My Marlin configs for Fabrikator Mini and CTC i3 Pro B
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

Marlin_main.cpp 103KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097
  1. /* -*- c++ -*- */
  2. /*
  3. Reprap firmware based on Sprinter and grbl.
  4. Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  5. This program is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. This program is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with this program. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. /*
  17. This firmware is a mashup between Sprinter and grbl.
  18. (https://github.com/kliment/Sprinter)
  19. (https://github.com/simen/grbl/tree)
  20. It has preliminary support for Matthew Roberts advance algorithm
  21. http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  22. */
  23. #include "Marlin.h"
  24. #ifdef ENABLE_AUTO_BED_LEVELING
  25. #include "vector_3.h"
  26. #endif // ENABLE_AUTO_BED_LEVELING
  27. #include "ultralcd.h"
  28. #include "planner.h"
  29. #include "stepper.h"
  30. #include "temperature.h"
  31. #include "motion_control.h"
  32. #include "cardreader.h"
  33. #include "watchdog.h"
  34. #include "ConfigurationStore.h"
  35. #include "language.h"
  36. #include "pins_arduino.h"
  37. #if NUM_SERVOS > 0
  38. #include "Servo.h"
  39. #endif
  40. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  41. #include <SPI.h>
  42. #endif
  43. #define VERSION_STRING "1.0.0"
  44. // look here for descriptions of gcodes: http://linuxcnc.org/handbook/gcode/g-code.html
  45. // http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  46. //Implemented Codes
  47. //-------------------
  48. // G0 -> G1
  49. // G1 - Coordinated Movement X Y Z E
  50. // G2 - CW ARC
  51. // G3 - CCW ARC
  52. // G4 - Dwell S<seconds> or P<milliseconds>
  53. // G10 - retract filament according to settings of M207
  54. // G11 - retract recover filament according to settings of M208
  55. // G28 - Home all Axis
  56. // G29 - Detailed Z-Probe, probes the bed at 3 points. You must de at the home position for this to work correctly.
  57. // G30 - Single Z Probe, probes bed at current XY location.
  58. // G90 - Use Absolute Coordinates
  59. // G91 - Use Relative Coordinates
  60. // G92 - Set current position to cordinates given
  61. // M Codes
  62. // M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
  63. // M1 - Same as M0
  64. // M17 - Enable/Power all stepper motors
  65. // M18 - Disable all stepper motors; same as M84
  66. // M20 - List SD card
  67. // M21 - Init SD card
  68. // M22 - Release SD card
  69. // M23 - Select SD file (M23 filename.g)
  70. // M24 - Start/resume SD print
  71. // M25 - Pause SD print
  72. // M26 - Set SD position in bytes (M26 S12345)
  73. // M27 - Report SD print status
  74. // M28 - Start SD write (M28 filename.g)
  75. // M29 - Stop SD write
  76. // M30 - Delete file from SD (M30 filename.g)
  77. // M31 - Output time since last M109 or SD card start to serial
  78. // M32 - Select file and start SD print (Can be used when printing from SD card)
  79. // M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  80. // M80 - Turn on Power Supply
  81. // M81 - Turn off Power Supply
  82. // M82 - Set E codes absolute (default)
  83. // M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  84. // M84 - Disable steppers until next move,
  85. // or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  86. // M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  87. // M92 - Set axis_steps_per_unit - same syntax as G92
  88. // M104 - Set extruder target temp
  89. // M105 - Read current temp
  90. // M106 - Fan on
  91. // M107 - Fan off
  92. // M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  93. // Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  94. // M114 - Output current position to serial port
  95. // M115 - Capabilities string
  96. // M117 - display message
  97. // M119 - Output Endstop status to serial port
  98. // M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  99. // M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  100. // M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  101. // M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  102. // M140 - Set bed target temp
  103. // M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  104. // Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  105. // M200 - Set filament diameter
  106. // M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  107. // M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  108. // M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  109. // M204 - Set default acceleration: S normal moves T filament only moves (M204 S3000 T7000) im mm/sec^2 also sets minimum segment time in ms (B20000) to prevent buffer underruns and M20 minimum feedrate
  110. // M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
  111. // M206 - set additional homeing offset
  112. // M207 - set retract length S[positive mm] F[feedrate mm/sec] Z[additional zlift/hop]
  113. // M208 - set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
  114. // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  115. // M218 - set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  116. // M220 S<factor in percent>- set speed factor override percentage
  117. // M221 S<factor in percent>- set extrude factor override percentage
  118. // M240 - Trigger a camera to take a photograph
  119. // M250 - Set LCD contrast C<contrast value> (value 0..63)
  120. // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  121. // M300 - Play beepsound S<frequency Hz> P<duration ms>
  122. // M301 - Set PID parameters P I and D
  123. // M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  124. // M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  125. // M304 - Set bed PID parameters P I and D
  126. // M400 - Finish all moves
  127. // M401 - Lower z-probe if present
  128. // M402 - Raise z-probe if present
  129. // M500 - stores paramters in EEPROM
  130. // M501 - reads parameters from EEPROM (if you need reset them after you changed them temporarily).
  131. // M502 - reverts to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  132. // M503 - print the current settings (from memory not from eeprom)
  133. // M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  134. // M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  135. // M666 - set delta endstop adjustemnt
  136. // M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  137. // M907 - Set digital trimpot motor current using axis codes.
  138. // M908 - Control digital trimpot directly.
  139. // M350 - Set microstepping mode.
  140. // M351 - Toggle MS1 MS2 pins directly.
  141. // M928 - Start SD logging (M928 filename.g) - ended by M29
  142. // M999 - Restart after being stopped by error
  143. //Stepper Movement Variables
  144. //===========================================================================
  145. //=============================imported variables============================
  146. //===========================================================================
  147. //===========================================================================
  148. //=============================public variables=============================
  149. //===========================================================================
  150. #ifdef SDSUPPORT
  151. CardReader card;
  152. #endif
  153. float homing_feedrate[] = HOMING_FEEDRATE;
  154. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  155. int feedmultiply=100; //100->1 200->2
  156. int saved_feedmultiply;
  157. int extrudemultiply=100; //100->1 200->2
  158. float current_position[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0 };
  159. float add_homeing[3]={0,0,0};
  160. #ifdef DELTA
  161. float endstop_adj[3]={0,0,0};
  162. #endif
  163. float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  164. float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  165. // Extruder offset
  166. #if EXTRUDERS > 1
  167. #ifndef DUAL_X_CARRIAGE
  168. #define NUM_EXTRUDER_OFFSETS 2 // only in XY plane
  169. #else
  170. #define NUM_EXTRUDER_OFFSETS 3 // supports offsets in XYZ plane
  171. #endif
  172. float extruder_offset[NUM_EXTRUDER_OFFSETS][EXTRUDERS] = {
  173. #if defined(EXTRUDER_OFFSET_X) && defined(EXTRUDER_OFFSET_Y)
  174. EXTRUDER_OFFSET_X, EXTRUDER_OFFSET_Y
  175. #endif
  176. };
  177. #endif
  178. uint8_t active_extruder = 0;
  179. int fanSpeed=0;
  180. #ifdef SERVO_ENDSTOPS
  181. int servo_endstops[] = SERVO_ENDSTOPS;
  182. int servo_endstop_angles[] = SERVO_ENDSTOP_ANGLES;
  183. #endif
  184. #ifdef BARICUDA
  185. int ValvePressure=0;
  186. int EtoPPressure=0;
  187. #endif
  188. #ifdef FWRETRACT
  189. bool autoretract_enabled=true;
  190. bool retracted=false;
  191. float retract_length=3, retract_feedrate=17*60, retract_zlift=0.8;
  192. float retract_recover_length=0, retract_recover_feedrate=8*60;
  193. #endif
  194. #ifdef ULTIPANEL
  195. bool powersupply = true;
  196. #endif
  197. #ifdef DELTA
  198. float delta[3] = {0.0, 0.0, 0.0};
  199. #endif
  200. //===========================================================================
  201. //=============================private variables=============================
  202. //===========================================================================
  203. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  204. static float destination[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0};
  205. static float offset[3] = {0.0, 0.0, 0.0};
  206. static bool home_all_axis = true;
  207. static float feedrate = 1500.0, next_feedrate, saved_feedrate;
  208. static long gcode_N, gcode_LastN, Stopped_gcode_LastN = 0;
  209. static bool relative_mode = false; //Determines Absolute or Relative Coordinates
  210. static char cmdbuffer[BUFSIZE][MAX_CMD_SIZE];
  211. static bool fromsd[BUFSIZE];
  212. static int bufindr = 0;
  213. static int bufindw = 0;
  214. static int buflen = 0;
  215. //static int i = 0;
  216. static char serial_char;
  217. static int serial_count = 0;
  218. static boolean comment_mode = false;
  219. static char *strchr_pointer; // just a pointer to find chars in the cmd string like X, Y, Z, E, etc
  220. const int sensitive_pins[] = SENSITIVE_PINS; // Sensitive pin list for M42
  221. //static float tt = 0;
  222. //static float bt = 0;
  223. //Inactivity shutdown variables
  224. static unsigned long previous_millis_cmd = 0;
  225. static unsigned long max_inactive_time = 0;
  226. static unsigned long stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME*1000l;
  227. unsigned long starttime=0;
  228. unsigned long stoptime=0;
  229. static uint8_t tmp_extruder;
  230. bool Stopped=false;
  231. #if NUM_SERVOS > 0
  232. Servo servos[NUM_SERVOS];
  233. #endif
  234. bool CooldownNoWait = true;
  235. bool target_direction;
  236. //===========================================================================
  237. //=============================ROUTINES=============================
  238. //===========================================================================
  239. void get_arc_coordinates();
  240. bool setTargetedHotend(int code);
  241. void serial_echopair_P(const char *s_P, float v)
  242. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  243. void serial_echopair_P(const char *s_P, double v)
  244. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  245. void serial_echopair_P(const char *s_P, unsigned long v)
  246. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  247. extern "C"{
  248. extern unsigned int __bss_end;
  249. extern unsigned int __heap_start;
  250. extern void *__brkval;
  251. int freeMemory() {
  252. int free_memory;
  253. if((int)__brkval == 0)
  254. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  255. else
  256. free_memory = ((int)&free_memory) - ((int)__brkval);
  257. return free_memory;
  258. }
  259. }
  260. //adds an command to the main command buffer
  261. //thats really done in a non-safe way.
  262. //needs overworking someday
  263. void enquecommand(const char *cmd)
  264. {
  265. if(buflen < BUFSIZE)
  266. {
  267. //this is dangerous if a mixing of serial and this happsens
  268. strcpy(&(cmdbuffer[bufindw][0]),cmd);
  269. SERIAL_ECHO_START;
  270. SERIAL_ECHOPGM("enqueing \"");
  271. SERIAL_ECHO(cmdbuffer[bufindw]);
  272. SERIAL_ECHOLNPGM("\"");
  273. bufindw= (bufindw + 1)%BUFSIZE;
  274. buflen += 1;
  275. }
  276. }
  277. void enquecommand_P(const char *cmd)
  278. {
  279. if(buflen < BUFSIZE)
  280. {
  281. //this is dangerous if a mixing of serial and this happsens
  282. strcpy_P(&(cmdbuffer[bufindw][0]),cmd);
  283. SERIAL_ECHO_START;
  284. SERIAL_ECHOPGM("enqueing \"");
  285. SERIAL_ECHO(cmdbuffer[bufindw]);
  286. SERIAL_ECHOLNPGM("\"");
  287. bufindw= (bufindw + 1)%BUFSIZE;
  288. buflen += 1;
  289. }
  290. }
  291. void setup_killpin()
  292. {
  293. #if defined(KILL_PIN) && KILL_PIN > -1
  294. pinMode(KILL_PIN,INPUT);
  295. WRITE(KILL_PIN,HIGH);
  296. #endif
  297. }
  298. void setup_photpin()
  299. {
  300. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  301. SET_OUTPUT(PHOTOGRAPH_PIN);
  302. WRITE(PHOTOGRAPH_PIN, LOW);
  303. #endif
  304. }
  305. void setup_powerhold()
  306. {
  307. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  308. SET_OUTPUT(SUICIDE_PIN);
  309. WRITE(SUICIDE_PIN, HIGH);
  310. #endif
  311. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  312. SET_OUTPUT(PS_ON_PIN);
  313. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  314. #endif
  315. }
  316. void suicide()
  317. {
  318. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  319. SET_OUTPUT(SUICIDE_PIN);
  320. WRITE(SUICIDE_PIN, LOW);
  321. #endif
  322. }
  323. void servo_init()
  324. {
  325. #if (NUM_SERVOS >= 1) && defined(SERVO0_PIN) && (SERVO0_PIN > -1)
  326. servos[0].attach(SERVO0_PIN);
  327. #endif
  328. #if (NUM_SERVOS >= 2) && defined(SERVO1_PIN) && (SERVO1_PIN > -1)
  329. servos[1].attach(SERVO1_PIN);
  330. #endif
  331. #if (NUM_SERVOS >= 3) && defined(SERVO2_PIN) && (SERVO2_PIN > -1)
  332. servos[2].attach(SERVO2_PIN);
  333. #endif
  334. #if (NUM_SERVOS >= 4) && defined(SERVO3_PIN) && (SERVO3_PIN > -1)
  335. servos[3].attach(SERVO3_PIN);
  336. #endif
  337. #if (NUM_SERVOS >= 5)
  338. #error "TODO: enter initalisation code for more servos"
  339. #endif
  340. // Set position of Servo Endstops that are defined
  341. #ifdef SERVO_ENDSTOPS
  342. for(int8_t i = 0; i < 3; i++)
  343. {
  344. if(servo_endstops[i] > -1) {
  345. servos[servo_endstops[i]].write(servo_endstop_angles[i * 2 + 1]);
  346. }
  347. }
  348. #endif
  349. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  350. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  351. servos[servo_endstops[Z_AXIS]].detach();
  352. #endif
  353. }
  354. void setup()
  355. {
  356. setup_killpin();
  357. setup_powerhold();
  358. MYSERIAL.begin(BAUDRATE);
  359. SERIAL_PROTOCOLLNPGM("start");
  360. SERIAL_ECHO_START;
  361. // Check startup - does nothing if bootloader sets MCUSR to 0
  362. byte mcu = MCUSR;
  363. if(mcu & 1) SERIAL_ECHOLNPGM(MSG_POWERUP);
  364. if(mcu & 2) SERIAL_ECHOLNPGM(MSG_EXTERNAL_RESET);
  365. if(mcu & 4) SERIAL_ECHOLNPGM(MSG_BROWNOUT_RESET);
  366. if(mcu & 8) SERIAL_ECHOLNPGM(MSG_WATCHDOG_RESET);
  367. if(mcu & 32) SERIAL_ECHOLNPGM(MSG_SOFTWARE_RESET);
  368. MCUSR=0;
  369. SERIAL_ECHOPGM(MSG_MARLIN);
  370. SERIAL_ECHOLNPGM(VERSION_STRING);
  371. #ifdef STRING_VERSION_CONFIG_H
  372. #ifdef STRING_CONFIG_H_AUTHOR
  373. SERIAL_ECHO_START;
  374. SERIAL_ECHOPGM(MSG_CONFIGURATION_VER);
  375. SERIAL_ECHOPGM(STRING_VERSION_CONFIG_H);
  376. SERIAL_ECHOPGM(MSG_AUTHOR);
  377. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  378. SERIAL_ECHOPGM("Compiled: ");
  379. SERIAL_ECHOLNPGM(__DATE__);
  380. #endif
  381. #endif
  382. SERIAL_ECHO_START;
  383. SERIAL_ECHOPGM(MSG_FREE_MEMORY);
  384. SERIAL_ECHO(freeMemory());
  385. SERIAL_ECHOPGM(MSG_PLANNER_BUFFER_BYTES);
  386. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  387. for(int8_t i = 0; i < BUFSIZE; i++)
  388. {
  389. fromsd[i] = false;
  390. }
  391. // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  392. Config_RetrieveSettings();
  393. tp_init(); // Initialize temperature loop
  394. plan_init(); // Initialize planner;
  395. watchdog_init();
  396. st_init(); // Initialize stepper, this enables interrupts!
