My Marlin configs for Fabrikator Mini and CTC i3 Pro B
您最多选择25个主题 主题必须以字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符

Marlin_main.cpp 203KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550
  1. /**
  2. * Marlin Firmware
  3. *
  4. * Based on Sprinter and grbl.
  5. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  6. *
  7. * This program is free software: you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License as published by
  9. * the Free Software Foundation, either version 3 of the License, or
  10. * (at your option) any later version.
  11. *
  12. * This program is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  15. * GNU General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU General Public License
  18. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  19. *
  20. * About Marlin
  21. *
  22. * This firmware is a mashup between Sprinter and grbl.
  23. * - https://github.com/kliment/Sprinter
  24. * - https://github.com/simen/grbl/tree
  25. *
  26. * It has preliminary support for Matthew Roberts advance algorithm
  27. * - http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  28. */
  29. #include "Marlin.h"
  30. #ifdef ENABLE_AUTO_BED_LEVELING
  31. #include "vector_3.h"
  32. #ifdef AUTO_BED_LEVELING_GRID
  33. #include "qr_solve.h"
  34. #endif
  35. #endif // ENABLE_AUTO_BED_LEVELING
  36. #define HAS_LCD_BUZZ (defined(ULTRALCD) || (defined(BEEPER) && BEEPER >= 0) || defined(LCD_USE_I2C_BUZZER))
  37. #define SERVO_LEVELING (defined(ENABLE_AUTO_BED_LEVELING) && PROBE_SERVO_DEACTIVATION_DELAY > 0)
  38. #ifdef MESH_BED_LEVELING
  39. #include "mesh_bed_leveling.h"
  40. #endif
  41. #include "ultralcd.h"
  42. #include "planner.h"
  43. #include "stepper.h"
  44. #include "temperature.h"
  45. #include "cardreader.h"
  46. #include "watchdog.h"
  47. #include "configuration_store.h"
  48. #include "language.h"
  49. #include "pins_arduino.h"
  50. #include "math.h"
  51. #ifdef BLINKM
  52. #include "blinkm.h"
  53. #include "Wire.h"
  54. #endif
  55. #if NUM_SERVOS > 0
  56. #include "servo.h"
  57. #endif
  58. #if HAS_DIGIPOTSS
  59. #include <SPI.h>
  60. #endif
  61. /**
  62. * Look here for descriptions of G-codes:
  63. * - http://linuxcnc.org/handbook/gcode/g-code.html
  64. * - http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  65. *
  66. * Help us document these G-codes online:
  67. * - http://www.marlinfirmware.org/index.php/G-Code
  68. * - http://reprap.org/wiki/G-code
  69. *
  70. * -----------------
  71. * Implemented Codes
  72. * -----------------
  73. *
  74. * "G" Codes
  75. *
  76. * G0 -> G1
  77. * G1 - Coordinated Movement X Y Z E
  78. * G2 - CW ARC
  79. * G3 - CCW ARC
  80. * G4 - Dwell S<seconds> or P<milliseconds>
  81. * G10 - retract filament according to settings of M207
  82. * G11 - retract recover filament according to settings of M208
  83. * G28 - Home one or more axes
  84. * G29 - Detailed Z-Probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  85. * G30 - Single Z Probe, probes bed at current XY location.
  86. * G31 - Dock sled (Z_PROBE_SLED only)
  87. * G32 - Undock sled (Z_PROBE_SLED only)
  88. * G90 - Use Absolute Coordinates
  89. * G91 - Use Relative Coordinates
  90. * G92 - Set current position to coordinates given
  91. *
  92. * "M" Codes
  93. *
  94. * M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
  95. * M1 - Same as M0
  96. * M17 - Enable/Power all stepper motors
  97. * M18 - Disable all stepper motors; same as M84
  98. * M20 - List SD card
  99. * M21 - Init SD card
  100. * M22 - Release SD card
  101. * M23 - Select SD file (M23 filename.g)
  102. * M24 - Start/resume SD print
  103. * M25 - Pause SD print
  104. * M26 - Set SD position in bytes (M26 S12345)
  105. * M27 - Report SD print status
  106. * M28 - Start SD write (M28 filename.g)
  107. * M29 - Stop SD write
  108. * M30 - Delete file from SD (M30 filename.g)
  109. * M31 - Output time since last M109 or SD card start to serial
  110. * M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  111. * syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  112. * Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
  113. * The '#' is necessary when calling from within sd files, as it stops buffer prereading
  114. * M33 - Get the longname version of a path
  115. * M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  116. * M48 - Measure Z_Probe repeatability. M48 [P # of points] [X position] [Y position] [V_erboseness #] [E_ngage Probe] [L # of legs of travel]
  117. * M80 - Turn on Power Supply
  118. * M81 - Turn off Power Supply
  119. * M82 - Set E codes absolute (default)
  120. * M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  121. * M84 - Disable steppers until next move,
  122. * or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  123. * M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  124. * M92 - Set axis_steps_per_unit - same syntax as G92
  125. * M104 - Set extruder target temp
  126. * M105 - Read current temp
  127. * M106 - Fan on
  128. * M107 - Fan off
  129. * M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  130. * Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  131. * IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  132. * M111 - Set debug flags with S<mask>. See flag bits defined in Marlin.h.
  133. * M112 - Emergency stop
  134. * M114 - Output current position to serial port
  135. * M115 - Capabilities string
  136. * M117 - Display a message on the controller screen
  137. * M119 - Output Endstop status to serial port
  138. * M120 - Enable endstop detection
  139. * M121 - Disable endstop detection
  140. * M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  141. * M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  142. * M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  143. * M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  144. * M140 - Set bed target temp
  145. * M145 - Set the heatup state H<hotend> B<bed> F<fan speed> for S<material> (0=PLA, 1=ABS)
  146. * M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  147. * M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  148. * Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  149. * M200 - set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).:D<millimeters>-
  150. * M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  151. * M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  152. * M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  153. * M204 - Set default acceleration: P for Printing moves, R for Retract only (no X, Y, Z) moves and T for Travel (non printing) moves (ex. M204 P800 T3000 R9000) in mm/sec^2
  154. * M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
  155. * M206 - Set additional homing offset
  156. * M207 - Set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
  157. * M208 - Set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  158. * M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  159. * M218 - Set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  160. * M220 - Set speed factor override percentage: S<factor in percent>
  161. * M221 - Set extrude factor override percentage: S<factor in percent>
  162. * M226 - Wait until the specified pin reaches the state required: P<pin number> S<pin state>
  163. * M240 - Trigger a camera to take a photograph
  164. * M250 - Set LCD contrast C<contrast value> (value 0..63)
  165. * M280 - Set servo position absolute. P: servo index, S: angle or microseconds
  166. * M300 - Play beep sound S<frequency Hz> P<duration ms>
  167. * M301 - Set PID parameters P I and D
  168. * M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  169. * M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  170. * M304 - Set bed PID parameters P I and D
  171. * M380 - Activate solenoid on active extruder
  172. * M381 - Disable all solenoids
  173. * M400 - Finish all moves
  174. * M401 - Lower z-probe if present
  175. * M402 - Raise z-probe if present
  176. * M404 - N<dia in mm> Enter the nominal filament width (3mm, 1.75mm ) or will display nominal filament width without parameters
  177. * M405 - Turn on Filament Sensor extrusion control. Optional D<delay in cm> to set delay in centimeters between sensor and extruder
  178. * M406 - Turn off Filament Sensor extrusion control
  179. * M407 - Display measured filament diameter
  180. * M410 - Quickstop. Abort all the planned moves
  181. * M420 - Enable/Disable Mesh Leveling (with current values) S1=enable S0=disable
  182. * M421 - Set a single Z coordinate in the Mesh Leveling grid. X<mm> Y<mm> Z<mm>
  183. * M428 - Set the home_offset logically based on the current_position
  184. * M500 - Store parameters in EEPROM
  185. * M501 - Read parameters from EEPROM (if you need reset them after you changed them temporarily).
  186. * M502 - Revert to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  187. * M503 - Print the current settings (from memory not from EEPROM). Use S0 to leave off headings.
  188. * M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  189. * M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  190. * M665 - Set delta configurations: L<diagonal rod> R<delta radius> S<segments/s>
  191. * M666 - Set delta endstop adjustment
  192. * M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  193. * M907 - Set digital trimpot motor current using axis codes.
  194. * M908 - Control digital trimpot directly.
  195. * M350 - Set microstepping mode.
  196. * M351 - Toggle MS1 MS2 pins directly.
  197. *
  198. * ************ SCARA Specific - This can change to suit future G-code regulations
  199. * M360 - SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  200. * M361 - SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  201. * M362 - SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  202. * M363 - SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  203. * M364 - SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
  204. * M365 - SCARA calibration: Scaling factor, X, Y, Z axis
  205. * ************* SCARA End ***************
  206. *
  207. * ************ Custom codes - This can change to suit future G-code regulations
  208. * M851 - Set probe's Z offset (mm above extruder -- The value will always be negative)
  209. * M928 - Start SD logging (M928 filename.g) - ended by M29
  210. * M999 - Restart after being stopped by error
  211. *
  212. * "T" Codes
  213. *
  214. * T0-T3 - Select a tool by index (usually an extruder) [ F<mm/min> ]
  215. *
  216. */
  217. #ifdef SDSUPPORT
  218. CardReader card;
  219. #endif
  220. bool Running = true;
  221. uint8_t marlin_debug_flags = DEBUG_INFO|DEBUG_ERRORS;
  222. static float feedrate = 1500.0, saved_feedrate;
  223. float current_position[NUM_AXIS] = { 0.0 };
  224. static float destination[NUM_AXIS] = { 0.0 };
  225. bool axis_known_position[3] = { false };
  226. static long gcode_N, gcode_LastN, Stopped_gcode_LastN = 0;
  227. static char *current_command, *current_command_args;
  228. static int cmd_queue_index_r = 0;
  229. static int cmd_queue_index_w = 0;
  230. static int commands_in_queue = 0;
  231. static char command_queue[BUFSIZE][MAX_CMD_SIZE];
  232. float homing_feedrate[] = HOMING_FEEDRATE;
  233. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  234. int feedrate_multiplier = 100; //100->1 200->2
  235. int saved_feedrate_multiplier;
  236. int extruder_multiply[EXTRUDERS] = ARRAY_BY_EXTRUDERS(100, 100, 100, 100);
  237. bool volumetric_enabled = false;
  238. float filament_size[EXTRUDERS] = ARRAY_BY_EXTRUDERS(DEFAULT_NOMINAL_FILAMENT_DIA, DEFAULT_NOMINAL_FILAMENT_DIA, DEFAULT_NOMINAL_FILAMENT_DIA, DEFAULT_NOMINAL_FILAMENT_DIA);
  239. float volumetric_multiplier[EXTRUDERS] = ARRAY_BY_EXTRUDERS(1.0, 1.0, 1.0, 1.0);
  240. float home_offset[3] = { 0 };
  241. float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  242. float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  243. uint8_t active_extruder = 0;
  244. int fanSpeed = 0;
  245. bool cancel_heatup = false;
  246. const char errormagic[] PROGMEM = "Error:";
  247. const char echomagic[] PROGMEM = "echo:";
  248. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  249. static bool relative_mode = false; //Determines Absolute or Relative Coordinates
  250. static char serial_char;
  251. static int serial_count = 0;
  252. static boolean comment_mode = false;
  253. static char *seen_pointer; ///< A pointer to find chars in the command string (X, Y, Z, E, etc.)
  254. const char* queued_commands_P= NULL; /* pointer to the current line in the active sequence of commands, or NULL when none */
  255. const int sensitive_pins[] = SENSITIVE_PINS; ///< Sensitive pin list for M42
  256. // Inactivity shutdown
  257. millis_t previous_cmd_ms = 0;
  258. static millis_t max_inactive_time = 0;
  259. static millis_t stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME * 1000L;
  260. millis_t print_job_start_ms = 0; ///< Print job start time
  261. millis_t print_job_stop_ms = 0; ///< Print job stop time
  262. static uint8_t target_extruder;
  263. bool no_wait_for_cooling = true;
  264. bool target_direction;
  265. #ifdef ENABLE_AUTO_BED_LEVELING
  266. int xy_travel_speed = XY_TRAVEL_SPEED;
  267. float zprobe_zoffset = -Z_PROBE_OFFSET_FROM_EXTRUDER;
  268. #endif
  269. #if defined(Z_DUAL_ENDSTOPS) && !defined(DELTA)
  270. float z_endstop_adj = 0;
  271. #endif
  272. // Extruder offsets
  273. #if EXTRUDERS > 1
  274. #ifndef EXTRUDER_OFFSET_X
  275. #define EXTRUDER_OFFSET_X { 0 }
  276. #endif
  277. #ifndef EXTRUDER_OFFSET_Y
  278. #define EXTRUDER_OFFSET_Y { 0 }
  279. #endif
  280. float extruder_offset[][EXTRUDERS] = {
  281. EXTRUDER_OFFSET_X,
  282. EXTRUDER_OFFSET_Y
  283. #ifdef DUAL_X_CARRIAGE
  284. , { 0 } // supports offsets in XYZ plane
  285. #endif
  286. };
  287. #endif
  288. #ifdef SERVO_ENDSTOPS
  289. int servo_endstops[] = SERVO_ENDSTOPS;
  290. int servo_endstop_angles[] = SERVO_ENDSTOP_ANGLES;
  291. #endif
  292. #ifdef BARICUDA
  293. int ValvePressure = 0;
  294. int EtoPPressure = 0;
  295. #endif
  296. #ifdef FWRETRACT
  297. bool autoretract_enabled = false;
  298. bool retracted[EXTRUDERS] = { false };
  299. bool retracted_swap[EXTRUDERS] = { false };
  300. float retract_length = RETRACT_LENGTH;
  301. float retract_length_swap = RETRACT_LENGTH_SWAP;
  302. float retract_feedrate = RETRACT_FEEDRATE;
  303. float retract_zlift = RETRACT_ZLIFT;
  304. float retract_recover_length = RETRACT_RECOVER_LENGTH;
  305. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  306. float retract_recover_feedrate = RETRACT_RECOVER_FEEDRATE;
  307. #endif // FWRETRACT
  308. #if defined(ULTIPANEL) && HAS_POWER_SWITCH
  309. bool powersupply =
  310. #ifdef PS_DEFAULT_OFF
  311. false
  312. #else
  313. true
  314. #endif
  315. ;
  316. #endif
  317. #ifdef DELTA
  318. float delta[3] = { 0 };
  319. #define SIN_60 0.8660254037844386
  320. #define COS_60 0.5
  321. float endstop_adj[3] = { 0 };
  322. // these are the default values, can be overriden with M665
  323. float delta_radius = DELTA_RADIUS;
  324. float delta_tower1_x = -SIN_60 * delta_radius; // front left tower
  325. float delta_tower1_y = -COS_60 * delta_radius;
  326. float delta_tower2_x = SIN_60 * delta_radius; // front right tower
  327. float delta_tower2_y = -COS_60 * delta_radius;
  328. float delta_tower3_x = 0; // back middle tower
  329. float delta_tower3_y = delta_radius;
  330. float delta_diagonal_rod = DELTA_DIAGONAL_ROD;
  331. float delta_diagonal_rod_2 = sq(delta_diagonal_rod);
  332. float delta_segments_per_second = DELTA_SEGMENTS_PER_SECOND;
  333. #ifdef ENABLE_AUTO_BED_LEVELING
  334. int delta_grid_spacing[2] = { 0, 0 };
  335. float bed_level[AUTO_BED_LEVELING_GRID_POINTS][AUTO_BED_LEVELING_GRID_POINTS];
  336. #endif
  337. #else
  338. static bool home_all_axis = true;
  339. #endif
  340. #ifdef SCARA
  341. float delta_segments_per_second = SCARA_SEGMENTS_PER_SECOND;
  342. static float delta[3] = { 0 };
  343. float axis_scaling[3] = { 1, 1, 1 }; // Build size scaling, default to 1
  344. #endif
  345. #ifdef FILAMENT_SENSOR
  346. //Variables for Filament Sensor input
  347. float filament_width_nominal = DEFAULT_NOMINAL_FILAMENT_DIA; //Set nominal filament width, can be changed with M404
  348. bool filament_sensor = false; //M405 turns on filament_sensor control, M406 turns it off
  349. float filament_width_meas = DEFAULT_MEASURED_FILAMENT_DIA; //Stores the measured filament diameter
  350. signed char measurement_delay[MAX_MEASUREMENT_DELAY+1]; //ring buffer to delay measurement store extruder factor after subtracting 100
  351. int delay_index1 = 0; //index into ring buffer
  352. int delay_index2 = -1; //index into ring buffer - set to -1 on startup to indicate ring buffer needs to be initialized
  353. float delay_dist = 0; //delay distance counter
  354. int meas_delay_cm = MEASUREMENT_DELAY_CM; //distance delay setting
  355. #endif
  356. #ifdef FILAMENT_RUNOUT_SENSOR
  357. static bool filrunoutEnqueued = false;
  358. #endif
  359. #ifdef SDSUPPORT
  360. static bool fromsd[BUFSIZE];
  361. #endif
  362. #if NUM_SERVOS > 0
  363. Servo servo[NUM_SERVOS];
  364. #endif
  365. #ifdef CHDK
  366. unsigned long chdkHigh = 0;
  367. boolean chdkActive = false;
  368. #endif
  369. //===========================================================================
  370. //================================ Functions ================================
  371. //===========================================================================
  372. void process_next_command();
  373. bool setTargetedHotend(int code);
  374. void serial_echopair_P(const char *s_P, float v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  375. void serial_echopair_P(const char *s_P, double v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  376. void serial_echopair_P(const char *s_P, unsigned long v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  377. #ifdef PREVENT_DANGEROUS_EXTRUDE
  378. float extrude_min_temp = EXTRUDE_MINTEMP;
  379. #endif
  380. #ifdef SDSUPPORT
  381. #include "SdFatUtil.h"
  382. int freeMemory() { return SdFatUtil::FreeRam(); }
  383. #else
  384. extern "C" {
  385. extern unsigned int __bss_end;
  386. extern unsigned int __heap_start;
  387. extern void *__brkval;
  388. int freeMemory() {
  389. int free_memory;
  390. if ((int)__brkval == 0)
  391. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  392. else
  393. free_memory = ((int)&free_memory) - ((int)__brkval);
  394. return free_memory;
  395. }
  396. }
  397. #endif //!SDSUPPORT
  398. /**
  399. * Inject the next command from the command queue, when possible
  400. * Return false only if no command was pending
  401. */
  402. static bool drain_queued_commands_P() {
  403. if (!queued_commands_P) return false;
  404. // Get the next 30 chars from the sequence of gcodes to run
  405. char cmd[30];
  406. strncpy_P(cmd, queued_commands_P, sizeof(cmd) - 1);
  407. cmd[sizeof(cmd) - 1] = '\0';
  408. // Look for the end of line, or the end of sequence
  409. size_t i = 0;
  410. char c;
  411. while((c = cmd[i]) && c != '\n') i++; // find the end of this gcode command
  412. cmd[i] = '\0';
  413. if (enqueuecommand(cmd)) { // buffer was not full (else we will retry later)
  414. if (c)
  415. queued_commands_P += i + 1; // move to next command
  416. else
  417. queued_commands_P = NULL; // will have no more commands in the sequence
  418. }
  419. return true;
  420. }
  421. /**
  422. * Record one or many commands to run from program memory.
  423. * Aborts the current queue, if any.
  424. * Note: drain_queued_commands_P() must be called repeatedly to drain the commands afterwards
  425. */
  426. void enqueuecommands_P(const char* pgcode) {
  427. queued_commands_P = pgcode;
  428. drain_queued_commands_P(); // first command executed asap (when possible)
  429. }
  430. /**
  431. * Copy a command directly into the main command buffer, from RAM.
  432. *
  433. * This is done in a non-safe way and needs a rework someday.
  434. * Returns false if it doesn't add any command
  435. */
  436. bool enqueuecommand(const char *cmd) {
  437. if (*cmd == ';' || commands_in_queue >= BUFSIZE) return false;
  438. // This is dangerous if a mixing of serial and this happens
  439. char *command = command_queue[cmd_queue_index_w];
  440. strcpy(command, cmd);
  441. SERIAL_ECHO_START;
  442. SERIAL_ECHOPGM(MSG_Enqueueing);
  443. SERIAL_ECHO(command);
  444. SERIAL_ECHOLNPGM("\"");
  445. cmd_queue_index_w = (cmd_queue_index_w + 1) % BUFSIZE;
  446. commands_in_queue++;
  447. return true;
  448. }
  449. void setup_killpin() {
  450. #if HAS_KILL
  451. SET_INPUT(KILL_PIN);
  452. WRITE(KILL_PIN, HIGH);
  453. #endif
  454. }
  455. void setup_filrunoutpin() {
  456. #if HAS_FILRUNOUT
  457. pinMode(FILRUNOUT_PIN, INPUT);
  458. #ifdef ENDSTOPPULLUP_FIL_RUNOUT
  459. WRITE(FILRUNOUT_PIN, HIGH);
  460. #endif
  461. #endif
  462. }
  463. // Set home pin
  464. void setup_homepin(void) {
  465. #if HAS_HOME
  466. SET_INPUT(HOME_PIN);
  467. WRITE(HOME_PIN, HIGH);
  468. #endif
  469. }
  470. void setup_photpin() {
  471. #if HAS_PHOTOGRAPH
  472. OUT_WRITE(PHOTOGRAPH_PIN, LOW);
  473. #endif
  474. }
  475. void setup_powerhold() {
  476. #if HAS_SUICIDE
  477. OUT_WRITE(SUICIDE_PIN, HIGH);
  478. #endif
  479. #if HAS_POWER_SWITCH
  480. #ifdef PS_DEFAULT_OFF
  481. OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  482. #else
  483. OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE);
  484. #endif
  485. #endif
  486. }
  487. void suicide() {
  488. #if HAS_SUICIDE
  489. OUT_WRITE(SUICIDE_PIN, LOW);
  490. #endif
  491. }
  492. void servo_init() {
  493. #if NUM_SERVOS >= 1 && HAS_SERVO_0
  494. servo[0].attach(SERVO0_PIN);
  495. #endif
  496. #if NUM_SERVOS >= 2 && HAS_SERVO_1
  497. servo[1].attach(SERVO1_PIN);
  498. #endif
  499. #if NUM_SERVOS >= 3 && HAS_SERVO_2
  500. servo[2].attach(SERVO2_PIN);
  501. #endif
  502. #if NUM_SERVOS >= 4 && HAS_SERVO_3
  503. servo[3].attach(SERVO3_PIN);
  504. #endif
  505. // Set position of Servo Endstops that are defined
  506. #ifdef SERVO_ENDSTOPS
  507. for (int i = 0; i < 3; i++)
  508. if (servo_endstops[i] >= 0)
  509. servo[servo_endstops[i]].write(servo_endstop_angles[i * 2 + 1]);
  510. #endif
  511. #if SERVO_LEVELING
  512. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  513. servo[servo_endstops[Z_AXIS]].detach();
  514. #endif
  515. }
  516. /**
  517. * Marlin entry-point: Set up before the program loop
  518. * - Set up the kill pin, filament runout, power hold
  519. * - Start the serial port
  520. * - Print startup messages and diagnostics
  521. * - Get EEPROM or default settings
  522. * - Initialize managers for:
  523. * • temperature
  524. * • planner
  525. * • watchdog
  526. * • stepper
  527. * • photo pin
  528. * • servos
  529. * • LCD controller
  530. * • Digipot I2C
  531. * • Z probe sled
  532. * • status LEDs
  533. */
  534. void setup() {
  535. setup_killpin();
  536. setup_filrunoutpin();
  537. setup_powerhold();
  538. MYSERIAL.begin(BAUDRATE);
  539. SERIAL_PROTOCOLLNPGM("start");
  540. SERIAL_ECHO_START;
  541. // Check startup - does nothing if bootloader sets MCUSR to 0
  542. byte mcu = MCUSR;
  543. if (mcu & 1) SERIAL_ECHOLNPGM(MSG_POWERUP);
  544. if (mcu & 2) SERIAL_ECHOLNPGM(MSG_EXTERNAL_RESET);
  545. if (mcu & 4) SERIAL_ECHOLNPGM(MSG_BROWNOUT_RESET);
  546. if (mcu & 8) SERIAL_ECHOLNPGM(MSG_WATCHDOG_RESET);
  547. if (mcu & 32) SERIAL_ECHOLNPGM(MSG_SOFTWARE_RESET);
  548. MCUSR = 0;
  549. SERIAL_ECHOPGM(MSG_MARLIN);
  550. SERIAL_ECHOLNPGM(" " STRING_VERSION);
  551. #ifdef STRING_VERSION_CONFIG_H
  552. #ifdef STRING_CONFIG_H_AUTHOR
  553. SERIAL_ECHO_START;
  554. SERIAL_ECHOPGM(MSG_CONFIGURATION_VER);
  555. SERIAL_ECHOPGM(STRING_VERSION_CONFIG_H);
  556. SERIAL_ECHOPGM(MSG_AUTHOR);
  557. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  558. SERIAL_ECHOPGM("Compiled: ");
  559. SERIAL_ECHOLNPGM(__DATE__);
  560. #endif // STRING_CONFIG_H_AUTHOR
  561. #endif // STRING_VERSION_CONFIG_H
  562. SERIAL_ECHO_START;
  563. SERIAL_ECHOPGM(MSG_FREE_MEMORY);
  564. SERIAL_ECHO(freeMemory());
  565. SERIAL_ECHOPGM(MSG_PLANNER_BUFFER_BYTES);
  566. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  567. #ifdef SDSUPPORT
  568. for (int8_t i = 0; i < BUFSIZE; i++) fromsd[i] = false;
  569. #endif
  570. // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  571. Config_RetrieveSettings();
  572. tp_init(); // Initialize temperature loop
  573. plan_init(); // Initialize planner;
  574. watchdog_init();
  575. st_init(); // Initialize stepper, this enables interrupts!
  576. setup_photpin();
  577. servo_init();
  578. lcd_init();
  579. _delay_ms(1000); // wait 1sec to display the splash screen
  580. #if HAS_CONTROLLERFAN
  581. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  582. #endif
  583. #ifdef DIGIPOT_I2C
  584. digipot_i2c_init();
  585. #endif
  586. #ifdef Z_PROBE_SLED
  587. pinMode(SLED_PIN, OUTPUT);
  588. digitalWrite(SLED_PIN, LOW); // turn it off
  589. #endif // Z_PROBE_SLED
  590. setup_homepin();
  591. #ifdef STAT_LED_RED
  592. pinMode(STAT_LED_RED, OUTPUT);
  593. digitalWrite(STAT_LED_RED, LOW); // turn it off
  594. #endif
  595. #ifdef STAT_LED_BLUE
  596. pinMode(STAT_LED_BLUE, OUTPUT);
  597. digitalWrite(STAT_LED_BLUE, LOW); // turn it off
  598. #endif
  599. }
  600. /**
  601. * The main Marlin program loop
  602. *
  603. * - Save or log commands to SD
  604. * - Process available commands (if not saving)
  605. * - Call heater manager
  606. * - Call inactivity manager
  607. * - Call endstop manager
  608. * - Call LCD update
  609. */
  610. void loop() {
  611. if (commands_in_queue < BUFSIZE - 1) get_command();
  612. #ifdef SDSUPPORT
  613. card.checkautostart(false);
  614. #endif
  615. if (commands_in_queue) {
  616. #ifdef SDSUPPORT
  617. if (card.saving) {
  618. char *command = command_queue[cmd_queue_index_r];
  619. if (strstr_P(command, PSTR("M29"))) {
  620. // M29 closes the file
  621. card.closefile();
  622. SERIAL_PROTOCOLLNPGM(MSG_FILE_SAVED);
  623. }
  624. else {
  625. // Write the string from the read buffer to SD
  626. card.write_command(command);
  627. if (card.logging)
  628. process_next_command(); // The card is saving because it's logging
  629. else
  630. SERIAL_PROTOCOLLNPGM(MSG_OK);
  631. }
  632. }
  633. else
  634. process_next_command();
  635. #else
  636. process_next_command();
  637. #endif // SDSUPPORT
  638. commands_in_queue--;
  639. cmd_queue_index_r = (cmd_queue_index_r + 1) % BUFSIZE;
  640. }
  641. checkHitEndstops();
  642. idle();
  643. }
  644. void gcode_line_error(const char *err, bool doFlush=true) {
  645. SERIAL_ERROR_START;
  646. serialprintPGM(err);
  647. SERIAL_ERRORLN(gcode_LastN);
  648. //Serial.println(gcode_N);
  649. if (doFlush) FlushSerialRequestResend();
  650. serial_count = 0;
  651. }
  652. /**
  653. * Add to the circular command queue the next command from:
  654. * - The command-injection queue (queued_commands_P)
  655. * - The active serial input (usually USB)
  656. * - The SD card file being actively printed
  657. */
  658. void get_command() {
  659. if (drain_queued_commands_P()) return; // priority is given to non-serial commands
  660. #ifdef NO_TIMEOUTS
  661. static millis_t last_command_time = 0;
  662. millis_t ms = millis();
  663. if (!MYSERIAL.available() && commands_in_queue == 0 && ms - last_command_time > NO_TIMEOUTS) {
  664. SERIAL_ECHOLNPGM(MSG_WAIT);
  665. last_command_time = ms;
  666. }
  667. #endif
  668. //
  669. // Loop while serial characters are incoming and the queue is not full
  670. //
  671. while (commands_in_queue < BUFSIZE && MYSERIAL.available() > 0) {
  672. #ifdef NO_TIMEOUTS
  673. last_command_time = ms;
  674. #endif
  675. serial_char = MYSERIAL.read();
  676. //
  677. // If the character ends the line, or the line is full...
  678. //
  679. if (serial_char == '\n' || serial_char == '\r' || serial_count >= MAX_CMD_SIZE-1) {
  680. // end of line == end of comment
  681. comment_mode = false;
  682. if (!serial_count) return; // empty lines just exit
  683. char *command = command_queue[cmd_queue_index_w];
  684. command[serial_count] = 0; // terminate string
  685. // this item in the queue is not from sd
  686. #ifdef SDSUPPORT
  687. fromsd[cmd_queue_index_w] = false;
  688. #endif
  689. char *npos = strchr(command, 'N');
  690. char *apos = strchr(command, '*');
  691. if (npos) {
  692. gcode_N = strtol(npos + 1, NULL, 10);
  693. if (gcode_N != gcode_LastN + 1 && strstr_P(command, PSTR("M110")) == NULL) {
  694. gcode_line_error(PSTR(MSG_ERR_LINE_NO));
  695. return;
  696. }
  697. if (apos) {
  698. byte checksum = 0, count = 0;
  699. while (command[count] != '*') checksum ^= command[count++];
  700. if (strtol(apos + 1, NULL, 10) != checksum) {
  701. gcode_line_error(PSTR(MSG_ERR_CHECKSUM_MISMATCH));
  702. return;
  703. }
  704. // if no errors, continue parsing
  705. }
  706. else {
  707. gcode_line_error(PSTR(MSG_ERR_NO_CHECKSUM));
  708. return;
  709. }
  710. gcode_LastN = gcode_N;
  711. // if no errors, continue parsing
  712. }
  713. else if (apos) { // No '*' without 'N'
  714. gcode_line_error(PSTR(MSG_ERR_NO_LINENUMBER_WITH_CHECKSUM), false);
  715. return;
  716. }
  717. // Movement commands alert when stopped
  718. if (IsStopped()) {
  719. char *gpos = strchr(command, 'G');
  720. if (gpos) {
  721. int codenum = strtol(gpos + 1, NULL, 10);
  722. switch (codenum) {
  723. case 0:
  724. case 1:
  725. case 2:
  726. case 3:
  727. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  728. LCD_MESSAGEPGM(MSG_STOPPED);
  729. break;
  730. }
  731. }
  732. }
  733. // If command was e-stop process now
  734. if (strcmp(command, "M112") == 0) kill(PSTR(MSG_KILLED));
  735. cmd_queue_index_w = (cmd_queue_index_w + 1) % BUFSIZE;
  736. commands_in_queue += 1;
  737. serial_count = 0; //clear buffer
  738. }
  739. else if (serial_char == '\\') { // Handle escapes
  740. if (MYSERIAL.available() > 0 && commands_in_queue < BUFSIZE) {
  741. // if we have one more character, copy it over
  742. serial_char = MYSERIAL.read();
  743. command_queue[cmd_queue_index_w][serial_count++] = serial_char;
  744. }
  745. // otherwise do nothing
  746. }
  747. else { // its not a newline, carriage return or escape char
  748. if (serial_char == ';') comment_mode = true;
  749. if (!comment_mode) command_queue[cmd_queue_index_w][serial_count++] = serial_char;
  750. }
  751. }
  752. #ifdef SDSUPPORT
  753. if (!card.sdprinting || serial_count) return;
  754. // '#' stops reading from SD to the buffer prematurely, so procedural macro calls are possible
  755. // if it occurs, stop_buffering is triggered and the buffer is ran dry.
