My Marlin configs for Fabrikator Mini and CTC i3 Pro B
您最多选择25个主题 主题必须以字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符

Marlin_main.cpp 117KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445
  1. /* -*- c++ -*- */
  2. /*
  3. Reprap firmware based on Sprinter and grbl.
  4. Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  5. This program is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. This program is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with this program. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. /*
  17. This firmware is a mashup between Sprinter and grbl.
  18. (https://github.com/kliment/Sprinter)
  19. (https://github.com/simen/grbl/tree)
  20. It has preliminary support for Matthew Roberts advance algorithm
  21. http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  22. */
  23. #include "Marlin.h"
  24. #ifdef ENABLE_AUTO_BED_LEVELING
  25. #include "vector_3.h"
  26. #ifdef ACCURATE_BED_LEVELING
  27. #include "qr_solve.h"
  28. #endif
  29. #endif // ENABLE_AUTO_BED_LEVELING
  30. #include "ultralcd.h"
  31. #include "planner.h"
  32. #include "stepper.h"
  33. #include "temperature.h"
  34. #include "motion_control.h"
  35. #include "cardreader.h"
  36. #include "watchdog.h"
  37. #include "ConfigurationStore.h"
  38. #include "language.h"
  39. #include "pins_arduino.h"
  40. #include "math.h"
  41. #ifdef BLINKM
  42. #include "BlinkM.h"
  43. #include "Wire.h"
  44. #endif
  45. #if NUM_SERVOS > 0
  46. #include "Servo.h"
  47. #endif
  48. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  49. #include <SPI.h>
  50. #endif
  51. #define VERSION_STRING "1.0.0"
  52. // look here for descriptions of gcodes: http://linuxcnc.org/handbook/gcode/g-code.html
  53. // http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  54. //Implemented Codes
  55. //-------------------
  56. // G0 -> G1
  57. // G1 - Coordinated Movement X Y Z E
  58. // G2 - CW ARC
  59. // G3 - CCW ARC
  60. // G4 - Dwell S<seconds> or P<milliseconds>
  61. // G10 - retract filament according to settings of M207
  62. // G11 - retract recover filament according to settings of M208
  63. // G28 - Home all Axis
  64. // G29 - Detailed Z-Probe, probes the bed at 3 points. You must de at the home position for this to work correctly.
  65. // G30 - Single Z Probe, probes bed at current XY location.
  66. // G90 - Use Absolute Coordinates
  67. // G91 - Use Relative Coordinates
  68. // G92 - Set current position to cordinates given
  69. // M Codes
  70. // M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
  71. // M1 - Same as M0
  72. // M17 - Enable/Power all stepper motors
  73. // M18 - Disable all stepper motors; same as M84
  74. // M20 - List SD card
  75. // M21 - Init SD card
  76. // M22 - Release SD card
  77. // M23 - Select SD file (M23 filename.g)
  78. // M24 - Start/resume SD print
  79. // M25 - Pause SD print
  80. // M26 - Set SD position in bytes (M26 S12345)
  81. // M27 - Report SD print status
  82. // M28 - Start SD write (M28 filename.g)
  83. // M29 - Stop SD write
  84. // M30 - Delete file from SD (M30 filename.g)
  85. // M31 - Output time since last M109 or SD card start to serial
  86. // M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  87. // syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  88. // Call gcode file : "M32 P !filename#" and return to caller file after finishing (simiarl to #include).
  89. // The '#' is necessary when calling from within sd files, as it stops buffer prereading
  90. // M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  91. // M80 - Turn on Power Supply
  92. // M81 - Turn off Power Supply
  93. // M82 - Set E codes absolute (default)
  94. // M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  95. // M84 - Disable steppers until next move,
  96. // or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  97. // M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  98. // M92 - Set axis_steps_per_unit - same syntax as G92
  99. // M104 - Set extruder target temp
  100. // M105 - Read current temp
  101. // M106 - Fan on
  102. // M107 - Fan off
  103. // M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  104. // Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  105. // M114 - Output current position to serial port
  106. // M115 - Capabilities string
  107. // M117 - display message
  108. // M119 - Output Endstop status to serial port
  109. // M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  110. // M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  111. // M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  112. // M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  113. // M140 - Set bed target temp
  114. // M150 - Set BlinkM Colour Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  115. // M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  116. // Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  117. // M200 - Set filament diameter
  118. // M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  119. // M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  120. // M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  121. // M204 - Set default acceleration: S normal moves T filament only moves (M204 S3000 T7000) im mm/sec^2 also sets minimum segment time in ms (B20000) to prevent buffer underruns and M20 minimum feedrate
  122. // M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
  123. // M206 - set additional homeing offset
  124. // M207 - set retract length S[positive mm] F[feedrate mm/sec] Z[additional zlift/hop]
  125. // M208 - set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
  126. // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  127. // M218 - set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  128. // M220 S<factor in percent>- set speed factor override percentage
  129. // M221 S<factor in percent>- set extrude factor override percentage
  130. // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  131. // M240 - Trigger a camera to take a photograph
  132. // M250 - Set LCD contrast C<contrast value> (value 0..63)
  133. // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  134. // M300 - Play beepsound S<frequency Hz> P<duration ms>
  135. // M301 - Set PID parameters P I and D
  136. // M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  137. // M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  138. // M304 - Set bed PID parameters P I and D
  139. // M400 - Finish all moves
  140. // M401 - Lower z-probe if present
  141. // M402 - Raise z-probe if present
  142. // M500 - stores paramters in EEPROM
  143. // M501 - reads parameters from EEPROM (if you need reset them after you changed them temporarily).
  144. // M502 - reverts to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  145. // M503 - print the current settings (from memory not from eeprom)
  146. // M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  147. // M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  148. // M666 - set delta endstop adjustemnt
  149. // M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  150. // M907 - Set digital trimpot motor current using axis codes.
  151. // M908 - Control digital trimpot directly.
  152. // M350 - Set microstepping mode.
  153. // M351 - Toggle MS1 MS2 pins directly.
  154. // M928 - Start SD logging (M928 filename.g) - ended by M29
  155. // M999 - Restart after being stopped by error
  156. //Stepper Movement Variables
  157. //===========================================================================
  158. //=============================imported variables============================
  159. //===========================================================================
  160. //===========================================================================
  161. //=============================public variables=============================
  162. //===========================================================================
  163. #ifdef SDSUPPORT
  164. CardReader card;
  165. #endif
  166. float homing_feedrate[] = HOMING_FEEDRATE;
  167. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  168. int feedmultiply=100; //100->1 200->2
  169. int saved_feedmultiply;
  170. int extrudemultiply=100; //100->1 200->2
  171. float current_position[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0 };
  172. float add_homeing[3]={0,0,0};
  173. #ifdef DELTA
  174. float endstop_adj[3]={0,0,0};
  175. #endif
  176. float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  177. float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  178. bool axis_known_position[3] = {false, false, false};
  179. // Extruder offset
  180. #if EXTRUDERS > 1
  181. #ifndef DUAL_X_CARRIAGE
  182. #define NUM_EXTRUDER_OFFSETS 2 // only in XY plane
  183. #else
  184. #define NUM_EXTRUDER_OFFSETS 3 // supports offsets in XYZ plane
  185. #endif
  186. float extruder_offset[NUM_EXTRUDER_OFFSETS][EXTRUDERS] = {
  187. #if defined(EXTRUDER_OFFSET_X) && defined(EXTRUDER_OFFSET_Y)
  188. EXTRUDER_OFFSET_X, EXTRUDER_OFFSET_Y
  189. #endif
  190. };
  191. #endif
  192. uint8_t active_extruder = 0;
  193. int fanSpeed=0;
  194. #ifdef SERVO_ENDSTOPS
  195. int servo_endstops[] = SERVO_ENDSTOPS;
  196. int servo_endstop_angles[] = SERVO_ENDSTOP_ANGLES;
  197. #endif
  198. #ifdef BARICUDA
  199. int ValvePressure=0;
  200. int EtoPPressure=0;
  201. #endif
  202. #ifdef FWRETRACT
  203. bool autoretract_enabled=true;
  204. bool retracted=false;
  205. float retract_length=3, retract_feedrate=17*60, retract_zlift=0.8;
  206. float retract_recover_length=0, retract_recover_feedrate=8*60;
  207. #endif
  208. #ifdef ULTIPANEL
  209. bool powersupply = true;
  210. #endif
  211. #ifdef DELTA
  212. float delta[3] = {0.0, 0.0, 0.0};
  213. #endif
  214. //===========================================================================
  215. //=============================private variables=============================
  216. //===========================================================================
  217. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  218. static float destination[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0};
  219. static float offset[3] = {0.0, 0.0, 0.0};
  220. static bool home_all_axis = true;
  221. static float feedrate = 1500.0, next_feedrate, saved_feedrate;
  222. static long gcode_N, gcode_LastN, Stopped_gcode_LastN = 0;
  223. static bool relative_mode = false; //Determines Absolute or Relative Coordinates
  224. static char cmdbuffer[BUFSIZE][MAX_CMD_SIZE];
  225. static bool fromsd[BUFSIZE];
  226. static int bufindr = 0;
  227. static int bufindw = 0;
  228. static int buflen = 0;
  229. //static int i = 0;
  230. static char serial_char;
  231. static int serial_count = 0;
  232. static boolean comment_mode = false;
  233. static char *strchr_pointer; // just a pointer to find chars in the cmd string like X, Y, Z, E, etc
  234. const int sensitive_pins[] = SENSITIVE_PINS; // Sensitive pin list for M42
  235. //static float tt = 0;
  236. //static float bt = 0;
  237. //Inactivity shutdown variables
  238. static unsigned long previous_millis_cmd = 0;
  239. static unsigned long max_inactive_time = 0;
  240. static unsigned long stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME*1000l;
  241. unsigned long starttime=0;
  242. unsigned long stoptime=0;
  243. static uint8_t tmp_extruder;
  244. bool Stopped=false;
  245. #if NUM_SERVOS > 0
  246. Servo servos[NUM_SERVOS];
  247. #endif
  248. bool CooldownNoWait = true;
  249. bool target_direction;
  250. //===========================================================================
  251. //=============================ROUTINES=============================
  252. //===========================================================================
  253. void get_arc_coordinates();
  254. bool setTargetedHotend(int code);
  255. void serial_echopair_P(const char *s_P, float v)
  256. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  257. void serial_echopair_P(const char *s_P, double v)
  258. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  259. void serial_echopair_P(const char *s_P, unsigned long v)
  260. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  261. extern "C"{
  262. extern unsigned int __bss_end;
  263. extern unsigned int __heap_start;
  264. extern void *__brkval;
  265. int freeMemory() {
  266. int free_memory;
  267. if((int)__brkval == 0)
  268. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  269. else
  270. free_memory = ((int)&free_memory) - ((int)__brkval);
  271. return free_memory;
  272. }
  273. }
  274. //adds an command to the main command buffer
  275. //thats really done in a non-safe way.
  276. //needs overworking someday
  277. void enquecommand(const char *cmd)
  278. {
  279. if(buflen < BUFSIZE)
  280. {
  281. //this is dangerous if a mixing of serial and this happsens
  282. strcpy(&(cmdbuffer[bufindw][0]),cmd);
  283. SERIAL_ECHO_START;
  284. SERIAL_ECHOPGM("enqueing \"");
  285. SERIAL_ECHO(cmdbuffer[bufindw]);
  286. SERIAL_ECHOLNPGM("\"");
  287. bufindw= (bufindw + 1)%BUFSIZE;
  288. buflen += 1;
  289. }
  290. }
  291. void enquecommand_P(const char *cmd)
  292. {
  293. if(buflen < BUFSIZE)
  294. {
  295. //this is dangerous if a mixing of serial and this happsens
  296. strcpy_P(&(cmdbuffer[bufindw][0]),cmd);
  297. SERIAL_ECHO_START;
  298. SERIAL_ECHOPGM("enqueing \"");
  299. SERIAL_ECHO(cmdbuffer[bufindw]);
  300. SERIAL_ECHOLNPGM("\"");
  301. bufindw= (bufindw + 1)%BUFSIZE;
  302. buflen += 1;
  303. }
  304. }
  305. void setup_killpin()
  306. {
  307. #if defined(KILL_PIN) && KILL_PIN > -1
  308. pinMode(KILL_PIN,INPUT);
  309. WRITE(KILL_PIN,HIGH);
  310. #endif
  311. }
  312. void setup_photpin()
  313. {
  314. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  315. SET_OUTPUT(PHOTOGRAPH_PIN);
  316. WRITE(PHOTOGRAPH_PIN, LOW);
  317. #endif
  318. }
  319. void setup_powerhold()
  320. {
  321. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  322. SET_OUTPUT(SUICIDE_PIN);
  323. WRITE(SUICIDE_PIN, HIGH);
  324. #endif
  325. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  326. SET_OUTPUT(PS_ON_PIN);
  327. #if defined(PS_DEFAULT_OFF)
  328. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  329. #else
  330. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  331. #endif
  332. #endif
  333. }
  334. void suicide()
  335. {
  336. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  337. SET_OUTPUT(SUICIDE_PIN);
  338. WRITE(SUICIDE_PIN, LOW);
  339. #endif
  340. }
  341. void servo_init()
  342. {
  343. #if (NUM_SERVOS >= 1) && defined(SERVO0_PIN) && (SERVO0_PIN > -1)
  344. servos[0].attach(SERVO0_PIN);
  345. #endif
  346. #if (NUM_SERVOS >= 2) && defined(SERVO1_PIN) && (SERVO1_PIN > -1)
  347. servos[1].attach(SERVO1_PIN);
  348. #endif
  349. #if (NUM_SERVOS >= 3) && defined(SERVO2_PIN) && (SERVO2_PIN > -1)
  350. servos[2].attach(SERVO2_PIN);
  351. #endif
  352. #if (NUM_SERVOS >= 4) && defined(SERVO3_PIN) && (SERVO3_PIN > -1)
  353. servos[3].attach(SERVO3_PIN);
  354. #endif
  355. #if (NUM_SERVOS >= 5)
  356. #error "TODO: enter initalisation code for more servos"
  357. #endif
  358. // Set position of Servo Endstops that are defined
  359. #ifdef SERVO_ENDSTOPS
  360. for(int8_t i = 0; i < 3; i++)
  361. {
  362. if(servo_endstops[i] > -1) {
  363. servos[servo_endstops[i]].write(servo_endstop_angles[i * 2 + 1]);
  364. }
  365. }
  366. #endif
  367. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  368. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  369. servos[servo_endstops[Z_AXIS]].detach();
  370. #endif
  371. }
  372. void setup()
  373. {
  374. setup_killpin();
  375. setup_powerhold();
  376. MYSERIAL.begin(BAUDRATE);
  377. SERIAL_PROTOCOLLNPGM("start");
  378. SERIAL_ECHO_START;
  379. // Check startup - does nothing if bootloader sets MCUSR to 0
  380. byte mcu = MCUSR;
  381. if(mcu & 1) SERIAL_ECHOLNPGM(MSG_POWERUP);
  382. if(mcu & 2) SERIAL_ECHOLNPGM(MSG_EXTERNAL_RESET);
  383. if(mcu & 4) SERIAL_ECHOLNPGM(MSG_BROWNOUT_RESET);
  384. if(mcu & 8) SERIAL_ECHOLNPGM(MSG_WATCHDOG_RESET);
  385. if(mcu & 32) SERIAL_ECHOLNPGM(MSG_SOFTWARE_RESET);
  386. MCUSR=0;
  387. SERIAL_ECHOPGM(MSG_MARLIN);
  388. SERIAL_ECHOLNPGM(VERSION_STRING);
  389. #ifdef STRING_VERSION_CONFIG_H
  390. #ifdef STRING_CONFIG_H_AUTHOR
  391. SERIAL_ECHO_START;
  392. SERIAL_ECHOPGM(MSG_CONFIGURATION_VER);
  393. SERIAL_ECHOPGM(STRING_VERSION_CONFIG_H);
  394. SERIAL_ECHOPGM(MSG_AUTHOR);
  395. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  396. SERIAL_ECHOPGM("Compiled: ");
  397. SERIAL_ECHOLNPGM(__DATE__);
  398. #endif
  399. #endif
  400. SERIAL_ECHO_START;
  401. SERIAL_ECHOPGM(MSG_FREE_MEMORY);
  402. SERIAL_ECHO(freeMemory());
  403. SERIAL_ECHOPGM(MSG_PLANNER_BUFFER_BYTES);
  404. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  405. for(int8_t i = 0; i < BUFSIZE; i++)
  406. {
  407. fromsd[i] = false;
  408. }
  409. // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  410. Config_RetrieveSettings();
  411. tp_init(); // Initialize temperature loop
  412. plan_init(); // Initialize planner;
  413. watchdog_init();
  414. st_init(); // Initialize stepper, this enables interrupts!
