My Marlin configs for Fabrikator Mini and CTC i3 Pro B
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

Marlin_main.cpp 332KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530753175327533753475357536753775387539754075417542754375447545754675477548754975507551755275537554755575567557755875597560756175627563756475657566756775687569757075717572757375747575757675777578757975807581758275837584758575867587758875897590759175927593759475957596759775987599760076017602760376047605760676077608760976107611761276137614761576167617761876197620762176227623762476257626762776287629763076317632763376347635763676377638763976407641764276437644764576467647764876497650765176527653765476557656765776587659766076617662766376647665766676677668766976707671767276737674767576767677767876797680768176827683768476857686768776887689769076917692769376947695769676977698769977007701770277037704770577067707770877097710771177127713771477157716771777187719772077217722772377247725772677277728772977307731773277337734773577367737773877397740774177427743774477457746774777487749775077517752775377547755775677577758775977607761776277637764776577667767776877697770777177727773777477757776777777787779778077817782778377847785778677877788778977907791779277937794779577967797779877997800780178027803780478057806780778087809781078117812781378147815781678177818781978207821782278237824782578267827782878297830783178327833783478357836783778387839784078417842784378447845784678477848784978507851785278537854785578567857785878597860786178627863786478657866786778687869787078717872787378747875787678777878787978807881788278837884788578867887788878897890789178927893789478957896789778987899790079017902790379047905790679077908790979107911791279137914791579167917791879197920792179227923792479257926792779287929793079317932793379347935793679377938793979407941794279437944794579467947794879497950795179527953795479557956795779587959796079617962796379647965796679677968796979707971797279737974797579767977797879797980798179827983798479857986798779887989799079917992799379947995799679977998799980008001800280038004800580068007800880098010801180128013801480158016801780188019802080218022802380248025802680278028802980308031803280338034803580368037803880398040804180428043804480458046804780488049805080518052805380548055805680578058805980608061806280638064806580668067806880698070807180728073807480758076807780788079808080818082808380848085808680878088808980908091809280938094809580968097809880998100810181028103810481058106810781088109811081118112811381148115811681178118811981208121812281238124812581268127812881298130813181328133813481358136813781388139814081418142814381448145814681478148814981508151815281538154815581568157815881598160816181628163816481658166816781688169817081718172817381748175817681778178817981808181818281838184818581868187818881898190819181928193819481958196819781988199820082018202820382048205820682078208820982108211821282138214821582168217821882198220822182228223822482258226822782288229823082318232823382348235823682378238823982408241824282438244824582468247824882498250825182528253825482558256825782588259826082618262826382648265826682678268826982708271827282738274827582768277827882798280828182828283828482858286828782888289829082918292829382948295829682978298829983008301830283038304830583068307830883098310831183128313831483158316831783188319832083218322832383248325832683278328832983308331833283338334833583368337833883398340834183428343834483458346834783488349835083518352835383548355835683578358835983608361836283638364836583668367836883698370837183728373837483758376837783788379838083818382838383848385838683878388838983908391839283938394839583968397839883998400840184028403840484058406840784088409841084118412841384148415841684178418841984208421842284238424842584268427842884298430843184328433843484358436843784388439844084418442844384448445844684478448844984508451845284538454845584568457845884598460846184628463846484658466846784688469847084718472847384748475847684778478847984808481848284838484848584868487848884898490849184928493849484958496849784988499850085018502850385048505850685078508850985108511851285138514851585168517851885198520852185228523852485258526852785288529853085318532853385348535853685378538853985408541854285438544854585468547854885498550855185528553855485558556855785588559856085618562856385648565856685678568856985708571857285738574857585768577857885798580858185828583858485858586858785888589859085918592859385948595859685978598859986008601860286038604860586068607860886098610861186128613861486158616861786188619862086218622862386248625862686278628862986308631863286338634863586368637863886398640864186428643864486458646864786488649865086518652865386548655865686578658865986608661866286638664866586668667866886698670867186728673867486758676867786788679868086818682868386848685868686878688868986908691869286938694869586968697869886998700870187028703870487058706870787088709871087118712871387148715871687178718871987208721872287238724872587268727872887298730873187328733873487358736873787388739874087418742874387448745874687478748874987508751875287538754875587568757875887598760876187628763876487658766876787688769877087718772877387748775877687778778877987808781878287838784878587868787878887898790879187928793879487958796879787988799880088018802880388048805880688078808880988108811881288138814881588168817881888198820882188228823882488258826882788288829883088318832883388348835883688378838883988408841884288438844884588468847884888498850885188528853885488558856885788588859886088618862886388648865886688678868886988708871887288738874887588768877887888798880888188828883888488858886888788888889889088918892889388948895889688978898889989008901890289038904890589068907890889098910891189128913891489158916891789188919892089218922892389248925892689278928892989308931893289338934893589368937893889398940894189428943894489458946894789488949895089518952895389548955895689578958895989608961896289638964896589668967896889698970897189728973897489758976897789788979898089818982898389848985898689878988898989908991899289938994899589968997899889999000900190029003900490059006900790089009901090119012901390149015901690179018901990209021902290239024902590269027902890299030903190329033903490359036903790389039904090419042904390449045904690479048904990509051905290539054905590569057905890599060906190629063906490659066906790689069907090719072907390749075907690779078907990809081908290839084908590869087908890899090909190929093909490959096909790989099910091019102910391049105910691079108910991109111911291139114911591169117911891199120912191229123912491259126912791289129913091319132913391349135913691379138913991409141914291439144914591469147914891499150915191529153915491559156915791589159916091619162916391649165916691679168916991709171917291739174917591769177917891799180918191829183918491859186918791889189919091919192919391949195919691979198919992009201920292039204920592069207920892099210921192129213921492159216921792189219922092219222922392249225922692279228922992309231923292339234923592369237923892399240924192429243924492459246924792489249925092519252925392549255925692579258925992609261926292639264926592669267926892699270927192729273927492759276927792789279928092819282928392849285928692879288928992909291929292939294929592969297929892999300930193029303930493059306930793089309931093119312931393149315931693179318931993209321932293239324932593269327932893299330933193329333933493359336933793389339934093419342934393449345934693479348934993509351935293539354935593569357935893599360936193629363936493659366936793689369937093719372937393749375937693779378937993809381938293839384938593869387938893899390939193929393939493959396939793989399940094019402940394049405940694079408940994109411941294139414941594169417941894199420942194229423942494259426942794289429943094319432943394349435943694379438943994409441944294439444944594469447944894499450945194529453945494559456945794589459946094619462946394649465946694679468946994709471947294739474947594769477947894799480948194829483948494859486948794889489949094919492949394949495949694979498949995009501950295039504950595069507950895099510951195129513951495159516951795189519952095219522952395249525952695279528952995309531953295339534953595369537953895399540954195429543954495459546954795489549955095519552955395549555955695579558955995609561956295639564956595669567956895699570957195729573957495759576957795789579958095819582958395849585958695879588958995909591959295939594959595969597959895999600960196029603960496059606960796089609961096119612961396149615961696179618961996209621962296239624962596269627962896299630963196329633963496359636963796389639964096419642964396449645964696479648964996509651965296539654965596569657965896599660966196629663966496659666966796689669967096719672967396749675967696779678967996809681968296839684968596869687968896899690969196929693969496959696969796989699970097019702970397049705970697079708970997109711971297139714971597169717971897199720972197229723972497259726972797289729973097319732973397349735973697379738973997409741974297439744974597469747974897499750975197529753975497559756975797589759976097619762976397649765976697679768976997709771977297739774977597769777977897799780978197829783978497859786978797889789979097919792979397949795979697979798979998009801980298039804980598069807980898099810981198129813981498159816981798189819982098219822982398249825982698279828982998309831983298339834983598369837983898399840984198429843984498459846984798489849985098519852985398549855985698579858985998609861986298639864986598669867986898699870987198729873987498759876987798789879988098819882988398849885988698879888988998909891989298939894989598969897989898999900990199029903990499059906990799089909991099119912991399149915991699179918991999209921992299239924992599269927992899299930993199329933993499359936993799389939994099419942994399449945994699479948994999509951995299539954995599569957995899599960996199629963996499659966996799689969997099719972997399749975997699779978997999809981998299839984998599869987998899899990999199929993999499959996999799989999100001000110002100031000410005100061000710008100091001010011100121001310014100151001610017100181001910020100211002210023100241002510026100271002810029100301003110032100331003410035100361003710038100391004010041100421004310044100451004610047100481004910050100511005210053100541005510056100571005810059100601006110062100631006410065100661006710068100691007010071100721007310074100751007610077100781007910080100811008210083100841008510086100871008810089100901009110092100931009410095100961009710098100991010010101101021010310104101051010610107101081010910110101111011210113101141011510116101171011810119101201012110122101231012410125101261012710128101291013010131101321013310134101351013610137101381013910140101411014210143101441014510146101471014810149101501015110152101531015410155101561015710158101591016010161101621016310164101651016610167101681016910170101711017210173101741017510176101771017810179101801018110182101831018410185101861018710188101891019010191101921019310194101951019610197101981019910200102011020210203102041020510206102071020810209102101021110212102131021410215102161021710218102191022010221102221022310224102251022610227102281022910230102311023210233102341023510236102371023810239102401024110242102431024410245102461024710248102491025010251102521025310254102551025610257102581025910260102611026210263102641026510266102671026810269102701027110272102731027410275102761027710278102791028010281102821028310284102851028610287102881028910290102911029210293102941029510296102971029810299103001030110302103031030410305103061030710308103091031010311103121031310314103151031610317103181031910320103211032210323103241032510326103271032810329103301033110332103331033410335103361033710338103391034010341103421034310344103451034610347103481034910350103511035210353103541035510356103571035810359103601036110362103631036410365103661036710368103691037010371103721037310374103751037610377103781037910380103811038210383103841038510386103871038810389103901039110392103931039410395103961039710398103991040010401104021040310404104051040610407104081040910410104111041210413104141041510416104171041810419104201042110422104231042410425104261042710428104291043010431104321043310434104351043610437104381043910440104411044210443104441044510446104471044810449104501045110452104531045410455104561045710458104591046010461104621046310464104651046610467104681046910470104711047210473104741047510476104771047810479104801048110482104831048410485104861048710488104891049010491104921049310494104951049610497104981049910500105011050210503105041050510506105071050810509105101051110512105131051410515105161051710518105191052010521105221052310524105251052610527105281052910530105311053210533105341053510536105371053810539105401054110542105431054410545105461054710548105491055010551105521055310554105551055610557105581055910560105611056210563105641056510566105671056810569105701057110572105731057410575105761057710578105791058010581105821058310584105851058610587105881058910590105911059210593105941059510596105971059810599106001060110602106031060410605106061060710608106091061010611106121061310614106151061610617106181061910620106211062210623106241062510626106271062810629106301063110632106331063410635106361063710638
  1. /**
  2. * Marlin 3D Printer Firmware
  3. * Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
  4. *
  5. * Based on Sprinter and grbl.
  6. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  7. *
  8. * This program is free software: you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation, either version 3 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  20. *
  21. */
  22. /**
  23. * About Marlin
  24. *
  25. * This firmware is a mashup between Sprinter and grbl.
  26. * - https://github.com/kliment/Sprinter
  27. * - https://github.com/simen/grbl/tree
  28. */
  29. /**
  30. * -----------------
  31. * G-Codes in Marlin
  32. * -----------------
  33. *
  34. * Helpful G-code references:
  35. * - http://linuxcnc.org/handbook/gcode/g-code.html
  36. * - http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  37. *
  38. * Help to document Marlin's G-codes online:
  39. * - http://reprap.org/wiki/G-code
  40. * - https://github.com/MarlinFirmware/MarlinDocumentation
  41. *
  42. * -----------------
  43. *
  44. * "G" Codes
  45. *
  46. * G0 -> G1
  47. * G1 - Coordinated Movement X Y Z E
  48. * G2 - CW ARC
  49. * G3 - CCW ARC
  50. * G4 - Dwell S<seconds> or P<milliseconds>
  51. * G5 - Cubic B-spline with XYZE destination and IJPQ offsets
  52. * G10 - Retract filament according to settings of M207
  53. * G11 - Retract recover filament according to settings of M208
  54. * G12 - Clean tool
  55. * G20 - Set input units to inches
  56. * G21 - Set input units to millimeters
  57. * G28 - Home one or more axes
  58. * G29 - Detailed Z probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  59. * G30 - Single Z probe, probes bed at X Y location (defaults to current XY location)
  60. * G31 - Dock sled (Z_PROBE_SLED only)
  61. * G32 - Undock sled (Z_PROBE_SLED only)
  62. * G38 - Probe target - similar to G28 except it uses the Z_MIN endstop for all three axes
  63. * G90 - Use Absolute Coordinates
  64. * G91 - Use Relative Coordinates
  65. * G92 - Set current position to coordinates given
  66. *
  67. * "M" Codes
  68. *
  69. * M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
  70. * M1 - Same as M0
  71. * M17 - Enable/Power all stepper motors
  72. * M18 - Disable all stepper motors; same as M84
  73. * M20 - List SD card. (Requires SDSUPPORT)
  74. * M21 - Init SD card. (Requires SDSUPPORT)
  75. * M22 - Release SD card. (Requires SDSUPPORT)
  76. * M23 - Select SD file: "M23 /path/file.gco". (Requires SDSUPPORT)
  77. * M24 - Start/resume SD print. (Requires SDSUPPORT)
  78. * M25 - Pause SD print. (Requires SDSUPPORT)
  79. * M26 - Set SD position in bytes: "M26 S12345". (Requires SDSUPPORT)
  80. * M27 - Report SD print status. (Requires SDSUPPORT)
  81. * M28 - Start SD write: "M28 /path/file.gco". (Requires SDSUPPORT)
  82. * M29 - Stop SD write. (Requires SDSUPPORT)
  83. * M30 - Delete file from SD: "M30 /path/file.gco"
  84. * M31 - Report time since last M109 or SD card start to serial.
  85. * M32 - Select file and start SD print: "M32 [S<bytepos>] !/path/file.gco#". (Requires SDSUPPORT)
  86. * Use P to run other files as sub-programs: "M32 P !filename#"
  87. * The '#' is necessary when calling from within sd files, as it stops buffer prereading
  88. * M33 - Get the longname version of a path. (Requires LONG_FILENAME_HOST_SUPPORT)
  89. * M34 - Set SD Card sorting options. (Requires SDCARD_SORT_ALPHA)
  90. * M42 - Change pin status via gcode: M42 P<pin> S<value>. LED pin assumed if P is omitted.
  91. * M43 - Monitor pins & report changes - report active pins
  92. * M48 - Measure Z Probe repeatability: M48 P<points> X<pos> Y<pos> V<level> E<engage> L<legs>. (Requires Z_MIN_PROBE_REPEATABILITY_TEST)
  93. * M75 - Start the print job timer.
  94. * M76 - Pause the print job timer.
  95. * M77 - Stop the print job timer.
  96. * M78 - Show statistical information about the print jobs. (Requires PRINTCOUNTER)
  97. * M80 - Turn on Power Supply. (Requires POWER_SUPPLY)
  98. * M81 - Turn off Power Supply. (Requires POWER_SUPPLY)
  99. * M82 - Set E codes absolute (default).
  100. * M83 - Set E codes relative while in Absolute (G90) mode.
  101. * M84 - Disable steppers until next move, or use S<seconds> to specify an idle
  102. * duration after which steppers should turn off. S0 disables the timeout.
  103. * M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  104. * M92 - Set planner.axis_steps_per_mm for one or more axes.
  105. * M104 - Set extruder target temp.
  106. * M105 - Report current temperatures.
  107. * M106 - Fan on.
  108. * M107 - Fan off.
  109. * M108 - Break out of heating loops (M109, M190, M303). With no controller, breaks out of M0/M1. (Requires EMERGENCY_PARSER)
  110. * M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  111. * Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  112. * If AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  113. * M110 - Set the current line number. (Used by host printing)
  114. * M111 - Set debug flags: "M111 S<flagbits>". See flag bits defined in enum.h.
  115. * M112 - Emergency stop.
  116. * M113 - Get or set the timeout interval for Host Keepalive "busy" messages. (Requires HOST_KEEPALIVE_FEATURE)
  117. * M114 - Report current position.
  118. * M115 - Report capabilities. (Extended capabilities requires EXTENDED_CAPABILITIES_REPORT)
  119. * M117 - Display a message on the controller screen. (Requires an LCD)
  120. * M119 - Report endstops status.
  121. * M120 - Enable endstops detection.
  122. * M121 - Disable endstops detection.
  123. * M126 - Solenoid Air Valve Open. (Requires BARICUDA)
  124. * M127 - Solenoid Air Valve Closed. (Requires BARICUDA)
  125. * M128 - EtoP Open. (Requires BARICUDA)
  126. * M129 - EtoP Closed. (Requires BARICUDA)
  127. * M140 - Set bed target temp. S<temp>
  128. * M145 - Set heatup values for materials on the LCD. H<hotend> B<bed> F<fan speed> for S<material> (0=PLA, 1=ABS)
  129. * M149 - Set temperature units. (Requires TEMPERATURE_UNITS_SUPPORT)
  130. * M150 - Set Status LED Color as R<red> U<green> B<blue>. Values 0-255. (Requires BLINKM or RGB_LED)
  131. * M155 - Auto-report temperatures with interval of S<seconds>. (Requires AUTO_REPORT_TEMPERATURES)
  132. * M163 - Set a single proportion for a mixing extruder. (Requires MIXING_EXTRUDER)
  133. * M164 - Save the mix as a virtual extruder. (Requires MIXING_EXTRUDER and MIXING_VIRTUAL_TOOLS)
  134. * M165 - Set the proportions for a mixing extruder. Use parameters ABCDHI to set the mixing factors. (Requires MIXING_EXTRUDER)
  135. * M190 - Sxxx Wait for bed current temp to reach target temp. ** Waits only when heating! **
  136. * Rxxx Wait for bed current temp to reach target temp. ** Waits for heating or cooling. **
  137. * M200 - Set filament diameter, D<diameter>, setting E axis units to cubic. (Use S0 to revert to linear units.)
  138. * M201 - Set max acceleration in units/s^2 for print moves: "M201 X<accel> Y<accel> Z<accel> E<accel>"
  139. * M202 - Set max acceleration in units/s^2 for travel moves: "M202 X<accel> Y<accel> Z<accel> E<accel>" ** UNUSED IN MARLIN! **
  140. * M203 - Set maximum feedrate: "M203 X<fr> Y<fr> Z<fr> E<fr>" in units/sec.
  141. * M204 - Set default acceleration in units/sec^2: P<printing> R<extruder_only> T<travel>
  142. * M205 - Set advanced settings. Current units apply:
  143. S<print> T<travel> minimum speeds
  144. B<minimum segment time>
  145. X<max X jerk>, Y<max Y jerk>, Z<max Z jerk>, E<max E jerk>
  146. * M206 - Set additional homing offset.
  147. * M207 - Set Retract Length: S<length>, Feedrate: F<units/min>, and Z lift: Z<distance>. (Requires FWRETRACT)
  148. * M208 - Set Recover (unretract) Additional (!) Length: S<length> and Feedrate: F<units/min>. (Requires FWRETRACT)
  149. * M209 - Turn Automatic Retract Detection on/off: S<0|1> (For slicers that don't support G10/11). (Requires FWRETRACT)
  150. Every normal extrude-only move will be classified as retract depending on the direction.
  151. * M211 - Enable, Disable, and/or Report software endstops: S<0|1>
  152. * M218 - Set a tool offset: "M218 T<index> X<offset> Y<offset>". (Requires 2 or more extruders)
  153. * M220 - Set Feedrate Percentage: "M220 S<percent>" (i.e., "FR" on the LCD)
  154. * M221 - Set Flow Percentage: "M221 S<percent>"
  155. * M226 - Wait until a pin is in a given state: "M226 P<pin> S<state>"
  156. * M240 - Trigger a camera to take a photograph. (Requires CHDK or PHOTOGRAPH_PIN)
  157. * M250 - Set LCD contrast: "M250 C<contrast>" (0-63). (Requires LCD support)
  158. * M260 - i2c Send Data (Requires EXPERIMENTAL_I2CBUS)
  159. * M261 - i2c Request Data (Requires EXPERIMENTAL_I2CBUS)
  160. * M280 - Set servo position absolute: "M280 P<index> S<angle|µs>". (Requires servos)
  161. * M300 - Play beep sound S<frequency Hz> P<duration ms>
  162. * M301 - Set PID parameters P I and D. (Requires PIDTEMP)
  163. * M302 - Allow cold extrudes, or set the minimum extrude S<temperature>. (Requires PREVENT_COLD_EXTRUSION)
  164. * M303 - PID relay autotune S<temperature> sets the target temperature. Default 150C. (Requires PIDTEMP)
  165. * M304 - Set bed PID parameters P I and D. (Requires PIDTEMPBED)
  166. * M355 - Turn the Case Light on/off and set its brightness. (Requires CASE_LIGHT_PIN)
  167. * M380 - Activate solenoid on active extruder. (Requires EXT_SOLENOID)
  168. * M381 - Disable all solenoids. (Requires EXT_SOLENOID)
  169. * M400 - Finish all moves.
  170. * M401 - Lower Z probe. (Requires a probe)
  171. * M402 - Raise Z probe. (Requires a probe)
  172. * M404 - Display or set the Nominal Filament Width: "W<diameter>". (Requires FILAMENT_WIDTH_SENSOR)
  173. * M405 - Enable Filament Sensor flow control. "M405 D<delay_cm>". (Requires FILAMENT_WIDTH_SENSOR)
  174. * M406 - Disable Filament Sensor flow control. (Requires FILAMENT_WIDTH_SENSOR)
  175. * M407 - Display measured filament diameter in millimeters. (Requires FILAMENT_WIDTH_SENSOR)
  176. * M410 - Quickstop. Abort all planned moves.
  177. * M420 - Enable/Disable Leveling (with current values) S1=enable S0=disable (Requires MESH_BED_LEVELING or ABL)
  178. * M421 - Set a single Z coordinate in the Mesh Leveling grid. X<units> Y<units> Z<units> (Requires MESH_BED_LEVELING)
  179. * M428 - Set the home_offset based on the current_position. Nearest edge applies.
  180. * M500 - Store parameters in EEPROM. (Requires EEPROM_SETTINGS)
  181. * M501 - Restore parameters from EEPROM. (Requires EEPROM_SETTINGS)
  182. * M502 - Revert to the default "factory settings". ** Does not write them to EEPROM! **
  183. * M503 - Print the current settings (in memory): "M503 S<verbose>". S0 specifies compact output.
  184. * M540 - Enable/disable SD card abort on endstop hit: "M540 S<state>". (Requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  185. * M600 - Pause for filament change: "M600 X<pos> Y<pos> Z<raise> E<first_retract> L<later_retract>". (Requires FILAMENT_CHANGE_FEATURE)
  186. * M665 - Set delta configurations: "M665 L<diagonal rod> R<delta radius> S<segments/s>" (Requires DELTA)
  187. * M666 - Set delta endstop adjustment. (Requires DELTA)
  188. * M605 - Set dual x-carriage movement mode: "M605 S<mode> [X<x_offset>] [R<temp_offset>]". (Requires DUAL_X_CARRIAGE)
  189. * M851 - Set Z probe's Z offset in current units. (Negative = below the nozzle.)
  190. * M907 - Set digital trimpot motor current using axis codes. (Requires a board with digital trimpots)
  191. * M908 - Control digital trimpot directly. (Requires DAC_STEPPER_CURRENT or DIGIPOTSS_PIN)
  192. * M909 - Print digipot/DAC current value. (Requires DAC_STEPPER_CURRENT)
  193. * M910 - Commit digipot/DAC value to external EEPROM via I2C. (Requires DAC_STEPPER_CURRENT)
  194. * M350 - Set microstepping mode. (Requires digital microstepping pins.)
  195. * M351 - Toggle MS1 MS2 pins directly. (Requires digital microstepping pins.)
  196. *
  197. * ************ SCARA Specific - This can change to suit future G-code regulations
  198. * M360 - SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  199. * M361 - SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  200. * M362 - SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  201. * M363 - SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  202. * M364 - SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
  203. * ************* SCARA End ***************
  204. *
  205. * ************ Custom codes - This can change to suit future G-code regulations
  206. * M100 - Watch Free Memory (For Debugging). (Requires M100_FREE_MEMORY_WATCHER)
  207. * M928 - Start SD logging: "M928 filename.gco". Stop with M29. (Requires SDSUPPORT)
  208. * M999 - Restart after being stopped by error
  209. *
  210. * "T" Codes
  211. *
  212. * T0-T3 - Select an extruder (tool) by index: "T<n> F<units/min>"
  213. *
  214. */
  215. #include "Marlin.h"
  216. #include "ultralcd.h"
  217. #include "planner.h"
  218. #include "stepper.h"
  219. #include "endstops.h"
  220. #include "temperature.h"
  221. #include "cardreader.h"
  222. #include "configuration_store.h"
  223. #include "language.h"
  224. #include "pins_arduino.h"
  225. #include "math.h"
  226. #include "nozzle.h"
  227. #include "duration_t.h"
  228. #include "types.h"
  229. #if HAS_ABL
  230. #include "vector_3.h"
  231. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  232. #include "qr_solve.h"
  233. #endif
  234. #elif ENABLED(MESH_BED_LEVELING)
  235. #include "mesh_bed_leveling.h"
  236. #endif
  237. #if ENABLED(BEZIER_CURVE_SUPPORT)
  238. #include "planner_bezier.h"
  239. #endif
  240. #if HAS_BUZZER && DISABLED(LCD_USE_I2C_BUZZER)
  241. #include "buzzer.h"
  242. #endif
  243. #if ENABLED(USE_WATCHDOG)
  244. #include "watchdog.h"
  245. #endif
  246. #if ENABLED(BLINKM)
  247. #include "blinkm.h"
  248. #include "Wire.h"
  249. #endif
  250. #if HAS_SERVOS
  251. #include "servo.h"
  252. #endif
  253. #if HAS_DIGIPOTSS
  254. #include <SPI.h>
  255. #endif
  256. #if ENABLED(DAC_STEPPER_CURRENT)
  257. #include "stepper_dac.h"
  258. #endif
  259. #if ENABLED(EXPERIMENTAL_I2CBUS)
  260. #include "twibus.h"
  261. #endif
  262. #if ENABLED(ENDSTOP_INTERRUPTS_FEATURE)
  263. #include "endstop_interrupts.h"
  264. #endif
  265. #if ENABLED(M100_FREE_MEMORY_WATCHER)
  266. void gcode_M100();
  267. #endif
  268. #if ENABLED(SDSUPPORT)
  269. CardReader card;
  270. #endif
  271. #if ENABLED(EXPERIMENTAL_I2CBUS)
  272. TWIBus i2c;
  273. #endif
  274. #if ENABLED(G38_PROBE_TARGET)
  275. bool G38_move = false,
  276. G38_endstop_hit = false;
  277. #endif
  278. bool Running = true;
  279. uint8_t marlin_debug_flags = DEBUG_NONE;
  280. /**
  281. * Cartesian Current Position
  282. * Used to track the logical position as moves are queued.
  283. * Used by 'line_to_current_position' to do a move after changing it.
  284. * Used by 'SYNC_PLAN_POSITION_KINEMATIC' to update 'planner.position'.
  285. */
  286. float current_position[XYZE] = { 0.0 };
  287. /**
  288. * Cartesian Destination
  289. * A temporary position, usually applied to 'current_position'.
  290. * Set with 'gcode_get_destination' or 'set_destination_to_current'.
  291. * 'line_to_destination' sets 'current_position' to 'destination'.
  292. */
  293. static float destination[XYZE] = { 0.0 };
  294. /**
  295. * axis_homed
  296. * Flags that each linear axis was homed.
  297. * XYZ on cartesian, ABC on delta, ABZ on SCARA.
  298. *
  299. * axis_known_position
  300. * Flags that the position is known in each linear axis. Set when homed.
  301. * Cleared whenever a stepper powers off, potentially losing its position.
  302. */
  303. bool axis_homed[XYZ] = { false }, axis_known_position[XYZ] = { false };
  304. /**
  305. * GCode line number handling. Hosts may opt to include line numbers when
  306. * sending commands to Marlin, and lines will be checked for sequentiality.
  307. * M110 N<int> sets the current line number.
  308. */
  309. static long gcode_N, gcode_LastN, Stopped_gcode_LastN = 0;
  310. /**
  311. * GCode Command Queue
  312. * A simple ring buffer of BUFSIZE command strings.
  313. *
  314. * Commands are copied into this buffer by the command injectors
  315. * (immediate, serial, sd card) and they are processed sequentially by
  316. * the main loop. The process_next_command function parses the next
  317. * command and hands off execution to individual handler functions.
  318. */
  319. static char command_queue[BUFSIZE][MAX_CMD_SIZE];
  320. static uint8_t cmd_queue_index_r = 0, // Ring buffer read position
  321. cmd_queue_index_w = 0, // Ring buffer write position
  322. commands_in_queue = 0; // Count of commands in the queue
  323. /**
  324. * Current GCode Command
  325. * When a GCode handler is running, these will be set
  326. */
  327. static char *current_command, // The command currently being executed
  328. *current_command_args, // The address where arguments begin
  329. *seen_pointer; // Set by code_seen(), used by the code_value functions
  330. /**
  331. * Next Injected Command pointer. NULL if no commands are being injected.
  332. * Used by Marlin internally to ensure that commands initiated from within
  333. * are enqueued ahead of any pending serial or sd card commands.
  334. */
  335. static const char *injected_commands_P = NULL;
  336. #if ENABLED(INCH_MODE_SUPPORT)
  337. float linear_unit_factor = 1.0, volumetric_unit_factor = 1.0;
  338. #endif
  339. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  340. TempUnit input_temp_units = TEMPUNIT_C;
  341. #endif
  342. /**
  343. * Feed rates are often configured with mm/m
  344. * but the planner and stepper like mm/s units.
  345. */
  346. float constexpr homing_feedrate_mm_s[] = {
  347. #if ENABLED(DELTA)
  348. MMM_TO_MMS(HOMING_FEEDRATE_Z), MMM_TO_MMS(HOMING_FEEDRATE_Z),
  349. #else
  350. MMM_TO_MMS(HOMING_FEEDRATE_XY), MMM_TO_MMS(HOMING_FEEDRATE_XY),
  351. #endif
  352. MMM_TO_MMS(HOMING_FEEDRATE_Z), 0
  353. };
  354. static float feedrate_mm_s = MMM_TO_MMS(1500.0), saved_feedrate_mm_s;
  355. int feedrate_percentage = 100, saved_feedrate_percentage,
  356. flow_percentage[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(100);
  357. bool axis_relative_modes[] = AXIS_RELATIVE_MODES,
  358. volumetric_enabled =
  359. #if ENABLED(VOLUMETRIC_DEFAULT_ON)
  360. true
  361. #else
  362. false
  363. #endif
  364. ;
  365. float filament_size[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(DEFAULT_NOMINAL_FILAMENT_DIA),
  366. volumetric_multiplier[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(1.0);
  367. // The distance that XYZ has been offset by G92. Reset by G28.
  368. float position_shift[XYZ] = { 0 };
  369. // This offset is added to the configured home position.
  370. // Set by M206, M428, or menu item. Saved to EEPROM.
  371. float home_offset[XYZ] = { 0 };
  372. // Software Endstops are based on the configured limits.
  373. #if ENABLED(min_software_endstops) || ENABLED(max_software_endstops)
  374. bool soft_endstops_enabled = true;
  375. #endif
  376. float soft_endstop_min[XYZ] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS },
  377. soft_endstop_max[XYZ] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  378. #if FAN_COUNT > 0
  379. int fanSpeeds[FAN_COUNT] = { 0 };
  380. #endif
  381. // The active extruder (tool). Set with T<extruder> command.
  382. uint8_t active_extruder = 0;
  383. // Relative Mode. Enable with G91, disable with G90.
  384. static bool relative_mode = false;
  385. // For M109 and M190, this flag may be cleared (by M108) to exit the wait loop
  386. volatile bool wait_for_heatup = true;
  387. // For M0/M1, this flag may be cleared (by M108) to exit the wait-for-user loop
  388. #if ENABLED(EMERGENCY_PARSER) || ENABLED(ULTIPANEL)
  389. volatile bool wait_for_user = false;
  390. #endif
  391. const char errormagic[] PROGMEM = "Error:";
  392. const char echomagic[] PROGMEM = "echo:";
  393. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  394. // Number of characters read in the current line of serial input
  395. static int serial_count = 0;
  396. // Inactivity shutdown
  397. millis_t previous_cmd_ms = 0;
  398. static millis_t max_inactive_time = 0;
  399. static millis_t stepper_inactive_time = (DEFAULT_STEPPER_DEACTIVE_TIME) * 1000UL;
  400. // Print Job Timer
  401. #if ENABLED(PRINTCOUNTER)
  402. PrintCounter print_job_timer = PrintCounter();
  403. #else
  404. Stopwatch print_job_timer = Stopwatch();
  405. #endif
  406. // Buzzer - I2C on the LCD or a BEEPER_PIN
  407. #if ENABLED(LCD_USE_I2C_BUZZER)
  408. #define BUZZ(d,f) lcd_buzz(d, f)
  409. #elif PIN_EXISTS(BEEPER)
  410. Buzzer buzzer;
  411. #define BUZZ(d,f) buzzer.tone(d, f)
  412. #else
  413. #define BUZZ(d,f) NOOP
  414. #endif
  415. static uint8_t target_extruder;
  416. #if HAS_BED_PROBE
  417. float zprobe_zoffset = Z_PROBE_OFFSET_FROM_EXTRUDER;
  418. #endif
  419. #define PLANNER_XY_FEEDRATE() (min(planner.max_feedrate_mm_s[X_AXIS], planner.max_feedrate_mm_s[Y_AXIS]))
  420. #if HAS_ABL
  421. float xy_probe_feedrate_mm_s = MMM_TO_MMS(XY_PROBE_SPEED);
  422. #define XY_PROBE_FEEDRATE_MM_S xy_probe_feedrate_mm_s
  423. #elif defined(XY_PROBE_SPEED)
  424. #define XY_PROBE_FEEDRATE_MM_S MMM_TO_MMS(XY_PROBE_SPEED)
  425. #else
  426. #define XY_PROBE_FEEDRATE_MM_S PLANNER_XY_FEEDRATE()
  427. #endif
  428. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  429. #if ENABLED(DELTA)
  430. #define ADJUST_DELTA(V) \
  431. if (planner.abl_enabled) { \
  432. const float zadj = bilinear_z_offset(V); \
  433. delta[A_AXIS] += zadj; \
  434. delta[B_AXIS] += zadj; \
  435. delta[C_AXIS] += zadj; \
  436. }
  437. #else
  438. #define ADJUST_DELTA(V) if (planner.abl_enabled) { delta[Z_AXIS] += bilinear_z_offset(V); }
  439. #endif
  440. #elif IS_KINEMATIC
  441. #define ADJUST_DELTA(V) NOOP
  442. #endif
  443. #if ENABLED(Z_DUAL_ENDSTOPS)
  444. float z_endstop_adj = 0;
  445. #endif
  446. // Extruder offsets
  447. #if HOTENDS > 1
  448. float hotend_offset[XYZ][HOTENDS];
  449. #endif
  450. #if HAS_Z_SERVO_ENDSTOP
  451. const int z_servo_angle[2] = Z_SERVO_ANGLES;
  452. #endif
  453. #if ENABLED(BARICUDA)
  454. int baricuda_valve_pressure = 0;
  455. int baricuda_e_to_p_pressure = 0;
  456. #endif
  457. #if ENABLED(FWRETRACT)
  458. bool autoretract_enabled = false;
  459. bool retracted[EXTRUDERS] = { false };
  460. bool retracted_swap[EXTRUDERS] = { false };
  461. float retract_length = RETRACT_LENGTH;
  462. float retract_length_swap = RETRACT_LENGTH_SWAP;
  463. float retract_feedrate_mm_s = RETRACT_FEEDRATE;
  464. float retract_zlift = RETRACT_ZLIFT;
  465. float retract_recover_length = RETRACT_RECOVER_LENGTH;
  466. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  467. float retract_recover_feedrate_mm_s = RETRACT_RECOVER_FEEDRATE;
  468. #endif // FWRETRACT
  469. #if ENABLED(ULTIPANEL) && HAS_POWER_SWITCH
  470. bool powersupply =
  471. #if ENABLED(PS_DEFAULT_OFF)
  472. false
  473. #else
  474. true
  475. #endif
  476. ;
  477. #endif
  478. #if HAS_CASE_LIGHT
  479. bool case_light_on =
  480. #if ENABLED(CASE_LIGHT_DEFAULT_ON)
  481. true
  482. #else
  483. false
  484. #endif
  485. ;
  486. #endif
  487. #if ENABLED(DELTA)
  488. #define SIN_60 0.8660254037844386
  489. #define COS_60 0.5
  490. float delta[ABC],
  491. endstop_adj[ABC] = { 0 };
  492. // these are the default values, can be overriden with M665
  493. float delta_radius = DELTA_RADIUS,
  494. delta_tower1_x = -SIN_60 * (delta_radius + DELTA_RADIUS_TRIM_TOWER_1), // front left tower
  495. delta_tower1_y = -COS_60 * (delta_radius + DELTA_RADIUS_TRIM_TOWER_1),
  496. delta_tower2_x = SIN_60 * (delta_radius + DELTA_RADIUS_TRIM_TOWER_2), // front right tower
  497. delta_tower2_y = -COS_60 * (delta_radius + DELTA_RADIUS_TRIM_TOWER_2),
  498. delta_tower3_x = 0, // back middle tower
  499. delta_tower3_y = (delta_radius + DELTA_RADIUS_TRIM_TOWER_3),
  500. delta_diagonal_rod = DELTA_DIAGONAL_ROD,
  501. delta_diagonal_rod_trim_tower_1 = DELTA_DIAGONAL_ROD_TRIM_TOWER_1,
  502. delta_diagonal_rod_trim_tower_2 = DELTA_DIAGONAL_ROD_TRIM_TOWER_2,
  503. delta_diagonal_rod_trim_tower_3 = DELTA_DIAGONAL_ROD_TRIM_TOWER_3,
  504. delta_diagonal_rod_2_tower_1 = sq(delta_diagonal_rod + delta_diagonal_rod_trim_tower_1),
  505. delta_diagonal_rod_2_tower_2 = sq(delta_diagonal_rod + delta_diagonal_rod_trim_tower_2),
  506. delta_diagonal_rod_2_tower_3 = sq(delta_diagonal_rod + delta_diagonal_rod_trim_tower_3),
  507. delta_segments_per_second = DELTA_SEGMENTS_PER_SECOND,
  508. delta_clip_start_height = Z_MAX_POS;
  509. float delta_safe_distance_from_top();
  510. #endif
  511. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  512. #define UNPROBED 9999.0f
  513. int bilinear_grid_spacing[2], bilinear_start[2];
  514. float bed_level_grid[ABL_GRID_MAX_POINTS_X][ABL_GRID_MAX_POINTS_Y];
  515. #endif
  516. #if IS_SCARA
  517. // Float constants for SCARA calculations
  518. const float L1 = SCARA_LINKAGE_1, L2 = SCARA_LINKAGE_2,
  519. L1_2 = sq(float(L1)), L1_2_2 = 2.0 * L1_2,
  520. L2_2 = sq(float(L2));
  521. float delta_segments_per_second = SCARA_SEGMENTS_PER_SECOND,
  522. delta[ABC];
  523. #endif
  524. float cartes[XYZ] = { 0 };
  525. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  526. bool filament_sensor = false; //M405 turns on filament_sensor control, M406 turns it off
  527. float filament_width_nominal = DEFAULT_NOMINAL_FILAMENT_DIA, // Nominal filament width. Change with M404
  528. filament_width_meas = DEFAULT_MEASURED_FILAMENT_DIA; // Measured filament diameter
  529. int8_t measurement_delay[MAX_MEASUREMENT_DELAY + 1]; // Ring buffer to delayed measurement. Store extruder factor after subtracting 100
  530. int filwidth_delay_index[2] = { 0, -1 }; // Indexes into ring buffer
  531. int meas_delay_cm = MEASUREMENT_DELAY_CM; //distance delay setting
  532. #endif
  533. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  534. static bool filament_ran_out = false;
  535. #endif
  536. #if ENABLED(FILAMENT_CHANGE_FEATURE)
  537. FilamentChangeMenuResponse filament_change_menu_response;
  538. #endif
  539. #if ENABLED(MIXING_EXTRUDER)
  540. float mixing_factor[MIXING_STEPPERS]; // Reciprocal of mix proportion. 0.0 = off, otherwise >= 1.0.