  397. setup_photpin();
  398. servo_init();
  399. lcd_init();
  400. _delay_ms(1000); // wait 1sec to display the splash screen
  401. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  402. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  403. #endif
  404. }
  405. void loop()
  406. {
  407. if(buflen < (BUFSIZE-1))
  408. get_command();
  409. #ifdef SDSUPPORT
  410. card.checkautostart(false);
  411. #endif
  412. if(buflen)
  413. {
  414. #ifdef SDSUPPORT
  415. if(card.saving)
  416. {
  417. if(strstr_P(cmdbuffer[bufindr], PSTR("M29")) == NULL)
  418. {
  419. card.write_command(cmdbuffer[bufindr]);
  420. if(card.logging)
  421. {
  422. process_commands();
  423. }
  424. else
  425. {
  426. SERIAL_PROTOCOLLNPGM(MSG_OK);
  427. }
  428. }
  429. else
  430. {
  431. card.closefile();
  432. SERIAL_PROTOCOLLNPGM(MSG_FILE_SAVED);
  433. }
  434. }
  435. else
  436. {
  437. process_commands();
  438. }
  439. #else
  440. process_commands();
  441. #endif //SDSUPPORT
  442. buflen = (buflen-1);
  443. bufindr = (bufindr + 1)%BUFSIZE;
  444. }
  445. //check heater every n milliseconds
  446. manage_heater();
  447. manage_inactivity();
  448. checkHitEndstops();
  449. lcd_update();
  450. }
  451. void get_command()
  452. {
  453. while( MYSERIAL.available() > 0 && buflen < BUFSIZE) {
  454. serial_char = MYSERIAL.read();
  455. if(serial_char == '\n' ||
  456. serial_char == '\r' ||
  457. (serial_char == ':' && comment_mode == false) ||
  458. serial_count >= (MAX_CMD_SIZE - 1) )
  459. {
  460. if(!serial_count) { //if empty line
  461. comment_mode = false; //for new command
  462. return;
  463. }
  464. cmdbuffer[bufindw][serial_count] = 0; //terminate string
  465. if(!comment_mode){
  466. comment_mode = false; //for new command
  467. fromsd[bufindw] = false;
  468. if(strchr(cmdbuffer[bufindw], 'N') != NULL)
  469. {
  470. strchr_pointer = strchr(cmdbuffer[bufindw], 'N');
  471. gcode_N = (strtol(&cmdbuffer[bufindw][strchr_pointer - cmdbuffer[bufindw] + 1], NULL, 10));
  472. if(gcode_N != gcode_LastN+1 && (strstr_P(cmdbuffer[bufindw], PSTR("M110")) == NULL) ) {
  473. SERIAL_ERROR_START;
  474. SERIAL_ERRORPGM(MSG_ERR_LINE_NO);
  475. SERIAL_ERRORLN(gcode_LastN);
  476. //Serial.println(gcode_N);
  477. FlushSerialRequestResend();
  478. serial_count = 0;
  479. return;
  480. }
  481. if(strchr(cmdbuffer[bufindw], '*') != NULL)
  482. {
  483. byte checksum = 0;
  484. byte count = 0;
  485. while(cmdbuffer[bufindw][count] != '*') checksum = checksum^cmdbuffer[bufindw][count++];
  486. strchr_pointer = strchr(cmdbuffer[bufindw], '*');
  487. if( (int)(strtod(&cmdbuffer[bufindw][strchr_pointer - cmdbuffer[bufindw] + 1], NULL)) != checksum) {
  488. SERIAL_ERROR_START;
  489. SERIAL_ERRORPGM(MSG_ERR_CHECKSUM_MISMATCH);
  490. SERIAL_ERRORLN(gcode_LastN);
  491. FlushSerialRequestResend();
  492. serial_count = 0;
  493. return;
  494. }
  495. //if no errors, continue parsing
  496. }
  497. else
  498. {
  499. SERIAL_ERROR_START;
  500. SERIAL_ERRORPGM(MSG_ERR_NO_CHECKSUM);
  501. SERIAL_ERRORLN(gcode_LastN);
  502. FlushSerialRequestResend();
  503. serial_count = 0;
  504. return;
  505. }
  506. gcode_LastN = gcode_N;
  507. //if no errors, continue parsing
  508. }
  509. else // if we don't receive 'N' but still see '*'
  510. {
  511. if((strchr(cmdbuffer[bufindw], '*') != NULL))
  512. {
  513. SERIAL_ERROR_START;
  514. SERIAL_ERRORPGM(MSG_ERR_NO_LINENUMBER_WITH_CHECKSUM);
  515. SERIAL_ERRORLN(gcode_LastN);
  516. serial_count = 0;
  517. return;
  518. }
  519. }
  520. if((strchr(cmdbuffer[bufindw], 'G') != NULL)){
  521. strchr_pointer = strchr(cmdbuffer[bufindw], 'G');
  522. switch((int)((strtod(&cmdbuffer[bufindw][strchr_pointer - cmdbuffer[bufindw] + 1], NULL)))){
  523. case 0:
  524. case 1:
  525. case 2:
  526. case 3:
  527. if(Stopped == false) { // If printer is stopped by an error the G[0-3] codes are ignored.
  528. #ifdef SDSUPPORT
  529. if(card.saving)
  530. break;
  531. #endif //SDSUPPORT
  532. SERIAL_PROTOCOLLNPGM(MSG_OK);
  533. }
  534. else {
  535. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  536. LCD_MESSAGEPGM(MSG_STOPPED);
  537. }
  538. break;
  539. default:
  540. break;
  541. }
  542. }
  543. bufindw = (bufindw + 1)%BUFSIZE;
  544. buflen += 1;
  545. }
  546. serial_count = 0; //clear buffer
  547. }
  548. else
  549. {
  550. if(serial_char == ';') comment_mode = true;
  551. if(!comment_mode) cmdbuffer[bufindw][serial_count++] = serial_char;
  552. }
  553. }
  554. #ifdef SDSUPPORT
  555. if(!card.sdprinting || serial_count!=0){
  556. return;
  557. }
  558. while( !card.eof() && buflen < BUFSIZE) {
  559. int16_t n=card.get();
  560. serial_char = (char)n;
  561. if(serial_char == '\n' ||
  562. serial_char == '\r' ||
  563. (serial_char == ':' && comment_mode == false) ||
  564. serial_count >= (MAX_CMD_SIZE - 1)||n==-1)
  565. {
  566. if(card.eof()){
  567. SERIAL_PROTOCOLLNPGM(MSG_FILE_PRINTED);
  568. stoptime=millis();
  569. char time[30];
  570. unsigned long t=(stoptime-starttime)/1000;
  571. int hours, minutes;
  572. minutes=(t/60)%60;
  573. hours=t/60/60;
  574. sprintf_P(time, PSTR("%i hours %i minutes"),hours, minutes);
  575. SERIAL_ECHO_START;
  576. SERIAL_ECHOLN(time);
  577. lcd_setstatus(time);
  578. card.printingHasFinished();
  579. card.checkautostart(true);
  580. }
  581. if(!serial_count)
  582. {
  583. comment_mode = false; //for new command
  584. return; //if empty line
  585. }
  586. cmdbuffer[bufindw][serial_count] = 0; //terminate string
  587. // if(!comment_mode){
  588. fromsd[bufindw] = true;
  589. buflen += 1;
  590. bufindw = (bufindw + 1)%BUFSIZE;
  591. // }
  592. comment_mode = false; //for new command
  593. serial_count = 0; //clear buffer
  594. }
  595. else
  596. {
  597. if(serial_char == ';') comment_mode = true;
  598. if(!comment_mode) cmdbuffer[bufindw][serial_count++] = serial_char;
  599. }
  600. }
  601. #endif //SDSUPPORT
  602. }
  603. float code_value()
  604. {
  605. return (strtod(&cmdbuffer[bufindr][strchr_pointer - cmdbuffer[bufindr] + 1], NULL));
  606. }
  607. long code_value_long()
  608. {
  609. return (strtol(&cmdbuffer[bufindr][strchr_pointer - cmdbuffer[bufindr] + 1], NULL, 10));
  610. }
  611. bool code_seen(char code)
  612. {
  613. strchr_pointer = strchr(cmdbuffer[bufindr], code);
  614. return (strchr_pointer != NULL); //Return True if a character was found
  615. }
  616. #define DEFINE_PGM_READ_ANY(type, reader) \
  617. static inline type pgm_read_any(const type *p) \
  618. { return pgm_read_##reader##_near(p); }
  619. DEFINE_PGM_READ_ANY(float, float);
  620. DEFINE_PGM_READ_ANY(signed char, byte);
  621. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  622. static const PROGMEM type array##_P[3] = \
  623. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  624. static inline type array(int axis) \
  625. { return pgm_read_any(&array##_P[axis]); }
  626. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  627. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  628. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  629. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  630. XYZ_CONSTS_FROM_CONFIG(float, home_retract_mm, HOME_RETRACT_MM);
  631. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  632. #ifdef DUAL_X_CARRIAGE
  633. #if EXTRUDERS == 1 || defined(COREXY) \
  634. || !defined(X2_ENABLE_PIN) || !defined(X2_STEP_PIN) || !defined(X2_DIR_PIN) \
  635. || !defined(X2_HOME_POS) || !defined(X2_MIN_POS) || !defined(X2_MAX_POS) \
  636. || !defined(X_MAX_PIN) || X_MAX_PIN < 0
  637. #error "Missing or invalid definitions for DUAL_X_CARRIAGE mode."
  638. #endif
  639. #if X_HOME_DIR != -1 || X2_HOME_DIR != 1
  640. #error "Please use canonical x-carriage assignment" // the x-carriages are defined by their homing directions
  641. #endif
  642. #define DXC_FULL_CONTROL_MODE 0
  643. #define DXC_AUTO_PARK_MODE 1
  644. #define DXC_DUPLICATION_MODE 2
  645. static int dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  646. static float x_home_pos(int extruder) {
  647. if (extruder == 0)
  648. return base_home_pos(X_AXIS) + add_homeing[X_AXIS];
  649. else
  650. // In dual carriage mode the extruder offset provides an override of the
  651. // second X-carriage offset when homed - otherwise X2_HOME_POS is used.
  652. // This allow soft recalibration of the second extruder offset position without firmware reflash
  653. // (through the M218 command).
  654. return (extruder_offset[X_AXIS][1] > 0) ? extruder_offset[X_AXIS][1] : X2_HOME_POS;
  655. }
  656. static int x_home_dir(int extruder) {
  657. return (extruder == 0) ? X_HOME_DIR : X2_HOME_DIR;
  658. }
  659. static float inactive_extruder_x_pos = X2_MAX_POS; // used in mode 0 & 1
  660. static bool active_extruder_parked = false; // used in mode 1 & 2
  661. static float raised_parked_position[NUM_AXIS]; // used in mode 1
  662. static unsigned long delayed_move_time = 0; // used in mode 1
  663. static float duplicate_extruder_x_offset = DEFAULT_DUPLICATION_X_OFFSET; // used in mode 2
  664. static float duplicate_extruder_temp_offset = 0; // used in mode 2
  665. bool extruder_duplication_enabled = false; // used in mode 2
  666. #endif //DUAL_X_CARRIAGE
  667. static void axis_is_at_home(int axis) {
  668. #ifdef DUAL_X_CARRIAGE
  669. if (axis == X_AXIS) {
  670. if (active_extruder != 0) {
  671. current_position[X_AXIS] = x_home_pos(active_extruder);
  672. min_pos[X_AXIS] = X2_MIN_POS;
  673. max_pos[X_AXIS] = max(extruder_offset[X_AXIS][1], X2_MAX_POS);
  674. return;
  675. }
  676. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && active_extruder == 0) {
  677. current_position[X_AXIS] = base_home_pos(X_AXIS) + add_homeing[X_AXIS];
  678. min_pos[X_AXIS] = base_min_pos(X_AXIS) + add_homeing[X_AXIS];
  679. max_pos[X_AXIS] = min(base_max_pos(X_AXIS) + add_homeing[X_AXIS],
  680. max(extruder_offset[X_AXIS][1], X2_MAX_POS) - duplicate_extruder_x_offset);
  681. return;
  682. }
  683. }
  684. #endif
  685. current_position[axis] = base_home_pos(axis) + add_homeing[axis];
  686. min_pos[axis] = base_min_pos(axis) + add_homeing[axis];
  687. max_pos[axis] = base_max_pos(axis) + add_homeing[axis];
  688. }
  689. #ifdef ENABLE_AUTO_BED_LEVELING
  690. static void set_bed_level_equation(float z_at_xLeft_yFront, float z_at_xRight_yFront, float z_at_xLeft_yBack) {
  691. plan_bed_level_matrix.set_to_identity();
  692. vector_3 xLeftyFront = vector_3(LEFT_PROBE_BED_POSITION, FRONT_PROBE_BED_POSITION, z_at_xLeft_yFront);
  693. vector_3 xLeftyBack = vector_3(LEFT_PROBE_BED_POSITION, BACK_PROBE_BED_POSITION, z_at_xLeft_yBack);
  694. vector_3 xRightyFront = vector_3(RIGHT_PROBE_BED_POSITION, FRONT_PROBE_BED_POSITION, z_at_xRight_yFront);
  695. vector_3 xPositive = (xRightyFront - xLeftyFront).get_normal();
  696. vector_3 yPositive = (xLeftyBack - xLeftyFront).get_normal();
  697. vector_3 planeNormal = vector_3::cross(yPositive, xPositive).get_normal();
  698. //planeNormal.debug("planeNormal");
  699. //yPositive.debug("yPositive");
  700. matrix_3x3 bedLevel = matrix_3x3::create_look_at(planeNormal, yPositive);
  701. //bedLevel.debug("bedLevel");
  702. //plan_bed_level_matrix.debug("bed level before");
  703. //vector_3 uncorrected_position = plan_get_position_mm();
  704. //uncorrected_position.debug("position before");
  705. // and set our bed level equation to do the right thing
  706. plan_bed_level_matrix = matrix_3x3::create_inverse(bedLevel);
  707. //plan_bed_level_matrix.debug("bed level after");
  708. vector_3 corrected_position = plan_get_position();
  709. //corrected_position.debug("position after");
  710. current_position[X_AXIS] = corrected_position.x;
  711. current_position[Y_AXIS] = corrected_position.y;
  712. current_position[Z_AXIS] = corrected_position.z;
  713. // but the bed at 0 so we don't go below it.
