My Marlin configs for Fabrikator Mini and CTC i3 Pro B
您最多选择25个主题 主题必须以字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符

configuration_store.cpp 58KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840
  1. /**
  2. * Marlin 3D Printer Firmware
  3. * Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
  4. *
  5. * Based on Sprinter and grbl.
  6. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  7. *
  8. * This program is free software: you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation, either version 3 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  20. *
  21. */
  22. /**
  23. * configuration_store.cpp
  24. *
  25. * Settings and EEPROM storage
  26. *
  27. * IMPORTANT: Whenever there are changes made to the variables stored in EEPROM
  28. * in the functions below, also increment the version number. This makes sure that
  29. * the default values are used whenever there is a change to the data, to prevent
  30. * wrong data being written to the variables.
  31. *
  32. * ALSO: Variables in the Store and Retrieve sections must be in the same order.
  33. * If a feature is disabled, some data must still be written that, when read,
  34. * either sets a Sane Default, or results in No Change to the existing value.
  35. *
  36. */
  37. #define EEPROM_VERSION "V42"
  38. // Change EEPROM version if these are changed:
  39. #define EEPROM_OFFSET 100
  40. /**
  41. * V42 EEPROM Layout:
  42. *
  43. * 100 Version (char x4)
  44. * 104 EEPROM CRC16 (uint16_t)
  45. *
  46. * 106 E_STEPPERS (uint8_t)
  47. * 107 M92 XYZE planner.axis_steps_per_mm (float x4 ... x8)
  48. * 123 M203 XYZE planner.max_feedrate_mm_s (float x4 ... x8)
  49. * 139 M201 XYZE planner.max_acceleration_mm_per_s2 (uint32_t x4 ... x8)
  50. * 155 M204 P planner.acceleration (float)
  51. * 159 M204 R planner.retract_acceleration (float)
  52. * 163 M204 T planner.travel_acceleration (float)
  53. * 167 M205 S planner.min_feedrate_mm_s (float)
  54. * 171 M205 T planner.min_travel_feedrate_mm_s (float)
  55. * 175 M205 B planner.min_segment_time (ulong)
  56. * 179 M205 X planner.max_jerk[X_AXIS] (float)
  57. * 183 M205 Y planner.max_jerk[Y_AXIS] (float)
  58. * 187 M205 Z planner.max_jerk[Z_AXIS] (float)
  59. * 191 M205 E planner.max_jerk[E_AXIS] (float)
  60. * 195 M206 XYZ home_offset (float x3)
  61. * 207 M218 XYZ hotend_offset (float x3 per additional hotend)
  62. *
  63. * Global Leveling:
  64. * 219 z_fade_height (float)
  65. *
  66. * MESH_BED_LEVELING: 43 bytes
  67. * 223 M420 S from mbl.status (bool)
  68. * 224 mbl.z_offset (float)
  69. * 228 GRID_MAX_POINTS_X (uint8_t)
  70. * 229 GRID_MAX_POINTS_Y (uint8_t)
  71. * 230 G29 S3 XYZ z_values[][] (float x9, up to float x81) +288
  72. *
  73. * HAS_BED_PROBE: 4 bytes
  74. * 266 M851 zprobe_zoffset (float)
  75. *
  76. * ABL_PLANAR: 36 bytes
  77. * 270 planner.bed_level_matrix (matrix_3x3 = float x9)
  78. *
  79. * AUTO_BED_LEVELING_BILINEAR: 47 bytes
  80. * 306 GRID_MAX_POINTS_X (uint8_t)
  81. * 307 GRID_MAX_POINTS_Y (uint8_t)
  82. * 308 bilinear_grid_spacing (int x2)
  83. * 312 G29 L F bilinear_start (int x2)
  84. * 316 z_values[][] (float x9, up to float x256) +988
  85. *
  86. * AUTO_BED_LEVELING_UBL: 6 bytes
  87. * 324 G29 A ubl.state.active (bool)
  88. * 325 G29 S ubl.state.storage_slot (int8_t)
  89. *
  90. * DELTA: 48 bytes
  91. * 348 M666 XYZ endstop_adj (float x3)
  92. * 360 M665 R delta_radius (float)
  93. * 364 M665 L delta_diagonal_rod (float)
  94. * 368 M665 S delta_segments_per_second (float)
  95. * 372 M665 B delta_calibration_radius (float)
  96. * 376 M665 X delta_tower_angle_trim[A] (float)
  97. * 380 M665 Y delta_tower_angle_trim[B] (float)
  98. * 384 M665 Z delta_tower_angle_trim[C] (float)
  99. *
  100. * Z_DUAL_ENDSTOPS: 48 bytes
  101. * 348 M666 Z z_endstop_adj (float)
  102. * --- dummy data (float x11)
  103. *
  104. * ULTIPANEL: 6 bytes
  105. * 396 M145 S0 H lcd_preheat_hotend_temp (int x2)
  106. * 400 M145 S0 B lcd_preheat_bed_temp (int x2)
  107. * 404 M145 S0 F lcd_preheat_fan_speed (int x2)
  108. *
  109. * PIDTEMP: 66 bytes
  110. * 408 M301 E0 PIDC Kp[0], Ki[0], Kd[0], Kc[0] (float x4)
  111. * 424 M301 E1 PIDC Kp[1], Ki[1], Kd[1], Kc[1] (float x4)
  112. * 440 M301 E2 PIDC Kp[2], Ki[2], Kd[2], Kc[2] (float x4)
  113. * 456 M301 E3 PIDC Kp[3], Ki[3], Kd[3], Kc[3] (float x4)
  114. * 472 M301 E4 PIDC Kp[3], Ki[3], Kd[3], Kc[3] (float x4)
  115. * 488 M301 L lpq_len (int)
  116. *
  117. * PIDTEMPBED: 12 bytes
  118. * 490 M304 PID thermalManager.bedKp, .bedKi, .bedKd (float x3)
  119. *
  120. * DOGLCD: 2 bytes
  121. * 502 M250 C lcd_contrast (uint16_t)
  122. *
  123. * FWRETRACT: 33 bytes
  124. * 504 M209 S autoretract_enabled (bool)
  125. * 505 M207 S retract_length (float)
  126. * 509 M207 F retract_feedrate_mm_s (float)
  127. * 513 M207 Z retract_zlift (float)
  128. * 517 M208 S retract_recover_length (float)
  129. * 521 M208 F retract_recover_feedrate_mm_s (float)
  130. * 525 M207 W swap_retract_length (float)
  131. * 529 M208 W swap_retract_recover_length (float)
  132. * 533 M208 R swap_retract_recover_feedrate_mm_s (float)
  133. *
  134. * Volumetric Extrusion: 21 bytes
  135. * 537 M200 D volumetric_enabled (bool)
  136. * 538 M200 T D filament_size (float x5) (T0..3)
  137. *
  138. * HAVE_TMC2130: 20 bytes
  139. * 558 M906 X Stepper X current (uint16_t)
  140. * 560 M906 Y Stepper Y current (uint16_t)
  141. * 562 M906 Z Stepper Z current (uint16_t)
  142. * 564 M906 X2 Stepper X2 current (uint16_t)
  143. * 566 M906 Y2 Stepper Y2 current (uint16_t)
  144. * 568 M906 Z2 Stepper Z2 current (uint16_t)
  145. * 570 M906 E0 Stepper E0 current (uint16_t)
  146. * 572 M906 E1 Stepper E1 current (uint16_t)
  147. * 574 M906 E2 Stepper E2 current (uint16_t)
  148. * 576 M906 E3 Stepper E3 current (uint16_t)
  149. * 580 M906 E4 Stepper E4 current (uint16_t)
  150. *
  151. * LIN_ADVANCE: 8 bytes
  152. * 584 M900 K extruder_advance_k (float)
  153. * 588 M900 WHD advance_ed_ratio (float)
  154. *
  155. * HAS_MOTOR_CURRENT_PWM:
  156. * 592 M907 X Stepper XY current (uint32_t)
  157. * 596 M907 Z Stepper Z current (uint32_t)
  158. * 600 M907 E Stepper E current (uint32_t)
  159. *
  160. * 604 Minimum end-point
  161. * 1925 (604 + 36 + 9 + 288 + 988) Maximum end-point
  162. *
  163. * ========================================================================
  164. * meshes_begin (between max and min end-point, directly above)
  165. * -- MESHES --
  166. * meshes_end
  167. * -- MAT (Mesh Allocation Table) -- 128 bytes (placeholder size)
  168. * mat_end = E2END (0xFFF)
  169. *
  170. */
  171. #include "configuration_store.h"
  172. MarlinSettings settings;
  173. #include "Marlin.h"
  174. #include "language.h"
  175. #include "endstops.h"
  176. #include "planner.h"
  177. #include "temperature.h"
  178. #include "ultralcd.h"
  179. #include "stepper.h"
  180. #if ENABLED(INCH_MODE_SUPPORT) || (ENABLED(ULTIPANEL) && ENABLED(TEMPERATURE_UNITS_SUPPORT))
  181. #include "gcode.h"
  182. #endif
  183. #if ENABLED(MESH_BED_LEVELING)
  184. #include "mesh_bed_leveling.h"
  185. #endif
  186. #if ENABLED(HAVE_TMC2130)
  187. #include "stepper_indirection.h"
  188. #endif
  189. #if ENABLED(AUTO_BED_LEVELING_UBL)
  190. #include "ubl.h"
  191. #endif
  192. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  193. extern void refresh_bed_level();
  194. #endif
  195. /**
  196. * Post-process after Retrieve or Reset
  197. */
  198. void MarlinSettings::postprocess() {
  199. // steps per s2 needs to be updated to agree with units per s2
  200. planner.reset_acceleration_rates();
  201. // Make sure delta kinematics are updated before refreshing the
  202. // planner position so the stepper counts will be set correctly.
