My Marlin configs for Fabrikator Mini and CTC i3 Pro B
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

configuration_store.cpp 92KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063
  1. /**
  2. * Marlin 3D Printer Firmware
  3. * Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
  4. *
  5. * Based on Sprinter and grbl.
  6. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  7. *
  8. * This program is free software: you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation, either version 3 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  20. *
  21. */
  22. /**
  23. * configuration_store.cpp
  24. *
  25. * Settings and EEPROM storage
  26. *
  27. * IMPORTANT: Whenever there are changes made to the variables stored in EEPROM
  28. * in the functions below, also increment the version number. This makes sure that
  29. * the default values are used whenever there is a change to the data, to prevent
  30. * wrong data being written to the variables.
  31. *
  32. * ALSO: Variables in the Store and Retrieve sections must be in the same order.
  33. * If a feature is disabled, some data must still be written that, when read,
  34. * either sets a Sane Default, or results in No Change to the existing value.
  35. *
  36. */
  37. // Change EEPROM version if the structure changes
  38. #define EEPROM_VERSION "V63"
  39. #define EEPROM_OFFSET 100
  40. // Check the integrity of data offsets.
  41. // Can be disabled for production build.
  42. //#define DEBUG_EEPROM_READWRITE
  43. #include "configuration_store.h"
  44. #if ADD_PORT_ARG
  45. #define PORTARG_SOLO const int8_t port
  46. #define PORTARG_AFTER ,const int8_t port
  47. #define PORTVAR_SOLO port
  48. #else
  49. #define PORTARG_SOLO
  50. #define PORTARG_AFTER
  51. #define PORTVAR_SOLO
  52. #endif
  53. #include "endstops.h"
  54. #include "planner.h"
  55. #include "stepper.h"
  56. #include "temperature.h"
  57. #include "../lcd/ultralcd.h"
  58. #include "../core/language.h"
  59. #include "../libs/vector_3.h"
  60. #include "../gcode/gcode.h"
  61. #include "../Marlin.h"
  62. #if HAS_LEVELING
  63. #include "../feature/bedlevel/bedlevel.h"
  64. #endif
  65. #if HAS_SERVOS
  66. #include "servo.h"
  67. #else
  68. #undef NUM_SERVOS
  69. #define NUM_SERVOS NUM_SERVO_PLUGS
  70. #endif
  71. #if HAS_BED_PROBE
  72. #include "../module/probe.h"
  73. #endif
  74. #include "../feature/fwretract.h"
  75. #if ENABLED(POWER_LOSS_RECOVERY)
  76. #include "../feature/power_loss_recovery.h"
  77. #endif
  78. #include "../feature/pause.h"
  79. #if EXTRUDERS > 1
  80. #include "tool_change.h"
  81. void M217_report(const bool eeprom);
  82. #endif
  83. #if HAS_TRINAMIC
  84. #include "stepper_indirection.h"
  85. #include "../feature/tmc_util.h"
  86. #define TMC_GET_PWMTHRS(A,Q) _tmc_thrs(stepper##Q.microsteps(), stepper##Q.TPWMTHRS(), planner.settings.axis_steps_per_mm[_AXIS(A)])
  87. #endif
  88. #pragma pack(push, 1) // No padding between variables
  89. typedef struct { uint16_t X, Y, Z, X2, Y2, Z2, Z3, E0, E1, E2, E3, E4, E5; } tmc_stepper_current_t;
  90. typedef struct { uint32_t X, Y, Z, X2, Y2, Z2, Z3, E0, E1, E2, E3, E4, E5; } tmc_hybrid_threshold_t;
  91. typedef struct { int16_t X, Y, Z; } tmc_sgt_t;
  92. // Limit an index to an array size
  93. #define ALIM(I,ARR) MIN(I, COUNT(ARR) - 1)
  94. /**
  95. * Current EEPROM Layout
  96. *
  97. * Keep this data structure up to date so
  98. * EEPROM size is known at compile time!
  99. */
  100. typedef struct SettingsDataStruct {
  101. char version[4]; // Vnn\0
  102. uint16_t crc; // Data Checksum
  103. //
  104. // DISTINCT_E_FACTORS
  105. //
  106. uint8_t esteppers; // XYZE_N - XYZ
  107. planner_settings_t planner_settings;
  108. float planner_max_jerk[XYZE], // M205 XYZE planner.max_jerk[XYZE]
  109. planner_junction_deviation_mm; // M205 J planner.junction_deviation_mm
  110. float home_offset[XYZ]; // M206 XYZ / M665 TPZ
  111. #if HAS_HOTEND_OFFSET
  112. float hotend_offset[XYZ][HOTENDS - 1]; // M218 XYZ
  113. #endif
  114. //
  115. // ENABLE_LEVELING_FADE_HEIGHT
  116. //
  117. float planner_z_fade_height; // M420 Zn planner.z_fade_height
  118. //
  119. // MESH_BED_LEVELING
  120. //
  121. float mbl_z_offset; // mbl.z_offset
  122. uint8_t mesh_num_x, mesh_num_y; // GRID_MAX_POINTS_X, GRID_MAX_POINTS_Y
  123. #if ENABLED(MESH_BED_LEVELING)
  124. float mbl_z_values[GRID_MAX_POINTS_X][GRID_MAX_POINTS_Y]; // mbl.z_values
  125. #else
  126. float mbl_z_values[3][3];
  127. #endif
  128. //
  129. // HAS_BED_PROBE
  130. //
  131. float zprobe_zoffset;
  132. //
  133. // ABL_PLANAR
  134. //
  135. matrix_3x3 planner_bed_level_matrix; // planner.bed_level_matrix
  136. //
  137. // AUTO_BED_LEVELING_BILINEAR
  138. //
  139. uint8_t grid_max_x, grid_max_y; // GRID_MAX_POINTS_X, GRID_MAX_POINTS_Y
  140. int bilinear_grid_spacing[2],
  141. bilinear_start[2]; // G29 L F
  142. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  143. float z_values[GRID_MAX_POINTS_X][GRID_MAX_POINTS_Y]; // G29
  144. #else
  145. float z_values[3][3];
  146. #endif
  147. //
  148. // AUTO_BED_LEVELING_UBL
  149. //
  150. bool planner_leveling_active; // M420 S planner.leveling_active
  151. int8_t ubl_storage_slot; // ubl.storage_slot
  152. //
  153. // SERVO_ANGLES
  154. //
  155. uint16_t servo_angles[NUM_SERVOS][2]; // M281 P L U
  156. //
  157. // DELTA / [XYZ]_DUAL_ENDSTOPS
  158. //
  159. #if ENABLED(DELTA)
  160. float delta_height, // M666 H
  161. delta_endstop_adj[ABC], // M666 XYZ
  162. delta_radius, // M665 R
  163. delta_diagonal_rod, // M665 L
  164. delta_segments_per_second, // M665 S
  165. delta_calibration_radius, // M665 B
  166. delta_tower_angle_trim[ABC]; // M665 XYZ
  167. #elif ENABLED(X_DUAL_ENDSTOPS) || ENABLED(Y_DUAL_ENDSTOPS) || Z_MULTI_ENDSTOPS
  168. float x2_endstop_adj, // M666 X
  169. y2_endstop_adj, // M666 Y
  170. z2_endstop_adj, // M666 Z (S2)
  171. z3_endstop_adj; // M666 Z (S3)
  172. #endif
  173. //
  174. // ULTIPANEL
  175. //
  176. int16_t ui_preheat_hotend_temp[2], // M145 S0 H
  177. ui_preheat_bed_temp[2]; // M145 S0 B
  178. uint8_t ui_preheat_fan_speed[2]; // M145 S0 F
  179. //
  180. // PIDTEMP
  181. //
  182. PIDC_t hotendPID[HOTENDS]; // M301 En PIDC / M303 En U
  183. int16_t lpq_len; // M301 L
  184. //
  185. // PIDTEMPBED
  186. //
  187. PID_t bedPID; // M304 PID / M303 E-1 U
  188. //
  189. // HAS_LCD_CONTRAST
  190. //
  191. int16_t lcd_contrast; // M250 C
  192. //
  193. // POWER_LOSS_RECOVERY
  194. //
  195. bool recovery_enabled; // M413 S
  196. //
  197. // FWRETRACT
  198. //
  199. fwretract_settings_t fwretract_settings; // M207 S F Z W, M208 S F W R
  200. bool autoretract_enabled; // M209 S
  201. //
  202. // !NO_VOLUMETRIC
  203. //
  204. bool parser_volumetric_enabled; // M200 D parser.volumetric_enabled
  205. float planner_filament_size[EXTRUDERS]; // M200 T D planner.filament_size[]
  206. //
  207. // HAS_TRINAMIC
  208. //
  209. tmc_stepper_current_t tmc_stepper_current; // M906 X Y Z X2 Y2 Z2 Z3 E0 E1 E2 E3 E4 E5
  210. tmc_hybrid_threshold_t tmc_hybrid_threshold; // M913 X Y Z X2 Y2 Z2 Z3 E0 E1 E2 E3 E4 E5
  211. tmc_sgt_t tmc_sgt; // M914 X Y Z
  212. //
  213. // LIN_ADVANCE
  214. //
  215. float planner_extruder_advance_K[EXTRUDERS]; // M900 K planner.extruder_advance_K
  216. //
  217. // HAS_MOTOR_CURRENT_PWM
  218. //
  219. uint32_t motor_current_setting[3]; // M907 X Z E
  220. //
  221. // CNC_COORDINATE_SYSTEMS
  222. //
  223. float coordinate_system[MAX_COORDINATE_SYSTEMS][XYZ]; // G54-G59.3
  224. //
  225. // SKEW_CORRECTION
  226. //
  227. skew_factor_t planner_skew_factor; // M852 I J K planner.skew_factor
  228. //
  229. // ADVANCED_PAUSE_FEATURE
  230. //
  231. fil_change_settings_t fc_settings[EXTRUDERS]; // M603 T U L
  232. //
  233. // Tool-change settings
  234. //
  235. #if EXTRUDERS > 1
  236. toolchange_settings_t toolchange_settings; // M217 S P R
  237. #endif
  238. } SettingsData;
  239. MarlinSettings settings;
  240. uint16_t MarlinSettings::datasize() { return sizeof(SettingsData); }
  241. /**
  242. * Post-process after Retrieve or Reset
  243. */
  244. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  245. float new_z_fade_height;
  246. #endif
  247. void MarlinSettings::postprocess() {
  248. const float oldpos[XYZE] = { current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS] };
  249. // steps per s2 needs to be updated to agree with units per s2
  250. planner.reset_acceleration_rates();
  251. // Make sure delta kinematics are updated before refreshing the
  252. // planner position so the stepper counts will be set correctly.
  253. #if ENABLED(DELTA)
  254. recalc_delta_settings();
  255. #endif
  256. #if ENABLED(PIDTEMP)
  257. thermalManager.updatePID();
  258. #endif
  259. #if DISABLED(NO_VOLUMETRICS)
  260. planner.calculate_volumetric_multipliers();
  261. #else
  262. for (uint8_t i = COUNT(planner.e_factor); i--;)
  263. planner.refresh_e_factor(i);
  264. #endif
  265. // Software endstops depend on home_offset
  266. LOOP_XYZ(i) {
  267. update_workspace_offset((AxisEnum)i);
  268. update_software_endstops((AxisEnum)i);
  269. }
  270. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  271. set_z_fade_height(new_z_fade_height, false); // false = no report
  272. #endif
  273. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  274. refresh_bed_level();
  275. #endif
  276. #if HAS_MOTOR_CURRENT_PWM
  277. stepper.refresh_motor_power();
  278. #endif
  279. #if ENABLED(FWRETRACT)
  280. fwretract.refresh_autoretract();
  281. #endif
  282. #if ENABLED(JUNCTION_DEVIATION) && ENABLED(LIN_ADVANCE)
  283. planner.recalculate_max_e_jerk();
  284. #endif
  285. // Refresh steps_to_mm with the reciprocal of axis_steps_per_mm
  286. // and init stepper.count[], planner.position[] with current_position
  287. planner.refresh_positioning();
  288. // Various factors can change the current position
  289. if (memcmp(oldpos, current_position, sizeof(oldpos)))
  290. report_current_position();
  291. }
  292. #if ENABLED(SD_FIRMWARE_UPDATE)
  293. #if ENABLED(EEPROM_SETTINGS)
  294. static_assert(
  295. !WITHIN(SD_FIRMWARE_UPDATE_EEPROM_ADDR, EEPROM_OFFSET, EEPROM_OFFSET + sizeof(SettingsData)),
  296. "SD_FIRMWARE_UPDATE_EEPROM_ADDR collides with EEPROM settings storage."
  297. );
  298. #endif
  299. bool MarlinSettings::sd_update_status() {
  300. uint8_t val;
  301. persistentStore.read_data(SD_FIRMWARE_UPDATE_EEPROM_ADDR, &val);
  302. return (val == SD_FIRMWARE_UPDATE_ACTIVE_VALUE);
  303. }
  304. bool MarlinSettings::set_sd_update_status(const bool enable) {
  305. if (enable != sd_update_status())
  306. persistentStore.write_data(
  307. SD_FIRMWARE_UPDATE_EEPROM_ADDR,
  308. enable ? SD_FIRMWARE_UPDATE_ACTIVE_VALUE : SD_FIRMWARE_UPDATE_INACTIVE_VALUE
  309. );
  310. return true;
  311. }
  312. #endif // SD_FIRMWARE_UPDATE
  313. #if ENABLED(EEPROM_SETTINGS)
  314. #include "../HAL/shared/persistent_store_api.h"
  315. #define EEPROM_START() int eeprom_index = EEPROM_OFFSET; persistentStore.access_start()
  316. #define EEPROM_FINISH() persistentStore.access_finish()
  317. #define EEPROM_SKIP(VAR) eeprom_index += sizeof(VAR)
  318. #define EEPROM_WRITE(VAR) persistentStore.write_data(eeprom_index, (uint8_t*)&VAR, sizeof(VAR), &working_crc)
  319. #define EEPROM_READ(VAR) persistentStore.read_data(eeprom_index, (uint8_t*)&VAR, sizeof(VAR), &working_crc, !validating)
  320. #define EEPROM_READ_ALWAYS(VAR) persistentStore.read_data(eeprom_index, (uint8_t*)&VAR, sizeof(VAR), &working_crc)
  321. #define EEPROM_ASSERT(TST,ERR) do{ if (!(TST)) { SERIAL_ERROR_START_P(port); SERIAL_ERRORLNPGM_P(port, ERR); eeprom_error = true; } }while(0)
  322. #if ENABLED(DEBUG_EEPROM_READWRITE)
  323. #define _FIELD_TEST(FIELD) \
  324. EEPROM_ASSERT( \
  325. eeprom_error || eeprom_index == offsetof(SettingsData, FIELD) + EEPROM_OFFSET, \
  326. "Field " STRINGIFY(FIELD) " mismatch." \
  327. )
  328. #else
  329. #define _FIELD_TEST(FIELD) NOOP
  330. #endif
  331. const char version[4] = EEPROM_VERSION;
  332. bool MarlinSettings::eeprom_error, MarlinSettings::validating;
  333. bool MarlinSettings::size_error(const uint16_t size PORTARG_AFTER) {
  334. if (size != datasize()) {
  335. #if ENABLED(EEPROM_CHITCHAT)
  336. SERIAL_ERROR_START_P(port);
  337. SERIAL_ERRORLNPGM_P(port, "EEPROM datasize error.");
  338. #endif
  339. return true;
  340. }
  341. return false;
  342. }
  343. /**
  344. * M500 - Store Configuration
  345. */
  346. bool MarlinSettings::save(PORTARG_SOLO) {
  347. float dummy = 0;
  348. char ver[4] = "ERR";
  349. uint16_t working_crc = 0;
  350. EEPROM_START();
  351. eeprom_error = false;
  352. #if ENABLED(FLASH_EEPROM_EMULATION)
  353. EEPROM_SKIP(ver); // Flash doesn't allow rewriting without erase
  354. #else
  355. EEPROM_WRITE(ver); // invalidate data first
  356. #endif
  357. EEPROM_SKIP(working_crc); // Skip the checksum slot
  358. working_crc = 0; // clear before first "real data"
  359. _FIELD_TEST(esteppers);
  360. const uint8_t esteppers = COUNT(planner.settings.axis_steps_per_mm) - XYZ;
  361. EEPROM_WRITE(esteppers);
  362. //
  363. // Planner Motion
  364. //
  365. {
  366. EEPROM_WRITE(planner.settings);
  367. #if HAS_CLASSIC_JERK
  368. EEPROM_WRITE(planner.max_jerk);
  369. #if ENABLED(JUNCTION_DEVIATION) && ENABLED(LIN_ADVANCE)
  370. dummy = float(DEFAULT_EJERK);
  371. EEPROM_WRITE(dummy);
  372. #endif
  373. #else
  374. const float planner_max_jerk[XYZE] = { float(DEFAULT_XJERK), float(DEFAULT_YJERK), float(DEFAULT_ZJERK), float(DEFAULT_EJERK) };
  375. EEPROM_WRITE(planner_max_jerk);
  376. #endif
  377. #if ENABLED(JUNCTION_DEVIATION)
  378. EEPROM_WRITE(planner.junction_deviation_mm);
  379. #else
  380. dummy = 0.02f;
  381. EEPROM_WRITE(dummy);
  382. #endif
  383. }
  384. //
  385. // Home Offset
  386. //
  387. {
  388. _FIELD_TEST(home_offset);
  389. #if HAS_SCARA_OFFSET
  390. EEPROM_WRITE(scara_home_offset);
  391. #else
  392. #if !HAS_HOME_OFFSET
  393. const float home_offset[XYZ] = { 0 };
  394. #endif
  395. EEPROM_WRITE(home_offset);
  396. #endif
  397. #if HAS_HOTEND_OFFSET
  398. // Skip hotend 0 which must be 0
  399. for (uint8_t e = 1; e < HOTENDS; e++)
  400. LOOP_XYZ(i) EEPROM_WRITE(hotend_offset[i][e]);
  401. #endif
  402. }
  403. //
  404. // Global Leveling
  405. //
  406. {
  407. const float zfh = (
  408. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  409. planner.z_fade_height
  410. #else
  411. 10.0
  412. #endif
  413. );
  414. EEPROM_WRITE(zfh);
  415. }
  416. //
  417. // Mesh Bed Leveling
  418. //
  419. {
  420. #if ENABLED(MESH_BED_LEVELING)
  421. // Compile time test that sizeof(mbl.z_values) is as expected
  422. static_assert(
  423. sizeof(mbl.z_values) == (GRID_MAX_POINTS) * sizeof(mbl.z_values[0][0]),
  424. "MBL Z array is the wrong size."
