My Marlin configs for Fabrikator Mini and CTC i3 Pro B
Você não pode selecionar mais de 25 tópicos Os tópicos devem começar com uma letra ou um número, podem incluir traços ('-') e podem ter até 35 caracteres.

stepper.cpp 41KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324
  1. /**
  2. * stepper.cpp - stepper motor driver: executes motion plans using stepper motors
  3. * Marlin Firmware
  4. *
  5. * Derived from Grbl
  6. * Copyright (c) 2009-2011 Simen Svale Skogsrud
  7. *
  8. * Grbl is free software: you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation, either version 3 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * Grbl is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with Grbl. If not, see <http://www.gnu.org/licenses/>.
  20. */
  21. /* The timer calculations of this module informed by the 'RepRap cartesian firmware' by Zack Smith
  22. and Philipp Tiefenbacher. */
  23. #include "Marlin.h"
  24. #include "stepper.h"
  25. #include "planner.h"
  26. #include "temperature.h"
  27. #include "ultralcd.h"
  28. #include "language.h"
  29. #include "cardreader.h"
  30. #include "speed_lookuptable.h"
  31. #if HAS_DIGIPOTSS
  32. #include <SPI.h>
  33. #endif
  34. //===========================================================================
  35. //============================= public variables ============================
  36. //===========================================================================
  37. block_t* current_block; // A pointer to the block currently being traced
  38. #if ENABLED(HAS_Z_MIN_PROBE)
  39. volatile bool z_probe_is_active = false;
  40. #endif
  41. //===========================================================================
  42. //============================= private variables ===========================
  43. //===========================================================================
  44. //static makes it impossible to be called from outside of this file by extern.!
  45. // Variables used by The Stepper Driver Interrupt
  46. static unsigned char out_bits = 0; // The next stepping-bits to be output
  47. static unsigned int cleaning_buffer_counter;
  48. #if ENABLED(Z_DUAL_ENDSTOPS)
  49. static bool performing_homing = false,
  50. locked_z_motor = false,
  51. locked_z2_motor = false;
  52. #endif
  53. // Counter variables for the Bresenham line tracer
  54. static long counter_x, counter_y, counter_z, counter_e;
  55. volatile static unsigned long step_events_completed; // The number of step events executed in the current block
  56. #if ENABLED(ADVANCE)
  57. static long advance_rate, advance, final_advance = 0;
  58. static long old_advance = 0;
  59. static long e_steps[4];
  60. #endif
  61. static long acceleration_time, deceleration_time;
  62. //static unsigned long accelerate_until, decelerate_after, acceleration_rate, initial_rate, final_rate, nominal_rate;
  63. static unsigned short acc_step_rate; // needed for deceleration start point
  64. static uint8_t step_loops;
  65. static uint8_t step_loops_nominal;
  66. static unsigned short OCR1A_nominal;
  67. volatile long endstops_trigsteps[3] = { 0 };
  68. volatile long endstops_stepsTotal, endstops_stepsDone;
  69. static volatile char endstop_hit_bits = 0; // use X_MIN, Y_MIN, Z_MIN and Z_MIN_PROBE as BIT value
  70. #if DISABLED(Z_DUAL_ENDSTOPS)
  71. static byte
  72. #else
  73. static uint16_t
  74. #endif
  75. old_endstop_bits = 0; // use X_MIN, X_MAX... Z_MAX, Z_MIN_PROBE, Z2_MIN, Z2_MAX
  76. #if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  77. bool abort_on_endstop_hit = false;
  78. #endif
  79. #if PIN_EXISTS(MOTOR_CURRENT_PWM_XY)
  80. #ifndef PWM_MOTOR_CURRENT
  81. #define PWM_MOTOR_CURRENT DEFAULT_PWM_MOTOR_CURRENT
  82. #endif
  83. const int motor_current_setting[3] = PWM_MOTOR_CURRENT;
  84. #endif
  85. static bool check_endstops = true;
  86. static bool check_endstops_global =
  87. #if ENABLED(ENDSTOPS_ONLY_FOR_HOMING)
  88. false
  89. #else
  90. true
  91. #endif
  92. ;
  93. volatile long count_position[NUM_AXIS] = { 0 }; // Positions of stepper motors, in step units
  94. volatile signed char count_direction[NUM_AXIS] = { 1 };
  95. //===========================================================================
  96. //================================ functions ================================
  97. //===========================================================================
  98. #if ENABLED(DUAL_X_CARRIAGE)
  99. #define X_APPLY_DIR(v,ALWAYS) \
  100. if (extruder_duplication_enabled || ALWAYS) { \
  101. X_DIR_WRITE(v); \
  102. X2_DIR_WRITE(v); \
  103. } \
  104. else { \
  105. if (current_block->active_extruder) X2_DIR_WRITE(v); else X_DIR_WRITE(v); \
  106. }
  107. #define X_APPLY_STEP(v,ALWAYS) \
  108. if (extruder_duplication_enabled || ALWAYS) { \
  109. X_STEP_WRITE(v); \
  110. X2_STEP_WRITE(v); \
  111. } \
  112. else { \
  113. if (current_block->active_extruder != 0) X2_STEP_WRITE(v); else X_STEP_WRITE(v); \
  114. }
  115. #else
  116. #define X_APPLY_DIR(v,Q) X_DIR_WRITE(v)
  117. #define X_APPLY_STEP(v,Q) X_STEP_WRITE(v)
  118. #endif
  119. #if ENABLED(Y_DUAL_STEPPER_DRIVERS)
  120. #define Y_APPLY_DIR(v,Q) { Y_DIR_WRITE(v); Y2_DIR_WRITE((v) != INVERT_Y2_VS_Y_DIR); }
  121. #define Y_APPLY_STEP(v,Q) { Y_STEP_WRITE(v); Y2_STEP_WRITE(v); }
  122. #else
  123. #define Y_APPLY_DIR(v,Q) Y_DIR_WRITE(v)
  124. #define Y_APPLY_STEP(v,Q) Y_STEP_WRITE(v)
  125. #endif
  126. #if ENABLED(Z_DUAL_STEPPER_DRIVERS)
  127. #define Z_APPLY_DIR(v,Q) { Z_DIR_WRITE(v); Z2_DIR_WRITE(v); }
  128. #if ENABLED(Z_DUAL_ENDSTOPS)
  129. #define Z_APPLY_STEP(v,Q) \
  130. if (performing_homing) { \
  131. if (Z_HOME_DIR > 0) {\
  132. if (!(TEST(old_endstop_bits, Z_MAX) && (count_direction[Z_AXIS] > 0)) && !locked_z_motor) Z_STEP_WRITE(v); \
  133. if (!(TEST(old_endstop_bits, Z2_MAX) && (count_direction[Z_AXIS] > 0)) && !locked_z2_motor) Z2_STEP_WRITE(v); \
  134. } \
  135. else { \
  136. if (!(TEST(old_endstop_bits, Z_MIN) && (count_direction[Z_AXIS] < 0)) && !locked_z_motor) Z_STEP_WRITE(v); \
  137. if (!(TEST(old_endstop_bits, Z2_MIN) && (count_direction[Z_AXIS] < 0)) && !locked_z2_motor) Z2_STEP_WRITE(v); \
  138. } \
  139. } \
  140. else { \
  141. Z_STEP_WRITE(v); \
  142. Z2_STEP_WRITE(v); \
  143. }
  144. #else
  145. #define Z_APPLY_STEP(v,Q) { Z_STEP_WRITE(v); Z2_STEP_WRITE(v); }
  146. #endif
  147. #else
  148. #define Z_APPLY_DIR(v,Q) Z_DIR_WRITE(v)
  149. #define Z_APPLY_STEP(v,Q) Z_STEP_WRITE(v)
  150. #endif
  151. #define E_APPLY_STEP(v,Q) E_STEP_WRITE(v)
  152. // intRes = intIn1 * intIn2 >> 16
  153. // uses:
  154. // r26 to store 0
  155. // r27 to store the byte 1 of the 24 bit result
  156. #define MultiU16X8toH16(intRes, charIn1, intIn2) \
  157. asm volatile ( \
  158. "clr r26 \n\t" \
  159. "mul %A1, %B2 \n\t" \
  160. "movw %A0, r0 \n\t" \
  161. "mul %A1, %A2 \n\t" \
  162. "add %A0, r1 \n\t" \
  163. "adc %B0, r26 \n\t" \
  164. "lsr r0 \n\t" \
  165. "adc %A0, r26 \n\t" \
  166. "adc %B0, r26 \n\t" \
  167. "clr r1 \n\t" \
  168. : \
  169. "=&r" (intRes) \
  170. : \
  171. "d" (charIn1), \
  172. "d" (intIn2) \
  173. : \
  174. "r26" \
  175. )
  176. // intRes = longIn1 * longIn2 >> 24
  177. // uses:
  178. // r26 to store 0
  179. // r27 to store bits 16-23 of the 48bit result. The top bit is used to round the two byte result.