  541. #if MIXING_VIRTUAL_TOOLS > 1
  542. float mixing_virtual_tool_mix[MIXING_VIRTUAL_TOOLS][MIXING_STEPPERS];
  543. #endif
  544. #endif
  545. static bool send_ok[BUFSIZE];
  546. #if HAS_SERVOS
  547. Servo servo[NUM_SERVOS];
  548. #define MOVE_SERVO(I, P) servo[I].move(P)
  549. #if HAS_Z_SERVO_ENDSTOP
  550. #define DEPLOY_Z_SERVO() MOVE_SERVO(Z_ENDSTOP_SERVO_NR, z_servo_angle[0])
  551. #define STOW_Z_SERVO() MOVE_SERVO(Z_ENDSTOP_SERVO_NR, z_servo_angle[1])
  552. #endif
  553. #endif
  554. #ifdef CHDK
  555. millis_t chdkHigh = 0;
  556. bool chdkActive = false;
  557. #endif
  558. #if ENABLED(PID_EXTRUSION_SCALING)
  559. int lpq_len = 20;
  560. #endif
  561. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  562. static MarlinBusyState busy_state = NOT_BUSY;
  563. static millis_t next_busy_signal_ms = 0;
  564. uint8_t host_keepalive_interval = DEFAULT_KEEPALIVE_INTERVAL;
  565. #define KEEPALIVE_STATE(n) do{ busy_state = n; }while(0)
  566. #else
  567. #define host_keepalive() ;
  568. #define KEEPALIVE_STATE(n) ;
  569. #endif // HOST_KEEPALIVE_FEATURE
  570. #define DEFINE_PGM_READ_ANY(type, reader) \
  571. static inline type pgm_read_any(const type *p) \
  572. { return pgm_read_##reader##_near(p); }
  573. DEFINE_PGM_READ_ANY(float, float)
  574. DEFINE_PGM_READ_ANY(signed char, byte)
  575. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  576. static const PROGMEM type array##_P[XYZ] = \
  577. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  578. static inline type array(int axis) \
  579. { return pgm_read_any(&array##_P[axis]); }
  580. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS)
  581. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS)
  582. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS)
  583. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH)
  584. XYZ_CONSTS_FROM_CONFIG(float, home_bump_mm, HOME_BUMP_MM)
  585. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR)
  586. /**
  587. * ***************************************************************************
  588. * ******************************** FUNCTIONS ********************************
  589. * ***************************************************************************
  590. */
  591. void stop();
  592. void get_available_commands();
  593. void process_next_command();
  594. void prepare_move_to_destination();
  595. void get_cartesian_from_steppers();
  596. void set_current_from_steppers_for_axis(const AxisEnum axis);
  597. #if ENABLED(ARC_SUPPORT)
  598. void plan_arc(float target[NUM_AXIS], float* offset, uint8_t clockwise);
  599. #endif
  600. #if ENABLED(BEZIER_CURVE_SUPPORT)
  601. void plan_cubic_move(const float offset[4]);
  602. #endif
  603. void serial_echopair_P(const char* s_P, const char *v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  604. void serial_echopair_P(const char* s_P, char v) { serialprintPGM(s_P); SERIAL_CHAR(v); }
  605. void serial_echopair_P(const char* s_P, int v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  606. void serial_echopair_P(const char* s_P, long v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  607. void serial_echopair_P(const char* s_P, float v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  608. void serial_echopair_P(const char* s_P, double v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  609. void serial_echopair_P(const char* s_P, unsigned long v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  610. void tool_change(const uint8_t tmp_extruder, const float fr_mm_s=0.0, bool no_move=false);
  611. static void report_current_position();
  612. #if ENABLED(DEBUG_LEVELING_FEATURE)
  613. void print_xyz(const char* prefix, const char* suffix, const float x, const float y, const float z) {
  614. serialprintPGM(prefix);
  615. SERIAL_ECHOPAIR("(", x);
  616. SERIAL_ECHOPAIR(", ", y);
  617. SERIAL_ECHOPAIR(", ", z);
  618. SERIAL_ECHOPGM(")");
  619. if (suffix) serialprintPGM(suffix);
  620. else SERIAL_EOL;
  621. }
  622. void print_xyz(const char* prefix, const char* suffix, const float xyz[]) {
  623. print_xyz(prefix, suffix, xyz[X_AXIS], xyz[Y_AXIS], xyz[Z_AXIS]);
  624. }
  625. #if HAS_ABL
  626. void print_xyz(const char* prefix, const char* suffix, const vector_3 &xyz) {
  627. print_xyz(prefix, suffix, xyz.x, xyz.y, xyz.z);
  628. }
  629. #endif
  630. #define DEBUG_POS(SUFFIX,VAR) do { \
  631. print_xyz(PSTR(" " STRINGIFY(VAR) "="), PSTR(" : " SUFFIX "\n"), VAR); } while(0)
  632. #endif
  633. /**
  634. * sync_plan_position
  635. *
  636. * Set the planner/stepper positions directly from current_position with
  637. * no kinematic translation. Used for homing axes and cartesian/core syncing.
  638. */
  639. inline void sync_plan_position() {
  640. #if ENABLED(DEBUG_LEVELING_FEATURE)
  641. if (DEBUGGING(LEVELING)) DEBUG_POS("sync_plan_position", current_position);
  642. #endif
  643. planner.set_position_mm(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  644. }
  645. inline void sync_plan_position_e() { planner.set_e_position_mm(current_position[E_AXIS]); }
  646. #if IS_KINEMATIC
  647. inline void sync_plan_position_kinematic() {
  648. #if ENABLED(DEBUG_LEVELING_FEATURE)
  649. if (DEBUGGING(LEVELING)) DEBUG_POS("sync_plan_position_kinematic", current_position);
  650. #endif
  651. planner.set_position_mm_kinematic(current_position);
  652. }
  653. #define SYNC_PLAN_POSITION_KINEMATIC() sync_plan_position_kinematic()
  654. #else
  655. #define SYNC_PLAN_POSITION_KINEMATIC() sync_plan_position()
  656. #endif
  657. #if ENABLED(SDSUPPORT)
  658. #include "SdFatUtil.h"
  659. int freeMemory() { return SdFatUtil::FreeRam(); }
  660. #else
  661. extern "C" {
  662. extern char __bss_end;
  663. extern char __heap_start;
  664. extern void* __brkval;
  665. int freeMemory() {
  666. int free_memory;
  667. if ((int)__brkval == 0)
  668. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  669. else
  670. free_memory = ((int)&free_memory) - ((int)__brkval);
  671. return free_memory;
  672. }
  673. }
  674. #endif //!SDSUPPORT
  675. #if ENABLED(DIGIPOT_I2C)
  676. extern void digipot_i2c_set_current(int channel, float current);
  677. extern void digipot_i2c_init();
  678. #endif
  679. /**
  680. * Inject the next "immediate" command, when possible.
  681. * Return true if any immediate commands remain to inject.
  682. */
  683. static bool drain_injected_commands_P() {
  684. if (injected_commands_P != NULL) {
  685. size_t i = 0;
  686. char c, cmd[30];
  687. strncpy_P(cmd, injected_commands_P, sizeof(cmd) - 1);
  688. cmd[sizeof(cmd) - 1] = '\0';
  689. while ((c = cmd[i]) && c != '\n') i++; // find the end of this gcode command
  690. cmd[i] = '\0';
  691. if (enqueue_and_echo_command(cmd)) { // success?
  692. if (c) // newline char?
  693. injected_commands_P += i + 1; // advance to the next command
  694. else
  695. injected_commands_P = NULL; // nul char? no more commands
  696. }
  697. }
  698. return (injected_commands_P != NULL); // return whether any more remain
  699. }
  700. /**
  701. * Record one or many commands to run from program memory.
  702. * Aborts the current queue, if any.
  703. * Note: drain_injected_commands_P() must be called repeatedly to drain the commands afterwards
  704. */
  705. void enqueue_and_echo_commands_P(const char* pgcode) {
  706. injected_commands_P = pgcode;
  707. drain_injected_commands_P(); // first command executed asap (when possible)
  708. }
  709. void clear_command_queue() {
  710. cmd_queue_index_r = cmd_queue_index_w;
  711. commands_in_queue = 0;
  712. }
  713. /**
  714. * Once a new command is in the ring buffer, call this to commit it
  715. */
  716. inline void _commit_command(bool say_ok) {
  717. send_ok[cmd_queue_index_w] = say_ok;
  718. cmd_queue_index_w = (cmd_queue_index_w + 1) % BUFSIZE;
  719. commands_in_queue++;
  720. }
  721. /**
  722. * Copy a command directly into the main command buffer, from RAM.
  723. * Returns true if successfully adds the command
  724. */
  725. inline bool _enqueuecommand(const char* cmd, bool say_ok=false) {
  726. if (*cmd == ';' || commands_in_queue >= BUFSIZE) return false;
  727. strcpy(command_queue[cmd_queue_index_w], cmd);
  728. _commit_command(say_ok);
  729. return true;
  730. }
  731. void enqueue_and_echo_command_now(const char* cmd) {
  732. while (!enqueue_and_echo_command(cmd)) idle();
  733. }
  734. /**
  735. * Enqueue with Serial Echo
  736. */
  737. bool enqueue_and_echo_command(const char* cmd, bool say_ok/*=false*/) {
  738. if (_enqueuecommand(cmd, say_ok)) {
  739. SERIAL_ECHO_START;
  740. SERIAL_ECHOPAIR(MSG_Enqueueing, cmd);
  741. SERIAL_CHAR('"');
  742. SERIAL_EOL;
  743. return true;
  744. }
  745. return false;
  746. }
  747. void setup_killpin() {
  748. #if HAS_KILL
  749. SET_INPUT(KILL_PIN);
  750. WRITE(KILL_PIN, HIGH);
  751. #endif
  752. }
  753. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  754. void setup_filrunoutpin() {
  755. SET_INPUT(FIL_RUNOUT_PIN);
  756. #if ENABLED(ENDSTOPPULLUP_FIL_RUNOUT)
  757. WRITE(FIL_RUNOUT_PIN, HIGH);
  758. #endif
  759. }
  760. #endif
  761. // Set home pin
  762. void setup_homepin(void) {
  763. #if HAS_HOME
  764. SET_INPUT(HOME_PIN);
  765. WRITE(HOME_PIN, HIGH);
  766. #endif
  767. }
  768. void setup_powerhold() {
  769. #if HAS_SUICIDE
  770. OUT_WRITE(SUICIDE_PIN, HIGH);
  771. #endif
  772. #if HAS_POWER_SWITCH
  773. #if ENABLED(PS_DEFAULT_OFF)
  774. OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  775. #else
  776. OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE);
  777. #endif
  778. #endif
  779. }
  780. void suicide() {
  781. #if HAS_SUICIDE
  782. OUT_WRITE(SUICIDE_PIN, LOW);
  783. #endif
  784. }
  785. void servo_init() {
  786. #if NUM_SERVOS >= 1 && HAS_SERVO_0
  787. servo[0].attach(SERVO0_PIN);
  788. servo[0].detach(); // Just set up the pin. We don't have a position yet. Don't move to a random position.
  789. #endif
  790. #if NUM_SERVOS >= 2 && HAS_SERVO_1
  791. servo[1].attach(SERVO1_PIN);
  792. servo[1].detach();
  793. #endif
  794. #if NUM_SERVOS >= 3 && HAS_SERVO_2
  795. servo[2].attach(SERVO2_PIN);
  796. servo[2].detach();
  797. #endif
  798. #if NUM_SERVOS >= 4 && HAS_SERVO_3
  799. servo[3].attach(SERVO3_PIN);
  800. servo[3].detach();
  801. #endif
  802. #if HAS_Z_SERVO_ENDSTOP
  803. /**
  804. * Set position of Z Servo Endstop
  805. *
  806. * The servo might be deployed and positioned too low to stow
  807. * when starting up the machine or rebooting the board.
  808. * There's no way to know where the nozzle is positioned until
  809. * homing has been done - no homing with z-probe without init!
  810. *
  811. */
  812. STOW_Z_SERVO();
  813. #endif
  814. }
  815. /**
  816. * Stepper Reset (RigidBoard, et.al.)
  817. */
  818. #if HAS_STEPPER_RESET
  819. void disableStepperDrivers() {
  820. OUT_WRITE(STEPPER_RESET_PIN, LOW); // drive it down to hold in reset motor driver chips
  821. }
  822. void enableStepperDrivers() { SET_INPUT(STEPPER_RESET_PIN); } // set to input, which allows it to be pulled high by pullups
  823. #endif
  824. #if ENABLED(EXPERIMENTAL_I2CBUS) && I2C_SLAVE_ADDRESS > 0
  825. void i2c_on_receive(int bytes) { // just echo all bytes received to serial
  826. i2c.receive(bytes);
  827. }
  828. void i2c_on_request() { // just send dummy data for now
  829. i2c.reply("Hello World!\n");
  830. }
  831. #endif
  832. void gcode_line_error(const char* err, bool doFlush = true) {
  833. SERIAL_ERROR_START;
  834. serialprintPGM(err);
  835. SERIAL_ERRORLN(gcode_LastN);
  836. //Serial.println(gcode_N);
  837. if (doFlush) FlushSerialRequestResend();
  838. serial_count = 0;
  839. }
  840. inline void get_serial_commands() {
  841. static char serial_line_buffer[MAX_CMD_SIZE];
  842. static bool serial_comment_mode = false;
  843. // If the command buffer is empty for too long,
  844. // send "wait" to indicate Marlin is still waiting.
  845. #if defined(NO_TIMEOUTS) && NO_TIMEOUTS > 0
  846. static millis_t last_command_time = 0;
  847. millis_t ms = millis();
  848. if (commands_in_queue == 0 && !MYSERIAL.available() && ELAPSED(ms, last_command_time + NO_TIMEOUTS)) {
  849. SERIAL_ECHOLNPGM(MSG_WAIT);
  850. last_command_time = ms;
  851. }
  852. #endif
  853. /**
  854. * Loop while serial characters are incoming and the queue is not full
  855. */
  856. while (commands_in_queue < BUFSIZE && MYSERIAL.available() > 0) {
  857. char serial_char = MYSERIAL.read();
  858. /**
  859. * If the character ends the line
  860. */
  861. if (serial_char == '\n' || serial_char == '\r') {
  862. serial_comment_mode = false; // end of line == end of comment
  863. if (!serial_count) continue; // skip empty lines
  864. serial_line_buffer[serial_count] = 0; // terminate string
  865. serial_count = 0; //reset buffer
  866. char* command = serial_line_buffer;
  867. while (*command == ' ') command++; // skip any leading spaces
  868. char* npos = (*command == 'N') ? command : NULL; // Require the N parameter to start the line
  869. char* apos = strchr(command, '*');
  870. if (npos) {
  871. bool M110 = strstr_P(command, PSTR("M110")) != NULL;
  872. if (M110) {
  873. char* n2pos = strchr(command + 4, 'N');
  874. if (n2pos) npos = n2pos;
  875. }
  876. gcode_N = strtol(npos + 1, NULL, 10);
  877. if (gcode_N != gcode_LastN + 1 && !M110) {
  878. gcode_line_error(PSTR(MSG_ERR_LINE_NO));
  879. return;
  880. }
  881. if (apos) {
  882. byte checksum = 0, count = 0;
  883. while (command[count] != '*') checksum ^= command[count++];
  884. if (strtol(apos + 1, NULL, 10) != checksum) {
  885. gcode_line_error(PSTR(MSG_ERR_CHECKSUM_MISMATCH));
  886. return;
  887. }
  888. // if no errors, continue parsing
  889. }
  890. else {
  891. gcode_line_error(PSTR(MSG_ERR_NO_CHECKSUM));
  892. return;
  893. }
  894. gcode_LastN = gcode_N;
  895. // if no errors, continue parsing
  896. }
  897. else if (apos) { // No '*' without 'N'
  898. gcode_line_error(PSTR(MSG_ERR_NO_LINENUMBER_WITH_CHECKSUM), false);
  899. return;
  900. }
  901. // Movement commands alert when stopped
  902. if (IsStopped()) {
  903. char* gpos = strchr(command, 'G');
  904. if (gpos) {
  905. int codenum = strtol(gpos + 1, NULL, 10);
  906. switch (codenum) {
  907. case 0:
  908. case 1:
  909. case 2:
  910. case 3:
  911. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  912. LCD_MESSAGEPGM(MSG_STOPPED);
  913. break;
  914. }
  915. }
  916. }
  917. #if DISABLED(EMERGENCY_PARSER)
  918. // If command was e-stop process now
  919. if (strcmp(command, "M108") == 0) {
  920. wait_for_heatup = false;
  921. #if ENABLED(ULTIPANEL)
  922. wait_for_user = false;
  923. #endif
  924. }
  925. if (strcmp(command, "M112") == 0) kill(PSTR(MSG_KILLED));
  926. if (strcmp(command, "M410") == 0) { quickstop_stepper(); }
  927. #endif
  928. #if defined(NO_TIMEOUTS) && NO_TIMEOUTS > 0
  929. last_command_time = ms;
  930. #endif
  931. // Add the command to the queue
  932. _enqueuecommand(serial_line_buffer, true);
  933. }
  934. else if (serial_count >= MAX_CMD_SIZE - 1) {
  935. // Keep fetching, but ignore normal characters beyond the max length
  936. // The command will be injected when EOL is reached
  937. }
  938. else if (serial_char == '\\') { // Handle escapes
  939. if (MYSERIAL.available() > 0) {
  940. // if we have one more character, copy it over
  941. serial_char = MYSERIAL.read();
  942. if (!serial_comment_mode) serial_line_buffer[serial_count++] = serial_char;
  943. }
  944. // otherwise do nothing
  945. }
  946. else { // it's not a newline, carriage return or escape char
  947. if (serial_char == ';') serial_comment_mode = true;
  948. if (!serial_comment_mode) serial_line_buffer[serial_count++] = serial_char;
  949. }
  950. } // queue has space, serial has data
  951. }
  952. #if ENABLED(SDSUPPORT)
  953. inline void get_sdcard_commands() {
  954. static bool stop_buffering = false,
  955. sd_comment_mode = false;
  956. if (!card.sdprinting) return;
  957. /**
  958. * '#' stops reading from SD to the buffer prematurely, so procedural
  959. * macro calls are possible. If it occurs, stop_buffering is triggered
  960. * and the buffer is run dry; this character _can_ occur in serial com
  961. * due to checksums, however, no checksums are used in SD printing.
  962. */
  963. if (commands_in_queue == 0) stop_buffering = false;
  964. uint16_t sd_count = 0;
  965. bool card_eof = card.eof();
  966. while (commands_in_queue < BUFSIZE && !card_eof && !stop_buffering) {
  967. int16_t n = card.get();
  968. char sd_char = (char)n;
  969. card_eof = card.eof();
  970. if (card_eof || n == -1
  971. || sd_char == '\n' || sd_char == '\r'
  972. || ((sd_char == '#' || sd_char == ':') && !sd_comment_mode)
  973. ) {
  974. if (card_eof) {
  975. SERIAL_PROTOCOLLNPGM(MSG_FILE_PRINTED);
  976. card.printingHasFinished();
  977. card.checkautostart(true);
  978. }
  979. else if (n == -1) {
  980. SERIAL_ERROR_START;
  981. SERIAL_ECHOLNPGM(MSG_SD_ERR_READ);
  982. }
  983. if (sd_char == '#') stop_buffering = true;
  984. sd_comment_mode = false; //for new command
  985. if (!sd_count) continue; //skip empty lines
  986. command_queue[cmd_queue_index_w][sd_count] = '\0'; //terminate string
  987. sd_count = 0; //clear buffer
  988. _commit_command(false);
  989. }
  990. else if (sd_count >= MAX_CMD_SIZE - 1) {
  991. /**
  992. * Keep fetching, but ignore normal characters beyond the max length
  993. * The command will be injected when EOL is reached
  994. */
  995. }
  996. else {
  997. if (sd_char == ';') sd_comment_mode = true;
  998. if (!sd_comment_mode) command_queue[cmd_queue_index_w][sd_count++] = sd_char;
  999. }
  1000. }
  1001. }
  1002. #endif // SDSUPPORT
  1003. /**
  1004. * Add to the circular command queue the next command from:
  1005. * - The command-injection queue (injected_commands_P)
  1006. * - The active serial input (usually USB)
  1007. * - The SD card file being actively printed
  1008. */
  1009. void get_available_commands() {
  1010. // if any immediate commands remain, don't get other commands yet
  1011. if (drain_injected_commands_P()) return;
  1012. get_serial_commands();
  1013. #if ENABLED(SDSUPPORT)
  1014. get_sdcard_commands();
  1015. #endif
  1016. }
  1017. inline bool code_has_value() {
  1018. int i = 1;
  1019. char c = seen_pointer[i];
  1020. while (c == ' ') c = seen_pointer[++i];
  1021. if (c == '-' || c == '+') c = seen_pointer[++i];
  1022. if (c == '.') c = seen_pointer[++i];
  1023. return NUMERIC(c);
  1024. }
  1025. inline float code_value_float() {
  1026. char* e = strchr(seen_pointer, 'E');
  1027. if (!e) return strtod(seen_pointer + 1, NULL);
  1028. *e = 0;
  1029. float ret = strtod(seen_pointer + 1, NULL);
  1030. *e = 'E';
  1031. return ret;
  1032. }
  1033. inline unsigned long code_value_ulong() { return strtoul(seen_pointer + 1, NULL, 10); }
  1034. inline long code_value_long() { return strtol(seen_pointer + 1, NULL, 10); }
  1035. inline int code_value_int() { return (int)strtol(seen_pointer + 1, NULL, 10); }
  1036. inline uint16_t code_value_ushort() { return (uint16_t)strtoul(seen_pointer + 1, NULL, 10); }
  1037. inline uint8_t code_value_byte() { return (uint8_t)(constrain(strtol(seen_pointer + 1, NULL, 10), 0, 255)); }
  1038. inline bool code_value_bool() { return !code_has_value() || code_value_byte() > 0; }
  1039. #if ENABLED(INCH_MODE_SUPPORT)
  1040. inline void set_input_linear_units(LinearUnit units) {
  1041. switch (units) {
  1042. case LINEARUNIT_INCH:
  1043. linear_unit_factor = 25.4;
  1044. break;
  1045. case LINEARUNIT_MM:
  1046. default:
  1047. linear_unit_factor = 1.0;
  1048. break;
  1049. }
  1050. volumetric_unit_factor = pow(linear_unit_factor, 3.0);
  1051. }
  1052. inline float axis_unit_factor(int axis) {
  1053. return (axis >= E_AXIS && volumetric_enabled ? volumetric_unit_factor : linear_unit_factor);
  1054. }
  1055. inline float code_value_linear_units() { return code_value_float() * linear_unit_factor; }
  1056. inline float code_value_axis_units(int axis) { return code_value_float() * axis_unit_factor(axis); }
  1057. inline float code_value_per_axis_unit(int axis) { return code_value_float() / axis_unit_factor(axis); }
  1058. #else
  1059. inline float code_value_linear_units() { return code_value_float(); }
  1060. inline float code_value_axis_units(int axis) { UNUSED(axis); return code_value_float(); }
  1061. inline float code_value_per_axis_unit(int axis) { UNUSED(axis); return code_value_float(); }
  1062. #endif
  1063. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  1064. inline void set_input_temp_units(TempUnit units) { input_temp_units = units; }
  1065. float code_value_temp_abs() {
  1066. switch (input_temp_units) {
  1067. case TEMPUNIT_C:
  1068. return code_value_float();
  1069. case TEMPUNIT_F:
  1070. return (code_value_float() - 32) * 0.5555555556;
  1071. case TEMPUNIT_K:
  1072. return code_value_float() - 272.15;
  1073. default:
  1074. return code_value_float();
  1075. }
  1076. }
  1077. float code_value_temp_diff() {
  1078. switch (input_temp_units) {
  1079. case TEMPUNIT_C:
  1080. case TEMPUNIT_K:
  1081. return code_value_float();
  1082. case TEMPUNIT_F:
  1083. return code_value_float() * 0.5555555556;
  1084. default:
  1085. return code_value_float();
  1086. }
  1087. }
  1088. #else
  1089. float code_value_temp_abs() { return code_value_float(); }
  1090. float code_value_temp_diff() { return code_value_float(); }
  1091. #endif
  1092. FORCE_INLINE millis_t code_value_millis() { return code_value_ulong(); }
  1093. inline millis_t code_value_millis_from_seconds() { return code_value_float() * 1000; }
  1094. bool code_seen(char code) {
  1095. seen_pointer = strchr(current_command_args, code);
  1096. return (seen_pointer != NULL); // Return TRUE if the code-letter was found
  1097. }
  1098. /**
  1099. * Set target_extruder from the T parameter or the active_extruder
  1100. *
  1101. * Returns TRUE if the target is invalid
  1102. */
  1103. bool get_target_extruder_from_command(int code) {
  1104. if (code_seen('T')) {
  1105. if (code_value_byte() >= EXTRUDERS) {
  1106. SERIAL_ECHO_START;
  1107. SERIAL_CHAR('M');
  1108. SERIAL_ECHO(code);
  1109. SERIAL_ECHOLNPAIR(" " MSG_INVALID_EXTRUDER " ", code_value_byte());
  1110. return true;
  1111. }
  1112. target_extruder = code_value_byte();
  1113. }
  1114. else
  1115. target_extruder = active_extruder;
  1116. return false;
  1117. }
  1118. #if ENABLED(DUAL_X_CARRIAGE) || ENABLED(DUAL_NOZZLE_DUPLICATION_MODE)
  1119. bool extruder_duplication_enabled = false; // Used in Dual X mode 2
  1120. #endif
  1121. #if ENABLED(DUAL_X_CARRIAGE)
  1122. static DualXMode dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  1123. static float x_home_pos(const int extruder) {
  1124. if (extruder == 0)
  1125. return LOGICAL_X_POSITION(base_home_pos(X_AXIS));
  1126. else
  1127. /**
  1128. * In dual carriage mode the extruder offset provides an override of the
  1129. * second X-carriage position when homed - otherwise X2_HOME_POS is used.
  1130. * This allows soft recalibration of the second extruder home position
  1131. * without firmware reflash (through the M218 command).
  1132. */
  1133. return LOGICAL_X_POSITION(hotend_offset[X_AXIS][1] > 0 ? hotend_offset[X_AXIS][1] : X2_HOME_POS);
  1134. }
  1135. static int x_home_dir(const int extruder) { return extruder ? X2_HOME_DIR : X_HOME_DIR; }
  1136. static float inactive_extruder_x_pos = X2_MAX_POS; // used in mode 0 & 1
  1137. static bool active_extruder_parked = false; // used in mode 1 & 2
  1138. static float raised_parked_position[NUM_AXIS]; // used in mode 1
  1139. static millis_t delayed_move_time = 0; // used in mode 1
  1140. static float duplicate_extruder_x_offset = DEFAULT_DUPLICATION_X_OFFSET; // used in mode 2
  1141. static float duplicate_extruder_temp_offset = 0; // used in mode 2
  1142. #endif // DUAL_X_CARRIAGE
  1143. /**
  1144. * Software endstops can be used to monitor the open end of
  1145. * an axis that has a hardware endstop on the other end. Or
  1146. * they can prevent axes from moving past endstops and grinding.
  1147. *
  1148. * To keep doing their job as the coordinate system changes,
  1149. * the software endstop positions must be refreshed to remain
  1150. * at the same positions relative to the machine.
  1151. */
  1152. void update_software_endstops(AxisEnum axis) {
  1153. float offs = LOGICAL_POSITION(0, axis);
  1154. #if ENABLED(DUAL_X_CARRIAGE)
  1155. if (axis == X_AXIS) {
  1156. // In Dual X mode hotend_offset[X] is T1's home position
  1157. float dual_max_x = max(hotend_offset[X_AXIS][1], X2_MAX_POS);
  1158. if (active_extruder != 0) {
  1159. // T1 can move from X2_MIN_POS to X2_MAX_POS or X2 home position (whichever is larger)
  1160. soft_endstop_min[X_AXIS] = X2_MIN_POS + offs;
  1161. soft_endstop_max[X_AXIS] = dual_max_x + offs;
  1162. }
  1163. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE) {
  1164. // In Duplication Mode, T0 can move as far left as X_MIN_POS
  1165. // but not so far to the right that T1 would move past the end
  1166. soft_endstop_min[X_AXIS] = base_min_pos(X_AXIS) + offs;
  1167. soft_endstop_max[X_AXIS] = min(base_max_pos(X_AXIS), dual_max_x - duplicate_extruder_x_offset) + offs;
  1168. }
  1169. else {
  1170. // In other modes, T0 can move from X_MIN_POS to X_MAX_POS
  1171. soft_endstop_min[axis] = base_min_pos(axis) + offs;
  1172. soft_endstop_max[axis] = base_max_pos(axis) + offs;
  1173. }
  1174. }
  1175. #else
  1176. soft_endstop_min[axis] = base_min_pos(axis) + offs;
  1177. soft_endstop_max[axis] = base_max_pos(axis) + offs;
  1178. #endif
  1179. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1180. if (DEBUGGING(LEVELING)) {
  1181. SERIAL_ECHOPAIR("For ", axis_codes[axis]);
  1182. SERIAL_ECHOPAIR(" axis:\n home_offset = ", home_offset[axis]);
  1183. SERIAL_ECHOPAIR("\n position_shift = ", position_shift[axis]);
  1184. SERIAL_ECHOPAIR("\n soft_endstop_min = ", soft_endstop_min[axis]);
  1185. SERIAL_ECHOLNPAIR("\n soft_endstop_max = ", soft_endstop_max[axis]);
  1186. }
  1187. #endif
  1188. #if ENABLED(DELTA)
  1189. if (axis == Z_AXIS)
  1190. delta_clip_start_height = soft_endstop_max[axis] - delta_safe_distance_from_top();
  1191. #endif
  1192. }
  1193. /**
  1194. * Change the home offset for an axis, update the current
  1195. * position and the software endstops to retain the same
  1196. * relative distance to the new home.
  1197. *
  1198. * Since this changes the current_position, code should
  1199. * call sync_plan_position soon after this.
  1200. */
  1201. static void set_home_offset(AxisEnum axis, float v) {
  1202. current_position[axis] += v - home_offset[axis];
  1203. home_offset[axis] = v;
  1204. update_software_endstops(axis);
  1205. }
  1206. /**
  1207. * Set an axis' current position to its home position (after homing).
  1208. *
  1209. * For Core and Cartesian robots this applies one-to-one when an
  1210. * individual axis has been homed.
  1211. *
  1212. * DELTA should wait until all homing is done before setting the XYZ
  1213. * current_position to home, because homing is a single operation.
  1214. * In the case where the axis positions are already known and previously
  1215. * homed, DELTA could home to X or Y individually by moving either one
  1216. * to the center. However, homing Z always homes XY and Z.
  1217. *
  1218. * SCARA should wait until all XY homing is done before setting the XY
  1219. * current_position to home, because neither X nor Y is at home until
  1220. * both are at home. Z can however be homed individually.
  1221. *
  1222. * Callers must sync the planner position after calling this!
  1223. */
  1224. static void set_axis_is_at_home(AxisEnum axis) {
  1225. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1226. if (DEBUGGING(LEVELING)) {
  1227. SERIAL_ECHOPAIR(">>> set_axis_is_at_home(", axis_codes[axis]);
  1228. SERIAL_CHAR(')');
  1229. SERIAL_EOL;
  1230. }
  1231. #endif
  1232. axis_known_position[axis] = axis_homed[axis] = true;
  1233. position_shift[axis] = 0;
  1234. update_software_endstops(axis);
  1235. #if ENABLED(DUAL_X_CARRIAGE)
  1236. if (axis == X_AXIS && (active_extruder == 1 || dual_x_carriage_mode == DXC_DUPLICATION_MODE)) {
  1237. current_position[X_AXIS] = x_home_pos(active_extruder);
  1238. return;
  1239. }
  1240. #endif
  1241. #if ENABLED(MORGAN_SCARA)
  1242. /**
  1243. * Morgan SCARA homes XY at the same time
  1244. */
  1245. if (axis == X_AXIS || axis == Y_AXIS) {
  1246. float homeposition[XYZ];
  1247. LOOP_XYZ(i) homeposition[i] = LOGICAL_POSITION(base_home_pos((AxisEnum)i), i);
  1248. // SERIAL_ECHOPAIR("homeposition X:", homeposition[X_AXIS]);
  1249. // SERIAL_ECHOLNPAIR(" Y:", homeposition[Y_AXIS]);
  1250. /**
  1251. * Get Home position SCARA arm angles using inverse kinematics,
  1252. * and calculate homing offset using forward kinematics
  1253. */
  1254. inverse_kinematics(homeposition);
  1255. forward_kinematics_SCARA(delta[A_AXIS], delta[B_AXIS]);
  1256. // SERIAL_ECHOPAIR("Cartesian X:", cartes[X_AXIS]);
  1257. // SERIAL_ECHOLNPAIR(" Y:", cartes[Y_AXIS]);
  1258. current_position[axis] = LOGICAL_POSITION(cartes[axis], axis);
  1259. /**
  1260. * SCARA home positions are based on configuration since the actual
  1261. * limits are determined by the inverse kinematic transform.
  1262. */
  1263. soft_endstop_min[axis] = base_min_pos(axis); // + (cartes[axis] - base_home_pos(axis));
  1264. soft_endstop_max[axis] = base_max_pos(axis); // + (cartes[axis] - base_home_pos(axis));
  1265. }
  1266. else
  1267. #endif
  1268. {
  1269. current_position[axis] = LOGICAL_POSITION(base_home_pos(axis), axis);
  1270. }
  1271. /**
  1272. * Z Probe Z Homing? Account for the probe's Z offset.
  1273. */
  1274. #if HAS_BED_PROBE && Z_HOME_DIR < 0
  1275. if (axis == Z_AXIS) {
  1276. #if HOMING_Z_WITH_PROBE
  1277. current_position[Z_AXIS] -= zprobe_zoffset;
  1278. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1279. if (DEBUGGING(LEVELING)) {
  1280. SERIAL_ECHOLNPGM("*** Z HOMED WITH PROBE (Z_MIN_PROBE_USES_Z_MIN_ENDSTOP_PIN) ***");
  1281. SERIAL_ECHOLNPAIR("> zprobe_zoffset = ", zprobe_zoffset);
  1282. }
  1283. #endif
  1284. #elif ENABLED(DEBUG_LEVELING_FEATURE)
  1285. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("*** Z HOMED TO ENDSTOP (Z_MIN_PROBE_ENDSTOP) ***");
  1286. #endif
  1287. }
  1288. #endif
  1289. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1290. if (DEBUGGING(LEVELING)) {
  1291. SERIAL_ECHOPAIR("> home_offset[", axis_codes[axis]);
  1292. SERIAL_ECHOLNPAIR("] = ", home_offset[axis]);
  1293. DEBUG_POS("", current_position);
  1294. SERIAL_ECHOPAIR("<<< set_axis_is_at_home(", axis_codes[axis]);
  1295. SERIAL_CHAR(')');
  1296. SERIAL_EOL;
  1297. }
  1298. #endif
  1299. }
  1300. /**
  1301. * Some planner shorthand inline functions
  1302. */
  1303. inline float get_homing_bump_feedrate(AxisEnum axis) {
  1304. int constexpr homing_bump_divisor[] = HOMING_BUMP_DIVISOR;
  1305. int hbd = homing_bump_divisor[axis];
  1306. if (hbd < 1) {
  1307. hbd = 10;
  1308. SERIAL_ECHO_START;
  1309. SERIAL_ECHOLNPGM("Warning: Homing Bump Divisor < 1");
  1310. }
  1311. return homing_feedrate_mm_s[axis] / hbd;
  1312. }
  1313. //
  1314. // line_to_current_position
  1315. // Move the planner to the current position from wherever it last moved
  1316. // (or from wherever it has been told it is located).
  1317. //
  1318. inline void line_to_current_position() {
  1319. planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate_mm_s, active_extruder);
  1320. }
  1321. //
  1322. // line_to_destination
  1323. // Move the planner, not necessarily synced with current_position
  1324. //
  1325. inline void line_to_destination(float fr_mm_s) {
  1326. planner.buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], fr_mm_s, active_extruder);
  1327. }
  1328. inline void line_to_destination() { line_to_destination(feedrate_mm_s); }
  1329. inline void set_current_to_destination() { memcpy(current_position, destination, sizeof(current_position)); }
  1330. inline void set_destination_to_current() { memcpy(destination, current_position, sizeof(destination)); }
  1331. #if IS_KINEMATIC
  1332. /**
  1333. * Calculate delta, start a line, and set current_position to destination
  1334. */
  1335. void prepare_uninterpolated_move_to_destination(const float fr_mm_s=0.0) {
  1336. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1337. if (DEBUGGING(LEVELING)) DEBUG_POS("prepare_uninterpolated_move_to_destination", destination);
  1338. #endif
  1339. if ( current_position[X_AXIS] == destination[X_AXIS]
  1340. && current_position[Y_AXIS] == destination[Y_AXIS]
  1341. && current_position[Z_AXIS] == destination[Z_AXIS]
  1342. && current_position[E_AXIS] == destination[E_AXIS]
  1343. ) return;
  1344. refresh_cmd_timeout();
  1345. planner.buffer_line_kinematic(destination, MMS_SCALED(fr_mm_s ? fr_mm_s : feedrate_mm_s), active_extruder);
  1346. set_current_to_destination();
  1347. }
  1348. #endif // IS_KINEMATIC
  1349. /**
  1350. * Plan a move to (X, Y, Z) and set the current_position
  1351. * The final current_position may not be the one that was requested
  1352. */
  1353. void do_blocking_move_to(const float &x, const float &y, const float &z, const float &fr_mm_s /*=0.0*/) {
  1354. const float old_feedrate_mm_s = feedrate_mm_s;
  1355. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1356. if (DEBUGGING(LEVELING)) print_xyz(PSTR(">>> do_blocking_move_to"), NULL, x, y, z);
  1357. #endif
  1358. #if ENABLED(DELTA)
  1359. feedrate_mm_s = fr_mm_s ? fr_mm_s : XY_PROBE_FEEDRATE_MM_S;
  1360. set_destination_to_current(); // sync destination at the start
  1361. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1362. if (DEBUGGING(LEVELING)) DEBUG_POS("set_destination_to_current", destination);
  1363. #endif
  1364. // when in the danger zone
  1365. if (current_position[Z_AXIS] > delta_clip_start_height) {
  1366. if (z > delta_clip_start_height) { // staying in the danger zone
  1367. destination[X_AXIS] = x; // move directly (uninterpolated)
  1368. destination[Y_AXIS] = y;
  1369. destination[Z_AXIS] = z;
  1370. prepare_uninterpolated_move_to_destination(); // set_current_to_destination
  1371. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1372. if (DEBUGGING(LEVELING)) DEBUG_POS("danger zone move", current_position);
  1373. #endif
  1374. return;
  1375. }
  1376. else {
  1377. destination[Z_AXIS] = delta_clip_start_height;
  1378. prepare_uninterpolated_move_to_destination(); // set_current_to_destination
  1379. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1380. if (DEBUGGING(LEVELING)) DEBUG_POS("zone border move", current_position);
  1381. #endif
  1382. }
  1383. }
  1384. if (z > current_position[Z_AXIS]) { // raising?
  1385. destination[Z_AXIS] = z;
  1386. prepare_uninterpolated_move_to_destination(); // set_current_to_destination
  1387. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1388. if (DEBUGGING(LEVELING)) DEBUG_POS("z raise move", current_position);
  1389. #endif
  1390. }
  1391. destination[X_AXIS] = x;
  1392. destination[Y_AXIS] = y;
  1393. prepare_move_to_destination(); // set_current_to_destination
  1394. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1395. if (DEBUGGING(LEVELING)) DEBUG_POS("xy move", current_position);
  1396. #endif
  1397. if (z < current_position[Z_AXIS]) { // lowering?
  1398. destination[Z_AXIS] = z;
  1399. prepare_uninterpolated_move_to_destination(); // set_current_to_destination
  1400. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1401. if (DEBUGGING(LEVELING)) DEBUG_POS("z lower move", current_position);
  1402. #endif
  1403. }
  1404. #elif IS_SCARA
  1405. set_destination_to_current();
  1406. // If Z needs to raise, do it before moving XY
  1407. if (destination[Z_AXIS] < z) {
  1408. destination[Z_AXIS] = z;
  1409. prepare_uninterpolated_move_to_destination(fr_mm_s ? fr_mm_s : homing_feedrate_mm_s[Z_AXIS]);
  1410. }
  1411. destination[X_AXIS] = x;
  1412. destination[Y_AXIS] = y;
  1413. prepare_uninterpolated_move_to_destination(fr_mm_s ? fr_mm_s : XY_PROBE_FEEDRATE_MM_S);
  1414. // If Z needs to lower, do it after moving XY
  1415. if (destination[Z_AXIS] > z) {
  1416. destination[Z_AXIS] = z;
  1417. prepare_uninterpolated_move_to_destination(fr_mm_s ? fr_mm_s : homing_feedrate_mm_s[Z_AXIS]);
  1418. }
  1419. #else
  1420. // If Z needs to raise, do it before moving XY
  1421. if (current_position[Z_AXIS] < z) {
  1422. feedrate_mm_s = fr_mm_s ? fr_mm_s : homing_feedrate_mm_s[Z_AXIS];
  1423. current_position[Z_AXIS] = z;
  1424. line_to_current_position();
  1425. }
  1426. feedrate_mm_s = fr_mm_s ? fr_mm_s : XY_PROBE_FEEDRATE_MM_S;
  1427. current_position[X_AXIS] = x;
  1428. current_position[Y_AXIS] = y;
  1429. line_to_current_position();
  1430. // If Z needs to lower, do it after moving XY
  1431. if (current_position[Z_AXIS] > z) {
  1432. feedrate_mm_s = fr_mm_s ? fr_mm_s : homing_feedrate_mm_s[Z_AXIS];
  1433. current_position[Z_AXIS] = z;
  1434. line_to_current_position();
  1435. }
  1436. #endif
  1437. stepper.synchronize();
  1438. feedrate_mm_s = old_feedrate_mm_s;
  1439. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1440. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< do_blocking_move_to");
  1441. #endif
  1442. }
  1443. void do_blocking_move_to_x(const float &x, const float &fr_mm_s/*=0.0*/) {
  1444. do_blocking_move_to(x, current_position[Y_AXIS], current_position[Z_AXIS], fr_mm_s);
  1445. }
  1446. void do_blocking_move_to_z(const float &z, const float &fr_mm_s/*=0.0*/) {
  1447. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z, fr_mm_s);
  1448. }
  1449. void do_blocking_move_to_xy(const float &x, const float &y, const float &fr_mm_s/*=0.0*/) {
  1450. do_blocking_move_to(x, y, current_position[Z_AXIS], fr_mm_s);
  1451. }
  1452. //
  1453. // Prepare to do endstop or probe moves
  1454. // with custom feedrates.
