My Marlin configs for Fabrikator Mini and CTC i3 Pro B
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

Marlin_main.cpp 108KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258
  1. /* -*- c++ -*- */
  2. /*
  3. Reprap firmware based on Sprinter and grbl.
  4. Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  5. This program is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. This program is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with this program. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. /*
  17. This firmware is a mashup between Sprinter and grbl.
  18. (https://github.com/kliment/Sprinter)
  19. (https://github.com/simen/grbl/tree)
  20. It has preliminary support for Matthew Roberts advance algorithm
  21. http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  22. */
  23. #include "Marlin.h"
  24. #ifdef ENABLE_AUTO_BED_LEVELING
  25. #include "vector_3.h"
  26. #endif // ENABLE_AUTO_BED_LEVELING
  27. #include "ultralcd.h"
  28. #include "planner.h"
  29. #include "stepper.h"
  30. #include "temperature.h"
  31. #include "motion_control.h"
  32. #include "cardreader.h"
  33. #include "watchdog.h"
  34. #include "ConfigurationStore.h"
  35. #include "language.h"
  36. #include "pins_arduino.h"
  37. #ifdef BLINKM
  38. #include "BlinkM.h"
  39. #include "Wire.h"
  40. #endif
  41. #if NUM_SERVOS > 0
  42. #include "Servo.h"
  43. #endif
  44. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  45. #include <SPI.h>
  46. #endif
  47. #define VERSION_STRING "1.0.0"
  48. // look here for descriptions of gcodes: http://linuxcnc.org/handbook/gcode/g-code.html
  49. // http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  50. //Implemented Codes
  51. //-------------------
  52. // G0 -> G1
  53. // G1 - Coordinated Movement X Y Z E
  54. // G2 - CW ARC
  55. // G3 - CCW ARC
  56. // G4 - Dwell S<seconds> or P<milliseconds>
  57. // G10 - retract filament according to settings of M207
  58. // G11 - retract recover filament according to settings of M208
  59. // G28 - Home all Axis
  60. // G29 - Detailed Z-Probe, probes the bed at 3 points. You must de at the home position for this to work correctly.
  61. // G30 - Single Z Probe, probes bed at current XY location.
  62. // G90 - Use Absolute Coordinates
  63. // G91 - Use Relative Coordinates
  64. // G92 - Set current position to cordinates given
  65. // M Codes
  66. // M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
  67. // M1 - Same as M0
  68. // M17 - Enable/Power all stepper motors
  69. // M18 - Disable all stepper motors; same as M84
  70. // M20 - List SD card
  71. // M21 - Init SD card
  72. // M22 - Release SD card
  73. // M23 - Select SD file (M23 filename.g)
  74. // M24 - Start/resume SD print
  75. // M25 - Pause SD print
  76. // M26 - Set SD position in bytes (M26 S12345)
  77. // M27 - Report SD print status
  78. // M28 - Start SD write (M28 filename.g)
  79. // M29 - Stop SD write
  80. // M30 - Delete file from SD (M30 filename.g)
  81. // M31 - Output time since last M109 or SD card start to serial
  82. // M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  83. // syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  84. // Call gcode file : "M32 P !filename#" and return to caller file after finishing (simiarl to #include).
  85. // The '#' is necessary when calling from within sd files, as it stops buffer prereading
  86. // M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  87. // M80 - Turn on Power Supply
  88. // M81 - Turn off Power Supply
  89. // M82 - Set E codes absolute (default)
  90. // M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  91. // M84 - Disable steppers until next move,
  92. // or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  93. // M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  94. // M92 - Set axis_steps_per_unit - same syntax as G92
  95. // M104 - Set extruder target temp
  96. // M105 - Read current temp
  97. // M106 - Fan on
  98. // M107 - Fan off
  99. // M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  100. // Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  101. // M114 - Output current position to serial port
  102. // M115 - Capabilities string
  103. // M117 - display message
  104. // M119 - Output Endstop status to serial port
  105. // M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  106. // M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  107. // M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  108. // M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  109. // M140 - Set bed target temp
  110. // M150 - Set BlinkM Colour Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  111. // M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  112. // Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  113. // M200 - Set filament diameter
  114. // M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  115. // M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  116. // M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  117. // M204 - Set default acceleration: S normal moves T filament only moves (M204 S3000 T7000) im mm/sec^2 also sets minimum segment time in ms (B20000) to prevent buffer underruns and M20 minimum feedrate
  118. // M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
  119. // M206 - set additional homeing offset
  120. // M207 - set retract length S[positive mm] F[feedrate mm/sec] Z[additional zlift/hop]
  121. // M208 - set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
  122. // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  123. // M218 - set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  124. // M220 S<factor in percent>- set speed factor override percentage
  125. // M221 S<factor in percent>- set extrude factor override percentage
  126. // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  127. // M240 - Trigger a camera to take a photograph
  128. // M250 - Set LCD contrast C<contrast value> (value 0..63)
  129. // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  130. // M300 - Play beepsound S<frequency Hz> P<duration ms>
  131. // M301 - Set PID parameters P I and D
  132. // M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  133. // M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  134. // M304 - Set bed PID parameters P I and D
  135. // M400 - Finish all moves
  136. // M401 - Lower z-probe if present
  137. // M402 - Raise z-probe if present
  138. // M500 - stores paramters in EEPROM
  139. // M501 - reads parameters from EEPROM (if you need reset them after you changed them temporarily).
  140. // M502 - reverts to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  141. // M503 - print the current settings (from memory not from eeprom)
  142. // M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  143. // M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  144. // M666 - set delta endstop adjustemnt
  145. // M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  146. // M907 - Set digital trimpot motor current using axis codes.
  147. // M908 - Control digital trimpot directly.
  148. // M350 - Set microstepping mode.
  149. // M351 - Toggle MS1 MS2 pins directly.
  150. // M928 - Start SD logging (M928 filename.g) - ended by M29
  151. // M999 - Restart after being stopped by error
  152. //Stepper Movement Variables
  153. //===========================================================================
  154. //=============================imported variables============================
  155. //===========================================================================
  156. //===========================================================================
  157. //=============================public variables=============================
  158. //===========================================================================
  159. #ifdef SDSUPPORT
  160. CardReader card;
  161. #endif
  162. float homing_feedrate[] = HOMING_FEEDRATE;
  163. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  164. int feedmultiply=100; //100->1 200->2
  165. int saved_feedmultiply;
  166. int extrudemultiply=100; //100->1 200->2
  167. float current_position[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0 };
  168. float add_homeing[3]={0,0,0};
  169. #ifdef DELTA
  170. float endstop_adj[3]={0,0,0};
  171. #endif
  172. float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  173. float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  174. // Extruder offset
  175. #if EXTRUDERS > 1
  176. #ifndef DUAL_X_CARRIAGE
  177. #define NUM_EXTRUDER_OFFSETS 2 // only in XY plane
  178. #else
  179. #define NUM_EXTRUDER_OFFSETS 3 // supports offsets in XYZ plane
  180. #endif
  181. float extruder_offset[NUM_EXTRUDER_OFFSETS][EXTRUDERS] = {
  182. #if defined(EXTRUDER_OFFSET_X) && defined(EXTRUDER_OFFSET_Y)
  183. EXTRUDER_OFFSET_X, EXTRUDER_OFFSET_Y
  184. #endif
  185. };
  186. #endif
  187. uint8_t active_extruder = 0;
  188. int fanSpeed=0;
  189. #ifdef SERVO_ENDSTOPS
  190. int servo_endstops[] = SERVO_ENDSTOPS;
  191. int servo_endstop_angles[] = SERVO_ENDSTOP_ANGLES;
  192. #endif
  193. #ifdef BARICUDA
  194. int ValvePressure=0;
  195. int EtoPPressure=0;
  196. #endif
  197. #ifdef FWRETRACT
  198. bool autoretract_enabled=true;
  199. bool retracted=false;
  200. float retract_length=3, retract_feedrate=17*60, retract_zlift=0.8;
  201. float retract_recover_length=0, retract_recover_feedrate=8*60;
  202. #endif
  203. #ifdef ULTIPANEL
  204. bool powersupply = true;
  205. #endif
  206. #ifdef DELTA
  207. float delta[3] = {0.0, 0.0, 0.0};
  208. #endif
  209. //===========================================================================
  210. //=============================private variables=============================
  211. //===========================================================================
  212. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  213. static float destination[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0};
  214. static float offset[3] = {0.0, 0.0, 0.0};
  215. static bool home_all_axis = true;
  216. static float feedrate = 1500.0, next_feedrate, saved_feedrate;
  217. static long gcode_N, gcode_LastN, Stopped_gcode_LastN = 0;
  218. static bool relative_mode = false; //Determines Absolute or Relative Coordinates
  219. static char cmdbuffer[BUFSIZE][MAX_CMD_SIZE];
  220. static bool fromsd[BUFSIZE];
  221. static int bufindr = 0;
  222. static int bufindw = 0;
  223. static int buflen = 0;
  224. //static int i = 0;
  225. static char serial_char;
  226. static int serial_count = 0;
  227. static boolean comment_mode = false;
  228. static char *strchr_pointer; // just a pointer to find chars in the cmd string like X, Y, Z, E, etc
  229. const int sensitive_pins[] = SENSITIVE_PINS; // Sensitive pin list for M42
  230. //static float tt = 0;
  231. //static float bt = 0;
  232. //Inactivity shutdown variables
  233. static unsigned long previous_millis_cmd = 0;
  234. static unsigned long max_inactive_time = 0;
  235. static unsigned long stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME*1000l;
  236. unsigned long starttime=0;
  237. unsigned long stoptime=0;
  238. static uint8_t tmp_extruder;
  239. bool Stopped=false;
  240. #if NUM_SERVOS > 0
  241. Servo servos[NUM_SERVOS];
  242. #endif
  243. bool CooldownNoWait = true;
  244. bool target_direction;
  245. //===========================================================================
  246. //=============================ROUTINES=============================
  247. //===========================================================================
  248. void get_arc_coordinates();
  249. bool setTargetedHotend(int code);
  250. void serial_echopair_P(const char *s_P, float v)
  251. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  252. void serial_echopair_P(const char *s_P, double v)
  253. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  254. void serial_echopair_P(const char *s_P, unsigned long v)
  255. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  256. extern "C"{
  257. extern unsigned int __bss_end;
  258. extern unsigned int __heap_start;
  259. extern void *__brkval;
  260. int freeMemory() {
  261. int free_memory;
  262. if((int)__brkval == 0)
  263. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  264. else
  265. free_memory = ((int)&free_memory) - ((int)__brkval);
  266. return free_memory;
  267. }
  268. }
  269. //adds an command to the main command buffer
  270. //thats really done in a non-safe way.
  271. //needs overworking someday
  272. void enquecommand(const char *cmd)
  273. {
  274. if(buflen < BUFSIZE)
  275. {
  276. //this is dangerous if a mixing of serial and this happsens
  277. strcpy(&(cmdbuffer[bufindw][0]),cmd);
  278. SERIAL_ECHO_START;
  279. SERIAL_ECHOPGM("enqueing \"");
  280. SERIAL_ECHO(cmdbuffer[bufindw]);
  281. SERIAL_ECHOLNPGM("\"");
  282. bufindw= (bufindw + 1)%BUFSIZE;
  283. buflen += 1;
  284. }
  285. }
  286. void enquecommand_P(const char *cmd)
  287. {
  288. if(buflen < BUFSIZE)
  289. {
  290. //this is dangerous if a mixing of serial and this happsens
  291. strcpy_P(&(cmdbuffer[bufindw][0]),cmd);
  292. SERIAL_ECHO_START;
  293. SERIAL_ECHOPGM("enqueing \"");
  294. SERIAL_ECHO(cmdbuffer[bufindw]);
  295. SERIAL_ECHOLNPGM("\"");
  296. bufindw= (bufindw + 1)%BUFSIZE;
  297. buflen += 1;
  298. }
  299. }
  300. void setup_killpin()
  301. {
  302. #if defined(KILL_PIN) && KILL_PIN > -1
  303. pinMode(KILL_PIN,INPUT);
  304. WRITE(KILL_PIN,HIGH);
  305. #endif
  306. }
  307. void setup_photpin()
  308. {
  309. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  310. SET_OUTPUT(PHOTOGRAPH_PIN);
  311. WRITE(PHOTOGRAPH_PIN, LOW);
  312. #endif
  313. }
  314. void setup_powerhold()
  315. {
  316. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  317. SET_OUTPUT(SUICIDE_PIN);
  318. WRITE(SUICIDE_PIN, HIGH);
  319. #endif
  320. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  321. SET_OUTPUT(PS_ON_PIN);
  322. #if defined(PS_DEFAULT_OFF)
  323. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  324. #else
  325. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  326. #endif
  327. #endif
  328. }
  329. void suicide()
  330. {
  331. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  332. SET_OUTPUT(SUICIDE_PIN);
  333. WRITE(SUICIDE_PIN, LOW);
  334. #endif
  335. }
  336. void servo_init()
  337. {
  338. #if (NUM_SERVOS >= 1) && defined(SERVO0_PIN) && (SERVO0_PIN > -1)
  339. servos[0].attach(SERVO0_PIN);
  340. #endif
  341. #if (NUM_SERVOS >= 2) && defined(SERVO1_PIN) && (SERVO1_PIN > -1)
  342. servos[1].attach(SERVO1_PIN);
  343. #endif
  344. #if (NUM_SERVOS >= 3) && defined(SERVO2_PIN) && (SERVO2_PIN > -1)
  345. servos[2].attach(SERVO2_PIN);
  346. #endif
  347. #if (NUM_SERVOS >= 4) && defined(SERVO3_PIN) && (SERVO3_PIN > -1)
  348. servos[3].attach(SERVO3_PIN);
  349. #endif
  350. #if (NUM_SERVOS >= 5)
  351. #error "TODO: enter initalisation code for more servos"
  352. #endif
  353. // Set position of Servo Endstops that are defined
  354. #ifdef SERVO_ENDSTOPS
  355. for(int8_t i = 0; i < 3; i++)
  356. {
  357. if(servo_endstops[i] > -1) {
  358. servos[servo_endstops[i]].write(servo_endstop_angles[i * 2 + 1]);
  359. }
  360. }
  361. #endif
  362. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  363. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  364. servos[servo_endstops[Z_AXIS]].detach();
  365. #endif
  366. }
  367. void setup()
  368. {
  369. setup_killpin();
  370. setup_powerhold();
  371. MYSERIAL.begin(BAUDRATE);
  372. SERIAL_PROTOCOLLNPGM("start");
  373. SERIAL_ECHO_START;
  374. // Check startup - does nothing if bootloader sets MCUSR to 0
  375. byte mcu = MCUSR;
  376. if(mcu & 1) SERIAL_ECHOLNPGM(MSG_POWERUP);
  377. if(mcu & 2) SERIAL_ECHOLNPGM(MSG_EXTERNAL_RESET);
  378. if(mcu & 4) SERIAL_ECHOLNPGM(MSG_BROWNOUT_RESET);
  379. if(mcu & 8) SERIAL_ECHOLNPGM(MSG_WATCHDOG_RESET);
  380. if(mcu & 32) SERIAL_ECHOLNPGM(MSG_SOFTWARE_RESET);
  381. MCUSR=0;
  382. SERIAL_ECHOPGM(MSG_MARLIN);
  383. SERIAL_ECHOLNPGM(VERSION_STRING);
  384. #ifdef STRING_VERSION_CONFIG_H
  385. #ifdef STRING_CONFIG_H_AUTHOR
  386. SERIAL_ECHO_START;
  387. SERIAL_ECHOPGM(MSG_CONFIGURATION_VER);
  388. SERIAL_ECHOPGM(STRING_VERSION_CONFIG_H);
  389. SERIAL_ECHOPGM(MSG_AUTHOR);
  390. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  391. SERIAL_ECHOPGM("Compiled: ");
  392. SERIAL_ECHOLNPGM(__DATE__);
  393. #endif
  394. #endif
  395. SERIAL_ECHO_START;
  396. SERIAL_ECHOPGM(MSG_FREE_MEMORY);
  397. SERIAL_ECHO(freeMemory());
  398. SERIAL_ECHOPGM(MSG_PLANNER_BUFFER_BYTES);
  399. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  400. for(int8_t i = 0; i < BUFSIZE; i++)
  401. {
  402. fromsd[i] = false;
  403. }
  404. // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  405. Config_RetrieveSettings();
  406. tp_init(); // Initialize temperature loop
  407. plan_init(); // Initialize planner;
  408. watchdog_init();
  409. st_init(); // Initialize stepper, this enables interrupts!