  756. // this character _can_ occur in serial com, due to checksums. however, no checksums are used in SD printing
  757. static bool stop_buffering = false;
  758. if (commands_in_queue == 0) stop_buffering = false;
  759. while (!card.eof() && commands_in_queue < BUFSIZE && !stop_buffering) {
  760. int16_t n = card.get();
  761. serial_char = (char)n;
  762. if (serial_char == '\n' || serial_char == '\r' ||
  763. ((serial_char == '#' || serial_char == ':') && !comment_mode) ||
  764. serial_count >= (MAX_CMD_SIZE - 1) || n == -1
  765. ) {
  766. if (card.eof()) {
  767. SERIAL_PROTOCOLLNPGM(MSG_FILE_PRINTED);
  768. print_job_stop_ms = millis();
  769. char time[30];
  770. millis_t t = (print_job_stop_ms - print_job_start_ms) / 1000;
  771. int hours = t / 60 / 60, minutes = (t / 60) % 60;
  772. sprintf_P(time, PSTR("%i " MSG_END_HOUR " %i " MSG_END_MINUTE), hours, minutes);
  773. SERIAL_ECHO_START;
  774. SERIAL_ECHOLN(time);
  775. lcd_setstatus(time, true);
  776. card.printingHasFinished();
  777. card.checkautostart(true);
  778. }
  779. if (serial_char == '#') stop_buffering = true;
  780. if (!serial_count) {
  781. comment_mode = false; //for new command
  782. return; //if empty line
  783. }
  784. command_queue[cmd_queue_index_w][serial_count] = 0; //terminate string
  785. // if (!comment_mode) {
  786. fromsd[cmd_queue_index_w] = true;
  787. commands_in_queue += 1;
  788. cmd_queue_index_w = (cmd_queue_index_w + 1) % BUFSIZE;
  789. // }
  790. comment_mode = false; //for new command
  791. serial_count = 0; //clear buffer
  792. }
  793. else {
  794. if (serial_char == ';') comment_mode = true;
  795. if (!comment_mode) command_queue[cmd_queue_index_w][serial_count++] = serial_char;
  796. }
  797. }
  798. #endif // SDSUPPORT
  799. }
  800. bool code_has_value() {
  801. int i = 1;
  802. char c = seen_pointer[i];
  803. if (c == '-' || c == '+') c = seen_pointer[++i];
  804. if (c == '.') c = seen_pointer[++i];
  805. return (c >= '0' && c <= '9');
  806. }
  807. float code_value() {
  808. float ret;
  809. char *e = strchr(seen_pointer, 'E');
  810. if (e) {
  811. *e = 0;
  812. ret = strtod(seen_pointer+1, NULL);
  813. *e = 'E';
  814. }
  815. else
  816. ret = strtod(seen_pointer+1, NULL);
  817. return ret;
  818. }
  819. long code_value_long() { return strtol(seen_pointer + 1, NULL, 10); }
  820. int16_t code_value_short() { return (int16_t)strtol(seen_pointer + 1, NULL, 10); }
  821. bool code_seen(char code) {
  822. seen_pointer = strchr(current_command_args, code); // +3 since "G0 " is the shortest prefix
  823. return (seen_pointer != NULL); //Return True if a character was found
  824. }
  825. #define DEFINE_PGM_READ_ANY(type, reader) \
  826. static inline type pgm_read_any(const type *p) \
  827. { return pgm_read_##reader##_near(p); }
  828. DEFINE_PGM_READ_ANY(float, float);
  829. DEFINE_PGM_READ_ANY(signed char, byte);
  830. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  831. static const PROGMEM type array##_P[3] = \
  832. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  833. static inline type array(int axis) \
  834. { return pgm_read_any(&array##_P[axis]); }
  835. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  836. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  837. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  838. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  839. XYZ_CONSTS_FROM_CONFIG(float, home_bump_mm, HOME_BUMP_MM);
  840. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  841. #ifdef DUAL_X_CARRIAGE
  842. #define DXC_FULL_CONTROL_MODE 0
  843. #define DXC_AUTO_PARK_MODE 1
  844. #define DXC_DUPLICATION_MODE 2
  845. static int dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  846. static float x_home_pos(int extruder) {
  847. if (extruder == 0)
  848. return base_home_pos(X_AXIS) + home_offset[X_AXIS];
  849. else
  850. // In dual carriage mode the extruder offset provides an override of the
  851. // second X-carriage offset when homed - otherwise X2_HOME_POS is used.
  852. // This allow soft recalibration of the second extruder offset position without firmware reflash
  853. // (through the M218 command).
  854. return (extruder_offset[X_AXIS][1] > 0) ? extruder_offset[X_AXIS][1] : X2_HOME_POS;
  855. }
  856. static int x_home_dir(int extruder) {
  857. return (extruder == 0) ? X_HOME_DIR : X2_HOME_DIR;
  858. }
  859. static float inactive_extruder_x_pos = X2_MAX_POS; // used in mode 0 & 1
  860. static bool active_extruder_parked = false; // used in mode 1 & 2
  861. static float raised_parked_position[NUM_AXIS]; // used in mode 1
  862. static millis_t delayed_move_time = 0; // used in mode 1
  863. static float duplicate_extruder_x_offset = DEFAULT_DUPLICATION_X_OFFSET; // used in mode 2
  864. static float duplicate_extruder_temp_offset = 0; // used in mode 2
  865. bool extruder_duplication_enabled = false; // used in mode 2
  866. #endif //DUAL_X_CARRIAGE
  867. static void axis_is_at_home(AxisEnum axis) {
  868. #ifdef DUAL_X_CARRIAGE
  869. if (axis == X_AXIS) {
  870. if (active_extruder != 0) {
  871. current_position[X_AXIS] = x_home_pos(active_extruder);
  872. min_pos[X_AXIS] = X2_MIN_POS;
  873. max_pos[X_AXIS] = max(extruder_offset[X_AXIS][1], X2_MAX_POS);
  874. return;
  875. }
  876. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE) {
  877. float xoff = home_offset[X_AXIS];
  878. current_position[X_AXIS] = base_home_pos(X_AXIS) + xoff;
  879. min_pos[X_AXIS] = base_min_pos(X_AXIS) + xoff;
  880. max_pos[X_AXIS] = min(base_max_pos(X_AXIS) + xoff, max(extruder_offset[X_AXIS][1], X2_MAX_POS) - duplicate_extruder_x_offset);
  881. return;
  882. }
  883. }
  884. #endif
  885. #ifdef SCARA
  886. if (axis == X_AXIS || axis == Y_AXIS) {
  887. float homeposition[3];
  888. for (int i = 0; i < 3; i++) homeposition[i] = base_home_pos(i);
  889. // SERIAL_ECHOPGM("homeposition[x]= "); SERIAL_ECHO(homeposition[0]);
  890. // SERIAL_ECHOPGM("homeposition[y]= "); SERIAL_ECHOLN(homeposition[1]);
  891. // Works out real Homeposition angles using inverse kinematics,
  892. // and calculates homing offset using forward kinematics
  893. calculate_delta(homeposition);
  894. // SERIAL_ECHOPGM("base Theta= "); SERIAL_ECHO(delta[X_AXIS]);
  895. // SERIAL_ECHOPGM(" base Psi+Theta="); SERIAL_ECHOLN(delta[Y_AXIS]);
  896. for (int i = 0; i < 2; i++) delta[i] -= home_offset[i];
  897. // SERIAL_ECHOPGM("addhome X="); SERIAL_ECHO(home_offset[X_AXIS]);
  898. // SERIAL_ECHOPGM(" addhome Y="); SERIAL_ECHO(home_offset[Y_AXIS]);
  899. // SERIAL_ECHOPGM(" addhome Theta="); SERIAL_ECHO(delta[X_AXIS]);
  900. // SERIAL_ECHOPGM(" addhome Psi+Theta="); SERIAL_ECHOLN(delta[Y_AXIS]);
  901. calculate_SCARA_forward_Transform(delta);
  902. // SERIAL_ECHOPGM("Delta X="); SERIAL_ECHO(delta[X_AXIS]);
  903. // SERIAL_ECHOPGM(" Delta Y="); SERIAL_ECHOLN(delta[Y_AXIS]);
  904. current_position[axis] = delta[axis];
  905. // SCARA home positions are based on configuration since the actual limits are determined by the
  906. // inverse kinematic transform.
  907. min_pos[axis] = base_min_pos(axis); // + (delta[axis] - base_home_pos(axis));
  908. max_pos[axis] = base_max_pos(axis); // + (delta[axis] - base_home_pos(axis));
  909. }
  910. else
  911. #endif
  912. {
  913. current_position[axis] = base_home_pos(axis) + home_offset[axis];
  914. min_pos[axis] = base_min_pos(axis) + home_offset[axis];
  915. max_pos[axis] = base_max_pos(axis) + home_offset[axis];
  916. #if defined(ENABLE_AUTO_BED_LEVELING) && Z_HOME_DIR < 0
  917. if (axis == Z_AXIS) current_position[Z_AXIS] += zprobe_zoffset;
  918. #endif
  919. }
  920. }
  921. /**
  922. * Some planner shorthand inline functions
  923. */
  924. inline void set_homing_bump_feedrate(AxisEnum axis) {
  925. const int homing_bump_divisor[] = HOMING_BUMP_DIVISOR;
  926. if (homing_bump_divisor[axis] >= 1)
  927. feedrate = homing_feedrate[axis] / homing_bump_divisor[axis];
  928. else {
  929. feedrate = homing_feedrate[axis] / 10;
  930. SERIAL_ECHOLN("Warning: The Homing Bump Feedrate Divisor cannot be less than 1");
  931. }
  932. }
  933. inline void line_to_current_position() {
  934. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  935. }
  936. inline void line_to_z(float zPosition) {
  937. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  938. }
  939. inline void line_to_destination(float mm_m) {
  940. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], mm_m/60, active_extruder);
  941. }
  942. inline void line_to_destination() {
  943. line_to_destination(feedrate);
  944. }
  945. inline void sync_plan_position() {
  946. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  947. }
  948. #if defined(DELTA) || defined(SCARA)
  949. inline void sync_plan_position_delta() {
  950. calculate_delta(current_position);
  951. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
  952. }
  953. #endif
  954. inline void set_current_to_destination() { memcpy(current_position, destination, sizeof(current_position)); }
  955. inline void set_destination_to_current() { memcpy(destination, current_position, sizeof(destination)); }
  956. static void setup_for_endstop_move() {
  957. saved_feedrate = feedrate;
  958. saved_feedrate_multiplier = feedrate_multiplier;
  959. feedrate_multiplier = 100;
  960. refresh_cmd_timeout();
  961. enable_endstops(true);
  962. }
  963. #ifdef ENABLE_AUTO_BED_LEVELING
  964. #ifdef DELTA
  965. /**
  966. * Calculate delta, start a line, and set current_position to destination
  967. */
  968. void prepare_move_raw() {
  969. refresh_cmd_timeout();
  970. calculate_delta(destination);
  971. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], destination[E_AXIS], (feedrate/60)*(feedrate_multiplier/100.0), active_extruder);
  972. set_current_to_destination();
  973. }
  974. #endif
  975. #ifdef AUTO_BED_LEVELING_GRID
  976. #ifndef DELTA
  977. static void set_bed_level_equation_lsq(double *plane_equation_coefficients) {
  978. vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
  979. planeNormal.debug("planeNormal");
  980. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  981. //bedLevel.debug("bedLevel");
  982. //plan_bed_level_matrix.debug("bed level before");
  983. //vector_3 uncorrected_position = plan_get_position_mm();
  984. //uncorrected_position.debug("position before");
  985. vector_3 corrected_position = plan_get_position();
  986. //corrected_position.debug("position after");
  987. current_position[X_AXIS] = corrected_position.x;
  988. current_position[Y_AXIS] = corrected_position.y;
  989. current_position[Z_AXIS] = corrected_position.z;
  990. sync_plan_position();
  991. }
  992. #endif // !DELTA
  993. #else // !AUTO_BED_LEVELING_GRID
  994. static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
  995. plan_bed_level_matrix.set_to_identity();
  996. vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
  997. vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
  998. vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
  999. vector_3 planeNormal = vector_3::cross(pt1 - pt2, pt3 - pt2).get_normal();
  1000. if (planeNormal.z < 0) {
  1001. planeNormal.x = -planeNormal.x;
  1002. planeNormal.y = -planeNormal.y;
  1003. planeNormal.z = -planeNormal.z;
  1004. }
  1005. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1006. vector_3 corrected_position = plan_get_position();
  1007. current_position[X_AXIS] = corrected_position.x;
  1008. current_position[Y_AXIS] = corrected_position.y;
  1009. current_position[Z_AXIS] = corrected_position.z;
  1010. sync_plan_position();
  1011. }
  1012. #endif // !AUTO_BED_LEVELING_GRID
  1013. static void run_z_probe() {
  1014. #ifdef DELTA
  1015. float start_z = current_position[Z_AXIS];
  1016. long start_steps = st_get_position(Z_AXIS);
  1017. // move down slowly until you find the bed
  1018. feedrate = homing_feedrate[Z_AXIS] / 4;
  1019. destination[Z_AXIS] = -10;
  1020. prepare_move_raw(); // this will also set_current_to_destination
  1021. st_synchronize();
  1022. endstops_hit_on_purpose(); // clear endstop hit flags
  1023. // we have to let the planner know where we are right now as it is not where we said to go.
  1024. long stop_steps = st_get_position(Z_AXIS);
  1025. float mm = start_z - float(start_steps - stop_steps) / axis_steps_per_unit[Z_AXIS];
  1026. current_position[Z_AXIS] = mm;
  1027. sync_plan_position_delta();
  1028. #else // !DELTA
  1029. plan_bed_level_matrix.set_to_identity();
  1030. feedrate = homing_feedrate[Z_AXIS];
  1031. // Move down until the probe (or endstop?) is triggered
  1032. float zPosition = -10;
  1033. line_to_z(zPosition);
  1034. st_synchronize();
  1035. // Tell the planner where we ended up - Get this from the stepper handler
  1036. zPosition = st_get_position_mm(Z_AXIS);
  1037. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]);
  1038. // move up the retract distance
  1039. zPosition += home_bump_mm(Z_AXIS);
  1040. line_to_z(zPosition);
  1041. st_synchronize();
  1042. endstops_hit_on_purpose(); // clear endstop hit flags
  1043. // move back down slowly to find bed
  1044. set_homing_bump_feedrate(Z_AXIS);
  1045. zPosition -= home_bump_mm(Z_AXIS) * 2;
  1046. line_to_z(zPosition);
  1047. st_synchronize();
  1048. endstops_hit_on_purpose(); // clear endstop hit flags
  1049. // Get the current stepper position after bumping an endstop
  1050. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  1051. sync_plan_position();
  1052. #endif // !DELTA
  1053. }
  1054. /**
  1055. * Plan a move to (X, Y, Z) and set the current_position
  1056. * The final current_position may not be the one that was requested
  1057. */
  1058. static void do_blocking_move_to(float x, float y, float z) {
  1059. float oldFeedRate = feedrate;
  1060. #ifdef DELTA
  1061. feedrate = XY_TRAVEL_SPEED;
  1062. destination[X_AXIS] = x;
  1063. destination[Y_AXIS] = y;
  1064. destination[Z_AXIS] = z;
  1065. prepare_move_raw(); // this will also set_current_to_destination
  1066. st_synchronize();
  1067. #else
  1068. feedrate = homing_feedrate[Z_AXIS];
  1069. current_position[Z_AXIS] = z;
  1070. line_to_current_position();
  1071. st_synchronize();
  1072. feedrate = xy_travel_speed;
  1073. current_position[X_AXIS] = x;
  1074. current_position[Y_AXIS] = y;
  1075. line_to_current_position();
  1076. st_synchronize();
  1077. #endif
  1078. feedrate = oldFeedRate;
  1079. }
  1080. static void clean_up_after_endstop_move() {
  1081. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1082. enable_endstops(false);
  1083. #endif
  1084. feedrate = saved_feedrate;
  1085. feedrate_multiplier = saved_feedrate_multiplier;
  1086. refresh_cmd_timeout();
  1087. }
  1088. static void deploy_z_probe() {
  1089. #ifdef SERVO_ENDSTOPS
  1090. // Engage Z Servo endstop if enabled
  1091. if (servo_endstops[Z_AXIS] >= 0) {
  1092. Servo *srv = &servo[servo_endstops[Z_AXIS]];
  1093. #if SERVO_LEVELING
  1094. srv->attach(0);
  1095. #endif
  1096. srv->write(servo_endstop_angles[Z_AXIS * 2]);
  1097. #if SERVO_LEVELING
  1098. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  1099. srv->detach();
  1100. #endif
  1101. }
  1102. #elif defined(Z_PROBE_ALLEN_KEY)
  1103. feedrate = homing_feedrate[X_AXIS];
  1104. // Move to the start position to initiate deployment
  1105. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_X;
  1106. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_Y;
  1107. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_Z;
  1108. prepare_move_raw(); // this will also set_current_to_destination
  1109. // Home X to touch the belt
  1110. feedrate = homing_feedrate[X_AXIS]/10;
  1111. destination[X_AXIS] = 0;
  1112. prepare_move_raw(); // this will also set_current_to_destination
  1113. // Home Y for safety
  1114. feedrate = homing_feedrate[X_AXIS]/2;
  1115. destination[Y_AXIS] = 0;
  1116. prepare_move_raw(); // this will also set_current_to_destination
  1117. st_synchronize();
  1118. #ifdef Z_PROBE_ENDSTOP
  1119. bool z_probe_endstop = (READ(Z_PROBE_PIN) != Z_PROBE_ENDSTOP_INVERTING);
  1120. if (z_probe_endstop)
  1121. #else
  1122. bool z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
  1123. if (z_min_endstop)
  1124. #endif
  1125. {
  1126. if (IsRunning()) {
  1127. SERIAL_ERROR_START;
  1128. SERIAL_ERRORLNPGM("Z-Probe failed to engage!");
  1129. LCD_ALERTMESSAGEPGM("Err: ZPROBE");
  1130. }
  1131. Stop();
  1132. }
  1133. #endif // Z_PROBE_ALLEN_KEY
  1134. }
  1135. static void stow_z_probe(bool doRaise=true) {
  1136. #ifdef SERVO_ENDSTOPS
  1137. // Retract Z Servo endstop if enabled
  1138. if (servo_endstops[Z_AXIS] >= 0) {
  1139. #if Z_RAISE_AFTER_PROBING > 0
  1140. if (doRaise) {
  1141. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] + Z_RAISE_AFTER_PROBING); // this also updates current_position
  1142. st_synchronize();
  1143. }
  1144. #endif
  1145. // Change the Z servo angle
  1146. Servo *srv = &servo[servo_endstops[Z_AXIS]];
  1147. #if SERVO_LEVELING
  1148. srv->attach(0);
  1149. #endif
  1150. srv->write(servo_endstop_angles[Z_AXIS * 2 + 1]);
  1151. #if SERVO_LEVELING
  1152. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  1153. srv->detach();
  1154. #endif
  1155. }
  1156. #elif defined(Z_PROBE_ALLEN_KEY)
  1157. // Move up for safety
  1158. feedrate = homing_feedrate[X_AXIS];
  1159. destination[Z_AXIS] = current_position[Z_AXIS] + Z_RAISE_AFTER_PROBING;
  1160. prepare_move_raw(); // this will also set_current_to_destination
  1161. // Move to the start position to initiate retraction
  1162. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_STOW_X;
  1163. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_STOW_Y;
  1164. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_STOW_Z;
  1165. prepare_move_raw(); // this will also set_current_to_destination
  1166. // Move the nozzle down to push the probe into retracted position
  1167. feedrate = homing_feedrate[Z_AXIS]/10;
  1168. destination[Z_AXIS] = current_position[Z_AXIS] - Z_PROBE_ALLEN_KEY_STOW_DEPTH;
  1169. prepare_move_raw(); // this will also set_current_to_destination
  1170. // Move up for safety
  1171. feedrate = homing_feedrate[Z_AXIS]/2;
  1172. destination[Z_AXIS] = current_position[Z_AXIS] + Z_PROBE_ALLEN_KEY_STOW_DEPTH * 2;
  1173. prepare_move_raw(); // this will also set_current_to_destination
  1174. // Home XY for safety
  1175. feedrate = homing_feedrate[X_AXIS]/2;
  1176. destination[X_AXIS] = 0;
  1177. destination[Y_AXIS] = 0;
  1178. prepare_move_raw(); // this will also set_current_to_destination
  1179. st_synchronize();
  1180. #ifdef Z_PROBE_ENDSTOP
  1181. bool z_probe_endstop = (READ(Z_PROBE_PIN) != Z_PROBE_ENDSTOP_INVERTING);
  1182. if (!z_probe_endstop)
  1183. #else
  1184. bool z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
  1185. if (!z_min_endstop)
  1186. #endif
  1187. {
  1188. if (IsRunning()) {
  1189. SERIAL_ERROR_START;
  1190. SERIAL_ERRORLNPGM("Z-Probe failed to retract!");
  1191. LCD_ALERTMESSAGEPGM("Err: ZPROBE");
  1192. }
  1193. Stop();
  1194. }
  1195. #endif // Z_PROBE_ALLEN_KEY
  1196. }
  1197. enum ProbeAction {
  1198. ProbeStay = 0,
  1199. ProbeDeploy = BIT(0),
  1200. ProbeStow = BIT(1),
  1201. ProbeDeployAndStow = (ProbeDeploy | ProbeStow)
  1202. };
  1203. // Probe bed height at position (x,y), returns the measured z value
  1204. static float probe_pt(float x, float y, float z_before, ProbeAction probe_action=ProbeDeployAndStow, int verbose_level=1) {
  1205. // move to right place
  1206. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_before); // this also updates current_position
  1207. do_blocking_move_to(x - X_PROBE_OFFSET_FROM_EXTRUDER, y - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]); // this also updates current_position
  1208. #if !defined(Z_PROBE_SLED) && !defined(Z_PROBE_ALLEN_KEY)
  1209. if (probe_action & ProbeDeploy) deploy_z_probe();
  1210. #endif
  1211. run_z_probe();
  1212. float measured_z = current_position[Z_AXIS];
  1213. #if Z_RAISE_BETWEEN_PROBINGS > 0
  1214. if (probe_action == ProbeStay) {
  1215. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS); // this also updates current_position
  1216. st_synchronize();
  1217. }
  1218. #endif
  1219. #if !defined(Z_PROBE_SLED) && !defined(Z_PROBE_ALLEN_KEY)
  1220. if (probe_action & ProbeStow) stow_z_probe();
  1221. #endif
  1222. if (verbose_level > 2) {
  1223. SERIAL_PROTOCOLPGM("Bed X: ");
  1224. SERIAL_PROTOCOL_F(x, 3);
  1225. SERIAL_PROTOCOLPGM(" Y: ");
  1226. SERIAL_PROTOCOL_F(y, 3);
  1227. SERIAL_PROTOCOLPGM(" Z: ");
  1228. SERIAL_PROTOCOL_F(measured_z, 3);
  1229. SERIAL_EOL;
  1230. }
  1231. return measured_z;
  1232. }
  1233. #ifdef DELTA
  1234. /**
  1235. * All DELTA leveling in the Marlin uses NONLINEAR_BED_LEVELING
  1236. */
  1237. static void extrapolate_one_point(int x, int y, int xdir, int ydir) {
  1238. if (bed_level[x][y] != 0.0) {
  1239. return; // Don't overwrite good values.
  1240. }
  1241. float a = 2*bed_level[x+xdir][y] - bed_level[x+xdir*2][y]; // Left to right.
  1242. float b = 2*bed_level[x][y+ydir] - bed_level[x][y+ydir*2]; // Front to back.
  1243. float c = 2*bed_level[x+xdir][y+ydir] - bed_level[x+xdir*2][y+ydir*2]; // Diagonal.
  1244. float median = c; // Median is robust (ignores outliers).
  1245. if (a < b) {
  1246. if (b < c) median = b;
  1247. if (c < a) median = a;
  1248. } else { // b <= a
  1249. if (c < b) median = b;
  1250. if (a < c) median = a;
  1251. }
  1252. bed_level[x][y] = median;
  1253. }
  1254. // Fill in the unprobed points (corners of circular print surface)
  1255. // using linear extrapolation, away from the center.
  1256. static void extrapolate_unprobed_bed_level() {
  1257. int half = (AUTO_BED_LEVELING_GRID_POINTS-1)/2;
  1258. for (int y = 0; y <= half; y++) {
  1259. for (int x = 0; x <= half; x++) {
  1260. if (x + y < 3) continue;
  1261. extrapolate_one_point(half-x, half-y, x>1?+1:0, y>1?+1:0);
  1262. extrapolate_one_point(half+x, half-y, x>1?-1:0, y>1?+1:0);
  1263. extrapolate_one_point(half-x, half+y, x>1?+1:0, y>1?-1:0);
  1264. extrapolate_one_point(half+x, half+y, x>1?-1:0, y>1?-1:0);
  1265. }
  1266. }
  1267. }
  1268. // Print calibration results for plotting or manual frame adjustment.
  1269. static void print_bed_level() {
  1270. for (int y = 0; y < AUTO_BED_LEVELING_GRID_POINTS; y++) {
  1271. for (int x = 0; x < AUTO_BED_LEVELING_GRID_POINTS; x++) {
  1272. SERIAL_PROTOCOL_F(bed_level[x][y], 2);
  1273. SERIAL_PROTOCOLCHAR(' ');
  1274. }
  1275. SERIAL_EOL;
  1276. }
  1277. }
  1278. // Reset calibration results to zero.
  1279. void reset_bed_level() {
  1280. for (int y = 0; y < AUTO_BED_LEVELING_GRID_POINTS; y++) {
  1281. for (int x = 0; x < AUTO_BED_LEVELING_GRID_POINTS; x++) {
  1282. bed_level[x][y] = 0.0;
  1283. }
  1284. }
  1285. }
  1286. #endif // DELTA
  1287. #endif // ENABLE_AUTO_BED_LEVELING
  1288. #ifdef Z_PROBE_SLED
  1289. #ifndef SLED_DOCKING_OFFSET
  1290. #define SLED_DOCKING_OFFSET 0
  1291. #endif
  1292. /**
  1293. * Method to dock/undock a sled designed by Charles Bell.
