My Marlin configs for Fabrikator Mini and CTC i3 Pro B
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

Marlin_main.cpp 69KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293
  1. /* -*- c++ -*- */
  2. /*
  3. Reprap firmware based on Sprinter and grbl.
  4. Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  5. This program is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. This program is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with this program. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. /*
  17. This firmware is a mashup between Sprinter and grbl.
  18. (https://github.com/kliment/Sprinter)
  19. (https://github.com/simen/grbl/tree)
  20. It has preliminary support for Matthew Roberts advance algorithm
  21. http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  22. */
  23. #include "Marlin.h"
  24. #include "ultralcd.h"
  25. #include "planner.h"
  26. #include "stepper.h"
  27. #include "temperature.h"
  28. #include "motion_control.h"
  29. #include "cardreader.h"
  30. #include "watchdog.h"
  31. #include "ConfigurationStore.h"
  32. #include "language.h"
  33. #include "pins_arduino.h"
  34. #if (defined NUM_SERVOS) && (NUM_SERVOS > 0)
  35. #include "Servo.h"
  36. #endif
  37. #if DIGIPOTSS_PIN > -1
  38. #include <SPI.h>
  39. #endif
  40. #define VERSION_STRING "1.0.0"
  41. // look here for descriptions of gcodes: http://linuxcnc.org/handbook/gcode/g-code.html
  42. // http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  43. //Implemented Codes
  44. //-------------------
  45. // G0 -> G1
  46. // G1 - Coordinated Movement X Y Z E
  47. // G2 - CW ARC
  48. // G3 - CCW ARC
  49. // G4 - Dwell S<seconds> or P<milliseconds>
  50. // G10 - retract filament according to settings of M207
  51. // G11 - retract recover filament according to settings of M208
  52. // G28 - Home all Axis
  53. // G90 - Use Absolute Coordinates
  54. // G91 - Use Relative Coordinates
  55. // G92 - Set current position to cordinates given
  56. //RepRap M Codes
  57. // M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
  58. // M1 - Same as M0
  59. // M104 - Set extruder target temp
  60. // M105 - Read current temp
  61. // M106 - Fan on
  62. // M107 - Fan off
  63. // M109 - Wait for extruder current temp to reach target temp.
  64. // M114 - Display current position
  65. //Custom M Codes
  66. // M17 - Enable/Power all stepper motors
  67. // M18 - Disable all stepper motors; same as M84
  68. // M20 - List SD card
  69. // M21 - Init SD card
  70. // M22 - Release SD card
  71. // M23 - Select SD file (M23 filename.g)
  72. // M24 - Start/resume SD print
  73. // M25 - Pause SD print
  74. // M26 - Set SD position in bytes (M26 S12345)
  75. // M27 - Report SD print status
  76. // M28 - Start SD write (M28 filename.g)
  77. // M29 - Stop SD write
  78. // M30 - Delete file from SD (M30 filename.g)
  79. // M31 - Output time since last M109 or SD card start to serial
  80. // M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  81. // M80 - Turn on Power Supply
  82. // M81 - Turn off Power Supply
  83. // M82 - Set E codes absolute (default)
  84. // M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  85. // M84 - Disable steppers until next move,
  86. // or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  87. // M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  88. // M92 - Set axis_steps_per_unit - same syntax as G92
  89. // M114 - Output current position to serial port
  90. // M115 - Capabilities string
  91. // M117 - display message
  92. // M119 - Output Endstop status to serial port
  93. // M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  94. // M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  95. // M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  96. // M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  97. // M140 - Set bed target temp
  98. // M190 - Wait for bed current temp to reach target temp.
  99. // M200 - Set filament diameter
  100. // M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  101. // M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  102. // M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  103. // M204 - Set default acceleration: S normal moves T filament only moves (M204 S3000 T7000) im mm/sec^2 also sets minimum segment time in ms (B20000) to prevent buffer underruns and M20 minimum feedrate
  104. // M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
  105. // M206 - set additional homeing offset
  106. // M207 - set retract length S[positive mm] F[feedrate mm/sec] Z[additional zlift/hop]
  107. // M208 - set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
  108. // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  109. // M218 - set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  110. // M220 S<factor in percent>- set speed factor override percentage
  111. // M221 S<factor in percent>- set extrude factor override percentage
  112. // M240 - Trigger a camera to take a photograph
  113. // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  114. // M300 - Play beepsound S<frequency Hz> P<duration ms>
  115. // M301 - Set PID parameters P I and D
  116. // M302 - Allow cold extrudes
  117. // M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  118. // M304 - Set bed PID parameters P I and D
  119. // M400 - Finish all moves
  120. // M500 - stores paramters in EEPROM
  121. // M501 - reads parameters from EEPROM (if you need reset them after you changed them temporarily).
  122. // M502 - reverts to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  123. // M503 - print the current settings (from memory not from eeprom)
  124. // M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  125. // M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  126. // M907 - Set digital trimpot motor current using axis codes.
  127. // M908 - Control digital trimpot directly.
  128. // M350 - Set microstepping mode.
  129. // M351 - Toggle MS1 MS2 pins directly.
  130. // M928 - Start SD logging (M928 filename.g) - ended by M29
  131. // M999 - Restart after being stopped by error
  132. //Stepper Movement Variables
  133. //===========================================================================
  134. //=============================imported variables============================
  135. //===========================================================================
  136. //===========================================================================
  137. //=============================public variables=============================
  138. //===========================================================================
  139. #ifdef SDSUPPORT
  140. CardReader card;
  141. #endif
  142. float homing_feedrate[] = HOMING_FEEDRATE;
  143. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  144. int feedmultiply=100; //100->1 200->2
  145. int saved_feedmultiply;
  146. int extrudemultiply=100; //100->1 200->2
  147. float current_position[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0 };
  148. float add_homeing[3]={0,0,0};
  149. float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  150. float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  151. // Extruder offset, only in XY plane
  152. #if EXTRUDERS > 1
  153. float extruder_offset[2][EXTRUDERS] = {
  154. #if defined(EXTRUDER_OFFSET_X) && defined(EXTRUDER_OFFSET_Y)
  155. EXTRUDER_OFFSET_X, EXTRUDER_OFFSET_Y
  156. #endif
  157. };
  158. #endif
  159. uint8_t active_extruder = 0;
  160. int fanSpeed=0;
  161. #ifdef BARICUDA
  162. int ValvePressure=0;
  163. int EtoPPressure=0;
  164. #endif
  165. #ifdef FWRETRACT
  166. bool autoretract_enabled=true;
  167. bool retracted=false;
  168. float retract_length=3, retract_feedrate=17*60, retract_zlift=0.8;
  169. float retract_recover_length=0, retract_recover_feedrate=8*60;
  170. #endif
  171. //===========================================================================
  172. //=============================private variables=============================
  173. //===========================================================================
  174. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  175. static float destination[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0};
  176. static float offset[3] = {0.0, 0.0, 0.0};
  177. static bool home_all_axis = true;
  178. static float feedrate = 1500.0, next_feedrate, saved_feedrate;
  179. static long gcode_N, gcode_LastN, Stopped_gcode_LastN = 0;
  180. static bool relative_mode = false; //Determines Absolute or Relative Coordinates
  181. static char cmdbuffer[BUFSIZE][MAX_CMD_SIZE];
  182. static bool fromsd[BUFSIZE];
  183. static int bufindr = 0;
  184. static int bufindw = 0;
  185. static int buflen = 0;
  186. //static int i = 0;
  187. static char serial_char;
  188. static int serial_count = 0;
  189. static boolean comment_mode = false;
  190. static char *strchr_pointer; // just a pointer to find chars in the cmd string like X, Y, Z, E, etc
  191. const int sensitive_pins[] = SENSITIVE_PINS; // Sensitive pin list for M42
  192. //static float tt = 0;
  193. //static float bt = 0;
  194. //Inactivity shutdown variables
  195. static unsigned long previous_millis_cmd = 0;
  196. static unsigned long max_inactive_time = 0;
  197. static unsigned long stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME*1000l;
  198. unsigned long starttime=0;
  199. unsigned long stoptime=0;
  200. static uint8_t tmp_extruder;
  201. bool Stopped=false;
  202. #if (defined NUM_SERVOS) && (NUM_SERVOS > 0)
  203. Servo servos[NUM_SERVOS];
  204. #endif
  205. //===========================================================================
  206. //=============================ROUTINES=============================
  207. //===========================================================================
  208. void get_arc_coordinates();
  209. bool setTargetedHotend(int code);
  210. void serial_echopair_P(const char *s_P, float v)
  211. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  212. void serial_echopair_P(const char *s_P, double v)
  213. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  214. void serial_echopair_P(const char *s_P, unsigned long v)
  215. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  216. extern "C"{
  217. extern unsigned int __bss_end;
  218. extern unsigned int __heap_start;
  219. extern void *__brkval;
  220. int freeMemory() {
  221. int free_memory;
  222. if((int)__brkval == 0)
  223. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  224. else
  225. free_memory = ((int)&free_memory) - ((int)__brkval);
  226. return free_memory;
  227. }
  228. }
  229. //adds an command to the main command buffer
  230. //thats really done in a non-safe way.
