My Marlin configs for Fabrikator Mini and CTC i3 Pro B
選択できるのは25トピックまでです。 トピックは、先頭が英数字で、英数字とダッシュ('-')を使用した35文字以内のものにしてください。

planner.h 14KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398
  1. /**
  2. * Marlin 3D Printer Firmware
  3. * Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
  4. *
  5. * Based on Sprinter and grbl.
  6. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  7. *
  8. * This program is free software: you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation, either version 3 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  20. *
  21. */
  22. /**
  23. * planner.h
  24. *
  25. * Buffer movement commands and manage the acceleration profile plan
  26. *
  27. * Derived from Grbl
  28. * Copyright (c) 2009-2011 Simen Svale Skogsrud
  29. */
  30. #ifndef PLANNER_H
  31. #define PLANNER_H
  32. #include "types.h"
  33. #include "enum.h"
  34. #include "Marlin.h"
  35. #if HAS_ABL
  36. #include "vector_3.h"
  37. #endif
  38. /**
  39. * struct block_t
  40. *
  41. * A single entry in the planner buffer.
  42. * Tracks linear movement over multiple axes.
  43. *
  44. * The "nominal" values are as-specified by gcode, and
  45. * may never actually be reached due to acceleration limits.
  46. */
  47. typedef struct {
  48. unsigned char active_extruder; // The extruder to move (if E move)
  49. // Fields used by the bresenham algorithm for tracing the line
  50. long steps[NUM_AXIS]; // Step count along each axis
  51. unsigned long step_event_count; // The number of step events required to complete this block
  52. #if ENABLED(MIXING_EXTRUDER)
  53. unsigned long mix_event_count[MIXING_STEPPERS]; // Scaled step_event_count for the mixing steppers
  54. #endif
  55. long accelerate_until, // The index of the step event on which to stop acceleration
  56. decelerate_after, // The index of the step event on which to start decelerating
  57. acceleration_rate; // The acceleration rate used for acceleration calculation
  58. unsigned char direction_bits; // The direction bit set for this block (refers to *_DIRECTION_BIT in config.h)
  59. // Advance extrusion
  60. #if ENABLED(LIN_ADVANCE)
  61. bool use_advance_lead;
  62. int e_speed_multiplier8; // Factorised by 2^8 to avoid float
  63. #elif ENABLED(ADVANCE)
  64. long advance_rate;
  65. volatile long initial_advance;
  66. volatile long final_advance;
  67. float advance;
  68. #endif
  69. // Fields used by the motion planner to manage acceleration
  70. float nominal_speed, // The nominal speed for this block in mm/sec
  71. entry_speed, // Entry speed at previous-current junction in mm/sec
  72. max_entry_speed, // Maximum allowable junction entry speed in mm/sec
  73. millimeters, // The total travel of this block in mm
  74. acceleration; // acceleration mm/sec^2
  75. unsigned char recalculate_flag, // Planner flag to recalculate trapezoids on entry junction
  76. nominal_length_flag; // Planner flag for nominal speed always reached
  77. // Settings for the trapezoid generator
  78. unsigned long nominal_rate, // The nominal step rate for this block in step_events/sec
  79. initial_rate, // The jerk-adjusted step rate at start of block
  80. final_rate, // The minimal rate at exit
  81. acceleration_steps_per_s2; // acceleration steps/sec^2
  82. #if FAN_COUNT > 0
  83. unsigned long fan_speed[FAN_COUNT];
  84. #endif
  85. #if ENABLED(BARICUDA)
  86. unsigned long valve_pressure, e_to_p_pressure;
  87. #endif
  88. volatile char busy;
  89. } block_t;
  90. #define BLOCK_MOD(n) ((n)&(BLOCK_BUFFER_SIZE-1))
  91. class Planner {
  92. public:
  93. /**
  94. * A ring buffer of moves described in steps
  95. */
  96. static block_t block_buffer[BLOCK_BUFFER_SIZE];
  97. static volatile uint8_t block_buffer_head; // Index of the next block to be pushed
  98. static volatile uint8_t block_buffer_tail;
  99. static float max_feedrate_mm_s[NUM_AXIS]; // Max speeds in mm per second
  100. static float axis_steps_per_mm[NUM_AXIS];
  101. static float steps_to_mm[NUM_AXIS];
  102. static unsigned long max_acceleration_steps_per_s2[NUM_AXIS];
  103. static unsigned long max_acceleration_mm_per_s2[NUM_AXIS]; // Use M201 to override by software
  104. static millis_t min_segment_time;
  105. static float min_feedrate_mm_s;
  106. static float acceleration; // Normal acceleration mm/s^2 DEFAULT ACCELERATION for all printing moves. M204 SXXXX