  180. // note that the lower two bytes and the upper byte of the 48bit result are not calculated.
  181. // this can cause the result to be out by one as the lower bytes may cause carries into the upper ones.
  182. // B0 A0 are bits 24-39 and are the returned value
  183. // C1 B1 A1 is longIn1
  184. // D2 C2 B2 A2 is longIn2
  185. //
  186. #define MultiU24X32toH16(intRes, longIn1, longIn2) \
  187. asm volatile ( \
  188. "clr r26 \n\t" \
  189. "mul %A1, %B2 \n\t" \
  190. "mov r27, r1 \n\t" \
  191. "mul %B1, %C2 \n\t" \
  192. "movw %A0, r0 \n\t" \
  193. "mul %C1, %C2 \n\t" \
  194. "add %B0, r0 \n\t" \
  195. "mul %C1, %B2 \n\t" \
  196. "add %A0, r0 \n\t" \
  197. "adc %B0, r1 \n\t" \
  198. "mul %A1, %C2 \n\t" \
  199. "add r27, r0 \n\t" \
  200. "adc %A0, r1 \n\t" \
  201. "adc %B0, r26 \n\t" \
  202. "mul %B1, %B2 \n\t" \
  203. "add r27, r0 \n\t" \
  204. "adc %A0, r1 \n\t" \
  205. "adc %B0, r26 \n\t" \
  206. "mul %C1, %A2 \n\t" \
  207. "add r27, r0 \n\t" \
  208. "adc %A0, r1 \n\t" \
  209. "adc %B0, r26 \n\t" \
  210. "mul %B1, %A2 \n\t" \
  211. "add r27, r1 \n\t" \
  212. "adc %A0, r26 \n\t" \
  213. "adc %B0, r26 \n\t" \
  214. "lsr r27 \n\t" \
  215. "adc %A0, r26 \n\t" \
  216. "adc %B0, r26 \n\t" \
  217. "mul %D2, %A1 \n\t" \
  218. "add %A0, r0 \n\t" \
  219. "adc %B0, r1 \n\t" \
  220. "mul %D2, %B1 \n\t" \
  221. "add %B0, r0 \n\t" \
  222. "clr r1 \n\t" \
  223. : \
  224. "=&r" (intRes) \
  225. : \
  226. "d" (longIn1), \
  227. "d" (longIn2) \
  228. : \
  229. "r26" , "r27" \
  230. )
  231. // Some useful constants
  232. #define ENABLE_STEPPER_DRIVER_INTERRUPT() SBI(TIMSK1, OCIE1A)
  233. #define DISABLE_STEPPER_DRIVER_INTERRUPT() CBI(TIMSK1, OCIE1A)
  234. void enable_endstops(bool check) { check_endstops = check; }
  235. void enable_endstops_globally(bool check) { check_endstops_global = check_endstops = check; }
  236. void endstops_not_homing() { check_endstops = check_endstops_global; }
  237. void endstops_hit_on_purpose() { endstop_hit_bits = 0; }
  238. void checkHitEndstops() {
  239. if (endstop_hit_bits) {
  240. SERIAL_ECHO_START;
  241. SERIAL_ECHOPGM(MSG_ENDSTOPS_HIT);
  242. if (TEST(endstop_hit_bits, X_MIN)) {
  243. SERIAL_ECHOPAIR(" X:", (float)endstops_trigsteps[X_AXIS] / axis_steps_per_unit[X_AXIS]);
  244. LCD_MESSAGEPGM(MSG_ENDSTOPS_HIT "X");
  245. }
  246. if (TEST(endstop_hit_bits, Y_MIN)) {
  247. SERIAL_ECHOPAIR(" Y:", (float)endstops_trigsteps[Y_AXIS] / axis_steps_per_unit[Y_AXIS]);
  248. LCD_MESSAGEPGM(MSG_ENDSTOPS_HIT "Y");
  249. }
  250. if (TEST(endstop_hit_bits, Z_MIN)) {
  251. SERIAL_ECHOPAIR(" Z:", (float)endstops_trigsteps[Z_AXIS] / axis_steps_per_unit[Z_AXIS]);
  252. LCD_MESSAGEPGM(MSG_ENDSTOPS_HIT "Z");
  253. }
  254. #if ENABLED(Z_MIN_PROBE_ENDSTOP)
  255. if (TEST(endstop_hit_bits, Z_MIN_PROBE)) {
  256. SERIAL_ECHOPAIR(" Z_MIN_PROBE:", (float)endstops_trigsteps[Z_AXIS] / axis_steps_per_unit[Z_AXIS]);
  257. LCD_MESSAGEPGM(MSG_ENDSTOPS_HIT "ZP");
  258. }
  259. #endif
  260. SERIAL_EOL;
  261. endstops_hit_on_purpose();
  262. #if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED) && ENABLED(SDSUPPORT)
  263. if (abort_on_endstop_hit) {
  264. card.sdprinting = false;
  265. card.closefile();
  266. quickStop();
  267. disable_all_heaters(); // switch off all heaters.
  268. }
  269. #endif
  270. }
  271. }
  272. // Check endstops - Called from ISR!