  410. setup_photpin();
  411. servo_init();
  412. lcd_init();
  413. _delay_ms(1000); // wait 1sec to display the splash screen
  414. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  415. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  416. #endif
  417. }
  418. void loop()
  419. {
  420. if(buflen < (BUFSIZE-1))
  421. get_command();
  422. #ifdef SDSUPPORT
  423. card.checkautostart(false);
  424. #endif
  425. if(buflen)
  426. {
  427. #ifdef SDSUPPORT
  428. if(card.saving)
  429. {
  430. if(strstr_P(cmdbuffer[bufindr], PSTR("M29")) == NULL)
  431. {
  432. card.write_command(cmdbuffer[bufindr]);
  433. if(card.logging)
  434. {
  435. process_commands();
  436. }
  437. else
  438. {
  439. SERIAL_PROTOCOLLNPGM(MSG_OK);
  440. }
  441. }
  442. else
  443. {
  444. card.closefile();
  445. SERIAL_PROTOCOLLNPGM(MSG_FILE_SAVED);
  446. }
  447. }
  448. else
  449. {
  450. process_commands();
  451. }
  452. #else
  453. process_commands();
  454. #endif //SDSUPPORT
  455. buflen = (buflen-1);
  456. bufindr = (bufindr + 1)%BUFSIZE;
  457. }
  458. //check heater every n milliseconds
  459. manage_heater();
  460. manage_inactivity();
  461. checkHitEndstops();
  462. lcd_update();
  463. }
  464. void get_command()
  465. {
  466. while( MYSERIAL.available() > 0 && buflen < BUFSIZE) {
  467. serial_char = MYSERIAL.read();
  468. if(serial_char == '\n' ||
  469. serial_char == '\r' ||
  470. (serial_char == ':' && comment_mode == false) ||
  471. serial_count >= (MAX_CMD_SIZE - 1) )
  472. {
  473. if(!serial_count) { //if empty line
  474. comment_mode = false; //for new command
  475. return;
  476. }
  477. cmdbuffer[bufindw][serial_count] = 0; //terminate string
  478. if(!comment_mode){
  479. comment_mode = false; //for new command
  480. fromsd[bufindw] = false;
  481. if(strchr(cmdbuffer[bufindw], 'N') != NULL)
  482. {
  483. strchr_pointer = strchr(cmdbuffer[bufindw], 'N');
  484. gcode_N = (strtol(&cmdbuffer[bufindw][strchr_pointer - cmdbuffer[bufindw] + 1], NULL, 10));
  485. if(gcode_N != gcode_LastN+1 && (strstr_P(cmdbuffer[bufindw], PSTR("M110")) == NULL) ) {
  486. SERIAL_ERROR_START;
  487. SERIAL_ERRORPGM(MSG_ERR_LINE_NO);
  488. SERIAL_ERRORLN(gcode_LastN);
  489. //Serial.println(gcode_N);
  490. FlushSerialRequestResend();
  491. serial_count = 0;
  492. return;
  493. }
  494. if(strchr(cmdbuffer[bufindw], '*') != NULL)
  495. {
  496. byte checksum = 0;
  497. byte count = 0;
  498. while(cmdbuffer[bufindw][count] != '*') checksum = checksum^cmdbuffer[bufindw][count++];
  499. strchr_pointer = strchr(cmdbuffer[bufindw], '*');
  500. if( (int)(strtod(&cmdbuffer[bufindw][strchr_pointer - cmdbuffer[bufindw] + 1], NULL)) != checksum) {
  501. SERIAL_ERROR_START;
  502. SERIAL_ERRORPGM(MSG_ERR_CHECKSUM_MISMATCH);
  503. SERIAL_ERRORLN(gcode_LastN);
  504. FlushSerialRequestResend();
  505. serial_count = 0;
  506. return;
  507. }
  508. //if no errors, continue parsing
  509. }
  510. else
  511. {
  512. SERIAL_ERROR_START;
  513. SERIAL_ERRORPGM(MSG_ERR_NO_CHECKSUM);
  514. SERIAL_ERRORLN(gcode_LastN);
  515. FlushSerialRequestResend();
  516. serial_count = 0;
  517. return;
  518. }
  519. gcode_LastN = gcode_N;
  520. //if no errors, continue parsing
  521. }
  522. else // if we don't receive 'N' but still see '*'
  523. {
  524. if((strchr(cmdbuffer[bufindw], '*') != NULL))
  525. {
  526. SERIAL_ERROR_START;
  527. SERIAL_ERRORPGM(MSG_ERR_NO_LINENUMBER_WITH_CHECKSUM);
  528. SERIAL_ERRORLN(gcode_LastN);
  529. serial_count = 0;
  530. return;
  531. }
  532. }
  533. if((strchr(cmdbuffer[bufindw], 'G') != NULL)){
  534. strchr_pointer = strchr(cmdbuffer[bufindw], 'G');
  535. switch((int)((strtod(&cmdbuffer[bufindw][strchr_pointer - cmdbuffer[bufindw] + 1], NULL)))){
  536. case 0:
  537. case 1:
  538. case 2:
  539. case 3:
  540. if(Stopped == false) { // If printer is stopped by an error the G[0-3] codes are ignored.
  541. #ifdef SDSUPPORT
  542. if(card.saving)
  543. break;
  544. #endif //SDSUPPORT
  545. SERIAL_PROTOCOLLNPGM(MSG_OK);
  546. }
  547. else {
  548. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  549. LCD_MESSAGEPGM(MSG_STOPPED);
  550. }
  551. break;
  552. default:
  553. break;
  554. }
  555. }
  556. bufindw = (bufindw + 1)%BUFSIZE;
  557. buflen += 1;
  558. }
  559. serial_count = 0; //clear buffer
  560. }
  561. else
  562. {
  563. if(serial_char == ';') comment_mode = true;
  564. if(!comment_mode) cmdbuffer[bufindw][serial_count++] = serial_char;
  565. }
  566. }
  567. #ifdef SDSUPPORT
  568. if(!card.sdprinting || serial_count!=0){
  569. return;
  570. }
  571. //'#' stops reading from sd to the buffer prematurely, so procedural macro calls are possible
  572. // if it occures, stop_buffering is triggered and the buffer is ran dry.
  573. // this character _can_ occure in serial com, due to checksums. however, no checksums are used in sd printing
  574. static bool stop_buffering=false;
  575. if(buflen==0) stop_buffering=false;
  576. while( !card.eof() && buflen < BUFSIZE && !stop_buffering) {
  577. int16_t n=card.get();
  578. serial_char = (char)n;
  579. if(serial_char == '\n' ||
  580. serial_char == '\r' ||
  581. (serial_char == '#' && comment_mode == false) ||
  582. (serial_char == ':' && comment_mode == false) ||
  583. serial_count >= (MAX_CMD_SIZE - 1)||n==-1)
  584. {
  585. if(card.eof()){
  586. SERIAL_PROTOCOLLNPGM(MSG_FILE_PRINTED);
  587. stoptime=millis();
  588. char time[30];
  589. unsigned long t=(stoptime-starttime)/1000;
  590. int hours, minutes;
  591. minutes=(t/60)%60;
  592. hours=t/60/60;
  593. sprintf_P(time, PSTR("%i hours %i minutes"),hours, minutes);
  594. SERIAL_ECHO_START;
  595. SERIAL_ECHOLN(time);
  596. lcd_setstatus(time);
  597. card.printingHasFinished();
  598. card.checkautostart(true);
  599. }
  600. if(serial_char=='#')
  601. stop_buffering=true;
  602. if(!serial_count)
  603. {
  604. comment_mode = false; //for new command
  605. return; //if empty line
  606. }
  607. cmdbuffer[bufindw][serial_count] = 0; //terminate string
  608. // if(!comment_mode){
  609. fromsd[bufindw] = true;
  610. buflen += 1;
  611. bufindw = (bufindw + 1)%BUFSIZE;
  612. // }
  613. comment_mode = false; //for new command
  614. serial_count = 0; //clear buffer
  615. }
  616. else
  617. {
  618. if(serial_char == ';') comment_mode = true;
  619. if(!comment_mode) cmdbuffer[bufindw][serial_count++] = serial_char;
  620. }
  621. }
  622. #endif //SDSUPPORT
  623. }
  624. float code_value()
  625. {
  626. return (strtod(&cmdbuffer[bufindr][strchr_pointer - cmdbuffer[bufindr] + 1], NULL));
  627. }
  628. long code_value_long()
  629. {
  630. return (strtol(&cmdbuffer[bufindr][strchr_pointer - cmdbuffer[bufindr] + 1], NULL, 10));
  631. }
  632. bool code_seen(char code)
  633. {
  634. strchr_pointer = strchr(cmdbuffer[bufindr], code);
  635. return (strchr_pointer != NULL); //Return True if a character was found
  636. }
  637. #define DEFINE_PGM_READ_ANY(type, reader) \
  638. static inline type pgm_read_any(const type *p) \
  639. { return pgm_read_##reader##_near(p); }
  640. DEFINE_PGM_READ_ANY(float, float);
  641. DEFINE_PGM_READ_ANY(signed char, byte);
  642. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  643. static const PROGMEM type array##_P[3] = \
  644. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  645. static inline type array(int axis) \
  646. { return pgm_read_any(&array##_P[axis]); }
  647. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  648. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  649. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  650. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  651. XYZ_CONSTS_FROM_CONFIG(float, home_retract_mm, HOME_RETRACT_MM);
  652. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  653. #ifdef DUAL_X_CARRIAGE
  654. #if EXTRUDERS == 1 || defined(COREXY) \
  655. || !defined(X2_ENABLE_PIN) || !defined(X2_STEP_PIN) || !defined(X2_DIR_PIN) \
  656. || !defined(X2_HOME_POS) || !defined(X2_MIN_POS) || !defined(X2_MAX_POS) \
  657. || !defined(X_MAX_PIN) || X_MAX_PIN < 0
  658. #error "Missing or invalid definitions for DUAL_X_CARRIAGE mode."
  659. #endif
  660. #if X_HOME_DIR != -1 || X2_HOME_DIR != 1
  661. #error "Please use canonical x-carriage assignment" // the x-carriages are defined by their homing directions
  662. #endif
  663. #define DXC_FULL_CONTROL_MODE 0
  664. #define DXC_AUTO_PARK_MODE 1
  665. #define DXC_DUPLICATION_MODE 2
  666. static int dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  667. static float x_home_pos(int extruder) {
  668. if (extruder == 0)
  669. return base_home_pos(X_AXIS) + add_homeing[X_AXIS];
  670. else
  671. // In dual carriage mode the extruder offset provides an override of the
  672. // second X-carriage offset when homed - otherwise X2_HOME_POS is used.
  673. // This allow soft recalibration of the second extruder offset position without firmware reflash
  674. // (through the M218 command).
  675. return (extruder_offset[X_AXIS][1] > 0) ? extruder_offset[X_AXIS][1] : X2_HOME_POS;
  676. }
  677. static int x_home_dir(int extruder) {
  678. return (extruder == 0) ? X_HOME_DIR : X2_HOME_DIR;
  679. }
  680. static float inactive_extruder_x_pos = X2_MAX_POS; // used in mode 0 & 1
  681. static bool active_extruder_parked = false; // used in mode 1 & 2
  682. static float raised_parked_position[NUM_AXIS]; // used in mode 1
  683. static unsigned long delayed_move_time = 0; // used in mode 1
  684. static float duplicate_extruder_x_offset = DEFAULT_DUPLICATION_X_OFFSET; // used in mode 2
  685. static float duplicate_extruder_temp_offset = 0; // used in mode 2
  686. bool extruder_duplication_enabled = false; // used in mode 2
  687. #endif //DUAL_X_CARRIAGE
  688. static void axis_is_at_home(int axis) {
  689. #ifdef DUAL_X_CARRIAGE
  690. if (axis == X_AXIS) {
  691. if (active_extruder != 0) {
  692. current_position[X_AXIS] = x_home_pos(active_extruder);
  693. min_pos[X_AXIS] = X2_MIN_POS;
  694. max_pos[X_AXIS] = max(extruder_offset[X_AXIS][1], X2_MAX_POS);
  695. return;
  696. }
  697. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && active_extruder == 0) {
  698. current_position[X_AXIS] = base_home_pos(X_AXIS) + add_homeing[X_AXIS];
  699. min_pos[X_AXIS] = base_min_pos(X_AXIS) + add_homeing[X_AXIS];
  700. max_pos[X_AXIS] = min(base_max_pos(X_AXIS) + add_homeing[X_AXIS],
  701. max(extruder_offset[X_AXIS][1], X2_MAX_POS) - duplicate_extruder_x_offset);
  702. return;
  703. }
  704. }
  705. #endif
  706. current_position[axis] = base_home_pos(axis) + add_homeing[axis];
  707. min_pos[axis] = base_min_pos(axis) + add_homeing[axis];
  708. max_pos[axis] = base_max_pos(axis) + add_homeing[axis];
  709. }
  710. #ifdef ENABLE_AUTO_BED_LEVELING
  711. static void set_bed_level_equation(float z_at_xLeft_yFront, float z_at_xRight_yFront, float z_at_xLeft_yBack) {
  712. plan_bed_level_matrix.set_to_identity();
  713. vector_3 xLeftyFront = vector_3(LEFT_PROBE_BED_POSITION, FRONT_PROBE_BED_POSITION, z_at_xLeft_yFront);
  714. vector_3 xLeftyBack = vector_3(LEFT_PROBE_BED_POSITION, BACK_PROBE_BED_POSITION, z_at_xLeft_yBack);
  715. vector_3 xRightyFront = vector_3(RIGHT_PROBE_BED_POSITION, FRONT_PROBE_BED_POSITION, z_at_xRight_yFront);
  716. vector_3 xPositive = (xRightyFront - xLeftyFront).get_normal();
  717. vector_3 yPositive = (xLeftyBack - xLeftyFront).get_normal();
  718. vector_3 planeNormal = vector_3::cross(yPositive, xPositive).get_normal();
  719. //planeNormal.debug("planeNormal");
  720. //yPositive.debug("yPositive");
  721. matrix_3x3 bedLevel = matrix_3x3::create_look_at(planeNormal, yPositive);
  722. //bedLevel.debug("bedLevel");
  723. //plan_bed_level_matrix.debug("bed level before");
  724. //vector_3 uncorrected_position = plan_get_position_mm();
  725. //uncorrected_position.debug("position before");
  726. // and set our bed level equation to do the right thing
  727. plan_bed_level_matrix = matrix_3x3::create_inverse(bedLevel);
  728. //plan_bed_level_matrix.debug("bed level after");
  729. vector_3 corrected_position = plan_get_position();
  730. //corrected_position.debug("position after");
  731. current_position[X_AXIS] = corrected_position.x;
  732. current_position[Y_AXIS] = corrected_position.y;
  733. current_position[Z_AXIS] = corrected_position.z;
  734. // but the bed at 0 so we don't go below it.