  425. );
  426. const uint8_t mesh_num_x = GRID_MAX_POINTS_X, mesh_num_y = GRID_MAX_POINTS_Y;
  427. EEPROM_WRITE(mbl.z_offset);
  428. EEPROM_WRITE(mesh_num_x);
  429. EEPROM_WRITE(mesh_num_y);
  430. EEPROM_WRITE(mbl.z_values);
  431. #else // For disabled MBL write a default mesh
  432. dummy = 0;
  433. const uint8_t mesh_num_x = 3, mesh_num_y = 3;
  434. EEPROM_WRITE(dummy); // z_offset
  435. EEPROM_WRITE(mesh_num_x);
  436. EEPROM_WRITE(mesh_num_y);
  437. for (uint8_t q = mesh_num_x * mesh_num_y; q--;) EEPROM_WRITE(dummy);
  438. #endif
  439. }
  440. //
  441. // Probe Z Offset
  442. //
  443. {
  444. _FIELD_TEST(zprobe_zoffset);
  445. #if !HAS_BED_PROBE
  446. const float zprobe_zoffset = 0;
  447. #endif
  448. EEPROM_WRITE(zprobe_zoffset);
  449. }
  450. //
  451. // Planar Bed Leveling matrix
  452. //
  453. {
  454. #if ABL_PLANAR
  455. EEPROM_WRITE(planner.bed_level_matrix);
  456. #else
  457. dummy = 0;
  458. for (uint8_t q = 9; q--;) EEPROM_WRITE(dummy);
  459. #endif
  460. }
  461. //
  462. // Bilinear Auto Bed Leveling
  463. //
  464. {
  465. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  466. // Compile time test that sizeof(z_values) is as expected
  467. static_assert(
  468. sizeof(z_values) == (GRID_MAX_POINTS) * sizeof(z_values[0][0]),
  469. "Bilinear Z array is the wrong size."
  470. );
  471. const uint8_t grid_max_x = GRID_MAX_POINTS_X, grid_max_y = GRID_MAX_POINTS_Y;
  472. EEPROM_WRITE(grid_max_x); // 1 byte
  473. EEPROM_WRITE(grid_max_y); // 1 byte
  474. EEPROM_WRITE(bilinear_grid_spacing); // 2 ints
  475. EEPROM_WRITE(bilinear_start); // 2 ints
  476. EEPROM_WRITE(z_values); // 9-256 floats
  477. #else
  478. // For disabled Bilinear Grid write an empty 3x3 grid
  479. const uint8_t grid_max_x = 3, grid_max_y = 3;
  480. const int bilinear_start[2] = { 0 }, bilinear_grid_spacing[2] = { 0 };
  481. dummy = 0;
  482. EEPROM_WRITE(grid_max_x);
  483. EEPROM_WRITE(grid_max_y);
  484. EEPROM_WRITE(bilinear_grid_spacing);
  485. EEPROM_WRITE(bilinear_start);
  486. for (uint16_t q = grid_max_x * grid_max_y; q--;) EEPROM_WRITE(dummy);
  487. #endif
  488. }
  489. //
  490. // Unified Bed Leveling
  491. //
  492. {
  493. _FIELD_TEST(planner_leveling_active);
  494. #if ENABLED(AUTO_BED_LEVELING_UBL)
  495. EEPROM_WRITE(planner.leveling_active);
  496. EEPROM_WRITE(ubl.storage_slot);
  497. #else
  498. const bool ubl_active = false;
  499. const int8_t storage_slot = -1;
  500. EEPROM_WRITE(ubl_active);
  501. EEPROM_WRITE(storage_slot);
  502. #endif // AUTO_BED_LEVELING_UBL
  503. }
  504. //
  505. // Servo Angles
  506. //
  507. {
  508. #if !(HAS_SERVOS && ENABLED(EDITABLE_SERVO_ANGLES))
  509. uint16_t servo_angles[NUM_SERVOS][2] = { { 0, 0 } };
  510. #if ENABLED(SWITCHING_EXTRUDER)
  511. constexpr uint16_t sesa[][2] = SWITCHING_EXTRUDER_SERVO_ANGLES;
  512. servo_angles[SWITCHING_EXTRUDER_SERVO_NR][0] = sesa[0][0];
  513. servo_angles[SWITCHING_EXTRUDER_SERVO_NR][1] = sesa[0][1];
  514. #if EXTRUDERS > 3
  515. servo_angles[SWITCHING_EXTRUDER_E23_SERVO_NR][0] = sesa[1][0];
  516. servo_angles[SWITCHING_EXTRUDER_E23_SERVO_NR][1] = sesa[1][1];
  517. #endif
  518. #elif ENABLED(SWITCHING_NOZZLE)
  519. constexpr uint16_t snsa[] = SWITCHING_NOZZLE_SERVO_ANGLES;
  520. servo_angles[SWITCHING_NOZZLE_SERVO_NR][0] = snsa[0];
  521. servo_angles[SWITCHING_NOZZLE_SERVO_NR][1] = snsa[1];
  522. #elif defined(Z_SERVO_ANGLES) && defined(Z_PROBE_SERVO_NR)
  523. constexpr uint16_t zsa[] = Z_SERVO_ANGLES;
  524. servo_angles[Z_PROBE_SERVO_NR][0] = zsa[0];
  525. servo_angles[Z_PROBE_SERVO_NR][1] = zsa[1];
  526. #endif
  527. #endif // !HAS_SERVOS || !EDITABLE_SERVO_ANGLES
  528. EEPROM_WRITE(servo_angles);
  529. }
  530. //
  531. // DELTA Geometry or Dual Endstops offsets
  532. //
  533. {
  534. #if ENABLED(DELTA)
  535. _FIELD_TEST(delta_height);
  536. EEPROM_WRITE(delta_height); // 1 float
  537. EEPROM_WRITE(delta_endstop_adj); // 3 floats
  538. EEPROM_WRITE(delta_radius); // 1 float
  539. EEPROM_WRITE(delta_diagonal_rod); // 1 float
  540. EEPROM_WRITE(delta_segments_per_second); // 1 float
  541. EEPROM_WRITE(delta_calibration_radius); // 1 float
  542. EEPROM_WRITE(delta_tower_angle_trim); // 3 floats
  543. #elif ENABLED(X_DUAL_ENDSTOPS) || ENABLED(Y_DUAL_ENDSTOPS) || Z_MULTI_ENDSTOPS
  544. _FIELD_TEST(x2_endstop_adj);
  545. // Write dual endstops in X, Y, Z order. Unused = 0.0
  546. dummy = 0;
  547. #if ENABLED(X_DUAL_ENDSTOPS)
  548. EEPROM_WRITE(endstops.x2_endstop_adj); // 1 float
  549. #else
  550. EEPROM_WRITE(dummy);
  551. #endif
  552. #if ENABLED(Y_DUAL_ENDSTOPS)
  553. EEPROM_WRITE(endstops.y2_endstop_adj); // 1 float
  554. #else
  555. EEPROM_WRITE(dummy);
  556. #endif
  557. #if Z_MULTI_ENDSTOPS
  558. EEPROM_WRITE(endstops.z2_endstop_adj); // 1 float
  559. #else
  560. EEPROM_WRITE(dummy);
  561. #endif
  562. #if ENABLED(Z_TRIPLE_ENDSTOPS)
  563. EEPROM_WRITE(endstops.z3_endstop_adj); // 1 float
  564. #else
  565. EEPROM_WRITE(dummy);
  566. #endif
  567. #endif
  568. }
  569. //
  570. // LCD Preheat settings
  571. //
  572. {
  573. _FIELD_TEST(lcd_preheat_hotend_temp);
  574. #if HAS_LCD_MENU
  575. const int16_t (&ui_preheat_hotend_temp)[2] = ui.preheat_hotend_temp,
  576. (&ui_preheat_bed_temp)[2] = ui.preheat_bed_temp;
  577. const uint8_t (&ui_preheat_fan_speed)[2] = ui.preheat_fan_speed;
  578. #else
  579. constexpr int16_t ui_preheat_hotend_temp[2] = { PREHEAT_1_TEMP_HOTEND, PREHEAT_2_TEMP_HOTEND },
  580. ui_preheat_bed_temp[2] = { PREHEAT_1_TEMP_BED, PREHEAT_2_TEMP_BED };
  581. constexpr uint8_t ui_preheat_fan_speed[2] = { PREHEAT_1_FAN_SPEED, PREHEAT_2_FAN_SPEED };
  582. #endif
  583. EEPROM_WRITE(ui_preheat_hotend_temp);
  584. EEPROM_WRITE(ui_preheat_bed_temp);
  585. EEPROM_WRITE(ui_preheat_fan_speed);
  586. }
  587. //
  588. // PIDTEMP
  589. //
  590. {
  591. _FIELD_TEST(hotendPID);
  592. HOTEND_LOOP() {
  593. PIDC_t pidc = {
  594. PID_PARAM(Kp, e), PID_PARAM(Ki, e), PID_PARAM(Kd, e), PID_PARAM(Kc, e)
  595. };
  596. EEPROM_WRITE(pidc);
  597. }
  598. _FIELD_TEST(lpq_len);
  599. #if ENABLED(PID_EXTRUSION_SCALING)
  600. EEPROM_WRITE(thermalManager.lpq_len);
  601. #else
  602. const int16_t lpq_len = 20;
  603. EEPROM_WRITE(lpq_len);
  604. #endif
  605. }
  606. //
  607. // PIDTEMPBED
  608. //
  609. {
  610. _FIELD_TEST(bedPID);
  611. #if DISABLED(PIDTEMPBED)
  612. const PID_t bed_pid = { DUMMY_PID_VALUE, DUMMY_PID_VALUE, DUMMY_PID_VALUE };
  613. EEPROM_WRITE(bed_pid);
  614. #else
  615. EEPROM_WRITE(thermalManager.bed_pid);
  616. #endif
  617. }
  618. //
  619. // LCD Contrast
  620. //
  621. {
  622. _FIELD_TEST(lcd_contrast);
  623. const int16_t lcd_contrast =
  624. #if HAS_LCD_CONTRAST
  625. ui.contrast
  626. #else
  627. 32
  628. #endif
  629. ;
  630. EEPROM_WRITE(lcd_contrast);
  631. }
  632. //
  633. // Power-Loss Recovery
  634. //
  635. {
  636. _FIELD_TEST(recovery_enabled);
  637. const bool recovery_enabled =
  638. #if ENABLED(POWER_LOSS_RECOVERY)
  639. recovery.enabled
  640. #else
  641. true
  642. #endif
  643. ;
  644. EEPROM_WRITE(recovery_enabled);
  645. }
  646. //
  647. // Firmware Retraction
  648. //
  649. {
  650. _FIELD_TEST(fwretract_settings);
  651. #if ENABLED(FWRETRACT)
  652. EEPROM_WRITE(fwretract.settings);
  653. #else
  654. const fwretract_settings_t autoretract_defaults = { 3, 45, 0, 0, 0, 13, 0, 8 };
  655. EEPROM_WRITE(autoretract_defaults);
  656. #endif
  657. #if ENABLED(FWRETRACT) && ENABLED(FWRETRACT_AUTORETRACT)
  658. EEPROM_WRITE(fwretract.autoretract_enabled);
  659. #else
  660. const bool autoretract_enabled = false;
  661. EEPROM_WRITE(autoretract_enabled);
  662. #endif
  663. }
  664. //
  665. // Volumetric & Filament Size
  666. //
  667. {
  668. _FIELD_TEST(parser_volumetric_enabled);
  669. #if DISABLED(NO_VOLUMETRICS)
  670. EEPROM_WRITE(parser.volumetric_enabled);
  671. EEPROM_WRITE(planner.filament_size);
  672. #else
  673. const bool volumetric_enabled = false;
  674. dummy = DEFAULT_NOMINAL_FILAMENT_DIA;
  675. EEPROM_WRITE(volumetric_enabled);
  676. for (uint8_t q = EXTRUDERS; q--;) EEPROM_WRITE(dummy);
  677. #endif
  678. }
  679. //
  680. // TMC Configuration
  681. //
  682. {
  683. _FIELD_TEST(tmc_stepper_current);
  684. tmc_stepper_current_t tmc_stepper_current = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 };
  685. #if HAS_TRINAMIC
  686. #if AXIS_IS_TMC(X)
  687. tmc_stepper_current.X = stepperX.getMilliamps();
  688. #endif
  689. #if AXIS_IS_TMC(Y)
  690. tmc_stepper_current.Y = stepperY.getMilliamps();
  691. #endif
  692. #if AXIS_IS_TMC(Z)
  693. tmc_stepper_current.Z = stepperZ.getMilliamps();
  694. #endif
  695. #if AXIS_IS_TMC(X2)
  696. tmc_stepper_current.X2 = stepperX2.getMilliamps();
  697. #endif
  698. #if AXIS_IS_TMC(Y2)
  699. tmc_stepper_current.Y2 = stepperY2.getMilliamps();
  700. #endif
  701. #if AXIS_IS_TMC(Z2)
  702. tmc_stepper_current.Z2 = stepperZ2.getMilliamps();
  703. #endif
  704. #if AXIS_IS_TMC(Z3)
  705. tmc_stepper_current.Z3 = stepperZ3.getMilliamps();
  706. #endif
  707. #if MAX_EXTRUDERS
  708. #if AXIS_IS_TMC(E0)
  709. tmc_stepper_current.E0 = stepperE0.getMilliamps();
  710. #endif
  711. #if MAX_EXTRUDERS > 1
  712. #if AXIS_IS_TMC(E1)
  713. tmc_stepper_current.E1 = stepperE1.getMilliamps();
  714. #endif
  715. #if MAX_EXTRUDERS > 2
  716. #if AXIS_IS_TMC(E2)
  717. tmc_stepper_current.E2 = stepperE2.getMilliamps();
  718. #endif
  719. #if MAX_EXTRUDERS > 3
  720. #if AXIS_IS_TMC(E3)
  721. tmc_stepper_current.E3 = stepperE3.getMilliamps();
  722. #endif
  723. #if MAX_EXTRUDERS > 4
  724. #if AXIS_IS_TMC(E4)
  725. tmc_stepper_current.E4 = stepperE4.getMilliamps();
  726. #endif
  727. #if MAX_EXTRUDERS > 5
  728. #if AXIS_IS_TMC(E5)
  729. tmc_stepper_current.E5 = stepperE5.getMilliamps();
  730. #endif
  731. #endif // MAX_EXTRUDERS > 5
  732. #endif // MAX_EXTRUDERS > 4
  733. #endif // MAX_EXTRUDERS > 3
  734. #endif // MAX_EXTRUDERS > 2
  735. #endif // MAX_EXTRUDERS > 1
  736. #endif // MAX_EXTRUDERS
  737. #endif
  738. EEPROM_WRITE(tmc_stepper_current);
  739. }
  740. //
  741. // TMC Hybrid Threshold, and placeholder values
  742. //
  743. {
  744. _FIELD_TEST(tmc_hybrid_threshold);
  745. #if ENABLED(HYBRID_THRESHOLD)
  746. tmc_hybrid_threshold_t tmc_hybrid_threshold = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 };
  747. #if AXIS_HAS_STEALTHCHOP(X)
  748. tmc_hybrid_threshold.X = TMC_GET_PWMTHRS(X, X);
  749. #endif
  750. #if AXIS_HAS_STEALTHCHOP(Y)
  751. tmc_hybrid_threshold.Y = TMC_GET_PWMTHRS(Y, Y);
  752. #endif
  753. #if AXIS_HAS_STEALTHCHOP(Z)
  754. tmc_hybrid_threshold.Z = TMC_GET_PWMTHRS(Z, Z);
  755. #endif
  756. #if AXIS_HAS_STEALTHCHOP(X2)
  757. tmc_hybrid_threshold.X2 = TMC_GET_PWMTHRS(X, X2);
  758. #endif
  759. #if AXIS_HAS_STEALTHCHOP(Y2)
  760. tmc_hybrid_threshold.Y2 = TMC_GET_PWMTHRS(Y, Y2);
  761. #endif
  762. #if AXIS_HAS_STEALTHCHOP(Z2)
  763. tmc_hybrid_threshold.Z2 = TMC_GET_PWMTHRS(Z, Z2);
  764. #endif
  765. #if AXIS_HAS_STEALTHCHOP(Z3)
  766. tmc_hybrid_threshold.Z3 = TMC_GET_PWMTHRS(Z, Z3);
  767. #endif
  768. #if MAX_EXTRUDERS
  769. #if AXIS_HAS_STEALTHCHOP(E0)
  770. tmc_hybrid_threshold.E0 = TMC_GET_PWMTHRS(E, E0);
  771. #endif
  772. #if MAX_EXTRUDERS > 1
  773. #if AXIS_HAS_STEALTHCHOP(E1)
  774. tmc_hybrid_threshold.E1 = TMC_GET_PWMTHRS(E, E1);
  775. #endif
  776. #if MAX_EXTRUDERS > 2
  777. #if AXIS_HAS_STEALTHCHOP(E2)
  778. tmc_hybrid_threshold.E2 = TMC_GET_PWMTHRS(E, E2);
  779. #endif
  780. #if MAX_EXTRUDERS > 3
  781. #if AXIS_HAS_STEALTHCHOP(E3)
  782. tmc_hybrid_threshold.E3 = TMC_GET_PWMTHRS(E, E3);
  783. #endif
  784. #if MAX_EXTRUDERS > 4
  785. #if AXIS_HAS_STEALTHCHOP(E4)