  273. inline void update_endstops() {
  274. #if ENABLED(Z_DUAL_ENDSTOPS)
  275. uint16_t
  276. #else
  277. byte
  278. #endif
  279. current_endstop_bits = 0;
  280. #define _ENDSTOP_PIN(AXIS, MINMAX) AXIS ##_## MINMAX ##_PIN
  281. #define _ENDSTOP_INVERTING(AXIS, MINMAX) AXIS ##_## MINMAX ##_ENDSTOP_INVERTING
  282. #define _AXIS(AXIS) AXIS ##_AXIS
  283. #define _ENDSTOP_HIT(AXIS) SBI(endstop_hit_bits, _ENDSTOP(AXIS, MIN))
  284. #define _ENDSTOP(AXIS, MINMAX) AXIS ##_## MINMAX
  285. // SET_ENDSTOP_BIT: set the current endstop bits for an endstop to its status
  286. #define SET_ENDSTOP_BIT(AXIS, MINMAX) SET_BIT(current_endstop_bits, _ENDSTOP(AXIS, MINMAX), (READ(_ENDSTOP_PIN(AXIS, MINMAX)) != _ENDSTOP_INVERTING(AXIS, MINMAX)))
  287. // COPY_BIT: copy the value of COPY_BIT to BIT in bits
  288. #define COPY_BIT(bits, COPY_BIT, BIT) SET_BIT(bits, BIT, TEST(bits, COPY_BIT))
  289. // TEST_ENDSTOP: test the old and the current status of an endstop
  290. #define TEST_ENDSTOP(ENDSTOP) (TEST(current_endstop_bits, ENDSTOP) && TEST(old_endstop_bits, ENDSTOP))
  291. #if ENABLED(COREXY) || ENABLED(COREXZ)
  292. #define _SET_TRIGSTEPS(AXIS) do { \
  293. float axis_pos = count_position[_AXIS(AXIS)]; \
  294. if (_AXIS(AXIS) == A_AXIS) \
  295. axis_pos = (axis_pos + count_position[CORE_AXIS_2]) / 2; \
  296. else if (_AXIS(AXIS) == CORE_AXIS_2) \
  297. axis_pos = (count_position[A_AXIS] - axis_pos) / 2; \
  298. endstops_trigsteps[_AXIS(AXIS)] = axis_pos; \
  299. } while(0)
  300. #else
  301. #define _SET_TRIGSTEPS(AXIS) endstops_trigsteps[_AXIS(AXIS)] = count_position[_AXIS(AXIS)]
  302. #endif // COREXY || COREXZ
  303. #define UPDATE_ENDSTOP(AXIS,MINMAX) do { \
  304. SET_ENDSTOP_BIT(AXIS, MINMAX); \
  305. if (TEST_ENDSTOP(_ENDSTOP(AXIS, MINMAX)) && current_block->steps[_AXIS(AXIS)] > 0) { \
  306. _SET_TRIGSTEPS(AXIS); \
  307. _ENDSTOP_HIT(AXIS); \
  308. step_events_completed = current_block->step_event_count; \
  309. } \
  310. } while(0)
  311. #if ENABLED(COREXY) || ENABLED(COREXZ)
  312. // Head direction in -X axis for CoreXY and CoreXZ bots.
  313. // If Delta1 == -Delta2, the movement is only in Y or Z axis
  314. if ((current_block->steps[A_AXIS] != current_block->steps[CORE_AXIS_2]) || (TEST(out_bits, A_AXIS) == TEST(out_bits, CORE_AXIS_2))) {
  315. if (TEST(out_bits, X_HEAD))
  316. #else
  317. if (TEST(out_bits, X_AXIS)) // stepping along -X axis (regular Cartesian bot)
  318. #endif
  319. { // -direction
  320. #if ENABLED(DUAL_X_CARRIAGE)
  321. // with 2 x-carriages, endstops are only checked in the homing direction for the active extruder
  322. if ((current_block->active_extruder == 0 && X_HOME_DIR == -1) || (current_block->active_extruder != 0 && X2_HOME_DIR == -1))
  323. #endif
  324. {
  325. #if HAS_X_MIN
  326. UPDATE_ENDSTOP(X, MIN);
  327. #endif
  328. }
  329. }
  330. else { // +direction
  331. #if ENABLED(DUAL_X_CARRIAGE)
  332. // with 2 x-carriages, endstops are only checked in the homing direction for the active extruder
  333. if ((current_block->active_extruder == 0 && X_HOME_DIR == 1) || (current_block->active_extruder != 0 && X2_HOME_DIR == 1))
  334. #endif
  335. {
  336. #if HAS_X_MAX
  337. UPDATE_ENDSTOP(X, MAX);
  338. #endif
  339. }
  340. }
  341. #if ENABLED(COREXY) || ENABLED(COREXZ)
  342. }
  343. #endif
  344. #if ENABLED(COREXY)
  345. // Head direction in -Y axis for CoreXY bots.
  346. // If DeltaX == DeltaY, the movement is only in X axis
  347. if ((current_block->steps[A_AXIS] != current_block->steps[B_AXIS]) || (TEST(out_bits, A_AXIS) != TEST(out_bits, B_AXIS))) {
  348. if (TEST(out_bits, Y_HEAD))
  349. #else
  350. if (TEST(out_bits, Y_AXIS)) // -direction
  351. #endif
  352. { // -direction
  353. #if HAS_Y_MIN
  354. UPDATE_ENDSTOP(Y, MIN);
  355. #endif
  356. }
  357. else { // +direction
  358. #if HAS_Y_MAX
  359. UPDATE_ENDSTOP(Y, MAX);
  360. #endif
  361. }
  362. #if ENABLED(COREXY)
  363. }
  364. #endif
  365. #if ENABLED(COREXZ)
  366. // Head direction in -Z axis for CoreXZ bots.
  367. // If DeltaX == DeltaZ, the movement is only in X axis
  368. if ((current_block->steps[A_AXIS] != current_block->steps[C_AXIS]) || (TEST(out_bits, A_AXIS) != TEST(out_bits, C_AXIS))) {
  369. if (TEST(out_bits, Z_HEAD))
  370. #else
  371. if (TEST(out_bits, Z_AXIS))
  372. #endif
  373. { // z -direction
  374. #if HAS_Z_MIN
  375. #if ENABLED(Z_DUAL_ENDSTOPS)
  376. SET_ENDSTOP_BIT(Z, MIN);
  377. #if HAS_Z2_MIN
  378. SET_ENDSTOP_BIT(Z2, MIN);
  379. #else
  380. COPY_BIT(current_endstop_bits, Z_MIN, Z2_MIN);
  381. #endif
  382. byte z_test = TEST_ENDSTOP(Z_MIN) | (TEST_ENDSTOP(Z2_MIN) << 1); // bit 0 for Z, bit 1 for Z2
  383. if (z_test && current_block->steps[Z_AXIS] > 0) { // z_test = Z_MIN || Z2_MIN
  384. endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS];
  385. SBI(endstop_hit_bits, Z_MIN);
  386. if (!performing_homing || (z_test == 0x3)) //if not performing home or if both endstops were trigged during homing...
  387. step_events_completed = current_block->step_event_count;
  388. }
  389. #else // !Z_DUAL_ENDSTOPS
  390. #if ENABLED(Z_MIN_PROBE_USES_Z_MIN_ENDSTOP_PIN) && ENABLED(HAS_Z_MIN_PROBE)
  391. if (z_probe_is_active) UPDATE_ENDSTOP(Z, MIN);
  392. #else
  393. UPDATE_ENDSTOP(Z, MIN);
  394. #endif
  395. #endif // !Z_DUAL_ENDSTOPS
  396. #endif
  397. #if ENABLED(Z_MIN_PROBE_ENDSTOP) && DISABLED(Z_MIN_PROBE_USES_Z_MIN_ENDSTOP_PIN) && ENABLED(HAS_Z_MIN_PROBE)
  398. if (z_probe_is_active) {
  399. UPDATE_ENDSTOP(Z, MIN_PROBE);
  400. if (TEST_ENDSTOP(Z_MIN_PROBE)) endstop_hit_bits |= _BV(Z_MIN_PROBE);
  401. }
  402. #endif
  403. }
  404. else { // z +direction
  405. #if HAS_Z_MAX
  406. #if ENABLED(Z_DUAL_ENDSTOPS)
  407. SET_ENDSTOP_BIT(Z, MAX);
  408. #if HAS_Z2_MAX
  409. SET_ENDSTOP_BIT(Z2, MAX);
  410. #else
  411. COPY_BIT(current_endstop_bits, Z_MAX, Z2_MAX);
  412. #endif
  413. byte z_test = TEST_ENDSTOP(Z_MAX) | (TEST_ENDSTOP(Z2_MAX) << 1); // bit 0 for Z, bit 1 for Z2
  414. if (z_test && current_block->steps[Z_AXIS] > 0) { // t_test = Z_MAX || Z2_MAX
  415. endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS];
  416. SBI(endstop_hit_bits, Z_MIN);
  417. if (!performing_homing || (z_test == 0x3)) //if not performing home or if both endstops were trigged during homing...
