My Marlin configs for Fabrikator Mini and CTC i3 Pro B
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

ubl_motion.cpp 28KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623
  1. /**
  2. * Marlin 3D Printer Firmware
  3. * Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
  4. *
  5. * Based on Sprinter and grbl.
  6. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  7. *
  8. * This program is free software: you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation, either version 3 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  20. *
  21. */
  22. #include "MarlinConfig.h"
  23. #if ENABLED(AUTO_BED_LEVELING_UBL)
  24. #include "Marlin.h"
  25. #include "ubl.h"
  26. #include "planner.h"
  27. #include "stepper.h"
  28. #include <avr/io.h>
  29. #include <math.h>
  30. #if AVR_AT90USB1286_FAMILY // Teensyduino & Printrboard IDE extensions have compile errors without this
  31. inline void set_current_from_destination() { COPY(current_position, destination); }
  32. #else
  33. extern void set_current_from_destination();
  34. #endif
  35. #if !UBL_SEGMENTED
  36. void unified_bed_leveling::line_to_destination_cartesian(const float &feed_rate, const uint8_t extruder) {
  37. /**
  38. * Much of the nozzle movement will be within the same cell. So we will do as little computation
  39. * as possible to determine if this is the case. If this move is within the same cell, we will
  40. * just do the required Z-Height correction, call the Planner's buffer_line() routine, and leave
  41. */
  42. #if ENABLED(SKEW_CORRECTION)
  43. // For skew correction just adjust the destination point and we're done
  44. float start[XYZE] = { current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS] },
  45. end[XYZE] = { destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS] };
  46. planner.skew(start[X_AXIS], start[Y_AXIS], start[Z_AXIS]);
  47. planner.skew(end[X_AXIS], end[Y_AXIS], end[Z_AXIS]);
  48. #else
  49. const float (&start)[XYZE] = current_position,
  50. (&end)[XYZE] = destination;
  51. #endif
  52. const int cell_start_xi = get_cell_index_x(start[X_AXIS]),
  53. cell_start_yi = get_cell_index_y(start[Y_AXIS]),
  54. cell_dest_xi = get_cell_index_x(end[X_AXIS]),
  55. cell_dest_yi = get_cell_index_y(end[Y_AXIS]);
  56. if (g26_debug_flag) {
  57. SERIAL_ECHOPAIR(" ubl.line_to_destination_cartesian(xe=", destination[X_AXIS]);
  58. SERIAL_ECHOPAIR(", ye=", destination[Y_AXIS]);
  59. SERIAL_ECHOPAIR(", ze=", destination[Z_AXIS]);
  60. SERIAL_ECHOPAIR(", ee=", destination[E_AXIS]);
  61. SERIAL_CHAR(')');
  62. SERIAL_EOL();
  63. debug_current_and_destination(PSTR("Start of ubl.line_to_destination_cartesian()"));
  64. }
  65. if (cell_start_xi == cell_dest_xi && cell_start_yi == cell_dest_yi) { // if the whole move is within the same cell,
  66. /**
  67. * we don't need to break up the move
  68. *
  69. * If we are moving off the print bed, we are going to allow the move at this level.
  70. * But we detect it and isolate it. For now, we just pass along the request.
  71. */
  72. if (!WITHIN(cell_dest_xi, 0, GRID_MAX_POINTS_X - 1) || !WITHIN(cell_dest_yi, 0, GRID_MAX_POINTS_Y - 1)) {
  73. // Note: There is no Z Correction in this case. We are off the grid and don't know what
  74. // a reasonable correction would be.
  75. planner.buffer_segment(end[X_AXIS], end[Y_AXIS], end[Z_AXIS], end[E_AXIS], feed_rate, extruder);
  76. set_current_from_destination();
  77. if (g26_debug_flag)
  78. debug_current_and_destination(PSTR("out of bounds in ubl.line_to_destination_cartesian()"));
  79. return;
  80. }
  81. FINAL_MOVE:
  82. /**
  83. * Optimize some floating point operations here. We could call float get_z_correction(float x0, float y0) to
  84. * generate the correction for us. But we can lighten the load on the CPU by doing a modified version of the function.
  85. * We are going to only calculate the amount we are from the first mesh line towards the second mesh line once.
