My Marlin configs for Fabrikator Mini and CTC i3 Pro B
Вы не можете выбрать более 25 тем Темы должны начинаться с буквы или цифры, могут содержать дефисы(-) и должны содержать не более 35 символов.

ubl_motion.cpp 29KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675
  1. /**
  2. * Marlin 3D Printer Firmware
  3. * Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
  4. *
  5. * Based on Sprinter and grbl.
  6. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  7. *
  8. * This program is free software: you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation, either version 3 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  20. *
  21. */
  22. #include "MarlinConfig.h"
  23. #if ENABLED(AUTO_BED_LEVELING_UBL)
  24. #include "Marlin.h"
  25. #include "ubl.h"
  26. #include "planner.h"
  27. #include "stepper.h"
  28. #include <avr/io.h>
  29. #include <math.h>
  30. extern float destination[XYZE];
  31. #if AVR_AT90USB1286_FAMILY // Teensyduino & Printrboard IDE extensions have compile errors without this
  32. inline void set_current_from_destination() { COPY(current_position, destination); }
  33. #else
  34. extern void set_current_from_destination();
  35. #endif
  36. static void debug_echo_axis(const AxisEnum axis) {
  37. if (current_position[axis] == destination[axis])
  38. SERIAL_ECHOPGM("-------------");
  39. else
  40. SERIAL_ECHO_F(destination[X_AXIS], 6);
  41. }
  42. void debug_current_and_destination(const char *title) {
  43. // if the title message starts with a '!' it is so important, we are going to
  44. // ignore the status of the g26_debug_flag
  45. if (*title != '!' && !g26_debug_flag) return;
  46. const float de = destination[E_AXIS] - current_position[E_AXIS];
  47. if (de == 0.0) return; // Printing moves only
  48. const float dx = destination[X_AXIS] - current_position[X_AXIS],
  49. dy = destination[Y_AXIS] - current_position[Y_AXIS],
  50. xy_dist = HYPOT(dx, dy);
  51. if (xy_dist == 0.0) return;
  52. SERIAL_ECHOPGM(" fpmm=");
  53. const float fpmm = de / xy_dist;
  54. SERIAL_ECHO_F(fpmm, 6);
  55. SERIAL_ECHOPGM(" current=( ");
  56. SERIAL_ECHO_F(current_position[X_AXIS], 6);
  57. SERIAL_ECHOPGM(", ");
  58. SERIAL_ECHO_F(current_position[Y_AXIS], 6);
  59. SERIAL_ECHOPGM(", ");
  60. SERIAL_ECHO_F(current_position[Z_AXIS], 6);
  61. SERIAL_ECHOPGM(", ");
  62. SERIAL_ECHO_F(current_position[E_AXIS], 6);
  63. SERIAL_ECHOPGM(" ) destination=( ");
  64. debug_echo_axis(X_AXIS);
  65. SERIAL_ECHOPGM(", ");
  66. debug_echo_axis(Y_AXIS);
  67. SERIAL_ECHOPGM(", ");
  68. debug_echo_axis(Z_AXIS);
  69. SERIAL_ECHOPGM(", ");
  70. debug_echo_axis(E_AXIS);
  71. SERIAL_ECHOPGM(" ) ");
  72. SERIAL_ECHO(title);
  73. SERIAL_EOL();
  74. }
  75. void unified_bed_leveling::line_to_destination_cartesian(const float &feed_rate, uint8_t extruder) {
  76. /**
  77. * Much of the nozzle movement will be within the same cell. So we will do as little computation
  78. * as possible to determine if this is the case. If this move is within the same cell, we will
  79. * just do the required Z-Height correction, call the Planner's buffer_line() routine, and leave
  80. */
  81. const float start[XYZE] = {
  82. current_position[X_AXIS],
  83. current_position[Y_AXIS],
  84. current_position[Z_AXIS],
  85. current_position[E_AXIS]
  86. },
  87. end[XYZE] = {
  88. destination[X_AXIS],
  89. destination[Y_AXIS],
  90. destination[Z_AXIS],
  91. destination[E_AXIS]
  92. };
  93. const int cell_start_xi = get_cell_index_x(start[X_AXIS]),
  94. cell_start_yi = get_cell_index_y(start[Y_AXIS]),
  95. cell_dest_xi = get_cell_index_x(end[X_AXIS]),
  96. cell_dest_yi = get_cell_index_y(end[Y_AXIS]);
  97. if (g26_debug_flag) {
  98. SERIAL_ECHOPAIR(" ubl.line_to_destination(xe=", end[X_AXIS]);
  99. SERIAL_ECHOPAIR(", ye=", end[Y_AXIS]);
  100. SERIAL_ECHOPAIR(", ze=", end[Z_AXIS]);
  101. SERIAL_ECHOPAIR(", ee=", end[E_AXIS]);
  102. SERIAL_CHAR(')');
  103. SERIAL_EOL();
  104. debug_current_and_destination(PSTR("Start of ubl.line_to_destination()"));
  105. }
  106. if (cell_start_xi == cell_dest_xi && cell_start_yi == cell_dest_yi) { // if the whole move is within the same cell,
  107. /**
  108. * we don't need to break up the move
  109. *
  110. * If we are moving off the print bed, we are going to allow the move at this level.