  735. current_position[Z_AXIS] = -Z_PROBE_OFFSET_FROM_EXTRUDER;
  736. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  737. }
  738. static void run_z_probe() {
  739. plan_bed_level_matrix.set_to_identity();
  740. feedrate = homing_feedrate[Z_AXIS];
  741. // move down until you find the bed
  742. float zPosition = -10;
  743. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  744. st_synchronize();
  745. // we have to let the planner know where we are right now as it is not where we said to go.
  746. zPosition = st_get_position_mm(Z_AXIS);
  747. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]);
  748. // move up the retract distance
  749. zPosition += home_retract_mm(Z_AXIS);
  750. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  751. st_synchronize();
  752. // move back down slowly to find bed
  753. feedrate = homing_feedrate[Z_AXIS]/4;
  754. zPosition -= home_retract_mm(Z_AXIS) * 2;
  755. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  756. st_synchronize();
  757. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  758. // make sure the planner knows where we are as it may be a bit different than we last said to move to
  759. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  760. }
  761. static void do_blocking_move_to(float x, float y, float z) {
  762. float oldFeedRate = feedrate;
  763. feedrate = XY_TRAVEL_SPEED;
  764. current_position[X_AXIS] = x;
  765. current_position[Y_AXIS] = y;
  766. current_position[Z_AXIS] = z;
  767. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  768. st_synchronize();
  769. feedrate = oldFeedRate;
  770. }
  771. static void do_blocking_move_relative(float offset_x, float offset_y, float offset_z) {
  772. do_blocking_move_to(current_position[X_AXIS] + offset_x, current_position[Y_AXIS] + offset_y, current_position[Z_AXIS] + offset_z);
  773. }
  774. static void setup_for_endstop_move() {
  775. saved_feedrate = feedrate;
  776. saved_feedmultiply = feedmultiply;
  777. feedmultiply = 100;
  778. previous_millis_cmd = millis();
  779. enable_endstops(true);
  780. }
  781. static void clean_up_after_endstop_move() {
  782. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  783. enable_endstops(false);
  784. #endif
  785. feedrate = saved_feedrate;
  786. feedmultiply = saved_feedmultiply;
  787. previous_millis_cmd = millis();
  788. }
  789. static void engage_z_probe() {
  790. // Engage Z Servo endstop if enabled
  791. #ifdef SERVO_ENDSTOPS
  792. if (servo_endstops[Z_AXIS] > -1) {
  793. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  794. servos[servo_endstops[Z_AXIS]].attach(0);
  795. #endif
  796. servos[servo_endstops[Z_AXIS]].write(servo_endstop_angles[Z_AXIS * 2]);
  797. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  798. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  799. servos[servo_endstops[Z_AXIS]].detach();
  800. #endif
  801. }
  802. #endif
  803. }
  804. static void retract_z_probe() {
  805. // Retract Z Servo endstop if enabled
  806. #ifdef SERVO_ENDSTOPS
  807. if (servo_endstops[Z_AXIS] > -1) {
  808. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  809. servos[servo_endstops[Z_AXIS]].attach(0);
  810. #endif
  811. servos[servo_endstops[Z_AXIS]].write(servo_endstop_angles[Z_AXIS * 2 + 1]);
  812. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  813. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  814. servos[servo_endstops[Z_AXIS]].detach();
  815. #endif
  816. }
  817. #endif
  818. }
  819. #endif // #ifdef ENABLE_AUTO_BED_LEVELING
  820. static void homeaxis(int axis) {
  821. #define HOMEAXIS_DO(LETTER) \
  822. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  823. if (axis==X_AXIS ? HOMEAXIS_DO(X) :
  824. axis==Y_AXIS ? HOMEAXIS_DO(Y) :
  825. axis==Z_AXIS ? HOMEAXIS_DO(Z) :
  826. 0) {
  827. int axis_home_dir = home_dir(axis);
  828. #ifdef DUAL_X_CARRIAGE
  829. if (axis == X_AXIS)
  830. axis_home_dir = x_home_dir(active_extruder);
  831. #endif
  832. current_position[axis] = 0;
  833. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  834. // Engage Servo endstop if enabled
  835. #ifdef SERVO_ENDSTOPS
  836. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  837. if (axis==Z_AXIS) {
  838. #if defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  839. destination[axis] = Z_RAISE_BEFORE_HOMING * axis_home_dir * (-1); // Set destination away from bed
  840. feedrate = max_feedrate[axis];
  841. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  842. st_synchronize();
  843. #endif
  844. engage_z_probe();
  845. }
  846. else
  847. #endif
  848. if (servo_endstops[axis] > -1) {
  849. servos[servo_endstops[axis]].write(servo_endstop_angles[axis * 2]);
  850. }
  851. #endif
  852. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  853. feedrate = homing_feedrate[axis];
  854. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  855. st_synchronize();
  856. current_position[axis] = 0;
  857. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  858. destination[axis] = -home_retract_mm(axis) * axis_home_dir;
  859. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  860. st_synchronize();
  861. destination[axis] = 2*home_retract_mm(axis) * axis_home_dir;
  862. #ifdef DELTA
  863. feedrate = homing_feedrate[axis]/10;
  864. #else
  865. feedrate = homing_feedrate[axis]/2 ;
  866. #endif
  867. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  868. st_synchronize();
  869. #ifdef DELTA
  870. // retrace by the amount specified in endstop_adj
  871. if (endstop_adj[axis] * axis_home_dir < 0) {
  872. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  873. destination[axis] = endstop_adj[axis];
  874. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  875. st_synchronize();
  876. }
  877. #endif
  878. axis_is_at_home(axis);
  879. destination[axis] = current_position[axis];
  880. feedrate = 0.0;
  881. endstops_hit_on_purpose();
  882. // Retract Servo endstop if enabled
  883. #ifdef SERVO_ENDSTOPS
  884. if (servo_endstops[axis] > -1) {
  885. servos[servo_endstops[axis]].write(servo_endstop_angles[axis * 2 + 1]);
  886. }
  887. #endif
  888. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  889. if (axis==Z_AXIS) retract_z_probe();
  890. #endif
  891. }
  892. }
  893. #define HOMEAXIS(LETTER) homeaxis(LETTER##_AXIS)
  894. void process_commands()
  895. {
  896. unsigned long codenum; //throw away variable
  897. char *starpos = NULL;
  898. #ifdef ENABLE_AUTO_BED_LEVELING
  899. float x_tmp, y_tmp, z_tmp, real_z;
  900. #endif
  901. if(code_seen('G'))
  902. {
  903. switch((int)code_value())
  904. {
  905. case 0: // G0 -> G1
  906. case 1: // G1
  907. if(Stopped == false) {
  908. get_coordinates(); // For X Y Z E F
  909. prepare_move();
  910. //ClearToSend();
  911. return;
  912. }
  913. //break;
  914. case 2: // G2 - CW ARC
  915. if(Stopped == false) {
  916. get_arc_coordinates();
  917. prepare_arc_move(true);
  918. return;
  919. }
  920. case 3: // G3 - CCW ARC
  921. if(Stopped == false) {
  922. get_arc_coordinates();
  923. prepare_arc_move(false);
  924. return;
  925. }
  926. case 4: // G4 dwell
  927. LCD_MESSAGEPGM(MSG_DWELL);
  928. codenum = 0;
  929. if(code_seen('P')) codenum = code_value(); // milliseconds to wait
  930. if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait
  931. st_synchronize();
  932. codenum += millis(); // keep track of when we started waiting
  933. previous_millis_cmd = millis();
  934. while(millis() < codenum ){
  935. manage_heater();
  936. manage_inactivity();
  937. lcd_update();
  938. }
  939. break;
  940. #ifdef FWRETRACT
  941. case 10: // G10 retract
  942. if(!retracted)
  943. {
  944. destination[X_AXIS]=current_position[X_AXIS];
  945. destination[Y_AXIS]=current_position[Y_AXIS];
  946. destination[Z_AXIS]=current_position[Z_AXIS];
  947. current_position[Z_AXIS]+=-retract_zlift;
  948. destination[E_AXIS]=current_position[E_AXIS]-retract_length;
  949. feedrate=retract_feedrate;
  950. retracted=true;
  951. prepare_move();
  952. }
  953. break;
  954. case 11: // G11 retract_recover
  955. if(retracted)
  956. {
  957. destination[X_AXIS]=current_position[X_AXIS];
  958. destination[Y_AXIS]=current_position[Y_AXIS];
  959. destination[Z_AXIS]=current_position[Z_AXIS];
  960. current_position[Z_AXIS]+=retract_zlift;
  961. destination[E_AXIS]=current_position[E_AXIS]+retract_length+retract_recover_length;
  962. feedrate=retract_recover_feedrate;
  963. retracted=false;
  964. prepare_move();
  965. }
  966. break;
  967. #endif //FWRETRACT
  968. case 28: //G28 Home all Axis one at a time
  969. #ifdef ENABLE_AUTO_BED_LEVELING
  970. plan_bed_level_matrix.set_to_identity(); //Reset the plane ("erase" all leveling data)
  971. #endif //ENABLE_AUTO_BED_LEVELING
  972. saved_feedrate = feedrate;
  973. saved_feedmultiply = feedmultiply;
  974. feedmultiply = 100;
  975. previous_millis_cmd = millis();
  976. enable_endstops(true);
  977. for(int8_t i=0; i < NUM_AXIS; i++) {
  978. destination[i] = current_position[i];
  979. }
  980. feedrate = 0.0;
  981. #ifdef DELTA
  982. // A delta can only safely home all axis at the same time
  983. // all axis have to home at the same time
  984. // Move all carriages up together until the first endstop is hit.
  985. current_position[X_AXIS] = 0;
  986. current_position[Y_AXIS] = 0;
  987. current_position[Z_AXIS] = 0;
  988. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  989. destination[X_AXIS] = 3 * Z_MAX_LENGTH;
  990. destination[Y_AXIS] = 3 * Z_MAX_LENGTH;
  991. destination[Z_AXIS] = 3 * Z_MAX_LENGTH;
  992. feedrate = 1.732 * homing_feedrate[X_AXIS];
  993. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  994. st_synchronize();
  995. endstops_hit_on_purpose();
  996. current_position[X_AXIS] = destination[X_AXIS];
  997. current_position[Y_AXIS] = destination[Y_AXIS];
  998. current_position[Z_AXIS] = destination[Z_AXIS];
  999. // take care of back off and rehome now we are all at the top
  1000. HOMEAXIS(X);
  1001. HOMEAXIS(Y);
  1002. HOMEAXIS(Z);
  1003. calculate_delta(current_position);
  1004. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
  1005. #else // NOT DELTA
  1006. home_all_axis = !((code_seen(axis_codes[0])) || (code_seen(axis_codes[1])) || (code_seen(axis_codes[2])));
  1007. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  1008. if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
  1009. HOMEAXIS(Z);
  1010. }
  1011. #endif
  1012. #ifdef QUICK_HOME
  1013. if((home_all_axis)||( code_seen(axis_codes[X_AXIS]) && code_seen(axis_codes[Y_AXIS])) ) //first diagonal move
  1014. {
  1015. current_position[X_AXIS] = 0;current_position[Y_AXIS] = 0;
  1016. #ifndef DUAL_X_CARRIAGE
  1017. int x_axis_home_dir = home_dir(X_AXIS);
  1018. #else
  1019. int x_axis_home_dir = x_home_dir(active_extruder);
  1020. extruder_duplication_enabled = false;
  1021. #endif
  1022. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1023. destination[X_AXIS] = 1.5 * max_length(X_AXIS) * x_axis_home_dir;destination[Y_AXIS] = 1.5 * max_length(Y_AXIS) * home_dir(Y_AXIS);
  1024. feedrate = homing_feedrate[X_AXIS];
  1025. if(homing_feedrate[Y_AXIS]<feedrate)
  1026. feedrate =homing_feedrate[Y_AXIS];
  1027. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1028. st_synchronize();
  1029. axis_is_at_home(X_AXIS);
  1030. axis_is_at_home(Y_AXIS);
  1031. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1032. destination[X_AXIS] = current_position[X_AXIS];
  1033. destination[Y_AXIS] = current_position[Y_AXIS];
  1034. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1035. feedrate = 0.0;
  1036. st_synchronize();
  1037. endstops_hit_on_purpose();
  1038. current_position[X_AXIS] = destination[X_AXIS];
  1039. current_position[Y_AXIS] = destination[Y_AXIS];
  1040. current_position[Z_AXIS] = destination[Z_AXIS];
  1041. }
  1042. #endif
  1043. if((home_all_axis) || (code_seen(axis_codes[X_AXIS])))
  1044. {
  1045. #ifdef DUAL_X_CARRIAGE
  1046. int tmp_extruder = active_extruder;
  1047. extruder_duplication_enabled = false;
  1048. active_extruder = !active_extruder;
  1049. HOMEAXIS(X);
  1050. inactive_extruder_x_pos = current_position[X_AXIS];
  1051. active_extruder = tmp_extruder;
  1052. HOMEAXIS(X);
  1053. // reset state used by the different modes
  1054. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  1055. delayed_move_time = 0;
  1056. active_extruder_parked = true;
  1057. #else
  1058. HOMEAXIS(X);
  1059. #endif
  1060. }
  1061. if((home_all_axis) || (code_seen(axis_codes[Y_AXIS]))) {
  1062. HOMEAXIS(Y);
  1063. }
  1064. #if Z_HOME_DIR < 0 // If homing towards BED do Z last
  1065. if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
  1066. HOMEAXIS(Z);
  1067. }
  1068. #endif
  1069. if(code_seen(axis_codes[X_AXIS]))
  1070. {
  1071. if(code_value_long() != 0) {
  1072. current_position[X_AXIS]=code_value()+add_homeing[0];
  1073. }
  1074. }
  1075. if(code_seen(axis_codes[Y_AXIS])) {
  1076. if(code_value_long() != 0) {
  1077. current_position[Y_AXIS]=code_value()+add_homeing[1];
  1078. }
  1079. }
  1080. if(code_seen(axis_codes[Z_AXIS])) {
  1081. if(code_value_long() != 0) {
  1082. current_position[Z_AXIS]=code_value()+add_homeing[2];
  1083. }
  1084. }
  1085. #ifdef ENABLE_AUTO_BED_LEVELING
  1086. current_position[Z_AXIS] -= Z_PROBE_OFFSET_FROM_EXTRUDER; //Add Z_Probe offset (the distance is negative)
  1087. #endif
  1088. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1089. #endif // else DELTA
  1090. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1091. enable_endstops(false);
  1092. #endif
  1093. feedrate = saved_feedrate;
  1094. feedmultiply = saved_feedmultiply;
  1095. previous_millis_cmd = millis();
  1096. endstops_hit_on_purpose();
  1097. break;
  1098. #ifdef ENABLE_AUTO_BED_LEVELING
  1099. case 29: // G29 Detailed Z-Probe, probes the bed at 3 points.
