My Marlin configs for Fabrikator Mini and CTC i3 Pro B
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

configuration_store.cpp 54KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669
  1. /**
  2. * Marlin 3D Printer Firmware
  3. * Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
  4. *
  5. * Based on Sprinter and grbl.
  6. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  7. *
  8. * This program is free software: you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation, either version 3 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  20. *
  21. */
  22. /**
  23. * configuration_store.cpp
  24. *
  25. * Settings and EEPROM storage
  26. *
  27. * IMPORTANT: Whenever there are changes made to the variables stored in EEPROM
  28. * in the functions below, also increment the version number. This makes sure that
  29. * the default values are used whenever there is a change to the data, to prevent
  30. * wrong data being written to the variables.
  31. *
  32. * ALSO: Variables in the Store and Retrieve sections must be in the same order.
  33. * If a feature is disabled, some data must still be written that, when read,
  34. * either sets a Sane Default, or results in No Change to the existing value.
  35. *
  36. */
  37. #define EEPROM_VERSION "V35"
  38. // Change EEPROM version if these are changed:
  39. #define EEPROM_OFFSET 100
  40. /**
  41. * V33 EEPROM Layout:
  42. *
  43. * 100 Version (char x4)
  44. * 104 EEPROM Checksum (uint16_t)
  45. *
  46. * 106 E_STEPPERS (uint8_t)
  47. * 107 M92 XYZE planner.axis_steps_per_mm (float x4 ... x8)
  48. * 123 M203 XYZE planner.max_feedrate_mm_s (float x4 ... x8)
  49. * 139 M201 XYZE planner.max_acceleration_mm_per_s2 (uint32_t x4 ... x8)
  50. * 155 M204 P planner.acceleration (float)
  51. * 159 M204 R planner.retract_acceleration (float)
  52. * 163 M204 T planner.travel_acceleration (float)
  53. * 167 M205 S planner.min_feedrate_mm_s (float)
  54. * 171 M205 T planner.min_travel_feedrate_mm_s (float)
  55. * 175 M205 B planner.min_segment_time (ulong)
  56. * 179 M205 X planner.max_jerk[X_AXIS] (float)
  57. * 183 M205 Y planner.max_jerk[Y_AXIS] (float)
  58. * 187 M205 Z planner.max_jerk[Z_AXIS] (float)
  59. * 191 M205 E planner.max_jerk[E_AXIS] (float)
  60. * 195 M206 XYZ home_offset (float x3)
  61. * 207 M218 XYZ hotend_offset (float x3 per additional hotend)
  62. *
  63. * Global Leveling:
  64. * 219 z_fade_height (float)
  65. *
  66. * MESH_BED_LEVELING: 43 bytes
  67. * 223 M420 S from mbl.status (bool)
  68. * 224 mbl.z_offset (float)
  69. * 228 GRID_MAX_POINTS_X (uint8_t)
  70. * 229 GRID_MAX_POINTS_Y (uint8_t)
  71. * 230 G29 S3 XYZ z_values[][] (float x9, up to float x 81) +288
  72. *
  73. * HAS_BED_PROBE: 4 bytes
  74. * 266 M851 zprobe_zoffset (float)
  75. *
  76. * ABL_PLANAR: 36 bytes
  77. * 270 planner.bed_level_matrix (matrix_3x3 = float x9)
  78. *
  79. * AUTO_BED_LEVELING_BILINEAR: 47 bytes
  80. * 306 GRID_MAX_POINTS_X (uint8_t)
  81. * 307 GRID_MAX_POINTS_Y (uint8_t)
  82. * 308 bilinear_grid_spacing (int x2)
  83. * 312 G29 L F bilinear_start (int x2)
  84. * 316 bed_level_grid[][] (float x9, up to float x256) +988
  85. *
  86. * DELTA: 48 bytes
  87. * 348 M666 XYZ endstop_adj (float x3)
  88. * 360 M665 R delta_radius (float)
  89. * 364 M665 L delta_diagonal_rod (float)
  90. * 368 M665 S delta_segments_per_second (float)
  91. * 372 M665 B delta_calibration_radius (float)
  92. * 376 M665 X delta_tower_angle_trim[A] (float)
  93. * 380 M665 Y delta_tower_angle_trim[B] (float)
  94. * --- M665 Z delta_tower_angle_trim[C] (float) is always 0.0
  95. *
  96. * Z_DUAL_ENDSTOPS: 48 bytes
  97. * 348 M666 Z z_endstop_adj (float)
  98. * --- dummy data (float x11)
  99. *
  100. * ULTIPANEL: 6 bytes
  101. * 396 M145 S0 H lcd_preheat_hotend_temp (int x2)
  102. * 400 M145 S0 B lcd_preheat_bed_temp (int x2)
  103. * 404 M145 S0 F lcd_preheat_fan_speed (int x2)
  104. *
  105. * PIDTEMP: 66 bytes
  106. * 408 M301 E0 PIDC Kp[0], Ki[0], Kd[0], Kc[0] (float x4)
  107. * 424 M301 E1 PIDC Kp[1], Ki[1], Kd[1], Kc[1] (float x4)
  108. * 440 M301 E2 PIDC Kp[2], Ki[2], Kd[2], Kc[2] (float x4)
  109. * 456 M301 E3 PIDC Kp[3], Ki[3], Kd[3], Kc[3] (float x4)
  110. * 472 M301 E4 PIDC Kp[3], Ki[3], Kd[3], Kc[3] (float x4)
  111. * 488 M301 L lpq_len (int)
  112. *
  113. * PIDTEMPBED: 12 bytes
  114. * 490 M304 PID thermalManager.bedKp, .bedKi, .bedKd (float x3)
  115. *
  116. * DOGLCD: 2 bytes
  117. * 502 M250 C lcd_contrast (int)
  118. *
  119. * FWRETRACT: 29 bytes
  120. * 504 M209 S autoretract_enabled (bool)
  121. * 505 M207 S retract_length (float)
  122. * 509 M207 W retract_length_swap (float)
  123. * 513 M207 F retract_feedrate_mm_s (float)
  124. * 517 M207 Z retract_zlift (float)
  125. * 521 M208 S retract_recover_length (float)
  126. * 525 M208 W retract_recover_length_swap (float)
  127. * 529 M208 F retract_recover_feedrate_mm_s (float)
  128. *
  129. * Volumetric Extrusion: 21 bytes
  130. * 533 M200 D volumetric_enabled (bool)
  131. * 534 M200 T D filament_size (float x5) (T0..3)
  132. *
  133. * HAVE_TMC2130: 20 bytes
  134. * 554 M906 X stepperX current (uint16_t)
  135. * 556 M906 Y stepperY current (uint16_t)
  136. * 558 M906 Z stepperZ current (uint16_t)
  137. * 560 M906 X2 stepperX2 current (uint16_t)
  138. * 562 M906 Y2 stepperY2 current (uint16_t)
  139. * 564 M906 Z2 stepperZ2 current (uint16_t)
  140. * 566 M906 E0 stepperE0 current (uint16_t)
  141. * 568 M906 E1 stepperE1 current (uint16_t)
  142. * 570 M906 E2 stepperE2 current (uint16_t)
  143. * 572 M906 E3 stepperE3 current (uint16_t)
  144. * 576 M906 E4 stepperE4 current (uint16_t)
  145. *
  146. * LIN_ADVANCE: 8 bytes
  147. * 580 M900 K extruder_advance_k (float)
  148. * 584 M900 WHD advance_ed_ratio (float)
  149. *
  150. * 588 Minimum end-point
  151. * 1909 (588 + 36 + 9 + 288 + 988) Maximum end-point
  152. */
  153. #include "configuration_store.h"
  154. MarlinSettings settings;
  155. #include "Marlin.h"
  156. #include "language.h"
  157. #include "endstops.h"
  158. #include "planner.h"
  159. #include "temperature.h"
  160. #include "ultralcd.h"
  161. #if ENABLED(MESH_BED_LEVELING)
  162. #include "mesh_bed_leveling.h"
  163. #endif
  164. #if ENABLED(HAVE_TMC2130)
  165. #include "stepper_indirection.h"
  166. #endif
  167. #if ENABLED(AUTO_BED_LEVELING_UBL)
  168. #include "ubl.h"
  169. #endif
  170. #if ENABLED(ABL_BILINEAR_SUBDIVISION)
  171. extern void bed_level_virt_interpolate();
  172. #endif
  173. /**
  174. * Post-process after Retrieve or Reset
  175. */
  176. void MarlinSettings::postprocess() {
  177. // steps per s2 needs to be updated to agree with units per s2
  178. planner.reset_acceleration_rates();
  179. // Make sure delta kinematics are updated before refreshing the
  180. // planner position so the stepper counts will be set correctly.
  181. #if ENABLED(DELTA)
  182. recalc_delta_settings(delta_radius, delta_diagonal_rod);
  183. #endif
  184. // Refresh steps_to_mm with the reciprocal of axis_steps_per_mm
  185. // and init stepper.count[], planner.position[] with current_position
  186. planner.refresh_positioning();
  187. #if ENABLED(PIDTEMP)
  188. thermalManager.updatePID();
  189. #endif
  190. calculate_volumetric_multipliers();
  191. #if HAS_HOME_OFFSET || ENABLED(DUAL_X_CARRIAGE)
  192. // Software endstops depend on home_offset
  193. LOOP_XYZ(i) update_software_endstops((AxisEnum)i);
  194. #endif
  195. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  196. set_z_fade_height(
  197. //#if ENABLED(AUTO_BED_LEVELING_UBL)
  198. // ubl.state.g29_correction_fade_height
  199. //#else
  200. planner.z_fade_height
  201. //#endif
  202. );
  203. #endif
  204. #if HAS_BED_PROBE
  205. refresh_zprobe_zoffset();
  206. #endif
  207. }
  208. #if ENABLED(EEPROM_SETTINGS)
  209. const char version[4] = EEPROM_VERSION;
  210. uint16_t MarlinSettings::eeprom_checksum;
  211. bool MarlinSettings::eeprom_write_error,
  212. MarlinSettings::eeprom_read_error;
  213. void MarlinSettings::write_data(int &pos, const uint8_t* value, uint16_t size) {
  214. if (eeprom_write_error) return;
  215. while (size--) {
  216. uint8_t * const p = (uint8_t * const)pos;
  217. const uint8_t v = *value;
  218. // EEPROM has only ~100,000 write cycles,
  219. // so only write bytes that have changed!