  1455. //
  1456. // - Save current feedrates
  1457. // - Reset the rate multiplier
  1458. // - Reset the command timeout
  1459. // - Enable the endstops (for endstop moves)
  1460. //
  1461. static void setup_for_endstop_or_probe_move() {
  1462. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1463. if (DEBUGGING(LEVELING)) DEBUG_POS("setup_for_endstop_or_probe_move", current_position);
  1464. #endif
  1465. saved_feedrate_mm_s = feedrate_mm_s;
  1466. saved_feedrate_percentage = feedrate_percentage;
  1467. feedrate_percentage = 100;
  1468. refresh_cmd_timeout();
  1469. }
  1470. static void clean_up_after_endstop_or_probe_move() {
  1471. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1472. if (DEBUGGING(LEVELING)) DEBUG_POS("clean_up_after_endstop_or_probe_move", current_position);
  1473. #endif
  1474. feedrate_mm_s = saved_feedrate_mm_s;
  1475. feedrate_percentage = saved_feedrate_percentage;
  1476. refresh_cmd_timeout();
  1477. }
  1478. #if HAS_BED_PROBE
  1479. /**
  1480. * Raise Z to a minimum height to make room for a probe to move
  1481. */
  1482. inline void do_probe_raise(float z_raise) {
  1483. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1484. if (DEBUGGING(LEVELING)) {
  1485. SERIAL_ECHOPAIR("do_probe_raise(", z_raise);
  1486. SERIAL_CHAR(')');
  1487. SERIAL_EOL;
  1488. }
  1489. #endif
  1490. float z_dest = LOGICAL_Z_POSITION(z_raise);
  1491. if (zprobe_zoffset < 0) z_dest -= zprobe_zoffset;
  1492. if (z_dest > current_position[Z_AXIS])
  1493. do_blocking_move_to_z(z_dest);
  1494. }
  1495. #endif //HAS_BED_PROBE
  1496. #if ENABLED(Z_PROBE_ALLEN_KEY) || ENABLED(Z_PROBE_SLED) || HAS_PROBING_PROCEDURE || HOTENDS > 1 || ENABLED(NOZZLE_CLEAN_FEATURE) || ENABLED(NOZZLE_PARK_FEATURE)
  1497. static bool axis_unhomed_error(const bool x, const bool y, const bool z) {
  1498. const bool xx = x && !axis_homed[X_AXIS],
  1499. yy = y && !axis_homed[Y_AXIS],
  1500. zz = z && !axis_homed[Z_AXIS];
  1501. if (xx || yy || zz) {
  1502. SERIAL_ECHO_START;
  1503. SERIAL_ECHOPGM(MSG_HOME " ");
  1504. if (xx) SERIAL_ECHOPGM(MSG_X);
  1505. if (yy) SERIAL_ECHOPGM(MSG_Y);
  1506. if (zz) SERIAL_ECHOPGM(MSG_Z);
  1507. SERIAL_ECHOLNPGM(" " MSG_FIRST);
  1508. #if ENABLED(ULTRA_LCD)
  1509. char message[3 * (LCD_WIDTH) + 1] = ""; // worst case is kana.utf with up to 3*LCD_WIDTH+1
  1510. strcat_P(message, PSTR(MSG_HOME " "));
  1511. if (xx) strcat_P(message, PSTR(MSG_X));
  1512. if (yy) strcat_P(message, PSTR(MSG_Y));
  1513. if (zz) strcat_P(message, PSTR(MSG_Z));
  1514. strcat_P(message, PSTR(" " MSG_FIRST));
  1515. lcd_setstatus(message);
  1516. #endif
  1517. return true;
  1518. }
  1519. return false;
  1520. }
  1521. #endif
  1522. #if ENABLED(Z_PROBE_SLED)
  1523. #ifndef SLED_DOCKING_OFFSET
  1524. #define SLED_DOCKING_OFFSET 0
  1525. #endif
  1526. /**
  1527. * Method to dock/undock a sled designed by Charles Bell.
  1528. *
  1529. * stow[in] If false, move to MAX_X and engage the solenoid
  1530. * If true, move to MAX_X and release the solenoid
  1531. */
  1532. static void dock_sled(bool stow) {
  1533. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1534. if (DEBUGGING(LEVELING)) {
  1535. SERIAL_ECHOPAIR("dock_sled(", stow);
  1536. SERIAL_CHAR(')');
  1537. SERIAL_EOL;
  1538. }
  1539. #endif
  1540. // Dock sled a bit closer to ensure proper capturing
  1541. do_blocking_move_to_x(X_MAX_POS + SLED_DOCKING_OFFSET - ((stow) ? 1 : 0));
  1542. #if PIN_EXISTS(SLED)
  1543. digitalWrite(SLED_PIN, !stow); // switch solenoid
  1544. #endif
  1545. }
  1546. #elif ENABLED(Z_PROBE_ALLEN_KEY)
  1547. void run_deploy_moves_script() {
  1548. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_1_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_1_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_1_Z)
  1549. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_X
  1550. #define Z_PROBE_ALLEN_KEY_DEPLOY_1_X current_position[X_AXIS]
  1551. #endif
  1552. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_Y
  1553. #define Z_PROBE_ALLEN_KEY_DEPLOY_1_Y current_position[Y_AXIS]
  1554. #endif
  1555. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_Z
  1556. #define Z_PROBE_ALLEN_KEY_DEPLOY_1_Z current_position[Z_AXIS]
  1557. #endif
  1558. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE
  1559. #define Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE 0.0
  1560. #endif
  1561. do_blocking_move_to(Z_PROBE_ALLEN_KEY_DEPLOY_1_X, Z_PROBE_ALLEN_KEY_DEPLOY_1_Y, Z_PROBE_ALLEN_KEY_DEPLOY_1_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE));
  1562. #endif
  1563. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_2_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_2_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_2_Z)
  1564. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_X
  1565. #define Z_PROBE_ALLEN_KEY_DEPLOY_2_X current_position[X_AXIS]
  1566. #endif
  1567. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_Y
  1568. #define Z_PROBE_ALLEN_KEY_DEPLOY_2_Y current_position[Y_AXIS]
  1569. #endif
  1570. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_Z
  1571. #define Z_PROBE_ALLEN_KEY_DEPLOY_2_Z current_position[Z_AXIS]
  1572. #endif
  1573. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE
  1574. #define Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE 0.0
  1575. #endif
  1576. do_blocking_move_to(Z_PROBE_ALLEN_KEY_DEPLOY_2_X, Z_PROBE_ALLEN_KEY_DEPLOY_2_Y, Z_PROBE_ALLEN_KEY_DEPLOY_2_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE));
  1577. #endif
  1578. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_3_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_3_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_3_Z)
  1579. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_X
  1580. #define Z_PROBE_ALLEN_KEY_DEPLOY_3_X current_position[X_AXIS]
  1581. #endif
  1582. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_Y
  1583. #define Z_PROBE_ALLEN_KEY_DEPLOY_3_Y current_position[Y_AXIS]
  1584. #endif
  1585. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_Z
  1586. #define Z_PROBE_ALLEN_KEY_DEPLOY_3_Z current_position[Z_AXIS]
  1587. #endif
  1588. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE
  1589. #define Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE 0.0
  1590. #endif
  1591. do_blocking_move_to(Z_PROBE_ALLEN_KEY_DEPLOY_3_X, Z_PROBE_ALLEN_KEY_DEPLOY_3_Y, Z_PROBE_ALLEN_KEY_DEPLOY_3_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE));
  1592. #endif
  1593. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_4_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_4_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_4_Z)
  1594. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_X
  1595. #define Z_PROBE_ALLEN_KEY_DEPLOY_4_X current_position[X_AXIS]
  1596. #endif
  1597. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_Y
  1598. #define Z_PROBE_ALLEN_KEY_DEPLOY_4_Y current_position[Y_AXIS]
  1599. #endif
  1600. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_Z
  1601. #define Z_PROBE_ALLEN_KEY_DEPLOY_4_Z current_position[Z_AXIS]
  1602. #endif
  1603. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_FEEDRATE
  1604. #define Z_PROBE_ALLEN_KEY_DEPLOY_4_FEEDRATE 0.0
  1605. #endif
  1606. do_blocking_move_to(Z_PROBE_ALLEN_KEY_DEPLOY_4_X, Z_PROBE_ALLEN_KEY_DEPLOY_4_Y, Z_PROBE_ALLEN_KEY_DEPLOY_4_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_4_FEEDRATE));
  1607. #endif
  1608. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_5_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_5_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_5_Z)
  1609. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_X
  1610. #define Z_PROBE_ALLEN_KEY_DEPLOY_5_X current_position[X_AXIS]
  1611. #endif
  1612. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_Y
  1613. #define Z_PROBE_ALLEN_KEY_DEPLOY_5_Y current_position[Y_AXIS]
  1614. #endif
  1615. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_Z
  1616. #define Z_PROBE_ALLEN_KEY_DEPLOY_5_Z current_position[Z_AXIS]
  1617. #endif
  1618. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_FEEDRATE
  1619. #define Z_PROBE_ALLEN_KEY_DEPLOY_5_FEEDRATE 0.0
  1620. #endif
  1621. do_blocking_move_to(Z_PROBE_ALLEN_KEY_DEPLOY_5_X, Z_PROBE_ALLEN_KEY_DEPLOY_5_Y, Z_PROBE_ALLEN_KEY_DEPLOY_5_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_5_FEEDRATE));
  1622. #endif
  1623. }
  1624. void run_stow_moves_script() {
  1625. #if defined(Z_PROBE_ALLEN_KEY_STOW_1_X) || defined(Z_PROBE_ALLEN_KEY_STOW_1_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_1_Z)
  1626. #ifndef Z_PROBE_ALLEN_KEY_STOW_1_X
  1627. #define Z_PROBE_ALLEN_KEY_STOW_1_X current_position[X_AXIS]
  1628. #endif
  1629. #ifndef Z_PROBE_ALLEN_KEY_STOW_1_Y
  1630. #define Z_PROBE_ALLEN_KEY_STOW_1_Y current_position[Y_AXIS]
  1631. #endif
  1632. #ifndef Z_PROBE_ALLEN_KEY_STOW_1_Z
  1633. #define Z_PROBE_ALLEN_KEY_STOW_1_Z current_position[Z_AXIS]
  1634. #endif
  1635. #ifndef Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE
  1636. #define Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE 0.0
  1637. #endif
  1638. do_blocking_move_to(Z_PROBE_ALLEN_KEY_STOW_1_X, Z_PROBE_ALLEN_KEY_STOW_1_Y, Z_PROBE_ALLEN_KEY_STOW_1_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE));
  1639. #endif
  1640. #if defined(Z_PROBE_ALLEN_KEY_STOW_2_X) || defined(Z_PROBE_ALLEN_KEY_STOW_2_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_2_Z)
  1641. #ifndef Z_PROBE_ALLEN_KEY_STOW_2_X
  1642. #define Z_PROBE_ALLEN_KEY_STOW_2_X current_position[X_AXIS]
  1643. #endif
  1644. #ifndef Z_PROBE_ALLEN_KEY_STOW_2_Y
  1645. #define Z_PROBE_ALLEN_KEY_STOW_2_Y current_position[Y_AXIS]
  1646. #endif
  1647. #ifndef Z_PROBE_ALLEN_KEY_STOW_2_Z
  1648. #define Z_PROBE_ALLEN_KEY_STOW_2_Z current_position[Z_AXIS]
  1649. #endif
  1650. #ifndef Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE
  1651. #define Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE 0.0
  1652. #endif
  1653. do_blocking_move_to(Z_PROBE_ALLEN_KEY_STOW_2_X, Z_PROBE_ALLEN_KEY_STOW_2_Y, Z_PROBE_ALLEN_KEY_STOW_2_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE));
  1654. #endif
  1655. #if defined(Z_PROBE_ALLEN_KEY_STOW_3_X) || defined(Z_PROBE_ALLEN_KEY_STOW_3_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_3_Z)
  1656. #ifndef Z_PROBE_ALLEN_KEY_STOW_3_X
  1657. #define Z_PROBE_ALLEN_KEY_STOW_3_X current_position[X_AXIS]
  1658. #endif
  1659. #ifndef Z_PROBE_ALLEN_KEY_STOW_3_Y
  1660. #define Z_PROBE_ALLEN_KEY_STOW_3_Y current_position[Y_AXIS]
  1661. #endif
  1662. #ifndef Z_PROBE_ALLEN_KEY_STOW_3_Z
  1663. #define Z_PROBE_ALLEN_KEY_STOW_3_Z current_position[Z_AXIS]
  1664. #endif
  1665. #ifndef Z_PROBE_ALLEN_KEY_STOW_3_FEEDRATE
  1666. #define Z_PROBE_ALLEN_KEY_STOW_3_FEEDRATE 0.0
  1667. #endif
  1668. do_blocking_move_to(Z_PROBE_ALLEN_KEY_STOW_3_X, Z_PROBE_ALLEN_KEY_STOW_3_Y, Z_PROBE_ALLEN_KEY_STOW_3_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_3_FEEDRATE));
  1669. #endif
  1670. #if defined(Z_PROBE_ALLEN_KEY_STOW_4_X) || defined(Z_PROBE_ALLEN_KEY_STOW_4_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_4_Z)
  1671. #ifndef Z_PROBE_ALLEN_KEY_STOW_4_X
  1672. #define Z_PROBE_ALLEN_KEY_STOW_4_X current_position[X_AXIS]
  1673. #endif
  1674. #ifndef Z_PROBE_ALLEN_KEY_STOW_4_Y
  1675. #define Z_PROBE_ALLEN_KEY_STOW_4_Y current_position[Y_AXIS]
  1676. #endif
  1677. #ifndef Z_PROBE_ALLEN_KEY_STOW_4_Z
  1678. #define Z_PROBE_ALLEN_KEY_STOW_4_Z current_position[Z_AXIS]
  1679. #endif
  1680. #ifndef Z_PROBE_ALLEN_KEY_STOW_4_FEEDRATE
  1681. #define Z_PROBE_ALLEN_KEY_STOW_4_FEEDRATE 0.0
  1682. #endif
  1683. do_blocking_move_to(Z_PROBE_ALLEN_KEY_STOW_4_X, Z_PROBE_ALLEN_KEY_STOW_4_Y, Z_PROBE_ALLEN_KEY_STOW_4_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_4_FEEDRATE));
  1684. #endif
  1685. #if defined(Z_PROBE_ALLEN_KEY_STOW_5_X) || defined(Z_PROBE_ALLEN_KEY_STOW_5_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_5_Z)
  1686. #ifndef Z_PROBE_ALLEN_KEY_STOW_5_X
  1687. #define Z_PROBE_ALLEN_KEY_STOW_5_X current_position[X_AXIS]
  1688. #endif
  1689. #ifndef Z_PROBE_ALLEN_KEY_STOW_5_Y
  1690. #define Z_PROBE_ALLEN_KEY_STOW_5_Y current_position[Y_AXIS]
  1691. #endif
  1692. #ifndef Z_PROBE_ALLEN_KEY_STOW_5_Z
  1693. #define Z_PROBE_ALLEN_KEY_STOW_5_Z current_position[Z_AXIS]
  1694. #endif
  1695. #ifndef Z_PROBE_ALLEN_KEY_STOW_5_FEEDRATE
  1696. #define Z_PROBE_ALLEN_KEY_STOW_5_FEEDRATE 0.0
  1697. #endif
  1698. do_blocking_move_to(Z_PROBE_ALLEN_KEY_STOW_5_X, Z_PROBE_ALLEN_KEY_STOW_5_Y, Z_PROBE_ALLEN_KEY_STOW_5_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_5_FEEDRATE));
  1699. #endif
  1700. }
  1701. #endif
  1702. #if HAS_BED_PROBE
  1703. // TRIGGERED_WHEN_STOWED_TEST can easily be extended to servo probes, ... if needed.
  1704. #if ENABLED(PROBE_IS_TRIGGERED_WHEN_STOWED_TEST)
  1705. #if ENABLED(Z_MIN_PROBE_ENDSTOP)
  1706. #define _TRIGGERED_WHEN_STOWED_TEST (READ(Z_MIN_PROBE_PIN) != Z_MIN_PROBE_ENDSTOP_INVERTING)
  1707. #else
  1708. #define _TRIGGERED_WHEN_STOWED_TEST (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING)
  1709. #endif
  1710. #endif
  1711. #define DEPLOY_PROBE() set_probe_deployed(true)
  1712. #define STOW_PROBE() set_probe_deployed(false)
  1713. #if ENABLED(BLTOUCH)
  1714. void bltouch_command(int angle) {
  1715. servo[Z_ENDSTOP_SERVO_NR].move(angle); // Give the BL-Touch the command and wait
  1716. safe_delay(375);
  1717. }
  1718. FORCE_INLINE void set_bltouch_deployed(const bool &deploy) {
  1719. bltouch_command(deploy ? BLTOUCH_DEPLOY : BLTOUCH_STOW);
  1720. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1721. if (DEBUGGING(LEVELING)) {
  1722. SERIAL_ECHOPAIR("set_bltouch_deployed(", deploy);
  1723. SERIAL_CHAR(')');
  1724. SERIAL_EOL;
  1725. }
  1726. #endif
  1727. }
  1728. #endif
  1729. // returns false for ok and true for failure
  1730. static bool set_probe_deployed(bool deploy) {
  1731. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1732. if (DEBUGGING(LEVELING)) {
  1733. DEBUG_POS("set_probe_deployed", current_position);
  1734. SERIAL_ECHOLNPAIR("deploy: ", deploy);
  1735. }
  1736. #endif
  1737. if (endstops.z_probe_enabled == deploy) return false;
  1738. // Make room for probe
  1739. do_probe_raise(_Z_CLEARANCE_DEPLOY_PROBE);
  1740. // When deploying make sure BLTOUCH is not already triggered
  1741. #if ENABLED(BLTOUCH)
  1742. if (deploy && TEST_BLTOUCH()) { // If BL-Touch says it's triggered
  1743. bltouch_command(BLTOUCH_RESET); // try to reset it.
  1744. set_bltouch_deployed(true); // Also needs to deploy and stow to
  1745. set_bltouch_deployed(false); // clear the triggered condition.
  1746. if (TEST_BLTOUCH()) { // If it still claims to be triggered...
  1747. stop(); // punt!
  1748. return true;
  1749. }
  1750. }
  1751. #elif ENABLED(Z_PROBE_SLED)
  1752. if (axis_unhomed_error(true, false, false)) { stop(); return true; }
  1753. #elif ENABLED(Z_PROBE_ALLEN_KEY)
  1754. if (axis_unhomed_error(true, true, true )) { stop(); return true; }
  1755. #endif
  1756. const float oldXpos = current_position[X_AXIS],
  1757. oldYpos = current_position[Y_AXIS];
  1758. #ifdef _TRIGGERED_WHEN_STOWED_TEST
  1759. // If endstop is already false, the Z probe is deployed
  1760. if (_TRIGGERED_WHEN_STOWED_TEST == deploy) { // closed after the probe specific actions.
  1761. // Would a goto be less ugly?
  1762. //while (!_TRIGGERED_WHEN_STOWED_TEST) idle(); // would offer the opportunity
  1763. // for a triggered when stowed manual probe.
  1764. if (!deploy) endstops.enable_z_probe(false); // Switch off triggered when stowed probes early
  1765. // otherwise an Allen-Key probe can't be stowed.
  1766. #endif
  1767. #if ENABLED(Z_PROBE_SLED)
  1768. dock_sled(!deploy);
  1769. #elif HAS_Z_SERVO_ENDSTOP && DISABLED(BLTOUCH)
  1770. servo[Z_ENDSTOP_SERVO_NR].move(z_servo_angle[deploy ? 0 : 1]);
  1771. #elif ENABLED(Z_PROBE_ALLEN_KEY)
  1772. deploy ? run_deploy_moves_script() : run_stow_moves_script();
  1773. #endif
  1774. #ifdef _TRIGGERED_WHEN_STOWED_TEST
  1775. } // _TRIGGERED_WHEN_STOWED_TEST == deploy
  1776. if (_TRIGGERED_WHEN_STOWED_TEST == deploy) { // State hasn't changed?
  1777. if (IsRunning()) {
  1778. SERIAL_ERROR_START;
  1779. SERIAL_ERRORLNPGM("Z-Probe failed");
  1780. LCD_ALERTMESSAGEPGM("Err: ZPROBE");
  1781. }
  1782. stop();
  1783. return true;
  1784. } // _TRIGGERED_WHEN_STOWED_TEST == deploy
  1785. #endif
  1786. do_blocking_move_to(oldXpos, oldYpos, current_position[Z_AXIS]); // return to position before deploy
  1787. endstops.enable_z_probe(deploy);
  1788. return false;
  1789. }
  1790. static void do_probe_move(float z, float fr_mm_m) {
  1791. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1792. if (DEBUGGING(LEVELING)) DEBUG_POS(">>> do_probe_move", current_position);
  1793. #endif
  1794. // Deploy BLTouch at the start of any probe
  1795. #if ENABLED(BLTOUCH)
  1796. set_bltouch_deployed(true);
  1797. #endif
  1798. // Move down until probe triggered
  1799. do_blocking_move_to_z(LOGICAL_Z_POSITION(z), MMM_TO_MMS(fr_mm_m));
  1800. // Retract BLTouch immediately after a probe
  1801. #if ENABLED(BLTOUCH)
  1802. set_bltouch_deployed(false);
  1803. #endif
  1804. // Clear endstop flags
  1805. endstops.hit_on_purpose();
  1806. // Get Z where the steppers were interrupted
  1807. set_current_from_steppers_for_axis(Z_AXIS);
  1808. // Tell the planner where we actually are
  1809. SYNC_PLAN_POSITION_KINEMATIC();
  1810. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1811. if (DEBUGGING(LEVELING)) DEBUG_POS("<<< do_probe_move", current_position);
  1812. #endif
  1813. }
  1814. // Do a single Z probe and return with current_position[Z_AXIS]
  1815. // at the height where the probe triggered.
  1816. static float run_z_probe() {
  1817. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1818. if (DEBUGGING(LEVELING)) DEBUG_POS(">>> run_z_probe", current_position);
  1819. #endif
  1820. // Prevent stepper_inactive_time from running out and EXTRUDER_RUNOUT_PREVENT from extruding
  1821. refresh_cmd_timeout();
  1822. #if ENABLED(PROBE_DOUBLE_TOUCH)
  1823. // Do a first probe at the fast speed
  1824. do_probe_move(-(Z_MAX_LENGTH) - 10, Z_PROBE_SPEED_FAST);
  1825. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1826. float first_probe_z = current_position[Z_AXIS];
  1827. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPAIR("1st Probe Z:", first_probe_z);
  1828. #endif
  1829. // move up by the bump distance
  1830. do_blocking_move_to_z(current_position[Z_AXIS] + home_bump_mm(Z_AXIS), MMM_TO_MMS(Z_PROBE_SPEED_FAST));
  1831. #else
  1832. // If the nozzle is above the travel height then
  1833. // move down quickly before doing the slow probe
  1834. float z = LOGICAL_Z_POSITION(Z_CLEARANCE_BETWEEN_PROBES);
  1835. if (zprobe_zoffset < 0) z -= zprobe_zoffset;
  1836. if (z < current_position[Z_AXIS])
  1837. do_blocking_move_to_z(z, MMM_TO_MMS(Z_PROBE_SPEED_FAST));
  1838. #endif
  1839. // move down slowly to find bed
  1840. do_probe_move(-(Z_MAX_LENGTH) - 10, Z_PROBE_SPEED_SLOW);
  1841. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1842. if (DEBUGGING(LEVELING)) DEBUG_POS("<<< run_z_probe", current_position);
  1843. #endif
  1844. // Debug: compare probe heights
  1845. #if ENABLED(PROBE_DOUBLE_TOUCH) && ENABLED(DEBUG_LEVELING_FEATURE)
  1846. if (DEBUGGING(LEVELING)) {
  1847. SERIAL_ECHOPAIR("2nd Probe Z:", current_position[Z_AXIS]);
  1848. SERIAL_ECHOLNPAIR(" Discrepancy:", first_probe_z - current_position[Z_AXIS]);
  1849. }
  1850. #endif
  1851. return current_position[Z_AXIS];
  1852. }
  1853. //
  1854. // - Move to the given XY
  1855. // - Deploy the probe, if not already deployed
  1856. // - Probe the bed, get the Z position
  1857. // - Depending on the 'stow' flag
  1858. // - Stow the probe, or
  1859. // - Raise to the BETWEEN height
  1860. // - Return the probed Z position
  1861. //
  1862. static float probe_pt(const float &x, const float &y, const bool stow = true, const int verbose_level = 1) {
  1863. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1864. if (DEBUGGING(LEVELING)) {
  1865. SERIAL_ECHOPAIR(">>> probe_pt(", x);
  1866. SERIAL_ECHOPAIR(", ", y);
  1867. SERIAL_ECHOPAIR(", ", stow ? "" : "no ");
  1868. SERIAL_ECHOLNPGM("stow)");
  1869. DEBUG_POS("", current_position);
  1870. }
  1871. #endif
  1872. const float old_feedrate_mm_s = feedrate_mm_s;
  1873. #if ENABLED(DELTA)
  1874. if (current_position[Z_AXIS] > delta_clip_start_height)
  1875. do_blocking_move_to_z(delta_clip_start_height);
  1876. #endif
  1877. // Ensure a minimum height before moving the probe
  1878. do_probe_raise(Z_CLEARANCE_BETWEEN_PROBES);
  1879. feedrate_mm_s = XY_PROBE_FEEDRATE_MM_S;
  1880. // Move the probe to the given XY
  1881. do_blocking_move_to_xy(x - (X_PROBE_OFFSET_FROM_EXTRUDER), y - (Y_PROBE_OFFSET_FROM_EXTRUDER));
  1882. if (DEPLOY_PROBE()) return NAN;
  1883. const float measured_z = run_z_probe();
  1884. if (!stow)
  1885. do_probe_raise(Z_CLEARANCE_BETWEEN_PROBES);
  1886. else
  1887. if (STOW_PROBE()) return NAN;
  1888. if (verbose_level > 2) {
  1889. SERIAL_PROTOCOLPGM("Bed X: ");
  1890. SERIAL_PROTOCOL_F(x, 3);
  1891. SERIAL_PROTOCOLPGM(" Y: ");
  1892. SERIAL_PROTOCOL_F(y, 3);
  1893. SERIAL_PROTOCOLPGM(" Z: ");
  1894. SERIAL_PROTOCOL_F(measured_z - -zprobe_zoffset + 0.0001, 3);
  1895. SERIAL_EOL;
  1896. }
  1897. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1898. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< probe_pt");
  1899. #endif
  1900. feedrate_mm_s = old_feedrate_mm_s;
  1901. return measured_z;
  1902. }
  1903. #endif // HAS_BED_PROBE
  1904. #if PLANNER_LEVELING
  1905. /**
  1906. * Turn bed leveling on or off, fixing the current
  1907. * position as-needed.
  1908. *
  1909. * Disable: Current position = physical position
  1910. * Enable: Current position = "unleveled" physical position
  1911. */
  1912. void set_bed_leveling_enabled(bool enable/*=true*/) {
  1913. #if ENABLED(MESH_BED_LEVELING)
  1914. if (enable != mbl.active()) {
  1915. if (!enable)
  1916. planner.apply_leveling(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS]);
  1917. mbl.set_active(enable && mbl.has_mesh());
  1918. if (enable) planner.unapply_leveling(current_position);
  1919. }
  1920. #elif HAS_ABL
  1921. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  1922. const bool can_change = (!enable || (bilinear_grid_spacing[0] && bilinear_grid_spacing[1]));
  1923. #else
  1924. constexpr bool can_change = true;
  1925. #endif
  1926. if (can_change && enable != planner.abl_enabled) {
  1927. planner.abl_enabled = enable;
  1928. if (!enable)
  1929. set_current_from_steppers_for_axis(
  1930. #if ABL_PLANAR
  1931. ALL_AXES
  1932. #else
  1933. Z_AXIS
  1934. #endif
  1935. );
  1936. else
  1937. planner.unapply_leveling(current_position);
  1938. }
  1939. #endif
  1940. }
  1941. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  1942. void set_z_fade_height(const float zfh) {
  1943. planner.z_fade_height = zfh;
  1944. planner.inverse_z_fade_height = RECIPROCAL(zfh);
  1945. if (
  1946. #if ENABLED(MESH_BED_LEVELING)
  1947. mbl.active()
  1948. #else
  1949. planner.abl_enabled
  1950. #endif
  1951. ) {
  1952. set_current_from_steppers_for_axis(
  1953. #if ABL_PLANAR
  1954. ALL_AXES
  1955. #else
  1956. Z_AXIS
  1957. #endif
  1958. );
  1959. }
  1960. }
  1961. #endif // LEVELING_FADE_HEIGHT
  1962. /**
  1963. * Reset calibration results to zero.
  1964. */
  1965. void reset_bed_level() {
  1966. set_bed_leveling_enabled(false);
  1967. #if ENABLED(MESH_BED_LEVELING)
  1968. if (mbl.has_mesh()) {
  1969. mbl.reset();
  1970. mbl.set_has_mesh(false);
  1971. }
  1972. #else
  1973. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1974. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("reset_bed_level");
  1975. #endif
  1976. #if ABL_PLANAR
  1977. planner.bed_level_matrix.set_to_identity();
  1978. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  1979. bilinear_start[X_AXIS] = bilinear_start[Y_AXIS] =
  1980. bilinear_grid_spacing[X_AXIS] = bilinear_grid_spacing[Y_AXIS] = 0;
  1981. for (uint8_t x = 0; x < ABL_GRID_MAX_POINTS_X; x++)
  1982. for (uint8_t y = 0; y < ABL_GRID_MAX_POINTS_Y; y++)
  1983. bed_level_grid[x][y] = UNPROBED;
  1984. #endif
  1985. #endif
  1986. }
  1987. #endif // PLANNER_LEVELING
  1988. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  1989. /**
  1990. * Extrapolate a single point from its neighbors
  1991. */
  1992. static void extrapolate_one_point(uint8_t x, uint8_t y, int8_t xdir, int8_t ydir) {
  1993. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1994. if (DEBUGGING(LEVELING)) {
  1995. SERIAL_ECHOPGM("Extrapolate [");
  1996. if (x < 10) SERIAL_CHAR(' ');
  1997. SERIAL_ECHO((int)x);
  1998. SERIAL_CHAR(xdir ? (xdir > 0 ? '+' : '-') : ' ');
  1999. SERIAL_CHAR(' ');
  2000. if (y < 10) SERIAL_CHAR(' ');
  2001. SERIAL_ECHO((int)y);
  2002. SERIAL_CHAR(ydir ? (ydir > 0 ? '+' : '-') : ' ');
  2003. SERIAL_CHAR(']');
  2004. }
  2005. #endif
  2006. if (bed_level_grid[x][y] != UNPROBED) {
  2007. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2008. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM(" (done)");
  2009. #endif
  2010. return; // Don't overwrite good values.
  2011. }
  2012. SERIAL_EOL;
  2013. // Get X neighbors, Y neighbors, and XY neighbors
  2014. float a1 = bed_level_grid[x + xdir][y], a2 = bed_level_grid[x + xdir * 2][y],
  2015. b1 = bed_level_grid[x][y + ydir], b2 = bed_level_grid[x][y + ydir * 2],
  2016. c1 = bed_level_grid[x + xdir][y + ydir], c2 = bed_level_grid[x + xdir * 2][y + ydir * 2];
  2017. // Treat far unprobed points as zero, near as equal to far
  2018. if (a2 == UNPROBED) a2 = 0.0; if (a1 == UNPROBED) a1 = a2;
  2019. if (b2 == UNPROBED) b2 = 0.0; if (b1 == UNPROBED) b1 = b2;
  2020. if (c2 == UNPROBED) c2 = 0.0; if (c1 == UNPROBED) c1 = c2;
  2021. const float a = 2 * a1 - a2, b = 2 * b1 - b2, c = 2 * c1 - c2;
  2022. // Take the average instead of the median
  2023. bed_level_grid[x][y] = (a + b + c) / 3.0;
  2024. // Median is robust (ignores outliers).
  2025. // bed_level_grid[x][y] = (a < b) ? ((b < c) ? b : (c < a) ? a : c)
  2026. // : ((c < b) ? b : (a < c) ? a : c);
  2027. }
  2028. //Enable this if your SCARA uses 180° of total area
  2029. //#define EXTRAPOLATE_FROM_EDGE
  2030. #if ENABLED(EXTRAPOLATE_FROM_EDGE)
  2031. #if ABL_GRID_MAX_POINTS_X < ABL_GRID_MAX_POINTS_Y
  2032. #define HALF_IN_X
  2033. #elif ABL_GRID_MAX_POINTS_Y < ABL_GRID_MAX_POINTS_X
  2034. #define HALF_IN_Y
  2035. #endif
  2036. #endif
  2037. /**
  2038. * Fill in the unprobed points (corners of circular print surface)
  2039. * using linear extrapolation, away from the center.
  2040. */
  2041. static void extrapolate_unprobed_bed_level() {
  2042. #ifdef HALF_IN_X
  2043. const uint8_t ctrx2 = 0, xlen = ABL_GRID_MAX_POINTS_X - 1;
  2044. #else
  2045. const uint8_t ctrx1 = (ABL_GRID_MAX_POINTS_X - 1) / 2, // left-of-center
  2046. ctrx2 = ABL_GRID_MAX_POINTS_X / 2, // right-of-center
  2047. xlen = ctrx1;
  2048. #endif
  2049. #ifdef HALF_IN_Y
  2050. const uint8_t ctry2 = 0, ylen = ABL_GRID_MAX_POINTS_Y - 1;
  2051. #else
  2052. const uint8_t ctry1 = (ABL_GRID_MAX_POINTS_Y - 1) / 2, // top-of-center
  2053. ctry2 = ABL_GRID_MAX_POINTS_Y / 2, // bottom-of-center
  2054. ylen = ctry1;
  2055. #endif
  2056. for (uint8_t xo = 0; xo <= xlen; xo++)
  2057. for (uint8_t yo = 0; yo <= ylen; yo++) {
  2058. uint8_t x2 = ctrx2 + xo, y2 = ctry2 + yo;
  2059. #ifndef HALF_IN_X
  2060. const uint8_t x1 = ctrx1 - xo;
  2061. #endif
  2062. #ifndef HALF_IN_Y
  2063. const uint8_t y1 = ctry1 - yo;
  2064. #ifndef HALF_IN_X
  2065. extrapolate_one_point(x1, y1, +1, +1); // left-below + +
  2066. #endif
  2067. extrapolate_one_point(x2, y1, -1, +1); // right-below - +
  2068. #endif
  2069. #ifndef HALF_IN_X
  2070. extrapolate_one_point(x1, y2, +1, -1); // left-above + -
  2071. #endif
  2072. extrapolate_one_point(x2, y2, -1, -1); // right-above - -
  2073. }
  2074. }
  2075. /**
  2076. * Print calibration results for plotting or manual frame adjustment.
  2077. */
  2078. static void print_2d_array(const uint8_t sx, const uint8_t sy, const uint8_t precision, float (*fn)(const uint8_t, const uint8_t)) {
  2079. for (uint8_t x = 0; x < sx; x++) {
  2080. for (uint8_t i = 0; i < precision + 2 + (x < 10 ? 1 : 0); i++)
  2081. SERIAL_PROTOCOLCHAR(' ');
  2082. SERIAL_PROTOCOL((int)x);
  2083. }
  2084. SERIAL_EOL;
  2085. for (uint8_t y = 0; y < sy; y++) {
  2086. if (y < 10) SERIAL_PROTOCOLCHAR(' ');
  2087. SERIAL_PROTOCOL((int)y);
  2088. for (uint8_t x = 0; x < sx; x++) {
  2089. SERIAL_PROTOCOLCHAR(' ');
  2090. float offset = fn(x, y);
  2091. if (offset != UNPROBED) {
  2092. if (offset >= 0) SERIAL_CHAR('+');
  2093. SERIAL_PROTOCOL_F(offset, precision);
  2094. }
  2095. else
  2096. for (uint8_t i = 0; i < precision + 3; i++)
  2097. SERIAL_PROTOCOLCHAR(i ? '=' : ' ');
  2098. }
  2099. SERIAL_EOL;
  2100. }
  2101. SERIAL_EOL;
  2102. }
  2103. static void print_bilinear_leveling_grid() {
  2104. SERIAL_ECHOLNPGM("Bilinear Leveling Grid:");
  2105. print_2d_array(ABL_GRID_MAX_POINTS_X, ABL_GRID_MAX_POINTS_Y, 2,
  2106. [](const uint8_t x, const uint8_t y) { return bed_level_grid[x][y]; }
  2107. );
  2108. }
  2109. #if ENABLED(ABL_BILINEAR_SUBDIVISION)
  2110. #define ABL_GRID_POINTS_VIRT_X (ABL_GRID_MAX_POINTS_X - 1) * (BILINEAR_SUBDIVISIONS) + 1
  2111. #define ABL_GRID_POINTS_VIRT_Y (ABL_GRID_MAX_POINTS_Y - 1) * (BILINEAR_SUBDIVISIONS) + 1
  2112. #define ABL_TEMP_POINTS_X (ABL_GRID_MAX_POINTS_X + 2)
  2113. #define ABL_TEMP_POINTS_Y (ABL_GRID_MAX_POINTS_Y + 2)
  2114. float bed_level_grid_virt[ABL_GRID_POINTS_VIRT_X][ABL_GRID_POINTS_VIRT_Y];
  2115. int bilinear_grid_spacing_virt[2] = { 0 };
  2116. static void bed_level_virt_print() {
  2117. SERIAL_ECHOLNPGM("Subdivided with CATMULL ROM Leveling Grid:");
  2118. print_2d_array(ABL_GRID_POINTS_VIRT_X, ABL_GRID_POINTS_VIRT_Y, 5,
  2119. [](const uint8_t x, const uint8_t y) { return bed_level_grid_virt[x][y]; }
  2120. );
  2121. }
  2122. #define LINEAR_EXTRAPOLATION(E, I) ((E) * 2 - (I))
  2123. float bed_level_virt_coord(const uint8_t x, const uint8_t y) {
  2124. uint8_t ep = 0, ip = 1;
  2125. if (!x || x == ABL_TEMP_POINTS_X - 1) {
  2126. if (x) {
  2127. ep = ABL_GRID_MAX_POINTS_X - 1;
  2128. ip = ABL_GRID_MAX_POINTS_X - 2;
  2129. }
  2130. if (y > 0 && y < ABL_TEMP_POINTS_Y - 1)
  2131. return LINEAR_EXTRAPOLATION(
  2132. bed_level_grid[ep][y - 1],
  2133. bed_level_grid[ip][y - 1]
  2134. );
  2135. else
  2136. return LINEAR_EXTRAPOLATION(
  2137. bed_level_virt_coord(ep + 1, y),
  2138. bed_level_virt_coord(ip + 1, y)
  2139. );
  2140. }
  2141. if (!y || y == ABL_TEMP_POINTS_Y - 1) {
  2142. if (y) {
  2143. ep = ABL_GRID_MAX_POINTS_Y - 1;
  2144. ip = ABL_GRID_MAX_POINTS_Y - 2;
  2145. }
  2146. if (x > 0 && x < ABL_TEMP_POINTS_X - 1)
  2147. return LINEAR_EXTRAPOLATION(
  2148. bed_level_grid[x - 1][ep],
  2149. bed_level_grid[x - 1][ip]
  2150. );
  2151. else
  2152. return LINEAR_EXTRAPOLATION(
  2153. bed_level_virt_coord(x, ep + 1),
  2154. bed_level_virt_coord(x, ip + 1)
  2155. );
  2156. }
  2157. return bed_level_grid[x - 1][y - 1];
  2158. }
  2159. static float bed_level_virt_cmr(const float p[4], const uint8_t i, const float t) {
  2160. return (
  2161. p[i-1] * -t * sq(1 - t)
  2162. + p[i] * (2 - 5 * sq(t) + 3 * t * sq(t))
  2163. + p[i+1] * t * (1 + 4 * t - 3 * sq(t))
  2164. - p[i+2] * sq(t) * (1 - t)
  2165. ) * 0.5;
  2166. }
  2167. static float bed_level_virt_2cmr(const uint8_t x, const uint8_t y, const float &tx, const float &ty) {
  2168. float row[4], column[4];
  2169. for (uint8_t i = 0; i < 4; i++) {
  2170. for (uint8_t j = 0; j < 4; j++) {
  2171. column[j] = bed_level_virt_coord(i + x - 1, j + y - 1);
  2172. }
  2173. row[i] = bed_level_virt_cmr(column, 1, ty);
  2174. }
  2175. return bed_level_virt_cmr(row, 1, tx);
  2176. }
  2177. void bed_level_virt_interpolate() {
  2178. for (uint8_t y = 0; y < ABL_GRID_MAX_POINTS_Y; y++)
  2179. for (uint8_t x = 0; x < ABL_GRID_MAX_POINTS_X; x++)
  2180. for (uint8_t ty = 0; ty < BILINEAR_SUBDIVISIONS; ty++)
  2181. for (uint8_t tx = 0; tx < BILINEAR_SUBDIVISIONS; tx++) {
  2182. if ((ty && y == ABL_GRID_MAX_POINTS_Y - 1) || (tx && x == ABL_GRID_MAX_POINTS_X - 1))
  2183. continue;
  2184. bed_level_grid_virt[x * (BILINEAR_SUBDIVISIONS) + tx][y * (BILINEAR_SUBDIVISIONS) + ty] =
  2185. bed_level_virt_2cmr(
  2186. x + 1,
  2187. y + 1,
  2188. (float)tx / (BILINEAR_SUBDIVISIONS),
  2189. (float)ty / (BILINEAR_SUBDIVISIONS)
  2190. );
  2191. }
  2192. }
  2193. #endif // ABL_BILINEAR_SUBDIVISION
  2194. #endif // AUTO_BED_LEVELING_BILINEAR
  2195. /**
  2196. * Home an individual linear axis
  2197. */
  2198. static void do_homing_move(const AxisEnum axis, float distance, float fr_mm_s=0.0) {
  2199. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2200. if (DEBUGGING(LEVELING)) {
  2201. SERIAL_ECHOPAIR(">>> do_homing_move(", axis_codes[axis]);
  2202. SERIAL_ECHOPAIR(", ", distance);
  2203. SERIAL_ECHOPAIR(", ", fr_mm_s);
  2204. SERIAL_CHAR(')');
  2205. SERIAL_EOL;
  2206. }
  2207. #endif
  2208. #if HOMING_Z_WITH_PROBE && ENABLED(BLTOUCH)
  2209. const bool deploy_bltouch = (axis == Z_AXIS && distance < 0);
  2210. if (deploy_bltouch) set_bltouch_deployed(true);
  2211. #endif
  2212. // Tell the planner we're at Z=0
  2213. current_position[axis] = 0;
  2214. #if IS_SCARA
  2215. SYNC_PLAN_POSITION_KINEMATIC();
  2216. current_position[axis] = distance;
  2217. inverse_kinematics(current_position);
  2218. planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], current_position[E_AXIS], fr_mm_s ? fr_mm_s : homing_feedrate_mm_s[axis], active_extruder);
  2219. #else
  2220. sync_plan_position();
  2221. current_position[axis] = distance;
  2222. planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], fr_mm_s ? fr_mm_s : homing_feedrate_mm_s[axis], active_extruder);
  2223. #endif
  2224. stepper.synchronize();
  2225. #if HOMING_Z_WITH_PROBE && ENABLED(BLTOUCH)
  2226. if (deploy_bltouch) set_bltouch_deployed(false);
  2227. #endif
  2228. endstops.hit_on_purpose();
  2229. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2230. if (DEBUGGING(LEVELING)) {
  2231. SERIAL_ECHOPAIR("<<< do_homing_move(", axis_codes[axis]);
  2232. SERIAL_CHAR(')');
  2233. SERIAL_EOL;
  2234. }
  2235. #endif
  2236. }
  2237. /**
  2238. * Home an individual "raw axis" to its endstop.
