
  2531. if(code_seen('X')) max_xy_jerk = code_value() ;
  2532. if(code_seen('Z')) max_z_jerk = code_value() ;
  2533. if(code_seen('E')) max_e_jerk = code_value() ;
  2534. }
  2535. break;
  2536. case 206: // M206 additional homeing offset
  2537. for(int8_t i=0; i < 3; i++)
  2538. {
  2539. if(code_seen(axis_codes[i])) add_homeing[i] = code_value();
  2540. }
  2541. #ifdef SCARA
  2542. if(code_seen('T')) // Theta
  2543. {
  2544. add_homeing[0] = code_value() ;
  2545. }
  2546. if(code_seen('P')) // Psi
  2547. {
  2548. add_homeing[1] = code_value() ;
  2549. }
  2550. #endif
  2551. break;
  2552. #ifdef DELTA
  2553. case 665: // M665 set delta configurations L<diagonal_rod> R<delta_radius> S<segments_per_sec>
  2554. if(code_seen('L')) {
  2555. delta_diagonal_rod= code_value();
  2556. }
  2557. if(code_seen('R')) {
  2558. delta_radius= code_value();
  2559. }
  2560. if(code_seen('S')) {
  2561. delta_segments_per_second= code_value();
  2562. }
  2563. recalc_delta_settings(delta_radius, delta_diagonal_rod);
  2564. break;
  2565. case 666: // M666 set delta endstop adjustemnt
  2566. for(int8_t i=0; i < 3; i++)
  2567. {
  2568. if(code_seen(axis_codes[i])) endstop_adj[i] = code_value();
  2569. }
  2570. break;
  2571. #endif
  2572. #ifdef FWRETRACT
  2573. case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
  2574. {
  2575. if(code_seen('S'))
  2576. {
  2577. retract_length = code_value() ;
  2578. }
  2579. if(code_seen('F'))
  2580. {
  2581. retract_feedrate = code_value()/60 ;
  2582. }
  2583. if(code_seen('Z'))
  2584. {
  2585. retract_zlift = code_value() ;
  2586. }
  2587. }break;
  2588. case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  2589. {
  2590. if(code_seen('S'))
  2591. {
  2592. retract_recover_length = code_value() ;
  2593. }
  2594. if(code_seen('F'))
  2595. {
  2596. retract_recover_feedrate = code_value()/60 ;
  2597. }
  2598. }break;
  2599. case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  2600. {
  2601. if(code_seen('S'))
  2602. {
  2603. int t= code_value() ;
  2604. switch(t)
  2605. {
  2606. case 0:
  2607. {
  2608. autoretract_enabled=false;
  2609. retracted[0]=false;
  2610. #if EXTRUDERS > 1
  2611. retracted[1]=false;
  2612. #endif
  2613. #if EXTRUDERS > 2
  2614. retracted[2]=false;
  2615. #endif
  2616. }break;
  2617. case 1:
  2618. {
  2619. autoretract_enabled=true;
  2620. retracted[0]=false;
  2621. #if EXTRUDERS > 1
  2622. retracted[1]=false;
  2623. #endif
  2624. #if EXTRUDERS > 2
  2625. retracted[2]=false;
  2626. #endif
  2627. }break;
  2628. default:
  2629. SERIAL_ECHO_START;
  2630. SERIAL_ECHOPGM(MSG_UNKNOWN_COMMAND);
  2631. SERIAL_ECHO(cmdbuffer[bufindr]);
  2632. SERIAL_ECHOLNPGM("\"");
  2633. }
  2634. }
  2635. }break;
  2636. #endif // FWRETRACT
  2637. #if EXTRUDERS > 1
  2638. case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  2639. {
  2640. if(setTargetedHotend(218)){
  2641. break;
  2642. }
  2643. if(code_seen('X'))
  2644. {
  2645. extruder_offset[X_AXIS][tmp_extruder] = code_value();
  2646. }
  2647. if(code_seen('Y'))
  2648. {
  2649. extruder_offset[Y_AXIS][tmp_extruder] = code_value();
  2650. }
  2651. #ifdef DUAL_X_CARRIAGE
  2652. if(code_seen('Z'))
  2653. {
  2654. extruder_offset[Z_AXIS][tmp_extruder] = code_value();
  2655. }
  2656. #endif
  2657. SERIAL_ECHO_START;
  2658. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  2659. for(tmp_extruder = 0; tmp_extruder < EXTRUDERS; tmp_extruder++)
  2660. {
  2661. SERIAL_ECHO(" ");
  2662. SERIAL_ECHO(extruder_offset[X_AXIS][tmp_extruder]);
  2663. SERIAL_ECHO(",");
  2664. SERIAL_ECHO(extruder_offset[Y_AXIS][tmp_extruder]);
  2665. #ifdef DUAL_X_CARRIAGE
  2666. SERIAL_ECHO(",");
  2667. SERIAL_ECHO(extruder_offset[Z_AXIS][tmp_extruder]);
  2668. #endif
  2669. }
  2670. SERIAL_ECHOLN("");
  2671. }break;
  2672. #endif
  2673. case 220: // M220 S<factor in percent>- set speed factor override percentage
  2674. {
  2675. if(code_seen('S'))
  2676. {
  2677. feedmultiply = code_value() ;
  2678. }
  2679. }
  2680. break;
  2681. case 221: // M221 S<factor in percent>- set extrude factor override percentage
  2682. {
  2683. if(code_seen('S'))
  2684. {
  2685. int tmp_code = code_value();
  2686. if (code_seen('T'))
  2687. {
  2688. if(setTargetedHotend(221)){
  2689. break;
  2690. }
  2691. extruder_multiply[tmp_extruder] = tmp_code;
  2692. }
  2693. else
  2694. {
  2695. extrudemultiply = tmp_code ;
  2696. }
  2697. }
  2698. }
  2699. break;
  2700. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  2701. {
  2702. if(code_seen('P')){
  2703. int pin_number = code_value(); // pin number
  2704. int pin_state = -1; // required pin state - default is inverted
  2705. if(code_seen('S')) pin_state = code_value(); // required pin state
  2706. if(pin_state >= -1 && pin_state <= 1){
  2707. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  2708. {
  2709. if (sensitive_pins[i] == pin_number)
  2710. {
  2711. pin_number = -1;
  2712. break;
  2713. }
  2714. }
  2715. if (pin_number > -1)
  2716. {
  2717. st_synchronize();
  2718. pinMode(pin_number, INPUT);
  2719. int target;
  2720. switch(pin_state){
  2721. case 1:
  2722. target = HIGH;
  2723. break;
  2724. case 0:
  2725. target = LOW;
  2726. break;
  2727. case -1:
  2728. target = !digitalRead(pin_number);
  2729. break;
  2730. }
  2731. while(digitalRead(pin_number) != target){
  2732. manage_heater();
  2733. manage_inactivity();
  2734. lcd_update();
  2735. }
  2736. }
  2737. }
  2738. }
  2739. }
  2740. break;
  2741. #if NUM_SERVOS > 0
  2742. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  2743. {
  2744. int servo_index = -1;
  2745. int servo_position = 0;
  2746. if (code_seen('P'))
  2747. servo_index = code_value();
  2748. if (code_seen('S')) {
  2749. servo_position = code_value();
  2750. if ((servo_index >= 0) && (servo_index < NUM_SERVOS)) {
  2751. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  2752. servos[servo_index].attach(0);
  2753. #endif
  2754. servos[servo_index].write(servo_position);
  2755. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  2756. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  2757. servos[servo_index].detach();
  2758. #endif
  2759. }
  2760. else {
  2761. SERIAL_ECHO_START;
  2762. SERIAL_ECHO("Servo ");
  2763. SERIAL_ECHO(servo_index);
  2764. SERIAL_ECHOLN(" out of range");
  2765. }
  2766. }
  2767. else if (servo_index >= 0) {
  2768. SERIAL_PROTOCOL(MSG_OK);
  2769. SERIAL_PROTOCOL(" Servo ");
  2770. SERIAL_PROTOCOL(servo_index);
  2771. SERIAL_PROTOCOL(": ");