  220. if (v != eeprom_read_byte(p)) {
  221. eeprom_write_byte(p, v);
  222. if (eeprom_read_byte(p) != v) {
  223. SERIAL_ECHO_START;
  224. SERIAL_ECHOLNPGM(MSG_ERR_EEPROM_WRITE);
  225. eeprom_write_error = true;
  226. return;
  227. }
  228. }
  229. eeprom_checksum += v;
  230. pos++;
  231. value++;
  232. };
  233. }
  234. void MarlinSettings::read_data(int &pos, uint8_t* value, uint16_t size) {
  235. do {
  236. uint8_t c = eeprom_read_byte((unsigned char*)pos);
  237. if (!eeprom_read_error) *value = c;
  238. eeprom_checksum += c;
  239. pos++;
  240. value++;
  241. } while (--size);
  242. }
  243. #define DUMMY_PID_VALUE 3000.0f
  244. #define EEPROM_START() int eeprom_index = EEPROM_OFFSET
  245. #define EEPROM_SKIP(VAR) eeprom_index += sizeof(VAR)
  246. #define EEPROM_WRITE(VAR) write_data(eeprom_index, (uint8_t*)&VAR, sizeof(VAR))
  247. #define EEPROM_READ(VAR) read_data(eeprom_index, (uint8_t*)&VAR, sizeof(VAR))
  248. #define EEPROM_ASSERT(TST,ERR) if (!(TST)) do{ SERIAL_ERROR_START; SERIAL_ERRORLNPGM(ERR); eeprom_read_error = true; }while(0)
  249. /**
  250. * M500 - Store Configuration
  251. */
  252. bool MarlinSettings::save() {
  253. float dummy = 0.0f;
  254. char ver[4] = "000";
  255. EEPROM_START();
  256. eeprom_write_error = false;
  257. EEPROM_WRITE(ver); // invalidate data first
  258. EEPROM_SKIP(eeprom_checksum); // Skip the checksum slot
  259. eeprom_checksum = 0; // clear before first "real data"
  260. const uint8_t esteppers = COUNT(planner.axis_steps_per_mm) - XYZ;
  261. EEPROM_WRITE(esteppers);
  262. EEPROM_WRITE(planner.axis_steps_per_mm);
  263. EEPROM_WRITE(planner.max_feedrate_mm_s);
  264. EEPROM_WRITE(planner.max_acceleration_mm_per_s2);
  265. EEPROM_WRITE(planner.acceleration);
  266. EEPROM_WRITE(planner.retract_acceleration);
  267. EEPROM_WRITE(planner.travel_acceleration);
  268. EEPROM_WRITE(planner.min_feedrate_mm_s);
  269. EEPROM_WRITE(planner.min_travel_feedrate_mm_s);
  270. EEPROM_WRITE(planner.min_segment_time);
  271. EEPROM_WRITE(planner.max_jerk);
  272. #if !HAS_HOME_OFFSET
  273. const float home_offset[XYZ] = { 0 };
  274. #endif
  275. #if ENABLED(DELTA)
  276. dummy = 0.0;
  277. EEPROM_WRITE(dummy);
  278. EEPROM_WRITE(dummy);
  279. dummy = DELTA_HEIGHT + home_offset[Z_AXIS];
  280. EEPROM_WRITE(dummy);
  281. #else
  282. EEPROM_WRITE(home_offset);
  283. #endif
  284. #if HOTENDS > 1
  285. // Skip hotend 0 which must be 0
  286. for (uint8_t e = 1; e < HOTENDS; e++)
  287. LOOP_XYZ(i) EEPROM_WRITE(hotend_offset[i][e]);
  288. #endif
  289. //
  290. // General Leveling
  291. //
  292. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  293. EEPROM_WRITE(planner.z_fade_height);
  294. #else
  295. dummy = 10.0;
  296. EEPROM_WRITE(dummy);
  297. #endif
  298. //
  299. // Mesh Bed Leveling
  300. //
  301. #if ENABLED(MESH_BED_LEVELING)
  302. // Compile time test that sizeof(mbl.z_values) is as expected
  303. static_assert(
  304. sizeof(mbl.z_values) == (GRID_MAX_POINTS_X) * (GRID_MAX_POINTS_Y) * sizeof(mbl.z_values[0][0]),
  305. "MBL Z array is the wrong size."
  306. );
  307. const bool leveling_is_on = TEST(mbl.status, MBL_STATUS_HAS_MESH_BIT);
  308. const uint8_t mesh_num_x = GRID_MAX_POINTS_X, mesh_num_y = GRID_MAX_POINTS_Y;
  309. EEPROM_WRITE(leveling_is_on);
  310. EEPROM_WRITE(mbl.z_offset);
  311. EEPROM_WRITE(mesh_num_x);
  312. EEPROM_WRITE(mesh_num_y);
  313. EEPROM_WRITE(mbl.z_values);
  314. #else
  315. // For disabled MBL write a default mesh
  316. const bool leveling_is_on = false;
  317. dummy = 0.0f;
  318. const uint8_t mesh_num_x = 3, mesh_num_y = 3;
  319. EEPROM_WRITE(leveling_is_on);
  320. EEPROM_WRITE(dummy); // z_offset
  321. EEPROM_WRITE(mesh_num_x);
  322. EEPROM_WRITE(mesh_num_y);
  323. for (uint8_t q = mesh_num_x * mesh_num_y; q--;) EEPROM_WRITE(dummy);
  324. #endif // MESH_BED_LEVELING
  325. #if !HAS_BED_PROBE
  326. const float zprobe_zoffset = 0;
  327. #endif
  328. EEPROM_WRITE(zprobe_zoffset);
  329. //
  330. // Planar Bed Leveling matrix
  331. //
  332. #if ABL_PLANAR
  333. EEPROM_WRITE(planner.bed_level_matrix);
  334. #else
  335. dummy = 0.0;
  336. for (uint8_t q = 9; q--;) EEPROM_WRITE(dummy);
  337. #endif
  338. //
  339. // Bilinear Auto Bed Leveling
  340. //
  341. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  342. // Compile time test that sizeof(bed_level_grid) is as expected
  343. static_assert(
  344. sizeof(bed_level_grid) == (GRID_MAX_POINTS_X) * (GRID_MAX_POINTS_Y) * sizeof(bed_level_grid[0][0]),
  345. "Bilinear Z array is the wrong size."
  346. );
  347. const uint8_t grid_max_x = GRID_MAX_POINTS_X, grid_max_y = GRID_MAX_POINTS_Y;
  348. EEPROM_WRITE(grid_max_x); // 1 byte
  349. EEPROM_WRITE(grid_max_y); // 1 byte
  350. EEPROM_WRITE(bilinear_grid_spacing); // 2 ints
  351. EEPROM_WRITE(bilinear_start); // 2 ints
  352. EEPROM_WRITE(bed_level_grid); // 9-256 floats
  353. #else
  354. // For disabled Bilinear Grid write an empty 3x3 grid
  355. const uint8_t grid_max_x = 3, grid_max_y = 3;
  356. const int bilinear_start[2] = { 0 }, bilinear_grid_spacing[2] = { 0 };
  357. dummy = 0.0f;
  358. EEPROM_WRITE(grid_max_x);
  359. EEPROM_WRITE(grid_max_y);
  360. EEPROM_WRITE(bilinear_grid_spacing);
  361. EEPROM_WRITE(bilinear_start);
  362. for (uint16_t q = grid_max_x * grid_max_y; q--;) EEPROM_WRITE(dummy);
  363. #endif // AUTO_BED_LEVELING_BILINEAR
  364. // 9 floats for DELTA / Z_DUAL_ENDSTOPS
  365. #if ENABLED(DELTA)
  366. EEPROM_WRITE(endstop_adj); // 3 floats
  367. EEPROM_WRITE(delta_radius); // 1 float
  368. EEPROM_WRITE(delta_diagonal_rod); // 1 float
  369. EEPROM_WRITE(delta_segments_per_second); // 1 float
  370. EEPROM_WRITE(delta_calibration_radius); // 1 floats
  371. EEPROM_WRITE(delta_tower_angle_trim); // 2 floats
  372. #elif ENABLED(Z_DUAL_ENDSTOPS)
  373. EEPROM_WRITE(z_endstop_adj); // 1 float
  374. dummy = 0.0f;
  375. for (uint8_t q = 11; q--;) EEPROM_WRITE(dummy);
  376. #else
  377. dummy = 0.0f;
  378. for (uint8_t q = 12; q--;) EEPROM_WRITE(dummy);
  379. #endif
  380. #if DISABLED(ULTIPANEL)
  381. const int lcd_preheat_hotend_temp[2] = { PREHEAT_1_TEMP_HOTEND, PREHEAT_2_TEMP_HOTEND },
  382. lcd_preheat_bed_temp[2] = { PREHEAT_1_TEMP_BED, PREHEAT_2_TEMP_BED },
  383. lcd_preheat_fan_speed[2] = { PREHEAT_1_FAN_SPEED, PREHEAT_2_FAN_SPEED };
  384. #endif // !ULTIPANEL
  385. EEPROM_WRITE(lcd_preheat_hotend_temp);
  386. EEPROM_WRITE(lcd_preheat_bed_temp);
  387. EEPROM_WRITE(lcd_preheat_fan_speed);
  388. for (uint8_t e = 0; e < MAX_EXTRUDERS; e++) {
  389. #if ENABLED(PIDTEMP)
  390. if (e < HOTENDS) {
  391. EEPROM_WRITE(PID_PARAM(Kp, e));
  392. EEPROM_WRITE(PID_PARAM(Ki, e));
  393. EEPROM_WRITE(PID_PARAM(Kd, e));
  394. #if ENABLED(PID_EXTRUSION_SCALING)
  395. EEPROM_WRITE(PID_PARAM(Kc, e));
  396. #else
  397. dummy = 1.0f; // 1.0 = default kc
  398. EEPROM_WRITE(dummy);
  399. #endif
  400. }
  401. else
  402. #endif // !PIDTEMP
  403. {
  404. dummy = DUMMY_PID_VALUE; // When read, will not change the existing value
  405. EEPROM_WRITE(dummy); // Kp
  406. dummy = 0.0f;
  407. for (uint8_t q = 3; q--;) EEPROM_WRITE(dummy); // Ki, Kd, Kc
  408. }
  409. } // Hotends Loop
  410. #if DISABLED(PID_EXTRUSION_SCALING)
  411. int lpq_len = 20;
  412. #endif
  413. EEPROM_WRITE(lpq_len);
  414. #if DISABLED(PIDTEMPBED)
  415. dummy = DUMMY_PID_VALUE;
  416. for (uint8_t q = 3; q--;) EEPROM_WRITE(dummy);