  2239. * This applies to XYZ on Cartesian and Core robots, and
  2240. * to the individual ABC steppers on DELTA and SCARA.
  2241. *
  2242. * At the end of the procedure the axis is marked as
  2243. * homed and the current position of that axis is updated.
  2244. * Kinematic robots should wait till all axes are homed
  2245. * before updating the current position.
  2246. */
  2247. #define HOMEAXIS(LETTER) homeaxis(LETTER##_AXIS)
  2248. static void homeaxis(const AxisEnum axis) {
  2249. #if IS_SCARA
  2250. // Only Z homing (with probe) is permitted
  2251. if (axis != Z_AXIS) { BUZZ(100, 880); return; }
  2252. #else
  2253. #define CAN_HOME(A) \
  2254. (axis == A##_AXIS && ((A##_MIN_PIN > -1 && A##_HOME_DIR < 0) || (A##_MAX_PIN > -1 && A##_HOME_DIR > 0)))
  2255. if (!CAN_HOME(X) && !CAN_HOME(Y) && !CAN_HOME(Z)) return;
  2256. #endif
  2257. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2258. if (DEBUGGING(LEVELING)) {
  2259. SERIAL_ECHOPAIR(">>> homeaxis(", axis_codes[axis]);
  2260. SERIAL_CHAR(')');
  2261. SERIAL_EOL;
  2262. }
  2263. #endif
  2264. const int axis_home_dir =
  2265. #if ENABLED(DUAL_X_CARRIAGE)
  2266. (axis == X_AXIS) ? x_home_dir(active_extruder) :
  2267. #endif
  2268. home_dir(axis);
  2269. // Homing Z towards the bed? Deploy the Z probe or endstop.
  2270. #if HOMING_Z_WITH_PROBE
  2271. if (axis == Z_AXIS && DEPLOY_PROBE()) return;
  2272. #endif
  2273. // Set a flag for Z motor locking
  2274. #if ENABLED(Z_DUAL_ENDSTOPS)
  2275. if (axis == Z_AXIS) stepper.set_homing_flag(true);
  2276. #endif
  2277. // Fast move towards endstop until triggered
  2278. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2279. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("Home 1 Fast:");
  2280. #endif
  2281. do_homing_move(axis, 1.5 * max_length(axis) * axis_home_dir);
  2282. // When homing Z with probe respect probe clearance
  2283. const float bump = axis_home_dir * (
  2284. #if HOMING_Z_WITH_PROBE
  2285. (axis == Z_AXIS) ? max(Z_CLEARANCE_BETWEEN_PROBES, home_bump_mm(Z_AXIS)) :
  2286. #endif
  2287. home_bump_mm(axis)
  2288. );
  2289. // If a second homing move is configured...
  2290. if (bump) {
  2291. // Move away from the endstop by the axis HOME_BUMP_MM
  2292. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2293. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("Move Away:");
  2294. #endif
  2295. do_homing_move(axis, -bump);
  2296. // Slow move towards endstop until triggered
  2297. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2298. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("Home 2 Slow:");
  2299. #endif
  2300. do_homing_move(axis, 2 * bump, get_homing_bump_feedrate(axis));
  2301. }
  2302. #if ENABLED(Z_DUAL_ENDSTOPS)
  2303. if (axis == Z_AXIS) {
  2304. float adj = fabs(z_endstop_adj);
  2305. bool lockZ1;
  2306. if (axis_home_dir > 0) {
  2307. adj = -adj;
  2308. lockZ1 = (z_endstop_adj > 0);
  2309. }
  2310. else
  2311. lockZ1 = (z_endstop_adj < 0);
  2312. if (lockZ1) stepper.set_z_lock(true); else stepper.set_z2_lock(true);
  2313. // Move to the adjusted endstop height
  2314. do_homing_move(axis, adj);
  2315. if (lockZ1) stepper.set_z_lock(false); else stepper.set_z2_lock(false);
  2316. stepper.set_homing_flag(false);
  2317. } // Z_AXIS
  2318. #endif
  2319. #if IS_SCARA
  2320. set_axis_is_at_home(axis);
  2321. SYNC_PLAN_POSITION_KINEMATIC();
  2322. #elif ENABLED(DELTA)
  2323. // Delta has already moved all three towers up in G28
  2324. // so here it re-homes each tower in turn.
  2325. // Delta homing treats the axes as normal linear axes.
  2326. // retrace by the amount specified in endstop_adj
  2327. if (endstop_adj[axis] * Z_HOME_DIR < 0) {
  2328. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2329. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("endstop_adj:");
  2330. #endif
  2331. do_homing_move(axis, endstop_adj[axis]);
  2332. }
  2333. #else
  2334. // For cartesian/core machines,
  2335. // set the axis to its home position
  2336. set_axis_is_at_home(axis);
  2337. sync_plan_position();
  2338. destination[axis] = current_position[axis];
  2339. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2340. if (DEBUGGING(LEVELING)) DEBUG_POS("> AFTER set_axis_is_at_home", current_position);
  2341. #endif
  2342. #endif
  2343. // Put away the Z probe
  2344. #if HOMING_Z_WITH_PROBE
  2345. if (axis == Z_AXIS && STOW_PROBE()) return;
  2346. #endif
  2347. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2348. if (DEBUGGING(LEVELING)) {
  2349. SERIAL_ECHOPAIR("<<< homeaxis(", axis_codes[axis]);
  2350. SERIAL_CHAR(')');
  2351. SERIAL_EOL;
  2352. }
  2353. #endif
  2354. } // homeaxis()
  2355. #if ENABLED(FWRETRACT)
  2356. void retract(const bool retracting, const bool swapping = false) {
  2357. static float hop_height;
  2358. if (retracting == retracted[active_extruder]) return;
  2359. const float old_feedrate_mm_s = feedrate_mm_s;
  2360. set_destination_to_current();
  2361. if (retracting) {
  2362. feedrate_mm_s = retract_feedrate_mm_s;
  2363. current_position[E_AXIS] += (swapping ? retract_length_swap : retract_length) / volumetric_multiplier[active_extruder];
  2364. sync_plan_position_e();
  2365. prepare_move_to_destination();
  2366. if (retract_zlift > 0.01) {
  2367. hop_height = current_position[Z_AXIS];
  2368. // Pretend current position is lower
  2369. current_position[Z_AXIS] -= retract_zlift;
  2370. SYNC_PLAN_POSITION_KINEMATIC();
  2371. // Raise up to the old current_position
  2372. prepare_move_to_destination();
  2373. }
  2374. }
  2375. else {
  2376. // If the height hasn't been altered, undo the Z hop
  2377. if (retract_zlift > 0.01 && hop_height == current_position[Z_AXIS]) {
  2378. // Pretend current position is higher. Z will lower on the next move
  2379. current_position[Z_AXIS] += retract_zlift;
  2380. SYNC_PLAN_POSITION_KINEMATIC();
  2381. }
  2382. feedrate_mm_s = retract_recover_feedrate_mm_s;
  2383. const float move_e = swapping ? retract_length_swap + retract_recover_length_swap : retract_length + retract_recover_length;
  2384. current_position[E_AXIS] -= move_e / volumetric_multiplier[active_extruder];
  2385. sync_plan_position_e();
  2386. // Lower Z and recover E
  2387. prepare_move_to_destination();
  2388. }
  2389. feedrate_mm_s = old_feedrate_mm_s;
  2390. retracted[active_extruder] = retracting;
  2391. } // retract()
  2392. #endif // FWRETRACT
  2393. #if ENABLED(MIXING_EXTRUDER)
  2394. void normalize_mix() {
  2395. float mix_total = 0.0;
  2396. for (uint8_t i = 0; i < MIXING_STEPPERS; i++) mix_total += RECIPROCAL(mixing_factor[i]);
  2397. // Scale all values if they don't add up to ~1.0
  2398. if (!NEAR(mix_total, 1.0)) {
  2399. SERIAL_PROTOCOLLNPGM("Warning: Mix factors must add up to 1.0. Scaling.");
  2400. for (uint8_t i = 0; i < MIXING_STEPPERS; i++) mixing_factor[i] *= mix_total;
  2401. }
  2402. }
  2403. #if ENABLED(DIRECT_MIXING_IN_G1)
  2404. // Get mixing parameters from the GCode
  2405. // The total "must" be 1.0 (but it will be normalized)
  2406. // If no mix factors are given, the old mix is preserved
  2407. void gcode_get_mix() {
  2408. const char* mixing_codes = "ABCDHI";
  2409. byte mix_bits = 0;
  2410. for (uint8_t i = 0; i < MIXING_STEPPERS; i++) {
  2411. if (code_seen(mixing_codes[i])) {
  2412. SBI(mix_bits, i);
  2413. float v = code_value_float();
  2414. NOLESS(v, 0.0);
  2415. mixing_factor[i] = RECIPROCAL(v);
  2416. }
  2417. }
  2418. // If any mixing factors were included, clear the rest
  2419. // If none were included, preserve the last mix
  2420. if (mix_bits) {
  2421. for (uint8_t i = 0; i < MIXING_STEPPERS; i++)
  2422. if (!TEST(mix_bits, i)) mixing_factor[i] = 0.0;
  2423. normalize_mix();
  2424. }
  2425. }
  2426. #endif
  2427. #endif
  2428. /**
  2429. * ***************************************************************************
  2430. * ***************************** G-CODE HANDLING *****************************
  2431. * ***************************************************************************
  2432. */
  2433. /**
  2434. * Set XYZE destination and feedrate from the current GCode command
  2435. *
  2436. * - Set destination from included axis codes
  2437. * - Set to current for missing axis codes
  2438. * - Set the feedrate, if included
  2439. */
  2440. void gcode_get_destination() {
  2441. LOOP_XYZE(i) {
  2442. if (code_seen(axis_codes[i]))
  2443. destination[i] = code_value_axis_units(i) + (axis_relative_modes[i] || relative_mode ? current_position[i] : 0);
  2444. else
  2445. destination[i] = current_position[i];
  2446. }
  2447. if (code_seen('F') && code_value_linear_units() > 0.0)
  2448. feedrate_mm_s = MMM_TO_MMS(code_value_linear_units());
  2449. #if ENABLED(PRINTCOUNTER)
  2450. if (!DEBUGGING(DRYRUN))
  2451. print_job_timer.incFilamentUsed(destination[E_AXIS] - current_position[E_AXIS]);
  2452. #endif
  2453. // Get ABCDHI mixing factors
  2454. #if ENABLED(MIXING_EXTRUDER) && ENABLED(DIRECT_MIXING_IN_G1)
  2455. gcode_get_mix();
  2456. #endif
  2457. }
  2458. void unknown_command_error() {
  2459. SERIAL_ECHO_START;
  2460. SERIAL_ECHOPAIR(MSG_UNKNOWN_COMMAND, current_command);
  2461. SERIAL_CHAR('"');
  2462. SERIAL_EOL;
  2463. }
  2464. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  2465. /**
  2466. * Output a "busy" message at regular intervals
  2467. * while the machine is not accepting commands.
  2468. */
  2469. void host_keepalive() {
  2470. const millis_t ms = millis();
  2471. if (host_keepalive_interval && busy_state != NOT_BUSY) {
  2472. if (PENDING(ms, next_busy_signal_ms)) return;
  2473. switch (busy_state) {
  2474. case IN_HANDLER:
  2475. case IN_PROCESS:
  2476. SERIAL_ECHO_START;
  2477. SERIAL_ECHOLNPGM(MSG_BUSY_PROCESSING);
  2478. break;
  2479. case PAUSED_FOR_USER:
  2480. SERIAL_ECHO_START;
  2481. SERIAL_ECHOLNPGM(MSG_BUSY_PAUSED_FOR_USER);
  2482. break;
  2483. case PAUSED_FOR_INPUT:
  2484. SERIAL_ECHO_START;
  2485. SERIAL_ECHOLNPGM(MSG_BUSY_PAUSED_FOR_INPUT);
  2486. break;
  2487. default:
  2488. break;
  2489. }
  2490. }
  2491. next_busy_signal_ms = ms + host_keepalive_interval * 1000UL;
  2492. }
  2493. #endif //HOST_KEEPALIVE_FEATURE
  2494. bool position_is_reachable(float target[XYZ]
  2495. #if HAS_BED_PROBE
  2496. , bool by_probe=false
  2497. #endif
  2498. ) {
  2499. float dx = RAW_X_POSITION(target[X_AXIS]),
  2500. dy = RAW_Y_POSITION(target[Y_AXIS]);
  2501. #if HAS_BED_PROBE
  2502. if (by_probe) {
  2503. dx -= X_PROBE_OFFSET_FROM_EXTRUDER;
  2504. dy -= Y_PROBE_OFFSET_FROM_EXTRUDER;
  2505. }
  2506. #endif
  2507. #if IS_SCARA
  2508. #if MIDDLE_DEAD_ZONE_R > 0
  2509. const float R2 = HYPOT2(dx - SCARA_OFFSET_X, dy - SCARA_OFFSET_Y);
  2510. return R2 >= sq(float(MIDDLE_DEAD_ZONE_R)) && R2 <= sq(L1 + L2);
  2511. #else
  2512. return HYPOT2(dx - SCARA_OFFSET_X, dy - SCARA_OFFSET_Y) <= sq(L1 + L2);
  2513. #endif
  2514. #elif ENABLED(DELTA)
  2515. return HYPOT2(dx, dy) <= sq((float)(DELTA_PRINTABLE_RADIUS));
  2516. #else
  2517. const float dz = RAW_Z_POSITION(target[Z_AXIS]);
  2518. return dx >= X_MIN_POS - 0.0001 && dx <= X_MAX_POS + 0.0001
  2519. && dy >= Y_MIN_POS - 0.0001 && dy <= Y_MAX_POS + 0.0001
  2520. && dz >= Z_MIN_POS - 0.0001 && dz <= Z_MAX_POS + 0.0001;
  2521. #endif
  2522. }
  2523. /**************************************************
  2524. ***************** GCode Handlers *****************
  2525. **************************************************/
  2526. /**
  2527. * G0, G1: Coordinated movement of X Y Z E axes
  2528. */
  2529. inline void gcode_G0_G1(
  2530. #if IS_SCARA
  2531. bool fast_move=false
  2532. #endif
  2533. ) {
  2534. if (IsRunning()) {
  2535. gcode_get_destination(); // For X Y Z E F
  2536. #if ENABLED(FWRETRACT)
  2537. if (autoretract_enabled && !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  2538. const float echange = destination[E_AXIS] - current_position[E_AXIS];
  2539. // Is this move an attempt to retract or recover?
  2540. if ((echange < -MIN_RETRACT && !retracted[active_extruder]) || (echange > MIN_RETRACT && retracted[active_extruder])) {
  2541. current_position[E_AXIS] = destination[E_AXIS]; // hide the slicer-generated retract/recover from calculations
  2542. sync_plan_position_e(); // AND from the planner
  2543. retract(!retracted[active_extruder]);
  2544. return;
  2545. }
  2546. }
  2547. #endif //FWRETRACT
  2548. #if IS_SCARA
  2549. fast_move ? prepare_uninterpolated_move_to_destination() : prepare_move_to_destination();
  2550. #else
  2551. prepare_move_to_destination();
  2552. #endif
  2553. }
  2554. }
  2555. /**
  2556. * G2: Clockwise Arc
  2557. * G3: Counterclockwise Arc
  2558. *
  2559. * This command has two forms: IJ-form and R-form.
  2560. *
  2561. * - I specifies an X offset. J specifies a Y offset.
  2562. * At least one of the IJ parameters is required.
  2563. * X and Y can be omitted to do a complete circle.
  2564. * The given XY is not error-checked. The arc ends
  2565. * based on the angle of the destination.
  2566. * Mixing I or J with R will throw an error.
  2567. *
  2568. * - R specifies the radius. X or Y is required.
  2569. * Omitting both X and Y will throw an error.
  2570. * X or Y must differ from the current XY.
  2571. * Mixing R with I or J will throw an error.
  2572. *
  2573. * Examples:
  2574. *
  2575. * G2 I10 ; CW circle centered at X+10
  2576. * G3 X20 Y12 R14 ; CCW circle with r=14 ending at X20 Y12
  2577. */
  2578. #if ENABLED(ARC_SUPPORT)
  2579. inline void gcode_G2_G3(bool clockwise) {
  2580. if (IsRunning()) {
  2581. #if ENABLED(SF_ARC_FIX)
  2582. const bool relative_mode_backup = relative_mode;
  2583. relative_mode = true;
  2584. #endif
  2585. gcode_get_destination();
  2586. #if ENABLED(SF_ARC_FIX)
  2587. relative_mode = relative_mode_backup;
  2588. #endif
  2589. float arc_offset[2] = { 0.0, 0.0 };
  2590. if (code_seen('R')) {
  2591. const float r = code_value_axis_units(X_AXIS),
  2592. x1 = current_position[X_AXIS], y1 = current_position[Y_AXIS],
  2593. x2 = destination[X_AXIS], y2 = destination[Y_AXIS];
  2594. if (r && (x2 != x1 || y2 != y1)) {
  2595. const float e = clockwise ^ (r < 0) ? -1 : 1, // clockwise -1/1, counterclockwise 1/-1
  2596. dx = x2 - x1, dy = y2 - y1, // X and Y differences
  2597. d = HYPOT(dx, dy), // Linear distance between the points
  2598. h = sqrt(sq(r) - sq(d * 0.5)), // Distance to the arc pivot-point
  2599. mx = (x1 + x2) * 0.5, my = (y1 + y2) * 0.5, // Point between the two points
  2600. sx = -dy / d, sy = dx / d, // Slope of the perpendicular bisector
  2601. cx = mx + e * h * sx, cy = my + e * h * sy; // Pivot-point of the arc
  2602. arc_offset[X_AXIS] = cx - x1;
  2603. arc_offset[Y_AXIS] = cy - y1;
  2604. }
  2605. }
  2606. else {
  2607. if (code_seen('I')) arc_offset[X_AXIS] = code_value_axis_units(X_AXIS);
  2608. if (code_seen('J')) arc_offset[Y_AXIS] = code_value_axis_units(Y_AXIS);
  2609. }
  2610. if (arc_offset[0] || arc_offset[1]) {
  2611. // Send an arc to the planner
  2612. plan_arc(destination, arc_offset, clockwise);
  2613. refresh_cmd_timeout();
  2614. }
  2615. else {
  2616. // Bad arguments
  2617. SERIAL_ERROR_START;
  2618. SERIAL_ERRORLNPGM(MSG_ERR_ARC_ARGS);
  2619. }
  2620. }
  2621. }
  2622. #endif
  2623. /**
  2624. * G4: Dwell S<seconds> or P<milliseconds>
  2625. */
  2626. inline void gcode_G4() {
  2627. millis_t dwell_ms = 0;
  2628. if (code_seen('P')) dwell_ms = code_value_millis(); // milliseconds to wait
  2629. if (code_seen('S')) dwell_ms = code_value_millis_from_seconds(); // seconds to wait
  2630. stepper.synchronize();
  2631. refresh_cmd_timeout();
  2632. dwell_ms += previous_cmd_ms; // keep track of when we started waiting
  2633. if (!lcd_hasstatus()) LCD_MESSAGEPGM(MSG_DWELL);
  2634. while (PENDING(millis(), dwell_ms)) idle();
  2635. }
  2636. #if ENABLED(BEZIER_CURVE_SUPPORT)
  2637. /**
  2638. * Parameters interpreted according to:
  2639. * http://linuxcnc.org/docs/2.6/html/gcode/gcode.html#sec:G5-Cubic-Spline
  2640. * However I, J omission is not supported at this point; all
  2641. * parameters can be omitted and default to zero.
  2642. */
  2643. /**
  2644. * G5: Cubic B-spline
  2645. */
  2646. inline void gcode_G5() {
  2647. if (IsRunning()) {
  2648. gcode_get_destination();
  2649. const float offset[] = {
  2650. code_seen('I') ? code_value_axis_units(X_AXIS) : 0.0,
  2651. code_seen('J') ? code_value_axis_units(Y_AXIS) : 0.0,
  2652. code_seen('P') ? code_value_axis_units(X_AXIS) : 0.0,
  2653. code_seen('Q') ? code_value_axis_units(Y_AXIS) : 0.0
  2654. };
  2655. plan_cubic_move(offset);
  2656. }
  2657. }
  2658. #endif // BEZIER_CURVE_SUPPORT
  2659. #if ENABLED(FWRETRACT)
  2660. /**
  2661. * G10 - Retract filament according to settings of M207
  2662. * G11 - Recover filament according to settings of M208
  2663. */
  2664. inline void gcode_G10_G11(bool doRetract=false) {
  2665. #if EXTRUDERS > 1
  2666. if (doRetract) {
  2667. retracted_swap[active_extruder] = (code_seen('S') && code_value_bool()); // checks for swap retract argument
  2668. }
  2669. #endif
  2670. retract(doRetract
  2671. #if EXTRUDERS > 1
  2672. , retracted_swap[active_extruder]
  2673. #endif
  2674. );
  2675. }
  2676. #endif //FWRETRACT
  2677. #if ENABLED(NOZZLE_CLEAN_FEATURE)
  2678. /**
  2679. * G12: Clean the nozzle
  2680. */
  2681. inline void gcode_G12() {
  2682. // Don't allow nozzle cleaning without homing first
  2683. if (axis_unhomed_error(true, true, true)) { return; }
  2684. const uint8_t pattern = code_seen('P') ? code_value_ushort() : 0,
  2685. strokes = code_seen('S') ? code_value_ushort() : NOZZLE_CLEAN_STROKES,
  2686. objects = code_seen('T') ? code_value_ushort() : NOZZLE_CLEAN_TRIANGLES;
  2687. Nozzle::clean(pattern, strokes, objects);
  2688. }
  2689. #endif
  2690. #if ENABLED(INCH_MODE_SUPPORT)
  2691. /**
  2692. * G20: Set input mode to inches
  2693. */
  2694. inline void gcode_G20() { set_input_linear_units(LINEARUNIT_INCH); }
  2695. /**
  2696. * G21: Set input mode to millimeters
  2697. */
  2698. inline void gcode_G21() { set_input_linear_units(LINEARUNIT_MM); }
  2699. #endif
  2700. #if ENABLED(NOZZLE_PARK_FEATURE)
  2701. /**
  2702. * G27: Park the nozzle
  2703. */
  2704. inline void gcode_G27() {
  2705. // Don't allow nozzle parking without homing first
  2706. if (axis_unhomed_error(true, true, true)) return;
  2707. Nozzle::park(code_seen('P') ? code_value_ushort() : 0);
  2708. }
  2709. #endif // NOZZLE_PARK_FEATURE
  2710. #if ENABLED(QUICK_HOME)
  2711. static void quick_home_xy() {
  2712. // Pretend the current position is 0,0
  2713. current_position[X_AXIS] = current_position[Y_AXIS] = 0.0;
  2714. sync_plan_position();
  2715. const int x_axis_home_dir =
  2716. #if ENABLED(DUAL_X_CARRIAGE)
  2717. x_home_dir(active_extruder)
  2718. #else
  2719. home_dir(X_AXIS)
  2720. #endif
  2721. ;
  2722. const float mlx = max_length(X_AXIS),
  2723. mly = max_length(Y_AXIS),
  2724. mlratio = mlx > mly ? mly / mlx : mlx / mly,
  2725. fr_mm_s = min(homing_feedrate_mm_s[X_AXIS], homing_feedrate_mm_s[Y_AXIS]) * sqrt(sq(mlratio) + 1.0);
  2726. do_blocking_move_to_xy(1.5 * mlx * x_axis_home_dir, 1.5 * mly * home_dir(Y_AXIS), fr_mm_s);
  2727. endstops.hit_on_purpose(); // clear endstop hit flags
  2728. current_position[X_AXIS] = current_position[Y_AXIS] = 0.0;
  2729. }
  2730. #endif // QUICK_HOME
  2731. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2732. void log_machine_info() {
  2733. SERIAL_ECHOPGM("Machine Type: ");
  2734. #if ENABLED(DELTA)
  2735. SERIAL_ECHOLNPGM("Delta");
  2736. #elif IS_SCARA
  2737. SERIAL_ECHOLNPGM("SCARA");
  2738. #elif IS_CORE
  2739. SERIAL_ECHOLNPGM("Core");
  2740. #else
  2741. SERIAL_ECHOLNPGM("Cartesian");
  2742. #endif
  2743. SERIAL_ECHOPGM("Probe: ");
  2744. #if ENABLED(FIX_MOUNTED_PROBE)
  2745. SERIAL_ECHOLNPGM("FIX_MOUNTED_PROBE");
  2746. #elif ENABLED(BLTOUCH)
  2747. SERIAL_ECHOLNPGM("BLTOUCH");
  2748. #elif HAS_Z_SERVO_ENDSTOP
  2749. SERIAL_ECHOLNPGM("SERVO PROBE");
  2750. #elif ENABLED(Z_PROBE_SLED)
  2751. SERIAL_ECHOLNPGM("Z_PROBE_SLED");
  2752. #elif ENABLED(Z_PROBE_ALLEN_KEY)
  2753. SERIAL_ECHOLNPGM("Z_PROBE_ALLEN_KEY");
  2754. #else
  2755. SERIAL_ECHOLNPGM("NONE");
  2756. #endif
  2757. #if HAS_BED_PROBE
  2758. SERIAL_ECHOPAIR("Probe Offset X:", X_PROBE_OFFSET_FROM_EXTRUDER);
  2759. SERIAL_ECHOPAIR(" Y:", Y_PROBE_OFFSET_FROM_EXTRUDER);
  2760. SERIAL_ECHOPAIR(" Z:", zprobe_zoffset);
  2761. #if (X_PROBE_OFFSET_FROM_EXTRUDER > 0)
  2762. SERIAL_ECHOPGM(" (Right");
  2763. #elif (X_PROBE_OFFSET_FROM_EXTRUDER < 0)
  2764. SERIAL_ECHOPGM(" (Left");
  2765. #elif (Y_PROBE_OFFSET_FROM_EXTRUDER != 0)
  2766. SERIAL_ECHOPGM(" (Middle");
  2767. #else
  2768. SERIAL_ECHOPGM(" (Aligned With");
  2769. #endif
  2770. #if (Y_PROBE_OFFSET_FROM_EXTRUDER > 0)
  2771. SERIAL_ECHOPGM("-Back");
  2772. #elif (Y_PROBE_OFFSET_FROM_EXTRUDER < 0)
  2773. SERIAL_ECHOPGM("-Front");
  2774. #elif (X_PROBE_OFFSET_FROM_EXTRUDER != 0)
  2775. SERIAL_ECHOPGM("-Center");
  2776. #endif
  2777. if (zprobe_zoffset < 0)
  2778. SERIAL_ECHOPGM(" & Below");
  2779. else if (zprobe_zoffset > 0)
  2780. SERIAL_ECHOPGM(" & Above");
  2781. else
  2782. SERIAL_ECHOPGM(" & Same Z as");
  2783. SERIAL_ECHOLNPGM(" Nozzle)");
  2784. #endif
  2785. #if HAS_ABL
  2786. SERIAL_ECHOPGM("Auto Bed Leveling: ");
  2787. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  2788. SERIAL_ECHOPGM("LINEAR");
  2789. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  2790. SERIAL_ECHOPGM("BILINEAR");
  2791. #elif ENABLED(AUTO_BED_LEVELING_3POINT)
  2792. SERIAL_ECHOPGM("3POINT");
  2793. #endif
  2794. if (planner.abl_enabled) {
  2795. SERIAL_ECHOLNPGM(" (enabled)");
  2796. #if ENABLED(AUTO_BED_LEVELING_LINEAR) || ENABLED(AUTO_BED_LEVELING_3POINT)
  2797. float diff[XYZ] = {
  2798. stepper.get_axis_position_mm(X_AXIS) - current_position[X_AXIS],
  2799. stepper.get_axis_position_mm(Y_AXIS) - current_position[Y_AXIS],
  2800. stepper.get_axis_position_mm(Z_AXIS) - current_position[Z_AXIS]
  2801. };
  2802. SERIAL_ECHOPGM("ABL Adjustment X");
  2803. if (diff[X_AXIS] > 0) SERIAL_CHAR('+');
  2804. SERIAL_ECHO(diff[X_AXIS]);
  2805. SERIAL_ECHOPGM(" Y");
  2806. if (diff[Y_AXIS] > 0) SERIAL_CHAR('+');
  2807. SERIAL_ECHO(diff[Y_AXIS]);
  2808. SERIAL_ECHOPGM(" Z");
  2809. if (diff[Z_AXIS] > 0) SERIAL_CHAR('+');
  2810. SERIAL_ECHO(diff[Z_AXIS]);
  2811. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  2812. SERIAL_ECHOPAIR("ABL Adjustment Z", bilinear_z_offset(current_position));
  2813. #endif
  2814. }
  2815. SERIAL_EOL;
  2816. #elif ENABLED(MESH_BED_LEVELING)
  2817. SERIAL_ECHOPGM("Mesh Bed Leveling");
  2818. if (mbl.active()) {
  2819. float lz = current_position[Z_AXIS];
  2820. planner.apply_leveling(current_position[X_AXIS], current_position[Y_AXIS], lz);
  2821. SERIAL_ECHOLNPGM(" (enabled)");
  2822. SERIAL_ECHOPAIR("MBL Adjustment Z", lz);
  2823. }
  2824. SERIAL_EOL;
  2825. #endif
  2826. }
  2827. #endif // DEBUG_LEVELING_FEATURE
  2828. #if ENABLED(DELTA)
  2829. /**
  2830. * A delta can only safely home all axes at the same time
  2831. * This is like quick_home_xy() but for 3 towers.
  2832. */
  2833. inline void home_delta() {
  2834. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2835. if (DEBUGGING(LEVELING)) DEBUG_POS(">>> home_delta", current_position);
  2836. #endif
  2837. // Init the current position of all carriages to 0,0,0
  2838. ZERO(current_position);
  2839. sync_plan_position();
  2840. // Move all carriages together linearly until an endstop is hit.
  2841. current_position[X_AXIS] = current_position[Y_AXIS] = current_position[Z_AXIS] = (Z_MAX_LENGTH + 10);
  2842. feedrate_mm_s = homing_feedrate_mm_s[X_AXIS];
  2843. line_to_current_position();
  2844. stepper.synchronize();
  2845. endstops.hit_on_purpose(); // clear endstop hit flags
  2846. // At least one carriage has reached the top.
  2847. // Now re-home each carriage separately.
  2848. HOMEAXIS(A);
  2849. HOMEAXIS(B);
  2850. HOMEAXIS(C);
  2851. // Set all carriages to their home positions
  2852. // Do this here all at once for Delta, because
  2853. // XYZ isn't ABC. Applying this per-tower would
  2854. // give the impression that they are the same.
  2855. LOOP_XYZ(i) set_axis_is_at_home((AxisEnum)i);
  2856. SYNC_PLAN_POSITION_KINEMATIC();
  2857. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2858. if (DEBUGGING(LEVELING)) DEBUG_POS("<<< home_delta", current_position);
  2859. #endif
  2860. }
  2861. #endif // DELTA
  2862. #if ENABLED(Z_SAFE_HOMING)
  2863. inline void home_z_safely() {
  2864. // Disallow Z homing if X or Y are unknown
  2865. if (!axis_known_position[X_AXIS] || !axis_known_position[Y_AXIS]) {
  2866. LCD_MESSAGEPGM(MSG_ERR_Z_HOMING);
  2867. SERIAL_ECHO_START;
  2868. SERIAL_ECHOLNPGM(MSG_ERR_Z_HOMING);
  2869. return;
  2870. }
  2871. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2872. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("Z_SAFE_HOMING >>>");
  2873. #endif
  2874. SYNC_PLAN_POSITION_KINEMATIC();
  2875. /**
  2876. * Move the Z probe (or just the nozzle) to the safe homing point
  2877. */
  2878. destination[X_AXIS] = LOGICAL_X_POSITION(Z_SAFE_HOMING_X_POINT);
  2879. destination[Y_AXIS] = LOGICAL_Y_POSITION(Z_SAFE_HOMING_Y_POINT);
  2880. destination[Z_AXIS] = current_position[Z_AXIS]; // Z is already at the right height
  2881. if (position_is_reachable(
  2882. destination
  2883. #if HOMING_Z_WITH_PROBE
  2884. , true
  2885. #endif
  2886. )
  2887. ) {
  2888. #if HOMING_Z_WITH_PROBE
  2889. destination[X_AXIS] -= X_PROBE_OFFSET_FROM_EXTRUDER;
  2890. destination[Y_AXIS] -= Y_PROBE_OFFSET_FROM_EXTRUDER;
  2891. #endif
  2892. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2893. if (DEBUGGING(LEVELING)) DEBUG_POS("Z_SAFE_HOMING", destination);
  2894. #endif
  2895. // This causes the carriage on Dual X to unpark
  2896. #if ENABLED(DUAL_X_CARRIAGE)
  2897. active_extruder_parked = false;
  2898. #endif
  2899. do_blocking_move_to_xy(destination[X_AXIS], destination[Y_AXIS]);
  2900. HOMEAXIS(Z);
  2901. }
  2902. else {
  2903. LCD_MESSAGEPGM(MSG_ZPROBE_OUT);
  2904. SERIAL_ECHO_START;
  2905. SERIAL_ECHOLNPGM(MSG_ZPROBE_OUT);
  2906. }
  2907. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2908. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< Z_SAFE_HOMING");
  2909. #endif
  2910. }
  2911. #endif // Z_SAFE_HOMING
  2912. /**
  2913. * G28: Home all axes according to settings
  2914. *
  2915. * Parameters
  2916. *
  2917. * None Home to all axes with no parameters.
  2918. * With QUICK_HOME enabled XY will home together, then Z.
  2919. *
  2920. * Cartesian parameters
  2921. *
  2922. * X Home to the X endstop
  2923. * Y Home to the Y endstop
  2924. * Z Home to the Z endstop
  2925. *
  2926. */
  2927. inline void gcode_G28() {
  2928. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2929. if (DEBUGGING(LEVELING)) {
  2930. SERIAL_ECHOLNPGM(">>> gcode_G28");
  2931. log_machine_info();
  2932. }
  2933. #endif
  2934. // Wait for planner moves to finish!