  203. #if ENABLED(DELTA)
  204. recalc_delta_settings(delta_radius, delta_diagonal_rod, delta_tower_angle_trim);
  205. #endif
  206. // Refresh steps_to_mm with the reciprocal of axis_steps_per_mm
  207. // and init stepper.count[], planner.position[] with current_position
  208. planner.refresh_positioning();
  209. #if ENABLED(PIDTEMP)
  210. thermalManager.updatePID();
  211. #endif
  212. calculate_volumetric_multipliers();
  213. #if HAS_HOME_OFFSET || ENABLED(DUAL_X_CARRIAGE)
  214. // Software endstops depend on home_offset
  215. LOOP_XYZ(i) update_software_endstops((AxisEnum)i);
  216. #endif
  217. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  218. set_z_fade_height(planner.z_fade_height);
  219. #endif
  220. #if HAS_BED_PROBE
  221. refresh_zprobe_zoffset();
  222. #endif
  223. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  224. refresh_bed_level();
  225. //set_bed_leveling_enabled(leveling_is_on);
  226. #endif
  227. #if HAS_MOTOR_CURRENT_PWM
  228. stepper.refresh_motor_power();
  229. #endif
  230. }
  231. #if ENABLED(EEPROM_SETTINGS)
  232. #define DUMMY_PID_VALUE 3000.0f
  233. #define EEPROM_START() int eeprom_index = EEPROM_OFFSET
  234. #define EEPROM_SKIP(VAR) eeprom_index += sizeof(VAR)
  235. #define EEPROM_WRITE(VAR) write_data(eeprom_index, (uint8_t*)&VAR, sizeof(VAR), &working_crc)
  236. #define EEPROM_READ(VAR) read_data(eeprom_index, (uint8_t*)&VAR, sizeof(VAR), &working_crc)
  237. #define EEPROM_ASSERT(TST,ERR) if (!(TST)) do{ SERIAL_ERROR_START(); SERIAL_ERRORLNPGM(ERR); eeprom_read_error = true; }while(0)
  238. const char version[4] = EEPROM_VERSION;
  239. bool MarlinSettings::eeprom_error;
  240. #if ENABLED(AUTO_BED_LEVELING_UBL)
  241. int MarlinSettings::meshes_begin;
  242. #endif
  243. void MarlinSettings::write_data(int &pos, const uint8_t *value, uint16_t size, uint16_t *crc) {
  244. if (eeprom_error) return;
  245. while (size--) {
  246. uint8_t * const p = (uint8_t * const)pos;
  247. uint8_t v = *value;
  248. // EEPROM has only ~100,000 write cycles,
  249. // so only write bytes that have changed!
  250. if (v != eeprom_read_byte(p)) {
  251. eeprom_write_byte(p, v);
  252. if (eeprom_read_byte(p) != v) {
  253. SERIAL_ECHO_START();
  254. SERIAL_ECHOLNPGM(MSG_ERR_EEPROM_WRITE);
  255. eeprom_error = true;
  256. return;
  257. }
  258. }
  259. crc16(crc, &v, 1);
  260. pos++;
  261. value++;
  262. };
  263. }
  264. void MarlinSettings::read_data(int &pos, uint8_t* value, uint16_t size, uint16_t *crc) {
  265. if (eeprom_error) return;
  266. do {
  267. uint8_t c = eeprom_read_byte((unsigned char*)pos);
  268. *value = c;
  269. crc16(crc, &c, 1);
  270. pos++;
  271. value++;
  272. } while (--size);
  273. }
  274. /**
  275. * M500 - Store Configuration
  276. */
  277. bool MarlinSettings::save() {
  278. float dummy = 0.0f;
  279. char ver[4] = "000";
  280. uint16_t working_crc = 0;
  281. EEPROM_START();
  282. eeprom_error = false;
  283. EEPROM_WRITE(ver); // invalidate data first
  284. EEPROM_SKIP(working_crc); // Skip the checksum slot
  285. working_crc = 0; // clear before first "real data"
  286. const uint8_t esteppers = COUNT(planner.axis_steps_per_mm) - XYZ;
  287. EEPROM_WRITE(esteppers);
  288. EEPROM_WRITE(planner.axis_steps_per_mm);
  289. EEPROM_WRITE(planner.max_feedrate_mm_s);
  290. EEPROM_WRITE(planner.max_acceleration_mm_per_s2);
  291. EEPROM_WRITE(planner.acceleration);
  292. EEPROM_WRITE(planner.retract_acceleration);
  293. EEPROM_WRITE(planner.travel_acceleration);
  294. EEPROM_WRITE(planner.min_feedrate_mm_s);
  295. EEPROM_WRITE(planner.min_travel_feedrate_mm_s);
  296. EEPROM_WRITE(planner.min_segment_time);
  297. EEPROM_WRITE(planner.max_jerk);
  298. #if !HAS_HOME_OFFSET
  299. const float home_offset[XYZ] = { 0 };
  300. #endif
  301. #if ENABLED(DELTA)
  302. dummy = 0.0;
  303. EEPROM_WRITE(dummy);
  304. EEPROM_WRITE(dummy);
  305. dummy = DELTA_HEIGHT + home_offset[Z_AXIS];
  306. EEPROM_WRITE(dummy);
  307. #else
  308. EEPROM_WRITE(home_offset);
  309. #endif
  310. #if HOTENDS > 1
  311. // Skip hotend 0 which must be 0
  312. for (uint8_t e = 1; e < HOTENDS; e++)
  313. LOOP_XYZ(i) EEPROM_WRITE(hotend_offset[i][e]);
  314. #endif
  315. //
  316. // Global Leveling
  317. //
  318. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  319. const float zfh = planner.z_fade_height;
  320. #else
  321. const float zfh = 10.0;
  322. #endif
  323. EEPROM_WRITE(zfh);
  324. //
  325. // Mesh Bed Leveling
  326. //
  327. #if ENABLED(MESH_BED_LEVELING)
  328. // Compile time test that sizeof(mbl.z_values) is as expected
  329. static_assert(
  330. sizeof(mbl.z_values) == GRID_MAX_POINTS * sizeof(mbl.z_values[0][0]),
  331. "MBL Z array is the wrong size."
  332. );
  333. const bool leveling_is_on = TEST(mbl.status, MBL_STATUS_HAS_MESH_BIT);
  334. const uint8_t mesh_num_x = GRID_MAX_POINTS_X, mesh_num_y = GRID_MAX_POINTS_Y;
  335. EEPROM_WRITE(leveling_is_on);
  336. EEPROM_WRITE(mbl.z_offset);
  337. EEPROM_WRITE(mesh_num_x);
  338. EEPROM_WRITE(mesh_num_y);
  339. EEPROM_WRITE(mbl.z_values);
  340. #else // For disabled MBL write a default mesh
  341. const bool leveling_is_on = false;
  342. dummy = 0.0f;
  343. const uint8_t mesh_num_x = 3, mesh_num_y = 3;
  344. EEPROM_WRITE(leveling_is_on);
  345. EEPROM_WRITE(dummy); // z_offset
  346. EEPROM_WRITE(mesh_num_x);
  347. EEPROM_WRITE(mesh_num_y);
  348. for (uint8_t q = mesh_num_x * mesh_num_y; q--;) EEPROM_WRITE(dummy);
  349. #endif // MESH_BED_LEVELING
  350. #if !HAS_BED_PROBE
  351. const float zprobe_zoffset = 0;
  352. #endif
  353. EEPROM_WRITE(zprobe_zoffset);
  354. //
  355. // Planar Bed Leveling matrix
  356. //
  357. #if ABL_PLANAR
  358. EEPROM_WRITE(planner.bed_level_matrix);
  359. #else
  360. dummy = 0.0;
  361. for (uint8_t q = 9; q--;) EEPROM_WRITE(dummy);
  362. #endif
  363. //
  364. // Bilinear Auto Bed Leveling
  365. //
  366. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  367. // Compile time test that sizeof(z_values) is as expected
  368. static_assert(
  369. sizeof(z_values) == GRID_MAX_POINTS * sizeof(z_values[0][0]),
  370. "Bilinear Z array is the wrong size."
  371. );
  372. const uint8_t grid_max_x = GRID_MAX_POINTS_X, grid_max_y = GRID_MAX_POINTS_Y;
  373. EEPROM_WRITE(grid_max_x); // 1 byte
  374. EEPROM_WRITE(grid_max_y); // 1 byte
  375. EEPROM_WRITE(bilinear_grid_spacing); // 2 ints
  376. EEPROM_WRITE(bilinear_start); // 2 ints
  377. EEPROM_WRITE(z_values); // 9-256 floats
  378. #else
  379. // For disabled Bilinear Grid write an empty 3x3 grid
  380. const uint8_t grid_max_x = 3, grid_max_y = 3;
  381. const int bilinear_start[2] = { 0 }, bilinear_grid_spacing[2] = { 0 };
  382. dummy = 0.0f;
  383. EEPROM_WRITE(grid_max_x);
  384. EEPROM_WRITE(grid_max_y);
  385. EEPROM_WRITE(bilinear_grid_spacing);
  386. EEPROM_WRITE(bilinear_start);
  387. for (uint16_t q = grid_max_x * grid_max_y; q--;) EEPROM_WRITE(dummy);
  388. #endif // AUTO_BED_LEVELING_BILINEAR
  389. #if ENABLED(AUTO_BED_LEVELING_UBL)
  390. EEPROM_WRITE(ubl.state.active);
  391. EEPROM_WRITE(ubl.state.storage_slot);
  392. #else
  393. const bool ubl_active = false;
  394. const int8_t storage_slot = -1;
  395. EEPROM_WRITE(ubl_active);
  396. EEPROM_WRITE(storage_slot);
  397. #endif // AUTO_BED_LEVELING_UBL
  398. // 10 floats for DELTA / Z_DUAL_ENDSTOPS
  399. #if ENABLED(DELTA)
  400. EEPROM_WRITE(endstop_adj); // 3 floats
  401. EEPROM_WRITE(delta_radius); // 1 float