  417. #else
  418. EEPROM_WRITE(thermalManager.bedKp);
  419. EEPROM_WRITE(thermalManager.bedKi);
  420. EEPROM_WRITE(thermalManager.bedKd);
  421. #endif
  422. #if !HAS_LCD_CONTRAST
  423. const int lcd_contrast = 32;
  424. #endif
  425. EEPROM_WRITE(lcd_contrast);
  426. #if ENABLED(FWRETRACT)
  427. EEPROM_WRITE(autoretract_enabled);
  428. EEPROM_WRITE(retract_length);
  429. #if EXTRUDERS > 1
  430. EEPROM_WRITE(retract_length_swap);
  431. #else
  432. dummy = 0.0f;
  433. EEPROM_WRITE(dummy);
  434. #endif
  435. EEPROM_WRITE(retract_feedrate_mm_s);
  436. EEPROM_WRITE(retract_zlift);
  437. EEPROM_WRITE(retract_recover_length);
  438. #if EXTRUDERS > 1
  439. EEPROM_WRITE(retract_recover_length_swap);
  440. #else
  441. dummy = 0.0f;
  442. EEPROM_WRITE(dummy);
  443. #endif
  444. EEPROM_WRITE(retract_recover_feedrate_mm_s);
  445. #endif // FWRETRACT
  446. EEPROM_WRITE(volumetric_enabled);
  447. // Save filament sizes
  448. for (uint8_t q = 0; q < MAX_EXTRUDERS; q++) {
  449. if (q < COUNT(filament_size)) dummy = filament_size[q];
  450. EEPROM_WRITE(dummy);
  451. }
  452. // Save TMC2130 Configuration, and placeholder values
  453. uint16_t val;
  454. #if ENABLED(HAVE_TMC2130)
  455. #if ENABLED(X_IS_TMC2130)
  456. val = stepperX.getCurrent();
  457. #else
  458. val = 0;
  459. #endif
  460. EEPROM_WRITE(val);
  461. #if ENABLED(Y_IS_TMC2130)
  462. val = stepperY.getCurrent();
  463. #else
  464. val = 0;
  465. #endif
  466. EEPROM_WRITE(val);
  467. #if ENABLED(Z_IS_TMC2130)
  468. val = stepperZ.getCurrent();
  469. #else
  470. val = 0;
  471. #endif
  472. EEPROM_WRITE(val);
  473. #if ENABLED(X2_IS_TMC2130)
  474. val = stepperX2.getCurrent();
  475. #else
  476. val = 0;
  477. #endif
  478. EEPROM_WRITE(val);
  479. #if ENABLED(Y2_IS_TMC2130)
  480. val = stepperY2.getCurrent();
  481. #else
  482. val = 0;
  483. #endif
  484. EEPROM_WRITE(val);
  485. #if ENABLED(Z2_IS_TMC2130)
  486. val = stepperZ2.getCurrent();
  487. #else
  488. val = 0;
  489. #endif
  490. EEPROM_WRITE(val);
  491. #if ENABLED(E0_IS_TMC2130)
  492. val = stepperE0.getCurrent();
  493. #else
  494. val = 0;
  495. #endif
  496. EEPROM_WRITE(val);
  497. #if ENABLED(E1_IS_TMC2130)
  498. val = stepperE1.getCurrent();
  499. #else
  500. val = 0;
  501. #endif
  502. EEPROM_WRITE(val);
  503. #if ENABLED(E2_IS_TMC2130)
  504. val = stepperE2.getCurrent();
  505. #else
  506. val = 0;
  507. #endif
  508. EEPROM_WRITE(val);
  509. #if ENABLED(E3_IS_TMC2130)
  510. val = stepperE3.getCurrent();
  511. #else
  512. val = 0;
  513. #endif
  514. EEPROM_WRITE(val);
  515. #if ENABLED(E4_IS_TMC2130)
  516. val = stepperE4.getCurrent();
  517. #else
  518. val = 0;
  519. #endif
  520. EEPROM_WRITE(val);
  521. #else
  522. val = 0;
  523. for (uint8_t q = 0; q < 11; ++q) EEPROM_WRITE(val);
  524. #endif
  525. //
  526. // Linear Advance
  527. //
  528. float extruder_advance_k = 0.0f, advance_ed_ratio = 0.0f;
  529. #if ENABLED(LIN_ADVANCE)
  530. extruder_advance_k = planner.get_extruder_advance_k();
  531. advance_ed_ratio = planner.get_advance_ed_ratio();
  532. #endif
  533. EEPROM_WRITE(extruder_advance_k);
  534. EEPROM_WRITE(advance_ed_ratio);
  535. if (!eeprom_write_error) {
  536. const uint16_t final_checksum = eeprom_checksum,
  537. eeprom_size = eeprom_index;
  538. // Write the EEPROM header
  539. eeprom_index = EEPROM_OFFSET;
  540. EEPROM_WRITE(version);
  541. EEPROM_WRITE(final_checksum);
  542. // Report storage size
  543. SERIAL_ECHO_START;
  544. SERIAL_ECHOPAIR("Settings Stored (", eeprom_size - (EEPROM_OFFSET));
  545. SERIAL_ECHOLNPGM(" bytes)");
  546. }
  547. #if ENABLED(AUTO_BED_LEVELING_UBL)
  548. ubl.store_state();
  549. if (ubl.state.eeprom_storage_slot >= 0)
  550. ubl.store_mesh(ubl.state.eeprom_storage_slot);
  551. #endif
  552. return !eeprom_write_error;
  553. }
  554. /**
  555. * M501 - Retrieve Configuration
  556. */
  557. bool MarlinSettings::load() {
  558. EEPROM_START();
  559. eeprom_read_error = false; // If set EEPROM_READ won't write into RAM
  560. char stored_ver[4];
  561. EEPROM_READ(stored_ver);
  562. uint16_t stored_checksum;
  563. EEPROM_READ(stored_checksum);
  564. // Version has to match or defaults are used
  565. if (strncmp(version, stored_ver, 3) != 0) {
  566. if (stored_ver[0] != 'V') {
  567. stored_ver[0] = '?';
  568. stored_ver[1] = '\0';
  569. }
  570. SERIAL_ECHO_START;
  571. SERIAL_ECHOPGM("EEPROM version mismatch ");
  572. SERIAL_ECHOPAIR("(EEPROM=", stored_ver);
  573. SERIAL_ECHOLNPGM(" Marlin=" EEPROM_VERSION ")");
  574. reset();
  575. }
  576. else {
  577. float dummy = 0;
  578. eeprom_checksum = 0; // clear before reading first "real data"
  579. // Number of esteppers may change
  580. uint8_t esteppers;
  581. EEPROM_READ(esteppers);
  582. // Get only the number of E stepper parameters previously stored
  583. // Any steppers added later are set to their defaults
  584. const float def1[] = DEFAULT_AXIS_STEPS_PER_UNIT, def2[] = DEFAULT_MAX_FEEDRATE;
  585. const uint32_t def3[] = DEFAULT_MAX_ACCELERATION;
  586. float tmp1[XYZ + esteppers], tmp2[XYZ + esteppers];
  587. uint32_t tmp3[XYZ + esteppers];
  588. EEPROM_READ(tmp1);
  589. EEPROM_READ(tmp2);
  590. EEPROM_READ(tmp3);
  591. LOOP_XYZE_N(i) {
  592. planner.axis_steps_per_mm[i] = i < XYZ + esteppers ? tmp1[i] : def1[i < COUNT(def1) ? i : COUNT(def1) - 1];
  593. planner.max_feedrate_mm_s[i] = i < XYZ + esteppers ? tmp2[i] : def2[i < COUNT(def2) ? i : COUNT(def2) - 1];
  594. planner.max_acceleration_mm_per_s2[i] = i < XYZ + esteppers ? tmp3[i] : def3[i < COUNT(def3) ? i : COUNT(def3) - 1];
  595. }
  596. EEPROM_READ(planner.acceleration);
  597. EEPROM_READ(planner.retract_acceleration);
  598. EEPROM_READ(planner.travel_acceleration);
  599. EEPROM_READ(planner.min_feedrate_mm_s);
  600. EEPROM_READ(planner.min_travel_feedrate_mm_s);
  601. EEPROM_READ(planner.min_segment_time);
  602. EEPROM_READ(planner.max_jerk);
  603. #if !HAS_HOME_OFFSET
  604. float home_offset[XYZ];
  605. #endif
  606. EEPROM_READ(home_offset);
  607. #if ENABLED(DELTA)
  608. home_offset[X_AXIS] = 0.0;
  609. home_offset[Y_AXIS] = 0.0;
  610. home_offset[Z_AXIS] -= DELTA_HEIGHT;
  611. #endif
  612. #if HOTENDS > 1
  613. // Skip hotend 0 which must be 0
  614. for (uint8_t e = 1; e < HOTENDS; e++)
  615. LOOP_XYZ(i) EEPROM_READ(hotend_offset[i][e]);
  616. #endif
  617. //
  618. // General Leveling
  619. //
  620. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  621. EEPROM_READ(planner.z_fade_height);
  622. #else
  623. EEPROM_READ(dummy);
  624. #endif
  625. //
  626. // Mesh (Manual) Bed Leveling
  627. //
  628. bool leveling_is_on;
  629. uint8_t mesh_num_x, mesh_num_y;
  630. EEPROM_READ(leveling_is_on);
  631. EEPROM_READ(dummy);
  632. EEPROM_READ(mesh_num_x);
  633. EEPROM_READ(mesh_num_y);
  634. #if ENABLED(MESH_BED_LEVELING)
  635. mbl.status = leveling_is_on ? _BV(MBL_STATUS_HAS_MESH_BIT) : 0;
  636. mbl.z_offset = dummy;
  637. if (mesh_num_x == GRID_MAX_POINTS_X && mesh_num_y == GRID_MAX_POINTS_Y) {
  638. // EEPROM data fits the current mesh
  639. EEPROM_READ(mbl.z_values);
  640. }
  641. else {
  642. // EEPROM data is stale
  643. mbl.reset();
  644. for (uint16_t q = mesh_num_x * mesh_num_y; q--;) EEPROM_READ(dummy);
  645. }
  646. #else
  647. // MBL is disabled - skip the stored data
