My Marlin configs for Fabrikator Mini and CTC i3 Pro B
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

configuration_store.cpp 61KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991
  1. /**
  2. * Marlin 3D Printer Firmware
  3. * Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
  4. *
  5. * Based on Sprinter and grbl.
  6. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  7. *
  8. * This program is free software: you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation, either version 3 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  20. *
  21. */
  22. /**
  23. * configuration_store.cpp
  24. *
  25. * Settings and EEPROM storage
  26. *
  27. * IMPORTANT: Whenever there are changes made to the variables stored in EEPROM
  28. * in the functions below, also increment the version number. This makes sure that
  29. * the default values are used whenever there is a change to the data, to prevent
  30. * wrong data being written to the variables.
  31. *
  32. * ALSO: Variables in the Store and Retrieve sections must be in the same order.
  33. * If a feature is disabled, some data must still be written that, when read,
  34. * either sets a Sane Default, or results in No Change to the existing value.
  35. *
  36. */
  37. #define EEPROM_VERSION "V45"
  38. // Change EEPROM version if these are changed:
  39. #define EEPROM_OFFSET 100
  40. /**
  41. * V44 EEPROM Layout:
  42. *
  43. * 100 Version (char x4)
  44. * 104 EEPROM CRC16 (uint16_t)
  45. *
  46. * 106 E_STEPPERS (uint8_t)
  47. * 107 M92 XYZE planner.axis_steps_per_mm (float x4 ... x8)
  48. * 123 M203 XYZE planner.max_feedrate_mm_s (float x4 ... x8)
  49. * 139 M201 XYZE planner.max_acceleration_mm_per_s2 (uint32_t x4 ... x8)
  50. * 155 M204 P planner.acceleration (float)
  51. * 159 M204 R planner.retract_acceleration (float)
  52. * 163 M204 T planner.travel_acceleration (float)
  53. * 167 M205 S planner.min_feedrate_mm_s (float)
  54. * 171 M205 T planner.min_travel_feedrate_mm_s (float)
  55. * 175 M205 B planner.min_segment_time_us (ulong)
  56. * 179 M205 X planner.max_jerk[X_AXIS] (float)
  57. * 183 M205 Y planner.max_jerk[Y_AXIS] (float)
  58. * 187 M205 Z planner.max_jerk[Z_AXIS] (float)
  59. * 191 M205 E planner.max_jerk[E_AXIS] (float)
  60. * 195 M206 XYZ home_offset (float x3)
  61. * 207 M218 XYZ hotend_offset (float x3 per additional hotend)
  62. *
  63. * Global Leveling: 4 bytes
  64. * 219 z_fade_height (float)
  65. *
  66. * MESH_BED_LEVELING: 43 bytes
  67. * 223 M420 S planner.leveling_active (bool)
  68. * 224 mbl.z_offset (float)
  69. * 228 GRID_MAX_POINTS_X (uint8_t)
  70. * 229 GRID_MAX_POINTS_Y (uint8_t)
  71. * 230 G29 S3 XYZ z_values[][] (float x9, up to float x81) +288
  72. *
  73. * HAS_BED_PROBE: 4 bytes
  74. * 266 M851 zprobe_zoffset (float)
  75. *
  76. * ABL_PLANAR: 36 bytes
  77. * 270 planner.bed_level_matrix (matrix_3x3 = float x9)
  78. *
  79. * AUTO_BED_LEVELING_BILINEAR: 46 bytes
  80. * 306 GRID_MAX_POINTS_X (uint8_t)
  81. * 307 GRID_MAX_POINTS_Y (uint8_t)
  82. * 308 bilinear_grid_spacing (int x2)
  83. * 312 G29 L F bilinear_start (int x2)
  84. * 316 z_values[][] (float x9, up to float x256) +988
  85. *
  86. * AUTO_BED_LEVELING_UBL: 2 bytes
  87. * 324 G29 A planner.leveling_active (bool)
  88. * 325 G29 S ubl.storage_slot (int8_t)
  89. *
  90. * DELTA: 44 bytes
  91. * 352 M666 H delta_height (float)
  92. * 364 M666 XYZ delta_endstop_adj (float x3)
  93. * 368 M665 R delta_radius (float)
  94. * 372 M665 L delta_diagonal_rod (float)
  95. * 376 M665 S delta_segments_per_second (float)
  96. * 380 M665 B delta_calibration_radius (float)
  97. * 384 M665 X delta_tower_angle_trim[A] (float)
  98. * 388 M665 Y delta_tower_angle_trim[B] (float)
  99. * 392 M665 Z delta_tower_angle_trim[C] (float)
  100. *
  101. * [XYZ]_DUAL_ENDSTOPS: 12 bytes
  102. * 352 M666 X x_endstop_adj (float)
  103. * 356 M666 Y y_endstop_adj (float)
  104. * 360 M666 Z z_endstop_adj (float)
  105. *
  106. * ULTIPANEL: 6 bytes
  107. * 396 M145 S0 H lcd_preheat_hotend_temp (int x2)
  108. * 400 M145 S0 B lcd_preheat_bed_temp (int x2)
  109. * 404 M145 S0 F lcd_preheat_fan_speed (int x2)
  110. *
  111. * PIDTEMP: 82 bytes
  112. * 408 M301 E0 PIDC Kp[0], Ki[0], Kd[0], Kc[0] (float x4)
  113. * 428 M301 E1 PIDC Kp[1], Ki[1], Kd[1], Kc[1] (float x4)
  114. * 440 M301 E2 PIDC Kp[2], Ki[2], Kd[2], Kc[2] (float x4)
  115. * 456 M301 E3 PIDC Kp[3], Ki[3], Kd[3], Kc[3] (float x4)
  116. * 472 M301 E4 PIDC Kp[3], Ki[3], Kd[3], Kc[3] (float x4)
  117. * 488 M301 L lpq_len (int)
  118. *
  119. * PIDTEMPBED: 12 bytes
  120. * 490 M304 PID thermalManager.bedKp, .bedKi, .bedKd (float x3)
  121. *
  122. * DOGLCD: 2 bytes
  123. * 502 M250 C lcd_contrast (uint16_t)
  124. *
  125. * FWRETRACT: 33 bytes
  126. * 504 M209 S autoretract_enabled (bool)
  127. * 505 M207 S retract_length (float)
  128. * 509 M207 F retract_feedrate_mm_s (float)
  129. * 513 M207 Z retract_zlift (float)
  130. * 517 M208 S retract_recover_length (float)
  131. * 521 M208 F retract_recover_feedrate_mm_s (float)
  132. * 525 M207 W swap_retract_length (float)
  133. * 529 M208 W swap_retract_recover_length (float)
  134. * 533 M208 R swap_retract_recover_feedrate_mm_s (float)
  135. *
  136. * Volumetric Extrusion: 21 bytes
  137. * 537 M200 D volumetric_enabled (bool)
  138. * 538 M200 T D filament_size (float x5) (T0..3)
  139. *
  140. * HAVE_TMC2130: 22 bytes
  141. * 558 M906 X Stepper X current (uint16_t)
  142. * 560 M906 Y Stepper Y current (uint16_t)
  143. * 562 M906 Z Stepper Z current (uint16_t)
  144. * 564 M906 X2 Stepper X2 current (uint16_t)
  145. * 566 M906 Y2 Stepper Y2 current (uint16_t)
  146. * 568 M906 Z2 Stepper Z2 current (uint16_t)
  147. * 570 M906 E0 Stepper E0 current (uint16_t)
  148. * 572 M906 E1 Stepper E1 current (uint16_t)
  149. * 574 M906 E2 Stepper E2 current (uint16_t)
  150. * 576 M906 E3 Stepper E3 current (uint16_t)
  151. * 578 M906 E4 Stepper E4 current (uint16_t)
  152. *
  153. * LIN_ADVANCE: 8 bytes
  154. * 580 M900 K extruder_advance_k (float)
  155. * 584 M900 WHD advance_ed_ratio (float)
  156. *
  157. * HAS_MOTOR_CURRENT_PWM:
  158. * 588 M907 X Stepper XY current (uint32_t)
  159. * 592 M907 Z Stepper Z current (uint32_t)
  160. * 596 M907 E Stepper E current (uint32_t)
  161. *
  162. * CNC_COORDINATE_SYSTEMS 108 bytes
  163. * 600 G54-G59.3 coordinate_system (float x 27)
  164. *
  165. * 708 Minimum end-point
  166. * 2025 (704 + 36 + 9 + 288 + 988) Maximum end-point
  167. *
  168. * ========================================================================
  169. * meshes_begin (between max and min end-point, directly above)
  170. * -- MESHES --
  171. * meshes_end
  172. * -- MAT (Mesh Allocation Table) -- 128 bytes (placeholder size)
  173. * mat_end = E2END (0xFFF)
  174. *
  175. */
  176. #include "configuration_store.h"
  177. MarlinSettings settings;
  178. #include "Marlin.h"
  179. #include "language.h"
  180. #include "endstops.h"
  181. #include "planner.h"
  182. #include "temperature.h"
  183. #include "ultralcd.h"
  184. #include "stepper.h"
  185. #if ENABLED(INCH_MODE_SUPPORT) || (ENABLED(ULTIPANEL) && ENABLED(TEMPERATURE_UNITS_SUPPORT))
  186. #include "gcode.h"
  187. #endif
  188. #if ENABLED(MESH_BED_LEVELING)
  189. #include "mesh_bed_leveling.h"
  190. #endif
  191. #if ENABLED(HAVE_TMC2130)
  192. #include "stepper_indirection.h"
  193. #endif
  194. #if ENABLED(AUTO_BED_LEVELING_UBL)
  195. #include "ubl.h"
  196. #endif
  197. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  198. extern void refresh_bed_level();
  199. #endif
  200. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  201. float new_z_fade_height;
  202. #endif
  203. #if ENABLED(CNC_COORDINATE_SYSTEMS)
  204. bool position_changed;
  205. #endif
  206. /**
  207. * Post-process after Retrieve or Reset
  208. */
  209. void MarlinSettings::postprocess() {
  210. // steps per s2 needs to be updated to agree with units per s2
  211. planner.reset_acceleration_rates();
  212. // Make sure delta kinematics are updated before refreshing the
  213. // planner position so the stepper counts will be set correctly.