  415. setup_photpin();
  416. servo_init();
  417. lcd_init();
  418. _delay_ms(1000); // wait 1sec to display the splash screen
  419. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  420. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  421. #endif
  422. }
  423. void loop()
  424. {
  425. if(buflen < (BUFSIZE-1))
  426. get_command();
  427. #ifdef SDSUPPORT
  428. card.checkautostart(false);
  429. #endif
  430. if(buflen)
  431. {
  432. #ifdef SDSUPPORT
  433. if(card.saving)
  434. {
  435. if(strstr_P(cmdbuffer[bufindr], PSTR("M29")) == NULL)
  436. {
  437. card.write_command(cmdbuffer[bufindr]);
  438. if(card.logging)
  439. {
  440. process_commands();
  441. }
  442. else
  443. {
  444. SERIAL_PROTOCOLLNPGM(MSG_OK);
  445. }
  446. }
  447. else
  448. {
  449. card.closefile();
  450. SERIAL_PROTOCOLLNPGM(MSG_FILE_SAVED);
  451. }
  452. }
  453. else
  454. {
  455. process_commands();
  456. }
  457. #else
  458. process_commands();
  459. #endif //SDSUPPORT
  460. buflen = (buflen-1);
  461. bufindr = (bufindr + 1)%BUFSIZE;
  462. }
  463. //check heater every n milliseconds
  464. manage_heater();
  465. manage_inactivity();
  466. checkHitEndstops();
  467. lcd_update();
  468. }
  469. void get_command()
  470. {
  471. while( MYSERIAL.available() > 0 && buflen < BUFSIZE) {
  472. serial_char = MYSERIAL.read();
  473. if(serial_char == '\n' ||
  474. serial_char == '\r' ||
  475. (serial_char == ':' && comment_mode == false) ||
  476. serial_count >= (MAX_CMD_SIZE - 1) )
  477. {
  478. if(!serial_count) { //if empty line
  479. comment_mode = false; //for new command
  480. return;
  481. }
  482. cmdbuffer[bufindw][serial_count] = 0; //terminate string
  483. if(!comment_mode){
  484. comment_mode = false; //for new command
  485. fromsd[bufindw] = false;
  486. if(strchr(cmdbuffer[bufindw], 'N') != NULL)
  487. {
  488. strchr_pointer = strchr(cmdbuffer[bufindw], 'N');
  489. gcode_N = (strtol(&cmdbuffer[bufindw][strchr_pointer - cmdbuffer[bufindw] + 1], NULL, 10));
  490. if(gcode_N != gcode_LastN+1 && (strstr_P(cmdbuffer[bufindw], PSTR("M110")) == NULL) ) {
  491. SERIAL_ERROR_START;
  492. SERIAL_ERRORPGM(MSG_ERR_LINE_NO);
  493. SERIAL_ERRORLN(gcode_LastN);
  494. //Serial.println(gcode_N);
  495. FlushSerialRequestResend();
  496. serial_count = 0;
  497. return;
  498. }
  499. if(strchr(cmdbuffer[bufindw], '*') != NULL)
  500. {
  501. byte checksum = 0;
  502. byte count = 0;
  503. while(cmdbuffer[bufindw][count] != '*') checksum = checksum^cmdbuffer[bufindw][count++];
  504. strchr_pointer = strchr(cmdbuffer[bufindw], '*');
  505. if( (int)(strtod(&cmdbuffer[bufindw][strchr_pointer - cmdbuffer[bufindw] + 1], NULL)) != checksum) {
  506. SERIAL_ERROR_START;
  507. SERIAL_ERRORPGM(MSG_ERR_CHECKSUM_MISMATCH);
  508. SERIAL_ERRORLN(gcode_LastN);
  509. FlushSerialRequestResend();
  510. serial_count = 0;
  511. return;
  512. }
  513. //if no errors, continue parsing
  514. }
  515. else
  516. {
  517. SERIAL_ERROR_START;
  518. SERIAL_ERRORPGM(MSG_ERR_NO_CHECKSUM);
  519. SERIAL_ERRORLN(gcode_LastN);
  520. FlushSerialRequestResend();
  521. serial_count = 0;
  522. return;
  523. }
  524. gcode_LastN = gcode_N;
  525. //if no errors, continue parsing
  526. }
  527. else // if we don't receive 'N' but still see '*'
  528. {
  529. if((strchr(cmdbuffer[bufindw], '*') != NULL))
  530. {
  531. SERIAL_ERROR_START;
  532. SERIAL_ERRORPGM(MSG_ERR_NO_LINENUMBER_WITH_CHECKSUM);
  533. SERIAL_ERRORLN(gcode_LastN);
  534. serial_count = 0;
  535. return;
  536. }
  537. }
  538. if((strchr(cmdbuffer[bufindw], 'G') != NULL)){
  539. strchr_pointer = strchr(cmdbuffer[bufindw], 'G');
  540. switch((int)((strtod(&cmdbuffer[bufindw][strchr_pointer - cmdbuffer[bufindw] + 1], NULL)))){
  541. case 0:
  542. case 1:
  543. case 2:
  544. case 3:
  545. if(Stopped == false) { // If printer is stopped by an error the G[0-3] codes are ignored.
  546. #ifdef SDSUPPORT
  547. if(card.saving)
  548. break;
  549. #endif //SDSUPPORT
  550. SERIAL_PROTOCOLLNPGM(MSG_OK);
  551. }
  552. else {
  553. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  554. LCD_MESSAGEPGM(MSG_STOPPED);
  555. }
  556. break;
  557. default:
  558. break;
  559. }
  560. }
  561. bufindw = (bufindw + 1)%BUFSIZE;
  562. buflen += 1;
  563. }
  564. serial_count = 0; //clear buffer
  565. }
  566. else
  567. {
  568. if(serial_char == ';') comment_mode = true;
  569. if(!comment_mode) cmdbuffer[bufindw][serial_count++] = serial_char;
  570. }
  571. }
  572. #ifdef SDSUPPORT
  573. if(!card.sdprinting || serial_count!=0){
  574. return;
  575. }
  576. //'#' stops reading from sd to the buffer prematurely, so procedural macro calls are possible
  577. // if it occures, stop_buffering is triggered and the buffer is ran dry.
  578. // this character _can_ occure in serial com, due to checksums. however, no checksums are used in sd printing
  579. static bool stop_buffering=false;
  580. if(buflen==0) stop_buffering=false;
  581. while( !card.eof() && buflen < BUFSIZE && !stop_buffering) {
  582. int16_t n=card.get();
  583. serial_char = (char)n;
  584. if(serial_char == '\n' ||
  585. serial_char == '\r' ||
  586. (serial_char == '#' && comment_mode == false) ||
  587. (serial_char == ':' && comment_mode == false) ||
  588. serial_count >= (MAX_CMD_SIZE - 1)||n==-1)
  589. {
  590. if(card.eof()){
  591. SERIAL_PROTOCOLLNPGM(MSG_FILE_PRINTED);
  592. stoptime=millis();
  593. char time[30];
  594. unsigned long t=(stoptime-starttime)/1000;
  595. int hours, minutes;
  596. minutes=(t/60)%60;
  597. hours=t/60/60;
  598. sprintf_P(time, PSTR("%i hours %i minutes"),hours, minutes);
  599. SERIAL_ECHO_START;
  600. SERIAL_ECHOLN(time);
  601. lcd_setstatus(time);
  602. card.printingHasFinished();
  603. card.checkautostart(true);
  604. }
  605. if(serial_char=='#')
  606. stop_buffering=true;
  607. if(!serial_count)
  608. {
  609. comment_mode = false; //for new command
  610. return; //if empty line
  611. }
  612. cmdbuffer[bufindw][serial_count] = 0; //terminate string
  613. // if(!comment_mode){
  614. fromsd[bufindw] = true;
  615. buflen += 1;
  616. bufindw = (bufindw + 1)%BUFSIZE;
  617. // }
  618. comment_mode = false; //for new command
  619. serial_count = 0; //clear buffer
  620. }
  621. else
  622. {
  623. if(serial_char == ';') comment_mode = true;
  624. if(!comment_mode) cmdbuffer[bufindw][serial_count++] = serial_char;
  625. }
  626. }
  627. #endif //SDSUPPORT
  628. }
  629. float code_value()
  630. {
  631. return (strtod(&cmdbuffer[bufindr][strchr_pointer - cmdbuffer[bufindr] + 1], NULL));
  632. }
  633. long code_value_long()
  634. {
  635. return (strtol(&cmdbuffer[bufindr][strchr_pointer - cmdbuffer[bufindr] + 1], NULL, 10));
  636. }
  637. bool code_seen(char code)
  638. {
  639. strchr_pointer = strchr(cmdbuffer[bufindr], code);
  640. return (strchr_pointer != NULL); //Return True if a character was found
  641. }
  642. #define DEFINE_PGM_READ_ANY(type, reader) \
  643. static inline type pgm_read_any(const type *p) \
  644. { return pgm_read_##reader##_near(p); }
  645. DEFINE_PGM_READ_ANY(float, float);
  646. DEFINE_PGM_READ_ANY(signed char, byte);
  647. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  648. static const PROGMEM type array##_P[3] = \
  649. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  650. static inline type array(int axis) \
  651. { return pgm_read_any(&array##_P[axis]); }
  652. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  653. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  654. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  655. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  656. XYZ_CONSTS_FROM_CONFIG(float, home_retract_mm, HOME_RETRACT_MM);
  657. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  658. #ifdef DUAL_X_CARRIAGE
  659. #if EXTRUDERS == 1 || defined(COREXY) \
  660. || !defined(X2_ENABLE_PIN) || !defined(X2_STEP_PIN) || !defined(X2_DIR_PIN) \
  661. || !defined(X2_HOME_POS) || !defined(X2_MIN_POS) || !defined(X2_MAX_POS) \
  662. || !defined(X_MAX_PIN) || X_MAX_PIN < 0
  663. #error "Missing or invalid definitions for DUAL_X_CARRIAGE mode."
  664. #endif
  665. #if X_HOME_DIR != -1 || X2_HOME_DIR != 1
  666. #error "Please use canonical x-carriage assignment" // the x-carriages are defined by their homing directions
  667. #endif
  668. #define DXC_FULL_CONTROL_MODE 0
  669. #define DXC_AUTO_PARK_MODE 1
  670. #define DXC_DUPLICATION_MODE 2
  671. static int dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  672. static float x_home_pos(int extruder) {
  673. if (extruder == 0)
  674. return base_home_pos(X_AXIS) + add_homeing[X_AXIS];
  675. else
  676. // In dual carriage mode the extruder offset provides an override of the
  677. // second X-carriage offset when homed - otherwise X2_HOME_POS is used.
  678. // This allow soft recalibration of the second extruder offset position without firmware reflash
  679. // (through the M218 command).
  680. return (extruder_offset[X_AXIS][1] > 0) ? extruder_offset[X_AXIS][1] : X2_HOME_POS;
  681. }
  682. static int x_home_dir(int extruder) {
  683. return (extruder == 0) ? X_HOME_DIR : X2_HOME_DIR;
  684. }
  685. static float inactive_extruder_x_pos = X2_MAX_POS; // used in mode 0 & 1
  686. static bool active_extruder_parked = false; // used in mode 1 & 2
  687. static float raised_parked_position[NUM_AXIS]; // used in mode 1
  688. static unsigned long delayed_move_time = 0; // used in mode 1
  689. static float duplicate_extruder_x_offset = DEFAULT_DUPLICATION_X_OFFSET; // used in mode 2
  690. static float duplicate_extruder_temp_offset = 0; // used in mode 2
  691. bool extruder_duplication_enabled = false; // used in mode 2
  692. #endif //DUAL_X_CARRIAGE
  693. static void axis_is_at_home(int axis) {
  694. #ifdef DUAL_X_CARRIAGE
  695. if (axis == X_AXIS) {
  696. if (active_extruder != 0) {
  697. current_position[X_AXIS] = x_home_pos(active_extruder);
  698. min_pos[X_AXIS] = X2_MIN_POS;
  699. max_pos[X_AXIS] = max(extruder_offset[X_AXIS][1], X2_MAX_POS);
  700. return;
  701. }
  702. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && active_extruder == 0) {
  703. current_position[X_AXIS] = base_home_pos(X_AXIS) + add_homeing[X_AXIS];
  704. min_pos[X_AXIS] = base_min_pos(X_AXIS) + add_homeing[X_AXIS];
  705. max_pos[X_AXIS] = min(base_max_pos(X_AXIS) + add_homeing[X_AXIS],
  706. max(extruder_offset[X_AXIS][1], X2_MAX_POS) - duplicate_extruder_x_offset);
  707. return;
  708. }
  709. }
  710. #endif
  711. current_position[axis] = base_home_pos(axis) + add_homeing[axis];
  712. min_pos[axis] = base_min_pos(axis) + add_homeing[axis];
  713. max_pos[axis] = base_max_pos(axis) + add_homeing[axis];
  714. }
  715. #ifdef ENABLE_AUTO_BED_LEVELING
  716. #ifdef ACCURATE_BED_LEVELING
  717. static void set_bed_level_equation_lsq(double *plane_equation_coefficients)
  718. {
  719. vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
  720. planeNormal.debug("planeNormal");
  721. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  722. //bedLevel.debug("bedLevel");
  723. //plan_bed_level_matrix.debug("bed level before");
  724. //vector_3 uncorrected_position = plan_get_position_mm();
  725. //uncorrected_position.debug("position before");
  726. vector_3 corrected_position = plan_get_position();
  727. // corrected_position.debug("position after");
  728. current_position[X_AXIS] = corrected_position.x;
  729. current_position[Y_AXIS] = corrected_position.y;
  730. current_position[Z_AXIS] = corrected_position.z;
  731. // but the bed at 0 so we don't go below it.
  732. current_position[Z_AXIS] = -Z_PROBE_OFFSET_FROM_EXTRUDER;
  733. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  734. }
  735. #else
  736. static void set_bed_level_equation(float z_at_xLeft_yFront, float z_at_xRight_yFront, float z_at_xLeft_yBack) {
  737. plan_bed_level_matrix.set_to_identity();
  738. vector_3 xLeftyFront = vector_3(LEFT_PROBE_BED_POSITION, FRONT_PROBE_BED_POSITION, z_at_xLeft_yFront);
  739. vector_3 xLeftyBack = vector_3(LEFT_PROBE_BED_POSITION, BACK_PROBE_BED_POSITION, z_at_xLeft_yBack);
  740. vector_3 xRightyFront = vector_3(RIGHT_PROBE_BED_POSITION, FRONT_PROBE_BED_POSITION, z_at_xRight_yFront);
  741. vector_3 xPositive = (xRightyFront - xLeftyFront).get_normal();
  742. vector_3 yPositive = (xLeftyBack - xLeftyFront).get_normal();
  743. vector_3 planeNormal = vector_3::cross(xPositive, yPositive).get_normal();
  744. //planeNormal.debug("planeNormal");
  745. //yPositive.debug("yPositive");
  746. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  747. //bedLevel.debug("bedLevel");
  748. //plan_bed_level_matrix.debug("bed level before");
  749. //vector_3 uncorrected_position = plan_get_position_mm();
  750. //uncorrected_position.debug("position before");
  751. // and set our bed level equation to do the right thing
  752. //plan_bed_level_matrix.debug("bed level after");
  753. vector_3 corrected_position = plan_get_position();
  754. //corrected_position.debug("position after");
  755. current_position[X_AXIS] = corrected_position.x;
  756. current_position[Y_AXIS] = corrected_position.y;
  757. current_position[Z_AXIS] = corrected_position.z;
  758. // but the bed at 0 so we don't go below it.