  402. EEPROM_WRITE(delta_diagonal_rod); // 1 float
  403. EEPROM_WRITE(delta_segments_per_second); // 1 float
  404. EEPROM_WRITE(delta_calibration_radius); // 1 float
  405. EEPROM_WRITE(delta_tower_angle_trim); // 3 floats
  406. dummy = 0.0f;
  407. for (uint8_t q = 2; q--;) EEPROM_WRITE(dummy);
  408. #elif ENABLED(Z_DUAL_ENDSTOPS)
  409. EEPROM_WRITE(z_endstop_adj); // 1 float
  410. dummy = 0.0f;
  411. for (uint8_t q = 11; q--;) EEPROM_WRITE(dummy);
  412. #else
  413. dummy = 0.0f;
  414. for (uint8_t q = 12; q--;) EEPROM_WRITE(dummy);
  415. #endif
  416. #if DISABLED(ULTIPANEL)
  417. constexpr int lcd_preheat_hotend_temp[2] = { PREHEAT_1_TEMP_HOTEND, PREHEAT_2_TEMP_HOTEND },
  418. lcd_preheat_bed_temp[2] = { PREHEAT_1_TEMP_BED, PREHEAT_2_TEMP_BED },
  419. lcd_preheat_fan_speed[2] = { PREHEAT_1_FAN_SPEED, PREHEAT_2_FAN_SPEED };
  420. #endif
  421. EEPROM_WRITE(lcd_preheat_hotend_temp);
  422. EEPROM_WRITE(lcd_preheat_bed_temp);
  423. EEPROM_WRITE(lcd_preheat_fan_speed);
  424. for (uint8_t e = 0; e < MAX_EXTRUDERS; e++) {
  425. #if ENABLED(PIDTEMP)
  426. if (e < HOTENDS) {
  427. EEPROM_WRITE(PID_PARAM(Kp, e));
  428. EEPROM_WRITE(PID_PARAM(Ki, e));
  429. EEPROM_WRITE(PID_PARAM(Kd, e));
  430. #if ENABLED(PID_EXTRUSION_SCALING)
  431. EEPROM_WRITE(PID_PARAM(Kc, e));
  432. #else
  433. dummy = 1.0f; // 1.0 = default kc
  434. EEPROM_WRITE(dummy);
  435. #endif
  436. }
  437. else
  438. #endif // !PIDTEMP
  439. {
  440. dummy = DUMMY_PID_VALUE; // When read, will not change the existing value
  441. EEPROM_WRITE(dummy); // Kp
  442. dummy = 0.0f;
  443. for (uint8_t q = 3; q--;) EEPROM_WRITE(dummy); // Ki, Kd, Kc
  444. }
  445. } // Hotends Loop
  446. #if DISABLED(PID_EXTRUSION_SCALING)
  447. int lpq_len = 20;
  448. #endif
  449. EEPROM_WRITE(lpq_len);
  450. #if DISABLED(PIDTEMPBED)
  451. dummy = DUMMY_PID_VALUE;
  452. for (uint8_t q = 3; q--;) EEPROM_WRITE(dummy);
  453. #else
  454. EEPROM_WRITE(thermalManager.bedKp);
  455. EEPROM_WRITE(thermalManager.bedKi);
  456. EEPROM_WRITE(thermalManager.bedKd);
  457. #endif
  458. #if !HAS_LCD_CONTRAST
  459. const uint16_t lcd_contrast = 32;
  460. #endif
  461. EEPROM_WRITE(lcd_contrast);
  462. #if DISABLED(FWRETRACT)
  463. const bool autoretract_enabled = false;
  464. const float retract_length = 3,
  465. retract_feedrate_mm_s = 45,
  466. retract_zlift = 0,
  467. retract_recover_length = 0,
  468. retract_recover_feedrate_mm_s = 0,
  469. swap_retract_length = 13,
  470. swap_retract_recover_length = 0,
  471. swap_retract_recover_feedrate_mm_s = 8;
  472. #endif
  473. EEPROM_WRITE(autoretract_enabled);
  474. EEPROM_WRITE(retract_length);
  475. EEPROM_WRITE(retract_feedrate_mm_s);
  476. EEPROM_WRITE(retract_zlift);
  477. EEPROM_WRITE(retract_recover_length);
  478. EEPROM_WRITE(retract_recover_feedrate_mm_s);
  479. EEPROM_WRITE(swap_retract_length);
  480. EEPROM_WRITE(swap_retract_recover_length);
  481. EEPROM_WRITE(swap_retract_recover_feedrate_mm_s);
  482. EEPROM_WRITE(volumetric_enabled);
  483. // Save filament sizes
  484. for (uint8_t q = 0; q < MAX_EXTRUDERS; q++) {
  485. if (q < COUNT(filament_size)) dummy = filament_size[q];
  486. EEPROM_WRITE(dummy);
  487. }
  488. // Save TMC2130 Configuration, and placeholder values
  489. uint16_t val;
  490. #if ENABLED(HAVE_TMC2130)
  491. #if ENABLED(X_IS_TMC2130)
  492. val = stepperX.getCurrent();
  493. #else
  494. val = 0;
  495. #endif
  496. EEPROM_WRITE(val);
  497. #if ENABLED(Y_IS_TMC2130)
  498. val = stepperY.getCurrent();
  499. #else
  500. val = 0;
  501. #endif
  502. EEPROM_WRITE(val);
  503. #if ENABLED(Z_IS_TMC2130)
  504. val = stepperZ.getCurrent();
  505. #else
  506. val = 0;
  507. #endif
  508. EEPROM_WRITE(val);
  509. #if ENABLED(X2_IS_TMC2130)
  510. val = stepperX2.getCurrent();
  511. #else
  512. val = 0;
  513. #endif
  514. EEPROM_WRITE(val);
  515. #if ENABLED(Y2_IS_TMC2130)
  516. val = stepperY2.getCurrent();
  517. #else
  518. val = 0;
  519. #endif
  520. EEPROM_WRITE(val);
  521. #if ENABLED(Z2_IS_TMC2130)
  522. val = stepperZ2.getCurrent();
  523. #else
  524. val = 0;
  525. #endif
  526. EEPROM_WRITE(val);
  527. #if ENABLED(E0_IS_TMC2130)
  528. val = stepperE0.getCurrent();
  529. #else
  530. val = 0;
  531. #endif
  532. EEPROM_WRITE(val);
  533. #if ENABLED(E1_IS_TMC2130)
  534. val = stepperE1.getCurrent();
  535. #else
  536. val = 0;
  537. #endif
  538. EEPROM_WRITE(val);
  539. #if ENABLED(E2_IS_TMC2130)
  540. val = stepperE2.getCurrent();
  541. #else
  542. val = 0;
  543. #endif
  544. EEPROM_WRITE(val);
  545. #if ENABLED(E3_IS_TMC2130)
  546. val = stepperE3.getCurrent();
  547. #else
  548. val = 0;
  549. #endif
  550. EEPROM_WRITE(val);
  551. #if ENABLED(E4_IS_TMC2130)
  552. val = stepperE4.getCurrent();
  553. #else
  554. val = 0;
  555. #endif
  556. EEPROM_WRITE(val);
  557. #else
  558. val = 0;
  559. for (uint8_t q = 11; q--;) EEPROM_WRITE(val);
  560. #endif
  561. //
  562. // Linear Advance
  563. //
  564. #if ENABLED(LIN_ADVANCE)
  565. EEPROM_WRITE(planner.extruder_advance_k);
  566. EEPROM_WRITE(planner.advance_ed_ratio);
  567. #else
  568. dummy = 0.0f;
  569. EEPROM_WRITE(dummy);
  570. EEPROM_WRITE(dummy);
  571. #endif
  572. #if HAS_MOTOR_CURRENT_PWM
  573. for (uint8_t q = 3; q--;) EEPROM_WRITE(stepper.motor_current_setting[q]);
  574. #else
  575. const uint32_t dummyui32 = 0;
  576. for (uint8_t q = 3; q--;) EEPROM_WRITE(dummyui32);
  577. #endif
  578. if (!eeprom_error) {
  579. const int eeprom_size = eeprom_index;
  580. const uint16_t final_crc = working_crc;
  581. // Write the EEPROM header
  582. eeprom_index = EEPROM_OFFSET;
  583. EEPROM_WRITE(version);
  584. EEPROM_WRITE(final_crc);
  585. // Report storage size
  586. #if ENABLED(EEPROM_CHITCHAT)
  587. SERIAL_ECHO_START();
  588. SERIAL_ECHOPAIR("Settings Stored (", eeprom_size - (EEPROM_OFFSET));
  589. SERIAL_ECHOPAIR(" bytes; crc ", (uint32_t)final_crc);
  590. SERIAL_ECHOLNPGM(")");
  591. #endif
  592. }
  593. #if ENABLED(UBL_SAVE_ACTIVE_ON_M500)
  594. if (ubl.state.storage_slot >= 0)
  595. store_mesh(ubl.state.storage_slot);
  596. #endif
  597. return !eeprom_error;
  598. }
  599. /**
  600. * M501 - Retrieve Configuration
  601. */
  602. bool MarlinSettings::load() {
  603. uint16_t working_crc = 0;
  604. EEPROM_START();
  605. char stored_ver[4];
  606. EEPROM_READ(stored_ver);
  607. uint16_t stored_crc;
  608. EEPROM_READ(stored_crc);
  609. // Version has to match or defaults are used
  610. if (strncmp(version, stored_ver, 3) != 0) {
  611. if (stored_ver[0] != 'V') {
  612. stored_ver[0] = '?';
  613. stored_ver[1] = '\0';
  614. }
  615. #if ENABLED(EEPROM_CHITCHAT)
  616. SERIAL_ECHO_START();
  617. SERIAL_ECHOPGM("EEPROM version mismatch ");
  618. SERIAL_ECHOPAIR("(EEPROM=", stored_ver);
  619. SERIAL_ECHOLNPGM(" Marlin=" EEPROM_VERSION ")");
  620. #endif
  621. reset();
  622. }
  623. else {
  624. float dummy = 0;
  625. bool dummyb;
  626. working_crc = 0; //clear before reading first "real data"
  627. // Number of esteppers may change
  628. uint8_t esteppers;
  629. EEPROM_READ(esteppers);
  630. // Get only the number of E stepper parameters previously stored
  631. // Any steppers added later are set to their defaults
  632. const float def1[] = DEFAULT_AXIS_STEPS_PER_UNIT, def2[] = DEFAULT_MAX_FEEDRATE;
  633. const uint32_t def3[] = DEFAULT_MAX_ACCELERATION;
  634. float tmp1[XYZ + esteppers], tmp2[XYZ + esteppers];
  635. uint32_t tmp3[XYZ + esteppers];
  636. EEPROM_READ(tmp1);