  86. * We will use this fraction in both of the original two Z Height calculations for the bi-linear interpolation. And,
  87. * instead of doing a generic divide of the distance, we know the distance is MESH_X_DIST so we can use the preprocessor
  88. * to create a 1-over number for us. That will allow us to do a floating point multiply instead of a floating point divide.
  89. */
  90. const float xratio = (end[X_AXIS] - mesh_index_to_xpos(cell_dest_xi)) * (1.0 / (MESH_X_DIST));
  91. float z1 = z_values[cell_dest_xi ][cell_dest_yi ] + xratio *
  92. (z_values[cell_dest_xi + 1][cell_dest_yi ] - z_values[cell_dest_xi][cell_dest_yi ]),
  93. z2 = z_values[cell_dest_xi ][cell_dest_yi + 1] + xratio *
  94. (z_values[cell_dest_xi + 1][cell_dest_yi + 1] - z_values[cell_dest_xi][cell_dest_yi + 1]);
  95. if (cell_dest_xi >= GRID_MAX_POINTS_X - 1) z1 = z2 = 0.0;
  96. // we are done with the fractional X distance into the cell. Now with the two Z-Heights we have calculated, we
  97. // are going to apply the Y-Distance into the cell to interpolate the final Z correction.
  98. const float yratio = (end[Y_AXIS] - mesh_index_to_ypos(cell_dest_yi)) * (1.0 / (MESH_Y_DIST));
  99. float z0 = cell_dest_yi < GRID_MAX_POINTS_Y - 1 ? (z1 + (z2 - z1) * yratio) * planner.fade_scaling_factor_for_z(end[Z_AXIS]) : 0.0;
  100. /**
  101. * If part of the Mesh is undefined, it will show up as NAN
  102. * in z_values[][] and propagate through the
  103. * calculations. If our correction is NAN, we throw it out
  104. * because part of the Mesh is undefined and we don't have the
  105. * information we need to complete the height correction.
  106. */
  107. if (isnan(z0)) z0 = 0.0;
  108. planner.buffer_segment(end[X_AXIS], end[Y_AXIS], end[Z_AXIS] + z0, end[E_AXIS], feed_rate, extruder);
  109. if (g26_debug_flag)
  110. debug_current_and_destination(PSTR("FINAL_MOVE in ubl.line_to_destination_cartesian()"));
  111. set_current_from_destination();
  112. return;
  113. }
  114. /**
  115. * If we get here, we are processing a move that crosses at least one Mesh Line. We will check
  116. * for the simple case of just crossing X or just crossing Y Mesh Lines after we get all the details
  117. * of the move figured out. We can process the easy case of just crossing an X or Y Mesh Line with less
  118. * computation and in fact most lines are of this nature. We will check for that in the following
  119. * blocks of code:
  120. */
  121. const float dx = end[X_AXIS] - start[X_AXIS],
  122. dy = end[Y_AXIS] - start[Y_AXIS];
  123. const int left_flag = dx < 0.0 ? 1 : 0,
  124. down_flag = dy < 0.0 ? 1 : 0;
  125. const float adx = left_flag ? -dx : dx,
  126. ady = down_flag ? -dy : dy;
  127. const int dxi = cell_start_xi == cell_dest_xi ? 0 : left_flag ? -1 : 1,
  128. dyi = cell_start_yi == cell_dest_yi ? 0 : down_flag ? -1 : 1;
  129. /**
  130. * Compute the scaling factor for the extruder for each partial move.
  131. * We need to watch out for zero length moves because it will cause us to
  132. * have an infinate scaling factor. We are stuck doing a floating point
  133. * divide to get our scaling factor, but after that, we just multiply by this
  134. * number. We also pick our scaling factor based on whether the X or Y
  135. * component is larger. We use the biggest of the two to preserve precision.
  136. */
  137. const bool use_x_dist = adx > ady;
  138. float on_axis_distance = use_x_dist ? dx : dy,
  139. e_position = end[E_AXIS] - start[E_AXIS],
  140. z_position = end[Z_AXIS] - start[Z_AXIS];
  141. const float e_normalized_dist = e_position / on_axis_distance,
  142. z_normalized_dist = z_position / on_axis_distance;
  143. int current_xi = cell_start_xi,
  144. current_yi = cell_start_yi;
  145. const float m = dy / dx,
  146. c = start[Y_AXIS] - m * start[X_AXIS];
  147. const bool inf_normalized_flag = (isinf(e_normalized_dist) != 0),
  148. inf_m_flag = (isinf(m) != 0);
  149. /**
  150. * This block handles vertical lines. These are lines that stay within the same
  151. * X Cell column. They do not need to be perfectly vertical. They just can
  152. * not cross into another X Cell column.