  1294. *
  1295. * dock[in] If true, move to MAX_X and engage the electromagnet
  1296. * offset[in] The additional distance to move to adjust docking location
  1297. */
  1298. static void dock_sled(bool dock, int offset=0) {
  1299. if (!axis_known_position[X_AXIS] || !axis_known_position[Y_AXIS]) {
  1300. LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN);
  1301. SERIAL_ECHO_START;
  1302. SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN);
  1303. return;
  1304. }
  1305. if (dock) {
  1306. float oldXpos = current_position[X_AXIS]; // save x position
  1307. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] + Z_RAISE_AFTER_PROBING); // rise Z
  1308. do_blocking_move_to(X_MAX_POS + SLED_DOCKING_OFFSET + offset - 1, current_position[Y_AXIS], current_position[Z_AXIS]); // Dock sled a bit closer to ensure proper capturing
  1309. digitalWrite(SLED_PIN, LOW); // turn off magnet
  1310. do_blocking_move_to(oldXpos, current_position[Y_AXIS], current_position[Z_AXIS]); // return to position before docking
  1311. } else {
  1312. float oldXpos = current_position[X_AXIS]; // save x position
  1313. float z_loc = current_position[Z_AXIS];
  1314. if (z_loc < Z_RAISE_BEFORE_PROBING + 5) z_loc = Z_RAISE_BEFORE_PROBING;
  1315. do_blocking_move_to(X_MAX_POS + SLED_DOCKING_OFFSET + offset, current_position[Y_AXIS], z_loc); // this also updates current_position
  1316. digitalWrite(SLED_PIN, HIGH); // turn on magnet
  1317. do_blocking_move_to(oldXpos, current_position[Y_AXIS], current_position[Z_AXIS]); // return to position before docking
  1318. }
  1319. }
  1320. #endif // Z_PROBE_SLED
  1321. /**
  1322. * Home an individual axis
  1323. */
  1324. #define HOMEAXIS(LETTER) homeaxis(LETTER##_AXIS)
  1325. static void homeaxis(AxisEnum axis) {
  1326. #define HOMEAXIS_DO(LETTER) \
  1327. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  1328. if (axis == X_AXIS ? HOMEAXIS_DO(X) : axis == Y_AXIS ? HOMEAXIS_DO(Y) : axis == Z_AXIS ? HOMEAXIS_DO(Z) : 0) {
  1329. int axis_home_dir =
  1330. #ifdef DUAL_X_CARRIAGE
  1331. (axis == X_AXIS) ? x_home_dir(active_extruder) :
  1332. #endif
  1333. home_dir(axis);
  1334. // Set the axis position as setup for the move
  1335. current_position[axis] = 0;
  1336. sync_plan_position();
  1337. #ifdef Z_PROBE_SLED
  1338. // Get Probe
  1339. if (axis == Z_AXIS) {
  1340. if (axis_home_dir < 0) dock_sled(false);
  1341. }
  1342. #endif
  1343. #if SERVO_LEVELING && !defined(Z_PROBE_SLED)
  1344. // Deploy a probe if there is one, and homing towards the bed
  1345. if (axis == Z_AXIS) {
  1346. if (axis_home_dir < 0) deploy_z_probe();
  1347. }
  1348. #endif
  1349. #ifdef SERVO_ENDSTOPS
  1350. if (axis != Z_AXIS) {
  1351. // Engage Servo endstop if enabled
  1352. if (servo_endstops[axis] > -1)
  1353. servo[servo_endstops[axis]].write(servo_endstop_angles[axis * 2]);
  1354. }
  1355. #endif
  1356. // Set a flag for Z motor locking
  1357. #ifdef Z_DUAL_ENDSTOPS
  1358. if (axis == Z_AXIS) In_Homing_Process(true);
  1359. #endif
  1360. // Move towards the endstop until an endstop is triggered
  1361. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  1362. feedrate = homing_feedrate[axis];
  1363. line_to_destination();
  1364. st_synchronize();
  1365. // Set the axis position as setup for the move
  1366. current_position[axis] = 0;
  1367. sync_plan_position();
  1368. enable_endstops(false); // Disable endstops while moving away
  1369. // Move away from the endstop by the axis HOME_BUMP_MM
  1370. destination[axis] = -home_bump_mm(axis) * axis_home_dir;
  1371. line_to_destination();
  1372. st_synchronize();
  1373. enable_endstops(true); // Enable endstops for next homing move
  1374. // Slow down the feedrate for the next move
  1375. set_homing_bump_feedrate(axis);
  1376. // Move slowly towards the endstop until triggered
  1377. destination[axis] = 2 * home_bump_mm(axis) * axis_home_dir;
  1378. line_to_destination();
  1379. st_synchronize();
  1380. #ifdef Z_DUAL_ENDSTOPS
  1381. if (axis == Z_AXIS) {
  1382. float adj = fabs(z_endstop_adj);
  1383. bool lockZ1;
  1384. if (axis_home_dir > 0) {
  1385. adj = -adj;
  1386. lockZ1 = (z_endstop_adj > 0);
  1387. }
  1388. else
  1389. lockZ1 = (z_endstop_adj < 0);
  1390. if (lockZ1) Lock_z_motor(true); else Lock_z2_motor(true);
  1391. sync_plan_position();
  1392. // Move to the adjusted endstop height
  1393. feedrate = homing_feedrate[axis];
  1394. destination[Z_AXIS] = adj;
  1395. line_to_destination();
  1396. st_synchronize();
  1397. if (lockZ1) Lock_z_motor(false); else Lock_z2_motor(false);
  1398. In_Homing_Process(false);
  1399. } // Z_AXIS
  1400. #endif
  1401. #ifdef DELTA
  1402. // retrace by the amount specified in endstop_adj
  1403. if (endstop_adj[axis] * axis_home_dir < 0) {
  1404. enable_endstops(false); // Disable endstops while moving away
  1405. sync_plan_position();
  1406. destination[axis] = endstop_adj[axis];
  1407. line_to_destination();
  1408. st_synchronize();
  1409. enable_endstops(true); // Enable endstops for next homing move
  1410. }
  1411. #endif
  1412. // Set the axis position to its home position (plus home offsets)
  1413. axis_is_at_home(axis);
  1414. sync_plan_position();
  1415. destination[axis] = current_position[axis];
  1416. feedrate = 0.0;
  1417. endstops_hit_on_purpose(); // clear endstop hit flags
  1418. axis_known_position[axis] = true;
  1419. #ifdef Z_PROBE_SLED
  1420. // bring probe back
  1421. if (axis == Z_AXIS) {
  1422. if (axis_home_dir < 0) dock_sled(true);
  1423. }
  1424. #endif
  1425. #if SERVO_LEVELING && !defined(Z_PROBE_SLED)
  1426. // Deploy a probe if there is one, and homing towards the bed
  1427. if (axis == Z_AXIS) {
  1428. if (axis_home_dir < 0) stow_z_probe();
  1429. }
  1430. else
  1431. #endif
  1432. #ifdef SERVO_ENDSTOPS
  1433. {
  1434. // Retract Servo endstop if enabled
  1435. if (servo_endstops[axis] > -1)
  1436. servo[servo_endstops[axis]].write(servo_endstop_angles[axis * 2 + 1]);
  1437. }
  1438. #endif
  1439. }
  1440. }
  1441. #ifdef FWRETRACT
  1442. void retract(bool retracting, bool swapping=false) {
  1443. if (retracting == retracted[active_extruder]) return;
  1444. float oldFeedrate = feedrate;
  1445. set_destination_to_current();
  1446. if (retracting) {
  1447. feedrate = retract_feedrate * 60;
  1448. current_position[E_AXIS] += (swapping ? retract_length_swap : retract_length) / volumetric_multiplier[active_extruder];
  1449. plan_set_e_position(current_position[E_AXIS]);
  1450. prepare_move();
  1451. if (retract_zlift > 0.01) {
  1452. current_position[Z_AXIS] -= retract_zlift;
  1453. #ifdef DELTA
  1454. sync_plan_position_delta();
  1455. #else
  1456. sync_plan_position();
  1457. #endif
  1458. prepare_move();
  1459. }
  1460. }
  1461. else {
  1462. if (retract_zlift > 0.01) {
  1463. current_position[Z_AXIS] += retract_zlift;
  1464. #ifdef DELTA
  1465. sync_plan_position_delta();
  1466. #else
  1467. sync_plan_position();
  1468. #endif
  1469. //prepare_move();
  1470. }
  1471. feedrate = retract_recover_feedrate * 60;
  1472. float move_e = swapping ? retract_length_swap + retract_recover_length_swap : retract_length + retract_recover_length;
  1473. current_position[E_AXIS] -= move_e / volumetric_multiplier[active_extruder];
  1474. plan_set_e_position(current_position[E_AXIS]);
  1475. prepare_move();
  1476. }
  1477. feedrate = oldFeedrate;
  1478. retracted[active_extruder] = retracting;
  1479. } // retract()
  1480. #endif // FWRETRACT
  1481. /**
  1482. *
  1483. * G-Code Handler functions
  1484. *
  1485. */
  1486. /**
  1487. * Set XYZE destination and feedrate from the current GCode command
  1488. *
  1489. * - Set destination from included axis codes
  1490. * - Set to current for missing axis codes
  1491. * - Set the feedrate, if included
  1492. */
  1493. void gcode_get_destination() {
  1494. for (int i = 0; i < NUM_AXIS; i++) {
  1495. if (code_seen(axis_codes[i]))
  1496. destination[i] = code_value() + (axis_relative_modes[i] || relative_mode ? current_position[i] : 0);
  1497. else
  1498. destination[i] = current_position[i];
  1499. }
  1500. if (code_seen('F')) {
  1501. float next_feedrate = code_value();
  1502. if (next_feedrate > 0.0) feedrate = next_feedrate;
  1503. }
  1504. }
  1505. void unknown_command_error() {
  1506. SERIAL_ECHO_START;
  1507. SERIAL_ECHOPGM(MSG_UNKNOWN_COMMAND);
  1508. SERIAL_ECHO(current_command);
  1509. SERIAL_ECHOPGM("\"\n");
  1510. }
  1511. /**
  1512. * G0, G1: Coordinated movement of X Y Z E axes
  1513. */
  1514. inline void gcode_G0_G1() {
  1515. if (IsRunning()) {
  1516. gcode_get_destination(); // For X Y Z E F
  1517. #ifdef FWRETRACT
  1518. if (autoretract_enabled && !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  1519. float echange = destination[E_AXIS] - current_position[E_AXIS];
  1520. // Is this move an attempt to retract or recover?
  1521. if ((echange < -MIN_RETRACT && !retracted[active_extruder]) || (echange > MIN_RETRACT && retracted[active_extruder])) {
  1522. current_position[E_AXIS] = destination[E_AXIS]; // hide the slicer-generated retract/recover from calculations
  1523. plan_set_e_position(current_position[E_AXIS]); // AND from the planner
  1524. retract(!retracted[active_extruder]);
  1525. return;
  1526. }
  1527. }
  1528. #endif //FWRETRACT
  1529. prepare_move();
  1530. }
  1531. }
  1532. /**
  1533. * Plan an arc in 2 dimensions
  1534. *
  1535. * The arc is approximated by generating many small linear segments.
  1536. * The length of each segment is configured in MM_PER_ARC_SEGMENT (Default 1mm)
  1537. * Arcs should only be made relatively large (over 5mm), as larger arcs with
  1538. * larger segments will tend to be more efficient. Your slicer should have
  1539. * options for G2/G3 arc generation. In future these options may be GCode tunable.
  1540. */
  1541. void plan_arc(
  1542. float *target, // Destination position
  1543. float *offset, // Center of rotation relative to current_position
  1544. uint8_t clockwise // Clockwise?
  1545. ) {
  1546. float radius = hypot(offset[X_AXIS], offset[Y_AXIS]),
  1547. center_axis0 = current_position[X_AXIS] + offset[X_AXIS],
  1548. center_axis1 = current_position[Y_AXIS] + offset[Y_AXIS],
  1549. linear_travel = target[Z_AXIS] - current_position[Z_AXIS],
  1550. extruder_travel = target[E_AXIS] - current_position[E_AXIS],
  1551. r_axis0 = -offset[X_AXIS], // Radius vector from center to current location
  1552. r_axis1 = -offset[Y_AXIS],
  1553. rt_axis0 = target[X_AXIS] - center_axis0,
  1554. rt_axis1 = target[Y_AXIS] - center_axis1;
  1555. // CCW angle of rotation between position and target from the circle center. Only one atan2() trig computation required.
  1556. float angular_travel = atan2(r_axis0*rt_axis1-r_axis1*rt_axis0, r_axis0*rt_axis0+r_axis1*rt_axis1);
  1557. if (angular_travel < 0) { angular_travel += RADIANS(360); }
  1558. if (clockwise) { angular_travel -= RADIANS(360); }
  1559. // Make a circle if the angular rotation is 0
  1560. if (current_position[X_AXIS] == target[X_AXIS] && current_position[Y_AXIS] == target[Y_AXIS] && angular_travel == 0)
  1561. angular_travel += RADIANS(360);
  1562. float mm_of_travel = hypot(angular_travel*radius, fabs(linear_travel));
  1563. if (mm_of_travel < 0.001) { return; }
  1564. uint16_t segments = floor(mm_of_travel / MM_PER_ARC_SEGMENT);
  1565. if (segments == 0) segments = 1;
  1566. float theta_per_segment = angular_travel/segments;
  1567. float linear_per_segment = linear_travel/segments;
  1568. float extruder_per_segment = extruder_travel/segments;
  1569. /* Vector rotation by transformation matrix: r is the original vector, r_T is the rotated vector,
  1570. and phi is the angle of rotation. Based on the solution approach by Jens Geisler.
  1571. r_T = [cos(phi) -sin(phi);
  1572. sin(phi) cos(phi] * r ;
  1573. For arc generation, the center of the circle is the axis of rotation and the radius vector is
  1574. defined from the circle center to the initial position. Each line segment is formed by successive
  1575. vector rotations. This requires only two cos() and sin() computations to form the rotation
  1576. matrix for the duration of the entire arc. Error may accumulate from numerical round-off, since
  1577. all double numbers are single precision on the Arduino. (True double precision will not have
  1578. round off issues for CNC applications.) Single precision error can accumulate to be greater than
  1579. tool precision in some cases. Therefore, arc path correction is implemented.
  1580. Small angle approximation may be used to reduce computation overhead further. This approximation
  1581. holds for everything, but very small circles and large MM_PER_ARC_SEGMENT values. In other words,
  1582. theta_per_segment would need to be greater than 0.1 rad and N_ARC_CORRECTION would need to be large
  1583. to cause an appreciable drift error. N_ARC_CORRECTION~=25 is more than small enough to correct for
  1584. numerical drift error. N_ARC_CORRECTION may be on the order a hundred(s) before error becomes an
  1585. issue for CNC machines with the single precision Arduino calculations.
  1586. This approximation also allows plan_arc to immediately insert a line segment into the planner
  1587. without the initial overhead of computing cos() or sin(). By the time the arc needs to be applied
  1588. a correction, the planner should have caught up to the lag caused by the initial plan_arc overhead.
  1589. This is important when there are successive arc motions.
  1590. */
  1591. // Vector rotation matrix values
  1592. float cos_T = 1-0.5*theta_per_segment*theta_per_segment; // Small angle approximation
  1593. float sin_T = theta_per_segment;
  1594. float arc_target[4];
  1595. float sin_Ti;
  1596. float cos_Ti;
  1597. float r_axisi;
  1598. uint16_t i;
  1599. int8_t count = 0;
  1600. // Initialize the linear axis
  1601. arc_target[Z_AXIS] = current_position[Z_AXIS];
  1602. // Initialize the extruder axis
  1603. arc_target[E_AXIS] = current_position[E_AXIS];
  1604. float feed_rate = feedrate*feedrate_multiplier/60/100.0;
  1605. for (i = 1; i < segments; i++) { // Increment (segments-1)
  1606. if (count < N_ARC_CORRECTION) {
  1607. // Apply vector rotation matrix to previous r_axis0 / 1
  1608. r_axisi = r_axis0*sin_T + r_axis1*cos_T;
  1609. r_axis0 = r_axis0*cos_T - r_axis1*sin_T;
  1610. r_axis1 = r_axisi;
  1611. count++;
  1612. }
  1613. else {
  1614. // Arc correction to radius vector. Computed only every N_ARC_CORRECTION increments.
  1615. // Compute exact location by applying transformation matrix from initial radius vector(=-offset).
  1616. cos_Ti = cos(i*theta_per_segment);
  1617. sin_Ti = sin(i*theta_per_segment);
  1618. r_axis0 = -offset[X_AXIS]*cos_Ti + offset[Y_AXIS]*sin_Ti;
  1619. r_axis1 = -offset[X_AXIS]*sin_Ti - offset[Y_AXIS]*cos_Ti;
  1620. count = 0;
  1621. }
  1622. // Update arc_target location
  1623. arc_target[X_AXIS] = center_axis0 + r_axis0;
  1624. arc_target[Y_AXIS] = center_axis1 + r_axis1;
  1625. arc_target[Z_AXIS] += linear_per_segment;
  1626. arc_target[E_AXIS] += extruder_per_segment;
  1627. clamp_to_software_endstops(arc_target);
  1628. plan_buffer_line(arc_target[X_AXIS], arc_target[Y_AXIS], arc_target[Z_AXIS], arc_target[E_AXIS], feed_rate, active_extruder);
  1629. }
  1630. // Ensure last segment arrives at target location.
  1631. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feed_rate, active_extruder);
  1632. // As far as the parser is concerned, the position is now == target. In reality the
  1633. // motion control system might still be processing the action and the real tool position
  1634. // in any intermediate location.
  1635. set_current_to_destination();
  1636. }
  1637. /**
  1638. * G2: Clockwise Arc
  1639. * G3: Counterclockwise Arc
  1640. */
  1641. inline void gcode_G2_G3(bool clockwise) {
  1642. if (IsRunning()) {
  1643. #ifdef SF_ARC_FIX
  1644. bool relative_mode_backup = relative_mode;
  1645. relative_mode = true;
  1646. #endif
  1647. gcode_get_destination();
  1648. #ifdef SF_ARC_FIX
  1649. relative_mode = relative_mode_backup;
  1650. #endif
  1651. // Center of arc as offset from current_position
  1652. float arc_offset[2] = {
  1653. code_seen('I') ? code_value() : 0,
  1654. code_seen('J') ? code_value() : 0
  1655. };
  1656. // Send an arc to the planner
  1657. plan_arc(destination, arc_offset, clockwise);
  1658. refresh_cmd_timeout();
  1659. }
  1660. }
  1661. /**
  1662. * G4: Dwell S<seconds> or P<milliseconds>
  1663. */
  1664. inline void gcode_G4() {
  1665. millis_t codenum = 0;
  1666. if (code_seen('P')) codenum = code_value_long(); // milliseconds to wait
  1667. if (code_seen('S')) codenum = code_value() * 1000; // seconds to wait
  1668. st_synchronize();
  1669. refresh_cmd_timeout();
  1670. codenum += previous_cmd_ms; // keep track of when we started waiting
  1671. if (!lcd_hasstatus()) LCD_MESSAGEPGM(MSG_DWELL);
  1672. while (millis() < codenum) idle();
  1673. }
  1674. #ifdef FWRETRACT
  1675. /**
  1676. * G10 - Retract filament according to settings of M207
  1677. * G11 - Recover filament according to settings of M208
  1678. */
  1679. inline void gcode_G10_G11(bool doRetract=false) {
  1680. #if EXTRUDERS > 1
  1681. if (doRetract) {
  1682. retracted_swap[active_extruder] = (code_seen('S') && code_value_short() == 1); // checks for swap retract argument
  1683. }
  1684. #endif
  1685. retract(doRetract
  1686. #if EXTRUDERS > 1
  1687. , retracted_swap[active_extruder]
  1688. #endif
  1689. );
  1690. }
  1691. #endif //FWRETRACT
  1692. /**
  1693. * G28: Home all axes according to settings
  1694. *
  1695. * Parameters
  1696. *
  1697. * None Home to all axes with no parameters.
  1698. * With QUICK_HOME enabled XY will home together, then Z.
  1699. *
  1700. * Cartesian parameters
  1701. *
  1702. * X Home to the X endstop
  1703. * Y Home to the Y endstop
  1704. * Z Home to the Z endstop
  1705. *
  1706. */
  1707. inline void gcode_G28() {
  1708. // Wait for planner moves to finish!
  1709. st_synchronize();
  1710. // For auto bed leveling, clear the level matrix
  1711. #ifdef ENABLE_AUTO_BED_LEVELING
  1712. plan_bed_level_matrix.set_to_identity();
  1713. #ifdef DELTA
  1714. reset_bed_level();
  1715. #endif
  1716. #endif
  1717. // For manual bed leveling deactivate the matrix temporarily
  1718. #ifdef MESH_BED_LEVELING
  1719. uint8_t mbl_was_active = mbl.active;
  1720. mbl.active = 0;
  1721. #endif
  1722. setup_for_endstop_move();
  1723. set_destination_to_current();
  1724. feedrate = 0.0;
  1725. #ifdef DELTA
  1726. // A delta can only safely home all axis at the same time
  1727. // all axis have to home at the same time
  1728. // Pretend the current position is 0,0,0
  1729. for (int i = X_AXIS; i <= Z_AXIS; i++) current_position[i] = 0;
  1730. sync_plan_position();
  1731. // Move all carriages up together until the first endstop is hit.
  1732. for (int i = X_AXIS; i <= Z_AXIS; i++) destination[i] = 3 * Z_MAX_LENGTH;
  1733. feedrate = 1.732 * homing_feedrate[X_AXIS];
  1734. line_to_destination();
  1735. st_synchronize();
  1736. endstops_hit_on_purpose(); // clear endstop hit flags
  1737. // Destination reached
  1738. for (int i = X_AXIS; i <= Z_AXIS; i++) current_position[i] = destination[i];
  1739. // take care of back off and rehome now we are all at the top
  1740. HOMEAXIS(X);
  1741. HOMEAXIS(Y);
  1742. HOMEAXIS(Z);
  1743. sync_plan_position_delta();
  1744. #else // NOT DELTA
  1745. bool homeX = code_seen(axis_codes[X_AXIS]),
  1746. homeY = code_seen(axis_codes[Y_AXIS]),
  1747. homeZ = code_seen(axis_codes[Z_AXIS]);
  1748. home_all_axis = (!homeX && !homeY && !homeZ) || (homeX && homeY && homeZ);
  1749. if (home_all_axis || homeZ) {
  1750. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  1751. HOMEAXIS(Z);
  1752. #elif !defined(Z_SAFE_HOMING) && defined(Z_RAISE_BEFORE_HOMING) && Z_RAISE_BEFORE_HOMING > 0
  1753. // Raise Z before homing any other axes
  1754. // (Does this need to be "negative home direction?" Why not just use Z_RAISE_BEFORE_HOMING?)
  1755. destination[Z_AXIS] = -Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS);
  1756. feedrate = max_feedrate[Z_AXIS] * 60;
  1757. line_to_destination();
  1758. st_synchronize();
  1759. #endif
  1760. } // home_all_axis || homeZ
  1761. #ifdef QUICK_HOME
  1762. if (home_all_axis || (homeX && homeY)) { // First diagonal move
  1763. current_position[X_AXIS] = current_position[Y_AXIS] = 0;
  1764. #ifdef DUAL_X_CARRIAGE
  1765. int x_axis_home_dir = x_home_dir(active_extruder);
  1766. extruder_duplication_enabled = false;
  1767. #else
  1768. int x_axis_home_dir = home_dir(X_AXIS);
  1769. #endif
  1770. sync_plan_position();
  1771. float mlx = max_length(X_AXIS), mly = max_length(Y_AXIS),
  1772. mlratio = mlx>mly ? mly/mlx : mlx/mly;
  1773. destination[X_AXIS] = 1.5 * mlx * x_axis_home_dir;
  1774. destination[Y_AXIS] = 1.5 * mly * home_dir(Y_AXIS);
  1775. feedrate = min(homing_feedrate[X_AXIS], homing_feedrate[Y_AXIS]) * sqrt(mlratio * mlratio + 1);
  1776. line_to_destination();
  1777. st_synchronize();
  1778. axis_is_at_home(X_AXIS);
  1779. axis_is_at_home(Y_AXIS);
  1780. sync_plan_position();
  1781. destination[X_AXIS] = current_position[X_AXIS];
  1782. destination[Y_AXIS] = current_position[Y_AXIS];
  1783. line_to_destination();
  1784. feedrate = 0.0;
  1785. st_synchronize();
  1786. endstops_hit_on_purpose(); // clear endstop hit flags
  1787. current_position[X_AXIS] = destination[X_AXIS];
  1788. current_position[Y_AXIS] = destination[Y_AXIS];
  1789. #ifndef SCARA
  1790. current_position[Z_AXIS] = destination[Z_AXIS];
  1791. #endif
  1792. }
  1793. #endif // QUICK_HOME
  1794. #ifdef HOME_Y_BEFORE_X
  1795. // Home Y
  1796. if (home_all_axis || homeY) HOMEAXIS(Y);
  1797. #endif
  1798. // Home X
  1799. if (home_all_axis || homeX) {
  1800. #ifdef DUAL_X_CARRIAGE
  1801. int tmp_extruder = active_extruder;
  1802. extruder_duplication_enabled = false;
  1803. active_extruder = !active_extruder;
  1804. HOMEAXIS(X);
  1805. inactive_extruder_x_pos = current_position[X_AXIS];
  1806. active_extruder = tmp_extruder;
  1807. HOMEAXIS(X);
  1808. // reset state used by the different modes
  1809. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  1810. delayed_move_time = 0;
  1811. active_extruder_parked = true;
  1812. #else
  1813. HOMEAXIS(X);
  1814. #endif
  1815. }
  1816. #ifndef HOME_Y_BEFORE_X
  1817. // Home Y
  1818. if (home_all_axis || homeY) HOMEAXIS(Y);
  1819. #endif
  1820. // Home Z last if homing towards the bed
  1821. #if Z_HOME_DIR < 0
  1822. if (home_all_axis || homeZ) {
  1823. #ifdef Z_SAFE_HOMING
  1824. if (home_all_axis) {
  1825. current_position[Z_AXIS] = 0;
  1826. sync_plan_position();
  1827. //
  1828. // Set the probe (or just the nozzle) destination to the safe homing point
  1829. //
  1830. // NOTE: If current_position[X_AXIS] or current_position[Y_AXIS] were set above
  1831. // then this may not work as expected.
  1832. destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - X_PROBE_OFFSET_FROM_EXTRUDER);
  1833. destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - Y_PROBE_OFFSET_FROM_EXTRUDER);
  1834. destination[Z_AXIS] = -Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS); // Set destination away from bed
  1835. feedrate = XY_TRAVEL_SPEED;
  1836. // This could potentially move X, Y, Z all together
  1837. line_to_destination();
  1838. st_synchronize();
  1839. // Set current X, Y is the Z_SAFE_HOMING_POINT minus PROBE_OFFSET_FROM_EXTRUDER
  1840. current_position[X_AXIS] = destination[X_AXIS];
  1841. current_position[Y_AXIS] = destination[Y_AXIS];
  1842. // Home the Z axis
  1843. HOMEAXIS(Z);
  1844. }
  1845. else if (homeZ) { // Don't need to Home Z twice
  1846. // Let's see if X and Y are homed
  1847. if (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS]) {
  1848. // Make sure the probe is within the physical limits
  1849. // NOTE: This doesn't necessarily ensure the probe is also within the bed!
  1850. float cpx = current_position[X_AXIS], cpy = current_position[Y_AXIS];
  1851. if ( cpx >= X_MIN_POS - X_PROBE_OFFSET_FROM_EXTRUDER
  1852. && cpx <= X_MAX_POS - X_PROBE_OFFSET_FROM_EXTRUDER
  1853. && cpy >= Y_MIN_POS - Y_PROBE_OFFSET_FROM_EXTRUDER
  1854. && cpy <= Y_MAX_POS - Y_PROBE_OFFSET_FROM_EXTRUDER) {
  1855. // Set the plan current position to X, Y, 0
  1856. current_position[Z_AXIS] = 0;
  1857. plan_set_position(cpx, cpy, 0, current_position[E_AXIS]); // = sync_plan_position
  1858. // Set Z destination away from bed and raise the axis
  1859. // NOTE: This should always just be Z_RAISE_BEFORE_HOMING unless...???
  1860. destination[Z_AXIS] = -Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS);
  1861. feedrate = max_feedrate[Z_AXIS] * 60; // feedrate (mm/m) = max_feedrate (mm/s)
  1862. line_to_destination();
  1863. st_synchronize();
  1864. // Home the Z axis
  1865. HOMEAXIS(Z);
  1866. }
  1867. else {
  1868. LCD_MESSAGEPGM(MSG_ZPROBE_OUT);
  1869. SERIAL_ECHO_START;
  1870. SERIAL_ECHOLNPGM(MSG_ZPROBE_OUT);
  1871. }
  1872. }
  1873. else {
  1874. LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN);
  1875. SERIAL_ECHO_START;
  1876. SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN);
  1877. }
  1878. } // !home_all_axes && homeZ
  1879. #else // !Z_SAFE_HOMING
  1880. HOMEAXIS(Z);
  1881. #endif // !Z_SAFE_HOMING
  1882. } // home_all_axis || homeZ
  1883. #endif // Z_HOME_DIR < 0
  1884. sync_plan_position();
  1885. #endif // else DELTA
  1886. #ifdef SCARA
  1887. sync_plan_position_delta();
  1888. #endif
  1889. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1890. enable_endstops(false);
  1891. #endif
  1892. // For manual leveling move back to 0,0
  1893. #ifdef MESH_BED_LEVELING
  1894. if (mbl_was_active) {
  1895. current_position[X_AXIS] = mbl.get_x(0);
  1896. current_position[Y_AXIS] = mbl.get_y(0);
  1897. set_destination_to_current();
  1898. feedrate = homing_feedrate[X_AXIS];
  1899. line_to_destination();
  1900. st_synchronize();
  1901. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z;
  1902. sync_plan_position();
  1903. mbl.active = 1;
  1904. }
  1905. #endif
  1906. feedrate = saved_feedrate;
  1907. feedrate_multiplier = saved_feedrate_multiplier;
  1908. refresh_cmd_timeout();
  1909. endstops_hit_on_purpose(); // clear endstop hit flags
  1910. }
  1911. #ifdef MESH_BED_LEVELING
  1912. enum MeshLevelingState { MeshReport, MeshStart, MeshNext, MeshSet };
  1913. /**
  1914. * G29: Mesh-based Z-Probe, probes a grid and produces a
  1915. * mesh to compensate for variable bed height
  1916. *
  1917. * Parameters With MESH_BED_LEVELING:
  1918. *
  1919. * S0 Produce a mesh report
  1920. * S1 Start probing mesh points
  1921. * S2 Probe the next mesh point
  1922. * S3 Xn Yn Zn.nn Manually modify a single point
  1923. *
  1924. * The S0 report the points as below
  1925. *
  1926. * +----> X-axis
  1927. * |
  1928. * |
  1929. * v Y-axis
  1930. *
  1931. */
  1932. inline void gcode_G29() {
  1933. static int probe_point = -1;
  1934. MeshLevelingState state = code_seen('S') || code_seen('s') ? (MeshLevelingState)code_value_short() : MeshReport;
  1935. if (state < 0 || state > 3) {
  1936. SERIAL_PROTOCOLLNPGM("S out of range (0-3).");
  1937. return;
  1938. }
  1939. int ix, iy;
  1940. float z;
  1941. switch(state) {
  1942. case MeshReport:
  1943. if (mbl.active) {
  1944. SERIAL_PROTOCOLPGM("Num X,Y: ");
  1945. SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
  1946. SERIAL_PROTOCOLCHAR(',');
  1947. SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  1948. SERIAL_PROTOCOLPGM("\nZ search height: ");
  1949. SERIAL_PROTOCOL(MESH_HOME_SEARCH_Z);
  1950. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  1951. for (int y = 0; y < MESH_NUM_Y_POINTS; y++) {
  1952. for (int x = 0; x < MESH_NUM_X_POINTS; x++) {
  1953. SERIAL_PROTOCOLPGM(" ");
  1954. SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
  1955. }
  1956. SERIAL_EOL;
  1957. }
  1958. }
  1959. else
  1960. SERIAL_PROTOCOLLNPGM("Mesh bed leveling not active.");
  1961. break;
  1962. case MeshStart:
  1963. mbl.reset();
  1964. probe_point = 0;
  1965. enqueuecommands_P(PSTR("G28\nG29 S2"));
  1966. break;
  1967. case MeshNext:
  1968. if (probe_point < 0) {
  1969. SERIAL_PROTOCOLLNPGM("Start mesh probing with \"G29 S1\" first.");
  1970. return;
  1971. }
  1972. if (probe_point == 0) {
  1973. // Set Z to a positive value before recording the first Z.
  1974. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z;
  1975. sync_plan_position();
  1976. }
  1977. else {
  1978. // For others, save the Z of the previous point, then raise Z again.
  1979. ix = (probe_point - 1) % MESH_NUM_X_POINTS;
  1980. iy = (probe_point - 1) / MESH_NUM_X_POINTS;
  1981. if (iy & 1) ix = (MESH_NUM_X_POINTS - 1) - ix; // zig-zag
  1982. mbl.set_z(ix, iy, current_position[Z_AXIS]);
  1983. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z;
  1984. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[X_AXIS]/60, active_extruder);
  1985. st_synchronize();
  1986. }
  1987. // Is there another point to sample? Move there.
  1988. if (probe_point < MESH_NUM_X_POINTS * MESH_NUM_Y_POINTS) {
  1989. ix = probe_point % MESH_NUM_X_POINTS;
  1990. iy = probe_point / MESH_NUM_X_POINTS;
  1991. if (iy & 1) ix = (MESH_NUM_X_POINTS - 1) - ix; // zig-zag
  1992. current_position[X_AXIS] = mbl.get_x(ix);
  1993. current_position[Y_AXIS] = mbl.get_y(iy);
  1994. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[X_AXIS]/60, active_extruder);
  1995. st_synchronize();
  1996. probe_point++;
  1997. }
  1998. else {
  1999. // After recording the last point, activate the mbl and home
  2000. SERIAL_PROTOCOLLNPGM("Mesh probing done.");
  2001. probe_point = -1;
  2002. mbl.active = 1;
  2003. enqueuecommands_P(PSTR("G28"));
  2004. }
  2005. break;
  2006. case MeshSet:
  2007. if (code_seen('X') || code_seen('x')) {
  2008. ix = code_value_long()-1;
  2009. if (ix < 0 || ix >= MESH_NUM_X_POINTS) {
  2010. SERIAL_PROTOCOLPGM("X out of range (1-" STRINGIFY(MESH_NUM_X_POINTS) ").\n");
  2011. return;
  2012. }
  2013. } else {
  2014. SERIAL_PROTOCOLPGM("X not entered.\n");
  2015. return;
  2016. }
  2017. if (code_seen('Y') || code_seen('y')) {
  2018. iy = code_value_long()-1;
  2019. if (iy < 0 || iy >= MESH_NUM_Y_POINTS) {
  2020. SERIAL_PROTOCOLPGM("Y out of range (1-" STRINGIFY(MESH_NUM_Y_POINTS) ").\n");
  2021. return;
  2022. }
  2023. } else {
  2024. SERIAL_PROTOCOLPGM("Y not entered.\n");
  2025. return;
  2026. }
  2027. if (code_seen('Z') || code_seen('z')) {
  2028. z = code_value();
  2029. } else {
  2030. SERIAL_PROTOCOLPGM("Z not entered.\n");
  2031. return;
  2032. }
  2033. mbl.z_values[iy][ix] = z;
  2034. } // switch(state)
  2035. }
  2036. #elif defined(ENABLE_AUTO_BED_LEVELING)
  2037. void out_of_range_error(const char *edge) {
  2038. char msg[40];
  2039. sprintf_P(msg, PSTR("?Probe %s position out of range.\n"), edge);
  2040. SERIAL_PROTOCOL(msg);
  2041. }
  2042. /**
  2043. * G29: Detailed Z-Probe, probes the bed at 3 or more points.
  2044. * Will fail if the printer has not been homed with G28.
  2045. *
  2046. * Enhanced G29 Auto Bed Leveling Probe Routine
  2047. *
  2048. * Parameters With AUTO_BED_LEVELING_GRID:
  2049. *
  2050. * P Set the size of the grid that will be probed (P x P points).
  2051. * Not supported by non-linear delta printer bed leveling.