  1100. {
  1101. #if Z_MIN_PIN == -1
  1102. #error "You must have a Z_MIN endstop in order to enable Auto Bed Leveling feature!!! Z_MIN_PIN must point to a valid hardware pin."
  1103. #endif
  1104. st_synchronize();
  1105. // make sure the bed_level_rotation_matrix is identity or the planner will get it incorectly
  1106. //vector_3 corrected_position = plan_get_position_mm();
  1107. //corrected_position.debug("position before G29");
  1108. plan_bed_level_matrix.set_to_identity();
  1109. vector_3 uncorrected_position = plan_get_position();
  1110. //uncorrected_position.debug("position durring G29");
  1111. current_position[X_AXIS] = uncorrected_position.x;
  1112. current_position[Y_AXIS] = uncorrected_position.y;
  1113. current_position[Z_AXIS] = uncorrected_position.z;
  1114. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1115. setup_for_endstop_move();
  1116. feedrate = homing_feedrate[Z_AXIS];
  1117. // prob 1
  1118. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], Z_RAISE_BEFORE_PROBING);
  1119. do_blocking_move_to(LEFT_PROBE_BED_POSITION - X_PROBE_OFFSET_FROM_EXTRUDER, BACK_PROBE_BED_POSITION - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
  1120. engage_z_probe(); // Engage Z Servo endstop if available
  1121. run_z_probe();
  1122. float z_at_xLeft_yBack = current_position[Z_AXIS];
  1123. SERIAL_PROTOCOLPGM("Bed x: ");
  1124. SERIAL_PROTOCOL(LEFT_PROBE_BED_POSITION);
  1125. SERIAL_PROTOCOLPGM(" y: ");
  1126. SERIAL_PROTOCOL(BACK_PROBE_BED_POSITION);
  1127. SERIAL_PROTOCOLPGM(" z: ");
  1128. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  1129. SERIAL_PROTOCOLPGM("\n");
  1130. // prob 2
  1131. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  1132. do_blocking_move_to(LEFT_PROBE_BED_POSITION - X_PROBE_OFFSET_FROM_EXTRUDER, FRONT_PROBE_BED_POSITION - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
  1133. run_z_probe();
  1134. float z_at_xLeft_yFront = current_position[Z_AXIS];
  1135. SERIAL_PROTOCOLPGM("Bed x: ");
  1136. SERIAL_PROTOCOL(LEFT_PROBE_BED_POSITION);
  1137. SERIAL_PROTOCOLPGM(" y: ");
  1138. SERIAL_PROTOCOL(FRONT_PROBE_BED_POSITION);
  1139. SERIAL_PROTOCOLPGM(" z: ");
  1140. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  1141. SERIAL_PROTOCOLPGM("\n");
  1142. // prob 3
  1143. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  1144. // the current position will be updated by the blocking move so the head will not lower on this next call.
  1145. do_blocking_move_to(RIGHT_PROBE_BED_POSITION - X_PROBE_OFFSET_FROM_EXTRUDER, FRONT_PROBE_BED_POSITION - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
  1146. run_z_probe();
  1147. float z_at_xRight_yFront = current_position[Z_AXIS];
  1148. SERIAL_PROTOCOLPGM("Bed x: ");
  1149. SERIAL_PROTOCOL(RIGHT_PROBE_BED_POSITION);
  1150. SERIAL_PROTOCOLPGM(" y: ");
  1151. SERIAL_PROTOCOL(FRONT_PROBE_BED_POSITION);
  1152. SERIAL_PROTOCOLPGM(" z: ");
  1153. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  1154. SERIAL_PROTOCOLPGM("\n");
  1155. clean_up_after_endstop_move();
  1156. set_bed_level_equation(z_at_xLeft_yFront, z_at_xRight_yFront, z_at_xLeft_yBack);
  1157. retract_z_probe(); // Retract Z Servo endstop if available
  1158. st_synchronize();
  1159. // The following code correct the Z height difference from z-probe position and hotend tip position.
  1160. // The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
  1161. // When the bed is uneven, this height must be corrected.
  1162. real_z = float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]; //get the real Z (since the auto bed leveling is already correcting the plane)
  1163. x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER;
  1164. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER;
  1165. z_tmp = current_position[Z_AXIS];
  1166. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); //Apply the correction sending the probe offset
  1167. current_position[Z_AXIS] = z_tmp - real_z + current_position[Z_AXIS]; //The difference is added to current position and sent to planner.
  1168. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1169. }
  1170. break;
  1171. case 30: // G30 Single Z Probe
  1172. {
  1173. engage_z_probe(); // Engage Z Servo endstop if available
  1174. st_synchronize();
  1175. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  1176. setup_for_endstop_move();
  1177. feedrate = homing_feedrate[Z_AXIS];
  1178. run_z_probe();
  1179. SERIAL_PROTOCOLPGM("Bed Position X: ");
  1180. SERIAL_PROTOCOL(current_position[X_AXIS]);
  1181. SERIAL_PROTOCOLPGM(" Y: ");
  1182. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  1183. SERIAL_PROTOCOLPGM(" Z: ");
  1184. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  1185. SERIAL_PROTOCOLPGM("\n");
  1186. clean_up_after_endstop_move();
  1187. retract_z_probe(); // Retract Z Servo endstop if available
  1188. }
  1189. break;
  1190. #endif // ENABLE_AUTO_BED_LEVELING
  1191. case 90: // G90
  1192. relative_mode = false;
  1193. break;
  1194. case 91: // G91
  1195. relative_mode = true;
  1196. break;
  1197. case 92: // G92
  1198. if(!code_seen(axis_codes[E_AXIS]))
  1199. st_synchronize();
  1200. for(int8_t i=0; i < NUM_AXIS; i++) {
  1201. if(code_seen(axis_codes[i])) {
  1202. if(i == E_AXIS) {
  1203. current_position[i] = code_value();
  1204. plan_set_e_position(current_position[E_AXIS]);
  1205. }
  1206. else {
  1207. current_position[i] = code_value()+add_homeing[i];
  1208. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1209. }
  1210. }
  1211. }
  1212. break;
  1213. }
  1214. }
  1215. else if(code_seen('M'))
  1216. {
  1217. switch( (int)code_value() )
  1218. {
  1219. #ifdef ULTIPANEL
  1220. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  1221. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  1222. {
  1223. LCD_MESSAGEPGM(MSG_USERWAIT);
  1224. codenum = 0;
  1225. if(code_seen('P')) codenum = code_value(); // milliseconds to wait
  1226. if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait
  1227. st_synchronize();
  1228. previous_millis_cmd = millis();
  1229. if (codenum > 0){
  1230. codenum += millis(); // keep track of when we started waiting
  1231. while(millis() < codenum && !lcd_clicked()){
  1232. manage_heater();
  1233. manage_inactivity();
  1234. lcd_update();
  1235. }
  1236. }else{
  1237. while(!lcd_clicked()){
  1238. manage_heater();
  1239. manage_inactivity();
  1240. lcd_update();
  1241. }
  1242. }
  1243. LCD_MESSAGEPGM(MSG_RESUMING);
  1244. }
  1245. break;
  1246. #endif
  1247. case 17:
  1248. LCD_MESSAGEPGM(MSG_NO_MOVE);
  1249. enable_x();
  1250. enable_y();
  1251. enable_z();
  1252. enable_e0();
  1253. enable_e1();
  1254. enable_e2();
  1255. break;
  1256. #ifdef SDSUPPORT
  1257. case 20: // M20 - list SD card
  1258. SERIAL_PROTOCOLLNPGM(MSG_BEGIN_FILE_LIST);
  1259. card.ls();
  1260. SERIAL_PROTOCOLLNPGM(MSG_END_FILE_LIST);
  1261. break;
  1262. case 21: // M21 - init SD card
  1263. card.initsd();
  1264. break;
  1265. case 22: //M22 - release SD card
  1266. card.release();
  1267. break;
  1268. case 23: //M23 - Select file
  1269. starpos = (strchr(strchr_pointer + 4,'*'));
  1270. if(starpos!=NULL)
  1271. *(starpos-1)='\0';
  1272. card.openFile(strchr_pointer + 4,true);
  1273. break;
  1274. case 24: //M24 - Start SD print
  1275. card.startFileprint();
  1276. starttime=millis();
  1277. break;
  1278. case 25: //M25 - Pause SD print
  1279. card.pauseSDPrint();
  1280. break;
  1281. case 26: //M26 - Set SD index
  1282. if(card.cardOK && code_seen('S')) {
  1283. card.setIndex(code_value_long());
  1284. }
  1285. break;
  1286. case 27: //M27 - Get SD status
  1287. card.getStatus();
  1288. break;
  1289. case 28: //M28 - Start SD write
  1290. starpos = (strchr(strchr_pointer + 4,'*'));
  1291. if(starpos != NULL){
  1292. char* npos = strchr(cmdbuffer[bufindr], 'N');
  1293. strchr_pointer = strchr(npos,' ') + 1;
  1294. *(starpos-1) = '\0';
  1295. }
  1296. card.openFile(strchr_pointer+4,false);
  1297. break;
  1298. case 29: //M29 - Stop SD write
  1299. //processed in write to file routine above
  1300. //card,saving = false;
  1301. break;
  1302. case 30: //M30 <filename> Delete File
  1303. if (card.cardOK){
  1304. card.closefile();
  1305. starpos = (strchr(strchr_pointer + 4,'*'));
  1306. if(starpos != NULL){
  1307. char* npos = strchr(cmdbuffer[bufindr], 'N');
  1308. strchr_pointer = strchr(npos,' ') + 1;
  1309. *(starpos-1) = '\0';
  1310. }
  1311. card.removeFile(strchr_pointer + 4);
  1312. }
  1313. break;
  1314. case 32: //M32 - Select file and start SD print
  1315. {
  1316. if(card.sdprinting) {
  1317. st_synchronize();
  1318. }
  1319. starpos = (strchr(strchr_pointer + 4,'*'));
  1320. char* namestartpos = (strchr(strchr_pointer + 4,'!')); //find ! to indicate filename string start.
  1321. if(namestartpos==NULL)
  1322. {
  1323. namestartpos=strchr_pointer + 4; //default name position, 4 letters after the M
  1324. }
  1325. else
  1326. namestartpos++; //to skip the '!'
  1327. if(starpos!=NULL)
  1328. *(starpos-1)='\0';
  1329. bool call_procedure=(code_seen('P'));
  1330. if(strchr_pointer>namestartpos)
  1331. call_procedure=false; //false alert, 'P' found within filename
  1332. if( card.cardOK )
  1333. {
  1334. card.openFile(namestartpos,true,!call_procedure);
  1335. if(code_seen('S'))
  1336. if(strchr_pointer<namestartpos) //only if "S" is occuring _before_ the filename
  1337. card.setIndex(code_value_long());
  1338. card.startFileprint();
  1339. if(!call_procedure)
  1340. starttime=millis(); //procedure calls count as normal print time.
  1341. }
  1342. } break;
  1343. case 928: //M928 - Start SD write
  1344. starpos = (strchr(strchr_pointer + 5,'*'));
  1345. if(starpos != NULL){
  1346. char* npos = strchr(cmdbuffer[bufindr], 'N');
  1347. strchr_pointer = strchr(npos,' ') + 1;
  1348. *(starpos-1) = '\0';
  1349. }
  1350. card.openLogFile(strchr_pointer+5);
  1351. break;
  1352. #endif //SDSUPPORT
  1353. case 31: //M31 take time since the start of the SD print or an M109 command
  1354. {
  1355. stoptime=millis();
  1356. char time[30];
  1357. unsigned long t=(stoptime-starttime)/1000;
  1358. int sec,min;
  1359. min=t/60;
  1360. sec=t%60;
  1361. sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
  1362. SERIAL_ECHO_START;
  1363. SERIAL_ECHOLN(time);
  1364. lcd_setstatus(time);
  1365. autotempShutdown();
  1366. }
  1367. break;
  1368. case 42: //M42 -Change pin status via gcode
  1369. if (code_seen('S'))
  1370. {
  1371. int pin_status = code_value();
  1372. int pin_number = LED_PIN;
  1373. if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
  1374. pin_number = code_value();
  1375. for(int8_t i = 0; i < (int8_t)sizeof(sensitive_pins); i++)
  1376. {
  1377. if (sensitive_pins[i] == pin_number)
  1378. {
  1379. pin_number = -1;
  1380. break;
  1381. }
  1382. }
  1383. #if defined(FAN_PIN) && FAN_PIN > -1
  1384. if (pin_number == FAN_PIN)
  1385. fanSpeed = pin_status;
  1386. #endif
  1387. if (pin_number > -1)
  1388. {
  1389. pinMode(pin_number, OUTPUT);
  1390. digitalWrite(pin_number, pin_status);
  1391. analogWrite(pin_number, pin_status);
  1392. }
  1393. }
  1394. break;
  1395. case 104: // M104
  1396. if(setTargetedHotend(104)){
  1397. break;
  1398. }
  1399. if (code_seen('S')) setTargetHotend(code_value(), tmp_extruder);
  1400. #ifdef DUAL_X_CARRIAGE
  1401. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && tmp_extruder == 0)
  1402. setTargetHotend1(code_value() == 0.0 ? 0.0 : code_value() + duplicate_extruder_temp_offset);
  1403. #endif
  1404. setWatch();
  1405. break;
  1406. case 140: // M140 set bed temp
  1407. if (code_seen('S')) setTargetBed(code_value());
  1408. break;
  1409. case 105 : // M105
  1410. if(setTargetedHotend(105)){
  1411. break;
  1412. }
  1413. #if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
  1414. SERIAL_PROTOCOLPGM("ok T:");
  1415. SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
  1416. SERIAL_PROTOCOLPGM(" /");
  1417. SERIAL_PROTOCOL_F(degTargetHotend(tmp_extruder),1);
  1418. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  1419. SERIAL_PROTOCOLPGM(" B:");
  1420. SERIAL_PROTOCOL_F(degBed(),1);
  1421. SERIAL_PROTOCOLPGM(" /");
  1422. SERIAL_PROTOCOL_F(degTargetBed(),1);
  1423. #endif //TEMP_BED_PIN
  1424. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  1425. SERIAL_PROTOCOLPGM(" T");
  1426. SERIAL_PROTOCOL(cur_extruder);
  1427. SERIAL_PROTOCOLPGM(":");
  1428. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  1429. SERIAL_PROTOCOLPGM(" /");
  1430. SERIAL_PROTOCOL_F(degTargetHotend(cur_extruder),1);
  1431. }
  1432. #else
  1433. SERIAL_ERROR_START;
  1434. SERIAL_ERRORLNPGM(MSG_ERR_NO_THERMISTORS);
  1435. #endif
  1436. SERIAL_PROTOCOLPGM(" @:");
  1437. SERIAL_PROTOCOL(getHeaterPower(tmp_extruder));
  1438. SERIAL_PROTOCOLPGM(" B@:");
  1439. SERIAL_PROTOCOL(getHeaterPower(-1));
  1440. #ifdef SHOW_TEMP_ADC_VALUES
  1441. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  1442. SERIAL_PROTOCOLPGM(" ADC B:");
  1443. SERIAL_PROTOCOL_F(degBed(),1);
  1444. SERIAL_PROTOCOLPGM("C->");
  1445. SERIAL_PROTOCOL_F(rawBedTemp()/OVERSAMPLENR,0);
  1446. #endif
  1447. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  1448. SERIAL_PROTOCOLPGM(" T");
  1449. SERIAL_PROTOCOL(cur_extruder);
  1450. SERIAL_PROTOCOLPGM(":");
  1451. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  1452. SERIAL_PROTOCOLPGM("C->");
  1453. SERIAL_PROTOCOL_F(rawHotendTemp(cur_extruder)/OVERSAMPLENR,0);
  1454. }
  1455. #endif
  1456. SERIAL_PROTOCOLLN("");
  1457. return;
  1458. break;
  1459. case 109:
  1460. {// M109 - Wait for extruder heater to reach target.