  648. for (uint16_t q = mesh_num_x * mesh_num_y; q--;) EEPROM_READ(dummy);
  649. #endif // MESH_BED_LEVELING
  650. #if !HAS_BED_PROBE
  651. float zprobe_zoffset;
  652. #endif
  653. EEPROM_READ(zprobe_zoffset);
  654. //
  655. // Planar Bed Leveling matrix
  656. //
  657. #if ABL_PLANAR
  658. EEPROM_READ(planner.bed_level_matrix);
  659. #else
  660. for (uint8_t q = 9; q--;) EEPROM_READ(dummy);
  661. #endif
  662. //
  663. // Bilinear Auto Bed Leveling
  664. //
  665. uint8_t grid_max_x, grid_max_y;
  666. EEPROM_READ(grid_max_x); // 1 byte
  667. EEPROM_READ(grid_max_y); // 1 byte
  668. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  669. if (grid_max_x == GRID_MAX_POINTS_X && grid_max_y == GRID_MAX_POINTS_Y) {
  670. set_bed_leveling_enabled(false);
  671. EEPROM_READ(bilinear_grid_spacing); // 2 ints
  672. EEPROM_READ(bilinear_start); // 2 ints
  673. EEPROM_READ(bed_level_grid); // 9 to 256 floats
  674. #if ENABLED(ABL_BILINEAR_SUBDIVISION)
  675. bed_level_virt_interpolate();
  676. #endif
  677. //set_bed_leveling_enabled(leveling_is_on);
  678. }
  679. else // EEPROM data is stale
  680. #endif // AUTO_BED_LEVELING_BILINEAR
  681. {
  682. // Skip past disabled (or stale) Bilinear Grid data
  683. int bgs[2], bs[2];
  684. EEPROM_READ(bgs);
  685. EEPROM_READ(bs);
  686. for (uint16_t q = grid_max_x * grid_max_y; q--;) EEPROM_READ(dummy);
  687. }
  688. #if ENABLED(DELTA)
  689. EEPROM_READ(endstop_adj); // 3 floats
  690. EEPROM_READ(delta_radius); // 1 float
  691. EEPROM_READ(delta_diagonal_rod); // 1 float
  692. EEPROM_READ(delta_segments_per_second); // 1 float
  693. EEPROM_READ(delta_calibration_radius); // 1 floats
  694. EEPROM_READ(delta_tower_angle_trim); // 2 floats
  695. #elif ENABLED(Z_DUAL_ENDSTOPS)
  696. EEPROM_READ(z_endstop_adj);
  697. dummy = 0.0f;
  698. for (uint8_t q=11; q--;) EEPROM_READ(dummy);
  699. #else
  700. dummy = 0.0f;
  701. for (uint8_t q=12; q--;) EEPROM_READ(dummy);
  702. #endif
  703. #if DISABLED(ULTIPANEL)
  704. int lcd_preheat_hotend_temp[2], lcd_preheat_bed_temp[2], lcd_preheat_fan_speed[2];
  705. #endif
  706. EEPROM_READ(lcd_preheat_hotend_temp);
  707. EEPROM_READ(lcd_preheat_bed_temp);
  708. EEPROM_READ(lcd_preheat_fan_speed);
  709. //EEPROM_ASSERT(
  710. // WITHIN(lcd_preheat_fan_speed, 0, 255),
  711. // "lcd_preheat_fan_speed out of range"
  712. //);
  713. #if ENABLED(PIDTEMP)
  714. for (uint8_t e = 0; e < MAX_EXTRUDERS; e++) {
  715. EEPROM_READ(dummy); // Kp
  716. if (e < HOTENDS && dummy != DUMMY_PID_VALUE) {
  717. // do not need to scale PID values as the values in EEPROM are already scaled
  718. PID_PARAM(Kp, e) = dummy;
  719. EEPROM_READ(PID_PARAM(Ki, e));
  720. EEPROM_READ(PID_PARAM(Kd, e));
  721. #if ENABLED(PID_EXTRUSION_SCALING)
  722. EEPROM_READ(PID_PARAM(Kc, e));
  723. #else
  724. EEPROM_READ(dummy);
  725. #endif
  726. }
  727. else {
  728. for (uint8_t q=3; q--;) EEPROM_READ(dummy); // Ki, Kd, Kc
  729. }
  730. }
  731. #else // !PIDTEMP
  732. // 4 x 4 = 16 slots for PID parameters
  733. for (uint8_t q = MAX_EXTRUDERS * 4; q--;) EEPROM_READ(dummy); // Kp, Ki, Kd, Kc
  734. #endif // !PIDTEMP
  735. #if DISABLED(PID_EXTRUSION_SCALING)
  736. int lpq_len;
  737. #endif
  738. EEPROM_READ(lpq_len);
  739. #if ENABLED(PIDTEMPBED)
  740. EEPROM_READ(dummy); // bedKp
  741. if (dummy != DUMMY_PID_VALUE) {
  742. thermalManager.bedKp = dummy;
  743. EEPROM_READ(thermalManager.bedKi);
  744. EEPROM_READ(thermalManager.bedKd);
  745. }
  746. #else
  747. for (uint8_t q=3; q--;) EEPROM_READ(dummy); // bedKp, bedKi, bedKd
  748. #endif
  749. #if !HAS_LCD_CONTRAST
  750. int lcd_contrast;
  751. #endif
  752. EEPROM_READ(lcd_contrast);
  753. #if ENABLED(FWRETRACT)
  754. EEPROM_READ(autoretract_enabled);
  755. EEPROM_READ(retract_length);
  756. #if EXTRUDERS > 1
  757. EEPROM_READ(retract_length_swap);
  758. #else
  759. EEPROM_READ(dummy);
  760. #endif
  761. EEPROM_READ(retract_feedrate_mm_s);
  762. EEPROM_READ(retract_zlift);
  763. EEPROM_READ(retract_recover_length);
  764. #if EXTRUDERS > 1
  765. EEPROM_READ(retract_recover_length_swap);
  766. #else
  767. EEPROM_READ(dummy);
  768. #endif
  769. EEPROM_READ(retract_recover_feedrate_mm_s);
  770. #endif // FWRETRACT
  771. EEPROM_READ(volumetric_enabled);
  772. for (uint8_t q = 0; q < MAX_EXTRUDERS; q++) {
  773. EEPROM_READ(dummy);
  774. if (q < COUNT(filament_size)) filament_size[q] = dummy;
  775. }
  776. uint16_t val;
  777. #if ENABLED(HAVE_TMC2130)
  778. EEPROM_READ(val);
  779. #if ENABLED(X_IS_TMC2130)
  780. stepperX.setCurrent(val, R_SENSE, HOLD_MULTIPLIER);
  781. #endif
  782. EEPROM_READ(val);
  783. #if ENABLED(Y_IS_TMC2130)
  784. stepperY.setCurrent(val, R_SENSE, HOLD_MULTIPLIER);
  785. #endif
  786. EEPROM_READ(val);
  787. #if ENABLED(Z_IS_TMC2130)
  788. stepperZ.setCurrent(val, R_SENSE, HOLD_MULTIPLIER);
  789. #endif
  790. EEPROM_READ(val);
  791. #if ENABLED(X2_IS_TMC2130)
  792. stepperX2.setCurrent(val, R_SENSE, HOLD_MULTIPLIER);
  793. #endif
  794. EEPROM_READ(val);
  795. #if ENABLED(Y2_IS_TMC2130)
  796. stepperY2.setCurrent(val, R_SENSE, HOLD_MULTIPLIER);
  797. #endif
  798. EEPROM_READ(val);
  799. #if ENABLED(Z2_IS_TMC2130)
  800. stepperZ2.setCurrent(val, R_SENSE, HOLD_MULTIPLIER);
  801. #endif
  802. EEPROM_READ(val);
  803. #if ENABLED(E0_IS_TMC2130)
  804. stepperE0.setCurrent(val, R_SENSE, HOLD_MULTIPLIER);
  805. #endif
  806. EEPROM_READ(val);
  807. #if ENABLED(E1_IS_TMC2130)
  808. stepperE1.setCurrent(val, R_SENSE, HOLD_MULTIPLIER);
  809. #endif
  810. EEPROM_READ(val);
  811. #if ENABLED(E2_IS_TMC2130)
  812. stepperE2.setCurrent(val, R_SENSE, HOLD_MULTIPLIER);
  813. #endif
  814. EEPROM_READ(val);
  815. #if ENABLED(E3_IS_TMC2130)
  816. stepperE3.setCurrent(val, R_SENSE, HOLD_MULTIPLIER);
  817. #endif
  818. EEPROM_READ(val);
  819. #if ENABLED(E4_IS_TMC2130)
  820. stepperE4.setCurrent(val, R_SENSE, HOLD_MULTIPLIER);
  821. #endif
  822. #else
  823. for (uint8_t q = 0; q < 11; q++) EEPROM_READ(val);
  824. #endif
  825. //
  826. // Linear Advance
  827. //
  828. float extruder_advance_k, advance_ed_ratio;
  829. EEPROM_READ(extruder_advance_k);
  830. EEPROM_READ(advance_ed_ratio);
  831. #if ENABLED(LIN_ADVANCE)
  832. planner.set_extruder_advance_k(extruder_advance_k);
  833. planner.set_advance_ed_ratio(advance_ed_ratio);
  834. #endif
  835. if (eeprom_checksum == stored_checksum) {
  836. if (eeprom_read_error)
  837. reset();
  838. else {
  839. postprocess();
  840. SERIAL_ECHO_START;
  841. SERIAL_ECHO(version);
  842. SERIAL_ECHOPAIR(" stored settings retrieved (", eeprom_index - (EEPROM_OFFSET));
  843. SERIAL_ECHOLNPGM(" bytes)");
  844. }
  845. }
  846. else {
  847. SERIAL_ERROR_START;
  848. SERIAL_ERRORLNPGM("EEPROM checksum mismatch");
  849. reset();
  850. }
  851. #if ENABLED(AUTO_BED_LEVELING_UBL)
  852. ubl.eeprom_start = (eeprom_index + 32) & 0xFFF8; // Pad the end of configuration data so it
  853. // can float up or down a little bit without
  854. // disrupting the Unified Bed Leveling data
  855. ubl.load_state();
  856. SERIAL_ECHOPGM(" UBL ");
  857. if (!ubl.state.active) SERIAL_ECHO("not ");
  858. SERIAL_ECHOLNPGM("active!");
  859. if (!ubl.sanity_check()) {
  860. int tmp_mesh; // We want to preserve whether the UBL System is Active
  861. bool tmp_active; // If it is, we want to preserve the Mesh that is being used.