  231. //needs overworking someday
  232. void enquecommand(const char *cmd)
  233. {
  234. if(buflen < BUFSIZE)
  235. {
  236. //this is dangerous if a mixing of serial and this happsens
  237. strcpy(&(cmdbuffer[bufindw][0]),cmd);
  238. SERIAL_ECHO_START;
  239. SERIAL_ECHOPGM("enqueing \"");
  240. SERIAL_ECHO(cmdbuffer[bufindw]);
  241. SERIAL_ECHOLNPGM("\"");
  242. bufindw= (bufindw + 1)%BUFSIZE;
  243. buflen += 1;
  244. }
  245. }
  246. void enquecommand_P(const char *cmd)
  247. {
  248. if(buflen < BUFSIZE)
  249. {
  250. //this is dangerous if a mixing of serial and this happsens
  251. strcpy_P(&(cmdbuffer[bufindw][0]),cmd);
  252. SERIAL_ECHO_START;
  253. SERIAL_ECHOPGM("enqueing \"");
  254. SERIAL_ECHO(cmdbuffer[bufindw]);
  255. SERIAL_ECHOLNPGM("\"");
  256. bufindw= (bufindw + 1)%BUFSIZE;
  257. buflen += 1;
  258. }
  259. }
  260. void setup_killpin()
  261. {
  262. #if( KILL_PIN>-1 )
  263. pinMode(KILL_PIN,INPUT);
  264. WRITE(KILL_PIN,HIGH);
  265. #endif
  266. }
  267. void setup_photpin()
  268. {
  269. #ifdef PHOTOGRAPH_PIN
  270. #if (PHOTOGRAPH_PIN > -1)
  271. SET_OUTPUT(PHOTOGRAPH_PIN);
  272. WRITE(PHOTOGRAPH_PIN, LOW);
  273. #endif
  274. #endif
  275. }
  276. void setup_powerhold()
  277. {
  278. #ifdef SUICIDE_PIN
  279. #if (SUICIDE_PIN> -1)
  280. SET_OUTPUT(SUICIDE_PIN);
  281. WRITE(SUICIDE_PIN, HIGH);
  282. #endif
  283. #endif
  284. #if (PS_ON_PIN > -1)
  285. SET_OUTPUT(PS_ON_PIN);
  286. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  287. #endif
  288. }
  289. void suicide()
  290. {
  291. #ifdef SUICIDE_PIN
  292. #if (SUICIDE_PIN> -1)
  293. SET_OUTPUT(SUICIDE_PIN);
  294. WRITE(SUICIDE_PIN, LOW);
  295. #endif
  296. #endif
  297. }
  298. void servo_init()
  299. {
  300. #if (NUM_SERVOS >= 1) && defined (SERVO0_PIN) && (SERVO0_PIN > -1)
  301. servos[0].attach(SERVO0_PIN);
  302. #endif
  303. #if (NUM_SERVOS >= 2) && defined (SERVO1_PIN) && (SERVO1_PIN > -1)
  304. servos[1].attach(SERVO1_PIN);
  305. #endif
  306. #if (NUM_SERVOS >= 3) && defined (SERVO2_PIN) && (SERVO2_PIN > -1)
  307. servos[2].attach(SERVO2_PIN);
  308. #endif
  309. #if (NUM_SERVOS >= 4) && defined (SERVO3_PIN) && (SERVO3_PIN > -1)
  310. servos[3].attach(SERVO3_PIN);
  311. #endif
  312. #if (NUM_SERVOS >= 5)
  313. #error "TODO: enter initalisation code for more servos"
  314. #endif
  315. }
  316. void setup()
  317. {
  318. setup_killpin();
  319. setup_powerhold();
  320. MYSERIAL.begin(BAUDRATE);
  321. SERIAL_PROTOCOLLNPGM("start");
  322. SERIAL_ECHO_START;
  323. // Check startup - does nothing if bootloader sets MCUSR to 0
  324. byte mcu = MCUSR;
  325. if(mcu & 1) SERIAL_ECHOLNPGM(MSG_POWERUP);
  326. if(mcu & 2) SERIAL_ECHOLNPGM(MSG_EXTERNAL_RESET);
  327. if(mcu & 4) SERIAL_ECHOLNPGM(MSG_BROWNOUT_RESET);
  328. if(mcu & 8) SERIAL_ECHOLNPGM(MSG_WATCHDOG_RESET);
  329. if(mcu & 32) SERIAL_ECHOLNPGM(MSG_SOFTWARE_RESET);
  330. MCUSR=0;
  331. SERIAL_ECHOPGM(MSG_MARLIN);
  332. SERIAL_ECHOLNPGM(VERSION_STRING);
  333. #ifdef STRING_VERSION_CONFIG_H
  334. #ifdef STRING_CONFIG_H_AUTHOR
  335. SERIAL_ECHO_START;
  336. SERIAL_ECHOPGM(MSG_CONFIGURATION_VER);
  337. SERIAL_ECHOPGM(STRING_VERSION_CONFIG_H);
  338. SERIAL_ECHOPGM(MSG_AUTHOR);
  339. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  340. SERIAL_ECHOPGM("Compiled: ");
  341. SERIAL_ECHOLNPGM(__DATE__);
  342. #endif
  343. #endif
  344. SERIAL_ECHO_START;
  345. SERIAL_ECHOPGM(MSG_FREE_MEMORY);
  346. SERIAL_ECHO(freeMemory());
  347. SERIAL_ECHOPGM(MSG_PLANNER_BUFFER_BYTES);
  348. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  349. for(int8_t i = 0; i < BUFSIZE; i++)
  350. {
  351. fromsd[i] = false;
  352. }
  353. // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  354. Config_RetrieveSettings();
  355. tp_init(); // Initialize temperature loop
  356. plan_init(); // Initialize planner;
  357. watchdog_init();
  358. st_init(); // Initialize stepper, this enables interrupts!
  359. setup_photpin();
  360. servo_init();
  361. lcd_init();
  362. #ifdef CONTROLLERFAN_PIN
  363. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  364. #endif
  365. #ifdef EXTRUDERFAN_PIN
  366. SET_OUTPUT(EXTRUDERFAN_PIN); //Set pin used for extruder cooling fan
  367. #endif
  368. }
  369. void loop()
  370. {
  371. if(buflen < (BUFSIZE-1))
  372. get_command();
  373. #ifdef SDSUPPORT
  374. card.checkautostart(false);
  375. #endif
  376. if(buflen)
  377. {
  378. #ifdef SDSUPPORT
  379. if(card.saving)
  380. {
  381. if(strstr_P(cmdbuffer[bufindr], PSTR("M29")) == NULL)
  382. {
  383. card.write_command(cmdbuffer[bufindr]);
  384. if(card.logging)
  385. {
  386. process_commands();
  387. }
  388. else
  389. {
  390. SERIAL_PROTOCOLLNPGM(MSG_OK);
  391. }
  392. }
  393. else
  394. {
  395. card.closefile();
  396. SERIAL_PROTOCOLLNPGM(MSG_FILE_SAVED);
  397. }
  398. }
  399. else
  400. {
  401. process_commands();
  402. }
  403. #else
  404. process_commands();
  405. #endif //SDSUPPORT
  406. buflen = (buflen-1);
  407. bufindr = (bufindr + 1)%BUFSIZE;
  408. }
  409. //check heater every n milliseconds
  410. manage_heater();
  411. manage_inactivity();
  412. checkHitEndstops();
  413. lcd_update();
  414. }
  415. void get_command()
  416. {
  417. while( MYSERIAL.available() > 0 && buflen < BUFSIZE) {
  418. serial_char = MYSERIAL.read();
  419. if(serial_char == '\n' ||
  420. serial_char == '\r' ||
  421. (serial_char == ':' && comment_mode == false) ||
  422. serial_count >= (MAX_CMD_SIZE - 1) )
  423. {
  424. if(!serial_count) { //if empty line
  425. comment_mode = false; //for new command
  426. return;
  427. }
  428. cmdbuffer[bufindw][serial_count] = 0; //terminate string
  429. if(!comment_mode){
  430. comment_mode = false; //for new command
  431. fromsd[bufindw] = false;
  432. if(strchr(cmdbuffer[bufindw], 'N') != NULL)
  433. {
  434. strchr_pointer = strchr(cmdbuffer[bufindw], 'N');
  435. gcode_N = (strtol(&cmdbuffer[bufindw][strchr_pointer - cmdbuffer[bufindw] + 1], NULL, 10));
  436. if(gcode_N != gcode_LastN+1 && (strstr_P(cmdbuffer[bufindw], PSTR("M110")) == NULL) ) {
  437. SERIAL_ERROR_START;
  438. SERIAL_ERRORPGM(MSG_ERR_LINE_NO);
  439. SERIAL_ERRORLN(gcode_LastN);
  440. //Serial.println(gcode_N);
  441. FlushSerialRequestResend();
  442. serial_count = 0;
  443. return;
  444. }
  445. if(strchr(cmdbuffer[bufindw], '*') != NULL)
  446. {
  447. byte checksum = 0;
  448. byte count = 0;
  449. while(cmdbuffer[bufindw][count] != '*') checksum = checksum^cmdbuffer[bufindw][count++];
  450. strchr_pointer = strchr(cmdbuffer[bufindw], '*');
  451. if( (int)(strtod(&cmdbuffer[bufindw][strchr_pointer - cmdbuffer[bufindw] + 1], NULL)) != checksum) {
  452. SERIAL_ERROR_START;
  453. SERIAL_ERRORPGM(MSG_ERR_CHECKSUM_MISMATCH);
  454. SERIAL_ERRORLN(gcode_LastN);
  455. FlushSerialRequestResend();
  456. serial_count = 0;
  457. return;
  458. }
  459. //if no errors, continue parsing
  460. }
  461. else
  462. {
  463. SERIAL_ERROR_START;
  464. SERIAL_ERRORPGM(MSG_ERR_NO_CHECKSUM);
  465. SERIAL_ERRORLN(gcode_LastN);
  466. FlushSerialRequestResend();
  467. serial_count = 0;
  468. return;
  469. }
  470. gcode_LastN = gcode_N;
  471. //if no errors, continue parsing
  472. }
  473. else // if we don't receive 'N' but still see '*'
  474. {
  475. if((strchr(cmdbuffer[bufindw], '*') != NULL))
  476. {
  477. SERIAL_ERROR_START;
  478. SERIAL_ERRORPGM(MSG_ERR_NO_LINENUMBER_WITH_CHECKSUM);
  479. SERIAL_ERRORLN(gcode_LastN);
  480. serial_count = 0;
  481. return;
  482. }
  483. }
  484. if((strchr(cmdbuffer[bufindw], 'G') != NULL)){
  485. strchr_pointer = strchr(cmdbuffer[bufindw], 'G');
  486. switch((int)((strtod(&cmdbuffer[bufindw][strchr_pointer - cmdbuffer[bufindw] + 1], NULL)))){
  487. case 0:
  488. case 1:
  489. case 2:
  490. case 3:
  491. if(Stopped == false) { // If printer is stopped by an error the G[0-3] codes are ignored.