  1461. if(setTargetedHotend(109)){
  1462. break;
  1463. }
  1464. LCD_MESSAGEPGM(MSG_HEATING);
  1465. #ifdef AUTOTEMP
  1466. autotemp_enabled=false;
  1467. #endif
  1468. if (code_seen('S')) {
  1469. setTargetHotend(code_value(), tmp_extruder);
  1470. #ifdef DUAL_X_CARRIAGE
  1471. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && tmp_extruder == 0)
  1472. setTargetHotend1(code_value() == 0.0 ? 0.0 : code_value() + duplicate_extruder_temp_offset);
  1473. #endif
  1474. CooldownNoWait = true;
  1475. } else if (code_seen('R')) {
  1476. setTargetHotend(code_value(), tmp_extruder);
  1477. #ifdef DUAL_X_CARRIAGE
  1478. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && tmp_extruder == 0)
  1479. setTargetHotend1(code_value() == 0.0 ? 0.0 : code_value() + duplicate_extruder_temp_offset);
  1480. #endif
  1481. CooldownNoWait = false;
  1482. }
  1483. #ifdef AUTOTEMP
  1484. if (code_seen('S')) autotemp_min=code_value();
  1485. if (code_seen('B')) autotemp_max=code_value();
  1486. if (code_seen('F'))
  1487. {
  1488. autotemp_factor=code_value();
  1489. autotemp_enabled=true;
  1490. }
  1491. #endif
  1492. setWatch();
  1493. codenum = millis();
  1494. /* See if we are heating up or cooling down */
  1495. target_direction = isHeatingHotend(tmp_extruder); // true if heating, false if cooling
  1496. #ifdef TEMP_RESIDENCY_TIME
  1497. long residencyStart;
  1498. residencyStart = -1;
  1499. /* continue to loop until we have reached the target temp
  1500. _and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
  1501. while((residencyStart == -1) ||
  1502. (residencyStart >= 0 && (((unsigned int) (millis() - residencyStart)) < (TEMP_RESIDENCY_TIME * 1000UL))) ) {
  1503. #else
  1504. while ( target_direction ? (isHeatingHotend(tmp_extruder)) : (isCoolingHotend(tmp_extruder)&&(CooldownNoWait==false)) ) {
  1505. #endif //TEMP_RESIDENCY_TIME
  1506. if( (millis() - codenum) > 1000UL )
  1507. { //Print Temp Reading and remaining time every 1 second while heating up/cooling down
  1508. SERIAL_PROTOCOLPGM("T:");
  1509. SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
  1510. SERIAL_PROTOCOLPGM(" E:");
  1511. SERIAL_PROTOCOL((int)tmp_extruder);
  1512. #ifdef TEMP_RESIDENCY_TIME
  1513. SERIAL_PROTOCOLPGM(" W:");
  1514. if(residencyStart > -1)
  1515. {
  1516. codenum = ((TEMP_RESIDENCY_TIME * 1000UL) - (millis() - residencyStart)) / 1000UL;
  1517. SERIAL_PROTOCOLLN( codenum );
  1518. }
  1519. else
  1520. {
  1521. SERIAL_PROTOCOLLN( "?" );
  1522. }
  1523. #else
  1524. SERIAL_PROTOCOLLN("");
  1525. #endif
  1526. codenum = millis();
  1527. }
  1528. manage_heater();
  1529. manage_inactivity();
  1530. lcd_update();
  1531. #ifdef TEMP_RESIDENCY_TIME
  1532. /* start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
  1533. or when current temp falls outside the hysteresis after target temp was reached */
  1534. if ((residencyStart == -1 && target_direction && (degHotend(tmp_extruder) >= (degTargetHotend(tmp_extruder)-TEMP_WINDOW))) ||
  1535. (residencyStart == -1 && !target_direction && (degHotend(tmp_extruder) <= (degTargetHotend(tmp_extruder)+TEMP_WINDOW))) ||
  1536. (residencyStart > -1 && labs(degHotend(tmp_extruder) - degTargetHotend(tmp_extruder)) > TEMP_HYSTERESIS) )
  1537. {
  1538. residencyStart = millis();
  1539. }
  1540. #endif //TEMP_RESIDENCY_TIME
  1541. }
  1542. LCD_MESSAGEPGM(MSG_HEATING_COMPLETE);
  1543. starttime=millis();
  1544. previous_millis_cmd = millis();
  1545. }
  1546. break;
  1547. case 190: // M190 - Wait for bed heater to reach target.
  1548. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  1549. LCD_MESSAGEPGM(MSG_BED_HEATING);
  1550. if (code_seen('S')) {
  1551. setTargetBed(code_value());
  1552. CooldownNoWait = true;
  1553. } else if (code_seen('R')) {
  1554. setTargetBed(code_value());
  1555. CooldownNoWait = false;
  1556. }
  1557. codenum = millis();
  1558. target_direction = isHeatingBed(); // true if heating, false if cooling
  1559. while ( target_direction ? (isHeatingBed()) : (isCoolingBed()&&(CooldownNoWait==false)) )
  1560. {
  1561. if(( millis() - codenum) > 1000 ) //Print Temp Reading every 1 second while heating up.
  1562. {
  1563. float tt=degHotend(active_extruder);
  1564. SERIAL_PROTOCOLPGM("T:");
  1565. SERIAL_PROTOCOL(tt);
  1566. SERIAL_PROTOCOLPGM(" E:");
  1567. SERIAL_PROTOCOL((int)active_extruder);
  1568. SERIAL_PROTOCOLPGM(" B:");
  1569. SERIAL_PROTOCOL_F(degBed(),1);
  1570. SERIAL_PROTOCOLLN("");
  1571. codenum = millis();
  1572. }
  1573. manage_heater();
  1574. manage_inactivity();
  1575. lcd_update();
  1576. }
  1577. LCD_MESSAGEPGM(MSG_BED_DONE);
  1578. previous_millis_cmd = millis();
  1579. #endif
  1580. break;
  1581. #if defined(FAN_PIN) && FAN_PIN > -1
  1582. case 106: //M106 Fan On
  1583. if (code_seen('S')){
  1584. fanSpeed=constrain(code_value(),0,255);
  1585. }
  1586. else {
  1587. fanSpeed=255;
  1588. }
  1589. break;
  1590. case 107: //M107 Fan Off
  1591. fanSpeed = 0;
  1592. break;
  1593. #endif //FAN_PIN
  1594. #ifdef BARICUDA
  1595. // PWM for HEATER_1_PIN
  1596. #if defined(HEATER_1_PIN) && HEATER_1_PIN > -1
  1597. case 126: //M126 valve open
  1598. if (code_seen('S')){
  1599. ValvePressure=constrain(code_value(),0,255);
  1600. }
  1601. else {
  1602. ValvePressure=255;
  1603. }
  1604. break;
  1605. case 127: //M127 valve closed
  1606. ValvePressure = 0;
  1607. break;
  1608. #endif //HEATER_1_PIN
  1609. // PWM for HEATER_2_PIN
  1610. #if defined(HEATER_2_PIN) && HEATER_2_PIN > -1
  1611. case 128: //M128 valve open
  1612. if (code_seen('S')){
  1613. EtoPPressure=constrain(code_value(),0,255);
  1614. }
  1615. else {
  1616. EtoPPressure=255;
  1617. }
  1618. break;
  1619. case 129: //M129 valve closed
  1620. EtoPPressure = 0;
  1621. break;
  1622. #endif //HEATER_2_PIN
  1623. #endif
  1624. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  1625. case 80: // M80 - Turn on Power Supply
  1626. SET_OUTPUT(PS_ON_PIN); //GND
  1627. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  1628. #ifdef ULTIPANEL
  1629. powersupply = true;
  1630. LCD_MESSAGEPGM(WELCOME_MSG);
  1631. lcd_update();
  1632. #endif
  1633. break;
  1634. #endif
  1635. case 81: // M81 - Turn off Power Supply
  1636. disable_heater();
  1637. st_synchronize();
  1638. disable_e0();
  1639. disable_e1();
  1640. disable_e2();
  1641. finishAndDisableSteppers();
  1642. fanSpeed = 0;
  1643. delay(1000); // Wait a little before to switch off
  1644. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  1645. st_synchronize();
  1646. suicide();
  1647. #elif defined(PS_ON_PIN) && PS_ON_PIN > -1
  1648. SET_OUTPUT(PS_ON_PIN);
  1649. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  1650. #endif
  1651. #ifdef ULTIPANEL
  1652. powersupply = false;
  1653. LCD_MESSAGEPGM(MACHINE_NAME" "MSG_OFF".");
  1654. lcd_update();
  1655. #endif
  1656. break;
  1657. case 82:
  1658. axis_relative_modes[3] = false;
  1659. break;
  1660. case 83:
  1661. axis_relative_modes[3] = true;
  1662. break;
  1663. case 18: //compatibility
  1664. case 84: // M84
  1665. if(code_seen('S')){
  1666. stepper_inactive_time = code_value() * 1000;
  1667. }
  1668. else
  1669. {
  1670. bool all_axis = !((code_seen(axis_codes[0])) || (code_seen(axis_codes[1])) || (code_seen(axis_codes[2]))|| (code_seen(axis_codes[3])));
  1671. if(all_axis)
  1672. {
  1673. st_synchronize();
  1674. disable_e0();
  1675. disable_e1();
  1676. disable_e2();
  1677. finishAndDisableSteppers();
  1678. }
  1679. else
  1680. {
  1681. st_synchronize();
  1682. if(code_seen('X')) disable_x();
  1683. if(code_seen('Y')) disable_y();
  1684. if(code_seen('Z')) disable_z();
  1685. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  1686. if(code_seen('E')) {
  1687. disable_e0();
  1688. disable_e1();
  1689. disable_e2();
  1690. }
  1691. #endif
  1692. }
  1693. }
  1694. break;
  1695. case 85: // M85
  1696. code_seen('S');
  1697. max_inactive_time = code_value() * 1000;
  1698. break;
  1699. case 92: // M92
  1700. for(int8_t i=0; i < NUM_AXIS; i++)
  1701. {
  1702. if(code_seen(axis_codes[i]))
  1703. {
  1704. if(i == 3) { // E
  1705. float value = code_value();
  1706. if(value < 20.0) {
  1707. float factor = axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
  1708. max_e_jerk *= factor;
  1709. max_feedrate[i] *= factor;
  1710. axis_steps_per_sqr_second[i] *= factor;
  1711. }
  1712. axis_steps_per_unit[i] = value;
  1713. }
  1714. else {
  1715. axis_steps_per_unit[i] = code_value();
  1716. }
  1717. }
  1718. }
  1719. break;
  1720. case 115: // M115
  1721. SERIAL_PROTOCOLPGM(MSG_M115_REPORT);
  1722. break;
  1723. case 117: // M117 display message
  1724. starpos = (strchr(strchr_pointer + 5,'*'));
  1725. if(starpos!=NULL)
  1726. *(starpos-1)='\0';
  1727. lcd_setstatus(strchr_pointer + 5);
  1728. break;
  1729. case 114: // M114
  1730. SERIAL_PROTOCOLPGM("X:");
  1731. SERIAL_PROTOCOL(current_position[X_AXIS]);
  1732. SERIAL_PROTOCOLPGM("Y:");
  1733. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  1734. SERIAL_PROTOCOLPGM("Z:");
  1735. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  1736. SERIAL_PROTOCOLPGM("E:");
  1737. SERIAL_PROTOCOL(current_position[E_AXIS]);
  1738. SERIAL_PROTOCOLPGM(MSG_COUNT_X);
  1739. SERIAL_PROTOCOL(float(st_get_position(X_AXIS))/axis_steps_per_unit[X_AXIS]);
  1740. SERIAL_PROTOCOLPGM("Y:");
  1741. SERIAL_PROTOCOL(float(st_get_position(Y_AXIS))/axis_steps_per_unit[Y_AXIS]);
  1742. SERIAL_PROTOCOLPGM("Z:");
  1743. SERIAL_PROTOCOL(float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]);
  1744. SERIAL_PROTOCOLLN("");
  1745. break;
  1746. case 120: // M120
  1747. enable_endstops(false) ;
  1748. break;
  1749. case 121: // M121
  1750. enable_endstops(true) ;
  1751. break;
  1752. case 119: // M119
  1753. SERIAL_PROTOCOLLN(MSG_M119_REPORT);
  1754. #if defined(X_MIN_PIN) && X_MIN_PIN > -1
  1755. SERIAL_PROTOCOLPGM(MSG_X_MIN);
  1756. SERIAL_PROTOCOLLN(((READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  1757. #endif
  1758. #if defined(X_MAX_PIN) && X_MAX_PIN > -1
  1759. SERIAL_PROTOCOLPGM(MSG_X_MAX);
  1760. SERIAL_PROTOCOLLN(((READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  1761. #endif
  1762. #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
  1763. SERIAL_PROTOCOLPGM(MSG_Y_MIN);
  1764. SERIAL_PROTOCOLLN(((READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  1765. #endif
  1766. #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
  1767. SERIAL_PROTOCOLPGM(MSG_Y_MAX);
  1768. SERIAL_PROTOCOLLN(((READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  1769. #endif
  1770. #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
  1771. SERIAL_PROTOCOLPGM(MSG_Z_MIN);
  1772. SERIAL_PROTOCOLLN(((READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  1773. #endif
  1774. #if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
  1775. SERIAL_PROTOCOLPGM(MSG_Z_MAX);
  1776. SERIAL_PROTOCOLLN(((READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  1777. #endif
  1778. break;
  1779. //TODO: update for all axis, use for loop
  1780. #ifdef BLINKM
  1781. case 150: // M150
  1782. {
  1783. byte red;
  1784. byte grn;
  1785. byte blu;
  1786. if(code_seen('R')) red = code_value();
  1787. if(code_seen('U')) grn = code_value();
  1788. if(code_seen('B')) blu = code_value();
  1789. SendColors(red,grn,blu);
  1790. }
  1791. break;
  1792. #endif //BLINKM
  1793. case 201: // M201
  1794. for(int8_t i=0; i < NUM_AXIS; i++)
  1795. {
  1796. if(code_seen(axis_codes[i]))
  1797. {
  1798. max_acceleration_units_per_sq_second[i] = code_value();
  1799. }
  1800. }
  1801. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  1802. reset_acceleration_rates();
  1803. break;
  1804. #if 0 // Not used for Sprinter/grbl gen6
  1805. case 202: // M202
  1806. for(int8_t i=0; i < NUM_AXIS; i++) {
  1807. if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
  1808. }
  1809. break;
  1810. #endif
  1811. case 203: // M203 max feedrate mm/sec
  1812. for(int8_t i=0; i < NUM_AXIS; i++) {
  1813. if(code_seen(axis_codes[i])) max_feedrate[i] = code_value();
  1814. }
  1815. break;
  1816. case 204: // M204 acclereration S normal moves T filmanent only moves
  1817. {
  1818. if(code_seen('S')) acceleration = code_value() ;
  1819. if(code_seen('T')) retract_acceleration = code_value() ;
  1820. }
  1821. break;
  1822. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  1823. {
  1824. if(code_seen('S')) minimumfeedrate = code_value();
  1825. if(code_seen('T')) mintravelfeedrate = code_value();
  1826. if(code_seen('B')) minsegmenttime = code_value() ;
  1827. if(code_seen('X')) max_xy_jerk = code_value() ;
  1828. if(code_seen('Z')) max_z_jerk = code_value() ;
  1829. if(code_seen('E')) max_e_jerk = code_value() ;
  1830. }
  1831. break;
  1832. case 206: // M206 additional homeing offset
  1833. for(int8_t i=0; i < 3; i++)
  1834. {
  1835. if(code_seen(axis_codes[i])) add_homeing[i] = code_value();
  1836. }
  1837. break;
  1838. #ifdef DELTA
  1839. case 666: // M666 set delta endstop adjustemnt
  1840. for(int8_t i=0; i < 3; i++)
  1841. {
  1842. if(code_seen(axis_codes[i])) endstop_adj[i] = code_value();
  1843. }
  1844. break;
  1845. #endif
  1846. #ifdef FWRETRACT
  1847. case 207: //M207 - set retract length S[positive mm] F[feedrate mm/sec] Z[additional zlift/hop]
  1848. {
  1849. if(code_seen('S'))
  1850. {
  1851. retract_length = code_value() ;
  1852. }
  1853. if(code_seen('F'))
  1854. {