  714. current_position[Z_AXIS] = -Z_PROBE_OFFSET_FROM_EXTRUDER;
  715. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  716. }
  717. static void run_z_probe() {
  718. plan_bed_level_matrix.set_to_identity();
  719. feedrate = homing_feedrate[Z_AXIS];
  720. // move down until you find the bed
  721. float zPosition = -10;
  722. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  723. st_synchronize();
  724. // we have to let the planner know where we are right now as it is not where we said to go.
  725. zPosition = st_get_position_mm(Z_AXIS);
  726. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]);
  727. // move up the retract distance
  728. zPosition += home_retract_mm(Z_AXIS);
  729. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  730. st_synchronize();
  731. // move back down slowly to find bed
  732. feedrate = homing_feedrate[Z_AXIS]/4;
  733. zPosition -= home_retract_mm(Z_AXIS) * 2;
  734. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  735. st_synchronize();
  736. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  737. // make sure the planner knows where we are as it may be a bit different than we last said to move to
  738. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  739. }
  740. static void do_blocking_move_to(float x, float y, float z) {
  741. float oldFeedRate = feedrate;
  742. feedrate = XY_TRAVEL_SPEED;
  743. current_position[X_AXIS] = x;
  744. current_position[Y_AXIS] = y;
  745. current_position[Z_AXIS] = z;
  746. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  747. st_synchronize();
  748. feedrate = oldFeedRate;
  749. }
  750. static void do_blocking_move_relative(float offset_x, float offset_y, float offset_z) {
  751. do_blocking_move_to(current_position[X_AXIS] + offset_x, current_position[Y_AXIS] + offset_y, current_position[Z_AXIS] + offset_z);
  752. }
  753. static void setup_for_endstop_move() {
  754. saved_feedrate = feedrate;
  755. saved_feedmultiply = feedmultiply;
  756. feedmultiply = 100;
  757. previous_millis_cmd = millis();
  758. enable_endstops(true);
  759. }
  760. static void clean_up_after_endstop_move() {
  761. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  762. enable_endstops(false);
  763. #endif
  764. feedrate = saved_feedrate;
  765. feedmultiply = saved_feedmultiply;
  766. previous_millis_cmd = millis();
  767. }
  768. static void engage_z_probe() {
  769. // Engage Z Servo endstop if enabled
  770. #ifdef SERVO_ENDSTOPS
  771. if (servo_endstops[Z_AXIS] > -1) {
  772. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  773. servos[servo_endstops[Z_AXIS]].attach(0);
  774. #endif
  775. servos[servo_endstops[Z_AXIS]].write(servo_endstop_angles[Z_AXIS * 2]);
  776. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  777. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  778. servos[servo_endstops[Z_AXIS]].detach();
  779. #endif
  780. }
  781. #endif
  782. }
  783. static void retract_z_probe() {
  784. // Retract Z Servo endstop if enabled
  785. #ifdef SERVO_ENDSTOPS
  786. if (servo_endstops[Z_AXIS] > -1) {
  787. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  788. servos[servo_endstops[Z_AXIS]].attach(0);
  789. #endif
  790. servos[servo_endstops[Z_AXIS]].write(servo_endstop_angles[Z_AXIS * 2 + 1]);
  791. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  792. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  793. servos[servo_endstops[Z_AXIS]].detach();
  794. #endif
  795. }
  796. #endif
  797. }
  798. #endif // #ifdef ENABLE_AUTO_BED_LEVELING
  799. static void homeaxis(int axis) {
  800. #define HOMEAXIS_DO(LETTER) \
  801. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  802. if (axis==X_AXIS ? HOMEAXIS_DO(X) :
  803. axis==Y_AXIS ? HOMEAXIS_DO(Y) :
  804. axis==Z_AXIS ? HOMEAXIS_DO(Z) :
  805. 0) {
  806. int axis_home_dir = home_dir(axis);
  807. #ifdef DUAL_X_CARRIAGE
  808. if (axis == X_AXIS)
  809. axis_home_dir = x_home_dir(active_extruder);
  810. #endif
  811. // Engage Servo endstop if enabled
  812. #ifdef SERVO_ENDSTOPS
  813. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  814. if (axis==Z_AXIS) engage_z_probe();
  815. else
  816. #endif
  817. if (servo_endstops[axis] > -1) {
  818. servos[servo_endstops[axis]].write(servo_endstop_angles[axis * 2]);
  819. }
  820. #endif
  821. current_position[axis] = 0;
  822. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  823. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  824. feedrate = homing_feedrate[axis];
  825. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  826. st_synchronize();
  827. current_position[axis] = 0;
  828. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  829. destination[axis] = -home_retract_mm(axis) * axis_home_dir;
  830. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  831. st_synchronize();
  832. destination[axis] = 2*home_retract_mm(axis) * axis_home_dir;
  833. #ifdef DELTA
  834. feedrate = homing_feedrate[axis]/10;
  835. #else
  836. feedrate = homing_feedrate[axis]/2 ;
  837. #endif
  838. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  839. st_synchronize();
  840. #ifdef DELTA
  841. // retrace by the amount specified in endstop_adj
  842. if (endstop_adj[axis] * axis_home_dir < 0) {
  843. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  844. destination[axis] = endstop_adj[axis];
  845. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  846. st_synchronize();
  847. }
  848. #endif
  849. axis_is_at_home(axis);
  850. destination[axis] = current_position[axis];
  851. feedrate = 0.0;
  852. endstops_hit_on_purpose();
  853. // Retract Servo endstop if enabled
  854. #ifdef SERVO_ENDSTOPS
  855. if (servo_endstops[axis] > -1) {
  856. servos[servo_endstops[axis]].write(servo_endstop_angles[axis * 2 + 1]);
  857. }
  858. #endif
  859. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  860. if (axis==Z_AXIS) retract_z_probe();
  861. #endif
  862. }
  863. }
  864. #define HOMEAXIS(LETTER) homeaxis(LETTER##_AXIS)
  865. void process_commands()
  866. {
  867. unsigned long codenum; //throw away variable
  868. char *starpos = NULL;
  869. #ifdef ENABLE_AUTO_BED_LEVELING
  870. float x_tmp, y_tmp, z_tmp, real_z;
  871. #endif
  872. if(code_seen('G'))
  873. {
  874. switch((int)code_value())
  875. {
  876. case 0: // G0 -> G1
  877. case 1: // G1
  878. if(Stopped == false) {
  879. get_coordinates(); // For X Y Z E F
  880. prepare_move();
  881. //ClearToSend();
  882. return;
  883. }
  884. //break;
  885. case 2: // G2 - CW ARC
  886. if(Stopped == false) {
  887. get_arc_coordinates();
  888. prepare_arc_move(true);
  889. return;
  890. }
  891. case 3: // G3 - CCW ARC
  892. if(Stopped == false) {
  893. get_arc_coordinates();
  894. prepare_arc_move(false);
  895. return;
  896. }
  897. case 4: // G4 dwell
  898. LCD_MESSAGEPGM(MSG_DWELL);
  899. codenum = 0;
  900. if(code_seen('P')) codenum = code_value(); // milliseconds to wait
  901. if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait
  902. st_synchronize();
  903. codenum += millis(); // keep track of when we started waiting
  904. previous_millis_cmd = millis();
  905. while(millis() < codenum ){
  906. manage_heater();
  907. manage_inactivity();
  908. lcd_update();
  909. }
  910. break;
  911. #ifdef FWRETRACT
  912. case 10: // G10 retract
  913. if(!retracted)
  914. {
  915. destination[X_AXIS]=current_position[X_AXIS];
  916. destination[Y_AXIS]=current_position[Y_AXIS];
  917. destination[Z_AXIS]=current_position[Z_AXIS];
  918. current_position[Z_AXIS]+=-retract_zlift;
  919. destination[E_AXIS]=current_position[E_AXIS]-retract_length;
  920. feedrate=retract_feedrate;
  921. retracted=true;
  922. prepare_move();
  923. }
  924. break;
  925. case 11: // G10 retract_recover
  926. if(!retracted)
  927. {
  928. destination[X_AXIS]=current_position[X_AXIS];
  929. destination[Y_AXIS]=current_position[Y_AXIS];
  930. destination[Z_AXIS]=current_position[Z_AXIS];
  931. current_position[Z_AXIS]+=retract_zlift;
  932. current_position[E_AXIS]+=-retract_recover_length;
  933. feedrate=retract_recover_feedrate;
  934. retracted=false;
  935. prepare_move();
  936. }
  937. break;
  938. #endif //FWRETRACT
  939. case 28: //G28 Home all Axis one at a time
  940. #ifdef ENABLE_AUTO_BED_LEVELING
  941. plan_bed_level_matrix.set_to_identity(); //Reset the plane ("erase" all leveling data)
  942. #endif //ENABLE_AUTO_BED_LEVELING
  943. saved_feedrate = feedrate;
  944. saved_feedmultiply = feedmultiply;
  945. feedmultiply = 100;
  946. previous_millis_cmd = millis();
  947. enable_endstops(true);
  948. for(int8_t i=0; i < NUM_AXIS; i++) {
  949. destination[i] = current_position[i];
  950. }
  951. feedrate = 0.0;
  952. #ifdef DELTA
  953. // A delta can only safely home all axis at the same time
  954. // all axis have to home at the same time
  955. // Move all carriages up together until the first endstop is hit.
  956. current_position[X_AXIS] = 0;
  957. current_position[Y_AXIS] = 0;
  958. current_position[Z_AXIS] = 0;
  959. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  960. destination[X_AXIS] = 3 * Z_MAX_LENGTH;
  961. destination[Y_AXIS] = 3 * Z_MAX_LENGTH;
  962. destination[Z_AXIS] = 3 * Z_MAX_LENGTH;
  963. feedrate = 1.732 * homing_feedrate[X_AXIS];
  964. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  965. st_synchronize();
  966. endstops_hit_on_purpose();
  967. current_position[X_AXIS] = destination[X_AXIS];
  968. current_position[Y_AXIS] = destination[Y_AXIS];
  969. current_position[Z_AXIS] = destination[Z_AXIS];
  970. // take care of back off and rehome now we are all at the top
  971. HOMEAXIS(X);
  972. HOMEAXIS(Y);
  973. HOMEAXIS(Z);
  974. calculate_delta(current_position);
  975. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
  976. #else // NOT DELTA
  977. home_all_axis = !((code_seen(axis_codes[0])) || (code_seen(axis_codes[1])) || (code_seen(axis_codes[2])));
  978. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  979. if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
  980. HOMEAXIS(Z);
  981. }
  982. #endif
  983. #ifdef QUICK_HOME
  984. if((home_all_axis)||( code_seen(axis_codes[X_AXIS]) && code_seen(axis_codes[Y_AXIS])) ) //first diagonal move
  985. {
  986. current_position[X_AXIS] = 0;current_position[Y_AXIS] = 0;
  987. #ifndef DUAL_X_CARRIAGE
  988. int x_axis_home_dir = home_dir(X_AXIS);
  989. #else
  990. int x_axis_home_dir = x_home_dir(active_extruder);
  991. extruder_duplication_enabled = false;
  992. #endif
  993. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  994. destination[X_AXIS] = 1.5 * max_length(X_AXIS) * x_axis_home_dir;destination[Y_AXIS] = 1.5 * max_length(Y_AXIS) * home_dir(Y_AXIS);
  995. feedrate = homing_feedrate[X_AXIS];
  996. if(homing_feedrate[Y_AXIS]<feedrate)
  997. feedrate =homing_feedrate[Y_AXIS];
  998. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  999. st_synchronize();
  1000. axis_is_at_home(X_AXIS);
  1001. axis_is_at_home(Y_AXIS);
  1002. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1003. destination[X_AXIS] = current_position[X_AXIS];
  1004. destination[Y_AXIS] = current_position[Y_AXIS];
  1005. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1006. feedrate = 0.0;
  1007. st_synchronize();
  1008. endstops_hit_on_purpose();
  1009. current_position[X_AXIS] = destination[X_AXIS];
  1010. current_position[Y_AXIS] = destination[Y_AXIS];
  1011. current_position[Z_AXIS] = destination[Z_AXIS];
  1012. }
  1013. #endif
  1014. if((home_all_axis) || (code_seen(axis_codes[X_AXIS])))
  1015. {
  1016. #ifdef DUAL_X_CARRIAGE
  1017. int tmp_extruder = active_extruder;
  1018. extruder_duplication_enabled = false;
  1019. active_extruder = !active_extruder;
  1020. HOMEAXIS(X);
  1021. inactive_extruder_x_pos = current_position[X_AXIS];
  1022. active_extruder = tmp_extruder;
  1023. HOMEAXIS(X);
  1024. // reset state used by the different modes
  1025. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  1026. delayed_move_time = 0;
  1027. active_extruder_parked = true;
  1028. #else
  1029. HOMEAXIS(X);
  1030. #endif
  1031. }
  1032. if((home_all_axis) || (code_seen(axis_codes[Y_AXIS]))) {
  1033. HOMEAXIS(Y);
  1034. }
  1035. #if Z_HOME_DIR < 0 // If homing towards BED do Z last
  1036. if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
  1037. HOMEAXIS(Z);
  1038. }
  1039. #endif
  1040. if(code_seen(axis_codes[X_AXIS]))
  1041. {
  1042. if(code_value_long() != 0) {
  1043. current_position[X_AXIS]=code_value()+add_homeing[0];
  1044. }
  1045. }
  1046. if(code_seen(axis_codes[Y_AXIS])) {
  1047. if(code_value_long() != 0) {
  1048. current_position[Y_AXIS]=code_value()+add_homeing[1];
  1049. }
  1050. }
  1051. if(code_seen(axis_codes[Z_AXIS])) {
  1052. if(code_value_long() != 0) {
  1053. current_position[Z_AXIS]=code_value()+add_homeing[2];
  1054. }
  1055. }
  1056. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1057. #endif // else DELTA
  1058. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1059. enable_endstops(false);
  1060. #endif
  1061. feedrate = saved_feedrate;
  1062. feedmultiply = saved_feedmultiply;
  1063. previous_millis_cmd = millis();
  1064. endstops_hit_on_purpose();
  1065. break;
  1066. #ifdef ENABLE_AUTO_BED_LEVELING
  1067. case 29: // G29 Detailed Z-Probe, probes the bed at 3 points.