  153. */
  154. if (dxi == 0) { // Check for a vertical line
  155. current_yi += down_flag; // Line is heading down, we just want to go to the bottom
  156. while (current_yi != cell_dest_yi + down_flag) {
  157. current_yi += dyi;
  158. const float next_mesh_line_y = mesh_index_to_ypos(current_yi);
  159. /**
  160. * if the slope of the line is infinite, we won't do the calculations
  161. * else, we know the next X is the same so we can recover and continue!
  162. * Calculate X at the next Y mesh line
  163. */
  164. const float rx = inf_m_flag ? start[X_AXIS] : (next_mesh_line_y - c) / m;
  165. float z0 = z_correction_for_x_on_horizontal_mesh_line(rx, current_xi, current_yi)
  166. * planner.fade_scaling_factor_for_z(end[Z_AXIS]);
  167. /**
  168. * If part of the Mesh is undefined, it will show up as NAN
  169. * in z_values[][] and propagate through the
  170. * calculations. If our correction is NAN, we throw it out
  171. * because part of the Mesh is undefined and we don't have the
  172. * information we need to complete the height correction.
  173. */
  174. if (isnan(z0)) z0 = 0.0;
  175. const float ry = mesh_index_to_ypos(current_yi);
  176. /**
  177. * Without this check, it is possible for the algorithm to generate a zero length move in the case
  178. * where the line is heading down and it is starting right on a Mesh Line boundary. For how often that
  179. * happens, it might be best to remove the check and always 'schedule' the move because
  180. * the planner.buffer_segment() routine will filter it if that happens.
  181. */
  182. if (ry != start[Y_AXIS]) {
  183. if (!inf_normalized_flag) {
  184. on_axis_distance = use_x_dist ? rx - start[X_AXIS] : ry - start[Y_AXIS];
  185. e_position = start[E_AXIS] + on_axis_distance * e_normalized_dist;
  186. z_position = start[Z_AXIS] + on_axis_distance * z_normalized_dist;
  187. }
  188. else {
  189. e_position = end[E_AXIS];
  190. z_position = end[Z_AXIS];
  191. }
  192. planner.buffer_segment(rx, ry, z_position + z0, e_position, feed_rate, extruder);
  193. } //else printf("FIRST MOVE PRUNED ");
  194. }
  195. if (g26_debug_flag)
  196. debug_current_and_destination(PSTR("vertical move done in ubl.line_to_destination_cartesian()"));
  197. //
  198. // Check if we are at the final destination. Usually, we won't be, but if it is on a Y Mesh Line, we are done.
  199. //
  200. if (current_position[X_AXIS] != end[X_AXIS] || current_position[Y_AXIS] != end[Y_AXIS])
  201. goto FINAL_MOVE;
  202. set_current_from_destination();
  203. return;
  204. }
  205. /**
  206. *
  207. * This block handles horizontal lines. These are lines that stay within the same
  208. * Y Cell row. They do not need to be perfectly horizontal. They just can
  209. * not cross into another Y Cell row.
  210. *
  211. */
  212. if (dyi == 0) { // Check for a horizontal line
  213. current_xi += left_flag; // Line is heading left, we just want to go to the left
  214. // edge of this cell for the first move.
  215. while (current_xi != cell_dest_xi + left_flag) {
  216. current_xi += dxi;
  217. const float next_mesh_line_x = mesh_index_to_xpos(current_xi),
  218. ry = m * next_mesh_line_x + c; // Calculate Y at the next X mesh line
  219. float z0 = z_correction_for_y_on_vertical_mesh_line(ry, current_xi, current_yi)
  220. * planner.fade_scaling_factor_for_z(end[Z_AXIS]);
  221. /**
  222. * If part of the Mesh is undefined, it will show up as NAN
  223. * in z_values[][] and propagate through the
  224. * calculations. If our correction is NAN, we throw it out
  225. * because part of the Mesh is undefined and we don't have the
  226. * information we need to complete the height correction.
