My Marlin configs for Fabrikator Mini and CTC i3 Pro B
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

configuration_store.cpp 89KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910
  1. /**
  2. * Marlin 3D Printer Firmware
  3. * Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
  4. *
  5. * Based on Sprinter and grbl.
  6. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  7. *
  8. * This program is free software: you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation, either version 3 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  20. *
  21. */
  22. /**
  23. * configuration_store.cpp
  24. *
  25. * Settings and EEPROM storage
  26. *
  27. * IMPORTANT: Whenever there are changes made to the variables stored in EEPROM
  28. * in the functions below, also increment the version number. This makes sure that
  29. * the default values are used whenever there is a change to the data, to prevent
  30. * wrong data being written to the variables.
  31. *
  32. * ALSO: Variables in the Store and Retrieve sections must be in the same order.
  33. * If a feature is disabled, some data must still be written that, when read,
  34. * either sets a Sane Default, or results in No Change to the existing value.
  35. *
  36. */
  37. // Change EEPROM version if the structure changes
  38. #define EEPROM_VERSION "V61"
  39. #define EEPROM_OFFSET 100
  40. // Check the integrity of data offsets.
  41. // Can be disabled for production build.
  42. //#define DEBUG_EEPROM_READWRITE
  43. #include "configuration_store.h"
  44. #if ADD_PORT_ARG
  45. #define PORTARG_SOLO const int8_t port
  46. #define PORTARG_AFTER ,const int8_t port
  47. #define PORTVAR_SOLO port
  48. #else
  49. #define PORTARG_SOLO
  50. #define PORTARG_AFTER
  51. #define PORTVAR_SOLO
  52. #endif
  53. #include "endstops.h"
  54. #include "planner.h"
  55. #include "stepper.h"
  56. #include "temperature.h"
  57. #include "../lcd/ultralcd.h"
  58. #include "../core/language.h"
  59. #include "../libs/vector_3.h"
  60. #include "../gcode/gcode.h"
  61. #include "../Marlin.h"
  62. #if HAS_LEVELING
  63. #include "../feature/bedlevel/bedlevel.h"
  64. #endif
  65. #if HAS_SERVOS
  66. #include "servo.h"
  67. #else
  68. #undef NUM_SERVOS
  69. #define NUM_SERVOS NUM_SERVO_PLUGS
  70. #endif
  71. #if HAS_BED_PROBE
  72. #include "../module/probe.h"
  73. #endif
  74. #if ENABLED(FWRETRACT)
  75. #include "../feature/fwretract.h"
  76. #endif
  77. #if ENABLED(ADVANCED_PAUSE_FEATURE)
  78. #include "../feature/pause.h"
  79. #endif
  80. #if ENABLED(SINGLENOZZLE)
  81. #include "tool_change.h"
  82. void M217_report(const bool eeprom);
  83. #endif
  84. #if HAS_TRINAMIC
  85. #include "stepper_indirection.h"
  86. #include "../feature/tmc_util.h"
  87. #define TMC_GET_PWMTHRS(A,Q) _tmc_thrs(stepper##Q.microsteps(), stepper##Q.TPWMTHRS(), planner.settings.axis_steps_per_mm[_AXIS(A)])
  88. #endif
  89. #pragma pack(push, 1) // No padding between variables
  90. typedef struct { uint16_t X, Y, Z, X2, Y2, Z2, Z3, E0, E1, E2, E3, E4, E5; } tmc_stepper_current_t;
  91. typedef struct { uint32_t X, Y, Z, X2, Y2, Z2, Z3, E0, E1, E2, E3, E4, E5; } tmc_hybrid_threshold_t;
  92. typedef struct { int16_t X, Y, Z; } tmc_sgt_t;
  93. // Limit an index to an array size
  94. #define ALIM(I,ARR) MIN(I, COUNT(ARR) - 1)
  95. /**
  96. * Current EEPROM Layout
  97. *
  98. * Keep this data structure up to date so
  99. * EEPROM size is known at compile time!
  100. */
  101. typedef struct SettingsDataStruct {
  102. char version[4]; // Vnn\0
  103. uint16_t crc; // Data Checksum
  104. //
  105. // DISTINCT_E_FACTORS
  106. //
  107. uint8_t esteppers; // XYZE_N - XYZ
  108. planner_settings_t planner_settings;
  109. float planner_max_jerk[XYZE], // M205 XYZE planner.max_jerk[XYZE]
  110. planner_junction_deviation_mm; // M205 J planner.junction_deviation_mm
  111. float home_offset[XYZ]; // M206 XYZ
  112. #if HAS_HOTEND_OFFSET
  113. float hotend_offset[XYZ][HOTENDS - 1]; // M218 XYZ
  114. #endif
  115. //
  116. // ENABLE_LEVELING_FADE_HEIGHT
  117. //
  118. float planner_z_fade_height; // M420 Zn planner.z_fade_height
  119. //
  120. // MESH_BED_LEVELING
  121. //
  122. float mbl_z_offset; // mbl.z_offset
  123. uint8_t mesh_num_x, mesh_num_y; // GRID_MAX_POINTS_X, GRID_MAX_POINTS_Y
  124. #if ENABLED(MESH_BED_LEVELING)
  125. float mbl_z_values[GRID_MAX_POINTS_X][GRID_MAX_POINTS_Y]; // mbl.z_values
  126. #else
  127. float mbl_z_values[3][3];
  128. #endif
  129. //
  130. // HAS_BED_PROBE
  131. //
  132. float zprobe_zoffset;
  133. //
  134. // ABL_PLANAR
  135. //
  136. matrix_3x3 planner_bed_level_matrix; // planner.bed_level_matrix
  137. //
  138. // AUTO_BED_LEVELING_BILINEAR
  139. //
  140. uint8_t grid_max_x, grid_max_y; // GRID_MAX_POINTS_X, GRID_MAX_POINTS_Y
  141. int bilinear_grid_spacing[2],
  142. bilinear_start[2]; // G29 L F
  143. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  144. float z_values[GRID_MAX_POINTS_X][GRID_MAX_POINTS_Y]; // G29
  145. #else
  146. float z_values[3][3];
  147. #endif
  148. //
  149. // AUTO_BED_LEVELING_UBL
  150. //
  151. bool planner_leveling_active; // M420 S planner.leveling_active
  152. int8_t ubl_storage_slot; // ubl.storage_slot
  153. //
  154. // SERVO_ANGLES
  155. //
  156. uint16_t servo_angles[NUM_SERVOS][2]; // M281 P L U
  157. //
  158. // DELTA / [XYZ]_DUAL_ENDSTOPS
  159. //
  160. #if ENABLED(DELTA)
  161. float delta_height, // M666 H
  162. delta_endstop_adj[ABC], // M666 XYZ
  163. delta_radius, // M665 R
  164. delta_diagonal_rod, // M665 L
  165. delta_segments_per_second, // M665 S
  166. delta_calibration_radius, // M665 B
  167. delta_tower_angle_trim[ABC]; // M665 XYZ
  168. #elif ENABLED(X_DUAL_ENDSTOPS) || ENABLED(Y_DUAL_ENDSTOPS) || Z_MULTI_ENDSTOPS
  169. float x2_endstop_adj, // M666 X
  170. y2_endstop_adj, // M666 Y
  171. z2_endstop_adj; // M666 Z
  172. #if ENABLED(Z_TRIPLE_ENDSTOPS)
  173. float z3_endstop_adj; // M666 Z
  174. #endif
  175. #endif
  176. //
  177. // ULTIPANEL
  178. //
  179. int16_t lcd_preheat_hotend_temp[2], // M145 S0 H
  180. lcd_preheat_bed_temp[2]; // M145 S0 B
  181. uint8_t lcd_preheat_fan_speed[2]; // M145 S0 F
  182. //
  183. // PIDTEMP
  184. //
  185. PIDC_t hotendPID[HOTENDS]; // M301 En PIDC / M303 En U
  186. int16_t lpq_len; // M301 L
  187. //
  188. // PIDTEMPBED
  189. //
  190. PID_t bedPID; // M304 PID / M303 E-1 U
  191. //
  192. // HAS_LCD_CONTRAST
  193. //
  194. int16_t lcd_contrast; // M250 C
  195. //
  196. // FWRETRACT
  197. //
  198. fwretract_settings_t fwretract_settings; // M207 S F Z W, M208 S F W R
  199. bool autoretract_enabled; // M209 S
  200. //
  201. // !NO_VOLUMETRIC
  202. //
  203. bool parser_volumetric_enabled; // M200 D parser.volumetric_enabled
  204. float planner_filament_size[EXTRUDERS]; // M200 T D planner.filament_size[]
  205. //
  206. // HAS_TRINAMIC
  207. //
  208. #define TMC_AXES (MAX_EXTRUDERS + 7)
  209. tmc_stepper_current_t tmc_stepper_current; // M906 X Y Z X2 Y2 Z2 Z3 E0 E1 E2 E3 E4 E5
  210. tmc_hybrid_threshold_t tmc_hybrid_threshold; // M913 X Y Z X2 Y2 Z2 Z3 E0 E1 E2 E3 E4 E5
  211. tmc_sgt_t tmc_sgt; // M914 X Y Z
  212. //
  213. // LIN_ADVANCE
  214. //
  215. float planner_extruder_advance_K[EXTRUDERS]; // M900 K planner.extruder_advance_K
  216. //
  217. // HAS_MOTOR_CURRENT_PWM
  218. //
  219. uint32_t motor_current_setting[3]; // M907 X Z E
  220. //
  221. // CNC_COORDINATE_SYSTEMS
  222. //
  223. float coordinate_system[MAX_COORDINATE_SYSTEMS][XYZ]; // G54-G59.3
  224. //
  225. // SKEW_CORRECTION
  226. //
  227. skew_factor_t planner_skew_factor; // M852 I J K planner.skew_factor
  228. //
  229. // ADVANCED_PAUSE_FEATURE
  230. //
  231. fil_change_settings_t fc_settings[EXTRUDERS]; // M603 T U L
  232. //
  233. // SINGLENOZZLE toolchange values
  234. //
  235. #if ENABLED(SINGLENOZZLE)
  236. singlenozzle_settings_t sn_settings; // M217 S P R
  237. #endif
  238. } SettingsData;
  239. MarlinSettings settings;
  240. uint16_t MarlinSettings::datasize() { return sizeof(SettingsData); }
  241. /**
  242. * Post-process after Retrieve or Reset
  243. */
  244. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  245. float new_z_fade_height;
  246. #endif
  247. void MarlinSettings::postprocess() {
  248. const float oldpos[XYZE] = { current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS] };
  249. // steps per s2 needs to be updated to agree with units per s2
  250. planner.reset_acceleration_rates();
  251. // Make sure delta kinematics are updated before refreshing the
  252. // planner position so the stepper counts will be set correctly.
  253. #if ENABLED(DELTA)
  254. recalc_delta_settings();
  255. #endif
  256. #if ENABLED(PIDTEMP)
  257. thermalManager.updatePID();
  258. #endif
  259. #if DISABLED(NO_VOLUMETRICS)
  260. planner.calculate_volumetric_multipliers();
  261. #else
  262. for (uint8_t i = COUNT(planner.e_factor); i--;)
  263. planner.refresh_e_factor(i);
  264. #endif
  265. #if HAS_HOME_OFFSET || ENABLED(DUAL_X_CARRIAGE)
  266. // Software endstops depend on home_offset
  267. LOOP_XYZ(i) update_software_endstops((AxisEnum)i);
  268. #endif
  269. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  270. set_z_fade_height(new_z_fade_height, false); // false = no report
  271. #endif
  272. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  273. refresh_bed_level();
  274. #endif
  275. #if HAS_MOTOR_CURRENT_PWM
  276. stepper.refresh_motor_power();
  277. #endif
  278. #if ENABLED(FWRETRACT)
  279. fwretract.refresh_autoretract();
  280. #endif
  281. #if ENABLED(JUNCTION_DEVIATION) && ENABLED(LIN_ADVANCE)
  282. planner.recalculate_max_e_jerk();
  283. #endif
  284. // Refresh steps_to_mm with the reciprocal of axis_steps_per_mm
  285. // and init stepper.count[], planner.position[] with current_position
  286. planner.refresh_positioning();
  287. // Various factors can change the current position
  288. if (memcmp(oldpos, current_position, sizeof(oldpos)))
  289. report_current_position();
  290. }
  291. #if ENABLED(SD_FIRMWARE_UPDATE)
  292. #if ENABLED(EEPROM_SETTINGS)
  293. static_assert(
  294. !WITHIN(SD_FIRMWARE_UPDATE_EEPROM_ADDR, EEPROM_OFFSET, EEPROM_OFFSET + sizeof(SettingsData)),
  295. "SD_FIRMWARE_UPDATE_EEPROM_ADDR collides with EEPROM settings storage."
  296. );
  297. #endif
  298. bool MarlinSettings::sd_update_status() {
  299. uint8_t val;
  300. persistentStore.read_data(SD_FIRMWARE_UPDATE_EEPROM_ADDR, &val);
  301. return (val == SD_FIRMWARE_UPDATE_ACTIVE_VALUE);
  302. }
  303. bool MarlinSettings::set_sd_update_status(const bool enable) {
  304. if (enable != sd_update_status())
  305. persistentStore.write_data(
  306. SD_FIRMWARE_UPDATE_EEPROM_ADDR,
  307. enable ? SD_FIRMWARE_UPDATE_ACTIVE_VALUE : SD_FIRMWARE_UPDATE_INACTIVE_VALUE
  308. );
  309. return true;
  310. }
  311. #endif // SD_FIRMWARE_UPDATE
  312. #if ENABLED(EEPROM_SETTINGS)
  313. #include "../HAL/shared/persistent_store_api.h"
  314. #define EEPROM_START() int eeprom_index = EEPROM_OFFSET; persistentStore.access_start()
  315. #define EEPROM_FINISH() persistentStore.access_finish()
  316. #define EEPROM_SKIP(VAR) eeprom_index += sizeof(VAR)
  317. #define EEPROM_WRITE(VAR) persistentStore.write_data(eeprom_index, (uint8_t*)&VAR, sizeof(VAR), &working_crc)
  318. #define EEPROM_READ(VAR) persistentStore.read_data(eeprom_index, (uint8_t*)&VAR, sizeof(VAR), &working_crc, !validating)
  319. #define EEPROM_READ_ALWAYS(VAR) persistentStore.read_data(eeprom_index, (uint8_t*)&VAR, sizeof(VAR), &working_crc)
  320. #define EEPROM_ASSERT(TST,ERR) do{ if (!(TST)) { SERIAL_ERROR_START_P(port); SERIAL_ERRORLNPGM_P(port, ERR); eeprom_error = true; } }while(0)
  321. #if ENABLED(DEBUG_EEPROM_READWRITE)
  322. #define _FIELD_TEST(FIELD) \
  323. EEPROM_ASSERT( \
  324. eeprom_error || eeprom_index == offsetof(SettingsData, FIELD) + EEPROM_OFFSET, \
  325. "Field " STRINGIFY(FIELD) " mismatch." \
  326. )
  327. #else
  328. #define _FIELD_TEST(FIELD) NOOP
  329. #endif
  330. const char version[4] = EEPROM_VERSION;
  331. bool MarlinSettings::eeprom_error, MarlinSettings::validating;
  332. bool MarlinSettings::size_error(const uint16_t size PORTARG_AFTER) {
  333. if (size != datasize()) {
  334. #if ENABLED(EEPROM_CHITCHAT)
  335. SERIAL_ERROR_START_P(port);
  336. SERIAL_ERRORLNPGM_P(port, "EEPROM datasize error.");
  337. #endif
  338. return true;
  339. }
  340. return false;
  341. }
  342. /**
  343. * M500 - Store Configuration
  344. */
  345. bool MarlinSettings::save(PORTARG_SOLO) {
  346. float dummy = 0;
  347. char ver[4] = "ERR";
  348. uint16_t working_crc = 0;
  349. EEPROM_START();
  350. eeprom_error = false;
  351. #if ENABLED(FLASH_EEPROM_EMULATION)
  352. EEPROM_SKIP(ver); // Flash doesn't allow rewriting without erase
  353. #else
  354. EEPROM_WRITE(ver); // invalidate data first
  355. #endif
  356. EEPROM_SKIP(working_crc); // Skip the checksum slot
  357. working_crc = 0; // clear before first "real data"
  358. _FIELD_TEST(esteppers);
  359. const uint8_t esteppers = COUNT(planner.settings.axis_steps_per_mm) - XYZ;
  360. EEPROM_WRITE(esteppers);
  361. EEPROM_WRITE(planner.settings);
  362. #if HAS_CLASSIC_JERK
  363. EEPROM_WRITE(planner.max_jerk);
  364. #if ENABLED(JUNCTION_DEVIATION) && ENABLED(LIN_ADVANCE)
  365. dummy = float(DEFAULT_EJERK);
  366. EEPROM_WRITE(dummy);
  367. #endif
  368. #else
  369. const float planner_max_jerk[XYZE] = { float(DEFAULT_XJERK), float(DEFAULT_YJERK), float(DEFAULT_ZJERK), float(DEFAULT_EJERK) };
  370. EEPROM_WRITE(planner_max_jerk);
  371. #endif
  372. #if ENABLED(JUNCTION_DEVIATION)
  373. EEPROM_WRITE(planner.junction_deviation_mm);
  374. #else
  375. dummy = 0.02f;
  376. EEPROM_WRITE(dummy);
  377. #endif
  378. _FIELD_TEST(home_offset);
  379. #if !HAS_HOME_OFFSET
  380. const float home_offset[XYZ] = { 0 };
  381. #endif
  382. EEPROM_WRITE(home_offset);
  383. #if HAS_HOTEND_OFFSET
  384. // Skip hotend 0 which must be 0
  385. for (uint8_t e = 1; e < HOTENDS; e++)
  386. LOOP_XYZ(i) EEPROM_WRITE(hotend_offset[i][e]);
  387. #endif
  388. //
  389. // Global Leveling
  390. //
  391. const float zfh = (
  392. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  393. planner.z_fade_height
  394. #else
  395. 10.0
  396. #endif
  397. );
  398. EEPROM_WRITE(zfh);
  399. //
  400. // Mesh Bed Leveling
  401. //
  402. #if ENABLED(MESH_BED_LEVELING)
  403. // Compile time test that sizeof(mbl.z_values) is as expected
  404. static_assert(
  405. sizeof(mbl.z_values) == (GRID_MAX_POINTS) * sizeof(mbl.z_values[0][0]),
  406. "MBL Z array is the wrong size."