  2772. SERIAL_PROTOCOL(servos[servo_index].read());
  2773. SERIAL_PROTOCOLLN("");
  2774. }
  2775. }
  2776. break;
  2777. #endif // NUM_SERVOS > 0
  2778. #if (LARGE_FLASH == true && ( BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER)))
  2779. case 300: // M300
  2780. {
  2781. int beepS = code_seen('S') ? code_value() : 110;
  2782. int beepP = code_seen('P') ? code_value() : 1000;
  2783. if (beepS > 0)
  2784. {
  2785. #if BEEPER > 0
  2786. tone(BEEPER, beepS);
  2787. delay(beepP);
  2788. noTone(BEEPER);
  2789. #elif defined(ULTRALCD)
  2790. lcd_buzz(beepS, beepP);
  2791. #elif defined(LCD_USE_I2C_BUZZER)
  2792. lcd_buzz(beepP, beepS);
  2793. #endif
  2794. }
  2795. else
  2796. {
  2797. delay(beepP);
  2798. }
  2799. }
  2800. break;
  2801. #endif // M300
  2802. #ifdef PIDTEMP
  2803. case 301: // M301
  2804. {
  2805. if(code_seen('P')) Kp = code_value();
  2806. if(code_seen('I')) Ki = scalePID_i(code_value());
  2807. if(code_seen('D')) Kd = scalePID_d(code_value());
  2808. #ifdef PID_ADD_EXTRUSION_RATE
  2809. if(code_seen('C')) Kc = code_value();
  2810. #endif
  2811. updatePID();
  2812. SERIAL_PROTOCOL(MSG_OK);
  2813. SERIAL_PROTOCOL(" p:");
  2814. SERIAL_PROTOCOL(Kp);
  2815. SERIAL_PROTOCOL(" i:");
  2816. SERIAL_PROTOCOL(unscalePID_i(Ki));
  2817. SERIAL_PROTOCOL(" d:");
  2818. SERIAL_PROTOCOL(unscalePID_d(Kd));
  2819. #ifdef PID_ADD_EXTRUSION_RATE
  2820. SERIAL_PROTOCOL(" c:");
  2821. //Kc does not have scaling applied above, or in resetting defaults
  2822. SERIAL_PROTOCOL(Kc);
  2823. #endif
  2824. SERIAL_PROTOCOLLN("");
  2825. }
  2826. break;
  2827. #endif //PIDTEMP
  2828. #ifdef PIDTEMPBED
  2829. case 304: // M304
  2830. {
  2831. if(code_seen('P')) bedKp = code_value();
  2832. if(code_seen('I')) bedKi = scalePID_i(code_value());
  2833. if(code_seen('D')) bedKd = scalePID_d(code_value());
  2834. updatePID();
  2835. SERIAL_PROTOCOL(MSG_OK);
  2836. SERIAL_PROTOCOL(" p:");
  2837. SERIAL_PROTOCOL(bedKp);
  2838. SERIAL_PROTOCOL(" i:");
  2839. SERIAL_PROTOCOL(unscalePID_i(bedKi));
  2840. SERIAL_PROTOCOL(" d:");
  2841. SERIAL_PROTOCOL(unscalePID_d(bedKd));
  2842. SERIAL_PROTOCOLLN("");
  2843. }
  2844. break;
  2845. #endif //PIDTEMP
  2846. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  2847. {
  2848. #ifdef CHDK
  2849. SET_OUTPUT(CHDK);
  2850. WRITE(CHDK, HIGH);
  2851. chdkHigh = millis();
  2852. chdkActive = true;
  2853. #else
  2854. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  2855. const uint8_t NUM_PULSES=16;
  2856. const float PULSE_LENGTH=0.01524;
  2857. for(int i=0; i < NUM_PULSES; i++) {
  2858. WRITE(PHOTOGRAPH_PIN, HIGH);
  2859. _delay_ms(PULSE_LENGTH);
  2860. WRITE(PHOTOGRAPH_PIN, LOW);
  2861. _delay_ms(PULSE_LENGTH);
  2862. }
  2863. delay(7.33);
  2864. for(int i=0; i < NUM_PULSES; i++) {
  2865. WRITE(PHOTOGRAPH_PIN, HIGH);
  2866. _delay_ms(PULSE_LENGTH);
  2867. WRITE(PHOTOGRAPH_PIN, LOW);
  2868. _delay_ms(PULSE_LENGTH);
  2869. }
  2870. #endif
  2871. #endif //chdk end if
  2872. }
  2873. break;
  2874. #ifdef DOGLCD
  2875. case 250: // M250 Set LCD contrast value: C<value> (value 0..63)
  2876. {
  2877. if (code_seen('C')) {
  2878. lcd_setcontrast( ((int)code_value())&63 );
  2879. }
  2880. SERIAL_PROTOCOLPGM("lcd contrast value: ");
  2881. SERIAL_PROTOCOL(lcd_contrast);
  2882. SERIAL_PROTOCOLLN("");
  2883. }
  2884. break;
  2885. #endif
  2886. #ifdef PREVENT_DANGEROUS_EXTRUDE
  2887. case 302: // allow cold extrudes, or set the minimum extrude temperature
  2888. {
  2889. float temp = .0;
  2890. if (code_seen('S')) temp=code_value();
  2891. set_extrude_min_temp(temp);
  2892. }
  2893. break;
  2894. #endif
  2895. case 303: // M303 PID autotune
  2896. {
  2897. float temp = 150.0;
  2898. int e=0;
  2899. int c=5;
  2900. if (code_seen('E')) e=code_value();
  2901. if (e<0)
  2902. temp=70;
  2903. if (code_seen('S')) temp=code_value();
  2904. if (code_seen('C')) c=code_value();
  2905. PID_autotune(temp, e, c);
  2906. }
  2907. break;
  2908. #ifdef SCARA
  2909. case 360: // M360 SCARA Theta pos1
  2910. SERIAL_ECHOLN(" Cal: Theta 0 ");
  2911. //SoftEndsEnabled = false; // Ignore soft endstops during calibration
  2912. //SERIAL_ECHOLN(" Soft endstops disabled ");
  2913. if(Stopped == false) {
  2914. //get_coordinates(); // For X Y Z E F
  2915. delta[0] = 0;
  2916. delta[1] = 120;
  2917. calculate_SCARA_forward_Transform(delta);
  2918. destination[0] = delta[0]/axis_scaling[X_AXIS];
  2919. destination[1] = delta[1]/axis_scaling[Y_AXIS];
  2920. prepare_move();
  2921. //ClearToSend();
  2922. return;
  2923. }
  2924. break;
  2925. case 361: // SCARA Theta pos2
  2926. SERIAL_ECHOLN(" Cal: Theta 90 ");
  2927. //SoftEndsEnabled = false; // Ignore soft endstops during calibration
  2928. //SERIAL_ECHOLN(" Soft endstops disabled ");
  2929. if(Stopped == false) {
  2930. //get_coordinates(); // For X Y Z E F
  2931. delta[0] = 90;
  2932. delta[1] = 130;
  2933. calculate_SCARA_forward_Transform(delta);
  2934. destination[0] = delta[0]/axis_scaling[X_AXIS];
  2935. destination[1] = delta[1]/axis_scaling[Y_AXIS];
  2936. prepare_move();
  2937. //ClearToSend();
  2938. return;
  2939. }
  2940. break;
  2941. case 362: // SCARA Psi pos1
  2942. SERIAL_ECHOLN(" Cal: Psi 0 ");
  2943. //SoftEndsEnabled = false; // Ignore soft endstops during calibration
  2944. //SERIAL_ECHOLN(" Soft endstops disabled ");
  2945. if(Stopped == false) {
  2946. //get_coordinates(); // For X Y Z E F
  2947. delta[0] = 60;
  2948. delta[1] = 180;
  2949. calculate_SCARA_forward_Transform(delta);
  2950. destination[0] = delta[0]/axis_scaling[X_AXIS];
  2951. destination[1] = delta[1]/axis_scaling[Y_AXIS];
  2952. prepare_move();
  2953. //ClearToSend();
  2954. return;
  2955. }
  2956. break;
  2957. case 363: // SCARA Psi pos2
  2958. SERIAL_ECHOLN(" Cal: Psi 90 ");
  2959. //SoftEndsEnabled = false; // Ignore soft endstops during calibration
  2960. //SERIAL_ECHOLN(" Soft endstops disabled ");
  2961. if(Stopped == false) {
  2962. //get_coordinates(); // For X Y Z E F
  2963. delta[0] = 50;
  2964. delta[1] = 90;
  2965. calculate_SCARA_forward_Transform(delta);
  2966. destination[0] = delta[0]/axis_scaling[X_AXIS];
  2967. destination[1] = delta[1]/axis_scaling[Y_AXIS];
  2968. prepare_move();
  2969. //ClearToSend();
  2970. return;
  2971. }
  2972. break;
  2973. case 364: // SCARA Psi pos3 (90 deg to Theta)
  2974. SERIAL_ECHOLN(" Cal: Theta-Psi 90 ");
  2975. // SoftEndsEnabled = false; // Ignore soft endstops during calibration
  2976. //SERIAL_ECHOLN(" Soft endstops disabled ");