  2052. * Example: "G29 P4"
  2053. *
  2054. * S Set the XY travel speed between probe points (in mm/min)
  2055. *
  2056. * D Dry-Run mode. Just evaluate the bed Topology - Don't apply
  2057. * or clean the rotation Matrix. Useful to check the topology
  2058. * after a first run of G29.
  2059. *
  2060. * V Set the verbose level (0-4). Example: "G29 V3"
  2061. *
  2062. * T Generate a Bed Topology Report. Example: "G29 P5 T" for a detailed report.
  2063. * This is useful for manual bed leveling and finding flaws in the bed (to
  2064. * assist with part placement).
  2065. * Not supported by non-linear delta printer bed leveling.
  2066. *
  2067. * F Set the Front limit of the probing grid
  2068. * B Set the Back limit of the probing grid
  2069. * L Set the Left limit of the probing grid
  2070. * R Set the Right limit of the probing grid
  2071. *
  2072. * Global Parameters:
  2073. *
  2074. * E/e By default G29 will engage the probe, test the bed, then disengage.
  2075. * Include "E" to engage/disengage the probe for each sample.
  2076. * There's no extra effect if you have a fixed probe.
  2077. * Usage: "G29 E" or "G29 e"
  2078. *
  2079. */
  2080. inline void gcode_G29() {
  2081. // Don't allow auto-leveling without homing first
  2082. if (!axis_known_position[X_AXIS] || !axis_known_position[Y_AXIS]) {
  2083. LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN);
  2084. SERIAL_ECHO_START;
  2085. SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN);
  2086. return;
  2087. }
  2088. int verbose_level = code_seen('V') || code_seen('v') ? code_value_short() : 1;
  2089. if (verbose_level < 0 || verbose_level > 4) {
  2090. SERIAL_ECHOLNPGM("?(V)erbose Level is implausible (0-4).");
  2091. return;
  2092. }
  2093. bool dryrun = code_seen('D') || code_seen('d'),
  2094. deploy_probe_for_each_reading = code_seen('E') || code_seen('e');
  2095. #ifdef AUTO_BED_LEVELING_GRID
  2096. #ifndef DELTA
  2097. bool do_topography_map = verbose_level > 2 || code_seen('T') || code_seen('t');
  2098. #endif
  2099. if (verbose_level > 0) {
  2100. SERIAL_PROTOCOLPGM("G29 Auto Bed Leveling\n");
  2101. if (dryrun) SERIAL_ECHOLNPGM("Running in DRY-RUN mode");
  2102. }
  2103. int auto_bed_leveling_grid_points = AUTO_BED_LEVELING_GRID_POINTS;
  2104. #ifndef DELTA
  2105. if (code_seen('P')) auto_bed_leveling_grid_points = code_value_short();
  2106. if (auto_bed_leveling_grid_points < 2) {
  2107. SERIAL_PROTOCOLPGM("?Number of probed (P)oints is implausible (2 minimum).\n");
  2108. return;
  2109. }
  2110. #endif
  2111. xy_travel_speed = code_seen('S') ? code_value_short() : XY_TRAVEL_SPEED;
  2112. int left_probe_bed_position = code_seen('L') ? code_value_short() : LEFT_PROBE_BED_POSITION,
  2113. right_probe_bed_position = code_seen('R') ? code_value_short() : RIGHT_PROBE_BED_POSITION,
  2114. front_probe_bed_position = code_seen('F') ? code_value_short() : FRONT_PROBE_BED_POSITION,
  2115. back_probe_bed_position = code_seen('B') ? code_value_short() : BACK_PROBE_BED_POSITION;
  2116. bool left_out_l = left_probe_bed_position < MIN_PROBE_X,
  2117. left_out = left_out_l || left_probe_bed_position > right_probe_bed_position - MIN_PROBE_EDGE,
  2118. right_out_r = right_probe_bed_position > MAX_PROBE_X,
  2119. right_out = right_out_r || right_probe_bed_position < left_probe_bed_position + MIN_PROBE_EDGE,
  2120. front_out_f = front_probe_bed_position < MIN_PROBE_Y,
  2121. front_out = front_out_f || front_probe_bed_position > back_probe_bed_position - MIN_PROBE_EDGE,
  2122. back_out_b = back_probe_bed_position > MAX_PROBE_Y,
  2123. back_out = back_out_b || back_probe_bed_position < front_probe_bed_position + MIN_PROBE_EDGE;
  2124. if (left_out || right_out || front_out || back_out) {
  2125. if (left_out) {
  2126. out_of_range_error(PSTR("(L)eft"));
  2127. left_probe_bed_position = left_out_l ? MIN_PROBE_X : right_probe_bed_position - MIN_PROBE_EDGE;
  2128. }
  2129. if (right_out) {
  2130. out_of_range_error(PSTR("(R)ight"));
  2131. right_probe_bed_position = right_out_r ? MAX_PROBE_X : left_probe_bed_position + MIN_PROBE_EDGE;
  2132. }
  2133. if (front_out) {
  2134. out_of_range_error(PSTR("(F)ront"));
  2135. front_probe_bed_position = front_out_f ? MIN_PROBE_Y : back_probe_bed_position - MIN_PROBE_EDGE;
  2136. }
  2137. if (back_out) {
  2138. out_of_range_error(PSTR("(B)ack"));
  2139. back_probe_bed_position = back_out_b ? MAX_PROBE_Y : front_probe_bed_position + MIN_PROBE_EDGE;
  2140. }
  2141. return;
  2142. }
  2143. #endif // AUTO_BED_LEVELING_GRID
  2144. #ifdef Z_PROBE_SLED
  2145. dock_sled(false); // engage (un-dock) the probe
  2146. #elif defined(Z_PROBE_ALLEN_KEY) //|| defined(SERVO_LEVELING)
  2147. deploy_z_probe();
  2148. #endif
  2149. st_synchronize();
  2150. if (!dryrun) {
  2151. // make sure the bed_level_rotation_matrix is identity or the planner will get it wrong
  2152. plan_bed_level_matrix.set_to_identity();
  2153. #ifdef DELTA
  2154. reset_bed_level();
  2155. #else //!DELTA
  2156. //vector_3 corrected_position = plan_get_position_mm();
  2157. //corrected_position.debug("position before G29");
  2158. vector_3 uncorrected_position = plan_get_position();
  2159. //uncorrected_position.debug("position during G29");
  2160. current_position[X_AXIS] = uncorrected_position.x;
  2161. current_position[Y_AXIS] = uncorrected_position.y;
  2162. current_position[Z_AXIS] = uncorrected_position.z;
  2163. sync_plan_position();
  2164. #endif // !DELTA
  2165. }
  2166. setup_for_endstop_move();
  2167. feedrate = homing_feedrate[Z_AXIS];
  2168. #ifdef AUTO_BED_LEVELING_GRID
  2169. // probe at the points of a lattice grid
  2170. const int xGridSpacing = (right_probe_bed_position - left_probe_bed_position) / (auto_bed_leveling_grid_points - 1),
  2171. yGridSpacing = (back_probe_bed_position - front_probe_bed_position) / (auto_bed_leveling_grid_points - 1);
  2172. #ifdef DELTA
  2173. delta_grid_spacing[0] = xGridSpacing;
  2174. delta_grid_spacing[1] = yGridSpacing;
  2175. float z_offset = Z_PROBE_OFFSET_FROM_EXTRUDER;
  2176. if (code_seen(axis_codes[Z_AXIS])) z_offset += code_value();
  2177. #else // !DELTA
  2178. // solve the plane equation ax + by + d = z
  2179. // A is the matrix with rows [x y 1] for all the probed points
  2180. // B is the vector of the Z positions
  2181. // the normal vector to the plane is formed by the coefficients of the plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  2182. // so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  2183. int abl2 = auto_bed_leveling_grid_points * auto_bed_leveling_grid_points;
  2184. double eqnAMatrix[abl2 * 3], // "A" matrix of the linear system of equations
  2185. eqnBVector[abl2], // "B" vector of Z points
  2186. mean = 0.0;
  2187. #endif // !DELTA
  2188. int probePointCounter = 0;
  2189. bool zig = true;
  2190. for (int yCount = 0; yCount < auto_bed_leveling_grid_points; yCount++) {
  2191. double yProbe = front_probe_bed_position + yGridSpacing * yCount;
  2192. int xStart, xStop, xInc;
  2193. if (zig) {
  2194. xStart = 0;
  2195. xStop = auto_bed_leveling_grid_points;
  2196. xInc = 1;
  2197. }
  2198. else {
  2199. xStart = auto_bed_leveling_grid_points - 1;
  2200. xStop = -1;
  2201. xInc = -1;
  2202. }
  2203. #ifndef DELTA
  2204. // If do_topography_map is set then don't zig-zag. Just scan in one direction.
  2205. // This gets the probe points in more readable order.
  2206. if (!do_topography_map) zig = !zig;
  2207. #endif
  2208. for (int xCount = xStart; xCount != xStop; xCount += xInc) {
  2209. double xProbe = left_probe_bed_position + xGridSpacing * xCount;
  2210. // raise extruder
  2211. float measured_z,
  2212. z_before = probePointCounter ? Z_RAISE_BETWEEN_PROBINGS + current_position[Z_AXIS] : Z_RAISE_BEFORE_PROBING;
  2213. #ifdef DELTA
  2214. // Avoid probing the corners (outside the round or hexagon print surface) on a delta printer.
  2215. float distance_from_center = sqrt(xProbe*xProbe + yProbe*yProbe);
  2216. if (distance_from_center > DELTA_PROBABLE_RADIUS) continue;
  2217. #endif //DELTA
  2218. ProbeAction act;
  2219. if (deploy_probe_for_each_reading) // G29 E - Stow between probes
  2220. act = ProbeDeployAndStow;
  2221. else if (yCount == 0 && xCount == xStart)
  2222. act = ProbeDeploy;
  2223. else if (yCount == auto_bed_leveling_grid_points - 1 && xCount == xStop - xInc)
  2224. act = ProbeStow;
  2225. else
  2226. act = ProbeStay;
  2227. measured_z = probe_pt(xProbe, yProbe, z_before, act, verbose_level);
  2228. #ifndef DELTA
  2229. mean += measured_z;
  2230. eqnBVector[probePointCounter] = measured_z;
  2231. eqnAMatrix[probePointCounter + 0 * abl2] = xProbe;
  2232. eqnAMatrix[probePointCounter + 1 * abl2] = yProbe;
  2233. eqnAMatrix[probePointCounter + 2 * abl2] = 1;
  2234. #else
  2235. bed_level[xCount][yCount] = measured_z + z_offset;
  2236. #endif
  2237. probePointCounter++;
  2238. idle();
  2239. } //xProbe
  2240. } //yProbe
  2241. clean_up_after_endstop_move();
  2242. #ifdef DELTA
  2243. if (!dryrun) extrapolate_unprobed_bed_level();
  2244. print_bed_level();
  2245. #else // !DELTA
  2246. // solve lsq problem
  2247. double *plane_equation_coefficients = qr_solve(abl2, 3, eqnAMatrix, eqnBVector);
  2248. mean /= abl2;
  2249. if (verbose_level) {
  2250. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  2251. SERIAL_PROTOCOL_F(plane_equation_coefficients[0], 8);
  2252. SERIAL_PROTOCOLPGM(" b: ");
  2253. SERIAL_PROTOCOL_F(plane_equation_coefficients[1], 8);
  2254. SERIAL_PROTOCOLPGM(" d: ");
  2255. SERIAL_PROTOCOL_F(plane_equation_coefficients[2], 8);
  2256. SERIAL_EOL;
  2257. if (verbose_level > 2) {
  2258. SERIAL_PROTOCOLPGM("Mean of sampled points: ");
  2259. SERIAL_PROTOCOL_F(mean, 8);
  2260. SERIAL_EOL;
  2261. }
  2262. }
  2263. // Show the Topography map if enabled
  2264. if (do_topography_map) {
  2265. SERIAL_PROTOCOLPGM(" \nBed Height Topography: \n");
  2266. SERIAL_PROTOCOLPGM("+-----------+\n");
  2267. SERIAL_PROTOCOLPGM("|...Back....|\n");
  2268. SERIAL_PROTOCOLPGM("|Left..Right|\n");
  2269. SERIAL_PROTOCOLPGM("|...Front...|\n");
  2270. SERIAL_PROTOCOLPGM("+-----------+\n");
  2271. for (int yy = auto_bed_leveling_grid_points - 1; yy >= 0; yy--) {
  2272. for (int xx = 0; xx < auto_bed_leveling_grid_points; xx++) {
  2273. int ind = yy * auto_bed_leveling_grid_points + xx;
  2274. float diff = eqnBVector[ind] - mean;
  2275. if (diff >= 0.0)
  2276. SERIAL_PROTOCOLPGM(" +"); // Include + for column alignment
  2277. else
  2278. SERIAL_PROTOCOLCHAR(' ');
  2279. SERIAL_PROTOCOL_F(diff, 5);
  2280. } // xx
  2281. SERIAL_EOL;
  2282. } // yy
  2283. SERIAL_EOL;
  2284. } //do_topography_map
  2285. if (!dryrun) set_bed_level_equation_lsq(plane_equation_coefficients);
  2286. free(plane_equation_coefficients);
  2287. #endif //!DELTA
  2288. #else // !AUTO_BED_LEVELING_GRID
  2289. // Actions for each probe
  2290. ProbeAction p1, p2, p3;
  2291. if (deploy_probe_for_each_reading)
  2292. p1 = p2 = p3 = ProbeDeployAndStow;
  2293. else
  2294. p1 = ProbeDeploy, p2 = ProbeStay, p3 = ProbeStow;
  2295. // Probe at 3 arbitrary points
  2296. float z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING, p1, verbose_level),
  2297. z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS, p2, verbose_level),
  2298. z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS, p3, verbose_level);
  2299. clean_up_after_endstop_move();
  2300. if (!dryrun) set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
  2301. #endif // !AUTO_BED_LEVELING_GRID
  2302. #ifndef DELTA
  2303. if (verbose_level > 0)
  2304. plan_bed_level_matrix.debug(" \n\nBed Level Correction Matrix:");
  2305. if (!dryrun) {
  2306. // Correct the Z height difference from z-probe position and hotend tip position.
  2307. // The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
  2308. // When the bed is uneven, this height must be corrected.
  2309. float x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER,
  2310. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER,
  2311. z_tmp = current_position[Z_AXIS],
  2312. real_z = (float)st_get_position(Z_AXIS) / axis_steps_per_unit[Z_AXIS]; //get the real Z (since the auto bed leveling is already correcting the plane)
  2313. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); // Apply the correction sending the probe offset
  2314. current_position[Z_AXIS] += z_tmp - real_z; // The difference is added to current position and sent to planner.
  2315. sync_plan_position();
  2316. }
  2317. #endif // !DELTA
  2318. #ifdef Z_PROBE_SLED
  2319. dock_sled(true); // dock the probe
  2320. #elif defined(Z_PROBE_ALLEN_KEY) //|| defined(SERVO_LEVELING)
  2321. stow_z_probe();
  2322. #endif
  2323. #ifdef Z_PROBE_END_SCRIPT
  2324. enqueuecommands_P(PSTR(Z_PROBE_END_SCRIPT));
  2325. st_synchronize();
  2326. #endif
  2327. }
  2328. #ifndef Z_PROBE_SLED
  2329. inline void gcode_G30() {
  2330. deploy_z_probe(); // Engage Z Servo endstop if available
  2331. st_synchronize();
  2332. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  2333. setup_for_endstop_move();
  2334. feedrate = homing_feedrate[Z_AXIS];
  2335. run_z_probe();
  2336. SERIAL_PROTOCOLPGM("Bed X: ");
  2337. SERIAL_PROTOCOL(current_position[X_AXIS] + 0.0001);
  2338. SERIAL_PROTOCOLPGM(" Y: ");
  2339. SERIAL_PROTOCOL(current_position[Y_AXIS] + 0.0001);
  2340. SERIAL_PROTOCOLPGM(" Z: ");
  2341. SERIAL_PROTOCOL(current_position[Z_AXIS] + 0.0001);
  2342. SERIAL_EOL;
  2343. clean_up_after_endstop_move();
  2344. stow_z_probe(); // Retract Z Servo endstop if available
  2345. }
  2346. #endif //!Z_PROBE_SLED
  2347. #endif //ENABLE_AUTO_BED_LEVELING
  2348. /**
  2349. * G92: Set current position to given X Y Z E
  2350. */
  2351. inline void gcode_G92() {
  2352. if (!code_seen(axis_codes[E_AXIS]))
  2353. st_synchronize();
  2354. bool didXYZ = false;
  2355. for (int i = 0; i < NUM_AXIS; i++) {
  2356. if (code_seen(axis_codes[i])) {
  2357. float v = current_position[i] = code_value();
  2358. if (i == E_AXIS)
  2359. plan_set_e_position(v);
  2360. else
  2361. didXYZ = true;
  2362. }
  2363. }
  2364. if (didXYZ) {
  2365. #if defined(DELTA) || defined(SCARA)
  2366. sync_plan_position_delta();
  2367. #else
  2368. sync_plan_position();
  2369. #endif
  2370. }
  2371. }
  2372. #ifdef ULTIPANEL
  2373. /**
  2374. * M0: // M0 - Unconditional stop - Wait for user button press on LCD
  2375. * M1: // M1 - Conditional stop - Wait for user button press on LCD
  2376. */
  2377. inline void gcode_M0_M1() {
  2378. char *args = current_command_args;
  2379. millis_t codenum = 0;
  2380. bool hasP = false, hasS = false;
  2381. if (code_seen('P')) {
  2382. codenum = code_value_short(); // milliseconds to wait
  2383. hasP = codenum > 0;
  2384. }
  2385. if (code_seen('S')) {
  2386. codenum = code_value() * 1000; // seconds to wait
  2387. hasS = codenum > 0;
  2388. }
  2389. if (!hasP && !hasS && *args != '\0')
  2390. lcd_setstatus(args, true);
  2391. else {
  2392. LCD_MESSAGEPGM(MSG_USERWAIT);
  2393. #if defined(LCD_PROGRESS_BAR) && PROGRESS_MSG_EXPIRE > 0
  2394. dontExpireStatus();
  2395. #endif
  2396. }
  2397. lcd_ignore_click();
  2398. st_synchronize();
  2399. refresh_cmd_timeout();
  2400. if (codenum > 0) {
  2401. codenum += previous_cmd_ms; // wait until this time for a click
  2402. while (millis() < codenum && !lcd_clicked()) idle();
  2403. lcd_ignore_click(false);
  2404. }
  2405. else {
  2406. if (!lcd_detected()) return;
  2407. while (!lcd_clicked()) idle();
  2408. }
  2409. if (IS_SD_PRINTING)
  2410. LCD_MESSAGEPGM(MSG_RESUMING);
  2411. else
  2412. LCD_MESSAGEPGM(WELCOME_MSG);
  2413. }
  2414. #endif // ULTIPANEL
  2415. /**
  2416. * M17: Enable power on all stepper motors
  2417. */
  2418. inline void gcode_M17() {
  2419. LCD_MESSAGEPGM(MSG_NO_MOVE);
  2420. enable_all_steppers();
  2421. }
  2422. #ifdef SDSUPPORT
  2423. /**
  2424. * M20: List SD card to serial output
  2425. */
  2426. inline void gcode_M20() {
  2427. SERIAL_PROTOCOLLNPGM(MSG_BEGIN_FILE_LIST);
  2428. card.ls();
  2429. SERIAL_PROTOCOLLNPGM(MSG_END_FILE_LIST);
  2430. }
  2431. /**
  2432. * M21: Init SD Card
  2433. */
  2434. inline void gcode_M21() {
  2435. card.initsd();
  2436. }
  2437. /**
  2438. * M22: Release SD Card
  2439. */
  2440. inline void gcode_M22() {
  2441. card.release();
  2442. }
  2443. /**
  2444. * M23: Select a file
  2445. */
  2446. inline void gcode_M23() {
  2447. card.openFile(current_command_args, true);
  2448. }
  2449. /**
  2450. * M24: Start SD Print
  2451. */
  2452. inline void gcode_M24() {
  2453. card.startFileprint();
  2454. print_job_start_ms = millis();
  2455. }
  2456. /**
  2457. * M25: Pause SD Print
  2458. */
  2459. inline void gcode_M25() {
  2460. card.pauseSDPrint();
  2461. }
  2462. /**
  2463. * M26: Set SD Card file index
  2464. */
  2465. inline void gcode_M26() {
  2466. if (card.cardOK && code_seen('S'))
  2467. card.setIndex(code_value_short());
  2468. }
  2469. /**
  2470. * M27: Get SD Card status
  2471. */
  2472. inline void gcode_M27() {
  2473. card.getStatus();
  2474. }
  2475. /**
  2476. * M28: Start SD Write
  2477. */
  2478. inline void gcode_M28() {
  2479. card.openFile(current_command_args, false);
  2480. }
  2481. /**
  2482. * M29: Stop SD Write
  2483. * Processed in write to file routine above
  2484. */
  2485. inline void gcode_M29() {
  2486. // card.saving = false;
  2487. }
  2488. /**
  2489. * M30 <filename>: Delete SD Card file
  2490. */
  2491. inline void gcode_M30() {
  2492. if (card.cardOK) {
  2493. card.closefile();
  2494. card.removeFile(current_command_args);
  2495. }
  2496. }
  2497. #endif
  2498. /**
  2499. * M31: Get the time since the start of SD Print (or last M109)
  2500. */
  2501. inline void gcode_M31() {
  2502. print_job_stop_ms = millis();
  2503. millis_t t = (print_job_stop_ms - print_job_start_ms) / 1000;
  2504. int min = t / 60, sec = t % 60;
  2505. char time[30];
  2506. sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
  2507. SERIAL_ECHO_START;
  2508. SERIAL_ECHOLN(time);
  2509. lcd_setstatus(time);
  2510. autotempShutdown();
  2511. }
  2512. #ifdef SDSUPPORT
  2513. /**
  2514. * M32: Select file and start SD Print
  2515. */
  2516. inline void gcode_M32() {
  2517. if (card.sdprinting)
  2518. st_synchronize();
  2519. char* namestartpos = strchr(current_command_args, '!'); // Find ! to indicate filename string start.
  2520. if (!namestartpos)
  2521. namestartpos = current_command_args; // Default name position, 4 letters after the M
  2522. else
  2523. namestartpos++; //to skip the '!'
  2524. bool call_procedure = code_seen('P') && (seen_pointer < namestartpos);
  2525. if (card.cardOK) {
  2526. card.openFile(namestartpos, true, !call_procedure);
  2527. if (code_seen('S') && seen_pointer < namestartpos) // "S" (must occur _before_ the filename!)
  2528. card.setIndex(code_value_short());
  2529. card.startFileprint();
  2530. if (!call_procedure)
  2531. print_job_start_ms = millis(); //procedure calls count as normal print time.
  2532. }
  2533. }
  2534. #ifdef LONG_FILENAME_HOST_SUPPORT
  2535. /**
  2536. * M33: Get the long full path of a file or folder
  2537. *
  2538. * Parameters:
  2539. * <dospath> Case-insensitive DOS-style path to a file or folder
  2540. *
  2541. * Example:
  2542. * M33 miscel~1/armchair/armcha~1.gco
  2543. *
  2544. * Output:
  2545. * /Miscellaneous/Armchair/Armchair.gcode
  2546. */
  2547. inline void gcode_M33() {
  2548. char *args = strchr_pointer + 4;
  2549. while (*args == ' ') ++args;
  2550. clear_asterisk(args);
  2551. card.printLongPath(args);
  2552. }
  2553. #endif
  2554. /**
  2555. * M928: Start SD Write
  2556. */
  2557. inline void gcode_M928() {
  2558. card.openLogFile(current_command_args);
  2559. }
  2560. #endif // SDSUPPORT
  2561. /**
  2562. * M42: Change pin status via GCode
  2563. */
  2564. inline void gcode_M42() {
  2565. if (code_seen('S')) {
  2566. int pin_status = code_value_short(),
  2567. pin_number = LED_PIN;
  2568. if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
  2569. pin_number = code_value_short();
  2570. for (int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins) / sizeof(*sensitive_pins)); i++) {
  2571. if (sensitive_pins[i] == pin_number) {
  2572. pin_number = -1;
  2573. break;
  2574. }
  2575. }
  2576. #if HAS_FAN
  2577. if (pin_number == FAN_PIN) fanSpeed = pin_status;
  2578. #endif
  2579. if (pin_number > -1) {
  2580. pinMode(pin_number, OUTPUT);
  2581. digitalWrite(pin_number, pin_status);
  2582. analogWrite(pin_number, pin_status);
  2583. }
  2584. } // code_seen('S')
  2585. }
  2586. #if defined(ENABLE_AUTO_BED_LEVELING) && defined(Z_PROBE_REPEATABILITY_TEST)
  2587. // This is redundant since the SanityCheck.h already checks for a valid Z_PROBE_PIN, but here for clarity.
  2588. #ifdef Z_PROBE_ENDSTOP
  2589. #if !HAS_Z_PROBE
  2590. #error You must define Z_PROBE_PIN to enable Z-Probe repeatability calculation.
  2591. #endif
  2592. #elif !HAS_Z_MIN
  2593. #error You must define Z_MIN_PIN to enable Z-Probe repeatability calculation.
  2594. #endif
  2595. /**
  2596. * M48: Z-Probe repeatability measurement function.
  2597. *
  2598. * Usage:
  2599. * M48 <P#> <X#> <Y#> <V#> <E> <L#>
  2600. * P = Number of sampled points (4-50, default 10)
  2601. * X = Sample X position
  2602. * Y = Sample Y position
  2603. * V = Verbose level (0-4, default=1)
  2604. * E = Engage probe for each reading
  2605. * L = Number of legs of movement before probe
  2606. *
  2607. * This function assumes the bed has been homed. Specifically, that a G28 command
  2608. * as been issued prior to invoking the M48 Z-Probe repeatability measurement function.
  2609. * Any information generated by a prior G29 Bed leveling command will be lost and need to be
  2610. * regenerated.
  2611. */
  2612. inline void gcode_M48() {
  2613. double sum = 0.0, mean = 0.0, sigma = 0.0, sample_set[50];
  2614. uint8_t verbose_level = 1, n_samples = 10, n_legs = 0;
  2615. if (code_seen('V') || code_seen('v')) {
  2616. verbose_level = code_value_short();
  2617. if (verbose_level < 0 || verbose_level > 4 ) {
  2618. SERIAL_PROTOCOLPGM("?Verbose Level not plausible (0-4).\n");
  2619. return;
  2620. }
  2621. }
  2622. if (verbose_level > 0)
  2623. SERIAL_PROTOCOLPGM("M48 Z-Probe Repeatability test\n");
  2624. if (code_seen('P') || code_seen('p')) {
  2625. n_samples = code_value_short();
  2626. if (n_samples < 4 || n_samples > 50) {
  2627. SERIAL_PROTOCOLPGM("?Sample size not plausible (4-50).\n");
  2628. return;
  2629. }
  2630. }
  2631. double X_current = st_get_position_mm(X_AXIS),
  2632. Y_current = st_get_position_mm(Y_AXIS),
  2633. Z_current = st_get_position_mm(Z_AXIS),
  2634. E_current = st_get_position_mm(E_AXIS),
  2635. X_probe_location = X_current, Y_probe_location = Y_current,
  2636. Z_start_location = Z_current + Z_RAISE_BEFORE_PROBING;
  2637. bool deploy_probe_for_each_reading = code_seen('E') || code_seen('e');
  2638. if (code_seen('X') || code_seen('x')) {
  2639. X_probe_location = code_value() - X_PROBE_OFFSET_FROM_EXTRUDER;
  2640. if (X_probe_location < X_MIN_POS || X_probe_location > X_MAX_POS) {
  2641. out_of_range_error(PSTR("X"));
  2642. return;
  2643. }
  2644. }
  2645. if (code_seen('Y') || code_seen('y')) {
  2646. Y_probe_location = code_value() - Y_PROBE_OFFSET_FROM_EXTRUDER;
  2647. if (Y_probe_location < Y_MIN_POS || Y_probe_location > Y_MAX_POS) {
  2648. out_of_range_error(PSTR("Y"));
  2649. return;
  2650. }
  2651. }
  2652. if (code_seen('L') || code_seen('l')) {
  2653. n_legs = code_value_short();
  2654. if (n_legs == 1) n_legs = 2;
  2655. if (n_legs < 0 || n_legs > 15) {
  2656. SERIAL_PROTOCOLPGM("?Number of legs in movement not plausible (0-15).\n");
  2657. return;
  2658. }
  2659. }
  2660. //
  2661. // Do all the preliminary setup work. First raise the probe.
  2662. //
  2663. st_synchronize();
  2664. plan_bed_level_matrix.set_to_identity();
  2665. plan_buffer_line(X_current, Y_current, Z_start_location, E_current, homing_feedrate[Z_AXIS] / 60, active_extruder);
  2666. st_synchronize();
  2667. //
  2668. // Now get everything to the specified probe point So we can safely do a probe to
  2669. // get us close to the bed. If the Z-Axis is far from the bed, we don't want to
  2670. // use that as a starting point for each probe.
  2671. //
  2672. if (verbose_level > 2)
  2673. SERIAL_PROTOCOLPGM("Positioning the probe...\n");
  2674. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  2675. E_current,
  2676. homing_feedrate[X_AXIS]/60,
  2677. active_extruder);
  2678. st_synchronize();
  2679. current_position[X_AXIS] = X_current = st_get_position_mm(X_AXIS);
  2680. current_position[Y_AXIS] = Y_current = st_get_position_mm(Y_AXIS);
  2681. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  2682. current_position[E_AXIS] = E_current = st_get_position_mm(E_AXIS);
  2683. //
  2684. // OK, do the initial probe to get us close to the bed.