  637. EEPROM_READ(tmp2);
  638. EEPROM_READ(tmp3);
  639. LOOP_XYZE_N(i) {
  640. planner.axis_steps_per_mm[i] = i < XYZ + esteppers ? tmp1[i] : def1[i < COUNT(def1) ? i : COUNT(def1) - 1];
  641. planner.max_feedrate_mm_s[i] = i < XYZ + esteppers ? tmp2[i] : def2[i < COUNT(def2) ? i : COUNT(def2) - 1];
  642. planner.max_acceleration_mm_per_s2[i] = i < XYZ + esteppers ? tmp3[i] : def3[i < COUNT(def3) ? i : COUNT(def3) - 1];
  643. }
  644. EEPROM_READ(planner.acceleration);
  645. EEPROM_READ(planner.retract_acceleration);
  646. EEPROM_READ(planner.travel_acceleration);
  647. EEPROM_READ(planner.min_feedrate_mm_s);
  648. EEPROM_READ(planner.min_travel_feedrate_mm_s);
  649. EEPROM_READ(planner.min_segment_time);
  650. EEPROM_READ(planner.max_jerk);
  651. #if !HAS_HOME_OFFSET
  652. float home_offset[XYZ];
  653. #endif
  654. EEPROM_READ(home_offset);
  655. #if ENABLED(DELTA)
  656. home_offset[X_AXIS] = 0.0;
  657. home_offset[Y_AXIS] = 0.0;
  658. home_offset[Z_AXIS] -= DELTA_HEIGHT;
  659. #endif
  660. #if HOTENDS > 1
  661. // Skip hotend 0 which must be 0
  662. for (uint8_t e = 1; e < HOTENDS; e++)
  663. LOOP_XYZ(i) EEPROM_READ(hotend_offset[i][e]);
  664. #endif
  665. //
  666. // Global Leveling
  667. //
  668. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  669. EEPROM_READ(planner.z_fade_height);
  670. #else
  671. EEPROM_READ(dummy);
  672. #endif
  673. //
  674. // Mesh (Manual) Bed Leveling
  675. //
  676. bool leveling_is_on;
  677. uint8_t mesh_num_x, mesh_num_y;
  678. EEPROM_READ(leveling_is_on);
  679. EEPROM_READ(dummy);
  680. EEPROM_READ(mesh_num_x);
  681. EEPROM_READ(mesh_num_y);
  682. #if ENABLED(MESH_BED_LEVELING)
  683. mbl.status = leveling_is_on ? _BV(MBL_STATUS_HAS_MESH_BIT) : 0;
  684. mbl.z_offset = dummy;
  685. if (mesh_num_x == GRID_MAX_POINTS_X && mesh_num_y == GRID_MAX_POINTS_Y) {
  686. // EEPROM data fits the current mesh
  687. EEPROM_READ(mbl.z_values);
  688. }
  689. else {
  690. // EEPROM data is stale
  691. mbl.reset();
  692. for (uint16_t q = mesh_num_x * mesh_num_y; q--;) EEPROM_READ(dummy);
  693. }
  694. #else
  695. // MBL is disabled - skip the stored data
  696. for (uint16_t q = mesh_num_x * mesh_num_y; q--;) EEPROM_READ(dummy);
  697. #endif // MESH_BED_LEVELING
  698. #if !HAS_BED_PROBE
  699. float zprobe_zoffset;
  700. #endif
  701. EEPROM_READ(zprobe_zoffset);
  702. //
  703. // Planar Bed Leveling matrix
  704. //
  705. #if ABL_PLANAR
  706. EEPROM_READ(planner.bed_level_matrix);
  707. #else
  708. for (uint8_t q = 9; q--;) EEPROM_READ(dummy);
  709. #endif
  710. //
  711. // Bilinear Auto Bed Leveling
  712. //
  713. uint8_t grid_max_x, grid_max_y;
  714. EEPROM_READ(grid_max_x); // 1 byte
  715. EEPROM_READ(grid_max_y); // 1 byte
  716. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  717. if (grid_max_x == GRID_MAX_POINTS_X && grid_max_y == GRID_MAX_POINTS_Y) {
  718. set_bed_leveling_enabled(false);
  719. EEPROM_READ(bilinear_grid_spacing); // 2 ints
  720. EEPROM_READ(bilinear_start); // 2 ints
  721. EEPROM_READ(z_values); // 9 to 256 floats
  722. }
  723. else // EEPROM data is stale
  724. #endif // AUTO_BED_LEVELING_BILINEAR
  725. {
  726. // Skip past disabled (or stale) Bilinear Grid data
  727. int bgs[2], bs[2];
  728. EEPROM_READ(bgs);
  729. EEPROM_READ(bs);
  730. for (uint16_t q = grid_max_x * grid_max_y; q--;) EEPROM_READ(dummy);
  731. }
  732. #if ENABLED(AUTO_BED_LEVELING_UBL)
  733. EEPROM_READ(ubl.state.active);
  734. EEPROM_READ(ubl.state.storage_slot);
  735. #else
  736. uint8_t dummyui8;
  737. EEPROM_READ(dummyb);
  738. EEPROM_READ(dummyui8);
  739. #endif // AUTO_BED_LEVELING_UBL
  740. #if ENABLED(DELTA)
  741. EEPROM_READ(endstop_adj); // 3 floats
  742. EEPROM_READ(delta_radius); // 1 float
  743. EEPROM_READ(delta_diagonal_rod); // 1 float
  744. EEPROM_READ(delta_segments_per_second); // 1 float
  745. EEPROM_READ(delta_calibration_radius); // 1 float
  746. EEPROM_READ(delta_tower_angle_trim); // 3 floats
  747. dummy = 0.0f;
  748. for (uint8_t q=2; q--;) EEPROM_READ(dummy);
  749. #elif ENABLED(Z_DUAL_ENDSTOPS)
  750. EEPROM_READ(z_endstop_adj);
  751. dummy = 0.0f;
  752. for (uint8_t q=11; q--;) EEPROM_READ(dummy);
  753. #else
  754. dummy = 0.0f;
  755. for (uint8_t q=12; q--;) EEPROM_READ(dummy);
  756. #endif
  757. #if DISABLED(ULTIPANEL)
  758. int lcd_preheat_hotend_temp[2], lcd_preheat_bed_temp[2], lcd_preheat_fan_speed[2];
  759. #endif
  760. EEPROM_READ(lcd_preheat_hotend_temp);
  761. EEPROM_READ(lcd_preheat_bed_temp);
  762. EEPROM_READ(lcd_preheat_fan_speed);
  763. //EEPROM_ASSERT(
  764. // WITHIN(lcd_preheat_fan_speed, 0, 255),
  765. // "lcd_preheat_fan_speed out of range"
  766. //);
  767. #if ENABLED(PIDTEMP)
  768. for (uint8_t e = 0; e < MAX_EXTRUDERS; e++) {
  769. EEPROM_READ(dummy); // Kp
  770. if (e < HOTENDS && dummy != DUMMY_PID_VALUE) {
  771. // do not need to scale PID values as the values in EEPROM are already scaled
  772. PID_PARAM(Kp, e) = dummy;
  773. EEPROM_READ(PID_PARAM(Ki, e));
  774. EEPROM_READ(PID_PARAM(Kd, e));
  775. #if ENABLED(PID_EXTRUSION_SCALING)
  776. EEPROM_READ(PID_PARAM(Kc, e));
  777. #else
  778. EEPROM_READ(dummy);
  779. #endif
  780. }
  781. else {
  782. for (uint8_t q=3; q--;) EEPROM_READ(dummy); // Ki, Kd, Kc
  783. }
  784. }
  785. #else // !PIDTEMP
  786. // 4 x 4 = 16 slots for PID parameters
  787. for (uint8_t q = MAX_EXTRUDERS * 4; q--;) EEPROM_READ(dummy); // Kp, Ki, Kd, Kc
  788. #endif // !PIDTEMP
  789. #if DISABLED(PID_EXTRUSION_SCALING)
  790. int lpq_len;
  791. #endif
  792. EEPROM_READ(lpq_len);
  793. #if ENABLED(PIDTEMPBED)
  794. EEPROM_READ(dummy); // bedKp
  795. if (dummy != DUMMY_PID_VALUE) {
  796. thermalManager.bedKp = dummy;
  797. EEPROM_READ(thermalManager.bedKi);
  798. EEPROM_READ(thermalManager.bedKd);
  799. }
  800. #else
  801. for (uint8_t q=3; q--;) EEPROM_READ(dummy); // bedKp, bedKi, bedKd
  802. #endif
  803. #if !HAS_LCD_CONTRAST
  804. uint16_t lcd_contrast;
  805. #endif
  806. EEPROM_READ(lcd_contrast);
  807. #if ENABLED(FWRETRACT)
  808. EEPROM_READ(autoretract_enabled);
  809. EEPROM_READ(retract_length);
  810. EEPROM_READ(retract_feedrate_mm_s);
  811. EEPROM_READ(retract_zlift);
  812. EEPROM_READ(retract_recover_length);
  813. EEPROM_READ(retract_recover_feedrate_mm_s);
  814. EEPROM_READ(swap_retract_length);
  815. EEPROM_READ(swap_retract_recover_length);
  816. EEPROM_READ(swap_retract_recover_feedrate_mm_s);
  817. #else
  818. EEPROM_READ(dummyb);
  819. for (uint8_t q=8; q--;) EEPROM_READ(dummy);
  820. #endif
  821. EEPROM_READ(volumetric_enabled);
  822. for (uint8_t q = 0; q < MAX_EXTRUDERS; q++) {
  823. EEPROM_READ(dummy);
  824. if (q < COUNT(filament_size)) filament_size[q] = dummy;
  825. }
  826. uint16_t val;
  827. #if ENABLED(HAVE_TMC2130)
  828. EEPROM_READ(val);
  829. #if ENABLED(X_IS_TMC2130)
  830. stepperX.setCurrent(val, R_SENSE, HOLD_MULTIPLIER);
  831. #endif
  832. EEPROM_READ(val);
  833. #if ENABLED(Y_IS_TMC2130)
  834. stepperY.setCurrent(val, R_SENSE, HOLD_MULTIPLIER);
  835. #endif
  836. EEPROM_READ(val);
  837. #if ENABLED(Z_IS_TMC2130)
  838. stepperZ.setCurrent(val, R_SENSE, HOLD_MULTIPLIER);
  839. #endif
  840. EEPROM_READ(val);
  841. #if ENABLED(X2_IS_TMC2130)
  842. stepperX2.setCurrent(val, R_SENSE, HOLD_MULTIPLIER);
  843. #endif
  844. EEPROM_READ(val);
  845. #if ENABLED(Y2_IS_TMC2130)
  846. stepperY2.setCurrent(val, R_SENSE, HOLD_MULTIPLIER);
  847. #endif
  848. EEPROM_READ(val);