  492. #ifdef SDSUPPORT
  493. if(card.saving)
  494. break;
  495. #endif //SDSUPPORT
  496. SERIAL_PROTOCOLLNPGM(MSG_OK);
  497. }
  498. else {
  499. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  500. LCD_MESSAGEPGM(MSG_STOPPED);
  501. }
  502. break;
  503. default:
  504. break;
  505. }
  506. }
  507. bufindw = (bufindw + 1)%BUFSIZE;
  508. buflen += 1;
  509. }
  510. serial_count = 0; //clear buffer
  511. }
  512. else
  513. {
  514. if(serial_char == ';') comment_mode = true;
  515. if(!comment_mode) cmdbuffer[bufindw][serial_count++] = serial_char;
  516. }
  517. }
  518. #ifdef SDSUPPORT
  519. if(!card.sdprinting || serial_count!=0){
  520. return;
  521. }
  522. while( !card.eof() && buflen < BUFSIZE) {
  523. int16_t n=card.get();
  524. serial_char = (char)n;
  525. if(serial_char == '\n' ||
  526. serial_char == '\r' ||
  527. (serial_char == ':' && comment_mode == false) ||
  528. serial_count >= (MAX_CMD_SIZE - 1)||n==-1)
  529. {
  530. if(card.eof()){
  531. SERIAL_PROTOCOLLNPGM(MSG_FILE_PRINTED);
  532. stoptime=millis();
  533. char time[30];
  534. unsigned long t=(stoptime-starttime)/1000;
  535. int hours, minutes;
  536. minutes=(t/60)%60;
  537. hours=t/60/60;
  538. sprintf_P(time, PSTR("%i hours %i minutes"),hours, minutes);
  539. SERIAL_ECHO_START;
  540. SERIAL_ECHOLN(time);
  541. lcd_setstatus(time);
  542. card.printingHasFinished();
  543. card.checkautostart(true);
  544. }
  545. if(!serial_count)
  546. {
  547. comment_mode = false; //for new command
  548. return; //if empty line
  549. }
  550. cmdbuffer[bufindw][serial_count] = 0; //terminate string
  551. // if(!comment_mode){
  552. fromsd[bufindw] = true;
  553. buflen += 1;
  554. bufindw = (bufindw + 1)%BUFSIZE;
  555. // }
  556. comment_mode = false; //for new command
  557. serial_count = 0; //clear buffer
  558. }
  559. else
  560. {
  561. if(serial_char == ';') comment_mode = true;
  562. if(!comment_mode) cmdbuffer[bufindw][serial_count++] = serial_char;
  563. }
  564. }
  565. #endif //SDSUPPORT
  566. }
  567. float code_value()
  568. {
  569. return (strtod(&cmdbuffer[bufindr][strchr_pointer - cmdbuffer[bufindr] + 1], NULL));
  570. }
  571. long code_value_long()
  572. {
  573. return (strtol(&cmdbuffer[bufindr][strchr_pointer - cmdbuffer[bufindr] + 1], NULL, 10));
  574. }
  575. bool code_seen(char code)
  576. {
  577. strchr_pointer = strchr(cmdbuffer[bufindr], code);
  578. return (strchr_pointer != NULL); //Return True if a character was found
  579. }
  580. #define DEFINE_PGM_READ_ANY(type, reader) \
  581. static inline type pgm_read_any(const type *p) \
  582. { return pgm_read_##reader##_near(p); }
  583. DEFINE_PGM_READ_ANY(float, float);
  584. DEFINE_PGM_READ_ANY(signed char, byte);
  585. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  586. static const PROGMEM type array##_P[3] = \
  587. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  588. static inline type array(int axis) \
  589. { return pgm_read_any(&array##_P[axis]); }
  590. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  591. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  592. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  593. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  594. XYZ_CONSTS_FROM_CONFIG(float, home_retract_mm, HOME_RETRACT_MM);
  595. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  596. static void axis_is_at_home(int axis) {
  597. current_position[axis] = base_home_pos(axis) + add_homeing[axis];
  598. min_pos[axis] = base_min_pos(axis) + add_homeing[axis];
  599. max_pos[axis] = base_max_pos(axis) + add_homeing[axis];
  600. }
  601. static void homeaxis(int axis) {
  602. #define HOMEAXIS_DO(LETTER) \
  603. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  604. if (axis==X_AXIS ? HOMEAXIS_DO(X) :
  605. axis==Y_AXIS ? HOMEAXIS_DO(Y) :
  606. axis==Z_AXIS ? HOMEAXIS_DO(Z) :
  607. 0) {
  608. current_position[axis] = 0;
  609. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  610. destination[axis] = 1.5 * max_length(axis) * home_dir(axis);
  611. feedrate = homing_feedrate[axis];
  612. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  613. st_synchronize();
  614. current_position[axis] = 0;
  615. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  616. destination[axis] = -home_retract_mm(axis) * home_dir(axis);
  617. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  618. st_synchronize();
  619. destination[axis] = 2*home_retract_mm(axis) * home_dir(axis);
  620. feedrate = homing_feedrate[axis]/2 ;
  621. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  622. st_synchronize();
  623. axis_is_at_home(axis);
  624. destination[axis] = current_position[axis];
  625. feedrate = 0.0;
  626. endstops_hit_on_purpose();
  627. }
  628. }
  629. #define HOMEAXIS(LETTER) homeaxis(LETTER##_AXIS)
  630. void process_commands()
  631. {
  632. unsigned long codenum; //throw away variable
  633. char *starpos = NULL;
  634. if(code_seen('G'))
  635. {
  636. switch((int)code_value())
  637. {
  638. case 0: // G0 -> G1
  639. case 1: // G1
  640. if(Stopped == false) {
  641. get_coordinates(); // For X Y Z E F
  642. prepare_move();
  643. //ClearToSend();
  644. return;
  645. }
  646. //break;
  647. case 2: // G2 - CW ARC
  648. if(Stopped == false) {
  649. get_arc_coordinates();
  650. prepare_arc_move(true);
  651. return;
  652. }
  653. case 3: // G3 - CCW ARC
  654. if(Stopped == false) {
  655. get_arc_coordinates();
  656. prepare_arc_move(false);
  657. return;
  658. }
  659. case 4: // G4 dwell
  660. LCD_MESSAGEPGM(MSG_DWELL);
  661. codenum = 0;
  662. if(code_seen('P')) codenum = code_value(); // milliseconds to wait
  663. if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait
  664. st_synchronize();
  665. codenum += millis(); // keep track of when we started waiting
  666. previous_millis_cmd = millis();
  667. while(millis() < codenum ){
  668. manage_heater();
  669. manage_inactivity();
  670. lcd_update();
  671. }
  672. break;
  673. #ifdef FWRETRACT
  674. case 10: // G10 retract
  675. if(!retracted)
  676. {
  677. destination[X_AXIS]=current_position[X_AXIS];
  678. destination[Y_AXIS]=current_position[Y_AXIS];
  679. destination[Z_AXIS]=current_position[Z_AXIS];
  680. current_position[Z_AXIS]+=-retract_zlift;
  681. destination[E_AXIS]=current_position[E_AXIS]-retract_length;
  682. feedrate=retract_feedrate;
  683. retracted=true;
  684. prepare_move();
  685. }
  686. break;
  687. case 11: // G10 retract_recover
  688. if(!retracted)
  689. {
  690. destination[X_AXIS]=current_position[X_AXIS];
  691. destination[Y_AXIS]=current_position[Y_AXIS];
  692. destination[Z_AXIS]=current_position[Z_AXIS];
  693. current_position[Z_AXIS]+=retract_zlift;
  694. current_position[E_AXIS]+=-retract_recover_length;
  695. feedrate=retract_recover_feedrate;
  696. retracted=false;
  697. prepare_move();
  698. }
  699. break;
  700. #endif //FWRETRACT
  701. case 28: //G28 Home all Axis one at a time
  702. saved_feedrate = feedrate;
  703. saved_feedmultiply = feedmultiply;
  704. feedmultiply = 100;
  705. previous_millis_cmd = millis();
  706. enable_endstops(true);
  707. for(int8_t i=0; i < NUM_AXIS; i++) {
  708. destination[i] = current_position[i];
  709. }
  710. feedrate = 0.0;
  711. home_all_axis = !((code_seen(axis_codes[0])) || (code_seen(axis_codes[1])) || (code_seen(axis_codes[2])));
  712. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  713. if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
  714. HOMEAXIS(Z);
  715. }
  716. #endif
  717. #ifdef QUICK_HOME
  718. if((home_all_axis)||( code_seen(axis_codes[X_AXIS]) && code_seen(axis_codes[Y_AXIS])) ) //first diagonal move
  719. {
  720. current_position[X_AXIS] = 0;current_position[Y_AXIS] = 0;
  721. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  722. destination[X_AXIS] = 1.5 * X_MAX_LENGTH * X_HOME_DIR;destination[Y_AXIS] = 1.5 * Y_MAX_LENGTH * Y_HOME_DIR;
  723. feedrate = homing_feedrate[X_AXIS];
  724. if(homing_feedrate[Y_AXIS]<feedrate)
  725. feedrate =homing_feedrate[Y_AXIS];
  726. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  727. st_synchronize();
  728. axis_is_at_home(X_AXIS);
  729. axis_is_at_home(Y_AXIS);
  730. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  731. destination[X_AXIS] = current_position[X_AXIS];
  732. destination[Y_AXIS] = current_position[Y_AXIS];
  733. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  734. feedrate = 0.0;
  735. st_synchronize();
  736. endstops_hit_on_purpose();
  737. }
  738. #endif
  739. if((home_all_axis) || (code_seen(axis_codes[X_AXIS])))
  740. {
  741. HOMEAXIS(X);
  742. }
  743. if((home_all_axis) || (code_seen(axis_codes[Y_AXIS]))) {
  744. HOMEAXIS(Y);
  745. }
  746. #if Z_HOME_DIR < 0 // If homing towards BED do Z last
  747. if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
  748. HOMEAXIS(Z);
  749. }
  750. #endif
  751. if(code_seen(axis_codes[X_AXIS]))
  752. {
  753. if(code_value_long() != 0) {
  754. current_position[X_AXIS]=code_value()+add_homeing[0];
  755. }
  756. }
  757. if(code_seen(axis_codes[Y_AXIS])) {
  758. if(code_value_long() != 0) {
  759. current_position[Y_AXIS]=code_value()+add_homeing[1];
  760. }
  761. }
  762. if(code_seen(axis_codes[Z_AXIS])) {
  763. if(code_value_long() != 0) {
  764. current_position[Z_AXIS]=code_value()+add_homeing[2];