  2977. if(Stopped == false) {
  2978. //get_coordinates(); // For X Y Z E F
  2979. delta[0] = 45;
  2980. delta[1] = 135;
  2981. calculate_SCARA_forward_Transform(delta);
  2982. destination[0] = delta[0]/axis_scaling[X_AXIS];
  2983. destination[1] = delta[1]/axis_scaling[Y_AXIS];
  2984. prepare_move();
  2985. //ClearToSend();
  2986. return;
  2987. }
  2988. break;
  2989. case 365: // M364 Set SCARA scaling for X Y Z
  2990. for(int8_t i=0; i < 3; i++)
  2991. {
  2992. if(code_seen(axis_codes[i]))
  2993. {
  2994. axis_scaling[i] = code_value();
  2995. }
  2996. }
  2997. break;
  2998. #endif
  2999. case 400: // M400 finish all moves
  3000. {
  3001. st_synchronize();
  3002. }
  3003. break;
  3004. #if defined(ENABLE_AUTO_BED_LEVELING) && defined(SERVO_ENDSTOPS) && not defined(Z_PROBE_SLED)
  3005. case 401:
  3006. {
  3007. engage_z_probe(); // Engage Z Servo endstop if available
  3008. }
  3009. break;
  3010. case 402:
  3011. {
  3012. retract_z_probe(); // Retract Z Servo endstop if enabled
  3013. }
  3014. break;
  3015. #endif
  3016. case 500: // M500 Store settings in EEPROM
  3017. {
  3018. Config_StoreSettings();
  3019. }
  3020. break;
  3021. case 501: // M501 Read settings from EEPROM
  3022. {
  3023. Config_RetrieveSettings();
  3024. }
  3025. break;
  3026. case 502: // M502 Revert to default settings
  3027. {
  3028. Config_ResetDefault();
  3029. }
  3030. break;
  3031. case 503: // M503 print settings currently in memory
  3032. {
  3033. Config_PrintSettings();
  3034. }
  3035. break;
  3036. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  3037. case 540:
  3038. {
  3039. if(code_seen('S')) abort_on_endstop_hit = code_value() > 0;
  3040. }
  3041. break;
  3042. #endif
  3043. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  3044. case CUSTOM_M_CODE_SET_Z_PROBE_OFFSET:
  3045. {
  3046. float value;
  3047. if (code_seen('Z'))
  3048. {
  3049. value = code_value();
  3050. if ((Z_PROBE_OFFSET_RANGE_MIN <= value) && (value <= Z_PROBE_OFFSET_RANGE_MAX))
  3051. {
  3052. zprobe_zoffset = -value; // compare w/ line 278 of ConfigurationStore.cpp
  3053. SERIAL_ECHO_START;
  3054. SERIAL_ECHOLNPGM(MSG_ZPROBE_ZOFFSET " " MSG_OK);
  3055. SERIAL_PROTOCOLLN("");
  3056. }
  3057. else
  3058. {
  3059. SERIAL_ECHO_START;
  3060. SERIAL_ECHOPGM(MSG_ZPROBE_ZOFFSET);
  3061. SERIAL_ECHOPGM(MSG_Z_MIN);
  3062. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
  3063. SERIAL_ECHOPGM(MSG_Z_MAX);
  3064. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
  3065. SERIAL_PROTOCOLLN("");
  3066. }
  3067. }
  3068. else
  3069. {
  3070. SERIAL_ECHO_START;
  3071. SERIAL_ECHOLNPGM(MSG_ZPROBE_ZOFFSET " : ");
  3072. SERIAL_ECHO(-zprobe_zoffset);
  3073. SERIAL_PROTOCOLLN("");
  3074. }
  3075. break;
  3076. }
  3077. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  3078. #ifdef FILAMENTCHANGEENABLE
  3079. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  3080. {
  3081. float target[4];
  3082. float lastpos[4];
  3083. target[X_AXIS]=current_position[X_AXIS];
  3084. target[Y_AXIS]=current_position[Y_AXIS];
  3085. target[Z_AXIS]=current_position[Z_AXIS];
  3086. target[E_AXIS]=current_position[E_AXIS];
  3087. lastpos[X_AXIS]=current_position[X_AXIS];
  3088. lastpos[Y_AXIS]=current_position[Y_AXIS];
  3089. lastpos[Z_AXIS]=current_position[Z_AXIS];
  3090. lastpos[E_AXIS]=current_position[E_AXIS];
  3091. //retract by E
  3092. if(code_seen('E'))
  3093. {
  3094. target[E_AXIS]+= code_value();
  3095. }
  3096. else
  3097. {
  3098. #ifdef FILAMENTCHANGE_FIRSTRETRACT
  3099. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  3100. #endif
  3101. }
  3102. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder);
  3103. //lift Z
  3104. if(code_seen('Z'))
  3105. {
  3106. target[Z_AXIS]+= code_value();
  3107. }
  3108. else
  3109. {
  3110. #ifdef FILAMENTCHANGE_ZADD
  3111. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  3112. #endif
  3113. }
  3114. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder);
  3115. //move xy
  3116. if(code_seen('X'))
  3117. {
  3118. target[X_AXIS]+= code_value();
  3119. }
  3120. else
  3121. {
  3122. #ifdef FILAMENTCHANGE_XPOS
  3123. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  3124. #endif
  3125. }
  3126. if(code_seen('Y'))
  3127. {
  3128. target[Y_AXIS]= code_value();
  3129. }
  3130. else
  3131. {
  3132. #ifdef FILAMENTCHANGE_YPOS
  3133. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  3134. #endif
  3135. }
  3136. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder);
  3137. if(code_seen('L'))
  3138. {
  3139. target[E_AXIS]+= code_value();
  3140. }
  3141. else
  3142. {
  3143. #ifdef FILAMENTCHANGE_FINALRETRACT
  3144. target[E_AXIS]+= FILAMENTCHANGE_FINALRETRACT ;
  3145. #endif
  3146. }
  3147. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder);
  3148. //finish moves
  3149. st_synchronize();
  3150. //disable extruder steppers so filament can be removed
  3151. disable_e0();
  3152. disable_e1();
  3153. disable_e2();
  3154. delay(100);
  3155. LCD_ALERTMESSAGEPGM(MSG_FILAMENTCHANGE);
  3156. uint8_t cnt=0;
  3157. while(!lcd_clicked()){
  3158. cnt++;
  3159. manage_heater();
  3160. manage_inactivity();
  3161. lcd_update();
  3162. if(cnt==0)
  3163. {
  3164. #if BEEPER > 0
  3165. SET_OUTPUT(BEEPER);
  3166. WRITE(BEEPER,HIGH);
  3167. delay(3);
  3168. WRITE(BEEPER,LOW);
  3169. delay(3);
  3170. #else
  3171. #if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)
  3172. lcd_buzz(1000/6,100);
  3173. #else
  3174. lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS,LCD_FEEDBACK_FREQUENCY_HZ);
  3175. #endif
  3176. #endif
  3177. }
  3178. }
  3179. //return to normal
  3180. if(code_seen('L'))
  3181. {
  3182. target[E_AXIS]+= -code_value();
  3183. }
  3184. else
  3185. {
  3186. #ifdef FILAMENTCHANGE_FINALRETRACT
  3187. target[E_AXIS]+=(-1)*FILAMENTCHANGE_FINALRETRACT ;
  3188. #endif
  3189. }
  3190. current_position[E_AXIS]=target[E_AXIS]; //the long retract of L is compensated by manual filament feeding
  3191. plan_set_e_position(current_position[E_AXIS]);
  3192. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder); //should do nothing
  3193. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder); //move xy back
  3194. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder); //move z back
  3195. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], lastpos[E_AXIS], feedrate/60, active_extruder); //final untretract
  3196. }
  3197. break;
  3198. #endif //FILAMENTCHANGEENABLE
  3199. #ifdef DUAL_X_CARRIAGE