  759. current_position[Z_AXIS] = -Z_PROBE_OFFSET_FROM_EXTRUDER;
  760. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  761. }
  762. #endif // ACCURATE_BED_LEVELING
  763. static void run_z_probe() {
  764. plan_bed_level_matrix.set_to_identity();
  765. feedrate = homing_feedrate[Z_AXIS];
  766. // move down until you find the bed
  767. float zPosition = -10;
  768. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  769. st_synchronize();
  770. // we have to let the planner know where we are right now as it is not where we said to go.
  771. zPosition = st_get_position_mm(Z_AXIS);
  772. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]);
  773. // move up the retract distance
  774. zPosition += home_retract_mm(Z_AXIS);
  775. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  776. st_synchronize();
  777. // move back down slowly to find bed
  778. feedrate = homing_feedrate[Z_AXIS]/4;
  779. zPosition -= home_retract_mm(Z_AXIS) * 2;
  780. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  781. st_synchronize();
  782. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  783. // make sure the planner knows where we are as it may be a bit different than we last said to move to
  784. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  785. }
  786. static void do_blocking_move_to(float x, float y, float z) {
  787. float oldFeedRate = feedrate;
  788. feedrate = XY_TRAVEL_SPEED;
  789. current_position[X_AXIS] = x;
  790. current_position[Y_AXIS] = y;
  791. current_position[Z_AXIS] = z;
  792. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  793. st_synchronize();
  794. feedrate = oldFeedRate;
  795. }
  796. static void do_blocking_move_relative(float offset_x, float offset_y, float offset_z) {
  797. do_blocking_move_to(current_position[X_AXIS] + offset_x, current_position[Y_AXIS] + offset_y, current_position[Z_AXIS] + offset_z);
  798. }
  799. static void setup_for_endstop_move() {
  800. saved_feedrate = feedrate;
  801. saved_feedmultiply = feedmultiply;
  802. feedmultiply = 100;
  803. previous_millis_cmd = millis();
  804. enable_endstops(true);
  805. }
  806. static void clean_up_after_endstop_move() {
  807. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  808. enable_endstops(false);
  809. #endif
  810. feedrate = saved_feedrate;
  811. feedmultiply = saved_feedmultiply;
  812. previous_millis_cmd = millis();
  813. }
  814. static void engage_z_probe() {
  815. // Engage Z Servo endstop if enabled
  816. #ifdef SERVO_ENDSTOPS
  817. if (servo_endstops[Z_AXIS] > -1) {
  818. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  819. servos[servo_endstops[Z_AXIS]].attach(0);
  820. #endif
  821. servos[servo_endstops[Z_AXIS]].write(servo_endstop_angles[Z_AXIS * 2]);
  822. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  823. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  824. servos[servo_endstops[Z_AXIS]].detach();
  825. #endif
  826. }
  827. #endif
  828. }
  829. static void retract_z_probe() {
  830. // Retract Z Servo endstop if enabled
  831. #ifdef SERVO_ENDSTOPS
  832. if (servo_endstops[Z_AXIS] > -1) {
  833. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  834. servos[servo_endstops[Z_AXIS]].attach(0);
  835. #endif
  836. servos[servo_endstops[Z_AXIS]].write(servo_endstop_angles[Z_AXIS * 2 + 1]);
  837. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  838. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  839. servos[servo_endstops[Z_AXIS]].detach();
  840. #endif
  841. }
  842. #endif
  843. }
  844. #endif // #ifdef ENABLE_AUTO_BED_LEVELING
  845. static void homeaxis(int axis) {
  846. #define HOMEAXIS_DO(LETTER) \
  847. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  848. if (axis==X_AXIS ? HOMEAXIS_DO(X) :
  849. axis==Y_AXIS ? HOMEAXIS_DO(Y) :
  850. axis==Z_AXIS ? HOMEAXIS_DO(Z) :
  851. 0) {
  852. int axis_home_dir = home_dir(axis);
  853. #ifdef DUAL_X_CARRIAGE
  854. if (axis == X_AXIS)
  855. axis_home_dir = x_home_dir(active_extruder);
  856. #endif
  857. current_position[axis] = 0;
  858. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  859. // Engage Servo endstop if enabled
  860. #ifdef SERVO_ENDSTOPS
  861. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  862. if (axis==Z_AXIS) {
  863. engage_z_probe();
  864. }
  865. else
  866. #endif
  867. if (servo_endstops[axis] > -1) {
  868. servos[servo_endstops[axis]].write(servo_endstop_angles[axis * 2]);
  869. }
  870. #endif
  871. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  872. feedrate = homing_feedrate[axis];
  873. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  874. st_synchronize();
  875. current_position[axis] = 0;
  876. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  877. destination[axis] = -home_retract_mm(axis) * axis_home_dir;
  878. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  879. st_synchronize();
  880. destination[axis] = 2*home_retract_mm(axis) * axis_home_dir;
  881. #ifdef DELTA
  882. feedrate = homing_feedrate[axis]/10;
  883. #else
  884. feedrate = homing_feedrate[axis]/2 ;
  885. #endif
  886. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  887. st_synchronize();
  888. #ifdef DELTA
  889. // retrace by the amount specified in endstop_adj
  890. if (endstop_adj[axis] * axis_home_dir < 0) {
  891. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  892. destination[axis] = endstop_adj[axis];
  893. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  894. st_synchronize();
  895. }
  896. #endif
  897. axis_is_at_home(axis);
  898. destination[axis] = current_position[axis];
  899. feedrate = 0.0;
  900. endstops_hit_on_purpose();
  901. axis_known_position[axis] = true;
  902. // Retract Servo endstop if enabled
  903. #ifdef SERVO_ENDSTOPS
  904. if (servo_endstops[axis] > -1) {
  905. servos[servo_endstops[axis]].write(servo_endstop_angles[axis * 2 + 1]);
  906. }
  907. #endif
  908. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  909. if (axis==Z_AXIS) retract_z_probe();
  910. #endif
  911. }
  912. }
  913. #define HOMEAXIS(LETTER) homeaxis(LETTER##_AXIS)
  914. void process_commands()
  915. {
  916. unsigned long codenum; //throw away variable
  917. char *starpos = NULL;
  918. #ifdef ENABLE_AUTO_BED_LEVELING
  919. float x_tmp, y_tmp, z_tmp, real_z;
  920. #endif
  921. if(code_seen('G'))
  922. {
  923. switch((int)code_value())
  924. {
  925. case 0: // G0 -> G1
  926. case 1: // G1
  927. if(Stopped == false) {
  928. get_coordinates(); // For X Y Z E F
  929. prepare_move();
  930. //ClearToSend();
  931. return;
  932. }
  933. //break;
  934. case 2: // G2 - CW ARC
  935. if(Stopped == false) {
  936. get_arc_coordinates();
  937. prepare_arc_move(true);
  938. return;
  939. }
  940. case 3: // G3 - CCW ARC
  941. if(Stopped == false) {
  942. get_arc_coordinates();
  943. prepare_arc_move(false);
  944. return;
  945. }
  946. case 4: // G4 dwell
  947. LCD_MESSAGEPGM(MSG_DWELL);
  948. codenum = 0;
  949. if(code_seen('P')) codenum = code_value(); // milliseconds to wait
  950. if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait
  951. st_synchronize();
  952. codenum += millis(); // keep track of when we started waiting
  953. previous_millis_cmd = millis();
  954. while(millis() < codenum ){
  955. manage_heater();
  956. manage_inactivity();
  957. lcd_update();
  958. }
  959. break;
  960. #ifdef FWRETRACT
  961. case 10: // G10 retract
  962. if(!retracted)
  963. {
  964. destination[X_AXIS]=current_position[X_AXIS];
  965. destination[Y_AXIS]=current_position[Y_AXIS];
  966. destination[Z_AXIS]=current_position[Z_AXIS];
  967. current_position[Z_AXIS]+=-retract_zlift;
  968. destination[E_AXIS]=current_position[E_AXIS]-retract_length;
  969. feedrate=retract_feedrate;
  970. retracted=true;
  971. prepare_move();
  972. }
  973. break;
  974. case 11: // G11 retract_recover
  975. if(retracted)
  976. {
  977. destination[X_AXIS]=current_position[X_AXIS];
  978. destination[Y_AXIS]=current_position[Y_AXIS];
  979. destination[Z_AXIS]=current_position[Z_AXIS];
  980. current_position[Z_AXIS]+=retract_zlift;
  981. destination[E_AXIS]=current_position[E_AXIS]+retract_length+retract_recover_length;
  982. feedrate=retract_recover_feedrate;
  983. retracted=false;
  984. prepare_move();
  985. }
  986. break;
  987. #endif //FWRETRACT
  988. case 28: //G28 Home all Axis one at a time
  989. #ifdef ENABLE_AUTO_BED_LEVELING
  990. plan_bed_level_matrix.set_to_identity(); //Reset the plane ("erase" all leveling data)
  991. #endif //ENABLE_AUTO_BED_LEVELING
  992. saved_feedrate = feedrate;
  993. saved_feedmultiply = feedmultiply;
  994. feedmultiply = 100;
  995. previous_millis_cmd = millis();
  996. enable_endstops(true);
  997. for(int8_t i=0; i < NUM_AXIS; i++) {
  998. destination[i] = current_position[i];
  999. }
  1000. feedrate = 0.0;
  1001. #ifdef DELTA
  1002. // A delta can only safely home all axis at the same time
  1003. // all axis have to home at the same time
  1004. // Move all carriages up together until the first endstop is hit.
  1005. current_position[X_AXIS] = 0;
  1006. current_position[Y_AXIS] = 0;
  1007. current_position[Z_AXIS] = 0;
  1008. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1009. destination[X_AXIS] = 3 * Z_MAX_LENGTH;
  1010. destination[Y_AXIS] = 3 * Z_MAX_LENGTH;
  1011. destination[Z_AXIS] = 3 * Z_MAX_LENGTH;
  1012. feedrate = 1.732 * homing_feedrate[X_AXIS];
  1013. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1014. st_synchronize();
  1015. endstops_hit_on_purpose();
  1016. current_position[X_AXIS] = destination[X_AXIS];
  1017. current_position[Y_AXIS] = destination[Y_AXIS];
  1018. current_position[Z_AXIS] = destination[Z_AXIS];
  1019. // take care of back off and rehome now we are all at the top
  1020. HOMEAXIS(X);
  1021. HOMEAXIS(Y);
  1022. HOMEAXIS(Z);
  1023. calculate_delta(current_position);
  1024. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
  1025. #else // NOT DELTA
  1026. home_all_axis = !((code_seen(axis_codes[0])) || (code_seen(axis_codes[1])) || (code_seen(axis_codes[2])));
  1027. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  1028. if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
  1029. HOMEAXIS(Z);
  1030. }
  1031. #endif
  1032. #ifdef QUICK_HOME
  1033. if((home_all_axis)||( code_seen(axis_codes[X_AXIS]) && code_seen(axis_codes[Y_AXIS])) ) //first diagonal move
  1034. {
  1035. current_position[X_AXIS] = 0;current_position[Y_AXIS] = 0;
  1036. #ifndef DUAL_X_CARRIAGE
  1037. int x_axis_home_dir = home_dir(X_AXIS);
  1038. #else
  1039. int x_axis_home_dir = x_home_dir(active_extruder);
  1040. extruder_duplication_enabled = false;
  1041. #endif
  1042. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1043. destination[X_AXIS] = 1.5 * max_length(X_AXIS) * x_axis_home_dir;destination[Y_AXIS] = 1.5 * max_length(Y_AXIS) * home_dir(Y_AXIS);
  1044. feedrate = homing_feedrate[X_AXIS];
  1045. if(homing_feedrate[Y_AXIS]<feedrate)
  1046. feedrate =homing_feedrate[Y_AXIS];
  1047. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1048. st_synchronize();
  1049. axis_is_at_home(X_AXIS);
  1050. axis_is_at_home(Y_AXIS);
  1051. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1052. destination[X_AXIS] = current_position[X_AXIS];
  1053. destination[Y_AXIS] = current_position[Y_AXIS];
  1054. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1055. feedrate = 0.0;
  1056. st_synchronize();
  1057. endstops_hit_on_purpose();
  1058. current_position[X_AXIS] = destination[X_AXIS];
  1059. current_position[Y_AXIS] = destination[Y_AXIS];
  1060. current_position[Z_AXIS] = destination[Z_AXIS];
  1061. }
  1062. #endif
  1063. if((home_all_axis) || (code_seen(axis_codes[X_AXIS])))
  1064. {
  1065. #ifdef DUAL_X_CARRIAGE
  1066. int tmp_extruder = active_extruder;
  1067. extruder_duplication_enabled = false;
  1068. active_extruder = !active_extruder;
  1069. HOMEAXIS(X);
  1070. inactive_extruder_x_pos = current_position[X_AXIS];
  1071. active_extruder = tmp_extruder;
  1072. HOMEAXIS(X);
  1073. // reset state used by the different modes
  1074. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  1075. delayed_move_time = 0;
  1076. active_extruder_parked = true;
  1077. #else
  1078. HOMEAXIS(X);
  1079. #endif
  1080. }
  1081. if((home_all_axis) || (code_seen(axis_codes[Y_AXIS]))) {
  1082. HOMEAXIS(Y);
  1083. }
  1084. if(code_seen(axis_codes[X_AXIS]))
  1085. {
  1086. if(code_value_long() != 0) {
  1087. current_position[X_AXIS]=code_value()+add_homeing[0];
  1088. }
  1089. }
  1090. if(code_seen(axis_codes[Y_AXIS])) {
  1091. if(code_value_long() != 0) {
  1092. current_position[Y_AXIS]=code_value()+add_homeing[1];
  1093. }
  1094. }
  1095. #if Z_HOME_DIR < 0 // If homing towards BED do Z last
  1096. #ifndef Z_SAFE_HOMING
  1097. if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
  1098. #if defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  1099. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  1100. feedrate = max_feedrate[Z_AXIS];
  1101. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  1102. st_synchronize();
  1103. #endif
  1104. HOMEAXIS(Z);
  1105. }
  1106. #else // Z Safe mode activated.
  1107. if(home_all_axis) {
  1108. destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - X_PROBE_OFFSET_FROM_EXTRUDER);
  1109. destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - Y_PROBE_OFFSET_FROM_EXTRUDER);
  1110. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  1111. feedrate = XY_TRAVEL_SPEED;
  1112. current_position[Z_AXIS] = 0;
  1113. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1114. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  1115. st_synchronize();
  1116. current_position[X_AXIS] = destination[X_AXIS];
  1117. current_position[Y_AXIS] = destination[Y_AXIS];
  1118. HOMEAXIS(Z);
  1119. }
  1120. // Let's see if X and Y are homed and probe is inside bed area.
  1121. if(code_seen(axis_codes[Z_AXIS])) {
  1122. if ( (axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]) \
  1123. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER >= X_MIN_POS) \
  1124. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER <= X_MAX_POS) \
  1125. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER >= Y_MIN_POS) \
  1126. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER <= Y_MAX_POS)) {
  1127. current_position[Z_AXIS] = 0;
  1128. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1129. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  1130. feedrate = max_feedrate[Z_AXIS];
  1131. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  1132. st_synchronize();
  1133. HOMEAXIS(Z);
  1134. } else if (!((axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]))) {
  1135. LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN);
  1136. SERIAL_ECHO_START;
  1137. SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN);
  1138. } else {
  1139. LCD_MESSAGEPGM(MSG_ZPROBE_OUT);
  1140. SERIAL_ECHO_START;
  1141. SERIAL_ECHOLNPGM(MSG_ZPROBE_OUT);
  1142. }
  1143. }
  1144. #endif
  1145. #endif
  1146. if(code_seen(axis_codes[Z_AXIS])) {
  1147. if(code_value_long() != 0) {
  1148. current_position[Z_AXIS]=code_value()+add_homeing[2];
  1149. }
  1150. }
  1151. #ifdef ENABLE_AUTO_BED_LEVELING
  1152. if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
  1153. current_position[Z_AXIS] -= Z_PROBE_OFFSET_FROM_EXTRUDER; //Add Z_Probe offset (the distance is negative)
  1154. }
  1155. #endif
  1156. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1157. #endif // else DELTA
  1158. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1159. enable_endstops(false);
  1160. #endif
  1161. feedrate = saved_feedrate;
  1162. feedmultiply = saved_feedmultiply;
  1163. previous_millis_cmd = millis();
  1164. endstops_hit_on_purpose();
  1165. break;
  1166. #ifdef ENABLE_AUTO_BED_LEVELING
  1167. case 29: // G29 Detailed Z-Probe, probes the bed at 3 points.