  111. * But we detect it and isolate it. For now, we just pass along the request.
  112. */
  113. if (!WITHIN(cell_dest_xi, 0, GRID_MAX_POINTS_X - 1) || !WITHIN(cell_dest_yi, 0, GRID_MAX_POINTS_Y - 1)) {
  114. // Note: There is no Z Correction in this case. We are off the grid and don't know what
  115. // a reasonable correction would be.
  116. planner.buffer_segment(end[X_AXIS], end[Y_AXIS], end[Z_AXIS], end[E_AXIS], feed_rate, extruder);
  117. set_current_from_destination();
  118. if (g26_debug_flag)
  119. debug_current_and_destination(PSTR("out of bounds in ubl.line_to_destination()"));
  120. return;
  121. }
  122. FINAL_MOVE:
  123. /**
  124. * Optimize some floating point operations here. We could call float get_z_correction(float x0, float y0) to
  125. * generate the correction for us. But we can lighten the load on the CPU by doing a modified version of the function.
  126. * We are going to only calculate the amount we are from the first mesh line towards the second mesh line once.
  127. * We will use this fraction in both of the original two Z Height calculations for the bi-linear interpolation. And,
  128. * instead of doing a generic divide of the distance, we know the distance is MESH_X_DIST so we can use the preprocessor
  129. * to create a 1-over number for us. That will allow us to do a floating point multiply instead of a floating point divide.
  130. */
  131. const float xratio = (end[X_AXIS] - mesh_index_to_xpos(cell_dest_xi)) * (1.0 / (MESH_X_DIST));
  132. float z1 = z_values[cell_dest_xi ][cell_dest_yi ] + xratio *
  133. (z_values[cell_dest_xi + 1][cell_dest_yi ] - z_values[cell_dest_xi][cell_dest_yi ]),
  134. z2 = z_values[cell_dest_xi ][cell_dest_yi + 1] + xratio *
  135. (z_values[cell_dest_xi + 1][cell_dest_yi + 1] - z_values[cell_dest_xi][cell_dest_yi + 1]);
  136. if (cell_dest_xi >= GRID_MAX_POINTS_X - 1) z1 = z2 = 0.0;
  137. // we are done with the fractional X distance into the cell. Now with the two Z-Heights we have calculated, we
  138. // are going to apply the Y-Distance into the cell to interpolate the final Z correction.
  139. const float yratio = (end[Y_AXIS] - mesh_index_to_ypos(cell_dest_yi)) * (1.0 / (MESH_Y_DIST));
  140. float z0 = cell_dest_yi < GRID_MAX_POINTS_Y - 1 ? (z1 + (z2 - z1) * yratio) * planner.fade_scaling_factor_for_z(end[Z_AXIS]) : 0.0;
  141. /**
  142. * If part of the Mesh is undefined, it will show up as NAN
  143. * in z_values[][] and propagate through the
  144. * calculations. If our correction is NAN, we throw it out
  145. * because part of the Mesh is undefined and we don't have the
  146. * information we need to complete the height correction.