  3200. case 605: // Set dual x-carriage movement mode:
  3201. // M605 S0: Full control mode. The slicer has full control over x-carriage movement
  3202. // M605 S1: Auto-park mode. The inactive head will auto park/unpark without slicer involvement
  3203. // M605 S2 [Xnnn] [Rmmm]: Duplication mode. The second extruder will duplicate the first with nnn
  3204. // millimeters x-offset and an optional differential hotend temperature of
  3205. // mmm degrees. E.g., with "M605 S2 X100 R2" the second extruder will duplicate
  3206. // the first with a spacing of 100mm in the x direction and 2 degrees hotter.
  3207. //
  3208. // Note: the X axis should be homed after changing dual x-carriage mode.
  3209. {
  3210. st_synchronize();
  3211. if (code_seen('S'))
  3212. dual_x_carriage_mode = code_value();
  3213. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE)
  3214. {
  3215. if (code_seen('X'))
  3216. duplicate_extruder_x_offset = max(code_value(),X2_MIN_POS - x_home_pos(0));
  3217. if (code_seen('R'))
  3218. duplicate_extruder_temp_offset = code_value();
  3219. SERIAL_ECHO_START;
  3220. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  3221. SERIAL_ECHO(" ");
  3222. SERIAL_ECHO(extruder_offset[X_AXIS][0]);
  3223. SERIAL_ECHO(",");
  3224. SERIAL_ECHO(extruder_offset[Y_AXIS][0]);
  3225. SERIAL_ECHO(" ");
  3226. SERIAL_ECHO(duplicate_extruder_x_offset);
  3227. SERIAL_ECHO(",");
  3228. SERIAL_ECHOLN(extruder_offset[Y_AXIS][1]);
  3229. }
  3230. else if (dual_x_carriage_mode != DXC_FULL_CONTROL_MODE && dual_x_carriage_mode != DXC_AUTO_PARK_MODE)
  3231. {
  3232. dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  3233. }
  3234. active_extruder_parked = false;
  3235. extruder_duplication_enabled = false;
  3236. delayed_move_time = 0;
  3237. }
  3238. break;
  3239. #endif //DUAL_X_CARRIAGE
  3240. case 907: // M907 Set digital trimpot motor current using axis codes.
  3241. {
  3242. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  3243. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_current(i,code_value());
  3244. if(code_seen('B')) digipot_current(4,code_value());
  3245. if(code_seen('S')) for(int i=0;i<=4;i++) digipot_current(i,code_value());
  3246. #endif
  3247. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  3248. if(code_seen('X')) digipot_current(0, code_value());
  3249. #endif
  3250. #ifdef MOTOR_CURRENT_PWM_Z_PIN
  3251. if(code_seen('Z')) digipot_current(1, code_value());
  3252. #endif
  3253. #ifdef MOTOR_CURRENT_PWM_E_PIN
  3254. if(code_seen('E')) digipot_current(2, code_value());
  3255. #endif
  3256. #ifdef DIGIPOT_I2C
  3257. // this one uses actual amps in floating point
  3258. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_i2c_set_current(i, code_value());
  3259. // for each additional extruder (named B,C,D,E..., channels 4,5,6,7...)
  3260. for(int i=NUM_AXIS;i<DIGIPOT_I2C_NUM_CHANNELS;i++) if(code_seen('B'+i-NUM_AXIS)) digipot_i2c_set_current(i, code_value());
  3261. #endif
  3262. }
  3263. break;
  3264. case 908: // M908 Control digital trimpot directly.
  3265. {
  3266. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  3267. uint8_t channel,current;
  3268. if(code_seen('P')) channel=code_value();
  3269. if(code_seen('S')) current=code_value();
  3270. digitalPotWrite(channel, current);
  3271. #endif
  3272. }
  3273. break;
  3274. case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  3275. {
  3276. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  3277. if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value());
  3278. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_mode(i,(uint8_t)code_value());
  3279. if(code_seen('B')) microstep_mode(4,code_value());
  3280. microstep_readings();
  3281. #endif
  3282. }
  3283. break;
  3284. case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  3285. {
  3286. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  3287. if(code_seen('S')) switch((int)code_value())
  3288. {
  3289. case 1:
  3290. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,code_value(),-1);
  3291. if(code_seen('B')) microstep_ms(4,code_value(),-1);
  3292. break;
  3293. case 2:
  3294. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,-1,code_value());
  3295. if(code_seen('B')) microstep_ms(4,-1,code_value());
  3296. break;
  3297. }
  3298. microstep_readings();
  3299. #endif
  3300. }
  3301. break;
  3302. case 999: // M999: Restart after being stopped
  3303. Stopped = false;
  3304. lcd_reset_alert_level();
  3305. gcode_LastN = Stopped_gcode_LastN;
  3306. FlushSerialRequestResend();
  3307. break;
  3308. }
  3309. }
  3310. else if(code_seen('T'))
  3311. {
  3312. tmp_extruder = code_value();
  3313. if(tmp_extruder >= EXTRUDERS) {
  3314. SERIAL_ECHO_START;
  3315. SERIAL_ECHO("T");
  3316. SERIAL_ECHO(tmp_extruder);
  3317. SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
  3318. }
  3319. else {
  3320. boolean make_move = false;
  3321. if(code_seen('F')) {
  3322. make_move = true;
  3323. next_feedrate = code_value();
  3324. if(next_feedrate > 0.0) {
  3325. feedrate = next_feedrate;
  3326. }
  3327. }
  3328. #if EXTRUDERS > 1
  3329. if(tmp_extruder != active_extruder) {
  3330. // Save current position to return to after applying extruder offset
  3331. memcpy(destination, current_position, sizeof(destination));
  3332. #ifdef DUAL_X_CARRIAGE
  3333. if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE && Stopped == false &&
  3334. (delayed_move_time != 0 || current_position[X_AXIS] != x_home_pos(active_extruder)))
  3335. {
  3336. // Park old head: 1) raise 2) move to park position 3) lower
  3337. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
  3338. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  3339. plan_buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
  3340. current_position[E_AXIS], max_feedrate[X_AXIS], active_extruder);
  3341. plan_buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS],
  3342. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  3343. st_synchronize();
  3344. }
  3345. // apply Y & Z extruder offset (x offset is already used in determining home pos)
  3346. current_position[Y_AXIS] = current_position[Y_AXIS] -
  3347. extruder_offset[Y_AXIS][active_extruder] +
  3348. extruder_offset[Y_AXIS][tmp_extruder];
  3349. current_position[Z_AXIS] = current_position[Z_AXIS] -
  3350. extruder_offset[Z_AXIS][active_extruder] +
  3351. extruder_offset[Z_AXIS][tmp_extruder];
  3352. active_extruder = tmp_extruder;
  3353. // This function resets the max/min values - the current position may be overwritten below.