  214. #if ENABLED(DELTA)
  215. recalc_delta_settings(delta_radius, delta_diagonal_rod, delta_tower_angle_trim);
  216. #endif
  217. // Refresh steps_to_mm with the reciprocal of axis_steps_per_mm
  218. // and init stepper.count[], planner.position[] with current_position
  219. planner.refresh_positioning();
  220. #if ENABLED(PIDTEMP)
  221. thermalManager.updatePID();
  222. #endif
  223. calculate_volumetric_multipliers();
  224. #if HAS_HOME_OFFSET || ENABLED(DUAL_X_CARRIAGE)
  225. // Software endstops depend on home_offset
  226. LOOP_XYZ(i) update_software_endstops((AxisEnum)i);
  227. #endif
  228. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  229. set_z_fade_height(new_z_fade_height);
  230. #endif
  231. #if HAS_BED_PROBE
  232. refresh_zprobe_zoffset();
  233. #endif
  234. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  235. refresh_bed_level();
  236. //set_bed_leveling_enabled(leveling_is_on);
  237. #endif
  238. #if HAS_MOTOR_CURRENT_PWM
  239. stepper.refresh_motor_power();
  240. #endif
  241. #if ENABLED(CNC_COORDINATE_SYSTEMS)
  242. if (position_changed) {
  243. report_current_position();
  244. position_changed = false;
  245. }
  246. #endif
  247. }
  248. #if ENABLED(EEPROM_SETTINGS)
  249. #define DUMMY_PID_VALUE 3000.0f
  250. #define EEPROM_START() int eeprom_index = EEPROM_OFFSET
  251. #define EEPROM_SKIP(VAR) eeprom_index += sizeof(VAR)
  252. #define EEPROM_WRITE(VAR) write_data(eeprom_index, (uint8_t*)&VAR, sizeof(VAR), &working_crc)
  253. #define EEPROM_READ(VAR) read_data(eeprom_index, (uint8_t*)&VAR, sizeof(VAR), &working_crc)
  254. #define EEPROM_ASSERT(TST,ERR) if (!(TST)) do{ SERIAL_ERROR_START(); SERIAL_ERRORLNPGM(ERR); eeprom_read_error = true; }while(0)
  255. const char version[4] = EEPROM_VERSION;
  256. bool MarlinSettings::eeprom_error;
  257. #if ENABLED(AUTO_BED_LEVELING_UBL)
  258. int MarlinSettings::meshes_begin;
  259. #endif
  260. void MarlinSettings::write_data(int &pos, const uint8_t *value, uint16_t size, uint16_t *crc) {
  261. if (eeprom_error) return;
  262. while (size--) {
  263. uint8_t * const p = (uint8_t * const)pos;
  264. uint8_t v = *value;
  265. // EEPROM has only ~100,000 write cycles,
  266. // so only write bytes that have changed!
  267. if (v != eeprom_read_byte(p)) {
  268. eeprom_write_byte(p, v);
  269. if (eeprom_read_byte(p) != v) {
  270. SERIAL_ECHO_START();
  271. SERIAL_ECHOLNPGM(MSG_ERR_EEPROM_WRITE);
  272. eeprom_error = true;
  273. return;
  274. }
  275. }
  276. crc16(crc, &v, 1);
  277. pos++;
  278. value++;
  279. };
  280. }
  281. void MarlinSettings::read_data(int &pos, uint8_t* value, uint16_t size, uint16_t *crc) {
  282. if (eeprom_error) return;
  283. do {
  284. uint8_t c = eeprom_read_byte((unsigned char*)pos);
  285. *value = c;
  286. crc16(crc, &c, 1);
  287. pos++;
  288. value++;
  289. } while (--size);
  290. }
  291. /**
  292. * M500 - Store Configuration
  293. */
  294. bool MarlinSettings::save() {
  295. float dummy = 0.0f;
  296. char ver[4] = "000";
  297. uint16_t working_crc = 0;
  298. EEPROM_START();
  299. eeprom_error = false;
  300. EEPROM_WRITE(ver); // invalidate data first
  301. EEPROM_SKIP(working_crc); // Skip the checksum slot
  302. working_crc = 0; // clear before first "real data"
  303. const uint8_t esteppers = COUNT(planner.axis_steps_per_mm) - XYZ;
  304. EEPROM_WRITE(esteppers);
  305. EEPROM_WRITE(planner.axis_steps_per_mm);
  306. EEPROM_WRITE(planner.max_feedrate_mm_s);
  307. EEPROM_WRITE(planner.max_acceleration_mm_per_s2);
  308. EEPROM_WRITE(planner.acceleration);
  309. EEPROM_WRITE(planner.retract_acceleration);
  310. EEPROM_WRITE(planner.travel_acceleration);
  311. EEPROM_WRITE(planner.min_feedrate_mm_s);
  312. EEPROM_WRITE(planner.min_travel_feedrate_mm_s);
  313. EEPROM_WRITE(planner.min_segment_time_us);
  314. EEPROM_WRITE(planner.max_jerk);
  315. #if !HAS_HOME_OFFSET
  316. const float home_offset[XYZ] = { 0 };
  317. #endif
  318. EEPROM_WRITE(home_offset);
  319. #if HOTENDS > 1
  320. // Skip hotend 0 which must be 0
  321. for (uint8_t e = 1; e < HOTENDS; e++)
  322. LOOP_XYZ(i) EEPROM_WRITE(hotend_offset[i][e]);
  323. #endif
  324. //
  325. // Global Leveling
  326. //
  327. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  328. const float zfh = planner.z_fade_height;
  329. #else
  330. const float zfh = 10.0;
  331. #endif
  332. EEPROM_WRITE(zfh);
  333. //
  334. // Mesh Bed Leveling
  335. //
  336. #if ENABLED(MESH_BED_LEVELING)
  337. // Compile time test that sizeof(mbl.z_values) is as expected
  338. static_assert(
  339. sizeof(mbl.z_values) == GRID_MAX_POINTS * sizeof(mbl.z_values[0][0]),
  340. "MBL Z array is the wrong size."
  341. );
  342. const bool leveling_is_on = mbl.has_mesh;
  343. const uint8_t mesh_num_x = GRID_MAX_POINTS_X, mesh_num_y = GRID_MAX_POINTS_Y;
  344. EEPROM_WRITE(leveling_is_on);
  345. EEPROM_WRITE(mbl.z_offset);
  346. EEPROM_WRITE(mesh_num_x);
  347. EEPROM_WRITE(mesh_num_y);
  348. EEPROM_WRITE(mbl.z_values);
  349. #else // For disabled MBL write a default mesh
  350. const bool leveling_is_on = false;
  351. dummy = 0.0f;
  352. const uint8_t mesh_num_x = 3, mesh_num_y = 3;
  353. EEPROM_WRITE(leveling_is_on);
  354. EEPROM_WRITE(dummy); // z_offset
  355. EEPROM_WRITE(mesh_num_x);
  356. EEPROM_WRITE(mesh_num_y);
  357. for (uint8_t q = mesh_num_x * mesh_num_y; q--;) EEPROM_WRITE(dummy);
  358. #endif // MESH_BED_LEVELING
  359. #if !HAS_BED_PROBE
  360. const float zprobe_zoffset = 0;
  361. #endif
  362. EEPROM_WRITE(zprobe_zoffset);
  363. //
  364. // Planar Bed Leveling matrix
  365. //
  366. #if ABL_PLANAR
  367. EEPROM_WRITE(planner.bed_level_matrix);
  368. #else
  369. dummy = 0.0;
  370. for (uint8_t q = 9; q--;) EEPROM_WRITE(dummy);
  371. #endif
  372. //
  373. // Bilinear Auto Bed Leveling
  374. //
  375. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  376. // Compile time test that sizeof(z_values) is as expected
  377. static_assert(
  378. sizeof(z_values) == GRID_MAX_POINTS * sizeof(z_values[0][0]),
  379. "Bilinear Z array is the wrong size."
  380. );
  381. const uint8_t grid_max_x = GRID_MAX_POINTS_X, grid_max_y = GRID_MAX_POINTS_Y;
  382. EEPROM_WRITE(grid_max_x); // 1 byte
  383. EEPROM_WRITE(grid_max_y); // 1 byte
  384. EEPROM_WRITE(bilinear_grid_spacing); // 2 ints
  385. EEPROM_WRITE(bilinear_start); // 2 ints
  386. EEPROM_WRITE(z_values); // 9-256 floats
  387. #else
  388. // For disabled Bilinear Grid write an empty 3x3 grid
  389. const uint8_t grid_max_x = 3, grid_max_y = 3;
  390. const int bilinear_start[2] = { 0 }, bilinear_grid_spacing[2] = { 0 };
  391. dummy = 0.0f;
  392. EEPROM_WRITE(grid_max_x);
  393. EEPROM_WRITE(grid_max_y);
  394. EEPROM_WRITE(bilinear_grid_spacing);
  395. EEPROM_WRITE(bilinear_start);
  396. for (uint16_t q = grid_max_x * grid_max_y; q--;) EEPROM_WRITE(dummy);
  397. #endif // AUTO_BED_LEVELING_BILINEAR
  398. #if ENABLED(AUTO_BED_LEVELING_UBL)
  399. EEPROM_WRITE(planner.leveling_active);
  400. EEPROM_WRITE(ubl.storage_slot);
  401. #else
  402. const bool ubl_active = false;
  403. const int8_t storage_slot = -1;
  404. EEPROM_WRITE(ubl_active);
  405. EEPROM_WRITE(storage_slot);
  406. #endif // AUTO_BED_LEVELING_UBL
  407. // 10 floats for DELTA / [XYZ]_DUAL_ENDSTOPS
  408. #if ENABLED(DELTA)
  409. EEPROM_WRITE(delta_height); // 1 float
  410. EEPROM_WRITE(delta_endstop_adj); // 3 floats
  411. EEPROM_WRITE(delta_radius); // 1 float
  412. EEPROM_WRITE(delta_diagonal_rod); // 1 float
  413. EEPROM_WRITE(delta_segments_per_second); // 1 float
  414. EEPROM_WRITE(delta_calibration_radius); // 1 float
  415. EEPROM_WRITE(delta_tower_angle_trim); // 3 floats
  416. #elif ENABLED(X_DUAL_ENDSTOPS) || ENABLED(Y_DUAL_ENDSTOPS) || ENABLED(Z_DUAL_ENDSTOPS)
  417. // Write dual endstops in X, Y, Z order. Unused = 0.0
  418. dummy = 0.0f;
  419. #if ENABLED(X_DUAL_ENDSTOPS)
  420. EEPROM_WRITE(x_endstop_adj); // 1 float
  421. #else