  786. tmc_hybrid_threshold.E4 = TMC_GET_PWMTHRS(E, E4);
  787. #endif
  788. #if MAX_EXTRUDERS > 5
  789. #if AXIS_HAS_STEALTHCHOP(E5)
  790. tmc_hybrid_threshold.E5 = TMC_GET_PWMTHRS(E, E5);
  791. #endif
  792. #endif // MAX_EXTRUDERS > 5
  793. #endif // MAX_EXTRUDERS > 4
  794. #endif // MAX_EXTRUDERS > 3
  795. #endif // MAX_EXTRUDERS > 2
  796. #endif // MAX_EXTRUDERS > 1
  797. #endif // MAX_EXTRUDERS
  798. #else
  799. const tmc_hybrid_threshold_t tmc_hybrid_threshold = {
  800. .X = 100, .Y = 100, .Z = 3,
  801. .X2 = 100, .Y2 = 100, .Z2 = 3, .Z3 = 3,
  802. .E0 = 30, .E1 = 30, .E2 = 30,
  803. .E3 = 30, .E4 = 30, .E5 = 30
  804. };
  805. #endif
  806. EEPROM_WRITE(tmc_hybrid_threshold);
  807. }
  808. //
  809. // TMC StallGuard threshold
  810. //
  811. {
  812. tmc_sgt_t tmc_sgt = { 0, 0, 0 };
  813. #if USE_SENSORLESS
  814. #if X_SENSORLESS
  815. tmc_sgt.X = stepperX.sgt();
  816. #endif
  817. #if Y_SENSORLESS
  818. tmc_sgt.Y = stepperY.sgt();
  819. #endif
  820. #if Z_SENSORLESS
  821. tmc_sgt.Z = stepperZ.sgt();
  822. #endif
  823. #endif
  824. EEPROM_WRITE(tmc_sgt);
  825. }
  826. //
  827. // Linear Advance
  828. //
  829. {
  830. _FIELD_TEST(planner_extruder_advance_K);
  831. #if ENABLED(LIN_ADVANCE)
  832. EEPROM_WRITE(planner.extruder_advance_K);
  833. #else
  834. dummy = 0;
  835. for (uint8_t q = EXTRUDERS; q--;) EEPROM_WRITE(dummy);
  836. #endif
  837. }
  838. //
  839. // Motor Current PWM
  840. //
  841. {
  842. _FIELD_TEST(motor_current_setting);
  843. #if HAS_MOTOR_CURRENT_PWM
  844. EEPROM_WRITE(stepper.motor_current_setting);
  845. #else
  846. const uint32_t dummyui32[XYZ] = { 0 };
  847. EEPROM_WRITE(dummyui32);
  848. #endif
  849. }
  850. //
  851. // CNC Coordinate Systems
  852. //
  853. _FIELD_TEST(coordinate_system);
  854. #if ENABLED(CNC_COORDINATE_SYSTEMS)
  855. EEPROM_WRITE(gcode.coordinate_system);
  856. #else
  857. const float coordinate_system[MAX_COORDINATE_SYSTEMS][XYZ] = { { 0 } };
  858. EEPROM_WRITE(coordinate_system);
  859. #endif
  860. //
  861. // Skew correction factors
  862. //
  863. _FIELD_TEST(planner_skew_factor);
  864. EEPROM_WRITE(planner.skew_factor);
  865. //
  866. // Advanced Pause filament load & unload lengths
  867. //
  868. {
  869. #if DISABLED(ADVANCED_PAUSE_FEATURE)
  870. const fil_change_settings_t fc_settings[EXTRUDERS] = { 0, 0 };
  871. #endif
  872. _FIELD_TEST(fc_settings);
  873. EEPROM_WRITE(fc_settings);
  874. }
  875. //
  876. // Multiple Extruders
  877. //
  878. #if EXTRUDERS > 1
  879. _FIELD_TEST(toolchange_settings);
  880. EEPROM_WRITE(toolchange_settings);
  881. #endif
  882. //
  883. // Validate CRC and Data Size
  884. //
  885. if (!eeprom_error) {
  886. const uint16_t eeprom_size = eeprom_index - (EEPROM_OFFSET),
  887. final_crc = working_crc;
  888. // Write the EEPROM header
  889. eeprom_index = EEPROM_OFFSET;
  890. EEPROM_WRITE(version);
  891. EEPROM_WRITE(final_crc);
  892. // Report storage size
  893. #if ENABLED(EEPROM_CHITCHAT)
  894. SERIAL_ECHO_START_P(port);
  895. SERIAL_ECHOPAIR_P(port, "Settings Stored (", eeprom_size);
  896. SERIAL_ECHOPAIR_P(port, " bytes; crc ", (uint32_t)final_crc);
  897. SERIAL_ECHOLNPGM_P(port, ")");
  898. #endif
  899. eeprom_error |= size_error(eeprom_size);
  900. }
  901. EEPROM_FINISH();
  902. //
  903. // UBL Mesh
  904. //
  905. #if ENABLED(UBL_SAVE_ACTIVE_ON_M500)
  906. if (ubl.storage_slot >= 0)
  907. store_mesh(ubl.storage_slot);
  908. #endif
  909. return !eeprom_error;
  910. }
  911. /**
  912. * M501 - Retrieve Configuration
  913. */
  914. bool MarlinSettings::_load(PORTARG_SOLO) {
  915. uint16_t working_crc = 0;
  916. EEPROM_START();
  917. char stored_ver[4];
  918. EEPROM_READ_ALWAYS(stored_ver);
  919. uint16_t stored_crc;
  920. EEPROM_READ_ALWAYS(stored_crc);
  921. // Version has to match or defaults are used
  922. if (strncmp(version, stored_ver, 3) != 0) {
  923. if (stored_ver[3] != '\0') {
  924. stored_ver[0] = '?';
  925. stored_ver[1] = '\0';
  926. }
  927. #if ENABLED(EEPROM_CHITCHAT)
  928. SERIAL_ECHO_START_P(port);
  929. SERIAL_ECHOPGM_P(port, "EEPROM version mismatch ");
  930. SERIAL_ECHOPAIR_P(port, "(EEPROM=", stored_ver);
  931. SERIAL_ECHOLNPGM_P(port, " Marlin=" EEPROM_VERSION ")");
  932. #endif
  933. eeprom_error = true;
  934. }
  935. else {
  936. float dummy = 0;
  937. working_crc = 0; // Init to 0. Accumulated by EEPROM_READ
  938. _FIELD_TEST(esteppers);
  939. // Number of esteppers may change
  940. uint8_t esteppers;
  941. EEPROM_READ_ALWAYS(esteppers);
  942. //
  943. // Planner Motion
  944. //
  945. {
  946. // Get only the number of E stepper parameters previously stored
  947. // Any steppers added later are set to their defaults
  948. const uint32_t def1[] = DEFAULT_MAX_ACCELERATION;
  949. const float def2[] = DEFAULT_AXIS_STEPS_PER_UNIT, def3[] = DEFAULT_MAX_FEEDRATE;
  950. uint32_t tmp1[XYZ + esteppers];
  951. EEPROM_READ(tmp1); // max_acceleration_mm_per_s2
  952. EEPROM_READ(planner.settings.min_segment_time_us);
  953. float tmp2[XYZ + esteppers], tmp3[XYZ + esteppers];
  954. EEPROM_READ(tmp2); // axis_steps_per_mm
  955. EEPROM_READ(tmp3); // max_feedrate_mm_s
  956. if (!validating) LOOP_XYZE_N(i) {
  957. const bool in = (i < esteppers + XYZ);
  958. planner.settings.max_acceleration_mm_per_s2[i] = in ? tmp1[i] : def1[ALIM(i, def1)];
  959. planner.settings.axis_steps_per_mm[i] = in ? tmp2[i] : def2[ALIM(i, def2)];
  960. planner.settings.max_feedrate_mm_s[i] = in ? tmp3[i] : def3[ALIM(i, def3)];
  961. }
  962. EEPROM_READ(planner.settings.acceleration);
  963. EEPROM_READ(planner.settings.retract_acceleration);
  964. EEPROM_READ(planner.settings.travel_acceleration);
  965. EEPROM_READ(planner.settings.min_feedrate_mm_s);
  966. EEPROM_READ(planner.settings.min_travel_feedrate_mm_s);
  967. #if HAS_CLASSIC_JERK
  968. EEPROM_READ(planner.max_jerk);
  969. #if ENABLED(JUNCTION_DEVIATION) && ENABLED(LIN_ADVANCE)
  970. EEPROM_READ(dummy);
  971. #endif
  972. #else
  973. for (uint8_t q = 4; q--;) EEPROM_READ(dummy);
  974. #endif
  975. #if ENABLED(JUNCTION_DEVIATION)
  976. EEPROM_READ(planner.junction_deviation_mm);
  977. #else
  978. EEPROM_READ(dummy);
  979. #endif
  980. }
  981. //
  982. // Home Offset (M206 / M665)
  983. //
  984. {
  985. _FIELD_TEST(home_offset);
  986. #if HAS_SCARA_OFFSET
  987. EEPROM_READ(scara_home_offset);
  988. #else
  989. #if !HAS_HOME_OFFSET
  990. float home_offset[XYZ];
  991. #endif
  992. EEPROM_READ(home_offset);
  993. #endif
  994. }
  995. //
  996. // Hotend Offsets, if any
  997. //
  998. {
  999. #if HAS_HOTEND_OFFSET
  1000. // Skip hotend 0 which must be 0
  1001. for (uint8_t e = 1; e < HOTENDS; e++)
  1002. LOOP_XYZ(i) EEPROM_READ(hotend_offset[i][e]);
  1003. #endif
  1004. }
  1005. //
  1006. // Global Leveling
  1007. //
  1008. {
  1009. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  1010. EEPROM_READ(new_z_fade_height);
  1011. #else
  1012. EEPROM_READ(dummy);
  1013. #endif
  1014. }
  1015. //
  1016. // Mesh (Manual) Bed Leveling
  1017. //
  1018. {
  1019. uint8_t mesh_num_x, mesh_num_y;
  1020. EEPROM_READ(dummy);
  1021. EEPROM_READ_ALWAYS(mesh_num_x);
  1022. EEPROM_READ_ALWAYS(mesh_num_y);
  1023. #if ENABLED(MESH_BED_LEVELING)
  1024. if (!validating) mbl.z_offset = dummy;
  1025. if (mesh_num_x == GRID_MAX_POINTS_X && mesh_num_y == GRID_MAX_POINTS_Y) {
  1026. // EEPROM data fits the current mesh
  1027. EEPROM_READ(mbl.z_values);
  1028. }
  1029. else {
  1030. // EEPROM data is stale
  1031. if (!validating) mbl.reset();
  1032. for (uint16_t q = mesh_num_x * mesh_num_y; q--;) EEPROM_READ(dummy);
  1033. }
  1034. #else
  1035. // MBL is disabled - skip the stored data
  1036. for (uint16_t q = mesh_num_x * mesh_num_y; q--;) EEPROM_READ(dummy);
  1037. #endif // MESH_BED_LEVELING
  1038. }
  1039. //
  1040. // Probe Z Offset
  1041. //
  1042. {
  1043. _FIELD_TEST(zprobe_zoffset);
  1044. #if !HAS_BED_PROBE
  1045. float zprobe_zoffset;
  1046. #endif
  1047. EEPROM_READ(zprobe_zoffset);
  1048. }
  1049. //
  1050. // Planar Bed Leveling matrix
  1051. //
  1052. {
  1053. #if ABL_PLANAR
  1054. EEPROM_READ(planner.bed_level_matrix);
  1055. #else
  1056. for (uint8_t q = 9; q--;) EEPROM_READ(dummy);
  1057. #endif
  1058. }
  1059. //
  1060. // Bilinear Auto Bed Leveling
  1061. //
  1062. {
  1063. uint8_t grid_max_x, grid_max_y;
  1064. EEPROM_READ_ALWAYS(grid_max_x); // 1 byte
  1065. EEPROM_READ_ALWAYS(grid_max_y); // 1 byte
  1066. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  1067. if (grid_max_x == GRID_MAX_POINTS_X && grid_max_y == GRID_MAX_POINTS_Y) {
  1068. if (!validating) set_bed_leveling_enabled(false);
  1069. EEPROM_READ(bilinear_grid_spacing); // 2 ints
  1070. EEPROM_READ(bilinear_start); // 2 ints
  1071. EEPROM_READ(z_values); // 9 to 256 floats
  1072. }
  1073. else // EEPROM data is stale
  1074. #endif // AUTO_BED_LEVELING_BILINEAR
  1075. {
  1076. // Skip past disabled (or stale) Bilinear Grid data
  1077. int bgs[2], bs[2];
  1078. EEPROM_READ(bgs);
  1079. EEPROM_READ(bs);
  1080. for (uint16_t q = grid_max_x * grid_max_y; q--;) EEPROM_READ(dummy);
  1081. }
  1082. }
  1083. //
  1084. // Unified Bed Leveling active state
  1085. //
  1086. {
  1087. _FIELD_TEST(planner_leveling_active);
  1088. #if ENABLED(AUTO_BED_LEVELING_UBL)
  1089. EEPROM_READ(planner.leveling_active);
  1090. EEPROM_READ(ubl.storage_slot);
  1091. #else
  1092. bool planner_leveling_active;
  1093. uint8_t ubl_storage_slot;
  1094. EEPROM_READ(planner_leveling_active);
  1095. EEPROM_READ(ubl_storage_slot);
  1096. #endif
  1097. }
  1098. //
  1099. // SERVO_ANGLES
  1100. //
  1101. {
  1102. #if !(HAS_SERVOS && ENABLED(EDITABLE_SERVO_ANGLES))
  1103. uint16_t servo_angles[NUM_SERVOS][2];
  1104. #endif
  1105. EEPROM_READ(servo_angles);
  1106. }
  1107. //
  1108. // DELTA Geometry or Dual Endstops offsets
  1109. //
  1110. {
  1111. #if ENABLED(DELTA)
  1112. _FIELD_TEST(delta_height);
  1113. EEPROM_READ(delta_height); // 1 float
  1114. EEPROM_READ(delta_endstop_adj); // 3 floats
  1115. EEPROM_READ(delta_radius); // 1 float
  1116. EEPROM_READ(delta_diagonal_rod); // 1 float
  1117. EEPROM_READ(delta_segments_per_second); // 1 float
  1118. EEPROM_READ(delta_calibration_radius); // 1 float
  1119. EEPROM_READ(delta_tower_angle_trim); // 3 floats
  1120. #elif ENABLED(X_DUAL_ENDSTOPS) || ENABLED(Y_DUAL_ENDSTOPS) || Z_MULTI_ENDSTOPS
  1121. _FIELD_TEST(x2_endstop_adj);
  1122. #if ENABLED(X_DUAL_ENDSTOPS)
  1123. EEPROM_READ(endstops.x2_endstop_adj); // 1 float
  1124. #else
  1125. EEPROM_READ(dummy);
  1126. #endif
  1127. #if ENABLED(Y_DUAL_ENDSTOPS)
  1128. EEPROM_READ(endstops.y2_endstop_adj); // 1 float
  1129. #else
  1130. EEPROM_READ(dummy);
  1131. #endif
  1132. #if Z_MULTI_ENDSTOPS
  1133. EEPROM_READ(endstops.z2_endstop_adj); // 1 float
  1134. #else
  1135. EEPROM_READ(dummy);
  1136. #endif
  1137. #if ENABLED(Z_TRIPLE_ENDSTOPS)
  1138. EEPROM_READ(endstops.z3_endstop_adj); // 1 float
  1139. #else
  1140. EEPROM_READ(dummy);
  1141. #endif
  1142. #endif
  1143. }
  1144. //
  1145. // LCD Preheat settings
  1146. //
  1147. {
  1148. _FIELD_TEST(ui_preheat_hotend_temp);
  1149. #if HAS_LCD_MENU
  1150. int16_t (&ui_preheat_hotend_temp)[2] = ui.preheat_hotend_temp,
  1151. (&ui_preheat_bed_temp)[2] = ui.preheat_bed_temp;
  1152. uint8_t (&ui_preheat_fan_speed)[2] = ui.preheat_fan_speed;
  1153. #else
  1154. int16_t ui_preheat_hotend_temp[2], ui_preheat_bed_temp[2];
  1155. uint8_t ui_preheat_fan_speed[2];
  1156. #endif
  1157. EEPROM_READ(ui_preheat_hotend_temp); // 2 floats
  1158. EEPROM_READ(ui_preheat_bed_temp); // 2 floats
  1159. EEPROM_READ(ui_preheat_fan_speed); // 2 floats