  107. static float retract_acceleration; // Retract acceleration mm/s^2 filament pull-back and push-forward while standing still in the other axes M204 TXXXX
  108. static float travel_acceleration; // Travel acceleration mm/s^2 DEFAULT ACCELERATION for all NON printing moves. M204 MXXXX
  109. static float max_jerk[XYZE]; // The largest speed change requiring no acceleration
  110. static float min_travel_feedrate_mm_s;
  111. #if HAS_ABL
  112. static bool abl_enabled; // Flag that bed leveling is enabled
  113. static matrix_3x3 bed_level_matrix; // Transform to compensate for bed level
  114. #endif
  115. private:
  116. /**
  117. * The current position of the tool in absolute steps
  118. * Recalculated if any axis_steps_per_mm are changed by gcode
  119. */
  120. static long position[NUM_AXIS];
  121. /**
  122. * Speed of previous path line segment
  123. */
  124. static float previous_speed[NUM_AXIS];
  125. /**
  126. * Nominal speed of previous path line segment
  127. */
  128. static float previous_nominal_speed;
  129. #if ENABLED(DISABLE_INACTIVE_EXTRUDER)
  130. /**
  131. * Counters to manage disabling inactive extruders
  132. */
  133. static uint8_t g_uc_extruder_last_move[EXTRUDERS];
  134. #endif // DISABLE_INACTIVE_EXTRUDER
  135. #ifdef XY_FREQUENCY_LIMIT
  136. // Used for the frequency limit
  137. #define MAX_FREQ_TIME long(1000000.0/XY_FREQUENCY_LIMIT)
  138. // Old direction bits. Used for speed calculations
  139. static unsigned char old_direction_bits;
  140. // Segment times (in µs). Used for speed calculations
  141. static long axis_segment_time[2][3];
  142. #endif
  143. public:
  144. /**
  145. * Instance Methods
  146. */
  147. Planner();
  148. void init();
  149. /**
  150. * Static (class) Methods
  151. */
  152. static void reset_acceleration_rates();
  153. static void refresh_positioning();
  154. // Manage fans, paste pressure, etc.
  155. static void check_axes_activity();
  156. /**
  157. * Number of moves currently in the planner
  158. */
  159. static uint8_t movesplanned() { return BLOCK_MOD(block_buffer_head - block_buffer_tail + BLOCK_BUFFER_SIZE); }
  160. static bool is_full() { return (block_buffer_tail == BLOCK_MOD(block_buffer_head + 1)); }
  161. #if PLANNER_LEVELING
  162. #define ARG_X float lx
  163. #define ARG_Y float ly
  164. #define ARG_Z float lz
  165. /**
  166. * Apply leveling to transform a cartesian position
  167. * as it will be given to the planner and steppers.
  168. */
  169. static void apply_leveling(float &lx, float &ly, float &lz);
  170. static void apply_leveling(float logical[XYZ]) { apply_leveling(logical[X_AXIS], logical[Y_AXIS], logical[Z_AXIS]); }
  171. static void unapply_leveling(float logical[XYZ]);
  172. #else
  173. #define ARG_X const float &lx
  174. #define ARG_Y const float &ly
  175. #define ARG_Z const float &lz
  176. #endif
  177. /**
  178. * Planner::_buffer_line
  179. *
  180. * Add a new direct linear movement to the buffer.
  181. *
  182. * Leveling and kinematics should be applied ahead of this.
  183. *
  184. * a,b,c,e - target position in mm or degrees
  185. * fr_mm_s - (target) speed of the move (mm/s)
  186. * extruder - target extruder
  187. */
  188. static void _buffer_line(const float &a, const float &b, const float &c, const float &e, float fr_mm_s, const uint8_t extruder);
  189. static void _set_position_mm(const float &a, const float &b, const float &c, const float &e);
  190. /**
  191. * Add a new linear movement to the buffer.
  192. * The target is NOT translated to delta/scara
  193. *
  194. * Leveling will be applied to input on cartesians.
  195. * Kinematic machines should call buffer_line_kinematic (for leveled moves).
  196. * (Cartesians may also call buffer_line_kinematic.)
  197. *
  198. * lx,ly,lz,e - target position in mm or degrees
  199. * fr_mm_s - (target) speed of the move (mm/s)
  200. * extruder - target extruder
  201. */
  202. static FORCE_INLINE void buffer_line(ARG_X, ARG_Y, ARG_Z, const float &e, float fr_mm_s, const uint8_t extruder) {
  203. #if PLANNER_LEVELING && IS_CARTESIAN
  204. apply_leveling(lx, ly, lz);
  205. #endif
  206. _buffer_line(lx, ly, lz, e, fr_mm_s, extruder);
  207. }
  208. /**
  209. * Add a new linear movement to the buffer.
  210. * The target is cartesian, it's translated to delta/scara if
  211. * needed.