  3354. axis_is_at_home(X_AXIS);
  3355. if (dual_x_carriage_mode == DXC_FULL_CONTROL_MODE)
  3356. {
  3357. current_position[X_AXIS] = inactive_extruder_x_pos;
  3358. inactive_extruder_x_pos = destination[X_AXIS];
  3359. }
  3360. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE)
  3361. {
  3362. active_extruder_parked = (active_extruder == 0); // this triggers the second extruder to move into the duplication position
  3363. if (active_extruder == 0 || active_extruder_parked)
  3364. current_position[X_AXIS] = inactive_extruder_x_pos;
  3365. else
  3366. current_position[X_AXIS] = destination[X_AXIS] + duplicate_extruder_x_offset;
  3367. inactive_extruder_x_pos = destination[X_AXIS];
  3368. extruder_duplication_enabled = false;
  3369. }
  3370. else
  3371. {
  3372. // record raised toolhead position for use by unpark
  3373. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  3374. raised_parked_position[Z_AXIS] += TOOLCHANGE_UNPARK_ZLIFT;
  3375. active_extruder_parked = true;
  3376. delayed_move_time = 0;
  3377. }
  3378. #else
  3379. // Offset extruder (only by XY)
  3380. int i;
  3381. for(i = 0; i < 2; i++) {
  3382. current_position[i] = current_position[i] -
  3383. extruder_offset[i][active_extruder] +
  3384. extruder_offset[i][tmp_extruder];
  3385. }
  3386. // Set the new active extruder and position
  3387. active_extruder = tmp_extruder;
  3388. #endif //else DUAL_X_CARRIAGE
  3389. #ifdef DELTA
  3390. calculate_delta(current_position); // change cartesian kinematic to delta kinematic;
  3391. //sent position to plan_set_position();
  3392. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS],current_position[E_AXIS]);
  3393. #else
  3394. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  3395. #endif
  3396. // Move to the old position if 'F' was in the parameters
  3397. if(make_move && Stopped == false) {
  3398. prepare_move();
  3399. }
  3400. }
  3401. #endif
  3402. SERIAL_ECHO_START;
  3403. SERIAL_ECHO(MSG_ACTIVE_EXTRUDER);
  3404. SERIAL_PROTOCOLLN((int)active_extruder);
  3405. }
  3406. }
  3407. else
  3408. {
  3409. SERIAL_ECHO_START;
  3410. SERIAL_ECHOPGM(MSG_UNKNOWN_COMMAND);
  3411. SERIAL_ECHO(cmdbuffer[bufindr]);
  3412. SERIAL_ECHOLNPGM("\"");
  3413. }
  3414. ClearToSend();
  3415. }
  3416. void FlushSerialRequestResend()
  3417. {
  3418. //char cmdbuffer[bufindr][100]="Resend:";
  3419. MYSERIAL.flush();
  3420. SERIAL_PROTOCOLPGM(MSG_RESEND);
  3421. SERIAL_PROTOCOLLN(gcode_LastN + 1);
  3422. ClearToSend();
  3423. }
  3424. void ClearToSend()
  3425. {
  3426. previous_millis_cmd = millis();
  3427. #ifdef SDSUPPORT
  3428. if(fromsd[bufindr])
  3429. return;
  3430. #endif //SDSUPPORT
  3431. SERIAL_PROTOCOLLNPGM(MSG_OK);
  3432. }
  3433. void get_coordinates()
  3434. {
  3435. bool seen[4]={false,false,false,false};
  3436. for(int8_t i=0; i < NUM_AXIS; i++) {
  3437. if(code_seen(axis_codes[i]))
  3438. {
  3439. destination[i] = (float)code_value() + (axis_relative_modes[i] || relative_mode)*current_position[i];
  3440. seen[i]=true;
  3441. }
  3442. else destination[i] = current_position[i]; //Are these else lines really needed?
  3443. }
  3444. if(code_seen('F')) {
  3445. next_feedrate = code_value();
  3446. if(next_feedrate > 0.0) feedrate = next_feedrate;
  3447. }
  3448. }
  3449. void get_arc_coordinates()
  3450. {
  3451. #ifdef SF_ARC_FIX
  3452. bool relative_mode_backup = relative_mode;
  3453. relative_mode = true;
  3454. #endif
  3455. get_coordinates();
  3456. #ifdef SF_ARC_FIX
  3457. relative_mode=relative_mode_backup;
  3458. #endif
  3459. if(code_seen('I')) {
  3460. offset[0] = code_value();
  3461. }
  3462. else {
  3463. offset[0] = 0.0;
  3464. }
  3465. if(code_seen('J')) {
  3466. offset[1] = code_value();
  3467. }
  3468. else {
  3469. offset[1] = 0.0;
  3470. }
  3471. }
  3472. void clamp_to_software_endstops(float target[3])
  3473. {
  3474. if (min_software_endstops) {
  3475. if (target[X_AXIS] < min_pos[X_AXIS]) target[X_AXIS] = min_pos[X_AXIS];
  3476. if (target[Y_AXIS] < min_pos[Y_AXIS]) target[Y_AXIS] = min_pos[Y_AXIS];
  3477. if (target[Z_AXIS] < min_pos[Z_AXIS]) target[Z_AXIS] = min_pos[Z_AXIS];
  3478. }
  3479. if (max_software_endstops) {
  3480. if (target[X_AXIS] > max_pos[X_AXIS]) target[X_AXIS] = max_pos[X_AXIS];
  3481. if (target[Y_AXIS] > max_pos[Y_AXIS]) target[Y_AXIS] = max_pos[Y_AXIS];
  3482. if (target[Z_AXIS] > max_pos[Z_AXIS]) target[Z_AXIS] = max_pos[Z_AXIS];
  3483. }
  3484. }
  3485. #ifdef DELTA
  3486. void recalc_delta_settings(float radius, float diagonal_rod)
  3487. {
  3488. delta_tower1_x= -SIN_60*radius; // front left tower
  3489. delta_tower1_y= -COS_60*radius;
  3490. delta_tower2_x= SIN_60*radius; // front right tower
  3491. delta_tower2_y= -COS_60*radius;
  3492. delta_tower3_x= 0.0; // back middle tower
  3493. delta_tower3_y= radius;
  3494. delta_diagonal_rod_2= sq(diagonal_rod);
  3495. }
  3496. void calculate_delta(float cartesian[3])
  3497. {
  3498. delta[X_AXIS] = sqrt(delta_diagonal_rod_2
  3499. - sq(delta_tower1_x-cartesian[X_AXIS])
  3500. - sq(delta_tower1_y-cartesian[Y_AXIS])
  3501. ) + cartesian[Z_AXIS];
  3502. delta[Y_AXIS] = sqrt(delta_diagonal_rod_2
  3503. - sq(delta_tower2_x-cartesian[X_AXIS])
  3504. - sq(delta_tower2_y-cartesian[Y_AXIS])
  3505. ) + cartesian[Z_AXIS];
  3506. delta[Z_AXIS] = sqrt(delta_diagonal_rod_2
  3507. - sq(delta_tower3_x-cartesian[X_AXIS])
  3508. - sq(delta_tower3_y-cartesian[Y_AXIS])
  3509. ) + cartesian[Z_AXIS];
  3510. /*
  3511. SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);
  3512. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]);
  3513. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]);
  3514. SERIAL_ECHOPGM("delta x="); SERIAL_ECHO(delta[X_AXIS]);
  3515. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(delta[Y_AXIS]);
  3516. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(delta[Z_AXIS]);
  3517. */
  3518. }
  3519. #endif
  3520. void prepare_move()
  3521. {
  3522. clamp_to_software_endstops(destination);