  849. #if ENABLED(Z2_IS_TMC2130)
  850. stepperZ2.setCurrent(val, R_SENSE, HOLD_MULTIPLIER);
  851. #endif
  852. EEPROM_READ(val);
  853. #if ENABLED(E0_IS_TMC2130)
  854. stepperE0.setCurrent(val, R_SENSE, HOLD_MULTIPLIER);
  855. #endif
  856. EEPROM_READ(val);
  857. #if ENABLED(E1_IS_TMC2130)
  858. stepperE1.setCurrent(val, R_SENSE, HOLD_MULTIPLIER);
  859. #endif
  860. EEPROM_READ(val);
  861. #if ENABLED(E2_IS_TMC2130)
  862. stepperE2.setCurrent(val, R_SENSE, HOLD_MULTIPLIER);
  863. #endif
  864. EEPROM_READ(val);
  865. #if ENABLED(E3_IS_TMC2130)
  866. stepperE3.setCurrent(val, R_SENSE, HOLD_MULTIPLIER);
  867. #endif
  868. EEPROM_READ(val);
  869. #if ENABLED(E4_IS_TMC2130)
  870. stepperE4.setCurrent(val, R_SENSE, HOLD_MULTIPLIER);
  871. #endif
  872. #else
  873. for (uint8_t q = 0; q < 11; q++) EEPROM_READ(val);
  874. #endif
  875. //
  876. // Linear Advance
  877. //
  878. #if ENABLED(LIN_ADVANCE)
  879. EEPROM_READ(planner.extruder_advance_k);
  880. EEPROM_READ(planner.advance_ed_ratio);
  881. #else
  882. EEPROM_READ(dummy);
  883. EEPROM_READ(dummy);
  884. #endif
  885. #if HAS_MOTOR_CURRENT_PWM
  886. for (uint8_t q = 3; q--;) EEPROM_READ(stepper.motor_current_setting[q]);
  887. #else
  888. uint32_t dummyui32;
  889. for (uint8_t q = 3; q--;) EEPROM_READ(dummyui32);
  890. #endif
  891. if (working_crc == stored_crc) {
  892. postprocess();
  893. #if ENABLED(EEPROM_CHITCHAT)
  894. SERIAL_ECHO_START();
  895. SERIAL_ECHO(version);
  896. SERIAL_ECHOPAIR(" stored settings retrieved (", eeprom_index - (EEPROM_OFFSET));
  897. SERIAL_ECHOPAIR(" bytes; crc ", (uint32_t)working_crc);
  898. SERIAL_ECHOLNPGM(")");
  899. #endif
  900. }
  901. else {
  902. #if ENABLED(EEPROM_CHITCHAT)
  903. SERIAL_ERROR_START();
  904. SERIAL_ERRORPGM("EEPROM CRC mismatch - (stored) ");
  905. SERIAL_ERROR(stored_crc);
  906. SERIAL_ERRORPGM(" != ");
  907. SERIAL_ERROR(working_crc);
  908. SERIAL_ERRORLNPGM(" (calculated)!");
  909. #endif
  910. reset();
  911. }
  912. #if ENABLED(AUTO_BED_LEVELING_UBL)
  913. meshes_begin = (eeprom_index + 32) & 0xFFF8; // Pad the end of configuration data so it
  914. // can float up or down a little bit without
  915. // disrupting the mesh data
  916. ubl.report_state();
  917. if (!ubl.sanity_check()) {
  918. SERIAL_EOL();
  919. #if ENABLED(EEPROM_CHITCHAT)
  920. ubl.echo_name();
  921. SERIAL_ECHOLNPGM(" initialized.\n");
  922. #endif
  923. }
  924. else {
  925. #if ENABLED(EEPROM_CHITCHAT)
  926. SERIAL_PROTOCOLPGM("?Can't enable ");
  927. ubl.echo_name();
  928. SERIAL_PROTOCOLLNPGM(".");
  929. #endif
  930. ubl.reset();
  931. }
  932. if (ubl.state.storage_slot >= 0) {
  933. load_mesh(ubl.state.storage_slot);
  934. #if ENABLED(EEPROM_CHITCHAT)
  935. SERIAL_ECHOPAIR("Mesh ", ubl.state.storage_slot);
  936. SERIAL_ECHOLNPGM(" loaded from storage.");
  937. #endif
  938. }
  939. else {
  940. ubl.reset();
  941. #if ENABLED(EEPROM_CHITCHAT)
  942. SERIAL_ECHOLNPGM("UBL System reset()");
  943. #endif
  944. }
  945. #endif
  946. }
  947. #if ENABLED(EEPROM_CHITCHAT) && DISABLED(DISABLE_M503)
  948. report();
  949. #endif
  950. return !eeprom_error;
  951. }
  952. #if ENABLED(AUTO_BED_LEVELING_UBL)
  953. #if ENABLED(EEPROM_CHITCHAT)
  954. void ubl_invalid_slot(const int s) {
  955. SERIAL_PROTOCOLLNPGM("?Invalid slot.");
  956. SERIAL_PROTOCOL(s);
  957. SERIAL_PROTOCOLLNPGM(" mesh slots available.");
  958. }
  959. #endif
  960. int MarlinSettings::calc_num_meshes() {
  961. //obviously this will get more sophisticated once we've added an actual MAT
  962. if (meshes_begin <= 0) return 0;
  963. return (meshes_end - meshes_begin) / sizeof(ubl.z_values);
  964. }
  965. void MarlinSettings::store_mesh(int8_t slot) {
  966. #if ENABLED(AUTO_BED_LEVELING_UBL)
  967. const int a = calc_num_meshes();
  968. if (!WITHIN(slot, 0, a - 1)) {
  969. #if ENABLED(EEPROM_CHITCHAT)
  970. ubl_invalid_slot(a);
  971. SERIAL_PROTOCOLPAIR("E2END=", E2END);
  972. SERIAL_PROTOCOLPAIR(" meshes_end=", meshes_end);
  973. SERIAL_PROTOCOLLNPAIR(" slot=", slot);
  974. SERIAL_EOL();
  975. #endif
  976. return;
  977. }
  978. uint16_t crc = 0;
  979. int pos = meshes_end - (slot + 1) * sizeof(ubl.z_values);
  980. write_data(pos, (uint8_t *)&ubl.z_values, sizeof(ubl.z_values), &crc);
  981. // Write crc to MAT along with other data, or just tack on to the beginning or end
  982. #if ENABLED(EEPROM_CHITCHAT)
  983. SERIAL_PROTOCOLLNPAIR("Mesh saved in slot ", slot);
  984. #endif
  985. #else
  986. // Other mesh types
  987. #endif
  988. }
  989. void MarlinSettings::load_mesh(int8_t slot, void *into /* = 0 */) {
  990. #if ENABLED(AUTO_BED_LEVELING_UBL)
  991. const int16_t a = settings.calc_num_meshes();
  992. if (!WITHIN(slot, 0, a - 1)) {
  993. #if ENABLED(EEPROM_CHITCHAT)
  994. ubl_invalid_slot(a);
  995. #endif
  996. return;
  997. }
  998. uint16_t crc = 0;
  999. int pos = meshes_end - (slot + 1) * sizeof(ubl.z_values);
  1000. uint8_t * const dest = into ? (uint8_t*)into : (uint8_t*)&ubl.z_values;
  1001. read_data(pos, dest, sizeof(ubl.z_values), &crc);
  1002. // Compare crc with crc from MAT, or read from end
  1003. #if ENABLED(EEPROM_CHITCHAT)
  1004. SERIAL_PROTOCOLLNPAIR("Mesh loaded from slot ", slot);
  1005. #endif
  1006. #else
  1007. // Other mesh types
  1008. #endif
  1009. }
  1010. //void MarlinSettings::delete_mesh() { return; }
  1011. //void MarlinSettings::defrag_meshes() { return; }
  1012. #endif // AUTO_BED_LEVELING_UBL
  1013. #else // !EEPROM_SETTINGS
  1014. bool MarlinSettings::save() {
  1015. SERIAL_ERROR_START();
  1016. SERIAL_ERRORLNPGM("EEPROM disabled");
  1017. return false;
  1018. }
  1019. #endif // !EEPROM_SETTINGS
  1020. /**
  1021. * M502 - Reset Configuration
  1022. */
  1023. void MarlinSettings::reset() {
  1024. static const float tmp1[] PROGMEM = DEFAULT_AXIS_STEPS_PER_UNIT, tmp2[] PROGMEM = DEFAULT_MAX_FEEDRATE;
  1025. static const uint32_t tmp3[] PROGMEM = DEFAULT_MAX_ACCELERATION;
  1026. LOOP_XYZE_N(i) {
  1027. planner.axis_steps_per_mm[i] = pgm_read_float(&tmp1[i < COUNT(tmp1) ? i : COUNT(tmp1) - 1]);
  1028. planner.max_feedrate_mm_s[i] = pgm_read_float(&tmp2[i < COUNT(tmp2) ? i : COUNT(tmp2) - 1]);
  1029. planner.max_acceleration_mm_per_s2[i] = pgm_read_dword_near(&tmp3[i < COUNT(tmp3) ? i : COUNT(tmp3) - 1]);
  1030. }
  1031. planner.acceleration = DEFAULT_ACCELERATION;
  1032. planner.retract_acceleration = DEFAULT_RETRACT_ACCELERATION;
  1033. planner.travel_acceleration = DEFAULT_TRAVEL_ACCELERATION;
  1034. planner.min_feedrate_mm_s = DEFAULT_MINIMUMFEEDRATE;
  1035. planner.min_segment_time = DEFAULT_MINSEGMENTTIME;
  1036. planner.min_travel_feedrate_mm_s = DEFAULT_MINTRAVELFEEDRATE;
  1037. planner.max_jerk[X_AXIS] = DEFAULT_XJERK;
  1038. planner.max_jerk[Y_AXIS] = DEFAULT_YJERK;
  1039. planner.max_jerk[Z_AXIS] = DEFAULT_ZJERK;
  1040. planner.max_jerk[E_AXIS] = DEFAULT_EJERK;
  1041. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  1042. planner.z_fade_height = 0.0;
  1043. #endif
  1044. #if HAS_HOME_OFFSET
  1045. ZERO(home_offset);
  1046. #endif
  1047. #if HOTENDS > 1
  1048. constexpr float tmp4[XYZ][HOTENDS] = {
  1049. HOTEND_OFFSET_X,
  1050. HOTEND_OFFSET_Y
  1051. #ifdef HOTEND_OFFSET_Z
  1052. , HOTEND_OFFSET_Z
  1053. #else
  1054. , { 0 }
  1055. #endif
  1056. };
  1057. static_assert(
  1058. tmp4[X_AXIS][0] == 0 && tmp4[Y_AXIS][0] == 0 && tmp4[Z_AXIS][0] == 0,
  1059. "Offsets for the first hotend must be 0.0."