  2935. stepper.synchronize();
  2936. // Disable the leveling matrix before homing
  2937. #if PLANNER_LEVELING
  2938. set_bed_leveling_enabled(false);
  2939. #endif
  2940. // Always home with tool 0 active
  2941. #if HOTENDS > 1
  2942. const uint8_t old_tool_index = active_extruder;
  2943. tool_change(0, 0, true);
  2944. #endif
  2945. #if ENABLED(DUAL_X_CARRIAGE) || ENABLED(DUAL_NOZZLE_DUPLICATION_MODE)
  2946. extruder_duplication_enabled = false;
  2947. #endif
  2948. /**
  2949. * For mesh bed leveling deactivate the mesh calculations, will be turned
  2950. * on again when homing all axis
  2951. */
  2952. #if ENABLED(MESH_BED_LEVELING)
  2953. float pre_home_z = MESH_HOME_SEARCH_Z;
  2954. if (mbl.active()) {
  2955. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2956. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("MBL was active");
  2957. #endif
  2958. // Use known Z position if already homed
  2959. if (axis_homed[X_AXIS] && axis_homed[Y_AXIS] && axis_homed[Z_AXIS]) {
  2960. set_bed_leveling_enabled(false);
  2961. pre_home_z = current_position[Z_AXIS];
  2962. }
  2963. else {
  2964. mbl.set_active(false);
  2965. current_position[Z_AXIS] = pre_home_z;
  2966. }
  2967. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2968. if (DEBUGGING(LEVELING)) DEBUG_POS("Set Z to pre_home_z", current_position);
  2969. #endif
  2970. }
  2971. #endif
  2972. setup_for_endstop_or_probe_move();
  2973. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2974. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> endstops.enable(true)");
  2975. #endif
  2976. endstops.enable(true); // Enable endstops for next homing move
  2977. #if ENABLED(DELTA)
  2978. home_delta();
  2979. #else // NOT DELTA
  2980. const bool homeX = code_seen('X'), homeY = code_seen('Y'), homeZ = code_seen('Z'),
  2981. home_all_axis = (!homeX && !homeY && !homeZ) || (homeX && homeY && homeZ);
  2982. set_destination_to_current();
  2983. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  2984. if (home_all_axis || homeZ) {
  2985. HOMEAXIS(Z);
  2986. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2987. if (DEBUGGING(LEVELING)) DEBUG_POS("> HOMEAXIS(Z)", current_position);
  2988. #endif
  2989. }
  2990. #else
  2991. if (home_all_axis || homeX || homeY) {
  2992. // Raise Z before homing any other axes and z is not already high enough (never lower z)
  2993. destination[Z_AXIS] = LOGICAL_Z_POSITION(Z_HOMING_HEIGHT);
  2994. if (destination[Z_AXIS] > current_position[Z_AXIS]) {
  2995. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2996. if (DEBUGGING(LEVELING))
  2997. SERIAL_ECHOLNPAIR("Raise Z (before homing) to ", destination[Z_AXIS]);
  2998. #endif
  2999. do_blocking_move_to_z(destination[Z_AXIS]);
  3000. }
  3001. }
  3002. #endif
  3003. #if ENABLED(QUICK_HOME)
  3004. if (home_all_axis || (homeX && homeY)) quick_home_xy();
  3005. #endif
  3006. #if ENABLED(HOME_Y_BEFORE_X)
  3007. // Home Y
  3008. if (home_all_axis || homeY) {
  3009. HOMEAXIS(Y);
  3010. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3011. if (DEBUGGING(LEVELING)) DEBUG_POS("> homeY", current_position);
  3012. #endif
  3013. }
  3014. #endif
  3015. // Home X
  3016. if (home_all_axis || homeX) {
  3017. #if ENABLED(DUAL_X_CARRIAGE)
  3018. // Always home the 2nd (right) extruder first
  3019. active_extruder = 1;
  3020. HOMEAXIS(X);
  3021. // Remember this extruder's position for later tool change
  3022. inactive_extruder_x_pos = RAW_X_POSITION(current_position[X_AXIS]);
  3023. // Home the 1st (left) extruder
  3024. active_extruder = 0;
  3025. HOMEAXIS(X);
  3026. // Consider the active extruder to be parked
  3027. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  3028. delayed_move_time = 0;
  3029. active_extruder_parked = true;
  3030. #else
  3031. HOMEAXIS(X);
  3032. #endif
  3033. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3034. if (DEBUGGING(LEVELING)) DEBUG_POS("> homeX", current_position);
  3035. #endif
  3036. }
  3037. #if DISABLED(HOME_Y_BEFORE_X)
  3038. // Home Y
  3039. if (home_all_axis || homeY) {
  3040. HOMEAXIS(Y);
  3041. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3042. if (DEBUGGING(LEVELING)) DEBUG_POS("> homeY", current_position);
  3043. #endif
  3044. }
  3045. #endif
  3046. // Home Z last if homing towards the bed
  3047. #if Z_HOME_DIR < 0
  3048. if (home_all_axis || homeZ) {
  3049. #if ENABLED(Z_SAFE_HOMING)
  3050. home_z_safely();
  3051. #else
  3052. HOMEAXIS(Z);
  3053. #endif
  3054. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3055. if (DEBUGGING(LEVELING)) DEBUG_POS("> (home_all_axis || homeZ) > final", current_position);
  3056. #endif
  3057. } // home_all_axis || homeZ
  3058. #endif // Z_HOME_DIR < 0
  3059. SYNC_PLAN_POSITION_KINEMATIC();
  3060. #endif // !DELTA (gcode_G28)
  3061. endstops.not_homing();
  3062. #if ENABLED(DELTA) && ENABLED(DELTA_HOME_TO_SAFE_ZONE)
  3063. // move to a height where we can use the full xy-area
  3064. do_blocking_move_to_z(delta_clip_start_height);
  3065. #endif
  3066. // Enable mesh leveling again
  3067. #if ENABLED(MESH_BED_LEVELING)
  3068. if (mbl.has_mesh()) {
  3069. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3070. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("MBL has mesh");
  3071. #endif
  3072. if (home_all_axis || (axis_homed[X_AXIS] && axis_homed[Y_AXIS] && homeZ)) {
  3073. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3074. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("MBL Z homing");
  3075. #endif
  3076. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z
  3077. #if Z_HOME_DIR > 0
  3078. + Z_MAX_POS
  3079. #endif
  3080. ;
  3081. SYNC_PLAN_POSITION_KINEMATIC();
  3082. mbl.set_active(true);
  3083. #if ENABLED(MESH_G28_REST_ORIGIN)
  3084. current_position[Z_AXIS] = 0.0;
  3085. set_destination_to_current();
  3086. line_to_destination(homing_feedrate_mm_s[Z_AXIS]);
  3087. stepper.synchronize();
  3088. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3089. if (DEBUGGING(LEVELING)) DEBUG_POS("MBL Rest Origin", current_position);
  3090. #endif
  3091. #else
  3092. planner.unapply_leveling(current_position);
  3093. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3094. if (DEBUGGING(LEVELING)) DEBUG_POS("MBL adjusted MESH_HOME_SEARCH_Z", current_position);
  3095. #endif
  3096. #endif
  3097. }
  3098. else if ((axis_homed[X_AXIS] && axis_homed[Y_AXIS] && axis_homed[Z_AXIS]) && (homeX || homeY)) {
  3099. current_position[Z_AXIS] = pre_home_z;
  3100. SYNC_PLAN_POSITION_KINEMATIC();
  3101. mbl.set_active(true);
  3102. planner.unapply_leveling(current_position);
  3103. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3104. if (DEBUGGING(LEVELING)) DEBUG_POS("MBL Home X or Y", current_position);
  3105. #endif
  3106. }
  3107. }
  3108. #endif
  3109. clean_up_after_endstop_or_probe_move();
  3110. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3111. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< gcode_G28");
  3112. #endif
  3113. // Restore the active tool after homing
  3114. #if HOTENDS > 1
  3115. tool_change(old_tool_index, 0, true);
  3116. #endif
  3117. report_current_position();
  3118. }
  3119. #if HAS_PROBING_PROCEDURE
  3120. void out_of_range_error(const char* p_edge) {
  3121. SERIAL_PROTOCOLPGM("?Probe ");
  3122. serialprintPGM(p_edge);
  3123. SERIAL_PROTOCOLLNPGM(" position out of range.");
  3124. }
  3125. #endif
  3126. #if ENABLED(MESH_BED_LEVELING)
  3127. inline void _mbl_goto_xy(const float &x, const float &y) {
  3128. const float old_feedrate_mm_s = feedrate_mm_s;
  3129. feedrate_mm_s = homing_feedrate_mm_s[Z_AXIS];
  3130. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z
  3131. #if Z_CLEARANCE_BETWEEN_PROBES > Z_HOMING_HEIGHT
  3132. + Z_CLEARANCE_BETWEEN_PROBES
  3133. #elif Z_HOMING_HEIGHT > 0
  3134. + Z_HOMING_HEIGHT
  3135. #endif
  3136. ;
  3137. line_to_current_position();
  3138. feedrate_mm_s = MMM_TO_MMS(XY_PROBE_SPEED);
  3139. current_position[X_AXIS] = LOGICAL_X_POSITION(x);
  3140. current_position[Y_AXIS] = LOGICAL_Y_POSITION(y);
  3141. line_to_current_position();
  3142. #if Z_CLEARANCE_BETWEEN_PROBES > 0 || Z_HOMING_HEIGHT > 0
  3143. feedrate_mm_s = homing_feedrate_mm_s[Z_AXIS];
  3144. current_position[Z_AXIS] = LOGICAL_Z_POSITION(MESH_HOME_SEARCH_Z);
  3145. line_to_current_position();
  3146. #endif
  3147. feedrate_mm_s = old_feedrate_mm_s;
  3148. stepper.synchronize();
  3149. }
  3150. // Save 130 bytes with non-duplication of PSTR
  3151. void say_not_entered() { SERIAL_PROTOCOLLNPGM(" not entered."); }
  3152. void mbl_mesh_report() {
  3153. SERIAL_PROTOCOLLNPGM("Num X,Y: " STRINGIFY(MESH_NUM_X_POINTS) "," STRINGIFY(MESH_NUM_Y_POINTS));
  3154. SERIAL_PROTOCOLLNPGM("Z search height: " STRINGIFY(MESH_HOME_SEARCH_Z));
  3155. SERIAL_PROTOCOLPGM("Z offset: "); SERIAL_PROTOCOL_F(mbl.z_offset, 5);
  3156. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  3157. for (uint8_t py = 0; py < MESH_NUM_Y_POINTS; py++) {
  3158. for (uint8_t px = 0; px < MESH_NUM_X_POINTS; px++) {
  3159. SERIAL_PROTOCOLPGM(" ");
  3160. SERIAL_PROTOCOL_F(mbl.z_values[py][px], 5);
  3161. }
  3162. SERIAL_EOL;
  3163. }
  3164. }
  3165. /**
  3166. * G29: Mesh-based Z probe, probes a grid and produces a
  3167. * mesh to compensate for variable bed height
  3168. *
  3169. * Parameters With MESH_BED_LEVELING:
  3170. *
  3171. * S0 Produce a mesh report
  3172. * S1 Start probing mesh points
  3173. * S2 Probe the next mesh point
  3174. * S3 Xn Yn Zn.nn Manually modify a single point
  3175. * S4 Zn.nn Set z offset. Positive away from bed, negative closer to bed.
  3176. * S5 Reset and disable mesh
  3177. *
  3178. * The S0 report the points as below
  3179. *
  3180. * +----> X-axis 1-n
  3181. * |
  3182. * |
  3183. * v Y-axis 1-n
  3184. *
  3185. */
  3186. inline void gcode_G29() {
  3187. static int probe_index = -1;
  3188. const MeshLevelingState state = code_seen('S') ? (MeshLevelingState)code_value_byte() : MeshReport;
  3189. if (state < 0 || state > 5) {
  3190. SERIAL_PROTOCOLLNPGM("S out of range (0-5).");
  3191. return;
  3192. }
  3193. int8_t px, py;
  3194. switch (state) {
  3195. case MeshReport:
  3196. if (mbl.has_mesh()) {
  3197. SERIAL_PROTOCOLLNPAIR("State: ", mbl.active() ? MSG_ON : MSG_OFF);
  3198. mbl_mesh_report();
  3199. }
  3200. else
  3201. SERIAL_PROTOCOLLNPGM("Mesh bed leveling has no data.");
  3202. break;
  3203. case MeshStart:
  3204. mbl.reset();
  3205. probe_index = 0;
  3206. enqueue_and_echo_commands_P(PSTR("G28\nG29 S2"));
  3207. break;
  3208. case MeshNext:
  3209. if (probe_index < 0) {
  3210. SERIAL_PROTOCOLLNPGM("Start mesh probing with \"G29 S1\" first.");
  3211. return;
  3212. }
  3213. // For each G29 S2...
  3214. if (probe_index == 0) {
  3215. // For the initial G29 S2 make Z a positive value (e.g., 4.0)
  3216. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z
  3217. #if Z_HOME_DIR > 0
  3218. + Z_MAX_POS
  3219. #endif
  3220. ;
  3221. SYNC_PLAN_POSITION_KINEMATIC();
  3222. }
  3223. else {
  3224. // For G29 S2 after adjusting Z.
  3225. mbl.set_zigzag_z(probe_index - 1, current_position[Z_AXIS]);
  3226. }
  3227. // If there's another point to sample, move there with optional lift.
  3228. if (probe_index < (MESH_NUM_X_POINTS) * (MESH_NUM_Y_POINTS)) {
  3229. mbl.zigzag(probe_index, px, py);
  3230. _mbl_goto_xy(mbl.get_probe_x(px), mbl.get_probe_y(py));
  3231. probe_index++;
  3232. }
  3233. else {
  3234. // One last "return to the bed" (as originally coded) at completion
  3235. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z
  3236. #if Z_CLEARANCE_BETWEEN_PROBES > Z_HOMING_HEIGHT
  3237. + Z_CLEARANCE_BETWEEN_PROBES
  3238. #elif Z_HOMING_HEIGHT > 0
  3239. + Z_HOMING_HEIGHT
  3240. #endif
  3241. ;
  3242. line_to_current_position();
  3243. stepper.synchronize();
  3244. // After recording the last point, activate the mbl and home
  3245. SERIAL_PROTOCOLLNPGM("Mesh probing done.");
  3246. probe_index = -1;
  3247. mbl.set_has_mesh(true);
  3248. enqueue_and_echo_commands_P(PSTR("G28"));
  3249. }
  3250. break;
  3251. case MeshSet:
  3252. if (code_seen('X')) {
  3253. px = code_value_int() - 1;
  3254. if (px < 0 || px >= MESH_NUM_X_POINTS) {
  3255. SERIAL_PROTOCOLLNPGM("X out of range (1-" STRINGIFY(MESH_NUM_X_POINTS) ").");
  3256. return;
  3257. }
  3258. }
  3259. else {
  3260. SERIAL_CHAR('X'); say_not_entered();
  3261. return;
  3262. }
  3263. if (code_seen('Y')) {
  3264. py = code_value_int() - 1;
  3265. if (py < 0 || py >= MESH_NUM_Y_POINTS) {
  3266. SERIAL_PROTOCOLLNPGM("Y out of range (1-" STRINGIFY(MESH_NUM_Y_POINTS) ").");
  3267. return;
  3268. }
  3269. }
  3270. else {
  3271. SERIAL_CHAR('Y'); say_not_entered();
  3272. return;
  3273. }
  3274. if (code_seen('Z')) {
  3275. mbl.z_values[py][px] = code_value_axis_units(Z_AXIS);
  3276. }
  3277. else {
  3278. SERIAL_CHAR('Z'); say_not_entered();
  3279. return;
  3280. }
  3281. break;
  3282. case MeshSetZOffset:
  3283. if (code_seen('Z')) {
  3284. mbl.z_offset = code_value_axis_units(Z_AXIS);
  3285. }
  3286. else {
  3287. SERIAL_CHAR('Z'); say_not_entered();
  3288. return;
  3289. }
  3290. break;
  3291. case MeshReset:
  3292. if (mbl.active()) {
  3293. current_position[Z_AXIS] -= MESH_HOME_SEARCH_Z;
  3294. planner.apply_leveling(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS]);
  3295. mbl.reset();
  3296. SYNC_PLAN_POSITION_KINEMATIC();
  3297. }
  3298. else
  3299. mbl.reset();
  3300. } // switch(state)
  3301. report_current_position();
  3302. }
  3303. #elif HAS_ABL
  3304. /**
  3305. * G29: Detailed Z probe, probes the bed at 3 or more points.
  3306. * Will fail if the printer has not been homed with G28.
  3307. *
  3308. * Enhanced G29 Auto Bed Leveling Probe Routine
  3309. *
  3310. * Parameters With LINEAR and BILINEAR:
  3311. *
  3312. * P Set the size of the grid that will be probed (P x P points).
  3313. * Not supported by non-linear delta printer bed leveling.
  3314. * Example: "G29 P4"
  3315. *
  3316. * S Set the XY travel speed between probe points (in units/min)
  3317. *
  3318. * D Dry-Run mode. Just evaluate the bed Topology - Don't apply
  3319. * or clean the rotation Matrix. Useful to check the topology
  3320. * after a first run of G29.
  3321. *
  3322. * V Set the verbose level (0-4). Example: "G29 V3"
  3323. *
  3324. * T Generate a Bed Topology Report. Example: "G29 P5 T" for a detailed report.
  3325. * This is useful for manual bed leveling and finding flaws in the bed (to
  3326. * assist with part placement).
  3327. * Not supported by non-linear delta printer bed leveling.
  3328. *
  3329. * F Set the Front limit of the probing grid
  3330. * B Set the Back limit of the probing grid
  3331. * L Set the Left limit of the probing grid
  3332. * R Set the Right limit of the probing grid
  3333. *
  3334. * Parameters with BILINEAR only:
  3335. *
  3336. * Z Supply an additional Z probe offset
  3337. *
  3338. * Global Parameters:
  3339. *
  3340. * E/e By default G29 will engage the Z probe, test the bed, then disengage.
  3341. * Include "E" to engage/disengage the Z probe for each sample.
  3342. * There's no extra effect if you have a fixed Z probe.
  3343. * Usage: "G29 E" or "G29 e"
  3344. *
  3345. */
  3346. inline void gcode_G29() {
  3347. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3348. const bool query = code_seen('Q');
  3349. const uint8_t old_debug_flags = marlin_debug_flags;
  3350. if (query) marlin_debug_flags |= DEBUG_LEVELING;
  3351. if (DEBUGGING(LEVELING)) {
  3352. DEBUG_POS(">>> gcode_G29", current_position);
  3353. log_machine_info();
  3354. }
  3355. marlin_debug_flags = old_debug_flags;
  3356. if (query) return;
  3357. #endif
  3358. // Don't allow auto-leveling without homing first
  3359. if (axis_unhomed_error(true, true, true)) return;
  3360. const int verbose_level = code_seen('V') ? code_value_int() : 1;
  3361. if (verbose_level < 0 || verbose_level > 4) {
  3362. SERIAL_PROTOCOLLNPGM("?(V)erbose Level is implausible (0-4).");
  3363. return;
  3364. }
  3365. bool dryrun = code_seen('D'),
  3366. stow_probe_after_each = code_seen('E');
  3367. #if ABL_GRID
  3368. if (verbose_level > 0) {
  3369. SERIAL_PROTOCOLLNPGM("G29 Auto Bed Leveling");
  3370. if (dryrun) SERIAL_PROTOCOLLNPGM("Running in DRY-RUN mode");
  3371. }
  3372. #if ABL_PLANAR
  3373. bool do_topography_map = verbose_level > 2 || code_seen('T');
  3374. // X and Y specify points in each direction, overriding the default
  3375. // These values may be saved with the completed mesh
  3376. int abl_grid_points_x = code_seen('X') ? code_value_int() : ABL_GRID_MAX_POINTS_X,
  3377. abl_grid_points_y = code_seen('Y') ? code_value_int() : ABL_GRID_MAX_POINTS_Y;
  3378. if (code_seen('P')) abl_grid_points_x = abl_grid_points_y = code_value_int();
  3379. if (abl_grid_points_x < 2 || abl_grid_points_y < 2) {
  3380. SERIAL_PROTOCOLLNPGM("?Number of probe points is implausible (2 minimum).");
  3381. return;
  3382. }
  3383. #else
  3384. const uint8_t abl_grid_points_x = ABL_GRID_MAX_POINTS_X, abl_grid_points_y = ABL_GRID_MAX_POINTS_Y;
  3385. #endif
  3386. xy_probe_feedrate_mm_s = MMM_TO_MMS(code_seen('S') ? code_value_linear_units() : XY_PROBE_SPEED);
  3387. int left_probe_bed_position = code_seen('L') ? (int)code_value_axis_units(X_AXIS) : LOGICAL_X_POSITION(LEFT_PROBE_BED_POSITION),
  3388. right_probe_bed_position = code_seen('R') ? (int)code_value_axis_units(X_AXIS) : LOGICAL_X_POSITION(RIGHT_PROBE_BED_POSITION),
  3389. front_probe_bed_position = code_seen('F') ? (int)code_value_axis_units(Y_AXIS) : LOGICAL_Y_POSITION(FRONT_PROBE_BED_POSITION),
  3390. back_probe_bed_position = code_seen('B') ? (int)code_value_axis_units(Y_AXIS) : LOGICAL_Y_POSITION(BACK_PROBE_BED_POSITION);
  3391. const bool left_out_l = left_probe_bed_position < LOGICAL_X_POSITION(MIN_PROBE_X),
  3392. left_out = left_out_l || left_probe_bed_position > right_probe_bed_position - (MIN_PROBE_EDGE),
  3393. right_out_r = right_probe_bed_position > LOGICAL_X_POSITION(MAX_PROBE_X),
  3394. right_out = right_out_r || right_probe_bed_position < left_probe_bed_position + MIN_PROBE_EDGE,
  3395. front_out_f = front_probe_bed_position < LOGICAL_Y_POSITION(MIN_PROBE_Y),
  3396. front_out = front_out_f || front_probe_bed_position > back_probe_bed_position - (MIN_PROBE_EDGE),
  3397. back_out_b = back_probe_bed_position > LOGICAL_Y_POSITION(MAX_PROBE_Y),
  3398. back_out = back_out_b || back_probe_bed_position < front_probe_bed_position + MIN_PROBE_EDGE;
  3399. if (left_out || right_out || front_out || back_out) {
  3400. if (left_out) {
  3401. out_of_range_error(PSTR("(L)eft"));
  3402. left_probe_bed_position = left_out_l ? LOGICAL_X_POSITION(MIN_PROBE_X) : right_probe_bed_position - (MIN_PROBE_EDGE);
  3403. }
  3404. if (right_out) {
  3405. out_of_range_error(PSTR("(R)ight"));
  3406. right_probe_bed_position = right_out_r ? LOGICAL_Y_POSITION(MAX_PROBE_X) : left_probe_bed_position + MIN_PROBE_EDGE;
  3407. }
  3408. if (front_out) {
  3409. out_of_range_error(PSTR("(F)ront"));
  3410. front_probe_bed_position = front_out_f ? LOGICAL_Y_POSITION(MIN_PROBE_Y) : back_probe_bed_position - (MIN_PROBE_EDGE);
  3411. }
  3412. if (back_out) {
  3413. out_of_range_error(PSTR("(B)ack"));
  3414. back_probe_bed_position = back_out_b ? LOGICAL_Y_POSITION(MAX_PROBE_Y) : front_probe_bed_position + MIN_PROBE_EDGE;
  3415. }
  3416. return;
  3417. }
  3418. #endif // ABL_GRID
  3419. stepper.synchronize();
  3420. // Disable auto bed leveling during G29
  3421. bool abl_should_enable = planner.abl_enabled;
  3422. planner.abl_enabled = false;
  3423. if (!dryrun) {
  3424. // Re-orient the current position without leveling
  3425. // based on where the steppers are positioned.
  3426. set_current_from_steppers_for_axis(ALL_AXES);
  3427. // Sync the planner to where the steppers stopped
  3428. SYNC_PLAN_POSITION_KINEMATIC();
  3429. }
  3430. setup_for_endstop_or_probe_move();
  3431. // Deploy the probe. Probe will raise if needed.
  3432. if (DEPLOY_PROBE()) {
  3433. planner.abl_enabled = abl_should_enable;
  3434. return;
  3435. }
  3436. float xProbe = 0, yProbe = 0, measured_z = 0;
  3437. #if ABL_GRID
  3438. // probe at the points of a lattice grid
  3439. const float xGridSpacing = (right_probe_bed_position - left_probe_bed_position) / (abl_grid_points_x - 1),
  3440. yGridSpacing = (back_probe_bed_position - front_probe_bed_position) / (abl_grid_points_y - 1);
  3441. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  3442. float zoffset = zprobe_zoffset;
  3443. if (code_seen('Z')) zoffset += code_value_axis_units(Z_AXIS);
  3444. if ( xGridSpacing != bilinear_grid_spacing[X_AXIS]
  3445. || yGridSpacing != bilinear_grid_spacing[Y_AXIS]
  3446. || left_probe_bed_position != bilinear_start[X_AXIS]
  3447. || front_probe_bed_position != bilinear_start[Y_AXIS]
  3448. ) {
  3449. if (dryrun) {
  3450. // Before reset bed level, re-enable to correct the position
  3451. planner.abl_enabled = abl_should_enable;
  3452. }
  3453. // Reset grid to 0.0 or "not probed". (Also disables ABL)
  3454. reset_bed_level();
  3455. #if ENABLED(ABL_BILINEAR_SUBDIVISION)
  3456. bilinear_grid_spacing_virt[X_AXIS] = xGridSpacing / (BILINEAR_SUBDIVISIONS);
  3457. bilinear_grid_spacing_virt[Y_AXIS] = yGridSpacing / (BILINEAR_SUBDIVISIONS);
  3458. #endif
  3459. bilinear_grid_spacing[X_AXIS] = xGridSpacing;
  3460. bilinear_grid_spacing[Y_AXIS] = yGridSpacing;
  3461. bilinear_start[X_AXIS] = RAW_X_POSITION(left_probe_bed_position);
  3462. bilinear_start[Y_AXIS] = RAW_Y_POSITION(front_probe_bed_position);
  3463. // Can't re-enable (on error) until the new grid is written
  3464. abl_should_enable = false;
  3465. }
  3466. #elif ENABLED(AUTO_BED_LEVELING_LINEAR)
  3467. /**
  3468. * solve the plane equation ax + by + d = z
  3469. * A is the matrix with rows [x y 1] for all the probed points
  3470. * B is the vector of the Z positions
  3471. * the normal vector to the plane is formed by the coefficients of the
  3472. * plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  3473. * so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  3474. */
  3475. const int abl2 = abl_grid_points_x * abl_grid_points_y;
  3476. int indexIntoAB[abl_grid_points_x][abl_grid_points_y],
  3477. probe_index = -1;
  3478. float eqnAMatrix[abl2 * 3], // "A" matrix of the linear system of equations
  3479. eqnBVector[abl2], // "B" vector of Z points
  3480. mean = 0.0;
  3481. #endif // AUTO_BED_LEVELING_LINEAR
  3482. #if ENABLED(PROBE_Y_FIRST)
  3483. #define PR_OUTER_VAR xCount
  3484. #define PR_OUTER_NUM abl_grid_points_x
  3485. #define PR_INNER_VAR yCount
  3486. #define PR_INNER_NUM abl_grid_points_y
  3487. #else
  3488. #define PR_OUTER_VAR yCount
  3489. #define PR_OUTER_NUM abl_grid_points_y
  3490. #define PR_INNER_VAR xCount
  3491. #define PR_INNER_NUM abl_grid_points_x
  3492. #endif
  3493. bool zig = PR_OUTER_NUM & 1; // Always end at RIGHT and BACK_PROBE_BED_POSITION
  3494. // Outer loop is Y with PROBE_Y_FIRST disabled
  3495. for (uint8_t PR_OUTER_VAR = 0; PR_OUTER_VAR < PR_OUTER_NUM; PR_OUTER_VAR++) {
  3496. int8_t inStart, inStop, inInc;
  3497. if (zig) { // away from origin
  3498. inStart = 0;
  3499. inStop = PR_INNER_NUM;
  3500. inInc = 1;
  3501. }
  3502. else { // towards origin
  3503. inStart = PR_INNER_NUM - 1;
  3504. inStop = -1;
  3505. inInc = -1;
  3506. }
  3507. zig = !zig; // zag
  3508. // Inner loop is Y with PROBE_Y_FIRST enabled
  3509. for (int8_t PR_INNER_VAR = inStart; PR_INNER_VAR != inStop; PR_INNER_VAR += inInc) {
  3510. float xBase = left_probe_bed_position + xGridSpacing * xCount,
  3511. yBase = front_probe_bed_position + yGridSpacing * yCount;
  3512. xProbe = floor(xBase + (xBase < 0 ? 0 : 0.5));
  3513. yProbe = floor(yBase + (yBase < 0 ? 0 : 0.5));
  3514. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  3515. indexIntoAB[xCount][yCount] = ++probe_index;
  3516. #endif
  3517. #if IS_KINEMATIC
  3518. // Avoid probing outside the round or hexagonal area
  3519. float pos[XYZ] = { xProbe, yProbe, 0 };
  3520. if (!position_is_reachable(pos, true)) continue;
  3521. #endif
  3522. measured_z = probe_pt(xProbe, yProbe, stow_probe_after_each, verbose_level);
  3523. if (measured_z == NAN) {
  3524. planner.abl_enabled = abl_should_enable;
  3525. return;
  3526. }
  3527. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  3528. mean += measured_z;
  3529. eqnBVector[probe_index] = measured_z;
  3530. eqnAMatrix[probe_index + 0 * abl2] = xProbe;
  3531. eqnAMatrix[probe_index + 1 * abl2] = yProbe;
  3532. eqnAMatrix[probe_index + 2 * abl2] = 1;
  3533. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  3534. bed_level_grid[xCount][yCount] = measured_z + zoffset;
  3535. #endif
  3536. idle();
  3537. } // inner
  3538. } // outer
  3539. #elif ENABLED(AUTO_BED_LEVELING_3POINT)
  3540. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3541. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> 3-point Leveling");
  3542. #endif
  3543. // Probe at 3 arbitrary points
  3544. vector_3 points[3] = {
  3545. vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, 0),
  3546. vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, 0),
  3547. vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, 0)
  3548. };
  3549. for (uint8_t i = 0; i < 3; ++i) {
  3550. // Retain the last probe position
  3551. xProbe = LOGICAL_X_POSITION(points[i].x);
  3552. yProbe = LOGICAL_Y_POSITION(points[i].y);
  3553. measured_z = points[i].z = probe_pt(xProbe, yProbe, stow_probe_after_each, verbose_level);
  3554. }
  3555. if (measured_z == NAN) {
  3556. planner.abl_enabled = abl_should_enable;
  3557. return;
  3558. }
  3559. if (!dryrun) {
  3560. vector_3 planeNormal = vector_3::cross(points[0] - points[1], points[2] - points[1]).get_normal();
  3561. if (planeNormal.z < 0) {
  3562. planeNormal.x *= -1;
  3563. planeNormal.y *= -1;
  3564. planeNormal.z *= -1;
  3565. }
  3566. planner.bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  3567. // Can't re-enable (on error) until the new grid is written
  3568. abl_should_enable = false;
  3569. }
  3570. #endif // AUTO_BED_LEVELING_3POINT
  3571. // Raise to _Z_CLEARANCE_DEPLOY_PROBE. Stow the probe.
  3572. if (STOW_PROBE()) {
  3573. planner.abl_enabled = abl_should_enable;
  3574. return;
  3575. }
  3576. //
  3577. // Unless this is a dry run, auto bed leveling will
  3578. // definitely be enabled after this point
  3579. //
  3580. // Restore state after probing
  3581. clean_up_after_endstop_or_probe_move();
  3582. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3583. if (DEBUGGING(LEVELING)) DEBUG_POS("> probing complete", current_position);
  3584. #endif
  3585. // Calculate leveling, print reports, correct the position
  3586. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  3587. if (!dryrun) extrapolate_unprobed_bed_level();
  3588. print_bilinear_leveling_grid();
  3589. #if ENABLED(ABL_BILINEAR_SUBDIVISION)
  3590. bed_level_virt_interpolate();
  3591. bed_level_virt_print();
  3592. #endif
  3593. #elif ENABLED(AUTO_BED_LEVELING_LINEAR)
  3594. // For LINEAR leveling calculate matrix, print reports, correct the position
  3595. // solve lsq problem
  3596. float plane_equation_coefficients[3];
  3597. qr_solve(plane_equation_coefficients, abl2, 3, eqnAMatrix, eqnBVector);
  3598. mean /= abl2;
  3599. if (verbose_level) {
  3600. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  3601. SERIAL_PROTOCOL_F(plane_equation_coefficients[0], 8);
  3602. SERIAL_PROTOCOLPGM(" b: ");
  3603. SERIAL_PROTOCOL_F(plane_equation_coefficients[1], 8);
  3604. SERIAL_PROTOCOLPGM(" d: ");
  3605. SERIAL_PROTOCOL_F(plane_equation_coefficients[2], 8);
  3606. SERIAL_EOL;
  3607. if (verbose_level > 2) {
  3608. SERIAL_PROTOCOLPGM("Mean of sampled points: ");
  3609. SERIAL_PROTOCOL_F(mean, 8);
  3610. SERIAL_EOL;
  3611. }
  3612. }
  3613. // Create the matrix but don't correct the position yet
  3614. if (!dryrun) {
  3615. planner.bed_level_matrix = matrix_3x3::create_look_at(
  3616. vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1)
  3617. );
  3618. }
  3619. // Show the Topography map if enabled
  3620. if (do_topography_map) {
  3621. SERIAL_PROTOCOLLNPGM("\nBed Height Topography:\n"
  3622. " +--- BACK --+\n"
  3623. " | |\n"
  3624. " L | (+) | R\n"
  3625. " E | | I\n"
  3626. " F | (-) N (+) | G\n"
  3627. " T | | H\n"
  3628. " | (-) | T\n"
  3629. " | |\n"
  3630. " O-- FRONT --+\n"
  3631. " (0,0)");
  3632. float min_diff = 999;
  3633. for (int8_t yy = abl_grid_points_y - 1; yy >= 0; yy--) {
  3634. for (uint8_t xx = 0; xx < abl_grid_points_x; xx++) {
  3635. int ind = indexIntoAB[xx][yy];
  3636. float diff = eqnBVector[ind] - mean,
  3637. x_tmp = eqnAMatrix[ind + 0 * abl2],
  3638. y_tmp = eqnAMatrix[ind + 1 * abl2],
  3639. z_tmp = 0;
  3640. apply_rotation_xyz(planner.bed_level_matrix, x_tmp, y_tmp, z_tmp);
  3641. NOMORE(min_diff, eqnBVector[ind] - z_tmp);
  3642. if (diff >= 0.0)
  3643. SERIAL_PROTOCOLPGM(" +"); // Include + for column alignment
  3644. else
  3645. SERIAL_PROTOCOLCHAR(' ');
  3646. SERIAL_PROTOCOL_F(diff, 5);
  3647. } // xx
  3648. SERIAL_EOL;
  3649. } // yy
  3650. SERIAL_EOL;
  3651. if (verbose_level > 3) {
  3652. SERIAL_PROTOCOLLNPGM("\nCorrected Bed Height vs. Bed Topology:");
  3653. for (int8_t yy = abl_grid_points_y - 1; yy >= 0; yy--) {
  3654. for (uint8_t xx = 0; xx < abl_grid_points_x; xx++) {
  3655. int ind = indexIntoAB[xx][yy];
  3656. float x_tmp = eqnAMatrix[ind + 0 * abl2],
  3657. y_tmp = eqnAMatrix[ind + 1 * abl2],
  3658. z_tmp = 0;
  3659. apply_rotation_xyz(planner.bed_level_matrix, x_tmp, y_tmp, z_tmp);
  3660. float diff = eqnBVector[ind] - z_tmp - min_diff;
  3661. if (diff >= 0.0)
  3662. SERIAL_PROTOCOLPGM(" +");
  3663. // Include + for column alignment
  3664. else
  3665. SERIAL_PROTOCOLCHAR(' ');
  3666. SERIAL_PROTOCOL_F(diff, 5);
  3667. } // xx
  3668. SERIAL_EOL;
  3669. } // yy
  3670. SERIAL_EOL;
  3671. }
  3672. } //do_topography_map
  3673. #endif // AUTO_BED_LEVELING_LINEAR
  3674. #if ABL_PLANAR
  3675. // For LINEAR and 3POINT leveling correct the current position
  3676. if (verbose_level > 0)
  3677. planner.bed_level_matrix.debug("\n\nBed Level Correction Matrix:");
  3678. if (!dryrun) {
  3679. //
  3680. // Correct the current XYZ position based on the tilted plane.
  3681. //
  3682. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3683. if (DEBUGGING(LEVELING)) DEBUG_POS("G29 uncorrected XYZ", current_position);
  3684. #endif
  3685. float converted[XYZ];
  3686. memcpy(converted, current_position, sizeof(converted));
  3687. planner.abl_enabled = true;
  3688. planner.unapply_leveling(converted); // use conversion machinery
  3689. planner.abl_enabled = false;
  3690. // Use the last measured distance to the bed, if possible
  3691. if ( NEAR(current_position[X_AXIS], xProbe - (X_PROBE_OFFSET_FROM_EXTRUDER))
  3692. && NEAR(current_position[Y_AXIS], yProbe - (Y_PROBE_OFFSET_FROM_EXTRUDER))
  3693. ) {
  3694. float simple_z = current_position[Z_AXIS] - (measured_z - (-zprobe_zoffset));
  3695. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3696. if (DEBUGGING(LEVELING)) {
  3697. SERIAL_ECHOPAIR("Z from Probe:", simple_z);
  3698. SERIAL_ECHOPAIR(" Matrix:", converted[Z_AXIS]);
  3699. SERIAL_ECHOLNPAIR(" Discrepancy:", simple_z - converted[Z_AXIS]);
  3700. }
  3701. #endif
  3702. converted[Z_AXIS] = simple_z;
  3703. }
  3704. // The rotated XY and corrected Z are now current_position
  3705. memcpy(current_position, converted, sizeof(converted));
  3706. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3707. if (DEBUGGING(LEVELING)) DEBUG_POS("G29 corrected XYZ", current_position);
  3708. #endif
  3709. }
  3710. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  3711. if (!dryrun) {
  3712. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3713. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPAIR("G29 uncorrected Z:", current_position[Z_AXIS]);
  3714. #endif
  3715. // Unapply the offset because it is going to be immediately applied
  3716. // and cause compensation movement in Z
  3717. current_position[Z_AXIS] -= bilinear_z_offset(current_position);
  3718. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3719. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPAIR(" corrected Z:", current_position[Z_AXIS]);
  3720. #endif
  3721. }
  3722. #endif // ABL_PLANAR
  3723. #ifdef Z_PROBE_END_SCRIPT
  3724. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3725. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPAIR("Z Probe End Script: ", Z_PROBE_END_SCRIPT);
  3726. #endif
  3727. enqueue_and_echo_commands_P(PSTR(Z_PROBE_END_SCRIPT));
  3728. stepper.synchronize();
  3729. #endif
  3730. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3731. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< gcode_G29");
  3732. #endif
  3733. report_current_position();
  3734. KEEPALIVE_STATE(IN_HANDLER);
  3735. // Auto Bed Leveling is complete! Enable if possible.