  147. */
  148. if (isnan(z0)) z0 = 0.0;
  149. planner.buffer_segment(end[X_AXIS], end[Y_AXIS], end[Z_AXIS] + z0, end[E_AXIS], feed_rate, extruder);
  150. if (g26_debug_flag)
  151. debug_current_and_destination(PSTR("FINAL_MOVE in ubl.line_to_destination()"));
  152. set_current_from_destination();
  153. return;
  154. }
  155. /**
  156. * If we get here, we are processing a move that crosses at least one Mesh Line. We will check
  157. * for the simple case of just crossing X or just crossing Y Mesh Lines after we get all the details
  158. * of the move figured out. We can process the easy case of just crossing an X or Y Mesh Line with less
  159. * computation and in fact most lines are of this nature. We will check for that in the following
  160. * blocks of code:
  161. */
  162. const float dx = end[X_AXIS] - start[X_AXIS],
  163. dy = end[Y_AXIS] - start[Y_AXIS];
  164. const int left_flag = dx < 0.0 ? 1 : 0,
  165. down_flag = dy < 0.0 ? 1 : 0;
  166. const float adx = left_flag ? -dx : dx,
  167. ady = down_flag ? -dy : dy;
  168. const int dxi = cell_start_xi == cell_dest_xi ? 0 : left_flag ? -1 : 1,
  169. dyi = cell_start_yi == cell_dest_yi ? 0 : down_flag ? -1 : 1;
  170. /**
  171. * Compute the scaling factor for the extruder for each partial move.
  172. * We need to watch out for zero length moves because it will cause us to
  173. * have an infinate scaling factor. We are stuck doing a floating point
  174. * divide to get our scaling factor, but after that, we just multiply by this
  175. * number. We also pick our scaling factor based on whether the X or Y
  176. * component is larger. We use the biggest of the two to preserve precision.
  177. */
  178. const bool use_x_dist = adx > ady;
  179. float on_axis_distance = use_x_dist ? dx : dy,
  180. e_position = end[E_AXIS] - start[E_AXIS],
  181. z_position = end[Z_AXIS] - start[Z_AXIS];
  182. const float e_normalized_dist = e_position / on_axis_distance,
  183. z_normalized_dist = z_position / on_axis_distance;
  184. int current_xi = cell_start_xi,
  185. current_yi = cell_start_yi;
  186. const float m = dy / dx,
  187. c = start[Y_AXIS] - m * start[X_AXIS];
  188. const bool inf_normalized_flag = (isinf(e_normalized_dist) != 0),
  189. inf_m_flag = (isinf(m) != 0);
  190. /**
  191. * This block handles vertical lines. These are lines that stay within the same
  192. * X Cell column. They do not need to be perfectly vertical. They just can
  193. * not cross into another X Cell column.
  194. */
  195. if (dxi == 0) { // Check for a vertical line
  196. current_yi += down_flag; // Line is heading down, we just want to go to the bottom
  197. while (current_yi != cell_dest_yi + down_flag) {
  198. current_yi += dyi;
  199. const float next_mesh_line_y = mesh_index_to_ypos(current_yi);
  200. /**
  201. * if the slope of the line is infinite, we won't do the calculations
  202. * else, we know the next X is the same so we can recover and continue!
  203. * Calculate X at the next Y mesh line
  204. */
  205. const float rx = inf_m_flag ? start[X_AXIS] : (next_mesh_line_y - c) / m;
  206. float z0 = z_correction_for_x_on_horizontal_mesh_line(rx, current_xi, current_yi)
  207. * planner.fade_scaling_factor_for_z(end[Z_AXIS]);
  208. /**
  209. * If part of the Mesh is undefined, it will show up as NAN
  210. * in z_values[][] and propagate through the
  211. * calculations. If our correction is NAN, we throw it out
  212. * because part of the Mesh is undefined and we don't have the
  213. * information we need to complete the height correction.