  1068. {
  1069. #if Z_MIN_PIN == -1
  1070. #error "You must have a Z_MIN endstop in order to enable Auto Bed Leveling feature!!! Z_MIN_PIN must point to a valid hardware pin."
  1071. #endif
  1072. st_synchronize();
  1073. // make sure the bed_level_rotation_matrix is identity or the planner will get it incorectly
  1074. //vector_3 corrected_position = plan_get_position_mm();
  1075. //corrected_position.debug("position before G29");
  1076. plan_bed_level_matrix.set_to_identity();
  1077. vector_3 uncorrected_position = plan_get_position();
  1078. //uncorrected_position.debug("position durring G29");
  1079. current_position[X_AXIS] = uncorrected_position.x;
  1080. current_position[Y_AXIS] = uncorrected_position.y;
  1081. current_position[Z_AXIS] = uncorrected_position.z;
  1082. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1083. setup_for_endstop_move();
  1084. feedrate = homing_feedrate[Z_AXIS];
  1085. // prob 1
  1086. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], Z_RAISE_BEFORE_PROBING);
  1087. do_blocking_move_to(LEFT_PROBE_BED_POSITION - X_PROBE_OFFSET_FROM_EXTRUDER, BACK_PROBE_BED_POSITION - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
  1088. engage_z_probe(); // Engage Z Servo endstop if available
  1089. run_z_probe();
  1090. float z_at_xLeft_yBack = current_position[Z_AXIS];
  1091. SERIAL_PROTOCOLPGM("Bed x: ");
  1092. SERIAL_PROTOCOL(LEFT_PROBE_BED_POSITION);
  1093. SERIAL_PROTOCOLPGM(" y: ");
  1094. SERIAL_PROTOCOL(BACK_PROBE_BED_POSITION);
  1095. SERIAL_PROTOCOLPGM(" z: ");
  1096. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  1097. SERIAL_PROTOCOLPGM("\n");
  1098. // prob 2
  1099. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  1100. do_blocking_move_to(LEFT_PROBE_BED_POSITION - X_PROBE_OFFSET_FROM_EXTRUDER, FRONT_PROBE_BED_POSITION - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
  1101. run_z_probe();
  1102. float z_at_xLeft_yFront = current_position[Z_AXIS];
  1103. SERIAL_PROTOCOLPGM("Bed x: ");
  1104. SERIAL_PROTOCOL(LEFT_PROBE_BED_POSITION);
  1105. SERIAL_PROTOCOLPGM(" y: ");
  1106. SERIAL_PROTOCOL(FRONT_PROBE_BED_POSITION);
  1107. SERIAL_PROTOCOLPGM(" z: ");
  1108. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  1109. SERIAL_PROTOCOLPGM("\n");
  1110. // prob 3
  1111. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  1112. // the current position will be updated by the blocking move so the head will not lower on this next call.
  1113. do_blocking_move_to(RIGHT_PROBE_BED_POSITION - X_PROBE_OFFSET_FROM_EXTRUDER, FRONT_PROBE_BED_POSITION - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
  1114. run_z_probe();
  1115. float z_at_xRight_yFront = current_position[Z_AXIS];
  1116. SERIAL_PROTOCOLPGM("Bed x: ");
  1117. SERIAL_PROTOCOL(RIGHT_PROBE_BED_POSITION);
  1118. SERIAL_PROTOCOLPGM(" y: ");
  1119. SERIAL_PROTOCOL(FRONT_PROBE_BED_POSITION);
  1120. SERIAL_PROTOCOLPGM(" z: ");
  1121. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  1122. SERIAL_PROTOCOLPGM("\n");
  1123. clean_up_after_endstop_move();
  1124. set_bed_level_equation(z_at_xLeft_yFront, z_at_xRight_yFront, z_at_xLeft_yBack);
  1125. retract_z_probe(); // Retract Z Servo endstop if available
  1126. st_synchronize();
  1127. // The following code correct the Z height difference from z-probe position and hotend tip position.
  1128. // The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
  1129. // When the bed is uneven, this height must be corrected.
  1130. real_z = float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]; //get the real Z (since the auto bed leveling is already correcting the plane)
  1131. x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER;
  1132. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER;
  1133. z_tmp = current_position[Z_AXIS];
  1134. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); //Apply the correction sending the probe offset
  1135. current_position[Z_AXIS] = z_tmp - real_z + current_position[Z_AXIS]; //The difference is added to current position and sent to planner.
  1136. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1137. }
  1138. break;
  1139. case 30: // G30 Single Z Probe
  1140. {
  1141. engage_z_probe(); // Engage Z Servo endstop if available
  1142. st_synchronize();
  1143. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  1144. setup_for_endstop_move();
  1145. feedrate = homing_feedrate[Z_AXIS];
  1146. run_z_probe();
  1147. SERIAL_PROTOCOLPGM("Bed Position X: ");
  1148. SERIAL_PROTOCOL(current_position[X_AXIS]);
  1149. SERIAL_PROTOCOLPGM(" Y: ");
  1150. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  1151. SERIAL_PROTOCOLPGM(" Z: ");
  1152. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  1153. SERIAL_PROTOCOLPGM("\n");
  1154. clean_up_after_endstop_move();
  1155. retract_z_probe(); // Retract Z Servo endstop if available
  1156. }
  1157. break;
  1158. #endif // ENABLE_AUTO_BED_LEVELING
  1159. case 90: // G90
  1160. relative_mode = false;
  1161. break;
  1162. case 91: // G91
  1163. relative_mode = true;
  1164. break;
  1165. case 92: // G92
  1166. if(!code_seen(axis_codes[E_AXIS]))
  1167. st_synchronize();
  1168. for(int8_t i=0; i < NUM_AXIS; i++) {
  1169. if(code_seen(axis_codes[i])) {
  1170. if(i == E_AXIS) {
  1171. current_position[i] = code_value();
  1172. plan_set_e_position(current_position[E_AXIS]);
  1173. }
  1174. else {
  1175. current_position[i] = code_value()+add_homeing[i];
  1176. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1177. }
  1178. }
  1179. }
  1180. break;
  1181. }
  1182. }
  1183. else if(code_seen('M'))
  1184. {
  1185. switch( (int)code_value() )
  1186. {
  1187. #ifdef ULTIPANEL
  1188. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  1189. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  1190. {
  1191. LCD_MESSAGEPGM(MSG_USERWAIT);
  1192. codenum = 0;
  1193. if(code_seen('P')) codenum = code_value(); // milliseconds to wait
  1194. if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait
  1195. st_synchronize();
  1196. previous_millis_cmd = millis();
  1197. if (codenum > 0){
  1198. codenum += millis(); // keep track of when we started waiting
  1199. while(millis() < codenum && !lcd_clicked()){
  1200. manage_heater();
  1201. manage_inactivity();
  1202. lcd_update();
  1203. }
  1204. }else{
  1205. while(!lcd_clicked()){
  1206. manage_heater();
  1207. manage_inactivity();
  1208. lcd_update();
  1209. }
  1210. }
  1211. LCD_MESSAGEPGM(MSG_RESUMING);
  1212. }
  1213. break;
  1214. #endif
  1215. case 17:
  1216. LCD_MESSAGEPGM(MSG_NO_MOVE);
  1217. enable_x();
  1218. enable_y();
  1219. enable_z();
  1220. enable_e0();
  1221. enable_e1();
  1222. enable_e2();
  1223. break;
  1224. #ifdef SDSUPPORT
  1225. case 20: // M20 - list SD card
  1226. SERIAL_PROTOCOLLNPGM(MSG_BEGIN_FILE_LIST);
  1227. card.ls();
  1228. SERIAL_PROTOCOLLNPGM(MSG_END_FILE_LIST);
  1229. break;
  1230. case 21: // M21 - init SD card
  1231. card.initsd();
  1232. break;
  1233. case 22: //M22 - release SD card
  1234. card.release();
  1235. break;
  1236. case 23: //M23 - Select file
  1237. starpos = (strchr(strchr_pointer + 4,'*'));
  1238. if(starpos!=NULL)
  1239. *(starpos-1)='\0';
  1240. card.openFile(strchr_pointer + 4,true);
  1241. break;
  1242. case 24: //M24 - Start SD print
  1243. card.startFileprint();
  1244. starttime=millis();
  1245. break;
  1246. case 25: //M25 - Pause SD print
  1247. card.pauseSDPrint();
  1248. break;
  1249. case 26: //M26 - Set SD index
  1250. if(card.cardOK && code_seen('S')) {
  1251. card.setIndex(code_value_long());
  1252. }
  1253. break;
  1254. case 27: //M27 - Get SD status
  1255. card.getStatus();
  1256. break;
  1257. case 28: //M28 - Start SD write
  1258. starpos = (strchr(strchr_pointer + 4,'*'));
  1259. if(starpos != NULL){
  1260. char* npos = strchr(cmdbuffer[bufindr], 'N');
  1261. strchr_pointer = strchr(npos,' ') + 1;
  1262. *(starpos-1) = '\0';
  1263. }
  1264. card.openFile(strchr_pointer+4,false);
  1265. break;
  1266. case 29: //M29 - Stop SD write
  1267. //processed in write to file routine above
  1268. //card,saving = false;
  1269. break;
  1270. case 30: //M30 <filename> Delete File
  1271. if (card.cardOK){
  1272. card.closefile();
  1273. starpos = (strchr(strchr_pointer + 4,'*'));
  1274. if(starpos != NULL){
  1275. char* npos = strchr(cmdbuffer[bufindr], 'N');
  1276. strchr_pointer = strchr(npos,' ') + 1;
  1277. *(starpos-1) = '\0';
  1278. }
  1279. card.removeFile(strchr_pointer + 4);
  1280. }
  1281. break;
  1282. case 32: //M32 - Select file and start SD print
  1283. if(card.sdprinting) {
  1284. st_synchronize();
  1285. card.closefile();
  1286. card.sdprinting = false;
  1287. }
  1288. starpos = (strchr(strchr_pointer + 4,'*'));
  1289. if(starpos!=NULL)
  1290. *(starpos-1)='\0';
  1291. card.openFile(strchr_pointer + 4,true);
  1292. card.startFileprint();
  1293. starttime=millis();
  1294. break;
  1295. case 928: //M928 - Start SD write
  1296. starpos = (strchr(strchr_pointer + 5,'*'));
  1297. if(starpos != NULL){
  1298. char* npos = strchr(cmdbuffer[bufindr], 'N');
  1299. strchr_pointer = strchr(npos,' ') + 1;
  1300. *(starpos-1) = '\0';
  1301. }
  1302. card.openLogFile(strchr_pointer+5);
  1303. break;
  1304. #endif //SDSUPPORT
  1305. case 31: //M31 take time since the start of the SD print or an M109 command
  1306. {
  1307. stoptime=millis();
  1308. char time[30];
  1309. unsigned long t=(stoptime-starttime)/1000;
  1310. int sec,min;
  1311. min=t/60;
  1312. sec=t%60;
  1313. sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
  1314. SERIAL_ECHO_START;
  1315. SERIAL_ECHOLN(time);
  1316. lcd_setstatus(time);
  1317. autotempShutdown();
  1318. }
  1319. break;
  1320. case 42: //M42 -Change pin status via gcode
  1321. if (code_seen('S'))
  1322. {
  1323. int pin_status = code_value();
  1324. int pin_number = LED_PIN;
  1325. if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
  1326. pin_number = code_value();
  1327. for(int8_t i = 0; i < (int8_t)sizeof(sensitive_pins); i++)
  1328. {
  1329. if (sensitive_pins[i] == pin_number)
  1330. {
  1331. pin_number = -1;
  1332. break;
  1333. }
  1334. }
  1335. #if defined(FAN_PIN) && FAN_PIN > -1
  1336. if (pin_number == FAN_PIN)
  1337. fanSpeed = pin_status;
  1338. #endif
  1339. if (pin_number > -1)
  1340. {
  1341. pinMode(pin_number, OUTPUT);
  1342. digitalWrite(pin_number, pin_status);
  1343. analogWrite(pin_number, pin_status);
  1344. }
  1345. }
  1346. break;
  1347. case 104: // M104
  1348. if(setTargetedHotend(104)){
  1349. break;
  1350. }
  1351. if (code_seen('S')) setTargetHotend(code_value(), tmp_extruder);
  1352. #ifdef DUAL_X_CARRIAGE
  1353. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && tmp_extruder == 0)
  1354. setTargetHotend1(code_value() == 0.0 ? 0.0 : code_value() + duplicate_extruder_temp_offset);
  1355. #endif
  1356. setWatch();
  1357. break;
  1358. case 140: // M140 set bed temp
  1359. if (code_seen('S')) setTargetBed(code_value());
  1360. break;
  1361. case 105 : // M105
  1362. if(setTargetedHotend(105)){
  1363. break;
  1364. }
  1365. #if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
  1366. SERIAL_PROTOCOLPGM("ok T:");
  1367. SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
  1368. SERIAL_PROTOCOLPGM(" /");
  1369. SERIAL_PROTOCOL_F(degTargetHotend(tmp_extruder),1);
  1370. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  1371. SERIAL_PROTOCOLPGM(" B:");
  1372. SERIAL_PROTOCOL_F(degBed(),1);
  1373. SERIAL_PROTOCOLPGM(" /");
  1374. SERIAL_PROTOCOL_F(degTargetBed(),1);
  1375. #endif //TEMP_BED_PIN
  1376. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  1377. SERIAL_PROTOCOLPGM(" T");
  1378. SERIAL_PROTOCOL(cur_extruder);
  1379. SERIAL_PROTOCOLPGM(":");
  1380. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  1381. SERIAL_PROTOCOLPGM(" /");
  1382. SERIAL_PROTOCOL_F(degTargetHotend(cur_extruder),1);
  1383. }
  1384. #else
  1385. SERIAL_ERROR_START;
  1386. SERIAL_ERRORLNPGM(MSG_ERR_NO_THERMISTORS);
  1387. #endif
  1388. SERIAL_PROTOCOLPGM(" @:");
  1389. SERIAL_PROTOCOL(getHeaterPower(tmp_extruder));
  1390. SERIAL_PROTOCOLPGM(" B@:");
  1391. SERIAL_PROTOCOL(getHeaterPower(-1));
  1392. #ifdef SHOW_TEMP_ADC_VALUES
  1393. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  1394. SERIAL_PROTOCOLPGM(" ADC B:");
  1395. SERIAL_PROTOCOL_F(degBed(),1);
  1396. SERIAL_PROTOCOLPGM("C->");
  1397. SERIAL_PROTOCOL_F(rawBedTemp()/OVERSAMPLENR,0);
  1398. #endif
  1399. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  1400. SERIAL_PROTOCOLPGM(" T");
  1401. SERIAL_PROTOCOL(cur_extruder);
  1402. SERIAL_PROTOCOLPGM(":");
  1403. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  1404. SERIAL_PROTOCOLPGM("C->");
  1405. SERIAL_PROTOCOL_F(rawHotendTemp(cur_extruder)/OVERSAMPLENR,0);
  1406. }
  1407. #endif
  1408. SERIAL_PROTOCOLLN("");
  1409. return;
  1410. break;
  1411. case 109:
  1412. {// M109 - Wait for extruder heater to reach target.