  1168. {
  1169. #if Z_MIN_PIN == -1
  1170. #error "You must have a Z_MIN endstop in order to enable Auto Bed Leveling feature!!! Z_MIN_PIN must point to a valid hardware pin."
  1171. #endif
  1172. st_synchronize();
  1173. // make sure the bed_level_rotation_matrix is identity or the planner will get it incorectly
  1174. //vector_3 corrected_position = plan_get_position_mm();
  1175. //corrected_position.debug("position before G29");
  1176. plan_bed_level_matrix.set_to_identity();
  1177. vector_3 uncorrected_position = plan_get_position();
  1178. //uncorrected_position.debug("position durring G29");
  1179. current_position[X_AXIS] = uncorrected_position.x;
  1180. current_position[Y_AXIS] = uncorrected_position.y;
  1181. current_position[Z_AXIS] = uncorrected_position.z;
  1182. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1183. setup_for_endstop_move();
  1184. feedrate = homing_feedrate[Z_AXIS];
  1185. #ifdef ACCURATE_BED_LEVELING
  1186. int xGridSpacing = (RIGHT_PROBE_BED_POSITION - LEFT_PROBE_BED_POSITION) / (ACCURATE_BED_LEVELING_POINTS-1);
  1187. int yGridSpacing = (BACK_PROBE_BED_POSITION - FRONT_PROBE_BED_POSITION) / (ACCURATE_BED_LEVELING_POINTS-1);
  1188. // solve the plane equation ax + by + d = z
  1189. // A is the matrix with rows [x y 1] for all the probed points
  1190. // B is the vector of the Z positions
  1191. // the normal vector to the plane is formed by the coefficients of the plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  1192. // so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  1193. // "A" matrix of the linear system of equations
  1194. double eqnAMatrix[ACCURATE_BED_LEVELING_POINTS*ACCURATE_BED_LEVELING_POINTS*3];
  1195. // "B" vector of Z points
  1196. double eqnBVector[ACCURATE_BED_LEVELING_POINTS*ACCURATE_BED_LEVELING_POINTS];
  1197. int probePointCounter = 0;
  1198. bool zig = true;
  1199. for (int yProbe=FRONT_PROBE_BED_POSITION; yProbe <= BACK_PROBE_BED_POSITION; yProbe += yGridSpacing)
  1200. {
  1201. int xProbe, xInc;
  1202. if (zig)
  1203. {
  1204. xProbe = LEFT_PROBE_BED_POSITION;
  1205. //xEnd = RIGHT_PROBE_BED_POSITION;
  1206. xInc = xGridSpacing;
  1207. zig = false;
  1208. } else // zag
  1209. {
  1210. xProbe = RIGHT_PROBE_BED_POSITION;
  1211. //xEnd = LEFT_PROBE_BED_POSITION;
  1212. xInc = -xGridSpacing;
  1213. zig = true;
  1214. }
  1215. for (int xCount=0; xCount < ACCURATE_BED_LEVELING_POINTS; xCount++)
  1216. {
  1217. if (probePointCounter == 0)
  1218. {
  1219. // raise before probing
  1220. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], Z_RAISE_BEFORE_PROBING);
  1221. } else
  1222. {
  1223. // raise extruder
  1224. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  1225. }
  1226. do_blocking_move_to(xProbe - X_PROBE_OFFSET_FROM_EXTRUDER, yProbe - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
  1227. engage_z_probe(); // Engage Z Servo endstop if available
  1228. run_z_probe();
  1229. eqnBVector[probePointCounter] = current_position[Z_AXIS];
  1230. retract_z_probe();
  1231. SERIAL_PROTOCOLPGM("Bed x: ");
  1232. SERIAL_PROTOCOL(xProbe);
  1233. SERIAL_PROTOCOLPGM(" y: ");
  1234. SERIAL_PROTOCOL(yProbe);
  1235. SERIAL_PROTOCOLPGM(" z: ");
  1236. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  1237. SERIAL_PROTOCOLPGM("\n");
  1238. eqnAMatrix[probePointCounter + 0*ACCURATE_BED_LEVELING_POINTS*ACCURATE_BED_LEVELING_POINTS] = xProbe;
  1239. eqnAMatrix[probePointCounter + 1*ACCURATE_BED_LEVELING_POINTS*ACCURATE_BED_LEVELING_POINTS] = yProbe;
  1240. eqnAMatrix[probePointCounter + 2*ACCURATE_BED_LEVELING_POINTS*ACCURATE_BED_LEVELING_POINTS] = 1;
  1241. probePointCounter++;
  1242. xProbe += xInc;
  1243. }
  1244. }
  1245. clean_up_after_endstop_move();
  1246. // solve lsq problem
  1247. double *plane_equation_coefficients = qr_solve(ACCURATE_BED_LEVELING_POINTS*ACCURATE_BED_LEVELING_POINTS, 3, eqnAMatrix, eqnBVector);
  1248. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  1249. SERIAL_PROTOCOL(plane_equation_coefficients[0]);
  1250. SERIAL_PROTOCOLPGM(" b: ");
  1251. SERIAL_PROTOCOL(plane_equation_coefficients[1]);
  1252. SERIAL_PROTOCOLPGM(" d: ");
  1253. SERIAL_PROTOCOLLN(plane_equation_coefficients[2]);
  1254. set_bed_level_equation_lsq(plane_equation_coefficients);
  1255. free(plane_equation_coefficients);
  1256. #else // ACCURATE_BED_LEVELING not defined
  1257. // prob 1
  1258. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], Z_RAISE_BEFORE_PROBING);
  1259. do_blocking_move_to(LEFT_PROBE_BED_POSITION - X_PROBE_OFFSET_FROM_EXTRUDER, BACK_PROBE_BED_POSITION - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
  1260. engage_z_probe(); // Engage Z Servo endstop if available
  1261. run_z_probe();
  1262. float z_at_xLeft_yBack = current_position[Z_AXIS];
  1263. retract_z_probe();
  1264. SERIAL_PROTOCOLPGM("Bed x: ");
  1265. SERIAL_PROTOCOL(LEFT_PROBE_BED_POSITION);
  1266. SERIAL_PROTOCOLPGM(" y: ");
  1267. SERIAL_PROTOCOL(BACK_PROBE_BED_POSITION);
  1268. SERIAL_PROTOCOLPGM(" z: ");
  1269. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  1270. SERIAL_PROTOCOLPGM("\n");
  1271. // prob 2
  1272. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  1273. do_blocking_move_to(LEFT_PROBE_BED_POSITION - X_PROBE_OFFSET_FROM_EXTRUDER, FRONT_PROBE_BED_POSITION - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
  1274. engage_z_probe(); // Engage Z Servo endstop if available
  1275. run_z_probe();
  1276. float z_at_xLeft_yFront = current_position[Z_AXIS];
  1277. retract_z_probe();
  1278. SERIAL_PROTOCOLPGM("Bed x: ");
  1279. SERIAL_PROTOCOL(LEFT_PROBE_BED_POSITION);
  1280. SERIAL_PROTOCOLPGM(" y: ");
  1281. SERIAL_PROTOCOL(FRONT_PROBE_BED_POSITION);
  1282. SERIAL_PROTOCOLPGM(" z: ");
  1283. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  1284. SERIAL_PROTOCOLPGM("\n");
  1285. // prob 3
  1286. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  1287. // the current position will be updated by the blocking move so the head will not lower on this next call.
  1288. do_blocking_move_to(RIGHT_PROBE_BED_POSITION - X_PROBE_OFFSET_FROM_EXTRUDER, FRONT_PROBE_BED_POSITION - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
  1289. engage_z_probe(); // Engage Z Servo endstop if available
  1290. run_z_probe();
  1291. float z_at_xRight_yFront = current_position[Z_AXIS];
  1292. retract_z_probe(); // Retract Z Servo endstop if available
  1293. SERIAL_PROTOCOLPGM("Bed x: ");
  1294. SERIAL_PROTOCOL(RIGHT_PROBE_BED_POSITION);
  1295. SERIAL_PROTOCOLPGM(" y: ");
  1296. SERIAL_PROTOCOL(FRONT_PROBE_BED_POSITION);
  1297. SERIAL_PROTOCOLPGM(" z: ");
  1298. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  1299. SERIAL_PROTOCOLPGM("\n");
  1300. clean_up_after_endstop_move();
  1301. set_bed_level_equation(z_at_xLeft_yFront, z_at_xRight_yFront, z_at_xLeft_yBack);
  1302. #endif // ACCURATE_BED_LEVELING
  1303. st_synchronize();
  1304. // The following code correct the Z height difference from z-probe position and hotend tip position.
  1305. // The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
  1306. // When the bed is uneven, this height must be corrected.
  1307. real_z = float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]; //get the real Z (since the auto bed leveling is already correcting the plane)
  1308. x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER;
  1309. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER;
  1310. z_tmp = current_position[Z_AXIS];
  1311. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); //Apply the correction sending the probe offset
  1312. current_position[Z_AXIS] = z_tmp - real_z + current_position[Z_AXIS]; //The difference is added to current position and sent to planner.
  1313. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1314. }
  1315. break;
  1316. case 30: // G30 Single Z Probe
  1317. {
  1318. engage_z_probe(); // Engage Z Servo endstop if available
  1319. st_synchronize();
  1320. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  1321. setup_for_endstop_move();
  1322. feedrate = homing_feedrate[Z_AXIS];
  1323. run_z_probe();
  1324. SERIAL_PROTOCOLPGM("Bed Position X: ");
  1325. SERIAL_PROTOCOL(current_position[X_AXIS]);
  1326. SERIAL_PROTOCOLPGM(" Y: ");
  1327. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  1328. SERIAL_PROTOCOLPGM(" Z: ");
  1329. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  1330. SERIAL_PROTOCOLPGM("\n");
  1331. clean_up_after_endstop_move();
  1332. retract_z_probe(); // Retract Z Servo endstop if available
  1333. }
  1334. break;
  1335. #endif // ENABLE_AUTO_BED_LEVELING
  1336. case 90: // G90
  1337. relative_mode = false;
  1338. break;
  1339. case 91: // G91
  1340. relative_mode = true;
  1341. break;
  1342. case 92: // G92
  1343. if(!code_seen(axis_codes[E_AXIS]))
  1344. st_synchronize();
  1345. for(int8_t i=0; i < NUM_AXIS; i++) {
  1346. if(code_seen(axis_codes[i])) {
  1347. if(i == E_AXIS) {
  1348. current_position[i] = code_value();
  1349. plan_set_e_position(current_position[E_AXIS]);
  1350. }
  1351. else {
  1352. current_position[i] = code_value()+add_homeing[i];
  1353. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1354. }
  1355. }
  1356. }
  1357. break;
  1358. }
  1359. }
  1360. else if(code_seen('M'))
  1361. {
  1362. switch( (int)code_value() )
  1363. {
  1364. #ifdef ULTIPANEL
  1365. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  1366. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  1367. {
  1368. LCD_MESSAGEPGM(MSG_USERWAIT);
  1369. codenum = 0;
  1370. if(code_seen('P')) codenum = code_value(); // milliseconds to wait
  1371. if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait
  1372. st_synchronize();
  1373. previous_millis_cmd = millis();
  1374. if (codenum > 0){
  1375. codenum += millis(); // keep track of when we started waiting
  1376. while(millis() < codenum && !lcd_clicked()){
  1377. manage_heater();
  1378. manage_inactivity();
  1379. lcd_update();
  1380. }
  1381. }else{
  1382. while(!lcd_clicked()){
  1383. manage_heater();
  1384. manage_inactivity();
  1385. lcd_update();
  1386. }
  1387. }
  1388. LCD_MESSAGEPGM(MSG_RESUMING);
  1389. }
  1390. break;
  1391. #endif
  1392. case 17:
  1393. LCD_MESSAGEPGM(MSG_NO_MOVE);
  1394. enable_x();
  1395. enable_y();
  1396. enable_z();
  1397. enable_e0();
  1398. enable_e1();
  1399. enable_e2();
  1400. break;
  1401. #ifdef SDSUPPORT
  1402. case 20: // M20 - list SD card
  1403. SERIAL_PROTOCOLLNPGM(MSG_BEGIN_FILE_LIST);
  1404. card.ls();
  1405. SERIAL_PROTOCOLLNPGM(MSG_END_FILE_LIST);
  1406. break;
  1407. case 21: // M21 - init SD card
  1408. card.initsd();
  1409. break;
  1410. case 22: //M22 - release SD card
  1411. card.release();
  1412. break;
  1413. case 23: //M23 - Select file
  1414. starpos = (strchr(strchr_pointer + 4,'*'));
  1415. if(starpos!=NULL)
  1416. *(starpos-1)='\0';
  1417. card.openFile(strchr_pointer + 4,true);
  1418. break;
  1419. case 24: //M24 - Start SD print
  1420. card.startFileprint();
  1421. starttime=millis();
  1422. break;
  1423. case 25: //M25 - Pause SD print
  1424. card.pauseSDPrint();
  1425. break;
  1426. case 26: //M26 - Set SD index
  1427. if(card.cardOK && code_seen('S')) {
  1428. card.setIndex(code_value_long());
  1429. }
  1430. break;
  1431. case 27: //M27 - Get SD status
  1432. card.getStatus();
  1433. break;
  1434. case 28: //M28 - Start SD write
  1435. starpos = (strchr(strchr_pointer + 4,'*'));
  1436. if(starpos != NULL){
  1437. char* npos = strchr(cmdbuffer[bufindr], 'N');
  1438. strchr_pointer = strchr(npos,' ') + 1;
  1439. *(starpos-1) = '\0';
  1440. }
  1441. card.openFile(strchr_pointer+4,false);
  1442. break;
  1443. case 29: //M29 - Stop SD write
  1444. //processed in write to file routine above
  1445. //card,saving = false;
  1446. break;
  1447. case 30: //M30 <filename> Delete File
  1448. if (card.cardOK){
  1449. card.closefile();
  1450. starpos = (strchr(strchr_pointer + 4,'*'));
  1451. if(starpos != NULL){
  1452. char* npos = strchr(cmdbuffer[bufindr], 'N');
  1453. strchr_pointer = strchr(npos,' ') + 1;
  1454. *(starpos-1) = '\0';
  1455. }
  1456. card.removeFile(strchr_pointer + 4);
  1457. }
  1458. break;
  1459. case 32: //M32 - Select file and start SD print
  1460. {
  1461. if(card.sdprinting) {
  1462. st_synchronize();
  1463. }
  1464. starpos = (strchr(strchr_pointer + 4,'*'));
  1465. char* namestartpos = (strchr(strchr_pointer + 4,'!')); //find ! to indicate filename string start.
  1466. if(namestartpos==NULL)
  1467. {
  1468. namestartpos=strchr_pointer + 4; //default name position, 4 letters after the M
  1469. }
  1470. else
  1471. namestartpos++; //to skip the '!'
  1472. if(starpos!=NULL)
  1473. *(starpos-1)='\0';
  1474. bool call_procedure=(code_seen('P'));
  1475. if(strchr_pointer>namestartpos)
  1476. call_procedure=false; //false alert, 'P' found within filename
  1477. if( card.cardOK )
  1478. {
  1479. card.openFile(namestartpos,true,!call_procedure);
  1480. if(code_seen('S'))
  1481. if(strchr_pointer<namestartpos) //only if "S" is occuring _before_ the filename
  1482. card.setIndex(code_value_long());
  1483. card.startFileprint();
  1484. if(!call_procedure)
  1485. starttime=millis(); //procedure calls count as normal print time.