  422. EEPROM_WRITE(dummy);
  423. #endif
  424. #if ENABLED(Y_DUAL_ENDSTOPS)
  425. EEPROM_WRITE(y_endstop_adj); // 1 float
  426. #else
  427. EEPROM_WRITE(dummy);
  428. #endif
  429. #if ENABLED(Z_DUAL_ENDSTOPS)
  430. EEPROM_WRITE(z_endstop_adj); // 1 float
  431. #else
  432. EEPROM_WRITE(dummy);
  433. #endif
  434. for (uint8_t q = 7; q--;) EEPROM_WRITE(dummy);
  435. #else
  436. dummy = 0.0f;
  437. for (uint8_t q = 10; q--;) EEPROM_WRITE(dummy);
  438. #endif
  439. #if DISABLED(ULTIPANEL)
  440. constexpr int lcd_preheat_hotend_temp[2] = { PREHEAT_1_TEMP_HOTEND, PREHEAT_2_TEMP_HOTEND },
  441. lcd_preheat_bed_temp[2] = { PREHEAT_1_TEMP_BED, PREHEAT_2_TEMP_BED },
  442. lcd_preheat_fan_speed[2] = { PREHEAT_1_FAN_SPEED, PREHEAT_2_FAN_SPEED };
  443. #endif
  444. EEPROM_WRITE(lcd_preheat_hotend_temp);
  445. EEPROM_WRITE(lcd_preheat_bed_temp);
  446. EEPROM_WRITE(lcd_preheat_fan_speed);
  447. for (uint8_t e = 0; e < MAX_EXTRUDERS; e++) {
  448. #if ENABLED(PIDTEMP)
  449. if (e < HOTENDS) {
  450. EEPROM_WRITE(PID_PARAM(Kp, e));
  451. EEPROM_WRITE(PID_PARAM(Ki, e));
  452. EEPROM_WRITE(PID_PARAM(Kd, e));
  453. #if ENABLED(PID_EXTRUSION_SCALING)
  454. EEPROM_WRITE(PID_PARAM(Kc, e));
  455. #else
  456. dummy = 1.0f; // 1.0 = default kc
  457. EEPROM_WRITE(dummy);
  458. #endif
  459. }
  460. else
  461. #endif // !PIDTEMP
  462. {
  463. dummy = DUMMY_PID_VALUE; // When read, will not change the existing value
  464. EEPROM_WRITE(dummy); // Kp
  465. dummy = 0.0f;
  466. for (uint8_t q = 3; q--;) EEPROM_WRITE(dummy); // Ki, Kd, Kc
  467. }
  468. } // Hotends Loop
  469. #if DISABLED(PID_EXTRUSION_SCALING)
  470. int lpq_len = 20;
  471. #endif
  472. EEPROM_WRITE(lpq_len);
  473. #if DISABLED(PIDTEMPBED)
  474. dummy = DUMMY_PID_VALUE;
  475. for (uint8_t q = 3; q--;) EEPROM_WRITE(dummy);
  476. #else
  477. EEPROM_WRITE(thermalManager.bedKp);
  478. EEPROM_WRITE(thermalManager.bedKi);
  479. EEPROM_WRITE(thermalManager.bedKd);
  480. #endif
  481. #if !HAS_LCD_CONTRAST
  482. const uint16_t lcd_contrast = 32;
  483. #endif
  484. EEPROM_WRITE(lcd_contrast);
  485. #if DISABLED(FWRETRACT)
  486. const bool autoretract_enabled = false;
  487. const float retract_length = 3,
  488. retract_feedrate_mm_s = 45,
  489. retract_zlift = 0,
  490. retract_recover_length = 0,
  491. retract_recover_feedrate_mm_s = 0,
  492. swap_retract_length = 13,
  493. swap_retract_recover_length = 0,
  494. swap_retract_recover_feedrate_mm_s = 8;
  495. #endif
  496. EEPROM_WRITE(autoretract_enabled);
  497. EEPROM_WRITE(retract_length);
  498. EEPROM_WRITE(retract_feedrate_mm_s);
  499. EEPROM_WRITE(retract_zlift);
  500. EEPROM_WRITE(retract_recover_length);
  501. EEPROM_WRITE(retract_recover_feedrate_mm_s);
  502. EEPROM_WRITE(swap_retract_length);
  503. EEPROM_WRITE(swap_retract_recover_length);
  504. EEPROM_WRITE(swap_retract_recover_feedrate_mm_s);
  505. EEPROM_WRITE(volumetric_enabled);
  506. // Save filament sizes
  507. for (uint8_t q = 0; q < MAX_EXTRUDERS; q++) {
  508. if (q < COUNT(filament_size)) dummy = filament_size[q];
  509. EEPROM_WRITE(dummy);
  510. }
  511. // Save TMC2130 Configuration, and placeholder values
  512. uint16_t val;
  513. #if ENABLED(HAVE_TMC2130)
  514. #if ENABLED(X_IS_TMC2130)
  515. val = stepperX.getCurrent();
  516. #else
  517. val = 0;
  518. #endif
  519. EEPROM_WRITE(val);
  520. #if ENABLED(Y_IS_TMC2130)
  521. val = stepperY.getCurrent();
  522. #else
  523. val = 0;
  524. #endif
  525. EEPROM_WRITE(val);
  526. #if ENABLED(Z_IS_TMC2130)
  527. val = stepperZ.getCurrent();
  528. #else
  529. val = 0;
  530. #endif
  531. EEPROM_WRITE(val);
  532. #if ENABLED(X2_IS_TMC2130)
  533. val = stepperX2.getCurrent();
  534. #else
  535. val = 0;
  536. #endif
  537. EEPROM_WRITE(val);
  538. #if ENABLED(Y2_IS_TMC2130)
  539. val = stepperY2.getCurrent();
  540. #else
  541. val = 0;
  542. #endif
  543. EEPROM_WRITE(val);
  544. #if ENABLED(Z2_IS_TMC2130)
  545. val = stepperZ2.getCurrent();
  546. #else
  547. val = 0;
  548. #endif
  549. EEPROM_WRITE(val);
  550. #if ENABLED(E0_IS_TMC2130)
  551. val = stepperE0.getCurrent();
  552. #else
  553. val = 0;
  554. #endif
  555. EEPROM_WRITE(val);
  556. #if ENABLED(E1_IS_TMC2130)
  557. val = stepperE1.getCurrent();
  558. #else
  559. val = 0;
  560. #endif
  561. EEPROM_WRITE(val);
  562. #if ENABLED(E2_IS_TMC2130)
  563. val = stepperE2.getCurrent();
  564. #else
  565. val = 0;
  566. #endif
  567. EEPROM_WRITE(val);
  568. #if ENABLED(E3_IS_TMC2130)
  569. val = stepperE3.getCurrent();
  570. #else
  571. val = 0;
  572. #endif
  573. EEPROM_WRITE(val);
  574. #if ENABLED(E4_IS_TMC2130)
  575. val = stepperE4.getCurrent();
  576. #else
  577. val = 0;
  578. #endif
  579. EEPROM_WRITE(val);
  580. #else
  581. val = 0;
  582. for (uint8_t q = 11; q--;) EEPROM_WRITE(val);
  583. #endif
  584. //
  585. // Linear Advance
  586. //
  587. #if ENABLED(LIN_ADVANCE)
  588. EEPROM_WRITE(planner.extruder_advance_k);
  589. EEPROM_WRITE(planner.advance_ed_ratio);
  590. #else
  591. dummy = 0.0f;
  592. EEPROM_WRITE(dummy);
  593. EEPROM_WRITE(dummy);
  594. #endif
  595. #if HAS_MOTOR_CURRENT_PWM
  596. for (uint8_t q = 3; q--;) EEPROM_WRITE(stepper.motor_current_setting[q]);
  597. #else
  598. const uint32_t dummyui32 = 0;
  599. for (uint8_t q = 3; q--;) EEPROM_WRITE(dummyui32);
  600. #endif
  601. #if ENABLED(CNC_COORDINATE_SYSTEMS)
  602. EEPROM_WRITE(coordinate_system); // 27 floats
  603. #else
  604. dummy = 0.0f;
  605. for (uint8_t q = 27; q--;) EEPROM_WRITE(dummy);
  606. #endif
  607. if (!eeprom_error) {
  608. const int eeprom_size = eeprom_index;
  609. const uint16_t final_crc = working_crc;
  610. // Write the EEPROM header
  611. eeprom_index = EEPROM_OFFSET;
  612. EEPROM_WRITE(version);
  613. EEPROM_WRITE(final_crc);
  614. // Report storage size
  615. #if ENABLED(EEPROM_CHITCHAT)
  616. SERIAL_ECHO_START();
  617. SERIAL_ECHOPAIR("Settings Stored (", eeprom_size - (EEPROM_OFFSET));
  618. SERIAL_ECHOPAIR(" bytes; crc ", (uint32_t)final_crc);
  619. SERIAL_ECHOLNPGM(")");
  620. #endif
  621. }
  622. #if ENABLED(UBL_SAVE_ACTIVE_ON_M500)
  623. if (ubl.storage_slot >= 0)
  624. store_mesh(ubl.storage_slot);
  625. #endif
  626. return !eeprom_error;
  627. }
  628. /**
  629. * M501 - Retrieve Configuration
  630. */
  631. bool MarlinSettings::load() {
  632. uint16_t working_crc = 0;
  633. EEPROM_START();
  634. char stored_ver[4];
  635. EEPROM_READ(stored_ver);
  636. uint16_t stored_crc;
  637. EEPROM_READ(stored_crc);
  638. // Version has to match or defaults are used
  639. if (strncmp(version, stored_ver, 3) != 0) {
  640. if (stored_ver[0] != 'V') {
  641. stored_ver[0] = '?';
  642. stored_ver[1] = '\0';
  643. }
  644. #if ENABLED(EEPROM_CHITCHAT)
  645. SERIAL_ECHO_START();
  646. SERIAL_ECHOPGM("EEPROM version mismatch ");
  647. SERIAL_ECHOPAIR("(EEPROM=", stored_ver);
  648. SERIAL_ECHOLNPGM(" Marlin=" EEPROM_VERSION ")");
  649. #endif
  650. reset();
  651. }
  652. else {
  653. float dummy = 0;
  654. bool dummyb;
  655. working_crc = 0; // Init to 0. Accumulated by EEPROM_READ
  656. // Number of esteppers may change
  657. uint8_t esteppers;
  658. EEPROM_READ(esteppers);
  659. //
  660. // Planner Motion
  661. //
  662. // Get only the number of E stepper parameters previously stored
  663. // Any steppers added later are set to their defaults
  664. const float def1[] = DEFAULT_AXIS_STEPS_PER_UNIT, def2[] = DEFAULT_MAX_FEEDRATE;
  665. const uint32_t def3[] = DEFAULT_MAX_ACCELERATION;
  666. float tmp1[XYZ + esteppers], tmp2[XYZ + esteppers];
  667. uint32_t tmp3[XYZ + esteppers];
  668. EEPROM_READ(tmp1);
  669. EEPROM_READ(tmp2);
  670. EEPROM_READ(tmp3);
  671. LOOP_XYZE_N(i) {
  672. planner.axis_steps_per_mm[i] = i < XYZ + esteppers ? tmp1[i] : def1[i < COUNT(def1) ? i : COUNT(def1) - 1];
  673. planner.max_feedrate_mm_s[i] = i < XYZ + esteppers ? tmp2[i] : def2[i < COUNT(def2) ? i : COUNT(def2) - 1];