  1413. if(setTargetedHotend(109)){
  1414. break;
  1415. }
  1416. LCD_MESSAGEPGM(MSG_HEATING);
  1417. #ifdef AUTOTEMP
  1418. autotemp_enabled=false;
  1419. #endif
  1420. if (code_seen('S')) {
  1421. setTargetHotend(code_value(), tmp_extruder);
  1422. #ifdef DUAL_X_CARRIAGE
  1423. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && tmp_extruder == 0)
  1424. setTargetHotend1(code_value() == 0.0 ? 0.0 : code_value() + duplicate_extruder_temp_offset);
  1425. #endif
  1426. CooldownNoWait = true;
  1427. } else if (code_seen('R')) {
  1428. setTargetHotend(code_value(), tmp_extruder);
  1429. #ifdef DUAL_X_CARRIAGE
  1430. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && tmp_extruder == 0)
  1431. setTargetHotend1(code_value() == 0.0 ? 0.0 : code_value() + duplicate_extruder_temp_offset);
  1432. #endif
  1433. CooldownNoWait = false;
  1434. }
  1435. #ifdef AUTOTEMP
  1436. if (code_seen('S')) autotemp_min=code_value();
  1437. if (code_seen('B')) autotemp_max=code_value();
  1438. if (code_seen('F'))
  1439. {
  1440. autotemp_factor=code_value();
  1441. autotemp_enabled=true;
  1442. }
  1443. #endif
  1444. setWatch();
  1445. codenum = millis();
  1446. /* See if we are heating up or cooling down */
  1447. target_direction = isHeatingHotend(tmp_extruder); // true if heating, false if cooling
  1448. #ifdef TEMP_RESIDENCY_TIME
  1449. long residencyStart;
  1450. residencyStart = -1;
  1451. /* continue to loop until we have reached the target temp
  1452. _and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
  1453. while((residencyStart == -1) ||
  1454. (residencyStart >= 0 && (((unsigned int) (millis() - residencyStart)) < (TEMP_RESIDENCY_TIME * 1000UL))) ) {
  1455. #else
  1456. while ( target_direction ? (isHeatingHotend(tmp_extruder)) : (isCoolingHotend(tmp_extruder)&&(CooldownNoWait==false)) ) {
  1457. #endif //TEMP_RESIDENCY_TIME
  1458. if( (millis() - codenum) > 1000UL )
  1459. { //Print Temp Reading and remaining time every 1 second while heating up/cooling down
  1460. SERIAL_PROTOCOLPGM("T:");
  1461. SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
  1462. SERIAL_PROTOCOLPGM(" E:");
  1463. SERIAL_PROTOCOL((int)tmp_extruder);
  1464. #ifdef TEMP_RESIDENCY_TIME
  1465. SERIAL_PROTOCOLPGM(" W:");
  1466. if(residencyStart > -1)
  1467. {
  1468. codenum = ((TEMP_RESIDENCY_TIME * 1000UL) - (millis() - residencyStart)) / 1000UL;
  1469. SERIAL_PROTOCOLLN( codenum );
  1470. }
  1471. else
  1472. {
  1473. SERIAL_PROTOCOLLN( "?" );
  1474. }
  1475. #else
  1476. SERIAL_PROTOCOLLN("");
  1477. #endif
  1478. codenum = millis();
  1479. }
  1480. manage_heater();
  1481. manage_inactivity();
  1482. lcd_update();
  1483. #ifdef TEMP_RESIDENCY_TIME
  1484. /* start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
  1485. or when current temp falls outside the hysteresis after target temp was reached */
  1486. if ((residencyStart == -1 && target_direction && (degHotend(tmp_extruder) >= (degTargetHotend(tmp_extruder)-TEMP_WINDOW))) ||
  1487. (residencyStart == -1 && !target_direction && (degHotend(tmp_extruder) <= (degTargetHotend(tmp_extruder)+TEMP_WINDOW))) ||
  1488. (residencyStart > -1 && labs(degHotend(tmp_extruder) - degTargetHotend(tmp_extruder)) > TEMP_HYSTERESIS) )
  1489. {
  1490. residencyStart = millis();
  1491. }
  1492. #endif //TEMP_RESIDENCY_TIME
  1493. }
  1494. LCD_MESSAGEPGM(MSG_HEATING_COMPLETE);
  1495. starttime=millis();
  1496. previous_millis_cmd = millis();
  1497. }
  1498. break;
  1499. case 190: // M190 - Wait for bed heater to reach target.
  1500. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  1501. LCD_MESSAGEPGM(MSG_BED_HEATING);
  1502. if (code_seen('S')) {
  1503. setTargetBed(code_value());
  1504. CooldownNoWait = true;
  1505. } else if (code_seen('R')) {
  1506. setTargetBed(code_value());
  1507. CooldownNoWait = false;
  1508. }
  1509. codenum = millis();
  1510. target_direction = isHeatingBed(); // true if heating, false if cooling
  1511. while ( target_direction ? (isHeatingBed()) : (isCoolingBed()&&(CooldownNoWait==false)) )
  1512. {
  1513. if(( millis() - codenum) > 1000 ) //Print Temp Reading every 1 second while heating up.
  1514. {
  1515. float tt=degHotend(active_extruder);
  1516. SERIAL_PROTOCOLPGM("T:");
  1517. SERIAL_PROTOCOL(tt);
  1518. SERIAL_PROTOCOLPGM(" E:");
  1519. SERIAL_PROTOCOL((int)active_extruder);
  1520. SERIAL_PROTOCOLPGM(" B:");
  1521. SERIAL_PROTOCOL_F(degBed(),1);
  1522. SERIAL_PROTOCOLLN("");
  1523. codenum = millis();
  1524. }
  1525. manage_heater();
  1526. manage_inactivity();
  1527. lcd_update();
  1528. }
  1529. LCD_MESSAGEPGM(MSG_BED_DONE);
  1530. previous_millis_cmd = millis();
  1531. #endif
  1532. break;
  1533. #if defined(FAN_PIN) && FAN_PIN > -1
  1534. case 106: //M106 Fan On
  1535. if (code_seen('S')){
  1536. fanSpeed=constrain(code_value(),0,255);
  1537. }
  1538. else {
  1539. fanSpeed=255;
  1540. }
  1541. break;
  1542. case 107: //M107 Fan Off
  1543. fanSpeed = 0;
  1544. break;
  1545. #endif //FAN_PIN
  1546. #ifdef BARICUDA
  1547. // PWM for HEATER_1_PIN
  1548. #if defined(HEATER_1_PIN) && HEATER_1_PIN > -1
  1549. case 126: //M126 valve open
  1550. if (code_seen('S')){
  1551. ValvePressure=constrain(code_value(),0,255);
  1552. }
  1553. else {
  1554. ValvePressure=255;
  1555. }
  1556. break;
  1557. case 127: //M127 valve closed
  1558. ValvePressure = 0;
  1559. break;
  1560. #endif //HEATER_1_PIN
  1561. // PWM for HEATER_2_PIN
  1562. #if defined(HEATER_2_PIN) && HEATER_2_PIN > -1
  1563. case 128: //M128 valve open
  1564. if (code_seen('S')){
  1565. EtoPPressure=constrain(code_value(),0,255);
  1566. }
  1567. else {
  1568. EtoPPressure=255;
  1569. }
  1570. break;
  1571. case 129: //M129 valve closed
  1572. EtoPPressure = 0;
  1573. break;
  1574. #endif //HEATER_2_PIN
  1575. #endif
  1576. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  1577. case 80: // M80 - Turn on Power Supply
  1578. SET_OUTPUT(PS_ON_PIN); //GND
  1579. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  1580. #ifdef ULTIPANEL
  1581. powersupply = true;
  1582. LCD_MESSAGEPGM(WELCOME_MSG);
  1583. lcd_update();
  1584. #endif
  1585. break;
  1586. #endif
  1587. case 81: // M81 - Turn off Power Supply
  1588. disable_heater();
  1589. st_synchronize();
  1590. disable_e0();
  1591. disable_e1();
  1592. disable_e2();
  1593. finishAndDisableSteppers();
  1594. fanSpeed = 0;
  1595. delay(1000); // Wait a little before to switch off
  1596. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  1597. st_synchronize();
  1598. suicide();
  1599. #elif defined(PS_ON_PIN) && PS_ON_PIN > -1
  1600. SET_OUTPUT(PS_ON_PIN);
  1601. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  1602. #endif
  1603. #ifdef ULTIPANEL
  1604. powersupply = false;
  1605. LCD_MESSAGEPGM(MACHINE_NAME" "MSG_OFF".");
  1606. lcd_update();
  1607. #endif
  1608. break;
  1609. case 82:
  1610. axis_relative_modes[3] = false;
  1611. break;
  1612. case 83:
  1613. axis_relative_modes[3] = true;
  1614. break;
  1615. case 18: //compatibility
  1616. case 84: // M84
  1617. if(code_seen('S')){
  1618. stepper_inactive_time = code_value() * 1000;
  1619. }
  1620. else
  1621. {
  1622. bool all_axis = !((code_seen(axis_codes[0])) || (code_seen(axis_codes[1])) || (code_seen(axis_codes[2]))|| (code_seen(axis_codes[3])));
  1623. if(all_axis)
  1624. {
  1625. st_synchronize();
  1626. disable_e0();
  1627. disable_e1();
  1628. disable_e2();
  1629. finishAndDisableSteppers();
  1630. }
  1631. else
  1632. {
  1633. st_synchronize();
  1634. if(code_seen('X')) disable_x();
  1635. if(code_seen('Y')) disable_y();
  1636. if(code_seen('Z')) disable_z();
  1637. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  1638. if(code_seen('E')) {
  1639. disable_e0();
  1640. disable_e1();
  1641. disable_e2();
  1642. }
  1643. #endif
  1644. }
  1645. }
  1646. break;
  1647. case 85: // M85
  1648. code_seen('S');
  1649. max_inactive_time = code_value() * 1000;
  1650. break;
  1651. case 92: // M92
  1652. for(int8_t i=0; i < NUM_AXIS; i++)
  1653. {
  1654. if(code_seen(axis_codes[i]))
  1655. {
  1656. if(i == 3) { // E
  1657. float value = code_value();
  1658. if(value < 20.0) {
  1659. float factor = axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
  1660. max_e_jerk *= factor;
  1661. max_feedrate[i] *= factor;
  1662. axis_steps_per_sqr_second[i] *= factor;
  1663. }
  1664. axis_steps_per_unit[i] = value;
  1665. }
  1666. else {
  1667. axis_steps_per_unit[i] = code_value();
  1668. }
  1669. }
  1670. }
  1671. break;
  1672. case 115: // M115
  1673. SERIAL_PROTOCOLPGM(MSG_M115_REPORT);
  1674. break;
  1675. case 117: // M117 display message
  1676. starpos = (strchr(strchr_pointer + 5,'*'));
  1677. if(starpos!=NULL)
  1678. *(starpos-1)='\0';
  1679. lcd_setstatus(strchr_pointer + 5);
  1680. break;
  1681. case 114: // M114
  1682. SERIAL_PROTOCOLPGM("X:");
  1683. SERIAL_PROTOCOL(current_position[X_AXIS]);
  1684. SERIAL_PROTOCOLPGM("Y:");
  1685. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  1686. SERIAL_PROTOCOLPGM("Z:");
  1687. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  1688. SERIAL_PROTOCOLPGM("E:");
  1689. SERIAL_PROTOCOL(current_position[E_AXIS]);
  1690. SERIAL_PROTOCOLPGM(MSG_COUNT_X);
  1691. SERIAL_PROTOCOL(float(st_get_position(X_AXIS))/axis_steps_per_unit[X_AXIS]);
  1692. SERIAL_PROTOCOLPGM("Y:");
  1693. SERIAL_PROTOCOL(float(st_get_position(Y_AXIS))/axis_steps_per_unit[Y_AXIS]);
  1694. SERIAL_PROTOCOLPGM("Z:");
  1695. SERIAL_PROTOCOL(float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]);
  1696. SERIAL_PROTOCOLLN("");
  1697. break;
  1698. case 120: // M120
  1699. enable_endstops(false) ;
  1700. break;
  1701. case 121: // M121
  1702. enable_endstops(true) ;
  1703. break;
  1704. case 119: // M119
  1705. SERIAL_PROTOCOLLN(MSG_M119_REPORT);
  1706. #if defined(X_MIN_PIN) && X_MIN_PIN > -1
  1707. SERIAL_PROTOCOLPGM(MSG_X_MIN);
  1708. SERIAL_PROTOCOLLN(((READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  1709. #endif
  1710. #if defined(X_MAX_PIN) && X_MAX_PIN > -1
  1711. SERIAL_PROTOCOLPGM(MSG_X_MAX);
  1712. SERIAL_PROTOCOLLN(((READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  1713. #endif
  1714. #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
  1715. SERIAL_PROTOCOLPGM(MSG_Y_MIN);
  1716. SERIAL_PROTOCOLLN(((READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  1717. #endif
  1718. #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
  1719. SERIAL_PROTOCOLPGM(MSG_Y_MAX);
  1720. SERIAL_PROTOCOLLN(((READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  1721. #endif
  1722. #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
  1723. SERIAL_PROTOCOLPGM(MSG_Z_MIN);
  1724. SERIAL_PROTOCOLLN(((READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  1725. #endif
  1726. #if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
  1727. SERIAL_PROTOCOLPGM(MSG_Z_MAX);
  1728. SERIAL_PROTOCOLLN(((READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  1729. #endif
  1730. break;
  1731. //TODO: update for all axis, use for loop
  1732. case 201: // M201
  1733. for(int8_t i=0; i < NUM_AXIS; i++)
  1734. {
  1735. if(code_seen(axis_codes[i]))
  1736. {
  1737. max_acceleration_units_per_sq_second[i] = code_value();
  1738. }
  1739. }
  1740. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  1741. reset_acceleration_rates();
  1742. break;
  1743. #if 0 // Not used for Sprinter/grbl gen6
  1744. case 202: // M202
  1745. for(int8_t i=0; i < NUM_AXIS; i++) {
  1746. if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
  1747. }
  1748. break;
  1749. #endif
  1750. case 203: // M203 max feedrate mm/sec
  1751. for(int8_t i=0; i < NUM_AXIS; i++) {
  1752. if(code_seen(axis_codes[i])) max_feedrate[i] = code_value();
  1753. }
  1754. break;
  1755. case 204: // M204 acclereration S normal moves T filmanent only moves
  1756. {
  1757. if(code_seen('S')) acceleration = code_value() ;
  1758. if(code_seen('T')) retract_acceleration = code_value() ;
  1759. }
  1760. break;
  1761. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  1762. {
  1763. if(code_seen('S')) minimumfeedrate = code_value();
  1764. if(code_seen('T')) mintravelfeedrate = code_value();
  1765. if(code_seen('B')) minsegmenttime = code_value() ;
  1766. if(code_seen('X')) max_xy_jerk = code_value() ;
  1767. if(code_seen('Z')) max_z_jerk = code_value() ;
  1768. if(code_seen('E')) max_e_jerk = code_value() ;
  1769. }
  1770. break;
  1771. case 206: // M206 additional homeing offset
  1772. for(int8_t i=0; i < 3; i++)
  1773. {
  1774. if(code_seen(axis_codes[i])) add_homeing[i] = code_value();
  1775. }
  1776. break;
  1777. #ifdef DELTA
  1778. case 666: // M666 set delta endstop adjustemnt
  1779. for(int8_t i=0; i < 3; i++)
  1780. {