  765. }
  766. }
  767. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  768. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  769. enable_endstops(false);
  770. #endif
  771. feedrate = saved_feedrate;
  772. feedmultiply = saved_feedmultiply;
  773. previous_millis_cmd = millis();
  774. endstops_hit_on_purpose();
  775. break;
  776. case 90: // G90
  777. relative_mode = false;
  778. break;
  779. case 91: // G91
  780. relative_mode = true;
  781. break;
  782. case 92: // G92
  783. if(!code_seen(axis_codes[E_AXIS]))
  784. st_synchronize();
  785. for(int8_t i=0; i < NUM_AXIS; i++) {
  786. if(code_seen(axis_codes[i])) {
  787. if(i == E_AXIS) {
  788. current_position[i] = code_value();
  789. plan_set_e_position(current_position[E_AXIS]);
  790. }
  791. else {
  792. current_position[i] = code_value()+add_homeing[i];
  793. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  794. }
  795. }
  796. }
  797. break;
  798. }
  799. }
  800. else if(code_seen('M'))
  801. {
  802. switch( (int)code_value() )
  803. {
  804. #ifdef ULTIPANEL
  805. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  806. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  807. {
  808. LCD_MESSAGEPGM(MSG_USERWAIT);
  809. codenum = 0;
  810. if(code_seen('P')) codenum = code_value(); // milliseconds to wait
  811. if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait
  812. st_synchronize();
  813. previous_millis_cmd = millis();
  814. if (codenum > 0){
  815. codenum += millis(); // keep track of when we started waiting
  816. while(millis() < codenum && !LCD_CLICKED){
  817. manage_heater();
  818. manage_inactivity();
  819. lcd_update();
  820. }
  821. }else{
  822. while(!LCD_CLICKED){
  823. manage_heater();
  824. manage_inactivity();
  825. lcd_update();
  826. }
  827. }
  828. LCD_MESSAGEPGM(MSG_RESUMING);
  829. }
  830. break;
  831. #endif
  832. case 17:
  833. LCD_MESSAGEPGM(MSG_NO_MOVE);
  834. enable_x();
  835. enable_y();
  836. enable_z();
  837. enable_e0();
  838. enable_e1();
  839. enable_e2();
  840. break;
  841. #ifdef SDSUPPORT
  842. case 20: // M20 - list SD card
  843. SERIAL_PROTOCOLLNPGM(MSG_BEGIN_FILE_LIST);
  844. card.ls();
  845. SERIAL_PROTOCOLLNPGM(MSG_END_FILE_LIST);
  846. break;
  847. case 21: // M21 - init SD card
  848. card.initsd();
  849. break;
  850. case 22: //M22 - release SD card
  851. card.release();
  852. break;
  853. case 23: //M23 - Select file
  854. starpos = (strchr(strchr_pointer + 4,'*'));
  855. if(starpos!=NULL)
  856. *(starpos-1)='\0';
  857. card.openFile(strchr_pointer + 4,true);
  858. break;
  859. case 24: //M24 - Start SD print
  860. card.startFileprint();
  861. starttime=millis();
  862. break;
  863. case 25: //M25 - Pause SD print
  864. card.pauseSDPrint();
  865. break;
  866. case 26: //M26 - Set SD index
  867. if(card.cardOK && code_seen('S')) {
  868. card.setIndex(code_value_long());
  869. }
  870. break;
  871. case 27: //M27 - Get SD status
  872. card.getStatus();
  873. break;
  874. case 28: //M28 - Start SD write
  875. starpos = (strchr(strchr_pointer + 4,'*'));
  876. if(starpos != NULL){
  877. char* npos = strchr(cmdbuffer[bufindr], 'N');
  878. strchr_pointer = strchr(npos,' ') + 1;
  879. *(starpos-1) = '\0';
  880. }
  881. card.openFile(strchr_pointer+4,false);
  882. break;
  883. case 29: //M29 - Stop SD write
  884. //processed in write to file routine above
  885. //card,saving = false;
  886. break;
  887. case 30: //M30 <filename> Delete File
  888. if (card.cardOK){
  889. card.closefile();
  890. starpos = (strchr(strchr_pointer + 4,'*'));
  891. if(starpos != NULL){
  892. char* npos = strchr(cmdbuffer[bufindr], 'N');
  893. strchr_pointer = strchr(npos,' ') + 1;
  894. *(starpos-1) = '\0';
  895. }
  896. card.removeFile(strchr_pointer + 4);
  897. }
  898. break;
  899. case 928: //M928 - Start SD write
  900. starpos = (strchr(strchr_pointer + 5,'*'));
  901. if(starpos != NULL){
  902. char* npos = strchr(cmdbuffer[bufindr], 'N');
  903. strchr_pointer = strchr(npos,' ') + 1;
  904. *(starpos-1) = '\0';
  905. }
  906. card.openLogFile(strchr_pointer+5);
  907. break;
  908. #endif //SDSUPPORT
  909. case 31: //M31 take time since the start of the SD print or an M109 command
  910. {
  911. stoptime=millis();
  912. char time[30];
  913. unsigned long t=(stoptime-starttime)/1000;
  914. int sec,min;
  915. min=t/60;
  916. sec=t%60;
  917. sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
  918. SERIAL_ECHO_START;
  919. SERIAL_ECHOLN(time);
  920. lcd_setstatus(time);
  921. autotempShutdown();
  922. }
  923. break;
  924. case 42: //M42 -Change pin status via gcode
  925. if (code_seen('S'))
  926. {
  927. int pin_status = code_value();
  928. int pin_number = LED_PIN;
  929. if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
  930. pin_number = code_value();
  931. for(int8_t i = 0; i < (int8_t)sizeof(sensitive_pins); i++)
  932. {
  933. if (sensitive_pins[i] == pin_number)
  934. {
  935. pin_number = -1;
  936. break;
  937. }
  938. }
  939. if (pin_number > -1)
  940. {
  941. pinMode(pin_number, OUTPUT);
  942. digitalWrite(pin_number, pin_status);
  943. analogWrite(pin_number, pin_status);
  944. }
  945. }
  946. break;
  947. case 104: // M104
  948. if(setTargetedHotend(104)){
  949. break;
  950. }
  951. if (code_seen('S')) setTargetHotend(code_value(), tmp_extruder);
  952. setWatch();
  953. break;
  954. case 140: // M140 set bed temp
  955. if (code_seen('S')) setTargetBed(code_value());
  956. break;
  957. case 105 : // M105
  958. if(setTargetedHotend(105)){
  959. break;
  960. }
  961. #if (TEMP_0_PIN > -1)
  962. SERIAL_PROTOCOLPGM("ok T:");
  963. SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
  964. SERIAL_PROTOCOLPGM(" /");
  965. SERIAL_PROTOCOL_F(degTargetHotend(tmp_extruder),1);
  966. #if TEMP_BED_PIN > -1
  967. SERIAL_PROTOCOLPGM(" B:");
  968. SERIAL_PROTOCOL_F(degBed(),1);
  969. SERIAL_PROTOCOLPGM(" /");
  970. SERIAL_PROTOCOL_F(degTargetBed(),1);
  971. #endif //TEMP_BED_PIN
  972. #else
  973. SERIAL_ERROR_START;
  974. SERIAL_ERRORLNPGM(MSG_ERR_NO_THERMISTORS);
  975. #endif
  976. SERIAL_PROTOCOLPGM(" @:");
  977. SERIAL_PROTOCOL(getHeaterPower(tmp_extruder));
  978. SERIAL_PROTOCOLPGM(" B@:");
  979. SERIAL_PROTOCOL(getHeaterPower(-1));
  980. SERIAL_PROTOCOLLN("");
  981. return;
  982. break;
  983. case 109:
  984. {// M109 - Wait for extruder heater to reach target.
  985. if(setTargetedHotend(109)){
  986. break;
  987. }
  988. LCD_MESSAGEPGM(MSG_HEATING);
  989. #ifdef AUTOTEMP
  990. autotemp_enabled=false;
  991. #endif
  992. if (code_seen('S')) setTargetHotend(code_value(), tmp_extruder);
  993. #ifdef AUTOTEMP
  994. if (code_seen('S')) autotemp_min=code_value();
  995. if (code_seen('B')) autotemp_max=code_value();
  996. if (code_seen('F'))
  997. {
  998. autotemp_factor=code_value();
  999. autotemp_enabled=true;
  1000. }
  1001. #endif
  1002. setWatch();
  1003. codenum = millis();
  1004. /* See if we are heating up or cooling down */
  1005. bool target_direction = isHeatingHotend(tmp_extruder); // true if heating, false if cooling
  1006. #ifdef TEMP_RESIDENCY_TIME
  1007. long residencyStart;
  1008. residencyStart = -1;
  1009. /* continue to loop until we have reached the target temp
  1010. _and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
  1011. while((residencyStart == -1) ||
  1012. (residencyStart >= 0 && (((unsigned int) (millis() - residencyStart)) < (TEMP_RESIDENCY_TIME * 1000UL))) ) {
  1013. #else
  1014. while ( target_direction ? (isHeatingHotend(tmp_extruder)) : (isCoolingHotend(tmp_extruder)&&(CooldownNoWait==false)) ) {
  1015. #endif //TEMP_RESIDENCY_TIME
  1016. if( (millis() - codenum) > 1000UL )
  1017. { //Print Temp Reading and remaining time every 1 second while heating up/cooling down
  1018. SERIAL_PROTOCOLPGM("T:");
  1019. SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
  1020. SERIAL_PROTOCOLPGM(" E:");
  1021. SERIAL_PROTOCOL((int)tmp_extruder);
  1022. #ifdef TEMP_RESIDENCY_TIME
  1023. SERIAL_PROTOCOLPGM(" W:");
  1024. if(residencyStart > -1)
  1025. {
  1026. codenum = ((TEMP_RESIDENCY_TIME * 1000UL) - (millis() - residencyStart)) / 1000UL;
  1027. SERIAL_PROTOCOLLN( codenum );
  1028. }
  1029. else
  1030. {
  1031. SERIAL_PROTOCOLLN( "?" );
  1032. }
  1033. #else
  1034. SERIAL_PROTOCOLLN("");
  1035. #endif
  1036. codenum = millis();
  1037. }
  1038. manage_heater();
  1039. manage_inactivity();
  1040. lcd_update();
  1041. #ifdef TEMP_RESIDENCY_TIME
  1042. /* start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
  1043. or when current temp falls outside the hysteresis after target temp was reached */
  1044. if ((residencyStart == -1 && target_direction && (degHotend(tmp_extruder) >= (degTargetHotend(tmp_extruder)-TEMP_WINDOW))) ||
  1045. (residencyStart == -1 && !target_direction && (degHotend(tmp_extruder) <= (degTargetHotend(tmp_extruder)+TEMP_WINDOW))) ||
  1046. (residencyStart > -1 && labs(degHotend(tmp_extruder) - degTargetHotend(tmp_extruder)) > TEMP_HYSTERESIS) )
  1047. {
  1048. residencyStart = millis();
  1049. }
  1050. #endif //TEMP_RESIDENCY_TIME
  1051. }
  1052. LCD_MESSAGEPGM(MSG_HEATING_COMPLETE);
  1053. starttime=millis();
  1054. previous_millis_cmd = millis();
  1055. }
  1056. break;
  1057. case 190: // M190 - Wait for bed heater to reach target.