  407. );
  408. const uint8_t mesh_num_x = GRID_MAX_POINTS_X, mesh_num_y = GRID_MAX_POINTS_Y;
  409. EEPROM_WRITE(mbl.z_offset);
  410. EEPROM_WRITE(mesh_num_x);
  411. EEPROM_WRITE(mesh_num_y);
  412. EEPROM_WRITE(mbl.z_values);
  413. #else // For disabled MBL write a default mesh
  414. dummy = 0;
  415. const uint8_t mesh_num_x = 3, mesh_num_y = 3;
  416. EEPROM_WRITE(dummy); // z_offset
  417. EEPROM_WRITE(mesh_num_x);
  418. EEPROM_WRITE(mesh_num_y);
  419. for (uint8_t q = mesh_num_x * mesh_num_y; q--;) EEPROM_WRITE(dummy);
  420. #endif // MESH_BED_LEVELING
  421. _FIELD_TEST(zprobe_zoffset);
  422. #if !HAS_BED_PROBE
  423. const float zprobe_zoffset = 0;
  424. #endif
  425. EEPROM_WRITE(zprobe_zoffset);
  426. //
  427. // Planar Bed Leveling matrix
  428. //
  429. #if ABL_PLANAR
  430. EEPROM_WRITE(planner.bed_level_matrix);
  431. #else
  432. dummy = 0;
  433. for (uint8_t q = 9; q--;) EEPROM_WRITE(dummy);
  434. #endif
  435. //
  436. // Bilinear Auto Bed Leveling
  437. //
  438. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  439. // Compile time test that sizeof(z_values) is as expected
  440. static_assert(
  441. sizeof(z_values) == (GRID_MAX_POINTS) * sizeof(z_values[0][0]),
  442. "Bilinear Z array is the wrong size."
  443. );
  444. const uint8_t grid_max_x = GRID_MAX_POINTS_X, grid_max_y = GRID_MAX_POINTS_Y;
  445. EEPROM_WRITE(grid_max_x); // 1 byte
  446. EEPROM_WRITE(grid_max_y); // 1 byte
  447. EEPROM_WRITE(bilinear_grid_spacing); // 2 ints
  448. EEPROM_WRITE(bilinear_start); // 2 ints
  449. EEPROM_WRITE(z_values); // 9-256 floats
  450. #else
  451. // For disabled Bilinear Grid write an empty 3x3 grid
  452. const uint8_t grid_max_x = 3, grid_max_y = 3;
  453. const int bilinear_start[2] = { 0 }, bilinear_grid_spacing[2] = { 0 };
  454. dummy = 0;
  455. EEPROM_WRITE(grid_max_x);
  456. EEPROM_WRITE(grid_max_y);
  457. EEPROM_WRITE(bilinear_grid_spacing);
  458. EEPROM_WRITE(bilinear_start);
  459. for (uint16_t q = grid_max_x * grid_max_y; q--;) EEPROM_WRITE(dummy);
  460. #endif // AUTO_BED_LEVELING_BILINEAR
  461. _FIELD_TEST(planner_leveling_active);
  462. #if ENABLED(AUTO_BED_LEVELING_UBL)
  463. EEPROM_WRITE(planner.leveling_active);
  464. EEPROM_WRITE(ubl.storage_slot);
  465. #else
  466. const bool ubl_active = false;
  467. const int8_t storage_slot = -1;
  468. EEPROM_WRITE(ubl_active);
  469. EEPROM_WRITE(storage_slot);
  470. #endif // AUTO_BED_LEVELING_UBL
  471. #if !HAS_SERVOS || DISABLED(EDITABLE_SERVO_ANGLES)
  472. #if ENABLED(SWITCHING_EXTRUDER)
  473. constexpr uint16_t sesa[][2] = SWITCHING_EXTRUDER_SERVO_ANGLES;
  474. #endif
  475. constexpr uint16_t servo_angles[NUM_SERVOS][2] = {
  476. #if ENABLED(SWITCHING_EXTRUDER)
  477. [SWITCHING_EXTRUDER_SERVO_NR] = { sesa[0][0], sesa[0][1] }
  478. #if EXTRUDERS > 3
  479. , [SWITCHING_EXTRUDER_E23_SERVO_NR] = { sesa[1][0], sesa[1][1] }
  480. #endif
  481. #elif ENABLED(SWITCHING_NOZZLE)
  482. [SWITCHING_NOZZLE_SERVO_NR] = SWITCHING_NOZZLE_SERVO_ANGLES
  483. #elif defined(Z_SERVO_ANGLES) && defined(Z_PROBE_SERVO_NR)
  484. [Z_PROBE_SERVO_NR] = Z_SERVO_ANGLES
  485. #endif
  486. };
  487. #endif
  488. EEPROM_WRITE(servo_angles);
  489. // 11 floats for DELTA / [XYZ]_DUAL_ENDSTOPS
  490. #if ENABLED(DELTA)
  491. _FIELD_TEST(delta_height);
  492. EEPROM_WRITE(delta_height); // 1 float
  493. EEPROM_WRITE(delta_endstop_adj); // 3 floats
  494. EEPROM_WRITE(delta_radius); // 1 float
  495. EEPROM_WRITE(delta_diagonal_rod); // 1 float
  496. EEPROM_WRITE(delta_segments_per_second); // 1 float
  497. EEPROM_WRITE(delta_calibration_radius); // 1 float
  498. EEPROM_WRITE(delta_tower_angle_trim); // 3 floats
  499. #elif ENABLED(X_DUAL_ENDSTOPS) || ENABLED(Y_DUAL_ENDSTOPS) || Z_MULTI_ENDSTOPS
  500. _FIELD_TEST(x2_endstop_adj);
  501. // Write dual endstops in X, Y, Z order. Unused = 0.0
  502. dummy = 0;
  503. #if ENABLED(X_DUAL_ENDSTOPS)
  504. EEPROM_WRITE(endstops.x2_endstop_adj); // 1 float
  505. #else
  506. EEPROM_WRITE(dummy);
  507. #endif
  508. #if ENABLED(Y_DUAL_ENDSTOPS)
  509. EEPROM_WRITE(endstops.y2_endstop_adj); // 1 float
  510. #else
  511. EEPROM_WRITE(dummy);
  512. #endif
  513. #if Z_MULTI_ENDSTOPS
  514. EEPROM_WRITE(endstops.z2_endstop_adj); // 1 float
  515. #else
  516. EEPROM_WRITE(dummy);
  517. #endif
  518. #if ENABLED(Z_TRIPLE_ENDSTOPS)
  519. EEPROM_WRITE(endstops.z3_endstop_adj); // 1 float
  520. #else
  521. EEPROM_WRITE(dummy);
  522. #endif
  523. #endif
  524. _FIELD_TEST(lcd_preheat_hotend_temp);
  525. #if DISABLED(ULTIPANEL)
  526. constexpr int16_t lcd_preheat_hotend_temp[2] = { PREHEAT_1_TEMP_HOTEND, PREHEAT_2_TEMP_HOTEND },
  527. lcd_preheat_bed_temp[2] = { PREHEAT_1_TEMP_BED, PREHEAT_2_TEMP_BED };
  528. constexpr uint8_t lcd_preheat_fan_speed[2] = { PREHEAT_1_FAN_SPEED, PREHEAT_2_FAN_SPEED };
  529. #endif
  530. EEPROM_WRITE(lcd_preheat_hotend_temp);
  531. EEPROM_WRITE(lcd_preheat_bed_temp);
  532. EEPROM_WRITE(lcd_preheat_fan_speed);
  533. //
  534. // PIDTEMP
  535. //
  536. {
  537. _FIELD_TEST(hotendPID);
  538. HOTEND_LOOP() {
  539. PIDC_t pidc = {
  540. PID_PARAM(Kp, e), PID_PARAM(Ki, e), PID_PARAM(Kd, e), PID_PARAM(Kc, e)
  541. };
  542. EEPROM_WRITE(pidc);
  543. }
  544. _FIELD_TEST(lpq_len);
  545. #if ENABLED(PID_EXTRUSION_SCALING)
  546. EEPROM_WRITE(thermalManager.lpq_len);
  547. #else
  548. const int16_t lpq_len = 20;
  549. EEPROM_WRITE(lpq_len);
  550. #endif
  551. }
  552. //
  553. // PIDTEMPBED
  554. //
  555. {
  556. _FIELD_TEST(bedPID);
  557. #if DISABLED(PIDTEMPBED)
  558. const PID_t bed_pid = { DUMMY_PID_VALUE, DUMMY_PID_VALUE, DUMMY_PID_VALUE };
  559. EEPROM_WRITE(bed_pid);
  560. #else
  561. EEPROM_WRITE(thermalManager.bed_pid);
  562. #endif
  563. }
  564. //
  565. // LCD Contrast
  566. //
  567. _FIELD_TEST(lcd_contrast);
  568. #if !HAS_LCD_CONTRAST
  569. const int16_t lcd_contrast = 32;
  570. #endif
  571. EEPROM_WRITE(lcd_contrast);
  572. //
  573. // Firmware Retraction
  574. //
  575. {
  576. _FIELD_TEST(fwretract_settings);
  577. #if ENABLED(FWRETRACT)
  578. EEPROM_WRITE(fwretract.settings);
  579. EEPROM_WRITE(fwretract.autoretract_enabled);
  580. #else
  581. const fwretract_settings_t autoretract_defaults = { 3, 45, 0, 0, 0, 13, 0, 8 };
  582. const bool autoretract_enabled = false;
  583. EEPROM_WRITE(autoretract_defaults);
  584. EEPROM_WRITE(autoretract_enabled);
  585. #endif
  586. }
  587. //
  588. // Volumetric & Filament Size
  589. //
  590. {
  591. _FIELD_TEST(parser_volumetric_enabled);
  592. #if DISABLED(NO_VOLUMETRICS)
  593. EEPROM_WRITE(parser.volumetric_enabled);
  594. EEPROM_WRITE(planner.filament_size);
  595. #else
  596. const bool volumetric_enabled = false;
  597. dummy = DEFAULT_NOMINAL_FILAMENT_DIA;
  598. EEPROM_WRITE(volumetric_enabled);
  599. for (uint8_t q = EXTRUDERS; q--;) EEPROM_WRITE(dummy);
  600. #endif
  601. }
  602. //
  603. // TMC Configuration
  604. //
  605. {
  606. _FIELD_TEST(tmc_stepper_current);
  607. tmc_stepper_current_t tmc_stepper_current = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 };
  608. #if HAS_TRINAMIC
  609. #if AXIS_IS_TMC(X)
  610. tmc_stepper_current.X = stepperX.getMilliamps();
  611. #endif
  612. #if AXIS_IS_TMC(Y)
  613. tmc_stepper_current.Y = stepperY.getMilliamps();
  614. #endif
  615. #if AXIS_IS_TMC(Z)
  616. tmc_stepper_current.Z = stepperZ.getMilliamps();
  617. #endif
  618. #if AXIS_IS_TMC(X2)
  619. tmc_stepper_current.X2 = stepperX2.getMilliamps();
  620. #endif
  621. #if AXIS_IS_TMC(Y2)
  622. tmc_stepper_current.Y2 = stepperY2.getMilliamps();
  623. #endif
  624. #if AXIS_IS_TMC(Z2)
  625. tmc_stepper_current.Z2 = stepperZ2.getMilliamps();
  626. #endif
  627. #if AXIS_IS_TMC(Z3)
  628. tmc_stepper_current.Z3 = stepperZ3.getMilliamps();
  629. #endif
  630. #if MAX_EXTRUDERS
  631. #if AXIS_IS_TMC(E0)
  632. tmc_stepper_current.E0 = stepperE0.getMilliamps();
  633. #endif
  634. #if MAX_EXTRUDERS > 1
  635. #if AXIS_IS_TMC(E1)
  636. tmc_stepper_current.E1 = stepperE1.getMilliamps();
  637. #endif
  638. #if MAX_EXTRUDERS > 2
  639. #if AXIS_IS_TMC(E2)
  640. tmc_stepper_current.E2 = stepperE2.getMilliamps();
  641. #endif
  642. #if MAX_EXTRUDERS > 3
  643. #if AXIS_IS_TMC(E3)
  644. tmc_stepper_current.E3 = stepperE3.getMilliamps();
  645. #endif
  646. #if MAX_EXTRUDERS > 4
  647. #if AXIS_IS_TMC(E4)
  648. tmc_stepper_current.E4 = stepperE4.getMilliamps();
  649. #endif
  650. #if MAX_EXTRUDERS > 5
  651. #if AXIS_IS_TMC(E5)
  652. tmc_stepper_current.E5 = stepperE5.getMilliamps();
  653. #endif
  654. #endif // MAX_EXTRUDERS > 5
  655. #endif // MAX_EXTRUDERS > 4
  656. #endif // MAX_EXTRUDERS > 3
  657. #endif // MAX_EXTRUDERS > 2
  658. #endif // MAX_EXTRUDERS > 1
  659. #endif // MAX_EXTRUDERS
  660. #endif
  661. EEPROM_WRITE(tmc_stepper_current);
  662. }
  663. //
  664. // TMC Hybrid Threshold, and placeholder values
  665. //
  666. {
  667. _FIELD_TEST(tmc_hybrid_threshold);
  668. #if ENABLED(HYBRID_THRESHOLD)
  669. tmc_hybrid_threshold_t tmc_hybrid_threshold = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 };
  670. #if AXIS_HAS_STEALTHCHOP(X)
  671. tmc_hybrid_threshold.X = TMC_GET_PWMTHRS(X, X);
  672. #endif
  673. #if AXIS_HAS_STEALTHCHOP(Y)
  674. tmc_hybrid_threshold.Y = TMC_GET_PWMTHRS(Y, Y);
  675. #endif
  676. #if AXIS_HAS_STEALTHCHOP(Z)
  677. tmc_hybrid_threshold.Z = TMC_GET_PWMTHRS(Z, Z);
  678. #endif
  679. #if AXIS_HAS_STEALTHCHOP(X2)
  680. tmc_hybrid_threshold.X2 = TMC_GET_PWMTHRS(X, X2);
  681. #endif
  682. #if AXIS_HAS_STEALTHCHOP(Y2)
  683. tmc_hybrid_threshold.Y2 = TMC_GET_PWMTHRS(Y, Y2);
  684. #endif
  685. #if AXIS_HAS_STEALTHCHOP(Z2)
  686. tmc_hybrid_threshold.Z2 = TMC_GET_PWMTHRS(Z, Z2);
  687. #endif
  688. #if AXIS_HAS_STEALTHCHOP(Z3)
  689. tmc_hybrid_threshold.Z3 = TMC_GET_PWMTHRS(Z, Z3);
  690. #endif
  691. #if MAX_EXTRUDERS
  692. #if AXIS_HAS_STEALTHCHOP(E0)
  693. tmc_hybrid_threshold.E0 = TMC_GET_PWMTHRS(E, E0);
  694. #endif
  695. #if MAX_EXTRUDERS > 1
  696. #if AXIS_HAS_STEALTHCHOP(E1)
  697. tmc_hybrid_threshold.E1 = TMC_GET_PWMTHRS(E, E1);
  698. #endif
  699. #if MAX_EXTRUDERS > 2
  700. #if AXIS_HAS_STEALTHCHOP(E2)
  701. tmc_hybrid_threshold.E2 = TMC_GET_PWMTHRS(E, E2);
  702. #endif
  703. #if MAX_EXTRUDERS > 3
  704. #if AXIS_HAS_STEALTHCHOP(E3)
  705. tmc_hybrid_threshold.E3 = TMC_GET_PWMTHRS(E, E3);
  706. #endif
  707. #if MAX_EXTRUDERS > 4
  708. #if AXIS_HAS_STEALTHCHOP(E4)
  709. tmc_hybrid_threshold.E4 = TMC_GET_PWMTHRS(E, E4);
  710. #endif
  711. #if MAX_EXTRUDERS > 5
  712. #if AXIS_HAS_STEALTHCHOP(E5)
  713. tmc_hybrid_threshold.E5 = TMC_GET_PWMTHRS(E, E5);
  714. #endif
  715. #endif // MAX_EXTRUDERS > 5
  716. #endif // MAX_EXTRUDERS > 4
  717. #endif // MAX_EXTRUDERS > 3
  718. #endif // MAX_EXTRUDERS > 2
  719. #endif // MAX_EXTRUDERS > 1
  720. #endif // MAX_EXTRUDERS
  721. #else
  722. const tmc_hybrid_threshold_t tmc_hybrid_threshold = {
  723. .X = 100, .Y = 100, .Z = 3,
  724. .X2 = 100, .Y2 = 100, .Z2 = 3, .Z3 = 3,
  725. .E0 = 30, .E1 = 30, .E2 = 30,
  726. .E3 = 30, .E4 = 30, .E5 = 30
  727. };
  728. #endif
  729. EEPROM_WRITE(tmc_hybrid_threshold);
  730. }
  731. //
  732. // TMC StallGuard threshold
  733. //
  734. {
  735. tmc_sgt_t tmc_sgt = { 0, 0, 0 };
  736. #if USE_SENSORLESS
  737. #if X_SENSORLESS
  738. tmc_sgt.X = stepperX.sgt();