  674. planner.max_acceleration_mm_per_s2[i] = i < XYZ + esteppers ? tmp3[i] : def3[i < COUNT(def3) ? i : COUNT(def3) - 1];
  675. }
  676. EEPROM_READ(planner.acceleration);
  677. EEPROM_READ(planner.retract_acceleration);
  678. EEPROM_READ(planner.travel_acceleration);
  679. EEPROM_READ(planner.min_feedrate_mm_s);
  680. EEPROM_READ(planner.min_travel_feedrate_mm_s);
  681. EEPROM_READ(planner.min_segment_time_us);
  682. EEPROM_READ(planner.max_jerk);
  683. //
  684. // Home Offset (M206)
  685. //
  686. #if !HAS_HOME_OFFSET
  687. float home_offset[XYZ];
  688. #endif
  689. EEPROM_READ(home_offset);
  690. //
  691. // Hotend Offsets, if any
  692. //
  693. #if HOTENDS > 1
  694. // Skip hotend 0 which must be 0
  695. for (uint8_t e = 1; e < HOTENDS; e++)
  696. LOOP_XYZ(i) EEPROM_READ(hotend_offset[i][e]);
  697. #endif
  698. //
  699. // Global Leveling
  700. //
  701. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  702. EEPROM_READ(new_z_fade_height);
  703. #else
  704. EEPROM_READ(dummy);
  705. #endif
  706. //
  707. // Mesh (Manual) Bed Leveling
  708. //
  709. bool leveling_is_on;
  710. uint8_t mesh_num_x, mesh_num_y;
  711. EEPROM_READ(leveling_is_on);
  712. EEPROM_READ(dummy);
  713. EEPROM_READ(mesh_num_x);
  714. EEPROM_READ(mesh_num_y);
  715. #if ENABLED(MESH_BED_LEVELING)
  716. mbl.has_mesh = leveling_is_on;
  717. mbl.z_offset = dummy;
  718. if (mesh_num_x == GRID_MAX_POINTS_X && mesh_num_y == GRID_MAX_POINTS_Y) {
  719. // EEPROM data fits the current mesh
  720. EEPROM_READ(mbl.z_values);
  721. }
  722. else {
  723. // EEPROM data is stale
  724. mbl.reset();
  725. for (uint16_t q = mesh_num_x * mesh_num_y; q--;) EEPROM_READ(dummy);
  726. }
  727. #else
  728. // MBL is disabled - skip the stored data
  729. for (uint16_t q = mesh_num_x * mesh_num_y; q--;) EEPROM_READ(dummy);
  730. #endif // MESH_BED_LEVELING
  731. #if !HAS_BED_PROBE
  732. float zprobe_zoffset;
  733. #endif
  734. EEPROM_READ(zprobe_zoffset);
  735. //
  736. // Planar Bed Leveling matrix
  737. //
  738. #if ABL_PLANAR
  739. EEPROM_READ(planner.bed_level_matrix);
  740. #else
  741. for (uint8_t q = 9; q--;) EEPROM_READ(dummy);
  742. #endif
  743. //
  744. // Bilinear Auto Bed Leveling
  745. //
  746. uint8_t grid_max_x, grid_max_y;
  747. EEPROM_READ(grid_max_x); // 1 byte
  748. EEPROM_READ(grid_max_y); // 1 byte
  749. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  750. if (grid_max_x == GRID_MAX_POINTS_X && grid_max_y == GRID_MAX_POINTS_Y) {
  751. set_bed_leveling_enabled(false);
  752. EEPROM_READ(bilinear_grid_spacing); // 2 ints
  753. EEPROM_READ(bilinear_start); // 2 ints
  754. EEPROM_READ(z_values); // 9 to 256 floats
  755. }
  756. else // EEPROM data is stale
  757. #endif // AUTO_BED_LEVELING_BILINEAR
  758. {
  759. // Skip past disabled (or stale) Bilinear Grid data
  760. int bgs[2], bs[2];
  761. EEPROM_READ(bgs);
  762. EEPROM_READ(bs);
  763. for (uint16_t q = grid_max_x * grid_max_y; q--;) EEPROM_READ(dummy);
  764. }
  765. //
  766. // Unified Bed Leveling active state
  767. //
  768. #if ENABLED(AUTO_BED_LEVELING_UBL)
  769. EEPROM_READ(planner.leveling_active);
  770. EEPROM_READ(ubl.storage_slot);
  771. #else
  772. uint8_t dummyui8;
  773. EEPROM_READ(dummyb);
  774. EEPROM_READ(dummyui8);
  775. #endif // AUTO_BED_LEVELING_UBL
  776. //
  777. // DELTA Geometry or Dual Endstops offsets
  778. //
  779. #if ENABLED(DELTA)
  780. EEPROM_READ(delta_height); // 1 float
  781. EEPROM_READ(delta_endstop_adj); // 3 floats
  782. EEPROM_READ(delta_radius); // 1 float
  783. EEPROM_READ(delta_diagonal_rod); // 1 float
  784. EEPROM_READ(delta_segments_per_second); // 1 float
  785. EEPROM_READ(delta_calibration_radius); // 1 float
  786. EEPROM_READ(delta_tower_angle_trim); // 3 floats
  787. #elif ENABLED(X_DUAL_ENDSTOPS) || ENABLED(Y_DUAL_ENDSTOPS) || ENABLED(Z_DUAL_ENDSTOPS)
  788. #if ENABLED(X_DUAL_ENDSTOPS)
  789. EEPROM_READ(x_endstop_adj); // 1 float
  790. #else
  791. EEPROM_READ(dummy);
  792. #endif
  793. #if ENABLED(Y_DUAL_ENDSTOPS)
  794. EEPROM_READ(y_endstop_adj); // 1 float
  795. #else
  796. EEPROM_READ(dummy);
  797. #endif
  798. #if ENABLED(Z_DUAL_ENDSTOPS)
  799. EEPROM_READ(z_endstop_adj); // 1 float
  800. #else
  801. EEPROM_READ(dummy);
  802. #endif
  803. for (uint8_t q=7; q--;) EEPROM_READ(dummy);
  804. #else
  805. for (uint8_t q=10; q--;) EEPROM_READ(dummy);
  806. #endif
  807. //
  808. // LCD Preheat settings
  809. //
  810. #if DISABLED(ULTIPANEL)
  811. int lcd_preheat_hotend_temp[2], lcd_preheat_bed_temp[2], lcd_preheat_fan_speed[2];
  812. #endif
  813. EEPROM_READ(lcd_preheat_hotend_temp); // 2 floats
  814. EEPROM_READ(lcd_preheat_bed_temp); // 2 floats
  815. EEPROM_READ(lcd_preheat_fan_speed); // 2 floats
  816. //EEPROM_ASSERT(
  817. // WITHIN(lcd_preheat_fan_speed, 0, 255),
  818. // "lcd_preheat_fan_speed out of range"
  819. //);
  820. //
  821. // Hotend PID
  822. //
  823. #if ENABLED(PIDTEMP)
  824. for (uint8_t e = 0; e < MAX_EXTRUDERS; e++) {
  825. EEPROM_READ(dummy); // Kp
  826. if (e < HOTENDS && dummy != DUMMY_PID_VALUE) {
  827. // do not need to scale PID values as the values in EEPROM are already scaled
  828. PID_PARAM(Kp, e) = dummy;
  829. EEPROM_READ(PID_PARAM(Ki, e));
  830. EEPROM_READ(PID_PARAM(Kd, e));
  831. #if ENABLED(PID_EXTRUSION_SCALING)
  832. EEPROM_READ(PID_PARAM(Kc, e));
  833. #else
  834. EEPROM_READ(dummy);
  835. #endif
  836. }
  837. else {
  838. for (uint8_t q=3; q--;) EEPROM_READ(dummy); // Ki, Kd, Kc
  839. }
  840. }
  841. #else // !PIDTEMP
  842. // 4 x 4 = 16 slots for PID parameters
  843. for (uint8_t q = MAX_EXTRUDERS * 4; q--;) EEPROM_READ(dummy); // Kp, Ki, Kd, Kc
  844. #endif // !PIDTEMP
  845. //
  846. // PID Extrusion Scaling
  847. //
  848. #if DISABLED(PID_EXTRUSION_SCALING)
  849. int lpq_len;
  850. #endif
  851. EEPROM_READ(lpq_len);
  852. //
  853. // Heated Bed PID
  854. //
  855. #if ENABLED(PIDTEMPBED)
  856. EEPROM_READ(dummy); // bedKp
  857. if (dummy != DUMMY_PID_VALUE) {
  858. thermalManager.bedKp = dummy;
  859. EEPROM_READ(thermalManager.bedKi);
  860. EEPROM_READ(thermalManager.bedKd);
  861. }
  862. #else
  863. for (uint8_t q=3; q--;) EEPROM_READ(dummy); // bedKp, bedKi, bedKd
  864. #endif
  865. //
  866. // LCD Contrast
  867. //
  868. #if !HAS_LCD_CONTRAST
  869. uint16_t lcd_contrast;
  870. #endif
  871. EEPROM_READ(lcd_contrast);
  872. //
  873. // Firmware Retraction
  874. //
  875. #if ENABLED(FWRETRACT)
  876. EEPROM_READ(autoretract_enabled);
  877. EEPROM_READ(retract_length);
  878. EEPROM_READ(retract_feedrate_mm_s);
  879. EEPROM_READ(retract_zlift);
  880. EEPROM_READ(retract_recover_length);
  881. EEPROM_READ(retract_recover_feedrate_mm_s);
  882. EEPROM_READ(swap_retract_length);
  883. EEPROM_READ(swap_retract_recover_length);
  884. EEPROM_READ(swap_retract_recover_feedrate_mm_s);
  885. #else
  886. EEPROM_READ(dummyb);
  887. for (uint8_t q=8; q--;) EEPROM_READ(dummy);
  888. #endif
  889. //
  890. // Volumetric & Filament Size
  891. //
  892. EEPROM_READ(volumetric_enabled);
  893. for (uint8_t q = 0; q < MAX_EXTRUDERS; q++) {
  894. EEPROM_READ(dummy);
  895. if (q < COUNT(filament_size)) filament_size[q] = dummy;
  896. }
  897. //
  898. // TMC2130 Stepper Current
  899. //
  900. uint16_t val;
  901. #if ENABLED(HAVE_TMC2130)
  902. EEPROM_READ(val);
  903. #if ENABLED(X_IS_TMC2130)
  904. stepperX.setCurrent(val, R_SENSE, HOLD_MULTIPLIER);
  905. #endif
  906. EEPROM_READ(val);
  907. #if ENABLED(Y_IS_TMC2130)
  908. stepperY.setCurrent(val, R_SENSE, HOLD_MULTIPLIER);
  909. #endif
  910. EEPROM_READ(val);
  911. #if ENABLED(Z_IS_TMC2130)
  912. stepperZ.setCurrent(val, R_SENSE, HOLD_MULTIPLIER);
  913. #endif
  914. EEPROM_READ(val);
  915. #if ENABLED(X2_IS_TMC2130)
  916. stepperX2.setCurrent(val, R_SENSE, HOLD_MULTIPLIER);
  917. #endif
  918. EEPROM_READ(val);
  919. #if ENABLED(Y2_IS_TMC2130)
  920. stepperY2.setCurrent(val, R_SENSE, HOLD_MULTIPLIER);