  1058. #if TEMP_BED_PIN > -1
  1059. LCD_MESSAGEPGM(MSG_BED_HEATING);
  1060. if (code_seen('S')) setTargetBed(code_value());
  1061. codenum = millis();
  1062. while(isHeatingBed())
  1063. {
  1064. if(( millis() - codenum) > 1000 ) //Print Temp Reading every 1 second while heating up.
  1065. {
  1066. float tt=degHotend(active_extruder);
  1067. SERIAL_PROTOCOLPGM("T:");
  1068. SERIAL_PROTOCOL(tt);
  1069. SERIAL_PROTOCOLPGM(" E:");
  1070. SERIAL_PROTOCOL((int)active_extruder);
  1071. SERIAL_PROTOCOLPGM(" B:");
  1072. SERIAL_PROTOCOL_F(degBed(),1);
  1073. SERIAL_PROTOCOLLN("");
  1074. codenum = millis();
  1075. }
  1076. manage_heater();
  1077. manage_inactivity();
  1078. lcd_update();
  1079. }
  1080. LCD_MESSAGEPGM(MSG_BED_DONE);
  1081. previous_millis_cmd = millis();
  1082. #endif
  1083. break;
  1084. #if FAN_PIN > -1
  1085. case 106: //M106 Fan On
  1086. if (code_seen('S')){
  1087. fanSpeed=constrain(code_value(),0,255);
  1088. }
  1089. else {
  1090. fanSpeed=255;
  1091. }
  1092. break;
  1093. case 107: //M107 Fan Off
  1094. fanSpeed = 0;
  1095. break;
  1096. #endif //FAN_PIN
  1097. #ifdef BARICUDA
  1098. // PWM for HEATER_1_PIN
  1099. #if HEATER_1_PIN > -1
  1100. case 126: //M126 valve open
  1101. if (code_seen('S')){
  1102. ValvePressure=constrain(code_value(),0,255);
  1103. }
  1104. else {
  1105. ValvePressure=255;
  1106. }
  1107. break;
  1108. case 127: //M127 valve closed
  1109. ValvePressure = 0;
  1110. break;
  1111. #endif //HEATER_1_PIN
  1112. // PWM for HEATER_2_PIN
  1113. #if HEATER_2_PIN > -1
  1114. case 128: //M128 valve open
  1115. if (code_seen('S')){
  1116. EtoPPressure=constrain(code_value(),0,255);
  1117. }
  1118. else {
  1119. EtoPPressure=255;
  1120. }
  1121. break;
  1122. case 129: //M129 valve closed
  1123. EtoPPressure = 0;
  1124. break;
  1125. #endif //HEATER_2_PIN
  1126. #endif
  1127. #if (PS_ON_PIN > -1)
  1128. case 80: // M80 - ATX Power On
  1129. SET_OUTPUT(PS_ON_PIN); //GND
  1130. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  1131. break;
  1132. #endif
  1133. case 81: // M81 - ATX Power Off
  1134. #if defined SUICIDE_PIN && SUICIDE_PIN > -1
  1135. st_synchronize();
  1136. suicide();
  1137. #elif (PS_ON_PIN > -1)
  1138. SET_OUTPUT(PS_ON_PIN);
  1139. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  1140. #endif
  1141. break;
  1142. case 82:
  1143. axis_relative_modes[3] = false;
  1144. break;
  1145. case 83:
  1146. axis_relative_modes[3] = true;
  1147. break;
  1148. case 18: //compatibility
  1149. case 84: // M84
  1150. if(code_seen('S')){
  1151. stepper_inactive_time = code_value() * 1000;
  1152. }
  1153. else
  1154. {
  1155. bool all_axis = !((code_seen(axis_codes[0])) || (code_seen(axis_codes[1])) || (code_seen(axis_codes[2]))|| (code_seen(axis_codes[3])));
  1156. if(all_axis)
  1157. {
  1158. st_synchronize();
  1159. disable_e0();
  1160. disable_e1();
  1161. disable_e2();
  1162. finishAndDisableSteppers();
  1163. }
  1164. else
  1165. {
  1166. st_synchronize();
  1167. if(code_seen('X')) disable_x();
  1168. if(code_seen('Y')) disable_y();
  1169. if(code_seen('Z')) disable_z();
  1170. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  1171. if(code_seen('E')) {
  1172. disable_e0();
  1173. disable_e1();
  1174. disable_e2();
  1175. }
  1176. #endif
  1177. }
  1178. }
  1179. break;
  1180. case 85: // M85
  1181. code_seen('S');
  1182. max_inactive_time = code_value() * 1000;
  1183. break;
  1184. case 92: // M92
  1185. for(int8_t i=0; i < NUM_AXIS; i++)
  1186. {
  1187. if(code_seen(axis_codes[i]))
  1188. {
  1189. if(i == 3) { // E
  1190. float value = code_value();
  1191. if(value < 20.0) {
  1192. float factor = axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
  1193. max_e_jerk *= factor;
  1194. max_feedrate[i] *= factor;
  1195. axis_steps_per_sqr_second[i] *= factor;
  1196. }
  1197. axis_steps_per_unit[i] = value;
  1198. }
  1199. else {
  1200. axis_steps_per_unit[i] = code_value();
  1201. }
  1202. }
  1203. }
  1204. break;
  1205. case 115: // M115
  1206. SERIAL_PROTOCOLPGM(MSG_M115_REPORT);
  1207. break;
  1208. case 117: // M117 display message
  1209. starpos = (strchr(strchr_pointer + 5,'*'));
  1210. if(starpos!=NULL)
  1211. *(starpos-1)='\0';
  1212. lcd_setstatus(strchr_pointer + 5);
  1213. break;
  1214. case 114: // M114
  1215. SERIAL_PROTOCOLPGM("X:");
  1216. SERIAL_PROTOCOL(current_position[X_AXIS]);
  1217. SERIAL_PROTOCOLPGM("Y:");
  1218. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  1219. SERIAL_PROTOCOLPGM("Z:");
  1220. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  1221. SERIAL_PROTOCOLPGM("E:");
  1222. SERIAL_PROTOCOL(current_position[E_AXIS]);
  1223. SERIAL_PROTOCOLPGM(MSG_COUNT_X);
  1224. SERIAL_PROTOCOL(float(st_get_position(X_AXIS))/axis_steps_per_unit[X_AXIS]);
  1225. SERIAL_PROTOCOLPGM("Y:");
  1226. SERIAL_PROTOCOL(float(st_get_position(Y_AXIS))/axis_steps_per_unit[Y_AXIS]);
  1227. SERIAL_PROTOCOLPGM("Z:");
  1228. SERIAL_PROTOCOL(float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]);
  1229. SERIAL_PROTOCOLLN("");
  1230. break;
  1231. case 120: // M120
  1232. enable_endstops(false) ;
  1233. break;
  1234. case 121: // M121
  1235. enable_endstops(true) ;
  1236. break;
  1237. case 119: // M119
  1238. SERIAL_PROTOCOLLN(MSG_M119_REPORT);
  1239. #if (X_MIN_PIN > -1)
  1240. SERIAL_PROTOCOLPGM(MSG_X_MIN);
  1241. SERIAL_PROTOCOLLN(((READ(X_MIN_PIN)^X_ENDSTOPS_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  1242. #endif
  1243. #if (X_MAX_PIN > -1)
  1244. SERIAL_PROTOCOLPGM(MSG_X_MAX);
  1245. SERIAL_PROTOCOLLN(((READ(X_MAX_PIN)^X_ENDSTOPS_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  1246. #endif
  1247. #if (Y_MIN_PIN > -1)
  1248. SERIAL_PROTOCOLPGM(MSG_Y_MIN);
  1249. SERIAL_PROTOCOLLN(((READ(Y_MIN_PIN)^Y_ENDSTOPS_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  1250. #endif
  1251. #if (Y_MAX_PIN > -1)
  1252. SERIAL_PROTOCOLPGM(MSG_Y_MAX);
  1253. SERIAL_PROTOCOLLN(((READ(Y_MAX_PIN)^Y_ENDSTOPS_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  1254. #endif
  1255. #if (Z_MIN_PIN > -1)
  1256. SERIAL_PROTOCOLPGM(MSG_Z_MIN);
  1257. SERIAL_PROTOCOLLN(((READ(Z_MIN_PIN)^Z_ENDSTOPS_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  1258. #endif
  1259. #if (Z_MAX_PIN > -1)
  1260. SERIAL_PROTOCOLPGM(MSG_Z_MAX);
  1261. SERIAL_PROTOCOLLN(((READ(Z_MAX_PIN)^Z_ENDSTOPS_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  1262. #endif
  1263. break;
  1264. //TODO: update for all axis, use for loop
  1265. case 201: // M201
  1266. for(int8_t i=0; i < NUM_AXIS; i++)
  1267. {
  1268. if(code_seen(axis_codes[i]))
  1269. {
  1270. max_acceleration_units_per_sq_second[i] = code_value();
  1271. }
  1272. }
  1273. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  1274. reset_acceleration_rates();
  1275. break;
  1276. #if 0 // Not used for Sprinter/grbl gen6
  1277. case 202: // M202
  1278. for(int8_t i=0; i < NUM_AXIS; i++) {
  1279. if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
  1280. }
  1281. break;
  1282. #endif
  1283. case 203: // M203 max feedrate mm/sec
  1284. for(int8_t i=0; i < NUM_AXIS; i++) {
  1285. if(code_seen(axis_codes[i])) max_feedrate[i] = code_value();
  1286. }
  1287. break;
  1288. case 204: // M204 acclereration S normal moves T filmanent only moves
  1289. {
  1290. if(code_seen('S')) acceleration = code_value() ;
  1291. if(code_seen('T')) retract_acceleration = code_value() ;
  1292. }
  1293. break;
  1294. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  1295. {
  1296. if(code_seen('S')) minimumfeedrate = code_value();
  1297. if(code_seen('T')) mintravelfeedrate = code_value();
  1298. if(code_seen('B')) minsegmenttime = code_value() ;
  1299. if(code_seen('X')) max_xy_jerk = code_value() ;
  1300. if(code_seen('Z')) max_z_jerk = code_value() ;