  1160. }
  1161. //
  1162. // Hotend PID
  1163. //
  1164. {
  1165. HOTEND_LOOP() {
  1166. PIDC_t pidc;
  1167. EEPROM_READ(pidc);
  1168. #if ENABLED(PIDTEMP)
  1169. if (!validating && pidc.Kp != DUMMY_PID_VALUE) {
  1170. // No need to scale PID values since EEPROM values are scaled
  1171. PID_PARAM(Kp, e) = pidc.Kp;
  1172. PID_PARAM(Ki, e) = pidc.Ki;
  1173. PID_PARAM(Kd, e) = pidc.Kd;
  1174. #if ENABLED(PID_EXTRUSION_SCALING)
  1175. PID_PARAM(Kc, e) = pidc.Kc;
  1176. #endif
  1177. }
  1178. #endif
  1179. }
  1180. }
  1181. //
  1182. // PID Extrusion Scaling
  1183. //
  1184. {
  1185. _FIELD_TEST(lpq_len);
  1186. #if ENABLED(PID_EXTRUSION_SCALING)
  1187. EEPROM_READ(thermalManager.lpq_len);
  1188. #else
  1189. int16_t lpq_len;
  1190. EEPROM_READ(lpq_len);
  1191. #endif
  1192. }
  1193. //
  1194. // Heated Bed PID
  1195. //
  1196. {
  1197. PID_t pid;
  1198. EEPROM_READ(pid);
  1199. #if ENABLED(PIDTEMPBED)
  1200. if (!validating && pid.Kp != DUMMY_PID_VALUE)
  1201. memcpy(&thermalManager.bed_pid, &pid, sizeof(pid));
  1202. #endif
  1203. }
  1204. //
  1205. // LCD Contrast
  1206. //
  1207. {
  1208. _FIELD_TEST(lcd_contrast);
  1209. int16_t lcd_contrast;
  1210. EEPROM_READ(lcd_contrast);
  1211. #if HAS_LCD_CONTRAST
  1212. ui.set_contrast(lcd_contrast);
  1213. #endif
  1214. }
  1215. //
  1216. // Power-Loss Recovery
  1217. //
  1218. {
  1219. _FIELD_TEST(recovery_enabled);
  1220. #if ENABLED(POWER_LOSS_RECOVERY)
  1221. EEPROM_READ(recovery.enabled);
  1222. #else
  1223. bool recovery_enabled;
  1224. EEPROM_READ(recovery_enabled);
  1225. #endif
  1226. }
  1227. //
  1228. // Firmware Retraction
  1229. //
  1230. {
  1231. _FIELD_TEST(fwretract_settings);
  1232. #if ENABLED(FWRETRACT)
  1233. EEPROM_READ(fwretract.settings);
  1234. #else
  1235. fwretract_settings_t fwretract_settings;
  1236. EEPROM_READ(fwretract_settings);
  1237. #endif
  1238. #if ENABLED(FWRETRACT) && ENABLED(FWRETRACT_AUTORETRACT)
  1239. EEPROM_READ(fwretract.autoretract_enabled);
  1240. #else
  1241. bool autoretract_enabled;
  1242. EEPROM_READ(autoretract_enabled);
  1243. #endif
  1244. }
  1245. //
  1246. // Volumetric & Filament Size
  1247. //
  1248. {
  1249. struct {
  1250. bool volumetric_enabled;
  1251. float filament_size[EXTRUDERS];
  1252. } storage;
  1253. _FIELD_TEST(parser_volumetric_enabled);
  1254. EEPROM_READ(storage);
  1255. #if DISABLED(NO_VOLUMETRICS)
  1256. if (!validating) {
  1257. parser.volumetric_enabled = storage.volumetric_enabled;
  1258. COPY(planner.filament_size, storage.filament_size);
  1259. }
  1260. #endif
  1261. }
  1262. //
  1263. // TMC Stepper Settings
  1264. //
  1265. if (!validating) reset_stepper_drivers();
  1266. // TMC Stepper Current
  1267. {
  1268. _FIELD_TEST(tmc_stepper_current);
  1269. tmc_stepper_current_t currents;
  1270. EEPROM_READ(currents);
  1271. #if HAS_TRINAMIC
  1272. #define SET_CURR(Q) stepper##Q.rms_current(currents.Q ? currents.Q : Q##_CURRENT)
  1273. if (!validating) {
  1274. #if AXIS_IS_TMC(X)
  1275. SET_CURR(X);
  1276. #endif
  1277. #if AXIS_IS_TMC(Y)
  1278. SET_CURR(Y);
  1279. #endif
  1280. #if AXIS_IS_TMC(Z)
  1281. SET_CURR(Z);
  1282. #endif
  1283. #if AXIS_IS_TMC(X2)
  1284. SET_CURR(X2);
  1285. #endif
  1286. #if AXIS_IS_TMC(Y2)
  1287. SET_CURR(Y2);
  1288. #endif
  1289. #if AXIS_IS_TMC(Z2)
  1290. SET_CURR(Z2);
  1291. #endif
  1292. #if AXIS_IS_TMC(Z3)
  1293. SET_CURR(Z3);
  1294. #endif
  1295. #if AXIS_IS_TMC(E0)
  1296. SET_CURR(E0);
  1297. #endif
  1298. #if AXIS_IS_TMC(E1)
  1299. SET_CURR(E1);
  1300. #endif
  1301. #if AXIS_IS_TMC(E2)
  1302. SET_CURR(E2);
  1303. #endif
  1304. #if AXIS_IS_TMC(E3)
  1305. SET_CURR(E3);
  1306. #endif
  1307. #if AXIS_IS_TMC(E4)
  1308. SET_CURR(E4);
  1309. #endif
  1310. #if AXIS_IS_TMC(E5)
  1311. SET_CURR(E5);
  1312. #endif
  1313. }
  1314. #endif
  1315. }
  1316. // TMC Hybrid Threshold
  1317. {
  1318. tmc_hybrid_threshold_t tmc_hybrid_threshold;
  1319. _FIELD_TEST(tmc_hybrid_threshold);
  1320. EEPROM_READ(tmc_hybrid_threshold);
  1321. #if ENABLED(HYBRID_THRESHOLD)
  1322. #define TMC_SET_PWMTHRS(A,Q) tmc_set_pwmthrs(stepper##Q, tmc_hybrid_threshold.Q, planner.settings.axis_steps_per_mm[_AXIS(A)])
  1323. if (!validating) {
  1324. #if AXIS_HAS_STEALTHCHOP(X)
  1325. TMC_SET_PWMTHRS(X, X);
  1326. #endif
  1327. #if AXIS_HAS_STEALTHCHOP(Y)
  1328. TMC_SET_PWMTHRS(Y, Y);
  1329. #endif
  1330. #if AXIS_HAS_STEALTHCHOP(Z)
  1331. TMC_SET_PWMTHRS(Z, Z);
  1332. #endif
  1333. #if AXIS_HAS_STEALTHCHOP(X2)
  1334. TMC_SET_PWMTHRS(X, X2);
  1335. #endif
  1336. #if AXIS_HAS_STEALTHCHOP(Y2)
  1337. TMC_SET_PWMTHRS(Y, Y2);
  1338. #endif
  1339. #if AXIS_HAS_STEALTHCHOP(Z2)
  1340. TMC_SET_PWMTHRS(Z, Z2);
  1341. #endif
  1342. #if AXIS_HAS_STEALTHCHOP(Z3)
  1343. TMC_SET_PWMTHRS(Z, Z3);
  1344. #endif
  1345. #if AXIS_HAS_STEALTHCHOP(E0)
  1346. TMC_SET_PWMTHRS(E, E0);
  1347. #endif
  1348. #if AXIS_HAS_STEALTHCHOP(E1)
  1349. TMC_SET_PWMTHRS(E, E1);
  1350. #endif
  1351. #if AXIS_HAS_STEALTHCHOP(E2)
  1352. TMC_SET_PWMTHRS(E, E2);
  1353. #endif
  1354. #if AXIS_HAS_STEALTHCHOP(E3)
  1355. TMC_SET_PWMTHRS(E, E3);
  1356. #endif
  1357. #if AXIS_HAS_STEALTHCHOP(E4)
  1358. TMC_SET_PWMTHRS(E, E4);
  1359. #endif
  1360. #if AXIS_HAS_STEALTHCHOP(E5)
  1361. TMC_SET_PWMTHRS(E, E5);
  1362. #endif
  1363. }
  1364. #endif
  1365. }
  1366. //
  1367. // TMC StallGuard threshold.
  1368. // X and X2 use the same value
  1369. // Y and Y2 use the same value
  1370. // Z, Z2 and Z3 use the same value
  1371. //
  1372. {
  1373. tmc_sgt_t tmc_sgt;
  1374. _FIELD_TEST(tmc_sgt);
  1375. EEPROM_READ(tmc_sgt);
  1376. #if USE_SENSORLESS
  1377. if (!validating) {
  1378. #ifdef X_STALL_SENSITIVITY
  1379. #if AXIS_HAS_STALLGUARD(X)
  1380. stepperX.sgt(tmc_sgt.X);
  1381. #endif
  1382. #if AXIS_HAS_STALLGUARD(X2)
  1383. stepperX2.sgt(tmc_sgt.X);
  1384. #endif
  1385. #endif
  1386. #ifdef Y_STALL_SENSITIVITY
  1387. #if AXIS_HAS_STALLGUARD(Y)
  1388. stepperY.sgt(tmc_sgt.Y);
  1389. #endif
  1390. #if AXIS_HAS_STALLGUARD(Y2)
  1391. stepperY2.sgt(tmc_sgt.Y);
  1392. #endif
  1393. #endif
  1394. #ifdef Z_STALL_SENSITIVITY
  1395. #if AXIS_HAS_STALLGUARD(Z)
  1396. stepperZ.sgt(tmc_sgt.Z);
  1397. #endif
  1398. #if AXIS_HAS_STALLGUARD(Z2)
  1399. stepperZ2.sgt(tmc_sgt.Z);
  1400. #endif
  1401. #if AXIS_HAS_STALLGUARD(Z3)
  1402. stepperZ3.sgt(tmc_sgt.Z);
  1403. #endif
  1404. #endif
  1405. }
  1406. #endif
  1407. }
  1408. //
  1409. // Linear Advance
  1410. //
  1411. {
  1412. float extruder_advance_K[EXTRUDERS];
  1413. _FIELD_TEST(planner_extruder_advance_K);
  1414. EEPROM_READ(extruder_advance_K);
  1415. #if ENABLED(LIN_ADVANCE)
  1416. if (!validating)
  1417. COPY(planner.extruder_advance_K, extruder_advance_K);
  1418. #endif
  1419. }
  1420. //
  1421. // Motor Current PWM
  1422. //
  1423. {
  1424. uint32_t motor_current_setting[3];
  1425. _FIELD_TEST(motor_current_setting);
  1426. EEPROM_READ(motor_current_setting);
  1427. #if HAS_MOTOR_CURRENT_PWM
  1428. if (!validating)
  1429. COPY(stepper.motor_current_setting, motor_current_setting);
  1430. #endif
  1431. }
  1432. //
  1433. // CNC Coordinate System
  1434. //
  1435. {
  1436. _FIELD_TEST(coordinate_system);
  1437. #if ENABLED(CNC_COORDINATE_SYSTEMS)
  1438. if (!validating) (void)gcode.select_coordinate_system(-1); // Go back to machine space
  1439. EEPROM_READ(gcode.coordinate_system);
  1440. #else
  1441. float coordinate_system[MAX_COORDINATE_SYSTEMS][XYZ];
  1442. EEPROM_READ(coordinate_system);
  1443. #endif
  1444. }
  1445. //
  1446. // Skew correction factors
  1447. //
  1448. {
  1449. skew_factor_t skew_factor;
  1450. _FIELD_TEST(planner_skew_factor);
  1451. EEPROM_READ(skew_factor);
  1452. #if ENABLED(SKEW_CORRECTION_GCODE)
  1453. if (!validating) {
  1454. planner.skew_factor.xy = skew_factor.xy;
  1455. #if ENABLED(SKEW_CORRECTION_FOR_Z)
  1456. planner.skew_factor.xz = skew_factor.xz;
  1457. planner.skew_factor.yz = skew_factor.yz;
  1458. #endif
  1459. }
  1460. #endif
  1461. }
  1462. //
  1463. // Advanced Pause filament load & unload lengths
  1464. //
  1465. {
  1466. #if DISABLED(ADVANCED_PAUSE_FEATURE)
  1467. fil_change_settings_t fc_settings[EXTRUDERS];
  1468. #endif
  1469. _FIELD_TEST(fc_settings);
  1470. EEPROM_READ(fc_settings);
  1471. }
  1472. //
  1473. // Tool-change settings
  1474. //
  1475. #if EXTRUDERS > 1
  1476. _FIELD_TEST(toolchange_settings);
  1477. EEPROM_READ(toolchange_settings);
  1478. #endif
  1479. eeprom_error = size_error(eeprom_index - (EEPROM_OFFSET));
  1480. if (eeprom_error) {
  1481. #if ENABLED(EEPROM_CHITCHAT)
  1482. SERIAL_ECHO_START_P(port);
  1483. SERIAL_ECHOPAIR_P(port, "Index: ", int(eeprom_index - (EEPROM_OFFSET)));
  1484. SERIAL_ECHOLNPAIR_P(port, " Size: ", datasize());
  1485. #endif
  1486. }
  1487. else if (working_crc != stored_crc) {
  1488. eeprom_error = true;
  1489. #if ENABLED(EEPROM_CHITCHAT)
  1490. SERIAL_ERROR_START_P(port);
  1491. SERIAL_ERRORPGM_P(port, "EEPROM CRC mismatch - (stored) ");
  1492. SERIAL_ERROR_P(port, stored_crc);
  1493. SERIAL_ERRORPGM_P(port, " != ");
  1494. SERIAL_ERROR_P(port, working_crc);
  1495. SERIAL_ERRORLNPGM_P(port, " (calculated)!");
  1496. #endif
  1497. }
  1498. else if (!validating) {
  1499. #if ENABLED(EEPROM_CHITCHAT)
  1500. SERIAL_ECHO_START_P(port);
  1501. SERIAL_ECHO_P(port, version);
  1502. SERIAL_ECHOPAIR_P(port, " stored settings retrieved (", eeprom_index - (EEPROM_OFFSET));
  1503. SERIAL_ECHOPAIR_P(port, " bytes; crc ", (uint32_t)working_crc);
  1504. SERIAL_ECHOLNPGM_P(port, ")");
  1505. #endif
  1506. }
  1507. if (!validating && !eeprom_error) postprocess();
  1508. #if ENABLED(AUTO_BED_LEVELING_UBL)
  1509. if (!validating) {
  1510. ubl.report_state();
  1511. if (!ubl.sanity_check()) {
  1512. SERIAL_EOL_P(port);
  1513. #if ENABLED(EEPROM_CHITCHAT)
  1514. ubl.echo_name();
  1515. SERIAL_ECHOLNPGM_P(port, " initialized.\n");
  1516. #endif
  1517. }
  1518. else {
  1519. eeprom_error = true;
  1520. #if ENABLED(EEPROM_CHITCHAT)
  1521. SERIAL_PROTOCOLPGM_P(port, "?Can't enable ");
  1522. ubl.echo_name();
  1523. SERIAL_PROTOCOLLNPGM_P(port, ".");
  1524. #endif
  1525. ubl.reset();
  1526. }
  1527. if (ubl.storage_slot >= 0) {
  1528. load_mesh(ubl.storage_slot);
  1529. #if ENABLED(EEPROM_CHITCHAT)
  1530. SERIAL_ECHOPAIR_P(port, "Mesh ", ubl.storage_slot);
  1531. SERIAL_ECHOLNPGM_P(port, " loaded from storage.");
  1532. #endif
  1533. }
  1534. else {
  1535. ubl.reset();
  1536. #if ENABLED(EEPROM_CHITCHAT)
  1537. SERIAL_ECHOLNPGM_P(port, "UBL System reset()");
  1538. #endif
  1539. }
  1540. }
  1541. #endif
  1542. }
  1543. #if ENABLED(EEPROM_CHITCHAT) && DISABLED(DISABLE_M503)
  1544. if (!validating) report(PORTVAR_SOLO);
  1545. #endif
  1546. EEPROM_FINISH();
  1547. return !eeprom_error;
  1548. }
  1549. bool MarlinSettings::validate(PORTARG_SOLO) {
  1550. validating = true;
  1551. const bool success = _load(PORTVAR_SOLO);
  1552. validating = false;
  1553. return success;
  1554. }
  1555. bool MarlinSettings::load(PORTARG_SOLO) {
  1556. if (validate(PORTVAR_SOLO)) return _load(PORTVAR_SOLO);
  1557. reset();
  1558. return true;
  1559. }
  1560. #if ENABLED(AUTO_BED_LEVELING_UBL)
  1561. #if ENABLED(EEPROM_CHITCHAT)
  1562. void ubl_invalid_slot(const int s) {
  1563. SERIAL_PROTOCOLLNPGM("?Invalid slot.");
  1564. SERIAL_PROTOCOL(s);
  1565. SERIAL_PROTOCOLLNPGM(" mesh slots available.");
  1566. }
  1567. #endif
  1568. const uint16_t MarlinSettings::meshes_end = persistentStore.capacity() - 129; // 128 (+1 because of the change to capacity rather than last valid address)