  214. */
  215. if (isnan(z0)) z0 = 0.0;
  216. const float ry = mesh_index_to_ypos(current_yi);
  217. /**
  218. * Without this check, it is possible for the algorithm to generate a zero length move in the case
  219. * where the line is heading down and it is starting right on a Mesh Line boundary. For how often that
  220. * happens, it might be best to remove the check and always 'schedule' the move because
  221. * the planner.buffer_segment() routine will filter it if that happens.
  222. */
  223. if (ry != start[Y_AXIS]) {
  224. if (!inf_normalized_flag) {
  225. on_axis_distance = use_x_dist ? rx - start[X_AXIS] : ry - start[Y_AXIS];
  226. e_position = start[E_AXIS] + on_axis_distance * e_normalized_dist;
  227. z_position = start[Z_AXIS] + on_axis_distance * z_normalized_dist;
  228. }
  229. else {
  230. e_position = end[E_AXIS];
  231. z_position = end[Z_AXIS];
  232. }
  233. planner.buffer_segment(rx, ry, z_position + z0, e_position, feed_rate, extruder);
  234. } //else printf("FIRST MOVE PRUNED ");
  235. }
  236. if (g26_debug_flag)
  237. debug_current_and_destination(PSTR("vertical move done in ubl.line_to_destination()"));
  238. //
  239. // Check if we are at the final destination. Usually, we won't be, but if it is on a Y Mesh Line, we are done.
  240. //
  241. if (current_position[X_AXIS] != end[X_AXIS] || current_position[Y_AXIS] != end[Y_AXIS])
  242. goto FINAL_MOVE;
  243. set_current_from_destination();
  244. return;
  245. }
  246. /**
  247. *
  248. * This block handles horizontal lines. These are lines that stay within the same
  249. * Y Cell row. They do not need to be perfectly horizontal. They just can
  250. * not cross into another Y Cell row.
  251. *
  252. */
  253. if (dyi == 0) { // Check for a horizontal line
  254. current_xi += left_flag; // Line is heading left, we just want to go to the left
  255. // edge of this cell for the first move.
  256. while (current_xi != cell_dest_xi + left_flag) {
  257. current_xi += dxi;
  258. const float next_mesh_line_x = mesh_index_to_xpos(current_xi),
  259. ry = m * next_mesh_line_x + c; // Calculate Y at the next X mesh line
  260. float z0 = z_correction_for_y_on_vertical_mesh_line(ry, current_xi, current_yi)
  261. * planner.fade_scaling_factor_for_z(end[Z_AXIS]);
  262. /**
  263. * If part of the Mesh is undefined, it will show up as NAN
  264. * in z_values[][] and propagate through the
  265. * calculations. If our correction is NAN, we throw it out
  266. * because part of the Mesh is undefined and we don't have the
  267. * information we need to complete the height correction.
  268. */
  269. if (isnan(z0)) z0 = 0.0;
  270. const float rx = mesh_index_to_xpos(current_xi);
  271. /**
  272. * Without this check, it is possible for the algorithm to generate a zero length move in the case
  273. * where the line is heading left and it is starting right on a Mesh Line boundary. For how often
  274. * that happens, it might be best to remove the check and always 'schedule' the move because
  275. * the planner.buffer_segment() routine will filter it if that happens.
  276. */
  277. if (rx != start[X_AXIS]) {
  278. if (!inf_normalized_flag) {
  279. on_axis_distance = use_x_dist ? rx - start[X_AXIS] : ry - start[Y_AXIS];
  280. e_position = start[E_AXIS] + on_axis_distance * e_normalized_dist; // is based on X or Y because this is a horizontal move
  281. z_position = start[Z_AXIS] + on_axis_distance * z_normalized_dist;
  282. }
  283. else {
  284. e_position = end[E_AXIS];
  285. z_position = end[Z_AXIS];
  286. }
  287. planner.buffer_segment(rx, ry, z_position + z0, e_position, feed_rate, extruder);
  288. } //else printf("FIRST MOVE PRUNED ");
  289. }
  290. if (g26_debug_flag)
  291. debug_current_and_destination(PSTR("horizontal move done in ubl.line_to_destination()"));
  292. if (current_position[X_AXIS] != end[X_AXIS] || current_position[Y_AXIS] != end[Y_AXIS])
  293. goto FINAL_MOVE;
  294. set_current_from_destination();
  295. return;
  296. }
  297. /**
  298. *
  299. * This block handles the generic case of a line crossing both X and Y Mesh lines.