  418. step_events_completed = current_block->step_event_count;
  419. }
  420. #else // !Z_DUAL_ENDSTOPS
  421. UPDATE_ENDSTOP(Z, MAX);
  422. #endif // !Z_DUAL_ENDSTOPS
  423. #endif // Z_MAX_PIN
  424. }
  425. #if ENABLED(COREXZ)
  426. }
  427. #endif
  428. old_endstop_bits = current_endstop_bits;
  429. }
  430. // __________________________
  431. // /| |\ _________________ ^
  432. // / | | \ /| |\ |
  433. // / | | \ / | | \ s
  434. // / | | | | | \ p
  435. // / | | | | | \ e
  436. // +-----+------------------------+---+--+---------------+----+ e
  437. // | BLOCK 1 | BLOCK 2 | d
  438. //
  439. // time ----->
  440. //
  441. // The trapezoid is the shape the speed curve over time. It starts at block->initial_rate, accelerates
  442. // first block->accelerate_until step_events_completed, then keeps going at constant speed until
  443. // step_events_completed reaches block->decelerate_after after which it decelerates until the trapezoid generator is reset.
  444. // The slope of acceleration is calculated using v = u + at where t is the accumulated timer values of the steps so far.
  445. void st_wake_up() {
  446. // TCNT1 = 0;
  447. ENABLE_STEPPER_DRIVER_INTERRUPT();
  448. }
  449. FORCE_INLINE unsigned short calc_timer(unsigned short step_rate) {
  450. unsigned short timer;
  451. NOMORE(step_rate, MAX_STEP_FREQUENCY);
  452. if (step_rate > 20000) { // If steprate > 20kHz >> step 4 times
  453. step_rate = (step_rate >> 2) & 0x3fff;
  454. step_loops = 4;
  455. }
  456. else if (step_rate > 10000) { // If steprate > 10kHz >> step 2 times
  457. step_rate = (step_rate >> 1) & 0x7fff;
  458. step_loops = 2;
  459. }
  460. else {
  461. step_loops = 1;
  462. }
  463. NOLESS(step_rate, F_CPU / 500000);
  464. step_rate -= F_CPU / 500000; // Correct for minimal speed
  465. if (step_rate >= (8 * 256)) { // higher step rate
  466. unsigned short table_address = (unsigned short)&speed_lookuptable_fast[(unsigned char)(step_rate >> 8)][0];
  467. unsigned char tmp_step_rate = (step_rate & 0x00ff);
  468. unsigned short gain = (unsigned short)pgm_read_word_near(table_address + 2);
  469. MultiU16X8toH16(timer, tmp_step_rate, gain);
  470. timer = (unsigned short)pgm_read_word_near(table_address) - timer;
  471. }
  472. else { // lower step rates
  473. unsigned short table_address = (unsigned short)&speed_lookuptable_slow[0][0];
  474. table_address += ((step_rate) >> 1) & 0xfffc;
  475. timer = (unsigned short)pgm_read_word_near(table_address);
  476. timer -= (((unsigned short)pgm_read_word_near(table_address + 2) * (unsigned char)(step_rate & 0x0007)) >> 3);
  477. }
  478. if (timer < 100) { timer = 100; MYSERIAL.print(MSG_STEPPER_TOO_HIGH); MYSERIAL.println(step_rate); }//(20kHz this should never happen)
  479. return timer;
  480. }
  481. /**
  482. * Set the stepper direction of each axis
  483. *
  484. * X_AXIS=A_AXIS and Y_AXIS=B_AXIS for COREXY
  485. * X_AXIS=A_AXIS and Z_AXIS=C_AXIS for COREXZ
  486. */
  487. void set_stepper_direction() {
  488. #define SET_STEP_DIR(AXIS) \
  489. if (TEST(out_bits, AXIS ##_AXIS)) { \
  490. AXIS ##_APPLY_DIR(INVERT_## AXIS ##_DIR, false); \
  491. count_direction[AXIS ##_AXIS] = -1; \
  492. } \
  493. else { \
  494. AXIS ##_APPLY_DIR(!INVERT_## AXIS ##_DIR, false); \
  495. count_direction[AXIS ##_AXIS] = 1; \
  496. }
  497. SET_STEP_DIR(X); // A
  498. SET_STEP_DIR(Y); // B
  499. SET_STEP_DIR(Z); // C
  500. #if DISABLED(ADVANCE)
  501. if (TEST(out_bits, E_AXIS)) {
  502. REV_E_DIR();
  503. count_direction[E_AXIS] = -1;
  504. }
  505. else {
  506. NORM_E_DIR();
  507. count_direction[E_AXIS] = 1;
  508. }
  509. #endif //!ADVANCE
  510. }
  511. // Initializes the trapezoid generator from the current block. Called whenever a new
  512. // block begins.
  513. FORCE_INLINE void trapezoid_generator_reset() {
  514. static int8_t last_extruder = -1;
  515. if (current_block->direction_bits != out_bits || current_block->active_extruder != last_extruder) {
  516. out_bits = current_block->direction_bits;
  517. last_extruder = current_block->active_extruder;
  518. set_stepper_direction();
  519. }
  520. #if ENABLED(ADVANCE)
  521. advance = current_block->initial_advance;
  522. final_advance = current_block->final_advance;
  523. // Do E steps + advance steps
  524. e_steps[current_block->active_extruder] += ((advance >>8) - old_advance);
  525. old_advance = advance >>8;
  526. #endif
  527. deceleration_time = 0;
  528. // step_rate to timer interval
  529. OCR1A_nominal = calc_timer(current_block->nominal_rate);
  530. // make a note of the number of step loops required at nominal speed
  531. step_loops_nominal = step_loops;
  532. acc_step_rate = current_block->initial_rate;
  533. acceleration_time = calc_timer(acc_step_rate);
  534. OCR1A = acceleration_time;
  535. // SERIAL_ECHO_START;
  536. // SERIAL_ECHOPGM("advance :");
  537. // SERIAL_ECHO(current_block->advance/256.0);
  538. // SERIAL_ECHOPGM("advance rate :");
  539. // SERIAL_ECHO(current_block->advance_rate/256.0);
  540. // SERIAL_ECHOPGM("initial advance :");
  541. // SERIAL_ECHO(current_block->initial_advance/256.0);
  542. // SERIAL_ECHOPGM("final advance :");
  543. // SERIAL_ECHOLN(current_block->final_advance/256.0);
  544. }
  545. // "The Stepper Driver Interrupt" - This timer interrupt is the workhorse.
  546. // It pops blocks from the block_buffer and executes them by pulsing the stepper pins appropriately.
  547. ISR(TIMER1_COMPA_vect) {
  548. if (cleaning_buffer_counter) {
  549. current_block = NULL;
  550. plan_discard_current_block();
  551. #ifdef SD_FINISHED_RELEASECOMMAND
  552. if ((cleaning_buffer_counter == 1) && (SD_FINISHED_STEPPERRELEASE)) enqueue_and_echo_commands_P(PSTR(SD_FINISHED_RELEASECOMMAND));
  553. #endif
  554. cleaning_buffer_counter--;
  555. OCR1A = 200;
  556. return;
  557. }
  558. // If there is no current block, attempt to pop one from the buffer
  559. if (!current_block) {
  560. // Anything in the buffer?