  1486. }
  1487. } break;
  1488. case 928: //M928 - Start SD write
  1489. starpos = (strchr(strchr_pointer + 5,'*'));
  1490. if(starpos != NULL){
  1491. char* npos = strchr(cmdbuffer[bufindr], 'N');
  1492. strchr_pointer = strchr(npos,' ') + 1;
  1493. *(starpos-1) = '\0';
  1494. }
  1495. card.openLogFile(strchr_pointer+5);
  1496. break;
  1497. #endif //SDSUPPORT
  1498. case 31: //M31 take time since the start of the SD print or an M109 command
  1499. {
  1500. stoptime=millis();
  1501. char time[30];
  1502. unsigned long t=(stoptime-starttime)/1000;
  1503. int sec,min;
  1504. min=t/60;
  1505. sec=t%60;
  1506. sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
  1507. SERIAL_ECHO_START;
  1508. SERIAL_ECHOLN(time);
  1509. lcd_setstatus(time);
  1510. autotempShutdown();
  1511. }
  1512. break;
  1513. case 42: //M42 -Change pin status via gcode
  1514. if (code_seen('S'))
  1515. {
  1516. int pin_status = code_value();
  1517. int pin_number = LED_PIN;
  1518. if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
  1519. pin_number = code_value();
  1520. for(int8_t i = 0; i < (int8_t)sizeof(sensitive_pins); i++)
  1521. {
  1522. if (sensitive_pins[i] == pin_number)
  1523. {
  1524. pin_number = -1;
  1525. break;
  1526. }
  1527. }
  1528. #if defined(FAN_PIN) && FAN_PIN > -1
  1529. if (pin_number == FAN_PIN)
  1530. fanSpeed = pin_status;
  1531. #endif
  1532. if (pin_number > -1)
  1533. {
  1534. pinMode(pin_number, OUTPUT);
  1535. digitalWrite(pin_number, pin_status);
  1536. analogWrite(pin_number, pin_status);
  1537. }
  1538. }
  1539. break;
  1540. case 104: // M104
  1541. if(setTargetedHotend(104)){
  1542. break;
  1543. }
  1544. if (code_seen('S')) setTargetHotend(code_value(), tmp_extruder);
  1545. #ifdef DUAL_X_CARRIAGE
  1546. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && tmp_extruder == 0)
  1547. setTargetHotend1(code_value() == 0.0 ? 0.0 : code_value() + duplicate_extruder_temp_offset);
  1548. #endif
  1549. setWatch();
  1550. break;
  1551. case 140: // M140 set bed temp
  1552. if (code_seen('S')) setTargetBed(code_value());
  1553. break;
  1554. case 105 : // M105
  1555. if(setTargetedHotend(105)){
  1556. break;
  1557. }
  1558. #if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
  1559. SERIAL_PROTOCOLPGM("ok T:");
  1560. SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
  1561. SERIAL_PROTOCOLPGM(" /");
  1562. SERIAL_PROTOCOL_F(degTargetHotend(tmp_extruder),1);
  1563. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  1564. SERIAL_PROTOCOLPGM(" B:");
  1565. SERIAL_PROTOCOL_F(degBed(),1);
  1566. SERIAL_PROTOCOLPGM(" /");
  1567. SERIAL_PROTOCOL_F(degTargetBed(),1);
  1568. #endif //TEMP_BED_PIN
  1569. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  1570. SERIAL_PROTOCOLPGM(" T");
  1571. SERIAL_PROTOCOL(cur_extruder);
  1572. SERIAL_PROTOCOLPGM(":");
  1573. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  1574. SERIAL_PROTOCOLPGM(" /");
  1575. SERIAL_PROTOCOL_F(degTargetHotend(cur_extruder),1);
  1576. }
  1577. #else
  1578. SERIAL_ERROR_START;
  1579. SERIAL_ERRORLNPGM(MSG_ERR_NO_THERMISTORS);
  1580. #endif
  1581. SERIAL_PROTOCOLPGM(" @:");
  1582. SERIAL_PROTOCOL(getHeaterPower(tmp_extruder));
  1583. SERIAL_PROTOCOLPGM(" B@:");
  1584. SERIAL_PROTOCOL(getHeaterPower(-1));
  1585. #ifdef SHOW_TEMP_ADC_VALUES
  1586. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  1587. SERIAL_PROTOCOLPGM(" ADC B:");
  1588. SERIAL_PROTOCOL_F(degBed(),1);
  1589. SERIAL_PROTOCOLPGM("C->");
  1590. SERIAL_PROTOCOL_F(rawBedTemp()/OVERSAMPLENR,0);
  1591. #endif
  1592. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  1593. SERIAL_PROTOCOLPGM(" T");
  1594. SERIAL_PROTOCOL(cur_extruder);
  1595. SERIAL_PROTOCOLPGM(":");
  1596. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  1597. SERIAL_PROTOCOLPGM("C->");
  1598. SERIAL_PROTOCOL_F(rawHotendTemp(cur_extruder)/OVERSAMPLENR,0);
  1599. }
  1600. #endif
  1601. SERIAL_PROTOCOLLN("");
  1602. return;
  1603. break;
  1604. case 109:
  1605. {// M109 - Wait for extruder heater to reach target.
  1606. if(setTargetedHotend(109)){
  1607. break;
  1608. }
  1609. LCD_MESSAGEPGM(MSG_HEATING);
  1610. #ifdef AUTOTEMP
  1611. autotemp_enabled=false;
  1612. #endif
  1613. if (code_seen('S')) {
  1614. setTargetHotend(code_value(), tmp_extruder);
  1615. #ifdef DUAL_X_CARRIAGE
  1616. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && tmp_extruder == 0)
  1617. setTargetHotend1(code_value() == 0.0 ? 0.0 : code_value() + duplicate_extruder_temp_offset);
  1618. #endif
  1619. CooldownNoWait = true;
  1620. } else if (code_seen('R')) {
  1621. setTargetHotend(code_value(), tmp_extruder);
  1622. #ifdef DUAL_X_CARRIAGE
  1623. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && tmp_extruder == 0)
  1624. setTargetHotend1(code_value() == 0.0 ? 0.0 : code_value() + duplicate_extruder_temp_offset);
  1625. #endif
  1626. CooldownNoWait = false;
  1627. }
  1628. #ifdef AUTOTEMP
  1629. if (code_seen('S')) autotemp_min=code_value();
  1630. if (code_seen('B')) autotemp_max=code_value();
  1631. if (code_seen('F'))
  1632. {
  1633. autotemp_factor=code_value();
  1634. autotemp_enabled=true;
  1635. }
  1636. #endif
  1637. setWatch();
  1638. codenum = millis();
  1639. /* See if we are heating up or cooling down */
  1640. target_direction = isHeatingHotend(tmp_extruder); // true if heating, false if cooling
  1641. #ifdef TEMP_RESIDENCY_TIME
  1642. long residencyStart;
  1643. residencyStart = -1;
  1644. /* continue to loop until we have reached the target temp
  1645. _and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
  1646. while((residencyStart == -1) ||
  1647. (residencyStart >= 0 && (((unsigned int) (millis() - residencyStart)) < (TEMP_RESIDENCY_TIME * 1000UL))) ) {
  1648. #else
  1649. while ( target_direction ? (isHeatingHotend(tmp_extruder)) : (isCoolingHotend(tmp_extruder)&&(CooldownNoWait==false)) ) {
  1650. #endif //TEMP_RESIDENCY_TIME
  1651. if( (millis() - codenum) > 1000UL )
  1652. { //Print Temp Reading and remaining time every 1 second while heating up/cooling down
  1653. SERIAL_PROTOCOLPGM("T:");
  1654. SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
  1655. SERIAL_PROTOCOLPGM(" E:");
  1656. SERIAL_PROTOCOL((int)tmp_extruder);
  1657. #ifdef TEMP_RESIDENCY_TIME
  1658. SERIAL_PROTOCOLPGM(" W:");
  1659. if(residencyStart > -1)
  1660. {
  1661. codenum = ((TEMP_RESIDENCY_TIME * 1000UL) - (millis() - residencyStart)) / 1000UL;
  1662. SERIAL_PROTOCOLLN( codenum );
  1663. }
  1664. else
  1665. {
  1666. SERIAL_PROTOCOLLN( "?" );
  1667. }
  1668. #else
  1669. SERIAL_PROTOCOLLN("");
  1670. #endif
  1671. codenum = millis();
  1672. }
  1673. manage_heater();
  1674. manage_inactivity();
  1675. lcd_update();
  1676. #ifdef TEMP_RESIDENCY_TIME
  1677. /* start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
  1678. or when current temp falls outside the hysteresis after target temp was reached */
  1679. if ((residencyStart == -1 && target_direction && (degHotend(tmp_extruder) >= (degTargetHotend(tmp_extruder)-TEMP_WINDOW))) ||
  1680. (residencyStart == -1 && !target_direction && (degHotend(tmp_extruder) <= (degTargetHotend(tmp_extruder)+TEMP_WINDOW))) ||
  1681. (residencyStart > -1 && labs(degHotend(tmp_extruder) - degTargetHotend(tmp_extruder)) > TEMP_HYSTERESIS) )
  1682. {
  1683. residencyStart = millis();
  1684. }
  1685. #endif //TEMP_RESIDENCY_TIME
  1686. }
  1687. LCD_MESSAGEPGM(MSG_HEATING_COMPLETE);
  1688. starttime=millis();
  1689. previous_millis_cmd = millis();
  1690. }
  1691. break;
  1692. case 190: // M190 - Wait for bed heater to reach target.
  1693. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  1694. LCD_MESSAGEPGM(MSG_BED_HEATING);
  1695. if (code_seen('S')) {
  1696. setTargetBed(code_value());
  1697. CooldownNoWait = true;
  1698. } else if (code_seen('R')) {
  1699. setTargetBed(code_value());
  1700. CooldownNoWait = false;
  1701. }
  1702. codenum = millis();
  1703. target_direction = isHeatingBed(); // true if heating, false if cooling
  1704. while ( target_direction ? (isHeatingBed()) : (isCoolingBed()&&(CooldownNoWait==false)) )
  1705. {
  1706. if(( millis() - codenum) > 1000 ) //Print Temp Reading every 1 second while heating up.
  1707. {
  1708. float tt=degHotend(active_extruder);
  1709. SERIAL_PROTOCOLPGM("T:");
  1710. SERIAL_PROTOCOL(tt);
  1711. SERIAL_PROTOCOLPGM(" E:");
  1712. SERIAL_PROTOCOL((int)active_extruder);
  1713. SERIAL_PROTOCOLPGM(" B:");
  1714. SERIAL_PROTOCOL_F(degBed(),1);
  1715. SERIAL_PROTOCOLLN("");
  1716. codenum = millis();
  1717. }
  1718. manage_heater();
  1719. manage_inactivity();
  1720. lcd_update();
  1721. }
  1722. LCD_MESSAGEPGM(MSG_BED_DONE);
  1723. previous_millis_cmd = millis();
  1724. #endif
  1725. break;
  1726. #if defined(FAN_PIN) && FAN_PIN > -1
  1727. case 106: //M106 Fan On
  1728. if (code_seen('S')){
  1729. fanSpeed=constrain(code_value(),0,255);
  1730. }
  1731. else {
  1732. fanSpeed=255;
  1733. }
  1734. break;
  1735. case 107: //M107 Fan Off
  1736. fanSpeed = 0;
  1737. break;
  1738. #endif //FAN_PIN
  1739. #ifdef BARICUDA
  1740. // PWM for HEATER_1_PIN
  1741. #if defined(HEATER_1_PIN) && HEATER_1_PIN > -1
  1742. case 126: //M126 valve open
  1743. if (code_seen('S')){
  1744. ValvePressure=constrain(code_value(),0,255);
  1745. }
  1746. else {
  1747. ValvePressure=255;
  1748. }
  1749. break;
  1750. case 127: //M127 valve closed
  1751. ValvePressure = 0;
  1752. break;
  1753. #endif //HEATER_1_PIN
  1754. // PWM for HEATER_2_PIN
  1755. #if defined(HEATER_2_PIN) && HEATER_2_PIN > -1
  1756. case 128: //M128 valve open
  1757. if (code_seen('S')){
  1758. EtoPPressure=constrain(code_value(),0,255);
  1759. }
  1760. else {
  1761. EtoPPressure=255;
  1762. }
  1763. break;
  1764. case 129: //M129 valve closed
  1765. EtoPPressure = 0;
  1766. break;
  1767. #endif //HEATER_2_PIN
  1768. #endif
  1769. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  1770. case 80: // M80 - Turn on Power Supply
  1771. SET_OUTPUT(PS_ON_PIN); //GND
  1772. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  1773. // If you have a switch on suicide pin, this is useful
  1774. // if you want to start another print with suicide feature after
  1775. // a print without suicide...