  739. #endif
  740. #if Y_SENSORLESS
  741. tmc_sgt.Y = stepperY.sgt();
  742. #endif
  743. #if Z_SENSORLESS
  744. tmc_sgt.Z = stepperZ.sgt();
  745. #endif
  746. #endif
  747. EEPROM_WRITE(tmc_sgt);
  748. }
  749. //
  750. // Linear Advance
  751. //
  752. {
  753. _FIELD_TEST(planner_extruder_advance_K);
  754. #if ENABLED(LIN_ADVANCE)
  755. EEPROM_WRITE(planner.extruder_advance_K);
  756. #else
  757. dummy = 0;
  758. for (uint8_t q = EXTRUDERS; q--;) EEPROM_WRITE(dummy);
  759. #endif
  760. }
  761. //
  762. // Motor Current PWM
  763. //
  764. {
  765. _FIELD_TEST(motor_current_setting);
  766. #if HAS_MOTOR_CURRENT_PWM
  767. EEPROM_WRITE(stepper.motor_current_setting);
  768. #else
  769. const uint32_t dummyui32[XYZ] = { 0 };
  770. EEPROM_WRITE(dummyui32);
  771. #endif
  772. }
  773. //
  774. // CNC Coordinate Systems
  775. //
  776. _FIELD_TEST(coordinate_system);
  777. #if ENABLED(CNC_COORDINATE_SYSTEMS)
  778. EEPROM_WRITE(gcode.coordinate_system);
  779. #else
  780. const float coordinate_system[MAX_COORDINATE_SYSTEMS][XYZ] = { { 0 } };
  781. EEPROM_WRITE(coordinate_system);
  782. #endif
  783. //
  784. // Skew correction factors
  785. //
  786. _FIELD_TEST(planner_skew_factor);
  787. EEPROM_WRITE(planner.skew_factor);
  788. //
  789. // Advanced Pause filament load & unload lengths
  790. //
  791. {
  792. #if DISABLED(ADVANCED_PAUSE_FEATURE)
  793. const fil_change_settings_t fc_settings[EXTRUDERS] = { { 0 } };
  794. #endif
  795. _FIELD_TEST(fc_settings);
  796. EEPROM_WRITE(fc_settings);
  797. }
  798. //
  799. // SINGLENOZZLE
  800. //
  801. #if ENABLED(SINGLENOZZLE)
  802. _FIELD_TEST(sn_settings);
  803. EEPROM_WRITE(sn_settings);
  804. #endif
  805. //
  806. // Validate CRC and Data Size
  807. //
  808. if (!eeprom_error) {
  809. const uint16_t eeprom_size = eeprom_index - (EEPROM_OFFSET),
  810. final_crc = working_crc;
  811. // Write the EEPROM header
  812. eeprom_index = EEPROM_OFFSET;
  813. EEPROM_WRITE(version);
  814. EEPROM_WRITE(final_crc);
  815. // Report storage size
  816. #if ENABLED(EEPROM_CHITCHAT)
  817. SERIAL_ECHO_START_P(port);
  818. SERIAL_ECHOPAIR_P(port, "Settings Stored (", eeprom_size);
  819. SERIAL_ECHOPAIR_P(port, " bytes; crc ", (uint32_t)final_crc);
  820. SERIAL_ECHOLNPGM_P(port, ")");
  821. #endif
  822. eeprom_error |= size_error(eeprom_size);
  823. }
  824. EEPROM_FINISH();
  825. //
  826. // UBL Mesh
  827. //
  828. #if ENABLED(UBL_SAVE_ACTIVE_ON_M500)
  829. if (ubl.storage_slot >= 0)
  830. store_mesh(ubl.storage_slot);
  831. #endif
  832. return !eeprom_error;
  833. }
  834. /**
  835. * M501 - Retrieve Configuration
  836. */
  837. bool MarlinSettings::_load(PORTARG_SOLO) {
  838. uint16_t working_crc = 0;
  839. EEPROM_START();
  840. char stored_ver[4];
  841. EEPROM_READ_ALWAYS(stored_ver);
  842. uint16_t stored_crc;
  843. EEPROM_READ_ALWAYS(stored_crc);
  844. // Version has to match or defaults are used
  845. if (strncmp(version, stored_ver, 3) != 0) {
  846. if (stored_ver[3] != '\0') {
  847. stored_ver[0] = '?';
  848. stored_ver[1] = '\0';
  849. }
  850. #if ENABLED(EEPROM_CHITCHAT)
  851. SERIAL_ECHO_START_P(port);
  852. SERIAL_ECHOPGM_P(port, "EEPROM version mismatch ");
  853. SERIAL_ECHOPAIR_P(port, "(EEPROM=", stored_ver);
  854. SERIAL_ECHOLNPGM_P(port, " Marlin=" EEPROM_VERSION ")");
  855. #endif
  856. eeprom_error = true;
  857. }
  858. else {
  859. float dummy = 0;
  860. #if DISABLED(AUTO_BED_LEVELING_UBL) || DISABLED(FWRETRACT) || DISABLED(FWRETRACT_AUTORETRACT) || ENABLED(NO_VOLUMETRICS)
  861. bool dummyb;
  862. #endif
  863. working_crc = 0; // Init to 0. Accumulated by EEPROM_READ
  864. _FIELD_TEST(esteppers);
  865. // Number of esteppers may change
  866. uint8_t esteppers;
  867. EEPROM_READ_ALWAYS(esteppers);
  868. //
  869. // Planner Motion
  870. //
  871. // Get only the number of E stepper parameters previously stored
  872. // Any steppers added later are set to their defaults
  873. const uint32_t def1[] = DEFAULT_MAX_ACCELERATION;
  874. const float def2[] = DEFAULT_AXIS_STEPS_PER_UNIT, def3[] = DEFAULT_MAX_FEEDRATE;
  875. uint32_t tmp1[XYZ + esteppers];
  876. EEPROM_READ(tmp1); // max_acceleration_mm_per_s2
  877. EEPROM_READ(planner.settings.min_segment_time_us);
  878. float tmp2[XYZ + esteppers], tmp3[XYZ + esteppers];
  879. EEPROM_READ(tmp2); // axis_steps_per_mm
  880. EEPROM_READ(tmp3); // max_feedrate_mm_s
  881. if (!validating) LOOP_XYZE_N(i) {
  882. const bool in = (i < esteppers + XYZ);
  883. planner.settings.max_acceleration_mm_per_s2[i] = in ? tmp1[i] : def1[ALIM(i, def1)];
  884. planner.settings.axis_steps_per_mm[i] = in ? tmp2[i] : def2[ALIM(i, def2)];
  885. planner.settings.max_feedrate_mm_s[i] = in ? tmp3[i] : def3[ALIM(i, def3)];
  886. }
  887. EEPROM_READ(planner.settings.acceleration);
  888. EEPROM_READ(planner.settings.retract_acceleration);
  889. EEPROM_READ(planner.settings.travel_acceleration);
  890. EEPROM_READ(planner.settings.min_feedrate_mm_s);
  891. EEPROM_READ(planner.settings.min_travel_feedrate_mm_s);
  892. #if HAS_CLASSIC_JERK
  893. EEPROM_READ(planner.max_jerk);
  894. #if ENABLED(JUNCTION_DEVIATION) && ENABLED(LIN_ADVANCE)
  895. EEPROM_READ(dummy);
  896. #endif
  897. #else
  898. for (uint8_t q = 4; q--;) EEPROM_READ(dummy);
  899. #endif
  900. #if ENABLED(JUNCTION_DEVIATION)
  901. EEPROM_READ(planner.junction_deviation_mm);
  902. #else
  903. EEPROM_READ(dummy);
  904. #endif
  905. //
  906. // Home Offset (M206)
  907. //
  908. _FIELD_TEST(home_offset);
  909. #if !HAS_HOME_OFFSET
  910. float home_offset[XYZ];
  911. #endif
  912. EEPROM_READ(home_offset);
  913. //
  914. // Hotend Offsets, if any
  915. //
  916. #if HAS_HOTEND_OFFSET
  917. // Skip hotend 0 which must be 0
  918. for (uint8_t e = 1; e < HOTENDS; e++)
  919. LOOP_XYZ(i) EEPROM_READ(hotend_offset[i][e]);
  920. #endif
  921. //
  922. // Global Leveling
  923. //
  924. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  925. EEPROM_READ(new_z_fade_height);
  926. #else
  927. EEPROM_READ(dummy);
  928. #endif
  929. //
  930. // Mesh (Manual) Bed Leveling
  931. //
  932. uint8_t mesh_num_x, mesh_num_y;
  933. EEPROM_READ(dummy);
  934. EEPROM_READ_ALWAYS(mesh_num_x);
  935. EEPROM_READ_ALWAYS(mesh_num_y);
  936. #if ENABLED(MESH_BED_LEVELING)
  937. if (!validating) mbl.z_offset = dummy;
  938. if (mesh_num_x == GRID_MAX_POINTS_X && mesh_num_y == GRID_MAX_POINTS_Y) {
  939. // EEPROM data fits the current mesh
  940. EEPROM_READ(mbl.z_values);
  941. }
  942. else {
  943. // EEPROM data is stale
  944. if (!validating) mbl.reset();
  945. for (uint16_t q = mesh_num_x * mesh_num_y; q--;) EEPROM_READ(dummy);
  946. }
  947. #else
  948. // MBL is disabled - skip the stored data
  949. for (uint16_t q = mesh_num_x * mesh_num_y; q--;) EEPROM_READ(dummy);
  950. #endif // MESH_BED_LEVELING
  951. _FIELD_TEST(zprobe_zoffset);
  952. #if !HAS_BED_PROBE
  953. float zprobe_zoffset;
  954. #endif
  955. EEPROM_READ(zprobe_zoffset);
  956. //
  957. // Planar Bed Leveling matrix
  958. //
  959. #if ABL_PLANAR
  960. EEPROM_READ(planner.bed_level_matrix);
  961. #else
  962. for (uint8_t q = 9; q--;) EEPROM_READ(dummy);
  963. #endif
  964. //
  965. // Bilinear Auto Bed Leveling
  966. //
  967. uint8_t grid_max_x, grid_max_y;
  968. EEPROM_READ_ALWAYS(grid_max_x); // 1 byte
  969. EEPROM_READ_ALWAYS(grid_max_y); // 1 byte
  970. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  971. if (grid_max_x == GRID_MAX_POINTS_X && grid_max_y == GRID_MAX_POINTS_Y) {
  972. if (!validating) set_bed_leveling_enabled(false);
  973. EEPROM_READ(bilinear_grid_spacing); // 2 ints
  974. EEPROM_READ(bilinear_start); // 2 ints
  975. EEPROM_READ(z_values); // 9 to 256 floats
  976. }
  977. else // EEPROM data is stale
  978. #endif // AUTO_BED_LEVELING_BILINEAR
  979. {
  980. // Skip past disabled (or stale) Bilinear Grid data
  981. int bgs[2], bs[2];
  982. EEPROM_READ(bgs);
  983. EEPROM_READ(bs);
  984. for (uint16_t q = grid_max_x * grid_max_y; q--;) EEPROM_READ(dummy);
  985. }
  986. //
  987. // Unified Bed Leveling active state
  988. //
  989. _FIELD_TEST(planner_leveling_active);
  990. #if ENABLED(AUTO_BED_LEVELING_UBL)
  991. EEPROM_READ(planner.leveling_active);
  992. EEPROM_READ(ubl.storage_slot);
  993. #else
  994. uint8_t dummyui8;
  995. EEPROM_READ(dummyb);
  996. EEPROM_READ(dummyui8);
  997. #endif // AUTO_BED_LEVELING_UBL
  998. //
  999. // SERVO_ANGLES
  1000. //
  1001. #if !HAS_SERVOS || DISABLED(EDITABLE_SERVO_ANGLES)
  1002. uint16_t servo_angles[NUM_SERVOS][2];
  1003. #endif
  1004. EEPROM_READ(servo_angles);
  1005. //
  1006. // DELTA Geometry or Dual Endstops offsets
  1007. //
  1008. #if ENABLED(DELTA)
  1009. _FIELD_TEST(delta_height);
  1010. EEPROM_READ(delta_height); // 1 float
  1011. EEPROM_READ(delta_endstop_adj); // 3 floats
  1012. EEPROM_READ(delta_radius); // 1 float
  1013. EEPROM_READ(delta_diagonal_rod); // 1 float
  1014. EEPROM_READ(delta_segments_per_second); // 1 float
  1015. EEPROM_READ(delta_calibration_radius); // 1 float
  1016. EEPROM_READ(delta_tower_angle_trim); // 3 floats
  1017. #elif ENABLED(X_DUAL_ENDSTOPS) || ENABLED(Y_DUAL_ENDSTOPS) || Z_MULTI_ENDSTOPS
  1018. _FIELD_TEST(x2_endstop_adj);
  1019. #if ENABLED(X_DUAL_ENDSTOPS)
  1020. EEPROM_READ(endstops.x2_endstop_adj); // 1 float
  1021. #else
  1022. EEPROM_READ(dummy);
  1023. #endif
  1024. #if ENABLED(Y_DUAL_ENDSTOPS)
  1025. EEPROM_READ(endstops.y2_endstop_adj); // 1 float
  1026. #else
  1027. EEPROM_READ(dummy);
  1028. #endif
  1029. #if Z_MULTI_ENDSTOPS
  1030. EEPROM_READ(endstops.z2_endstop_adj); // 1 float
  1031. #else
  1032. EEPROM_READ(dummy);
  1033. #endif
  1034. #if ENABLED(Z_TRIPLE_ENDSTOPS)
  1035. EEPROM_READ(endstops.z3_endstop_adj); // 1 float
  1036. #else
  1037. EEPROM_READ(dummy);
  1038. #endif
  1039. #endif
  1040. //
  1041. // LCD Preheat settings
  1042. //
  1043. _FIELD_TEST(lcd_preheat_hotend_temp);
  1044. #if DISABLED(ULTIPANEL)
  1045. int16_t lcd_preheat_hotend_temp[2], lcd_preheat_bed_temp[2];
  1046. uint8_t lcd_preheat_fan_speed[2];
  1047. #endif
  1048. EEPROM_READ(lcd_preheat_hotend_temp); // 2 floats
  1049. EEPROM_READ(lcd_preheat_bed_temp); // 2 floats
  1050. EEPROM_READ(lcd_preheat_fan_speed); // 2 floats
  1051. //
  1052. // Hotend PID
  1053. //
  1054. {
  1055. HOTEND_LOOP() {
  1056. PIDC_t pidc;
  1057. EEPROM_READ(pidc);
  1058. #if ENABLED(PIDTEMP)
  1059. if (!validating && pidc.Kp != DUMMY_PID_VALUE) {
  1060. // No need to scale PID values since EEPROM values are scaled
  1061. PID_PARAM(Kp, e) = pidc.Kp;
  1062. PID_PARAM(Ki, e) = pidc.Ki;
  1063. PID_PARAM(Kd, e) = pidc.Kd;
  1064. #if ENABLED(PID_EXTRUSION_SCALING)
  1065. PID_PARAM(Kc, e) = pidc.Kc;
  1066. #endif
  1067. }
  1068. #endif
  1069. }
  1070. }
  1071. //
  1072. // PID Extrusion Scaling
  1073. //
  1074. {
  1075. _FIELD_TEST(lpq_len);
  1076. #if ENABLED(PID_EXTRUSION_SCALING)
  1077. EEPROM_READ(thermalManager.lpq_len);
  1078. #else
  1079. int16_t lpq_len;
  1080. EEPROM_READ(lpq_len);
  1081. #endif
  1082. }
  1083. //
  1084. // Heated Bed PID
  1085. //
  1086. {
  1087. PID_t pid;
  1088. EEPROM_READ(pid);
  1089. #if ENABLED(PIDTEMPBED)
  1090. if (!validating && pid.Kp != DUMMY_PID_VALUE)
  1091. memcpy(&thermalManager.bed_pid, &pid, sizeof(pid));