  561. current_block = plan_get_current_block();
  562. if (current_block) {
  563. current_block->busy = true;
  564. trapezoid_generator_reset();
  565. counter_x = -(current_block->step_event_count >> 1);
  566. counter_y = counter_z = counter_e = counter_x;
  567. step_events_completed = 0;
  568. #if ENABLED(Z_LATE_ENABLE)
  569. if (current_block->steps[Z_AXIS] > 0) {
  570. enable_z();
  571. OCR1A = 2000; //1ms wait
  572. return;
  573. }
  574. #endif
  575. // #if ENABLED(ADVANCE)
  576. // e_steps[current_block->active_extruder] = 0;
  577. // #endif
  578. }
  579. else {
  580. OCR1A = 2000; // 1kHz.
  581. }
  582. }
  583. if (current_block != NULL) {
  584. // Update endstops state, if enabled
  585. #if ENABLED(HAS_Z_MIN_PROBE)
  586. if (check_endstops || z_probe_is_active) update_endstops();
  587. #else
  588. if (check_endstops) update_endstops();
  589. #endif
  590. // Take multiple steps per interrupt (For high speed moves)
  591. for (int8_t i = 0; i < step_loops; i++) {
  592. #ifndef USBCON
  593. customizedSerial.checkRx(); // Check for serial chars.
  594. #endif
  595. #if ENABLED(ADVANCE)
  596. counter_e += current_block->steps[E_AXIS];
  597. if (counter_e > 0) {
  598. counter_e -= current_block->step_event_count;
  599. e_steps[current_block->active_extruder] += TEST(out_bits, E_AXIS) ? -1 : 1;
  600. }
  601. #endif //ADVANCE
  602. #define _COUNTER(axis) counter_## axis
  603. #define _APPLY_STEP(AXIS) AXIS ##_APPLY_STEP
  604. #define _INVERT_STEP_PIN(AXIS) INVERT_## AXIS ##_STEP_PIN
  605. #define STEP_ADD(axis, AXIS) \
  606. _COUNTER(axis) += current_block->steps[_AXIS(AXIS)]; \
  607. if (_COUNTER(axis) > 0) { _APPLY_STEP(AXIS)(!_INVERT_STEP_PIN(AXIS),0); }
  608. STEP_ADD(x,X);
  609. STEP_ADD(y,Y);
  610. STEP_ADD(z,Z);
  611. #if DISABLED(ADVANCE)
  612. STEP_ADD(e,E);
  613. #endif
  614. #define STEP_IF_COUNTER(axis, AXIS) \
  615. if (_COUNTER(axis) > 0) { \
  616. _COUNTER(axis) -= current_block->step_event_count; \
  617. count_position[_AXIS(AXIS)] += count_direction[_AXIS(AXIS)]; \
  618. _APPLY_STEP(AXIS)(_INVERT_STEP_PIN(AXIS),0); \
  619. }
  620. STEP_IF_COUNTER(x, X);
  621. STEP_IF_COUNTER(y, Y);
  622. STEP_IF_COUNTER(z, Z);
  623. #if DISABLED(ADVANCE)
  624. STEP_IF_COUNTER(e, E);
  625. #endif
  626. step_events_completed++;
  627. if (step_events_completed >= current_block->step_event_count) break;
  628. }
  629. // Calculate new timer value
  630. unsigned short timer;
  631. unsigned short step_rate;
  632. if (step_events_completed <= (unsigned long)current_block->accelerate_until) {
  633. MultiU24X32toH16(acc_step_rate, acceleration_time, current_block->acceleration_rate);
  634. acc_step_rate += current_block->initial_rate;
  635. // upper limit
  636. NOMORE(acc_step_rate, current_block->nominal_rate);
  637. // step_rate to timer interval
  638. timer = calc_timer(acc_step_rate);
  639. OCR1A = timer;
  640. acceleration_time += timer;
  641. #if ENABLED(ADVANCE)
  642. advance += advance_rate * step_loops;
  643. //NOLESS(advance, current_block->advance);
  644. // Do E steps + advance steps
  645. e_steps[current_block->active_extruder] += ((advance >> 8) - old_advance);
  646. old_advance = advance >> 8;
  647. #endif //ADVANCE
  648. }
  649. else if (step_events_completed > (unsigned long)current_block->decelerate_after) {
  650. MultiU24X32toH16(step_rate, deceleration_time, current_block->acceleration_rate);
  651. if (step_rate <= acc_step_rate) { // Still decelerating?
  652. step_rate = acc_step_rate - step_rate;
  653. NOLESS(step_rate, current_block->final_rate);
  654. }
  655. else
  656. step_rate = current_block->final_rate;
  657. // step_rate to timer interval
  658. timer = calc_timer(step_rate);
  659. OCR1A = timer;
  660. deceleration_time += timer;
  661. #if ENABLED(ADVANCE)
  662. advance -= advance_rate * step_loops;
  663. NOLESS(advance, final_advance);
  664. // Do E steps + advance steps
  665. uint32_t advance_whole = advance >> 8;
  666. e_steps[current_block->active_extruder] += advance_whole - old_advance;
  667. old_advance = advance_whole;
  668. #endif //ADVANCE
  669. }
  670. else {
  671. OCR1A = OCR1A_nominal;
  672. // ensure we're running at the correct step rate, even if we just came off an acceleration
  673. step_loops = step_loops_nominal;
  674. }
  675. OCR1A = (OCR1A < (TCNT1 + 16)) ? (TCNT1 + 16) : OCR1A;
  676. // If current block is finished, reset pointer
  677. if (step_events_completed >= current_block->step_event_count) {
  678. current_block = NULL;
  679. plan_discard_current_block();
  680. }
  681. }
  682. }
  683. #if ENABLED(ADVANCE)
  684. unsigned char old_OCR0A;
  685. // Timer interrupt for E. e_steps is set in the main routine;
  686. // Timer 0 is shared with millies
  687. ISR(TIMER0_COMPA_vect) {
  688. old_OCR0A += 52; // ~10kHz interrupt (250000 / 26 = 9615kHz)
  689. OCR0A = old_OCR0A;
  690. #define STEP_E_ONCE(INDEX) \
  691. if (e_steps[INDEX] != 0) { \
  692. E## INDEX ##_STEP_WRITE(INVERT_E_STEP_PIN); \
  693. if (e_steps[INDEX] < 0) { \
  694. E## INDEX ##_DIR_WRITE(INVERT_E## INDEX ##_DIR); \
  695. e_steps[INDEX]++; \
  696. } \
  697. else if (e_steps[INDEX] > 0) { \
  698. E## INDEX ##_DIR_WRITE(!INVERT_E## INDEX ##_DIR); \
  699. e_steps[INDEX]--; \
  700. } \
  701. E## INDEX ##_STEP_WRITE(!INVERT_E_STEP_PIN); \
  702. }
  703. // Step all E steppers that have steps, up to 4 steps per interrupt
  704. for (unsigned char i = 0; i < 4; i++) {
  705. STEP_E_ONCE(0);
  706. #if EXTRUDERS > 1
  707. STEP_E_ONCE(1);
  708. #if EXTRUDERS > 2
  709. STEP_E_ONCE(2);
  710. #if EXTRUDERS > 3
  711. STEP_E_ONCE(3);
  712. #endif
  713. #endif
  714. #endif
  715. }
  716. }
  717. #endif // ADVANCE
  718. void st_init() {
  719. digipot_init(); //Initialize Digipot Motor Current
  720. microstep_init(); //Initialize Microstepping Pins
  721. // initialise TMC Steppers
  722. #if ENABLED(HAVE_TMCDRIVER)
  723. tmc_init();
  724. #endif
  725. // initialise L6470 Steppers
  726. #if ENABLED(HAVE_L6470DRIVER)
  727. L6470_init();
  728. #endif
  729. // Initialize Dir Pins
  730. #if HAS_X_DIR
  731. X_DIR_INIT;
  732. #endif
  733. #if HAS_X2_DIR
  734. X2_DIR_INIT;
  735. #endif
  736. #if HAS_Y_DIR
  737. Y_DIR_INIT;
  738. #if ENABLED(Y_DUAL_STEPPER_DRIVERS) && HAS_Y2_DIR
  739. Y2_DIR_INIT;
  740. #endif
  741. #endif
  742. #if HAS_Z_DIR
  743. Z_DIR_INIT;
  744. #if ENABLED(Z_DUAL_STEPPER_DRIVERS) && HAS_Z2_DIR
  745. Z2_DIR_INIT;
  746. #endif
  747. #endif
  748. #if HAS_E0_DIR
  749. E0_DIR_INIT;
  750. #endif
  751. #if HAS_E1_DIR
  752. E1_DIR_INIT;
  753. #endif
  754. #if HAS_E2_DIR
  755. E2_DIR_INIT;
  756. #endif
  757. #if HAS_E3_DIR
  758. E3_DIR_INIT;
  759. #endif
  760. //Initialize Enable Pins - steppers default to disabled.