  227. */
  228. if (isnan(z0)) z0 = 0.0;
  229. const float rx = mesh_index_to_xpos(current_xi);
  230. /**
  231. * Without this check, it is possible for the algorithm to generate a zero length move in the case
  232. * where the line is heading left and it is starting right on a Mesh Line boundary. For how often
  233. * that happens, it might be best to remove the check and always 'schedule' the move because
  234. * the planner.buffer_segment() routine will filter it if that happens.
  235. */
  236. if (rx != start[X_AXIS]) {
  237. if (!inf_normalized_flag) {
  238. on_axis_distance = use_x_dist ? rx - start[X_AXIS] : ry - start[Y_AXIS];
  239. e_position = start[E_AXIS] + on_axis_distance * e_normalized_dist; // is based on X or Y because this is a horizontal move
  240. z_position = start[Z_AXIS] + on_axis_distance * z_normalized_dist;
  241. }
  242. else {
  243. e_position = end[E_AXIS];
  244. z_position = end[Z_AXIS];
  245. }
  246. planner.buffer_segment(rx, ry, z_position + z0, e_position, feed_rate, extruder);
  247. } //else printf("FIRST MOVE PRUNED ");
  248. }
  249. if (g26_debug_flag)
  250. debug_current_and_destination(PSTR("horizontal move done in ubl.line_to_destination_cartesian()"));
  251. if (current_position[X_AXIS] != end[X_AXIS] || current_position[Y_AXIS] != end[Y_AXIS])
  252. goto FINAL_MOVE;
  253. set_current_from_destination();
  254. return;
  255. }
  256. /**
  257. *
  258. * This block handles the generic case of a line crossing both X and Y Mesh lines.
  259. *
  260. */
  261. int xi_cnt = cell_start_xi - cell_dest_xi,
  262. yi_cnt = cell_start_yi - cell_dest_yi;
  263. if (xi_cnt < 0) xi_cnt = -xi_cnt;
  264. if (yi_cnt < 0) yi_cnt = -yi_cnt;
  265. current_xi += left_flag;
  266. current_yi += down_flag;
  267. while (xi_cnt > 0 || yi_cnt > 0) {
  268. const float next_mesh_line_x = mesh_index_to_xpos(current_xi + dxi),
  269. next_mesh_line_y = mesh_index_to_ypos(current_yi + dyi),
  270. ry = m * next_mesh_line_x + c, // Calculate Y at the next X mesh line
  271. rx = (next_mesh_line_y - c) / m; // Calculate X at the next Y mesh line
  272. // (No need to worry about m being zero.
  273. // If that was the case, it was already detected
  274. // as a vertical line move above.)
  275. if (left_flag == (rx > next_mesh_line_x)) { // Check if we hit the Y line first
  276. // Yes! Crossing a Y Mesh Line next
  277. float z0 = z_correction_for_x_on_horizontal_mesh_line(rx, current_xi - left_flag, current_yi + dyi)
  278. * planner.fade_scaling_factor_for_z(end[Z_AXIS]);
  279. /**
  280. * If part of the Mesh is undefined, it will show up as NAN
  281. * in z_values[][] and propagate through the
  282. * calculations. If our correction is NAN, we throw it out
  283. * because part of the Mesh is undefined and we don't have the
  284. * information we need to complete the height correction.
  285. */
  286. if (isnan(z0)) z0 = 0.0;
  287. if (!inf_normalized_flag) {
  288. on_axis_distance = use_x_dist ? rx - start[X_AXIS] : next_mesh_line_y - start[Y_AXIS];
  289. e_position = start[E_AXIS] + on_axis_distance * e_normalized_dist;
  290. z_position = start[Z_AXIS] + on_axis_distance * z_normalized_dist;
  291. }
  292. else {
  293. e_position = end[E_AXIS];
  294. z_position = end[Z_AXIS];
  295. }
  296. planner.buffer_segment(rx, next_mesh_line_y, z_position + z0, e_position, feed_rate, extruder);
  297. current_yi += dyi;
  298. yi_cnt--;
  299. }
  300. else {
  301. // Yes! Crossing a X Mesh Line next
  302. float z0 = z_correction_for_y_on_vertical_mesh_line(ry, current_xi + dxi, current_yi - down_flag)
  303. * planner.fade_scaling_factor_for_z(end[Z_AXIS]);
  304. /**
  305. * If part of the Mesh is undefined, it will show up as NAN
  306. * in z_values[][] and propagate through the
  307. * calculations. If our correction is NAN, we throw it out
  308. * because part of the Mesh is undefined and we don't have the
  309. * information we need to complete the height correction.