  2685. // Then retrace the right amount and use that in subsequent probes
  2686. //
  2687. deploy_z_probe();
  2688. setup_for_endstop_move();
  2689. run_z_probe();
  2690. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  2691. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  2692. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  2693. E_current,
  2694. homing_feedrate[X_AXIS]/60,
  2695. active_extruder);
  2696. st_synchronize();
  2697. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  2698. if (deploy_probe_for_each_reading) stow_z_probe();
  2699. for (uint8_t n=0; n < n_samples; n++) {
  2700. // Make sure we are at the probe location
  2701. do_blocking_move_to(X_probe_location, Y_probe_location, Z_start_location); // this also updates current_position
  2702. if (n_legs) {
  2703. millis_t ms = millis();
  2704. double radius = ms % (X_MAX_LENGTH / 4), // limit how far out to go
  2705. theta = RADIANS(ms % 360L);
  2706. float dir = (ms & 0x0001) ? 1 : -1; // clockwise or counter clockwise
  2707. //SERIAL_ECHOPAIR("starting radius: ",radius);
  2708. //SERIAL_ECHOPAIR(" theta: ",theta);
  2709. //SERIAL_ECHOPAIR(" direction: ",dir);
  2710. //SERIAL_EOL;
  2711. for (uint8_t l = 0; l < n_legs - 1; l++) {
  2712. ms = millis();
  2713. theta += RADIANS(dir * (ms % 20L));
  2714. radius += (ms % 10L) - 5L;
  2715. if (radius < 0.0) radius = -radius;
  2716. X_current = X_probe_location + cos(theta) * radius;
  2717. X_current = constrain(X_current, X_MIN_POS, X_MAX_POS);
  2718. Y_current = Y_probe_location + sin(theta) * radius;
  2719. Y_current = constrain(Y_current, Y_MIN_POS, Y_MAX_POS);
  2720. if (verbose_level > 3) {
  2721. SERIAL_ECHOPAIR("x: ", X_current);
  2722. SERIAL_ECHOPAIR("y: ", Y_current);
  2723. SERIAL_EOL;
  2724. }
  2725. do_blocking_move_to(X_current, Y_current, Z_current); // this also updates current_position
  2726. } // n_legs loop
  2727. // Go back to the probe location
  2728. do_blocking_move_to(X_probe_location, Y_probe_location, Z_start_location); // this also updates current_position
  2729. } // n_legs
  2730. if (deploy_probe_for_each_reading) {
  2731. deploy_z_probe();
  2732. delay(1000);
  2733. }
  2734. setup_for_endstop_move();
  2735. run_z_probe();
  2736. sample_set[n] = current_position[Z_AXIS];
  2737. //
  2738. // Get the current mean for the data points we have so far
  2739. //
  2740. sum = 0.0;
  2741. for (uint8_t j = 0; j <= n; j++) sum += sample_set[j];
  2742. mean = sum / (n + 1);
  2743. //
  2744. // Now, use that mean to calculate the standard deviation for the
  2745. // data points we have so far
  2746. //
  2747. sum = 0.0;
  2748. for (uint8_t j = 0; j <= n; j++) {
  2749. float ss = sample_set[j] - mean;
  2750. sum += ss * ss;
  2751. }
  2752. sigma = sqrt(sum / (n + 1));
  2753. if (verbose_level > 1) {
  2754. SERIAL_PROTOCOL(n+1);
  2755. SERIAL_PROTOCOLPGM(" of ");
  2756. SERIAL_PROTOCOL(n_samples);
  2757. SERIAL_PROTOCOLPGM(" z: ");
  2758. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
  2759. if (verbose_level > 2) {
  2760. SERIAL_PROTOCOLPGM(" mean: ");
  2761. SERIAL_PROTOCOL_F(mean,6);
  2762. SERIAL_PROTOCOLPGM(" sigma: ");
  2763. SERIAL_PROTOCOL_F(sigma,6);
  2764. }
  2765. }
  2766. if (verbose_level > 0) SERIAL_EOL;
  2767. plan_buffer_line(X_probe_location, Y_probe_location, Z_start_location, current_position[E_AXIS], homing_feedrate[Z_AXIS]/60, active_extruder);
  2768. st_synchronize();
  2769. // Stow between
  2770. if (deploy_probe_for_each_reading) {
  2771. stow_z_probe();
  2772. delay(1000);
  2773. }
  2774. }
  2775. // Stow after
  2776. if (!deploy_probe_for_each_reading) {
  2777. stow_z_probe();
  2778. delay(1000);
  2779. }
  2780. clean_up_after_endstop_move();
  2781. if (verbose_level > 0) {
  2782. SERIAL_PROTOCOLPGM("Mean: ");
  2783. SERIAL_PROTOCOL_F(mean, 6);
  2784. SERIAL_EOL;
  2785. }
  2786. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  2787. SERIAL_PROTOCOL_F(sigma, 6);
  2788. SERIAL_EOL; SERIAL_EOL;
  2789. }
  2790. #endif // ENABLE_AUTO_BED_LEVELING && Z_PROBE_REPEATABILITY_TEST
  2791. /**
  2792. * M104: Set hot end temperature
  2793. */
  2794. inline void gcode_M104() {
  2795. if (setTargetedHotend(104)) return;
  2796. if (code_seen('S')) {
  2797. float temp = code_value();
  2798. setTargetHotend(temp, target_extruder);
  2799. #ifdef DUAL_X_CARRIAGE
  2800. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && target_extruder == 0)
  2801. setTargetHotend1(temp == 0.0 ? 0.0 : temp + duplicate_extruder_temp_offset);
  2802. #endif
  2803. }
  2804. }
  2805. /**
  2806. * M105: Read hot end and bed temperature
  2807. */
  2808. inline void gcode_M105() {
  2809. if (setTargetedHotend(105)) return;
  2810. #if HAS_TEMP_0 || HAS_TEMP_BED || defined(HEATER_0_USES_MAX6675)
  2811. SERIAL_PROTOCOLPGM(MSG_OK);
  2812. #if HAS_TEMP_0
  2813. SERIAL_PROTOCOLPGM(" T:");
  2814. SERIAL_PROTOCOL_F(degHotend(target_extruder), 1);
  2815. SERIAL_PROTOCOLPGM(" /");
  2816. SERIAL_PROTOCOL_F(degTargetHotend(target_extruder), 1);
  2817. #endif
  2818. #if HAS_TEMP_BED
  2819. SERIAL_PROTOCOLPGM(" B:");
  2820. SERIAL_PROTOCOL_F(degBed(), 1);
  2821. SERIAL_PROTOCOLPGM(" /");
  2822. SERIAL_PROTOCOL_F(degTargetBed(), 1);
  2823. #endif
  2824. for (int8_t e = 0; e < EXTRUDERS; ++e) {
  2825. SERIAL_PROTOCOLPGM(" T");
  2826. SERIAL_PROTOCOL(e);
  2827. SERIAL_PROTOCOLCHAR(':');
  2828. SERIAL_PROTOCOL_F(degHotend(e), 1);
  2829. SERIAL_PROTOCOLPGM(" /");
  2830. SERIAL_PROTOCOL_F(degTargetHotend(e), 1);
  2831. }
  2832. #else // !HAS_TEMP_0 && !HAS_TEMP_BED
  2833. SERIAL_ERROR_START;
  2834. SERIAL_ERRORLNPGM(MSG_ERR_NO_THERMISTORS);
  2835. #endif
  2836. SERIAL_PROTOCOLPGM(" @:");
  2837. #ifdef EXTRUDER_WATTS
  2838. SERIAL_PROTOCOL((EXTRUDER_WATTS * getHeaterPower(target_extruder))/127);
  2839. SERIAL_PROTOCOLCHAR('W');
  2840. #else
  2841. SERIAL_PROTOCOL(getHeaterPower(target_extruder));
  2842. #endif
  2843. SERIAL_PROTOCOLPGM(" B@:");
  2844. #ifdef BED_WATTS
  2845. SERIAL_PROTOCOL((BED_WATTS * getHeaterPower(-1))/127);
  2846. SERIAL_PROTOCOLCHAR('W');
  2847. #else
  2848. SERIAL_PROTOCOL(getHeaterPower(-1));
  2849. #endif
  2850. #ifdef SHOW_TEMP_ADC_VALUES
  2851. #if HAS_TEMP_BED
  2852. SERIAL_PROTOCOLPGM(" ADC B:");
  2853. SERIAL_PROTOCOL_F(degBed(),1);
  2854. SERIAL_PROTOCOLPGM("C->");
  2855. SERIAL_PROTOCOL_F(rawBedTemp()/OVERSAMPLENR,0);
  2856. #endif
  2857. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  2858. SERIAL_PROTOCOLPGM(" T");
  2859. SERIAL_PROTOCOL(cur_extruder);
  2860. SERIAL_PROTOCOLCHAR(':');
  2861. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  2862. SERIAL_PROTOCOLPGM("C->");
  2863. SERIAL_PROTOCOL_F(rawHotendTemp(cur_extruder)/OVERSAMPLENR,0);
  2864. }
  2865. #endif
  2866. SERIAL_EOL;
  2867. }
  2868. #if HAS_FAN
  2869. /**
  2870. * M106: Set Fan Speed
  2871. */
  2872. inline void gcode_M106() { fanSpeed = code_seen('S') ? constrain(code_value_short(), 0, 255) : 255; }
  2873. /**
  2874. * M107: Fan Off
  2875. */
  2876. inline void gcode_M107() { fanSpeed = 0; }
  2877. #endif // HAS_FAN
  2878. /**
  2879. * M109: Wait for extruder(s) to reach temperature
  2880. */
  2881. inline void gcode_M109() {
  2882. if (setTargetedHotend(109)) return;
  2883. LCD_MESSAGEPGM(MSG_HEATING);
  2884. no_wait_for_cooling = code_seen('S');
  2885. if (no_wait_for_cooling || code_seen('R')) {
  2886. float temp = code_value();
  2887. setTargetHotend(temp, target_extruder);
  2888. #ifdef DUAL_X_CARRIAGE
  2889. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && target_extruder == 0)
  2890. setTargetHotend1(temp == 0.0 ? 0.0 : temp + duplicate_extruder_temp_offset);
  2891. #endif
  2892. }
  2893. #ifdef AUTOTEMP
  2894. autotemp_enabled = code_seen('F');
  2895. if (autotemp_enabled) autotemp_factor = code_value();
  2896. if (code_seen('S')) autotemp_min = code_value();
  2897. if (code_seen('B')) autotemp_max = code_value();
  2898. #endif
  2899. millis_t temp_ms = millis();
  2900. /* See if we are heating up or cooling down */
  2901. target_direction = isHeatingHotend(target_extruder); // true if heating, false if cooling
  2902. cancel_heatup = false;
  2903. #ifdef TEMP_RESIDENCY_TIME
  2904. long residency_start_ms = -1;
  2905. /* continue to loop until we have reached the target temp
  2906. _and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
  2907. while((!cancel_heatup)&&((residency_start_ms == -1) ||
  2908. (residency_start_ms >= 0 && (((unsigned int) (millis() - residency_start_ms)) < (TEMP_RESIDENCY_TIME * 1000UL)))) )
  2909. #else
  2910. while ( target_direction ? (isHeatingHotend(target_extruder)) : (isCoolingHotend(target_extruder)&&(no_wait_for_cooling==false)) )
  2911. #endif //TEMP_RESIDENCY_TIME
  2912. { // while loop
  2913. if (millis() > temp_ms + 1000UL) { //Print temp & remaining time every 1s while waiting
  2914. SERIAL_PROTOCOLPGM("T:");
  2915. SERIAL_PROTOCOL_F(degHotend(target_extruder),1);
  2916. SERIAL_PROTOCOLPGM(" E:");
  2917. SERIAL_PROTOCOL((int)target_extruder);
  2918. #ifdef TEMP_RESIDENCY_TIME
  2919. SERIAL_PROTOCOLPGM(" W:");
  2920. if (residency_start_ms > -1) {
  2921. temp_ms = ((TEMP_RESIDENCY_TIME * 1000UL) - (millis() - residency_start_ms)) / 1000UL;
  2922. SERIAL_PROTOCOLLN(temp_ms);
  2923. }
  2924. else {
  2925. SERIAL_PROTOCOLLNPGM("?");
  2926. }
  2927. #else
  2928. SERIAL_EOL;
  2929. #endif
  2930. temp_ms = millis();
  2931. }
  2932. idle();
  2933. #ifdef TEMP_RESIDENCY_TIME
  2934. // start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
  2935. // or when current temp falls outside the hysteresis after target temp was reached
  2936. if ((residency_start_ms == -1 && target_direction && (degHotend(target_extruder) >= (degTargetHotend(target_extruder)-TEMP_WINDOW))) ||
  2937. (residency_start_ms == -1 && !target_direction && (degHotend(target_extruder) <= (degTargetHotend(target_extruder)+TEMP_WINDOW))) ||
  2938. (residency_start_ms > -1 && labs(degHotend(target_extruder) - degTargetHotend(target_extruder)) > TEMP_HYSTERESIS) )
  2939. {
  2940. residency_start_ms = millis();
  2941. }
  2942. #endif //TEMP_RESIDENCY_TIME
  2943. }
  2944. LCD_MESSAGEPGM(MSG_HEATING_COMPLETE);
  2945. refresh_cmd_timeout();
  2946. print_job_start_ms = previous_cmd_ms;
  2947. }
  2948. #if HAS_TEMP_BED
  2949. /**
  2950. * M190: Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  2951. * Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  2952. */
  2953. inline void gcode_M190() {
  2954. LCD_MESSAGEPGM(MSG_BED_HEATING);
  2955. no_wait_for_cooling = code_seen('S');
  2956. if (no_wait_for_cooling || code_seen('R'))
  2957. setTargetBed(code_value());
  2958. millis_t temp_ms = millis();
  2959. cancel_heatup = false;
  2960. target_direction = isHeatingBed(); // true if heating, false if cooling
  2961. while ((target_direction && !cancel_heatup) ? isHeatingBed() : isCoolingBed() && !no_wait_for_cooling) {
  2962. millis_t ms = millis();
  2963. if (ms > temp_ms + 1000UL) { //Print Temp Reading every 1 second while heating up.
  2964. temp_ms = ms;
  2965. float tt = degHotend(active_extruder);
  2966. SERIAL_PROTOCOLPGM("T:");
  2967. SERIAL_PROTOCOL(tt);
  2968. SERIAL_PROTOCOLPGM(" E:");
  2969. SERIAL_PROTOCOL((int)active_extruder);
  2970. SERIAL_PROTOCOLPGM(" B:");
  2971. SERIAL_PROTOCOL_F(degBed(), 1);
  2972. SERIAL_EOL;
  2973. }
  2974. idle();
  2975. }
  2976. LCD_MESSAGEPGM(MSG_BED_DONE);
  2977. refresh_cmd_timeout();
  2978. }
  2979. #endif // HAS_TEMP_BED
  2980. /**
  2981. * M111: Set the debug level
  2982. */
  2983. inline void gcode_M111() {
  2984. marlin_debug_flags = code_seen('S') ? code_value_short() : DEBUG_INFO|DEBUG_ERRORS;
  2985. }
  2986. /**
  2987. * M112: Emergency Stop
  2988. */
  2989. inline void gcode_M112() { kill(PSTR(MSG_KILLED)); }
  2990. #ifdef BARICUDA
  2991. #if HAS_HEATER_1
  2992. /**
  2993. * M126: Heater 1 valve open
  2994. */
  2995. inline void gcode_M126() { ValvePressure = code_seen('S') ? constrain(code_value(), 0, 255) : 255; }
  2996. /**
  2997. * M127: Heater 1 valve close
  2998. */
  2999. inline void gcode_M127() { ValvePressure = 0; }
  3000. #endif
  3001. #if HAS_HEATER_2
  3002. /**
  3003. * M128: Heater 2 valve open
  3004. */
  3005. inline void gcode_M128() { EtoPPressure = code_seen('S') ? constrain(code_value(), 0, 255) : 255; }
  3006. /**
  3007. * M129: Heater 2 valve close
  3008. */
  3009. inline void gcode_M129() { EtoPPressure = 0; }
  3010. #endif
  3011. #endif //BARICUDA
  3012. /**
  3013. * M140: Set bed temperature
  3014. */
  3015. inline void gcode_M140() {
  3016. if (code_seen('S')) setTargetBed(code_value());
  3017. }
  3018. #ifdef ULTIPANEL
  3019. /**
  3020. * M145: Set the heatup state for a material in the LCD menu
  3021. * S<material> (0=PLA, 1=ABS)
  3022. * H<hotend temp>
  3023. * B<bed temp>
  3024. * F<fan speed>
  3025. */
  3026. inline void gcode_M145() {
  3027. uint8_t material = code_seen('S') ? code_value_short() : 0;
  3028. if (material < 0 || material > 1) {
  3029. SERIAL_ERROR_START;
  3030. SERIAL_ERRORLNPGM(MSG_ERR_MATERIAL_INDEX);
  3031. }
  3032. else {
  3033. int v;
  3034. switch (material) {
  3035. case 0:
  3036. if (code_seen('H')) {
  3037. v = code_value_short();
  3038. plaPreheatHotendTemp = constrain(v, EXTRUDE_MINTEMP, HEATER_0_MAXTEMP - 15);
  3039. }
  3040. if (code_seen('F')) {
  3041. v = code_value_short();
  3042. plaPreheatFanSpeed = constrain(v, 0, 255);
  3043. }
  3044. #if TEMP_SENSOR_BED != 0
  3045. if (code_seen('B')) {
  3046. v = code_value_short();
  3047. plaPreheatHPBTemp = constrain(v, BED_MINTEMP, BED_MAXTEMP - 15);
  3048. }
  3049. #endif
  3050. break;
  3051. case 1:
  3052. if (code_seen('H')) {
  3053. v = code_value_short();
  3054. absPreheatHotendTemp = constrain(v, EXTRUDE_MINTEMP, HEATER_0_MAXTEMP - 15);
  3055. }
  3056. if (code_seen('F')) {
  3057. v = code_value_short();
  3058. absPreheatFanSpeed = constrain(v, 0, 255);
  3059. }
  3060. #if TEMP_SENSOR_BED != 0
  3061. if (code_seen('B')) {
  3062. v = code_value_short();
  3063. absPreheatHPBTemp = constrain(v, BED_MINTEMP, BED_MAXTEMP - 15);
  3064. }
  3065. #endif
  3066. break;
  3067. }
  3068. }
  3069. }
  3070. #endif
  3071. #if HAS_POWER_SWITCH
  3072. /**
  3073. * M80: Turn on Power Supply
  3074. */
  3075. inline void gcode_M80() {
  3076. OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE); //GND
  3077. // If you have a switch on suicide pin, this is useful
  3078. // if you want to start another print with suicide feature after
  3079. // a print without suicide...
  3080. #if HAS_SUICIDE
  3081. OUT_WRITE(SUICIDE_PIN, HIGH);
  3082. #endif
  3083. #ifdef ULTIPANEL
  3084. powersupply = true;
  3085. LCD_MESSAGEPGM(WELCOME_MSG);
  3086. lcd_update();
  3087. #endif
  3088. }
  3089. #endif // HAS_POWER_SWITCH
  3090. /**
  3091. * M81: Turn off Power, including Power Supply, if there is one.
  3092. *
  3093. * This code should ALWAYS be available for EMERGENCY SHUTDOWN!
  3094. */
  3095. inline void gcode_M81() {
  3096. disable_all_heaters();
  3097. st_synchronize();
  3098. disable_e0();
  3099. disable_e1();
  3100. disable_e2();
  3101. disable_e3();
  3102. finishAndDisableSteppers();
  3103. fanSpeed = 0;
  3104. delay(1000); // Wait 1 second before switching off
  3105. #if HAS_SUICIDE
  3106. st_synchronize();
  3107. suicide();
  3108. #elif HAS_POWER_SWITCH
  3109. OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  3110. #endif
  3111. #ifdef ULTIPANEL
  3112. #if HAS_POWER_SWITCH
  3113. powersupply = false;
  3114. #endif
  3115. LCD_MESSAGEPGM(MACHINE_NAME " " MSG_OFF ".");
  3116. lcd_update();
  3117. #endif
  3118. }
  3119. /**
  3120. * M82: Set E codes absolute (default)
  3121. */
  3122. inline void gcode_M82() { axis_relative_modes[E_AXIS] = false; }
  3123. /**
  3124. * M82: Set E codes relative while in Absolute Coordinates (G90) mode
  3125. */
  3126. inline void gcode_M83() { axis_relative_modes[E_AXIS] = true; }
  3127. /**
  3128. * M18, M84: Disable all stepper motors
  3129. */
  3130. inline void gcode_M18_M84() {
  3131. if (code_seen('S')) {
  3132. stepper_inactive_time = code_value() * 1000;
  3133. }
  3134. else {
  3135. bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS]))|| (code_seen(axis_codes[E_AXIS])));
  3136. if (all_axis) {
  3137. st_synchronize();
  3138. disable_e0();
  3139. disable_e1();
  3140. disable_e2();
  3141. disable_e3();
  3142. finishAndDisableSteppers();
  3143. }
  3144. else {
  3145. st_synchronize();
  3146. if (code_seen('X')) disable_x();
  3147. if (code_seen('Y')) disable_y();
  3148. if (code_seen('Z')) disable_z();
  3149. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  3150. if (code_seen('E')) {
  3151. disable_e0();
  3152. disable_e1();
  3153. disable_e2();
  3154. disable_e3();
  3155. }
  3156. #endif
  3157. }
  3158. }
  3159. }
  3160. /**
  3161. * M85: Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  3162. */
  3163. inline void gcode_M85() {
  3164. if (code_seen('S')) max_inactive_time = code_value() * 1000;
  3165. }
  3166. /**
  3167. * M92: Set axis steps-per-unit for one or more axes, X, Y, Z, and E.
  3168. * (Follows the same syntax as G92)
  3169. */
  3170. inline void gcode_M92() {
  3171. for(int8_t i=0; i < NUM_AXIS; i++) {
  3172. if (code_seen(axis_codes[i])) {
  3173. if (i == E_AXIS) {
  3174. float value = code_value();
  3175. if (value < 20.0) {
  3176. float factor = axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
  3177. max_e_jerk *= factor;
  3178. max_feedrate[i] *= factor;
  3179. axis_steps_per_sqr_second[i] *= factor;
  3180. }
  3181. axis_steps_per_unit[i] = value;
  3182. }
  3183. else {
  3184. axis_steps_per_unit[i] = code_value();
  3185. }
  3186. }
  3187. }
  3188. }
  3189. /**
  3190. * M114: Output current position to serial port
  3191. */
  3192. inline void gcode_M114() {
  3193. SERIAL_PROTOCOLPGM("X:");
  3194. SERIAL_PROTOCOL(current_position[X_AXIS]);
  3195. SERIAL_PROTOCOLPGM(" Y:");
  3196. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  3197. SERIAL_PROTOCOLPGM(" Z:");
  3198. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  3199. SERIAL_PROTOCOLPGM(" E:");
  3200. SERIAL_PROTOCOL(current_position[E_AXIS]);
  3201. SERIAL_PROTOCOLPGM(MSG_COUNT_X);
  3202. SERIAL_PROTOCOL(float(st_get_position(X_AXIS))/axis_steps_per_unit[X_AXIS]);
  3203. SERIAL_PROTOCOLPGM(" Y:");
  3204. SERIAL_PROTOCOL(float(st_get_position(Y_AXIS))/axis_steps_per_unit[Y_AXIS]);
  3205. SERIAL_PROTOCOLPGM(" Z:");
  3206. SERIAL_PROTOCOL(float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]);
  3207. SERIAL_EOL;
  3208. #ifdef SCARA
  3209. SERIAL_PROTOCOLPGM("SCARA Theta:");
  3210. SERIAL_PROTOCOL(delta[X_AXIS]);
  3211. SERIAL_PROTOCOLPGM(" Psi+Theta:");
  3212. SERIAL_PROTOCOL(delta[Y_AXIS]);
  3213. SERIAL_EOL;
  3214. SERIAL_PROTOCOLPGM("SCARA Cal - Theta:");
  3215. SERIAL_PROTOCOL(delta[X_AXIS]+home_offset[X_AXIS]);
  3216. SERIAL_PROTOCOLPGM(" Psi+Theta (90):");
  3217. SERIAL_PROTOCOL(delta[Y_AXIS]-delta[X_AXIS]-90+home_offset[Y_AXIS]);
  3218. SERIAL_EOL;
  3219. SERIAL_PROTOCOLPGM("SCARA step Cal - Theta:");
  3220. SERIAL_PROTOCOL(delta[X_AXIS]/90*axis_steps_per_unit[X_AXIS]);
  3221. SERIAL_PROTOCOLPGM(" Psi+Theta:");
  3222. SERIAL_PROTOCOL((delta[Y_AXIS]-delta[X_AXIS])/90*axis_steps_per_unit[Y_AXIS]);
  3223. SERIAL_EOL; SERIAL_EOL;
  3224. #endif
  3225. }
  3226. /**
  3227. * M115: Capabilities string
  3228. */
  3229. inline void gcode_M115() {
  3230. SERIAL_PROTOCOLPGM(MSG_M115_REPORT);
  3231. }
  3232. /**
  3233. * M117: Set LCD Status Message
  3234. */
  3235. inline void gcode_M117() {
  3236. lcd_setstatus(current_command_args);
  3237. }
  3238. /**
  3239. * M119: Output endstop states to serial output
  3240. */
  3241. inline void gcode_M119() {
  3242. SERIAL_PROTOCOLLN(MSG_M119_REPORT);
  3243. #if HAS_X_MIN
  3244. SERIAL_PROTOCOLPGM(MSG_X_MIN);
  3245. SERIAL_PROTOCOLLN(((READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  3246. #endif
  3247. #if HAS_X_MAX
  3248. SERIAL_PROTOCOLPGM(MSG_X_MAX);
  3249. SERIAL_PROTOCOLLN(((READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  3250. #endif
  3251. #if HAS_Y_MIN
  3252. SERIAL_PROTOCOLPGM(MSG_Y_MIN);
  3253. SERIAL_PROTOCOLLN(((READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  3254. #endif
  3255. #if HAS_Y_MAX
  3256. SERIAL_PROTOCOLPGM(MSG_Y_MAX);
  3257. SERIAL_PROTOCOLLN(((READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  3258. #endif
  3259. #if HAS_Z_MIN
  3260. SERIAL_PROTOCOLPGM(MSG_Z_MIN);
  3261. SERIAL_PROTOCOLLN(((READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  3262. #endif
  3263. #if HAS_Z_MAX
  3264. SERIAL_PROTOCOLPGM(MSG_Z_MAX);
  3265. SERIAL_PROTOCOLLN(((READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  3266. #endif
  3267. #if HAS_Z2_MAX
  3268. SERIAL_PROTOCOLPGM(MSG_Z2_MAX);
  3269. SERIAL_PROTOCOLLN(((READ(Z2_MAX_PIN)^Z2_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  3270. #endif
  3271. #if HAS_Z_PROBE
  3272. SERIAL_PROTOCOLPGM(MSG_Z_PROBE);
  3273. SERIAL_PROTOCOLLN(((READ(Z_PROBE_PIN)^Z_PROBE_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  3274. #endif
  3275. }
  3276. /**
  3277. * M120: Enable endstops
  3278. */
  3279. inline void gcode_M120() { enable_endstops(true); }
  3280. /**
  3281. * M121: Disable endstops
  3282. */
  3283. inline void gcode_M121() { enable_endstops(false); }
  3284. #ifdef BLINKM
  3285. /**
  3286. * M150: Set Status LED Color - Use R-U-B for R-G-B
  3287. */
  3288. inline void gcode_M150() {
  3289. SendColors(
  3290. code_seen('R') ? (byte)code_value_short() : 0,
  3291. code_seen('U') ? (byte)code_value_short() : 0,
  3292. code_seen('B') ? (byte)code_value_short() : 0
  3293. );
  3294. }
  3295. #endif // BLINKM
  3296. /**
  3297. * M200: Set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  3298. * T<extruder>
  3299. * D<millimeters>
  3300. */
  3301. inline void gcode_M200() {
  3302. int tmp_extruder = active_extruder;
  3303. if (code_seen('T')) {
  3304. tmp_extruder = code_value_short();
  3305. if (tmp_extruder >= EXTRUDERS) {
  3306. SERIAL_ECHO_START;
  3307. SERIAL_ECHO(MSG_M200_INVALID_EXTRUDER);
  3308. return;
  3309. }
  3310. }
  3311. if (code_seen('D')) {
  3312. float diameter = code_value();
  3313. // setting any extruder filament size disables volumetric on the assumption that
  3314. // slicers either generate in extruder values as cubic mm or as as filament feeds
  3315. // for all extruders
  3316. volumetric_enabled = (diameter != 0.0);
  3317. if (volumetric_enabled) {
  3318. filament_size[tmp_extruder] = diameter;
  3319. // make sure all extruders have some sane value for the filament size
  3320. for (int i=0; i<EXTRUDERS; i++)
  3321. if (! filament_size[i]) filament_size[i] = DEFAULT_NOMINAL_FILAMENT_DIA;
  3322. }
  3323. }
  3324. else {
  3325. //reserved for setting filament diameter via UFID or filament measuring device
  3326. return;
  3327. }
  3328. calculate_volumetric_multipliers();
  3329. }
  3330. /**
  3331. * M201: Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  3332. */
  3333. inline void gcode_M201() {
  3334. for (int8_t i=0; i < NUM_AXIS; i++) {
  3335. if (code_seen(axis_codes[i])) {
  3336. max_acceleration_units_per_sq_second[i] = code_value();
  3337. }
  3338. }
  3339. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  3340. reset_acceleration_rates();
  3341. }
  3342. #if 0 // Not used for Sprinter/grbl gen6
  3343. inline void gcode_M202() {
  3344. for(int8_t i=0; i < NUM_AXIS; i++) {
  3345. if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
  3346. }
  3347. }
  3348. #endif
  3349. /**
  3350. * M203: Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  3351. */
  3352. inline void gcode_M203() {
  3353. for (int8_t i=0; i < NUM_AXIS; i++) {
  3354. if (code_seen(axis_codes[i])) {
  3355. max_feedrate[i] = code_value();
  3356. }
  3357. }
  3358. }
  3359. /**
  3360. * M204: Set Accelerations in mm/sec^2 (M204 P1200 R3000 T3000)
  3361. *
  3362. * P = Printing moves
  3363. * R = Retract only (no X, Y, Z) moves
  3364. * T = Travel (non printing) moves
  3365. *
  3366. * Also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  3367. */
  3368. inline void gcode_M204() {
  3369. if (code_seen('S')) { // Kept for legacy compatibility. Should NOT BE USED for new developments.
  3370. acceleration = code_value();
  3371. travel_acceleration = acceleration;
  3372. SERIAL_ECHOPAIR("Setting Print and Travel Acceleration: ", acceleration );
  3373. SERIAL_EOL;
  3374. }
  3375. if (code_seen('P')) {
  3376. acceleration = code_value();
  3377. SERIAL_ECHOPAIR("Setting Print Acceleration: ", acceleration );
  3378. SERIAL_EOL;
  3379. }
  3380. if (code_seen('R')) {
  3381. retract_acceleration = code_value();
  3382. SERIAL_ECHOPAIR("Setting Retract Acceleration: ", retract_acceleration );
  3383. SERIAL_EOL;
  3384. }
  3385. if (code_seen('T')) {
  3386. travel_acceleration = code_value();
  3387. SERIAL_ECHOPAIR("Setting Travel Acceleration: ", travel_acceleration );
  3388. SERIAL_EOL;
  3389. }
  3390. }
  3391. /**
  3392. * M205: Set Advanced Settings
  3393. *
  3394. * S = Min Feed Rate (mm/s)
  3395. * T = Min Travel Feed Rate (mm/s)
  3396. * B = Min Segment Time (µs)
  3397. * X = Max XY Jerk (mm/s/s)
  3398. * Z = Max Z Jerk (mm/s/s)
  3399. * E = Max E Jerk (mm/s/s)
  3400. */
  3401. inline void gcode_M205() {
  3402. if (code_seen('S')) minimumfeedrate = code_value();
  3403. if (code_seen('T')) mintravelfeedrate = code_value();
  3404. if (code_seen('B')) minsegmenttime = code_value();
  3405. if (code_seen('X')) max_xy_jerk = code_value();
  3406. if (code_seen('Z')) max_z_jerk = code_value();
  3407. if (code_seen('E')) max_e_jerk = code_value();
  3408. }
  3409. /**
  3410. * M206: Set Additional Homing Offset (X Y Z). SCARA aliases T=X, P=Y
  3411. */
  3412. inline void gcode_M206() {
  3413. for (int8_t i=X_AXIS; i <= Z_AXIS; i++) {
  3414. if (code_seen(axis_codes[i])) {
  3415. home_offset[i] = code_value();
  3416. }
  3417. }
  3418. #ifdef SCARA
  3419. if (code_seen('T')) home_offset[X_AXIS] = code_value(); // Theta
  3420. if (code_seen('P')) home_offset[Y_AXIS] = code_value(); // Psi
  3421. #endif
  3422. }
  3423. #ifdef DELTA
  3424. /**
  3425. * M665: Set delta configurations
  3426. *
  3427. * L = diagonal rod
  3428. * R = delta radius
  3429. * S = segments per second
  3430. */
  3431. inline void gcode_M665() {
  3432. if (code_seen('L')) delta_diagonal_rod = code_value();
  3433. if (code_seen('R')) delta_radius = code_value();
  3434. if (code_seen('S')) delta_segments_per_second = code_value();
  3435. recalc_delta_settings(delta_radius, delta_diagonal_rod);
  3436. }
  3437. /**
  3438. * M666: Set delta endstop adjustment
  3439. */
  3440. inline void gcode_M666() {
  3441. for (int8_t i = X_AXIS; i <= Z_AXIS; i++) {
  3442. if (code_seen(axis_codes[i])) {
  3443. endstop_adj[i] = code_value();
  3444. }
  3445. }
  3446. }
  3447. #elif defined(Z_DUAL_ENDSTOPS) // !DELTA && defined(Z_DUAL_ENDSTOPS)
  3448. /**
  3449. * M666: For Z Dual Endstop setup, set z axis offset to the z2 axis.