  300. *
  301. */
  302. int xi_cnt = cell_start_xi - cell_dest_xi,
  303. yi_cnt = cell_start_yi - cell_dest_yi;
  304. if (xi_cnt < 0) xi_cnt = -xi_cnt;
  305. if (yi_cnt < 0) yi_cnt = -yi_cnt;
  306. current_xi += left_flag;
  307. current_yi += down_flag;
  308. while (xi_cnt > 0 || yi_cnt > 0) {
  309. const float next_mesh_line_x = mesh_index_to_xpos(current_xi + dxi),
  310. next_mesh_line_y = mesh_index_to_ypos(current_yi + dyi),
  311. ry = m * next_mesh_line_x + c, // Calculate Y at the next X mesh line
  312. rx = (next_mesh_line_y - c) / m; // Calculate X at the next Y mesh line
  313. // (No need to worry about m being zero.
  314. // If that was the case, it was already detected
  315. // as a vertical line move above.)
  316. if (left_flag == (rx > next_mesh_line_x)) { // Check if we hit the Y line first
  317. // Yes! Crossing a Y Mesh Line next
  318. float z0 = z_correction_for_x_on_horizontal_mesh_line(rx, current_xi - left_flag, current_yi + dyi)
  319. * planner.fade_scaling_factor_for_z(end[Z_AXIS]);
  320. /**
  321. * If part of the Mesh is undefined, it will show up as NAN
  322. * in z_values[][] and propagate through the
  323. * calculations. If our correction is NAN, we throw it out
  324. * because part of the Mesh is undefined and we don't have the
  325. * information we need to complete the height correction.
  326. */
  327. if (isnan(z0)) z0 = 0.0;
  328. if (!inf_normalized_flag) {
  329. on_axis_distance = use_x_dist ? rx - start[X_AXIS] : next_mesh_line_y - start[Y_AXIS];
  330. e_position = start[E_AXIS] + on_axis_distance * e_normalized_dist;
  331. z_position = start[Z_AXIS] + on_axis_distance * z_normalized_dist;
  332. }
  333. else {
  334. e_position = end[E_AXIS];
  335. z_position = end[Z_AXIS];
  336. }
  337. planner.buffer_segment(rx, next_mesh_line_y, z_position + z0, e_position, feed_rate, extruder);
  338. current_yi += dyi;
  339. yi_cnt--;
  340. }
  341. else {
  342. // Yes! Crossing a X Mesh Line next
  343. float z0 = z_correction_for_y_on_vertical_mesh_line(ry, current_xi + dxi, current_yi - down_flag)
  344. * planner.fade_scaling_factor_for_z(end[Z_AXIS]);
  345. /**
  346. * If part of the Mesh is undefined, it will show up as NAN
  347. * in z_values[][] and propagate through the
  348. * calculations. If our correction is NAN, we throw it out
  349. * because part of the Mesh is undefined and we don't have the
  350. * information we need to complete the height correction.