  862. tmp_mesh = ubl.state.eeprom_storage_slot;
  863. tmp_active = ubl.state.active;
  864. SERIAL_ECHOLNPGM("\nInitializing Bed Leveling State to current firmware settings.\n");
  865. ubl.state = ubl.pre_initialized; // Initialize with the pre_initialized data structure
  866. ubl.state.eeprom_storage_slot = tmp_mesh; // But then restore some data we don't want mangled
  867. ubl.state.active = tmp_active;
  868. }
  869. else {
  870. SERIAL_PROTOCOLPGM("?Unable to enable Unified Bed Leveling.\n");
  871. ubl.state = ubl.pre_initialized;
  872. ubl.reset();
  873. ubl.store_state();
  874. }
  875. if (ubl.state.eeprom_storage_slot >= 0) {
  876. ubl.load_mesh(ubl.state.eeprom_storage_slot);
  877. SERIAL_ECHOPAIR("Mesh ", ubl.state.eeprom_storage_slot);
  878. SERIAL_ECHOLNPGM(" loaded from storage.");
  879. }
  880. else {
  881. ubl.reset();
  882. SERIAL_ECHOLNPGM("UBL System reset()");
  883. }
  884. #endif
  885. }
  886. #if ENABLED(EEPROM_CHITCHAT)
  887. report();
  888. #endif
  889. return !eeprom_read_error;
  890. }
  891. #else // !EEPROM_SETTINGS
  892. bool MarlinSettings::save() {
  893. SERIAL_ERROR_START;
  894. SERIAL_ERRORLNPGM("EEPROM disabled");
  895. return false;
  896. }
  897. #endif // !EEPROM_SETTINGS
  898. /**
  899. * M502 - Reset Configuration
  900. */
  901. void MarlinSettings::reset() {
  902. const float tmp1[] = DEFAULT_AXIS_STEPS_PER_UNIT, tmp2[] = DEFAULT_MAX_FEEDRATE;
  903. const uint32_t tmp3[] = DEFAULT_MAX_ACCELERATION;
  904. LOOP_XYZE_N(i) {
  905. planner.axis_steps_per_mm[i] = tmp1[i < COUNT(tmp1) ? i : COUNT(tmp1) - 1];
  906. planner.max_feedrate_mm_s[i] = tmp2[i < COUNT(tmp2) ? i : COUNT(tmp2) - 1];
  907. planner.max_acceleration_mm_per_s2[i] = tmp3[i < COUNT(tmp3) ? i : COUNT(tmp3) - 1];
  908. }
  909. planner.acceleration = DEFAULT_ACCELERATION;
  910. planner.retract_acceleration = DEFAULT_RETRACT_ACCELERATION;
  911. planner.travel_acceleration = DEFAULT_TRAVEL_ACCELERATION;
  912. planner.min_feedrate_mm_s = DEFAULT_MINIMUMFEEDRATE;
  913. planner.min_segment_time = DEFAULT_MINSEGMENTTIME;
  914. planner.min_travel_feedrate_mm_s = DEFAULT_MINTRAVELFEEDRATE;
  915. planner.max_jerk[X_AXIS] = DEFAULT_XJERK;
  916. planner.max_jerk[Y_AXIS] = DEFAULT_YJERK;
  917. planner.max_jerk[Z_AXIS] = DEFAULT_ZJERK;
  918. planner.max_jerk[E_AXIS] = DEFAULT_EJERK;
  919. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  920. planner.z_fade_height = 0.0;
  921. #endif
  922. #if HAS_HOME_OFFSET
  923. ZERO(home_offset);
  924. #endif
  925. #if HOTENDS > 1
  926. constexpr float tmp4[XYZ][HOTENDS] = {
  927. HOTEND_OFFSET_X,
  928. HOTEND_OFFSET_Y
  929. #ifdef HOTEND_OFFSET_Z
  930. , HOTEND_OFFSET_Z
  931. #else
  932. , { 0 }
  933. #endif
  934. };
  935. static_assert(
  936. tmp4[X_AXIS][0] == 0 && tmp4[Y_AXIS][0] == 0 && tmp4[Z_AXIS][0] == 0,
  937. "Offsets for the first hotend must be 0.0."
  938. );
  939. LOOP_XYZ(i) HOTEND_LOOP() hotend_offset[i][e] = tmp4[i][e];
  940. #endif
  941. // Applies to all MBL and ABL
  942. #if PLANNER_LEVELING
  943. reset_bed_level();
  944. #endif
  945. #if HAS_BED_PROBE
  946. zprobe_zoffset = Z_PROBE_OFFSET_FROM_EXTRUDER;
  947. #endif
  948. #if ENABLED(DELTA)
  949. const float adj[ABC] = DELTA_ENDSTOP_ADJ,
  950. dta[3] = DELTA_TOWER_ANGLE_TRIM;
  951. COPY(endstop_adj, adj);
  952. delta_radius = DELTA_RADIUS;
  953. delta_diagonal_rod = DELTA_DIAGONAL_ROD;
  954. delta_segments_per_second = DELTA_SEGMENTS_PER_SECOND;
  955. delta_calibration_radius = DELTA_CALIBRATION_RADIUS;
  956. delta_tower_angle_trim[A_AXIS] = dta[A_AXIS] - dta[C_AXIS];
  957. delta_tower_angle_trim[B_AXIS] = dta[B_AXIS] - dta[C_AXIS];
  958. home_offset[Z_AXIS] = 0;
  959. #elif ENABLED(Z_DUAL_ENDSTOPS)
  960. float z_endstop_adj =
  961. #ifdef Z_DUAL_ENDSTOPS_ADJUSTMENT
  962. Z_DUAL_ENDSTOPS_ADJUSTMENT
  963. #else
  964. 0
  965. #endif
  966. ;
  967. #endif
  968. #if ENABLED(ULTIPANEL)
  969. lcd_preheat_hotend_temp[0] = PREHEAT_1_TEMP_HOTEND;
  970. lcd_preheat_hotend_temp[1] = PREHEAT_2_TEMP_HOTEND;
  971. lcd_preheat_bed_temp[0] = PREHEAT_1_TEMP_BED;
  972. lcd_preheat_bed_temp[1] = PREHEAT_2_TEMP_BED;
  973. lcd_preheat_fan_speed[0] = PREHEAT_1_FAN_SPEED;
  974. lcd_preheat_fan_speed[1] = PREHEAT_2_FAN_SPEED;
  975. #endif
  976. #if HAS_LCD_CONTRAST
  977. lcd_contrast = DEFAULT_LCD_CONTRAST;
  978. #endif
  979. #if ENABLED(PIDTEMP)
  980. #if ENABLED(PID_PARAMS_PER_HOTEND) && HOTENDS > 1
  981. HOTEND_LOOP()
  982. #endif
  983. {
  984. PID_PARAM(Kp, e) = DEFAULT_Kp;
  985. PID_PARAM(Ki, e) = scalePID_i(DEFAULT_Ki);
  986. PID_PARAM(Kd, e) = scalePID_d(DEFAULT_Kd);
  987. #if ENABLED(PID_EXTRUSION_SCALING)
  988. PID_PARAM(Kc, e) = DEFAULT_Kc;
  989. #endif
  990. }
  991. #if ENABLED(PID_EXTRUSION_SCALING)
  992. lpq_len = 20; // default last-position-queue size
  993. #endif
  994. #endif // PIDTEMP
  995. #if ENABLED(PIDTEMPBED)
  996. thermalManager.bedKp = DEFAULT_bedKp;
  997. thermalManager.bedKi = scalePID_i(DEFAULT_bedKi);
  998. thermalManager.bedKd = scalePID_d(DEFAULT_bedKd);
  999. #endif
  1000. #if ENABLED(FWRETRACT)
  1001. autoretract_enabled = false;
  1002. retract_length = RETRACT_LENGTH;
  1003. #if EXTRUDERS > 1
  1004. retract_length_swap = RETRACT_LENGTH_SWAP;
  1005. #endif
  1006. retract_feedrate_mm_s = RETRACT_FEEDRATE;
  1007. retract_zlift = RETRACT_ZLIFT;
  1008. retract_recover_length = RETRACT_RECOVER_LENGTH;
  1009. #if EXTRUDERS > 1
  1010. retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  1011. #endif
  1012. retract_recover_feedrate_mm_s = RETRACT_RECOVER_FEEDRATE;
  1013. #endif
  1014. volumetric_enabled =
  1015. #if ENABLED(VOLUMETRIC_DEFAULT_ON)
  1016. true
  1017. #else
  1018. false
  1019. #endif
  1020. ;
  1021. for (uint8_t q = 0; q < COUNT(filament_size); q++)
  1022. filament_size[q] = DEFAULT_NOMINAL_FILAMENT_DIA;
  1023. endstops.enable_globally(
  1024. #if ENABLED(ENDSTOPS_ALWAYS_ON_DEFAULT)
  1025. (true)
  1026. #else
  1027. (false)
  1028. #endif
  1029. );