  921. #endif
  922. EEPROM_READ(val);
  923. #if ENABLED(Z2_IS_TMC2130)
  924. stepperZ2.setCurrent(val, R_SENSE, HOLD_MULTIPLIER);
  925. #endif
  926. EEPROM_READ(val);
  927. #if ENABLED(E0_IS_TMC2130)
  928. stepperE0.setCurrent(val, R_SENSE, HOLD_MULTIPLIER);
  929. #endif
  930. EEPROM_READ(val);
  931. #if ENABLED(E1_IS_TMC2130)
  932. stepperE1.setCurrent(val, R_SENSE, HOLD_MULTIPLIER);
  933. #endif
  934. EEPROM_READ(val);
  935. #if ENABLED(E2_IS_TMC2130)
  936. stepperE2.setCurrent(val, R_SENSE, HOLD_MULTIPLIER);
  937. #endif
  938. EEPROM_READ(val);
  939. #if ENABLED(E3_IS_TMC2130)
  940. stepperE3.setCurrent(val, R_SENSE, HOLD_MULTIPLIER);
  941. #endif
  942. EEPROM_READ(val);
  943. #if ENABLED(E4_IS_TMC2130)
  944. stepperE4.setCurrent(val, R_SENSE, HOLD_MULTIPLIER);
  945. #endif
  946. #else
  947. for (uint8_t q = 11; q--;) EEPROM_READ(val);
  948. #endif
  949. //
  950. // Linear Advance
  951. //
  952. #if ENABLED(LIN_ADVANCE)
  953. EEPROM_READ(planner.extruder_advance_k);
  954. EEPROM_READ(planner.advance_ed_ratio);
  955. #else
  956. EEPROM_READ(dummy);
  957. EEPROM_READ(dummy);
  958. #endif
  959. //
  960. // Motor Current PWM
  961. //
  962. #if HAS_MOTOR_CURRENT_PWM
  963. for (uint8_t q = 3; q--;) EEPROM_READ(stepper.motor_current_setting[q]);
  964. #else
  965. uint32_t dummyui32;
  966. for (uint8_t q = 3; q--;) EEPROM_READ(dummyui32);
  967. #endif
  968. //
  969. // CNC Coordinate System
  970. //
  971. #if ENABLED(CNC_COORDINATE_SYSTEMS)
  972. position_changed = select_coordinate_system(-1); // Go back to machine space
  973. EEPROM_READ(coordinate_system); // 27 floats
  974. #else
  975. for (uint8_t q = 27; q--;) EEPROM_READ(dummy);
  976. #endif
  977. if (working_crc == stored_crc) {
  978. postprocess();
  979. #if ENABLED(EEPROM_CHITCHAT)
  980. SERIAL_ECHO_START();
  981. SERIAL_ECHO(version);
  982. SERIAL_ECHOPAIR(" stored settings retrieved (", eeprom_index - (EEPROM_OFFSET));
  983. SERIAL_ECHOPAIR(" bytes; crc ", (uint32_t)working_crc);
  984. SERIAL_ECHOLNPGM(")");
  985. #endif
  986. }
  987. else {
  988. #if ENABLED(EEPROM_CHITCHAT)
  989. SERIAL_ERROR_START();
  990. SERIAL_ERRORPGM("EEPROM CRC mismatch - (stored) ");
  991. SERIAL_ERROR(stored_crc);
  992. SERIAL_ERRORPGM(" != ");
  993. SERIAL_ERROR(working_crc);
  994. SERIAL_ERRORLNPGM(" (calculated)!");
  995. #endif
  996. reset();
  997. }
  998. #if ENABLED(AUTO_BED_LEVELING_UBL)
  999. meshes_begin = (eeprom_index + 32) & 0xFFF8; // Pad the end of configuration data so it
  1000. // can float up or down a little bit without
  1001. // disrupting the mesh data
  1002. ubl.report_state();
  1003. if (!ubl.sanity_check()) {
  1004. SERIAL_EOL();
  1005. #if ENABLED(EEPROM_CHITCHAT)
  1006. ubl.echo_name();
  1007. SERIAL_ECHOLNPGM(" initialized.\n");
  1008. #endif
  1009. }
  1010. else {
  1011. #if ENABLED(EEPROM_CHITCHAT)
  1012. SERIAL_PROTOCOLPGM("?Can't enable ");
  1013. ubl.echo_name();
  1014. SERIAL_PROTOCOLLNPGM(".");
  1015. #endif
  1016. ubl.reset();
  1017. }
  1018. if (ubl.storage_slot >= 0) {
  1019. load_mesh(ubl.storage_slot);
  1020. #if ENABLED(EEPROM_CHITCHAT)
  1021. SERIAL_ECHOPAIR("Mesh ", ubl.storage_slot);
  1022. SERIAL_ECHOLNPGM(" loaded from storage.");
  1023. #endif
  1024. }
  1025. else {
  1026. ubl.reset();
  1027. #if ENABLED(EEPROM_CHITCHAT)
  1028. SERIAL_ECHOLNPGM("UBL System reset()");
  1029. #endif
  1030. }
  1031. #endif
  1032. }
  1033. #if ENABLED(EEPROM_CHITCHAT) && DISABLED(DISABLE_M503)
  1034. report();
  1035. #endif
  1036. return !eeprom_error;
  1037. }
  1038. #if ENABLED(AUTO_BED_LEVELING_UBL)
  1039. #if ENABLED(EEPROM_CHITCHAT)
  1040. void ubl_invalid_slot(const int s) {
  1041. SERIAL_PROTOCOLLNPGM("?Invalid slot.");
  1042. SERIAL_PROTOCOL(s);
  1043. SERIAL_PROTOCOLLNPGM(" mesh slots available.");
  1044. }
  1045. #endif
  1046. int MarlinSettings::calc_num_meshes() {
  1047. //obviously this will get more sophisticated once we've added an actual MAT
  1048. if (meshes_begin <= 0) return 0;
  1049. return (meshes_end - meshes_begin) / sizeof(ubl.z_values);
  1050. }
  1051. void MarlinSettings::store_mesh(int8_t slot) {
  1052. #if ENABLED(AUTO_BED_LEVELING_UBL)
  1053. const int a = calc_num_meshes();
  1054. if (!WITHIN(slot, 0, a - 1)) {
  1055. #if ENABLED(EEPROM_CHITCHAT)
  1056. ubl_invalid_slot(a);
  1057. SERIAL_PROTOCOLPAIR("E2END=", E2END);
  1058. SERIAL_PROTOCOLPAIR(" meshes_end=", meshes_end);
  1059. SERIAL_PROTOCOLLNPAIR(" slot=", slot);
  1060. SERIAL_EOL();
  1061. #endif
  1062. return;
  1063. }
  1064. uint16_t crc = 0;
  1065. int pos = meshes_end - (slot + 1) * sizeof(ubl.z_values);
  1066. write_data(pos, (uint8_t *)&ubl.z_values, sizeof(ubl.z_values), &crc);
  1067. // Write crc to MAT along with other data, or just tack on to the beginning or end
  1068. #if ENABLED(EEPROM_CHITCHAT)
  1069. SERIAL_PROTOCOLLNPAIR("Mesh saved in slot ", slot);
  1070. #endif
  1071. #else
  1072. // Other mesh types
  1073. #endif
  1074. }
  1075. void MarlinSettings::load_mesh(int8_t slot, void *into /* = 0 */) {
  1076. #if ENABLED(AUTO_BED_LEVELING_UBL)
  1077. const int16_t a = settings.calc_num_meshes();
  1078. if (!WITHIN(slot, 0, a - 1)) {
  1079. #if ENABLED(EEPROM_CHITCHAT)
  1080. ubl_invalid_slot(a);
  1081. #endif
  1082. return;
  1083. }
  1084. uint16_t crc = 0;
  1085. int pos = meshes_end - (slot + 1) * sizeof(ubl.z_values);
  1086. uint8_t * const dest = into ? (uint8_t*)into : (uint8_t*)&ubl.z_values;
  1087. read_data(pos, dest, sizeof(ubl.z_values), &crc);
  1088. // Compare crc with crc from MAT, or read from end
  1089. #if ENABLED(EEPROM_CHITCHAT)
  1090. SERIAL_PROTOCOLLNPAIR("Mesh loaded from slot ", slot);
  1091. #endif
  1092. #else
  1093. // Other mesh types
  1094. #endif
  1095. }
  1096. //void MarlinSettings::delete_mesh() { return; }
  1097. //void MarlinSettings::defrag_meshes() { return; }
  1098. #endif // AUTO_BED_LEVELING_UBL
  1099. #else // !EEPROM_SETTINGS
  1100. bool MarlinSettings::save() {
  1101. SERIAL_ERROR_START();
  1102. SERIAL_ERRORLNPGM("EEPROM disabled");
  1103. return false;
  1104. }
  1105. #endif // !EEPROM_SETTINGS
  1106. /**
  1107. * M502 - Reset Configuration
  1108. */
  1109. void MarlinSettings::reset() {
  1110. static const float tmp1[] PROGMEM = DEFAULT_AXIS_STEPS_PER_UNIT, tmp2[] PROGMEM = DEFAULT_MAX_FEEDRATE;
  1111. static const uint32_t tmp3[] PROGMEM = DEFAULT_MAX_ACCELERATION;
  1112. LOOP_XYZE_N(i) {
  1113. planner.axis_steps_per_mm[i] = pgm_read_float(&tmp1[i < COUNT(tmp1) ? i : COUNT(tmp1) - 1]);
  1114. planner.max_feedrate_mm_s[i] = pgm_read_float(&tmp2[i < COUNT(tmp2) ? i : COUNT(tmp2) - 1]);
  1115. planner.max_acceleration_mm_per_s2[i] = pgm_read_dword_near(&tmp3[i < COUNT(tmp3) ? i : COUNT(tmp3) - 1]);
  1116. }
  1117. planner.acceleration = DEFAULT_ACCELERATION;
  1118. planner.retract_acceleration = DEFAULT_RETRACT_ACCELERATION;
  1119. planner.travel_acceleration = DEFAULT_TRAVEL_ACCELERATION;
  1120. planner.min_feedrate_mm_s = DEFAULT_MINIMUMFEEDRATE;
  1121. planner.min_segment_time_us = DEFAULT_MINSEGMENTTIME;
  1122. planner.min_travel_feedrate_mm_s = DEFAULT_MINTRAVELFEEDRATE;
  1123. planner.max_jerk[X_AXIS] = DEFAULT_XJERK;
  1124. planner.max_jerk[Y_AXIS] = DEFAULT_YJERK;
  1125. planner.max_jerk[Z_AXIS] = DEFAULT_ZJERK;
  1126. planner.max_jerk[E_AXIS] = DEFAULT_EJERK;
  1127. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  1128. new_z_fade_height = 10.0;
  1129. #endif
  1130. #if HAS_HOME_OFFSET
  1131. ZERO(home_offset);
  1132. #endif
  1133. #if HOTENDS > 1
  1134. constexpr float tmp4[XYZ][HOTENDS] = {
  1135. HOTEND_OFFSET_X,
  1136. HOTEND_OFFSET_Y
  1137. #ifdef HOTEND_OFFSET_Z
  1138. , HOTEND_OFFSET_Z
  1139. #else
  1140. , { 0 }
  1141. #endif
  1142. };
  1143. static_assert(
  1144. tmp4[X_AXIS][0] == 0 && tmp4[Y_AXIS][0] == 0 && tmp4[Z_AXIS][0] == 0,
  1145. "Offsets for the first hotend must be 0.0."