  3736. planner.abl_enabled = dryrun ? abl_should_enable : true;
  3737. if (planner.abl_enabled)
  3738. SYNC_PLAN_POSITION_KINEMATIC();
  3739. }
  3740. #endif // HAS_ABL
  3741. #if HAS_BED_PROBE
  3742. /**
  3743. * G30: Do a single Z probe at the current XY
  3744. * Usage:
  3745. * G30 <X#> <Y#> <S#>
  3746. * X = Probe X position (default=current probe position)
  3747. * Y = Probe Y position (default=current probe position)
  3748. * S = Stows the probe if 1 (default=1)
  3749. */
  3750. inline void gcode_G30() {
  3751. float X_probe_location = code_seen('X') ? code_value_axis_units(X_AXIS) : current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER,
  3752. Y_probe_location = code_seen('Y') ? code_value_axis_units(Y_AXIS) : current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER;
  3753. float pos[XYZ] = { X_probe_location, Y_probe_location, LOGICAL_Z_POSITION(0) };
  3754. if (!position_is_reachable(pos, true)) return;
  3755. bool stow = code_seen('S') ? code_value_bool() : true;
  3756. // Disable leveling so the planner won't mess with us
  3757. #if PLANNER_LEVELING
  3758. set_bed_leveling_enabled(false);
  3759. #endif
  3760. setup_for_endstop_or_probe_move();
  3761. float measured_z = probe_pt(X_probe_location, Y_probe_location, stow, 1);
  3762. SERIAL_PROTOCOLPGM("Bed X: ");
  3763. SERIAL_PROTOCOL(X_probe_location + 0.0001);
  3764. SERIAL_PROTOCOLPGM(" Y: ");
  3765. SERIAL_PROTOCOL(Y_probe_location + 0.0001);
  3766. SERIAL_PROTOCOLPGM(" Z: ");
  3767. SERIAL_PROTOCOLLN(measured_z - -zprobe_zoffset + 0.0001);
  3768. clean_up_after_endstop_or_probe_move();
  3769. report_current_position();
  3770. }
  3771. #if ENABLED(Z_PROBE_SLED)
  3772. /**
  3773. * G31: Deploy the Z probe
  3774. */
  3775. inline void gcode_G31() { DEPLOY_PROBE(); }
  3776. /**
  3777. * G32: Stow the Z probe
  3778. */
  3779. inline void gcode_G32() { STOW_PROBE(); }
  3780. #endif // Z_PROBE_SLED
  3781. #endif // HAS_BED_PROBE
  3782. #if ENABLED(G38_PROBE_TARGET)
  3783. static bool G38_run_probe() {
  3784. bool G38_pass_fail = false;
  3785. // Get direction of move and retract
  3786. float retract_mm[XYZ];
  3787. LOOP_XYZ(i) {
  3788. float dist = destination[i] - current_position[i];
  3789. retract_mm[i] = fabs(dist) < G38_MINIMUM_MOVE ? 0 : home_bump_mm((AxisEnum)i) * (dist > 0 ? -1 : 1);
  3790. }
  3791. stepper.synchronize(); // wait until the machine is idle
  3792. // Move until destination reached or target hit
  3793. endstops.enable(true);
  3794. G38_move = true;
  3795. G38_endstop_hit = false;
  3796. prepare_move_to_destination();
  3797. stepper.synchronize();
  3798. G38_move = false;
  3799. endstops.hit_on_purpose();
  3800. set_current_from_steppers_for_axis(ALL_AXES);
  3801. SYNC_PLAN_POSITION_KINEMATIC();
  3802. // Only do remaining moves if target was hit
  3803. if (G38_endstop_hit) {
  3804. G38_pass_fail = true;
  3805. // Move away by the retract distance
  3806. set_destination_to_current();
  3807. LOOP_XYZ(i) destination[i] += retract_mm[i];
  3808. endstops.enable(false);
  3809. prepare_move_to_destination();
  3810. stepper.synchronize();
  3811. feedrate_mm_s /= 4;
  3812. // Bump the target more slowly
  3813. LOOP_XYZ(i) destination[i] -= retract_mm[i] * 2;
  3814. endstops.enable(true);
  3815. G38_move = true;
  3816. prepare_move_to_destination();
  3817. stepper.synchronize();
  3818. G38_move = false;
  3819. set_current_from_steppers_for_axis(ALL_AXES);
  3820. SYNC_PLAN_POSITION_KINEMATIC();
  3821. }
  3822. endstops.hit_on_purpose();
  3823. endstops.not_homing();
  3824. return G38_pass_fail;
  3825. }
  3826. /**
  3827. * G38.2 - probe toward workpiece, stop on contact, signal error if failure
  3828. * G38.3 - probe toward workpiece, stop on contact
  3829. *
  3830. * Like G28 except uses Z min endstop for all axes
  3831. */
  3832. inline void gcode_G38(bool is_38_2) {
  3833. // Get X Y Z E F
  3834. gcode_get_destination();
  3835. setup_for_endstop_or_probe_move();
  3836. // If any axis has enough movement, do the move
  3837. LOOP_XYZ(i)
  3838. if (fabs(destination[i] - current_position[i]) >= G38_MINIMUM_MOVE) {
  3839. if (!code_seen('F')) feedrate_mm_s = homing_feedrate_mm_s[i];
  3840. // If G38.2 fails throw an error
  3841. if (!G38_run_probe() && is_38_2) {
  3842. SERIAL_ERROR_START;
  3843. SERIAL_ERRORLNPGM("Failed to reach target");
  3844. }
  3845. break;
  3846. }
  3847. clean_up_after_endstop_or_probe_move();
  3848. }
  3849. #endif // G38_PROBE_TARGET
  3850. /**
  3851. * G92: Set current position to given X Y Z E
  3852. */
  3853. inline void gcode_G92() {
  3854. bool didXYZ = false,
  3855. didE = code_seen('E');
  3856. if (!didE) stepper.synchronize();
  3857. LOOP_XYZE(i) {
  3858. if (code_seen(axis_codes[i])) {
  3859. #if IS_SCARA
  3860. current_position[i] = code_value_axis_units(i);
  3861. if (i != E_AXIS) didXYZ = true;
  3862. #else
  3863. float p = current_position[i],
  3864. v = code_value_axis_units(i);
  3865. current_position[i] = v;
  3866. if (i != E_AXIS) {
  3867. didXYZ = true;
  3868. position_shift[i] += v - p; // Offset the coordinate space
  3869. update_software_endstops((AxisEnum)i);
  3870. }
  3871. #endif
  3872. }
  3873. }
  3874. if (didXYZ)
  3875. SYNC_PLAN_POSITION_KINEMATIC();
  3876. else if (didE)
  3877. sync_plan_position_e();
  3878. report_current_position();
  3879. }
  3880. #if ENABLED(EMERGENCY_PARSER) || ENABLED(ULTIPANEL)
  3881. /**
  3882. * M0: Unconditional stop - Wait for user button press on LCD
  3883. * M1: Conditional stop - Wait for user button press on LCD
  3884. */
  3885. inline void gcode_M0_M1() {
  3886. char* args = current_command_args;
  3887. millis_t codenum = 0;
  3888. bool hasP = false, hasS = false;
  3889. if (code_seen('P')) {
  3890. codenum = code_value_millis(); // milliseconds to wait
  3891. hasP = codenum > 0;
  3892. }
  3893. if (code_seen('S')) {
  3894. codenum = code_value_millis_from_seconds(); // seconds to wait
  3895. hasS = codenum > 0;
  3896. }
  3897. #if ENABLED(ULTIPANEL)
  3898. if (!hasP && !hasS && *args != '\0')
  3899. lcd_setstatus(args, true);
  3900. else {
  3901. LCD_MESSAGEPGM(MSG_USERWAIT);
  3902. #if ENABLED(LCD_PROGRESS_BAR) && PROGRESS_MSG_EXPIRE > 0
  3903. dontExpireStatus();
  3904. #endif
  3905. }
  3906. #else
  3907. if (!hasP && !hasS && *args != '\0') {
  3908. SERIAL_ECHO_START;
  3909. SERIAL_ECHOLN(args);
  3910. }
  3911. #endif
  3912. wait_for_user = true;
  3913. KEEPALIVE_STATE(PAUSED_FOR_USER);
  3914. stepper.synchronize();
  3915. refresh_cmd_timeout();
  3916. if (codenum > 0) {
  3917. codenum += previous_cmd_ms; // wait until this time for a click
  3918. while (PENDING(millis(), codenum) && wait_for_user) idle();
  3919. }
  3920. else {
  3921. #if ENABLED(ULTIPANEL)
  3922. if (lcd_detected()) {
  3923. while (wait_for_user) idle();
  3924. IS_SD_PRINTING ? LCD_MESSAGEPGM(MSG_RESUMING) : LCD_MESSAGEPGM(WELCOME_MSG);
  3925. }
  3926. #else
  3927. while (wait_for_user) idle();
  3928. #endif
  3929. }
  3930. wait_for_user = false;
  3931. KEEPALIVE_STATE(IN_HANDLER);
  3932. }
  3933. #endif // EMERGENCY_PARSER || ULTIPANEL
  3934. /**
  3935. * M17: Enable power on all stepper motors
  3936. */
  3937. inline void gcode_M17() {
  3938. LCD_MESSAGEPGM(MSG_NO_MOVE);
  3939. enable_all_steppers();
  3940. }
  3941. #if ENABLED(SDSUPPORT)
  3942. /**
  3943. * M20: List SD card to serial output
  3944. */
  3945. inline void gcode_M20() {
  3946. SERIAL_PROTOCOLLNPGM(MSG_BEGIN_FILE_LIST);
  3947. card.ls();
  3948. SERIAL_PROTOCOLLNPGM(MSG_END_FILE_LIST);
  3949. }
  3950. /**
  3951. * M21: Init SD Card
  3952. */
  3953. inline void gcode_M21() { card.initsd(); }
  3954. /**
  3955. * M22: Release SD Card
  3956. */
  3957. inline void gcode_M22() { card.release(); }
  3958. /**
  3959. * M23: Open a file
  3960. */
  3961. inline void gcode_M23() { card.openFile(current_command_args, true); }
  3962. /**
  3963. * M24: Start SD Print
  3964. */
  3965. inline void gcode_M24() {
  3966. card.startFileprint();
  3967. print_job_timer.start();
  3968. }
  3969. /**
  3970. * M25: Pause SD Print
  3971. */
  3972. inline void gcode_M25() { card.pauseSDPrint(); }
  3973. /**
  3974. * M26: Set SD Card file index
  3975. */
  3976. inline void gcode_M26() {
  3977. if (card.cardOK && code_seen('S'))
  3978. card.setIndex(code_value_long());
  3979. }
  3980. /**
  3981. * M27: Get SD Card status
  3982. */
  3983. inline void gcode_M27() { card.getStatus(); }
  3984. /**
  3985. * M28: Start SD Write
  3986. */
  3987. inline void gcode_M28() { card.openFile(current_command_args, false); }
  3988. /**
  3989. * M29: Stop SD Write
  3990. * Processed in write to file routine above
  3991. */
  3992. inline void gcode_M29() {
  3993. // card.saving = false;
  3994. }
  3995. /**
  3996. * M30 <filename>: Delete SD Card file
  3997. */
  3998. inline void gcode_M30() {
  3999. if (card.cardOK) {
  4000. card.closefile();
  4001. card.removeFile(current_command_args);
  4002. }
  4003. }
  4004. #endif // SDSUPPORT
  4005. /**
  4006. * M31: Get the time since the start of SD Print (or last M109)
  4007. */
  4008. inline void gcode_M31() {
  4009. char buffer[21];
  4010. duration_t elapsed = print_job_timer.duration();
  4011. elapsed.toString(buffer);
  4012. lcd_setstatus(buffer);
  4013. SERIAL_ECHO_START;
  4014. SERIAL_ECHOLNPAIR("Print time: ", buffer);
  4015. #if ENABLED(AUTOTEMP)
  4016. thermalManager.autotempShutdown();
  4017. #endif
  4018. }
  4019. #if ENABLED(SDSUPPORT)
  4020. /**
  4021. * M32: Select file and start SD Print
  4022. */
  4023. inline void gcode_M32() {
  4024. if (card.sdprinting)
  4025. stepper.synchronize();
  4026. char* namestartpos = strchr(current_command_args, '!'); // Find ! to indicate filename string start.
  4027. if (!namestartpos)
  4028. namestartpos = current_command_args; // Default name position, 4 letters after the M
  4029. else
  4030. namestartpos++; //to skip the '!'
  4031. bool call_procedure = code_seen('P') && (seen_pointer < namestartpos);
  4032. if (card.cardOK) {
  4033. card.openFile(namestartpos, true, call_procedure);
  4034. if (code_seen('S') && seen_pointer < namestartpos) // "S" (must occur _before_ the filename!)
  4035. card.setIndex(code_value_long());
  4036. card.startFileprint();
  4037. // Procedure calls count as normal print time.
  4038. if (!call_procedure) print_job_timer.start();
  4039. }
  4040. }
  4041. #if ENABLED(LONG_FILENAME_HOST_SUPPORT)
  4042. /**
  4043. * M33: Get the long full path of a file or folder
  4044. *
  4045. * Parameters:
  4046. * <dospath> Case-insensitive DOS-style path to a file or folder
  4047. *
  4048. * Example:
  4049. * M33 miscel~1/armchair/armcha~1.gco
  4050. *
  4051. * Output:
  4052. * /Miscellaneous/Armchair/Armchair.gcode
  4053. */
  4054. inline void gcode_M33() {
  4055. card.printLongPath(current_command_args);
  4056. }
  4057. #endif
  4058. #if ENABLED(SDCARD_SORT_ALPHA) && ENABLED(SDSORT_GCODE)
  4059. /**
  4060. * M34: Set SD Card Sorting Options
  4061. */
  4062. inline void gcode_M34() {
  4063. if (code_seen('S')) card.setSortOn(code_value_bool());
  4064. if (code_seen('F')) {
  4065. int v = code_value_long();
  4066. card.setSortFolders(v < 0 ? -1 : v > 0 ? 1 : 0);
  4067. }
  4068. //if (code_seen('R')) card.setSortReverse(code_value_bool());
  4069. }
  4070. #endif // SDCARD_SORT_ALPHA && SDSORT_GCODE
  4071. /**
  4072. * M928: Start SD Write
  4073. */
  4074. inline void gcode_M928() {
  4075. card.openLogFile(current_command_args);
  4076. }
  4077. #endif // SDSUPPORT
  4078. /**
  4079. * Sensitive pin test for M42, M226
  4080. */
  4081. static bool pin_is_protected(uint8_t pin) {
  4082. static const int sensitive_pins[] = SENSITIVE_PINS;
  4083. for (uint8_t i = 0; i < COUNT(sensitive_pins); i++)
  4084. if (sensitive_pins[i] == pin) return true;
  4085. return false;
  4086. }
  4087. /**
  4088. * M42: Change pin status via GCode
  4089. *
  4090. * P<pin> Pin number (LED if omitted)
  4091. * S<byte> Pin status from 0 - 255
  4092. */
  4093. inline void gcode_M42() {
  4094. if (!code_seen('S')) return;
  4095. int pin_status = code_value_int();
  4096. if (pin_status < 0 || pin_status > 255) return;
  4097. int pin_number = code_seen('P') ? code_value_int() : LED_PIN;
  4098. if (pin_number < 0) return;
  4099. if (pin_is_protected(pin_number)) {
  4100. SERIAL_ERROR_START;
  4101. SERIAL_ERRORLNPGM(MSG_ERR_PROTECTED_PIN);
  4102. return;
  4103. }
  4104. pinMode(pin_number, OUTPUT);
  4105. digitalWrite(pin_number, pin_status);
  4106. analogWrite(pin_number, pin_status);
  4107. #if FAN_COUNT > 0
  4108. switch (pin_number) {
  4109. #if HAS_FAN0
  4110. case FAN_PIN: fanSpeeds[0] = pin_status; break;
  4111. #endif
  4112. #if HAS_FAN1
  4113. case FAN1_PIN: fanSpeeds[1] = pin_status; break;
  4114. #endif
  4115. #if HAS_FAN2
  4116. case FAN2_PIN: fanSpeeds[2] = pin_status; break;
  4117. #endif
  4118. }
  4119. #endif
  4120. }
  4121. #if ENABLED(PINS_DEBUGGING)
  4122. #include "pinsDebug.h"
  4123. /**
  4124. * M43: Pin report and debug
  4125. *
  4126. * E<bool> Enable / disable background endstop monitoring
  4127. * - Machine continues to operate
  4128. * - Reports changes to endstops
  4129. * - Toggles LED when an endstop changes
  4130. *
  4131. * or
  4132. *
  4133. * P<pin> Pin to read or watch. If omitted, read/watch all pins.
  4134. * W<bool> Watch pins -reporting changes- until reset, click, or M108.
  4135. * I<bool> Flag to ignore Marlin's pin protection.
  4136. *
  4137. */
  4138. inline void gcode_M43() {
  4139. // Enable or disable endstop monitoring
  4140. if (code_seen('E')) {
  4141. endstop_monitor_flag = code_value_bool();
  4142. SERIAL_PROTOCOLPGM("endstop monitor ");
  4143. SERIAL_PROTOCOL(endstop_monitor_flag ? "en" : "dis");
  4144. SERIAL_PROTOCOLLNPGM("abled");
  4145. return;
  4146. }
  4147. // Get the range of pins to test or watch
  4148. int first_pin = 0, last_pin = NUM_DIGITAL_PINS - 1;
  4149. if (code_seen('P')) {
  4150. first_pin = last_pin = code_value_byte();
  4151. if (first_pin > NUM_DIGITAL_PINS - 1) return;
  4152. }
  4153. bool ignore_protection = code_seen('I') ? code_value_bool() : false;
  4154. // Watch until click, M108, or reset
  4155. if (code_seen('W') && code_value_bool()) { // watch digital pins
  4156. byte pin_state[last_pin - first_pin + 1];
  4157. for (int8_t pin = first_pin; pin <= last_pin; pin++) {
  4158. if (pin_is_protected(pin) && !ignore_protection) continue;
  4159. pinMode(pin, INPUT_PULLUP);
  4160. // if (IS_ANALOG(pin))
  4161. // pin_state[pin - first_pin] = analogRead(pin - analogInputToDigitalPin(0)); // int16_t pin_state[...]
  4162. // else
  4163. pin_state[pin - first_pin] = digitalRead(pin);
  4164. }
  4165. #if ENABLED(EMERGENCY_PARSER) || ENABLED(ULTIPANEL)
  4166. wait_for_user = true;
  4167. #endif
  4168. for(;;) {
  4169. for (int8_t pin = first_pin; pin <= last_pin; pin++) {
  4170. if (pin_is_protected(pin)) continue;
  4171. byte val;
  4172. // if (IS_ANALOG(pin))
  4173. // val = analogRead(pin - analogInputToDigitalPin(0)); // int16_t val
  4174. // else
  4175. val = digitalRead(pin);
  4176. if (val != pin_state[pin - first_pin]) {
  4177. report_pin_state(pin);
  4178. pin_state[pin - first_pin] = val;
  4179. }
  4180. }
  4181. #if ENABLED(EMERGENCY_PARSER) || ENABLED(ULTIPANEL)
  4182. if (!wait_for_user) break;
  4183. #endif
  4184. safe_delay(500);
  4185. }
  4186. return;
  4187. }
  4188. // Report current state of selected pin(s)
  4189. for (uint8_t pin = first_pin; pin <= last_pin; pin++)
  4190. report_pin_state_extended(pin, ignore_protection);
  4191. }
  4192. #endif // PINS_DEBUGGING
  4193. #if ENABLED(Z_MIN_PROBE_REPEATABILITY_TEST)
  4194. /**
  4195. * M48: Z probe repeatability measurement function.
  4196. *
  4197. * Usage:
  4198. * M48 <P#> <X#> <Y#> <V#> <E> <L#>
  4199. * P = Number of sampled points (4-50, default 10)
  4200. * X = Sample X position
  4201. * Y = Sample Y position
  4202. * V = Verbose level (0-4, default=1)
  4203. * E = Engage Z probe for each reading
  4204. * L = Number of legs of movement before probe
  4205. * S = Schizoid (Or Star if you prefer)
  4206. *
  4207. * This function assumes the bed has been homed. Specifically, that a G28 command
  4208. * as been issued prior to invoking the M48 Z probe repeatability measurement function.
  4209. * Any information generated by a prior G29 Bed leveling command will be lost and need to be
  4210. * regenerated.
  4211. */
  4212. inline void gcode_M48() {
  4213. if (axis_unhomed_error(true, true, true)) return;
  4214. int8_t verbose_level = code_seen('V') ? code_value_byte() : 1;
  4215. if (verbose_level < 0 || verbose_level > 4) {
  4216. SERIAL_PROTOCOLLNPGM("?Verbose Level not plausible (0-4).");
  4217. return;
  4218. }
  4219. if (verbose_level > 0)
  4220. SERIAL_PROTOCOLLNPGM("M48 Z-Probe Repeatability Test");
  4221. int8_t n_samples = code_seen('P') ? code_value_byte() : 10;
  4222. if (n_samples < 4 || n_samples > 50) {
  4223. SERIAL_PROTOCOLLNPGM("?Sample size not plausible (4-50).");
  4224. return;
  4225. }
  4226. float X_current = current_position[X_AXIS],
  4227. Y_current = current_position[Y_AXIS];
  4228. bool stow_probe_after_each = code_seen('E');
  4229. float X_probe_location = code_seen('X') ? code_value_axis_units(X_AXIS) : X_current + X_PROBE_OFFSET_FROM_EXTRUDER;
  4230. #if DISABLED(DELTA)
  4231. if (X_probe_location < LOGICAL_X_POSITION(MIN_PROBE_X) || X_probe_location > LOGICAL_X_POSITION(MAX_PROBE_X)) {
  4232. out_of_range_error(PSTR("X"));
  4233. return;
  4234. }
  4235. #endif
  4236. float Y_probe_location = code_seen('Y') ? code_value_axis_units(Y_AXIS) : Y_current + Y_PROBE_OFFSET_FROM_EXTRUDER;
  4237. #if DISABLED(DELTA)
  4238. if (Y_probe_location < LOGICAL_Y_POSITION(MIN_PROBE_Y) || Y_probe_location > LOGICAL_Y_POSITION(MAX_PROBE_Y)) {
  4239. out_of_range_error(PSTR("Y"));
  4240. return;
  4241. }
  4242. #else
  4243. float pos[XYZ] = { X_probe_location, Y_probe_location, 0 };
  4244. if (!position_is_reachable(pos, true)) {
  4245. SERIAL_PROTOCOLLNPGM("? (X,Y) location outside of probeable radius.");
  4246. return;
  4247. }
  4248. #endif
  4249. bool seen_L = code_seen('L');
  4250. uint8_t n_legs = seen_L ? code_value_byte() : 0;
  4251. if (n_legs > 15) {
  4252. SERIAL_PROTOCOLLNPGM("?Number of legs in movement not plausible (0-15).");
  4253. return;
  4254. }
  4255. if (n_legs == 1) n_legs = 2;
  4256. bool schizoid_flag = code_seen('S');
  4257. if (schizoid_flag && !seen_L) n_legs = 7;
  4258. /**
  4259. * Now get everything to the specified probe point So we can safely do a
  4260. * probe to get us close to the bed. If the Z-Axis is far from the bed,
  4261. * we don't want to use that as a starting point for each probe.
  4262. */
  4263. if (verbose_level > 2)
  4264. SERIAL_PROTOCOLLNPGM("Positioning the probe...");
  4265. // Disable bed level correction in M48 because we want the raw data when we probe
  4266. #if HAS_ABL
  4267. const bool abl_was_enabled = planner.abl_enabled;
  4268. set_bed_leveling_enabled(false);
  4269. #endif
  4270. setup_for_endstop_or_probe_move();
  4271. // Move to the first point, deploy, and probe
  4272. probe_pt(X_probe_location, Y_probe_location, stow_probe_after_each, verbose_level);
  4273. randomSeed(millis());
  4274. double mean = 0.0, sigma = 0.0, min = 99999.9, max = -99999.9, sample_set[n_samples];
  4275. for (uint8_t n = 0; n < n_samples; n++) {
  4276. if (n_legs) {
  4277. int dir = (random(0, 10) > 5.0) ? -1 : 1; // clockwise or counter clockwise
  4278. float angle = random(0.0, 360.0),
  4279. radius = random(
  4280. #if ENABLED(DELTA)
  4281. DELTA_PROBEABLE_RADIUS / 8, DELTA_PROBEABLE_RADIUS / 3
  4282. #else
  4283. 5, X_MAX_LENGTH / 8
  4284. #endif
  4285. );
  4286. if (verbose_level > 3) {
  4287. SERIAL_ECHOPAIR("Starting radius: ", radius);
  4288. SERIAL_ECHOPAIR(" angle: ", angle);
  4289. SERIAL_ECHOPGM(" Direction: ");
  4290. if (dir > 0) SERIAL_ECHOPGM("Counter-");
  4291. SERIAL_ECHOLNPGM("Clockwise");
  4292. }
  4293. for (uint8_t l = 0; l < n_legs - 1; l++) {
  4294. double delta_angle;
  4295. if (schizoid_flag)
  4296. // The points of a 5 point star are 72 degrees apart. We need to
  4297. // skip a point and go to the next one on the star.
  4298. delta_angle = dir * 2.0 * 72.0;
  4299. else
  4300. // If we do this line, we are just trying to move further
  4301. // around the circle.
  4302. delta_angle = dir * (float) random(25, 45);
  4303. angle += delta_angle;
  4304. while (angle > 360.0) // We probably do not need to keep the angle between 0 and 2*PI, but the
  4305. angle -= 360.0; // Arduino documentation says the trig functions should not be given values
  4306. while (angle < 0.0) // outside of this range. It looks like they behave correctly with
  4307. angle += 360.0; // numbers outside of the range, but just to be safe we clamp them.
  4308. X_current = X_probe_location - (X_PROBE_OFFSET_FROM_EXTRUDER) + cos(RADIANS(angle)) * radius;
  4309. Y_current = Y_probe_location - (Y_PROBE_OFFSET_FROM_EXTRUDER) + sin(RADIANS(angle)) * radius;
  4310. #if DISABLED(DELTA)
  4311. X_current = constrain(X_current, X_MIN_POS, X_MAX_POS);
  4312. Y_current = constrain(Y_current, Y_MIN_POS, Y_MAX_POS);
  4313. #else
  4314. // If we have gone out too far, we can do a simple fix and scale the numbers
  4315. // back in closer to the origin.
  4316. while (HYPOT(X_current, Y_current) > DELTA_PROBEABLE_RADIUS) {
  4317. X_current /= 1.25;
  4318. Y_current /= 1.25;
  4319. if (verbose_level > 3) {
  4320. SERIAL_ECHOPAIR("Pulling point towards center:", X_current);
  4321. SERIAL_ECHOLNPAIR(", ", Y_current);
  4322. }
  4323. }
  4324. #endif
  4325. if (verbose_level > 3) {
  4326. SERIAL_PROTOCOLPGM("Going to:");
  4327. SERIAL_ECHOPAIR(" X", X_current);
  4328. SERIAL_ECHOPAIR(" Y", Y_current);
  4329. SERIAL_ECHOLNPAIR(" Z", current_position[Z_AXIS]);
  4330. }
  4331. do_blocking_move_to_xy(X_current, Y_current);
  4332. } // n_legs loop
  4333. } // n_legs
  4334. // Probe a single point
  4335. sample_set[n] = probe_pt(X_probe_location, Y_probe_location, stow_probe_after_each, 0);
  4336. /**
  4337. * Get the current mean for the data points we have so far
  4338. */
  4339. double sum = 0.0;
  4340. for (uint8_t j = 0; j <= n; j++) sum += sample_set[j];
  4341. mean = sum / (n + 1);
  4342. NOMORE(min, sample_set[n]);
  4343. NOLESS(max, sample_set[n]);
  4344. /**
  4345. * Now, use that mean to calculate the standard deviation for the
  4346. * data points we have so far
  4347. */
  4348. sum = 0.0;
  4349. for (uint8_t j = 0; j <= n; j++)
  4350. sum += sq(sample_set[j] - mean);
  4351. sigma = sqrt(sum / (n + 1));
  4352. if (verbose_level > 0) {
  4353. if (verbose_level > 1) {
  4354. SERIAL_PROTOCOL(n + 1);
  4355. SERIAL_PROTOCOLPGM(" of ");
  4356. SERIAL_PROTOCOL((int)n_samples);
  4357. SERIAL_PROTOCOLPGM(": z: ");
  4358. SERIAL_PROTOCOL_F(sample_set[n], 3);
  4359. if (verbose_level > 2) {
  4360. SERIAL_PROTOCOLPGM(" mean: ");
  4361. SERIAL_PROTOCOL_F(mean, 4);
  4362. SERIAL_PROTOCOLPGM(" sigma: ");
  4363. SERIAL_PROTOCOL_F(sigma, 6);
  4364. SERIAL_PROTOCOLPGM(" min: ");
  4365. SERIAL_PROTOCOL_F(min, 3);
  4366. SERIAL_PROTOCOLPGM(" max: ");
  4367. SERIAL_PROTOCOL_F(max, 3);
  4368. SERIAL_PROTOCOLPGM(" range: ");
  4369. SERIAL_PROTOCOL_F(max-min, 3);
  4370. }
  4371. SERIAL_EOL;
  4372. }
  4373. }
  4374. } // End of probe loop
  4375. if (STOW_PROBE()) return;
  4376. SERIAL_PROTOCOLPGM("Finished!");
  4377. SERIAL_EOL;
  4378. if (verbose_level > 0) {
  4379. SERIAL_PROTOCOLPGM("Mean: ");
  4380. SERIAL_PROTOCOL_F(mean, 6);
  4381. SERIAL_PROTOCOLPGM(" Min: ");
  4382. SERIAL_PROTOCOL_F(min, 3);
  4383. SERIAL_PROTOCOLPGM(" Max: ");
  4384. SERIAL_PROTOCOL_F(max, 3);
  4385. SERIAL_PROTOCOLPGM(" Range: ");
  4386. SERIAL_PROTOCOL_F(max-min, 3);
  4387. SERIAL_EOL;
  4388. }
  4389. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  4390. SERIAL_PROTOCOL_F(sigma, 6);
  4391. SERIAL_EOL;
  4392. SERIAL_EOL;
  4393. clean_up_after_endstop_or_probe_move();
  4394. // Re-enable bed level correction if it has been on
  4395. #if HAS_ABL
  4396. set_bed_leveling_enabled(abl_was_enabled);
  4397. #endif
  4398. report_current_position();
  4399. }
  4400. #endif // Z_MIN_PROBE_REPEATABILITY_TEST
  4401. /**
  4402. * M75: Start print timer
  4403. */
  4404. inline void gcode_M75() { print_job_timer.start(); }
  4405. /**
  4406. * M76: Pause print timer
  4407. */
  4408. inline void gcode_M76() { print_job_timer.pause(); }
  4409. /**
  4410. * M77: Stop print timer
  4411. */
  4412. inline void gcode_M77() { print_job_timer.stop(); }
  4413. #if ENABLED(PRINTCOUNTER)
  4414. /**
  4415. * M78: Show print statistics
  4416. */
  4417. inline void gcode_M78() {
  4418. // "M78 S78" will reset the statistics
  4419. if (code_seen('S') && code_value_int() == 78)
  4420. print_job_timer.initStats();
  4421. else
  4422. print_job_timer.showStats();
  4423. }
  4424. #endif
  4425. /**
  4426. * M104: Set hot end temperature
  4427. */
  4428. inline void gcode_M104() {
  4429. if (get_target_extruder_from_command(104)) return;
  4430. if (DEBUGGING(DRYRUN)) return;
  4431. #if ENABLED(SINGLENOZZLE)
  4432. if (target_extruder != active_extruder) return;
  4433. #endif
  4434. if (code_seen('S')) {
  4435. thermalManager.setTargetHotend(code_value_temp_abs(), target_extruder);
  4436. #if ENABLED(DUAL_X_CARRIAGE)
  4437. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && target_extruder == 0)
  4438. thermalManager.setTargetHotend(code_value_temp_abs() == 0.0 ? 0.0 : code_value_temp_abs() + duplicate_extruder_temp_offset, 1);
  4439. #endif
  4440. #if ENABLED(PRINTJOB_TIMER_AUTOSTART)
  4441. /**
  4442. * Stop the timer at the end of print, starting is managed by
  4443. * 'heat and wait' M109.
  4444. * We use half EXTRUDE_MINTEMP here to allow nozzles to be put into hot
  4445. * stand by mode, for instance in a dual extruder setup, without affecting
  4446. * the running print timer.
  4447. */
  4448. if (code_value_temp_abs() <= (EXTRUDE_MINTEMP)/2) {
  4449. print_job_timer.stop();
  4450. LCD_MESSAGEPGM(WELCOME_MSG);
  4451. }
  4452. #endif
  4453. if (code_value_temp_abs() > thermalManager.degHotend(target_extruder)) status_printf(0, PSTR("E%i %s"), target_extruder + 1, MSG_HEATING);
  4454. }
  4455. #if ENABLED(AUTOTEMP)
  4456. planner.autotemp_M104_M109();
  4457. #endif
  4458. }
  4459. #if HAS_TEMP_HOTEND || HAS_TEMP_BED
  4460. void print_heaterstates() {
  4461. #if HAS_TEMP_HOTEND
  4462. SERIAL_PROTOCOLPGM(" T:");
  4463. SERIAL_PROTOCOL_F(thermalManager.degHotend(target_extruder), 1);
  4464. SERIAL_PROTOCOLPGM(" /");
  4465. SERIAL_PROTOCOL_F(thermalManager.degTargetHotend(target_extruder), 1);
  4466. #if ENABLED(SHOW_TEMP_ADC_VALUES)
  4467. SERIAL_PROTOCOLPAIR(" (", thermalManager.current_temperature_raw[target_extruder] / OVERSAMPLENR);
  4468. SERIAL_CHAR(')');
  4469. #endif
  4470. #endif
  4471. #if HAS_TEMP_BED
  4472. SERIAL_PROTOCOLPGM(" B:");
  4473. SERIAL_PROTOCOL_F(thermalManager.degBed(), 1);
  4474. SERIAL_PROTOCOLPGM(" /");
  4475. SERIAL_PROTOCOL_F(thermalManager.degTargetBed(), 1);
  4476. #if ENABLED(SHOW_TEMP_ADC_VALUES)
  4477. SERIAL_PROTOCOLPAIR(" (", thermalManager.current_temperature_bed_raw / OVERSAMPLENR);
  4478. SERIAL_CHAR(')');
  4479. #endif
  4480. #endif
  4481. #if HOTENDS > 1
  4482. HOTEND_LOOP() {
  4483. SERIAL_PROTOCOLPAIR(" T", e);
  4484. SERIAL_PROTOCOLCHAR(':');
  4485. SERIAL_PROTOCOL_F(thermalManager.degHotend(e), 1);
  4486. SERIAL_PROTOCOLPGM(" /");
  4487. SERIAL_PROTOCOL_F(thermalManager.degTargetHotend(e), 1);
  4488. #if ENABLED(SHOW_TEMP_ADC_VALUES)
  4489. SERIAL_PROTOCOLPAIR(" (", thermalManager.current_temperature_raw[e] / OVERSAMPLENR);
  4490. SERIAL_CHAR(')');
  4491. #endif
  4492. }
  4493. #endif
  4494. SERIAL_PROTOCOLPGM(" @:");
  4495. SERIAL_PROTOCOL(thermalManager.getHeaterPower(target_extruder));
  4496. #if HAS_TEMP_BED
  4497. SERIAL_PROTOCOLPGM(" B@:");
  4498. SERIAL_PROTOCOL(thermalManager.getHeaterPower(-1));
  4499. #endif
  4500. #if HOTENDS > 1
  4501. HOTEND_LOOP() {
  4502. SERIAL_PROTOCOLPAIR(" @", e);
  4503. SERIAL_PROTOCOLCHAR(':');
  4504. SERIAL_PROTOCOL(thermalManager.getHeaterPower(e));
  4505. }
  4506. #endif
  4507. }
  4508. #endif
  4509. /**
  4510. * M105: Read hot end and bed temperature
  4511. */
  4512. inline void gcode_M105() {
  4513. if (get_target_extruder_from_command(105)) return;
  4514. #if HAS_TEMP_HOTEND || HAS_TEMP_BED
  4515. SERIAL_PROTOCOLPGM(MSG_OK);
  4516. print_heaterstates();
  4517. #else // !HAS_TEMP_HOTEND && !HAS_TEMP_BED
  4518. SERIAL_ERROR_START;
  4519. SERIAL_ERRORLNPGM(MSG_ERR_NO_THERMISTORS);
  4520. #endif
  4521. SERIAL_EOL;
  4522. }
  4523. #if ENABLED(AUTO_REPORT_TEMPERATURES) && (HAS_TEMP_HOTEND || HAS_TEMP_BED)
  4524. static uint8_t auto_report_temp_interval;
  4525. static millis_t next_temp_report_ms;
  4526. /**
  4527. * M155: Set temperature auto-report interval. M155 S<seconds>
  4528. */
  4529. inline void gcode_M155() {
  4530. if (code_seen('S')) {
  4531. auto_report_temp_interval = code_value_byte();
  4532. NOMORE(auto_report_temp_interval, 60);
  4533. next_temp_report_ms = millis() + 1000UL * auto_report_temp_interval;
  4534. }
  4535. }
  4536. inline void auto_report_temperatures() {
  4537. if (auto_report_temp_interval && ELAPSED(millis(), next_temp_report_ms)) {
  4538. next_temp_report_ms = millis() + 1000UL * auto_report_temp_interval;
  4539. print_heaterstates();
  4540. SERIAL_EOL;
  4541. }
  4542. }
  4543. #endif // AUTO_REPORT_TEMPERATURES
  4544. #if FAN_COUNT > 0
  4545. /**
  4546. * M106: Set Fan Speed
  4547. *
  4548. * S<int> Speed between 0-255
  4549. * P<index> Fan index, if more than one fan
  4550. */
  4551. inline void gcode_M106() {
  4552. uint16_t s = code_seen('S') ? code_value_ushort() : 255,
  4553. p = code_seen('P') ? code_value_ushort() : 0;
  4554. NOMORE(s, 255);
  4555. if (p < FAN_COUNT) fanSpeeds[p] = s;
  4556. }
  4557. /**
  4558. * M107: Fan Off
  4559. */
  4560. inline void gcode_M107() {
  4561. uint16_t p = code_seen('P') ? code_value_ushort() : 0;
  4562. if (p < FAN_COUNT) fanSpeeds[p] = 0;
  4563. }
  4564. #endif // FAN_COUNT > 0
  4565. #if DISABLED(EMERGENCY_PARSER)
  4566. /**
  4567. * M108: Stop the waiting for heaters in M109, M190, M303. Does not affect the target temperature.
  4568. */
  4569. inline void gcode_M108() { wait_for_heatup = false; }
  4570. /**
  4571. * M112: Emergency Stop
  4572. */
  4573. inline void gcode_M112() { kill(PSTR(MSG_KILLED)); }
  4574. /**
  4575. * M410: Quickstop - Abort all planned moves
  4576. *
  4577. * This will stop the carriages mid-move, so most likely they
  4578. * will be out of sync with the stepper position after this.
  4579. */
  4580. inline void gcode_M410() { quickstop_stepper(); }
  4581. #endif
  4582. #ifndef MIN_COOLING_SLOPE_DEG
  4583. #define MIN_COOLING_SLOPE_DEG 1.50
  4584. #endif
  4585. #ifndef MIN_COOLING_SLOPE_TIME
  4586. #define MIN_COOLING_SLOPE_TIME 60
  4587. #endif
  4588. /**
  4589. * M109: Sxxx Wait for extruder(s) to reach temperature. Waits only when heating.
  4590. * Rxxx Wait for extruder(s) to reach temperature. Waits when heating and cooling.
  4591. */
  4592. inline void gcode_M109() {
  4593. if (get_target_extruder_from_command(109)) return;
  4594. if (DEBUGGING(DRYRUN)) return;
  4595. #if ENABLED(SINGLENOZZLE)
  4596. if (target_extruder != active_extruder) return;
  4597. #endif
  4598. bool no_wait_for_cooling = code_seen('S');
  4599. if (no_wait_for_cooling || code_seen('R')) {
  4600. thermalManager.setTargetHotend(code_value_temp_abs(), target_extruder);
  4601. #if ENABLED(DUAL_X_CARRIAGE)
  4602. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && target_extruder == 0)
  4603. thermalManager.setTargetHotend(code_value_temp_abs() == 0.0 ? 0.0 : code_value_temp_abs() + duplicate_extruder_temp_offset, 1);
  4604. #endif
  4605. #if ENABLED(PRINTJOB_TIMER_AUTOSTART)
  4606. /**
  4607. * We use half EXTRUDE_MINTEMP here to allow nozzles to be put into hot
  4608. * stand by mode, for instance in a dual extruder setup, without affecting
  4609. * the running print timer.
  4610. */
  4611. if (code_value_temp_abs() <= (EXTRUDE_MINTEMP)/2) {
  4612. print_job_timer.stop();
  4613. LCD_MESSAGEPGM(WELCOME_MSG);
  4614. }
  4615. /**
  4616. * We do not check if the timer is already running because this check will
  4617. * be done for us inside the Stopwatch::start() method thus a running timer
  4618. * will not restart.
  4619. */
  4620. else print_job_timer.start();
  4621. #endif
  4622. if (thermalManager.isHeatingHotend(target_extruder)) status_printf(0, PSTR("E%i %s"), target_extruder + 1, MSG_HEATING);
  4623. }
  4624. #if ENABLED(AUTOTEMP)
  4625. planner.autotemp_M104_M109();
  4626. #endif
  4627. #if TEMP_RESIDENCY_TIME > 0
  4628. millis_t residency_start_ms = 0;
  4629. // Loop until the temperature has stabilized
  4630. #define TEMP_CONDITIONS (!residency_start_ms || PENDING(now, residency_start_ms + (TEMP_RESIDENCY_TIME) * 1000UL))
  4631. #else
  4632. // Loop until the temperature is very close target
  4633. #define TEMP_CONDITIONS (wants_to_cool ? thermalManager.isCoolingHotend(target_extruder) : thermalManager.isHeatingHotend(target_extruder))
  4634. #endif //TEMP_RESIDENCY_TIME > 0
  4635. float theTarget = -1.0, old_temp = 9999.0;
  4636. bool wants_to_cool = false;
  4637. wait_for_heatup = true;
  4638. millis_t now, next_temp_ms = 0, next_cool_check_ms = 0;
  4639. KEEPALIVE_STATE(NOT_BUSY);
  4640. do {
  4641. // Target temperature might be changed during the loop
  4642. if (theTarget != thermalManager.degTargetHotend(target_extruder)) {
  4643. wants_to_cool = thermalManager.isCoolingHotend(target_extruder);
  4644. theTarget = thermalManager.degTargetHotend(target_extruder);
  4645. // Exit if S<lower>, continue if S<higher>, R<lower>, or R<higher>
  4646. if (no_wait_for_cooling && wants_to_cool) break;
  4647. }
  4648. now = millis();
  4649. if (ELAPSED(now, next_temp_ms)) { //Print temp & remaining time every 1s while waiting
  4650. next_temp_ms = now + 1000UL;
  4651. print_heaterstates();
  4652. #if TEMP_RESIDENCY_TIME > 0
  4653. SERIAL_PROTOCOLPGM(" W:");
  4654. if (residency_start_ms) {
  4655. long rem = (((TEMP_RESIDENCY_TIME) * 1000UL) - (now - residency_start_ms)) / 1000UL;
  4656. SERIAL_PROTOCOLLN(rem);
  4657. }
  4658. else {
  4659. SERIAL_PROTOCOLLNPGM("?");
  4660. }
  4661. #else
  4662. SERIAL_EOL;
  4663. #endif
  4664. }
  4665. idle();
  4666. refresh_cmd_timeout(); // to prevent stepper_inactive_time from running out
  4667. float temp = thermalManager.degHotend(target_extruder);
  4668. #if TEMP_RESIDENCY_TIME > 0
  4669. float temp_diff = fabs(theTarget - temp);
  4670. if (!residency_start_ms) {
  4671. // Start the TEMP_RESIDENCY_TIME timer when we reach target temp for the first time.
  4672. if (temp_diff < TEMP_WINDOW) residency_start_ms = now;
  4673. }
  4674. else if (temp_diff > TEMP_HYSTERESIS) {
  4675. // Restart the timer whenever the temperature falls outside the hysteresis.
  4676. residency_start_ms = now;
  4677. }
  4678. #endif //TEMP_RESIDENCY_TIME > 0
  4679. // Prevent a wait-forever situation if R is misused i.e. M109 R0
  4680. if (wants_to_cool) {
  4681. // break after MIN_COOLING_SLOPE_TIME seconds
  4682. // if the temperature did not drop at least MIN_COOLING_SLOPE_DEG
  4683. if (!next_cool_check_ms || ELAPSED(now, next_cool_check_ms)) {
  4684. if (old_temp - temp < MIN_COOLING_SLOPE_DEG) break;
  4685. next_cool_check_ms = now + 1000UL * MIN_COOLING_SLOPE_TIME;
  4686. old_temp = temp;
  4687. }
  4688. }
  4689. } while (wait_for_heatup && TEMP_CONDITIONS);
  4690. if (wait_for_heatup) LCD_MESSAGEPGM(MSG_HEATING_COMPLETE);
  4691. KEEPALIVE_STATE(IN_HANDLER);
  4692. }
  4693. #if HAS_TEMP_BED
  4694. #ifndef MIN_COOLING_SLOPE_DEG_BED
  4695. #define MIN_COOLING_SLOPE_DEG_BED 1.50
  4696. #endif
  4697. #ifndef MIN_COOLING_SLOPE_TIME_BED
  4698. #define MIN_COOLING_SLOPE_TIME_BED 60
  4699. #endif
  4700. /**
  4701. * M190: Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  4702. * Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  4703. */
  4704. inline void gcode_M190() {
  4705. if (DEBUGGING(DRYRUN)) return;
  4706. LCD_MESSAGEPGM(MSG_BED_HEATING);
  4707. bool no_wait_for_cooling = code_seen('S');
  4708. if (no_wait_for_cooling || code_seen('R')) {
  4709. thermalManager.setTargetBed(code_value_temp_abs());
  4710. #if ENABLED(PRINTJOB_TIMER_AUTOSTART)
  4711. if (code_value_temp_abs() > BED_MINTEMP) {
  4712. /**
  4713. * We start the timer when 'heating and waiting' command arrives, LCD
  4714. * functions never wait. Cooling down managed by extruders.