  1060. );
  1061. LOOP_XYZ(i) HOTEND_LOOP() hotend_offset[i][e] = tmp4[i][e];
  1062. #endif
  1063. // Applies to all MBL and ABL
  1064. #if HAS_LEVELING
  1065. reset_bed_level();
  1066. #endif
  1067. #if HAS_BED_PROBE
  1068. zprobe_zoffset = Z_PROBE_OFFSET_FROM_EXTRUDER;
  1069. #endif
  1070. #if ENABLED(DELTA)
  1071. const float adj[ABC] = DELTA_ENDSTOP_ADJ,
  1072. dta[ABC] = DELTA_TOWER_ANGLE_TRIM;
  1073. COPY(endstop_adj, adj);
  1074. delta_radius = DELTA_RADIUS;
  1075. delta_diagonal_rod = DELTA_DIAGONAL_ROD;
  1076. delta_segments_per_second = DELTA_SEGMENTS_PER_SECOND;
  1077. delta_calibration_radius = DELTA_CALIBRATION_RADIUS;
  1078. COPY(delta_tower_angle_trim, dta);
  1079. home_offset[Z_AXIS] = 0;
  1080. #elif ENABLED(Z_DUAL_ENDSTOPS)
  1081. z_endstop_adj =
  1082. #ifdef Z_DUAL_ENDSTOPS_ADJUSTMENT
  1083. Z_DUAL_ENDSTOPS_ADJUSTMENT
  1084. #else
  1085. 0
  1086. #endif
  1087. ;
  1088. #endif
  1089. #if ENABLED(ULTIPANEL)
  1090. lcd_preheat_hotend_temp[0] = PREHEAT_1_TEMP_HOTEND;
  1091. lcd_preheat_hotend_temp[1] = PREHEAT_2_TEMP_HOTEND;
  1092. lcd_preheat_bed_temp[0] = PREHEAT_1_TEMP_BED;
  1093. lcd_preheat_bed_temp[1] = PREHEAT_2_TEMP_BED;
  1094. lcd_preheat_fan_speed[0] = PREHEAT_1_FAN_SPEED;
  1095. lcd_preheat_fan_speed[1] = PREHEAT_2_FAN_SPEED;
  1096. #endif
  1097. #if HAS_LCD_CONTRAST
  1098. lcd_contrast = DEFAULT_LCD_CONTRAST;
  1099. #endif
  1100. #if ENABLED(PIDTEMP)
  1101. #if ENABLED(PID_PARAMS_PER_HOTEND) && HOTENDS > 1
  1102. HOTEND_LOOP()
  1103. #endif
  1104. {
  1105. PID_PARAM(Kp, e) = DEFAULT_Kp;
  1106. PID_PARAM(Ki, e) = scalePID_i(DEFAULT_Ki);
  1107. PID_PARAM(Kd, e) = scalePID_d(DEFAULT_Kd);
  1108. #if ENABLED(PID_EXTRUSION_SCALING)
  1109. PID_PARAM(Kc, e) = DEFAULT_Kc;
  1110. #endif
  1111. }
  1112. #if ENABLED(PID_EXTRUSION_SCALING)
  1113. lpq_len = 20; // default last-position-queue size
  1114. #endif
  1115. #endif // PIDTEMP
  1116. #if ENABLED(PIDTEMPBED)
  1117. thermalManager.bedKp = DEFAULT_bedKp;
  1118. thermalManager.bedKi = scalePID_i(DEFAULT_bedKi);
  1119. thermalManager.bedKd = scalePID_d(DEFAULT_bedKd);
  1120. #endif
  1121. #if ENABLED(FWRETRACT)
  1122. autoretract_enabled = false;
  1123. retract_length = RETRACT_LENGTH;
  1124. retract_feedrate_mm_s = RETRACT_FEEDRATE;
  1125. retract_zlift = RETRACT_ZLIFT;
  1126. retract_recover_length = RETRACT_RECOVER_LENGTH;
  1127. retract_recover_feedrate_mm_s = RETRACT_RECOVER_FEEDRATE;
  1128. swap_retract_length = RETRACT_LENGTH_SWAP;
  1129. swap_retract_recover_length = RETRACT_RECOVER_LENGTH_SWAP;
  1130. swap_retract_recover_feedrate_mm_s = RETRACT_RECOVER_FEEDRATE_SWAP;
  1131. #endif // FWRETRACT
  1132. volumetric_enabled =
  1133. #if ENABLED(VOLUMETRIC_DEFAULT_ON)
  1134. true
  1135. #else
  1136. false
  1137. #endif
  1138. ;
  1139. for (uint8_t q = 0; q < COUNT(filament_size); q++)
  1140. filament_size[q] = DEFAULT_NOMINAL_FILAMENT_DIA;
  1141. endstops.enable_globally(
  1142. #if ENABLED(ENDSTOPS_ALWAYS_ON_DEFAULT)
  1143. true
  1144. #else
  1145. false
  1146. #endif
  1147. );
  1148. #if ENABLED(HAVE_TMC2130)
  1149. #if ENABLED(X_IS_TMC2130)
  1150. stepperX.setCurrent(X_CURRENT, R_SENSE, HOLD_MULTIPLIER);
  1151. #endif
  1152. #if ENABLED(Y_IS_TMC2130)
  1153. stepperY.setCurrent(Y_CURRENT, R_SENSE, HOLD_MULTIPLIER);
  1154. #endif
  1155. #if ENABLED(Z_IS_TMC2130)
  1156. stepperZ.setCurrent(Z_CURRENT, R_SENSE, HOLD_MULTIPLIER);
  1157. #endif
  1158. #if ENABLED(X2_IS_TMC2130)
  1159. stepperX2.setCurrent(X2_CURRENT, R_SENSE, HOLD_MULTIPLIER);
  1160. #endif
  1161. #if ENABLED(Y2_IS_TMC2130)
  1162. stepperY2.setCurrent(Y2_CURRENT, R_SENSE, HOLD_MULTIPLIER);
  1163. #endif
  1164. #if ENABLED(Z2_IS_TMC2130)
  1165. stepperZ2.setCurrent(Z2_CURRENT, R_SENSE, HOLD_MULTIPLIER);
  1166. #endif
  1167. #if ENABLED(E0_IS_TMC2130)
  1168. stepperE0.setCurrent(E0_CURRENT, R_SENSE, HOLD_MULTIPLIER);
  1169. #endif
  1170. #if ENABLED(E1_IS_TMC2130)
  1171. stepperE1.setCurrent(E1_CURRENT, R_SENSE, HOLD_MULTIPLIER);
  1172. #endif
  1173. #if ENABLED(E2_IS_TMC2130)
  1174. stepperE2.setCurrent(E2_CURRENT, R_SENSE, HOLD_MULTIPLIER);
  1175. #endif
  1176. #if ENABLED(E3_IS_TMC2130)
  1177. stepperE3.setCurrent(E3_CURRENT, R_SENSE, HOLD_MULTIPLIER);
  1178. #endif
  1179. #endif
  1180. #if ENABLED(LIN_ADVANCE)
  1181. planner.extruder_advance_k = LIN_ADVANCE_K;
  1182. planner.advance_ed_ratio = LIN_ADVANCE_E_D_RATIO;
  1183. #endif
  1184. #if HAS_MOTOR_CURRENT_PWM
  1185. uint32_t tmp_motor_current_setting[3] = PWM_MOTOR_CURRENT;
  1186. for (uint8_t q = 3; q--;)
  1187. stepper.digipot_current(q, (stepper.motor_current_setting[q] = tmp_motor_current_setting[q]));
  1188. #endif
  1189. #if ENABLED(AUTO_BED_LEVELING_UBL)
  1190. ubl.reset();
  1191. #endif
  1192. postprocess();
  1193. #if ENABLED(EEPROM_CHITCHAT)
  1194. SERIAL_ECHO_START();
  1195. SERIAL_ECHOLNPGM("Hardcoded Default Settings Loaded");
  1196. #endif
  1197. }
  1198. #if DISABLED(DISABLE_M503)
  1199. #define CONFIG_ECHO_START do{ if (!forReplay) SERIAL_ECHO_START(); }while(0)
  1200. /**
  1201. * M503 - Report current settings in RAM
  1202. *
  1203. * Unless specifically disabled, M503 is available even without EEPROM
  1204. */
  1205. void MarlinSettings::report(bool forReplay) {
  1206. /**
  1207. * Announce current units, in case inches are being displayed
  1208. */
  1209. CONFIG_ECHO_START;
  1210. #if ENABLED(INCH_MODE_SUPPORT)
  1211. #define LINEAR_UNIT(N) ((N) / parser.linear_unit_factor)
  1212. #define VOLUMETRIC_UNIT(N) ((N) / (volumetric_enabled ? parser.volumetric_unit_factor : parser.linear_unit_factor))
  1213. SERIAL_ECHOPGM(" G2");
  1214. SERIAL_CHAR(parser.linear_unit_factor == 1.0 ? '1' : '0');
  1215. SERIAL_ECHOPGM(" ; Units in ");
  1216. serialprintPGM(parser.linear_unit_factor == 1.0 ? PSTR("mm\n") : PSTR("inches\n"));
  1217. #else
  1218. #define LINEAR_UNIT(N) N
  1219. #define VOLUMETRIC_UNIT(N) N
  1220. SERIAL_ECHOLNPGM(" G21 ; Units in mm");
  1221. #endif
  1222. #if ENABLED(ULTIPANEL)
  1223. // Temperature units - for Ultipanel temperature options
  1224. CONFIG_ECHO_START;
  1225. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  1226. #define TEMP_UNIT(N) parser.to_temp_units(N)
  1227. SERIAL_ECHOPGM(" M149 ");
  1228. SERIAL_CHAR(parser.temp_units_code());
  1229. SERIAL_ECHOPGM(" ; Units in ");
  1230. serialprintPGM(parser.temp_units_name());
  1231. #else
  1232. #define TEMP_UNIT(N) N
  1233. SERIAL_ECHOLNPGM(" M149 C ; Units in Celsius");
  1234. #endif
  1235. #endif
  1236. SERIAL_EOL();
  1237. /**
  1238. * Volumetric extrusion M200
  1239. */
  1240. if (!forReplay) {
  1241. CONFIG_ECHO_START;
  1242. SERIAL_ECHOPGM("Filament settings:");
  1243. if (volumetric_enabled)
  1244. SERIAL_EOL();
  1245. else
  1246. SERIAL_ECHOLNPGM(" Disabled");
  1247. }
  1248. CONFIG_ECHO_START;
  1249. SERIAL_ECHOPAIR(" M200 D", filament_size[0]);
  1250. SERIAL_EOL();
  1251. #if EXTRUDERS > 1
  1252. CONFIG_ECHO_START;
  1253. SERIAL_ECHOPAIR(" M200 T1 D", filament_size[1]);
  1254. SERIAL_EOL();
  1255. #if EXTRUDERS > 2
  1256. CONFIG_ECHO_START;
  1257. SERIAL_ECHOPAIR(" M200 T2 D", filament_size[2]);