  310. */
  311. if (isnan(z0)) z0 = 0.0;
  312. if (!inf_normalized_flag) {
  313. on_axis_distance = use_x_dist ? next_mesh_line_x - start[X_AXIS] : ry - start[Y_AXIS];
  314. e_position = start[E_AXIS] + on_axis_distance * e_normalized_dist;
  315. z_position = start[Z_AXIS] + on_axis_distance * z_normalized_dist;
  316. }
  317. else {
  318. e_position = end[E_AXIS];
  319. z_position = end[Z_AXIS];
  320. }
  321. planner.buffer_segment(next_mesh_line_x, ry, z_position + z0, e_position, feed_rate, extruder);
  322. current_xi += dxi;
  323. xi_cnt--;
  324. }
  325. if (xi_cnt < 0 || yi_cnt < 0) break; // we've gone too far, so exit the loop and move on to FINAL_MOVE
  326. }
  327. if (g26_debug_flag)
  328. debug_current_and_destination(PSTR("generic move done in ubl.line_to_destination_cartesian()"));
  329. if (current_position[X_AXIS] != end[X_AXIS] || current_position[Y_AXIS] != end[Y_AXIS])
  330. goto FINAL_MOVE;
  331. set_current_from_destination();
  332. }
  333. #else // UBL_SEGMENTED
  334. #if IS_SCARA // scale the feed rate from mm/s to degrees/s
  335. static float scara_feed_factor, scara_oldA, scara_oldB;
  336. #endif
  337. // We don't want additional apply_leveling() performed by regular buffer_line or buffer_line_kinematic,
  338. // so we call buffer_segment directly here. Per-segmented leveling and kinematics performed first.
  339. inline void _O2 ubl_buffer_segment_raw(const float (&in_raw)[XYZE], const float &fr) {
  340. #if ENABLED(SKEW_CORRECTION)
  341. float raw[XYZE] = { in_raw[X_AXIS], in_raw[Y_AXIS], in_raw[Z_AXIS], in_raw[E_AXIS] };
  342. planner.skew(raw[X_AXIS], raw[Y_AXIS], raw[Z_AXIS]);
  343. #else
  344. const float (&raw)[XYZE] = in_raw;
  345. #endif
  346. #if ENABLED(DELTA) // apply delta inverse_kinematics
  347. DELTA_RAW_IK();
  348. planner.buffer_segment(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], in_raw[E_AXIS], fr, active_extruder);
  349. #elif IS_SCARA // apply scara inverse_kinematics (should be changed to save raw->logical->raw)
  350. inverse_kinematics(raw); // this writes delta[ABC] from raw[XYZE]
  351. // should move the feedrate scaling to scara inverse_kinematics
  352. const float adiff = FABS(delta[A_AXIS] - scara_oldA),
  353. bdiff = FABS(delta[B_AXIS] - scara_oldB);
  354. scara_oldA = delta[A_AXIS];
  355. scara_oldB = delta[B_AXIS];
  356. float s_feedrate = max(adiff, bdiff) * scara_feed_factor;
  357. planner.buffer_segment(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], in_raw[E_AXIS], s_feedrate, active_extruder);
  358. #else // CARTESIAN
  359. planner.buffer_segment(raw[X_AXIS], raw[Y_AXIS], raw[Z_AXIS], in_raw[E_AXIS], fr, active_extruder);
  360. #endif
  361. }
  362. #if IS_SCARA
  363. #define DELTA_SEGMENT_MIN_LENGTH 0.25 // SCARA minimum segment size is 0.25mm
  364. #elif ENABLED(DELTA)
  365. #define DELTA_SEGMENT_MIN_LENGTH 0.10 // mm (still subject to DELTA_SEGMENTS_PER_SECOND)
  366. #else // CARTESIAN
  367. #ifdef LEVELED_SEGMENT_LENGTH
  368. #define DELTA_SEGMENT_MIN_LENGTH LEVELED_SEGMENT_LENGTH
  369. #else
  370. #define DELTA_SEGMENT_MIN_LENGTH 1.00 // mm (similar to G2/G3 arc segmentation)
  371. #endif
  372. #endif
  373. /**
  374. * Prepare a segmented linear move for DELTA/SCARA/CARTESIAN with UBL and FADE semantics.