  3450. */
  3451. inline void gcode_M666() {
  3452. if (code_seen('Z')) z_endstop_adj = code_value();
  3453. SERIAL_ECHOPAIR("Z Endstop Adjustment set to (mm):", z_endstop_adj);
  3454. SERIAL_EOL;
  3455. }
  3456. #endif // !DELTA && defined(Z_DUAL_ENDSTOPS)
  3457. #ifdef FWRETRACT
  3458. /**
  3459. * M207: Set firmware retraction values
  3460. *
  3461. * S[+mm] retract_length
  3462. * W[+mm] retract_length_swap (multi-extruder)
  3463. * F[mm/min] retract_feedrate
  3464. * Z[mm] retract_zlift
  3465. */
  3466. inline void gcode_M207() {
  3467. if (code_seen('S')) retract_length = code_value();
  3468. if (code_seen('F')) retract_feedrate = code_value() / 60;
  3469. if (code_seen('Z')) retract_zlift = code_value();
  3470. #if EXTRUDERS > 1
  3471. if (code_seen('W')) retract_length_swap = code_value();
  3472. #endif
  3473. }
  3474. /**
  3475. * M208: Set firmware un-retraction values
  3476. *
  3477. * S[+mm] retract_recover_length (in addition to M207 S*)
  3478. * W[+mm] retract_recover_length_swap (multi-extruder)
  3479. * F[mm/min] retract_recover_feedrate
  3480. */
  3481. inline void gcode_M208() {
  3482. if (code_seen('S')) retract_recover_length = code_value();
  3483. if (code_seen('F')) retract_recover_feedrate = code_value() / 60;
  3484. #if EXTRUDERS > 1
  3485. if (code_seen('W')) retract_recover_length_swap = code_value();
  3486. #endif
  3487. }
  3488. /**
  3489. * M209: Enable automatic retract (M209 S1)
  3490. * detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  3491. */
  3492. inline void gcode_M209() {
  3493. if (code_seen('S')) {
  3494. int t = code_value_short();
  3495. switch(t) {
  3496. case 0:
  3497. autoretract_enabled = false;
  3498. break;
  3499. case 1:
  3500. autoretract_enabled = true;
  3501. break;
  3502. default:
  3503. unknown_command_error();
  3504. return;
  3505. }
  3506. for (int i=0; i<EXTRUDERS; i++) retracted[i] = false;
  3507. }
  3508. }
  3509. #endif // FWRETRACT
  3510. #if EXTRUDERS > 1
  3511. /**
  3512. * M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  3513. */
  3514. inline void gcode_M218() {
  3515. if (setTargetedHotend(218)) return;
  3516. if (code_seen('X')) extruder_offset[X_AXIS][target_extruder] = code_value();
  3517. if (code_seen('Y')) extruder_offset[Y_AXIS][target_extruder] = code_value();
  3518. #ifdef DUAL_X_CARRIAGE
  3519. if (code_seen('Z')) extruder_offset[Z_AXIS][target_extruder] = code_value();
  3520. #endif
  3521. SERIAL_ECHO_START;
  3522. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  3523. for (int e = 0; e < EXTRUDERS; e++) {
  3524. SERIAL_CHAR(' ');
  3525. SERIAL_ECHO(extruder_offset[X_AXIS][e]);
  3526. SERIAL_CHAR(',');
  3527. SERIAL_ECHO(extruder_offset[Y_AXIS][e]);
  3528. #ifdef DUAL_X_CARRIAGE
  3529. SERIAL_CHAR(',');
  3530. SERIAL_ECHO(extruder_offset[Z_AXIS][e]);
  3531. #endif
  3532. }
  3533. SERIAL_EOL;
  3534. }
  3535. #endif // EXTRUDERS > 1
  3536. /**
  3537. * M220: Set speed percentage factor, aka "Feed Rate" (M220 S95)
  3538. */
  3539. inline void gcode_M220() {
  3540. if (code_seen('S')) feedrate_multiplier = code_value();
  3541. }
  3542. /**
  3543. * M221: Set extrusion percentage (M221 T0 S95)
  3544. */
  3545. inline void gcode_M221() {
  3546. if (code_seen('S')) {
  3547. int sval = code_value();
  3548. if (code_seen('T')) {
  3549. if (setTargetedHotend(221)) return;
  3550. extruder_multiply[target_extruder] = sval;
  3551. }
  3552. else {
  3553. extruder_multiply[active_extruder] = sval;
  3554. }
  3555. }
  3556. }
  3557. /**
  3558. * M226: Wait until the specified pin reaches the state required (M226 P<pin> S<state>)
  3559. */
  3560. inline void gcode_M226() {
  3561. if (code_seen('P')) {
  3562. int pin_number = code_value();
  3563. int pin_state = code_seen('S') ? code_value() : -1; // required pin state - default is inverted
  3564. if (pin_state >= -1 && pin_state <= 1) {
  3565. for (int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(*sensitive_pins)); i++) {
  3566. if (sensitive_pins[i] == pin_number) {
  3567. pin_number = -1;
  3568. break;
  3569. }
  3570. }
  3571. if (pin_number > -1) {
  3572. int target = LOW;
  3573. st_synchronize();
  3574. pinMode(pin_number, INPUT);
  3575. switch(pin_state){
  3576. case 1:
  3577. target = HIGH;
  3578. break;
  3579. case 0:
  3580. target = LOW;
  3581. break;
  3582. case -1:
  3583. target = !digitalRead(pin_number);
  3584. break;
  3585. }
  3586. while (digitalRead(pin_number) != target) idle();
  3587. } // pin_number > -1
  3588. } // pin_state -1 0 1
  3589. } // code_seen('P')
  3590. }
  3591. #if NUM_SERVOS > 0
  3592. /**
  3593. * M280: Get or set servo position. P<index> S<angle>
  3594. */
  3595. inline void gcode_M280() {
  3596. int servo_index = code_seen('P') ? code_value_short() : -1;
  3597. int servo_position = 0;
  3598. if (code_seen('S')) {
  3599. servo_position = code_value_short();
  3600. if (servo_index >= 0 && servo_index < NUM_SERVOS) {
  3601. Servo *srv = &servo[servo_index];
  3602. #if SERVO_LEVELING
  3603. srv->attach(0);
  3604. #endif
  3605. srv->write(servo_position);
  3606. #if SERVO_LEVELING
  3607. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  3608. srv->detach();
  3609. #endif
  3610. }
  3611. else {
  3612. SERIAL_ECHO_START;
  3613. SERIAL_ECHO("Servo ");
  3614. SERIAL_ECHO(servo_index);
  3615. SERIAL_ECHOLN(" out of range");
  3616. }
  3617. }
  3618. else if (servo_index >= 0) {
  3619. SERIAL_PROTOCOL(MSG_OK);
  3620. SERIAL_PROTOCOL(" Servo ");
  3621. SERIAL_PROTOCOL(servo_index);
  3622. SERIAL_PROTOCOL(": ");
  3623. SERIAL_PROTOCOL(servo[servo_index].read());
  3624. SERIAL_EOL;
  3625. }
  3626. }
  3627. #endif // NUM_SERVOS > 0
  3628. #if HAS_LCD_BUZZ
  3629. /**
  3630. * M300: Play beep sound S<frequency Hz> P<duration ms>
  3631. */
  3632. inline void gcode_M300() {
  3633. uint16_t beepS = code_seen('S') ? code_value_short() : 110;
  3634. uint32_t beepP = code_seen('P') ? code_value_long() : 1000;
  3635. if (beepP > 5000) beepP = 5000; // limit to 5 seconds
  3636. lcd_buzz(beepP, beepS);
  3637. }
  3638. #endif // HAS_LCD_BUZZ
  3639. #ifdef PIDTEMP
  3640. /**
  3641. * M301: Set PID parameters P I D (and optionally C)
  3642. */
  3643. inline void gcode_M301() {
  3644. // multi-extruder PID patch: M301 updates or prints a single extruder's PID values
  3645. // default behaviour (omitting E parameter) is to update for extruder 0 only
  3646. int e = code_seen('E') ? code_value() : 0; // extruder being updated
  3647. if (e < EXTRUDERS) { // catch bad input value
  3648. if (code_seen('P')) PID_PARAM(Kp, e) = code_value();
  3649. if (code_seen('I')) PID_PARAM(Ki, e) = scalePID_i(code_value());
  3650. if (code_seen('D')) PID_PARAM(Kd, e) = scalePID_d(code_value());
  3651. #ifdef PID_ADD_EXTRUSION_RATE
  3652. if (code_seen('C')) PID_PARAM(Kc, e) = code_value();
  3653. #endif
  3654. updatePID();
  3655. SERIAL_PROTOCOL(MSG_OK);
  3656. #ifdef PID_PARAMS_PER_EXTRUDER
  3657. SERIAL_PROTOCOL(" e:"); // specify extruder in serial output
  3658. SERIAL_PROTOCOL(e);
  3659. #endif // PID_PARAMS_PER_EXTRUDER
  3660. SERIAL_PROTOCOL(" p:");
  3661. SERIAL_PROTOCOL(PID_PARAM(Kp, e));
  3662. SERIAL_PROTOCOL(" i:");
  3663. SERIAL_PROTOCOL(unscalePID_i(PID_PARAM(Ki, e)));
  3664. SERIAL_PROTOCOL(" d:");
  3665. SERIAL_PROTOCOL(unscalePID_d(PID_PARAM(Kd, e)));
  3666. #ifdef PID_ADD_EXTRUSION_RATE
  3667. SERIAL_PROTOCOL(" c:");
  3668. //Kc does not have scaling applied above, or in resetting defaults
  3669. SERIAL_PROTOCOL(PID_PARAM(Kc, e));
  3670. #endif
  3671. SERIAL_EOL;
  3672. }
  3673. else {
  3674. SERIAL_ECHO_START;
  3675. SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
  3676. }
  3677. }
  3678. #endif // PIDTEMP
  3679. #ifdef PIDTEMPBED
  3680. inline void gcode_M304() {
  3681. if (code_seen('P')) bedKp = code_value();
  3682. if (code_seen('I')) bedKi = scalePID_i(code_value());
  3683. if (code_seen('D')) bedKd = scalePID_d(code_value());
  3684. updatePID();
  3685. SERIAL_PROTOCOL(MSG_OK);
  3686. SERIAL_PROTOCOL(" p:");
  3687. SERIAL_PROTOCOL(bedKp);
  3688. SERIAL_PROTOCOL(" i:");
  3689. SERIAL_PROTOCOL(unscalePID_i(bedKi));
  3690. SERIAL_PROTOCOL(" d:");
  3691. SERIAL_PROTOCOL(unscalePID_d(bedKd));
  3692. SERIAL_EOL;
  3693. }
  3694. #endif // PIDTEMPBED
  3695. #if defined(CHDK) || HAS_PHOTOGRAPH
  3696. /**
  3697. * M240: Trigger a camera by emulating a Canon RC-1
  3698. * See http://www.doc-diy.net/photo/rc-1_hacked/
  3699. */
  3700. inline void gcode_M240() {
  3701. #ifdef CHDK
  3702. OUT_WRITE(CHDK, HIGH);
  3703. chdkHigh = millis();
  3704. chdkActive = true;
  3705. #elif HAS_PHOTOGRAPH
  3706. const uint8_t NUM_PULSES = 16;
  3707. const float PULSE_LENGTH = 0.01524;
  3708. for (int i = 0; i < NUM_PULSES; i++) {
  3709. WRITE(PHOTOGRAPH_PIN, HIGH);
  3710. _delay_ms(PULSE_LENGTH);
  3711. WRITE(PHOTOGRAPH_PIN, LOW);
  3712. _delay_ms(PULSE_LENGTH);
  3713. }
  3714. delay(7.33);
  3715. for (int i = 0; i < NUM_PULSES; i++) {
  3716. WRITE(PHOTOGRAPH_PIN, HIGH);
  3717. _delay_ms(PULSE_LENGTH);
  3718. WRITE(PHOTOGRAPH_PIN, LOW);
  3719. _delay_ms(PULSE_LENGTH);
  3720. }
  3721. #endif // !CHDK && HAS_PHOTOGRAPH
  3722. }
  3723. #endif // CHDK || PHOTOGRAPH_PIN
  3724. #ifdef HAS_LCD_CONTRAST
  3725. /**
  3726. * M250: Read and optionally set the LCD contrast
  3727. */
  3728. inline void gcode_M250() {
  3729. if (code_seen('C')) lcd_setcontrast(code_value_short() & 0x3F);
  3730. SERIAL_PROTOCOLPGM("lcd contrast value: ");
  3731. SERIAL_PROTOCOL(lcd_contrast);
  3732. SERIAL_EOL;
  3733. }
  3734. #endif // HAS_LCD_CONTRAST
  3735. #ifdef PREVENT_DANGEROUS_EXTRUDE
  3736. void set_extrude_min_temp(float temp) { extrude_min_temp = temp; }
  3737. /**
  3738. * M302: Allow cold extrudes, or set the minimum extrude S<temperature>.
  3739. */
  3740. inline void gcode_M302() {
  3741. set_extrude_min_temp(code_seen('S') ? code_value() : 0);
  3742. }
  3743. #endif // PREVENT_DANGEROUS_EXTRUDE
  3744. /**
  3745. * M303: PID relay autotune
  3746. * S<temperature> sets the target temperature. (default target temperature = 150C)
  3747. * E<extruder> (-1 for the bed)
  3748. * C<cycles>
  3749. */
  3750. inline void gcode_M303() {
  3751. int e = code_seen('E') ? code_value_short() : 0;
  3752. int c = code_seen('C') ? code_value_short() : 5;
  3753. float temp = code_seen('S') ? code_value() : (e < 0 ? 70.0 : 150.0);
  3754. PID_autotune(temp, e, c);
  3755. // Suppress a line mismatch error
  3756. gcode_LastN += 1;
  3757. FlushSerialRequestResend();
  3758. }
  3759. #ifdef SCARA
  3760. bool SCARA_move_to_cal(uint8_t delta_x, uint8_t delta_y) {
  3761. //SoftEndsEnabled = false; // Ignore soft endstops during calibration
  3762. //SERIAL_ECHOLN(" Soft endstops disabled ");
  3763. if (IsRunning()) {
  3764. //gcode_get_destination(); // For X Y Z E F
  3765. delta[X_AXIS] = delta_x;
  3766. delta[Y_AXIS] = delta_y;
  3767. calculate_SCARA_forward_Transform(delta);
  3768. destination[X_AXIS] = delta[X_AXIS]/axis_scaling[X_AXIS];
  3769. destination[Y_AXIS] = delta[Y_AXIS]/axis_scaling[Y_AXIS];
  3770. prepare_move();
  3771. //ok_to_send();
  3772. return true;
  3773. }
  3774. return false;
  3775. }
  3776. /**
  3777. * M360: SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  3778. */
  3779. inline bool gcode_M360() {
  3780. SERIAL_ECHOLN(" Cal: Theta 0 ");
  3781. return SCARA_move_to_cal(0, 120);
  3782. }
  3783. /**
  3784. * M361: SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  3785. */
  3786. inline bool gcode_M361() {
  3787. SERIAL_ECHOLN(" Cal: Theta 90 ");
  3788. return SCARA_move_to_cal(90, 130);
  3789. }
  3790. /**
  3791. * M362: SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  3792. */
  3793. inline bool gcode_M362() {
  3794. SERIAL_ECHOLN(" Cal: Psi 0 ");
  3795. return SCARA_move_to_cal(60, 180);
  3796. }
  3797. /**
  3798. * M363: SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  3799. */
  3800. inline bool gcode_M363() {
  3801. SERIAL_ECHOLN(" Cal: Psi 90 ");
  3802. return SCARA_move_to_cal(50, 90);
  3803. }
  3804. /**
  3805. * M364: SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
  3806. */
  3807. inline bool gcode_M364() {
  3808. SERIAL_ECHOLN(" Cal: Theta-Psi 90 ");
  3809. return SCARA_move_to_cal(45, 135);
  3810. }
  3811. /**
  3812. * M365: SCARA calibration: Scaling factor, X, Y, Z axis
  3813. */
  3814. inline void gcode_M365() {
  3815. for (int8_t i = X_AXIS; i <= Z_AXIS; i++) {
  3816. if (code_seen(axis_codes[i])) {
  3817. axis_scaling[i] = code_value();
  3818. }
  3819. }
  3820. }
  3821. #endif // SCARA
  3822. #ifdef EXT_SOLENOID
  3823. void enable_solenoid(uint8_t num) {
  3824. switch(num) {
  3825. case 0:
  3826. OUT_WRITE(SOL0_PIN, HIGH);
  3827. break;
  3828. #if HAS_SOLENOID_1
  3829. case 1:
  3830. OUT_WRITE(SOL1_PIN, HIGH);
  3831. break;
  3832. #endif
  3833. #if HAS_SOLENOID_2
  3834. case 2:
  3835. OUT_WRITE(SOL2_PIN, HIGH);
  3836. break;
  3837. #endif
  3838. #if HAS_SOLENOID_3
  3839. case 3:
  3840. OUT_WRITE(SOL3_PIN, HIGH);
  3841. break;
  3842. #endif
  3843. default:
  3844. SERIAL_ECHO_START;
  3845. SERIAL_ECHOLNPGM(MSG_INVALID_SOLENOID);
  3846. break;
  3847. }
  3848. }
  3849. void enable_solenoid_on_active_extruder() { enable_solenoid(active_extruder); }
  3850. void disable_all_solenoids() {
  3851. OUT_WRITE(SOL0_PIN, LOW);
  3852. OUT_WRITE(SOL1_PIN, LOW);
  3853. OUT_WRITE(SOL2_PIN, LOW);
  3854. OUT_WRITE(SOL3_PIN, LOW);
  3855. }
  3856. /**
  3857. * M380: Enable solenoid on the active extruder
  3858. */
  3859. inline void gcode_M380() { enable_solenoid_on_active_extruder(); }
  3860. /**
  3861. * M381: Disable all solenoids
  3862. */
  3863. inline void gcode_M381() { disable_all_solenoids(); }
  3864. #endif // EXT_SOLENOID
  3865. /**
  3866. * M400: Finish all moves
  3867. */
  3868. inline void gcode_M400() { st_synchronize(); }
  3869. #if defined(ENABLE_AUTO_BED_LEVELING) && !defined(Z_PROBE_SLED) && (defined(SERVO_ENDSTOPS) || defined(Z_PROBE_ALLEN_KEY))
  3870. #ifdef SERVO_ENDSTOPS
  3871. void raise_z_for_servo() {
  3872. float zpos = current_position[Z_AXIS], z_dest = Z_RAISE_BEFORE_HOMING;
  3873. z_dest += axis_known_position[Z_AXIS] ? -zprobe_zoffset : zpos;
  3874. if (zpos < z_dest)
  3875. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_dest); // also updates current_position
  3876. }
  3877. #endif
  3878. /**
  3879. * M401: Engage Z Servo endstop if available
  3880. */
  3881. inline void gcode_M401() {
  3882. #ifdef SERVO_ENDSTOPS
  3883. raise_z_for_servo();
  3884. #endif
  3885. deploy_z_probe();
  3886. }
  3887. /**
  3888. * M402: Retract Z Servo endstop if enabled
  3889. */
  3890. inline void gcode_M402() {
  3891. #ifdef SERVO_ENDSTOPS
  3892. raise_z_for_servo();
  3893. #endif
  3894. stow_z_probe(false);
  3895. }
  3896. #endif // ENABLE_AUTO_BED_LEVELING && (SERVO_ENDSTOPS || Z_PROBE_ALLEN_KEY) && !Z_PROBE_SLED
  3897. #ifdef FILAMENT_SENSOR
  3898. /**
  3899. * M404: Display or set the nominal filament width (3mm, 1.75mm ) W<3.0>
  3900. */
  3901. inline void gcode_M404() {
  3902. #if HAS_FILWIDTH
  3903. if (code_seen('W')) {
  3904. filament_width_nominal = code_value();
  3905. }
  3906. else {
  3907. SERIAL_PROTOCOLPGM("Filament dia (nominal mm):");
  3908. SERIAL_PROTOCOLLN(filament_width_nominal);
  3909. }
  3910. #endif
  3911. }
  3912. /**
  3913. * M405: Turn on filament sensor for control
  3914. */
  3915. inline void gcode_M405() {
  3916. if (code_seen('D')) meas_delay_cm = code_value();
  3917. if (meas_delay_cm > MAX_MEASUREMENT_DELAY) meas_delay_cm = MAX_MEASUREMENT_DELAY;
  3918. if (delay_index2 == -1) { //initialize the ring buffer if it has not been done since startup
  3919. int temp_ratio = widthFil_to_size_ratio();
  3920. for (delay_index1 = 0; delay_index1 < MAX_MEASUREMENT_DELAY + 1; ++delay_index1)
  3921. measurement_delay[delay_index1] = temp_ratio - 100; //subtract 100 to scale within a signed byte
  3922. delay_index1 = delay_index2 = 0;
  3923. }
  3924. filament_sensor = true;
  3925. //SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  3926. //SERIAL_PROTOCOL(filament_width_meas);
  3927. //SERIAL_PROTOCOLPGM("Extrusion ratio(%):");
  3928. //SERIAL_PROTOCOL(extruder_multiply[active_extruder]);
  3929. }
  3930. /**
  3931. * M406: Turn off filament sensor for control
  3932. */
  3933. inline void gcode_M406() { filament_sensor = false; }
  3934. /**
  3935. * M407: Get measured filament diameter on serial output
  3936. */
  3937. inline void gcode_M407() {
  3938. SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  3939. SERIAL_PROTOCOLLN(filament_width_meas);
  3940. }
  3941. #endif // FILAMENT_SENSOR
  3942. /**
  3943. * M410: Quickstop - Abort all planned moves
  3944. *
  3945. * This will stop the carriages mid-move, so most likely they
  3946. * will be out of sync with the stepper position after this.
  3947. */
  3948. inline void gcode_M410() { quickStop(); }
  3949. #ifdef MESH_BED_LEVELING
  3950. /**
  3951. * M420: Enable/Disable Mesh Bed Leveling
  3952. */
  3953. inline void gcode_M420() { if (code_seen('S') && code_has_value()) mbl.active = !!code_value_short(); }
  3954. /**
  3955. * M421: Set a single Mesh Bed Leveling Z coordinate
  3956. */
  3957. inline void gcode_M421() {
  3958. float x, y, z;
  3959. bool err = false, hasX, hasY, hasZ;
  3960. if ((hasX = code_seen('X'))) x = code_value();
  3961. if ((hasY = code_seen('Y'))) y = code_value();
  3962. if ((hasZ = code_seen('Z'))) z = code_value();
  3963. if (!hasX || !hasY || !hasZ) {
  3964. SERIAL_ERROR_START;
  3965. SERIAL_ERRORLNPGM(MSG_ERR_M421_REQUIRES_XYZ);
  3966. err = true;
  3967. }
  3968. if (x >= MESH_NUM_X_POINTS || y >= MESH_NUM_Y_POINTS) {
  3969. SERIAL_ERROR_START;
  3970. SERIAL_ERRORLNPGM(MSG_ERR_MESH_INDEX_OOB);
  3971. err = true;
  3972. }
  3973. if (!err) mbl.set_z(mbl.select_x_index(x), mbl.select_y_index(y), z);
  3974. }
  3975. #endif
  3976. /**
  3977. * M428: Set home_offset based on the distance between the
  3978. * current_position and the nearest "reference point."
  3979. * If an axis is past center its endstop position
  3980. * is the reference-point. Otherwise it uses 0. This allows
  3981. * the Z offset to be set near the bed when using a max endstop.
  3982. *
  3983. * M428 can't be used more than 2cm away from 0 or an endstop.
  3984. *
  3985. * Use M206 to set these values directly.
  3986. */
  3987. inline void gcode_M428() {
  3988. bool err = false;
  3989. float new_offs[3], new_pos[3];
  3990. memcpy(new_pos, current_position, sizeof(new_pos));
  3991. memcpy(new_offs, home_offset, sizeof(new_offs));
  3992. for (int8_t i = X_AXIS; i <= Z_AXIS; i++) {
  3993. if (axis_known_position[i]) {
  3994. float base = (new_pos[i] > (min_pos[i] + max_pos[i]) / 2) ? base_home_pos(i) : 0,
  3995. diff = new_pos[i] - base;
  3996. if (diff > -20 && diff < 20) {
  3997. new_offs[i] -= diff;
  3998. new_pos[i] = base;
  3999. }
  4000. else {
  4001. SERIAL_ERROR_START;
  4002. SERIAL_ERRORLNPGM(MSG_ERR_M428_TOO_FAR);
  4003. LCD_ALERTMESSAGEPGM("Err: Too far!");
  4004. #if HAS_LCD_BUZZ
  4005. enqueuecommands_P(PSTR("M300 S40 P200"));
  4006. #endif
  4007. err = true;
  4008. break;
  4009. }
  4010. }
  4011. }
  4012. if (!err) {
  4013. memcpy(current_position, new_pos, sizeof(new_pos));
  4014. memcpy(home_offset, new_offs, sizeof(new_offs));
  4015. sync_plan_position();
  4016. LCD_ALERTMESSAGEPGM("Offset applied.");
  4017. #if HAS_LCD_BUZZ
  4018. enqueuecommands_P(PSTR("M300 S659 P200\nM300 S698 P200"));
  4019. #endif
  4020. }
  4021. }
  4022. /**
  4023. * M500: Store settings in EEPROM
  4024. */
  4025. inline void gcode_M500() {
  4026. Config_StoreSettings();
  4027. }
  4028. /**
  4029. * M501: Read settings from EEPROM
  4030. */
  4031. inline void gcode_M501() {
  4032. Config_RetrieveSettings();
  4033. }
  4034. /**
  4035. * M502: Revert to default settings
  4036. */
  4037. inline void gcode_M502() {
  4038. Config_ResetDefault();
  4039. }
  4040. /**
  4041. * M503: print settings currently in memory
  4042. */
  4043. inline void gcode_M503() {
  4044. Config_PrintSettings(code_seen('S') && code_value() == 0);
  4045. }
  4046. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  4047. /**
  4048. * M540: Set whether SD card print should abort on endstop hit (M540 S<0|1>)
  4049. */
  4050. inline void gcode_M540() {
  4051. if (code_seen('S')) abort_on_endstop_hit = (code_value() > 0);
  4052. }
  4053. #endif // ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  4054. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  4055. inline void gcode_SET_Z_PROBE_OFFSET() {
  4056. float value;
  4057. if (code_seen('Z')) {
  4058. value = code_value();
  4059. if (Z_PROBE_OFFSET_RANGE_MIN <= value && value <= Z_PROBE_OFFSET_RANGE_MAX) {
  4060. zprobe_zoffset = -value;
  4061. SERIAL_ECHO_START;
  4062. SERIAL_ECHOLNPGM(MSG_ZPROBE_ZOFFSET " " MSG_OK);
  4063. SERIAL_EOL;
  4064. }
  4065. else {
  4066. SERIAL_ECHO_START;
  4067. SERIAL_ECHOPGM(MSG_ZPROBE_ZOFFSET);
  4068. SERIAL_ECHOPGM(MSG_Z_MIN);
  4069. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
  4070. SERIAL_ECHOPGM(MSG_Z_MAX);
  4071. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
  4072. SERIAL_EOL;
  4073. }
  4074. }
  4075. else {
  4076. SERIAL_ECHO_START;
  4077. SERIAL_ECHOLNPGM(MSG_ZPROBE_ZOFFSET " : ");
  4078. SERIAL_ECHO(-zprobe_zoffset);
  4079. SERIAL_EOL;
  4080. }
  4081. }
  4082. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  4083. #ifdef FILAMENTCHANGEENABLE
  4084. /**
  4085. * M600: Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  4086. */
  4087. inline void gcode_M600() {
  4088. float target[NUM_AXIS], lastpos[NUM_AXIS], fr60 = feedrate / 60;
  4089. for (int i=0; i<NUM_AXIS; i++)
  4090. target[i] = lastpos[i] = current_position[i];
  4091. #define BASICPLAN plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], fr60, active_extruder);
  4092. #ifdef DELTA
  4093. #define RUNPLAN calculate_delta(target); BASICPLAN
  4094. #else
  4095. #define RUNPLAN BASICPLAN
  4096. #endif
  4097. //retract by E
  4098. if (code_seen('E')) target[E_AXIS] += code_value();
  4099. #ifdef FILAMENTCHANGE_FIRSTRETRACT
  4100. else target[E_AXIS] += FILAMENTCHANGE_FIRSTRETRACT;
  4101. #endif
  4102. RUNPLAN;
  4103. //lift Z
  4104. if (code_seen('Z')) target[Z_AXIS] += code_value();
  4105. #ifdef FILAMENTCHANGE_ZADD
  4106. else target[Z_AXIS] += FILAMENTCHANGE_ZADD;
  4107. #endif
  4108. RUNPLAN;
  4109. //move xy
  4110. if (code_seen('X')) target[X_AXIS] = code_value();
  4111. #ifdef FILAMENTCHANGE_XPOS
  4112. else target[X_AXIS] = FILAMENTCHANGE_XPOS;
  4113. #endif
  4114. if (code_seen('Y')) target[Y_AXIS] = code_value();
  4115. #ifdef FILAMENTCHANGE_YPOS
  4116. else target[Y_AXIS] = FILAMENTCHANGE_YPOS;
  4117. #endif
  4118. RUNPLAN;
  4119. if (code_seen('L')) target[E_AXIS] += code_value();
  4120. #ifdef FILAMENTCHANGE_FINALRETRACT
  4121. else target[E_AXIS] += FILAMENTCHANGE_FINALRETRACT;
  4122. #endif
  4123. RUNPLAN;
  4124. //finish moves
  4125. st_synchronize();
  4126. //disable extruder steppers so filament can be removed
  4127. disable_e0();
  4128. disable_e1();
  4129. disable_e2();
  4130. disable_e3();
  4131. delay(100);
  4132. LCD_ALERTMESSAGEPGM(MSG_FILAMENTCHANGE);
  4133. uint8_t cnt = 0;
  4134. while (!lcd_clicked()) {
  4135. if (++cnt == 0) lcd_quick_feedback(); // every 256th frame till the lcd is clicked
  4136. manage_heater();
  4137. manage_inactivity(true);
  4138. lcd_update();
  4139. } // while(!lcd_clicked)
  4140. //return to normal
  4141. if (code_seen('L')) target[E_AXIS] -= code_value();
  4142. #ifdef FILAMENTCHANGE_FINALRETRACT
  4143. else target[E_AXIS] -= FILAMENTCHANGE_FINALRETRACT;
  4144. #endif
  4145. current_position[E_AXIS] = target[E_AXIS]; //the long retract of L is compensated by manual filament feeding
  4146. plan_set_e_position(current_position[E_AXIS]);
  4147. RUNPLAN; //should do nothing
  4148. lcd_reset_alert_level();
  4149. #ifdef DELTA
  4150. calculate_delta(lastpos);
  4151. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], target[E_AXIS], fr60, active_extruder); //move xyz back
  4152. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], lastpos[E_AXIS], fr60, active_extruder); //final untretract
  4153. #else
  4154. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], fr60, active_extruder); //move xy back
  4155. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], fr60, active_extruder); //move z back
  4156. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], lastpos[E_AXIS], fr60, active_extruder); //final untretract
  4157. #endif
  4158. #ifdef FILAMENT_RUNOUT_SENSOR
  4159. filrunoutEnqueued = false;
  4160. #endif
  4161. }
  4162. #endif // FILAMENTCHANGEENABLE
  4163. #ifdef DUAL_X_CARRIAGE
  4164. /**
  4165. * M605: Set dual x-carriage movement mode
  4166. *
  4167. * M605 S0: Full control mode. The slicer has full control over x-carriage movement
  4168. * M605 S1: Auto-park mode. The inactive head will auto park/unpark without slicer involvement
  4169. * M605 S2 [Xnnn] [Rmmm]: Duplication mode. The second extruder will duplicate the first with nnn
  4170. * millimeters x-offset and an optional differential hotend temperature of
  4171. * mmm degrees. E.g., with "M605 S2 X100 R2" the second extruder will duplicate
  4172. * the first with a spacing of 100mm in the x direction and 2 degrees hotter.