  1781. if(code_seen(axis_codes[i])) endstop_adj[i] = code_value();
  1782. }
  1783. break;
  1784. #endif
  1785. #ifdef FWRETRACT
  1786. case 207: //M207 - set retract length S[positive mm] F[feedrate mm/sec] Z[additional zlift/hop]
  1787. {
  1788. if(code_seen('S'))
  1789. {
  1790. retract_length = code_value() ;
  1791. }
  1792. if(code_seen('F'))
  1793. {
  1794. retract_feedrate = code_value() ;
  1795. }
  1796. if(code_seen('Z'))
  1797. {
  1798. retract_zlift = code_value() ;
  1799. }
  1800. }break;
  1801. case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
  1802. {
  1803. if(code_seen('S'))
  1804. {
  1805. retract_recover_length = code_value() ;
  1806. }
  1807. if(code_seen('F'))
  1808. {
  1809. retract_recover_feedrate = code_value() ;
  1810. }
  1811. }break;
  1812. case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  1813. {
  1814. if(code_seen('S'))
  1815. {
  1816. int t= code_value() ;
  1817. switch(t)
  1818. {
  1819. case 0: autoretract_enabled=false;retracted=false;break;
  1820. case 1: autoretract_enabled=true;retracted=false;break;
  1821. default:
  1822. SERIAL_ECHO_START;
  1823. SERIAL_ECHOPGM(MSG_UNKNOWN_COMMAND);
  1824. SERIAL_ECHO(cmdbuffer[bufindr]);
  1825. SERIAL_ECHOLNPGM("\"");
  1826. }
  1827. }
  1828. }break;
  1829. #endif // FWRETRACT
  1830. #if EXTRUDERS > 1
  1831. case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  1832. {
  1833. if(setTargetedHotend(218)){
  1834. break;
  1835. }
  1836. if(code_seen('X'))
  1837. {
  1838. extruder_offset[X_AXIS][tmp_extruder] = code_value();
  1839. }
  1840. if(code_seen('Y'))
  1841. {
  1842. extruder_offset[Y_AXIS][tmp_extruder] = code_value();
  1843. }
  1844. #ifdef DUAL_X_CARRIAGE
  1845. if(code_seen('Z'))
  1846. {
  1847. extruder_offset[Z_AXIS][tmp_extruder] = code_value();
  1848. }
  1849. #endif
  1850. SERIAL_ECHO_START;
  1851. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  1852. for(tmp_extruder = 0; tmp_extruder < EXTRUDERS; tmp_extruder++)
  1853. {
  1854. SERIAL_ECHO(" ");
  1855. SERIAL_ECHO(extruder_offset[X_AXIS][tmp_extruder]);
  1856. SERIAL_ECHO(",");
  1857. SERIAL_ECHO(extruder_offset[Y_AXIS][tmp_extruder]);
  1858. #ifdef DUAL_X_CARRIAGE
  1859. SERIAL_ECHO(",");
  1860. SERIAL_ECHO(extruder_offset[Z_AXIS][tmp_extruder]);
  1861. #endif
  1862. }
  1863. SERIAL_ECHOLN("");
  1864. }break;
  1865. #endif
  1866. case 220: // M220 S<factor in percent>- set speed factor override percentage
  1867. {
  1868. if(code_seen('S'))
  1869. {
  1870. feedmultiply = code_value() ;
  1871. }
  1872. }
  1873. break;
  1874. case 221: // M221 S<factor in percent>- set extrude factor override percentage
  1875. {
  1876. if(code_seen('S'))
  1877. {
  1878. extrudemultiply = code_value() ;
  1879. }
  1880. }
  1881. break;
  1882. #if NUM_SERVOS > 0
  1883. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  1884. {
  1885. int servo_index = -1;
  1886. int servo_position = 0;
  1887. if (code_seen('P'))
  1888. servo_index = code_value();
  1889. if (code_seen('S')) {
  1890. servo_position = code_value();
  1891. if ((servo_index >= 0) && (servo_index < NUM_SERVOS)) {
  1892. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  1893. servos[servo_index].attach(0);
  1894. #endif
  1895. servos[servo_index].write(servo_position);
  1896. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  1897. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  1898. servos[servo_index].detach();
  1899. #endif
  1900. }
  1901. else {
  1902. SERIAL_ECHO_START;
  1903. SERIAL_ECHO("Servo ");
  1904. SERIAL_ECHO(servo_index);
  1905. SERIAL_ECHOLN(" out of range");
  1906. }
  1907. }
  1908. else if (servo_index >= 0) {
  1909. SERIAL_PROTOCOL(MSG_OK);
  1910. SERIAL_PROTOCOL(" Servo ");
  1911. SERIAL_PROTOCOL(servo_index);
  1912. SERIAL_PROTOCOL(": ");
  1913. SERIAL_PROTOCOL(servos[servo_index].read());
  1914. SERIAL_PROTOCOLLN("");
  1915. }
  1916. }
  1917. break;
  1918. #endif // NUM_SERVOS > 0
  1919. #if LARGE_FLASH == true && ( BEEPER > 0 || defined(ULTRALCD) )
  1920. case 300: // M300
  1921. {
  1922. int beepS = code_seen('S') ? code_value() : 110;
  1923. int beepP = code_seen('P') ? code_value() : 1000;
  1924. if (beepS > 0)
  1925. {
  1926. #if BEEPER > 0
  1927. tone(BEEPER, beepS);
  1928. delay(beepP);
  1929. noTone(BEEPER);
  1930. #elif defined(ULTRALCD)
  1931. lcd_buzz(beepS, beepP);
  1932. #endif
  1933. }
  1934. else
  1935. {
  1936. delay(beepP);
  1937. }
  1938. }
  1939. break;
  1940. #endif // M300
  1941. #ifdef PIDTEMP
  1942. case 301: // M301
  1943. {
  1944. if(code_seen('P')) Kp = code_value();
  1945. if(code_seen('I')) Ki = scalePID_i(code_value());
  1946. if(code_seen('D')) Kd = scalePID_d(code_value());
  1947. #ifdef PID_ADD_EXTRUSION_RATE
  1948. if(code_seen('C')) Kc = code_value();
  1949. #endif
  1950. updatePID();
  1951. SERIAL_PROTOCOL(MSG_OK);
  1952. SERIAL_PROTOCOL(" p:");
  1953. SERIAL_PROTOCOL(Kp);
  1954. SERIAL_PROTOCOL(" i:");
  1955. SERIAL_PROTOCOL(unscalePID_i(Ki));
  1956. SERIAL_PROTOCOL(" d:");
  1957. SERIAL_PROTOCOL(unscalePID_d(Kd));
  1958. #ifdef PID_ADD_EXTRUSION_RATE
  1959. SERIAL_PROTOCOL(" c:");
  1960. //Kc does not have scaling applied above, or in resetting defaults
  1961. SERIAL_PROTOCOL(Kc);
  1962. #endif
  1963. SERIAL_PROTOCOLLN("");
  1964. }
  1965. break;
  1966. #endif //PIDTEMP
  1967. #ifdef PIDTEMPBED
  1968. case 304: // M304
  1969. {
  1970. if(code_seen('P')) bedKp = code_value();
  1971. if(code_seen('I')) bedKi = scalePID_i(code_value());
  1972. if(code_seen('D')) bedKd = scalePID_d(code_value());
  1973. updatePID();
  1974. SERIAL_PROTOCOL(MSG_OK);
  1975. SERIAL_PROTOCOL(" p:");
  1976. SERIAL_PROTOCOL(bedKp);
  1977. SERIAL_PROTOCOL(" i:");
  1978. SERIAL_PROTOCOL(unscalePID_i(bedKi));
  1979. SERIAL_PROTOCOL(" d:");
  1980. SERIAL_PROTOCOL(unscalePID_d(bedKd));
  1981. SERIAL_PROTOCOLLN("");
  1982. }
  1983. break;
  1984. #endif //PIDTEMP
  1985. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  1986. {
  1987. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  1988. const uint8_t NUM_PULSES=16;
  1989. const float PULSE_LENGTH=0.01524;
  1990. for(int i=0; i < NUM_PULSES; i++) {
  1991. WRITE(PHOTOGRAPH_PIN, HIGH);
  1992. _delay_ms(PULSE_LENGTH);
  1993. WRITE(PHOTOGRAPH_PIN, LOW);
  1994. _delay_ms(PULSE_LENGTH);
  1995. }
  1996. delay(7.33);
  1997. for(int i=0; i < NUM_PULSES; i++) {
  1998. WRITE(PHOTOGRAPH_PIN, HIGH);
  1999. _delay_ms(PULSE_LENGTH);
  2000. WRITE(PHOTOGRAPH_PIN, LOW);
  2001. _delay_ms(PULSE_LENGTH);
  2002. }
  2003. #endif
  2004. }
  2005. break;
  2006. #ifdef DOGLCD
  2007. case 250: // M250 Set LCD contrast value: C<value> (value 0..63)
  2008. {
  2009. if (code_seen('C')) {
  2010. lcd_setcontrast( ((int)code_value())&63 );
  2011. }
  2012. SERIAL_PROTOCOLPGM("lcd contrast value: ");
  2013. SERIAL_PROTOCOL(lcd_contrast);
  2014. SERIAL_PROTOCOLLN("");
  2015. }
  2016. break;
  2017. #endif
  2018. #ifdef PREVENT_DANGEROUS_EXTRUDE
  2019. case 302: // allow cold extrudes, or set the minimum extrude temperature
  2020. {
  2021. float temp = .0;
  2022. if (code_seen('S')) temp=code_value();
  2023. set_extrude_min_temp(temp);
  2024. }
  2025. break;
  2026. #endif
  2027. case 303: // M303 PID autotune
  2028. {
  2029. float temp = 150.0;
  2030. int e=0;
  2031. int c=5;
  2032. if (code_seen('E')) e=code_value();
  2033. if (e<0)
  2034. temp=70;
  2035. if (code_seen('S')) temp=code_value();
  2036. if (code_seen('C')) c=code_value();
  2037. PID_autotune(temp, e, c);
  2038. }
  2039. break;
  2040. case 400: // M400 finish all moves
  2041. {
  2042. st_synchronize();
  2043. }
  2044. break;
  2045. #if defined(ENABLE_AUTO_BED_LEVELING) && defined(SERVO_ENDSTOPS)
  2046. case 401:
  2047. {
  2048. engage_z_probe(); // Engage Z Servo endstop if available
  2049. }
  2050. break;
  2051. case 402:
  2052. {
  2053. retract_z_probe(); // Retract Z Servo endstop if enabled
  2054. }
  2055. break;
  2056. #endif
  2057. case 500: // M500 Store settings in EEPROM
  2058. {
  2059. Config_StoreSettings();
  2060. }
  2061. break;
  2062. case 501: // M501 Read settings from EEPROM
  2063. {
  2064. Config_RetrieveSettings();
  2065. }
  2066. break;
  2067. case 502: // M502 Revert to default settings
  2068. {
  2069. Config_ResetDefault();
  2070. }
  2071. break;
  2072. case 503: // M503 print settings currently in memory
  2073. {
  2074. Config_PrintSettings();
  2075. }
  2076. break;
  2077. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  2078. case 540:
  2079. {
  2080. if(code_seen('S')) abort_on_endstop_hit = code_value() > 0;
  2081. }
  2082. break;
  2083. #endif
  2084. #ifdef FILAMENTCHANGEENABLE
  2085. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  2086. {
  2087. float target[4];
  2088. float lastpos[4];
  2089. target[X_AXIS]=current_position[X_AXIS];
  2090. target[Y_AXIS]=current_position[Y_AXIS];
  2091. target[Z_AXIS]=current_position[Z_AXIS];
  2092. target[E_AXIS]=current_position[E_AXIS];
  2093. lastpos[X_AXIS]=current_position[X_AXIS];
  2094. lastpos[Y_AXIS]=current_position[Y_AXIS];
  2095. lastpos[Z_AXIS]=current_position[Z_AXIS];
  2096. lastpos[E_AXIS]=current_position[E_AXIS];
  2097. //retract by E
  2098. if(code_seen('E'))
  2099. {
  2100. target[E_AXIS]+= code_value();
  2101. }
  2102. else
  2103. {
  2104. #ifdef FILAMENTCHANGE_FIRSTRETRACT
  2105. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  2106. #endif
  2107. }
  2108. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder);
  2109. //lift Z
  2110. if(code_seen('Z'))
  2111. {
  2112. target[Z_AXIS]+= code_value();
  2113. }
  2114. else
  2115. {
  2116. #ifdef FILAMENTCHANGE_ZADD
  2117. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  2118. #endif
  2119. }
  2120. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder);
  2121. //move xy
  2122. if(code_seen('X'))
  2123. {
  2124. target[X_AXIS]+= code_value();
  2125. }
  2126. else
  2127. {
  2128. #ifdef FILAMENTCHANGE_XPOS
  2129. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  2130. #endif
  2131. }
  2132. if(code_seen('Y'))
  2133. {
  2134. target[Y_AXIS]= code_value();
  2135. }
  2136. else
  2137. {
  2138. #ifdef FILAMENTCHANGE_YPOS
  2139. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  2140. #endif
  2141. }
  2142. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder);
  2143. if(code_seen('L'))
  2144. {
  2145. target[E_AXIS]+= code_value();
  2146. }
  2147. else
  2148. {
  2149. #ifdef FILAMENTCHANGE_FINALRETRACT
  2150. target[E_AXIS]+= FILAMENTCHANGE_FINALRETRACT ;
  2151. #endif
  2152. }
  2153. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder);
  2154. //finish moves
  2155. st_synchronize();
  2156. //disable extruder steppers so filament can be removed
  2157. disable_e0();
  2158. disable_e1();
  2159. disable_e2();
  2160. delay(100);
  2161. LCD_ALERTMESSAGEPGM(MSG_FILAMENTCHANGE);
  2162. uint8_t cnt=0;
  2163. while(!lcd_clicked()){
  2164. cnt++;
  2165. manage_heater();
  2166. manage_inactivity();
  2167. lcd_update();
  2168. if(cnt==0)
  2169. {
  2170. #if BEEPER > 0
  2171. SET_OUTPUT(BEEPER);
  2172. WRITE(BEEPER,HIGH);
  2173. delay(3);
  2174. WRITE(BEEPER,LOW);
  2175. delay(3);
  2176. #else
  2177. lcd_buzz(1000/6,100);
  2178. #endif
  2179. }
  2180. }
  2181. //return to normal
  2182. if(code_seen('L'))
  2183. {
  2184. target[E_AXIS]+= -code_value();
  2185. }
  2186. else
  2187. {
  2188. #ifdef FILAMENTCHANGE_FINALRETRACT
  2189. target[E_AXIS]+=(-1)*FILAMENTCHANGE_FINALRETRACT ;
  2190. #endif
  2191. }
  2192. current_position[E_AXIS]=target[E_AXIS]; //the long retract of L is compensated by manual filament feeding
  2193. plan_set_e_position(current_position[E_AXIS]);
  2194. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder); //should do nothing
  2195. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder); //move xy back
  2196. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder); //move z back
  2197. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], lastpos[E_AXIS], feedrate/60, active_extruder); //final untretract
  2198. }
  2199. break;
  2200. #endif //FILAMENTCHANGEENABLE
  2201. #ifdef DUAL_X_CARRIAGE
  2202. case 605: // Set dual x-carriage movement mode:
  2203. // M605 S0: Full control mode. The slicer has full control over x-carriage movement
  2204. // M605 S1: Auto-park mode. The inactive head will auto park/unpark without slicer involvement
  2205. // M605 S2 [Xnnn] [Rmmm]: Duplication mode. The second extruder will duplicate the first with nnn
  2206. // millimeters x-offset and an optional differential hotend temperature of
  2207. // mmm degrees. E.g., with "M605 S2 X100 R2" the second extruder will duplicate
  2208. // the first with a spacing of 100mm in the x direction and 2 degrees hotter.