  1776. #if defined SUICIDE_PIN && SUICIDE_PIN > -1
  1777. SET_OUTPUT(SUICIDE_PIN);
  1778. WRITE(SUICIDE_PIN, HIGH);
  1779. #endif
  1780. #ifdef ULTIPANEL
  1781. powersupply = true;
  1782. LCD_MESSAGEPGM(WELCOME_MSG);
  1783. lcd_update();
  1784. #endif
  1785. break;
  1786. #endif
  1787. case 81: // M81 - Turn off Power Supply
  1788. disable_heater();
  1789. st_synchronize();
  1790. disable_e0();
  1791. disable_e1();
  1792. disable_e2();
  1793. finishAndDisableSteppers();
  1794. fanSpeed = 0;
  1795. delay(1000); // Wait a little before to switch off
  1796. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  1797. st_synchronize();
  1798. suicide();
  1799. #elif defined(PS_ON_PIN) && PS_ON_PIN > -1
  1800. SET_OUTPUT(PS_ON_PIN);
  1801. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  1802. #endif
  1803. #ifdef ULTIPANEL
  1804. powersupply = false;
  1805. LCD_MESSAGEPGM(MACHINE_NAME" "MSG_OFF".");
  1806. lcd_update();
  1807. #endif
  1808. break;
  1809. case 82:
  1810. axis_relative_modes[3] = false;
  1811. break;
  1812. case 83:
  1813. axis_relative_modes[3] = true;
  1814. break;
  1815. case 18: //compatibility
  1816. case 84: // M84
  1817. if(code_seen('S')){
  1818. stepper_inactive_time = code_value() * 1000;
  1819. }
  1820. else
  1821. {
  1822. bool all_axis = !((code_seen(axis_codes[0])) || (code_seen(axis_codes[1])) || (code_seen(axis_codes[2]))|| (code_seen(axis_codes[3])));
  1823. if(all_axis)
  1824. {
  1825. st_synchronize();
  1826. disable_e0();
  1827. disable_e1();
  1828. disable_e2();
  1829. finishAndDisableSteppers();
  1830. }
  1831. else
  1832. {
  1833. st_synchronize();
  1834. if(code_seen('X')) disable_x();
  1835. if(code_seen('Y')) disable_y();
  1836. if(code_seen('Z')) disable_z();
  1837. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  1838. if(code_seen('E')) {
  1839. disable_e0();
  1840. disable_e1();
  1841. disable_e2();
  1842. }
  1843. #endif
  1844. }
  1845. }
  1846. break;
  1847. case 85: // M85
  1848. code_seen('S');
  1849. max_inactive_time = code_value() * 1000;
  1850. break;
  1851. case 92: // M92
  1852. for(int8_t i=0; i < NUM_AXIS; i++)
  1853. {
  1854. if(code_seen(axis_codes[i]))
  1855. {
  1856. if(i == 3) { // E
  1857. float value = code_value();
  1858. if(value < 20.0) {
  1859. float factor = axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
  1860. max_e_jerk *= factor;
  1861. max_feedrate[i] *= factor;
  1862. axis_steps_per_sqr_second[i] *= factor;
  1863. }
  1864. axis_steps_per_unit[i] = value;
  1865. }
  1866. else {
  1867. axis_steps_per_unit[i] = code_value();
  1868. }
  1869. }
  1870. }
  1871. break;
  1872. case 115: // M115
  1873. SERIAL_PROTOCOLPGM(MSG_M115_REPORT);
  1874. break;
  1875. case 117: // M117 display message
  1876. starpos = (strchr(strchr_pointer + 5,'*'));
  1877. if(starpos!=NULL)
  1878. *(starpos-1)='\0';
  1879. lcd_setstatus(strchr_pointer + 5);
  1880. break;
  1881. case 114: // M114
  1882. SERIAL_PROTOCOLPGM("X:");
  1883. SERIAL_PROTOCOL(current_position[X_AXIS]);
  1884. SERIAL_PROTOCOLPGM("Y:");
  1885. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  1886. SERIAL_PROTOCOLPGM("Z:");
  1887. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  1888. SERIAL_PROTOCOLPGM("E:");
  1889. SERIAL_PROTOCOL(current_position[E_AXIS]);
  1890. SERIAL_PROTOCOLPGM(MSG_COUNT_X);
  1891. SERIAL_PROTOCOL(float(st_get_position(X_AXIS))/axis_steps_per_unit[X_AXIS]);
  1892. SERIAL_PROTOCOLPGM("Y:");
  1893. SERIAL_PROTOCOL(float(st_get_position(Y_AXIS))/axis_steps_per_unit[Y_AXIS]);
  1894. SERIAL_PROTOCOLPGM("Z:");
  1895. SERIAL_PROTOCOL(float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]);
  1896. SERIAL_PROTOCOLLN("");
  1897. break;
  1898. case 120: // M120
  1899. enable_endstops(false) ;
  1900. break;
  1901. case 121: // M121
  1902. enable_endstops(true) ;
  1903. break;
  1904. case 119: // M119
  1905. SERIAL_PROTOCOLLN(MSG_M119_REPORT);
  1906. #if defined(X_MIN_PIN) && X_MIN_PIN > -1
  1907. SERIAL_PROTOCOLPGM(MSG_X_MIN);
  1908. SERIAL_PROTOCOLLN(((READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  1909. #endif
  1910. #if defined(X_MAX_PIN) && X_MAX_PIN > -1
  1911. SERIAL_PROTOCOLPGM(MSG_X_MAX);
  1912. SERIAL_PROTOCOLLN(((READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  1913. #endif
  1914. #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
  1915. SERIAL_PROTOCOLPGM(MSG_Y_MIN);
  1916. SERIAL_PROTOCOLLN(((READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  1917. #endif
  1918. #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
  1919. SERIAL_PROTOCOLPGM(MSG_Y_MAX);
  1920. SERIAL_PROTOCOLLN(((READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  1921. #endif
  1922. #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
  1923. SERIAL_PROTOCOLPGM(MSG_Z_MIN);
  1924. SERIAL_PROTOCOLLN(((READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  1925. #endif
  1926. #if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
  1927. SERIAL_PROTOCOLPGM(MSG_Z_MAX);
  1928. SERIAL_PROTOCOLLN(((READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  1929. #endif
  1930. break;
  1931. //TODO: update for all axis, use for loop
  1932. #ifdef BLINKM
  1933. case 150: // M150
  1934. {
  1935. byte red;
  1936. byte grn;
  1937. byte blu;
  1938. if(code_seen('R')) red = code_value();
  1939. if(code_seen('U')) grn = code_value();
  1940. if(code_seen('B')) blu = code_value();
  1941. SendColors(red,grn,blu);
  1942. }
  1943. break;
  1944. #endif //BLINKM
  1945. case 201: // M201
  1946. for(int8_t i=0; i < NUM_AXIS; i++)
  1947. {
  1948. if(code_seen(axis_codes[i]))
  1949. {
  1950. max_acceleration_units_per_sq_second[i] = code_value();
  1951. }
  1952. }
  1953. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  1954. reset_acceleration_rates();
  1955. break;
  1956. #if 0 // Not used for Sprinter/grbl gen6
  1957. case 202: // M202
  1958. for(int8_t i=0; i < NUM_AXIS; i++) {
  1959. if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
  1960. }
  1961. break;
  1962. #endif
  1963. case 203: // M203 max feedrate mm/sec
  1964. for(int8_t i=0; i < NUM_AXIS; i++) {
  1965. if(code_seen(axis_codes[i])) max_feedrate[i] = code_value();
  1966. }
  1967. break;
  1968. case 204: // M204 acclereration S normal moves T filmanent only moves
  1969. {
  1970. if(code_seen('S')) acceleration = code_value() ;
  1971. if(code_seen('T')) retract_acceleration = code_value() ;
  1972. }
  1973. break;
  1974. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  1975. {
  1976. if(code_seen('S')) minimumfeedrate = code_value();
  1977. if(code_seen('T')) mintravelfeedrate = code_value();
  1978. if(code_seen('B')) minsegmenttime = code_value() ;
  1979. if(code_seen('X')) max_xy_jerk = code_value() ;
  1980. if(code_seen('Z')) max_z_jerk = code_value() ;
  1981. if(code_seen('E')) max_e_jerk = code_value() ;
  1982. }
  1983. break;
  1984. case 206: // M206 additional homeing offset
  1985. for(int8_t i=0; i < 3; i++)
  1986. {
  1987. if(code_seen(axis_codes[i])) add_homeing[i] = code_value();
  1988. }
  1989. break;
  1990. #ifdef DELTA
  1991. case 666: // M666 set delta endstop adjustemnt
  1992. for(int8_t i=0; i < 3; i++)
  1993. {
  1994. if(code_seen(axis_codes[i])) endstop_adj[i] = code_value();
  1995. }
  1996. break;
  1997. #endif
  1998. #ifdef FWRETRACT
  1999. case 207: //M207 - set retract length S[positive mm] F[feedrate mm/sec] Z[additional zlift/hop]
  2000. {
  2001. if(code_seen('S'))
  2002. {
  2003. retract_length = code_value() ;
  2004. }
  2005. if(code_seen('F'))
  2006. {
  2007. retract_feedrate = code_value() ;
  2008. }
  2009. if(code_seen('Z'))
  2010. {
  2011. retract_zlift = code_value() ;
  2012. }
  2013. }break;
  2014. case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
  2015. {
  2016. if(code_seen('S'))
  2017. {
  2018. retract_recover_length = code_value() ;
  2019. }
  2020. if(code_seen('F'))
  2021. {
  2022. retract_recover_feedrate = code_value() ;
  2023. }
  2024. }break;
  2025. case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  2026. {
  2027. if(code_seen('S'))
  2028. {
  2029. int t= code_value() ;
  2030. switch(t)
  2031. {
  2032. case 0: autoretract_enabled=false;retracted=false;break;
  2033. case 1: autoretract_enabled=true;retracted=false;break;
  2034. default:
  2035. SERIAL_ECHO_START;
  2036. SERIAL_ECHOPGM(MSG_UNKNOWN_COMMAND);
  2037. SERIAL_ECHO(cmdbuffer[bufindr]);
  2038. SERIAL_ECHOLNPGM("\"");
  2039. }
  2040. }
  2041. }break;
  2042. #endif // FWRETRACT
  2043. #if EXTRUDERS > 1
  2044. case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  2045. {
  2046. if(setTargetedHotend(218)){
  2047. break;
  2048. }
  2049. if(code_seen('X'))
  2050. {
  2051. extruder_offset[X_AXIS][tmp_extruder] = code_value();
  2052. }
  2053. if(code_seen('Y'))
  2054. {
  2055. extruder_offset[Y_AXIS][tmp_extruder] = code_value();
  2056. }
  2057. #ifdef DUAL_X_CARRIAGE
  2058. if(code_seen('Z'))
  2059. {
  2060. extruder_offset[Z_AXIS][tmp_extruder] = code_value();
  2061. }
  2062. #endif
  2063. SERIAL_ECHO_START;
  2064. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  2065. for(tmp_extruder = 0; tmp_extruder < EXTRUDERS; tmp_extruder++)
  2066. {
  2067. SERIAL_ECHO(" ");
  2068. SERIAL_ECHO(extruder_offset[X_AXIS][tmp_extruder]);
  2069. SERIAL_ECHO(",");
  2070. SERIAL_ECHO(extruder_offset[Y_AXIS][tmp_extruder]);
  2071. #ifdef DUAL_X_CARRIAGE
  2072. SERIAL_ECHO(",");
  2073. SERIAL_ECHO(extruder_offset[Z_AXIS][tmp_extruder]);
  2074. #endif
  2075. }
  2076. SERIAL_ECHOLN("");
  2077. }break;
  2078. #endif
  2079. case 220: // M220 S<factor in percent>- set speed factor override percentage
  2080. {
  2081. if(code_seen('S'))
  2082. {
  2083. feedmultiply = code_value() ;
  2084. }
  2085. }
  2086. break;
  2087. case 221: // M221 S<factor in percent>- set extrude factor override percentage
  2088. {
  2089. if(code_seen('S'))
  2090. {
  2091. extrudemultiply = code_value() ;
  2092. }
  2093. }
  2094. break;
  2095. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  2096. {
  2097. if(code_seen('P')){
  2098. int pin_number = code_value(); // pin number
  2099. int pin_state = -1; // required pin state - default is inverted
  2100. if(code_seen('S')) pin_state = code_value(); // required pin state
  2101. if(pin_state >= -1 && pin_state <= 1){
  2102. for(int8_t i = 0; i < (int8_t)sizeof(sensitive_pins); i++)
  2103. {
  2104. if (sensitive_pins[i] == pin_number)
  2105. {
  2106. pin_number = -1;
  2107. break;
  2108. }
  2109. }
  2110. if (pin_number > -1)
  2111. {
  2112. st_synchronize();
  2113. pinMode(pin_number, INPUT);
  2114. int target;
  2115. switch(pin_state){
  2116. case 1:
  2117. target = HIGH;
  2118. break;
  2119. case 0:
  2120. target = LOW;
  2121. break;
  2122. case -1:
  2123. target = !digitalRead(pin_number);
  2124. break;
  2125. }
  2126. while(digitalRead(pin_number) != target){
  2127. manage_heater();
  2128. manage_inactivity();
  2129. lcd_update();
  2130. }
  2131. }
  2132. }
  2133. }
  2134. }
  2135. break;
  2136. #if NUM_SERVOS > 0
  2137. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  2138. {
  2139. int servo_index = -1;
  2140. int servo_position = 0;
  2141. if (code_seen('P'))
  2142. servo_index = code_value();
  2143. if (code_seen('S')) {
  2144. servo_position = code_value();
  2145. if ((servo_index >= 0) && (servo_index < NUM_SERVOS)) {
  2146. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  2147. servos[servo_index].attach(0);
  2148. #endif
  2149. servos[servo_index].write(servo_position);
  2150. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  2151. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  2152. servos[servo_index].detach();
  2153. #endif
  2154. }
  2155. else {
  2156. SERIAL_ECHO_START;
  2157. SERIAL_ECHO("Servo ");
  2158. SERIAL_ECHO(servo_index);
  2159. SERIAL_ECHOLN(" out of range");
  2160. }
  2161. }
  2162. else if (servo_index >= 0) {
  2163. SERIAL_PROTOCOL(MSG_OK);
  2164. SERIAL_PROTOCOL(" Servo ");
  2165. SERIAL_PROTOCOL(servo_index);
  2166. SERIAL_PROTOCOL(": ");
  2167. SERIAL_PROTOCOL(servos[servo_index].read());
  2168. SERIAL_PROTOCOLLN("");
  2169. }
  2170. }
  2171. break;
  2172. #endif // NUM_SERVOS > 0
  2173. #if LARGE_FLASH == true && ( BEEPER > 0 || defined(ULTRALCD) )
  2174. case 300: // M300
  2175. {
  2176. int beepS = code_seen('S') ? code_value() : 110;
  2177. int beepP = code_seen('P') ? code_value() : 1000;
  2178. if (beepS > 0)
  2179. {
  2180. #if BEEPER > 0
  2181. tone(BEEPER, beepS);
  2182. delay(beepP);
  2183. noTone(BEEPER);
  2184. #elif defined(ULTRALCD)
  2185. lcd_buzz(beepS, beepP);
  2186. #endif
  2187. }
  2188. else
  2189. {
  2190. delay(beepP);
  2191. }
  2192. }
  2193. break;
  2194. #endif // M300
  2195. #ifdef PIDTEMP
  2196. case 301: // M301
  2197. {
  2198. if(code_seen('P')) Kp = code_value();
  2199. if(code_seen('I')) Ki = scalePID_i(code_value());
  2200. if(code_seen('D')) Kd = scalePID_d(code_value());
  2201. #ifdef PID_ADD_EXTRUSION_RATE
  2202. if(code_seen('C')) Kc = code_value();
  2203. #endif
  2204. updatePID();
  2205. SERIAL_PROTOCOL(MSG_OK);
  2206. SERIAL_PROTOCOL(" p:");
  2207. SERIAL_PROTOCOL(Kp);
  2208. SERIAL_PROTOCOL(" i:");
  2209. SERIAL_PROTOCOL(unscalePID_i(Ki));
  2210. SERIAL_PROTOCOL(" d:");
  2211. SERIAL_PROTOCOL(unscalePID_d(Kd));
  2212. #ifdef PID_ADD_EXTRUSION_RATE
  2213. SERIAL_PROTOCOL(" c:");
  2214. //Kc does not have scaling applied above, or in resetting defaults
  2215. SERIAL_PROTOCOL(Kc);
  2216. #endif
  2217. SERIAL_PROTOCOLLN("");
  2218. }
  2219. break;
  2220. #endif //PIDTEMP
  2221. #ifdef PIDTEMPBED
  2222. case 304: // M304
  2223. {
  2224. if(code_seen('P')) bedKp = code_value();
  2225. if(code_seen('I')) bedKi = scalePID_i(code_value());
  2226. if(code_seen('D')) bedKd = scalePID_d(code_value());
  2227. updatePID();
  2228. SERIAL_PROTOCOL(MSG_OK);
  2229. SERIAL_PROTOCOL(" p:");
  2230. SERIAL_PROTOCOL(bedKp);
  2231. SERIAL_PROTOCOL(" i:");
  2232. SERIAL_PROTOCOL(unscalePID_i(bedKi));
  2233. SERIAL_PROTOCOL(" d:");
  2234. SERIAL_PROTOCOL(unscalePID_d(bedKd));
  2235. SERIAL_PROTOCOLLN("");
  2236. }
  2237. break;
  2238. #endif //PIDTEMP
  2239. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  2240. {
  2241. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  2242. const uint8_t NUM_PULSES=16;
  2243. const float PULSE_LENGTH=0.01524;
  2244. for(int i=0; i < NUM_PULSES; i++) {
  2245. WRITE(PHOTOGRAPH_PIN, HIGH);
  2246. _delay_ms(PULSE_LENGTH);
  2247. WRITE(PHOTOGRAPH_PIN, LOW);
  2248. _delay_ms(PULSE_LENGTH);
  2249. }
  2250. delay(7.33);
  2251. for(int i=0; i < NUM_PULSES; i++) {
  2252. WRITE(PHOTOGRAPH_PIN, HIGH);
  2253. _delay_ms(PULSE_LENGTH);
  2254. WRITE(PHOTOGRAPH_PIN, LOW);
  2255. _delay_ms(PULSE_LENGTH);
  2256. }
  2257. #endif
  2258. }