  1301. if(code_seen('E')) max_e_jerk = code_value() ;
  1302. }
  1303. break;
  1304. case 206: // M206 additional homeing offset
  1305. for(int8_t i=0; i < 3; i++)
  1306. {
  1307. if(code_seen(axis_codes[i])) add_homeing[i] = code_value();
  1308. }
  1309. break;
  1310. #ifdef FWRETRACT
  1311. case 207: //M207 - set retract length S[positive mm] F[feedrate mm/sec] Z[additional zlift/hop]
  1312. {
  1313. if(code_seen('S'))
  1314. {
  1315. retract_length = code_value() ;
  1316. }
  1317. if(code_seen('F'))
  1318. {
  1319. retract_feedrate = code_value() ;
  1320. }
  1321. if(code_seen('Z'))
  1322. {
  1323. retract_zlift = code_value() ;
  1324. }
  1325. }break;
  1326. case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
  1327. {
  1328. if(code_seen('S'))
  1329. {
  1330. retract_recover_length = code_value() ;
  1331. }
  1332. if(code_seen('F'))
  1333. {
  1334. retract_recover_feedrate = code_value() ;
  1335. }
  1336. }break;
  1337. case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  1338. {
  1339. if(code_seen('S'))
  1340. {
  1341. int t= code_value() ;
  1342. switch(t)
  1343. {
  1344. case 0: autoretract_enabled=false;retracted=false;break;
  1345. case 1: autoretract_enabled=true;retracted=false;break;
  1346. default:
  1347. SERIAL_ECHO_START;
  1348. SERIAL_ECHOPGM(MSG_UNKNOWN_COMMAND);
  1349. SERIAL_ECHO(cmdbuffer[bufindr]);
  1350. SERIAL_ECHOLNPGM("\"");
  1351. }
  1352. }
  1353. }break;
  1354. #endif // FWRETRACT
  1355. #if EXTRUDERS > 1
  1356. case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  1357. {
  1358. if(setTargetedHotend(218)){
  1359. break;
  1360. }
  1361. if(code_seen('X'))
  1362. {
  1363. extruder_offset[X_AXIS][tmp_extruder] = code_value();
  1364. }
  1365. if(code_seen('Y'))
  1366. {
  1367. extruder_offset[Y_AXIS][tmp_extruder] = code_value();
  1368. }
  1369. SERIAL_ECHO_START;
  1370. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  1371. for(tmp_extruder = 0; tmp_extruder < EXTRUDERS; tmp_extruder++)
  1372. {
  1373. SERIAL_ECHO(" ");
  1374. SERIAL_ECHO(extruder_offset[X_AXIS][tmp_extruder]);
  1375. SERIAL_ECHO(",");
  1376. SERIAL_ECHO(extruder_offset[Y_AXIS][tmp_extruder]);
  1377. }
  1378. SERIAL_ECHOLN("");
  1379. }break;
  1380. #endif
  1381. case 220: // M220 S<factor in percent>- set speed factor override percentage
  1382. {
  1383. if(code_seen('S'))
  1384. {
  1385. feedmultiply = code_value() ;
  1386. }
  1387. }
  1388. break;
  1389. case 221: // M221 S<factor in percent>- set extrude factor override percentage
  1390. {
  1391. if(code_seen('S'))
  1392. {
  1393. extrudemultiply = code_value() ;
  1394. }
  1395. }
  1396. break;
  1397. #if (defined NUM_SERVOS) && (NUM_SERVOS > 0)
  1398. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  1399. {
  1400. int servo_index = -1;
  1401. int servo_position = 0;
  1402. if (code_seen('P'))
  1403. servo_index = code_value();
  1404. if (code_seen('S')) {
  1405. servo_position = code_value();
  1406. if ((servo_index >= 0) && (servo_index < NUM_SERVOS)) {
  1407. servos[servo_index].write(servo_position);
  1408. }
  1409. else {
  1410. SERIAL_ECHO_START;
  1411. SERIAL_ECHO("Servo ");
  1412. SERIAL_ECHO(servo_index);
  1413. SERIAL_ECHOLN(" out of range");
  1414. }
  1415. }
  1416. else if (servo_index >= 0) {
  1417. SERIAL_PROTOCOL(MSG_OK);
  1418. SERIAL_PROTOCOL(" Servo ");
  1419. SERIAL_PROTOCOL(servo_index);
  1420. SERIAL_PROTOCOL(": ");
  1421. SERIAL_PROTOCOL(servos[servo_index].read());
  1422. SERIAL_PROTOCOLLN("");
  1423. }
  1424. }
  1425. break;
  1426. #endif // NUM_SERVOS > 0
  1427. #if defined(LARGE_FLASH) && LARGE_FLASH == true && defined(BEEPER) && BEEPER > -1
  1428. case 300: // M300
  1429. {
  1430. int beepS = 1;
  1431. int beepP = 1000;
  1432. if(code_seen('S')) beepS = code_value();
  1433. if(code_seen('P')) beepP = code_value();
  1434. tone(BEEPER, beepS);
  1435. delay(beepP);
  1436. noTone(BEEPER);
  1437. }
  1438. break;
  1439. #endif // M300
  1440. #ifdef PIDTEMP
  1441. case 301: // M301
  1442. {
  1443. if(code_seen('P')) Kp = code_value();
  1444. if(code_seen('I')) Ki = scalePID_i(code_value());
  1445. if(code_seen('D')) Kd = scalePID_d(code_value());
  1446. #ifdef PID_ADD_EXTRUSION_RATE
  1447. if(code_seen('C')) Kc = code_value();
  1448. #endif
  1449. updatePID();
  1450. SERIAL_PROTOCOL(MSG_OK);
  1451. SERIAL_PROTOCOL(" p:");
  1452. SERIAL_PROTOCOL(Kp);
  1453. SERIAL_PROTOCOL(" i:");
  1454. SERIAL_PROTOCOL(unscalePID_i(Ki));
  1455. SERIAL_PROTOCOL(" d:");
  1456. SERIAL_PROTOCOL(unscalePID_d(Kd));
  1457. #ifdef PID_ADD_EXTRUSION_RATE
  1458. SERIAL_PROTOCOL(" c:");
  1459. //Kc does not have scaling applied above, or in resetting defaults
  1460. SERIAL_PROTOCOL(Kc);
  1461. #endif
  1462. SERIAL_PROTOCOLLN("");
  1463. }
  1464. break;
  1465. #endif //PIDTEMP
  1466. #ifdef PIDTEMPBED
  1467. case 304: // M304
  1468. {
  1469. if(code_seen('P')) bedKp = code_value();
  1470. if(code_seen('I')) bedKi = scalePID_i(code_value());
  1471. if(code_seen('D')) bedKd = scalePID_d(code_value());
  1472. updatePID();
  1473. SERIAL_PROTOCOL(MSG_OK);
  1474. SERIAL_PROTOCOL(" p:");
  1475. SERIAL_PROTOCOL(bedKp);
  1476. SERIAL_PROTOCOL(" i:");
  1477. SERIAL_PROTOCOL(unscalePID_i(bedKi));
  1478. SERIAL_PROTOCOL(" d:");
  1479. SERIAL_PROTOCOL(unscalePID_d(bedKd));
  1480. SERIAL_PROTOCOLLN("");
  1481. }
  1482. break;
  1483. #endif //PIDTEMP
  1484. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  1485. {
  1486. #ifdef PHOTOGRAPH_PIN
  1487. #if (PHOTOGRAPH_PIN > -1)
  1488. const uint8_t NUM_PULSES=16;
  1489. const float PULSE_LENGTH=0.01524;
  1490. for(int i=0; i < NUM_PULSES; i++) {
  1491. WRITE(PHOTOGRAPH_PIN, HIGH);
  1492. _delay_ms(PULSE_LENGTH);
  1493. WRITE(PHOTOGRAPH_PIN, LOW);
  1494. _delay_ms(PULSE_LENGTH);
  1495. }
  1496. delay(7.33);
  1497. for(int i=0; i < NUM_PULSES; i++) {
  1498. WRITE(PHOTOGRAPH_PIN, HIGH);
  1499. _delay_ms(PULSE_LENGTH);
  1500. WRITE(PHOTOGRAPH_PIN, LOW);
  1501. _delay_ms(PULSE_LENGTH);
  1502. }
  1503. #endif
  1504. #endif
  1505. }
  1506. break;
  1507. case 302: // allow cold extrudes
  1508. {
  1509. allow_cold_extrudes(true);
  1510. }
  1511. break;
  1512. case 303: // M303 PID autotune
  1513. {
  1514. float temp = 150.0;
  1515. int e=0;
  1516. int c=5;
  1517. if (code_seen('E')) e=code_value();
  1518. if (e<0)
  1519. temp=70;
  1520. if (code_seen('S')) temp=code_value();
  1521. if (code_seen('C')) c=code_value();
  1522. PID_autotune(temp, e, c);
  1523. }
  1524. break;
  1525. case 400: // M400 finish all moves
  1526. {
  1527. st_synchronize();
  1528. }
  1529. break;
  1530. case 500: // M500 Store settings in EEPROM
  1531. {
  1532. Config_StoreSettings();
  1533. }
  1534. break;
  1535. case 501: // M501 Read settings from EEPROM
  1536. {
  1537. Config_RetrieveSettings();
  1538. }
  1539. break;
  1540. case 502: // M502 Revert to default settings
  1541. {
  1542. Config_ResetDefault();
  1543. }
  1544. break;
  1545. case 503: // M503 print settings currently in memory
  1546. {
  1547. Config_PrintSettings();
  1548. }
  1549. break;
  1550. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  1551. case 540:
  1552. {
  1553. if(code_seen('S')) abort_on_endstop_hit = code_value() > 0;
  1554. }
  1555. break;
  1556. #endif
  1557. #ifdef FILAMENTCHANGEENABLE
  1558. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  1559. {
  1560. float target[4];
  1561. float lastpos[4];
  1562. target[X_AXIS]=current_position[X_AXIS];
  1563. target[Y_AXIS]=current_position[Y_AXIS];
  1564. target[Z_AXIS]=current_position[Z_AXIS];
  1565. target[E_AXIS]=current_position[E_AXIS];
  1566. lastpos[X_AXIS]=current_position[X_AXIS];
  1567. lastpos[Y_AXIS]=current_position[Y_AXIS];
  1568. lastpos[Z_AXIS]=current_position[Z_AXIS];
  1569. lastpos[E_AXIS]=current_position[E_AXIS];