  1092. #endif
  1093. }
  1094. //
  1095. // LCD Contrast
  1096. //
  1097. {
  1098. _FIELD_TEST(lcd_contrast);
  1099. #if !HAS_LCD_CONTRAST
  1100. int16_t lcd_contrast;
  1101. #endif
  1102. EEPROM_READ(lcd_contrast);
  1103. }
  1104. //
  1105. // Firmware Retraction
  1106. //
  1107. {
  1108. _FIELD_TEST(fwretract_settings);
  1109. #if ENABLED(FWRETRACT)
  1110. EEPROM_READ(fwretract.settings);
  1111. EEPROM_READ(fwretract.autoretract_enabled);
  1112. #else
  1113. fwretract_settings_t fwretract_settings;
  1114. bool autoretract_enabled;
  1115. EEPROM_READ(fwretract_settings);
  1116. EEPROM_READ(autoretract_enabled);
  1117. #endif
  1118. }
  1119. //
  1120. // Volumetric & Filament Size
  1121. //
  1122. {
  1123. struct {
  1124. bool volumetric_enabled;
  1125. float filament_size[EXTRUDERS];
  1126. } storage;
  1127. _FIELD_TEST(parser_volumetric_enabled);
  1128. EEPROM_READ(storage);
  1129. #if DISABLED(NO_VOLUMETRICS)
  1130. if (!validating) {
  1131. parser.volumetric_enabled = storage.volumetric_enabled;
  1132. COPY(planner.filament_size, storage.filament_size);
  1133. }
  1134. #endif
  1135. }
  1136. //
  1137. // TMC Stepper Settings
  1138. //
  1139. if (!validating) reset_stepper_drivers();
  1140. // TMC Stepper Current
  1141. {
  1142. _FIELD_TEST(tmc_stepper_current);
  1143. tmc_stepper_current_t tmc_stepper_current;
  1144. #if HAS_TRINAMIC
  1145. #define SET_CURR(Q) stepper##Q.rms_current(currents.Q ? currents.Q : Q##_CURRENT)
  1146. tmc_stepper_current_t currents;
  1147. EEPROM_READ(currents);
  1148. if (!validating) {
  1149. #if AXIS_IS_TMC(X)
  1150. SET_CURR(X);
  1151. #endif
  1152. #if AXIS_IS_TMC(Y)
  1153. SET_CURR(Y);
  1154. #endif
  1155. #if AXIS_IS_TMC(Z)
  1156. SET_CURR(Z);
  1157. #endif
  1158. #if AXIS_IS_TMC(X2)
  1159. SET_CURR(X2);
  1160. #endif
  1161. #if AXIS_IS_TMC(Y2)
  1162. SET_CURR(Y2);
  1163. #endif
  1164. #if AXIS_IS_TMC(Z2)
  1165. SET_CURR(Z2);
  1166. #endif
  1167. #if AXIS_IS_TMC(Z3)
  1168. SET_CURR(Z3);
  1169. #endif
  1170. #if AXIS_IS_TMC(E0)
  1171. SET_CURR(E0);
  1172. #endif
  1173. #if AXIS_IS_TMC(E1)
  1174. SET_CURR(E1);
  1175. #endif
  1176. #if AXIS_IS_TMC(E2)
  1177. SET_CURR(E2);
  1178. #endif
  1179. #if AXIS_IS_TMC(E3)
  1180. SET_CURR(E3);
  1181. #endif
  1182. #if AXIS_IS_TMC(E4)
  1183. SET_CURR(E4);
  1184. #endif
  1185. #if AXIS_IS_TMC(E5)
  1186. SET_CURR(E5);
  1187. #endif
  1188. }
  1189. #else
  1190. uint16_t val;
  1191. for (uint8_t q=TMC_AXES; q--;) EEPROM_READ(val);
  1192. #endif
  1193. }
  1194. // TMC Hybrid Threshold
  1195. {
  1196. tmc_hybrid_threshold_t tmc_hybrid_threshold;
  1197. _FIELD_TEST(tmc_hybrid_threshold);
  1198. EEPROM_READ(tmc_hybrid_threshold);
  1199. #if ENABLED(HYBRID_THRESHOLD)
  1200. #define TMC_SET_PWMTHRS(A,Q) tmc_set_pwmthrs(stepper##Q, tmc_hybrid_threshold.Q, planner.settings.axis_steps_per_mm[_AXIS(A)])
  1201. if (!validating) {
  1202. #if AXIS_HAS_STEALTHCHOP(X)
  1203. TMC_SET_PWMTHRS(X, X);
  1204. #endif
  1205. #if AXIS_HAS_STEALTHCHOP(Y)
  1206. TMC_SET_PWMTHRS(Y, Y);
  1207. #endif
  1208. #if AXIS_HAS_STEALTHCHOP(Z)
  1209. TMC_SET_PWMTHRS(Z, Z);
  1210. #endif
  1211. #if AXIS_HAS_STEALTHCHOP(X2)
  1212. TMC_SET_PWMTHRS(X, X2);
  1213. #endif
  1214. #if AXIS_HAS_STEALTHCHOP(Y2)
  1215. TMC_SET_PWMTHRS(Y, Y2);
  1216. #endif
  1217. #if AXIS_HAS_STEALTHCHOP(Z2)
  1218. TMC_SET_PWMTHRS(Z, Z2);
  1219. #endif
  1220. #if AXIS_HAS_STEALTHCHOP(Z3)
  1221. TMC_SET_PWMTHRS(Z, Z3);
  1222. #endif
  1223. #if AXIS_HAS_STEALTHCHOP(E0)
  1224. TMC_SET_PWMTHRS(E, E0);
  1225. #endif
  1226. #if AXIS_HAS_STEALTHCHOP(E1)
  1227. TMC_SET_PWMTHRS(E, E1);
  1228. #endif
  1229. #if AXIS_HAS_STEALTHCHOP(E2)
  1230. TMC_SET_PWMTHRS(E, E2);
  1231. #endif
  1232. #if AXIS_HAS_STEALTHCHOP(E3)
  1233. TMC_SET_PWMTHRS(E, E3);
  1234. #endif
  1235. #if AXIS_HAS_STEALTHCHOP(E4)
  1236. TMC_SET_PWMTHRS(E, E4);
  1237. #endif
  1238. #if AXIS_HAS_STEALTHCHOP(E5)
  1239. TMC_SET_PWMTHRS(E, E5);
  1240. #endif
  1241. }
  1242. #endif
  1243. }
  1244. //
  1245. // TMC StallGuard threshold.
  1246. // X and X2 use the same value
  1247. // Y and Y2 use the same value
  1248. // Z, Z2 and Z3 use the same value
  1249. //
  1250. {
  1251. tmc_sgt_t tmc_sgt;
  1252. _FIELD_TEST(tmc_sgt);
  1253. EEPROM_READ(tmc_sgt);
  1254. #if USE_SENSORLESS
  1255. if (!validating) {
  1256. #ifdef X_STALL_SENSITIVITY
  1257. #if AXIS_HAS_STALLGUARD(X)
  1258. stepperX.sgt(tmc_sgt.X);
  1259. #endif
  1260. #if AXIS_HAS_STALLGUARD(X2)
  1261. stepperX2.sgt(tmc_sgt.X);
  1262. #endif
  1263. #endif
  1264. #ifdef Y_STALL_SENSITIVITY
  1265. #if AXIS_HAS_STALLGUARD(Y)
  1266. stepperY.sgt(tmc_sgt.Y);
  1267. #endif
  1268. #if AXIS_HAS_STALLGUARD(Y2)
  1269. stepperY2.sgt(tmc_sgt.Y);
  1270. #endif
  1271. #endif
  1272. #ifdef Z_STALL_SENSITIVITY
  1273. #if AXIS_HAS_STALLGUARD(Z)
  1274. stepperZ.sgt(tmc_sgt.Z);
  1275. #endif
  1276. #if AXIS_HAS_STALLGUARD(Z2)
  1277. stepperZ2.sgt(tmc_sgt.Z);
  1278. #endif
  1279. #if AXIS_HAS_STALLGUARD(Z3)
  1280. stepperZ3.sgt(tmc_sgt.Z);
  1281. #endif
  1282. #endif
  1283. }
  1284. #endif
  1285. }
  1286. //
  1287. // Linear Advance
  1288. //
  1289. {
  1290. float extruder_advance_K[EXTRUDERS];
  1291. _FIELD_TEST(planner_extruder_advance_K);
  1292. EEPROM_READ(extruder_advance_K);
  1293. #if ENABLED(LIN_ADVANCE)
  1294. if (!validating)
  1295. COPY(planner.extruder_advance_K, extruder_advance_K);
  1296. #endif
  1297. }
  1298. //
  1299. // Motor Current PWM
  1300. //
  1301. {
  1302. uint32_t motor_current_setting[3];
  1303. _FIELD_TEST(motor_current_setting);
  1304. EEPROM_READ(motor_current_setting);
  1305. #if HAS_MOTOR_CURRENT_PWM
  1306. if (!validating)
  1307. COPY(stepper.motor_current_setting, motor_current_setting);
  1308. #endif
  1309. }
  1310. //
  1311. // CNC Coordinate System
  1312. //
  1313. {
  1314. _FIELD_TEST(coordinate_system);
  1315. #if ENABLED(CNC_COORDINATE_SYSTEMS)
  1316. if (!validating) (void)gcode.select_coordinate_system(-1); // Go back to machine space
  1317. EEPROM_READ(gcode.coordinate_system);
  1318. #else
  1319. float coordinate_system[MAX_COORDINATE_SYSTEMS][XYZ];
  1320. EEPROM_READ(coordinate_system);
  1321. #endif
  1322. }
  1323. //
  1324. // Skew correction factors
  1325. //
  1326. {
  1327. skew_factor_t skew_factor;
  1328. _FIELD_TEST(planner_skew_factor);
  1329. EEPROM_READ(skew_factor);
  1330. #if ENABLED(SKEW_CORRECTION_GCODE)
  1331. if (!validating) {
  1332. planner.skew_factor.xy = skew_factor.xy;
  1333. #if ENABLED(SKEW_CORRECTION_FOR_Z)
  1334. planner.skew_factor.xz = skew_factor.xz;
  1335. planner.skew_factor.yz = skew_factor.yz;
  1336. #endif
  1337. }
  1338. #endif
  1339. }
  1340. //
  1341. // Advanced Pause filament load & unload lengths
  1342. //
  1343. {
  1344. #if DISABLED(ADVANCED_PAUSE_FEATURE)
  1345. fil_change_settings_t fc_settings[EXTRUDERS];
  1346. #endif
  1347. _FIELD_TEST(fc_settings);
  1348. EEPROM_READ(fc_settings);
  1349. }
  1350. //
  1351. // SINGLENOZZLE toolchange values
  1352. //
  1353. #if ENABLED(SINGLENOZZLE)
  1354. _FIELD_TEST(sn_settings);
  1355. EEPROM_READ(sn_settings);
  1356. #endif
  1357. eeprom_error = size_error(eeprom_index - (EEPROM_OFFSET));
  1358. if (eeprom_error) {
  1359. #if ENABLED(EEPROM_CHITCHAT)
  1360. SERIAL_ECHO_START_P(port);
  1361. SERIAL_ECHOPAIR_P(port, "Index: ", int(eeprom_index - (EEPROM_OFFSET)));
  1362. SERIAL_ECHOLNPAIR_P(port, " Size: ", datasize());
  1363. #endif
  1364. }
  1365. else if (working_crc != stored_crc) {
  1366. eeprom_error = true;
  1367. #if ENABLED(EEPROM_CHITCHAT)
  1368. SERIAL_ERROR_START_P(port);
  1369. SERIAL_ERRORPGM_P(port, "EEPROM CRC mismatch - (stored) ");
  1370. SERIAL_ERROR_P(port, stored_crc);
  1371. SERIAL_ERRORPGM_P(port, " != ");
  1372. SERIAL_ERROR_P(port, working_crc);
  1373. SERIAL_ERRORLNPGM_P(port, " (calculated)!");
  1374. #endif
  1375. }
  1376. else if (!validating) {
  1377. #if ENABLED(EEPROM_CHITCHAT)
  1378. SERIAL_ECHO_START_P(port);
  1379. SERIAL_ECHO_P(port, version);
  1380. SERIAL_ECHOPAIR_P(port, " stored settings retrieved (", eeprom_index - (EEPROM_OFFSET));
  1381. SERIAL_ECHOPAIR_P(port, " bytes; crc ", (uint32_t)working_crc);
  1382. SERIAL_ECHOLNPGM_P(port, ")");
  1383. #endif
  1384. }
  1385. if (!validating && !eeprom_error) postprocess();
  1386. #if ENABLED(AUTO_BED_LEVELING_UBL)
  1387. if (!validating) {
  1388. ubl.report_state();
  1389. if (!ubl.sanity_check()) {
  1390. SERIAL_EOL_P(port);
  1391. #if ENABLED(EEPROM_CHITCHAT)
  1392. ubl.echo_name();
  1393. SERIAL_ECHOLNPGM_P(port, " initialized.\n");
  1394. #endif
  1395. }
  1396. else {
  1397. eeprom_error = true;
  1398. #if ENABLED(EEPROM_CHITCHAT)
  1399. SERIAL_PROTOCOLPGM_P(port, "?Can't enable ");
  1400. ubl.echo_name();
  1401. SERIAL_PROTOCOLLNPGM_P(port, ".");
  1402. #endif
  1403. ubl.reset();
  1404. }
  1405. if (ubl.storage_slot >= 0) {
  1406. load_mesh(ubl.storage_slot);
  1407. #if ENABLED(EEPROM_CHITCHAT)
  1408. SERIAL_ECHOPAIR_P(port, "Mesh ", ubl.storage_slot);
  1409. SERIAL_ECHOLNPGM_P(port, " loaded from storage.");
  1410. #endif
  1411. }
  1412. else {
  1413. ubl.reset();
  1414. #if ENABLED(EEPROM_CHITCHAT)
  1415. SERIAL_ECHOLNPGM_P(port, "UBL System reset()");
  1416. #endif
  1417. }
  1418. }
  1419. #endif
  1420. }
  1421. #if ENABLED(EEPROM_CHITCHAT) && DISABLED(DISABLE_M503)
  1422. if (!validating) report(PORTVAR_SOLO);
  1423. #endif
  1424. EEPROM_FINISH();
  1425. return !eeprom_error;
  1426. }
  1427. bool MarlinSettings::validate(PORTARG_SOLO) {
  1428. validating = true;
  1429. const bool success = _load(PORTVAR_SOLO);
  1430. validating = false;
  1431. return success;
  1432. }
  1433. bool MarlinSettings::load(PORTARG_SOLO) {
  1434. if (validate(PORTVAR_SOLO)) return _load(PORTVAR_SOLO);
  1435. reset();
  1436. return true;
  1437. }
  1438. #if ENABLED(AUTO_BED_LEVELING_UBL)
  1439. #if ENABLED(EEPROM_CHITCHAT)
  1440. void ubl_invalid_slot(const int s) {
  1441. SERIAL_PROTOCOLLNPGM("?Invalid slot.");
  1442. SERIAL_PROTOCOL(s);
  1443. SERIAL_PROTOCOLLNPGM(" mesh slots available.");
  1444. }
  1445. #endif
  1446. const uint16_t MarlinSettings::meshes_end = persistentStore.capacity() - 129; // 128 (+1 because of the change to capacity rather than last valid address)
  1447. // is a placeholder for the size of the MAT; the MAT will always
  1448. // live at the very end of the eeprom
  1449. uint16_t MarlinSettings::meshes_start_index() {
  1450. return (datasize() + EEPROM_OFFSET + 32) & 0xFFF8; // Pad the end of configuration data so it can float up
  1451. // or down a little bit without disrupting the mesh data
  1452. }
  1453. uint16_t MarlinSettings::calc_num_meshes() {
  1454. return (meshes_end - meshes_start_index()) / sizeof(ubl.z_values);
  1455. }
  1456. int MarlinSettings::mesh_slot_offset(const int8_t slot) {
  1457. return meshes_end - (slot + 1) * sizeof(ubl.z_values);
  1458. }
  1459. void MarlinSettings::store_mesh(const int8_t slot) {
  1460. #if ENABLED(AUTO_BED_LEVELING_UBL)
  1461. const int16_t a = calc_num_meshes();
  1462. if (!WITHIN(slot, 0, a - 1)) {
  1463. #if ENABLED(EEPROM_CHITCHAT)
  1464. ubl_invalid_slot(a);
  1465. SERIAL_PROTOCOLPAIR("E2END=", persistentStore.capacity() - 1);