  1146. );
  1147. LOOP_XYZ(i) HOTEND_LOOP() hotend_offset[i][e] = tmp4[i][e];
  1148. #endif
  1149. // Applies to all MBL and ABL
  1150. #if HAS_LEVELING
  1151. reset_bed_level();
  1152. #endif
  1153. #if HAS_BED_PROBE
  1154. zprobe_zoffset = Z_PROBE_OFFSET_FROM_EXTRUDER;
  1155. #endif
  1156. #if ENABLED(DELTA)
  1157. const float adj[ABC] = DELTA_ENDSTOP_ADJ,
  1158. dta[ABC] = DELTA_TOWER_ANGLE_TRIM;
  1159. delta_height = DELTA_HEIGHT;
  1160. COPY(delta_endstop_adj, adj);
  1161. delta_radius = DELTA_RADIUS;
  1162. delta_diagonal_rod = DELTA_DIAGONAL_ROD;
  1163. delta_segments_per_second = DELTA_SEGMENTS_PER_SECOND;
  1164. delta_calibration_radius = DELTA_CALIBRATION_RADIUS;
  1165. COPY(delta_tower_angle_trim, dta);
  1166. #elif ENABLED(X_DUAL_ENDSTOPS) || ENABLED(Y_DUAL_ENDSTOPS) || ENABLED(Z_DUAL_ENDSTOPS)
  1167. #if ENABLED(X_DUAL_ENDSTOPS)
  1168. x_endstop_adj = (
  1169. #ifdef X_DUAL_ENDSTOPS_ADJUSTMENT
  1170. X_DUAL_ENDSTOPS_ADJUSTMENT
  1171. #else
  1172. 0
  1173. #endif
  1174. );
  1175. #endif
  1176. #if ENABLED(Y_DUAL_ENDSTOPS)
  1177. y_endstop_adj = (
  1178. #ifdef Y_DUAL_ENDSTOPS_ADJUSTMENT
  1179. Y_DUAL_ENDSTOPS_ADJUSTMENT
  1180. #else
  1181. 0
  1182. #endif
  1183. );
  1184. #endif
  1185. #if ENABLED(Z_DUAL_ENDSTOPS)
  1186. z_endstop_adj = (
  1187. #ifdef Z_DUAL_ENDSTOPS_ADJUSTMENT
  1188. Z_DUAL_ENDSTOPS_ADJUSTMENT
  1189. #else
  1190. 0
  1191. #endif
  1192. );
  1193. #endif
  1194. #endif
  1195. #if ENABLED(ULTIPANEL)
  1196. lcd_preheat_hotend_temp[0] = PREHEAT_1_TEMP_HOTEND;
  1197. lcd_preheat_hotend_temp[1] = PREHEAT_2_TEMP_HOTEND;
  1198. lcd_preheat_bed_temp[0] = PREHEAT_1_TEMP_BED;
  1199. lcd_preheat_bed_temp[1] = PREHEAT_2_TEMP_BED;
  1200. lcd_preheat_fan_speed[0] = PREHEAT_1_FAN_SPEED;
  1201. lcd_preheat_fan_speed[1] = PREHEAT_2_FAN_SPEED;
  1202. #endif
  1203. #if HAS_LCD_CONTRAST
  1204. lcd_contrast = DEFAULT_LCD_CONTRAST;
  1205. #endif
  1206. #if ENABLED(PIDTEMP)
  1207. #if ENABLED(PID_PARAMS_PER_HOTEND) && HOTENDS > 1
  1208. HOTEND_LOOP()
  1209. #endif
  1210. {
  1211. PID_PARAM(Kp, e) = DEFAULT_Kp;
  1212. PID_PARAM(Ki, e) = scalePID_i(DEFAULT_Ki);
  1213. PID_PARAM(Kd, e) = scalePID_d(DEFAULT_Kd);
  1214. #if ENABLED(PID_EXTRUSION_SCALING)
  1215. PID_PARAM(Kc, e) = DEFAULT_Kc;
  1216. #endif
  1217. }
  1218. #if ENABLED(PID_EXTRUSION_SCALING)
  1219. lpq_len = 20; // default last-position-queue size
  1220. #endif
  1221. #endif // PIDTEMP
  1222. #if ENABLED(PIDTEMPBED)
  1223. thermalManager.bedKp = DEFAULT_bedKp;
  1224. thermalManager.bedKi = scalePID_i(DEFAULT_bedKi);
  1225. thermalManager.bedKd = scalePID_d(DEFAULT_bedKd);
  1226. #endif
  1227. #if ENABLED(FWRETRACT)
  1228. autoretract_enabled = false;
  1229. retract_length = RETRACT_LENGTH;
  1230. retract_feedrate_mm_s = RETRACT_FEEDRATE;
  1231. retract_zlift = RETRACT_ZLIFT;
  1232. retract_recover_length = RETRACT_RECOVER_LENGTH;
  1233. retract_recover_feedrate_mm_s = RETRACT_RECOVER_FEEDRATE;
  1234. swap_retract_length = RETRACT_LENGTH_SWAP;
  1235. swap_retract_recover_length = RETRACT_RECOVER_LENGTH_SWAP;
  1236. swap_retract_recover_feedrate_mm_s = RETRACT_RECOVER_FEEDRATE_SWAP;
  1237. #endif // FWRETRACT
  1238. volumetric_enabled =
  1239. #if ENABLED(VOLUMETRIC_DEFAULT_ON)
  1240. true
  1241. #else
  1242. false
  1243. #endif
  1244. ;
  1245. for (uint8_t q = 0; q < COUNT(filament_size); q++)
  1246. filament_size[q] = DEFAULT_NOMINAL_FILAMENT_DIA;
  1247. endstops.enable_globally(
  1248. #if ENABLED(ENDSTOPS_ALWAYS_ON_DEFAULT)
  1249. true
  1250. #else
  1251. false
  1252. #endif
  1253. );
  1254. #if ENABLED(HAVE_TMC2130)
  1255. #if ENABLED(X_IS_TMC2130)
  1256. stepperX.setCurrent(X_CURRENT, R_SENSE, HOLD_MULTIPLIER);
  1257. #endif
  1258. #if ENABLED(Y_IS_TMC2130)
  1259. stepperY.setCurrent(Y_CURRENT, R_SENSE, HOLD_MULTIPLIER);
  1260. #endif
  1261. #if ENABLED(Z_IS_TMC2130)
  1262. stepperZ.setCurrent(Z_CURRENT, R_SENSE, HOLD_MULTIPLIER);
  1263. #endif
  1264. #if ENABLED(X2_IS_TMC2130)
  1265. stepperX2.setCurrent(X2_CURRENT, R_SENSE, HOLD_MULTIPLIER);
  1266. #endif
  1267. #if ENABLED(Y2_IS_TMC2130)
  1268. stepperY2.setCurrent(Y2_CURRENT, R_SENSE, HOLD_MULTIPLIER);
  1269. #endif
  1270. #if ENABLED(Z2_IS_TMC2130)
  1271. stepperZ2.setCurrent(Z2_CURRENT, R_SENSE, HOLD_MULTIPLIER);
  1272. #endif
  1273. #if ENABLED(E0_IS_TMC2130)
  1274. stepperE0.setCurrent(E0_CURRENT, R_SENSE, HOLD_MULTIPLIER);
  1275. #endif
  1276. #if ENABLED(E1_IS_TMC2130)
  1277. stepperE1.setCurrent(E1_CURRENT, R_SENSE, HOLD_MULTIPLIER);
  1278. #endif
  1279. #if ENABLED(E2_IS_TMC2130)
  1280. stepperE2.setCurrent(E2_CURRENT, R_SENSE, HOLD_MULTIPLIER);
  1281. #endif
  1282. #if ENABLED(E3_IS_TMC2130)
  1283. stepperE3.setCurrent(E3_CURRENT, R_SENSE, HOLD_MULTIPLIER);
  1284. #endif
  1285. #endif
  1286. #if ENABLED(LIN_ADVANCE)
  1287. planner.extruder_advance_k = LIN_ADVANCE_K;
  1288. planner.advance_ed_ratio = LIN_ADVANCE_E_D_RATIO;
  1289. #endif
  1290. #if HAS_MOTOR_CURRENT_PWM
  1291. uint32_t tmp_motor_current_setting[3] = PWM_MOTOR_CURRENT;
  1292. for (uint8_t q = 3; q--;)
  1293. stepper.digipot_current(q, (stepper.motor_current_setting[q] = tmp_motor_current_setting[q]));
  1294. #endif
  1295. #if ENABLED(AUTO_BED_LEVELING_UBL)
  1296. ubl.reset();
  1297. #endif
  1298. postprocess();
  1299. #if ENABLED(EEPROM_CHITCHAT)
  1300. SERIAL_ECHO_START();
  1301. SERIAL_ECHOLNPGM("Hardcoded Default Settings Loaded");
  1302. #endif
  1303. }
  1304. #if DISABLED(DISABLE_M503)
  1305. #define CONFIG_ECHO_START do{ if (!forReplay) SERIAL_ECHO_START(); }while(0)
  1306. /**
  1307. * M503 - Report current settings in RAM
  1308. *
  1309. * Unless specifically disabled, M503 is available even without EEPROM
  1310. */
  1311. void MarlinSettings::report(bool forReplay) {
  1312. /**
  1313. * Announce current units, in case inches are being displayed
  1314. */
  1315. CONFIG_ECHO_START;
  1316. #if ENABLED(INCH_MODE_SUPPORT)
  1317. #define LINEAR_UNIT(N) ((N) / parser.linear_unit_factor)
  1318. #define VOLUMETRIC_UNIT(N) ((N) / (volumetric_enabled ? parser.volumetric_unit_factor : parser.linear_unit_factor))
  1319. SERIAL_ECHOPGM(" G2");
  1320. SERIAL_CHAR(parser.linear_unit_factor == 1.0 ? '1' : '0');
  1321. SERIAL_ECHOPGM(" ; Units in ");
  1322. serialprintPGM(parser.linear_unit_factor == 1.0 ? PSTR("mm\n") : PSTR("inches\n"));
  1323. #else
  1324. #define LINEAR_UNIT(N) N
  1325. #define VOLUMETRIC_UNIT(N) N
  1326. SERIAL_ECHOLNPGM(" G21 ; Units in mm");
  1327. #endif
  1328. #if ENABLED(ULTIPANEL)
  1329. // Temperature units - for Ultipanel temperature options
  1330. CONFIG_ECHO_START;
  1331. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  1332. #define TEMP_UNIT(N) parser.to_temp_units(N)
  1333. SERIAL_ECHOPGM(" M149 ");
  1334. SERIAL_CHAR(parser.temp_units_code());
  1335. SERIAL_ECHOPGM(" ; Units in ");
  1336. serialprintPGM(parser.temp_units_name());
  1337. #else
  1338. #define TEMP_UNIT(N) N
  1339. SERIAL_ECHOLNPGM(" M149 C ; Units in Celsius");
  1340. #endif
  1341. #endif
  1342. SERIAL_EOL();
  1343. /**
  1344. * Volumetric extrusion M200
  1345. */
  1346. if (!forReplay) {
  1347. CONFIG_ECHO_START;
  1348. SERIAL_ECHOPGM("Filament settings:");
  1349. if (volumetric_enabled)
  1350. SERIAL_EOL();
  1351. else
  1352. SERIAL_ECHOLNPGM(" Disabled");
  1353. }
  1354. CONFIG_ECHO_START;