  375. * This calls planner.buffer_segment multiple times for small incremental moves.
  376. * Returns true if did NOT move, false if moved (requires current_position update).
  377. */
  378. bool _O2 unified_bed_leveling::prepare_segmented_line_to(const float (&rtarget)[XYZE], const float &feedrate) {
  379. if (!position_is_reachable(rtarget[X_AXIS], rtarget[Y_AXIS])) // fail if moving outside reachable boundary
  380. return true; // did not move, so current_position still accurate
  381. const float total[XYZE] = {
  382. rtarget[X_AXIS] - current_position[X_AXIS],
  383. rtarget[Y_AXIS] - current_position[Y_AXIS],
  384. rtarget[Z_AXIS] - current_position[Z_AXIS],
  385. rtarget[E_AXIS] - current_position[E_AXIS]
  386. };
  387. const float cartesian_xy_mm = HYPOT(total[X_AXIS], total[Y_AXIS]); // total horizontal xy distance
  388. #if IS_KINEMATIC
  389. const float seconds = cartesian_xy_mm / feedrate; // seconds to move xy distance at requested rate
  390. uint16_t segments = lroundf(delta_segments_per_second * seconds), // preferred number of segments for distance @ feedrate
  391. seglimit = lroundf(cartesian_xy_mm * (1.0 / (DELTA_SEGMENT_MIN_LENGTH))); // number of segments at minimum segment length
  392. NOMORE(segments, seglimit); // limit to minimum segment length (fewer segments)
  393. #else
  394. uint16_t segments = lroundf(cartesian_xy_mm * (1.0 / (DELTA_SEGMENT_MIN_LENGTH))); // cartesian fixed segment length
  395. #endif
  396. NOLESS(segments, 1); // must have at least one segment
  397. const float inv_segments = 1.0 / segments; // divide once, multiply thereafter
  398. #if IS_SCARA // scale the feed rate from mm/s to degrees/s
  399. scara_feed_factor = cartesian_xy_mm * inv_segments * feedrate;
  400. scara_oldA = stepper.get_axis_position_degrees(A_AXIS);
  401. scara_oldB = stepper.get_axis_position_degrees(B_AXIS);
  402. #endif
  403. const float diff[XYZE] = {
  404. total[X_AXIS] * inv_segments,
  405. total[Y_AXIS] * inv_segments,
  406. total[Z_AXIS] * inv_segments,
  407. total[E_AXIS] * inv_segments
  408. };
  409. // Note that E segment distance could vary slightly as z mesh height
  410. // changes for each segment, but small enough to ignore.
  411. float raw[XYZE] = {
  412. current_position[X_AXIS],
  413. current_position[Y_AXIS],
  414. current_position[Z_AXIS],
  415. current_position[E_AXIS]
  416. };
  417. // Only compute leveling per segment if ubl active and target below z_fade_height.
  418. if (!planner.leveling_active || !planner.leveling_active_at_z(rtarget[Z_AXIS])) { // no mesh leveling
  419. while (--segments) {
  420. LOOP_XYZE(i) raw[i] += diff[i];
  421. ubl_buffer_segment_raw(raw, feedrate);
  422. }
  423. ubl_buffer_segment_raw(rtarget, feedrate);
  424. return false; // moved but did not set_current_from_destination();
  425. }
  426. // Otherwise perform per-segment leveling
  427. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  428. const float fade_scaling_factor = planner.fade_scaling_factor_for_z(rtarget[Z_AXIS]);
  429. #endif
  430. // increment to first segment destination
  431. LOOP_XYZE(i) raw[i] += diff[i];
  432. for(;;) { // for each mesh cell encountered during the move
  433. // Compute mesh cell invariants that remain constant for all segments within cell.
  434. // Note for cell index, if point is outside the mesh grid (in MESH_INSET perimeter)
  435. // the bilinear interpolation from the adjacent cell within the mesh will still work.
  436. // Inner loop will exit each time (because out of cell bounds) but will come back
  437. // in top of loop and again re-find same adjacent cell and use it, just less efficient
  438. // for mesh inset area.