  1569. // is a placeholder for the size of the MAT; the MAT will always
  1570. // live at the very end of the eeprom
  1571. uint16_t MarlinSettings::meshes_start_index() {
  1572. return (datasize() + EEPROM_OFFSET + 32) & 0xFFF8; // Pad the end of configuration data so it can float up
  1573. // or down a little bit without disrupting the mesh data
  1574. }
  1575. uint16_t MarlinSettings::calc_num_meshes() {
  1576. return (meshes_end - meshes_start_index()) / sizeof(ubl.z_values);
  1577. }
  1578. int MarlinSettings::mesh_slot_offset(const int8_t slot) {
  1579. return meshes_end - (slot + 1) * sizeof(ubl.z_values);
  1580. }
  1581. void MarlinSettings::store_mesh(const int8_t slot) {
  1582. #if ENABLED(AUTO_BED_LEVELING_UBL)
  1583. const int16_t a = calc_num_meshes();
  1584. if (!WITHIN(slot, 0, a - 1)) {
  1585. #if ENABLED(EEPROM_CHITCHAT)
  1586. ubl_invalid_slot(a);
  1587. SERIAL_PROTOCOLPAIR("E2END=", persistentStore.capacity() - 1);
  1588. SERIAL_PROTOCOLPAIR(" meshes_end=", meshes_end);
  1589. SERIAL_PROTOCOLLNPAIR(" slot=", slot);
  1590. SERIAL_EOL();
  1591. #endif
  1592. return;
  1593. }
  1594. int pos = mesh_slot_offset(slot);
  1595. uint16_t crc = 0;
  1596. persistentStore.access_start();
  1597. const bool status = persistentStore.write_data(pos, (uint8_t *)&ubl.z_values, sizeof(ubl.z_values), &crc);
  1598. persistentStore.access_finish();
  1599. if (status)
  1600. SERIAL_PROTOCOLPGM("?Unable to save mesh data.\n");
  1601. // Write crc to MAT along with other data, or just tack on to the beginning or end
  1602. #if ENABLED(EEPROM_CHITCHAT)
  1603. if (!status)
  1604. SERIAL_PROTOCOLLNPAIR("Mesh saved in slot ", slot);
  1605. #endif
  1606. #else
  1607. // Other mesh types
  1608. #endif
  1609. }
  1610. void MarlinSettings::load_mesh(const int8_t slot, void * const into/*=NULL*/) {
  1611. #if ENABLED(AUTO_BED_LEVELING_UBL)
  1612. const int16_t a = settings.calc_num_meshes();
  1613. if (!WITHIN(slot, 0, a - 1)) {
  1614. #if ENABLED(EEPROM_CHITCHAT)
  1615. ubl_invalid_slot(a);
  1616. #endif
  1617. return;
  1618. }
  1619. int pos = mesh_slot_offset(slot);
  1620. uint16_t crc = 0;
  1621. uint8_t * const dest = into ? (uint8_t*)into : (uint8_t*)&ubl.z_values;
  1622. persistentStore.access_start();
  1623. const uint16_t status = persistentStore.read_data(pos, dest, sizeof(ubl.z_values), &crc);
  1624. persistentStore.access_finish();
  1625. if (status)
  1626. SERIAL_PROTOCOLPGM("?Unable to load mesh data.\n");
  1627. #if ENABLED(EEPROM_CHITCHAT)
  1628. else
  1629. SERIAL_PROTOCOLLNPAIR("Mesh loaded from slot ", slot);
  1630. #endif
  1631. EEPROM_FINISH();
  1632. #else
  1633. // Other mesh types
  1634. #endif
  1635. }
  1636. //void MarlinSettings::delete_mesh() { return; }
  1637. //void MarlinSettings::defrag_meshes() { return; }
  1638. #endif // AUTO_BED_LEVELING_UBL
  1639. #else // !EEPROM_SETTINGS
  1640. bool MarlinSettings::save(PORTARG_SOLO) {
  1641. #if ENABLED(EEPROM_CHITCHAT)
  1642. SERIAL_ERROR_START_P(port);
  1643. SERIAL_ERRORLNPGM_P(port, "EEPROM disabled");
  1644. #endif
  1645. return false;
  1646. }
  1647. #endif // !EEPROM_SETTINGS
  1648. /**
  1649. * M502 - Reset Configuration
  1650. */
  1651. void MarlinSettings::reset(PORTARG_SOLO) {
  1652. static const float tmp1[] PROGMEM = DEFAULT_AXIS_STEPS_PER_UNIT, tmp2[] PROGMEM = DEFAULT_MAX_FEEDRATE;
  1653. static const uint32_t tmp3[] PROGMEM = DEFAULT_MAX_ACCELERATION;
  1654. LOOP_XYZE_N(i) {
  1655. planner.settings.axis_steps_per_mm[i] = pgm_read_float(&tmp1[ALIM(i, tmp1)]);
  1656. planner.settings.max_feedrate_mm_s[i] = pgm_read_float(&tmp2[ALIM(i, tmp2)]);
  1657. planner.settings.max_acceleration_mm_per_s2[i] = pgm_read_dword(&tmp3[ALIM(i, tmp3)]);
  1658. }
  1659. planner.settings.min_segment_time_us = DEFAULT_MINSEGMENTTIME;
  1660. planner.settings.acceleration = DEFAULT_ACCELERATION;
  1661. planner.settings.retract_acceleration = DEFAULT_RETRACT_ACCELERATION;
  1662. planner.settings.travel_acceleration = DEFAULT_TRAVEL_ACCELERATION;
  1663. planner.settings.min_feedrate_mm_s = DEFAULT_MINIMUMFEEDRATE;
  1664. planner.settings.min_travel_feedrate_mm_s = DEFAULT_MINTRAVELFEEDRATE;
  1665. #if HAS_CLASSIC_JERK
  1666. planner.max_jerk[X_AXIS] = DEFAULT_XJERK;
  1667. planner.max_jerk[Y_AXIS] = DEFAULT_YJERK;
  1668. planner.max_jerk[Z_AXIS] = DEFAULT_ZJERK;
  1669. #if DISABLED(JUNCTION_DEVIATION) || DISABLED(LIN_ADVANCE)
  1670. planner.max_jerk[E_AXIS] = DEFAULT_EJERK;
  1671. #endif
  1672. #endif
  1673. #if ENABLED(JUNCTION_DEVIATION)
  1674. planner.junction_deviation_mm = float(JUNCTION_DEVIATION_MM);
  1675. #endif
  1676. #if HAS_SCARA_OFFSET
  1677. ZERO(scara_home_offset);
  1678. #elif HAS_HOME_OFFSET
  1679. ZERO(home_offset);
  1680. #endif
  1681. #if HAS_HOTEND_OFFSET
  1682. constexpr float tmp4[XYZ][HOTENDS] = { HOTEND_OFFSET_X, HOTEND_OFFSET_Y, HOTEND_OFFSET_Z };
  1683. static_assert(
  1684. tmp4[X_AXIS][0] == 0 && tmp4[Y_AXIS][0] == 0 && tmp4[Z_AXIS][0] == 0,
  1685. "Offsets for the first hotend must be 0.0."
  1686. );
  1687. LOOP_XYZ(i) HOTEND_LOOP() hotend_offset[i][e] = tmp4[i][e];
  1688. #if ENABLED(DUAL_X_CARRIAGE)
  1689. hotend_offset[X_AXIS][1] = MAX(X2_HOME_POS, X2_MAX_POS);
  1690. #endif
  1691. #endif
  1692. #if EXTRUDERS > 1
  1693. #if ENABLED(TOOLCHANGE_FILAMENT_SWAP)
  1694. toolchange_settings.swap_length = TOOLCHANGE_FIL_SWAP_LENGTH;
  1695. toolchange_settings.prime_speed = TOOLCHANGE_FIL_SWAP_PRIME_SPEED;
  1696. toolchange_settings.retract_speed = TOOLCHANGE_FIL_SWAP_RETRACT_SPEED;
  1697. #endif
  1698. #if ENABLED(TOOLCHANGE_PARK)
  1699. toolchange_settings.change_point = TOOLCHANGE_PARK_XY;
  1700. #endif
  1701. toolchange_settings.z_raise = TOOLCHANGE_ZRAISE;
  1702. #endif
  1703. //
  1704. // Global Leveling
  1705. //
  1706. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  1707. new_z_fade_height = 0.0;
  1708. #endif
  1709. #if HAS_LEVELING
  1710. reset_bed_level();
  1711. #endif
  1712. #if HAS_BED_PROBE
  1713. zprobe_zoffset = Z_PROBE_OFFSET_FROM_EXTRUDER;
  1714. #endif
  1715. //
  1716. // Servo Angles
  1717. //
  1718. #if HAS_SERVOS && ENABLED(EDITABLE_SERVO_ANGLES)
  1719. #if ENABLED(SWITCHING_EXTRUDER)
  1720. #if EXTRUDERS > 3
  1721. #define REQ_ANGLES 4
  1722. #else
  1723. #define REQ_ANGLES 2
  1724. #endif
  1725. constexpr uint16_t sesa[] = SWITCHING_EXTRUDER_SERVO_ANGLES;
  1726. static_assert(COUNT(sesa) == REQ_ANGLES, "SWITCHING_EXTRUDER_SERVO_ANGLES needs " STRINGIFY(REQ_ANGLES) " angles.");
  1727. servo_angles[SWITCHING_EXTRUDER_SERVO_NR][0] = sesa[0];
  1728. servo_angles[SWITCHING_EXTRUDER_SERVO_NR][1] = sesa[1];
  1729. #if EXTRUDERS > 3
  1730. servo_angles[SWITCHING_EXTRUDER_E23_SERVO_NR][0] = sesa[2];
  1731. servo_angles[SWITCHING_EXTRUDER_E23_SERVO_NR][1] = sesa[3];
  1732. #endif
  1733. #elif ENABLED(SWITCHING_NOZZLE)
  1734. constexpr uint16_t snsa[2] = SWITCHING_NOZZLE_SERVO_ANGLES;
  1735. servo_angles[SWITCHING_NOZZLE_SERVO_NR][0] = snsa[0];
  1736. servo_angles[SWITCHING_NOZZLE_SERVO_NR][1] = snsa[1];
  1737. #elif defined(Z_SERVO_ANGLES) && defined(Z_PROBE_SERVO_NR)
  1738. constexpr uint16_t zsa[2] = Z_SERVO_ANGLES;
  1739. servo_angles[Z_PROBE_SERVO_NR][0] = zsa[0];
  1740. servo_angles[Z_PROBE_SERVO_NR][1] = zsa[1];
  1741. #endif
  1742. #endif // HAS_SERVOS && EDITABLE_SERVO_ANGLES
  1743. #if ENABLED(DELTA)
  1744. const float adj[ABC] = DELTA_ENDSTOP_ADJ, dta[ABC] = DELTA_TOWER_ANGLE_TRIM;
  1745. delta_height = DELTA_HEIGHT;
  1746. COPY(delta_endstop_adj, adj);
  1747. delta_radius = DELTA_RADIUS;
  1748. delta_diagonal_rod = DELTA_DIAGONAL_ROD;
  1749. delta_segments_per_second = DELTA_SEGMENTS_PER_SECOND;
  1750. delta_calibration_radius = DELTA_CALIBRATION_RADIUS;
  1751. COPY(delta_tower_angle_trim, dta);
  1752. #elif ENABLED(X_DUAL_ENDSTOPS) || ENABLED(Y_DUAL_ENDSTOPS) || Z_MULTI_ENDSTOPS
  1753. #if ENABLED(X_DUAL_ENDSTOPS)
  1754. endstops.x2_endstop_adj = (
  1755. #ifdef X_DUAL_ENDSTOPS_ADJUSTMENT
  1756. X_DUAL_ENDSTOPS_ADJUSTMENT
  1757. #else
  1758. 0
  1759. #endif
  1760. );
  1761. #endif
  1762. #if ENABLED(Y_DUAL_ENDSTOPS)
  1763. endstops.y2_endstop_adj = (
  1764. #ifdef Y_DUAL_ENDSTOPS_ADJUSTMENT
  1765. Y_DUAL_ENDSTOPS_ADJUSTMENT
  1766. #else
  1767. 0
  1768. #endif
  1769. );
  1770. #endif
  1771. #if ENABLED(Z_DUAL_ENDSTOPS)
  1772. endstops.z2_endstop_adj = (
  1773. #ifdef Z_DUAL_ENDSTOPS_ADJUSTMENT
  1774. Z_DUAL_ENDSTOPS_ADJUSTMENT
  1775. #else
  1776. 0
  1777. #endif
  1778. );
  1779. #elif ENABLED(Z_TRIPLE_ENDSTOPS)
  1780. endstops.z2_endstop_adj = (
  1781. #ifdef Z_TRIPLE_ENDSTOPS_ADJUSTMENT2
  1782. Z_TRIPLE_ENDSTOPS_ADJUSTMENT2
  1783. #else
  1784. 0
  1785. #endif
  1786. );
  1787. endstops.z3_endstop_adj = (
  1788. #ifdef Z_TRIPLE_ENDSTOPS_ADJUSTMENT3
  1789. Z_TRIPLE_ENDSTOPS_ADJUSTMENT3
  1790. #else
  1791. 0
  1792. #endif
  1793. );
  1794. #endif
  1795. #endif
  1796. #if HAS_LCD_MENU
  1797. ui.preheat_hotend_temp[0] = PREHEAT_1_TEMP_HOTEND;
  1798. ui.preheat_hotend_temp[1] = PREHEAT_2_TEMP_HOTEND;
  1799. ui.preheat_bed_temp[0] = PREHEAT_1_TEMP_BED;
  1800. ui.preheat_bed_temp[1] = PREHEAT_2_TEMP_BED;
  1801. ui.preheat_fan_speed[0] = PREHEAT_1_FAN_SPEED;
  1802. ui.preheat_fan_speed[1] = PREHEAT_2_FAN_SPEED;
  1803. #endif
  1804. #if ENABLED(PIDTEMP)
  1805. HOTEND_LOOP() {
  1806. PID_PARAM(Kp, e) = float(DEFAULT_Kp);
  1807. PID_PARAM(Ki, e) = scalePID_i(DEFAULT_Ki);
  1808. PID_PARAM(Kd, e) = scalePID_d(DEFAULT_Kd);
  1809. #if ENABLED(PID_EXTRUSION_SCALING)
  1810. PID_PARAM(Kc, e) = DEFAULT_Kc;
  1811. #endif
  1812. }
  1813. #if ENABLED(PID_EXTRUSION_SCALING)
  1814. thermalManager.lpq_len = 20; // default last-position-queue size
  1815. #endif
  1816. #endif // PIDTEMP
  1817. #if ENABLED(PIDTEMPBED)
  1818. thermalManager.bed_pid.Kp = DEFAULT_bedKp;
  1819. thermalManager.bed_pid.Ki = scalePID_i(DEFAULT_bedKi);
  1820. thermalManager.bed_pid.Kd = scalePID_d(DEFAULT_bedKd);
  1821. #endif
  1822. #if HAS_LCD_CONTRAST
  1823. ui.set_contrast(DEFAULT_LCD_CONTRAST);
  1824. #endif
  1825. #if ENABLED(POWER_LOSS_RECOVERY)
  1826. recovery.enable(true);
  1827. #endif
  1828. #if ENABLED(FWRETRACT)
  1829. fwretract.reset();
  1830. #endif
  1831. #if DISABLED(NO_VOLUMETRICS)
  1832. parser.volumetric_enabled =
  1833. #if ENABLED(VOLUMETRIC_DEFAULT_ON)
  1834. true
  1835. #else
  1836. false
  1837. #endif
  1838. ;
  1839. for (uint8_t q = 0; q < COUNT(planner.filament_size); q++)
  1840. planner.filament_size[q] = DEFAULT_NOMINAL_FILAMENT_DIA;
  1841. #endif
  1842. endstops.enable_globally(
  1843. #if ENABLED(ENDSTOPS_ALWAYS_ON_DEFAULT)
  1844. true
  1845. #else
  1846. false
  1847. #endif
  1848. );
  1849. reset_stepper_drivers();
  1850. #if ENABLED(LIN_ADVANCE)
  1851. LOOP_L_N(i, EXTRUDERS) planner.extruder_advance_K[i] = LIN_ADVANCE_K;
  1852. #endif
  1853. #if HAS_MOTOR_CURRENT_PWM
  1854. uint32_t tmp_motor_current_setting[3] = PWM_MOTOR_CURRENT;
  1855. for (uint8_t q = 3; q--;)
  1856. stepper.digipot_current(q, (stepper.motor_current_setting[q] = tmp_motor_current_setting[q]));
  1857. #endif
  1858. #if ENABLED(SKEW_CORRECTION_GCODE)
  1859. planner.skew_factor.xy = XY_SKEW_FACTOR;
  1860. #if ENABLED(SKEW_CORRECTION_FOR_Z)
  1861. planner.skew_factor.xz = XZ_SKEW_FACTOR;
  1862. planner.skew_factor.yz = YZ_SKEW_FACTOR;
  1863. #endif
  1864. #endif
  1865. #if ENABLED(ADVANCED_PAUSE_FEATURE)
  1866. for (uint8_t e = 0; e < EXTRUDERS; e++) {
  1867. fc_settings[e].unload_length = FILAMENT_CHANGE_UNLOAD_LENGTH;
  1868. fc_settings[e].load_length = FILAMENT_CHANGE_FAST_LOAD_LENGTH;
  1869. }
  1870. #endif
  1871. postprocess();
  1872. #if ENABLED(EEPROM_CHITCHAT)
  1873. SERIAL_ECHO_START_P(port);