  1258. SERIAL_EOL();
  1259. #if EXTRUDERS > 3
  1260. CONFIG_ECHO_START;
  1261. SERIAL_ECHOPAIR(" M200 T3 D", filament_size[3]);
  1262. SERIAL_EOL();
  1263. #if EXTRUDERS > 4
  1264. CONFIG_ECHO_START;
  1265. SERIAL_ECHOPAIR(" M200 T4 D", filament_size[4]);
  1266. SERIAL_EOL();
  1267. #endif // EXTRUDERS > 4
  1268. #endif // EXTRUDERS > 3
  1269. #endif // EXTRUDERS > 2
  1270. #endif // EXTRUDERS > 1
  1271. if (!volumetric_enabled) {
  1272. CONFIG_ECHO_START;
  1273. SERIAL_ECHOLNPGM(" M200 D0");
  1274. }
  1275. if (!forReplay) {
  1276. CONFIG_ECHO_START;
  1277. SERIAL_ECHOLNPGM("Steps per unit:");
  1278. }
  1279. CONFIG_ECHO_START;
  1280. SERIAL_ECHOPAIR(" M92 X", LINEAR_UNIT(planner.axis_steps_per_mm[X_AXIS]));
  1281. SERIAL_ECHOPAIR(" Y", LINEAR_UNIT(planner.axis_steps_per_mm[Y_AXIS]));
  1282. SERIAL_ECHOPAIR(" Z", LINEAR_UNIT(planner.axis_steps_per_mm[Z_AXIS]));
  1283. #if DISABLED(DISTINCT_E_FACTORS)
  1284. SERIAL_ECHOPAIR(" E", VOLUMETRIC_UNIT(planner.axis_steps_per_mm[E_AXIS]));
  1285. #endif
  1286. SERIAL_EOL();
  1287. #if ENABLED(DISTINCT_E_FACTORS)
  1288. CONFIG_ECHO_START;
  1289. for (uint8_t i = 0; i < E_STEPPERS; i++) {
  1290. SERIAL_ECHOPAIR(" M92 T", (int)i);
  1291. SERIAL_ECHOLNPAIR(" E", VOLUMETRIC_UNIT(planner.axis_steps_per_mm[E_AXIS + i]));
  1292. }
  1293. #endif
  1294. if (!forReplay) {
  1295. CONFIG_ECHO_START;
  1296. SERIAL_ECHOLNPGM("Maximum feedrates (units/s):");
  1297. }
  1298. CONFIG_ECHO_START;
  1299. SERIAL_ECHOPAIR(" M203 X", LINEAR_UNIT(planner.max_feedrate_mm_s[X_AXIS]));
  1300. SERIAL_ECHOPAIR(" Y", LINEAR_UNIT(planner.max_feedrate_mm_s[Y_AXIS]));
  1301. SERIAL_ECHOPAIR(" Z", LINEAR_UNIT(planner.max_feedrate_mm_s[Z_AXIS]));
  1302. #if DISABLED(DISTINCT_E_FACTORS)
  1303. SERIAL_ECHOPAIR(" E", VOLUMETRIC_UNIT(planner.max_feedrate_mm_s[E_AXIS]));
  1304. #endif
  1305. SERIAL_EOL();
  1306. #if ENABLED(DISTINCT_E_FACTORS)
  1307. CONFIG_ECHO_START;
  1308. for (uint8_t i = 0; i < E_STEPPERS; i++) {
  1309. SERIAL_ECHOPAIR(" M203 T", (int)i);
  1310. SERIAL_ECHOLNPAIR(" E", VOLUMETRIC_UNIT(planner.max_feedrate_mm_s[E_AXIS + i]));
  1311. }
  1312. #endif
  1313. if (!forReplay) {
  1314. CONFIG_ECHO_START;
  1315. SERIAL_ECHOLNPGM("Maximum Acceleration (units/s2):");
  1316. }
  1317. CONFIG_ECHO_START;
  1318. SERIAL_ECHOPAIR(" M201 X", LINEAR_UNIT(planner.max_acceleration_mm_per_s2[X_AXIS]));
  1319. SERIAL_ECHOPAIR(" Y", LINEAR_UNIT(planner.max_acceleration_mm_per_s2[Y_AXIS]));
  1320. SERIAL_ECHOPAIR(" Z", LINEAR_UNIT(planner.max_acceleration_mm_per_s2[Z_AXIS]));
  1321. #if DISABLED(DISTINCT_E_FACTORS)
  1322. SERIAL_ECHOPAIR(" E", VOLUMETRIC_UNIT(planner.max_acceleration_mm_per_s2[E_AXIS]));
  1323. #endif
  1324. SERIAL_EOL();
  1325. #if ENABLED(DISTINCT_E_FACTORS)
  1326. CONFIG_ECHO_START;
  1327. for (uint8_t i = 0; i < E_STEPPERS; i++) {
  1328. SERIAL_ECHOPAIR(" M201 T", (int)i);
  1329. SERIAL_ECHOLNPAIR(" E", VOLUMETRIC_UNIT(planner.max_acceleration_mm_per_s2[E_AXIS + i]));
  1330. }
  1331. #endif
  1332. if (!forReplay) {
  1333. CONFIG_ECHO_START;
  1334. SERIAL_ECHOLNPGM("Acceleration (units/s2): P<print_accel> R<retract_accel> T<travel_accel>");
  1335. }
  1336. CONFIG_ECHO_START;
  1337. SERIAL_ECHOPAIR(" M204 P", LINEAR_UNIT(planner.acceleration));
  1338. SERIAL_ECHOPAIR(" R", LINEAR_UNIT(planner.retract_acceleration));
  1339. SERIAL_ECHOLNPAIR(" T", LINEAR_UNIT(planner.travel_acceleration));
  1340. if (!forReplay) {
  1341. CONFIG_ECHO_START;
  1342. SERIAL_ECHOLNPGM("Advanced: S<min_feedrate> T<min_travel_feedrate> B<min_segment_time_ms> X<max_xy_jerk> Z<max_z_jerk> E<max_e_jerk>");
  1343. }
  1344. CONFIG_ECHO_START;
  1345. SERIAL_ECHOPAIR(" M205 S", LINEAR_UNIT(planner.min_feedrate_mm_s));
  1346. SERIAL_ECHOPAIR(" T", LINEAR_UNIT(planner.min_travel_feedrate_mm_s));
  1347. SERIAL_ECHOPAIR(" B", planner.min_segment_time);
  1348. SERIAL_ECHOPAIR(" X", LINEAR_UNIT(planner.max_jerk[X_AXIS]));
  1349. SERIAL_ECHOPAIR(" Y", LINEAR_UNIT(planner.max_jerk[Y_AXIS]));
  1350. SERIAL_ECHOPAIR(" Z", LINEAR_UNIT(planner.max_jerk[Z_AXIS]));
  1351. SERIAL_ECHOLNPAIR(" E", LINEAR_UNIT(planner.max_jerk[E_AXIS]));
  1352. #if HAS_M206_COMMAND
  1353. if (!forReplay) {
  1354. CONFIG_ECHO_START;
  1355. SERIAL_ECHOLNPGM("Home offset:");
  1356. }
  1357. CONFIG_ECHO_START;
  1358. SERIAL_ECHOPAIR(" M206 X", LINEAR_UNIT(home_offset[X_AXIS]));
  1359. SERIAL_ECHOPAIR(" Y", LINEAR_UNIT(home_offset[Y_AXIS]));
  1360. SERIAL_ECHOLNPAIR(" Z", LINEAR_UNIT(home_offset[Z_AXIS]));
  1361. #endif
  1362. #if HOTENDS > 1
  1363. if (!forReplay) {
  1364. CONFIG_ECHO_START;
  1365. SERIAL_ECHOLNPGM("Hotend offsets:");
  1366. }
  1367. CONFIG_ECHO_START;
  1368. for (uint8_t e = 1; e < HOTENDS; e++) {
  1369. SERIAL_ECHOPAIR(" M218 T", (int)e);
  1370. SERIAL_ECHOPAIR(" X", LINEAR_UNIT(hotend_offset[X_AXIS][e]));
  1371. SERIAL_ECHOPAIR(" Y", LINEAR_UNIT(hotend_offset[Y_AXIS][e]));
  1372. #if ENABLED(DUAL_X_CARRIAGE) || ENABLED(SWITCHING_NOZZLE) ||ENABLED(PARKING_EXTRUDER)
  1373. SERIAL_ECHOPAIR(" Z", LINEAR_UNIT(hotend_offset[Z_AXIS][e]));
  1374. #endif
  1375. SERIAL_EOL();
  1376. }
  1377. #endif
  1378. #if ENABLED(MESH_BED_LEVELING)
  1379. if (!forReplay) {
  1380. CONFIG_ECHO_START;
  1381. SERIAL_ECHOLNPGM("Mesh Bed Leveling:");
  1382. }
  1383. CONFIG_ECHO_START;
  1384. SERIAL_ECHOPAIR(" M420 S", leveling_is_valid() ? 1 : 0);
  1385. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  1386. SERIAL_ECHOPAIR(" Z", LINEAR_UNIT(planner.z_fade_height));
  1387. #endif
  1388. SERIAL_EOL();
  1389. for (uint8_t py = 0; py < GRID_MAX_POINTS_Y; py++) {
  1390. for (uint8_t px = 0; px < GRID_MAX_POINTS_X; px++) {
  1391. CONFIG_ECHO_START;
  1392. SERIAL_ECHOPAIR(" G29 S3 X", (int)px + 1);
  1393. SERIAL_ECHOPAIR(" Y", (int)py + 1);
  1394. SERIAL_ECHOPGM(" Z");
  1395. SERIAL_PROTOCOL_F(LINEAR_UNIT(mbl.z_values[px][py]), 5);
  1396. SERIAL_EOL();
  1397. }
  1398. }
  1399. #elif ENABLED(AUTO_BED_LEVELING_UBL)
  1400. if (!forReplay) {
  1401. CONFIG_ECHO_START;
  1402. ubl.echo_name();
  1403. SERIAL_ECHOLNPGM(":");
  1404. }
  1405. CONFIG_ECHO_START;
  1406. SERIAL_ECHOPAIR(" M420 S", LEVELING_IS_ACTIVE() ? 1 : 0);
  1407. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  1408. SERIAL_ECHOPAIR(" Z", planner.z_fade_height);
  1409. #endif
  1410. SERIAL_EOL();
  1411. if (!forReplay) {
  1412. SERIAL_EOL();
  1413. ubl.report_state();
  1414. SERIAL_ECHOLNPAIR("\nActive Mesh Slot: ", ubl.state.storage_slot);
  1415. SERIAL_ECHOPAIR("EEPROM can hold ", calc_num_meshes());
  1416. SERIAL_ECHOLNPGM(" meshes.\n");
  1417. }
  1418. #elif HAS_ABL
  1419. if (!forReplay) {
  1420. CONFIG_ECHO_START;
  1421. SERIAL_ECHOLNPGM("Auto Bed Leveling:");
  1422. }
  1423. CONFIG_ECHO_START;
  1424. SERIAL_ECHOPAIR(" M420 S", LEVELING_IS_ACTIVE() ? 1 : 0);
  1425. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  1426. SERIAL_ECHOPAIR(" Z", LINEAR_UNIT(planner.z_fade_height));
  1427. #endif
  1428. SERIAL_EOL();
  1429. #endif
  1430. #if ENABLED(DELTA)
  1431. if (!forReplay) {
  1432. CONFIG_ECHO_START;
  1433. SERIAL_ECHOLNPGM("Endstop adjustment:");
  1434. }
  1435. CONFIG_ECHO_START;