  439. int8_t cell_xi = (raw[X_AXIS] - (MESH_MIN_X)) * (1.0 / (MESH_X_DIST)),
  440. cell_yi = (raw[Y_AXIS] - (MESH_MIN_Y)) * (1.0 / (MESH_X_DIST));
  441. cell_xi = constrain(cell_xi, 0, (GRID_MAX_POINTS_X) - 1);
  442. cell_yi = constrain(cell_yi, 0, (GRID_MAX_POINTS_Y) - 1);
  443. const float x0 = mesh_index_to_xpos(cell_xi), // 64 byte table lookup avoids mul+add
  444. y0 = mesh_index_to_ypos(cell_yi);
  445. float z_x0y0 = z_values[cell_xi ][cell_yi ], // z at lower left corner
  446. z_x1y0 = z_values[cell_xi+1][cell_yi ], // z at upper left corner
  447. z_x0y1 = z_values[cell_xi ][cell_yi+1], // z at lower right corner
  448. z_x1y1 = z_values[cell_xi+1][cell_yi+1]; // z at upper right corner
  449. if (isnan(z_x0y0)) z_x0y0 = 0; // ideally activating planner.leveling_active (G29 A)
  450. if (isnan(z_x1y0)) z_x1y0 = 0; // should refuse if any invalid mesh points
  451. if (isnan(z_x0y1)) z_x0y1 = 0; // in order to avoid isnan tests per cell,
  452. if (isnan(z_x1y1)) z_x1y1 = 0; // thus guessing zero for undefined points
  453. float cx = raw[X_AXIS] - x0, // cell-relative x and y
  454. cy = raw[Y_AXIS] - y0;
  455. const float z_xmy0 = (z_x1y0 - z_x0y0) * (1.0 / (MESH_X_DIST)), // z slope per x along y0 (lower left to lower right)
  456. z_xmy1 = (z_x1y1 - z_x0y1) * (1.0 / (MESH_X_DIST)); // z slope per x along y1 (upper left to upper right)
  457. float z_cxy0 = z_x0y0 + z_xmy0 * cx; // z height along y0 at cx (changes for each cx in cell)
  458. const float z_cxy1 = z_x0y1 + z_xmy1 * cx, // z height along y1 at cx
  459. z_cxyd = z_cxy1 - z_cxy0; // z height difference along cx from y0 to y1
  460. float z_cxym = z_cxyd * (1.0 / (MESH_Y_DIST)); // z slope per y along cx from y0 to y1 (changes for each cx in cell)
  461. // float z_cxcy = z_cxy0 + z_cxym * cy; // interpolated mesh z height along cx at cy (do inside the segment loop)
  462. // As subsequent segments step through this cell, the z_cxy0 intercept will change
  463. // and the z_cxym slope will change, both as a function of cx within the cell, and
  464. // each change by a constant for fixed segment lengths.
  465. const float z_sxy0 = z_xmy0 * diff[X_AXIS], // per-segment adjustment to z_cxy0
  466. z_sxym = (z_xmy1 - z_xmy0) * (1.0 / (MESH_Y_DIST)) * diff[X_AXIS]; // per-segment adjustment to z_cxym
  467. for(;;) { // for all segments within this mesh cell
  468. if (--segments == 0) // if this is last segment, use rtarget for exact
  469. COPY(raw, rtarget);
  470. const float z_cxcy = (z_cxy0 + z_cxym * cy) // interpolated mesh z height along cx at cy
  471. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  472. * fade_scaling_factor // apply fade factor to interpolated mesh height
  473. #endif
  474. ;
  475. const float z = raw[Z_AXIS];
  476. raw[Z_AXIS] += z_cxcy;
  477. ubl_buffer_segment_raw(raw, feedrate);
  478. raw[Z_AXIS] = z;
  479. if (segments == 0) // done with last segment
  480. return false; // did not set_current_from_destination()
  481. LOOP_XYZE(i) raw[i] += diff[i];
  482. cx += diff[X_AXIS];
  483. cy += diff[Y_AXIS];
  484. if (!WITHIN(cx, 0, MESH_X_DIST) || !WITHIN(cy, 0, MESH_Y_DIST)) // done within this cell, break to next
  485. break;
  486. // Next segment still within same mesh cell, adjust the per-segment
  487. // slope and intercept to compute next z height.
  488. z_cxy0 += z_sxy0; // adjust z_cxy0 by per-segment z_sxy0
  489. z_cxym += z_sxym; // adjust z_cxym by per-segment z_sxym
  490. } // segment loop
  491. } // cell loop
  492. }
  493. #endif // UBL_SEGMENTED
  494. #endif // AUTO_BED_LEVELING_UBL