  1466. SERIAL_PROTOCOLPAIR(" meshes_end=", meshes_end);
  1467. SERIAL_PROTOCOLLNPAIR(" slot=", slot);
  1468. SERIAL_EOL();
  1469. #endif
  1470. return;
  1471. }
  1472. int pos = mesh_slot_offset(slot);
  1473. uint16_t crc = 0;
  1474. persistentStore.access_start();
  1475. const bool status = persistentStore.write_data(pos, (uint8_t *)&ubl.z_values, sizeof(ubl.z_values), &crc);
  1476. persistentStore.access_finish();
  1477. if (status)
  1478. SERIAL_PROTOCOLPGM("?Unable to save mesh data.\n");
  1479. // Write crc to MAT along with other data, or just tack on to the beginning or end
  1480. #if ENABLED(EEPROM_CHITCHAT)
  1481. if (!status)
  1482. SERIAL_PROTOCOLLNPAIR("Mesh saved in slot ", slot);
  1483. #endif
  1484. #else
  1485. // Other mesh types
  1486. #endif
  1487. }
  1488. void MarlinSettings::load_mesh(const int8_t slot, void * const into/*=NULL*/) {
  1489. #if ENABLED(AUTO_BED_LEVELING_UBL)
  1490. const int16_t a = settings.calc_num_meshes();
  1491. if (!WITHIN(slot, 0, a - 1)) {
  1492. #if ENABLED(EEPROM_CHITCHAT)
  1493. ubl_invalid_slot(a);
  1494. #endif
  1495. return;
  1496. }
  1497. int pos = mesh_slot_offset(slot);
  1498. uint16_t crc = 0;
  1499. uint8_t * const dest = into ? (uint8_t*)into : (uint8_t*)&ubl.z_values;
  1500. persistentStore.access_start();
  1501. const uint16_t status = persistentStore.read_data(pos, dest, sizeof(ubl.z_values), &crc);
  1502. persistentStore.access_finish();
  1503. if (status)
  1504. SERIAL_PROTOCOLPGM("?Unable to load mesh data.\n");
  1505. #if ENABLED(EEPROM_CHITCHAT)
  1506. else
  1507. SERIAL_PROTOCOLLNPAIR("Mesh loaded from slot ", slot);
  1508. #endif
  1509. EEPROM_FINISH();
  1510. #else
  1511. // Other mesh types
  1512. #endif
  1513. }
  1514. //void MarlinSettings::delete_mesh() { return; }
  1515. //void MarlinSettings::defrag_meshes() { return; }
  1516. #endif // AUTO_BED_LEVELING_UBL
  1517. #else // !EEPROM_SETTINGS
  1518. bool MarlinSettings::save(PORTARG_SOLO) {
  1519. #if ENABLED(EEPROM_CHITCHAT)
  1520. SERIAL_ERROR_START_P(port);
  1521. SERIAL_ERRORLNPGM_P(port, "EEPROM disabled");
  1522. #endif
  1523. return false;
  1524. }
  1525. #endif // !EEPROM_SETTINGS
  1526. /**
  1527. * M502 - Reset Configuration
  1528. */
  1529. void MarlinSettings::reset(PORTARG_SOLO) {
  1530. static const float tmp1[] PROGMEM = DEFAULT_AXIS_STEPS_PER_UNIT, tmp2[] PROGMEM = DEFAULT_MAX_FEEDRATE;
  1531. static const uint32_t tmp3[] PROGMEM = DEFAULT_MAX_ACCELERATION;
  1532. LOOP_XYZE_N(i) {
  1533. planner.settings.axis_steps_per_mm[i] = pgm_read_float(&tmp1[ALIM(i, tmp1)]);
  1534. planner.settings.max_feedrate_mm_s[i] = pgm_read_float(&tmp2[ALIM(i, tmp2)]);
  1535. planner.settings.max_acceleration_mm_per_s2[i] = pgm_read_dword_near(&tmp3[ALIM(i, tmp3)]);
  1536. }
  1537. planner.settings.min_segment_time_us = DEFAULT_MINSEGMENTTIME;
  1538. planner.settings.acceleration = DEFAULT_ACCELERATION;
  1539. planner.settings.retract_acceleration = DEFAULT_RETRACT_ACCELERATION;
  1540. planner.settings.travel_acceleration = DEFAULT_TRAVEL_ACCELERATION;
  1541. planner.settings.min_feedrate_mm_s = DEFAULT_MINIMUMFEEDRATE;
  1542. planner.settings.min_travel_feedrate_mm_s = DEFAULT_MINTRAVELFEEDRATE;
  1543. #if HAS_CLASSIC_JERK
  1544. planner.max_jerk[X_AXIS] = DEFAULT_XJERK;
  1545. planner.max_jerk[Y_AXIS] = DEFAULT_YJERK;
  1546. planner.max_jerk[Z_AXIS] = DEFAULT_ZJERK;
  1547. #if DISABLED(JUNCTION_DEVIATION) || DISABLED(LIN_ADVANCE)
  1548. planner.max_jerk[E_AXIS] = DEFAULT_EJERK;
  1549. #endif
  1550. #endif
  1551. #if ENABLED(JUNCTION_DEVIATION)
  1552. planner.junction_deviation_mm = float(JUNCTION_DEVIATION_MM);
  1553. #endif
  1554. #if HAS_HOME_OFFSET
  1555. ZERO(home_offset);
  1556. #endif
  1557. #if HAS_HOTEND_OFFSET
  1558. constexpr float tmp4[XYZ][HOTENDS] = { HOTEND_OFFSET_X, HOTEND_OFFSET_Y, HOTEND_OFFSET_Z };
  1559. static_assert(
  1560. tmp4[X_AXIS][0] == 0 && tmp4[Y_AXIS][0] == 0 && tmp4[Z_AXIS][0] == 0,
  1561. "Offsets for the first hotend must be 0.0."
  1562. );
  1563. LOOP_XYZ(i) HOTEND_LOOP() hotend_offset[i][e] = tmp4[i][e];
  1564. #if ENABLED(DUAL_X_CARRIAGE)
  1565. hotend_offset[X_AXIS][1] = MAX(X2_HOME_POS, X2_MAX_POS);
  1566. #endif
  1567. #endif
  1568. #if ENABLED(SINGLENOZZLE)
  1569. sn_settings.swap_length = SINGLENOZZLE_SWAP_LENGTH;
  1570. sn_settings.prime_speed = SINGLENOZZLE_SWAP_PRIME_SPEED;
  1571. sn_settings.retract_speed = SINGLENOZZLE_SWAP_RETRACT_SPEED;
  1572. #endif
  1573. //
  1574. // Global Leveling
  1575. //
  1576. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  1577. new_z_fade_height = 0.0;
  1578. #endif
  1579. #if HAS_LEVELING
  1580. reset_bed_level();
  1581. #endif
  1582. #if HAS_BED_PROBE
  1583. zprobe_zoffset = Z_PROBE_OFFSET_FROM_EXTRUDER;
  1584. #endif
  1585. //
  1586. // Servo Angles
  1587. //
  1588. #if HAS_SERVOS && ENABLED(EDITABLE_SERVO_ANGLES)
  1589. #if ENABLED(SWITCHING_EXTRUDER)
  1590. #if EXTRUDERS > 3
  1591. #define REQ_ANGLES 4
  1592. #else
  1593. #define REQ_ANGLES 2
  1594. #endif
  1595. constexpr uint16_t extruder_angles[] = SWITCHING_EXTRUDER_SERVO_ANGLES;
  1596. static_assert(COUNT(extruder_angles) == REQ_ANGLES, "SWITCHING_EXTRUDER_SERVO_ANGLES needs " STRINGIFY(REQ_ANGLES) " angles.");
  1597. servo_angles[SWITCHING_EXTRUDER_SERVO_NR][0] = extruder_angles[0];
  1598. servo_angles[SWITCHING_EXTRUDER_SERVO_NR][1] = extruder_angles[1];
  1599. #if EXTRUDERS > 3
  1600. servo_angles[SWITCHING_EXTRUDER_E23_SERVO_NR][0] = extruder_angles[2];
  1601. servo_angles[SWITCHING_EXTRUDER_E23_SERVO_NR][1] = extruder_angles[3];
  1602. #endif
  1603. #elif ENABLED(SWITCHING_NOZZLE)
  1604. constexpr uint16_t nozzle_angles[2] = SWITCHING_NOZZLE_SERVO_ANGLES;
  1605. servo_angles[SWITCHING_NOZZLE_SERVO_NR][0] = nozzle_angles[0];
  1606. servo_angles[SWITCHING_NOZZLE_SERVO_NR][1] = nozzle_angles[1];
  1607. #elif defined(Z_SERVO_ANGLES) && defined(Z_PROBE_SERVO_NR)
  1608. constexpr uint16_t z_probe_angles[2] = Z_SERVO_ANGLES;
  1609. servo_angles[Z_PROBE_SERVO_NR][0] = z_probe_angles[0];
  1610. servo_angles[Z_PROBE_SERVO_NR][1] = z_probe_angles[1];
  1611. #endif
  1612. #endif // HAS_SERVOS && EDITABLE_SERVO_ANGLES
  1613. #if ENABLED(DELTA)
  1614. const float adj[ABC] = DELTA_ENDSTOP_ADJ, dta[ABC] = DELTA_TOWER_ANGLE_TRIM;
  1615. delta_height = DELTA_HEIGHT;
  1616. COPY(delta_endstop_adj, adj);
  1617. delta_radius = DELTA_RADIUS;
  1618. delta_diagonal_rod = DELTA_DIAGONAL_ROD;
  1619. delta_segments_per_second = DELTA_SEGMENTS_PER_SECOND;
  1620. delta_calibration_radius = DELTA_CALIBRATION_RADIUS;
  1621. COPY(delta_tower_angle_trim, dta);
  1622. #elif ENABLED(X_DUAL_ENDSTOPS) || ENABLED(Y_DUAL_ENDSTOPS) || Z_MULTI_ENDSTOPS
  1623. #if ENABLED(X_DUAL_ENDSTOPS)
  1624. endstops.x2_endstop_adj = (
  1625. #ifdef X_DUAL_ENDSTOPS_ADJUSTMENT
  1626. X_DUAL_ENDSTOPS_ADJUSTMENT
  1627. #else
  1628. 0
  1629. #endif
  1630. );
  1631. #endif
  1632. #if ENABLED(Y_DUAL_ENDSTOPS)
  1633. endstops.y2_endstop_adj = (
  1634. #ifdef Y_DUAL_ENDSTOPS_ADJUSTMENT
  1635. Y_DUAL_ENDSTOPS_ADJUSTMENT
  1636. #else
  1637. 0
  1638. #endif
  1639. );
  1640. #endif
  1641. #if ENABLED(Z_DUAL_ENDSTOPS)
  1642. endstops.z2_endstop_adj = (
  1643. #ifdef Z_DUAL_ENDSTOPS_ADJUSTMENT
  1644. Z_DUAL_ENDSTOPS_ADJUSTMENT
  1645. #else
  1646. 0
  1647. #endif
  1648. );
  1649. #elif ENABLED(Z_TRIPLE_ENDSTOPS)
  1650. endstops.z2_endstop_adj = (
  1651. #ifdef Z_TRIPLE_ENDSTOPS_ADJUSTMENT2
  1652. Z_TRIPLE_ENDSTOPS_ADJUSTMENT2
  1653. #else
  1654. 0
  1655. #endif
  1656. );
  1657. endstops.z3_endstop_adj = (
  1658. #ifdef Z_TRIPLE_ENDSTOPS_ADJUSTMENT3
  1659. Z_TRIPLE_ENDSTOPS_ADJUSTMENT3
  1660. #else
  1661. 0
  1662. #endif
  1663. );
  1664. #endif
  1665. #endif
  1666. #if ENABLED(ULTIPANEL)
  1667. lcd_preheat_hotend_temp[0] = PREHEAT_1_TEMP_HOTEND;
  1668. lcd_preheat_hotend_temp[1] = PREHEAT_2_TEMP_HOTEND;
  1669. lcd_preheat_bed_temp[0] = PREHEAT_1_TEMP_BED;
  1670. lcd_preheat_bed_temp[1] = PREHEAT_2_TEMP_BED;
  1671. lcd_preheat_fan_speed[0] = PREHEAT_1_FAN_SPEED;
  1672. lcd_preheat_fan_speed[1] = PREHEAT_2_FAN_SPEED;
  1673. #endif
  1674. #if ENABLED(PIDTEMP)
  1675. HOTEND_LOOP() {
  1676. PID_PARAM(Kp, e) = float(DEFAULT_Kp);
  1677. PID_PARAM(Ki, e) = scalePID_i(DEFAULT_Ki);
  1678. PID_PARAM(Kd, e) = scalePID_d(DEFAULT_Kd);
  1679. #if ENABLED(PID_EXTRUSION_SCALING)
  1680. PID_PARAM(Kc, e) = DEFAULT_Kc;
  1681. #endif
  1682. }
  1683. #if ENABLED(PID_EXTRUSION_SCALING)
  1684. thermalManager.lpq_len = 20; // default last-position-queue size
  1685. #endif
  1686. #endif // PIDTEMP
  1687. #if ENABLED(PIDTEMPBED)
  1688. thermalManager.bed_pid.Kp = DEFAULT_bedKp;
  1689. thermalManager.bed_pid.Ki = scalePID_i(DEFAULT_bedKi);
  1690. thermalManager.bed_pid.Kd = scalePID_d(DEFAULT_bedKd);
  1691. #endif
  1692. #if HAS_LCD_CONTRAST
  1693. lcd_contrast = DEFAULT_LCD_CONTRAST;
  1694. #endif
  1695. #if ENABLED(FWRETRACT)
  1696. fwretract.reset();
  1697. #endif
  1698. #if DISABLED(NO_VOLUMETRICS)
  1699. parser.volumetric_enabled =
  1700. #if ENABLED(VOLUMETRIC_DEFAULT_ON)
  1701. true
  1702. #else
  1703. false
  1704. #endif
  1705. ;
  1706. for (uint8_t q = 0; q < COUNT(planner.filament_size); q++)
  1707. planner.filament_size[q] = DEFAULT_NOMINAL_FILAMENT_DIA;
  1708. #endif
  1709. endstops.enable_globally(
  1710. #if ENABLED(ENDSTOPS_ALWAYS_ON_DEFAULT)
  1711. true
  1712. #else
  1713. false
  1714. #endif
  1715. );
  1716. reset_stepper_drivers();
  1717. #if ENABLED(LIN_ADVANCE)
  1718. LOOP_L_N(i, EXTRUDERS) planner.extruder_advance_K[i] = LIN_ADVANCE_K;
  1719. #endif
  1720. #if HAS_MOTOR_CURRENT_PWM
  1721. uint32_t tmp_motor_current_setting[3] = PWM_MOTOR_CURRENT;
  1722. for (uint8_t q = 3; q--;)
  1723. stepper.digipot_current(q, (stepper.motor_current_setting[q] = tmp_motor_current_setting[q]));
  1724. #endif
  1725. #if ENABLED(SKEW_CORRECTION_GCODE)
  1726. planner.skew_factor.xy = XY_SKEW_FACTOR;
  1727. #if ENABLED(SKEW_CORRECTION_FOR_Z)
  1728. planner.skew_factor.xz = XZ_SKEW_FACTOR;
  1729. planner.skew_factor.yz = YZ_SKEW_FACTOR;
  1730. #endif
  1731. #endif
  1732. #if ENABLED(ADVANCED_PAUSE_FEATURE)
  1733. for (uint8_t e = 0; e < EXTRUDERS; e++) {
  1734. fc_settings[e].unload_length = FILAMENT_CHANGE_UNLOAD_LENGTH;
  1735. fc_settings[e].load_length = FILAMENT_CHANGE_FAST_LOAD_LENGTH;
  1736. }
  1737. #endif
  1738. postprocess();
  1739. #if ENABLED(EEPROM_CHITCHAT)
  1740. SERIAL_ECHO_START_P(port);
  1741. SERIAL_ECHOLNPGM_P(port, "Hardcoded Default Settings Loaded");
  1742. #endif
  1743. }
  1744. #if DISABLED(DISABLE_M503)
  1745. #define CONFIG_ECHO_START do{ if (!forReplay) SERIAL_ECHO_START_P(port); }while(0)
  1746. #if HAS_TRINAMIC
  1747. void say_M906(PORTARG_SOLO) { SERIAL_ECHOPGM_P(port, " M906"); }
  1748. #if ENABLED(HYBRID_THRESHOLD)
  1749. void say_M913(PORTARG_SOLO) { SERIAL_ECHOPGM_P(port, " M913"); }
  1750. #endif
  1751. #if USE_SENSORLESS
  1752. void say_M914(PORTARG_SOLO) { SERIAL_ECHOPGM_P(port, " M914"); }
  1753. #endif
  1754. #endif
  1755. #if ENABLED(ADVANCED_PAUSE_FEATURE)
  1756. void say_M603(PORTARG_SOLO) { SERIAL_ECHOPGM_P(port, " M603 "); }
  1757. #endif
  1758. inline void say_units(
  1759. #if NUM_SERIAL > 1
  1760. const int8_t port,