  3523. previous_millis_cmd = millis();
  3524. #ifdef SCARA //for now same as delta-code
  3525. float difference[NUM_AXIS];
  3526. for (int8_t i=0; i < NUM_AXIS; i++) {
  3527. difference[i] = destination[i] - current_position[i];
  3528. }
  3529. float cartesian_mm = sqrt( sq(difference[X_AXIS]) +
  3530. sq(difference[Y_AXIS]) +
  3531. sq(difference[Z_AXIS]));
  3532. if (cartesian_mm < 0.000001) { cartesian_mm = abs(difference[E_AXIS]); }
  3533. if (cartesian_mm < 0.000001) { return; }
  3534. float seconds = 6000 * cartesian_mm / feedrate / feedmultiply;
  3535. int steps = max(1, int(scara_segments_per_second * seconds));
  3536. //SERIAL_ECHOPGM("mm="); SERIAL_ECHO(cartesian_mm);
  3537. //SERIAL_ECHOPGM(" seconds="); SERIAL_ECHO(seconds);
  3538. //SERIAL_ECHOPGM(" steps="); SERIAL_ECHOLN(steps);
  3539. for (int s = 1; s <= steps; s++) {
  3540. float fraction = float(s) / float(steps);
  3541. for(int8_t i=0; i < NUM_AXIS; i++) {
  3542. destination[i] = current_position[i] + difference[i] * fraction;
  3543. }
  3544. calculate_delta(destination);
  3545. //SERIAL_ECHOPGM("destination[0]="); SERIAL_ECHOLN(destination[0]);
  3546. //SERIAL_ECHOPGM("destination[1]="); SERIAL_ECHOLN(destination[1]);
  3547. //SERIAL_ECHOPGM("destination[2]="); SERIAL_ECHOLN(destination[2]);
  3548. //SERIAL_ECHOPGM("delta[X_AXIS]="); SERIAL_ECHOLN(delta[X_AXIS]);
  3549. //SERIAL_ECHOPGM("delta[Y_AXIS]="); SERIAL_ECHOLN(delta[Y_AXIS]);
  3550. //SERIAL_ECHOPGM("delta[Z_AXIS]="); SERIAL_ECHOLN(delta[Z_AXIS]);
  3551. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS],
  3552. destination[E_AXIS], feedrate*feedmultiply/60/100.0,
  3553. active_extruder);
  3554. }
  3555. #endif // SCARA
  3556. #ifdef DELTA
  3557. float difference[NUM_AXIS];
  3558. for (int8_t i=0; i < NUM_AXIS; i++) {
  3559. difference[i] = destination[i] - current_position[i];
  3560. }
  3561. float cartesian_mm = sqrt(sq(difference[X_AXIS]) +
  3562. sq(difference[Y_AXIS]) +
  3563. sq(difference[Z_AXIS]));
  3564. if (cartesian_mm < 0.000001) { cartesian_mm = abs(difference[E_AXIS]); }
  3565. if (cartesian_mm < 0.000001) { return; }
  3566. float seconds = 6000 * cartesian_mm / feedrate / feedmultiply;
  3567. int steps = max(1, int(delta_segments_per_second * seconds));
  3568. // SERIAL_ECHOPGM("mm="); SERIAL_ECHO(cartesian_mm);
  3569. // SERIAL_ECHOPGM(" seconds="); SERIAL_ECHO(seconds);
  3570. // SERIAL_ECHOPGM(" steps="); SERIAL_ECHOLN(steps);
  3571. for (int s = 1; s <= steps; s++) {
  3572. float fraction = float(s) / float(steps);
  3573. for(int8_t i=0; i < NUM_AXIS; i++) {
  3574. destination[i] = current_position[i] + difference[i] * fraction;
  3575. }
  3576. calculate_delta(destination);
  3577. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS],
  3578. destination[E_AXIS], feedrate*feedmultiply/60/100.0,
  3579. active_extruder);
  3580. }
  3581. #endif // DELTA
  3582. #ifdef DUAL_X_CARRIAGE
  3583. if (active_extruder_parked)
  3584. {
  3585. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && active_extruder == 0)
  3586. {
  3587. // move duplicate extruder into correct duplication position.
  3588. plan_set_position(inactive_extruder_x_pos, current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  3589. plan_buffer_line(current_position[X_AXIS] + duplicate_extruder_x_offset, current_position[Y_AXIS], current_position[Z_AXIS],
  3590. current_position[E_AXIS], max_feedrate[X_AXIS], 1);
  3591. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  3592. st_synchronize();
  3593. extruder_duplication_enabled = true;
  3594. active_extruder_parked = false;
  3595. }
  3596. else if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE) // handle unparking of head
  3597. {
  3598. if (current_position[E_AXIS] == destination[E_AXIS])
  3599. {
  3600. // this is a travel move - skit it but keep track of current position (so that it can later
  3601. // be used as start of first non-travel move)
  3602. if (delayed_move_time != 0xFFFFFFFFUL)
  3603. {
  3604. memcpy(current_position, destination, sizeof(current_position));
  3605. if (destination[Z_AXIS] > raised_parked_position[Z_AXIS])
  3606. raised_parked_position[Z_AXIS] = destination[Z_AXIS];
  3607. delayed_move_time = millis();
  3608. return;
  3609. }
  3610. }
  3611. delayed_move_time = 0;
  3612. // unpark extruder: 1) raise, 2) move into starting XY position, 3) lower
  3613. plan_buffer_line(raised_parked_position[X_AXIS], raised_parked_position[Y_AXIS], raised_parked_position[Z_AXIS], current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  3614. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], raised_parked_position[Z_AXIS],
  3615. current_position[E_AXIS], min(max_feedrate[X_AXIS],max_feedrate[Y_AXIS]), active_extruder);
  3616. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS],
  3617. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  3618. active_extruder_parked = false;
  3619. }
  3620. }
  3621. #endif //DUAL_X_CARRIAGE
  3622. #if ! (defined DELTA || defined SCARA)
  3623. // Do not use feedmultiply for E or Z only moves
  3624. if( (current_position[X_AXIS] == destination [X_AXIS]) && (current_position[Y_AXIS] == destination [Y_AXIS])) {
  3625. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  3626. }
  3627. else {
  3628. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply/60/100.0, active_extruder);
  3629. }
  3630. #endif // !(DELTA || SCARA)
  3631. for(int8_t i=0; i < NUM_AXIS; i++) {
  3632. current_position[i] = destination[i];
  3633. }
  3634. }
  3635. void prepare_arc_move(char isclockwise) {
  3636. float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
  3637. // Trace the arc
  3638. mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedmultiply/60/100.0, r, isclockwise, active_extruder);
  3639. // As far as the parser is concerned, the position is now == target. In reality the
  3640. // motion control system might still be processing the action and the real tool position
  3641. // in any intermediate location.