  1030. #if ENABLED(HAVE_TMC2130)
  1031. #if ENABLED(X_IS_TMC2130)
  1032. stepperX.setCurrent(X_CURRENT, R_SENSE, HOLD_MULTIPLIER);
  1033. #endif
  1034. #if ENABLED(Y_IS_TMC2130)
  1035. stepperY.setCurrent(Y_CURRENT, R_SENSE, HOLD_MULTIPLIER);
  1036. #endif
  1037. #if ENABLED(Z_IS_TMC2130)
  1038. stepperZ.setCurrent(Z_CURRENT, R_SENSE, HOLD_MULTIPLIER);
  1039. #endif
  1040. #if ENABLED(X2_IS_TMC2130)
  1041. stepperX2.setCurrent(X2_CURRENT, R_SENSE, HOLD_MULTIPLIER);
  1042. #endif
  1043. #if ENABLED(Y2_IS_TMC2130)
  1044. stepperY2.setCurrent(Y2_CURRENT, R_SENSE, HOLD_MULTIPLIER);
  1045. #endif
  1046. #if ENABLED(Z2_IS_TMC2130)
  1047. stepperZ2.setCurrent(Z2_CURRENT, R_SENSE, HOLD_MULTIPLIER);
  1048. #endif
  1049. #if ENABLED(E0_IS_TMC2130)
  1050. stepperE0.setCurrent(E0_CURRENT, R_SENSE, HOLD_MULTIPLIER);
  1051. #endif
  1052. #if ENABLED(E1_IS_TMC2130)
  1053. stepperE1.setCurrent(E1_CURRENT, R_SENSE, HOLD_MULTIPLIER);
  1054. #endif
  1055. #if ENABLED(E2_IS_TMC2130)
  1056. stepperE2.setCurrent(E2_CURRENT, R_SENSE, HOLD_MULTIPLIER);
  1057. #endif
  1058. #if ENABLED(E3_IS_TMC2130)
  1059. stepperE3.setCurrent(E3_CURRENT, R_SENSE, HOLD_MULTIPLIER);
  1060. #endif
  1061. #endif
  1062. #if ENABLED(LIN_ADVANCE)
  1063. planner.set_extruder_advance_k(LIN_ADVANCE_K);
  1064. planner.set_advance_ed_ratio(LIN_ADVANCE_E_D_RATIO);
  1065. #endif
  1066. postprocess();
  1067. SERIAL_ECHO_START;
  1068. SERIAL_ECHOLNPGM("Hardcoded Default Settings Loaded");
  1069. }
  1070. #if DISABLED(DISABLE_M503)
  1071. #define CONFIG_ECHO_START do{ if (!forReplay) SERIAL_ECHO_START; }while(0)
  1072. /**
  1073. * M503 - Report current settings in RAM
  1074. *
  1075. * Unless specifically disabled, M503 is available even without EEPROM
  1076. */
  1077. void MarlinSettings::report(bool forReplay) {
  1078. /**
  1079. * Announce current units, in case inches are being displayed
  1080. */
  1081. CONFIG_ECHO_START;
  1082. #if ENABLED(INCH_MODE_SUPPORT)
  1083. extern float linear_unit_factor, volumetric_unit_factor;
  1084. #define LINEAR_UNIT(N) ((N) / linear_unit_factor)
  1085. #define VOLUMETRIC_UNIT(N) ((N) / (volumetric_enabled ? volumetric_unit_factor : linear_unit_factor))
  1086. serialprintPGM(linear_unit_factor == 1.0 ? PSTR(" G21 ; Units in mm\n") : PSTR(" G20 ; Units in inches\n"));
  1087. #else
  1088. #define LINEAR_UNIT(N) N
  1089. #define VOLUMETRIC_UNIT(N) N
  1090. SERIAL_ECHOLNPGM(" G21 ; Units in mm\n");
  1091. #endif
  1092. SERIAL_EOL;
  1093. /**
  1094. * Volumetric extrusion M200
  1095. */
  1096. if (!forReplay) {
  1097. CONFIG_ECHO_START;
  1098. SERIAL_ECHOPGM("Filament settings:");
  1099. if (volumetric_enabled)
  1100. SERIAL_EOL;
  1101. else
  1102. SERIAL_ECHOLNPGM(" Disabled");
  1103. }
  1104. CONFIG_ECHO_START;
  1105. SERIAL_ECHOPAIR(" M200 D", filament_size[0]);
  1106. SERIAL_EOL;
  1107. #if EXTRUDERS > 1
  1108. CONFIG_ECHO_START;
  1109. SERIAL_ECHOPAIR(" M200 T1 D", filament_size[1]);
  1110. SERIAL_EOL;
  1111. #if EXTRUDERS > 2
  1112. CONFIG_ECHO_START;
  1113. SERIAL_ECHOPAIR(" M200 T2 D", filament_size[2]);
  1114. SERIAL_EOL;
  1115. #if EXTRUDERS > 3
  1116. CONFIG_ECHO_START;
  1117. SERIAL_ECHOPAIR(" M200 T3 D", filament_size[3]);
  1118. SERIAL_EOL;
  1119. #if EXTRUDERS > 4
  1120. CONFIG_ECHO_START;
  1121. SERIAL_ECHOPAIR(" M200 T4 D", filament_size[4]);
  1122. SERIAL_EOL;
  1123. #endif // EXTRUDERS > 4
  1124. #endif // EXTRUDERS > 3
  1125. #endif // EXTRUDERS > 2
  1126. #endif // EXTRUDERS > 1
  1127. if (!volumetric_enabled) {
  1128. CONFIG_ECHO_START;
  1129. SERIAL_ECHOLNPGM(" M200 D0");
  1130. }
  1131. if (!forReplay) {
  1132. CONFIG_ECHO_START;
  1133. SERIAL_ECHOLNPGM("Steps per unit:");
  1134. }
  1135. CONFIG_ECHO_START;
  1136. SERIAL_ECHOPAIR(" M92 X", LINEAR_UNIT(planner.axis_steps_per_mm[X_AXIS]));
  1137. SERIAL_ECHOPAIR(" Y", LINEAR_UNIT(planner.axis_steps_per_mm[Y_AXIS]));
  1138. SERIAL_ECHOPAIR(" Z", LINEAR_UNIT(planner.axis_steps_per_mm[Z_AXIS]));
  1139. #if DISABLED(DISTINCT_E_FACTORS)
  1140. SERIAL_ECHOPAIR(" E", VOLUMETRIC_UNIT(planner.axis_steps_per_mm[E_AXIS]));
  1141. #endif
  1142. SERIAL_EOL;
  1143. #if ENABLED(DISTINCT_E_FACTORS)
  1144. CONFIG_ECHO_START;
  1145. for (uint8_t i = 0; i < E_STEPPERS; i++) {
  1146. SERIAL_ECHOPAIR(" M92 T", (int)i);
  1147. SERIAL_ECHOLNPAIR(" E", VOLUMETRIC_UNIT(planner.axis_steps_per_mm[E_AXIS + i]));
  1148. }
  1149. #endif
  1150. if (!forReplay) {
  1151. CONFIG_ECHO_START;
  1152. SERIAL_ECHOLNPGM("Maximum feedrates (units/s):");
  1153. }
  1154. CONFIG_ECHO_START;
  1155. SERIAL_ECHOPAIR(" M203 X", LINEAR_UNIT(planner.max_feedrate_mm_s[X_AXIS]));
  1156. SERIAL_ECHOPAIR(" Y", LINEAR_UNIT(planner.max_feedrate_mm_s[Y_AXIS]));
  1157. SERIAL_ECHOPAIR(" Z", LINEAR_UNIT(planner.max_feedrate_mm_s[Z_AXIS]));
  1158. #if DISABLED(DISTINCT_E_FACTORS)
  1159. SERIAL_ECHOPAIR(" E", VOLUMETRIC_UNIT(planner.max_feedrate_mm_s[E_AXIS]));
  1160. #endif
  1161. SERIAL_EOL;
  1162. #if ENABLED(DISTINCT_E_FACTORS)
  1163. CONFIG_ECHO_START;
  1164. for (uint8_t i = 0; i < E_STEPPERS; i++) {
  1165. SERIAL_ECHOPAIR(" M203 T", (int)i);
  1166. SERIAL_ECHOLNPAIR(" E", VOLUMETRIC_UNIT(planner.max_feedrate_mm_s[E_AXIS + i]));
  1167. }
  1168. #endif
  1169. if (!forReplay) {
  1170. CONFIG_ECHO_START;
  1171. SERIAL_ECHOLNPGM("Maximum Acceleration (units/s2):");
  1172. }
  1173. CONFIG_ECHO_START;
  1174. SERIAL_ECHOPAIR(" M201 X", LINEAR_UNIT(planner.max_acceleration_mm_per_s2[X_AXIS]));
  1175. SERIAL_ECHOPAIR(" Y", LINEAR_UNIT(planner.max_acceleration_mm_per_s2[Y_AXIS]));
  1176. SERIAL_ECHOPAIR(" Z", LINEAR_UNIT(planner.max_acceleration_mm_per_s2[Z_AXIS]));
  1177. #if DISABLED(DISTINCT_E_FACTORS)
  1178. SERIAL_ECHOPAIR(" E", VOLUMETRIC_UNIT(planner.max_acceleration_mm_per_s2[E_AXIS]));
  1179. #endif
  1180. SERIAL_EOL;
  1181. #if ENABLED(DISTINCT_E_FACTORS)
  1182. SERIAL_ECHO_START;
  1183. for (uint8_t i = 0; i < E_STEPPERS; i++) {
  1184. SERIAL_ECHOPAIR(" M201 T", (int)i);