  4173. *
  4174. * Note: the X axis should be homed after changing dual x-carriage mode.
  4175. */
  4176. inline void gcode_M605() {
  4177. st_synchronize();
  4178. if (code_seen('S')) dual_x_carriage_mode = code_value();
  4179. switch(dual_x_carriage_mode) {
  4180. case DXC_DUPLICATION_MODE:
  4181. if (code_seen('X')) duplicate_extruder_x_offset = max(code_value(), X2_MIN_POS - x_home_pos(0));
  4182. if (code_seen('R')) duplicate_extruder_temp_offset = code_value();
  4183. SERIAL_ECHO_START;
  4184. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  4185. SERIAL_CHAR(' ');
  4186. SERIAL_ECHO(extruder_offset[X_AXIS][0]);
  4187. SERIAL_CHAR(',');
  4188. SERIAL_ECHO(extruder_offset[Y_AXIS][0]);
  4189. SERIAL_CHAR(' ');
  4190. SERIAL_ECHO(duplicate_extruder_x_offset);
  4191. SERIAL_CHAR(',');
  4192. SERIAL_ECHOLN(extruder_offset[Y_AXIS][1]);
  4193. break;
  4194. case DXC_FULL_CONTROL_MODE:
  4195. case DXC_AUTO_PARK_MODE:
  4196. break;
  4197. default:
  4198. dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  4199. break;
  4200. }
  4201. active_extruder_parked = false;
  4202. extruder_duplication_enabled = false;
  4203. delayed_move_time = 0;
  4204. }
  4205. #endif // DUAL_X_CARRIAGE
  4206. /**
  4207. * M907: Set digital trimpot motor current using axis codes X, Y, Z, E, B, S
  4208. */
  4209. inline void gcode_M907() {
  4210. #if HAS_DIGIPOTSS
  4211. for (int i=0;i<NUM_AXIS;i++)
  4212. if (code_seen(axis_codes[i])) digipot_current(i, code_value());
  4213. if (code_seen('B')) digipot_current(4, code_value());
  4214. if (code_seen('S')) for (int i=0; i<=4; i++) digipot_current(i, code_value());
  4215. #endif
  4216. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  4217. if (code_seen('X')) digipot_current(0, code_value());
  4218. #endif
  4219. #ifdef MOTOR_CURRENT_PWM_Z_PIN
  4220. if (code_seen('Z')) digipot_current(1, code_value());
  4221. #endif
  4222. #ifdef MOTOR_CURRENT_PWM_E_PIN
  4223. if (code_seen('E')) digipot_current(2, code_value());
  4224. #endif
  4225. #ifdef DIGIPOT_I2C
  4226. // this one uses actual amps in floating point
  4227. for (int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_i2c_set_current(i, code_value());
  4228. // for each additional extruder (named B,C,D,E..., channels 4,5,6,7...)
  4229. for (int i=NUM_AXIS;i<DIGIPOT_I2C_NUM_CHANNELS;i++) if(code_seen('B'+i-NUM_AXIS)) digipot_i2c_set_current(i, code_value());
  4230. #endif
  4231. }
  4232. #if HAS_DIGIPOTSS
  4233. /**
  4234. * M908: Control digital trimpot directly (M908 P<pin> S<current>)
  4235. */
  4236. inline void gcode_M908() {
  4237. digitalPotWrite(
  4238. code_seen('P') ? code_value() : 0,
  4239. code_seen('S') ? code_value() : 0
  4240. );
  4241. }
  4242. #endif // HAS_DIGIPOTSS
  4243. #if HAS_MICROSTEPS
  4244. // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  4245. inline void gcode_M350() {
  4246. if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value());
  4247. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_mode(i,(uint8_t)code_value());
  4248. if(code_seen('B')) microstep_mode(4,code_value());
  4249. microstep_readings();
  4250. }
  4251. /**
  4252. * M351: Toggle MS1 MS2 pins directly with axis codes X Y Z E B
  4253. * S# determines MS1 or MS2, X# sets the pin high/low.
  4254. */
  4255. inline void gcode_M351() {
  4256. if (code_seen('S')) switch(code_value_short()) {
  4257. case 1:
  4258. for(int i=0;i<NUM_AXIS;i++) if (code_seen(axis_codes[i])) microstep_ms(i, code_value(), -1);
  4259. if (code_seen('B')) microstep_ms(4, code_value(), -1);
  4260. break;
  4261. case 2:
  4262. for(int i=0;i<NUM_AXIS;i++) if (code_seen(axis_codes[i])) microstep_ms(i, -1, code_value());
  4263. if (code_seen('B')) microstep_ms(4, -1, code_value());
  4264. break;
  4265. }
  4266. microstep_readings();
  4267. }
  4268. #endif // HAS_MICROSTEPS
  4269. /**
  4270. * M999: Restart after being stopped
  4271. */
  4272. inline void gcode_M999() {
  4273. Running = true;
  4274. lcd_reset_alert_level();
  4275. gcode_LastN = Stopped_gcode_LastN;
  4276. FlushSerialRequestResend();
  4277. }
  4278. /**
  4279. * T0-T3: Switch tool, usually switching extruders
  4280. *
  4281. * F[mm/min] Set the movement feedrate
  4282. */
  4283. inline void gcode_T(uint8_t tmp_extruder) {
  4284. if (tmp_extruder >= EXTRUDERS) {
  4285. SERIAL_ECHO_START;
  4286. SERIAL_CHAR('T');
  4287. SERIAL_ECHO(tmp_extruder);
  4288. SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
  4289. }
  4290. else {
  4291. target_extruder = tmp_extruder;
  4292. #if EXTRUDERS > 1
  4293. bool make_move = false;
  4294. #endif
  4295. if (code_seen('F')) {
  4296. #if EXTRUDERS > 1
  4297. make_move = true;
  4298. #endif
  4299. float next_feedrate = code_value();
  4300. if (next_feedrate > 0.0) feedrate = next_feedrate;
  4301. }
  4302. #if EXTRUDERS > 1
  4303. if (tmp_extruder != active_extruder) {
  4304. // Save current position to return to after applying extruder offset
  4305. set_destination_to_current();
  4306. #ifdef DUAL_X_CARRIAGE
  4307. if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE && IsRunning() &&
  4308. (delayed_move_time != 0 || current_position[X_AXIS] != x_home_pos(active_extruder))) {
  4309. // Park old head: 1) raise 2) move to park position 3) lower
  4310. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
  4311. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  4312. plan_buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
  4313. current_position[E_AXIS], max_feedrate[X_AXIS], active_extruder);
  4314. plan_buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS],
  4315. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  4316. st_synchronize();
  4317. }
  4318. // apply Y & Z extruder offset (x offset is already used in determining home pos)
  4319. current_position[Y_AXIS] = current_position[Y_AXIS] -
  4320. extruder_offset[Y_AXIS][active_extruder] +
  4321. extruder_offset[Y_AXIS][tmp_extruder];
  4322. current_position[Z_AXIS] = current_position[Z_AXIS] -
  4323. extruder_offset[Z_AXIS][active_extruder] +
  4324. extruder_offset[Z_AXIS][tmp_extruder];
  4325. active_extruder = tmp_extruder;
  4326. // This function resets the max/min values - the current position may be overwritten below.
  4327. axis_is_at_home(X_AXIS);
  4328. if (dual_x_carriage_mode == DXC_FULL_CONTROL_MODE) {
  4329. current_position[X_AXIS] = inactive_extruder_x_pos;
  4330. inactive_extruder_x_pos = destination[X_AXIS];
  4331. }
  4332. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE) {
  4333. active_extruder_parked = (active_extruder == 0); // this triggers the second extruder to move into the duplication position
  4334. if (active_extruder == 0 || active_extruder_parked)
  4335. current_position[X_AXIS] = inactive_extruder_x_pos;
  4336. else
  4337. current_position[X_AXIS] = destination[X_AXIS] + duplicate_extruder_x_offset;
  4338. inactive_extruder_x_pos = destination[X_AXIS];
  4339. extruder_duplication_enabled = false;
  4340. }
  4341. else {
  4342. // record raised toolhead position for use by unpark
  4343. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  4344. raised_parked_position[Z_AXIS] += TOOLCHANGE_UNPARK_ZLIFT;
  4345. active_extruder_parked = true;
  4346. delayed_move_time = 0;
  4347. }
  4348. #else // !DUAL_X_CARRIAGE
  4349. // Offset extruder (only by XY)
  4350. for (int i=X_AXIS; i<=Y_AXIS; i++)
  4351. current_position[i] += extruder_offset[i][tmp_extruder] - extruder_offset[i][active_extruder];
  4352. // Set the new active extruder and position
  4353. active_extruder = tmp_extruder;
  4354. #endif // !DUAL_X_CARRIAGE
  4355. #ifdef DELTA
  4356. sync_plan_position_delta();
  4357. #else
  4358. sync_plan_position();
  4359. #endif
  4360. // Move to the old position if 'F' was in the parameters
  4361. if (make_move && IsRunning()) prepare_move();
  4362. }
  4363. #ifdef EXT_SOLENOID
  4364. st_synchronize();
  4365. disable_all_solenoids();
  4366. enable_solenoid_on_active_extruder();
  4367. #endif // EXT_SOLENOID
  4368. #endif // EXTRUDERS > 1
  4369. SERIAL_ECHO_START;
  4370. SERIAL_ECHO(MSG_ACTIVE_EXTRUDER);
  4371. SERIAL_PROTOCOLLN((int)active_extruder);
  4372. }
  4373. }
  4374. /**
  4375. * Process a single command and dispatch it to its handler
  4376. * This is called from the main loop()
  4377. */
  4378. void process_next_command() {
  4379. current_command = command_queue[cmd_queue_index_r];
  4380. if ((marlin_debug_flags & DEBUG_ECHO)) {
  4381. SERIAL_ECHO_START;
  4382. SERIAL_ECHOLN(current_command);
  4383. }
  4384. // Sanitize the current command:
  4385. // - Skip leading spaces
  4386. // - Bypass N...
  4387. // - Overwrite * with nul to mark the end
  4388. while (*current_command == ' ') ++current_command;
  4389. if (*current_command == 'N' && current_command[1] >= '0' && current_command[1] <= '9') {
  4390. while (*current_command != ' ') ++current_command;
  4391. while (*current_command == ' ') ++current_command;
  4392. }
  4393. char *starpos = strchr(current_command, '*'); // * should always be the last parameter
  4394. if (starpos) *starpos = '\0';
  4395. // Get the command code, which must be G, M, or T
  4396. char command_code = *current_command;
  4397. // The code must have a numeric value
  4398. bool code_is_good = (current_command[1] >= '0' && current_command[1] <= '9');
  4399. int codenum; // define ahead of goto
  4400. // Bail early if there's no code
  4401. if (!code_is_good) goto ExitUnknownCommand;
  4402. // Args pointer optimizes code_seen, especially those taking XYZEF
  4403. // This wastes a little cpu on commands that expect no arguments.
  4404. current_command_args = current_command;
  4405. while (*current_command_args != ' ') ++current_command_args;
  4406. while (*current_command_args == ' ') ++current_command_args;
  4407. // Interpret the code int
  4408. seen_pointer = current_command;
  4409. codenum = code_value_short();
  4410. // Handle a known G, M, or T
  4411. switch(command_code) {
  4412. case 'G': switch (codenum) {
  4413. // G0, G1
  4414. case 0:
  4415. case 1:
  4416. gcode_G0_G1();
  4417. break;
  4418. // G2, G3
  4419. #ifndef SCARA
  4420. case 2: // G2 - CW ARC
  4421. case 3: // G3 - CCW ARC
  4422. gcode_G2_G3(codenum == 2);
  4423. break;
  4424. #endif
  4425. // G4 Dwell
  4426. case 4:
  4427. gcode_G4();
  4428. break;
  4429. #ifdef FWRETRACT
  4430. case 10: // G10: retract
  4431. case 11: // G11: retract_recover
  4432. gcode_G10_G11(codenum == 10);
  4433. break;
  4434. #endif //FWRETRACT
  4435. case 28: // G28: Home all axes, one at a time
  4436. gcode_G28();
  4437. break;
  4438. #if defined(ENABLE_AUTO_BED_LEVELING) || defined(MESH_BED_LEVELING)
  4439. case 29: // G29 Detailed Z-Probe, probes the bed at 3 or more points.
  4440. gcode_G29();
  4441. break;
  4442. #endif
  4443. #ifdef ENABLE_AUTO_BED_LEVELING
  4444. #ifndef Z_PROBE_SLED
  4445. case 30: // G30 Single Z Probe
  4446. gcode_G30();
  4447. break;
  4448. #else // Z_PROBE_SLED
  4449. case 31: // G31: dock the sled
  4450. case 32: // G32: undock the sled
  4451. dock_sled(codenum == 31);
  4452. break;
  4453. #endif // Z_PROBE_SLED
  4454. #endif // ENABLE_AUTO_BED_LEVELING
  4455. case 90: // G90
  4456. relative_mode = false;
  4457. break;
  4458. case 91: // G91
  4459. relative_mode = true;
  4460. break;
  4461. case 92: // G92
  4462. gcode_G92();
  4463. break;
  4464. default: code_is_good = false;
  4465. }
  4466. break;
  4467. case 'M': switch (codenum) {
  4468. #ifdef ULTIPANEL
  4469. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  4470. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  4471. gcode_M0_M1();
  4472. break;
  4473. #endif // ULTIPANEL
  4474. case 17:
  4475. gcode_M17();
  4476. break;
  4477. #ifdef SDSUPPORT
  4478. case 20: // M20 - list SD card
  4479. gcode_M20(); break;
  4480. case 21: // M21 - init SD card
  4481. gcode_M21(); break;
  4482. case 22: //M22 - release SD card
  4483. gcode_M22(); break;
  4484. case 23: //M23 - Select file
  4485. gcode_M23(); break;
  4486. case 24: //M24 - Start SD print
  4487. gcode_M24(); break;
  4488. case 25: //M25 - Pause SD print
  4489. gcode_M25(); break;
  4490. case 26: //M26 - Set SD index
  4491. gcode_M26(); break;
  4492. case 27: //M27 - Get SD status
  4493. gcode_M27(); break;
  4494. case 28: //M28 - Start SD write
  4495. gcode_M28(); break;
  4496. case 29: //M29 - Stop SD write
  4497. gcode_M29(); break;
  4498. case 30: //M30 <filename> Delete File
  4499. gcode_M30(); break;
  4500. case 32: //M32 - Select file and start SD print
  4501. gcode_M32(); break;
  4502. #ifdef LONG_FILENAME_HOST_SUPPORT
  4503. case 33: //M33 - Get the long full path to a file or folder
  4504. gcode_M33(); break;
  4505. #endif // LONG_FILENAME_HOST_SUPPORT
  4506. case 928: //M928 - Start SD write
  4507. gcode_M928(); break;
  4508. #endif //SDSUPPORT
  4509. case 31: //M31 take time since the start of the SD print or an M109 command
  4510. gcode_M31();
  4511. break;
  4512. case 42: //M42 -Change pin status via gcode
  4513. gcode_M42();
  4514. break;
  4515. #if defined(ENABLE_AUTO_BED_LEVELING) && defined(Z_PROBE_REPEATABILITY_TEST)
  4516. case 48: // M48 Z-Probe repeatability
  4517. gcode_M48();
  4518. break;
  4519. #endif // ENABLE_AUTO_BED_LEVELING && Z_PROBE_REPEATABILITY_TEST
  4520. case 104: // M104
  4521. gcode_M104();
  4522. break;
  4523. case 111: // M111: Set debug level
  4524. gcode_M111();
  4525. break;
  4526. case 112: // M112: Emergency Stop
  4527. gcode_M112();
  4528. break;
  4529. case 140: // M140: Set bed temp
  4530. gcode_M140();
  4531. break;
  4532. case 105: // M105: Read current temperature
  4533. gcode_M105();
  4534. return; // "ok" already printed
  4535. case 109: // M109: Wait for temperature
  4536. gcode_M109();
  4537. break;
  4538. #if HAS_TEMP_BED
  4539. case 190: // M190: Wait for bed heater to reach target
  4540. gcode_M190();
  4541. break;
  4542. #endif // HAS_TEMP_BED
  4543. #if HAS_FAN
  4544. case 106: // M106: Fan On
  4545. gcode_M106();
  4546. break;
  4547. case 107: // M107: Fan Off
  4548. gcode_M107();
  4549. break;
  4550. #endif // HAS_FAN
  4551. #ifdef BARICUDA
  4552. // PWM for HEATER_1_PIN
  4553. #if HAS_HEATER_1
  4554. case 126: // M126: valve open
  4555. gcode_M126();
  4556. break;
  4557. case 127: // M127: valve closed
  4558. gcode_M127();
  4559. break;
  4560. #endif // HAS_HEATER_1
  4561. // PWM for HEATER_2_PIN
  4562. #if HAS_HEATER_2
  4563. case 128: // M128: valve open
  4564. gcode_M128();
  4565. break;
  4566. case 129: // M129: valve closed
  4567. gcode_M129();
  4568. break;
  4569. #endif // HAS_HEATER_2
  4570. #endif // BARICUDA
  4571. #if HAS_POWER_SWITCH
  4572. case 80: // M80: Turn on Power Supply
  4573. gcode_M80();
  4574. break;
  4575. #endif // HAS_POWER_SWITCH
  4576. case 81: // M81: Turn off Power, including Power Supply, if possible
  4577. gcode_M81();
  4578. break;
  4579. case 82:
  4580. gcode_M82();
  4581. break;
  4582. case 83:
  4583. gcode_M83();
  4584. break;
  4585. case 18: // (for compatibility)
  4586. case 84: // M84
  4587. gcode_M18_M84();
  4588. break;
  4589. case 85: // M85
  4590. gcode_M85();
  4591. break;
  4592. case 92: // M92: Set the steps-per-unit for one or more axes
  4593. gcode_M92();
  4594. break;
  4595. case 115: // M115: Report capabilities
  4596. gcode_M115();
  4597. break;
  4598. case 117: // M117: Set LCD message text, if possible
  4599. gcode_M117();
  4600. break;
  4601. case 114: // M114: Report current position
  4602. gcode_M114();
  4603. break;
  4604. case 120: // M120: Enable endstops
  4605. gcode_M120();
  4606. break;
  4607. case 121: // M121: Disable endstops
  4608. gcode_M121();
  4609. break;
  4610. case 119: // M119: Report endstop states
  4611. gcode_M119();
  4612. break;
  4613. #ifdef ULTIPANEL
  4614. case 145: // M145: Set material heatup parameters
  4615. gcode_M145();
  4616. break;
  4617. #endif
  4618. #ifdef BLINKM
  4619. case 150: // M150
  4620. gcode_M150();
  4621. break;
  4622. #endif //BLINKM
  4623. case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  4624. gcode_M200();
  4625. break;
  4626. case 201: // M201
  4627. gcode_M201();
  4628. break;
  4629. #if 0 // Not used for Sprinter/grbl gen6
  4630. case 202: // M202
  4631. gcode_M202();
  4632. break;
  4633. #endif
  4634. case 203: // M203 max feedrate mm/sec
  4635. gcode_M203();
  4636. break;
  4637. case 204: // M204 acclereration S normal moves T filmanent only moves
  4638. gcode_M204();
  4639. break;
  4640. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  4641. gcode_M205();
  4642. break;
  4643. case 206: // M206 additional homing offset
  4644. gcode_M206();
  4645. break;
  4646. #ifdef DELTA
  4647. case 665: // M665 set delta configurations L<diagonal_rod> R<delta_radius> S<segments_per_sec>
  4648. gcode_M665();
  4649. break;
  4650. #endif
  4651. #if defined(DELTA) || defined(Z_DUAL_ENDSTOPS)
  4652. case 666: // M666 set delta / dual endstop adjustment
  4653. gcode_M666();
  4654. break;
  4655. #endif
  4656. #ifdef FWRETRACT
  4657. case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
  4658. gcode_M207();
  4659. break;
  4660. case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  4661. gcode_M208();
  4662. break;
  4663. case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  4664. gcode_M209();
  4665. break;
  4666. #endif // FWRETRACT
  4667. #if EXTRUDERS > 1
  4668. case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  4669. gcode_M218();
  4670. break;
  4671. #endif
  4672. case 220: // M220 S<factor in percent>- set speed factor override percentage
  4673. gcode_M220();
  4674. break;
  4675. case 221: // M221 S<factor in percent>- set extrude factor override percentage
  4676. gcode_M221();
  4677. break;
  4678. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  4679. gcode_M226();
  4680. break;
  4681. #if NUM_SERVOS > 0
  4682. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  4683. gcode_M280();
  4684. break;
  4685. #endif // NUM_SERVOS > 0
  4686. #if HAS_LCD_BUZZ
  4687. case 300: // M300 - Play beep tone
  4688. gcode_M300();
  4689. break;
  4690. #endif // HAS_LCD_BUZZ
  4691. #ifdef PIDTEMP
  4692. case 301: // M301
  4693. gcode_M301();
  4694. break;
  4695. #endif // PIDTEMP
  4696. #ifdef PIDTEMPBED
  4697. case 304: // M304
  4698. gcode_M304();
  4699. break;
  4700. #endif // PIDTEMPBED
  4701. #if defined(CHDK) || HAS_PHOTOGRAPH
  4702. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  4703. gcode_M240();
  4704. break;
  4705. #endif // CHDK || PHOTOGRAPH_PIN
  4706. #ifdef HAS_LCD_CONTRAST
  4707. case 250: // M250 Set LCD contrast value: C<value> (value 0..63)
  4708. gcode_M250();
  4709. break;
  4710. #endif // HAS_LCD_CONTRAST
  4711. #ifdef PREVENT_DANGEROUS_EXTRUDE
  4712. case 302: // allow cold extrudes, or set the minimum extrude temperature
  4713. gcode_M302();
  4714. break;
  4715. #endif // PREVENT_DANGEROUS_EXTRUDE
  4716. case 303: // M303 PID autotune
  4717. gcode_M303();
  4718. break;
  4719. #ifdef SCARA
  4720. case 360: // M360 SCARA Theta pos1
  4721. if (gcode_M360()) return;
  4722. break;
  4723. case 361: // M361 SCARA Theta pos2
  4724. if (gcode_M361()) return;
  4725. break;
  4726. case 362: // M362 SCARA Psi pos1
  4727. if (gcode_M362()) return;
  4728. break;
  4729. case 363: // M363 SCARA Psi pos2
  4730. if (gcode_M363()) return;
  4731. break;
  4732. case 364: // M364 SCARA Psi pos3 (90 deg to Theta)
  4733. if (gcode_M364()) return;
  4734. break;
  4735. case 365: // M365 Set SCARA scaling for X Y Z
  4736. gcode_M365();
  4737. break;
  4738. #endif // SCARA
  4739. case 400: // M400 finish all moves
  4740. gcode_M400();
  4741. break;
  4742. #if defined(ENABLE_AUTO_BED_LEVELING) && (defined(SERVO_ENDSTOPS) || defined(Z_PROBE_ALLEN_KEY)) && !defined(Z_PROBE_SLED)
  4743. case 401:
  4744. gcode_M401();
  4745. break;
  4746. case 402:
  4747. gcode_M402();
  4748. break;
  4749. #endif // ENABLE_AUTO_BED_LEVELING && (SERVO_ENDSTOPS || Z_PROBE_ALLEN_KEY) && !Z_PROBE_SLED
  4750. #ifdef FILAMENT_SENSOR
  4751. case 404: //M404 Enter the nominal filament width (3mm, 1.75mm ) N<3.0> or display nominal filament width
  4752. gcode_M404();
  4753. break;
  4754. case 405: //M405 Turn on filament sensor for control
  4755. gcode_M405();
  4756. break;
  4757. case 406: //M406 Turn off filament sensor for control
  4758. gcode_M406();
  4759. break;
  4760. case 407: //M407 Display measured filament diameter
  4761. gcode_M407();
  4762. break;
  4763. #endif // FILAMENT_SENSOR
  4764. case 410: // M410 quickstop - Abort all the planned moves.
  4765. gcode_M410();
  4766. break;
  4767. #ifdef MESH_BED_LEVELING
  4768. case 420: // M420 Enable/Disable Mesh Bed Leveling
  4769. gcode_M420();
  4770. break;
  4771. case 421: // M421 Set a Mesh Bed Leveling Z coordinate
  4772. gcode_M421();
  4773. break;
  4774. #endif
  4775. case 428: // M428 Apply current_position to home_offset
  4776. gcode_M428();
  4777. break;
  4778. case 500: // M500 Store settings in EEPROM
  4779. gcode_M500();
  4780. break;
  4781. case 501: // M501 Read settings from EEPROM
  4782. gcode_M501();
  4783. break;
  4784. case 502: // M502 Revert to default settings
  4785. gcode_M502();
  4786. break;
  4787. case 503: // M503 print settings currently in memory
  4788. gcode_M503();
  4789. break;
  4790. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  4791. case 540:
  4792. gcode_M540();
  4793. break;
  4794. #endif
  4795. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  4796. case CUSTOM_M_CODE_SET_Z_PROBE_OFFSET:
  4797. gcode_SET_Z_PROBE_OFFSET();
  4798. break;
  4799. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  4800. #ifdef FILAMENTCHANGEENABLE
  4801. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  4802. gcode_M600();
  4803. break;
  4804. #endif // FILAMENTCHANGEENABLE
  4805. #ifdef DUAL_X_CARRIAGE
  4806. case 605:
  4807. gcode_M605();
  4808. break;
  4809. #endif // DUAL_X_CARRIAGE
  4810. case 907: // M907 Set digital trimpot motor current using axis codes.
  4811. gcode_M907();
  4812. break;
  4813. #if HAS_DIGIPOTSS
  4814. case 908: // M908 Control digital trimpot directly.
  4815. gcode_M908();
  4816. break;
  4817. #endif // HAS_DIGIPOTSS
  4818. #if HAS_MICROSTEPS
  4819. case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  4820. gcode_M350();
  4821. break;
  4822. case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  4823. gcode_M351();
  4824. break;
  4825. #endif // HAS_MICROSTEPS
  4826. case 999: // M999: Restart after being Stopped
  4827. gcode_M999();
  4828. break;
  4829. default: code_is_good = false;
  4830. }
  4831. break;
  4832. case 'T':
  4833. gcode_T(codenum);
  4834. break;
  4835. }
  4836. ExitUnknownCommand:
  4837. // Still unknown command? Throw an error
  4838. if (!code_is_good) unknown_command_error();
  4839. ok_to_send();
  4840. }
  4841. void FlushSerialRequestResend() {
  4842. //char command_queue[cmd_queue_index_r][100]="Resend:";
  4843. MYSERIAL.flush();
  4844. SERIAL_PROTOCOLPGM(MSG_RESEND);
  4845. SERIAL_PROTOCOLLN(gcode_LastN + 1);
  4846. ok_to_send();
  4847. }
  4848. void ok_to_send() {
  4849. refresh_cmd_timeout();
  4850. #ifdef SDSUPPORT
  4851. if (fromsd[cmd_queue_index_r]) return;
  4852. #endif
  4853. SERIAL_PROTOCOLPGM(MSG_OK);
  4854. #ifdef ADVANCED_OK
  4855. SERIAL_PROTOCOLPGM(" N"); SERIAL_PROTOCOL(gcode_LastN);
  4856. SERIAL_PROTOCOLPGM(" P"); SERIAL_PROTOCOL(int(BLOCK_BUFFER_SIZE - movesplanned() - 1));
  4857. SERIAL_PROTOCOLPGM(" B"); SERIAL_PROTOCOL(BUFSIZE - commands_in_queue);
  4858. #endif
  4859. SERIAL_EOL;
  4860. }
  4861. void clamp_to_software_endstops(float target[3]) {
  4862. if (min_software_endstops) {
  4863. NOLESS(target[X_AXIS], min_pos[X_AXIS]);
  4864. NOLESS(target[Y_AXIS], min_pos[Y_AXIS]);
  4865. float negative_z_offset = 0;
  4866. #ifdef ENABLE_AUTO_BED_LEVELING
  4867. if (Z_PROBE_OFFSET_FROM_EXTRUDER < 0) negative_z_offset += Z_PROBE_OFFSET_FROM_EXTRUDER;
  4868. if (home_offset[Z_AXIS] < 0) negative_z_offset += home_offset[Z_AXIS];
  4869. #endif
  4870. NOLESS(target[Z_AXIS], min_pos[Z_AXIS] + negative_z_offset);
  4871. }
  4872. if (max_software_endstops) {
  4873. NOMORE(target[X_AXIS], max_pos[X_AXIS]);
  4874. NOMORE(target[Y_AXIS], max_pos[Y_AXIS]);
  4875. NOMORE(target[Z_AXIS], max_pos[Z_AXIS]);
  4876. }
  4877. }
  4878. #ifdef DELTA
  4879. void recalc_delta_settings(float radius, float diagonal_rod) {
  4880. delta_tower1_x = -SIN_60 * radius; // front left tower
  4881. delta_tower1_y = -COS_60 * radius;
  4882. delta_tower2_x = SIN_60 * radius; // front right tower
  4883. delta_tower2_y = -COS_60 * radius;
  4884. delta_tower3_x = 0.0; // back middle tower
  4885. delta_tower3_y = radius;
  4886. delta_diagonal_rod_2 = sq(diagonal_rod);
  4887. }
  4888. void calculate_delta(float cartesian[3]) {
  4889. delta[X_AXIS] = sqrt(delta_diagonal_rod_2
  4890. - sq(delta_tower1_x-cartesian[X_AXIS])
  4891. - sq(delta_tower1_y-cartesian[Y_AXIS])
  4892. ) + cartesian[Z_AXIS];
  4893. delta[Y_AXIS] = sqrt(delta_diagonal_rod_2
  4894. - sq(delta_tower2_x-cartesian[X_AXIS])
  4895. - sq(delta_tower2_y-cartesian[Y_AXIS])
  4896. ) + cartesian[Z_AXIS];
  4897. delta[Z_AXIS] = sqrt(delta_diagonal_rod_2
  4898. - sq(delta_tower3_x-cartesian[X_AXIS])
  4899. - sq(delta_tower3_y-cartesian[Y_AXIS])
  4900. ) + cartesian[Z_AXIS];
  4901. /*
  4902. SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);
  4903. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]);
  4904. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]);
  4905. SERIAL_ECHOPGM("delta x="); SERIAL_ECHO(delta[X_AXIS]);
  4906. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(delta[Y_AXIS]);
  4907. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(delta[Z_AXIS]);
  4908. */
  4909. }
  4910. #ifdef ENABLE_AUTO_BED_LEVELING
  4911. // Adjust print surface height by linear interpolation over the bed_level array.
  4912. void adjust_delta(float cartesian[3]) {
  4913. if (delta_grid_spacing[0] == 0 || delta_grid_spacing[1] == 0) return; // G29 not done!