  1761. #endif
  1762. const bool colon
  1763. ) {
  1764. serialprintPGM_P(port,
  1765. #if ENABLED(INCH_MODE_SUPPORT)
  1766. parser.linear_unit_factor != 1.0 ? PSTR(" (in)") :
  1767. #endif
  1768. PSTR(" (mm)")
  1769. );
  1770. if (colon) SERIAL_ECHOLNPGM_P(port, ":");
  1771. }
  1772. #if NUM_SERIAL > 1
  1773. #define SAY_UNITS_P(PORT, COLON) say_units(PORT, COLON)
  1774. #else
  1775. #define SAY_UNITS_P(PORT, COLON) say_units(COLON)
  1776. #endif
  1777. /**
  1778. * M503 - Report current settings in RAM
  1779. *
  1780. * Unless specifically disabled, M503 is available even without EEPROM
  1781. */
  1782. void MarlinSettings::report(const bool forReplay
  1783. #if NUM_SERIAL > 1
  1784. , const int8_t port/*=-1*/
  1785. #endif
  1786. ) {
  1787. /**
  1788. * Announce current units, in case inches are being displayed
  1789. */
  1790. CONFIG_ECHO_START;
  1791. #if ENABLED(INCH_MODE_SUPPORT)
  1792. #define LINEAR_UNIT(N) (float(N) / parser.linear_unit_factor)
  1793. #define VOLUMETRIC_UNIT(N) (float(N) / (parser.volumetric_enabled ? parser.volumetric_unit_factor : parser.linear_unit_factor))
  1794. SERIAL_ECHOPGM_P(port, " G2");
  1795. SERIAL_CHAR_P(port, parser.linear_unit_factor == 1.0 ? '1' : '0');
  1796. SERIAL_ECHOPGM_P(port, " ;");
  1797. SAY_UNITS_P(port, false);
  1798. #else
  1799. #define LINEAR_UNIT(N) (N)
  1800. #define VOLUMETRIC_UNIT(N) (N)
  1801. SERIAL_ECHOPGM_P(port, " G21 ; Units in mm");
  1802. SAY_UNITS_P(port, false);
  1803. #endif
  1804. SERIAL_EOL_P(port);
  1805. #if ENABLED(ULTIPANEL)
  1806. // Temperature units - for Ultipanel temperature options
  1807. CONFIG_ECHO_START;
  1808. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  1809. #define TEMP_UNIT(N) parser.to_temp_units(N)
  1810. SERIAL_ECHOPGM_P(port, " M149 ");
  1811. SERIAL_CHAR_P(port, parser.temp_units_code());
  1812. SERIAL_ECHOPGM_P(port, " ; Units in ");
  1813. serialprintPGM_P(port, parser.temp_units_name());
  1814. #else
  1815. #define TEMP_UNIT(N) (N)
  1816. SERIAL_ECHOLNPGM_P(port, " M149 C ; Units in Celsius");
  1817. #endif
  1818. #endif
  1819. SERIAL_EOL_P(port);
  1820. #if DISABLED(NO_VOLUMETRICS)
  1821. /**
  1822. * Volumetric extrusion M200
  1823. */
  1824. if (!forReplay) {
  1825. CONFIG_ECHO_START;
  1826. SERIAL_ECHOPGM_P(port, "Filament settings:");
  1827. if (parser.volumetric_enabled)
  1828. SERIAL_EOL_P(port);
  1829. else
  1830. SERIAL_ECHOLNPGM_P(port, " Disabled");
  1831. }
  1832. CONFIG_ECHO_START;
  1833. SERIAL_ECHOPAIR_P(port, " M200 D", LINEAR_UNIT(planner.filament_size[0]));
  1834. SERIAL_EOL_P(port);
  1835. #if EXTRUDERS > 1
  1836. CONFIG_ECHO_START;
  1837. SERIAL_ECHOPAIR_P(port, " M200 T1 D", LINEAR_UNIT(planner.filament_size[1]));
  1838. SERIAL_EOL_P(port);
  1839. #if EXTRUDERS > 2
  1840. CONFIG_ECHO_START;
  1841. SERIAL_ECHOPAIR_P(port, " M200 T2 D", LINEAR_UNIT(planner.filament_size[2]));
  1842. SERIAL_EOL_P(port);
  1843. #if EXTRUDERS > 3
  1844. CONFIG_ECHO_START;
  1845. SERIAL_ECHOPAIR_P(port, " M200 T3 D", LINEAR_UNIT(planner.filament_size[3]));
  1846. SERIAL_EOL_P(port);
  1847. #if EXTRUDERS > 4
  1848. CONFIG_ECHO_START;
  1849. SERIAL_ECHOPAIR_P(port, " M200 T4 D", LINEAR_UNIT(planner.filament_size[4]));
  1850. SERIAL_EOL_P(port);
  1851. #if EXTRUDERS > 5
  1852. CONFIG_ECHO_START;
  1853. SERIAL_ECHOPAIR_P(port, " M200 T5 D", LINEAR_UNIT(planner.filament_size[5]));
  1854. SERIAL_EOL_P(port);
  1855. #endif // EXTRUDERS > 5
  1856. #endif // EXTRUDERS > 4
  1857. #endif // EXTRUDERS > 3
  1858. #endif // EXTRUDERS > 2
  1859. #endif // EXTRUDERS > 1
  1860. if (!parser.volumetric_enabled) {
  1861. CONFIG_ECHO_START;
  1862. SERIAL_ECHOLNPGM_P(port, " M200 D0");
  1863. }
  1864. #endif // !NO_VOLUMETRICS
  1865. if (!forReplay) {
  1866. CONFIG_ECHO_START;
  1867. SERIAL_ECHOLNPGM_P(port, "Steps per unit:");
  1868. }
  1869. CONFIG_ECHO_START;
  1870. SERIAL_ECHOPAIR_P(port, " M92 X", LINEAR_UNIT(planner.settings.axis_steps_per_mm[X_AXIS]));
  1871. SERIAL_ECHOPAIR_P(port, " Y", LINEAR_UNIT(planner.settings.axis_steps_per_mm[Y_AXIS]));
  1872. SERIAL_ECHOPAIR_P(port, " Z", LINEAR_UNIT(planner.settings.axis_steps_per_mm[Z_AXIS]));
  1873. #if DISABLED(DISTINCT_E_FACTORS)
  1874. SERIAL_ECHOPAIR_P(port, " E", VOLUMETRIC_UNIT(planner.settings.axis_steps_per_mm[E_AXIS]));
  1875. #endif
  1876. SERIAL_EOL_P(port);
  1877. #if ENABLED(DISTINCT_E_FACTORS)
  1878. CONFIG_ECHO_START;
  1879. for (uint8_t i = 0; i < E_STEPPERS; i++) {
  1880. SERIAL_ECHOPAIR_P(port, " M92 T", (int)i);
  1881. SERIAL_ECHOLNPAIR_P(port, " E", VOLUMETRIC_UNIT(planner.settings.axis_steps_per_mm[E_AXIS + i]));
  1882. }
  1883. #endif
  1884. if (!forReplay) {
  1885. CONFIG_ECHO_START;
  1886. SERIAL_ECHOLNPGM_P(port, "Maximum feedrates (units/s):");
  1887. }
  1888. CONFIG_ECHO_START;
  1889. SERIAL_ECHOPAIR_P(port, " M203 X", LINEAR_UNIT(planner.settings.max_feedrate_mm_s[X_AXIS]));
  1890. SERIAL_ECHOPAIR_P(port, " Y", LINEAR_UNIT(planner.settings.max_feedrate_mm_s[Y_AXIS]));
  1891. SERIAL_ECHOPAIR_P(port, " Z", LINEAR_UNIT(planner.settings.max_feedrate_mm_s[Z_AXIS]));
  1892. #if DISABLED(DISTINCT_E_FACTORS)
  1893. SERIAL_ECHOPAIR_P(port, " E", VOLUMETRIC_UNIT(planner.settings.max_feedrate_mm_s[E_AXIS]));
  1894. #endif
  1895. SERIAL_EOL_P(port);
  1896. #if ENABLED(DISTINCT_E_FACTORS)
  1897. CONFIG_ECHO_START;
  1898. for (uint8_t i = 0; i < E_STEPPERS; i++) {
  1899. SERIAL_ECHOPAIR_P(port, " M203 T", (int)i);
  1900. SERIAL_ECHOLNPAIR_P(port, " E", VOLUMETRIC_UNIT(planner.settings.max_feedrate_mm_s[E_AXIS + i]));
  1901. }
  1902. #endif
  1903. if (!forReplay) {
  1904. CONFIG_ECHO_START;
  1905. SERIAL_ECHOLNPGM_P(port, "Maximum Acceleration (units/s2):");
  1906. }
  1907. CONFIG_ECHO_START;
  1908. SERIAL_ECHOPAIR_P(port, " M201 X", LINEAR_UNIT(planner.settings.max_acceleration_mm_per_s2[X_AXIS]));
  1909. SERIAL_ECHOPAIR_P(port, " Y", LINEAR_UNIT(planner.settings.max_acceleration_mm_per_s2[Y_AXIS]));
  1910. SERIAL_ECHOPAIR_P(port, " Z", LINEAR_UNIT(planner.settings.max_acceleration_mm_per_s2[Z_AXIS]));
  1911. #if DISABLED(DISTINCT_E_FACTORS)
  1912. SERIAL_ECHOPAIR_P(port, " E", VOLUMETRIC_UNIT(planner.settings.max_acceleration_mm_per_s2[E_AXIS]));
  1913. #endif
  1914. SERIAL_EOL_P(port);
  1915. #if ENABLED(DISTINCT_E_FACTORS)
  1916. CONFIG_ECHO_START;
  1917. for (uint8_t i = 0; i < E_STEPPERS; i++) {
  1918. SERIAL_ECHOPAIR_P(port, " M201 T", (int)i);
  1919. SERIAL_ECHOLNPAIR_P(port, " E", VOLUMETRIC_UNIT(planner.settings.max_acceleration_mm_per_s2[E_AXIS + i]));
  1920. }
  1921. #endif
  1922. if (!forReplay) {
  1923. CONFIG_ECHO_START;
  1924. SERIAL_ECHOLNPGM_P(port, "Acceleration (units/s2): P<print_accel> R<retract_accel> T<travel_accel>");
  1925. }
  1926. CONFIG_ECHO_START;
  1927. SERIAL_ECHOPAIR_P(port, " M204 P", LINEAR_UNIT(planner.settings.acceleration));
  1928. SERIAL_ECHOPAIR_P(port, " R", LINEAR_UNIT(planner.settings.retract_acceleration));
  1929. SERIAL_ECHOLNPAIR_P(port, " T", LINEAR_UNIT(planner.settings.travel_acceleration));
  1930. if (!forReplay) {
  1931. CONFIG_ECHO_START;
  1932. SERIAL_ECHOPGM_P(port, "Advanced: B<min_segment_time_us> S<min_feedrate> T<min_travel_feedrate>");
  1933. #if ENABLED(JUNCTION_DEVIATION)
  1934. SERIAL_ECHOPGM_P(port, " J<junc_dev>");
  1935. #endif
  1936. #if HAS_CLASSIC_JERK
  1937. SERIAL_ECHOPGM_P(port, " X<max_x_jerk> Y<max_y_jerk> Z<max_z_jerk>");
  1938. #if DISABLED(JUNCTION_DEVIATION) || DISABLED(LIN_ADVANCE)
  1939. SERIAL_ECHOPGM_P(port, " E<max_e_jerk>");
  1940. #endif
  1941. #endif
  1942. SERIAL_EOL_P(port);
  1943. }
  1944. CONFIG_ECHO_START;
  1945. SERIAL_ECHOPAIR_P(port, " M205 B", LINEAR_UNIT(planner.settings.min_segment_time_us));
  1946. SERIAL_ECHOPAIR_P(port, " S", LINEAR_UNIT(planner.settings.min_feedrate_mm_s));
  1947. SERIAL_ECHOPAIR_P(port, " T", LINEAR_UNIT(planner.settings.min_travel_feedrate_mm_s));
  1948. #if ENABLED(JUNCTION_DEVIATION)
  1949. SERIAL_ECHOPAIR_P(port, " J", LINEAR_UNIT(planner.junction_deviation_mm));
  1950. #endif
  1951. #if HAS_CLASSIC_JERK
  1952. SERIAL_ECHOPAIR_P(port, " X", LINEAR_UNIT(planner.max_jerk[X_AXIS]));
  1953. SERIAL_ECHOPAIR_P(port, " Y", LINEAR_UNIT(planner.max_jerk[Y_AXIS]));
  1954. SERIAL_ECHOPAIR_P(port, " Z", LINEAR_UNIT(planner.max_jerk[Z_AXIS]));
  1955. #if DISABLED(JUNCTION_DEVIATION) || DISABLED(LIN_ADVANCE)
  1956. SERIAL_ECHOPAIR_P(port, " E", LINEAR_UNIT(planner.max_jerk[E_AXIS]));
  1957. #endif
  1958. #endif
  1959. SERIAL_EOL_P(port);
  1960. #if HAS_M206_COMMAND
  1961. if (!forReplay) {
  1962. CONFIG_ECHO_START;
  1963. SERIAL_ECHOLNPGM_P(port, "Home offset:");
  1964. }
  1965. CONFIG_ECHO_START;
  1966. SERIAL_ECHOPAIR_P(port, " M206 X", LINEAR_UNIT(home_offset[X_AXIS]));
  1967. SERIAL_ECHOPAIR_P(port, " Y", LINEAR_UNIT(home_offset[Y_AXIS]));
  1968. SERIAL_ECHOLNPAIR_P(port, " Z", LINEAR_UNIT(home_offset[Z_AXIS]));
  1969. #endif
  1970. #if HAS_HOTEND_OFFSET
  1971. if (!forReplay) {
  1972. CONFIG_ECHO_START;
  1973. SERIAL_ECHOLNPGM_P(port, "Hotend offsets:");
  1974. }
  1975. CONFIG_ECHO_START;
  1976. for (uint8_t e = 1; e < HOTENDS; e++) {
  1977. SERIAL_ECHOPAIR_P(port, " M218 T", (int)e);
  1978. SERIAL_ECHOPAIR_P(port, " X", LINEAR_UNIT(hotend_offset[X_AXIS][e]));
  1979. SERIAL_ECHOPAIR_P(port, " Y", LINEAR_UNIT(hotend_offset[Y_AXIS][e]));
  1980. SERIAL_ECHO_P(port, " Z");
  1981. SERIAL_ECHO_F_P(port, LINEAR_UNIT(hotend_offset[Z_AXIS][e]), 3);
  1982. SERIAL_EOL_P(port);
  1983. }
  1984. #endif
  1985. /**
  1986. * Bed Leveling
  1987. */
  1988. #if HAS_LEVELING
  1989. #if ENABLED(MESH_BED_LEVELING)
  1990. if (!forReplay) {
  1991. CONFIG_ECHO_START;
  1992. SERIAL_ECHOLNPGM_P(port, "Mesh Bed Leveling:");
  1993. }
  1994. #elif ENABLED(AUTO_BED_LEVELING_UBL)
  1995. if (!forReplay) {
  1996. CONFIG_ECHO_START;
  1997. ubl.echo_name();
  1998. SERIAL_ECHOLNPGM_P(port, ":");
  1999. }
  2000. #elif HAS_ABL
  2001. if (!forReplay) {
  2002. CONFIG_ECHO_START;
  2003. SERIAL_ECHOLNPGM_P(port, "Auto Bed Leveling:");
  2004. }
  2005. #endif
  2006. CONFIG_ECHO_START;
  2007. SERIAL_ECHOPAIR_P(port, " M420 S", planner.leveling_active ? 1 : 0);
  2008. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  2009. SERIAL_ECHOPAIR_P(port, " Z", LINEAR_UNIT(planner.z_fade_height));
  2010. #endif
  2011. SERIAL_EOL_P(port);
  2012. #if ENABLED(MESH_BED_LEVELING)
  2013. if (leveling_is_valid()) {
  2014. for (uint8_t py = 0; py < GRID_MAX_POINTS_Y; py++) {
  2015. for (uint8_t px = 0; px < GRID_MAX_POINTS_X; px++) {
  2016. CONFIG_ECHO_START;
  2017. SERIAL_ECHOPAIR_P(port, " G29 S3 X", (int)px + 1);
  2018. SERIAL_ECHOPAIR_P(port, " Y", (int)py + 1);
  2019. SERIAL_ECHOPGM_P(port, " Z");
  2020. SERIAL_ECHO_F_P(port, LINEAR_UNIT(mbl.z_values[px][py]), 5);
  2021. SERIAL_EOL_P(port);
  2022. }
  2023. }
  2024. }
  2025. #elif ENABLED(AUTO_BED_LEVELING_UBL)
  2026. if (!forReplay) {
  2027. SERIAL_EOL_P(port);
  2028. ubl.report_state();
  2029. SERIAL_ECHOLNPAIR_P(port, "\nActive Mesh Slot: ", ubl.storage_slot);
  2030. SERIAL_ECHOPAIR_P(port, "EEPROM can hold ", calc_num_meshes());
  2031. SERIAL_ECHOLNPGM_P(port, " meshes.\n");
  2032. }
  2033. // ubl.report_current_mesh(PORTVAR_SOLO); // This is too verbose for large mesh's. A better (more terse)
  2034. // solution needs to be found.