  212. *
  213. * target - x,y,z,e CARTESIAN target in mm
  214. * fr_mm_s - (target) speed of the move (mm/s)
  215. * extruder - target extruder
  216. */
  217. static FORCE_INLINE void buffer_line_kinematic(const float target[XYZE], float fr_mm_s, const uint8_t extruder) {
  218. #if PLANNER_LEVELING
  219. float pos[XYZ] = { target[X_AXIS], target[Y_AXIS], target[Z_AXIS] };
  220. apply_leveling(pos);
  221. #else
  222. const float * const pos = target;
  223. #endif
  224. #if IS_KINEMATIC
  225. inverse_kinematics(pos);
  226. _buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], target[E_AXIS], fr_mm_s, extruder);
  227. #else
  228. _buffer_line(pos[X_AXIS], pos[Y_AXIS], pos[Z_AXIS], target[E_AXIS], fr_mm_s, extruder);
  229. #endif
  230. }
  231. /**
  232. * Set the planner.position and individual stepper positions.
  233. * Used by G92, G28, G29, and other procedures.
  234. *
  235. * Multiplies by axis_steps_per_mm[] and does necessary conversion
  236. * for COREXY / COREXZ / COREYZ to set the corresponding stepper positions.
  237. *
  238. * Clears previous speed values.
  239. */
  240. static FORCE_INLINE void set_position_mm(ARG_X, ARG_Y, ARG_Z, const float &e) {
  241. #if PLANNER_LEVELING && IS_CARTESIAN
  242. apply_leveling(lx, ly, lz);
  243. #endif
  244. _set_position_mm(lx, ly, lz, e);
  245. }
  246. static void set_position_mm_kinematic(const float position[NUM_AXIS]);
  247. static void set_position_mm(const AxisEnum axis, const float& v);
  248. static FORCE_INLINE void set_z_position_mm(const float& z) { set_position_mm(Z_AXIS, z); }
  249. static FORCE_INLINE void set_e_position_mm(const float& e) { set_position_mm(E_AXIS, e); }
  250. /**
  251. * Sync from the stepper positions. (e.g., after an interrupted move)
  252. */
  253. static void sync_from_steppers();
  254. /**
  255. * Does the buffer have any blocks queued?
  256. */
  257. static bool blocks_queued() { return (block_buffer_head != block_buffer_tail); }
  258. /**
  259. * "Discards" the block and "releases" the memory.
  260. * Called when the current block is no longer needed.
  261. */
  262. static void discard_current_block() {
  263. if (blocks_queued())
  264. block_buffer_tail = BLOCK_MOD(block_buffer_tail + 1);
  265. }
  266. /**
  267. * The current block. NULL if the buffer is empty.
  268. * This also marks the block as busy.
  269. */
  270. static block_t* get_current_block() {
  271. if (blocks_queued()) {
  272. block_t* block = &block_buffer[block_buffer_tail];
  273. block->busy = true;
  274. return block;
  275. }
  276. else
  277. return NULL;
  278. }
  279. #if ENABLED(AUTOTEMP)
  280. static float autotemp_max;
  281. static float autotemp_min;
  282. static float autotemp_factor;
  283. static bool autotemp_enabled;
  284. static void getHighESpeed();
  285. static void autotemp_M109();
  286. #endif
  287. private:
  288. /**
  289. * Get the index of the next / previous block in the ring buffer
  290. */
  291. static int8_t next_block_index(int8_t block_index) { return BLOCK_MOD(block_index + 1); }
  292. static int8_t prev_block_index(int8_t block_index) { return BLOCK_MOD(block_index - 1); }
  293. /**
  294. * Calculate the distance (not time) it takes to accelerate
  295. * from initial_rate to target_rate using the given acceleration:
  296. */
  297. static float estimate_acceleration_distance(float initial_rate, float target_rate, float accel) {
  298. if (accel == 0) return 0; // accel was 0, set acceleration distance to 0
  299. return (sq(target_rate) - sq(initial_rate)) / (accel * 2);
  300. }
  301. /**
  302. * Return the point at which you must start braking (at the rate of -'acceleration') if
  303. * you start at 'initial_rate', accelerate (until reaching the point), and want to end at
  304. * 'final_rate' after traveling 'distance'.
  305. *
  306. * This is used to compute the intersection point between acceleration and deceleration
  307. * in cases where the "trapezoid" has no plateau (i.e., never reaches maximum speed)
  308. */
  309. static float intersection_distance(float initial_rate, float final_rate, float accel, float distance) {
  310. if (accel == 0) return 0; // accel was 0, set intersection distance to 0
  311. return (accel * 2 * distance - sq(initial_rate) + sq(final_rate)) / (accel * 4);
  312. }
  313. /**
  314. * Calculate the maximum allowable speed at this point, in order
  315. * to reach 'target_velocity' using 'acceleration' within a given
  316. * 'distance'.
  317. */
  318. static float max_allowable_speed(float accel, float target_velocity, float distance) {
  319. return sqrt(sq(target_velocity) - 2 * accel * distance);
  320. }
  321. static void calculate_trapezoid_for_block(block_t* block, float entry_factor, float exit_factor);
  322. static void reverse_pass_kernel(block_t* current, block_t* next);
  323. static void forward_pass_kernel(block_t* previous, block_t* current);
  324. static void reverse_pass();
  325. static void forward_pass();
  326. static void recalculate_trapezoids();
  327. static void recalculate();
  328. };
  329. extern Planner planner;
  330. #endif // PLANNER_H