  1185. SERIAL_ECHOLNPAIR(" E", VOLUMETRIC_UNIT(planner.max_acceleration_mm_per_s2[E_AXIS + i]));
  1186. }
  1187. #endif
  1188. if (!forReplay) {
  1189. CONFIG_ECHO_START;
  1190. SERIAL_ECHOLNPGM("Acceleration (units/s2): P<print_accel> R<retract_accel> T<travel_accel>");
  1191. }
  1192. CONFIG_ECHO_START;
  1193. SERIAL_ECHOPAIR(" M204 P", LINEAR_UNIT(planner.acceleration));
  1194. SERIAL_ECHOPAIR(" R", LINEAR_UNIT(planner.retract_acceleration));
  1195. SERIAL_ECHOLNPAIR(" T", LINEAR_UNIT(planner.travel_acceleration));
  1196. if (!forReplay) {
  1197. CONFIG_ECHO_START;
  1198. SERIAL_ECHOLNPGM("Advanced: S<min_feedrate> T<min_travel_feedrate> B<min_segment_time_ms> X<max_xy_jerk> Z<max_z_jerk> E<max_e_jerk>");
  1199. }
  1200. CONFIG_ECHO_START;
  1201. SERIAL_ECHOPAIR(" M205 S", LINEAR_UNIT(planner.min_feedrate_mm_s));
  1202. SERIAL_ECHOPAIR(" T", LINEAR_UNIT(planner.min_travel_feedrate_mm_s));
  1203. SERIAL_ECHOPAIR(" B", planner.min_segment_time);
  1204. SERIAL_ECHOPAIR(" X", LINEAR_UNIT(planner.max_jerk[X_AXIS]));
  1205. SERIAL_ECHOPAIR(" Y", LINEAR_UNIT(planner.max_jerk[Y_AXIS]));
  1206. SERIAL_ECHOPAIR(" Z", LINEAR_UNIT(planner.max_jerk[Z_AXIS]));
  1207. SERIAL_ECHOLNPAIR(" E", LINEAR_UNIT(planner.max_jerk[E_AXIS]));
  1208. #if HAS_M206_COMMAND
  1209. if (!forReplay) {
  1210. CONFIG_ECHO_START;
  1211. SERIAL_ECHOLNPGM("Home offset:");
  1212. }
  1213. CONFIG_ECHO_START;
  1214. SERIAL_ECHOPAIR(" M206 X", LINEAR_UNIT(home_offset[X_AXIS]));
  1215. SERIAL_ECHOPAIR(" Y", LINEAR_UNIT(home_offset[Y_AXIS]));
  1216. SERIAL_ECHOLNPAIR(" Z", LINEAR_UNIT(home_offset[Z_AXIS]));
  1217. #endif
  1218. #if HOTENDS > 1
  1219. if (!forReplay) {
  1220. CONFIG_ECHO_START;
  1221. SERIAL_ECHOLNPGM("Hotend offsets:");
  1222. }
  1223. CONFIG_ECHO_START;
  1224. for (uint8_t e = 1; e < HOTENDS; e++) {
  1225. SERIAL_ECHOPAIR(" M218 T", (int)e);
  1226. SERIAL_ECHOPAIR(" X", LINEAR_UNIT(hotend_offset[X_AXIS][e]));
  1227. SERIAL_ECHOPAIR(" Y", LINEAR_UNIT(hotend_offset[Y_AXIS][e]));
  1228. #if ENABLED(DUAL_X_CARRIAGE) || ENABLED(SWITCHING_EXTRUDER)
  1229. SERIAL_ECHOPAIR(" Z", LINEAR_UNIT(hotend_offset[Z_AXIS][e]));
  1230. #endif
  1231. SERIAL_EOL;
  1232. }
  1233. #endif
  1234. #if ENABLED(MESH_BED_LEVELING)
  1235. if (!forReplay) {
  1236. CONFIG_ECHO_START;
  1237. SERIAL_ECHOLNPGM("Mesh Bed Leveling:");
  1238. }
  1239. CONFIG_ECHO_START;
  1240. SERIAL_ECHOPAIR(" M420 S", mbl.has_mesh() ? 1 : 0);
  1241. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  1242. SERIAL_ECHOPAIR(" Z", LINEAR_UNIT(planner.z_fade_height));
  1243. #endif
  1244. SERIAL_EOL;
  1245. for (uint8_t py = 0; py < GRID_MAX_POINTS_Y; py++) {
  1246. for (uint8_t px = 0; px < GRID_MAX_POINTS_X; px++) {
  1247. CONFIG_ECHO_START;
  1248. SERIAL_ECHOPAIR(" G29 S3 X", (int)px + 1);
  1249. SERIAL_ECHOPAIR(" Y", (int)py + 1);
  1250. SERIAL_ECHOPGM(" Z");
  1251. SERIAL_PROTOCOL_F(LINEAR_UNIT(mbl.z_values[px][py]), 5);
  1252. SERIAL_EOL;
  1253. }
  1254. }
  1255. #elif ENABLED(AUTO_BED_LEVELING_UBL)
  1256. if (!forReplay) {
  1257. CONFIG_ECHO_START;
  1258. SERIAL_ECHOLNPGM("Unified Bed Leveling:");
  1259. }
  1260. CONFIG_ECHO_START;
  1261. SERIAL_ECHOPAIR(" M420 S", ubl.state.active ? 1 : 0);
  1262. //#if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  1263. // SERIAL_ECHOPAIR(" Z", ubl.state.g29_correction_fade_height);
  1264. //#endif
  1265. SERIAL_EOL;
  1266. if (!forReplay) {
  1267. SERIAL_ECHOPGM("\nUBL is ");
  1268. ubl.state.active ? SERIAL_CHAR('A') : SERIAL_ECHOPGM("Ina");
  1269. SERIAL_ECHOLNPAIR("ctive\n\nActive Mesh Slot: ", ubl.state.eeprom_storage_slot);
  1270. SERIAL_ECHOPGM("z_offset: ");
  1271. SERIAL_ECHO_F(ubl.state.z_offset, 6);
  1272. SERIAL_EOL;
  1273. SERIAL_ECHOPAIR("EEPROM can hold ", (int)((UBL_LAST_EEPROM_INDEX - ubl.eeprom_start) / sizeof(ubl.z_values)));
  1274. SERIAL_ECHOLNPGM(" meshes.\n");
  1275. SERIAL_ECHOLNPAIR("GRID_MAX_POINTS_X ", GRID_MAX_POINTS_X);
  1276. SERIAL_ECHOLNPAIR("GRID_MAX_POINTS_Y ", GRID_MAX_POINTS_Y);
  1277. SERIAL_ECHOPGM("UBL_MESH_MIN_X " STRINGIFY(UBL_MESH_MIN_X));
  1278. SERIAL_ECHOLNPAIR("=", UBL_MESH_MIN_X );
  1279. SERIAL_ECHOPGM("UBL_MESH_MIN_Y " STRINGIFY(UBL_MESH_MIN_Y));
  1280. SERIAL_ECHOLNPAIR("=", UBL_MESH_MIN_Y );
  1281. SERIAL_ECHOPGM("UBL_MESH_MAX_X " STRINGIFY(UBL_MESH_MAX_X));
  1282. SERIAL_ECHOLNPAIR("=", UBL_MESH_MAX_X);
  1283. SERIAL_ECHOPGM("UBL_MESH_MAX_Y " STRINGIFY(UBL_MESH_MAX_Y));
  1284. SERIAL_ECHOLNPAIR("=", UBL_MESH_MAX_Y);
  1285. SERIAL_ECHOLNPAIR("MESH_X_DIST ", MESH_X_DIST);
  1286. SERIAL_ECHOLNPAIR("MESH_Y_DIST ", MESH_Y_DIST);
  1287. SERIAL_EOL;
  1288. }
  1289. #elif HAS_ABL
  1290. if (!forReplay) {
  1291. CONFIG_ECHO_START;
  1292. SERIAL_ECHOLNPGM("Auto Bed Leveling:");
  1293. }
  1294. CONFIG_ECHO_START;
  1295. SERIAL_ECHOPAIR(" M420 S", planner.abl_enabled ? 1 : 0);
  1296. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  1297. SERIAL_ECHOPAIR(" Z", LINEAR_UNIT(planner.z_fade_height));
  1298. #endif
  1299. SERIAL_EOL;
  1300. #endif
  1301. #if ENABLED(DELTA)
  1302. if (!forReplay) {
  1303. CONFIG_ECHO_START;
  1304. SERIAL_ECHOLNPGM("Endstop adjustment:");
  1305. }
  1306. CONFIG_ECHO_START;
  1307. SERIAL_ECHOPAIR(" M666 X", LINEAR_UNIT(endstop_adj[X_AXIS]));
  1308. SERIAL_ECHOPAIR(" Y", LINEAR_UNIT(endstop_adj[Y_AXIS]));
  1309. SERIAL_ECHOLNPAIR(" Z", LINEAR_UNIT(endstop_adj[Z_AXIS]));
  1310. if (!forReplay) {
  1311. CONFIG_ECHO_START;
  1312. SERIAL_ECHOLNPGM("Delta settings: L<diagonal_rod> R<radius> H<height> S<segments_per_s> B<calibration radius> XYZ<tower angle corrections>");
  1313. }
  1314. CONFIG_ECHO_START;
  1315. SERIAL_ECHOPAIR(" M665 L", LINEAR_UNIT(delta_diagonal_rod));
  1316. SERIAL_ECHOPAIR(" R", LINEAR_UNIT(delta_radius));
  1317. SERIAL_ECHOPAIR(" H", LINEAR_UNIT(DELTA_HEIGHT + home_offset[Z_AXIS]));
  1318. SERIAL_ECHOPAIR(" S", delta_segments_per_second);
  1319. SERIAL_ECHOPAIR(" B", LINEAR_UNIT(delta_calibration_radius));