  2209. //
  2210. // Note: the X axis should be homed after changing dual x-carriage mode.
  2211. {
  2212. st_synchronize();
  2213. if (code_seen('S'))
  2214. dual_x_carriage_mode = code_value();
  2215. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE)
  2216. {
  2217. if (code_seen('X'))
  2218. duplicate_extruder_x_offset = max(code_value(),X2_MIN_POS - x_home_pos(0));
  2219. if (code_seen('R'))
  2220. duplicate_extruder_temp_offset = code_value();
  2221. SERIAL_ECHO_START;
  2222. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  2223. SERIAL_ECHO(" ");
  2224. SERIAL_ECHO(extruder_offset[X_AXIS][0]);
  2225. SERIAL_ECHO(",");
  2226. SERIAL_ECHO(extruder_offset[Y_AXIS][0]);
  2227. SERIAL_ECHO(" ");
  2228. SERIAL_ECHO(duplicate_extruder_x_offset);
  2229. SERIAL_ECHO(",");
  2230. SERIAL_ECHOLN(extruder_offset[Y_AXIS][1]);
  2231. }
  2232. else if (dual_x_carriage_mode != DXC_FULL_CONTROL_MODE && dual_x_carriage_mode != DXC_AUTO_PARK_MODE)
  2233. {
  2234. dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  2235. }
  2236. active_extruder_parked = false;
  2237. extruder_duplication_enabled = false;
  2238. delayed_move_time = 0;
  2239. }
  2240. break;
  2241. #endif //DUAL_X_CARRIAGE
  2242. case 907: // M907 Set digital trimpot motor current using axis codes.
  2243. {
  2244. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  2245. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_current(i,code_value());
  2246. if(code_seen('B')) digipot_current(4,code_value());
  2247. if(code_seen('S')) for(int i=0;i<=4;i++) digipot_current(i,code_value());
  2248. #endif
  2249. }
  2250. break;
  2251. case 908: // M908 Control digital trimpot directly.
  2252. {
  2253. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  2254. uint8_t channel,current;
  2255. if(code_seen('P')) channel=code_value();
  2256. if(code_seen('S')) current=code_value();
  2257. digitalPotWrite(channel, current);
  2258. #endif
  2259. }
  2260. break;
  2261. case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  2262. {
  2263. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  2264. if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value());
  2265. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_mode(i,(uint8_t)code_value());
  2266. if(code_seen('B')) microstep_mode(4,code_value());
  2267. microstep_readings();
  2268. #endif
  2269. }
  2270. break;
  2271. case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  2272. {
  2273. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  2274. if(code_seen('S')) switch((int)code_value())
  2275. {
  2276. case 1:
  2277. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,code_value(),-1);
  2278. if(code_seen('B')) microstep_ms(4,code_value(),-1);
  2279. break;
  2280. case 2:
  2281. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,-1,code_value());
  2282. if(code_seen('B')) microstep_ms(4,-1,code_value());
  2283. break;
  2284. }
  2285. microstep_readings();
  2286. #endif
  2287. }
  2288. break;
  2289. case 999: // M999: Restart after being stopped
  2290. Stopped = false;
  2291. lcd_reset_alert_level();
  2292. gcode_LastN = Stopped_gcode_LastN;
  2293. FlushSerialRequestResend();
  2294. break;
  2295. }
  2296. }
  2297. else if(code_seen('T'))
  2298. {
  2299. tmp_extruder = code_value();
  2300. if(tmp_extruder >= EXTRUDERS) {
  2301. SERIAL_ECHO_START;
  2302. SERIAL_ECHO("T");
  2303. SERIAL_ECHO(tmp_extruder);
  2304. SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
  2305. }
  2306. else {
  2307. boolean make_move = false;
  2308. if(code_seen('F')) {
  2309. make_move = true;
  2310. next_feedrate = code_value();
  2311. if(next_feedrate > 0.0) {
  2312. feedrate = next_feedrate;
  2313. }
  2314. }
  2315. #if EXTRUDERS > 1
  2316. if(tmp_extruder != active_extruder) {
  2317. // Save current position to return to after applying extruder offset
  2318. memcpy(destination, current_position, sizeof(destination));
  2319. #ifdef DUAL_X_CARRIAGE
  2320. if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE && Stopped == false &&
  2321. (delayed_move_time != 0 || current_position[X_AXIS] != x_home_pos(active_extruder)))
  2322. {
  2323. // Park old head: 1) raise 2) move to park position 3) lower
  2324. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
  2325. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  2326. plan_buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
  2327. current_position[E_AXIS], max_feedrate[X_AXIS], active_extruder);
  2328. plan_buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS],
  2329. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  2330. st_synchronize();
  2331. }
  2332. // apply Y & Z extruder offset (x offset is already used in determining home pos)
  2333. current_position[Y_AXIS] = current_position[Y_AXIS] -
  2334. extruder_offset[Y_AXIS][active_extruder] +
  2335. extruder_offset[Y_AXIS][tmp_extruder];
  2336. current_position[Z_AXIS] = current_position[Z_AXIS] -
  2337. extruder_offset[Z_AXIS][active_extruder] +
  2338. extruder_offset[Z_AXIS][tmp_extruder];
  2339. active_extruder = tmp_extruder;
  2340. // This function resets the max/min values - the current position may be overwritten below.
  2341. axis_is_at_home(X_AXIS);
  2342. if (dual_x_carriage_mode == DXC_FULL_CONTROL_MODE)
  2343. {
  2344. current_position[X_AXIS] = inactive_extruder_x_pos;
  2345. inactive_extruder_x_pos = destination[X_AXIS];
  2346. }
  2347. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE)
  2348. {
  2349. active_extruder_parked = (active_extruder == 0); // this triggers the second extruder to move into the duplication position
  2350. if (active_extruder == 0 || active_extruder_parked)
  2351. current_position[X_AXIS] = inactive_extruder_x_pos;
  2352. else
  2353. current_position[X_AXIS] = destination[X_AXIS] + duplicate_extruder_x_offset;
  2354. inactive_extruder_x_pos = destination[X_AXIS];
  2355. extruder_duplication_enabled = false;
  2356. }
  2357. else
  2358. {
  2359. // record raised toolhead position for use by unpark
  2360. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  2361. raised_parked_position[Z_AXIS] += TOOLCHANGE_UNPARK_ZLIFT;
  2362. active_extruder_parked = true;
  2363. delayed_move_time = 0;
  2364. }
  2365. #else
  2366. // Offset extruder (only by XY)
  2367. int i;
  2368. for(i = 0; i < 2; i++) {
  2369. current_position[i] = current_position[i] -
  2370. extruder_offset[i][active_extruder] +
  2371. extruder_offset[i][tmp_extruder];
  2372. }
  2373. // Set the new active extruder and position
  2374. active_extruder = tmp_extruder;
  2375. #endif //else DUAL_X_CARRIAGE
  2376. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2377. // Move to the old position if 'F' was in the parameters
  2378. if(make_move && Stopped == false) {
  2379. prepare_move();
  2380. }
  2381. }
  2382. #endif
  2383. SERIAL_ECHO_START;
  2384. SERIAL_ECHO(MSG_ACTIVE_EXTRUDER);
  2385. SERIAL_PROTOCOLLN((int)active_extruder);
  2386. }
  2387. }
  2388. else
  2389. {
  2390. SERIAL_ECHO_START;
  2391. SERIAL_ECHOPGM(MSG_UNKNOWN_COMMAND);
  2392. SERIAL_ECHO(cmdbuffer[bufindr]);
  2393. SERIAL_ECHOLNPGM("\"");
  2394. }
  2395. ClearToSend();
  2396. }
  2397. void FlushSerialRequestResend()
  2398. {
  2399. //char cmdbuffer[bufindr][100]="Resend:";
  2400. MYSERIAL.flush();
  2401. SERIAL_PROTOCOLPGM(MSG_RESEND);
  2402. SERIAL_PROTOCOLLN(gcode_LastN + 1);
  2403. ClearToSend();
  2404. }
  2405. void ClearToSend()
  2406. {
  2407. previous_millis_cmd = millis();
  2408. #ifdef SDSUPPORT
  2409. if(fromsd[bufindr])
  2410. return;
  2411. #endif //SDSUPPORT
  2412. SERIAL_PROTOCOLLNPGM(MSG_OK);
  2413. }
  2414. void get_coordinates()
  2415. {
  2416. bool seen[4]={false,false,false,false};
  2417. for(int8_t i=0; i < NUM_AXIS; i++) {
  2418. if(code_seen(axis_codes[i]))
  2419. {
  2420. destination[i] = (float)code_value() + (axis_relative_modes[i] || relative_mode)*current_position[i];
  2421. seen[i]=true;
  2422. }
  2423. else destination[i] = current_position[i]; //Are these else lines really needed?
  2424. }
  2425. if(code_seen('F')) {
  2426. next_feedrate = code_value();
  2427. if(next_feedrate > 0.0) feedrate = next_feedrate;
  2428. }
  2429. #ifdef FWRETRACT
  2430. if(autoretract_enabled)
  2431. if( !(seen[X_AXIS] || seen[Y_AXIS] || seen[Z_AXIS]) && seen[E_AXIS])
  2432. {
  2433. float echange=destination[E_AXIS]-current_position[E_AXIS];
  2434. if(echange<-MIN_RETRACT) //retract
  2435. {
  2436. if(!retracted)
  2437. {
  2438. destination[Z_AXIS]+=retract_zlift; //not sure why chaninging current_position negatively does not work.