  2259. break;
  2260. #ifdef DOGLCD
  2261. case 250: // M250 Set LCD contrast value: C<value> (value 0..63)
  2262. {
  2263. if (code_seen('C')) {
  2264. lcd_setcontrast( ((int)code_value())&63 );
  2265. }
  2266. SERIAL_PROTOCOLPGM("lcd contrast value: ");
  2267. SERIAL_PROTOCOL(lcd_contrast);
  2268. SERIAL_PROTOCOLLN("");
  2269. }
  2270. break;
  2271. #endif
  2272. #ifdef PREVENT_DANGEROUS_EXTRUDE
  2273. case 302: // allow cold extrudes, or set the minimum extrude temperature
  2274. {
  2275. float temp = .0;
  2276. if (code_seen('S')) temp=code_value();
  2277. set_extrude_min_temp(temp);
  2278. }
  2279. break;
  2280. #endif
  2281. case 303: // M303 PID autotune
  2282. {
  2283. float temp = 150.0;
  2284. int e=0;
  2285. int c=5;
  2286. if (code_seen('E')) e=code_value();
  2287. if (e<0)
  2288. temp=70;
  2289. if (code_seen('S')) temp=code_value();
  2290. if (code_seen('C')) c=code_value();
  2291. PID_autotune(temp, e, c);
  2292. }
  2293. break;
  2294. case 400: // M400 finish all moves
  2295. {
  2296. st_synchronize();
  2297. }
  2298. break;
  2299. #if defined(ENABLE_AUTO_BED_LEVELING) && defined(SERVO_ENDSTOPS)
  2300. case 401:
  2301. {
  2302. engage_z_probe(); // Engage Z Servo endstop if available
  2303. }
  2304. break;
  2305. case 402:
  2306. {
  2307. retract_z_probe(); // Retract Z Servo endstop if enabled
  2308. }
  2309. break;
  2310. #endif
  2311. case 500: // M500 Store settings in EEPROM
  2312. {
  2313. Config_StoreSettings();
  2314. }
  2315. break;
  2316. case 501: // M501 Read settings from EEPROM
  2317. {
  2318. Config_RetrieveSettings();
  2319. }
  2320. break;
  2321. case 502: // M502 Revert to default settings
  2322. {
  2323. Config_ResetDefault();
  2324. }
  2325. break;
  2326. case 503: // M503 print settings currently in memory
  2327. {
  2328. Config_PrintSettings();
  2329. }
  2330. break;
  2331. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  2332. case 540:
  2333. {
  2334. if(code_seen('S')) abort_on_endstop_hit = code_value() > 0;
  2335. }
  2336. break;
  2337. #endif
  2338. #ifdef FILAMENTCHANGEENABLE
  2339. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  2340. {
  2341. float target[4];
  2342. float lastpos[4];
  2343. target[X_AXIS]=current_position[X_AXIS];
  2344. target[Y_AXIS]=current_position[Y_AXIS];
  2345. target[Z_AXIS]=current_position[Z_AXIS];
  2346. target[E_AXIS]=current_position[E_AXIS];
  2347. lastpos[X_AXIS]=current_position[X_AXIS];
  2348. lastpos[Y_AXIS]=current_position[Y_AXIS];
  2349. lastpos[Z_AXIS]=current_position[Z_AXIS];
  2350. lastpos[E_AXIS]=current_position[E_AXIS];
  2351. //retract by E
  2352. if(code_seen('E'))
  2353. {
  2354. target[E_AXIS]+= code_value();
  2355. }
  2356. else
  2357. {
  2358. #ifdef FILAMENTCHANGE_FIRSTRETRACT
  2359. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  2360. #endif
  2361. }
  2362. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder);
  2363. //lift Z
  2364. if(code_seen('Z'))
  2365. {
  2366. target[Z_AXIS]+= code_value();
  2367. }
  2368. else
  2369. {
  2370. #ifdef FILAMENTCHANGE_ZADD
  2371. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  2372. #endif
  2373. }
  2374. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder);
  2375. //move xy
  2376. if(code_seen('X'))
  2377. {
  2378. target[X_AXIS]+= code_value();
  2379. }
  2380. else
  2381. {
  2382. #ifdef FILAMENTCHANGE_XPOS
  2383. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  2384. #endif
  2385. }
  2386. if(code_seen('Y'))
  2387. {
  2388. target[Y_AXIS]= code_value();
  2389. }
  2390. else
  2391. {
  2392. #ifdef FILAMENTCHANGE_YPOS
  2393. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  2394. #endif
  2395. }
  2396. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder);
  2397. if(code_seen('L'))
  2398. {
  2399. target[E_AXIS]+= code_value();
  2400. }
  2401. else
  2402. {
  2403. #ifdef FILAMENTCHANGE_FINALRETRACT
  2404. target[E_AXIS]+= FILAMENTCHANGE_FINALRETRACT ;
  2405. #endif
  2406. }
  2407. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder);
  2408. //finish moves
  2409. st_synchronize();
  2410. //disable extruder steppers so filament can be removed
  2411. disable_e0();
  2412. disable_e1();
  2413. disable_e2();
  2414. delay(100);
  2415. LCD_ALERTMESSAGEPGM(MSG_FILAMENTCHANGE);
  2416. uint8_t cnt=0;
  2417. while(!lcd_clicked()){
  2418. cnt++;
  2419. manage_heater();
  2420. manage_inactivity();
  2421. lcd_update();
  2422. if(cnt==0)
  2423. {
  2424. #if BEEPER > 0
  2425. SET_OUTPUT(BEEPER);
  2426. WRITE(BEEPER,HIGH);
  2427. delay(3);
  2428. WRITE(BEEPER,LOW);
  2429. delay(3);
  2430. #else
  2431. lcd_buzz(1000/6,100);
  2432. #endif
  2433. }
  2434. }
  2435. //return to normal
  2436. if(code_seen('L'))
  2437. {
  2438. target[E_AXIS]+= -code_value();
  2439. }
  2440. else
  2441. {
  2442. #ifdef FILAMENTCHANGE_FINALRETRACT
  2443. target[E_AXIS]+=(-1)*FILAMENTCHANGE_FINALRETRACT ;
  2444. #endif
  2445. }
  2446. current_position[E_AXIS]=target[E_AXIS]; //the long retract of L is compensated by manual filament feeding
  2447. plan_set_e_position(current_position[E_AXIS]);
  2448. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder); //should do nothing
  2449. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder); //move xy back
  2450. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder); //move z back
  2451. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], lastpos[E_AXIS], feedrate/60, active_extruder); //final untretract
  2452. }
  2453. break;
  2454. #endif //FILAMENTCHANGEENABLE
  2455. #ifdef DUAL_X_CARRIAGE
  2456. case 605: // Set dual x-carriage movement mode:
  2457. // M605 S0: Full control mode. The slicer has full control over x-carriage movement
  2458. // M605 S1: Auto-park mode. The inactive head will auto park/unpark without slicer involvement
  2459. // M605 S2 [Xnnn] [Rmmm]: Duplication mode. The second extruder will duplicate the first with nnn
  2460. // millimeters x-offset and an optional differential hotend temperature of
  2461. // mmm degrees. E.g., with "M605 S2 X100 R2" the second extruder will duplicate
  2462. // the first with a spacing of 100mm in the x direction and 2 degrees hotter.
  2463. //
  2464. // Note: the X axis should be homed after changing dual x-carriage mode.
  2465. {
  2466. st_synchronize();
  2467. if (code_seen('S'))
  2468. dual_x_carriage_mode = code_value();
  2469. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE)
  2470. {
  2471. if (code_seen('X'))
  2472. duplicate_extruder_x_offset = max(code_value(),X2_MIN_POS - x_home_pos(0));
  2473. if (code_seen('R'))
  2474. duplicate_extruder_temp_offset = code_value();
  2475. SERIAL_ECHO_START;
  2476. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  2477. SERIAL_ECHO(" ");
  2478. SERIAL_ECHO(extruder_offset[X_AXIS][0]);
  2479. SERIAL_ECHO(",");
  2480. SERIAL_ECHO(extruder_offset[Y_AXIS][0]);
  2481. SERIAL_ECHO(" ");
  2482. SERIAL_ECHO(duplicate_extruder_x_offset);
  2483. SERIAL_ECHO(",");
  2484. SERIAL_ECHOLN(extruder_offset[Y_AXIS][1]);
  2485. }
  2486. else if (dual_x_carriage_mode != DXC_FULL_CONTROL_MODE && dual_x_carriage_mode != DXC_AUTO_PARK_MODE)
  2487. {
  2488. dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  2489. }
  2490. active_extruder_parked = false;
  2491. extruder_duplication_enabled = false;
  2492. delayed_move_time = 0;
  2493. }
  2494. break;
  2495. #endif //DUAL_X_CARRIAGE
  2496. case 907: // M907 Set digital trimpot motor current using axis codes.
  2497. {
  2498. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  2499. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_current(i,code_value());
  2500. if(code_seen('B')) digipot_current(4,code_value());
  2501. if(code_seen('S')) for(int i=0;i<=4;i++) digipot_current(i,code_value());
  2502. #endif
  2503. }
  2504. break;
  2505. case 908: // M908 Control digital trimpot directly.
  2506. {
  2507. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  2508. uint8_t channel,current;
  2509. if(code_seen('P')) channel=code_value();
  2510. if(code_seen('S')) current=code_value();
  2511. digitalPotWrite(channel, current);
  2512. #endif
  2513. }
  2514. break;
  2515. case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  2516. {
  2517. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  2518. if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value());
  2519. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_mode(i,(uint8_t)code_value());
  2520. if(code_seen('B')) microstep_mode(4,code_value());
  2521. microstep_readings();
  2522. #endif
  2523. }
  2524. break;
  2525. case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  2526. {
  2527. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  2528. if(code_seen('S')) switch((int)code_value())
  2529. {
  2530. case 1:
  2531. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,code_value(),-1);
  2532. if(code_seen('B')) microstep_ms(4,code_value(),-1);
  2533. break;
  2534. case 2:
  2535. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,-1,code_value());
  2536. if(code_seen('B')) microstep_ms(4,-1,code_value());
  2537. break;
  2538. }
  2539. microstep_readings();
  2540. #endif
  2541. }
  2542. break;
  2543. case 999: // M999: Restart after being stopped
  2544. Stopped = false;
  2545. lcd_reset_alert_level();
  2546. gcode_LastN = Stopped_gcode_LastN;
  2547. FlushSerialRequestResend();
  2548. break;
  2549. }
  2550. }
  2551. else if(code_seen('T'))
  2552. {
  2553. tmp_extruder = code_value();
  2554. if(tmp_extruder >= EXTRUDERS) {
  2555. SERIAL_ECHO_START;
  2556. SERIAL_ECHO("T");
  2557. SERIAL_ECHO(tmp_extruder);
  2558. SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
  2559. }
  2560. else {
  2561. boolean make_move = false;
  2562. if(code_seen('F')) {
  2563. make_move = true;
  2564. next_feedrate = code_value();
  2565. if(next_feedrate > 0.0) {
  2566. feedrate = next_feedrate;
  2567. }
  2568. }
  2569. #if EXTRUDERS > 1
  2570. if(tmp_extruder != active_extruder) {
  2571. // Save current position to return to after applying extruder offset
  2572. memcpy(destination, current_position, sizeof(destination));
  2573. #ifdef DUAL_X_CARRIAGE
  2574. if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE && Stopped == false &&
  2575. (delayed_move_time != 0 || current_position[X_AXIS] != x_home_pos(active_extruder)))
  2576. {
  2577. // Park old head: 1) raise 2) move to park position 3) lower
  2578. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
  2579. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  2580. plan_buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
  2581. current_position[E_AXIS], max_feedrate[X_AXIS], active_extruder);
  2582. plan_buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS],
  2583. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  2584. st_synchronize();
  2585. }
  2586. // apply Y & Z extruder offset (x offset is already used in determining home pos)
  2587. current_position[Y_AXIS] = current_position[Y_AXIS] -
  2588. extruder_offset[Y_AXIS][active_extruder] +
  2589. extruder_offset[Y_AXIS][tmp_extruder];
  2590. current_position[Z_AXIS] = current_position[Z_AXIS] -
  2591. extruder_offset[Z_AXIS][active_extruder] +
  2592. extruder_offset[Z_AXIS][tmp_extruder];
  2593. active_extruder = tmp_extruder;
  2594. // This function resets the max/min values - the current position may be overwritten below.
  2595. axis_is_at_home(X_AXIS);
  2596. if (dual_x_carriage_mode == DXC_FULL_CONTROL_MODE)
  2597. {
  2598. current_position[X_AXIS] = inactive_extruder_x_pos;
  2599. inactive_extruder_x_pos = destination[X_AXIS];
  2600. }
  2601. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE)
  2602. {
  2603. active_extruder_parked = (active_extruder == 0); // this triggers the second extruder to move into the duplication position
  2604. if (active_extruder == 0 || active_extruder_parked)
  2605. current_position[X_AXIS] = inactive_extruder_x_pos;
  2606. else
  2607. current_position[X_AXIS] = destination[X_AXIS] + duplicate_extruder_x_offset;
  2608. inactive_extruder_x_pos = destination[X_AXIS];
  2609. extruder_duplication_enabled = false;
  2610. }
  2611. else
  2612. {
  2613. // record raised toolhead position for use by unpark
  2614. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  2615. raised_parked_position[Z_AXIS] += TOOLCHANGE_UNPARK_ZLIFT;
  2616. active_extruder_parked = true;
  2617. delayed_move_time = 0;
  2618. }
  2619. #else
  2620. // Offset extruder (only by XY)
  2621. int i;
  2622. for(i = 0; i < 2; i++) {
  2623. current_position[i] = current_position[i] -
  2624. extruder_offset[i][active_extruder] +
  2625. extruder_offset[i][tmp_extruder];
  2626. }
  2627. // Set the new active extruder and position
  2628. active_extruder = tmp_extruder;
  2629. #endif //else DUAL_X_CARRIAGE
  2630. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2631. // Move to the old position if 'F' was in the parameters
  2632. if(make_move && Stopped == false) {
  2633. prepare_move();
  2634. }
  2635. }
  2636. #endif
  2637. SERIAL_ECHO_START;
  2638. SERIAL_ECHO(MSG_ACTIVE_EXTRUDER);
  2639. SERIAL_PROTOCOLLN((int)active_extruder);
  2640. }
  2641. }
  2642. else
  2643. {
  2644. SERIAL_ECHO_START;
  2645. SERIAL_ECHOPGM(MSG_UNKNOWN_COMMAND);
  2646. SERIAL_ECHO(cmdbuffer[bufindr]);
  2647. SERIAL_ECHOLNPGM("\"");
  2648. }
  2649. ClearToSend();
  2650. }
  2651. void FlushSerialRequestResend()
  2652. {
  2653. //char cmdbuffer[bufindr][100]="Resend:";
  2654. MYSERIAL.flush();
  2655. SERIAL_PROTOCOLPGM(MSG_RESEND);
  2656. SERIAL_PROTOCOLLN(gcode_LastN + 1);
  2657. ClearToSend();
  2658. }
  2659. void ClearToSend()
  2660. {
  2661. previous_millis_cmd = millis();
  2662. #ifdef SDSUPPORT
  2663. if(fromsd[bufindr])
  2664. return;
  2665. #endif //SDSUPPORT
  2666. SERIAL_PROTOCOLLNPGM(MSG_OK);
  2667. }
  2668. void get_coordinates()
  2669. {
  2670. bool seen[4]={false,false,false,false};
  2671. for(int8_t i=0; i < NUM_AXIS; i++) {
  2672. if(code_seen(axis_codes[i]))
  2673. {
  2674. destination[i] = (float)code_value() + (axis_relative_modes[i] || relative_mode)*current_position[i];
  2675. seen[i]=true;
  2676. }
  2677. else destination[i] = current_position[i]; //Are these else lines really needed?
  2678. }
  2679. if(code_seen('F')) {
  2680. next_feedrate = code_value();
  2681. if(next_feedrate > 0.0) feedrate = next_feedrate;
  2682. }
  2683. #ifdef FWRETRACT
  2684. if(autoretract_enabled)
  2685. if( !(seen[X_AXIS] || seen[Y_AXIS] || seen[Z_AXIS]) && seen[E_AXIS])
  2686. {
  2687. float echange=destination[E_AXIS]-current_position[E_AXIS];
  2688. if(echange<-MIN_RETRACT) //retract
  2689. {
  2690. if(!retracted)
  2691. {
  2692. destination[Z_AXIS]+=retract_zlift; //not sure why chaninging current_position negatively does not work.