  3642. for(int8_t i=0; i < NUM_AXIS; i++) {
  3643. current_position[i] = destination[i];
  3644. }
  3645. previous_millis_cmd = millis();
  3646. }
  3647. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  3648. #if defined(FAN_PIN)
  3649. #if CONTROLLERFAN_PIN == FAN_PIN
  3650. #error "You cannot set CONTROLLERFAN_PIN equal to FAN_PIN"
  3651. #endif
  3652. #endif
  3653. unsigned long lastMotor = 0; //Save the time for when a motor was turned on last
  3654. unsigned long lastMotorCheck = 0;
  3655. void controllerFan()
  3656. {
  3657. if ((millis() - lastMotorCheck) >= 2500) //Not a time critical function, so we only check every 2500ms
  3658. {
  3659. lastMotorCheck = millis();
  3660. if(!READ(X_ENABLE_PIN) || !READ(Y_ENABLE_PIN) || !READ(Z_ENABLE_PIN) || (soft_pwm_bed > 0)
  3661. #if EXTRUDERS > 2
  3662. || !READ(E2_ENABLE_PIN)
  3663. #endif
  3664. #if EXTRUDER > 1
  3665. #if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1
  3666. || !READ(X2_ENABLE_PIN)
  3667. #endif
  3668. || !READ(E1_ENABLE_PIN)
  3669. #endif
  3670. || !READ(E0_ENABLE_PIN)) //If any of the drivers are enabled...
  3671. {
  3672. lastMotor = millis(); //... set time to NOW so the fan will turn on
  3673. }
  3674. if ((millis() - lastMotor) >= (CONTROLLERFAN_SECS*1000UL) || lastMotor == 0) //If the last time any driver was enabled, is longer since than CONTROLLERSEC...
  3675. {
  3676. digitalWrite(CONTROLLERFAN_PIN, 0);
  3677. analogWrite(CONTROLLERFAN_PIN, 0);
  3678. }
  3679. else
  3680. {
  3681. // allows digital or PWM fan output to be used (see M42 handling)
  3682. digitalWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  3683. analogWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  3684. }
  3685. }
  3686. }
  3687. #endif
  3688. #ifdef SCARA
  3689. void calculate_SCARA_forward_Transform(float f_scara[3])
  3690. {
  3691. // Perform forward kinematics, and place results in delta[3]
  3692. // The maths and first version has been done by QHARLEY . Integrated into masterbranch 06/2014 and slightly restructured by Joachim Cerny in June 2014
  3693. float x_sin, x_cos, y_sin, y_cos;
  3694. //SERIAL_ECHOPGM("f_delta x="); SERIAL_ECHO(f_scara[X_AXIS]);
  3695. //SERIAL_ECHOPGM(" y="); SERIAL_ECHO(f_scara[Y_AXIS]);
  3696. x_sin = sin(f_scara[X_AXIS]/SCARA_RAD2DEG) * Linkage_1;
  3697. x_cos = cos(f_scara[X_AXIS]/SCARA_RAD2DEG) * Linkage_1;
  3698. y_sin = sin(f_scara[Y_AXIS]/SCARA_RAD2DEG) * Linkage_2;
  3699. y_cos = cos(f_scara[Y_AXIS]/SCARA_RAD2DEG) * Linkage_2;
  3700. // SERIAL_ECHOPGM(" x_sin="); SERIAL_ECHO(x_sin);
  3701. // SERIAL_ECHOPGM(" x_cos="); SERIAL_ECHO(x_cos);
  3702. // SERIAL_ECHOPGM(" y_sin="); SERIAL_ECHO(y_sin);
  3703. // SERIAL_ECHOPGM(" y_cos="); SERIAL_ECHOLN(y_cos);
  3704. delta[X_AXIS] = x_cos + y_cos + SCARA_offset_x; //theta
  3705. delta[Y_AXIS] = x_sin + y_sin + SCARA_offset_y; //theta+phi
  3706. //SERIAL_ECHOPGM(" delta[X_AXIS]="); SERIAL_ECHO(delta[X_AXIS]);
  3707. //SERIAL_ECHOPGM(" delta[Y_AXIS]="); SERIAL_ECHOLN(delta[Y_AXIS]);
  3708. }
  3709. void calculate_delta(float cartesian[3]){
  3710. //reverse kinematics.
  3711. // Perform reversed kinematics, and place results in delta[3]
  3712. // The maths and first version has been done by QHARLEY . Integrated into masterbranch 06/2014 and slightly restructured by Joachim Cerny in June 2014
  3713. float SCARA_pos[2];
  3714. static float SCARA_C2, SCARA_S2, SCARA_K1, SCARA_K2, SCARA_theta, SCARA_psi;
  3715. SCARA_pos[X_AXIS] = cartesian[X_AXIS] * axis_scaling[X_AXIS] - SCARA_offset_x; //Translate SCARA to standard X Y
  3716. SCARA_pos[Y_AXIS] = cartesian[Y_AXIS] * axis_scaling[Y_AXIS] - SCARA_offset_y; // With scaling factor.
  3717. #if (Linkage_1 == Linkage_2)
  3718. SCARA_C2 = ( ( sq(SCARA_pos[X_AXIS]) + sq(SCARA_pos[Y_AXIS]) ) / (2 * (float)L1_2) ) - 1;
  3719. #else
  3720. SCARA_C2 = ( sq(SCARA_pos[X_AXIS]) + sq(SCARA_pos[Y_AXIS]) - (float)L1_2 - (float)L2_2 ) / 45000;
  3721. #endif
  3722. SCARA_S2 = sqrt( 1 - sq(SCARA_C2) );
  3723. SCARA_K1 = Linkage_1 + Linkage_2 * SCARA_C2;
  3724. SCARA_K2 = Linkage_2 * SCARA_S2;
  3725. SCARA_theta = ( atan2(SCARA_pos[X_AXIS],SCARA_pos[Y_AXIS])-atan2(SCARA_K1, SCARA_K2) ) * -1;
  3726. SCARA_psi = atan2(SCARA_S2,SCARA_C2);
  3727. delta[X_AXIS] = SCARA_theta * SCARA_RAD2DEG; // Multiply by 180/Pi - theta is support arm angle
  3728. delta[Y_AXIS] = (SCARA_theta + SCARA_psi) * SCARA_RAD2DEG; // - equal to sub arm angle (inverted motor)
  3729. delta[Z_AXIS] = cartesian[Z_AXIS];
  3730. /*
  3731. SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);
  3732. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]);
  3733. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]);
  3734. SERIAL_ECHOPGM("scara x="); SERIAL_ECHO(SCARA_pos[X_AXIS]);
  3735. SERIAL_ECHOPGM(" y="); SERIAL_ECHOLN(SCARA_pos[Y_AXIS]);
  3736. SERIAL_ECHOPGM("delta x="); SERIAL_ECHO(delta[X_AXIS]);
  3737. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(delta[Y_AXIS]);
  3738. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(delta[Z_AXIS]);
  3739. SERIAL_ECHOPGM("C2="); SERIAL_ECHO(SCARA_C2);
  3740. SERIAL_ECHOPGM(" S2="); SERIAL_ECHO(SCARA_S2);
  3741. SERIAL_ECHOPGM(" Theta="); SERIAL_ECHO(SCARA_theta);
  3742. SERIAL_ECHOPGM(" Psi="); SERIAL_ECHOLN(SCARA_psi);
  3743. SERIAL_ECHOLN(" ");*/
  3744. }
  3745. #endif
  3746. #ifdef TEMP_STAT_LEDS
  3747. static bool blue_led = false;
  3748. static bool red_led = false;
  3749. static uint32_t stat_update = 0;
  3750. void handle_status_leds(void) {
  3751. float max_temp = 0.0;
  3752. if(millis() > stat_update) {
  3753. stat_update += 500; // Update every 0.5s
  3754. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  3755. max_temp = max(max_temp, degHotend(cur_extruder));
  3756. max_temp = max(max_temp, degTargetHotend(cur_extruder));
  3757. }
  3758. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  3759. max_temp = max(max_temp, degTargetBed());
  3760. max_temp = max(max_temp, degBed());
  3761. #endif
  3762. if((max_temp > 55.0) && (red_led == false)) {