  1436. SERIAL_ECHOPAIR(" M666 X", LINEAR_UNIT(endstop_adj[X_AXIS]));
  1437. SERIAL_ECHOPAIR(" Y", LINEAR_UNIT(endstop_adj[Y_AXIS]));
  1438. SERIAL_ECHOLNPAIR(" Z", LINEAR_UNIT(endstop_adj[Z_AXIS]));
  1439. if (!forReplay) {
  1440. CONFIG_ECHO_START;
  1441. SERIAL_ECHOLNPGM("Delta settings: L<diagonal_rod> R<radius> H<height> S<segments_per_s> B<calibration radius> XYZ<tower angle corrections>");
  1442. }
  1443. CONFIG_ECHO_START;
  1444. SERIAL_ECHOPAIR(" M665 L", LINEAR_UNIT(delta_diagonal_rod));
  1445. SERIAL_ECHOPAIR(" R", LINEAR_UNIT(delta_radius));
  1446. SERIAL_ECHOPAIR(" H", LINEAR_UNIT(DELTA_HEIGHT + home_offset[Z_AXIS]));
  1447. SERIAL_ECHOPAIR(" S", delta_segments_per_second);
  1448. SERIAL_ECHOPAIR(" B", LINEAR_UNIT(delta_calibration_radius));
  1449. SERIAL_ECHOPAIR(" X", LINEAR_UNIT(delta_tower_angle_trim[A_AXIS]));
  1450. SERIAL_ECHOPAIR(" Y", LINEAR_UNIT(delta_tower_angle_trim[B_AXIS]));
  1451. SERIAL_ECHOPAIR(" Z", LINEAR_UNIT(delta_tower_angle_trim[C_AXIS]));
  1452. SERIAL_EOL();
  1453. #elif ENABLED(Z_DUAL_ENDSTOPS)
  1454. if (!forReplay) {
  1455. CONFIG_ECHO_START;
  1456. SERIAL_ECHOLNPGM("Z2 Endstop adjustment:");
  1457. }
  1458. CONFIG_ECHO_START;
  1459. SERIAL_ECHOLNPAIR(" M666 Z", LINEAR_UNIT(z_endstop_adj));
  1460. #endif // DELTA
  1461. #if ENABLED(ULTIPANEL)
  1462. if (!forReplay) {
  1463. CONFIG_ECHO_START;
  1464. SERIAL_ECHOLNPGM("Material heatup parameters:");
  1465. }
  1466. CONFIG_ECHO_START;
  1467. for (uint8_t i = 0; i < COUNT(lcd_preheat_hotend_temp); i++) {
  1468. SERIAL_ECHOPAIR(" M145 S", (int)i);
  1469. SERIAL_ECHOPAIR(" H", TEMP_UNIT(lcd_preheat_hotend_temp[i]));
  1470. SERIAL_ECHOPAIR(" B", TEMP_UNIT(lcd_preheat_bed_temp[i]));
  1471. SERIAL_ECHOLNPAIR(" F", lcd_preheat_fan_speed[i]);
  1472. }
  1473. #endif // ULTIPANEL
  1474. #if HAS_PID_HEATING
  1475. if (!forReplay) {
  1476. CONFIG_ECHO_START;
  1477. SERIAL_ECHOLNPGM("PID settings:");
  1478. }
  1479. #if ENABLED(PIDTEMP)
  1480. #if HOTENDS > 1
  1481. if (forReplay) {
  1482. HOTEND_LOOP() {
  1483. CONFIG_ECHO_START;
  1484. SERIAL_ECHOPAIR(" M301 E", e);
  1485. SERIAL_ECHOPAIR(" P", PID_PARAM(Kp, e));
  1486. SERIAL_ECHOPAIR(" I", unscalePID_i(PID_PARAM(Ki, e)));
  1487. SERIAL_ECHOPAIR(" D", unscalePID_d(PID_PARAM(Kd, e)));
  1488. #if ENABLED(PID_EXTRUSION_SCALING)
  1489. SERIAL_ECHOPAIR(" C", PID_PARAM(Kc, e));
  1490. if (e == 0) SERIAL_ECHOPAIR(" L", lpq_len);
  1491. #endif
  1492. SERIAL_EOL();
  1493. }
  1494. }
  1495. else
  1496. #endif // HOTENDS > 1
  1497. // !forReplay || HOTENDS == 1
  1498. {
  1499. CONFIG_ECHO_START;
  1500. SERIAL_ECHOPAIR(" M301 P", PID_PARAM(Kp, 0)); // for compatibility with hosts, only echo values for E0
  1501. SERIAL_ECHOPAIR(" I", unscalePID_i(PID_PARAM(Ki, 0)));
  1502. SERIAL_ECHOPAIR(" D", unscalePID_d(PID_PARAM(Kd, 0)));
  1503. #if ENABLED(PID_EXTRUSION_SCALING)
  1504. SERIAL_ECHOPAIR(" C", PID_PARAM(Kc, 0));
  1505. SERIAL_ECHOPAIR(" L", lpq_len);
  1506. #endif
  1507. SERIAL_EOL();
  1508. }
  1509. #endif // PIDTEMP
  1510. #if ENABLED(PIDTEMPBED)
  1511. CONFIG_ECHO_START;
  1512. SERIAL_ECHOPAIR(" M304 P", thermalManager.bedKp);
  1513. SERIAL_ECHOPAIR(" I", unscalePID_i(thermalManager.bedKi));
  1514. SERIAL_ECHOPAIR(" D", unscalePID_d(thermalManager.bedKd));
  1515. SERIAL_EOL();
  1516. #endif
  1517. #endif // PIDTEMP || PIDTEMPBED
  1518. #if HAS_LCD_CONTRAST
  1519. if (!forReplay) {
  1520. CONFIG_ECHO_START;
  1521. SERIAL_ECHOLNPGM("LCD Contrast:");
  1522. }
  1523. CONFIG_ECHO_START;
  1524. SERIAL_ECHOLNPAIR(" M250 C", lcd_contrast);
  1525. #endif
  1526. #if ENABLED(FWRETRACT)
  1527. if (!forReplay) {
  1528. CONFIG_ECHO_START;
  1529. SERIAL_ECHOLNPGM("Retract: S<length> F<units/m> Z<lift>");
  1530. }
  1531. CONFIG_ECHO_START;
  1532. SERIAL_ECHOPAIR(" M207 S", LINEAR_UNIT(retract_length));
  1533. SERIAL_ECHOPAIR(" W", LINEAR_UNIT(swap_retract_length));
  1534. SERIAL_ECHOPAIR(" F", MMS_TO_MMM(LINEAR_UNIT(retract_feedrate_mm_s)));
  1535. SERIAL_ECHOLNPAIR(" Z", LINEAR_UNIT(retract_zlift));
  1536. if (!forReplay) {
  1537. CONFIG_ECHO_START;
  1538. SERIAL_ECHOLNPGM("Recover: S<length> F<units/m>");
  1539. }
  1540. CONFIG_ECHO_START;
  1541. SERIAL_ECHOPAIR(" M208 S", LINEAR_UNIT(retract_recover_length));
  1542. SERIAL_ECHOPAIR(" W", LINEAR_UNIT(swap_retract_recover_length));
  1543. SERIAL_ECHOLNPAIR(" F", MMS_TO_MMM(LINEAR_UNIT(retract_recover_feedrate_mm_s)));
  1544. if (!forReplay) {
  1545. CONFIG_ECHO_START;
  1546. SERIAL_ECHOLNPGM("Auto-Retract: S=0 to disable, 1 to interpret E-only moves as retract/recover");
  1547. }
  1548. CONFIG_ECHO_START;
  1549. SERIAL_ECHOLNPAIR(" M209 S", autoretract_enabled ? 1 : 0);
  1550. #endif // FWRETRACT
  1551. /**
  1552. * Auto Bed Leveling
  1553. */
  1554. #if HAS_BED_PROBE
  1555. if (!forReplay) {
  1556. CONFIG_ECHO_START;
  1557. SERIAL_ECHOLNPGM("Z-Probe Offset (mm):");
  1558. }
  1559. CONFIG_ECHO_START;
  1560. SERIAL_ECHOLNPAIR(" M851 Z", LINEAR_UNIT(zprobe_zoffset));
  1561. #endif
  1562. /**
  1563. * TMC2130 stepper driver current
  1564. */
  1565. #if ENABLED(HAVE_TMC2130)
  1566. if (!forReplay) {
  1567. CONFIG_ECHO_START;
  1568. SERIAL_ECHOLNPGM("Stepper driver current:");
  1569. }
  1570. CONFIG_ECHO_START;
  1571. SERIAL_ECHO(" M906");
  1572. #if ENABLED(X_IS_TMC2130)
  1573. SERIAL_ECHOPAIR(" X", stepperX.getCurrent());
  1574. #endif
  1575. #if ENABLED(Y_IS_TMC2130)
  1576. SERIAL_ECHOPAIR(" Y", stepperY.getCurrent());
  1577. #endif
  1578. #if ENABLED(Z_IS_TMC2130)
  1579. SERIAL_ECHOPAIR(" Z", stepperZ.getCurrent());
  1580. #endif
  1581. #if ENABLED(X2_IS_TMC2130)
  1582. SERIAL_ECHOPAIR(" X2", stepperX2.getCurrent());
  1583. #endif
  1584. #if ENABLED(Y2_IS_TMC2130)
  1585. SERIAL_ECHOPAIR(" Y2", stepperY2.getCurrent());
  1586. #endif
  1587. #if ENABLED(Z2_IS_TMC2130)
  1588. SERIAL_ECHOPAIR(" Z2", stepperZ2.getCurrent());
  1589. #endif
  1590. #if ENABLED(E0_IS_TMC2130)
  1591. SERIAL_ECHOPAIR(" E0", stepperE0.getCurrent());
  1592. #endif
  1593. #if ENABLED(E1_IS_TMC2130)
  1594. SERIAL_ECHOPAIR(" E1", stepperE1.getCurrent());
  1595. #endif
  1596. #if ENABLED(E2_IS_TMC2130)
  1597. SERIAL_ECHOPAIR(" E2", stepperE2.getCurrent());
  1598. #endif
  1599. #if ENABLED(E3_IS_TMC2130)
  1600. SERIAL_ECHOPAIR(" E3", stepperE3.getCurrent());
  1601. #endif
  1602. SERIAL_EOL();
  1603. #endif
  1604. /**
  1605. * Linear Advance
  1606. */
  1607. #if ENABLED(LIN_ADVANCE)
  1608. if (!forReplay) {
  1609. CONFIG_ECHO_START;
  1610. SERIAL_ECHOLNPGM("Linear Advance:");
  1611. }
  1612. CONFIG_ECHO_START;
  1613. SERIAL_ECHOPAIR(" M900 K", planner.extruder_advance_k);
  1614. SERIAL_ECHOLNPAIR(" R", planner.advance_ed_ratio);
  1615. #endif
  1616. #if HAS_MOTOR_CURRENT_PWM
  1617. CONFIG_ECHO_START;
  1618. if (!forReplay) {
  1619. SERIAL_ECHOLNPGM("Stepper motor currents:");
  1620. CONFIG_ECHO_START;
  1621. }
  1622. SERIAL_ECHOPAIR(" M907 X", stepper.motor_current_setting[0]);
  1623. SERIAL_ECHOPAIR(" Z", stepper.motor_current_setting[1]);
  1624. SERIAL_ECHOPAIR(" E", stepper.motor_current_setting[2]);
  1625. SERIAL_EOL();
  1626. #endif
  1627. }
  1628. #endif // !DISABLE_M503