  2035. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  2036. if (leveling_is_valid()) {
  2037. for (uint8_t py = 0; py < GRID_MAX_POINTS_Y; py++) {
  2038. for (uint8_t px = 0; px < GRID_MAX_POINTS_X; px++) {
  2039. CONFIG_ECHO_START;
  2040. SERIAL_ECHOPAIR_P(port, " G29 W I", (int)px);
  2041. SERIAL_ECHOPAIR_P(port, " J", (int)py);
  2042. SERIAL_ECHOPGM_P(port, " Z");
  2043. SERIAL_ECHO_F_P(port, LINEAR_UNIT(z_values[px][py]), 5);
  2044. SERIAL_EOL_P(port);
  2045. }
  2046. }
  2047. }
  2048. #endif
  2049. #endif // HAS_LEVELING
  2050. #if HAS_SERVOS && ENABLED(EDITABLE_SERVO_ANGLES)
  2051. if (!forReplay) {
  2052. CONFIG_ECHO_START;
  2053. SERIAL_ECHOLNPGM_P(port, "Servo Angles:");
  2054. }
  2055. for (uint8_t i = 0; i < NUM_SERVOS; i++) {
  2056. switch (i) {
  2057. #if ENABLED(SWITCHING_EXTRUDER)
  2058. case SWITCHING_EXTRUDER_SERVO_NR:
  2059. #if EXTRUDERS > 3
  2060. case SWITCHING_EXTRUDER_E23_SERVO_NR:
  2061. #endif
  2062. #elif ENABLED(SWITCHING_NOZZLE)
  2063. case SWITCHING_NOZZLE_SERVO_NR:
  2064. #elif defined(Z_SERVO_ANGLES) && defined(Z_PROBE_SERVO_NR)
  2065. case Z_PROBE_SERVO_NR:
  2066. #endif
  2067. CONFIG_ECHO_START;
  2068. SERIAL_ECHOPAIR_P(port, " M281 P", int(i));
  2069. SERIAL_ECHOPAIR_P(port, " L", servo_angles[i][0]);
  2070. SERIAL_ECHOPAIR_P(port, " U", servo_angles[i][1]);
  2071. SERIAL_EOL_P(port);
  2072. default: break;
  2073. }
  2074. }
  2075. #endif // HAS_SERVOS && EDITABLE_SERVO_ANGLES
  2076. #if ENABLED(DELTA)
  2077. if (!forReplay) {
  2078. CONFIG_ECHO_START;
  2079. SERIAL_ECHOLNPGM_P(port, "Endstop adjustment:");
  2080. }
  2081. CONFIG_ECHO_START;
  2082. SERIAL_ECHOPAIR_P(port, " M666 X", LINEAR_UNIT(delta_endstop_adj[X_AXIS]));
  2083. SERIAL_ECHOPAIR_P(port, " Y", LINEAR_UNIT(delta_endstop_adj[Y_AXIS]));
  2084. SERIAL_ECHOLNPAIR_P(port, " Z", LINEAR_UNIT(delta_endstop_adj[Z_AXIS]));
  2085. if (!forReplay) {
  2086. CONFIG_ECHO_START;
  2087. SERIAL_ECHOLNPGM_P(port, "Delta settings: L<diagonal_rod> R<radius> H<height> S<segments_per_s> B<calibration radius> XYZ<tower angle corrections>");
  2088. }
  2089. CONFIG_ECHO_START;
  2090. SERIAL_ECHOPAIR_P(port, " M665 L", LINEAR_UNIT(delta_diagonal_rod));
  2091. SERIAL_ECHOPAIR_P(port, " R", LINEAR_UNIT(delta_radius));
  2092. SERIAL_ECHOPAIR_P(port, " H", LINEAR_UNIT(delta_height));
  2093. SERIAL_ECHOPAIR_P(port, " S", delta_segments_per_second);
  2094. SERIAL_ECHOPAIR_P(port, " B", LINEAR_UNIT(delta_calibration_radius));
  2095. SERIAL_ECHOPAIR_P(port, " X", LINEAR_UNIT(delta_tower_angle_trim[A_AXIS]));
  2096. SERIAL_ECHOPAIR_P(port, " Y", LINEAR_UNIT(delta_tower_angle_trim[B_AXIS]));
  2097. SERIAL_ECHOPAIR_P(port, " Z", LINEAR_UNIT(delta_tower_angle_trim[C_AXIS]));
  2098. SERIAL_EOL_P(port);
  2099. #elif ENABLED(X_DUAL_ENDSTOPS) || ENABLED(Y_DUAL_ENDSTOPS) || ENABLED(Z_DUAL_ENDSTOPS)
  2100. if (!forReplay) {
  2101. CONFIG_ECHO_START;
  2102. SERIAL_ECHOLNPGM_P(port, "Endstop adjustment:");
  2103. }
  2104. CONFIG_ECHO_START;
  2105. SERIAL_ECHOPGM_P(port, " M666");
  2106. #if ENABLED(X_DUAL_ENDSTOPS)
  2107. SERIAL_ECHOPAIR_P(port, " X", LINEAR_UNIT(endstops.x2_endstop_adj));
  2108. #endif
  2109. #if ENABLED(Y_DUAL_ENDSTOPS)
  2110. SERIAL_ECHOPAIR_P(port, " Y", LINEAR_UNIT(endstops.y2_endstop_adj));
  2111. #endif
  2112. #if ENABLED(Z_TRIPLE_ENDSTOPS)
  2113. SERIAL_ECHOLNPAIR_P(port, "S1 Z", LINEAR_UNIT(endstops.z2_endstop_adj));
  2114. CONFIG_ECHO_START;
  2115. SERIAL_ECHOPAIR_P(port, " M666 S2 Z", LINEAR_UNIT(endstops.z3_endstop_adj));
  2116. #elif ENABLED(Z_DUAL_ENDSTOPS)
  2117. SERIAL_ECHOPAIR_P(port, " Z", LINEAR_UNIT(endstops.z2_endstop_adj));
  2118. #endif
  2119. SERIAL_EOL_P(port);
  2120. #endif // [XYZ]_DUAL_ENDSTOPS
  2121. #if ENABLED(ULTIPANEL)
  2122. if (!forReplay) {
  2123. CONFIG_ECHO_START;
  2124. SERIAL_ECHOLNPGM_P(port, "Material heatup parameters:");
  2125. }
  2126. for (uint8_t i = 0; i < COUNT(lcd_preheat_hotend_temp); i++) {
  2127. CONFIG_ECHO_START;
  2128. SERIAL_ECHOPAIR_P(port, " M145 S", (int)i);
  2129. SERIAL_ECHOPAIR_P(port, " H", TEMP_UNIT(lcd_preheat_hotend_temp[i]));
  2130. SERIAL_ECHOPAIR_P(port, " B", TEMP_UNIT(lcd_preheat_bed_temp[i]));
  2131. SERIAL_ECHOLNPAIR_P(port, " F", int(lcd_preheat_fan_speed[i]));
  2132. }
  2133. #endif // ULTIPANEL
  2134. #if HAS_PID_HEATING
  2135. if (!forReplay) {
  2136. CONFIG_ECHO_START;
  2137. SERIAL_ECHOLNPGM_P(port, "PID settings:");
  2138. }
  2139. #if ENABLED(PIDTEMP)
  2140. #if HOTENDS > 1
  2141. if (forReplay) {
  2142. HOTEND_LOOP() {
  2143. CONFIG_ECHO_START;
  2144. SERIAL_ECHOPAIR_P(port, " M301 E", e);
  2145. SERIAL_ECHOPAIR_P(port, " P", PID_PARAM(Kp, e));
  2146. SERIAL_ECHOPAIR_P(port, " I", unscalePID_i(PID_PARAM(Ki, e)));
  2147. SERIAL_ECHOPAIR_P(port, " D", unscalePID_d(PID_PARAM(Kd, e)));
  2148. #if ENABLED(PID_EXTRUSION_SCALING)
  2149. SERIAL_ECHOPAIR_P(port, " C", PID_PARAM(Kc, e));
  2150. if (e == 0) SERIAL_ECHOPAIR_P(port, " L", thermalManager.lpq_len);
  2151. #endif
  2152. SERIAL_EOL_P(port);
  2153. }
  2154. }
  2155. else
  2156. #endif // HOTENDS > 1
  2157. // !forReplay || HOTENDS == 1
  2158. {
  2159. CONFIG_ECHO_START;
  2160. SERIAL_ECHOPAIR_P(port, " M301 P", PID_PARAM(Kp, 0)); // for compatibility with hosts, only echo values for E0
  2161. SERIAL_ECHOPAIR_P(port, " I", unscalePID_i(PID_PARAM(Ki, 0)));
  2162. SERIAL_ECHOPAIR_P(port, " D", unscalePID_d(PID_PARAM(Kd, 0)));
  2163. #if ENABLED(PID_EXTRUSION_SCALING)
  2164. SERIAL_ECHOPAIR_P(port, " C", PID_PARAM(Kc, 0));
  2165. SERIAL_ECHOPAIR_P(port, " L", thermalManager.lpq_len);
  2166. #endif
  2167. SERIAL_EOL_P(port);
  2168. }
  2169. #endif // PIDTEMP
  2170. #if ENABLED(PIDTEMPBED)
  2171. CONFIG_ECHO_START;
  2172. SERIAL_ECHOPAIR_P(port, " M304 P", thermalManager.bed_pid.Kp);
  2173. SERIAL_ECHOPAIR_P(port, " I", unscalePID_i(thermalManager.bed_pid.Ki));
  2174. SERIAL_ECHOPAIR_P(port, " D", unscalePID_d(thermalManager.bed_pid.Kd));
  2175. SERIAL_EOL_P(port);
  2176. #endif
  2177. #endif // PIDTEMP || PIDTEMPBED
  2178. #if HAS_LCD_CONTRAST
  2179. if (!forReplay) {
  2180. CONFIG_ECHO_START;
  2181. SERIAL_ECHOLNPGM_P(port, "LCD Contrast:");
  2182. }
  2183. CONFIG_ECHO_START;
  2184. SERIAL_ECHOLNPAIR_P(port, " M250 C", lcd_contrast);
  2185. #endif
  2186. #if ENABLED(FWRETRACT)
  2187. if (!forReplay) {
  2188. CONFIG_ECHO_START;
  2189. SERIAL_ECHOLNPGM_P(port, "Retract: S<length> F<units/m> Z<lift>");
  2190. }
  2191. CONFIG_ECHO_START;
  2192. SERIAL_ECHOPAIR_P(port, " M207 S", LINEAR_UNIT(fwretract.settings.retract_length));
  2193. SERIAL_ECHOPAIR_P(port, " W", LINEAR_UNIT(fwretract.settings.swap_retract_length));
  2194. SERIAL_ECHOPAIR_P(port, " F", MMS_TO_MMM(LINEAR_UNIT(fwretract.settings.retract_feedrate_mm_s)));
  2195. SERIAL_ECHOLNPAIR_P(port, " Z", LINEAR_UNIT(fwretract.settings.retract_zlift));
  2196. if (!forReplay) {
  2197. CONFIG_ECHO_START;
  2198. SERIAL_ECHOLNPGM_P(port, "Recover: S<length> F<units/m>");
  2199. }
  2200. CONFIG_ECHO_START;
  2201. SERIAL_ECHOPAIR_P(port, " M208 S", LINEAR_UNIT(fwretract.settings.retract_recover_length));
  2202. SERIAL_ECHOPAIR_P(port, " W", LINEAR_UNIT(fwretract.settings.swap_retract_recover_length));
  2203. SERIAL_ECHOLNPAIR_P(port, " F", MMS_TO_MMM(LINEAR_UNIT(fwretract.settings.retract_recover_feedrate_mm_s)));
  2204. #if ENABLED(FWRETRACT_AUTORETRACT)
  2205. if (!forReplay) {
  2206. CONFIG_ECHO_START;
  2207. SERIAL_ECHOLNPGM_P(port, "Auto-Retract: S=0 to disable, 1 to interpret E-only moves as retract/recover");
  2208. }
  2209. CONFIG_ECHO_START;
  2210. SERIAL_ECHOLNPAIR_P(port, " M209 S", fwretract.autoretract_enabled ? 1 : 0);
  2211. #endif // FWRETRACT_AUTORETRACT
  2212. #endif // FWRETRACT
  2213. /**
  2214. * Probe Offset
  2215. */
  2216. #if HAS_BED_PROBE
  2217. if (!forReplay) {
  2218. CONFIG_ECHO_START;
  2219. SERIAL_ECHOPGM_P(port, "Z-Probe Offset (mm):");
  2220. SAY_UNITS_P(port, true);
  2221. }
  2222. CONFIG_ECHO_START;
  2223. SERIAL_ECHOLNPAIR_P(port, " M851 Z", LINEAR_UNIT(zprobe_zoffset));
  2224. #endif
  2225. /**
  2226. * Bed Skew Correction
  2227. */
  2228. #if ENABLED(SKEW_CORRECTION_GCODE)
  2229. if (!forReplay) {
  2230. CONFIG_ECHO_START;
  2231. SERIAL_ECHOLNPGM_P(port, "Skew Factor: ");
  2232. }
  2233. CONFIG_ECHO_START;
  2234. #if ENABLED(SKEW_CORRECTION_FOR_Z)
  2235. SERIAL_ECHOPGM_P(port, " M852 I");
  2236. SERIAL_ECHO_F_P(port, LINEAR_UNIT(planner.skew_factor.xy), 6);
  2237. SERIAL_ECHOPGM_P(port, " J");
  2238. SERIAL_ECHO_F_P(port, LINEAR_UNIT(planner.skew_factor.xz), 6);
  2239. SERIAL_ECHOPGM_P(port, " K");
  2240. SERIAL_ECHO_F_P(port, LINEAR_UNIT(planner.skew_factor.yz), 6);
  2241. SERIAL_EOL_P(port);
  2242. #else
  2243. SERIAL_ECHOPGM_P(port, " M852 S");
  2244. SERIAL_ECHO_F_P(port, LINEAR_UNIT(planner.skew_factor.xy), 6);
  2245. SERIAL_EOL_P(port);
  2246. #endif
  2247. #endif
  2248. #if HAS_TRINAMIC
  2249. /**
  2250. * TMC stepper driver current
  2251. */
  2252. if (!forReplay) {
  2253. CONFIG_ECHO_START;
  2254. SERIAL_ECHOLNPGM_P(port, "Stepper driver current:");
  2255. }
  2256. CONFIG_ECHO_START;
  2257. #if AXIS_IS_TMC(X) || AXIS_IS_TMC(Y) || AXIS_IS_TMC(Z)
  2258. say_M906(PORTVAR_SOLO);
  2259. #endif
  2260. #if AXIS_IS_TMC(X)
  2261. SERIAL_ECHOPAIR_P(port, " X", stepperX.getMilliamps());
  2262. #endif
  2263. #if AXIS_IS_TMC(Y)
  2264. SERIAL_ECHOPAIR_P(port, " Y", stepperY.getMilliamps());
  2265. #endif
  2266. #if AXIS_IS_TMC(Z)
  2267. SERIAL_ECHOPAIR_P(port, " Z", stepperZ.getMilliamps());
  2268. #endif