  761. #if HAS_X_ENABLE
  762. X_ENABLE_INIT;
  763. if (!X_ENABLE_ON) X_ENABLE_WRITE(HIGH);
  764. #endif
  765. #if HAS_X2_ENABLE
  766. X2_ENABLE_INIT;
  767. if (!X_ENABLE_ON) X2_ENABLE_WRITE(HIGH);
  768. #endif
  769. #if HAS_Y_ENABLE
  770. Y_ENABLE_INIT;
  771. if (!Y_ENABLE_ON) Y_ENABLE_WRITE(HIGH);
  772. #if ENABLED(Y_DUAL_STEPPER_DRIVERS) && HAS_Y2_ENABLE
  773. Y2_ENABLE_INIT;
  774. if (!Y_ENABLE_ON) Y2_ENABLE_WRITE(HIGH);
  775. #endif
  776. #endif
  777. #if HAS_Z_ENABLE
  778. Z_ENABLE_INIT;
  779. if (!Z_ENABLE_ON) Z_ENABLE_WRITE(HIGH);
  780. #if ENABLED(Z_DUAL_STEPPER_DRIVERS) && HAS_Z2_ENABLE
  781. Z2_ENABLE_INIT;
  782. if (!Z_ENABLE_ON) Z2_ENABLE_WRITE(HIGH);
  783. #endif
  784. #endif
  785. #if HAS_E0_ENABLE
  786. E0_ENABLE_INIT;
  787. if (!E_ENABLE_ON) E0_ENABLE_WRITE(HIGH);
  788. #endif
  789. #if HAS_E1_ENABLE
  790. E1_ENABLE_INIT;
  791. if (!E_ENABLE_ON) E1_ENABLE_WRITE(HIGH);
  792. #endif
  793. #if HAS_E2_ENABLE
  794. E2_ENABLE_INIT;
  795. if (!E_ENABLE_ON) E2_ENABLE_WRITE(HIGH);
  796. #endif
  797. #if HAS_E3_ENABLE
  798. E3_ENABLE_INIT;
  799. if (!E_ENABLE_ON) E3_ENABLE_WRITE(HIGH);
  800. #endif
  801. //endstops and pullups
  802. #if HAS_X_MIN
  803. SET_INPUT(X_MIN_PIN);
  804. #if ENABLED(ENDSTOPPULLUP_XMIN)
  805. WRITE(X_MIN_PIN,HIGH);
  806. #endif
  807. #endif
  808. #if HAS_Y_MIN
  809. SET_INPUT(Y_MIN_PIN);
  810. #if ENABLED(ENDSTOPPULLUP_YMIN)
  811. WRITE(Y_MIN_PIN,HIGH);
  812. #endif
  813. #endif
  814. #if HAS_Z_MIN
  815. SET_INPUT(Z_MIN_PIN);
  816. #if ENABLED(ENDSTOPPULLUP_ZMIN)
  817. WRITE(Z_MIN_PIN,HIGH);
  818. #endif
  819. #endif
  820. #if HAS_Z2_MIN
  821. SET_INPUT(Z2_MIN_PIN);
  822. #if ENABLED(ENDSTOPPULLUP_ZMIN)
  823. WRITE(Z2_MIN_PIN,HIGH);
  824. #endif
  825. #endif
  826. #if HAS_X_MAX
  827. SET_INPUT(X_MAX_PIN);
  828. #if ENABLED(ENDSTOPPULLUP_XMAX)
  829. WRITE(X_MAX_PIN,HIGH);
  830. #endif
  831. #endif
  832. #if HAS_Y_MAX
  833. SET_INPUT(Y_MAX_PIN);
  834. #if ENABLED(ENDSTOPPULLUP_YMAX)
  835. WRITE(Y_MAX_PIN,HIGH);
  836. #endif
  837. #endif
  838. #if HAS_Z_MAX
  839. SET_INPUT(Z_MAX_PIN);
  840. #if ENABLED(ENDSTOPPULLUP_ZMAX)
  841. WRITE(Z_MAX_PIN,HIGH);
  842. #endif
  843. #endif
  844. #if HAS_Z2_MAX
  845. SET_INPUT(Z2_MAX_PIN);
  846. #if ENABLED(ENDSTOPPULLUP_ZMAX)
  847. WRITE(Z2_MAX_PIN,HIGH);
  848. #endif
  849. #endif
  850. #if HAS_Z_PROBE && ENABLED(Z_MIN_PROBE_ENDSTOP) // Check for Z_MIN_PROBE_ENDSTOP so we don't pull a pin high unless it's to be used.