  4715. *
  4716. * We do not check if the timer is already running because this check will
  4717. * be done for us inside the Stopwatch::start() method thus a running timer
  4718. * will not restart.
  4719. */
  4720. print_job_timer.start();
  4721. }
  4722. #endif
  4723. }
  4724. #if TEMP_BED_RESIDENCY_TIME > 0
  4725. millis_t residency_start_ms = 0;
  4726. // Loop until the temperature has stabilized
  4727. #define TEMP_BED_CONDITIONS (!residency_start_ms || PENDING(now, residency_start_ms + (TEMP_BED_RESIDENCY_TIME) * 1000UL))
  4728. #else
  4729. // Loop until the temperature is very close target
  4730. #define TEMP_BED_CONDITIONS (wants_to_cool ? thermalManager.isCoolingBed() : thermalManager.isHeatingBed())
  4731. #endif //TEMP_BED_RESIDENCY_TIME > 0
  4732. float theTarget = -1.0, old_temp = 9999.0;
  4733. bool wants_to_cool = false;
  4734. wait_for_heatup = true;
  4735. millis_t now, next_temp_ms = 0, next_cool_check_ms = 0;
  4736. KEEPALIVE_STATE(NOT_BUSY);
  4737. target_extruder = active_extruder; // for print_heaterstates
  4738. do {
  4739. // Target temperature might be changed during the loop
  4740. if (theTarget != thermalManager.degTargetBed()) {
  4741. wants_to_cool = thermalManager.isCoolingBed();
  4742. theTarget = thermalManager.degTargetBed();
  4743. // Exit if S<lower>, continue if S<higher>, R<lower>, or R<higher>
  4744. if (no_wait_for_cooling && wants_to_cool) break;
  4745. }
  4746. now = millis();
  4747. if (ELAPSED(now, next_temp_ms)) { //Print Temp Reading every 1 second while heating up.
  4748. next_temp_ms = now + 1000UL;
  4749. print_heaterstates();
  4750. #if TEMP_BED_RESIDENCY_TIME > 0
  4751. SERIAL_PROTOCOLPGM(" W:");
  4752. if (residency_start_ms) {
  4753. long rem = (((TEMP_BED_RESIDENCY_TIME) * 1000UL) - (now - residency_start_ms)) / 1000UL;
  4754. SERIAL_PROTOCOLLN(rem);
  4755. }
  4756. else {
  4757. SERIAL_PROTOCOLLNPGM("?");
  4758. }
  4759. #else
  4760. SERIAL_EOL;
  4761. #endif
  4762. }
  4763. idle();
  4764. refresh_cmd_timeout(); // to prevent stepper_inactive_time from running out
  4765. float temp = thermalManager.degBed();
  4766. #if TEMP_BED_RESIDENCY_TIME > 0
  4767. float temp_diff = fabs(theTarget - temp);
  4768. if (!residency_start_ms) {
  4769. // Start the TEMP_BED_RESIDENCY_TIME timer when we reach target temp for the first time.
  4770. if (temp_diff < TEMP_BED_WINDOW) residency_start_ms = now;
  4771. }
  4772. else if (temp_diff > TEMP_BED_HYSTERESIS) {
  4773. // Restart the timer whenever the temperature falls outside the hysteresis.
  4774. residency_start_ms = now;
  4775. }
  4776. #endif //TEMP_BED_RESIDENCY_TIME > 0
  4777. // Prevent a wait-forever situation if R is misused i.e. M190 R0
  4778. if (wants_to_cool) {
  4779. // break after MIN_COOLING_SLOPE_TIME_BED seconds
  4780. // if the temperature did not drop at least MIN_COOLING_SLOPE_DEG_BED
  4781. if (!next_cool_check_ms || ELAPSED(now, next_cool_check_ms)) {
  4782. if (old_temp - temp < MIN_COOLING_SLOPE_DEG_BED) break;
  4783. next_cool_check_ms = now + 1000UL * MIN_COOLING_SLOPE_TIME_BED;
  4784. old_temp = temp;
  4785. }
  4786. }
  4787. } while (wait_for_heatup && TEMP_BED_CONDITIONS);
  4788. if (wait_for_heatup) LCD_MESSAGEPGM(MSG_BED_DONE);
  4789. KEEPALIVE_STATE(IN_HANDLER);
  4790. }
  4791. #endif // HAS_TEMP_BED
  4792. /**
  4793. * M110: Set Current Line Number
  4794. */
  4795. inline void gcode_M110() {
  4796. if (code_seen('N')) gcode_LastN = code_value_long();
  4797. }
  4798. /**
  4799. * M111: Set the debug level
  4800. */
  4801. inline void gcode_M111() {
  4802. marlin_debug_flags = code_seen('S') ? code_value_byte() : (uint8_t) DEBUG_NONE;
  4803. const static char str_debug_1[] PROGMEM = MSG_DEBUG_ECHO;
  4804. const static char str_debug_2[] PROGMEM = MSG_DEBUG_INFO;
  4805. const static char str_debug_4[] PROGMEM = MSG_DEBUG_ERRORS;
  4806. const static char str_debug_8[] PROGMEM = MSG_DEBUG_DRYRUN;
  4807. const static char str_debug_16[] PROGMEM = MSG_DEBUG_COMMUNICATION;
  4808. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4809. const static char str_debug_32[] PROGMEM = MSG_DEBUG_LEVELING;
  4810. #endif
  4811. const static char* const debug_strings[] PROGMEM = {
  4812. str_debug_1, str_debug_2, str_debug_4, str_debug_8, str_debug_16,
  4813. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4814. str_debug_32
  4815. #endif
  4816. };
  4817. SERIAL_ECHO_START;
  4818. SERIAL_ECHOPGM(MSG_DEBUG_PREFIX);
  4819. if (marlin_debug_flags) {
  4820. uint8_t comma = 0;
  4821. for (uint8_t i = 0; i < COUNT(debug_strings); i++) {
  4822. if (TEST(marlin_debug_flags, i)) {
  4823. if (comma++) SERIAL_CHAR(',');
  4824. serialprintPGM((char*)pgm_read_word(&(debug_strings[i])));
  4825. }
  4826. }
  4827. }
  4828. else {
  4829. SERIAL_ECHOPGM(MSG_DEBUG_OFF);
  4830. }
  4831. SERIAL_EOL;
  4832. }
  4833. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  4834. /**
  4835. * M113: Get or set Host Keepalive interval (0 to disable)
  4836. *
  4837. * S<seconds> Optional. Set the keepalive interval.
  4838. */
  4839. inline void gcode_M113() {
  4840. if (code_seen('S')) {
  4841. host_keepalive_interval = code_value_byte();
  4842. NOMORE(host_keepalive_interval, 60);
  4843. }
  4844. else {
  4845. SERIAL_ECHO_START;
  4846. SERIAL_ECHOLNPAIR("M113 S", (unsigned long)host_keepalive_interval);
  4847. }
  4848. }
  4849. #endif
  4850. #if ENABLED(BARICUDA)
  4851. #if HAS_HEATER_1
  4852. /**
  4853. * M126: Heater 1 valve open
  4854. */
  4855. inline void gcode_M126() { baricuda_valve_pressure = code_seen('S') ? code_value_byte() : 255; }
  4856. /**
  4857. * M127: Heater 1 valve close
  4858. */
  4859. inline void gcode_M127() { baricuda_valve_pressure = 0; }
  4860. #endif
  4861. #if HAS_HEATER_2
  4862. /**
  4863. * M128: Heater 2 valve open
  4864. */
  4865. inline void gcode_M128() { baricuda_e_to_p_pressure = code_seen('S') ? code_value_byte() : 255; }
  4866. /**
  4867. * M129: Heater 2 valve close
  4868. */
  4869. inline void gcode_M129() { baricuda_e_to_p_pressure = 0; }
  4870. #endif
  4871. #endif //BARICUDA
  4872. /**
  4873. * M140: Set bed temperature
  4874. */
  4875. inline void gcode_M140() {
  4876. if (DEBUGGING(DRYRUN)) return;
  4877. if (code_seen('S')) thermalManager.setTargetBed(code_value_temp_abs());
  4878. }
  4879. #if ENABLED(ULTIPANEL)
  4880. /**
  4881. * M145: Set the heatup state for a material in the LCD menu
  4882. * S<material> (0=PLA, 1=ABS)
  4883. * H<hotend temp>
  4884. * B<bed temp>
  4885. * F<fan speed>
  4886. */
  4887. inline void gcode_M145() {
  4888. uint8_t material = code_seen('S') ? (uint8_t)code_value_int() : 0;
  4889. if (material >= COUNT(lcd_preheat_hotend_temp)) {
  4890. SERIAL_ERROR_START;
  4891. SERIAL_ERRORLNPGM(MSG_ERR_MATERIAL_INDEX);
  4892. }
  4893. else {
  4894. int v;
  4895. if (code_seen('H')) {
  4896. v = code_value_int();
  4897. lcd_preheat_hotend_temp[material] = constrain(v, EXTRUDE_MINTEMP, HEATER_0_MAXTEMP - 15);
  4898. }
  4899. if (code_seen('F')) {
  4900. v = code_value_int();
  4901. lcd_preheat_fan_speed[material] = constrain(v, 0, 255);
  4902. }
  4903. #if TEMP_SENSOR_BED != 0
  4904. if (code_seen('B')) {
  4905. v = code_value_int();
  4906. lcd_preheat_bed_temp[material] = constrain(v, BED_MINTEMP, BED_MAXTEMP - 15);
  4907. }
  4908. #endif
  4909. }
  4910. }
  4911. #endif // ULTIPANEL
  4912. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  4913. /**
  4914. * M149: Set temperature units
  4915. */
  4916. inline void gcode_M149() {
  4917. if (code_seen('C')) set_input_temp_units(TEMPUNIT_C);
  4918. else if (code_seen('K')) set_input_temp_units(TEMPUNIT_K);
  4919. else if (code_seen('F')) set_input_temp_units(TEMPUNIT_F);
  4920. }
  4921. #endif
  4922. #if HAS_POWER_SWITCH
  4923. /**
  4924. * M80: Turn on Power Supply
  4925. */
  4926. inline void gcode_M80() {
  4927. OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE); //GND
  4928. /**
  4929. * If you have a switch on suicide pin, this is useful
  4930. * if you want to start another print with suicide feature after
  4931. * a print without suicide...
  4932. */
  4933. #if HAS_SUICIDE
  4934. OUT_WRITE(SUICIDE_PIN, HIGH);
  4935. #endif
  4936. #if ENABLED(ULTIPANEL)
  4937. powersupply = true;
  4938. LCD_MESSAGEPGM(WELCOME_MSG);
  4939. lcd_update();
  4940. #endif
  4941. }
  4942. #endif // HAS_POWER_SWITCH
  4943. /**
  4944. * M81: Turn off Power, including Power Supply, if there is one.
  4945. *
  4946. * This code should ALWAYS be available for EMERGENCY SHUTDOWN!
  4947. */
  4948. inline void gcode_M81() {
  4949. thermalManager.disable_all_heaters();
  4950. stepper.finish_and_disable();
  4951. #if FAN_COUNT > 0
  4952. #if FAN_COUNT > 1
  4953. for (uint8_t i = 0; i < FAN_COUNT; i++) fanSpeeds[i] = 0;
  4954. #else
  4955. fanSpeeds[0] = 0;
  4956. #endif
  4957. #endif
  4958. delay(1000); // Wait 1 second before switching off
  4959. #if HAS_SUICIDE
  4960. stepper.synchronize();
  4961. suicide();
  4962. #elif HAS_POWER_SWITCH
  4963. OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  4964. #endif
  4965. #if ENABLED(ULTIPANEL)
  4966. #if HAS_POWER_SWITCH
  4967. powersupply = false;
  4968. #endif
  4969. LCD_MESSAGEPGM(MACHINE_NAME " " MSG_OFF ".");
  4970. lcd_update();
  4971. #endif
  4972. }
  4973. /**
  4974. * M82: Set E codes absolute (default)
  4975. */
  4976. inline void gcode_M82() { axis_relative_modes[E_AXIS] = false; }
  4977. /**
  4978. * M83: Set E codes relative while in Absolute Coordinates (G90) mode
  4979. */
  4980. inline void gcode_M83() { axis_relative_modes[E_AXIS] = true; }
  4981. /**
  4982. * M18, M84: Disable all stepper motors
  4983. */
  4984. inline void gcode_M18_M84() {
  4985. if (code_seen('S')) {
  4986. stepper_inactive_time = code_value_millis_from_seconds();
  4987. }
  4988. else {
  4989. bool all_axis = !((code_seen('X')) || (code_seen('Y')) || (code_seen('Z')) || (code_seen('E')));
  4990. if (all_axis) {
  4991. stepper.finish_and_disable();
  4992. }
  4993. else {
  4994. stepper.synchronize();
  4995. if (code_seen('X')) disable_x();
  4996. if (code_seen('Y')) disable_y();
  4997. if (code_seen('Z')) disable_z();
  4998. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  4999. if (code_seen('E')) {
  5000. disable_e0();
  5001. disable_e1();
  5002. disable_e2();
  5003. disable_e3();
  5004. }
  5005. #endif
  5006. }
  5007. }
  5008. }
  5009. /**
  5010. * M85: Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  5011. */
  5012. inline void gcode_M85() {
  5013. if (code_seen('S')) max_inactive_time = code_value_millis_from_seconds();
  5014. }
  5015. /**
  5016. * Multi-stepper support for M92, M201, M203
  5017. */
  5018. #if ENABLED(DISTINCT_E_FACTORS)
  5019. #define GET_TARGET_EXTRUDER(CMD) if (get_target_extruder_from_command(CMD)) return
  5020. #define TARGET_EXTRUDER target_extruder
  5021. #else
  5022. #define GET_TARGET_EXTRUDER(CMD) NOOP
  5023. #define TARGET_EXTRUDER 0
  5024. #endif
  5025. /**
  5026. * M92: Set axis steps-per-unit for one or more axes, X, Y, Z, and E.
  5027. * (Follows the same syntax as G92)
  5028. *
  5029. * With multiple extruders use T to specify which one.
  5030. */
  5031. inline void gcode_M92() {
  5032. GET_TARGET_EXTRUDER(92);
  5033. LOOP_XYZE(i) {
  5034. if (code_seen(axis_codes[i])) {
  5035. if (i == E_AXIS) {
  5036. float value = code_value_per_axis_unit(E_AXIS + TARGET_EXTRUDER);
  5037. if (value < 20.0) {
  5038. float factor = planner.axis_steps_per_mm[E_AXIS + TARGET_EXTRUDER] / value; // increase e constants if M92 E14 is given for netfab.
  5039. planner.max_jerk[E_AXIS] *= factor;
  5040. planner.max_feedrate_mm_s[E_AXIS + TARGET_EXTRUDER] *= factor;
  5041. planner.max_acceleration_steps_per_s2[E_AXIS + TARGET_EXTRUDER] *= factor;
  5042. }
  5043. planner.axis_steps_per_mm[E_AXIS + TARGET_EXTRUDER] = value;
  5044. }
  5045. else {
  5046. planner.axis_steps_per_mm[i] = code_value_per_axis_unit(i);
  5047. }
  5048. }
  5049. }
  5050. planner.refresh_positioning();
  5051. }
  5052. /**
  5053. * Output the current position to serial
  5054. */
  5055. static void report_current_position() {
  5056. SERIAL_PROTOCOLPGM("X:");
  5057. SERIAL_PROTOCOL(current_position[X_AXIS]);
  5058. SERIAL_PROTOCOLPGM(" Y:");
  5059. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  5060. SERIAL_PROTOCOLPGM(" Z:");
  5061. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  5062. SERIAL_PROTOCOLPGM(" E:");
  5063. SERIAL_PROTOCOL(current_position[E_AXIS]);
  5064. stepper.report_positions();
  5065. #if IS_SCARA
  5066. SERIAL_PROTOCOLPAIR("SCARA Theta:", stepper.get_axis_position_degrees(A_AXIS));
  5067. SERIAL_PROTOCOLLNPAIR(" Psi+Theta:", stepper.get_axis_position_degrees(B_AXIS));
  5068. SERIAL_EOL;
  5069. #endif
  5070. }
  5071. /**
  5072. * M114: Output current position to serial port
  5073. */
  5074. inline void gcode_M114() { report_current_position(); }
  5075. /**
  5076. * M115: Capabilities string
  5077. */
  5078. inline void gcode_M115() {
  5079. SERIAL_PROTOCOLLNPGM(MSG_M115_REPORT);
  5080. #if ENABLED(EXTENDED_CAPABILITIES_REPORT)
  5081. // EEPROM (M500, M501)
  5082. #if ENABLED(EEPROM_SETTINGS)
  5083. SERIAL_PROTOCOLLNPGM("Cap:EEPROM:1");
  5084. #else
  5085. SERIAL_PROTOCOLLNPGM("Cap:EEPROM:0");
  5086. #endif
  5087. // AUTOREPORT_TEMP (M155)
  5088. #if ENABLED(AUTO_REPORT_TEMPERATURES)
  5089. SERIAL_PROTOCOLLNPGM("Cap:AUTOREPORT_TEMP:1");
  5090. #else
  5091. SERIAL_PROTOCOLLNPGM("Cap:AUTOREPORT_TEMP:0");
  5092. #endif
  5093. // PROGRESS (M530 S L, M531 <file>, M532 X L)
  5094. SERIAL_PROTOCOLLNPGM("Cap:PROGRESS:0");
  5095. // AUTOLEVEL (G29)
  5096. #if HAS_ABL
  5097. SERIAL_PROTOCOLLNPGM("Cap:AUTOLEVEL:1");
  5098. #else
  5099. SERIAL_PROTOCOLLNPGM("Cap:AUTOLEVEL:0");
  5100. #endif
  5101. // Z_PROBE (G30)
  5102. #if HAS_BED_PROBE
  5103. SERIAL_PROTOCOLLNPGM("Cap:Z_PROBE:1");
  5104. #else
  5105. SERIAL_PROTOCOLLNPGM("Cap:Z_PROBE:0");
  5106. #endif
  5107. // SOFTWARE_POWER (G30)
  5108. #if HAS_POWER_SWITCH
  5109. SERIAL_PROTOCOLLNPGM("Cap:SOFTWARE_POWER:1");
  5110. #else
  5111. SERIAL_PROTOCOLLNPGM("Cap:SOFTWARE_POWER:0");
  5112. #endif
  5113. // TOGGLE_LIGHTS (M355)
  5114. #if HAS_CASE_LIGHT
  5115. SERIAL_PROTOCOLLNPGM("Cap:TOGGLE_LIGHTS:1");
  5116. #else
  5117. SERIAL_PROTOCOLLNPGM("Cap:TOGGLE_LIGHTS:0");
  5118. #endif
  5119. // EMERGENCY_PARSER (M108, M112, M410)
  5120. #if ENABLED(EMERGENCY_PARSER)
  5121. SERIAL_PROTOCOLLNPGM("Cap:EMERGENCY_PARSER:1");
  5122. #else
  5123. SERIAL_PROTOCOLLNPGM("Cap:EMERGENCY_PARSER:0");
  5124. #endif
  5125. #endif // EXTENDED_CAPABILITIES_REPORT
  5126. }
  5127. /**
  5128. * M117: Set LCD Status Message
  5129. */
  5130. inline void gcode_M117() {
  5131. lcd_setstatus(current_command_args);
  5132. }
  5133. /**
  5134. * M119: Output endstop states to serial output
  5135. */
  5136. inline void gcode_M119() { endstops.M119(); }
  5137. /**
  5138. * M120: Enable endstops and set non-homing endstop state to "enabled"
  5139. */
  5140. inline void gcode_M120() { endstops.enable_globally(true); }
  5141. /**
  5142. * M121: Disable endstops and set non-homing endstop state to "disabled"
  5143. */
  5144. inline void gcode_M121() { endstops.enable_globally(false); }
  5145. #if ENABLED(HAVE_TMC2130DRIVER)
  5146. /**
  5147. * M122: Output Trinamic TMC2130 status to serial output. Very bad formatting.
  5148. */
  5149. static void tmc2130_report(Trinamic_TMC2130 &stepr, const char *name) {
  5150. stepr.read_STAT();
  5151. SERIAL_PROTOCOL(name);
  5152. SERIAL_PROTOCOL(": ");
  5153. stepr.isReset() ? SERIAL_PROTOCOLPGM("RESET ") : SERIAL_PROTOCOLPGM("----- ");
  5154. stepr.isError() ? SERIAL_PROTOCOLPGM("ERROR ") : SERIAL_PROTOCOLPGM("----- ");
  5155. stepr.isStallguard() ? SERIAL_PROTOCOLPGM("SLGRD ") : SERIAL_PROTOCOLPGM("----- ");
  5156. stepr.isStandstill() ? SERIAL_PROTOCOLPGM("STILL ") : SERIAL_PROTOCOLPGM("----- ");
  5157. SERIAL_PROTOCOLLN(stepr.debug());
  5158. }
  5159. inline void gcode_M122() {
  5160. SERIAL_PROTOCOLLNPGM("Reporting TMC2130 status");
  5161. #if ENABLED(X_IS_TMC2130)
  5162. tmc2130_report(stepperX, "X");
  5163. #endif
  5164. #if ENABLED(X2_IS_TMC2130)
  5165. tmc2130_report(stepperX2, "X2");
  5166. #endif
  5167. #if ENABLED(Y_IS_TMC2130)
  5168. tmc2130_report(stepperY, "Y");
  5169. #endif
  5170. #if ENABLED(Y2_IS_TMC2130)
  5171. tmc2130_report(stepperY2, "Y2");
  5172. #endif
  5173. #if ENABLED(Z_IS_TMC2130)
  5174. tmc2130_report(stepperZ, "Z");
  5175. #endif
  5176. #if ENABLED(Z2_IS_TMC2130)
  5177. tmc2130_report(stepperZ2, "Z2");
  5178. #endif
  5179. #if ENABLED(E0_IS_TMC2130)
  5180. tmc2130_report(stepperE0, "E0");
  5181. #endif
  5182. #if ENABLED(E1_IS_TMC2130)
  5183. tmc2130_report(stepperE1, "E1");
  5184. #endif
  5185. #if ENABLED(E2_IS_TMC2130)
  5186. tmc2130_report(stepperE2, "E2");
  5187. #endif
  5188. #if ENABLED(E3_IS_TMC2130)
  5189. tmc2130_report(stepperE3, "E3");
  5190. #endif
  5191. }
  5192. #endif // HAVE_TMC2130DRIVER
  5193. #if ENABLED(BLINKM) || ENABLED(RGB_LED)
  5194. void set_led_color(const uint8_t r, const uint8_t g, const uint8_t b) {
  5195. #if ENABLED(BLINKM)
  5196. // This variant uses i2c to send the RGB components to the device.
  5197. SendColors(r, g, b);
  5198. #else
  5199. // This variant uses 3 separate pins for the RGB components.
  5200. // If the pins can do PWM then their intensity will be set.
  5201. digitalWrite(RGB_LED_R_PIN, r ? HIGH : LOW);
  5202. digitalWrite(RGB_LED_G_PIN, g ? HIGH : LOW);
  5203. digitalWrite(RGB_LED_B_PIN, b ? HIGH : LOW);
  5204. analogWrite(RGB_LED_R_PIN, r);
  5205. analogWrite(RGB_LED_G_PIN, g);
  5206. analogWrite(RGB_LED_B_PIN, b);
  5207. #endif
  5208. }
  5209. /**
  5210. * M150: Set Status LED Color - Use R-U-B for R-G-B
  5211. *
  5212. * Always sets all 3 components. If a component is left out, set to 0.
  5213. *
  5214. * Examples:
  5215. *
  5216. * M150 R255 ; Turn LED red
  5217. * M150 R255 U127 ; Turn LED orange (PWM only)
  5218. * M150 ; Turn LED off
  5219. * M150 R U B ; Turn LED white
  5220. *
  5221. */
  5222. inline void gcode_M150() {
  5223. set_led_color(
  5224. code_seen('R') ? (code_has_value() ? code_value_byte() : 255) : 0,
  5225. code_seen('U') ? (code_has_value() ? code_value_byte() : 255) : 0,
  5226. code_seen('B') ? (code_has_value() ? code_value_byte() : 255) : 0
  5227. );
  5228. }
  5229. #endif // BLINKM || RGB_LED
  5230. /**
  5231. * M200: Set filament diameter and set E axis units to cubic units
  5232. *
  5233. * T<extruder> - Optional extruder number. Current extruder if omitted.
  5234. * D<linear> - Diameter of the filament. Use "D0" to switch back to linear units on the E axis.
  5235. */
  5236. inline void gcode_M200() {
  5237. if (get_target_extruder_from_command(200)) return;
  5238. if (code_seen('D')) {
  5239. // setting any extruder filament size disables volumetric on the assumption that
  5240. // slicers either generate in extruder values as cubic mm or as as filament feeds
  5241. // for all extruders
  5242. volumetric_enabled = (code_value_linear_units() != 0.0);
  5243. if (volumetric_enabled) {
  5244. filament_size[target_extruder] = code_value_linear_units();
  5245. // make sure all extruders have some sane value for the filament size
  5246. for (uint8_t i = 0; i < COUNT(filament_size); i++)
  5247. if (! filament_size[i]) filament_size[i] = DEFAULT_NOMINAL_FILAMENT_DIA;
  5248. }
  5249. }
  5250. else {
  5251. //reserved for setting filament diameter via UFID or filament measuring device
  5252. return;
  5253. }
  5254. calculate_volumetric_multipliers();
  5255. }
  5256. /**
  5257. * M201: Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  5258. *
  5259. * With multiple extruders use T to specify which one.
  5260. */
  5261. inline void gcode_M201() {
  5262. GET_TARGET_EXTRUDER(201);
  5263. LOOP_XYZE(i) {
  5264. if (code_seen(axis_codes[i])) {
  5265. const uint8_t a = i + (i == E_AXIS ? TARGET_EXTRUDER : 0);
  5266. planner.max_acceleration_mm_per_s2[a] = code_value_axis_units(a);
  5267. }
  5268. }
  5269. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  5270. planner.reset_acceleration_rates();
  5271. }
  5272. #if 0 // Not used for Sprinter/grbl gen6
  5273. inline void gcode_M202() {
  5274. LOOP_XYZE(i) {
  5275. if (code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value_axis_units(i) * planner.axis_steps_per_mm[i];
  5276. }
  5277. }
  5278. #endif
  5279. /**
  5280. * M203: Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in units/sec
  5281. *
  5282. * With multiple extruders use T to specify which one.
  5283. */
  5284. inline void gcode_M203() {
  5285. GET_TARGET_EXTRUDER(203);
  5286. LOOP_XYZE(i)
  5287. if (code_seen(axis_codes[i])) {
  5288. const uint8_t a = i + (i == E_AXIS ? TARGET_EXTRUDER : 0);
  5289. planner.max_feedrate_mm_s[a] = code_value_axis_units(a);
  5290. }
  5291. }
  5292. /**
  5293. * M204: Set Accelerations in units/sec^2 (M204 P1200 R3000 T3000)
  5294. *
  5295. * P = Printing moves
  5296. * R = Retract only (no X, Y, Z) moves
  5297. * T = Travel (non printing) moves
  5298. *
  5299. * Also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  5300. */
  5301. inline void gcode_M204() {
  5302. if (code_seen('S')) { // Kept for legacy compatibility. Should NOT BE USED for new developments.
  5303. planner.travel_acceleration = planner.acceleration = code_value_linear_units();
  5304. SERIAL_ECHOLNPAIR("Setting Print and Travel Acceleration: ", planner.acceleration);
  5305. }
  5306. if (code_seen('P')) {
  5307. planner.acceleration = code_value_linear_units();
  5308. SERIAL_ECHOLNPAIR("Setting Print Acceleration: ", planner.acceleration);
  5309. }
  5310. if (code_seen('R')) {
  5311. planner.retract_acceleration = code_value_linear_units();
  5312. SERIAL_ECHOLNPAIR("Setting Retract Acceleration: ", planner.retract_acceleration);
  5313. }
  5314. if (code_seen('T')) {
  5315. planner.travel_acceleration = code_value_linear_units();
  5316. SERIAL_ECHOLNPAIR("Setting Travel Acceleration: ", planner.travel_acceleration);
  5317. }
  5318. }
  5319. /**
  5320. * M205: Set Advanced Settings
  5321. *
  5322. * S = Min Feed Rate (units/s)
  5323. * T = Min Travel Feed Rate (units/s)
  5324. * B = Min Segment Time (µs)
  5325. * X = Max X Jerk (units/sec^2)
  5326. * Y = Max Y Jerk (units/sec^2)
  5327. * Z = Max Z Jerk (units/sec^2)
  5328. * E = Max E Jerk (units/sec^2)
  5329. */
  5330. inline void gcode_M205() {
  5331. if (code_seen('S')) planner.min_feedrate_mm_s = code_value_linear_units();
  5332. if (code_seen('T')) planner.min_travel_feedrate_mm_s = code_value_linear_units();
  5333. if (code_seen('B')) planner.min_segment_time = code_value_millis();
  5334. if (code_seen('X')) planner.max_jerk[X_AXIS] = code_value_axis_units(X_AXIS);
  5335. if (code_seen('Y')) planner.max_jerk[Y_AXIS] = code_value_axis_units(Y_AXIS);
  5336. if (code_seen('Z')) planner.max_jerk[Z_AXIS] = code_value_axis_units(Z_AXIS);
  5337. if (code_seen('E')) planner.max_jerk[E_AXIS] = code_value_axis_units(E_AXIS);
  5338. }
  5339. /**
  5340. * M206: Set Additional Homing Offset (X Y Z). SCARA aliases T=X, P=Y
  5341. */
  5342. inline void gcode_M206() {
  5343. LOOP_XYZ(i)
  5344. if (code_seen(axis_codes[i]))
  5345. set_home_offset((AxisEnum)i, code_value_axis_units(i));
  5346. #if ENABLED(MORGAN_SCARA)
  5347. if (code_seen('T')) set_home_offset(A_AXIS, code_value_axis_units(A_AXIS)); // Theta
  5348. if (code_seen('P')) set_home_offset(B_AXIS, code_value_axis_units(B_AXIS)); // Psi
  5349. #endif
  5350. SYNC_PLAN_POSITION_KINEMATIC();
  5351. report_current_position();
  5352. }
  5353. #if ENABLED(DELTA)
  5354. /**
  5355. * M665: Set delta configurations
  5356. *
  5357. * L = diagonal rod
  5358. * R = delta radius
  5359. * S = segments per second
  5360. * A = Alpha (Tower 1) diagonal rod trim
  5361. * B = Beta (Tower 2) diagonal rod trim
  5362. * C = Gamma (Tower 3) diagonal rod trim
  5363. */
  5364. inline void gcode_M665() {
  5365. if (code_seen('L')) delta_diagonal_rod = code_value_linear_units();
  5366. if (code_seen('R')) delta_radius = code_value_linear_units();
  5367. if (code_seen('S')) delta_segments_per_second = code_value_float();
  5368. if (code_seen('A')) delta_diagonal_rod_trim_tower_1 = code_value_linear_units();
  5369. if (code_seen('B')) delta_diagonal_rod_trim_tower_2 = code_value_linear_units();
  5370. if (code_seen('C')) delta_diagonal_rod_trim_tower_3 = code_value_linear_units();
  5371. recalc_delta_settings(delta_radius, delta_diagonal_rod);
  5372. }
  5373. /**
  5374. * M666: Set delta endstop adjustment
  5375. */
  5376. inline void gcode_M666() {
  5377. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5378. if (DEBUGGING(LEVELING)) {
  5379. SERIAL_ECHOLNPGM(">>> gcode_M666");
  5380. }
  5381. #endif
  5382. LOOP_XYZ(i) {
  5383. if (code_seen(axis_codes[i])) {
  5384. endstop_adj[i] = code_value_axis_units(i);
  5385. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5386. if (DEBUGGING(LEVELING)) {
  5387. SERIAL_ECHOPAIR("endstop_adj[", axis_codes[i]);
  5388. SERIAL_ECHOLNPAIR("] = ", endstop_adj[i]);
  5389. }
  5390. #endif
  5391. }
  5392. }
  5393. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5394. if (DEBUGGING(LEVELING)) {
  5395. SERIAL_ECHOLNPGM("<<< gcode_M666");
  5396. }
  5397. #endif
  5398. }
  5399. #elif ENABLED(Z_DUAL_ENDSTOPS) // !DELTA && ENABLED(Z_DUAL_ENDSTOPS)
  5400. /**
  5401. * M666: For Z Dual Endstop setup, set z axis offset to the z2 axis.
  5402. */
  5403. inline void gcode_M666() {
  5404. if (code_seen('Z')) z_endstop_adj = code_value_axis_units(Z_AXIS);
  5405. SERIAL_ECHOLNPAIR("Z Endstop Adjustment set to (mm):", z_endstop_adj);
  5406. }
  5407. #endif // !DELTA && Z_DUAL_ENDSTOPS
  5408. #if ENABLED(FWRETRACT)
  5409. /**
  5410. * M207: Set firmware retraction values
  5411. *
  5412. * S[+units] retract_length
  5413. * W[+units] retract_length_swap (multi-extruder)
  5414. * F[units/min] retract_feedrate_mm_s
  5415. * Z[units] retract_zlift
  5416. */
  5417. inline void gcode_M207() {
  5418. if (code_seen('S')) retract_length = code_value_axis_units(E_AXIS);
  5419. if (code_seen('F')) retract_feedrate_mm_s = MMM_TO_MMS(code_value_axis_units(E_AXIS));
  5420. if (code_seen('Z')) retract_zlift = code_value_axis_units(Z_AXIS);
  5421. #if EXTRUDERS > 1
  5422. if (code_seen('W')) retract_length_swap = code_value_axis_units(E_AXIS);
  5423. #endif
  5424. }
  5425. /**
  5426. * M208: Set firmware un-retraction values
  5427. *
  5428. * S[+units] retract_recover_length (in addition to M207 S*)
  5429. * W[+units] retract_recover_length_swap (multi-extruder)
  5430. * F[units/min] retract_recover_feedrate_mm_s
  5431. */
  5432. inline void gcode_M208() {
  5433. if (code_seen('S')) retract_recover_length = code_value_axis_units(E_AXIS);
  5434. if (code_seen('F')) retract_recover_feedrate_mm_s = MMM_TO_MMS(code_value_axis_units(E_AXIS));
  5435. #if EXTRUDERS > 1
  5436. if (code_seen('W')) retract_recover_length_swap = code_value_axis_units(E_AXIS);
  5437. #endif
  5438. }
  5439. /**
  5440. * M209: Enable automatic retract (M209 S1)
  5441. * For slicers that don't support G10/11, reversed extrude-only
  5442. * moves will be classified as retraction.
  5443. */
  5444. inline void gcode_M209() {
  5445. if (code_seen('S')) {
  5446. autoretract_enabled = code_value_bool();
  5447. for (int i = 0; i < EXTRUDERS; i++) retracted[i] = false;
  5448. }
  5449. }
  5450. #endif // FWRETRACT
  5451. /**
  5452. * M211: Enable, Disable, and/or Report software endstops
  5453. *
  5454. * Usage: M211 S1 to enable, M211 S0 to disable, M211 alone for report
  5455. */
  5456. inline void gcode_M211() {
  5457. SERIAL_ECHO_START;
  5458. #if ENABLED(min_software_endstops) || ENABLED(max_software_endstops)
  5459. if (code_seen('S')) soft_endstops_enabled = code_value_bool();
  5460. #endif
  5461. #if ENABLED(min_software_endstops) || ENABLED(max_software_endstops)
  5462. SERIAL_ECHOPGM(MSG_SOFT_ENDSTOPS);
  5463. serialprintPGM(soft_endstops_enabled ? PSTR(MSG_ON) : PSTR(MSG_OFF));
  5464. #else
  5465. SERIAL_ECHOPGM(MSG_SOFT_ENDSTOPS);
  5466. SERIAL_ECHOPGM(MSG_OFF);
  5467. #endif
  5468. SERIAL_ECHOPGM(MSG_SOFT_MIN);
  5469. SERIAL_ECHOPAIR( MSG_X, soft_endstop_min[X_AXIS]);
  5470. SERIAL_ECHOPAIR(" " MSG_Y, soft_endstop_min[Y_AXIS]);
  5471. SERIAL_ECHOPAIR(" " MSG_Z, soft_endstop_min[Z_AXIS]);
  5472. SERIAL_ECHOPGM(MSG_SOFT_MAX);
  5473. SERIAL_ECHOPAIR( MSG_X, soft_endstop_max[X_AXIS]);
  5474. SERIAL_ECHOPAIR(" " MSG_Y, soft_endstop_max[Y_AXIS]);
  5475. SERIAL_ECHOLNPAIR(" " MSG_Z, soft_endstop_max[Z_AXIS]);
  5476. }
  5477. #if HOTENDS > 1
  5478. /**
  5479. * M218 - set hotend offset (in linear units)
  5480. *
  5481. * T<tool>
  5482. * X<xoffset>
  5483. * Y<yoffset>
  5484. * Z<zoffset> - Available with DUAL_X_CARRIAGE and SWITCHING_EXTRUDER
  5485. */
  5486. inline void gcode_M218() {
  5487. if (get_target_extruder_from_command(218) || target_extruder == 0) return;
  5488. if (code_seen('X')) hotend_offset[X_AXIS][target_extruder] = code_value_axis_units(X_AXIS);
  5489. if (code_seen('Y')) hotend_offset[Y_AXIS][target_extruder] = code_value_axis_units(Y_AXIS);
  5490. #if ENABLED(DUAL_X_CARRIAGE) || ENABLED(SWITCHING_EXTRUDER)
  5491. if (code_seen('Z')) hotend_offset[Z_AXIS][target_extruder] = code_value_axis_units(Z_AXIS);
  5492. #endif
  5493. SERIAL_ECHO_START;
  5494. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  5495. HOTEND_LOOP() {
  5496. SERIAL_CHAR(' ');
  5497. SERIAL_ECHO(hotend_offset[X_AXIS][e]);
  5498. SERIAL_CHAR(',');
  5499. SERIAL_ECHO(hotend_offset[Y_AXIS][e]);
  5500. #if ENABLED(DUAL_X_CARRIAGE) || ENABLED(SWITCHING_EXTRUDER)
  5501. SERIAL_CHAR(',');
  5502. SERIAL_ECHO(hotend_offset[Z_AXIS][e]);
  5503. #endif
  5504. }
  5505. SERIAL_EOL;
  5506. }
  5507. #endif // HOTENDS > 1
  5508. /**
  5509. * M220: Set speed percentage factor, aka "Feed Rate" (M220 S95)
  5510. */
  5511. inline void gcode_M220() {
  5512. if (code_seen('S')) feedrate_percentage = code_value_int();
  5513. }
  5514. /**
  5515. * M221: Set extrusion percentage (M221 T0 S95)
  5516. */
  5517. inline void gcode_M221() {
  5518. if (get_target_extruder_from_command(221)) return;
  5519. if (code_seen('S'))
  5520. flow_percentage[target_extruder] = code_value_int();
  5521. }
  5522. /**
  5523. * M226: Wait until the specified pin reaches the state required (M226 P<pin> S<state>)
  5524. */
  5525. inline void gcode_M226() {
  5526. if (code_seen('P')) {
  5527. int pin_number = code_value_int(),
  5528. pin_state = code_seen('S') ? code_value_int() : -1; // required pin state - default is inverted
  5529. if (pin_state >= -1 && pin_state <= 1 && pin_number > -1 && !pin_is_protected(pin_number)) {
  5530. int target = LOW;
  5531. stepper.synchronize();
  5532. pinMode(pin_number, INPUT);
  5533. switch (pin_state) {
  5534. case 1:
  5535. target = HIGH;
  5536. break;
  5537. case 0:
  5538. target = LOW;
  5539. break;
  5540. case -1:
  5541. target = !digitalRead(pin_number);
  5542. break;
  5543. }
  5544. while (digitalRead(pin_number) != target) idle();
  5545. } // pin_state -1 0 1 && pin_number > -1
  5546. } // code_seen('P')
  5547. }
  5548. #if ENABLED(EXPERIMENTAL_I2CBUS)
  5549. /**
  5550. * M260: Send data to a I2C slave device
  5551. *
  5552. * This is a PoC, the formating and arguments for the GCODE will
  5553. * change to be more compatible, the current proposal is:
  5554. *
  5555. * M260 A<slave device address base 10> ; Sets the I2C slave address the data will be sent to
  5556. *
  5557. * M260 B<byte-1 value in base 10>
  5558. * M260 B<byte-2 value in base 10>
  5559. * M260 B<byte-3 value in base 10>
  5560. *
  5561. * M260 S1 ; Send the buffered data and reset the buffer
  5562. * M260 R1 ; Reset the buffer without sending data
  5563. *
  5564. */
  5565. inline void gcode_M260() {
  5566. // Set the target address
  5567. if (code_seen('A')) i2c.address(code_value_byte());
  5568. // Add a new byte to the buffer
  5569. if (code_seen('B')) i2c.addbyte(code_value_byte());
  5570. // Flush the buffer to the bus
  5571. if (code_seen('S')) i2c.send();
  5572. // Reset and rewind the buffer
  5573. else if (code_seen('R')) i2c.reset();
  5574. }
  5575. /**
  5576. * M261: Request X bytes from I2C slave device
  5577. *
  5578. * Usage: M261 A<slave device address base 10> B<number of bytes>
  5579. */
  5580. inline void gcode_M261() {
  5581. if (code_seen('A')) i2c.address(code_value_byte());
  5582. uint8_t bytes = code_seen('B') ? code_value_byte() : 1;
  5583. if (i2c.addr && bytes && bytes <= TWIBUS_BUFFER_SIZE) {
  5584. i2c.relay(bytes);
  5585. }
  5586. else {
  5587. SERIAL_ERROR_START;
  5588. SERIAL_ERRORLN("Bad i2c request");
  5589. }
  5590. }
  5591. #endif // EXPERIMENTAL_I2CBUS
  5592. #if HAS_SERVOS
  5593. /**
  5594. * M280: Get or set servo position. P<index> [S<angle>]
  5595. */
  5596. inline void gcode_M280() {
  5597. if (!code_seen('P')) return;
  5598. int servo_index = code_value_int();
  5599. if (servo_index >= 0 && servo_index < NUM_SERVOS) {
  5600. if (code_seen('S'))
  5601. MOVE_SERVO(servo_index, code_value_int());
  5602. else {
  5603. SERIAL_ECHO_START;
  5604. SERIAL_ECHOPAIR(" Servo ", servo_index);
  5605. SERIAL_ECHOLNPAIR(": ", servo[servo_index].read());
  5606. }
  5607. }
  5608. else {
  5609. SERIAL_ERROR_START;
  5610. SERIAL_ECHOPAIR("Servo ", servo_index);
  5611. SERIAL_ECHOLNPGM(" out of range");
  5612. }
  5613. }
  5614. #endif // HAS_SERVOS
  5615. #if HAS_BUZZER
  5616. /**
  5617. * M300: Play beep sound S<frequency Hz> P<duration ms>
  5618. */
  5619. inline void gcode_M300() {
  5620. uint16_t const frequency = code_seen('S') ? code_value_ushort() : 260;
  5621. uint16_t duration = code_seen('P') ? code_value_ushort() : 1000;
  5622. // Limits the tone duration to 0-5 seconds.