  1355. SERIAL_ECHOPAIR(" M200 D", filament_size[0]);
  1356. SERIAL_EOL();
  1357. #if EXTRUDERS > 1
  1358. CONFIG_ECHO_START;
  1359. SERIAL_ECHOPAIR(" M200 T1 D", filament_size[1]);
  1360. SERIAL_EOL();
  1361. #if EXTRUDERS > 2
  1362. CONFIG_ECHO_START;
  1363. SERIAL_ECHOPAIR(" M200 T2 D", filament_size[2]);
  1364. SERIAL_EOL();
  1365. #if EXTRUDERS > 3
  1366. CONFIG_ECHO_START;
  1367. SERIAL_ECHOPAIR(" M200 T3 D", filament_size[3]);
  1368. SERIAL_EOL();
  1369. #if EXTRUDERS > 4
  1370. CONFIG_ECHO_START;
  1371. SERIAL_ECHOPAIR(" M200 T4 D", filament_size[4]);
  1372. SERIAL_EOL();
  1373. #endif // EXTRUDERS > 4
  1374. #endif // EXTRUDERS > 3
  1375. #endif // EXTRUDERS > 2
  1376. #endif // EXTRUDERS > 1
  1377. if (!volumetric_enabled) {
  1378. CONFIG_ECHO_START;
  1379. SERIAL_ECHOLNPGM(" M200 D0");
  1380. }
  1381. if (!forReplay) {
  1382. CONFIG_ECHO_START;
  1383. SERIAL_ECHOLNPGM("Steps per unit:");
  1384. }
  1385. CONFIG_ECHO_START;
  1386. SERIAL_ECHOPAIR(" M92 X", LINEAR_UNIT(planner.axis_steps_per_mm[X_AXIS]));
  1387. SERIAL_ECHOPAIR(" Y", LINEAR_UNIT(planner.axis_steps_per_mm[Y_AXIS]));
  1388. SERIAL_ECHOPAIR(" Z", LINEAR_UNIT(planner.axis_steps_per_mm[Z_AXIS]));
  1389. #if DISABLED(DISTINCT_E_FACTORS)
  1390. SERIAL_ECHOPAIR(" E", VOLUMETRIC_UNIT(planner.axis_steps_per_mm[E_AXIS]));
  1391. #endif
  1392. SERIAL_EOL();
  1393. #if ENABLED(DISTINCT_E_FACTORS)
  1394. CONFIG_ECHO_START;
  1395. for (uint8_t i = 0; i < E_STEPPERS; i++) {
  1396. SERIAL_ECHOPAIR(" M92 T", (int)i);
  1397. SERIAL_ECHOLNPAIR(" E", VOLUMETRIC_UNIT(planner.axis_steps_per_mm[E_AXIS + i]));
  1398. }
  1399. #endif
  1400. if (!forReplay) {
  1401. CONFIG_ECHO_START;
  1402. SERIAL_ECHOLNPGM("Maximum feedrates (units/s):");
  1403. }
  1404. CONFIG_ECHO_START;
  1405. SERIAL_ECHOPAIR(" M203 X", LINEAR_UNIT(planner.max_feedrate_mm_s[X_AXIS]));
  1406. SERIAL_ECHOPAIR(" Y", LINEAR_UNIT(planner.max_feedrate_mm_s[Y_AXIS]));
  1407. SERIAL_ECHOPAIR(" Z", LINEAR_UNIT(planner.max_feedrate_mm_s[Z_AXIS]));
  1408. #if DISABLED(DISTINCT_E_FACTORS)
  1409. SERIAL_ECHOPAIR(" E", VOLUMETRIC_UNIT(planner.max_feedrate_mm_s[E_AXIS]));
  1410. #endif
  1411. SERIAL_EOL();
  1412. #if ENABLED(DISTINCT_E_FACTORS)
  1413. CONFIG_ECHO_START;
  1414. for (uint8_t i = 0; i < E_STEPPERS; i++) {
  1415. SERIAL_ECHOPAIR(" M203 T", (int)i);
  1416. SERIAL_ECHOLNPAIR(" E", VOLUMETRIC_UNIT(planner.max_feedrate_mm_s[E_AXIS + i]));
  1417. }
  1418. #endif
  1419. if (!forReplay) {
  1420. CONFIG_ECHO_START;
  1421. SERIAL_ECHOLNPGM("Maximum Acceleration (units/s2):");
  1422. }
  1423. CONFIG_ECHO_START;
  1424. SERIAL_ECHOPAIR(" M201 X", LINEAR_UNIT(planner.max_acceleration_mm_per_s2[X_AXIS]));
  1425. SERIAL_ECHOPAIR(" Y", LINEAR_UNIT(planner.max_acceleration_mm_per_s2[Y_AXIS]));
  1426. SERIAL_ECHOPAIR(" Z", LINEAR_UNIT(planner.max_acceleration_mm_per_s2[Z_AXIS]));
  1427. #if DISABLED(DISTINCT_E_FACTORS)
  1428. SERIAL_ECHOPAIR(" E", VOLUMETRIC_UNIT(planner.max_acceleration_mm_per_s2[E_AXIS]));
  1429. #endif
  1430. SERIAL_EOL();
  1431. #if ENABLED(DISTINCT_E_FACTORS)
  1432. CONFIG_ECHO_START;
  1433. for (uint8_t i = 0; i < E_STEPPERS; i++) {
  1434. SERIAL_ECHOPAIR(" M201 T", (int)i);
  1435. SERIAL_ECHOLNPAIR(" E", VOLUMETRIC_UNIT(planner.max_acceleration_mm_per_s2[E_AXIS + i]));
  1436. }
  1437. #endif
  1438. if (!forReplay) {
  1439. CONFIG_ECHO_START;
  1440. SERIAL_ECHOLNPGM("Acceleration (units/s2): P<print_accel> R<retract_accel> T<travel_accel>");
  1441. }
  1442. CONFIG_ECHO_START;
  1443. SERIAL_ECHOPAIR(" M204 P", LINEAR_UNIT(planner.acceleration));
  1444. SERIAL_ECHOPAIR(" R", LINEAR_UNIT(planner.retract_acceleration));
  1445. SERIAL_ECHOLNPAIR(" T", LINEAR_UNIT(planner.travel_acceleration));
  1446. if (!forReplay) {
  1447. CONFIG_ECHO_START;
  1448. SERIAL_ECHOLNPGM("Advanced: S<min_feedrate> T<min_travel_feedrate> B<min_segment_time_us> X<max_xy_jerk> Z<max_z_jerk> E<max_e_jerk>");
  1449. }
  1450. CONFIG_ECHO_START;
  1451. SERIAL_ECHOPAIR(" M205 S", LINEAR_UNIT(planner.min_feedrate_mm_s));
  1452. SERIAL_ECHOPAIR(" T", LINEAR_UNIT(planner.min_travel_feedrate_mm_s));
  1453. SERIAL_ECHOPAIR(" B", planner.min_segment_time_us);
  1454. SERIAL_ECHOPAIR(" X", LINEAR_UNIT(planner.max_jerk[X_AXIS]));
  1455. SERIAL_ECHOPAIR(" Y", LINEAR_UNIT(planner.max_jerk[Y_AXIS]));
  1456. SERIAL_ECHOPAIR(" Z", LINEAR_UNIT(planner.max_jerk[Z_AXIS]));
  1457. SERIAL_ECHOLNPAIR(" E", LINEAR_UNIT(planner.max_jerk[E_AXIS]));
  1458. #if HAS_M206_COMMAND
  1459. if (!forReplay) {
  1460. CONFIG_ECHO_START;
  1461. SERIAL_ECHOLNPGM("Home offset:");
  1462. }
  1463. CONFIG_ECHO_START;
  1464. SERIAL_ECHOPAIR(" M206 X", LINEAR_UNIT(home_offset[X_AXIS]));
  1465. SERIAL_ECHOPAIR(" Y", LINEAR_UNIT(home_offset[Y_AXIS]));
  1466. SERIAL_ECHOLNPAIR(" Z", LINEAR_UNIT(home_offset[Z_AXIS]));
  1467. #endif
  1468. #if HOTENDS > 1
  1469. if (!forReplay) {
  1470. CONFIG_ECHO_START;
  1471. SERIAL_ECHOLNPGM("Hotend offsets:");
  1472. }
  1473. CONFIG_ECHO_START;
  1474. for (uint8_t e = 1; e < HOTENDS; e++) {
  1475. SERIAL_ECHOPAIR(" M218 T", (int)e);
  1476. SERIAL_ECHOPAIR(" X", LINEAR_UNIT(hotend_offset[X_AXIS][e]));
  1477. SERIAL_ECHOPAIR(" Y", LINEAR_UNIT(hotend_offset[Y_AXIS][e]));
  1478. #if ENABLED(DUAL_X_CARRIAGE) || ENABLED(SWITCHING_NOZZLE) ||ENABLED(PARKING_EXTRUDER)
  1479. SERIAL_ECHOPAIR(" Z", LINEAR_UNIT(hotend_offset[Z_AXIS][e]));
  1480. #endif
  1481. SERIAL_EOL();
  1482. }
  1483. #endif
  1484. /**
  1485. * Bed Leveling
  1486. */
  1487. #if HAS_LEVELING
  1488. #if ENABLED(MESH_BED_LEVELING)
  1489. if (!forReplay) {
  1490. CONFIG_ECHO_START;
  1491. SERIAL_ECHOLNPGM("Mesh Bed Leveling:");
  1492. }
  1493. CONFIG_ECHO_START;
  1494. #elif ENABLED(AUTO_BED_LEVELING_UBL)
  1495. if (!forReplay) {
  1496. CONFIG_ECHO_START;
  1497. ubl.echo_name();
  1498. SERIAL_ECHOLNPGM(":");
  1499. }
  1500. CONFIG_ECHO_START;
  1501. #elif HAS_ABL
  1502. if (!forReplay) {
  1503. CONFIG_ECHO_START;
  1504. SERIAL_ECHOLNPGM("Auto Bed Leveling:");
  1505. }
  1506. CONFIG_ECHO_START;
  1507. #endif
  1508. CONFIG_ECHO_START;
  1509. SERIAL_ECHOPAIR(" M420 S", planner.leveling_active ? 1 : 0);
  1510. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  1511. SERIAL_ECHOPAIR(" Z", LINEAR_UNIT(planner.z_fade_height));
  1512. #endif
  1513. SERIAL_EOL();
  1514. #if ENABLED(MESH_BED_LEVELING)
  1515. for (uint8_t py = 0; py < GRID_MAX_POINTS_Y; py++) {
  1516. for (uint8_t px = 0; px < GRID_MAX_POINTS_X; px++) {
  1517. CONFIG_ECHO_START;
  1518. SERIAL_ECHOPAIR(" G29 S3 X", (int)px + 1);
  1519. SERIAL_ECHOPAIR(" Y", (int)py + 1);
  1520. SERIAL_ECHOPGM(" Z");
  1521. SERIAL_PROTOCOL_F(LINEAR_UNIT(mbl.z_values[px][py]), 5);
  1522. SERIAL_EOL();
  1523. }
  1524. }
  1525. #elif ENABLED(AUTO_BED_LEVELING_UBL)
  1526. if (!forReplay) {
  1527. SERIAL_EOL();
  1528. ubl.report_state();
  1529. SERIAL_ECHOLNPAIR("\nActive Mesh Slot: ", ubl.storage_slot);
  1530. SERIAL_ECHOPAIR("EEPROM can hold ", calc_num_meshes());
  1531. SERIAL_ECHOLNPGM(" meshes.\n");
  1532. }
  1533. #endif
  1534. #endif // HAS_LEVELING
  1535. #if ENABLED(DELTA)
  1536. if (!forReplay) {
  1537. CONFIG_ECHO_START;
  1538. SERIAL_ECHOLNPGM("Endstop adjustment:");
  1539. }
  1540. CONFIG_ECHO_START;
  1541. SERIAL_ECHOPAIR(" M666 X", LINEAR_UNIT(delta_endstop_adj[X_AXIS]));
  1542. SERIAL_ECHOPAIR(" Y", LINEAR_UNIT(delta_endstop_adj[Y_AXIS]));