  4914. int half = (AUTO_BED_LEVELING_GRID_POINTS - 1) / 2;
  4915. float h1 = 0.001 - half, h2 = half - 0.001,
  4916. grid_x = max(h1, min(h2, cartesian[X_AXIS] / delta_grid_spacing[0])),
  4917. grid_y = max(h1, min(h2, cartesian[Y_AXIS] / delta_grid_spacing[1]));
  4918. int floor_x = floor(grid_x), floor_y = floor(grid_y);
  4919. float ratio_x = grid_x - floor_x, ratio_y = grid_y - floor_y,
  4920. z1 = bed_level[floor_x + half][floor_y + half],
  4921. z2 = bed_level[floor_x + half][floor_y + half + 1],
  4922. z3 = bed_level[floor_x + half + 1][floor_y + half],
  4923. z4 = bed_level[floor_x + half + 1][floor_y + half + 1],
  4924. left = (1 - ratio_y) * z1 + ratio_y * z2,
  4925. right = (1 - ratio_y) * z3 + ratio_y * z4,
  4926. offset = (1 - ratio_x) * left + ratio_x * right;
  4927. delta[X_AXIS] += offset;
  4928. delta[Y_AXIS] += offset;
  4929. delta[Z_AXIS] += offset;
  4930. /*
  4931. SERIAL_ECHOPGM("grid_x="); SERIAL_ECHO(grid_x);
  4932. SERIAL_ECHOPGM(" grid_y="); SERIAL_ECHO(grid_y);
  4933. SERIAL_ECHOPGM(" floor_x="); SERIAL_ECHO(floor_x);
  4934. SERIAL_ECHOPGM(" floor_y="); SERIAL_ECHO(floor_y);
  4935. SERIAL_ECHOPGM(" ratio_x="); SERIAL_ECHO(ratio_x);
  4936. SERIAL_ECHOPGM(" ratio_y="); SERIAL_ECHO(ratio_y);
  4937. SERIAL_ECHOPGM(" z1="); SERIAL_ECHO(z1);
  4938. SERIAL_ECHOPGM(" z2="); SERIAL_ECHO(z2);
  4939. SERIAL_ECHOPGM(" z3="); SERIAL_ECHO(z3);
  4940. SERIAL_ECHOPGM(" z4="); SERIAL_ECHO(z4);
  4941. SERIAL_ECHOPGM(" left="); SERIAL_ECHO(left);
  4942. SERIAL_ECHOPGM(" right="); SERIAL_ECHO(right);
  4943. SERIAL_ECHOPGM(" offset="); SERIAL_ECHOLN(offset);
  4944. */
  4945. }
  4946. #endif // ENABLE_AUTO_BED_LEVELING
  4947. #endif // DELTA
  4948. #ifdef MESH_BED_LEVELING
  4949. // This function is used to split lines on mesh borders so each segment is only part of one mesh area
  4950. void mesh_plan_buffer_line(float x, float y, float z, const float e, float feed_rate, const uint8_t &extruder, uint8_t x_splits=0xff, uint8_t y_splits=0xff)
  4951. {
  4952. if (!mbl.active) {
  4953. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  4954. set_current_to_destination();
  4955. return;
  4956. }
  4957. int pix = mbl.select_x_index(current_position[X_AXIS]);
  4958. int piy = mbl.select_y_index(current_position[Y_AXIS]);
  4959. int ix = mbl.select_x_index(x);
  4960. int iy = mbl.select_y_index(y);
  4961. pix = min(pix, MESH_NUM_X_POINTS - 2);
  4962. piy = min(piy, MESH_NUM_Y_POINTS - 2);
  4963. ix = min(ix, MESH_NUM_X_POINTS - 2);
  4964. iy = min(iy, MESH_NUM_Y_POINTS - 2);
  4965. if (pix == ix && piy == iy) {
  4966. // Start and end on same mesh square
  4967. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  4968. set_current_to_destination();
  4969. return;
  4970. }
  4971. float nx, ny, ne, normalized_dist;
  4972. if (ix > pix && (x_splits) & BIT(ix)) {
  4973. nx = mbl.get_x(ix);
  4974. normalized_dist = (nx - current_position[X_AXIS])/(x - current_position[X_AXIS]);
  4975. ny = current_position[Y_AXIS] + (y - current_position[Y_AXIS]) * normalized_dist;
  4976. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  4977. x_splits ^= BIT(ix);
  4978. } else if (ix < pix && (x_splits) & BIT(pix)) {
  4979. nx = mbl.get_x(pix);
  4980. normalized_dist = (nx - current_position[X_AXIS])/(x - current_position[X_AXIS]);
  4981. ny = current_position[Y_AXIS] + (y - current_position[Y_AXIS]) * normalized_dist;
  4982. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  4983. x_splits ^= BIT(pix);
  4984. } else if (iy > piy && (y_splits) & BIT(iy)) {
  4985. ny = mbl.get_y(iy);
  4986. normalized_dist = (ny - current_position[Y_AXIS])/(y - current_position[Y_AXIS]);
  4987. nx = current_position[X_AXIS] + (x - current_position[X_AXIS]) * normalized_dist;
  4988. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  4989. y_splits ^= BIT(iy);
  4990. } else if (iy < piy && (y_splits) & BIT(piy)) {
  4991. ny = mbl.get_y(piy);
  4992. normalized_dist = (ny - current_position[Y_AXIS])/(y - current_position[Y_AXIS]);
  4993. nx = current_position[X_AXIS] + (x - current_position[X_AXIS]) * normalized_dist;
  4994. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  4995. y_splits ^= BIT(piy);
  4996. } else {
  4997. // Already split on a border
  4998. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  4999. set_current_to_destination();
  5000. return;
  5001. }
  5002. // Do the split and look for more borders
  5003. destination[X_AXIS] = nx;
  5004. destination[Y_AXIS] = ny;
  5005. destination[E_AXIS] = ne;
  5006. mesh_plan_buffer_line(nx, ny, z, ne, feed_rate, extruder, x_splits, y_splits);
  5007. destination[X_AXIS] = x;
  5008. destination[Y_AXIS] = y;
  5009. destination[E_AXIS] = e;
  5010. mesh_plan_buffer_line(x, y, z, e, feed_rate, extruder, x_splits, y_splits);
  5011. }
  5012. #endif // MESH_BED_LEVELING
  5013. #ifdef PREVENT_DANGEROUS_EXTRUDE
  5014. inline void prevent_dangerous_extrude(float &curr_e, float &dest_e) {
  5015. float de = dest_e - curr_e;
  5016. if (de) {
  5017. if (degHotend(active_extruder) < extrude_min_temp) {
  5018. curr_e = dest_e; // Behave as if the move really took place, but ignore E part
  5019. SERIAL_ECHO_START;
  5020. SERIAL_ECHOLNPGM(MSG_ERR_COLD_EXTRUDE_STOP);
  5021. }
  5022. #ifdef PREVENT_LENGTHY_EXTRUDE
  5023. if (labs(de) > EXTRUDE_MAXLENGTH) {
  5024. curr_e = dest_e; // Behave as if the move really took place, but ignore E part
  5025. SERIAL_ECHO_START;
  5026. SERIAL_ECHOLNPGM(MSG_ERR_LONG_EXTRUDE_STOP);
  5027. }
  5028. #endif
  5029. }
  5030. }
  5031. #endif // PREVENT_DANGEROUS_EXTRUDE
  5032. #if defined(DELTA) || defined(SCARA)
  5033. inline bool prepare_move_delta() {
  5034. float difference[NUM_AXIS];
  5035. for (int8_t i=0; i < NUM_AXIS; i++) difference[i] = destination[i] - current_position[i];
  5036. float cartesian_mm = sqrt(sq(difference[X_AXIS]) + sq(difference[Y_AXIS]) + sq(difference[Z_AXIS]));
  5037. if (cartesian_mm < 0.000001) cartesian_mm = abs(difference[E_AXIS]);
  5038. if (cartesian_mm < 0.000001) return false;
  5039. float seconds = 6000 * cartesian_mm / feedrate / feedrate_multiplier;
  5040. int steps = max(1, int(delta_segments_per_second * seconds));
  5041. // SERIAL_ECHOPGM("mm="); SERIAL_ECHO(cartesian_mm);
  5042. // SERIAL_ECHOPGM(" seconds="); SERIAL_ECHO(seconds);
  5043. // SERIAL_ECHOPGM(" steps="); SERIAL_ECHOLN(steps);
  5044. for (int s = 1; s <= steps; s++) {
  5045. float fraction = float(s) / float(steps);
  5046. for (int8_t i = 0; i < NUM_AXIS; i++)
  5047. destination[i] = current_position[i] + difference[i] * fraction;
  5048. calculate_delta(destination);
  5049. #ifdef ENABLE_AUTO_BED_LEVELING
  5050. adjust_delta(destination);
  5051. #endif
  5052. //SERIAL_ECHOPGM("destination[X_AXIS]="); SERIAL_ECHOLN(destination[X_AXIS]);
  5053. //SERIAL_ECHOPGM("destination[Y_AXIS]="); SERIAL_ECHOLN(destination[Y_AXIS]);
  5054. //SERIAL_ECHOPGM("destination[Z_AXIS]="); SERIAL_ECHOLN(destination[Z_AXIS]);
  5055. //SERIAL_ECHOPGM("delta[X_AXIS]="); SERIAL_ECHOLN(delta[X_AXIS]);
  5056. //SERIAL_ECHOPGM("delta[Y_AXIS]="); SERIAL_ECHOLN(delta[Y_AXIS]);
  5057. //SERIAL_ECHOPGM("delta[Z_AXIS]="); SERIAL_ECHOLN(delta[Z_AXIS]);
  5058. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], destination[E_AXIS], feedrate/60*feedrate_multiplier/100.0, active_extruder);
  5059. }
  5060. return true;
  5061. }
  5062. #endif // DELTA || SCARA
  5063. #ifdef SCARA
  5064. inline bool prepare_move_scara() { return prepare_move_delta(); }
  5065. #endif
  5066. #ifdef DUAL_X_CARRIAGE
  5067. inline bool prepare_move_dual_x_carriage() {
  5068. if (active_extruder_parked) {
  5069. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && active_extruder == 0) {
  5070. // move duplicate extruder into correct duplication position.
  5071. plan_set_position(inactive_extruder_x_pos, current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  5072. plan_buffer_line(current_position[X_AXIS] + duplicate_extruder_x_offset,
  5073. current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], max_feedrate[X_AXIS], 1);
  5074. sync_plan_position();
  5075. st_synchronize();
  5076. extruder_duplication_enabled = true;
  5077. active_extruder_parked = false;
  5078. }
  5079. else if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE) { // handle unparking of head
  5080. if (current_position[E_AXIS] == destination[E_AXIS]) {
  5081. // This is a travel move (with no extrusion)
  5082. // Skip it, but keep track of the current position
  5083. // (so it can be used as the start of the next non-travel move)
  5084. if (delayed_move_time != 0xFFFFFFFFUL) {
  5085. set_current_to_destination();
  5086. NOLESS(raised_parked_position[Z_AXIS], destination[Z_AXIS]);
  5087. delayed_move_time = millis();
  5088. return false;
  5089. }
  5090. }
  5091. delayed_move_time = 0;
  5092. // unpark extruder: 1) raise, 2) move into starting XY position, 3) lower
  5093. plan_buffer_line(raised_parked_position[X_AXIS], raised_parked_position[Y_AXIS], raised_parked_position[Z_AXIS], current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  5094. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], raised_parked_position[Z_AXIS], current_position[E_AXIS], min(max_feedrate[X_AXIS], max_feedrate[Y_AXIS]), active_extruder);
  5095. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  5096. active_extruder_parked = false;
  5097. }
  5098. }
  5099. return true;
  5100. }
  5101. #endif // DUAL_X_CARRIAGE
  5102. #if !defined(DELTA) && !defined(SCARA)
  5103. inline bool prepare_move_cartesian() {
  5104. // Do not use feedrate_multiplier for E or Z only moves
  5105. if (current_position[X_AXIS] == destination[X_AXIS] && current_position[Y_AXIS] == destination[Y_AXIS]) {
  5106. line_to_destination();
  5107. }
  5108. else {
  5109. #ifdef MESH_BED_LEVELING
  5110. mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], (feedrate/60)*(feedrate_multiplier/100.0), active_extruder);
  5111. return false;
  5112. #else
  5113. line_to_destination(feedrate * feedrate_multiplier / 100.0);
  5114. #endif
  5115. }
  5116. return true;
  5117. }
  5118. #endif // !DELTA && !SCARA
  5119. /**
  5120. * Prepare a single move and get ready for the next one
  5121. */
  5122. void prepare_move() {
  5123. clamp_to_software_endstops(destination);
  5124. refresh_cmd_timeout();
  5125. #ifdef PREVENT_DANGEROUS_EXTRUDE
  5126. prevent_dangerous_extrude(current_position[E_AXIS], destination[E_AXIS]);
  5127. #endif
  5128. #ifdef SCARA
  5129. if (!prepare_move_scara()) return;
  5130. #elif defined(DELTA)
  5131. if (!prepare_move_delta()) return;
  5132. #endif
  5133. #ifdef DUAL_X_CARRIAGE
  5134. if (!prepare_move_dual_x_carriage()) return;
  5135. #endif
  5136. #if !defined(DELTA) && !defined(SCARA)
  5137. if (!prepare_move_cartesian()) return;
  5138. #endif
  5139. set_current_to_destination();
  5140. }
  5141. #if HAS_CONTROLLERFAN
  5142. void controllerFan() {
  5143. static millis_t lastMotor = 0; // Last time a motor was turned on
  5144. static millis_t lastMotorCheck = 0; // Last time the state was checked
  5145. millis_t ms = millis();
  5146. if (ms >= lastMotorCheck + 2500) { // Not a time critical function, so we only check every 2500ms
  5147. lastMotorCheck = ms;
  5148. if (X_ENABLE_READ == X_ENABLE_ON || Y_ENABLE_READ == Y_ENABLE_ON || Z_ENABLE_READ == Z_ENABLE_ON || soft_pwm_bed > 0
  5149. || E0_ENABLE_READ == E_ENABLE_ON // If any of the drivers are enabled...
  5150. #if EXTRUDERS > 1
  5151. || E1_ENABLE_READ == E_ENABLE_ON
  5152. #if HAS_X2_ENABLE
  5153. || X2_ENABLE_READ == X_ENABLE_ON
  5154. #endif
  5155. #if EXTRUDERS > 2
  5156. || E2_ENABLE_READ == E_ENABLE_ON
  5157. #if EXTRUDERS > 3
  5158. || E3_ENABLE_READ == E_ENABLE_ON
  5159. #endif
  5160. #endif
  5161. #endif
  5162. ) {
  5163. lastMotor = ms; //... set time to NOW so the fan will turn on
  5164. }
  5165. uint8_t speed = (lastMotor == 0 || ms >= lastMotor + (CONTROLLERFAN_SECS * 1000UL)) ? 0 : CONTROLLERFAN_SPEED;
  5166. // allows digital or PWM fan output to be used (see M42 handling)
  5167. digitalWrite(CONTROLLERFAN_PIN, speed);
  5168. analogWrite(CONTROLLERFAN_PIN, speed);
  5169. }
  5170. }
  5171. #endif // HAS_CONTROLLERFAN
  5172. #ifdef SCARA
  5173. void calculate_SCARA_forward_Transform(float f_scara[3]) {
  5174. // Perform forward kinematics, and place results in delta[3]
  5175. // The maths and first version has been done by QHARLEY . Integrated into masterbranch 06/2014 and slightly restructured by Joachim Cerny in June 2014
  5176. float x_sin, x_cos, y_sin, y_cos;
  5177. //SERIAL_ECHOPGM("f_delta x="); SERIAL_ECHO(f_scara[X_AXIS]);
  5178. //SERIAL_ECHOPGM(" y="); SERIAL_ECHO(f_scara[Y_AXIS]);
  5179. x_sin = sin(f_scara[X_AXIS]/SCARA_RAD2DEG) * Linkage_1;
  5180. x_cos = cos(f_scara[X_AXIS]/SCARA_RAD2DEG) * Linkage_1;
  5181. y_sin = sin(f_scara[Y_AXIS]/SCARA_RAD2DEG) * Linkage_2;
  5182. y_cos = cos(f_scara[Y_AXIS]/SCARA_RAD2DEG) * Linkage_2;
  5183. //SERIAL_ECHOPGM(" x_sin="); SERIAL_ECHO(x_sin);
  5184. //SERIAL_ECHOPGM(" x_cos="); SERIAL_ECHO(x_cos);
  5185. //SERIAL_ECHOPGM(" y_sin="); SERIAL_ECHO(y_sin);
  5186. //SERIAL_ECHOPGM(" y_cos="); SERIAL_ECHOLN(y_cos);
  5187. delta[X_AXIS] = x_cos + y_cos + SCARA_offset_x; //theta
  5188. delta[Y_AXIS] = x_sin + y_sin + SCARA_offset_y; //theta+phi
  5189. //SERIAL_ECHOPGM(" delta[X_AXIS]="); SERIAL_ECHO(delta[X_AXIS]);
  5190. //SERIAL_ECHOPGM(" delta[Y_AXIS]="); SERIAL_ECHOLN(delta[Y_AXIS]);
  5191. }
  5192. void calculate_delta(float cartesian[3]){
  5193. //reverse kinematics.
  5194. // Perform reversed kinematics, and place results in delta[3]
  5195. // The maths and first version has been done by QHARLEY . Integrated into masterbranch 06/2014 and slightly restructured by Joachim Cerny in June 2014
  5196. float SCARA_pos[2];
  5197. static float SCARA_C2, SCARA_S2, SCARA_K1, SCARA_K2, SCARA_theta, SCARA_psi;
  5198. SCARA_pos[X_AXIS] = cartesian[X_AXIS] * axis_scaling[X_AXIS] - SCARA_offset_x; //Translate SCARA to standard X Y
  5199. SCARA_pos[Y_AXIS] = cartesian[Y_AXIS] * axis_scaling[Y_AXIS] - SCARA_offset_y; // With scaling factor.
  5200. #if (Linkage_1 == Linkage_2)
  5201. SCARA_C2 = ( ( sq(SCARA_pos[X_AXIS]) + sq(SCARA_pos[Y_AXIS]) ) / (2 * (float)L1_2) ) - 1;
  5202. #else
  5203. SCARA_C2 = ( sq(SCARA_pos[X_AXIS]) + sq(SCARA_pos[Y_AXIS]) - (float)L1_2 - (float)L2_2 ) / 45000;
  5204. #endif
  5205. SCARA_S2 = sqrt( 1 - sq(SCARA_C2) );
  5206. SCARA_K1 = Linkage_1 + Linkage_2 * SCARA_C2;
  5207. SCARA_K2 = Linkage_2 * SCARA_S2;
  5208. SCARA_theta = ( atan2(SCARA_pos[X_AXIS],SCARA_pos[Y_AXIS])-atan2(SCARA_K1, SCARA_K2) ) * -1;
  5209. SCARA_psi = atan2(SCARA_S2,SCARA_C2);
  5210. delta[X_AXIS] = SCARA_theta * SCARA_RAD2DEG; // Multiply by 180/Pi - theta is support arm angle
  5211. delta[Y_AXIS] = (SCARA_theta + SCARA_psi) * SCARA_RAD2DEG; // - equal to sub arm angle (inverted motor)
  5212. delta[Z_AXIS] = cartesian[Z_AXIS];
  5213. /*
  5214. SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);
  5215. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]);
  5216. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]);
  5217. SERIAL_ECHOPGM("scara x="); SERIAL_ECHO(SCARA_pos[X_AXIS]);
  5218. SERIAL_ECHOPGM(" y="); SERIAL_ECHOLN(SCARA_pos[Y_AXIS]);
  5219. SERIAL_ECHOPGM("delta x="); SERIAL_ECHO(delta[X_AXIS]);
  5220. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(delta[Y_AXIS]);
  5221. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(delta[Z_AXIS]);
  5222. SERIAL_ECHOPGM("C2="); SERIAL_ECHO(SCARA_C2);
  5223. SERIAL_ECHOPGM(" S2="); SERIAL_ECHO(SCARA_S2);
  5224. SERIAL_ECHOPGM(" Theta="); SERIAL_ECHO(SCARA_theta);
  5225. SERIAL_ECHOPGM(" Psi="); SERIAL_ECHOLN(SCARA_psi);
  5226. SERIAL_EOL;
  5227. */
  5228. }
  5229. #endif // SCARA
  5230. #ifdef TEMP_STAT_LEDS
  5231. static bool red_led = false;
  5232. static millis_t next_status_led_update_ms = 0;
  5233. void handle_status_leds(void) {
  5234. float max_temp = 0.0;
  5235. if (millis() > next_status_led_update_ms) {
  5236. next_status_led_update_ms += 500; // Update every 0.5s
  5237. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder)
  5238. max_temp = max(max(max_temp, degHotend(cur_extruder)), degTargetHotend(cur_extruder));
  5239. #if HAS_TEMP_BED
  5240. max_temp = max(max(max_temp, degTargetBed()), degBed());
  5241. #endif
  5242. bool new_led = (max_temp > 55.0) ? true : (max_temp < 54.0) ? false : red_led;
  5243. if (new_led != red_led) {
  5244. red_led = new_led;
  5245. digitalWrite(STAT_LED_RED, new_led ? HIGH : LOW);
  5246. digitalWrite(STAT_LED_BLUE, new_led ? LOW : HIGH);
  5247. }
  5248. }
  5249. }
  5250. #endif
  5251. void enable_all_steppers() {
  5252. enable_x();
  5253. enable_y();
  5254. enable_z();
  5255. enable_e0();
  5256. enable_e1();
  5257. enable_e2();
  5258. enable_e3();
  5259. }
  5260. void disable_all_steppers() {
  5261. disable_x();
  5262. disable_y();
  5263. disable_z();
  5264. disable_e0();
  5265. disable_e1();
  5266. disable_e2();
  5267. disable_e3();
  5268. }
  5269. /**
  5270. * Standard idle routine keeps the machine alive
  5271. */
  5272. void idle() {
  5273. manage_heater();
  5274. manage_inactivity();
  5275. lcd_update();
  5276. }
  5277. /**
  5278. * Manage several activities:
  5279. * - Check for Filament Runout
  5280. * - Keep the command buffer full
  5281. * - Check for maximum inactive time between commands
  5282. * - Check for maximum inactive time between stepper commands
  5283. * - Check if pin CHDK needs to go LOW
  5284. * - Check for KILL button held down
  5285. * - Check for HOME button held down
  5286. * - Check if cooling fan needs to be switched on
  5287. * - Check if an idle but hot extruder needs filament extruded (EXTRUDER_RUNOUT_PREVENT)
  5288. */
  5289. void manage_inactivity(bool ignore_stepper_queue/*=false*/) {
  5290. #if HAS_FILRUNOUT
  5291. if (IS_SD_PRINTING && !(READ(FILRUNOUT_PIN) ^ FIL_RUNOUT_INVERTING))
  5292. filrunout();
  5293. #endif
  5294. if (commands_in_queue < BUFSIZE - 1) get_command();
  5295. millis_t ms = millis();
  5296. if (max_inactive_time && ms > previous_cmd_ms + max_inactive_time) kill(PSTR(MSG_KILLED));
  5297. if (stepper_inactive_time && ms > previous_cmd_ms + stepper_inactive_time
  5298. && !ignore_stepper_queue && !blocks_queued())
  5299. disable_all_steppers();
  5300. #ifdef CHDK // Check if pin should be set to LOW after M240 set it to HIGH
  5301. if (chdkActive && ms > chdkHigh + CHDK_DELAY) {
  5302. chdkActive = false;
  5303. WRITE(CHDK, LOW);
  5304. }
  5305. #endif
  5306. #if HAS_KILL
  5307. // Check if the kill button was pressed and wait just in case it was an accidental
  5308. // key kill key press
  5309. // -------------------------------------------------------------------------------
  5310. static int killCount = 0; // make the inactivity button a bit less responsive
  5311. const int KILL_DELAY = 750;
  5312. if (!READ(KILL_PIN))
  5313. killCount++;
  5314. else if (killCount > 0)
  5315. killCount--;
  5316. // Exceeded threshold and we can confirm that it was not accidental
  5317. // KILL the machine
  5318. // ----------------------------------------------------------------
  5319. if (killCount >= KILL_DELAY) kill(PSTR(MSG_KILLED));
  5320. #endif
  5321. #if HAS_HOME
  5322. // Check to see if we have to home, use poor man's debouncer
  5323. // ---------------------------------------------------------
  5324. static int homeDebounceCount = 0; // poor man's debouncing count
  5325. const int HOME_DEBOUNCE_DELAY = 750;
  5326. if (!READ(HOME_PIN)) {
  5327. if (!homeDebounceCount) {
  5328. enqueuecommands_P(PSTR("G28"));
  5329. LCD_MESSAGEPGM(MSG_AUTO_HOME);
  5330. }
  5331. if (homeDebounceCount < HOME_DEBOUNCE_DELAY)
  5332. homeDebounceCount++;
  5333. else
  5334. homeDebounceCount = 0;
  5335. }
  5336. #endif
  5337. #if HAS_CONTROLLERFAN
  5338. controllerFan(); // Check if fan should be turned on to cool stepper drivers down
  5339. #endif
  5340. #ifdef EXTRUDER_RUNOUT_PREVENT
  5341. if (ms > previous_cmd_ms + EXTRUDER_RUNOUT_SECONDS * 1000)
  5342. if (degHotend(active_extruder) > EXTRUDER_RUNOUT_MINTEMP) {
  5343. bool oldstatus;
  5344. switch(active_extruder) {
  5345. case 0:
  5346. oldstatus = E0_ENABLE_READ;
  5347. enable_e0();
  5348. break;
  5349. #if EXTRUDERS > 1
  5350. case 1:
  5351. oldstatus = E1_ENABLE_READ;
  5352. enable_e1();
  5353. break;
  5354. #if EXTRUDERS > 2
  5355. case 2:
  5356. oldstatus = E2_ENABLE_READ;
  5357. enable_e2();
  5358. break;
  5359. #if EXTRUDERS > 3
  5360. case 3:
  5361. oldstatus = E3_ENABLE_READ;
  5362. enable_e3();
  5363. break;
  5364. #endif
  5365. #endif
  5366. #endif
  5367. }
  5368. float oldepos = current_position[E_AXIS], oldedes = destination[E_AXIS];
  5369. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
  5370. destination[E_AXIS] + EXTRUDER_RUNOUT_EXTRUDE * EXTRUDER_RUNOUT_ESTEPS / axis_steps_per_unit[E_AXIS],
  5371. EXTRUDER_RUNOUT_SPEED / 60. * EXTRUDER_RUNOUT_ESTEPS / axis_steps_per_unit[E_AXIS], active_extruder);
  5372. current_position[E_AXIS] = oldepos;
  5373. destination[E_AXIS] = oldedes;
  5374. plan_set_e_position(oldepos);
  5375. previous_cmd_ms = ms; // refresh_cmd_timeout()
  5376. st_synchronize();
  5377. switch(active_extruder) {
  5378. case 0:
  5379. E0_ENABLE_WRITE(oldstatus);
  5380. break;
  5381. #if EXTRUDERS > 1
  5382. case 1:
  5383. E1_ENABLE_WRITE(oldstatus);
  5384. break;
  5385. #if EXTRUDERS > 2
  5386. case 2:
  5387. E2_ENABLE_WRITE(oldstatus);
  5388. break;
  5389. #if EXTRUDERS > 3
  5390. case 3:
  5391. E3_ENABLE_WRITE(oldstatus);
  5392. break;
  5393. #endif
  5394. #endif
  5395. #endif
  5396. }
  5397. }
  5398. #endif
  5399. #ifdef DUAL_X_CARRIAGE
  5400. // handle delayed move timeout
  5401. if (delayed_move_time && ms > delayed_move_time + 1000 && IsRunning()) {
  5402. // travel moves have been received so enact them
  5403. delayed_move_time = 0xFFFFFFFFUL; // force moves to be done
  5404. set_destination_to_current();
  5405. prepare_move();
  5406. }
  5407. #endif
  5408. #ifdef TEMP_STAT_LEDS
  5409. handle_status_leds();
  5410. #endif
  5411. check_axes_activity();
  5412. }
  5413. void kill(const char *lcd_msg) {
  5414. #ifdef ULTRA_LCD
  5415. lcd_setalertstatuspgm(lcd_msg);
  5416. #endif
  5417. cli(); // Stop interrupts
  5418. disable_all_heaters();
  5419. disable_all_steppers();
  5420. #if HAS_POWER_SWITCH
  5421. pinMode(PS_ON_PIN, INPUT);
  5422. #endif
  5423. SERIAL_ERROR_START;
  5424. SERIAL_ERRORLNPGM(MSG_ERR_KILLED);
  5425. // FMC small patch to update the LCD before ending
  5426. sei(); // enable interrupts
  5427. for (int i = 5; i--; lcd_update()) delay(200); // Wait a short time
  5428. cli(); // disable interrupts
  5429. suicide();
  5430. while(1) { /* Intentionally left empty */ } // Wait for reset
  5431. }
  5432. #ifdef FILAMENT_RUNOUT_SENSOR
  5433. void filrunout() {
  5434. if (!filrunoutEnqueued) {
  5435. filrunoutEnqueued = true;
  5436. enqueuecommands_P(PSTR(FILAMENT_RUNOUT_SCRIPT));
  5437. st_synchronize();
  5438. }
  5439. }
  5440. #endif // FILAMENT_RUNOUT_SENSOR
  5441. #ifdef FAST_PWM_FAN
  5442. void setPwmFrequency(uint8_t pin, int val) {
  5443. val &= 0x07;
  5444. switch (digitalPinToTimer(pin)) {
  5445. #if defined(TCCR0A)
  5446. case TIMER0A:
  5447. case TIMER0B:
  5448. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  5449. // TCCR0B |= val;
  5450. break;
  5451. #endif
  5452. #if defined(TCCR1A)
  5453. case TIMER1A:
  5454. case TIMER1B:
  5455. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  5456. // TCCR1B |= val;
  5457. break;
  5458. #endif
  5459. #if defined(TCCR2)
  5460. case TIMER2:
  5461. case TIMER2:
  5462. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  5463. TCCR2 |= val;
  5464. break;
  5465. #endif
  5466. #if defined(TCCR2A)
  5467. case TIMER2A:
  5468. case TIMER2B:
  5469. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  5470. TCCR2B |= val;
  5471. break;
  5472. #endif
  5473. #if defined(TCCR3A)
  5474. case TIMER3A:
  5475. case TIMER3B:
  5476. case TIMER3C:
  5477. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  5478. TCCR3B |= val;
  5479. break;
  5480. #endif
  5481. #if defined(TCCR4A)
  5482. case TIMER4A:
  5483. case TIMER4B:
  5484. case TIMER4C:
  5485. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  5486. TCCR4B |= val;
  5487. break;
  5488. #endif
  5489. #if defined(TCCR5A)
  5490. case TIMER5A:
  5491. case TIMER5B:
  5492. case TIMER5C:
  5493. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  5494. TCCR5B |= val;
  5495. break;
  5496. #endif
  5497. }
  5498. }
  5499. #endif // FAST_PWM_FAN
  5500. void Stop() {
  5501. disable_all_heaters();
  5502. if (IsRunning()) {
  5503. Running = false;
  5504. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  5505. SERIAL_ERROR_START;
  5506. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  5507. LCD_MESSAGEPGM(MSG_STOPPED);
  5508. }
  5509. }
  5510. bool setTargetedHotend(int code){
  5511. target_extruder = active_extruder;
  5512. if (code_seen('T')) {
  5513. target_extruder = code_value_short();
  5514. if (target_extruder >= EXTRUDERS) {
  5515. SERIAL_ECHO_START;
  5516. switch(code){
  5517. case 104:
  5518. SERIAL_ECHO(MSG_M104_INVALID_EXTRUDER);
  5519. break;
  5520. case 105:
  5521. SERIAL_ECHO(MSG_M105_INVALID_EXTRUDER);
  5522. break;
  5523. case 109:
  5524. SERIAL_ECHO(MSG_M109_INVALID_EXTRUDER);
  5525. break;
  5526. case 218:
  5527. SERIAL_ECHO(MSG_M218_INVALID_EXTRUDER);
  5528. break;
  5529. case 221:
  5530. SERIAL_ECHO(MSG_M221_INVALID_EXTRUDER);
  5531. break;
  5532. }
  5533. SERIAL_ECHOLN(target_extruder);
  5534. return true;
  5535. }
  5536. }
  5537. return false;
  5538. }
  5539. float calculate_volumetric_multiplier(float diameter) {
  5540. if (!volumetric_enabled || diameter == 0) return 1.0;
  5541. float d2 = diameter * 0.5;
  5542. return 1.0 / (M_PI * d2 * d2);
  5543. }
  5544. void calculate_volumetric_multipliers() {
  5545. for (int i=0; i<EXTRUDERS; i++)
  5546. volumetric_multiplier[i] = calculate_volumetric_multiplier(filament_size[i]);
  5547. }