  1855. retract_feedrate = code_value() ;
  1856. }
  1857. if(code_seen('Z'))
  1858. {
  1859. retract_zlift = code_value() ;
  1860. }
  1861. }break;
  1862. case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
  1863. {
  1864. if(code_seen('S'))
  1865. {
  1866. retract_recover_length = code_value() ;
  1867. }
  1868. if(code_seen('F'))
  1869. {
  1870. retract_recover_feedrate = code_value() ;
  1871. }
  1872. }break;
  1873. case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  1874. {
  1875. if(code_seen('S'))
  1876. {
  1877. int t= code_value() ;
  1878. switch(t)
  1879. {
  1880. case 0: autoretract_enabled=false;retracted=false;break;
  1881. case 1: autoretract_enabled=true;retracted=false;break;
  1882. default:
  1883. SERIAL_ECHO_START;
  1884. SERIAL_ECHOPGM(MSG_UNKNOWN_COMMAND);
  1885. SERIAL_ECHO(cmdbuffer[bufindr]);
  1886. SERIAL_ECHOLNPGM("\"");
  1887. }
  1888. }
  1889. }break;
  1890. #endif // FWRETRACT
  1891. #if EXTRUDERS > 1
  1892. case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  1893. {
  1894. if(setTargetedHotend(218)){
  1895. break;
  1896. }
  1897. if(code_seen('X'))
  1898. {
  1899. extruder_offset[X_AXIS][tmp_extruder] = code_value();
  1900. }
  1901. if(code_seen('Y'))
  1902. {
  1903. extruder_offset[Y_AXIS][tmp_extruder] = code_value();
  1904. }
  1905. #ifdef DUAL_X_CARRIAGE
  1906. if(code_seen('Z'))
  1907. {
  1908. extruder_offset[Z_AXIS][tmp_extruder] = code_value();
  1909. }
  1910. #endif
  1911. SERIAL_ECHO_START;
  1912. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  1913. for(tmp_extruder = 0; tmp_extruder < EXTRUDERS; tmp_extruder++)
  1914. {
  1915. SERIAL_ECHO(" ");
  1916. SERIAL_ECHO(extruder_offset[X_AXIS][tmp_extruder]);
  1917. SERIAL_ECHO(",");
  1918. SERIAL_ECHO(extruder_offset[Y_AXIS][tmp_extruder]);
  1919. #ifdef DUAL_X_CARRIAGE
  1920. SERIAL_ECHO(",");
  1921. SERIAL_ECHO(extruder_offset[Z_AXIS][tmp_extruder]);
  1922. #endif
  1923. }
  1924. SERIAL_ECHOLN("");
  1925. }break;
  1926. #endif
  1927. case 220: // M220 S<factor in percent>- set speed factor override percentage
  1928. {
  1929. if(code_seen('S'))
  1930. {
  1931. feedmultiply = code_value() ;
  1932. }
  1933. }
  1934. break;
  1935. case 221: // M221 S<factor in percent>- set extrude factor override percentage
  1936. {
  1937. if(code_seen('S'))
  1938. {
  1939. extrudemultiply = code_value() ;
  1940. }
  1941. }
  1942. break;
  1943. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  1944. {
  1945. if(code_seen('P')){
  1946. int pin_number = code_value(); // pin number
  1947. int pin_state = -1; // required pin state - default is inverted
  1948. if(code_seen('S')) pin_state = code_value(); // required pin state
  1949. if(pin_state >= -1 && pin_state <= 1){
  1950. for(int8_t i = 0; i < (int8_t)sizeof(sensitive_pins); i++)
  1951. {
  1952. if (sensitive_pins[i] == pin_number)
  1953. {
  1954. pin_number = -1;
  1955. break;
  1956. }
  1957. }
  1958. if (pin_number > -1)
  1959. {
  1960. st_synchronize();
  1961. pinMode(pin_number, INPUT);
  1962. int target;
  1963. switch(pin_state){
  1964. case 1:
  1965. target = HIGH;
  1966. break;
  1967. case 0:
  1968. target = LOW;
  1969. break;
  1970. case -1:
  1971. target = !digitalRead(pin_number);
  1972. break;
  1973. }
  1974. while(digitalRead(pin_number) != target){
  1975. manage_heater();
  1976. manage_inactivity();
  1977. lcd_update();
  1978. }
  1979. }
  1980. }
  1981. }
  1982. }
  1983. break;
  1984. #if NUM_SERVOS > 0
  1985. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  1986. {
  1987. int servo_index = -1;
  1988. int servo_position = 0;
  1989. if (code_seen('P'))
  1990. servo_index = code_value();
  1991. if (code_seen('S')) {
  1992. servo_position = code_value();
  1993. if ((servo_index >= 0) && (servo_index < NUM_SERVOS)) {
  1994. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  1995. servos[servo_index].attach(0);
  1996. #endif
  1997. servos[servo_index].write(servo_position);
  1998. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  1999. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  2000. servos[servo_index].detach();
  2001. #endif
  2002. }
  2003. else {
  2004. SERIAL_ECHO_START;
  2005. SERIAL_ECHO("Servo ");
  2006. SERIAL_ECHO(servo_index);
  2007. SERIAL_ECHOLN(" out of range");
  2008. }
  2009. }
  2010. else if (servo_index >= 0) {
  2011. SERIAL_PROTOCOL(MSG_OK);
  2012. SERIAL_PROTOCOL(" Servo ");
  2013. SERIAL_PROTOCOL(servo_index);
  2014. SERIAL_PROTOCOL(": ");
  2015. SERIAL_PROTOCOL(servos[servo_index].read());
  2016. SERIAL_PROTOCOLLN("");
  2017. }
  2018. }
  2019. break;
  2020. #endif // NUM_SERVOS > 0
  2021. #if LARGE_FLASH == true && ( BEEPER > 0 || defined(ULTRALCD) )
  2022. case 300: // M300
  2023. {
  2024. int beepS = code_seen('S') ? code_value() : 110;
  2025. int beepP = code_seen('P') ? code_value() : 1000;
  2026. if (beepS > 0)
  2027. {
  2028. #if BEEPER > 0
  2029. tone(BEEPER, beepS);
  2030. delay(beepP);
  2031. noTone(BEEPER);
  2032. #elif defined(ULTRALCD)
  2033. lcd_buzz(beepS, beepP);
  2034. #endif
  2035. }
  2036. else
  2037. {
  2038. delay(beepP);
  2039. }
  2040. }
  2041. break;
  2042. #endif // M300
  2043. #ifdef PIDTEMP
  2044. case 301: // M301
  2045. {
  2046. if(code_seen('P')) Kp = code_value();
  2047. if(code_seen('I')) Ki = scalePID_i(code_value());
  2048. if(code_seen('D')) Kd = scalePID_d(code_value());
  2049. #ifdef PID_ADD_EXTRUSION_RATE
  2050. if(code_seen('C')) Kc = code_value();
  2051. #endif
  2052. updatePID();
  2053. SERIAL_PROTOCOL(MSG_OK);
  2054. SERIAL_PROTOCOL(" p:");
  2055. SERIAL_PROTOCOL(Kp);
  2056. SERIAL_PROTOCOL(" i:");
  2057. SERIAL_PROTOCOL(unscalePID_i(Ki));
  2058. SERIAL_PROTOCOL(" d:");
  2059. SERIAL_PROTOCOL(unscalePID_d(Kd));
  2060. #ifdef PID_ADD_EXTRUSION_RATE
  2061. SERIAL_PROTOCOL(" c:");
  2062. //Kc does not have scaling applied above, or in resetting defaults
  2063. SERIAL_PROTOCOL(Kc);
  2064. #endif
  2065. SERIAL_PROTOCOLLN("");
  2066. }
  2067. break;
  2068. #endif //PIDTEMP
  2069. #ifdef PIDTEMPBED
  2070. case 304: // M304
  2071. {
  2072. if(code_seen('P')) bedKp = code_value();
  2073. if(code_seen('I')) bedKi = scalePID_i(code_value());
  2074. if(code_seen('D')) bedKd = scalePID_d(code_value());
  2075. updatePID();
  2076. SERIAL_PROTOCOL(MSG_OK);
  2077. SERIAL_PROTOCOL(" p:");
  2078. SERIAL_PROTOCOL(bedKp);
  2079. SERIAL_PROTOCOL(" i:");
  2080. SERIAL_PROTOCOL(unscalePID_i(bedKi));
  2081. SERIAL_PROTOCOL(" d:");
  2082. SERIAL_PROTOCOL(unscalePID_d(bedKd));
  2083. SERIAL_PROTOCOLLN("");
  2084. }
  2085. break;
  2086. #endif //PIDTEMP
  2087. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  2088. {
  2089. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  2090. const uint8_t NUM_PULSES=16;
  2091. const float PULSE_LENGTH=0.01524;
  2092. for(int i=0; i < NUM_PULSES; i++) {
  2093. WRITE(PHOTOGRAPH_PIN, HIGH);
  2094. _delay_ms(PULSE_LENGTH);
  2095. WRITE(PHOTOGRAPH_PIN, LOW);
  2096. _delay_ms(PULSE_LENGTH);
  2097. }
  2098. delay(7.33);
  2099. for(int i=0; i < NUM_PULSES; i++) {
  2100. WRITE(PHOTOGRAPH_PIN, HIGH);
  2101. _delay_ms(PULSE_LENGTH);
  2102. WRITE(PHOTOGRAPH_PIN, LOW);
  2103. _delay_ms(PULSE_LENGTH);
  2104. }
  2105. #endif
  2106. }
  2107. break;
  2108. #ifdef DOGLCD
  2109. case 250: // M250 Set LCD contrast value: C<value> (value 0..63)
  2110. {
  2111. if (code_seen('C')) {
  2112. lcd_setcontrast( ((int)code_value())&63 );
  2113. }
  2114. SERIAL_PROTOCOLPGM("lcd contrast value: ");
  2115. SERIAL_PROTOCOL(lcd_contrast);
  2116. SERIAL_PROTOCOLLN("");
  2117. }
  2118. break;
  2119. #endif
  2120. #ifdef PREVENT_DANGEROUS_EXTRUDE
  2121. case 302: // allow cold extrudes, or set the minimum extrude temperature
  2122. {
  2123. float temp = .0;
  2124. if (code_seen('S')) temp=code_value();
  2125. set_extrude_min_temp(temp);
  2126. }
  2127. break;
  2128. #endif
  2129. case 303: // M303 PID autotune
  2130. {
  2131. float temp = 150.0;
  2132. int e=0;
  2133. int c=5;
  2134. if (code_seen('E')) e=code_value();
  2135. if (e<0)
  2136. temp=70;
  2137. if (code_seen('S')) temp=code_value();
  2138. if (code_seen('C')) c=code_value();
  2139. PID_autotune(temp, e, c);
  2140. }
  2141. break;
  2142. case 400: // M400 finish all moves
  2143. {
  2144. st_synchronize();
  2145. }
  2146. break;
  2147. #if defined(ENABLE_AUTO_BED_LEVELING) && defined(SERVO_ENDSTOPS)
  2148. case 401:
  2149. {
  2150. engage_z_probe(); // Engage Z Servo endstop if available
  2151. }
  2152. break;
  2153. case 402:
  2154. {
  2155. retract_z_probe(); // Retract Z Servo endstop if enabled
  2156. }
  2157. break;
  2158. #endif
  2159. case 500: // M500 Store settings in EEPROM
  2160. {
  2161. Config_StoreSettings();
  2162. }
  2163. break;
  2164. case 501: // M501 Read settings from EEPROM
  2165. {
  2166. Config_RetrieveSettings();
  2167. }
  2168. break;
  2169. case 502: // M502 Revert to default settings
  2170. {
  2171. Config_ResetDefault();
  2172. }
  2173. break;
  2174. case 503: // M503 print settings currently in memory
  2175. {
  2176. Config_PrintSettings();
  2177. }
  2178. break;
  2179. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  2180. case 540:
  2181. {
  2182. if(code_seen('S')) abort_on_endstop_hit = code_value() > 0;
  2183. }
  2184. break;
  2185. #endif
  2186. #ifdef FILAMENTCHANGEENABLE
  2187. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  2188. {
  2189. float target[4];
  2190. float lastpos[4];
  2191. target[X_AXIS]=current_position[X_AXIS];
  2192. target[Y_AXIS]=current_position[Y_AXIS];
  2193. target[Z_AXIS]=current_position[Z_AXIS];
  2194. target[E_AXIS]=current_position[E_AXIS];
  2195. lastpos[X_AXIS]=current_position[X_AXIS];
  2196. lastpos[Y_AXIS]=current_position[Y_AXIS];
  2197. lastpos[Z_AXIS]=current_position[Z_AXIS];
  2198. lastpos[E_AXIS]=current_position[E_AXIS];
  2199. //retract by E
  2200. if(code_seen('E'))
  2201. {
  2202. target[E_AXIS]+= code_value();
  2203. }
  2204. else
  2205. {
  2206. #ifdef FILAMENTCHANGE_FIRSTRETRACT
  2207. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  2208. #endif
  2209. }
  2210. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder);
  2211. //lift Z
  2212. if(code_seen('Z'))
  2213. {
  2214. target[Z_AXIS]+= code_value();
  2215. }
  2216. else
  2217. {
  2218. #ifdef FILAMENTCHANGE_ZADD
  2219. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  2220. #endif
  2221. }
  2222. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder);
  2223. //move xy
  2224. if(code_seen('X'))
  2225. {
  2226. target[X_AXIS]+= code_value();
  2227. }
  2228. else
  2229. {
  2230. #ifdef FILAMENTCHANGE_XPOS
  2231. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  2232. #endif
  2233. }
  2234. if(code_seen('Y'))
  2235. {
  2236. target[Y_AXIS]= code_value();
  2237. }
  2238. else
  2239. {
  2240. #ifdef FILAMENTCHANGE_YPOS
  2241. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  2242. #endif
  2243. }
  2244. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder);
  2245. if(code_seen('L'))
  2246. {
  2247. target[E_AXIS]+= code_value();
  2248. }
  2249. else
  2250. {
  2251. #ifdef FILAMENTCHANGE_FINALRETRACT
  2252. target[E_AXIS]+= FILAMENTCHANGE_FINALRETRACT ;
  2253. #endif
  2254. }
  2255. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder);
  2256. //finish moves
  2257. st_synchronize();
  2258. //disable extruder steppers so filament can be removed
  2259. disable_e0();
  2260. disable_e1();
  2261. disable_e2();
  2262. delay(100);
  2263. LCD_ALERTMESSAGEPGM(MSG_FILAMENTCHANGE);
  2264. uint8_t cnt=0;
  2265. while(!lcd_clicked()){
  2266. cnt++;
  2267. manage_heater();
  2268. manage_inactivity();
  2269. lcd_update();
  2270. if(cnt==0)
  2271. {
  2272. #if BEEPER > 0
  2273. SET_OUTPUT(BEEPER);
  2274. WRITE(BEEPER,HIGH);
  2275. delay(3);
  2276. WRITE(BEEPER,LOW);
  2277. delay(3);
  2278. #else
  2279. lcd_buzz(1000/6,100);
  2280. #endif
  2281. }
  2282. }
  2283. //return to normal
  2284. if(code_seen('L'))
  2285. {
  2286. target[E_AXIS]+= -code_value();
  2287. }
  2288. else
  2289. {
  2290. #ifdef FILAMENTCHANGE_FINALRETRACT
  2291. target[E_AXIS]+=(-1)*FILAMENTCHANGE_FINALRETRACT ;
  2292. #endif
  2293. }
  2294. current_position[E_AXIS]=target[E_AXIS]; //the long retract of L is compensated by manual filament feeding
  2295. plan_set_e_position(current_position[E_AXIS]);
  2296. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder); //should do nothing
  2297. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder); //move xy back
  2298. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder); //move z back
  2299. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], lastpos[E_AXIS], feedrate/60, active_extruder); //final untretract
  2300. }
  2301. break;
  2302. #endif //FILAMENTCHANGEENABLE
  2303. #ifdef DUAL_X_CARRIAGE
  2304. case 605: // Set dual x-carriage movement mode:
  2305. // M605 S0: Full control mode. The slicer has full control over x-carriage movement
  2306. // M605 S1: Auto-park mode. The inactive head will auto park/unpark without slicer involvement
  2307. // M605 S2 [Xnnn] [Rmmm]: Duplication mode. The second extruder will duplicate the first with nnn
  2308. // millimeters x-offset and an optional differential hotend temperature of
  2309. // mmm degrees. E.g., with "M605 S2 X100 R2" the second extruder will duplicate
  2310. // the first with a spacing of 100mm in the x direction and 2 degrees hotter.