  1874. SERIAL_ECHOLNPGM_P(port, "Hardcoded Default Settings Loaded");
  1875. #endif
  1876. }
  1877. #if DISABLED(DISABLE_M503)
  1878. #define CONFIG_ECHO_START do{ if (!forReplay) SERIAL_ECHO_START_P(port); }while(0)
  1879. #if HAS_TRINAMIC
  1880. void say_M906(PORTARG_SOLO) { SERIAL_ECHOPGM_P(port, " M906"); }
  1881. #if ENABLED(HYBRID_THRESHOLD)
  1882. void say_M913(PORTARG_SOLO) { SERIAL_ECHOPGM_P(port, " M913"); }
  1883. #endif
  1884. #if USE_SENSORLESS
  1885. void say_M914(PORTARG_SOLO) { SERIAL_ECHOPGM_P(port, " M914"); }
  1886. #endif
  1887. #endif
  1888. #if ENABLED(ADVANCED_PAUSE_FEATURE)
  1889. void say_M603(PORTARG_SOLO) { SERIAL_ECHOPGM_P(port, " M603 "); }
  1890. #endif
  1891. inline void say_units(
  1892. #if NUM_SERIAL > 1
  1893. const int8_t port,
  1894. #endif
  1895. const bool colon
  1896. ) {
  1897. serialprintPGM_P(port,
  1898. #if ENABLED(INCH_MODE_SUPPORT)
  1899. parser.linear_unit_factor != 1.0 ? PSTR(" (in)") :
  1900. #endif
  1901. PSTR(" (mm)")
  1902. );
  1903. if (colon) SERIAL_ECHOLNPGM_P(port, ":");
  1904. }
  1905. #if NUM_SERIAL > 1
  1906. #define SAY_UNITS_P(PORT, COLON) say_units(PORT, COLON)
  1907. #else
  1908. #define SAY_UNITS_P(PORT, COLON) say_units(COLON)
  1909. #endif
  1910. /**
  1911. * M503 - Report current settings in RAM
  1912. *
  1913. * Unless specifically disabled, M503 is available even without EEPROM
  1914. */
  1915. void MarlinSettings::report(const bool forReplay
  1916. #if NUM_SERIAL > 1
  1917. , const int8_t port/*=-1*/
  1918. #endif
  1919. ) {
  1920. /**
  1921. * Announce current units, in case inches are being displayed
  1922. */
  1923. CONFIG_ECHO_START;
  1924. #if ENABLED(INCH_MODE_SUPPORT)
  1925. SERIAL_ECHOPGM_P(port, " G2");
  1926. SERIAL_CHAR_P(port, parser.linear_unit_factor == 1.0 ? '1' : '0');
  1927. SERIAL_ECHOPGM_P(port, " ;");
  1928. SAY_UNITS_P(port, false);
  1929. #else
  1930. SERIAL_ECHOPGM_P(port, " G21 ; Units in mm");
  1931. SAY_UNITS_P(port, false);
  1932. #endif
  1933. SERIAL_EOL_P(port);
  1934. #if HAS_LCD_MENU
  1935. // Temperature units - for Ultipanel temperature options
  1936. CONFIG_ECHO_START;
  1937. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  1938. SERIAL_ECHOPGM_P(port, " M149 ");
  1939. SERIAL_CHAR_P(port, parser.temp_units_code());
  1940. SERIAL_ECHOPGM_P(port, " ; Units in ");
  1941. serialprintPGM_P(port, parser.temp_units_name());
  1942. #else
  1943. SERIAL_ECHOLNPGM_P(port, " M149 C ; Units in Celsius");
  1944. #endif
  1945. #endif
  1946. SERIAL_EOL_P(port);
  1947. #if DISABLED(NO_VOLUMETRICS)
  1948. /**
  1949. * Volumetric extrusion M200
  1950. */
  1951. if (!forReplay) {
  1952. CONFIG_ECHO_START;
  1953. SERIAL_ECHOPGM_P(port, "Filament settings:");
  1954. if (parser.volumetric_enabled)
  1955. SERIAL_EOL_P(port);
  1956. else
  1957. SERIAL_ECHOLNPGM_P(port, " Disabled");
  1958. }
  1959. CONFIG_ECHO_START;
  1960. SERIAL_ECHOPAIR_P(port, " M200 D", LINEAR_UNIT(planner.filament_size[0]));
  1961. SERIAL_EOL_P(port);
  1962. #if EXTRUDERS > 1
  1963. CONFIG_ECHO_START;
  1964. SERIAL_ECHOPAIR_P(port, " M200 T1 D", LINEAR_UNIT(planner.filament_size[1]));
  1965. SERIAL_EOL_P(port);
  1966. #if EXTRUDERS > 2
  1967. CONFIG_ECHO_START;
  1968. SERIAL_ECHOPAIR_P(port, " M200 T2 D", LINEAR_UNIT(planner.filament_size[2]));
  1969. SERIAL_EOL_P(port);
  1970. #if EXTRUDERS > 3
  1971. CONFIG_ECHO_START;
  1972. SERIAL_ECHOPAIR_P(port, " M200 T3 D", LINEAR_UNIT(planner.filament_size[3]));
  1973. SERIAL_EOL_P(port);
  1974. #if EXTRUDERS > 4
  1975. CONFIG_ECHO_START;
  1976. SERIAL_ECHOPAIR_P(port, " M200 T4 D", LINEAR_UNIT(planner.filament_size[4]));
  1977. SERIAL_EOL_P(port);
  1978. #if EXTRUDERS > 5
  1979. CONFIG_ECHO_START;
  1980. SERIAL_ECHOPAIR_P(port, " M200 T5 D", LINEAR_UNIT(planner.filament_size[5]));
  1981. SERIAL_EOL_P(port);
  1982. #endif // EXTRUDERS > 5
  1983. #endif // EXTRUDERS > 4
  1984. #endif // EXTRUDERS > 3
  1985. #endif // EXTRUDERS > 2
  1986. #endif // EXTRUDERS > 1
  1987. if (!parser.volumetric_enabled) {
  1988. CONFIG_ECHO_START;
  1989. SERIAL_ECHOLNPGM_P(port, " M200 D0");
  1990. }
  1991. #endif // !NO_VOLUMETRICS
  1992. if (!forReplay) {
  1993. CONFIG_ECHO_START;
  1994. SERIAL_ECHOLNPGM_P(port, "Steps per unit:");
  1995. }
  1996. CONFIG_ECHO_START;
  1997. SERIAL_ECHOPAIR_P(port, " M92 X", LINEAR_UNIT(planner.settings.axis_steps_per_mm[X_AXIS]));
  1998. SERIAL_ECHOPAIR_P(port, " Y", LINEAR_UNIT(planner.settings.axis_steps_per_mm[Y_AXIS]));
  1999. SERIAL_ECHOPAIR_P(port, " Z", LINEAR_UNIT(planner.settings.axis_steps_per_mm[Z_AXIS]));
  2000. #if DISABLED(DISTINCT_E_FACTORS)
  2001. SERIAL_ECHOPAIR_P(port, " E", VOLUMETRIC_UNIT(planner.settings.axis_steps_per_mm[E_AXIS]));
  2002. #endif
  2003. SERIAL_EOL_P(port);
  2004. #if ENABLED(DISTINCT_E_FACTORS)
  2005. CONFIG_ECHO_START;
  2006. for (uint8_t i = 0; i < E_STEPPERS; i++) {
  2007. SERIAL_ECHOPAIR_P(port, " M92 T", (int)i);
  2008. SERIAL_ECHOLNPAIR_P(port, " E", VOLUMETRIC_UNIT(planner.settings.axis_steps_per_mm[E_AXIS + i]));
  2009. }
  2010. #endif
  2011. if (!forReplay) {
  2012. CONFIG_ECHO_START;
  2013. SERIAL_ECHOLNPGM_P(port, "Maximum feedrates (units/s):");
  2014. }
  2015. CONFIG_ECHO_START;
  2016. SERIAL_ECHOPAIR_P(port, " M203 X", LINEAR_UNIT(planner.settings.max_feedrate_mm_s[X_AXIS]));
  2017. SERIAL_ECHOPAIR_P(port, " Y", LINEAR_UNIT(planner.settings.max_feedrate_mm_s[Y_AXIS]));
  2018. SERIAL_ECHOPAIR_P(port, " Z", LINEAR_UNIT(planner.settings.max_feedrate_mm_s[Z_AXIS]));
  2019. #if DISABLED(DISTINCT_E_FACTORS)
  2020. SERIAL_ECHOPAIR_P(port, " E", VOLUMETRIC_UNIT(planner.settings.max_feedrate_mm_s[E_AXIS]));
  2021. #endif
  2022. SERIAL_EOL_P(port);
  2023. #if ENABLED(DISTINCT_E_FACTORS)
  2024. CONFIG_ECHO_START;
  2025. for (uint8_t i = 0; i < E_STEPPERS; i++) {
  2026. SERIAL_ECHOPAIR_P(port, " M203 T", (int)i);
  2027. SERIAL_ECHOLNPAIR_P(port, " E", VOLUMETRIC_UNIT(planner.settings.max_feedrate_mm_s[E_AXIS + i]));
  2028. }
  2029. #endif
  2030. if (!forReplay) {
  2031. CONFIG_ECHO_START;
  2032. SERIAL_ECHOLNPGM_P(port, "Maximum Acceleration (units/s2):");
  2033. }
  2034. CONFIG_ECHO_START;
  2035. SERIAL_ECHOPAIR_P(port, " M201 X", LINEAR_UNIT(planner.settings.max_acceleration_mm_per_s2[X_AXIS]));
  2036. SERIAL_ECHOPAIR_P(port, " Y", LINEAR_UNIT(planner.settings.max_acceleration_mm_per_s2[Y_AXIS]));
  2037. SERIAL_ECHOPAIR_P(port, " Z", LINEAR_UNIT(planner.settings.max_acceleration_mm_per_s2[Z_AXIS]));
  2038. #if DISABLED(DISTINCT_E_FACTORS)
  2039. SERIAL_ECHOPAIR_P(port, " E", VOLUMETRIC_UNIT(planner.settings.max_acceleration_mm_per_s2[E_AXIS]));
  2040. #endif
  2041. SERIAL_EOL_P(port);
  2042. #if ENABLED(DISTINCT_E_FACTORS)
  2043. CONFIG_ECHO_START;
  2044. for (uint8_t i = 0; i < E_STEPPERS; i++) {
  2045. SERIAL_ECHOPAIR_P(port, " M201 T", (int)i);
  2046. SERIAL_ECHOLNPAIR_P(port, " E", VOLUMETRIC_UNIT(planner.settings.max_acceleration_mm_per_s2[E_AXIS + i]));
  2047. }
  2048. #endif
  2049. if (!forReplay) {
  2050. CONFIG_ECHO_START;
  2051. SERIAL_ECHOLNPGM_P(port, "Acceleration (units/s2): P<print_accel> R<retract_accel> T<travel_accel>");
  2052. }
  2053. CONFIG_ECHO_START;
  2054. SERIAL_ECHOPAIR_P(port, " M204 P", LINEAR_UNIT(planner.settings.acceleration));
  2055. SERIAL_ECHOPAIR_P(port, " R", LINEAR_UNIT(planner.settings.retract_acceleration));
  2056. SERIAL_ECHOLNPAIR_P(port, " T", LINEAR_UNIT(planner.settings.travel_acceleration));
  2057. if (!forReplay) {
  2058. CONFIG_ECHO_START;
  2059. SERIAL_ECHOPGM_P(port, "Advanced: B<min_segment_time_us> S<min_feedrate> T<min_travel_feedrate>");
  2060. #if ENABLED(JUNCTION_DEVIATION)
  2061. SERIAL_ECHOPGM_P(port, " J<junc_dev>");
  2062. #endif
  2063. #if HAS_CLASSIC_JERK
  2064. SERIAL_ECHOPGM_P(port, " X<max_x_jerk> Y<max_y_jerk> Z<max_z_jerk>");
  2065. #if DISABLED(JUNCTION_DEVIATION) || DISABLED(LIN_ADVANCE)
  2066. SERIAL_ECHOPGM_P(port, " E<max_e_jerk>");
  2067. #endif
  2068. #endif
  2069. SERIAL_EOL_P(port);
  2070. }
  2071. CONFIG_ECHO_START;
  2072. SERIAL_ECHOPAIR_P(port, " M205 B", LINEAR_UNIT(planner.settings.min_segment_time_us));
  2073. SERIAL_ECHOPAIR_P(port, " S", LINEAR_UNIT(planner.settings.min_feedrate_mm_s));
  2074. SERIAL_ECHOPAIR_P(port, " T", LINEAR_UNIT(planner.settings.min_travel_feedrate_mm_s));
  2075. #if ENABLED(JUNCTION_DEVIATION)
  2076. SERIAL_ECHOPAIR_P(port, " J", LINEAR_UNIT(planner.junction_deviation_mm));
  2077. #endif
  2078. #if HAS_CLASSIC_JERK
  2079. SERIAL_ECHOPAIR_P(port, " X", LINEAR_UNIT(planner.max_jerk[X_AXIS]));
  2080. SERIAL_ECHOPAIR_P(port, " Y", LINEAR_UNIT(planner.max_jerk[Y_AXIS]));
  2081. SERIAL_ECHOPAIR_P(port, " Z", LINEAR_UNIT(planner.max_jerk[Z_AXIS]));
  2082. #if DISABLED(JUNCTION_DEVIATION) || DISABLED(LIN_ADVANCE)
  2083. SERIAL_ECHOPAIR_P(port, " E", LINEAR_UNIT(planner.max_jerk[E_AXIS]));
  2084. #endif
  2085. #endif
  2086. SERIAL_EOL_P(port);
  2087. #if HAS_M206_COMMAND
  2088. if (!forReplay) {
  2089. CONFIG_ECHO_START;
  2090. SERIAL_ECHOLNPGM_P(port, "Home offset:");
  2091. }
  2092. CONFIG_ECHO_START;
  2093. SERIAL_ECHOPAIR_P(port, " M206 X", LINEAR_UNIT(home_offset[X_AXIS]));
  2094. SERIAL_ECHOPAIR_P(port, " Y", LINEAR_UNIT(home_offset[Y_AXIS]));
  2095. SERIAL_ECHOLNPAIR_P(port, " Z", LINEAR_UNIT(home_offset[Z_AXIS]));
  2096. #endif
  2097. #if HAS_HOTEND_OFFSET
  2098. if (!forReplay) {
  2099. CONFIG_ECHO_START;
  2100. SERIAL_ECHOLNPGM_P(port, "Hotend offsets:");
  2101. }
  2102. CONFIG_ECHO_START;
  2103. for (uint8_t e = 1; e < HOTENDS; e++) {
  2104. SERIAL_ECHOPAIR_P(port, " M218 T", (int)e);
  2105. SERIAL_ECHOPAIR_P(port, " X", LINEAR_UNIT(hotend_offset[X_AXIS][e]));
  2106. SERIAL_ECHOPAIR_P(port, " Y", LINEAR_UNIT(hotend_offset[Y_AXIS][e]));
  2107. SERIAL_ECHO_P(port, " Z");
  2108. SERIAL_ECHO_F_P(port, LINEAR_UNIT(hotend_offset[Z_AXIS][e]), 3);
  2109. SERIAL_EOL_P(port);
  2110. }
  2111. #endif
  2112. /**
  2113. * Bed Leveling
  2114. */
  2115. #if HAS_LEVELING
  2116. #if ENABLED(MESH_BED_LEVELING)
  2117. if (!forReplay) {
  2118. CONFIG_ECHO_START;
  2119. SERIAL_ECHOLNPGM_P(port, "Mesh Bed Leveling:");
  2120. }
  2121. #elif ENABLED(AUTO_BED_LEVELING_UBL)
  2122. if (!forReplay) {
  2123. CONFIG_ECHO_START;
  2124. ubl.echo_name();
  2125. SERIAL_ECHOLNPGM_P(port, ":");
  2126. }
  2127. #elif HAS_ABL
  2128. if (!forReplay) {
  2129. CONFIG_ECHO_START;
  2130. SERIAL_ECHOLNPGM_P(port, "Auto Bed Leveling:");
  2131. }
  2132. #endif
  2133. CONFIG_ECHO_START;
  2134. SERIAL_ECHOPAIR_P(port, " M420 S", planner.leveling_active ? 1 : 0);
  2135. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  2136. SERIAL_ECHOPAIR_P(port, " Z", LINEAR_UNIT(planner.z_fade_height));
  2137. #endif
  2138. SERIAL_EOL_P(port);
  2139. #if ENABLED(MESH_BED_LEVELING)
  2140. if (leveling_is_valid()) {
  2141. for (uint8_t py = 0; py < GRID_MAX_POINTS_Y; py++) {
  2142. for (uint8_t px = 0; px < GRID_MAX_POINTS_X; px++) {
  2143. CONFIG_ECHO_START;
  2144. SERIAL_ECHOPAIR_P(port, " G29 S3 X", (int)px + 1);
  2145. SERIAL_ECHOPAIR_P(port, " Y", (int)py + 1);
  2146. SERIAL_ECHOPGM_P(port, " Z");
  2147. SERIAL_ECHO_F_P(port, LINEAR_UNIT(mbl.z_values[px][py]), 5);
  2148. SERIAL_EOL_P(port);
  2149. }
  2150. }
  2151. }
  2152. #elif ENABLED(AUTO_BED_LEVELING_UBL)
  2153. if (!forReplay) {
  2154. SERIAL_EOL_P(port);
  2155. ubl.report_state();
  2156. SERIAL_ECHOLNPAIR_P(port, "\nActive Mesh Slot: ", ubl.storage_slot);
  2157. SERIAL_ECHOPAIR_P(port, "EEPROM can hold ", calc_num_meshes());
  2158. SERIAL_ECHOLNPGM_P(port, " meshes.\n");
  2159. }
  2160. // ubl.report_current_mesh(PORTVAR_SOLO); // This is too verbose for large mesh's. A better (more terse)
  2161. // solution needs to be found.