  1570. //retract by E
  1571. if(code_seen('E'))
  1572. {
  1573. target[E_AXIS]+= code_value();
  1574. }
  1575. else
  1576. {
  1577. #ifdef FILAMENTCHANGE_FIRSTRETRACT
  1578. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  1579. #endif
  1580. }
  1581. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder);
  1582. //lift Z
  1583. if(code_seen('Z'))
  1584. {
  1585. target[Z_AXIS]+= code_value();
  1586. }
  1587. else
  1588. {
  1589. #ifdef FILAMENTCHANGE_ZADD
  1590. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  1591. #endif
  1592. }
  1593. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder);
  1594. //move xy
  1595. if(code_seen('X'))
  1596. {
  1597. target[X_AXIS]+= code_value();
  1598. }
  1599. else
  1600. {
  1601. #ifdef FILAMENTCHANGE_XPOS
  1602. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  1603. #endif
  1604. }
  1605. if(code_seen('Y'))
  1606. {
  1607. target[Y_AXIS]= code_value();
  1608. }
  1609. else
  1610. {
  1611. #ifdef FILAMENTCHANGE_YPOS
  1612. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  1613. #endif
  1614. }
  1615. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder);
  1616. if(code_seen('L'))
  1617. {
  1618. target[E_AXIS]+= code_value();
  1619. }
  1620. else
  1621. {
  1622. #ifdef FILAMENTCHANGE_FINALRETRACT
  1623. target[E_AXIS]+= FILAMENTCHANGE_FINALRETRACT ;
  1624. #endif
  1625. }
  1626. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder);
  1627. //finish moves
  1628. st_synchronize();
  1629. //disable extruder steppers so filament can be removed
  1630. disable_e0();
  1631. disable_e1();
  1632. disable_e2();
  1633. delay(100);
  1634. LCD_ALERTMESSAGEPGM(MSG_FILAMENTCHANGE);
  1635. uint8_t cnt=0;
  1636. while(!LCD_CLICKED){
  1637. cnt++;
  1638. manage_heater();
  1639. manage_inactivity();
  1640. lcd_update();
  1641. #if BEEPER > -1
  1642. if(cnt==0)
  1643. {
  1644. SET_OUTPUT(BEEPER);
  1645. WRITE(BEEPER,HIGH);
  1646. delay(3);
  1647. WRITE(BEEPER,LOW);
  1648. delay(3);
  1649. }
  1650. #endif
  1651. }
  1652. //return to normal
  1653. if(code_seen('L'))
  1654. {
  1655. target[E_AXIS]+= -code_value();
  1656. }
  1657. else
  1658. {
  1659. #ifdef FILAMENTCHANGE_FINALRETRACT
  1660. target[E_AXIS]+=(-1)*FILAMENTCHANGE_FINALRETRACT ;
  1661. #endif
  1662. }
  1663. current_position[E_AXIS]=target[E_AXIS]; //the long retract of L is compensated by manual filament feeding
  1664. plan_set_e_position(current_position[E_AXIS]);
  1665. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder); //should do nothing
  1666. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder); //move xy back
  1667. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder); //move z back
  1668. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], lastpos[E_AXIS], feedrate/60, active_extruder); //final untretract
  1669. }
  1670. break;
  1671. #endif //FILAMENTCHANGEENABLE
  1672. case 907: // M907 Set digital trimpot motor current using axis codes.
  1673. {
  1674. #if DIGIPOTSS_PIN > -1
  1675. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_current(i,code_value());
  1676. if(code_seen('B')) digipot_current(4,code_value());
  1677. if(code_seen('S')) for(int i=0;i<=4;i++) digipot_current(i,code_value());
  1678. #endif
  1679. }
  1680. break;
  1681. case 908: // M908 Control digital trimpot directly.
  1682. {
  1683. #if DIGIPOTSS_PIN > -1
  1684. uint8_t channel,current;
  1685. if(code_seen('P')) channel=code_value();
  1686. if(code_seen('S')) current=code_value();
  1687. digitalPotWrite(channel, current);
  1688. #endif
  1689. }
  1690. break;
  1691. case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  1692. {
  1693. #if X_MS1_PIN > -1
  1694. if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value());
  1695. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_mode(i,(uint8_t)code_value());
  1696. if(code_seen('B')) microstep_mode(4,code_value());
  1697. microstep_readings();
  1698. #endif
  1699. }
  1700. break;
  1701. case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  1702. {
  1703. #if X_MS1_PIN > -1
  1704. if(code_seen('S')) switch((int)code_value())
  1705. {
  1706. case 1:
  1707. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,code_value(),-1);
  1708. if(code_seen('B')) microstep_ms(4,code_value(),-1);
  1709. break;
  1710. case 2:
  1711. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,-1,code_value());
  1712. if(code_seen('B')) microstep_ms(4,-1,code_value());
  1713. break;
  1714. }
  1715. microstep_readings();
  1716. #endif
  1717. }
  1718. break;
  1719. case 999: // M999: Restart after being stopped
  1720. Stopped = false;
  1721. lcd_reset_alert_level();
  1722. gcode_LastN = Stopped_gcode_LastN;
  1723. FlushSerialRequestResend();
  1724. break;
  1725. }
  1726. }
  1727. else if(code_seen('T'))
  1728. {
  1729. tmp_extruder = code_value();
  1730. if(tmp_extruder >= EXTRUDERS) {
  1731. SERIAL_ECHO_START;
  1732. SERIAL_ECHO("T");
  1733. SERIAL_ECHO(tmp_extruder);
  1734. SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
  1735. }
  1736. else {
  1737. boolean make_move = false;
  1738. if(code_seen('F')) {
  1739. make_move = true;
  1740. next_feedrate = code_value();
  1741. if(next_feedrate > 0.0) {
  1742. feedrate = next_feedrate;
  1743. }
  1744. }
  1745. #if EXTRUDERS > 1
  1746. if(tmp_extruder != active_extruder) {
  1747. // Save current position to return to after applying extruder offset
  1748. memcpy(destination, current_position, sizeof(destination));
  1749. // Offset extruder (only by XY)
  1750. int i;
  1751. for(i = 0; i < 2; i++) {
  1752. current_position[i] = current_position[i] -
  1753. extruder_offset[i][active_extruder] +
  1754. extruder_offset[i][tmp_extruder];
  1755. }
  1756. // Set the new active extruder and position
  1757. active_extruder = tmp_extruder;
  1758. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1759. // Move to the old position if 'F' was in the parameters
  1760. if(make_move && Stopped == false) {
  1761. prepare_move();
  1762. }
  1763. }
  1764. #endif
  1765. SERIAL_ECHO_START;
  1766. SERIAL_ECHO(MSG_ACTIVE_EXTRUDER);
  1767. SERIAL_PROTOCOLLN((int)active_extruder);
  1768. }
  1769. }
  1770. else
  1771. {
  1772. SERIAL_ECHO_START;
  1773. SERIAL_ECHOPGM(MSG_UNKNOWN_COMMAND);
  1774. SERIAL_ECHO(cmdbuffer[bufindr]);
  1775. SERIAL_ECHOLNPGM("\"");
  1776. }
  1777. ClearToSend();
  1778. }
  1779. void FlushSerialRequestResend()
  1780. {
  1781. //char cmdbuffer[bufindr][100]="Resend:";
  1782. MYSERIAL.flush();
  1783. SERIAL_PROTOCOLPGM(MSG_RESEND);
  1784. SERIAL_PROTOCOLLN(gcode_LastN + 1);
  1785. ClearToSend();
  1786. }
  1787. void ClearToSend()
  1788. {
  1789. previous_millis_cmd = millis();
  1790. #ifdef SDSUPPORT
  1791. if(fromsd[bufindr])
  1792. return;
  1793. #endif //SDSUPPORT
  1794. SERIAL_PROTOCOLLNPGM(MSG_OK);
  1795. }
  1796. void get_coordinates()
  1797. {
  1798. bool seen[4]={false,false,false,false};
  1799. for(int8_t i=0; i < NUM_AXIS; i++) {
  1800. if(code_seen(axis_codes[i]))
  1801. {
  1802. destination[i] = (float)code_value() + (axis_relative_modes[i] || relative_mode)*current_position[i];
  1803. seen[i]=true;
  1804. }
  1805. else destination[i] = current_position[i]; //Are these else lines really needed?
  1806. }
  1807. if(code_seen('F')) {
  1808. next_feedrate = code_value();
  1809. if(next_feedrate > 0.0) feedrate = next_feedrate;
  1810. }
  1811. #ifdef FWRETRACT
  1812. if(autoretract_enabled)
  1813. if( !(seen[X_AXIS] || seen[Y_AXIS] || seen[Z_AXIS]) && seen[E_AXIS])
  1814. {
  1815. float echange=destination[E_AXIS]-current_position[E_AXIS];
  1816. if(echange<-MIN_RETRACT) //retract
  1817. {
  1818. if(!retracted)
  1819. {
  1820. destination[Z_AXIS]+=retract_zlift; //not sure why chaninging current_position negatively does not work.