  351. */
  352. if (isnan(z0)) z0 = 0.0;
  353. if (!inf_normalized_flag) {
  354. on_axis_distance = use_x_dist ? next_mesh_line_x - start[X_AXIS] : ry - start[Y_AXIS];
  355. e_position = start[E_AXIS] + on_axis_distance * e_normalized_dist;
  356. z_position = start[Z_AXIS] + on_axis_distance * z_normalized_dist;
  357. }
  358. else {
  359. e_position = end[E_AXIS];
  360. z_position = end[Z_AXIS];
  361. }
  362. planner.buffer_segment(next_mesh_line_x, ry, z_position + z0, e_position, feed_rate, extruder);
  363. current_xi += dxi;
  364. xi_cnt--;
  365. }
  366. if (xi_cnt < 0 || yi_cnt < 0) break; // we've gone too far, so exit the loop and move on to FINAL_MOVE
  367. }
  368. if (g26_debug_flag)
  369. debug_current_and_destination(PSTR("generic move done in ubl.line_to_destination()"));
  370. if (current_position[X_AXIS] != end[X_AXIS] || current_position[Y_AXIS] != end[Y_AXIS])
  371. goto FINAL_MOVE;
  372. set_current_from_destination();
  373. }
  374. #if UBL_DELTA
  375. // macro to inline copy exactly 4 floats, don't rely on sizeof operator
  376. #define COPY_XYZE( target, source ) { \
  377. target[X_AXIS] = source[X_AXIS]; \
  378. target[Y_AXIS] = source[Y_AXIS]; \
  379. target[Z_AXIS] = source[Z_AXIS]; \
  380. target[E_AXIS] = source[E_AXIS]; \
  381. }
  382. #if IS_SCARA // scale the feed rate from mm/s to degrees/s
  383. static float scara_feed_factor, scara_oldA, scara_oldB;
  384. #endif
  385. // We don't want additional apply_leveling() performed by regular buffer_line or buffer_line_kinematic,
  386. // so we call buffer_segment directly here. Per-segmented leveling and kinematics performed first.
  387. inline void _O2 ubl_buffer_segment_raw(const float (&raw)[XYZE], const float &fr) {
  388. #if ENABLED(DELTA) // apply delta inverse_kinematics
  389. DELTA_RAW_IK();
  390. planner.buffer_segment(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], raw[E_AXIS], fr, active_extruder);
  391. #elif IS_SCARA // apply scara inverse_kinematics (should be changed to save raw->logical->raw)
  392. inverse_kinematics(raw); // this writes delta[ABC] from raw[XYZE]
  393. // should move the feedrate scaling to scara inverse_kinematics
  394. const float adiff = FABS(delta[A_AXIS] - scara_oldA),
  395. bdiff = FABS(delta[B_AXIS] - scara_oldB);
  396. scara_oldA = delta[A_AXIS];
  397. scara_oldB = delta[B_AXIS];
  398. float s_feedrate = max(adiff, bdiff) * scara_feed_factor;
  399. planner.buffer_segment(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], raw[E_AXIS], s_feedrate, active_extruder);
  400. #else // CARTESIAN
  401. planner.buffer_segment(raw[X_AXIS], raw[Y_AXIS], raw[Z_AXIS], raw[E_AXIS], fr, active_extruder);
  402. #endif
  403. }
  404. #if IS_SCARA
  405. #define DELTA_SEGMENT_MIN_LENGTH 0.25 // SCARA minimum segment size is 0.25mm
  406. #elif ENABLED(DELTA)
  407. #define DELTA_SEGMENT_MIN_LENGTH 0.10 // mm (still subject to DELTA_SEGMENTS_PER_SECOND)
  408. #else // CARTESIAN
  409. #ifdef LEVELED_SEGMENT_LENGTH
  410. #define DELTA_SEGMENT_MIN_LENGTH LEVELED_SEGMENT_LENGTH
  411. #else
  412. #define DELTA_SEGMENT_MIN_LENGTH 1.00 // mm (similar to G2/G3 arc segmentation)
  413. #endif
  414. #endif
  415. /**
  416. * Prepare a segmented linear move for DELTA/SCARA/CARTESIAN with UBL and FADE semantics.
  417. * This calls planner.buffer_segment multiple times for small incremental moves.
  418. * Returns true if did NOT move, false if moved (requires current_position update).