  2162. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  2163. if (leveling_is_valid()) {
  2164. for (uint8_t py = 0; py < GRID_MAX_POINTS_Y; py++) {
  2165. for (uint8_t px = 0; px < GRID_MAX_POINTS_X; px++) {
  2166. CONFIG_ECHO_START;
  2167. SERIAL_ECHOPAIR_P(port, " G29 W I", (int)px);
  2168. SERIAL_ECHOPAIR_P(port, " J", (int)py);
  2169. SERIAL_ECHOPGM_P(port, " Z");
  2170. SERIAL_ECHO_F_P(port, LINEAR_UNIT(z_values[px][py]), 5);
  2171. SERIAL_EOL_P(port);
  2172. }
  2173. }
  2174. }
  2175. #endif
  2176. #endif // HAS_LEVELING
  2177. #if HAS_SERVOS && ENABLED(EDITABLE_SERVO_ANGLES)
  2178. if (!forReplay) {
  2179. CONFIG_ECHO_START;
  2180. SERIAL_ECHOLNPGM_P(port, "Servo Angles:");
  2181. }
  2182. for (uint8_t i = 0; i < NUM_SERVOS; i++) {
  2183. switch (i) {
  2184. #if ENABLED(SWITCHING_EXTRUDER)
  2185. case SWITCHING_EXTRUDER_SERVO_NR:
  2186. #if EXTRUDERS > 3
  2187. case SWITCHING_EXTRUDER_E23_SERVO_NR:
  2188. #endif
  2189. #elif ENABLED(SWITCHING_NOZZLE)
  2190. case SWITCHING_NOZZLE_SERVO_NR:
  2191. #elif defined(Z_SERVO_ANGLES) && defined(Z_PROBE_SERVO_NR)
  2192. case Z_PROBE_SERVO_NR:
  2193. #endif
  2194. CONFIG_ECHO_START;
  2195. SERIAL_ECHOPAIR_P(port, " M281 P", int(i));
  2196. SERIAL_ECHOPAIR_P(port, " L", servo_angles[i][0]);
  2197. SERIAL_ECHOPAIR_P(port, " U", servo_angles[i][1]);
  2198. SERIAL_EOL_P(port);
  2199. default: break;
  2200. }
  2201. }
  2202. #endif // HAS_SERVOS && EDITABLE_SERVO_ANGLES
  2203. #if HAS_SCARA_OFFSET
  2204. if (!forReplay) {
  2205. CONFIG_ECHO_START;
  2206. SERIAL_ECHOLNPGM_P(port, "SCARA settings: S<seg-per-sec> P<theta-psi-offset> T<theta-offset>");
  2207. }
  2208. CONFIG_ECHO_START;
  2209. SERIAL_ECHOPAIR_P(port, " M665 S", delta_segments_per_second);
  2210. SERIAL_ECHOPAIR_P(port, " P", scara_home_offset[A_AXIS]);
  2211. SERIAL_ECHOPAIR_P(port, " T", scara_home_offset[B_AXIS]);
  2212. SERIAL_ECHOPAIR_P(port, " Z", LINEAR_UNIT(scara_home_offset[Z_AXIS]));
  2213. SERIAL_EOL_P(port);
  2214. #elif ENABLED(DELTA)
  2215. if (!forReplay) {
  2216. CONFIG_ECHO_START;
  2217. SERIAL_ECHOLNPGM_P(port, "Endstop adjustment:");
  2218. }
  2219. CONFIG_ECHO_START;
  2220. SERIAL_ECHOPAIR_P(port, " M666 X", LINEAR_UNIT(delta_endstop_adj[X_AXIS]));
  2221. SERIAL_ECHOPAIR_P(port, " Y", LINEAR_UNIT(delta_endstop_adj[Y_AXIS]));
  2222. SERIAL_ECHOLNPAIR_P(port, " Z", LINEAR_UNIT(delta_endstop_adj[Z_AXIS]));
  2223. if (!forReplay) {
  2224. CONFIG_ECHO_START;
  2225. SERIAL_ECHOLNPGM_P(port, "Delta settings: L<diagonal_rod> R<radius> H<height> S<segments_per_s> B<calibration radius> XYZ<tower angle corrections>");
  2226. }
  2227. CONFIG_ECHO_START;
  2228. SERIAL_ECHOPAIR_P(port, " M665 L", LINEAR_UNIT(delta_diagonal_rod));
  2229. SERIAL_ECHOPAIR_P(port, " R", LINEAR_UNIT(delta_radius));
  2230. SERIAL_ECHOPAIR_P(port, " H", LINEAR_UNIT(delta_height));
  2231. SERIAL_ECHOPAIR_P(port, " S", delta_segments_per_second);
  2232. SERIAL_ECHOPAIR_P(port, " B", LINEAR_UNIT(delta_calibration_radius));
  2233. SERIAL_ECHOPAIR_P(port, " X", LINEAR_UNIT(delta_tower_angle_trim[A_AXIS]));
  2234. SERIAL_ECHOPAIR_P(port, " Y", LINEAR_UNIT(delta_tower_angle_trim[B_AXIS]));
  2235. SERIAL_ECHOPAIR_P(port, " Z", LINEAR_UNIT(delta_tower_angle_trim[C_AXIS]));
  2236. SERIAL_EOL_P(port);
  2237. #elif ENABLED(X_DUAL_ENDSTOPS) || ENABLED(Y_DUAL_ENDSTOPS) || ENABLED(Z_DUAL_ENDSTOPS)
  2238. if (!forReplay) {
  2239. CONFIG_ECHO_START;
  2240. SERIAL_ECHOLNPGM_P(port, "Endstop adjustment:");
  2241. }
  2242. CONFIG_ECHO_START;
  2243. SERIAL_ECHOPGM_P(port, " M666");
  2244. #if ENABLED(X_DUAL_ENDSTOPS)
  2245. SERIAL_ECHOPAIR_P(port, " X", LINEAR_UNIT(endstops.x2_endstop_adj));
  2246. #endif
  2247. #if ENABLED(Y_DUAL_ENDSTOPS)
  2248. SERIAL_ECHOPAIR_P(port, " Y", LINEAR_UNIT(endstops.y2_endstop_adj));
  2249. #endif
  2250. #if ENABLED(Z_TRIPLE_ENDSTOPS)
  2251. SERIAL_ECHOLNPAIR_P(port, "S1 Z", LINEAR_UNIT(endstops.z2_endstop_adj));
  2252. CONFIG_ECHO_START;
  2253. SERIAL_ECHOPAIR_P(port, " M666 S2 Z", LINEAR_UNIT(endstops.z3_endstop_adj));
  2254. #elif ENABLED(Z_DUAL_ENDSTOPS)
  2255. SERIAL_ECHOPAIR_P(port, " Z", LINEAR_UNIT(endstops.z2_endstop_adj));
  2256. #endif
  2257. SERIAL_EOL_P(port);
  2258. #endif // [XYZ]_DUAL_ENDSTOPS
  2259. #if HAS_LCD_MENU
  2260. if (!forReplay) {
  2261. CONFIG_ECHO_START;
  2262. SERIAL_ECHOLNPGM_P(port, "Material heatup parameters:");
  2263. }
  2264. for (uint8_t i = 0; i < COUNT(ui.preheat_hotend_temp); i++) {
  2265. CONFIG_ECHO_START;
  2266. SERIAL_ECHOPAIR_P(port, " M145 S", (int)i);
  2267. SERIAL_ECHOPAIR_P(port, " H", TEMP_UNIT(ui.preheat_hotend_temp[i]));
  2268. SERIAL_ECHOPAIR_P(port, " B", TEMP_UNIT(ui.preheat_bed_temp[i]));
  2269. SERIAL_ECHOLNPAIR_P(port, " F", int(ui.preheat_fan_speed[i]));
  2270. }
  2271. #endif
  2272. #if HAS_PID_HEATING
  2273. if (!forReplay) {
  2274. CONFIG_ECHO_START;
  2275. SERIAL_ECHOLNPGM_P(port, "PID settings:");
  2276. }
  2277. #if ENABLED(PIDTEMP)
  2278. #if HOTENDS > 1
  2279. if (forReplay) {
  2280. HOTEND_LOOP() {
  2281. CONFIG_ECHO_START;
  2282. SERIAL_ECHOPAIR_P(port, " M301 E", e);
  2283. SERIAL_ECHOPAIR_P(port, " P", PID_PARAM(Kp, e));
  2284. SERIAL_ECHOPAIR_P(port, " I", unscalePID_i(PID_PARAM(Ki, e)));
  2285. SERIAL_ECHOPAIR_P(port, " D", unscalePID_d(PID_PARAM(Kd, e)));
  2286. #if ENABLED(PID_EXTRUSION_SCALING)
  2287. SERIAL_ECHOPAIR_P(port, " C", PID_PARAM(Kc, e));
  2288. if (e == 0) SERIAL_ECHOPAIR_P(port, " L", thermalManager.lpq_len);
  2289. #endif
  2290. SERIAL_EOL_P(port);
  2291. }
  2292. }
  2293. else
  2294. #endif // HOTENDS > 1
  2295. // !forReplay || HOTENDS == 1
  2296. {
  2297. CONFIG_ECHO_START;
  2298. SERIAL_ECHOPAIR_P(port, " M301 P", PID_PARAM(Kp, 0)); // for compatibility with hosts, only echo values for E0
  2299. SERIAL_ECHOPAIR_P(port, " I", unscalePID_i(PID_PARAM(Ki, 0)));
  2300. SERIAL_ECHOPAIR_P(port, " D", unscalePID_d(PID_PARAM(Kd, 0)));
  2301. #if ENABLED(PID_EXTRUSION_SCALING)
  2302. SERIAL_ECHOPAIR_P(port, " C", PID_PARAM(Kc, 0));
  2303. SERIAL_ECHOPAIR_P(port, " L", thermalManager.lpq_len);
  2304. #endif
  2305. SERIAL_EOL_P(port);
  2306. }
  2307. #endif // PIDTEMP
  2308. #if ENABLED(PIDTEMPBED)
  2309. CONFIG_ECHO_START;
  2310. SERIAL_ECHOPAIR_P(port, " M304 P", thermalManager.bed_pid.Kp);
  2311. SERIAL_ECHOPAIR_P(port, " I", unscalePID_i(thermalManager.bed_pid.Ki));
  2312. SERIAL_ECHOPAIR_P(port, " D", unscalePID_d(thermalManager.bed_pid.Kd));
  2313. SERIAL_EOL_P(port);
  2314. #endif
  2315. #endif // PIDTEMP || PIDTEMPBED
  2316. #if HAS_LCD_CONTRAST
  2317. if (!forReplay) {
  2318. CONFIG_ECHO_START;
  2319. SERIAL_ECHOLNPGM_P(port, "LCD Contrast:");
  2320. }
  2321. CONFIG_ECHO_START;
  2322. SERIAL_ECHOLNPAIR_P(port, " M250 C", ui.contrast);
  2323. #endif
  2324. #if ENABLED(POWER_LOSS_RECOVERY)
  2325. if (!forReplay) {
  2326. CONFIG_ECHO_START;
  2327. SERIAL_ECHOLNPGM_P(port, "Power-Loss Recovery:");
  2328. }
  2329. CONFIG_ECHO_START;
  2330. SERIAL_ECHOLNPAIR_P(port, " M413 S", int(recovery.enabled));
  2331. #endif
  2332. #if ENABLED(FWRETRACT)
  2333. if (!forReplay) {
  2334. CONFIG_ECHO_START;
  2335. SERIAL_ECHOLNPGM_P(port, "Retract: S<length> F<units/m> Z<lift>");
  2336. }
  2337. CONFIG_ECHO_START;
  2338. SERIAL_ECHOPAIR_P(port, " M207 S", LINEAR_UNIT(fwretract.settings.retract_length));
  2339. SERIAL_ECHOPAIR_P(port, " W", LINEAR_UNIT(fwretract.settings.swap_retract_length));
  2340. SERIAL_ECHOPAIR_P(port, " F", MMS_TO_MMM(LINEAR_UNIT(fwretract.settings.retract_feedrate_mm_s)));
  2341. SERIAL_ECHOLNPAIR_P(port, " Z", LINEAR_UNIT(fwretract.settings.retract_zraise));
  2342. if (!forReplay) {
  2343. CONFIG_ECHO_START;
  2344. SERIAL_ECHOLNPGM_P(port, "Recover: S<length> F<units/m>");
  2345. }
  2346. CONFIG_ECHO_START;
  2347. SERIAL_ECHOPAIR_P(port, " M208 S", LINEAR_UNIT(fwretract.settings.retract_recover_length));
  2348. SERIAL_ECHOPAIR_P(port, " W", LINEAR_UNIT(fwretract.settings.swap_retract_recover_length));
  2349. SERIAL_ECHOLNPAIR_P(port, " F", MMS_TO_MMM(LINEAR_UNIT(fwretract.settings.retract_recover_feedrate_mm_s)));
  2350. #if ENABLED(FWRETRACT_AUTORETRACT)
  2351. if (!forReplay) {
  2352. CONFIG_ECHO_START;
  2353. SERIAL_ECHOLNPGM_P(port, "Auto-Retract: S=0 to disable, 1 to interpret E-only moves as retract/recover");
  2354. }
  2355. CONFIG_ECHO_START;
  2356. SERIAL_ECHOLNPAIR_P(port, " M209 S", fwretract.autoretract_enabled ? 1 : 0);
  2357. #endif // FWRETRACT_AUTORETRACT
  2358. #endif // FWRETRACT
  2359. /**
  2360. * Probe Offset
  2361. */
  2362. #if HAS_BED_PROBE
  2363. if (!forReplay) {
  2364. CONFIG_ECHO_START;
  2365. SERIAL_ECHOPGM_P(port, "Z-Probe Offset");
  2366. SAY_UNITS_P(port, true);
  2367. }
  2368. CONFIG_ECHO_START;
  2369. SERIAL_ECHOLNPAIR_P(port, " M851 Z", LINEAR_UNIT(zprobe_zoffset));
  2370. #endif
  2371. /**
  2372. * Bed Skew Correction
  2373. */
  2374. #if ENABLED(SKEW_CORRECTION_GCODE)
  2375. if (!forReplay) {
  2376. CONFIG_ECHO_START;
  2377. SERIAL_ECHOLNPGM_P(port, "Skew Factor: ");
  2378. }
  2379. CONFIG_ECHO_START;
  2380. #if ENABLED(SKEW_CORRECTION_FOR_Z)
  2381. SERIAL_ECHOPGM_P(port, " M852 I");
  2382. SERIAL_ECHO_F_P(port, LINEAR_UNIT(planner.skew_factor.xy), 6);
  2383. SERIAL_ECHOPGM_P(port, " J");
  2384. SERIAL_ECHO_F_P(port, LINEAR_UNIT(planner.skew_factor.xz), 6);
  2385. SERIAL_ECHOPGM_P(port, " K");
  2386. SERIAL_ECHO_F_P(port, LINEAR_UNIT(planner.skew_factor.yz), 6);
  2387. SERIAL_EOL_P(port);
  2388. #else
  2389. SERIAL_ECHOPGM_P(port, " M852 S");
  2390. SERIAL_ECHO_F_P(port, LINEAR_UNIT(planner.skew_factor.xy), 6);
  2391. SERIAL_EOL_P(port);
  2392. #endif
  2393. #endif
  2394. #if HAS_TRINAMIC
  2395. /**
  2396. * TMC stepper driver current
  2397. */
  2398. if (!forReplay) {
  2399. CONFIG_ECHO_START;
  2400. SERIAL_ECHOLNPGM_P(port, "Stepper driver current:");
  2401. }
  2402. CONFIG_ECHO_START;