  1821. //if slicer retracted by echange=-1mm and you want to retract 3mm, corrrectede=-2mm additionally
  1822. float correctede=-echange-retract_length;
  1823. //to generate the additional steps, not the destination is changed, but inversely the current position
  1824. current_position[E_AXIS]+=-correctede;
  1825. feedrate=retract_feedrate;
  1826. retracted=true;
  1827. }
  1828. }
  1829. else
  1830. if(echange>MIN_RETRACT) //retract_recover
  1831. {
  1832. if(retracted)
  1833. {
  1834. //current_position[Z_AXIS]+=-retract_zlift;
  1835. //if slicer retracted_recovered by echange=+1mm and you want to retract_recover 3mm, corrrectede=2mm additionally
  1836. float correctede=-echange+1*retract_length+retract_recover_length; //total unretract=retract_length+retract_recover_length[surplus]
  1837. current_position[E_AXIS]+=correctede; //to generate the additional steps, not the destination is changed, but inversely the current position
  1838. feedrate=retract_recover_feedrate;
  1839. retracted=false;
  1840. }
  1841. }
  1842. }
  1843. #endif //FWRETRACT
  1844. }
  1845. void get_arc_coordinates()
  1846. {
  1847. #ifdef SF_ARC_FIX
  1848. bool relative_mode_backup = relative_mode;
  1849. relative_mode = true;
  1850. #endif
  1851. get_coordinates();
  1852. #ifdef SF_ARC_FIX
  1853. relative_mode=relative_mode_backup;
  1854. #endif
  1855. if(code_seen('I')) {
  1856. offset[0] = code_value();
  1857. }
  1858. else {
  1859. offset[0] = 0.0;
  1860. }
  1861. if(code_seen('J')) {
  1862. offset[1] = code_value();
  1863. }
  1864. else {
  1865. offset[1] = 0.0;
  1866. }
  1867. }
  1868. void clamp_to_software_endstops(float target[3])
  1869. {
  1870. if (min_software_endstops) {
  1871. if (target[X_AXIS] < min_pos[X_AXIS]) target[X_AXIS] = min_pos[X_AXIS];
  1872. if (target[Y_AXIS] < min_pos[Y_AXIS]) target[Y_AXIS] = min_pos[Y_AXIS];
  1873. if (target[Z_AXIS] < min_pos[Z_AXIS]) target[Z_AXIS] = min_pos[Z_AXIS];
  1874. }
  1875. if (max_software_endstops) {
  1876. if (target[X_AXIS] > max_pos[X_AXIS]) target[X_AXIS] = max_pos[X_AXIS];
  1877. if (target[Y_AXIS] > max_pos[Y_AXIS]) target[Y_AXIS] = max_pos[Y_AXIS];
  1878. if (target[Z_AXIS] > max_pos[Z_AXIS]) target[Z_AXIS] = max_pos[Z_AXIS];
  1879. }
  1880. }
  1881. void prepare_move()
  1882. {
  1883. clamp_to_software_endstops(destination);
  1884. previous_millis_cmd = millis();
  1885. // Do not use feedmultiply for E or Z only moves
  1886. if( (current_position[X_AXIS] == destination [X_AXIS]) && (current_position[Y_AXIS] == destination [Y_AXIS])) {
  1887. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1888. }
  1889. else {
  1890. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply/60/100.0, active_extruder);
  1891. }
  1892. for(int8_t i=0; i < NUM_AXIS; i++) {
  1893. current_position[i] = destination[i];
  1894. }
  1895. }
  1896. void prepare_arc_move(char isclockwise) {
  1897. float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
  1898. // Trace the arc
  1899. mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedmultiply/60/100.0, r, isclockwise, active_extruder);
  1900. // As far as the parser is concerned, the position is now == target. In reality the
  1901. // motion control system might still be processing the action and the real tool position
  1902. // in any intermediate location.
  1903. for(int8_t i=0; i < NUM_AXIS; i++) {
  1904. current_position[i] = destination[i];
  1905. }
  1906. previous_millis_cmd = millis();
  1907. }
  1908. #ifdef CONTROLLERFAN_PIN
  1909. unsigned long lastMotor = 0; //Save the time for when a motor was turned on last
  1910. unsigned long lastMotorCheck = 0;
  1911. void controllerFan()
  1912. {
  1913. if ((millis() - lastMotorCheck) >= 2500) //Not a time critical function, so we only check every 2500ms
  1914. {
  1915. lastMotorCheck = millis();
  1916. if(!READ(X_ENABLE_PIN) || !READ(Y_ENABLE_PIN) || !READ(Z_ENABLE_PIN)
  1917. #if EXTRUDERS > 2
  1918. || !READ(E2_ENABLE_PIN)
  1919. #endif
  1920. #if EXTRUDER > 1
  1921. || !READ(E1_ENABLE_PIN)
  1922. #endif
  1923. || !READ(E0_ENABLE_PIN)) //If any of the drivers are enabled...
  1924. {
  1925. lastMotor = millis(); //... set time to NOW so the fan will turn on
  1926. }
  1927. if ((millis() - lastMotor) >= (CONTROLLERFAN_SEC*1000UL) || lastMotor == 0) //If the last time any driver was enabled, is longer since than CONTROLLERSEC...
  1928. {
  1929. WRITE(CONTROLLERFAN_PIN, LOW); //... turn the fan off
  1930. }
  1931. else
  1932. {
  1933. WRITE(CONTROLLERFAN_PIN, HIGH); //... turn the fan on
  1934. }
  1935. }
  1936. }
  1937. #endif
  1938. #ifdef EXTRUDERFAN_PIN
  1939. unsigned long lastExtruderCheck = 0;
  1940. void extruderFan()
  1941. {
  1942. if ((millis() - lastExtruderCheck) >= 2500) //Not a time critical function, so we only check every 2500ms
  1943. {
  1944. lastExtruderCheck = millis();
  1945. if (degHotend(active_extruder) < EXTRUDERFAN_DEC)
  1946. {
  1947. WRITE(EXTRUDERFAN_PIN, LOW); //... turn the fan off
  1948. }
  1949. else
  1950. {
  1951. WRITE(EXTRUDERFAN_PIN, HIGH); //... turn the fan on
  1952. }
  1953. }
  1954. }
  1955. #endif
  1956. void manage_inactivity()
  1957. {
  1958. if( (millis() - previous_millis_cmd) > max_inactive_time )
  1959. if(max_inactive_time)
  1960. kill();
  1961. if(stepper_inactive_time) {
  1962. if( (millis() - previous_millis_cmd) > stepper_inactive_time )
  1963. {
  1964. if(blocks_queued() == false) {
  1965. disable_x();
  1966. disable_y();
  1967. disable_z();
  1968. disable_e0();
  1969. disable_e1();
  1970. disable_e2();
  1971. }
  1972. }
  1973. }
  1974. #if( KILL_PIN>-1 )
  1975. if( 0 == READ(KILL_PIN) )
  1976. kill();
  1977. #endif
  1978. #ifdef CONTROLLERFAN_PIN
  1979. controllerFan(); //Check if fan should be turned on to cool stepper drivers down
  1980. #endif
  1981. #ifdef EXTRUDER_RUNOUT_PREVENT
  1982. if( (millis() - previous_millis_cmd) > EXTRUDER_RUNOUT_SECONDS*1000 )
  1983. if(degHotend(active_extruder)>EXTRUDER_RUNOUT_MINTEMP)
  1984. {
  1985. bool oldstatus=READ(E0_ENABLE_PIN);
  1986. enable_e0();
  1987. float oldepos=current_position[E_AXIS];
  1988. float oldedes=destination[E_AXIS];
  1989. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS],
  1990. current_position[E_AXIS]+EXTRUDER_RUNOUT_EXTRUDE*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS],
  1991. EXTRUDER_RUNOUT_SPEED/60.*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS], active_extruder);
  1992. current_position[E_AXIS]=oldepos;
  1993. destination[E_AXIS]=oldedes;
  1994. plan_set_e_position(oldepos);
  1995. previous_millis_cmd=millis();
  1996. st_synchronize();
  1997. WRITE(E0_ENABLE_PIN,oldstatus);
  1998. }
  1999. #endif
  2000. check_axes_activity();
  2001. }
  2002. void kill()
  2003. {
  2004. cli(); // Stop interrupts
  2005. disable_heater();
  2006. disable_x();
  2007. disable_y();
  2008. disable_z();
  2009. disable_e0();
  2010. disable_e1();
  2011. disable_e2();
  2012. if(PS_ON_PIN > -1) pinMode(PS_ON_PIN,INPUT);
  2013. SERIAL_ERROR_START;
  2014. SERIAL_ERRORLNPGM(MSG_ERR_KILLED);
  2015. LCD_ALERTMESSAGEPGM(MSG_KILLED);
  2016. suicide();
  2017. while(1) { /* Intentionally left empty */ } // Wait for reset
  2018. }
  2019. void Stop()
  2020. {
  2021. disable_heater();
  2022. if(Stopped == false) {
  2023. Stopped = true;
  2024. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  2025. SERIAL_ERROR_START;
  2026. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  2027. LCD_MESSAGEPGM(MSG_STOPPED);
  2028. }
  2029. }
  2030. bool IsStopped() { return Stopped; };
  2031. #ifdef FAST_PWM_FAN
  2032. void setPwmFrequency(uint8_t pin, int val)
  2033. {
  2034. val &= 0x07;
  2035. switch(digitalPinToTimer(pin))
  2036. {
  2037. #if defined(TCCR0A)
  2038. case TIMER0A:
  2039. case TIMER0B:
  2040. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  2041. // TCCR0B |= val;
  2042. break;
  2043. #endif
  2044. #if defined(TCCR1A)
  2045. case TIMER1A:
  2046. case TIMER1B:
  2047. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  2048. // TCCR1B |= val;
  2049. break;
  2050. #endif
  2051. #if defined(TCCR2)
  2052. case TIMER2:
  2053. case TIMER2:
  2054. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  2055. TCCR2 |= val;
  2056. break;
  2057. #endif
  2058. #if defined(TCCR2A)
  2059. case TIMER2A:
  2060. case TIMER2B:
  2061. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  2062. TCCR2B |= val;
  2063. break;
  2064. #endif
  2065. #if defined(TCCR3A)
  2066. case TIMER3A:
  2067. case TIMER3B:
  2068. case TIMER3C:
  2069. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  2070. TCCR3B |= val;
  2071. break;
  2072. #endif
  2073. #if defined(TCCR4A)
  2074. case TIMER4A:
  2075. case TIMER4B:
  2076. case TIMER4C:
  2077. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  2078. TCCR4B |= val;
  2079. break;
  2080. #endif
  2081. #if defined(TCCR5A)
  2082. case TIMER5A:
  2083. case TIMER5B:
  2084. case TIMER5C:
  2085. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  2086. TCCR5B |= val;
  2087. break;
  2088. #endif
  2089. }
  2090. }
  2091. #endif //FAST_PWM_FAN
  2092. bool setTargetedHotend(int code){
  2093. tmp_extruder = active_extruder;
  2094. if(code_seen('T')) {
  2095. tmp_extruder = code_value();
  2096. if(tmp_extruder >= EXTRUDERS) {
  2097. SERIAL_ECHO_START;
  2098. switch(code){
  2099. case 104:
  2100. SERIAL_ECHO(MSG_M104_INVALID_EXTRUDER);
  2101. break;
  2102. case 105:
  2103. SERIAL_ECHO(MSG_M105_INVALID_EXTRUDER);
  2104. break;
  2105. case 109:
  2106. SERIAL_ECHO(MSG_M109_INVALID_EXTRUDER);
  2107. break;
  2108. case 218:
  2109. SERIAL_ECHO(MSG_M218_INVALID_EXTRUDER);
  2110. break;
  2111. }
  2112. SERIAL_ECHOLN(tmp_extruder);
  2113. return true;
  2114. }
  2115. }
  2116. return false;
  2117. }