  2439. //if slicer retracted by echange=-1mm and you want to retract 3mm, corrrectede=-2mm additionally
  2440. float correctede=-echange-retract_length;
  2441. //to generate the additional steps, not the destination is changed, but inversely the current position
  2442. current_position[E_AXIS]+=-correctede;
  2443. feedrate=retract_feedrate;
  2444. retracted=true;
  2445. }
  2446. }
  2447. else
  2448. if(echange>MIN_RETRACT) //retract_recover
  2449. {
  2450. if(retracted)
  2451. {
  2452. //current_position[Z_AXIS]+=-retract_zlift;
  2453. //if slicer retracted_recovered by echange=+1mm and you want to retract_recover 3mm, corrrectede=2mm additionally
  2454. float correctede=-echange+1*retract_length+retract_recover_length; //total unretract=retract_length+retract_recover_length[surplus]
  2455. current_position[E_AXIS]+=correctede; //to generate the additional steps, not the destination is changed, but inversely the current position
  2456. feedrate=retract_recover_feedrate;
  2457. retracted=false;
  2458. }
  2459. }
  2460. }
  2461. #endif //FWRETRACT
  2462. }
  2463. void get_arc_coordinates()
  2464. {
  2465. #ifdef SF_ARC_FIX
  2466. bool relative_mode_backup = relative_mode;
  2467. relative_mode = true;
  2468. #endif
  2469. get_coordinates();
  2470. #ifdef SF_ARC_FIX
  2471. relative_mode=relative_mode_backup;
  2472. #endif
  2473. if(code_seen('I')) {
  2474. offset[0] = code_value();
  2475. }
  2476. else {
  2477. offset[0] = 0.0;
  2478. }
  2479. if(code_seen('J')) {
  2480. offset[1] = code_value();
  2481. }
  2482. else {
  2483. offset[1] = 0.0;
  2484. }
  2485. }
  2486. void clamp_to_software_endstops(float target[3])
  2487. {
  2488. if (min_software_endstops) {
  2489. if (target[X_AXIS] < min_pos[X_AXIS]) target[X_AXIS] = min_pos[X_AXIS];
  2490. if (target[Y_AXIS] < min_pos[Y_AXIS]) target[Y_AXIS] = min_pos[Y_AXIS];
  2491. if (target[Z_AXIS] < min_pos[Z_AXIS]) target[Z_AXIS] = min_pos[Z_AXIS];
  2492. }
  2493. if (max_software_endstops) {
  2494. if (target[X_AXIS] > max_pos[X_AXIS]) target[X_AXIS] = max_pos[X_AXIS];
  2495. if (target[Y_AXIS] > max_pos[Y_AXIS]) target[Y_AXIS] = max_pos[Y_AXIS];
  2496. if (target[Z_AXIS] > max_pos[Z_AXIS]) target[Z_AXIS] = max_pos[Z_AXIS];
  2497. }
  2498. }
  2499. #ifdef DELTA
  2500. void calculate_delta(float cartesian[3])
  2501. {
  2502. delta[X_AXIS] = sqrt(DELTA_DIAGONAL_ROD_2
  2503. - sq(DELTA_TOWER1_X-cartesian[X_AXIS])
  2504. - sq(DELTA_TOWER1_Y-cartesian[Y_AXIS])
  2505. ) + cartesian[Z_AXIS];
  2506. delta[Y_AXIS] = sqrt(DELTA_DIAGONAL_ROD_2
  2507. - sq(DELTA_TOWER2_X-cartesian[X_AXIS])
  2508. - sq(DELTA_TOWER2_Y-cartesian[Y_AXIS])
  2509. ) + cartesian[Z_AXIS];
  2510. delta[Z_AXIS] = sqrt(DELTA_DIAGONAL_ROD_2
  2511. - sq(DELTA_TOWER3_X-cartesian[X_AXIS])
  2512. - sq(DELTA_TOWER3_Y-cartesian[Y_AXIS])
  2513. ) + cartesian[Z_AXIS];
  2514. /*
  2515. SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);
  2516. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]);
  2517. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]);
  2518. SERIAL_ECHOPGM("delta x="); SERIAL_ECHO(delta[X_AXIS]);
  2519. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(delta[Y_AXIS]);
  2520. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(delta[Z_AXIS]);
  2521. */
  2522. }
  2523. #endif
  2524. void prepare_move()
  2525. {
  2526. clamp_to_software_endstops(destination);
  2527. previous_millis_cmd = millis();
  2528. #ifdef DELTA
  2529. float difference[NUM_AXIS];
  2530. for (int8_t i=0; i < NUM_AXIS; i++) {
  2531. difference[i] = destination[i] - current_position[i];
  2532. }
  2533. float cartesian_mm = sqrt(sq(difference[X_AXIS]) +
  2534. sq(difference[Y_AXIS]) +
  2535. sq(difference[Z_AXIS]));
  2536. if (cartesian_mm < 0.000001) { cartesian_mm = abs(difference[E_AXIS]); }
  2537. if (cartesian_mm < 0.000001) { return; }
  2538. float seconds = 6000 * cartesian_mm / feedrate / feedmultiply;
  2539. int steps = max(1, int(DELTA_SEGMENTS_PER_SECOND * seconds));
  2540. // SERIAL_ECHOPGM("mm="); SERIAL_ECHO(cartesian_mm);
  2541. // SERIAL_ECHOPGM(" seconds="); SERIAL_ECHO(seconds);
  2542. // SERIAL_ECHOPGM(" steps="); SERIAL_ECHOLN(steps);
  2543. for (int s = 1; s <= steps; s++) {
  2544. float fraction = float(s) / float(steps);
  2545. for(int8_t i=0; i < NUM_AXIS; i++) {
  2546. destination[i] = current_position[i] + difference[i] * fraction;
  2547. }
  2548. calculate_delta(destination);
  2549. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS],
  2550. destination[E_AXIS], feedrate*feedmultiply/60/100.0,
  2551. active_extruder);
  2552. }
  2553. #else
  2554. #ifdef DUAL_X_CARRIAGE
  2555. if (active_extruder_parked)
  2556. {
  2557. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && active_extruder == 0)
  2558. {
  2559. // move duplicate extruder into correct duplication position.
  2560. plan_set_position(inactive_extruder_x_pos, current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2561. plan_buffer_line(current_position[X_AXIS] + duplicate_extruder_x_offset, current_position[Y_AXIS], current_position[Z_AXIS],
  2562. current_position[E_AXIS], max_feedrate[X_AXIS], 1);
  2563. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2564. st_synchronize();
  2565. extruder_duplication_enabled = true;
  2566. active_extruder_parked = false;
  2567. }
  2568. else if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE) // handle unparking of head
  2569. {
  2570. if (current_position[E_AXIS] == destination[E_AXIS])
  2571. {
  2572. // this is a travel move - skit it but keep track of current position (so that it can later
  2573. // be used as start of first non-travel move)
  2574. if (delayed_move_time != 0xFFFFFFFFUL)
  2575. {
  2576. memcpy(current_position, destination, sizeof(current_position));
  2577. if (destination[Z_AXIS] > raised_parked_position[Z_AXIS])
  2578. raised_parked_position[Z_AXIS] = destination[Z_AXIS];
  2579. delayed_move_time = millis();
  2580. return;
  2581. }
  2582. }
  2583. delayed_move_time = 0;
  2584. // unpark extruder: 1) raise, 2) move into starting XY position, 3) lower
  2585. plan_buffer_line(raised_parked_position[X_AXIS], raised_parked_position[Y_AXIS], raised_parked_position[Z_AXIS], current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  2586. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], raised_parked_position[Z_AXIS],
  2587. current_position[E_AXIS], min(max_feedrate[X_AXIS],max_feedrate[Y_AXIS]), active_extruder);
  2588. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS],
  2589. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  2590. active_extruder_parked = false;
  2591. }
  2592. }
  2593. #endif //DUAL_X_CARRIAGE
  2594. // Do not use feedmultiply for E or Z only moves
  2595. if( (current_position[X_AXIS] == destination [X_AXIS]) && (current_position[Y_AXIS] == destination [Y_AXIS])) {
  2596. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2597. }
  2598. else {
  2599. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply/60/100.0, active_extruder);
  2600. }
  2601. #endif //else DELTA
  2602. for(int8_t i=0; i < NUM_AXIS; i++) {
  2603. current_position[i] = destination[i];
  2604. }
  2605. }
  2606. void prepare_arc_move(char isclockwise) {
  2607. float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
  2608. // Trace the arc
  2609. mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedmultiply/60/100.0, r, isclockwise, active_extruder);
  2610. // As far as the parser is concerned, the position is now == target. In reality the
  2611. // motion control system might still be processing the action and the real tool position
  2612. // in any intermediate location.
  2613. for(int8_t i=0; i < NUM_AXIS; i++) {
  2614. current_position[i] = destination[i];
  2615. }
  2616. previous_millis_cmd = millis();
  2617. }
  2618. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  2619. #if defined(FAN_PIN)
  2620. #if CONTROLLERFAN_PIN == FAN_PIN
  2621. #error "You cannot set CONTROLLERFAN_PIN equal to FAN_PIN"
  2622. #endif
  2623. #endif
  2624. unsigned long lastMotor = 0; //Save the time for when a motor was turned on last
  2625. unsigned long lastMotorCheck = 0;
  2626. void controllerFan()
  2627. {
  2628. if ((millis() - lastMotorCheck) >= 2500) //Not a time critical function, so we only check every 2500ms
  2629. {
  2630. lastMotorCheck = millis();
  2631. if(!READ(X_ENABLE_PIN) || !READ(Y_ENABLE_PIN) || !READ(Z_ENABLE_PIN)
  2632. #if EXTRUDERS > 2
  2633. || !READ(E2_ENABLE_PIN)
  2634. #endif
  2635. #if EXTRUDER > 1
  2636. #if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1
  2637. || !READ(X2_ENABLE_PIN)
  2638. #endif
  2639. || !READ(E1_ENABLE_PIN)
  2640. #endif
  2641. || !READ(E0_ENABLE_PIN)) //If any of the drivers are enabled...
  2642. {
  2643. lastMotor = millis(); //... set time to NOW so the fan will turn on
  2644. }
  2645. if ((millis() - lastMotor) >= (CONTROLLERFAN_SECS*1000UL) || lastMotor == 0) //If the last time any driver was enabled, is longer since than CONTROLLERSEC...
  2646. {
  2647. digitalWrite(CONTROLLERFAN_PIN, 0);
  2648. analogWrite(CONTROLLERFAN_PIN, 0);
  2649. }
  2650. else
  2651. {
  2652. // allows digital or PWM fan output to be used (see M42 handling)
  2653. digitalWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  2654. analogWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  2655. }
  2656. }
  2657. }
  2658. #endif
  2659. void manage_inactivity()
  2660. {
  2661. if( (millis() - previous_millis_cmd) > max_inactive_time )
  2662. if(max_inactive_time)
  2663. kill();
  2664. if(stepper_inactive_time) {
  2665. if( (millis() - previous_millis_cmd) > stepper_inactive_time )
  2666. {
  2667. if(blocks_queued() == false) {
  2668. disable_x();
  2669. disable_y();
  2670. disable_z();
  2671. disable_e0();
  2672. disable_e1();
  2673. disable_e2();
  2674. }
  2675. }
  2676. }
  2677. #if defined(KILL_PIN) && KILL_PIN > -1
  2678. if( 0 == READ(KILL_PIN) )
  2679. kill();
  2680. #endif
  2681. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  2682. controllerFan(); //Check if fan should be turned on to cool stepper drivers down
  2683. #endif
  2684. #ifdef EXTRUDER_RUNOUT_PREVENT
  2685. if( (millis() - previous_millis_cmd) > EXTRUDER_RUNOUT_SECONDS*1000 )
  2686. if(degHotend(active_extruder)>EXTRUDER_RUNOUT_MINTEMP)
  2687. {
  2688. bool oldstatus=READ(E0_ENABLE_PIN);
  2689. enable_e0();
  2690. float oldepos=current_position[E_AXIS];
  2691. float oldedes=destination[E_AXIS];
  2692. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS],
  2693. current_position[E_AXIS]+EXTRUDER_RUNOUT_EXTRUDE*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS],
  2694. EXTRUDER_RUNOUT_SPEED/60.*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS], active_extruder);
  2695. current_position[E_AXIS]=oldepos;
  2696. destination[E_AXIS]=oldedes;
  2697. plan_set_e_position(oldepos);
  2698. previous_millis_cmd=millis();
  2699. st_synchronize();
  2700. WRITE(E0_ENABLE_PIN,oldstatus);
  2701. }
  2702. #endif
  2703. #if defined(DUAL_X_CARRIAGE)
  2704. // handle delayed move timeout
  2705. if (delayed_move_time != 0 && (millis() - delayed_move_time) > 1000 && Stopped == false)
  2706. {
  2707. // travel moves have been received so enact them
  2708. delayed_move_time = 0xFFFFFFFFUL; // force moves to be done
  2709. memcpy(destination,current_position,sizeof(destination));
  2710. prepare_move();
  2711. }
  2712. #endif
  2713. check_axes_activity();
  2714. }
  2715. void kill()
  2716. {
  2717. cli(); // Stop interrupts
  2718. disable_heater();
  2719. disable_x();
  2720. disable_y();
  2721. disable_z();
  2722. disable_e0();
  2723. disable_e1();
  2724. disable_e2();
  2725. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  2726. pinMode(PS_ON_PIN,INPUT);
  2727. #endif
  2728. SERIAL_ERROR_START;
  2729. SERIAL_ERRORLNPGM(MSG_ERR_KILLED);
  2730. LCD_ALERTMESSAGEPGM(MSG_KILLED);
  2731. suicide();
  2732. while(1) { /* Intentionally left empty */ } // Wait for reset
  2733. }
  2734. void Stop()
  2735. {
  2736. disable_heater();
  2737. if(Stopped == false) {
  2738. Stopped = true;
  2739. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  2740. SERIAL_ERROR_START;
  2741. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  2742. LCD_MESSAGEPGM(MSG_STOPPED);
  2743. }
  2744. }
  2745. bool IsStopped() { return Stopped; };
  2746. #ifdef FAST_PWM_FAN
  2747. void setPwmFrequency(uint8_t pin, int val)
  2748. {
  2749. val &= 0x07;
  2750. switch(digitalPinToTimer(pin))
  2751. {
  2752. #if defined(TCCR0A)
  2753. case TIMER0A:
  2754. case TIMER0B:
  2755. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  2756. // TCCR0B |= val;
  2757. break;
  2758. #endif
  2759. #if defined(TCCR1A)
  2760. case TIMER1A:
  2761. case TIMER1B:
  2762. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  2763. // TCCR1B |= val;
  2764. break;
  2765. #endif
  2766. #if defined(TCCR2)
  2767. case TIMER2:
  2768. case TIMER2:
  2769. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  2770. TCCR2 |= val;
  2771. break;
  2772. #endif
  2773. #if defined(TCCR2A)
  2774. case TIMER2A:
  2775. case TIMER2B:
  2776. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  2777. TCCR2B |= val;
  2778. break;
  2779. #endif
  2780. #if defined(TCCR3A)
  2781. case TIMER3A:
  2782. case TIMER3B:
  2783. case TIMER3C:
  2784. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  2785. TCCR3B |= val;
  2786. break;
  2787. #endif
  2788. #if defined(TCCR4A)
  2789. case TIMER4A:
  2790. case TIMER4B:
  2791. case TIMER4C:
  2792. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  2793. TCCR4B |= val;
  2794. break;
  2795. #endif
  2796. #if defined(TCCR5A)
  2797. case TIMER5A:
  2798. case TIMER5B:
  2799. case TIMER5C:
  2800. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  2801. TCCR5B |= val;
  2802. break;
  2803. #endif
  2804. }
  2805. }
  2806. #endif //FAST_PWM_FAN
  2807. bool setTargetedHotend(int code){
  2808. tmp_extruder = active_extruder;
  2809. if(code_seen('T')) {
  2810. tmp_extruder = code_value();
  2811. if(tmp_extruder >= EXTRUDERS) {
  2812. SERIAL_ECHO_START;
  2813. switch(code){
  2814. case 104:
  2815. SERIAL_ECHO(MSG_M104_INVALID_EXTRUDER);
  2816. break;
  2817. case 105:
  2818. SERIAL_ECHO(MSG_M105_INVALID_EXTRUDER);
  2819. break;
  2820. case 109:
  2821. SERIAL_ECHO(MSG_M109_INVALID_EXTRUDER);
  2822. break;
  2823. case 218:
  2824. SERIAL_ECHO(MSG_M218_INVALID_EXTRUDER);
  2825. break;
  2826. }
  2827. SERIAL_ECHOLN(tmp_extruder);
  2828. return true;
  2829. }
  2830. }
  2831. return false;
  2832. }