  2403. #if AXIS_IS_TMC(X) || AXIS_IS_TMC(Y) || AXIS_IS_TMC(Z)
  2404. say_M906(PORTVAR_SOLO);
  2405. #endif
  2406. #if AXIS_IS_TMC(X)
  2407. SERIAL_ECHOPAIR_P(port, " X", stepperX.getMilliamps());
  2408. #endif
  2409. #if AXIS_IS_TMC(Y)
  2410. SERIAL_ECHOPAIR_P(port, " Y", stepperY.getMilliamps());
  2411. #endif
  2412. #if AXIS_IS_TMC(Z)
  2413. SERIAL_ECHOPAIR_P(port, " Z", stepperZ.getMilliamps());
  2414. #endif
  2415. #if AXIS_IS_TMC(X) || AXIS_IS_TMC(Y) || AXIS_IS_TMC(Z)
  2416. SERIAL_EOL_P(port);
  2417. #endif
  2418. #if AXIS_IS_TMC(X2) || AXIS_IS_TMC(Y2) || AXIS_IS_TMC(Z2)
  2419. say_M906(PORTVAR_SOLO);
  2420. SERIAL_ECHOPGM_P(port, " I1");
  2421. #endif
  2422. #if AXIS_IS_TMC(X2)
  2423. SERIAL_ECHOPAIR_P(port, " X", stepperX2.getMilliamps());
  2424. #endif
  2425. #if AXIS_IS_TMC(Y2)
  2426. SERIAL_ECHOPAIR_P(port, " Y", stepperY2.getMilliamps());
  2427. #endif
  2428. #if AXIS_IS_TMC(Z2)
  2429. SERIAL_ECHOPAIR_P(port, " Z", stepperZ2.getMilliamps());
  2430. #endif
  2431. #if AXIS_IS_TMC(X2) || AXIS_IS_TMC(Y2) || AXIS_IS_TMC(Z2)
  2432. SERIAL_EOL_P(port);
  2433. #endif
  2434. #if AXIS_IS_TMC(Z3)
  2435. say_M906(PORTVAR_SOLO);
  2436. SERIAL_ECHOLNPAIR_P(port, " I2 Z", stepperZ3.getMilliamps());
  2437. #endif
  2438. #if AXIS_IS_TMC(E0)
  2439. say_M906(PORTVAR_SOLO);
  2440. SERIAL_ECHOLNPAIR_P(port, " T0 E", stepperE0.getMilliamps());
  2441. #endif
  2442. #if AXIS_IS_TMC(E1)
  2443. say_M906(PORTVAR_SOLO);
  2444. SERIAL_ECHOLNPAIR_P(port, " T1 E", stepperE1.getMilliamps());
  2445. #endif
  2446. #if AXIS_IS_TMC(E2)
  2447. say_M906(PORTVAR_SOLO);
  2448. SERIAL_ECHOLNPAIR_P(port, " T2 E", stepperE2.getMilliamps());
  2449. #endif
  2450. #if AXIS_IS_TMC(E3)
  2451. say_M906(PORTVAR_SOLO);
  2452. SERIAL_ECHOLNPAIR_P(port, " T3 E", stepperE3.getMilliamps());
  2453. #endif
  2454. #if AXIS_IS_TMC(E4)
  2455. say_M906(PORTVAR_SOLO);
  2456. SERIAL_ECHOLNPAIR_P(port, " T4 E", stepperE4.getMilliamps());
  2457. #endif
  2458. #if AXIS_IS_TMC(E5)
  2459. say_M906(PORTVAR_SOLO);
  2460. SERIAL_ECHOLNPAIR_P(port, " T5 E", stepperE5.getMilliamps());
  2461. #endif
  2462. SERIAL_EOL_P(port);
  2463. /**
  2464. * TMC Hybrid Threshold
  2465. */
  2466. #if ENABLED(HYBRID_THRESHOLD)
  2467. if (!forReplay) {
  2468. CONFIG_ECHO_START;
  2469. SERIAL_ECHOLNPGM_P(port, "Hybrid Threshold:");
  2470. }
  2471. CONFIG_ECHO_START;
  2472. #if AXIS_HAS_STEALTHCHOP(X) || AXIS_HAS_STEALTHCHOP(Y) || AXIS_HAS_STEALTHCHOP(Z)
  2473. say_M913(PORTVAR_SOLO);
  2474. #endif
  2475. #if AXIS_HAS_STEALTHCHOP(X)
  2476. SERIAL_ECHOPAIR_P(port, " X", TMC_GET_PWMTHRS(X, X));
  2477. #endif
  2478. #if AXIS_HAS_STEALTHCHOP(Y)
  2479. SERIAL_ECHOPAIR_P(port, " Y", TMC_GET_PWMTHRS(Y, Y));
  2480. #endif
  2481. #if AXIS_HAS_STEALTHCHOP(Z)
  2482. SERIAL_ECHOPAIR_P(port, " Z", TMC_GET_PWMTHRS(Z, Z));
  2483. #endif
  2484. #if AXIS_HAS_STEALTHCHOP(X) || AXIS_HAS_STEALTHCHOP(Y) || AXIS_HAS_STEALTHCHOP(Z)
  2485. SERIAL_EOL_P(port);
  2486. #endif
  2487. #if AXIS_HAS_STEALTHCHOP(X2) || AXIS_HAS_STEALTHCHOP(Y2) || AXIS_HAS_STEALTHCHOP(Z2)
  2488. say_M913(PORTVAR_SOLO);
  2489. SERIAL_ECHOPGM_P(port, " I1");
  2490. #endif
  2491. #if AXIS_HAS_STEALTHCHOP(X2)
  2492. SERIAL_ECHOPAIR_P(port, " X", TMC_GET_PWMTHRS(X, X2));
  2493. #endif
  2494. #if AXIS_HAS_STEALTHCHOP(Y2)
  2495. SERIAL_ECHOPAIR_P(port, " Y", TMC_GET_PWMTHRS(Y, Y2));
  2496. #endif
  2497. #if AXIS_HAS_STEALTHCHOP(Z2)
  2498. SERIAL_ECHOPAIR_P(port, " Z", TMC_GET_PWMTHRS(Z, Z2));
  2499. #endif
  2500. #if AXIS_HAS_STEALTHCHOP(X2) || AXIS_HAS_STEALTHCHOP(Y2) || AXIS_HAS_STEALTHCHOP(Z2)
  2501. SERIAL_EOL_P(port);
  2502. #endif
  2503. #if AXIS_HAS_STEALTHCHOP(Z3)
  2504. say_M913(PORTVAR_SOLO);
  2505. SERIAL_ECHOPGM_P(port, " I2");
  2506. SERIAL_ECHOLNPAIR_P(port, " Z", TMC_GET_PWMTHRS(Z, Z3));
  2507. #endif
  2508. #if AXIS_HAS_STEALTHCHOP(E0)
  2509. say_M913(PORTVAR_SOLO);
  2510. SERIAL_ECHOLNPAIR_P(port, " T0 E", TMC_GET_PWMTHRS(E, E0));
  2511. #endif
  2512. #if AXIS_HAS_STEALTHCHOP(E1)
  2513. say_M913(PORTVAR_SOLO);
  2514. SERIAL_ECHOLNPAIR_P(port, " T1 E", TMC_GET_PWMTHRS(E, E1));
  2515. #endif
  2516. #if AXIS_HAS_STEALTHCHOP(E2)
  2517. say_M913(PORTVAR_SOLO);
  2518. SERIAL_ECHOLNPAIR_P(port, " T2 E", TMC_GET_PWMTHRS(E, E2));
  2519. #endif
  2520. #if AXIS_HAS_STEALTHCHOP(E3)
  2521. say_M913(PORTVAR_SOLO);
  2522. SERIAL_ECHOLNPAIR_P(port, " T3 E", TMC_GET_PWMTHRS(E, E3));
  2523. #endif
  2524. #if AXIS_HAS_STEALTHCHOP(E4)
  2525. say_M913(PORTVAR_SOLO);
  2526. SERIAL_ECHOLNPAIR_P(port, " T4 E", TMC_GET_PWMTHRS(E, E4));
  2527. #endif
  2528. #if AXIS_HAS_STEALTHCHOP(E5)
  2529. say_M913(PORTVAR_SOLO);
  2530. SERIAL_ECHOLNPAIR_P(port, " T5 E", TMC_GET_PWMTHRS(E, E5));
  2531. #endif
  2532. SERIAL_EOL_P(port);
  2533. #endif // HYBRID_THRESHOLD
  2534. /**
  2535. * TMC Sensorless homing thresholds
  2536. */
  2537. #if USE_SENSORLESS
  2538. if (!forReplay) {
  2539. CONFIG_ECHO_START;
  2540. SERIAL_ECHOLNPGM_P(port, "TMC2130 StallGuard threshold:");
  2541. }
  2542. CONFIG_ECHO_START;
  2543. #if X_SENSORLESS || Y_SENSORLESS || Z_SENSORLESS
  2544. say_M914(PORTVAR_SOLO);
  2545. #if X_SENSORLESS
  2546. SERIAL_ECHOPAIR_P(port, " X", stepperX.sgt());
  2547. #endif
  2548. #if Y_SENSORLESS
  2549. SERIAL_ECHOPAIR_P(port, " Y", stepperY.sgt());
  2550. #endif
  2551. #if Z_SENSORLESS
  2552. SERIAL_ECHOPAIR_P(port, " Z", stepperZ.sgt());
  2553. #endif
  2554. SERIAL_EOL_P(port);
  2555. #endif
  2556. #define HAS_X2_SENSORLESS (defined(X_STALL_SENSITIVITY) && AXIS_HAS_STALLGUARD(X2))
  2557. #define HAS_Y2_SENSORLESS (defined(Y_STALL_SENSITIVITY) && AXIS_HAS_STALLGUARD(Y2))
  2558. #define HAS_Z2_SENSORLESS (defined(Z_STALL_SENSITIVITY) && AXIS_HAS_STALLGUARD(Z2))
  2559. #define HAS_Z3_SENSORLESS (defined(Z_STALL_SENSITIVITY) && AXIS_HAS_STALLGUARD(Z3))
  2560. #if HAS_X2_SENSORLESS || HAS_Y2_SENSORLESS || HAS_Z2_SENSORLESS
  2561. say_M914(PORTVAR_SOLO);
  2562. SERIAL_ECHOPGM_P(port, " I1");
  2563. #if HAS_X2_SENSORLESS
  2564. SERIAL_ECHOPAIR_P(port, " X", stepperX2.sgt());
  2565. #endif
  2566. #if HAS_Y2_SENSORLESS
  2567. SERIAL_ECHOPAIR_P(port, " Y", stepperY2.sgt());
  2568. #endif
  2569. #if HAS_Z2_SENSORLESS
  2570. SERIAL_ECHOPAIR_P(port, " Z", stepperZ2.sgt());
  2571. #endif
  2572. SERIAL_EOL_P(port);
  2573. #endif
  2574. #if HAS_Z3_SENSORLESS
  2575. say_M914(PORTVAR_SOLO);
  2576. SERIAL_ECHOPGM_P(port, " I2");
  2577. SERIAL_ECHOLNPAIR_P(port, " Z", stepperZ3.sgt());
  2578. #endif
  2579. #endif // USE_SENSORLESS
  2580. #endif // HAS_TRINAMIC
  2581. /**
  2582. * Linear Advance
  2583. */
  2584. #if ENABLED(LIN_ADVANCE)
  2585. if (!forReplay) {
  2586. CONFIG_ECHO_START;
  2587. SERIAL_ECHOLNPGM_P(port, "Linear Advance:");
  2588. }
  2589. CONFIG_ECHO_START;
  2590. #if EXTRUDERS < 2
  2591. SERIAL_ECHOLNPAIR_P(port, " M900 K", planner.extruder_advance_K[0]);
  2592. #else
  2593. LOOP_L_N(i, EXTRUDERS) {
  2594. SERIAL_ECHOPAIR_P(port, " M900 T", int(i));
  2595. SERIAL_ECHOLNPAIR_P(port, " K", planner.extruder_advance_K[i]);
  2596. }
  2597. #endif
  2598. #endif
  2599. #if HAS_MOTOR_CURRENT_PWM
  2600. CONFIG_ECHO_START;
  2601. if (!forReplay) {
  2602. SERIAL_ECHOLNPGM_P(port, "Stepper motor currents:");
  2603. CONFIG_ECHO_START;
  2604. }
  2605. SERIAL_ECHOPAIR_P(port, " M907 X", stepper.motor_current_setting[0]);
  2606. SERIAL_ECHOPAIR_P(port, " Z", stepper.motor_current_setting[1]);
  2607. SERIAL_ECHOPAIR_P(port, " E", stepper.motor_current_setting[2]);
  2608. SERIAL_EOL_P(port);
  2609. #endif
  2610. /**
  2611. * Advanced Pause filament load & unload lengths
  2612. */
  2613. #if ENABLED(ADVANCED_PAUSE_FEATURE)
  2614. if (!forReplay) {
  2615. CONFIG_ECHO_START;
  2616. SERIAL_ECHOLNPGM_P(port, "Filament load/unload lengths:");
  2617. }
  2618. CONFIG_ECHO_START;
  2619. #if EXTRUDERS == 1
  2620. say_M603(PORTVAR_SOLO);
  2621. SERIAL_ECHOPAIR_P(port, "L", LINEAR_UNIT(fc_settings[0].load_length));
  2622. SERIAL_ECHOLNPAIR_P(port, " U", LINEAR_UNIT(fc_settings[0].unload_length));
  2623. #else
  2624. say_M603(PORTVAR_SOLO);
  2625. SERIAL_ECHOPAIR_P(port, "T0 L", LINEAR_UNIT(fc_settings[0].load_length));
  2626. SERIAL_ECHOLNPAIR_P(port, " U", LINEAR_UNIT(fc_settings[0].unload_length));
  2627. CONFIG_ECHO_START;
  2628. say_M603(PORTVAR_SOLO);
  2629. SERIAL_ECHOPAIR_P(port, "T1 L", LINEAR_UNIT(fc_settings[1].load_length));
  2630. SERIAL_ECHOLNPAIR_P(port, " U", LINEAR_UNIT(fc_settings[1].unload_length));
  2631. #if EXTRUDERS > 2
  2632. CONFIG_ECHO_START;
  2633. say_M603(PORTVAR_SOLO);
  2634. SERIAL_ECHOPAIR_P(port, "T2 L", LINEAR_UNIT(fc_settings[2].load_length));
  2635. SERIAL_ECHOLNPAIR_P(port, " U", LINEAR_UNIT(fc_settings[2].unload_length));
  2636. #if EXTRUDERS > 3
  2637. CONFIG_ECHO_START;
  2638. say_M603(PORTVAR_SOLO);
  2639. SERIAL_ECHOPAIR_P(port, "T3 L", LINEAR_UNIT(fc_settings[3].load_length));
  2640. SERIAL_ECHOLNPAIR_P(port, " U", LINEAR_UNIT(fc_settings[3].unload_length));
  2641. #if EXTRUDERS > 4
  2642. CONFIG_ECHO_START;
  2643. say_M603(PORTVAR_SOLO);
  2644. SERIAL_ECHOPAIR_P(port, "T4 L", LINEAR_UNIT(fc_settings[4].load_length));
  2645. SERIAL_ECHOLNPAIR_P(port, " U", LINEAR_UNIT(fc_settings[4].unload_length));
  2646. #if EXTRUDERS > 5
  2647. CONFIG_ECHO_START;
  2648. say_M603(PORTVAR_SOLO);
  2649. SERIAL_ECHOPAIR_P(port, "T5 L", LINEAR_UNIT(fc_settings[5].load_length));
  2650. SERIAL_ECHOLNPAIR_P(port, " U", LINEAR_UNIT(fc_settings[5].unload_length));
  2651. #endif // EXTRUDERS > 5
  2652. #endif // EXTRUDERS > 4
  2653. #endif // EXTRUDERS > 3
  2654. #endif // EXTRUDERS > 2
  2655. #endif // EXTRUDERS == 1
  2656. #endif // ADVANCED_PAUSE_FEATURE
  2657. #if EXTRUDERS > 1
  2658. CONFIG_ECHO_START;
  2659. if (!forReplay) {
  2660. SERIAL_ECHOLNPGM_P(port, "Tool-changing:");
  2661. CONFIG_ECHO_START;
  2662. }
  2663. M217_report(true);
  2664. #endif
  2665. }
  2666. #endif // !DISABLE_M503
  2667. #pragma pack(pop)