  2311. //
  2312. // Note: the X axis should be homed after changing dual x-carriage mode.
  2313. {
  2314. st_synchronize();
  2315. if (code_seen('S'))
  2316. dual_x_carriage_mode = code_value();
  2317. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE)
  2318. {
  2319. if (code_seen('X'))
  2320. duplicate_extruder_x_offset = max(code_value(),X2_MIN_POS - x_home_pos(0));
  2321. if (code_seen('R'))
  2322. duplicate_extruder_temp_offset = code_value();
  2323. SERIAL_ECHO_START;
  2324. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  2325. SERIAL_ECHO(" ");
  2326. SERIAL_ECHO(extruder_offset[X_AXIS][0]);
  2327. SERIAL_ECHO(",");
  2328. SERIAL_ECHO(extruder_offset[Y_AXIS][0]);
  2329. SERIAL_ECHO(" ");
  2330. SERIAL_ECHO(duplicate_extruder_x_offset);
  2331. SERIAL_ECHO(",");
  2332. SERIAL_ECHOLN(extruder_offset[Y_AXIS][1]);
  2333. }
  2334. else if (dual_x_carriage_mode != DXC_FULL_CONTROL_MODE && dual_x_carriage_mode != DXC_AUTO_PARK_MODE)
  2335. {
  2336. dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  2337. }
  2338. active_extruder_parked = false;
  2339. extruder_duplication_enabled = false;
  2340. delayed_move_time = 0;
  2341. }
  2342. break;
  2343. #endif //DUAL_X_CARRIAGE
  2344. case 907: // M907 Set digital trimpot motor current using axis codes.
  2345. {
  2346. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  2347. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_current(i,code_value());
  2348. if(code_seen('B')) digipot_current(4,code_value());
  2349. if(code_seen('S')) for(int i=0;i<=4;i++) digipot_current(i,code_value());
  2350. #endif
  2351. }
  2352. break;
  2353. case 908: // M908 Control digital trimpot directly.
  2354. {
  2355. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  2356. uint8_t channel,current;
  2357. if(code_seen('P')) channel=code_value();
  2358. if(code_seen('S')) current=code_value();
  2359. digitalPotWrite(channel, current);
  2360. #endif
  2361. }
  2362. break;
  2363. case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  2364. {
  2365. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  2366. if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value());
  2367. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_mode(i,(uint8_t)code_value());
  2368. if(code_seen('B')) microstep_mode(4,code_value());
  2369. microstep_readings();
  2370. #endif
  2371. }
  2372. break;
  2373. case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  2374. {
  2375. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  2376. if(code_seen('S')) switch((int)code_value())
  2377. {
  2378. case 1:
  2379. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,code_value(),-1);
  2380. if(code_seen('B')) microstep_ms(4,code_value(),-1);
  2381. break;
  2382. case 2:
  2383. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,-1,code_value());
  2384. if(code_seen('B')) microstep_ms(4,-1,code_value());
  2385. break;
  2386. }
  2387. microstep_readings();
  2388. #endif
  2389. }
  2390. break;
  2391. case 999: // M999: Restart after being stopped
  2392. Stopped = false;
  2393. lcd_reset_alert_level();
  2394. gcode_LastN = Stopped_gcode_LastN;
  2395. FlushSerialRequestResend();
  2396. break;
  2397. }
  2398. }
  2399. else if(code_seen('T'))
  2400. {
  2401. tmp_extruder = code_value();
  2402. if(tmp_extruder >= EXTRUDERS) {
  2403. SERIAL_ECHO_START;
  2404. SERIAL_ECHO("T");
  2405. SERIAL_ECHO(tmp_extruder);
  2406. SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
  2407. }
  2408. else {
  2409. boolean make_move = false;
  2410. if(code_seen('F')) {
  2411. make_move = true;
  2412. next_feedrate = code_value();
  2413. if(next_feedrate > 0.0) {
  2414. feedrate = next_feedrate;
  2415. }
  2416. }
  2417. #if EXTRUDERS > 1
  2418. if(tmp_extruder != active_extruder) {
  2419. // Save current position to return to after applying extruder offset
  2420. memcpy(destination, current_position, sizeof(destination));
  2421. #ifdef DUAL_X_CARRIAGE
  2422. if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE && Stopped == false &&
  2423. (delayed_move_time != 0 || current_position[X_AXIS] != x_home_pos(active_extruder)))
  2424. {
  2425. // Park old head: 1) raise 2) move to park position 3) lower
  2426. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
  2427. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  2428. plan_buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
  2429. current_position[E_AXIS], max_feedrate[X_AXIS], active_extruder);
  2430. plan_buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS],
  2431. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  2432. st_synchronize();
  2433. }
  2434. // apply Y & Z extruder offset (x offset is already used in determining home pos)
  2435. current_position[Y_AXIS] = current_position[Y_AXIS] -
  2436. extruder_offset[Y_AXIS][active_extruder] +
  2437. extruder_offset[Y_AXIS][tmp_extruder];
  2438. current_position[Z_AXIS] = current_position[Z_AXIS] -
  2439. extruder_offset[Z_AXIS][active_extruder] +
  2440. extruder_offset[Z_AXIS][tmp_extruder];
  2441. active_extruder = tmp_extruder;
  2442. // This function resets the max/min values - the current position may be overwritten below.
  2443. axis_is_at_home(X_AXIS);
  2444. if (dual_x_carriage_mode == DXC_FULL_CONTROL_MODE)
  2445. {
  2446. current_position[X_AXIS] = inactive_extruder_x_pos;
  2447. inactive_extruder_x_pos = destination[X_AXIS];
  2448. }
  2449. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE)
  2450. {
  2451. active_extruder_parked = (active_extruder == 0); // this triggers the second extruder to move into the duplication position
  2452. if (active_extruder == 0 || active_extruder_parked)
  2453. current_position[X_AXIS] = inactive_extruder_x_pos;
  2454. else
  2455. current_position[X_AXIS] = destination[X_AXIS] + duplicate_extruder_x_offset;
  2456. inactive_extruder_x_pos = destination[X_AXIS];
  2457. extruder_duplication_enabled = false;
  2458. }
  2459. else
  2460. {
  2461. // record raised toolhead position for use by unpark
  2462. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  2463. raised_parked_position[Z_AXIS] += TOOLCHANGE_UNPARK_ZLIFT;
  2464. active_extruder_parked = true;
  2465. delayed_move_time = 0;
  2466. }
  2467. #else
  2468. // Offset extruder (only by XY)
  2469. int i;
  2470. for(i = 0; i < 2; i++) {
  2471. current_position[i] = current_position[i] -
  2472. extruder_offset[i][active_extruder] +
  2473. extruder_offset[i][tmp_extruder];
  2474. }
  2475. // Set the new active extruder and position
  2476. active_extruder = tmp_extruder;
  2477. #endif //else DUAL_X_CARRIAGE
  2478. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2479. // Move to the old position if 'F' was in the parameters
  2480. if(make_move && Stopped == false) {
  2481. prepare_move();
  2482. }
  2483. }
  2484. #endif
  2485. SERIAL_ECHO_START;
  2486. SERIAL_ECHO(MSG_ACTIVE_EXTRUDER);
  2487. SERIAL_PROTOCOLLN((int)active_extruder);
  2488. }
  2489. }
  2490. else
  2491. {
  2492. SERIAL_ECHO_START;
  2493. SERIAL_ECHOPGM(MSG_UNKNOWN_COMMAND);
  2494. SERIAL_ECHO(cmdbuffer[bufindr]);
  2495. SERIAL_ECHOLNPGM("\"");
  2496. }
  2497. ClearToSend();
  2498. }
  2499. void FlushSerialRequestResend()
  2500. {
  2501. //char cmdbuffer[bufindr][100]="Resend:";
  2502. MYSERIAL.flush();
  2503. SERIAL_PROTOCOLPGM(MSG_RESEND);
  2504. SERIAL_PROTOCOLLN(gcode_LastN + 1);
  2505. ClearToSend();
  2506. }
  2507. void ClearToSend()
  2508. {
  2509. previous_millis_cmd = millis();
  2510. #ifdef SDSUPPORT
  2511. if(fromsd[bufindr])
  2512. return;
  2513. #endif //SDSUPPORT
  2514. SERIAL_PROTOCOLLNPGM(MSG_OK);
  2515. }
  2516. void get_coordinates()
  2517. {
  2518. bool seen[4]={false,false,false,false};
  2519. for(int8_t i=0; i < NUM_AXIS; i++) {
  2520. if(code_seen(axis_codes[i]))
  2521. {
  2522. destination[i] = (float)code_value() + (axis_relative_modes[i] || relative_mode)*current_position[i];
  2523. seen[i]=true;
  2524. }
  2525. else destination[i] = current_position[i]; //Are these else lines really needed?
  2526. }
  2527. if(code_seen('F')) {
  2528. next_feedrate = code_value();
  2529. if(next_feedrate > 0.0) feedrate = next_feedrate;
  2530. }
  2531. #ifdef FWRETRACT
  2532. if(autoretract_enabled)
  2533. if( !(seen[X_AXIS] || seen[Y_AXIS] || seen[Z_AXIS]) && seen[E_AXIS])
  2534. {
  2535. float echange=destination[E_AXIS]-current_position[E_AXIS];
  2536. if(echange<-MIN_RETRACT) //retract
  2537. {
  2538. if(!retracted)
  2539. {
  2540. destination[Z_AXIS]+=retract_zlift; //not sure why chaninging current_position negatively does not work.