  3763. digitalWrite(STAT_LED_RED, 1);
  3764. digitalWrite(STAT_LED_BLUE, 0);
  3765. red_led = true;
  3766. blue_led = false;
  3767. }
  3768. if((max_temp < 54.0) && (blue_led == false)) {
  3769. digitalWrite(STAT_LED_RED, 0);
  3770. digitalWrite(STAT_LED_BLUE, 1);
  3771. red_led = false;
  3772. blue_led = true;
  3773. }
  3774. }
  3775. }
  3776. #endif
  3777. void manage_inactivity()
  3778. {
  3779. if(buflen < (BUFSIZE-1))
  3780. get_command();
  3781. if( (millis() - previous_millis_cmd) > max_inactive_time )
  3782. if(max_inactive_time)
  3783. kill();
  3784. if(stepper_inactive_time) {
  3785. if( (millis() - previous_millis_cmd) > stepper_inactive_time )
  3786. {
  3787. if(blocks_queued() == false) {
  3788. disable_x();
  3789. disable_y();
  3790. disable_z();
  3791. disable_e0();
  3792. disable_e1();
  3793. disable_e2();
  3794. }
  3795. }
  3796. }
  3797. #ifdef CHDK //Check if pin should be set to LOW after M240 set it to HIGH
  3798. if (chdkActive && (millis() - chdkHigh > CHDK_DELAY))
  3799. {
  3800. chdkActive = false;
  3801. WRITE(CHDK, LOW);
  3802. }
  3803. #endif
  3804. #if defined(KILL_PIN) && KILL_PIN > -1
  3805. if( 0 == READ(KILL_PIN) )
  3806. kill();
  3807. #endif
  3808. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  3809. controllerFan(); //Check if fan should be turned on to cool stepper drivers down
  3810. #endif
  3811. #ifdef EXTRUDER_RUNOUT_PREVENT
  3812. if( (millis() - previous_millis_cmd) > EXTRUDER_RUNOUT_SECONDS*1000 )
  3813. if(degHotend(active_extruder)>EXTRUDER_RUNOUT_MINTEMP)
  3814. {
  3815. bool oldstatus=READ(E0_ENABLE_PIN);
  3816. enable_e0();
  3817. float oldepos=current_position[E_AXIS];
  3818. float oldedes=destination[E_AXIS];
  3819. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
  3820. destination[E_AXIS]+EXTRUDER_RUNOUT_EXTRUDE*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS],
  3821. EXTRUDER_RUNOUT_SPEED/60.*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS], active_extruder);
  3822. current_position[E_AXIS]=oldepos;
  3823. destination[E_AXIS]=oldedes;
  3824. plan_set_e_position(oldepos);
  3825. previous_millis_cmd=millis();
  3826. st_synchronize();
  3827. WRITE(E0_ENABLE_PIN,oldstatus);
  3828. }
  3829. #endif
  3830. #if defined(DUAL_X_CARRIAGE)
  3831. // handle delayed move timeout
  3832. if (delayed_move_time != 0 && (millis() - delayed_move_time) > 1000 && Stopped == false)
  3833. {
  3834. // travel moves have been received so enact them
  3835. delayed_move_time = 0xFFFFFFFFUL; // force moves to be done
  3836. memcpy(destination,current_position,sizeof(destination));
  3837. prepare_move();
  3838. }
  3839. #endif
  3840. #ifdef TEMP_STAT_LEDS
  3841. handle_status_leds();
  3842. #endif
  3843. check_axes_activity();
  3844. }
  3845. void kill()
  3846. {
  3847. cli(); // Stop interrupts
  3848. disable_heater();
  3849. disable_x();
  3850. disable_y();
  3851. disable_z();
  3852. disable_e0();
  3853. disable_e1();
  3854. disable_e2();
  3855. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  3856. pinMode(PS_ON_PIN,INPUT);
  3857. #endif
  3858. SERIAL_ERROR_START;
  3859. SERIAL_ERRORLNPGM(MSG_ERR_KILLED);
  3860. LCD_ALERTMESSAGEPGM(MSG_KILLED);
  3861. suicide();
  3862. while(1) { /* Intentionally left empty */ } // Wait for reset
  3863. }
  3864. void Stop()
  3865. {
  3866. disable_heater();
  3867. if(Stopped == false) {
  3868. Stopped = true;
  3869. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  3870. SERIAL_ERROR_START;
  3871. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  3872. LCD_MESSAGEPGM(MSG_STOPPED);
  3873. }
  3874. }
  3875. bool IsStopped() { return Stopped; };
  3876. #ifdef FAST_PWM_FAN
  3877. void setPwmFrequency(uint8_t pin, int val)
  3878. {
  3879. val &= 0x07;
  3880. switch(digitalPinToTimer(pin))
  3881. {
  3882. #if defined(TCCR0A)
  3883. case TIMER0A:
  3884. case TIMER0B:
  3885. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  3886. // TCCR0B |= val;
  3887. break;
  3888. #endif
  3889. #if defined(TCCR1A)
  3890. case TIMER1A:
  3891. case TIMER1B:
  3892. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  3893. // TCCR1B |= val;
  3894. break;
  3895. #endif
  3896. #if defined(TCCR2)
  3897. case TIMER2:
  3898. case TIMER2:
  3899. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  3900. TCCR2 |= val;
  3901. break;
  3902. #endif
  3903. #if defined(TCCR2A)
  3904. case TIMER2A:
  3905. case TIMER2B:
  3906. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  3907. TCCR2B |= val;
  3908. break;
  3909. #endif
  3910. #if defined(TCCR3A)
  3911. case TIMER3A:
  3912. case TIMER3B:
  3913. case TIMER3C:
  3914. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  3915. TCCR3B |= val;
  3916. break;
  3917. #endif
  3918. #if defined(TCCR4A)
  3919. case TIMER4A:
  3920. case TIMER4B:
  3921. case TIMER4C:
  3922. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  3923. TCCR4B |= val;
  3924. break;
  3925. #endif
  3926. #if defined(TCCR5A)
  3927. case TIMER5A:
  3928. case TIMER5B:
  3929. case TIMER5C:
  3930. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  3931. TCCR5B |= val;
  3932. break;
  3933. #endif
  3934. }
  3935. }
  3936. #endif //FAST_PWM_FAN
  3937. bool setTargetedHotend(int code){
  3938. tmp_extruder = active_extruder;
  3939. if(code_seen('T')) {
  3940. tmp_extruder = code_value();
  3941. if(tmp_extruder >= EXTRUDERS) {
  3942. SERIAL_ECHO_START;
  3943. switch(code){
  3944. case 104:
  3945. SERIAL_ECHO(MSG_M104_INVALID_EXTRUDER);
  3946. break;
  3947. case 105:
  3948. SERIAL_ECHO(MSG_M105_INVALID_EXTRUDER);
  3949. break;
  3950. case 109:
  3951. SERIAL_ECHO(MSG_M109_INVALID_EXTRUDER);
  3952. break;
  3953. case 218:
  3954. SERIAL_ECHO(MSG_M218_INVALID_EXTRUDER);
  3955. break;
  3956. case 221:
  3957. SERIAL_ECHO(MSG_M221_INVALID_EXTRUDER);
  3958. break;
  3959. }
  3960. SERIAL_ECHOLN(tmp_extruder);
  3961. return true;
  3962. }
  3963. }
  3964. return false;
  3965. }