  1320. SERIAL_ECHOPAIR(" X", LINEAR_UNIT(delta_tower_angle_trim[A_AXIS]));
  1321. SERIAL_ECHOPAIR(" Y", LINEAR_UNIT(delta_tower_angle_trim[B_AXIS]));
  1322. SERIAL_ECHOPAIR(" Z", 0.00);
  1323. SERIAL_EOL;
  1324. #elif ENABLED(Z_DUAL_ENDSTOPS)
  1325. if (!forReplay) {
  1326. CONFIG_ECHO_START;
  1327. SERIAL_ECHOLNPGM("Z2 Endstop adjustment:");
  1328. }
  1329. CONFIG_ECHO_START;
  1330. SERIAL_ECHOLNPAIR(" M666 Z", LINEAR_UNIT(z_endstop_adj));
  1331. #endif // DELTA
  1332. #if ENABLED(ULTIPANEL)
  1333. if (!forReplay) {
  1334. CONFIG_ECHO_START;
  1335. SERIAL_ECHOLNPGM("Material heatup parameters:");
  1336. }
  1337. CONFIG_ECHO_START;
  1338. for (uint8_t i = 0; i < COUNT(lcd_preheat_hotend_temp); i++) {
  1339. SERIAL_ECHOPAIR(" M145 S", (int)i);
  1340. SERIAL_ECHOPAIR(" H", lcd_preheat_hotend_temp[i]);
  1341. SERIAL_ECHOPAIR(" B", lcd_preheat_bed_temp[i]);
  1342. SERIAL_ECHOLNPAIR(" F", lcd_preheat_fan_speed[i]);
  1343. }
  1344. #endif // ULTIPANEL
  1345. #if HAS_PID_HEATING
  1346. if (!forReplay) {
  1347. CONFIG_ECHO_START;
  1348. SERIAL_ECHOLNPGM("PID settings:");
  1349. }
  1350. #if ENABLED(PIDTEMP)
  1351. #if HOTENDS > 1
  1352. if (forReplay) {
  1353. HOTEND_LOOP() {
  1354. CONFIG_ECHO_START;
  1355. SERIAL_ECHOPAIR(" M301 E", e);
  1356. SERIAL_ECHOPAIR(" P", PID_PARAM(Kp, e));
  1357. SERIAL_ECHOPAIR(" I", unscalePID_i(PID_PARAM(Ki, e)));
  1358. SERIAL_ECHOPAIR(" D", unscalePID_d(PID_PARAM(Kd, e)));
  1359. #if ENABLED(PID_EXTRUSION_SCALING)
  1360. SERIAL_ECHOPAIR(" C", PID_PARAM(Kc, e));
  1361. if (e == 0) SERIAL_ECHOPAIR(" L", lpq_len);
  1362. #endif
  1363. SERIAL_EOL;
  1364. }
  1365. }
  1366. else
  1367. #endif // HOTENDS > 1
  1368. // !forReplay || HOTENDS == 1
  1369. {
  1370. CONFIG_ECHO_START;
  1371. SERIAL_ECHOPAIR(" M301 P", PID_PARAM(Kp, 0)); // for compatibility with hosts, only echo values for E0
  1372. SERIAL_ECHOPAIR(" I", unscalePID_i(PID_PARAM(Ki, 0)));
  1373. SERIAL_ECHOPAIR(" D", unscalePID_d(PID_PARAM(Kd, 0)));
  1374. #if ENABLED(PID_EXTRUSION_SCALING)
  1375. SERIAL_ECHOPAIR(" C", PID_PARAM(Kc, 0));
  1376. SERIAL_ECHOPAIR(" L", lpq_len);
  1377. #endif
  1378. SERIAL_EOL;
  1379. }
  1380. #endif // PIDTEMP
  1381. #if ENABLED(PIDTEMPBED)
  1382. CONFIG_ECHO_START;
  1383. SERIAL_ECHOPAIR(" M304 P", thermalManager.bedKp);
  1384. SERIAL_ECHOPAIR(" I", unscalePID_i(thermalManager.bedKi));
  1385. SERIAL_ECHOPAIR(" D", unscalePID_d(thermalManager.bedKd));
  1386. SERIAL_EOL;
  1387. #endif
  1388. #endif // PIDTEMP || PIDTEMPBED
  1389. #if HAS_LCD_CONTRAST
  1390. if (!forReplay) {
  1391. CONFIG_ECHO_START;
  1392. SERIAL_ECHOLNPGM("LCD Contrast:");
  1393. }
  1394. CONFIG_ECHO_START;
  1395. SERIAL_ECHOLNPAIR(" M250 C", lcd_contrast);
  1396. #endif
  1397. #if ENABLED(FWRETRACT)
  1398. if (!forReplay) {
  1399. CONFIG_ECHO_START;
  1400. SERIAL_ECHOLNPGM("Retract: S<length> F<units/m> Z<lift>");
  1401. }
  1402. CONFIG_ECHO_START;
  1403. SERIAL_ECHOPAIR(" M207 S", LINEAR_UNIT(retract_length));
  1404. #if EXTRUDERS > 1
  1405. SERIAL_ECHOPAIR(" W", LINEAR_UNIT(retract_length_swap));
  1406. #endif
  1407. SERIAL_ECHOPAIR(" F", MMS_TO_MMM(LINEAR_UNIT(retract_feedrate_mm_s)));
  1408. SERIAL_ECHOLNPAIR(" Z", LINEAR_UNIT(retract_zlift));
  1409. if (!forReplay) {
  1410. CONFIG_ECHO_START;
  1411. SERIAL_ECHOLNPGM("Recover: S<length> F<units/m>");
  1412. }
  1413. CONFIG_ECHO_START;
  1414. SERIAL_ECHOPAIR(" M208 S", LINEAR_UNIT(retract_recover_length));
  1415. #if EXTRUDERS > 1
  1416. SERIAL_ECHOPAIR(" W", LINEAR_UNIT(retract_recover_length_swap));
  1417. #endif
  1418. SERIAL_ECHOLNPAIR(" F", MMS_TO_MMM(LINEAR_UNIT(retract_recover_feedrate_mm_s)));
  1419. if (!forReplay) {
  1420. CONFIG_ECHO_START;
  1421. SERIAL_ECHOLNPGM("Auto-Retract: S=0 to disable, 1 to interpret extrude-only moves as retracts or recoveries");
  1422. }
  1423. CONFIG_ECHO_START;
  1424. SERIAL_ECHOLNPAIR(" M209 S", autoretract_enabled ? 1 : 0);
  1425. #endif // FWRETRACT
  1426. /**
  1427. * Auto Bed Leveling
  1428. */
  1429. #if HAS_BED_PROBE
  1430. if (!forReplay) {
  1431. CONFIG_ECHO_START;
  1432. SERIAL_ECHOLNPGM("Z-Probe Offset (mm):");
  1433. }
  1434. CONFIG_ECHO_START;
  1435. SERIAL_ECHOLNPAIR(" M851 Z", LINEAR_UNIT(zprobe_zoffset));
  1436. #endif
  1437. /**
  1438. * TMC2130 stepper driver current
  1439. */
  1440. #if ENABLED(HAVE_TMC2130)
  1441. if (!forReplay) {
  1442. CONFIG_ECHO_START;
  1443. SERIAL_ECHOLNPGM("Stepper driver current:");
  1444. }
  1445. CONFIG_ECHO_START;
  1446. SERIAL_ECHO(" M906");
  1447. #if ENABLED(X_IS_TMC2130)
  1448. SERIAL_ECHOPAIR(" X", stepperX.getCurrent());
  1449. #endif
  1450. #if ENABLED(Y_IS_TMC2130)
  1451. SERIAL_ECHOPAIR(" Y", stepperY.getCurrent());
  1452. #endif
  1453. #if ENABLED(Z_IS_TMC2130)
  1454. SERIAL_ECHOPAIR(" Z", stepperZ.getCurrent());
  1455. #endif
  1456. #if ENABLED(X2_IS_TMC2130)
  1457. SERIAL_ECHOPAIR(" X2", stepperX2.getCurrent());
  1458. #endif
  1459. #if ENABLED(Y2_IS_TMC2130)
  1460. SERIAL_ECHOPAIR(" Y2", stepperY2.getCurrent());
  1461. #endif
  1462. #if ENABLED(Z2_IS_TMC2130)
  1463. SERIAL_ECHOPAIR(" Z2", stepperZ2.getCurrent());
  1464. #endif
  1465. #if ENABLED(E0_IS_TMC2130)
  1466. SERIAL_ECHOPAIR(" E0", stepperE0.getCurrent());
  1467. #endif
  1468. #if ENABLED(E1_IS_TMC2130)
  1469. SERIAL_ECHOPAIR(" E1", stepperE1.getCurrent());
  1470. #endif
  1471. #if ENABLED(E2_IS_TMC2130)
  1472. SERIAL_ECHOPAIR(" E2", stepperE2.getCurrent());
  1473. #endif
  1474. #if ENABLED(E3_IS_TMC2130)
  1475. SERIAL_ECHOPAIR(" E3", stepperE3.getCurrent());
  1476. #endif
  1477. SERIAL_EOL;
  1478. #endif
  1479. /**
  1480. * Linear Advance
  1481. */
  1482. #if ENABLED(LIN_ADVANCE)
  1483. if (!forReplay) {
  1484. CONFIG_ECHO_START;
  1485. SERIAL_ECHOLNPGM("Linear Advance:");
  1486. }
  1487. CONFIG_ECHO_START;
  1488. SERIAL_ECHOPAIR(" M900 K", planner.get_extruder_advance_k());
  1489. SERIAL_ECHOLNPAIR(" R", planner.get_advance_ed_ratio());
  1490. #endif
  1491. }
  1492. #endif // !DISABLE_M503