  419. */
  420. bool _O2 unified_bed_leveling::prepare_segmented_line_to(const float (&in_target)[XYZE], const float &feedrate) {
  421. if (!position_is_reachable(rtarget[X_AXIS], rtarget[Y_AXIS])) // fail if moving outside reachable boundary
  422. return true; // did not move, so current_position still accurate
  423. const float total[XYZE] = {
  424. rtarget[X_AXIS] - current_position[X_AXIS],
  425. rtarget[Y_AXIS] - current_position[Y_AXIS],
  426. rtarget[Z_AXIS] - current_position[Z_AXIS],
  427. rtarget[E_AXIS] - current_position[E_AXIS]
  428. };
  429. const float cartesian_xy_mm = HYPOT(total[X_AXIS], total[Y_AXIS]); // total horizontal xy distance
  430. #if IS_KINEMATIC
  431. const float seconds = cartesian_xy_mm / feedrate; // seconds to move xy distance at requested rate
  432. uint16_t segments = lroundf(delta_segments_per_second * seconds), // preferred number of segments for distance @ feedrate
  433. seglimit = lroundf(cartesian_xy_mm * (1.0 / (DELTA_SEGMENT_MIN_LENGTH))); // number of segments at minimum segment length
  434. NOMORE(segments, seglimit); // limit to minimum segment length (fewer segments)
  435. #else
  436. uint16_t segments = lroundf(cartesian_xy_mm * (1.0 / (DELTA_SEGMENT_MIN_LENGTH))); // cartesian fixed segment length
  437. #endif
  438. NOLESS(segments, 1); // must have at least one segment
  439. const float inv_segments = 1.0 / segments; // divide once, multiply thereafter
  440. #if IS_SCARA // scale the feed rate from mm/s to degrees/s
  441. scara_feed_factor = cartesian_xy_mm * inv_segments * feedrate;
  442. scara_oldA = stepper.get_axis_position_degrees(A_AXIS);
  443. scara_oldB = stepper.get_axis_position_degrees(B_AXIS);
  444. #endif
  445. const float diff[XYZE] = {
  446. total[X_AXIS] * inv_segments,
  447. total[Y_AXIS] * inv_segments,
  448. total[Z_AXIS] * inv_segments,
  449. total[E_AXIS] * inv_segments
  450. };
  451. // Note that E segment distance could vary slightly as z mesh height
  452. // changes for each segment, but small enough to ignore.
  453. float raw[XYZE] = {
  454. current_position[X_AXIS],
  455. current_position[Y_AXIS],
  456. current_position[Z_AXIS],
  457. current_position[E_AXIS]
  458. };
  459. // Only compute leveling per segment if ubl active and target below z_fade_height.
  460. if (!planner.leveling_active || !planner.leveling_active_at_z(rtarget[Z_AXIS])) { // no mesh leveling
  461. while (--segments) {
  462. LOOP_XYZE(i) raw[i] += diff[i];
  463. ubl_buffer_segment_raw(raw, feedrate);
  464. }
  465. ubl_buffer_segment_raw(rtarget, feedrate);
  466. return false; // moved but did not set_current_from_destination();
  467. }
  468. // Otherwise perform per-segment leveling
  469. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  470. const float fade_scaling_factor = planner.fade_scaling_factor_for_z(rtarget[Z_AXIS]);
  471. #endif
  472. // increment to first segment destination
  473. LOOP_XYZE(i) raw[i] += diff[i];
  474. for(;;) { // for each mesh cell encountered during the move
  475. // Compute mesh cell invariants that remain constant for all segments within cell.
  476. // Note for cell index, if point is outside the mesh grid (in MESH_INSET perimeter)
  477. // the bilinear interpolation from the adjacent cell within the mesh will still work.
  478. // Inner loop will exit each time (because out of cell bounds) but will come back
  479. // in top of loop and again re-find same adjacent cell and use it, just less efficient
  480. // for mesh inset area.