  2693. //if slicer retracted by echange=-1mm and you want to retract 3mm, corrrectede=-2mm additionally
  2694. float correctede=-echange-retract_length;
  2695. //to generate the additional steps, not the destination is changed, but inversely the current position
  2696. current_position[E_AXIS]+=-correctede;
  2697. feedrate=retract_feedrate;
  2698. retracted=true;
  2699. }
  2700. }
  2701. else
  2702. if(echange>MIN_RETRACT) //retract_recover
  2703. {
  2704. if(retracted)
  2705. {
  2706. //current_position[Z_AXIS]+=-retract_zlift;
  2707. //if slicer retracted_recovered by echange=+1mm and you want to retract_recover 3mm, corrrectede=2mm additionally
  2708. float correctede=-echange+1*retract_length+retract_recover_length; //total unretract=retract_length+retract_recover_length[surplus]
  2709. current_position[E_AXIS]+=correctede; //to generate the additional steps, not the destination is changed, but inversely the current position
  2710. feedrate=retract_recover_feedrate;
  2711. retracted=false;
  2712. }
  2713. }
  2714. }
  2715. #endif //FWRETRACT
  2716. }
  2717. void get_arc_coordinates()
  2718. {
  2719. #ifdef SF_ARC_FIX
  2720. bool relative_mode_backup = relative_mode;
  2721. relative_mode = true;
  2722. #endif
  2723. get_coordinates();
  2724. #ifdef SF_ARC_FIX
  2725. relative_mode=relative_mode_backup;
  2726. #endif
  2727. if(code_seen('I')) {
  2728. offset[0] = code_value();
  2729. }
  2730. else {
  2731. offset[0] = 0.0;
  2732. }
  2733. if(code_seen('J')) {
  2734. offset[1] = code_value();
  2735. }
  2736. else {
  2737. offset[1] = 0.0;
  2738. }
  2739. }
  2740. void clamp_to_software_endstops(float target[3])
  2741. {
  2742. if (min_software_endstops) {
  2743. if (target[X_AXIS] < min_pos[X_AXIS]) target[X_AXIS] = min_pos[X_AXIS];
  2744. if (target[Y_AXIS] < min_pos[Y_AXIS]) target[Y_AXIS] = min_pos[Y_AXIS];
  2745. if (target[Z_AXIS] < min_pos[Z_AXIS]) target[Z_AXIS] = min_pos[Z_AXIS];
  2746. }
  2747. if (max_software_endstops) {
  2748. if (target[X_AXIS] > max_pos[X_AXIS]) target[X_AXIS] = max_pos[X_AXIS];
  2749. if (target[Y_AXIS] > max_pos[Y_AXIS]) target[Y_AXIS] = max_pos[Y_AXIS];
  2750. if (target[Z_AXIS] > max_pos[Z_AXIS]) target[Z_AXIS] = max_pos[Z_AXIS];
  2751. }
  2752. }
  2753. #ifdef DELTA
  2754. void calculate_delta(float cartesian[3])
  2755. {
  2756. delta[X_AXIS] = sqrt(DELTA_DIAGONAL_ROD_2
  2757. - sq(DELTA_TOWER1_X-cartesian[X_AXIS])
  2758. - sq(DELTA_TOWER1_Y-cartesian[Y_AXIS])
  2759. ) + cartesian[Z_AXIS];
  2760. delta[Y_AXIS] = sqrt(DELTA_DIAGONAL_ROD_2
  2761. - sq(DELTA_TOWER2_X-cartesian[X_AXIS])
  2762. - sq(DELTA_TOWER2_Y-cartesian[Y_AXIS])
  2763. ) + cartesian[Z_AXIS];
  2764. delta[Z_AXIS] = sqrt(DELTA_DIAGONAL_ROD_2
  2765. - sq(DELTA_TOWER3_X-cartesian[X_AXIS])
  2766. - sq(DELTA_TOWER3_Y-cartesian[Y_AXIS])
  2767. ) + cartesian[Z_AXIS];
  2768. /*
  2769. SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);
  2770. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]);
  2771. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]);
  2772. SERIAL_ECHOPGM("delta x="); SERIAL_ECHO(delta[X_AXIS]);
  2773. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(delta[Y_AXIS]);
  2774. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(delta[Z_AXIS]);
  2775. */
  2776. }
  2777. #endif
  2778. void prepare_move()
  2779. {
  2780. clamp_to_software_endstops(destination);
  2781. previous_millis_cmd = millis();
  2782. #ifdef DELTA
  2783. float difference[NUM_AXIS];
  2784. for (int8_t i=0; i < NUM_AXIS; i++) {
  2785. difference[i] = destination[i] - current_position[i];
  2786. }
  2787. float cartesian_mm = sqrt(sq(difference[X_AXIS]) +
  2788. sq(difference[Y_AXIS]) +
  2789. sq(difference[Z_AXIS]));
  2790. if (cartesian_mm < 0.000001) { cartesian_mm = abs(difference[E_AXIS]); }
  2791. if (cartesian_mm < 0.000001) { return; }
  2792. float seconds = 6000 * cartesian_mm / feedrate / feedmultiply;
  2793. int steps = max(1, int(DELTA_SEGMENTS_PER_SECOND * seconds));
  2794. // SERIAL_ECHOPGM("mm="); SERIAL_ECHO(cartesian_mm);
  2795. // SERIAL_ECHOPGM(" seconds="); SERIAL_ECHO(seconds);
  2796. // SERIAL_ECHOPGM(" steps="); SERIAL_ECHOLN(steps);
  2797. for (int s = 1; s <= steps; s++) {
  2798. float fraction = float(s) / float(steps);
  2799. for(int8_t i=0; i < NUM_AXIS; i++) {
  2800. destination[i] = current_position[i] + difference[i] * fraction;
  2801. }
  2802. calculate_delta(destination);
  2803. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS],
  2804. destination[E_AXIS], feedrate*feedmultiply/60/100.0,
  2805. active_extruder);
  2806. }
  2807. #else
  2808. #ifdef DUAL_X_CARRIAGE
  2809. if (active_extruder_parked)
  2810. {
  2811. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && active_extruder == 0)
  2812. {
  2813. // move duplicate extruder into correct duplication position.
  2814. plan_set_position(inactive_extruder_x_pos, current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2815. plan_buffer_line(current_position[X_AXIS] + duplicate_extruder_x_offset, current_position[Y_AXIS], current_position[Z_AXIS],
  2816. current_position[E_AXIS], max_feedrate[X_AXIS], 1);
  2817. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2818. st_synchronize();
  2819. extruder_duplication_enabled = true;
  2820. active_extruder_parked = false;
  2821. }
  2822. else if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE) // handle unparking of head
  2823. {
  2824. if (current_position[E_AXIS] == destination[E_AXIS])
  2825. {
  2826. // this is a travel move - skit it but keep track of current position (so that it can later
  2827. // be used as start of first non-travel move)
  2828. if (delayed_move_time != 0xFFFFFFFFUL)
  2829. {
  2830. memcpy(current_position, destination, sizeof(current_position));
  2831. if (destination[Z_AXIS] > raised_parked_position[Z_AXIS])
  2832. raised_parked_position[Z_AXIS] = destination[Z_AXIS];
  2833. delayed_move_time = millis();
  2834. return;
  2835. }
  2836. }
  2837. delayed_move_time = 0;
  2838. // unpark extruder: 1) raise, 2) move into starting XY position, 3) lower
  2839. plan_buffer_line(raised_parked_position[X_AXIS], raised_parked_position[Y_AXIS], raised_parked_position[Z_AXIS], current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  2840. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], raised_parked_position[Z_AXIS],
  2841. current_position[E_AXIS], min(max_feedrate[X_AXIS],max_feedrate[Y_AXIS]), active_extruder);
  2842. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS],
  2843. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  2844. active_extruder_parked = false;
  2845. }
  2846. }
  2847. #endif //DUAL_X_CARRIAGE
  2848. // Do not use feedmultiply for E or Z only moves
  2849. if( (current_position[X_AXIS] == destination [X_AXIS]) && (current_position[Y_AXIS] == destination [Y_AXIS])) {
  2850. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2851. }
  2852. else {
  2853. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply/60/100.0, active_extruder);
  2854. }
  2855. #endif //else DELTA
  2856. for(int8_t i=0; i < NUM_AXIS; i++) {
  2857. current_position[i] = destination[i];
  2858. }
  2859. }
  2860. void prepare_arc_move(char isclockwise) {
  2861. float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
  2862. // Trace the arc
  2863. mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedmultiply/60/100.0, r, isclockwise, active_extruder);
  2864. // As far as the parser is concerned, the position is now == target. In reality the
  2865. // motion control system might still be processing the action and the real tool position
  2866. // in any intermediate location.
  2867. for(int8_t i=0; i < NUM_AXIS; i++) {
  2868. current_position[i] = destination[i];
  2869. }
  2870. previous_millis_cmd = millis();
  2871. }
  2872. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  2873. #if defined(FAN_PIN)
  2874. #if CONTROLLERFAN_PIN == FAN_PIN
  2875. #error "You cannot set CONTROLLERFAN_PIN equal to FAN_PIN"
  2876. #endif
  2877. #endif
  2878. unsigned long lastMotor = 0; //Save the time for when a motor was turned on last
  2879. unsigned long lastMotorCheck = 0;
  2880. void controllerFan()
  2881. {
  2882. if ((millis() - lastMotorCheck) >= 2500) //Not a time critical function, so we only check every 2500ms
  2883. {
  2884. lastMotorCheck = millis();
  2885. if(!READ(X_ENABLE_PIN) || !READ(Y_ENABLE_PIN) || !READ(Z_ENABLE_PIN) || (soft_pwm_bed > 0)
  2886. #if EXTRUDERS > 2
  2887. || !READ(E2_ENABLE_PIN)
  2888. #endif
  2889. #if EXTRUDER > 1
  2890. #if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1
  2891. || !READ(X2_ENABLE_PIN)
  2892. #endif
  2893. || !READ(E1_ENABLE_PIN)
  2894. #endif
  2895. || !READ(E0_ENABLE_PIN)) //If any of the drivers are enabled...
  2896. {
  2897. lastMotor = millis(); //... set time to NOW so the fan will turn on
  2898. }
  2899. if ((millis() - lastMotor) >= (CONTROLLERFAN_SECS*1000UL) || lastMotor == 0) //If the last time any driver was enabled, is longer since than CONTROLLERSEC...
  2900. {
  2901. digitalWrite(CONTROLLERFAN_PIN, 0);
  2902. analogWrite(CONTROLLERFAN_PIN, 0);
  2903. }
  2904. else
  2905. {
  2906. // allows digital or PWM fan output to be used (see M42 handling)
  2907. digitalWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  2908. analogWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  2909. }
  2910. }
  2911. }
  2912. #endif
  2913. #ifdef TEMP_STAT_LEDS
  2914. static bool blue_led = false;
  2915. static bool red_led = false;
  2916. static uint32_t stat_update = 0;
  2917. void handle_status_leds(void) {
  2918. float max_temp = 0.0;
  2919. if(millis() > stat_update) {
  2920. stat_update += 500; // Update every 0.5s
  2921. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  2922. max_temp = max(max_temp, degHotend(cur_extruder));
  2923. max_temp = max(max_temp, degTargetHotend(cur_extruder));
  2924. }
  2925. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  2926. max_temp = max(max_temp, degTargetBed());
  2927. max_temp = max(max_temp, degBed());
  2928. #endif
  2929. if((max_temp > 55.0) && (red_led == false)) {
  2930. digitalWrite(STAT_LED_RED, 1);
  2931. digitalWrite(STAT_LED_BLUE, 0);
  2932. red_led = true;
  2933. blue_led = false;
  2934. }
  2935. if((max_temp < 54.0) && (blue_led == false)) {
  2936. digitalWrite(STAT_LED_RED, 0);
  2937. digitalWrite(STAT_LED_BLUE, 1);
  2938. red_led = false;
  2939. blue_led = true;
  2940. }
  2941. }
  2942. }
  2943. #endif
  2944. void manage_inactivity()
  2945. {
  2946. if( (millis() - previous_millis_cmd) > max_inactive_time )
  2947. if(max_inactive_time)
  2948. kill();
  2949. if(stepper_inactive_time) {
  2950. if( (millis() - previous_millis_cmd) > stepper_inactive_time )
  2951. {
  2952. if(blocks_queued() == false) {
  2953. disable_x();
  2954. disable_y();
  2955. disable_z();
  2956. disable_e0();
  2957. disable_e1();
  2958. disable_e2();
  2959. }
  2960. }
  2961. }
  2962. #if defined(KILL_PIN) && KILL_PIN > -1
  2963. if( 0 == READ(KILL_PIN) )
  2964. kill();
  2965. #endif
  2966. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  2967. controllerFan(); //Check if fan should be turned on to cool stepper drivers down
  2968. #endif
  2969. #ifdef EXTRUDER_RUNOUT_PREVENT
  2970. if( (millis() - previous_millis_cmd) > EXTRUDER_RUNOUT_SECONDS*1000 )
  2971. if(degHotend(active_extruder)>EXTRUDER_RUNOUT_MINTEMP)
  2972. {
  2973. bool oldstatus=READ(E0_ENABLE_PIN);
  2974. enable_e0();
  2975. float oldepos=current_position[E_AXIS];
  2976. float oldedes=destination[E_AXIS];
  2977. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS],
  2978. current_position[E_AXIS]+EXTRUDER_RUNOUT_EXTRUDE*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS],
  2979. EXTRUDER_RUNOUT_SPEED/60.*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS], active_extruder);
  2980. current_position[E_AXIS]=oldepos;
  2981. destination[E_AXIS]=oldedes;
  2982. plan_set_e_position(oldepos);
  2983. previous_millis_cmd=millis();
  2984. st_synchronize();
  2985. WRITE(E0_ENABLE_PIN,oldstatus);
  2986. }
  2987. #endif
  2988. #if defined(DUAL_X_CARRIAGE)
  2989. // handle delayed move timeout
  2990. if (delayed_move_time != 0 && (millis() - delayed_move_time) > 1000 && Stopped == false)
  2991. {
  2992. // travel moves have been received so enact them
  2993. delayed_move_time = 0xFFFFFFFFUL; // force moves to be done
  2994. memcpy(destination,current_position,sizeof(destination));
  2995. prepare_move();
  2996. }
  2997. #endif
  2998. #ifdef TEMP_STAT_LEDS
  2999. handle_status_leds();
  3000. #endif
  3001. check_axes_activity();
  3002. }
  3003. void kill()
  3004. {
  3005. cli(); // Stop interrupts
  3006. disable_heater();
  3007. disable_x();
  3008. disable_y();
  3009. disable_z();
  3010. disable_e0();
  3011. disable_e1();
  3012. disable_e2();
  3013. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  3014. pinMode(PS_ON_PIN,INPUT);
  3015. #endif
  3016. SERIAL_ERROR_START;
  3017. SERIAL_ERRORLNPGM(MSG_ERR_KILLED);
  3018. LCD_ALERTMESSAGEPGM(MSG_KILLED);
  3019. suicide();
  3020. while(1) { /* Intentionally left empty */ } // Wait for reset
  3021. }
  3022. void Stop()
  3023. {
  3024. disable_heater();
  3025. if(Stopped == false) {
  3026. Stopped = true;
  3027. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  3028. SERIAL_ERROR_START;
  3029. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  3030. LCD_MESSAGEPGM(MSG_STOPPED);
  3031. }
  3032. }
  3033. bool IsStopped() { return Stopped; };
  3034. #ifdef FAST_PWM_FAN
  3035. void setPwmFrequency(uint8_t pin, int val)
  3036. {
  3037. val &= 0x07;
  3038. switch(digitalPinToTimer(pin))
  3039. {
  3040. #if defined(TCCR0A)
  3041. case TIMER0A:
  3042. case TIMER0B:
  3043. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  3044. // TCCR0B |= val;
  3045. break;
  3046. #endif
  3047. #if defined(TCCR1A)
  3048. case TIMER1A:
  3049. case TIMER1B:
  3050. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  3051. // TCCR1B |= val;
  3052. break;
  3053. #endif
  3054. #if defined(TCCR2)
  3055. case TIMER2:
  3056. case TIMER2:
  3057. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  3058. TCCR2 |= val;
  3059. break;
  3060. #endif
  3061. #if defined(TCCR2A)
  3062. case TIMER2A:
  3063. case TIMER2B:
  3064. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  3065. TCCR2B |= val;
  3066. break;
  3067. #endif
  3068. #if defined(TCCR3A)
  3069. case TIMER3A:
  3070. case TIMER3B:
  3071. case TIMER3C:
  3072. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  3073. TCCR3B |= val;
  3074. break;
  3075. #endif
  3076. #if defined(TCCR4A)
  3077. case TIMER4A:
  3078. case TIMER4B:
  3079. case TIMER4C:
  3080. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  3081. TCCR4B |= val;
  3082. break;
  3083. #endif
  3084. #if defined(TCCR5A)
  3085. case TIMER5A:
  3086. case TIMER5B:
  3087. case TIMER5C:
  3088. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  3089. TCCR5B |= val;
  3090. break;
  3091. #endif
  3092. }
  3093. }
  3094. #endif //FAST_PWM_FAN
  3095. bool setTargetedHotend(int code){
  3096. tmp_extruder = active_extruder;
  3097. if(code_seen('T')) {
  3098. tmp_extruder = code_value();
  3099. if(tmp_extruder >= EXTRUDERS) {
  3100. SERIAL_ECHO_START;
  3101. switch(code){
  3102. case 104:
  3103. SERIAL_ECHO(MSG_M104_INVALID_EXTRUDER);
  3104. break;
  3105. case 105:
  3106. SERIAL_ECHO(MSG_M105_INVALID_EXTRUDER);
  3107. break;
  3108. case 109:
  3109. SERIAL_ECHO(MSG_M109_INVALID_EXTRUDER);
  3110. break;
  3111. case 218:
  3112. SERIAL_ECHO(MSG_M218_INVALID_EXTRUDER);
  3113. break;
  3114. }
  3115. SERIAL_ECHOLN(tmp_extruder);
  3116. return true;
  3117. }
  3118. }
  3119. return false;
  3120. }