  851. SET_INPUT(Z_MIN_PROBE_PIN);
  852. #if ENABLED(ENDSTOPPULLUP_ZMIN_PROBE)
  853. WRITE(Z_MIN_PROBE_PIN,HIGH);
  854. #endif
  855. #endif
  856. #define _STEP_INIT(AXIS) AXIS ##_STEP_INIT
  857. #define _WRITE_STEP(AXIS, HIGHLOW) AXIS ##_STEP_WRITE(HIGHLOW)
  858. #define _DISABLE(axis) disable_## axis()
  859. #define AXIS_INIT(axis, AXIS, PIN) \
  860. _STEP_INIT(AXIS); \
  861. _WRITE_STEP(AXIS, _INVERT_STEP_PIN(PIN)); \
  862. _DISABLE(axis)
  863. #define E_AXIS_INIT(NUM) AXIS_INIT(e## NUM, E## NUM, E)
  864. // Initialize Step Pins
  865. #if HAS_X_STEP
  866. AXIS_INIT(x, X, X);
  867. #endif
  868. #if HAS_X2_STEP
  869. AXIS_INIT(x, X2, X);
  870. #endif
  871. #if HAS_Y_STEP
  872. #if ENABLED(Y_DUAL_STEPPER_DRIVERS) && HAS_Y2_STEP
  873. Y2_STEP_INIT;
  874. Y2_STEP_WRITE(INVERT_Y_STEP_PIN);
  875. #endif
  876. AXIS_INIT(y, Y, Y);
  877. #endif
  878. #if HAS_Z_STEP
  879. #if ENABLED(Z_DUAL_STEPPER_DRIVERS) && HAS_Z2_STEP
  880. Z2_STEP_INIT;
  881. Z2_STEP_WRITE(INVERT_Z_STEP_PIN);
  882. #endif
  883. AXIS_INIT(z, Z, Z);
  884. #endif
  885. #if HAS_E0_STEP
  886. E_AXIS_INIT(0);
  887. #endif
  888. #if HAS_E1_STEP
  889. E_AXIS_INIT(1);
  890. #endif
  891. #if HAS_E2_STEP
  892. E_AXIS_INIT(2);
  893. #endif
  894. #if HAS_E3_STEP
  895. E_AXIS_INIT(3);
  896. #endif
  897. // waveform generation = 0100 = CTC
  898. CBI(TCCR1B, WGM13);
  899. SBI(TCCR1B, WGM12);
  900. CBI(TCCR1A, WGM11);
  901. CBI(TCCR1A, WGM10);
  902. // output mode = 00 (disconnected)
  903. TCCR1A &= ~(3 << COM1A0);
  904. TCCR1A &= ~(3 << COM1B0);
  905. // Set the timer pre-scaler
  906. // Generally we use a divider of 8, resulting in a 2MHz timer
  907. // frequency on a 16MHz MCU. If you are going to change this, be
  908. // sure to regenerate speed_lookuptable.h with
  909. // create_speed_lookuptable.py
  910. TCCR1B = (TCCR1B & ~(0x07 << CS10)) | (2 << CS10);
  911. OCR1A = 0x4000;
  912. TCNT1 = 0;
  913. ENABLE_STEPPER_DRIVER_INTERRUPT();
  914. #if ENABLED(ADVANCE)
  915. #if defined(TCCR0A) && defined(WGM01)
  916. CBI(TCCR0A, WGM01);
  917. CBI(TCCR0A, WGM00);
  918. #endif
  919. e_steps[0] = e_steps[1] = e_steps[2] = e_steps[3] = 0;
  920. SBI(TIMSK0, OCIE0A);
  921. #endif //ADVANCE
  922. enable_endstops(true); // Start with endstops active. After homing they can be disabled
  923. sei();
  924. set_stepper_direction(); // Init directions to out_bits = 0
  925. }
  926. /**
  927. * Block until all buffered steps are executed
  928. */
  929. void st_synchronize() { while (blocks_queued()) idle(); }
  930. void st_set_position(const long& x, const long& y, const long& z, const long& e) {
  931. CRITICAL_SECTION_START;
  932. count_position[X_AXIS] = x;
  933. count_position[Y_AXIS] = y;
  934. count_position[Z_AXIS] = z;
  935. count_position[E_AXIS] = e;
  936. CRITICAL_SECTION_END;
  937. }
  938. void st_set_e_position(const long& e) {
  939. CRITICAL_SECTION_START;
  940. count_position[E_AXIS] = e;
  941. CRITICAL_SECTION_END;
  942. }
  943. long st_get_position(uint8_t axis) {
  944. CRITICAL_SECTION_START;
  945. long count_pos = count_position[axis];
  946. CRITICAL_SECTION_END;
  947. return count_pos;
  948. }
  949. float st_get_axis_position_mm(AxisEnum axis) {
  950. float axis_pos;
  951. #if ENABLED(COREXY) | ENABLED(COREXZ)
  952. if (axis == X_AXIS || axis == CORE_AXIS_2) {
  953. CRITICAL_SECTION_START;
  954. long pos1 = count_position[A_AXIS],
  955. pos2 = count_position[CORE_AXIS_2];
  956. CRITICAL_SECTION_END;
  957. // ((a1+a2)+(a1-a2))/2 -> (a1+a2+a1-a2)/2 -> (a1+a1)/2 -> a1
  958. // ((a1+a2)-(a1-a2))/2 -> (a1+a2-a1+a2)/2 -> (a2+a2)/2 -> a2
  959. axis_pos = (pos1 + ((axis == X_AXIS) ? pos2 : -pos2)) / 2.0f;
  960. }
  961. else
  962. axis_pos = st_get_position(axis);
  963. #else
  964. axis_pos = st_get_position(axis);
  965. #endif
  966. return axis_pos / axis_steps_per_unit[axis];
  967. }
  968. void finishAndDisableSteppers() {
  969. st_synchronize();
  970. disable_all_steppers();
  971. }
  972. void quickStop() {
  973. cleaning_buffer_counter = 5000;
  974. DISABLE_STEPPER_DRIVER_INTERRUPT();
  975. while (blocks_queued()) plan_discard_current_block();
  976. current_block = NULL;
  977. ENABLE_STEPPER_DRIVER_INTERRUPT();
  978. }
  979. #if ENABLED(BABYSTEPPING)
  980. // MUST ONLY BE CALLED BY AN ISR,
  981. // No other ISR should ever interrupt this!
  982. void babystep(const uint8_t axis, const bool direction) {
  983. #define _ENABLE(axis) enable_## axis()
  984. #define _READ_DIR(AXIS) AXIS ##_DIR_READ
  985. #define _INVERT_DIR(AXIS) INVERT_## AXIS ##_DIR
  986. #define _APPLY_DIR(AXIS, INVERT) AXIS ##_APPLY_DIR(INVERT, true)
  987. #define BABYSTEP_AXIS(axis, AXIS, INVERT) { \
  988. _ENABLE(axis); \
  989. uint8_t old_pin = _READ_DIR(AXIS); \
  990. _APPLY_DIR(AXIS, _INVERT_DIR(AXIS)^direction^INVERT); \
  991. _APPLY_STEP(AXIS)(!_INVERT_STEP_PIN(AXIS), true); \
  992. delayMicroseconds(2); \
  993. _APPLY_STEP(AXIS)(_INVERT_STEP_PIN(AXIS), true); \
  994. _APPLY_DIR(AXIS, old_pin); \
  995. }
  996. switch (axis) {
  997. case X_AXIS:
  998. BABYSTEP_AXIS(x, X, false);
  999. break;
  1000. case Y_AXIS:
  1001. BABYSTEP_AXIS(y, Y, false);
  1002. break;
  1003. case Z_AXIS: {
  1004. #if DISABLED(DELTA)
  1005. BABYSTEP_AXIS(z, Z, BABYSTEP_INVERT_Z);
  1006. #else // DELTA
  1007. bool z_direction = direction ^ BABYSTEP_INVERT_Z;
  1008. enable_x();
  1009. enable_y();
  1010. enable_z();
  1011. uint8_t old_x_dir_pin = X_DIR_READ,
  1012. old_y_dir_pin = Y_DIR_READ,
  1013. old_z_dir_pin = Z_DIR_READ;
  1014. //setup new step
  1015. X_DIR_WRITE(INVERT_X_DIR ^ z_direction);
  1016. Y_DIR_WRITE(INVERT_Y_DIR ^ z_direction);
  1017. Z_DIR_WRITE(INVERT_Z_DIR ^ z_direction);
  1018. //perform step
  1019. X_STEP_WRITE(!INVERT_X_STEP_PIN);
  1020. Y_STEP_WRITE(!INVERT_Y_STEP_PIN);
  1021. Z_STEP_WRITE(!INVERT_Z_STEP_PIN);
  1022. delayMicroseconds(2);
  1023. X_STEP_WRITE(INVERT_X_STEP_PIN);
  1024. Y_STEP_WRITE(INVERT_Y_STEP_PIN);
  1025. Z_STEP_WRITE(INVERT_Z_STEP_PIN);
  1026. //get old pin state back.