  481. int8_t cell_xi = (raw[X_AXIS] - (MESH_MIN_X)) * (1.0 / (MESH_X_DIST)),
  482. cell_yi = (raw[Y_AXIS] - (MESH_MIN_Y)) * (1.0 / (MESH_X_DIST));
  483. cell_xi = constrain(cell_xi, 0, (GRID_MAX_POINTS_X) - 1);
  484. cell_yi = constrain(cell_yi, 0, (GRID_MAX_POINTS_Y) - 1);
  485. const float x0 = mesh_index_to_xpos(cell_xi), // 64 byte table lookup avoids mul+add
  486. y0 = mesh_index_to_ypos(cell_yi);
  487. float z_x0y0 = z_values[cell_xi ][cell_yi ], // z at lower left corner
  488. z_x1y0 = z_values[cell_xi+1][cell_yi ], // z at upper left corner
  489. z_x0y1 = z_values[cell_xi ][cell_yi+1], // z at lower right corner
  490. z_x1y1 = z_values[cell_xi+1][cell_yi+1]; // z at upper right corner
  491. if (isnan(z_x0y0)) z_x0y0 = 0; // ideally activating planner.leveling_active (G29 A)
  492. if (isnan(z_x1y0)) z_x1y0 = 0; // should refuse if any invalid mesh points
  493. if (isnan(z_x0y1)) z_x0y1 = 0; // in order to avoid isnan tests per cell,
  494. if (isnan(z_x1y1)) z_x1y1 = 0; // thus guessing zero for undefined points
  495. float cx = raw[X_AXIS] - x0, // cell-relative x and y
  496. cy = raw[Y_AXIS] - y0;
  497. const float z_xmy0 = (z_x1y0 - z_x0y0) * (1.0 / (MESH_X_DIST)), // z slope per x along y0 (lower left to lower right)
  498. z_xmy1 = (z_x1y1 - z_x0y1) * (1.0 / (MESH_X_DIST)); // z slope per x along y1 (upper left to upper right)
  499. float z_cxy0 = z_x0y0 + z_xmy0 * cx; // z height along y0 at cx (changes for each cx in cell)
  500. const float z_cxy1 = z_x0y1 + z_xmy1 * cx, // z height along y1 at cx
  501. z_cxyd = z_cxy1 - z_cxy0; // z height difference along cx from y0 to y1
  502. float z_cxym = z_cxyd * (1.0 / (MESH_Y_DIST)); // z slope per y along cx from y0 to y1 (changes for each cx in cell)
  503. // float z_cxcy = z_cxy0 + z_cxym * cy; // interpolated mesh z height along cx at cy (do inside the segment loop)
  504. // As subsequent segments step through this cell, the z_cxy0 intercept will change
  505. // and the z_cxym slope will change, both as a function of cx within the cell, and
  506. // each change by a constant for fixed segment lengths.
  507. const float z_sxy0 = z_xmy0 * diff[X_AXIS], // per-segment adjustment to z_cxy0
  508. z_sxym = (z_xmy1 - z_xmy0) * (1.0 / (MESH_Y_DIST)) * diff[X_AXIS]; // per-segment adjustment to z_cxym
  509. for(;;) { // for all segments within this mesh cell
  510. if (--segments == 0) // if this is last segment, use rtarget for exact
  511. COPY(raw, rtarget);
  512. const float z_cxcy = (z_cxy0 + z_cxym * cy) // interpolated mesh z height along cx at cy
  513. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  514. * fade_scaling_factor // apply fade factor to interpolated mesh height
  515. #endif
  516. ;
  517. const float z = raw[Z_AXIS];
  518. raw[Z_AXIS] += z_cxcy;
  519. ubl_buffer_segment_raw(raw, feedrate);
  520. raw[Z_AXIS] = z;
  521. if (segments == 0) // done with last segment
  522. return false; // did not set_current_from_destination()
  523. LOOP_XYZE(i) raw[i] += diff[i];
  524. cx += diff[X_AXIS];
  525. cy += diff[Y_AXIS];
  526. if (!WITHIN(cx, 0, MESH_X_DIST) || !WITHIN(cy, 0, MESH_Y_DIST)) // done within this cell, break to next
  527. break;
  528. // Next segment still within same mesh cell, adjust the per-segment
  529. // slope and intercept to compute next z height.
  530. z_cxy0 += z_sxy0; // adjust z_cxy0 by per-segment z_sxy0
  531. z_cxym += z_sxym; // adjust z_cxym by per-segment z_sxym
  532. } // segment loop
  533. } // cell loop
  534. }
  535. #endif // UBL_DELTA
  536. #endif // AUTO_BED_LEVELING_UBL