  1543. SERIAL_ECHOLNPAIR(" Z", LINEAR_UNIT(delta_endstop_adj[Z_AXIS]));
  1544. if (!forReplay) {
  1545. CONFIG_ECHO_START;
  1546. SERIAL_ECHOLNPGM("Delta settings: L<diagonal_rod> R<radius> H<height> S<segments_per_s> B<calibration radius> XYZ<tower angle corrections>");
  1547. }
  1548. CONFIG_ECHO_START;
  1549. SERIAL_ECHOPAIR(" M665 L", LINEAR_UNIT(delta_diagonal_rod));
  1550. SERIAL_ECHOPAIR(" R", LINEAR_UNIT(delta_radius));
  1551. SERIAL_ECHOPAIR(" H", LINEAR_UNIT(delta_height));
  1552. SERIAL_ECHOPAIR(" S", delta_segments_per_second);
  1553. SERIAL_ECHOPAIR(" B", LINEAR_UNIT(delta_calibration_radius));
  1554. SERIAL_ECHOPAIR(" X", LINEAR_UNIT(delta_tower_angle_trim[A_AXIS]));
  1555. SERIAL_ECHOPAIR(" Y", LINEAR_UNIT(delta_tower_angle_trim[B_AXIS]));
  1556. SERIAL_ECHOPAIR(" Z", LINEAR_UNIT(delta_tower_angle_trim[C_AXIS]));
  1557. SERIAL_EOL();
  1558. #elif ENABLED(X_DUAL_ENDSTOPS) || ENABLED(Y_DUAL_ENDSTOPS) || ENABLED(Z_DUAL_ENDSTOPS)
  1559. if (!forReplay) {
  1560. CONFIG_ECHO_START;
  1561. SERIAL_ECHOLNPGM("Endstop adjustment:");
  1562. }
  1563. CONFIG_ECHO_START;
  1564. SERIAL_ECHOPGM(" M666");
  1565. #if ENABLED(X_DUAL_ENDSTOPS)
  1566. SERIAL_ECHOPAIR(" X", LINEAR_UNIT(x_endstop_adj));
  1567. #endif
  1568. #if ENABLED(Y_DUAL_ENDSTOPS)
  1569. SERIAL_ECHOPAIR(" Y", LINEAR_UNIT(y_endstop_adj));
  1570. #endif
  1571. #if ENABLED(Z_DUAL_ENDSTOPS)
  1572. SERIAL_ECHOPAIR(" Z", LINEAR_UNIT(z_endstop_adj));
  1573. #endif
  1574. SERIAL_EOL();
  1575. #endif // DELTA
  1576. #if ENABLED(ULTIPANEL)
  1577. if (!forReplay) {
  1578. CONFIG_ECHO_START;
  1579. SERIAL_ECHOLNPGM("Material heatup parameters:");
  1580. }
  1581. CONFIG_ECHO_START;
  1582. for (uint8_t i = 0; i < COUNT(lcd_preheat_hotend_temp); i++) {
  1583. SERIAL_ECHOPAIR(" M145 S", (int)i);
  1584. SERIAL_ECHOPAIR(" H", TEMP_UNIT(lcd_preheat_hotend_temp[i]));
  1585. SERIAL_ECHOPAIR(" B", TEMP_UNIT(lcd_preheat_bed_temp[i]));
  1586. SERIAL_ECHOLNPAIR(" F", lcd_preheat_fan_speed[i]);
  1587. }
  1588. #endif // ULTIPANEL
  1589. #if HAS_PID_HEATING
  1590. if (!forReplay) {
  1591. CONFIG_ECHO_START;
  1592. SERIAL_ECHOLNPGM("PID settings:");
  1593. }
  1594. #if ENABLED(PIDTEMP)
  1595. #if HOTENDS > 1
  1596. if (forReplay) {
  1597. HOTEND_LOOP() {
  1598. CONFIG_ECHO_START;
  1599. SERIAL_ECHOPAIR(" M301 E", e);
  1600. SERIAL_ECHOPAIR(" P", PID_PARAM(Kp, e));
  1601. SERIAL_ECHOPAIR(" I", unscalePID_i(PID_PARAM(Ki, e)));
  1602. SERIAL_ECHOPAIR(" D", unscalePID_d(PID_PARAM(Kd, e)));
  1603. #if ENABLED(PID_EXTRUSION_SCALING)
  1604. SERIAL_ECHOPAIR(" C", PID_PARAM(Kc, e));
  1605. if (e == 0) SERIAL_ECHOPAIR(" L", lpq_len);
  1606. #endif
  1607. SERIAL_EOL();
  1608. }
  1609. }
  1610. else
  1611. #endif // HOTENDS > 1
  1612. // !forReplay || HOTENDS == 1
  1613. {
  1614. CONFIG_ECHO_START;
  1615. SERIAL_ECHOPAIR(" M301 P", PID_PARAM(Kp, 0)); // for compatibility with hosts, only echo values for E0
  1616. SERIAL_ECHOPAIR(" I", unscalePID_i(PID_PARAM(Ki, 0)));
  1617. SERIAL_ECHOPAIR(" D", unscalePID_d(PID_PARAM(Kd, 0)));
  1618. #if ENABLED(PID_EXTRUSION_SCALING)
  1619. SERIAL_ECHOPAIR(" C", PID_PARAM(Kc, 0));
  1620. SERIAL_ECHOPAIR(" L", lpq_len);
  1621. #endif
  1622. SERIAL_EOL();
  1623. }
  1624. #endif // PIDTEMP
  1625. #if ENABLED(PIDTEMPBED)
  1626. CONFIG_ECHO_START;
  1627. SERIAL_ECHOPAIR(" M304 P", thermalManager.bedKp);
  1628. SERIAL_ECHOPAIR(" I", unscalePID_i(thermalManager.bedKi));
  1629. SERIAL_ECHOPAIR(" D", unscalePID_d(thermalManager.bedKd));
  1630. SERIAL_EOL();
  1631. #endif
  1632. #endif // PIDTEMP || PIDTEMPBED
  1633. #if HAS_LCD_CONTRAST
  1634. if (!forReplay) {
  1635. CONFIG_ECHO_START;
  1636. SERIAL_ECHOLNPGM("LCD Contrast:");
  1637. }
  1638. CONFIG_ECHO_START;
  1639. SERIAL_ECHOLNPAIR(" M250 C", lcd_contrast);
  1640. #endif
  1641. #if ENABLED(FWRETRACT)
  1642. if (!forReplay) {
  1643. CONFIG_ECHO_START;
  1644. SERIAL_ECHOLNPGM("Retract: S<length> F<units/m> Z<lift>");
  1645. }
  1646. CONFIG_ECHO_START;
  1647. SERIAL_ECHOPAIR(" M207 S", LINEAR_UNIT(retract_length));
  1648. SERIAL_ECHOPAIR(" W", LINEAR_UNIT(swap_retract_length));
  1649. SERIAL_ECHOPAIR(" F", MMS_TO_MMM(LINEAR_UNIT(retract_feedrate_mm_s)));
  1650. SERIAL_ECHOLNPAIR(" Z", LINEAR_UNIT(retract_zlift));
  1651. if (!forReplay) {
  1652. CONFIG_ECHO_START;
  1653. SERIAL_ECHOLNPGM("Recover: S<length> F<units/m>");
  1654. }
  1655. CONFIG_ECHO_START;
  1656. SERIAL_ECHOPAIR(" M208 S", LINEAR_UNIT(retract_recover_length));
  1657. SERIAL_ECHOPAIR(" W", LINEAR_UNIT(swap_retract_recover_length));
  1658. SERIAL_ECHOLNPAIR(" F", MMS_TO_MMM(LINEAR_UNIT(retract_recover_feedrate_mm_s)));
  1659. if (!forReplay) {
  1660. CONFIG_ECHO_START;
  1661. SERIAL_ECHOLNPGM("Auto-Retract: S=0 to disable, 1 to interpret E-only moves as retract/recover");
  1662. }
  1663. CONFIG_ECHO_START;
  1664. SERIAL_ECHOLNPAIR(" M209 S", autoretract_enabled ? 1 : 0);
  1665. #endif // FWRETRACT
  1666. /**
  1667. * Probe Offset
  1668. */
  1669. #if HAS_BED_PROBE
  1670. if (!forReplay) {
  1671. CONFIG_ECHO_START;
  1672. SERIAL_ECHOLNPGM("Z-Probe Offset (mm):");
  1673. }
  1674. CONFIG_ECHO_START;
  1675. SERIAL_ECHOLNPAIR(" M851 Z", LINEAR_UNIT(zprobe_zoffset));
  1676. #endif
  1677. /**
  1678. * TMC2130 stepper driver current
  1679. */
  1680. #if ENABLED(HAVE_TMC2130)
  1681. if (!forReplay) {
  1682. CONFIG_ECHO_START;
  1683. SERIAL_ECHOLNPGM("Stepper driver current:");
  1684. }
  1685. CONFIG_ECHO_START;
  1686. SERIAL_ECHO(" M906");
  1687. #if ENABLED(X_IS_TMC2130)
  1688. SERIAL_ECHOPAIR(" X", stepperX.getCurrent());
  1689. #endif
  1690. #if ENABLED(Y_IS_TMC2130)
  1691. SERIAL_ECHOPAIR(" Y", stepperY.getCurrent());
  1692. #endif
  1693. #if ENABLED(Z_IS_TMC2130)
  1694. SERIAL_ECHOPAIR(" Z", stepperZ.getCurrent());
  1695. #endif
  1696. #if ENABLED(X2_IS_TMC2130)
  1697. SERIAL_ECHOPAIR(" X2", stepperX2.getCurrent());
  1698. #endif
  1699. #if ENABLED(Y2_IS_TMC2130)
  1700. SERIAL_ECHOPAIR(" Y2", stepperY2.getCurrent());
  1701. #endif
  1702. #if ENABLED(Z2_IS_TMC2130)
  1703. SERIAL_ECHOPAIR(" Z2", stepperZ2.getCurrent());
  1704. #endif
  1705. #if ENABLED(E0_IS_TMC2130)
  1706. SERIAL_ECHOPAIR(" E0", stepperE0.getCurrent());
  1707. #endif
  1708. #if ENABLED(E1_IS_TMC2130)
  1709. SERIAL_ECHOPAIR(" E1", stepperE1.getCurrent());
  1710. #endif
  1711. #if ENABLED(E2_IS_TMC2130)
  1712. SERIAL_ECHOPAIR(" E2", stepperE2.getCurrent());
  1713. #endif
  1714. #if ENABLED(E3_IS_TMC2130)
  1715. SERIAL_ECHOPAIR(" E3", stepperE3.getCurrent());
  1716. #endif
  1717. SERIAL_EOL();
  1718. #endif
  1719. /**
  1720. * Linear Advance
  1721. */
  1722. #if ENABLED(LIN_ADVANCE)
  1723. if (!forReplay) {
  1724. CONFIG_ECHO_START;
  1725. SERIAL_ECHOLNPGM("Linear Advance:");
  1726. }
  1727. CONFIG_ECHO_START;
  1728. SERIAL_ECHOPAIR(" M900 K", planner.extruder_advance_k);
  1729. SERIAL_ECHOLNPAIR(" R", planner.advance_ed_ratio);
  1730. #endif
  1731. #if HAS_MOTOR_CURRENT_PWM
  1732. CONFIG_ECHO_START;
  1733. if (!forReplay) {
  1734. SERIAL_ECHOLNPGM("Stepper motor currents:");
  1735. CONFIG_ECHO_START;
  1736. }
  1737. SERIAL_ECHOPAIR(" M907 X", stepper.motor_current_setting[0]);
  1738. SERIAL_ECHOPAIR(" Z", stepper.motor_current_setting[1]);
  1739. SERIAL_ECHOPAIR(" E", stepper.motor_current_setting[2]);
  1740. SERIAL_EOL();
  1741. #endif
  1742. }
  1743. #endif // !DISABLE_M503