  1027. X_DIR_WRITE(old_x_dir_pin);
  1028. Y_DIR_WRITE(old_y_dir_pin);
  1029. Z_DIR_WRITE(old_z_dir_pin);
  1030. #endif
  1031. } break;
  1032. default: break;
  1033. }
  1034. }
  1035. #endif //BABYSTEPPING
  1036. #if HAS_DIGIPOTSS
  1037. // From Arduino DigitalPotControl example
  1038. void digitalPotWrite(int address, int value) {
  1039. digitalWrite(DIGIPOTSS_PIN, LOW); // take the SS pin low to select the chip
  1040. SPI.transfer(address); // send in the address and value via SPI:
  1041. SPI.transfer(value);
  1042. digitalWrite(DIGIPOTSS_PIN, HIGH); // take the SS pin high to de-select the chip:
  1043. //delay(10);
  1044. }
  1045. #endif //HAS_DIGIPOTSS
  1046. // Initialize Digipot Motor Current
  1047. void digipot_init() {
  1048. #if HAS_DIGIPOTSS
  1049. const uint8_t digipot_motor_current[] = DIGIPOT_MOTOR_CURRENT;
  1050. SPI.begin();
  1051. pinMode(DIGIPOTSS_PIN, OUTPUT);
  1052. for (int i = 0; i < COUNT(digipot_motor_current); i++) {
  1053. //digitalPotWrite(digipot_ch[i], digipot_motor_current[i]);
  1054. digipot_current(i, digipot_motor_current[i]);
  1055. }
  1056. #endif
  1057. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  1058. pinMode(MOTOR_CURRENT_PWM_XY_PIN, OUTPUT);
  1059. pinMode(MOTOR_CURRENT_PWM_Z_PIN, OUTPUT);
  1060. pinMode(MOTOR_CURRENT_PWM_E_PIN, OUTPUT);
  1061. digipot_current(0, motor_current_setting[0]);
  1062. digipot_current(1, motor_current_setting[1]);
  1063. digipot_current(2, motor_current_setting[2]);
  1064. //Set timer5 to 31khz so the PWM of the motor power is as constant as possible. (removes a buzzing noise)
  1065. TCCR5B = (TCCR5B & ~(_BV(CS50) | _BV(CS51) | _BV(CS52))) | _BV(CS50);
  1066. #endif
  1067. }
  1068. void digipot_current(uint8_t driver, int current) {
  1069. #if HAS_DIGIPOTSS
  1070. const uint8_t digipot_ch[] = DIGIPOT_CHANNELS;
  1071. digitalPotWrite(digipot_ch[driver], current);
  1072. #elif defined(MOTOR_CURRENT_PWM_XY_PIN)
  1073. switch (driver) {
  1074. case 0: analogWrite(MOTOR_CURRENT_PWM_XY_PIN, 255L * current / (MOTOR_CURRENT_PWM_RANGE)); break;
  1075. case 1: analogWrite(MOTOR_CURRENT_PWM_Z_PIN, 255L * current / (MOTOR_CURRENT_PWM_RANGE)); break;
  1076. case 2: analogWrite(MOTOR_CURRENT_PWM_E_PIN, 255L * current / (MOTOR_CURRENT_PWM_RANGE)); break;
  1077. }
  1078. #else
  1079. UNUSED(driver);
  1080. UNUSED(current);
  1081. #endif
  1082. }
  1083. void microstep_init() {
  1084. #if HAS_MICROSTEPS_E1
  1085. pinMode(E1_MS1_PIN, OUTPUT);
  1086. pinMode(E1_MS2_PIN, OUTPUT);
  1087. #endif
  1088. #if HAS_MICROSTEPS
  1089. pinMode(X_MS1_PIN, OUTPUT);
  1090. pinMode(X_MS2_PIN, OUTPUT);
  1091. pinMode(Y_MS1_PIN, OUTPUT);
  1092. pinMode(Y_MS2_PIN, OUTPUT);
  1093. pinMode(Z_MS1_PIN, OUTPUT);
  1094. pinMode(Z_MS2_PIN, OUTPUT);
  1095. pinMode(E0_MS1_PIN, OUTPUT);
  1096. pinMode(E0_MS2_PIN, OUTPUT);
  1097. const uint8_t microstep_modes[] = MICROSTEP_MODES;
  1098. for (uint16_t i = 0; i < COUNT(microstep_modes); i++)
  1099. microstep_mode(i, microstep_modes[i]);
  1100. #endif
  1101. }
  1102. void microstep_ms(uint8_t driver, int8_t ms1, int8_t ms2) {
  1103. if (ms1 >= 0) switch (driver) {
  1104. case 0: digitalWrite(X_MS1_PIN, ms1); break;
  1105. case 1: digitalWrite(Y_MS1_PIN, ms1); break;
  1106. case 2: digitalWrite(Z_MS1_PIN, ms1); break;
  1107. case 3: digitalWrite(E0_MS1_PIN, ms1); break;
  1108. #if HAS_MICROSTEPS_E1
  1109. case 4: digitalWrite(E1_MS1_PIN, ms1); break;
  1110. #endif
  1111. }
  1112. if (ms2 >= 0) switch (driver) {
  1113. case 0: digitalWrite(X_MS2_PIN, ms2); break;
  1114. case 1: digitalWrite(Y_MS2_PIN, ms2); break;
  1115. case 2: digitalWrite(Z_MS2_PIN, ms2); break;
  1116. case 3: digitalWrite(E0_MS2_PIN, ms2); break;
  1117. #if PIN_EXISTS(E1_MS2)
  1118. case 4: digitalWrite(E1_MS2_PIN, ms2); break;
  1119. #endif
  1120. }
  1121. }
  1122. void microstep_mode(uint8_t driver, uint8_t stepping_mode) {
  1123. switch (stepping_mode) {
  1124. case 1: microstep_ms(driver, MICROSTEP1); break;
  1125. case 2: microstep_ms(driver, MICROSTEP2); break;
  1126. case 4: microstep_ms(driver, MICROSTEP4); break;
  1127. case 8: microstep_ms(driver, MICROSTEP8); break;
  1128. case 16: microstep_ms(driver, MICROSTEP16); break;
  1129. }
  1130. }
  1131. void microstep_readings() {
  1132. SERIAL_PROTOCOLPGM("MS1,MS2 Pins\n");
  1133. SERIAL_PROTOCOLPGM("X: ");
  1134. SERIAL_PROTOCOL(digitalRead(X_MS1_PIN));
  1135. SERIAL_PROTOCOLLN(digitalRead(X_MS2_PIN));
  1136. SERIAL_PROTOCOLPGM("Y: ");
  1137. SERIAL_PROTOCOL(digitalRead(Y_MS1_PIN));
  1138. SERIAL_PROTOCOLLN(digitalRead(Y_MS2_PIN));
  1139. SERIAL_PROTOCOLPGM("Z: ");
  1140. SERIAL_PROTOCOL(digitalRead(Z_MS1_PIN));
  1141. SERIAL_PROTOCOLLN(digitalRead(Z_MS2_PIN));
  1142. SERIAL_PROTOCOLPGM("E0: ");
  1143. SERIAL_PROTOCOL(digitalRead(E0_MS1_PIN));
  1144. SERIAL_PROTOCOLLN(digitalRead(E0_MS2_PIN));
  1145. #if HAS_MICROSTEPS_E1
  1146. SERIAL_PROTOCOLPGM("E1: ");
  1147. SERIAL_PROTOCOL(digitalRead(E1_MS1_PIN));
  1148. SERIAL_PROTOCOLLN(digitalRead(E1_MS2_PIN));
  1149. #endif
  1150. }
  1151. #if ENABLED(Z_DUAL_ENDSTOPS)
  1152. void In_Homing_Process(bool state) { performing_homing = state; }
  1153. void Lock_z_motor(bool state) { locked_z_motor = state; }
  1154. void Lock_z2_motor(bool state) { locked_z2_motor = state; }
  1155. #endif