  2541. //if slicer retracted by echange=-1mm and you want to retract 3mm, corrrectede=-2mm additionally
  2542. float correctede=-echange-retract_length;
  2543. //to generate the additional steps, not the destination is changed, but inversely the current position
  2544. current_position[E_AXIS]+=-correctede;
  2545. feedrate=retract_feedrate;
  2546. retracted=true;
  2547. }
  2548. }
  2549. else
  2550. if(echange>MIN_RETRACT) //retract_recover
  2551. {
  2552. if(retracted)
  2553. {
  2554. //current_position[Z_AXIS]+=-retract_zlift;
  2555. //if slicer retracted_recovered by echange=+1mm and you want to retract_recover 3mm, corrrectede=2mm additionally
  2556. float correctede=-echange+1*retract_length+retract_recover_length; //total unretract=retract_length+retract_recover_length[surplus]
  2557. current_position[E_AXIS]+=correctede; //to generate the additional steps, not the destination is changed, but inversely the current position
  2558. feedrate=retract_recover_feedrate;
  2559. retracted=false;
  2560. }
  2561. }
  2562. }
  2563. #endif //FWRETRACT
  2564. }
  2565. void get_arc_coordinates()
  2566. {
  2567. #ifdef SF_ARC_FIX
  2568. bool relative_mode_backup = relative_mode;
  2569. relative_mode = true;
  2570. #endif
  2571. get_coordinates();
  2572. #ifdef SF_ARC_FIX
  2573. relative_mode=relative_mode_backup;
  2574. #endif
  2575. if(code_seen('I')) {
  2576. offset[0] = code_value();
  2577. }
  2578. else {
  2579. offset[0] = 0.0;
  2580. }
  2581. if(code_seen('J')) {
  2582. offset[1] = code_value();
  2583. }
  2584. else {
  2585. offset[1] = 0.0;
  2586. }
  2587. }
  2588. void clamp_to_software_endstops(float target[3])
  2589. {
  2590. if (min_software_endstops) {
  2591. if (target[X_AXIS] < min_pos[X_AXIS]) target[X_AXIS] = min_pos[X_AXIS];
  2592. if (target[Y_AXIS] < min_pos[Y_AXIS]) target[Y_AXIS] = min_pos[Y_AXIS];
  2593. if (target[Z_AXIS] < min_pos[Z_AXIS]) target[Z_AXIS] = min_pos[Z_AXIS];
  2594. }
  2595. if (max_software_endstops) {
  2596. if (target[X_AXIS] > max_pos[X_AXIS]) target[X_AXIS] = max_pos[X_AXIS];
  2597. if (target[Y_AXIS] > max_pos[Y_AXIS]) target[Y_AXIS] = max_pos[Y_AXIS];
  2598. if (target[Z_AXIS] > max_pos[Z_AXIS]) target[Z_AXIS] = max_pos[Z_AXIS];
  2599. }
  2600. }
  2601. #ifdef DELTA
  2602. void calculate_delta(float cartesian[3])
  2603. {
  2604. delta[X_AXIS] = sqrt(DELTA_DIAGONAL_ROD_2
  2605. - sq(DELTA_TOWER1_X-cartesian[X_AXIS])
  2606. - sq(DELTA_TOWER1_Y-cartesian[Y_AXIS])
  2607. ) + cartesian[Z_AXIS];
  2608. delta[Y_AXIS] = sqrt(DELTA_DIAGONAL_ROD_2
  2609. - sq(DELTA_TOWER2_X-cartesian[X_AXIS])
  2610. - sq(DELTA_TOWER2_Y-cartesian[Y_AXIS])
  2611. ) + cartesian[Z_AXIS];
  2612. delta[Z_AXIS] = sqrt(DELTA_DIAGONAL_ROD_2
  2613. - sq(DELTA_TOWER3_X-cartesian[X_AXIS])
  2614. - sq(DELTA_TOWER3_Y-cartesian[Y_AXIS])
  2615. ) + cartesian[Z_AXIS];
  2616. /*
  2617. SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);
  2618. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]);
  2619. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]);
  2620. SERIAL_ECHOPGM("delta x="); SERIAL_ECHO(delta[X_AXIS]);
  2621. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(delta[Y_AXIS]);
  2622. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(delta[Z_AXIS]);
  2623. */
  2624. }
  2625. #endif
  2626. void prepare_move()
  2627. {
  2628. clamp_to_software_endstops(destination);
  2629. previous_millis_cmd = millis();
  2630. #ifdef DELTA
  2631. float difference[NUM_AXIS];
  2632. for (int8_t i=0; i < NUM_AXIS; i++) {
  2633. difference[i] = destination[i] - current_position[i];
  2634. }
  2635. float cartesian_mm = sqrt(sq(difference[X_AXIS]) +
  2636. sq(difference[Y_AXIS]) +
  2637. sq(difference[Z_AXIS]));
  2638. if (cartesian_mm < 0.000001) { cartesian_mm = abs(difference[E_AXIS]); }
  2639. if (cartesian_mm < 0.000001) { return; }
  2640. float seconds = 6000 * cartesian_mm / feedrate / feedmultiply;
  2641. int steps = max(1, int(DELTA_SEGMENTS_PER_SECOND * seconds));
  2642. // SERIAL_ECHOPGM("mm="); SERIAL_ECHO(cartesian_mm);
  2643. // SERIAL_ECHOPGM(" seconds="); SERIAL_ECHO(seconds);
  2644. // SERIAL_ECHOPGM(" steps="); SERIAL_ECHOLN(steps);
  2645. for (int s = 1; s <= steps; s++) {
  2646. float fraction = float(s) / float(steps);
  2647. for(int8_t i=0; i < NUM_AXIS; i++) {
  2648. destination[i] = current_position[i] + difference[i] * fraction;
  2649. }
  2650. calculate_delta(destination);
  2651. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS],
  2652. destination[E_AXIS], feedrate*feedmultiply/60/100.0,
  2653. active_extruder);
  2654. }
  2655. #else
  2656. #ifdef DUAL_X_CARRIAGE
  2657. if (active_extruder_parked)
  2658. {
  2659. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && active_extruder == 0)
  2660. {
  2661. // move duplicate extruder into correct duplication position.
  2662. plan_set_position(inactive_extruder_x_pos, current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2663. plan_buffer_line(current_position[X_AXIS] + duplicate_extruder_x_offset, current_position[Y_AXIS], current_position[Z_AXIS],
  2664. current_position[E_AXIS], max_feedrate[X_AXIS], 1);
  2665. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2666. st_synchronize();
  2667. extruder_duplication_enabled = true;
  2668. active_extruder_parked = false;
  2669. }
  2670. else if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE) // handle unparking of head
  2671. {
  2672. if (current_position[E_AXIS] == destination[E_AXIS])
  2673. {
  2674. // this is a travel move - skit it but keep track of current position (so that it can later
  2675. // be used as start of first non-travel move)
  2676. if (delayed_move_time != 0xFFFFFFFFUL)
  2677. {
  2678. memcpy(current_position, destination, sizeof(current_position));
  2679. if (destination[Z_AXIS] > raised_parked_position[Z_AXIS])
  2680. raised_parked_position[Z_AXIS] = destination[Z_AXIS];
  2681. delayed_move_time = millis();
  2682. return;
  2683. }
  2684. }
  2685. delayed_move_time = 0;
  2686. // unpark extruder: 1) raise, 2) move into starting XY position, 3) lower
  2687. plan_buffer_line(raised_parked_position[X_AXIS], raised_parked_position[Y_AXIS], raised_parked_position[Z_AXIS], current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  2688. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], raised_parked_position[Z_AXIS],
  2689. current_position[E_AXIS], min(max_feedrate[X_AXIS],max_feedrate[Y_AXIS]), active_extruder);
  2690. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS],
  2691. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  2692. active_extruder_parked = false;
  2693. }
  2694. }
  2695. #endif //DUAL_X_CARRIAGE
  2696. // Do not use feedmultiply for E or Z only moves
  2697. if( (current_position[X_AXIS] == destination [X_AXIS]) && (current_position[Y_AXIS] == destination [Y_AXIS])) {
  2698. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2699. }
  2700. else {
  2701. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply/60/100.0, active_extruder);
  2702. }
  2703. #endif //else DELTA
  2704. for(int8_t i=0; i < NUM_AXIS; i++) {
  2705. current_position[i] = destination[i];
  2706. }
  2707. }
  2708. void prepare_arc_move(char isclockwise) {
  2709. float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
  2710. // Trace the arc
  2711. mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedmultiply/60/100.0, r, isclockwise, active_extruder);
  2712. // As far as the parser is concerned, the position is now == target. In reality the
  2713. // motion control system might still be processing the action and the real tool position
  2714. // in any intermediate location.
  2715. for(int8_t i=0; i < NUM_AXIS; i++) {
  2716. current_position[i] = destination[i];
  2717. }
  2718. previous_millis_cmd = millis();
  2719. }
  2720. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  2721. #if defined(FAN_PIN)
  2722. #if CONTROLLERFAN_PIN == FAN_PIN
  2723. #error "You cannot set CONTROLLERFAN_PIN equal to FAN_PIN"
  2724. #endif
  2725. #endif
  2726. unsigned long lastMotor = 0; //Save the time for when a motor was turned on last
  2727. unsigned long lastMotorCheck = 0;
  2728. void controllerFan()
  2729. {
  2730. if ((millis() - lastMotorCheck) >= 2500) //Not a time critical function, so we only check every 2500ms
  2731. {
  2732. lastMotorCheck = millis();
  2733. if(!READ(X_ENABLE_PIN) || !READ(Y_ENABLE_PIN) || !READ(Z_ENABLE_PIN)
  2734. #if EXTRUDERS > 2
  2735. || !READ(E2_ENABLE_PIN)
  2736. #endif
  2737. #if EXTRUDER > 1
  2738. #if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1
  2739. || !READ(X2_ENABLE_PIN)
  2740. #endif
  2741. || !READ(E1_ENABLE_PIN)
  2742. #endif
  2743. || !READ(E0_ENABLE_PIN)) //If any of the drivers are enabled...
  2744. {
  2745. lastMotor = millis(); //... set time to NOW so the fan will turn on
  2746. }
  2747. if ((millis() - lastMotor) >= (CONTROLLERFAN_SECS*1000UL) || lastMotor == 0) //If the last time any driver was enabled, is longer since than CONTROLLERSEC...
  2748. {
  2749. digitalWrite(CONTROLLERFAN_PIN, 0);
  2750. analogWrite(CONTROLLERFAN_PIN, 0);
  2751. }
  2752. else
  2753. {
  2754. // allows digital or PWM fan output to be used (see M42 handling)
  2755. digitalWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  2756. analogWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  2757. }
  2758. }
  2759. }
  2760. #endif
  2761. #ifdef TEMP_STAT_LEDS
  2762. static bool blue_led = false;
  2763. static bool red_led = false;
  2764. static uint32_t stat_update = 0;
  2765. void handle_status_leds(void) {
  2766. float max_temp = 0.0;
  2767. if(millis() > stat_update) {
  2768. stat_update += 500; // Update every 0.5s
  2769. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  2770. max_temp = max(max_temp, degHotend(cur_extruder));
  2771. max_temp = max(max_temp, degTargetHotend(cur_extruder));
  2772. }
  2773. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  2774. max_temp = max(max_temp, degTargetBed());
  2775. max_temp = max(max_temp, degBed());
  2776. #endif
  2777. if((max_temp > 55.0) && (red_led == false)) {
  2778. digitalWrite(STAT_LED_RED, 1);
  2779. digitalWrite(STAT_LED_BLUE, 0);
  2780. red_led = true;
  2781. blue_led = false;
  2782. }
  2783. if((max_temp < 54.0) && (blue_led == false)) {
  2784. digitalWrite(STAT_LED_RED, 0);
  2785. digitalWrite(STAT_LED_BLUE, 1);
  2786. red_led = false;
  2787. blue_led = true;
  2788. }
  2789. }
  2790. }
  2791. #endif
  2792. void manage_inactivity()
  2793. {
  2794. if( (millis() - previous_millis_cmd) > max_inactive_time )
  2795. if(max_inactive_time)
  2796. kill();
  2797. if(stepper_inactive_time) {
  2798. if( (millis() - previous_millis_cmd) > stepper_inactive_time )
  2799. {
  2800. if(blocks_queued() == false) {
  2801. disable_x();
  2802. disable_y();
  2803. disable_z();
  2804. disable_e0();
  2805. disable_e1();
  2806. disable_e2();
  2807. }
  2808. }
  2809. }
  2810. #if defined(KILL_PIN) && KILL_PIN > -1
  2811. if( 0 == READ(KILL_PIN) )
  2812. kill();
  2813. #endif
  2814. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  2815. controllerFan(); //Check if fan should be turned on to cool stepper drivers down
  2816. #endif
  2817. #ifdef EXTRUDER_RUNOUT_PREVENT
  2818. if( (millis() - previous_millis_cmd) > EXTRUDER_RUNOUT_SECONDS*1000 )
  2819. if(degHotend(active_extruder)>EXTRUDER_RUNOUT_MINTEMP)
  2820. {
  2821. bool oldstatus=READ(E0_ENABLE_PIN);
  2822. enable_e0();
  2823. float oldepos=current_position[E_AXIS];
  2824. float oldedes=destination[E_AXIS];
  2825. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS],
  2826. current_position[E_AXIS]+EXTRUDER_RUNOUT_EXTRUDE*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS],
  2827. EXTRUDER_RUNOUT_SPEED/60.*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS], active_extruder);
  2828. current_position[E_AXIS]=oldepos;
  2829. destination[E_AXIS]=oldedes;
  2830. plan_set_e_position(oldepos);
  2831. previous_millis_cmd=millis();
  2832. st_synchronize();
  2833. WRITE(E0_ENABLE_PIN,oldstatus);
  2834. }
  2835. #endif
  2836. #if defined(DUAL_X_CARRIAGE)
  2837. // handle delayed move timeout
  2838. if (delayed_move_time != 0 && (millis() - delayed_move_time) > 1000 && Stopped == false)
  2839. {
  2840. // travel moves have been received so enact them
  2841. delayed_move_time = 0xFFFFFFFFUL; // force moves to be done
  2842. memcpy(destination,current_position,sizeof(destination));
  2843. prepare_move();
  2844. }
  2845. #endif
  2846. #ifdef TEMP_STAT_LEDS
  2847. handle_status_leds();
  2848. #endif
  2849. check_axes_activity();
  2850. }
  2851. void kill()
  2852. {
  2853. cli(); // Stop interrupts
  2854. disable_heater();
  2855. disable_x();
  2856. disable_y();
  2857. disable_z();
  2858. disable_e0();
  2859. disable_e1();
  2860. disable_e2();
  2861. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  2862. pinMode(PS_ON_PIN,INPUT);
  2863. #endif
  2864. SERIAL_ERROR_START;
  2865. SERIAL_ERRORLNPGM(MSG_ERR_KILLED);
  2866. LCD_ALERTMESSAGEPGM(MSG_KILLED);
  2867. suicide();
  2868. while(1) { /* Intentionally left empty */ } // Wait for reset
  2869. }
  2870. void Stop()
  2871. {
  2872. disable_heater();
  2873. if(Stopped == false) {
  2874. Stopped = true;
  2875. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  2876. SERIAL_ERROR_START;
  2877. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  2878. LCD_MESSAGEPGM(MSG_STOPPED);
  2879. }
  2880. }
  2881. bool IsStopped() { return Stopped; };
  2882. #ifdef FAST_PWM_FAN
  2883. void setPwmFrequency(uint8_t pin, int val)
  2884. {
  2885. val &= 0x07;
  2886. switch(digitalPinToTimer(pin))
  2887. {
  2888. #if defined(TCCR0A)
  2889. case TIMER0A:
  2890. case TIMER0B:
  2891. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  2892. // TCCR0B |= val;
  2893. break;
  2894. #endif
  2895. #if defined(TCCR1A)
  2896. case TIMER1A:
  2897. case TIMER1B:
  2898. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  2899. // TCCR1B |= val;
  2900. break;
  2901. #endif
  2902. #if defined(TCCR2)
  2903. case TIMER2:
  2904. case TIMER2:
  2905. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  2906. TCCR2 |= val;
  2907. break;
  2908. #endif
  2909. #if defined(TCCR2A)
  2910. case TIMER2A:
  2911. case TIMER2B:
  2912. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  2913. TCCR2B |= val;
  2914. break;
  2915. #endif
  2916. #if defined(TCCR3A)
  2917. case TIMER3A:
  2918. case TIMER3B:
  2919. case TIMER3C:
  2920. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  2921. TCCR3B |= val;
  2922. break;
  2923. #endif
  2924. #if defined(TCCR4A)
  2925. case TIMER4A:
  2926. case TIMER4B:
  2927. case TIMER4C:
  2928. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  2929. TCCR4B |= val;
  2930. break;
  2931. #endif
  2932. #if defined(TCCR5A)
  2933. case TIMER5A:
  2934. case TIMER5B:
  2935. case TIMER5C:
  2936. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  2937. TCCR5B |= val;
  2938. break;
  2939. #endif
  2940. }
  2941. }
  2942. #endif //FAST_PWM_FAN
  2943. bool setTargetedHotend(int code){
  2944. tmp_extruder = active_extruder;
  2945. if(code_seen('T')) {
  2946. tmp_extruder = code_value();
  2947. if(tmp_extruder >= EXTRUDERS) {
  2948. SERIAL_ECHO_START;
  2949. switch(code){
  2950. case 104:
  2951. SERIAL_ECHO(MSG_M104_INVALID_EXTRUDER);
  2952. break;
  2953. case 105:
  2954. SERIAL_ECHO(MSG_M105_INVALID_EXTRUDER);
  2955. break;
  2956. case 109:
  2957. SERIAL_ECHO(MSG_M109_INVALID_EXTRUDER);
  2958. break;
  2959. case 218:
  2960. SERIAL_ECHO(MSG_M218_INVALID_EXTRUDER);
  2961. break;
  2962. }
  2963. SERIAL_ECHOLN(tmp_extruder);
  2964. return true;
  2965. }
  2966. }
  2967. return false;
  2968. }