  2269. #if AXIS_IS_TMC(X) || AXIS_IS_TMC(Y) || AXIS_IS_TMC(Z)
  2270. SERIAL_EOL_P(port);
  2271. #endif
  2272. #if AXIS_IS_TMC(X2) || AXIS_IS_TMC(Y2) || AXIS_IS_TMC(Z2)
  2273. say_M906(PORTVAR_SOLO);
  2274. SERIAL_ECHOPGM_P(port, " I1");
  2275. #endif
  2276. #if AXIS_IS_TMC(X2)
  2277. SERIAL_ECHOPAIR_P(port, " X", stepperX2.getMilliamps());
  2278. #endif
  2279. #if AXIS_IS_TMC(Y2)
  2280. SERIAL_ECHOPAIR_P(port, " Y", stepperY2.getMilliamps());
  2281. #endif
  2282. #if AXIS_IS_TMC(Z2)
  2283. SERIAL_ECHOPAIR_P(port, " Z", stepperZ2.getMilliamps());
  2284. #endif
  2285. #if AXIS_IS_TMC(X2) || AXIS_IS_TMC(Y2) || AXIS_IS_TMC(Z2)
  2286. SERIAL_EOL_P(port);
  2287. #endif
  2288. #if AXIS_IS_TMC(Z3)
  2289. say_M906(PORTVAR_SOLO);
  2290. SERIAL_ECHOLNPAIR_P(port, " I2 Z", stepperZ3.getMilliamps());
  2291. #endif
  2292. #if AXIS_IS_TMC(E0)
  2293. say_M906(PORTVAR_SOLO);
  2294. SERIAL_ECHOLNPAIR_P(port, " T0 E", stepperE0.getMilliamps());
  2295. #endif
  2296. #if AXIS_IS_TMC(E1)
  2297. say_M906(PORTVAR_SOLO);
  2298. SERIAL_ECHOLNPAIR_P(port, " T1 E", stepperE1.getMilliamps());
  2299. #endif
  2300. #if AXIS_IS_TMC(E2)
  2301. say_M906(PORTVAR_SOLO);
  2302. SERIAL_ECHOLNPAIR_P(port, " T2 E", stepperE2.getMilliamps());
  2303. #endif
  2304. #if AXIS_IS_TMC(E3)
  2305. say_M906(PORTVAR_SOLO);
  2306. SERIAL_ECHOLNPAIR_P(port, " T3 E", stepperE3.getMilliamps());
  2307. #endif
  2308. #if AXIS_IS_TMC(E4)
  2309. say_M906(PORTVAR_SOLO);
  2310. SERIAL_ECHOLNPAIR_P(port, " T4 E", stepperE4.getMilliamps());
  2311. #endif
  2312. #if AXIS_IS_TMC(E5)
  2313. say_M906(PORTVAR_SOLO);
  2314. SERIAL_ECHOLNPAIR_P(port, " T5 E", stepperE5.getMilliamps());
  2315. #endif
  2316. SERIAL_EOL_P(port);
  2317. /**
  2318. * TMC Hybrid Threshold
  2319. */
  2320. #if ENABLED(HYBRID_THRESHOLD)
  2321. if (!forReplay) {
  2322. CONFIG_ECHO_START;
  2323. SERIAL_ECHOLNPGM_P(port, "Hybrid Threshold:");
  2324. }
  2325. CONFIG_ECHO_START;
  2326. #if AXIS_HAS_STEALTHCHOP(X) || AXIS_HAS_STEALTHCHOP(Y) || AXIS_HAS_STEALTHCHOP(Z)
  2327. say_M913(PORTVAR_SOLO);
  2328. #endif
  2329. #if AXIS_HAS_STEALTHCHOP(X)
  2330. SERIAL_ECHOPAIR_P(port, " X", TMC_GET_PWMTHRS(X, X));
  2331. #endif
  2332. #if AXIS_HAS_STEALTHCHOP(Y)
  2333. SERIAL_ECHOPAIR_P(port, " Y", TMC_GET_PWMTHRS(Y, Y));
  2334. #endif
  2335. #if AXIS_HAS_STEALTHCHOP(Z)
  2336. SERIAL_ECHOPAIR_P(port, " Z", TMC_GET_PWMTHRS(Z, Z));
  2337. #endif
  2338. #if AXIS_HAS_STEALTHCHOP(X) || AXIS_HAS_STEALTHCHOP(Y) || AXIS_HAS_STEALTHCHOP(Z)
  2339. SERIAL_EOL_P(port);
  2340. #endif
  2341. #if AXIS_HAS_STEALTHCHOP(X2) || AXIS_HAS_STEALTHCHOP(Y2) || AXIS_HAS_STEALTHCHOP(Z2)
  2342. say_M913(PORTVAR_SOLO);
  2343. SERIAL_ECHOPGM_P(port, " I1");
  2344. #endif
  2345. #if AXIS_HAS_STEALTHCHOP(X2)
  2346. SERIAL_ECHOPAIR_P(port, " X", TMC_GET_PWMTHRS(X, X2));
  2347. #endif
  2348. #if AXIS_HAS_STEALTHCHOP(Y2)
  2349. SERIAL_ECHOPAIR_P(port, " Y", TMC_GET_PWMTHRS(Y, Y2));
  2350. #endif
  2351. #if AXIS_HAS_STEALTHCHOP(Z2)
  2352. SERIAL_ECHOPAIR_P(port, " Z", TMC_GET_PWMTHRS(Z, Z2));
  2353. #endif
  2354. #if AXIS_HAS_STEALTHCHOP(X2) || AXIS_HAS_STEALTHCHOP(Y2) || AXIS_HAS_STEALTHCHOP(Z2)
  2355. SERIAL_EOL_P(port);
  2356. #endif
  2357. #if AXIS_HAS_STEALTHCHOP(Z3)
  2358. say_M913(PORTVAR_SOLO);
  2359. SERIAL_ECHOPGM_P(port, " I2");
  2360. SERIAL_ECHOLNPAIR_P(port, " Z", TMC_GET_PWMTHRS(Z, Z3));
  2361. #endif
  2362. #if AXIS_HAS_STEALTHCHOP(E0)
  2363. say_M913(PORTVAR_SOLO);
  2364. SERIAL_ECHOLNPAIR_P(port, " T0 E", TMC_GET_PWMTHRS(E, E0));
  2365. #endif
  2366. #if AXIS_HAS_STEALTHCHOP(E1)
  2367. say_M913(PORTVAR_SOLO);
  2368. SERIAL_ECHOLNPAIR_P(port, " T1 E", TMC_GET_PWMTHRS(E, E1));
  2369. #endif
  2370. #if AXIS_HAS_STEALTHCHOP(E2)
  2371. say_M913(PORTVAR_SOLO);
  2372. SERIAL_ECHOLNPAIR_P(port, " T2 E", TMC_GET_PWMTHRS(E, E2));
  2373. #endif
  2374. #if AXIS_HAS_STEALTHCHOP(E3)
  2375. say_M913(PORTVAR_SOLO);
  2376. SERIAL_ECHOLNPAIR_P(port, " T3 E", TMC_GET_PWMTHRS(E, E3));
  2377. #endif
  2378. #if AXIS_HAS_STEALTHCHOP(E4)
  2379. say_M913(PORTVAR_SOLO);
  2380. SERIAL_ECHOLNPAIR_P(port, " T4 E", TMC_GET_PWMTHRS(E, E4));
  2381. #endif
  2382. #if AXIS_HAS_STEALTHCHOP(E5)
  2383. say_M913(PORTVAR_SOLO);
  2384. SERIAL_ECHOLNPAIR_P(port, " T5 E", TMC_GET_PWMTHRS(E, E5));
  2385. #endif
  2386. SERIAL_EOL_P(port);
  2387. #endif // HYBRID_THRESHOLD
  2388. /**
  2389. * TMC Sensorless homing thresholds
  2390. */
  2391. #if USE_SENSORLESS
  2392. if (!forReplay) {
  2393. CONFIG_ECHO_START;
  2394. SERIAL_ECHOLNPGM_P(port, "TMC2130 StallGuard threshold:");
  2395. }
  2396. CONFIG_ECHO_START;
  2397. #if X_SENSORLESS || Y_SENSORLESS || Z_SENSORLESS
  2398. say_M914(PORTVAR_SOLO);
  2399. #if X_SENSORLESS
  2400. SERIAL_ECHOPAIR_P(port, " X", stepperX.sgt());
  2401. #endif
  2402. #if Y_SENSORLESS
  2403. SERIAL_ECHOPAIR_P(port, " Y", stepperY.sgt());
  2404. #endif
  2405. #if Z_SENSORLESS
  2406. SERIAL_ECHOPAIR_P(port, " Z", stepperZ.sgt());
  2407. #endif
  2408. SERIAL_EOL_P(port);
  2409. #endif
  2410. #define HAS_X2_SENSORLESS (defined(X_STALL_SENSITIVITY) && AXIS_HAS_STALLGUARD(X2))
  2411. #define HAS_Y2_SENSORLESS (defined(Y_STALL_SENSITIVITY) && AXIS_HAS_STALLGUARD(Y2))
  2412. #define HAS_Z2_SENSORLESS (defined(Z_STALL_SENSITIVITY) && AXIS_HAS_STALLGUARD(Z2))
  2413. #define HAS_Z3_SENSORLESS (defined(Z_STALL_SENSITIVITY) && AXIS_HAS_STALLGUARD(Z3))
  2414. #if HAS_X2_SENSORLESS || HAS_Y2_SENSORLESS || HAS_Z2_SENSORLESS
  2415. say_M914(PORTVAR_SOLO);
  2416. SERIAL_ECHOPGM_P(port, " I1");
  2417. #if HAS_X2_SENSORLESS
  2418. SERIAL_ECHOPAIR_P(port, " X", stepperX2.sgt());
  2419. #endif
  2420. #if HAS_Y2_SENSORLESS
  2421. SERIAL_ECHOPAIR_P(port, " Y", stepperY2.sgt());
  2422. #endif
  2423. #if HAS_Z2_SENSORLESS
  2424. SERIAL_ECHOPAIR_P(port, " Z", stepperZ2.sgt());
  2425. #endif
  2426. SERIAL_EOL_P(port);
  2427. #endif
  2428. #if HAS_Z3_SENSORLESS
  2429. say_M914(PORTVAR_SOLO);
  2430. SERIAL_ECHOPGM_P(port, " I2");
  2431. SERIAL_ECHOLNPAIR_P(port, " Z", stepperZ3.sgt());
  2432. #endif
  2433. #endif // USE_SENSORLESS
  2434. #endif // HAS_TRINAMIC
  2435. /**
  2436. * Linear Advance
  2437. */
  2438. #if ENABLED(LIN_ADVANCE)
  2439. if (!forReplay) {
  2440. CONFIG_ECHO_START;
  2441. SERIAL_ECHOLNPGM_P(port, "Linear Advance:");
  2442. }
  2443. CONFIG_ECHO_START;
  2444. #if EXTRUDERS < 2
  2445. SERIAL_ECHOLNPAIR_P(port, " M900 K", planner.extruder_advance_K[0]);
  2446. #else
  2447. LOOP_L_N(i, EXTRUDERS) {
  2448. SERIAL_ECHOPAIR_P(port, " M900 T", int(i));
  2449. SERIAL_ECHOLNPAIR_P(port, " K", planner.extruder_advance_K[i]);
  2450. }
  2451. #endif
  2452. #endif
  2453. #if HAS_MOTOR_CURRENT_PWM
  2454. CONFIG_ECHO_START;
  2455. if (!forReplay) {
  2456. SERIAL_ECHOLNPGM_P(port, "Stepper motor currents:");
  2457. CONFIG_ECHO_START;
  2458. }
  2459. SERIAL_ECHOPAIR_P(port, " M907 X", stepper.motor_current_setting[0]);
  2460. SERIAL_ECHOPAIR_P(port, " Z", stepper.motor_current_setting[1]);
  2461. SERIAL_ECHOPAIR_P(port, " E", stepper.motor_current_setting[2]);
  2462. SERIAL_EOL_P(port);
  2463. #endif
  2464. /**
  2465. * Advanced Pause filament load & unload lengths
  2466. */
  2467. #if ENABLED(ADVANCED_PAUSE_FEATURE)
  2468. if (!forReplay) {
  2469. CONFIG_ECHO_START;
  2470. SERIAL_ECHOLNPGM_P(port, "Filament load/unload lengths:");
  2471. }
  2472. CONFIG_ECHO_START;
  2473. #if EXTRUDERS == 1
  2474. say_M603(PORTVAR_SOLO);
  2475. SERIAL_ECHOPAIR_P(port, "L", LINEAR_UNIT(fc_settings[0].load_length));
  2476. SERIAL_ECHOLNPAIR_P(port, " U", LINEAR_UNIT(fc_settings[0].unload_length));
  2477. #else
  2478. say_M603(PORTVAR_SOLO);
  2479. SERIAL_ECHOPAIR_P(port, "T0 L", LINEAR_UNIT(fc_settings[0].load_length));
  2480. SERIAL_ECHOLNPAIR_P(port, " U", LINEAR_UNIT(fc_settings[0].unload_length));
  2481. CONFIG_ECHO_START;
  2482. say_M603(PORTVAR_SOLO);
  2483. SERIAL_ECHOPAIR_P(port, "T1 L", LINEAR_UNIT(fc_settings[1].load_length));
  2484. SERIAL_ECHOLNPAIR_P(port, " U", LINEAR_UNIT(fc_settings[1].unload_length));
  2485. #if EXTRUDERS > 2
  2486. CONFIG_ECHO_START;
  2487. say_M603(PORTVAR_SOLO);
  2488. SERIAL_ECHOPAIR_P(port, "T2 L", LINEAR_UNIT(fc_settings[2].load_length));
  2489. SERIAL_ECHOLNPAIR_P(port, " U", LINEAR_UNIT(fc_settings[2].unload_length));
  2490. #if EXTRUDERS > 3
  2491. CONFIG_ECHO_START;
  2492. say_M603(PORTVAR_SOLO);
  2493. SERIAL_ECHOPAIR_P(port, "T3 L", LINEAR_UNIT(fc_settings[3].load_length));
  2494. SERIAL_ECHOLNPAIR_P(port, " U", LINEAR_UNIT(fc_settings[3].unload_length));
  2495. #if EXTRUDERS > 4
  2496. CONFIG_ECHO_START;
  2497. say_M603(PORTVAR_SOLO);
  2498. SERIAL_ECHOPAIR_P(port, "T4 L", LINEAR_UNIT(fc_settings[4].load_length));
  2499. SERIAL_ECHOLNPAIR_P(port, " U", LINEAR_UNIT(fc_settings[4].unload_length));
  2500. #if EXTRUDERS > 5
  2501. CONFIG_ECHO_START;
  2502. say_M603(PORTVAR_SOLO);
  2503. SERIAL_ECHOPAIR_P(port, "T5 L", LINEAR_UNIT(fc_settings[5].load_length));
  2504. SERIAL_ECHOLNPAIR_P(port, " U", LINEAR_UNIT(fc_settings[5].unload_length));
  2505. #endif // EXTRUDERS > 5
  2506. #endif // EXTRUDERS > 4
  2507. #endif // EXTRUDERS > 3
  2508. #endif // EXTRUDERS > 2
  2509. #endif // EXTRUDERS == 1
  2510. #endif // ADVANCED_PAUSE_FEATURE
  2511. #if ENABLED(SINGLENOZZLE)
  2512. CONFIG_ECHO_START;
  2513. if (!forReplay) {
  2514. SERIAL_ECHOLNPGM_P(port, "SINGLENOZZLE:");
  2515. CONFIG_ECHO_START;
  2516. }
  2517. M217_report(true);
  2518. #endif
  2519. }
  2520. #endif // !DISABLE_M503
  2521. #pragma pack(pop)