  5623. NOMORE(duration, 5000);
  5624. BUZZ(duration, frequency);
  5625. }
  5626. #endif // HAS_BUZZER
  5627. #if ENABLED(PIDTEMP)
  5628. /**
  5629. * M301: Set PID parameters P I D (and optionally C, L)
  5630. *
  5631. * P[float] Kp term
  5632. * I[float] Ki term (unscaled)
  5633. * D[float] Kd term (unscaled)
  5634. *
  5635. * With PID_EXTRUSION_SCALING:
  5636. *
  5637. * C[float] Kc term
  5638. * L[float] LPQ length
  5639. */
  5640. inline void gcode_M301() {
  5641. // multi-extruder PID patch: M301 updates or prints a single extruder's PID values
  5642. // default behaviour (omitting E parameter) is to update for extruder 0 only
  5643. int e = code_seen('E') ? code_value_int() : 0; // extruder being updated
  5644. if (e < HOTENDS) { // catch bad input value
  5645. if (code_seen('P')) PID_PARAM(Kp, e) = code_value_float();
  5646. if (code_seen('I')) PID_PARAM(Ki, e) = scalePID_i(code_value_float());
  5647. if (code_seen('D')) PID_PARAM(Kd, e) = scalePID_d(code_value_float());
  5648. #if ENABLED(PID_EXTRUSION_SCALING)
  5649. if (code_seen('C')) PID_PARAM(Kc, e) = code_value_float();
  5650. if (code_seen('L')) lpq_len = code_value_float();
  5651. NOMORE(lpq_len, LPQ_MAX_LEN);
  5652. #endif
  5653. thermalManager.updatePID();
  5654. SERIAL_ECHO_START;
  5655. #if ENABLED(PID_PARAMS_PER_HOTEND)
  5656. SERIAL_ECHOPAIR(" e:", e); // specify extruder in serial output
  5657. #endif // PID_PARAMS_PER_HOTEND
  5658. SERIAL_ECHOPAIR(" p:", PID_PARAM(Kp, e));
  5659. SERIAL_ECHOPAIR(" i:", unscalePID_i(PID_PARAM(Ki, e)));
  5660. SERIAL_ECHOPAIR(" d:", unscalePID_d(PID_PARAM(Kd, e)));
  5661. #if ENABLED(PID_EXTRUSION_SCALING)
  5662. //Kc does not have scaling applied above, or in resetting defaults
  5663. SERIAL_ECHOPAIR(" c:", PID_PARAM(Kc, e));
  5664. #endif
  5665. SERIAL_EOL;
  5666. }
  5667. else {
  5668. SERIAL_ERROR_START;
  5669. SERIAL_ERRORLN(MSG_INVALID_EXTRUDER);
  5670. }
  5671. }
  5672. #endif // PIDTEMP
  5673. #if ENABLED(PIDTEMPBED)
  5674. inline void gcode_M304() {
  5675. if (code_seen('P')) thermalManager.bedKp = code_value_float();
  5676. if (code_seen('I')) thermalManager.bedKi = scalePID_i(code_value_float());
  5677. if (code_seen('D')) thermalManager.bedKd = scalePID_d(code_value_float());
  5678. thermalManager.updatePID();
  5679. SERIAL_ECHO_START;
  5680. SERIAL_ECHOPAIR(" p:", thermalManager.bedKp);
  5681. SERIAL_ECHOPAIR(" i:", unscalePID_i(thermalManager.bedKi));
  5682. SERIAL_ECHOLNPAIR(" d:", unscalePID_d(thermalManager.bedKd));
  5683. }
  5684. #endif // PIDTEMPBED
  5685. #if defined(CHDK) || HAS_PHOTOGRAPH
  5686. /**
  5687. * M240: Trigger a camera by emulating a Canon RC-1
  5688. * See http://www.doc-diy.net/photo/rc-1_hacked/
  5689. */
  5690. inline void gcode_M240() {
  5691. #ifdef CHDK
  5692. OUT_WRITE(CHDK, HIGH);
  5693. chdkHigh = millis();
  5694. chdkActive = true;
  5695. #elif HAS_PHOTOGRAPH
  5696. const uint8_t NUM_PULSES = 16;
  5697. const float PULSE_LENGTH = 0.01524;
  5698. for (int i = 0; i < NUM_PULSES; i++) {
  5699. WRITE(PHOTOGRAPH_PIN, HIGH);
  5700. _delay_ms(PULSE_LENGTH);
  5701. WRITE(PHOTOGRAPH_PIN, LOW);
  5702. _delay_ms(PULSE_LENGTH);
  5703. }
  5704. delay(7.33);
  5705. for (int i = 0; i < NUM_PULSES; i++) {
  5706. WRITE(PHOTOGRAPH_PIN, HIGH);
  5707. _delay_ms(PULSE_LENGTH);
  5708. WRITE(PHOTOGRAPH_PIN, LOW);
  5709. _delay_ms(PULSE_LENGTH);
  5710. }
  5711. #endif // !CHDK && HAS_PHOTOGRAPH
  5712. }
  5713. #endif // CHDK || PHOTOGRAPH_PIN
  5714. #if HAS_LCD_CONTRAST
  5715. /**
  5716. * M250: Read and optionally set the LCD contrast
  5717. */
  5718. inline void gcode_M250() {
  5719. if (code_seen('C')) set_lcd_contrast(code_value_int());
  5720. SERIAL_PROTOCOLPGM("lcd contrast value: ");
  5721. SERIAL_PROTOCOL(lcd_contrast);
  5722. SERIAL_EOL;
  5723. }
  5724. #endif // HAS_LCD_CONTRAST
  5725. #if ENABLED(PREVENT_COLD_EXTRUSION)
  5726. /**
  5727. * M302: Allow cold extrudes, or set the minimum extrude temperature
  5728. *
  5729. * S<temperature> sets the minimum extrude temperature
  5730. * P<bool> enables (1) or disables (0) cold extrusion
  5731. *
  5732. * Examples:
  5733. *
  5734. * M302 ; report current cold extrusion state
  5735. * M302 P0 ; enable cold extrusion checking
  5736. * M302 P1 ; disables cold extrusion checking
  5737. * M302 S0 ; always allow extrusion (disables checking)
  5738. * M302 S170 ; only allow extrusion above 170
  5739. * M302 S170 P1 ; set min extrude temp to 170 but leave disabled
  5740. */
  5741. inline void gcode_M302() {
  5742. bool seen_S = code_seen('S');
  5743. if (seen_S) {
  5744. thermalManager.extrude_min_temp = code_value_temp_abs();
  5745. thermalManager.allow_cold_extrude = (thermalManager.extrude_min_temp == 0);
  5746. }
  5747. if (code_seen('P'))
  5748. thermalManager.allow_cold_extrude = (thermalManager.extrude_min_temp == 0) || code_value_bool();
  5749. else if (!seen_S) {
  5750. // Report current state
  5751. SERIAL_ECHO_START;
  5752. SERIAL_ECHOPAIR("Cold extrudes are ", (thermalManager.allow_cold_extrude ? "en" : "dis"));
  5753. SERIAL_ECHOPAIR("abled (min temp ", int(thermalManager.extrude_min_temp + 0.5));
  5754. SERIAL_ECHOLNPGM("C)");
  5755. }
  5756. }
  5757. #endif // PREVENT_COLD_EXTRUSION
  5758. /**
  5759. * M303: PID relay autotune
  5760. *
  5761. * S<temperature> sets the target temperature. (default 150C)
  5762. * E<extruder> (-1 for the bed) (default 0)
  5763. * C<cycles>
  5764. * U<bool> with a non-zero value will apply the result to current settings
  5765. */
  5766. inline void gcode_M303() {
  5767. #if HAS_PID_HEATING
  5768. int e = code_seen('E') ? code_value_int() : 0;
  5769. int c = code_seen('C') ? code_value_int() : 5;
  5770. bool u = code_seen('U') && code_value_bool();
  5771. float temp = code_seen('S') ? code_value_temp_abs() : (e < 0 ? 70.0 : 150.0);
  5772. if (e >= 0 && e < HOTENDS)
  5773. target_extruder = e;
  5774. KEEPALIVE_STATE(NOT_BUSY); // don't send "busy: processing" messages during autotune output
  5775. thermalManager.PID_autotune(temp, e, c, u);
  5776. KEEPALIVE_STATE(IN_HANDLER);
  5777. #else
  5778. SERIAL_ERROR_START;
  5779. SERIAL_ERRORLNPGM(MSG_ERR_M303_DISABLED);
  5780. #endif
  5781. }
  5782. #if ENABLED(MORGAN_SCARA)
  5783. bool SCARA_move_to_cal(uint8_t delta_a, uint8_t delta_b) {
  5784. if (IsRunning()) {
  5785. forward_kinematics_SCARA(delta_a, delta_b);
  5786. destination[X_AXIS] = LOGICAL_X_POSITION(cartes[X_AXIS]);
  5787. destination[Y_AXIS] = LOGICAL_Y_POSITION(cartes[Y_AXIS]);
  5788. destination[Z_AXIS] = current_position[Z_AXIS];
  5789. prepare_move_to_destination();
  5790. return true;
  5791. }
  5792. return false;
  5793. }
  5794. /**
  5795. * M360: SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  5796. */
  5797. inline bool gcode_M360() {
  5798. SERIAL_ECHOLNPGM(" Cal: Theta 0");
  5799. return SCARA_move_to_cal(0, 120);
  5800. }
  5801. /**
  5802. * M361: SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  5803. */
  5804. inline bool gcode_M361() {
  5805. SERIAL_ECHOLNPGM(" Cal: Theta 90");
  5806. return SCARA_move_to_cal(90, 130);
  5807. }
  5808. /**
  5809. * M362: SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  5810. */
  5811. inline bool gcode_M362() {
  5812. SERIAL_ECHOLNPGM(" Cal: Psi 0");
  5813. return SCARA_move_to_cal(60, 180);
  5814. }
  5815. /**
  5816. * M363: SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  5817. */
  5818. inline bool gcode_M363() {
  5819. SERIAL_ECHOLNPGM(" Cal: Psi 90");
  5820. return SCARA_move_to_cal(50, 90);
  5821. }
  5822. /**
  5823. * M364: SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
  5824. */
  5825. inline bool gcode_M364() {
  5826. SERIAL_ECHOLNPGM(" Cal: Theta-Psi 90");
  5827. return SCARA_move_to_cal(45, 135);
  5828. }
  5829. #endif // SCARA
  5830. #if ENABLED(EXT_SOLENOID)
  5831. void enable_solenoid(uint8_t num) {
  5832. switch (num) {
  5833. case 0:
  5834. OUT_WRITE(SOL0_PIN, HIGH);
  5835. break;
  5836. #if HAS_SOLENOID_1
  5837. case 1:
  5838. OUT_WRITE(SOL1_PIN, HIGH);
  5839. break;
  5840. #endif
  5841. #if HAS_SOLENOID_2
  5842. case 2:
  5843. OUT_WRITE(SOL2_PIN, HIGH);
  5844. break;
  5845. #endif
  5846. #if HAS_SOLENOID_3
  5847. case 3:
  5848. OUT_WRITE(SOL3_PIN, HIGH);
  5849. break;
  5850. #endif
  5851. default:
  5852. SERIAL_ECHO_START;
  5853. SERIAL_ECHOLNPGM(MSG_INVALID_SOLENOID);
  5854. break;
  5855. }
  5856. }
  5857. void enable_solenoid_on_active_extruder() { enable_solenoid(active_extruder); }
  5858. void disable_all_solenoids() {
  5859. OUT_WRITE(SOL0_PIN, LOW);
  5860. OUT_WRITE(SOL1_PIN, LOW);
  5861. OUT_WRITE(SOL2_PIN, LOW);
  5862. OUT_WRITE(SOL3_PIN, LOW);
  5863. }
  5864. /**
  5865. * M380: Enable solenoid on the active extruder
  5866. */
  5867. inline void gcode_M380() { enable_solenoid_on_active_extruder(); }
  5868. /**
  5869. * M381: Disable all solenoids
  5870. */
  5871. inline void gcode_M381() { disable_all_solenoids(); }
  5872. #endif // EXT_SOLENOID
  5873. /**
  5874. * M400: Finish all moves
  5875. */
  5876. inline void gcode_M400() { stepper.synchronize(); }
  5877. #if HAS_BED_PROBE
  5878. /**
  5879. * M401: Engage Z Servo endstop if available
  5880. */
  5881. inline void gcode_M401() { DEPLOY_PROBE(); }
  5882. /**
  5883. * M402: Retract Z Servo endstop if enabled
  5884. */
  5885. inline void gcode_M402() { STOW_PROBE(); }
  5886. #endif // HAS_BED_PROBE
  5887. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  5888. /**
  5889. * M404: Display or set (in current units) the nominal filament width (3mm, 1.75mm ) W<3.0>
  5890. */
  5891. inline void gcode_M404() {
  5892. if (code_seen('W')) {
  5893. filament_width_nominal = code_value_linear_units();
  5894. }
  5895. else {
  5896. SERIAL_PROTOCOLPGM("Filament dia (nominal mm):");
  5897. SERIAL_PROTOCOLLN(filament_width_nominal);
  5898. }
  5899. }
  5900. /**
  5901. * M405: Turn on filament sensor for control
  5902. */
  5903. inline void gcode_M405() {
  5904. // This is technically a linear measurement, but since it's quantized to centimeters and is a different unit than
  5905. // everything else, it uses code_value_int() instead of code_value_linear_units().
  5906. if (code_seen('D')) meas_delay_cm = code_value_int();
  5907. NOMORE(meas_delay_cm, MAX_MEASUREMENT_DELAY);
  5908. if (filwidth_delay_index[1] == -1) { // Initialize the ring buffer if not done since startup
  5909. int temp_ratio = thermalManager.widthFil_to_size_ratio();
  5910. for (uint8_t i = 0; i < COUNT(measurement_delay); ++i)
  5911. measurement_delay[i] = temp_ratio - 100; // Subtract 100 to scale within a signed byte
  5912. filwidth_delay_index[0] = filwidth_delay_index[1] = 0;
  5913. }
  5914. filament_sensor = true;
  5915. //SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  5916. //SERIAL_PROTOCOL(filament_width_meas);
  5917. //SERIAL_PROTOCOLPGM("Extrusion ratio(%):");
  5918. //SERIAL_PROTOCOL(flow_percentage[active_extruder]);
  5919. }
  5920. /**
  5921. * M406: Turn off filament sensor for control
  5922. */
  5923. inline void gcode_M406() { filament_sensor = false; }
  5924. /**
  5925. * M407: Get measured filament diameter on serial output
  5926. */
  5927. inline void gcode_M407() {
  5928. SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  5929. SERIAL_PROTOCOLLN(filament_width_meas);
  5930. }
  5931. #endif // FILAMENT_WIDTH_SENSOR
  5932. void quickstop_stepper() {
  5933. stepper.quick_stop();
  5934. stepper.synchronize();
  5935. set_current_from_steppers_for_axis(ALL_AXES);
  5936. SYNC_PLAN_POSITION_KINEMATIC();
  5937. }
  5938. #if PLANNER_LEVELING
  5939. /**
  5940. * M420: Enable/Disable Bed Leveling and/or set the Z fade height.
  5941. *
  5942. * S[bool] Turns leveling on or off
  5943. * Z[height] Sets the Z fade height (0 or none to disable)
  5944. * V[bool] Verbose - Print the levelng grid
  5945. */
  5946. inline void gcode_M420() {
  5947. bool to_enable = false;
  5948. if (code_seen('S')) {
  5949. to_enable = code_value_bool();
  5950. set_bed_leveling_enabled(to_enable);
  5951. }
  5952. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  5953. if (code_seen('Z')) set_z_fade_height(code_value_linear_units());
  5954. #endif
  5955. const bool new_status =
  5956. #if ENABLED(MESH_BED_LEVELING)
  5957. mbl.active()
  5958. #else
  5959. planner.abl_enabled
  5960. #endif
  5961. ;
  5962. if (to_enable && !new_status) {
  5963. SERIAL_ERROR_START;
  5964. SERIAL_ERRORLNPGM(MSG_ERR_M420_FAILED);
  5965. }
  5966. SERIAL_ECHO_START;
  5967. SERIAL_ECHOLNPAIR("Bed Leveling ", new_status ? MSG_ON : MSG_OFF);
  5968. // V to print the matrix or mesh
  5969. if (code_seen('V')) {
  5970. #if ABL_PLANAR
  5971. planner.bed_level_matrix.debug("Bed Level Correction Matrix:");
  5972. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  5973. if (bilinear_grid_spacing[X_AXIS]) {
  5974. print_bilinear_leveling_grid();
  5975. #if ENABLED(ABL_BILINEAR_SUBDIVISION)
  5976. bed_level_virt_print();
  5977. #endif
  5978. }
  5979. #elif ENABLED(MESH_BED_LEVELING)
  5980. if (mbl.has_mesh()) {
  5981. SERIAL_ECHOLNPGM("Mesh Bed Level data:");
  5982. mbl_mesh_report();
  5983. }
  5984. #endif
  5985. }
  5986. }
  5987. #endif
  5988. #if ENABLED(MESH_BED_LEVELING)
  5989. /**
  5990. * M421: Set a single Mesh Bed Leveling Z coordinate
  5991. * Use either 'M421 X<linear> Y<linear> Z<linear>' or 'M421 I<xindex> J<yindex> Z<linear>'
  5992. */
  5993. inline void gcode_M421() {
  5994. int8_t px = 0, py = 0;
  5995. float z = 0;
  5996. bool hasX, hasY, hasZ, hasI, hasJ;
  5997. if ((hasX = code_seen('X'))) px = mbl.probe_index_x(code_value_axis_units(X_AXIS));
  5998. if ((hasY = code_seen('Y'))) py = mbl.probe_index_y(code_value_axis_units(Y_AXIS));
  5999. if ((hasI = code_seen('I'))) px = code_value_axis_units(X_AXIS);
  6000. if ((hasJ = code_seen('J'))) py = code_value_axis_units(Y_AXIS);
  6001. if ((hasZ = code_seen('Z'))) z = code_value_axis_units(Z_AXIS);
  6002. if (hasX && hasY && hasZ) {
  6003. if (px >= 0 && py >= 0)
  6004. mbl.set_z(px, py, z);
  6005. else {
  6006. SERIAL_ERROR_START;
  6007. SERIAL_ERRORLNPGM(MSG_ERR_MESH_XY);
  6008. }
  6009. }
  6010. else if (hasI && hasJ && hasZ) {
  6011. if (px >= 0 && px < MESH_NUM_X_POINTS && py >= 0 && py < MESH_NUM_Y_POINTS)
  6012. mbl.set_z(px, py, z);
  6013. else {
  6014. SERIAL_ERROR_START;
  6015. SERIAL_ERRORLNPGM(MSG_ERR_MESH_XY);
  6016. }
  6017. }
  6018. else {
  6019. SERIAL_ERROR_START;
  6020. SERIAL_ERRORLNPGM(MSG_ERR_M421_PARAMETERS);
  6021. }
  6022. }
  6023. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  6024. /**
  6025. * M421: Set a single Mesh Bed Leveling Z coordinate
  6026. *
  6027. * M421 I<xindex> J<yindex> Z<linear>
  6028. */
  6029. inline void gcode_M421() {
  6030. int8_t px = 0, py = 0;
  6031. float z = 0;
  6032. bool hasI, hasJ, hasZ;
  6033. if ((hasI = code_seen('I'))) px = code_value_axis_units(X_AXIS);
  6034. if ((hasJ = code_seen('J'))) py = code_value_axis_units(Y_AXIS);
  6035. if ((hasZ = code_seen('Z'))) z = code_value_axis_units(Z_AXIS);
  6036. if (hasI && hasJ && hasZ) {
  6037. if (px >= 0 && px < ABL_GRID_MAX_POINTS_X && py >= 0 && py < ABL_GRID_MAX_POINTS_X) {
  6038. bed_level_grid[px][py] = z;
  6039. #if ENABLED(ABL_BILINEAR_SUBDIVISION)
  6040. bed_level_virt_interpolate();
  6041. #endif
  6042. }
  6043. else {
  6044. SERIAL_ERROR_START;
  6045. SERIAL_ERRORLNPGM(MSG_ERR_MESH_XY);
  6046. }
  6047. }
  6048. else {
  6049. SERIAL_ERROR_START;
  6050. SERIAL_ERRORLNPGM(MSG_ERR_M421_PARAMETERS);
  6051. }
  6052. }
  6053. #endif
  6054. /**
  6055. * M428: Set home_offset based on the distance between the
  6056. * current_position and the nearest "reference point."
  6057. * If an axis is past center its endstop position
  6058. * is the reference-point. Otherwise it uses 0. This allows
  6059. * the Z offset to be set near the bed when using a max endstop.
  6060. *
  6061. * M428 can't be used more than 2cm away from 0 or an endstop.
  6062. *
  6063. * Use M206 to set these values directly.
  6064. */
  6065. inline void gcode_M428() {
  6066. bool err = false;
  6067. LOOP_XYZ(i) {
  6068. if (axis_homed[i]) {
  6069. float base = (current_position[i] > (soft_endstop_min[i] + soft_endstop_max[i]) * 0.5) ? base_home_pos((AxisEnum)i) : 0,
  6070. diff = current_position[i] - LOGICAL_POSITION(base, i);
  6071. if (diff > -20 && diff < 20) {
  6072. set_home_offset((AxisEnum)i, home_offset[i] - diff);
  6073. }
  6074. else {
  6075. SERIAL_ERROR_START;
  6076. SERIAL_ERRORLNPGM(MSG_ERR_M428_TOO_FAR);
  6077. LCD_ALERTMESSAGEPGM("Err: Too far!");
  6078. BUZZ(200, 40);
  6079. err = true;
  6080. break;
  6081. }
  6082. }
  6083. }
  6084. if (!err) {
  6085. SYNC_PLAN_POSITION_KINEMATIC();
  6086. report_current_position();
  6087. LCD_MESSAGEPGM(MSG_HOME_OFFSETS_APPLIED);
  6088. BUZZ(200, 659);
  6089. BUZZ(200, 698);
  6090. }
  6091. }
  6092. /**
  6093. * M500: Store settings in EEPROM
  6094. */
  6095. inline void gcode_M500() {
  6096. Config_StoreSettings();
  6097. }
  6098. /**
  6099. * M501: Read settings from EEPROM
  6100. */
  6101. inline void gcode_M501() {
  6102. Config_RetrieveSettings();
  6103. }
  6104. /**
  6105. * M502: Revert to default settings
  6106. */
  6107. inline void gcode_M502() {
  6108. Config_ResetDefault();
  6109. }
  6110. /**
  6111. * M503: print settings currently in memory
  6112. */
  6113. inline void gcode_M503() {
  6114. Config_PrintSettings(code_seen('S') && !code_value_bool());
  6115. }
  6116. #if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  6117. /**
  6118. * M540: Set whether SD card print should abort on endstop hit (M540 S<0|1>)
  6119. */
  6120. inline void gcode_M540() {
  6121. if (code_seen('S')) stepper.abort_on_endstop_hit = code_value_bool();
  6122. }
  6123. #endif // ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  6124. #if HAS_BED_PROBE
  6125. inline void gcode_M851() {
  6126. SERIAL_ECHO_START;
  6127. SERIAL_ECHOPGM(MSG_ZPROBE_ZOFFSET);
  6128. SERIAL_CHAR(' ');
  6129. if (code_seen('Z')) {
  6130. float value = code_value_axis_units(Z_AXIS);
  6131. if (Z_PROBE_OFFSET_RANGE_MIN <= value && value <= Z_PROBE_OFFSET_RANGE_MAX) {
  6132. zprobe_zoffset = value;
  6133. SERIAL_ECHO(zprobe_zoffset);
  6134. }
  6135. else {
  6136. SERIAL_ECHOPAIR(MSG_Z_MIN, Z_PROBE_OFFSET_RANGE_MIN);
  6137. SERIAL_CHAR(' ');
  6138. SERIAL_ECHOPAIR(MSG_Z_MAX, Z_PROBE_OFFSET_RANGE_MAX);
  6139. }
  6140. }
  6141. else {
  6142. SERIAL_ECHOPAIR(": ", zprobe_zoffset);
  6143. }
  6144. SERIAL_EOL;
  6145. }
  6146. #endif // HAS_BED_PROBE
  6147. #if ENABLED(FILAMENT_CHANGE_FEATURE)
  6148. millis_t next_buzz = 0;
  6149. unsigned long int runout_beep = 0;
  6150. void filament_change_beep() {
  6151. const millis_t ms = millis();
  6152. if (ELAPSED(ms, next_buzz)) {
  6153. if (runout_beep <= FILAMENT_CHANGE_NUMBER_OF_ALERT_BEEPS + 5) { // Only beep as long as we're supposed to
  6154. next_buzz = ms + (runout_beep <= FILAMENT_CHANGE_NUMBER_OF_ALERT_BEEPS ? 2500 : 400);
  6155. BUZZ(300, 2000);
  6156. runout_beep++;
  6157. }
  6158. }
  6159. }
  6160. static bool busy_doing_M600 = false;
  6161. /**
  6162. * M600: Pause for filament change
  6163. *
  6164. * E[distance] - Retract the filament this far (negative value)
  6165. * Z[distance] - Move the Z axis by this distance
  6166. * X[position] - Move to this X position, with Y
  6167. * Y[position] - Move to this Y position, with X
  6168. * L[distance] - Retract distance for removal (manual reload)
  6169. *
  6170. * Default values are used for omitted arguments.
  6171. *
  6172. */
  6173. inline void gcode_M600() {
  6174. if (!DEBUGGING(DRYRUN) && thermalManager.tooColdToExtrude(active_extruder)) {
  6175. SERIAL_ERROR_START;
  6176. SERIAL_ERRORLNPGM(MSG_TOO_COLD_FOR_M600);
  6177. return;
  6178. }
  6179. busy_doing_M600 = true; // Stepper Motors can't timeout when this is set
  6180. // Pause the print job timer
  6181. bool job_running = print_job_timer.isRunning();
  6182. print_job_timer.pause();
  6183. // Show initial message and wait for synchronize steppers
  6184. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_INIT);
  6185. stepper.synchronize();
  6186. float lastpos[NUM_AXIS];
  6187. // Save current position of all axes
  6188. LOOP_XYZE(i)
  6189. lastpos[i] = destination[i] = current_position[i];
  6190. // Define runplan for move axes
  6191. #if IS_KINEMATIC
  6192. #define RUNPLAN(RATE_MM_S) planner.buffer_line_kinematic(destination, RATE_MM_S, active_extruder);
  6193. #else
  6194. #define RUNPLAN(RATE_MM_S) line_to_destination(RATE_MM_S);
  6195. #endif
  6196. // Initial retract before move to filament change position
  6197. destination[E_AXIS] += code_seen('E') ? code_value_axis_units(E_AXIS) : 0
  6198. #if defined(FILAMENT_CHANGE_RETRACT_LENGTH) && FILAMENT_CHANGE_RETRACT_LENGTH > 0
  6199. - (FILAMENT_CHANGE_RETRACT_LENGTH)
  6200. #endif
  6201. ;
  6202. RUNPLAN(FILAMENT_CHANGE_RETRACT_FEEDRATE);
  6203. // Lift Z axis
  6204. float z_lift = code_seen('Z') ? code_value_axis_units(Z_AXIS) :
  6205. #if defined(FILAMENT_CHANGE_Z_ADD) && FILAMENT_CHANGE_Z_ADD > 0
  6206. FILAMENT_CHANGE_Z_ADD
  6207. #else
  6208. 0
  6209. #endif
  6210. ;
  6211. if (z_lift > 0) {
  6212. destination[Z_AXIS] += z_lift;
  6213. NOMORE(destination[Z_AXIS], Z_MAX_POS);
  6214. RUNPLAN(FILAMENT_CHANGE_Z_FEEDRATE);
  6215. }
  6216. // Move XY axes to filament exchange position
  6217. if (code_seen('X')) destination[X_AXIS] = code_value_axis_units(X_AXIS);
  6218. #ifdef FILAMENT_CHANGE_X_POS
  6219. else destination[X_AXIS] = FILAMENT_CHANGE_X_POS;
  6220. #endif
  6221. if (code_seen('Y')) destination[Y_AXIS] = code_value_axis_units(Y_AXIS);
  6222. #ifdef FILAMENT_CHANGE_Y_POS
  6223. else destination[Y_AXIS] = FILAMENT_CHANGE_Y_POS;
  6224. #endif
  6225. RUNPLAN(FILAMENT_CHANGE_XY_FEEDRATE);
  6226. stepper.synchronize();
  6227. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_UNLOAD);
  6228. idle();
  6229. // Unload filament
  6230. destination[E_AXIS] += code_seen('L') ? code_value_axis_units(E_AXIS) : 0
  6231. #if FILAMENT_CHANGE_UNLOAD_LENGTH > 0
  6232. - (FILAMENT_CHANGE_UNLOAD_LENGTH)
  6233. #endif
  6234. ;
  6235. RUNPLAN(FILAMENT_CHANGE_UNLOAD_FEEDRATE);
  6236. // Synchronize steppers and then disable extruders steppers for manual filament changing
  6237. stepper.synchronize();
  6238. disable_e0();
  6239. disable_e1();
  6240. disable_e2();
  6241. disable_e3();
  6242. delay(100);
  6243. millis_t nozzle_timeout = millis() + FILAMENT_CHANGE_NOZZLE_TIMEOUT * 1000L;
  6244. bool nozzle_timed_out = false;
  6245. float temps[4];
  6246. // Wait for filament insert by user and press button
  6247. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_INSERT);
  6248. idle();
  6249. wait_for_user = true; // LCD click or M108 will clear this
  6250. next_buzz = 0;
  6251. runout_beep = 0;
  6252. HOTEND_LOOP() temps[e] = thermalManager.target_temperature[e]; // Save nozzle temps
  6253. while (wait_for_user) {
  6254. millis_t current_ms = millis();
  6255. if (nozzle_timed_out)
  6256. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_CLICK_TO_HEAT_NOZZLE);
  6257. #if HAS_BUZZER
  6258. filament_change_beep();
  6259. #endif
  6260. if (current_ms >= nozzle_timeout) {
  6261. if (!nozzle_timed_out) {
  6262. nozzle_timed_out = true; // on nozzle timeout remember the nozzles need to be reheated
  6263. HOTEND_LOOP() thermalManager.setTargetHotend(0, e); // Turn off all the nozzles
  6264. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_CLICK_TO_HEAT_NOZZLE);
  6265. }
  6266. }
  6267. idle(true);
  6268. }
  6269. if (nozzle_timed_out) // Turn nozzles back on if they were turned off
  6270. HOTEND_LOOP() thermalManager.setTargetHotend(temps[e], e);
  6271. // Show "wait for heating"
  6272. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_WAIT_FOR_NOZZLES_TO_HEAT);
  6273. wait_for_heatup = true;
  6274. while (wait_for_heatup) {
  6275. idle();
  6276. wait_for_heatup = false;
  6277. HOTEND_LOOP() {
  6278. if (abs(thermalManager.degHotend(e) - temps[e]) > 3) {
  6279. wait_for_heatup = true;
  6280. break;
  6281. }
  6282. }
  6283. }
  6284. // Show "insert filament"
  6285. if (nozzle_timed_out)
  6286. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_INSERT);
  6287. wait_for_user = true; // LCD click or M108 will clear this
  6288. next_buzz = 0;
  6289. runout_beep = 0;
  6290. while (wait_for_user && nozzle_timed_out) {
  6291. #if HAS_BUZZER
  6292. filament_change_beep();
  6293. #endif
  6294. idle(true);
  6295. }
  6296. // Show "load" message
  6297. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_LOAD);
  6298. // Load filament
  6299. destination[E_AXIS] += code_seen('L') ? -code_value_axis_units(E_AXIS) : 0
  6300. #if FILAMENT_CHANGE_LOAD_LENGTH > 0
  6301. + FILAMENT_CHANGE_LOAD_LENGTH
  6302. #endif
  6303. ;
  6304. RUNPLAN(FILAMENT_CHANGE_LOAD_FEEDRATE);
  6305. stepper.synchronize();
  6306. #if defined(FILAMENT_CHANGE_EXTRUDE_LENGTH) && FILAMENT_CHANGE_EXTRUDE_LENGTH > 0
  6307. do {
  6308. // "Wait for filament extrude"
  6309. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_EXTRUDE);
  6310. // Extrude filament to get into hotend
  6311. destination[E_AXIS] += FILAMENT_CHANGE_EXTRUDE_LENGTH;
  6312. RUNPLAN(FILAMENT_CHANGE_EXTRUDE_FEEDRATE);
  6313. stepper.synchronize();
  6314. // Show "Extrude More" / "Resume" menu and wait for reply
  6315. KEEPALIVE_STATE(PAUSED_FOR_USER);
  6316. wait_for_user = false;
  6317. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_OPTION);
  6318. while (filament_change_menu_response == FILAMENT_CHANGE_RESPONSE_WAIT_FOR) idle(true);
  6319. KEEPALIVE_STATE(IN_HANDLER);
  6320. // Keep looping if "Extrude More" was selected
  6321. } while (filament_change_menu_response == FILAMENT_CHANGE_RESPONSE_EXTRUDE_MORE);
  6322. #endif
  6323. // "Wait for print to resume"
  6324. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_RESUME);
  6325. // Set extruder to saved position
  6326. destination[E_AXIS] = current_position[E_AXIS] = lastpos[E_AXIS];
  6327. planner.set_e_position_mm(current_position[E_AXIS]);
  6328. #if IS_KINEMATIC
  6329. // Move XYZ to starting position
  6330. planner.buffer_line_kinematic(lastpos, FILAMENT_CHANGE_XY_FEEDRATE, active_extruder);
  6331. #else
  6332. // Move XY to starting position, then Z
  6333. destination[X_AXIS] = lastpos[X_AXIS];
  6334. destination[Y_AXIS] = lastpos[Y_AXIS];
  6335. RUNPLAN(FILAMENT_CHANGE_XY_FEEDRATE);
  6336. destination[Z_AXIS] = lastpos[Z_AXIS];
  6337. RUNPLAN(FILAMENT_CHANGE_Z_FEEDRATE);
  6338. #endif
  6339. stepper.synchronize();
  6340. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  6341. filament_ran_out = false;
  6342. #endif
  6343. // Show status screen
  6344. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_STATUS);
  6345. // Resume the print job timer if it was running
  6346. if (job_running) print_job_timer.start();
  6347. busy_doing_M600 = false; // Allow Stepper Motors to be turned off during inactivity
  6348. }
  6349. #endif // FILAMENT_CHANGE_FEATURE
  6350. #if ENABLED(DUAL_X_CARRIAGE)
  6351. /**
  6352. * M605: Set dual x-carriage movement mode
  6353. *
  6354. * M605 S0: Full control mode. The slicer has full control over x-carriage movement
  6355. * M605 S1: Auto-park mode. The inactive head will auto park/unpark without slicer involvement
  6356. * M605 S2 [Xnnn] [Rmmm]: Duplication mode. The second extruder will duplicate the first with nnn
  6357. * units x-offset and an optional differential hotend temperature of
  6358. * mmm degrees. E.g., with "M605 S2 X100 R2" the second extruder will duplicate
  6359. * the first with a spacing of 100mm in the x direction and 2 degrees hotter.
  6360. *
  6361. * Note: the X axis should be homed after changing dual x-carriage mode.
  6362. */
  6363. inline void gcode_M605() {
  6364. stepper.synchronize();
  6365. if (code_seen('S')) dual_x_carriage_mode = (DualXMode)code_value_byte();
  6366. switch (dual_x_carriage_mode) {
  6367. case DXC_FULL_CONTROL_MODE:
  6368. case DXC_AUTO_PARK_MODE:
  6369. break;
  6370. case DXC_DUPLICATION_MODE:
  6371. if (code_seen('X')) duplicate_extruder_x_offset = max(code_value_axis_units(X_AXIS), X2_MIN_POS - x_home_pos(0));
  6372. if (code_seen('R')) duplicate_extruder_temp_offset = code_value_temp_diff();
  6373. SERIAL_ECHO_START;
  6374. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  6375. SERIAL_CHAR(' ');
  6376. SERIAL_ECHO(hotend_offset[X_AXIS][0]);
  6377. SERIAL_CHAR(',');
  6378. SERIAL_ECHO(hotend_offset[Y_AXIS][0]);
  6379. SERIAL_CHAR(' ');
  6380. SERIAL_ECHO(duplicate_extruder_x_offset);
  6381. SERIAL_CHAR(',');
  6382. SERIAL_ECHOLN(hotend_offset[Y_AXIS][1]);
  6383. break;
  6384. default:
  6385. dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  6386. break;
  6387. }
  6388. active_extruder_parked = false;
  6389. extruder_duplication_enabled = false;
  6390. delayed_move_time = 0;
  6391. }
  6392. #elif ENABLED(DUAL_NOZZLE_DUPLICATION_MODE)
  6393. inline void gcode_M605() {
  6394. stepper.synchronize();
  6395. extruder_duplication_enabled = code_seen('S') && code_value_int() == 2;
  6396. SERIAL_ECHO_START;
  6397. SERIAL_ECHOLNPAIR(MSG_DUPLICATION_MODE, extruder_duplication_enabled ? MSG_ON : MSG_OFF);
  6398. }
  6399. #endif // M605
  6400. #if ENABLED(LIN_ADVANCE)
  6401. /**
  6402. * M905: Set advance factor
  6403. */
  6404. inline void gcode_M905() {
  6405. stepper.synchronize();
  6406. const float newK = code_seen('K') ? code_value_float() : -1,
  6407. newD = code_seen('D') ? code_value_float() : -1,
  6408. newW = code_seen('W') ? code_value_float() : -1,
  6409. newH = code_seen('H') ? code_value_float() : -1;
  6410. if (newK >= 0.0) planner.set_extruder_advance_k(newK);
  6411. SERIAL_ECHO_START;
  6412. SERIAL_ECHOLNPAIR("Advance factor: ", planner.get_extruder_advance_k());
  6413. if (newD >= 0 || newW >= 0 || newH >= 0) {
  6414. const float ratio = (!newD || !newW || !newH) ? 0 : (newW * newH) / (sq(newD * 0.5) * M_PI);
  6415. planner.set_advance_ed_ratio(ratio);
  6416. SERIAL_ECHO_START;
  6417. SERIAL_ECHOPGM("E/D ratio: ");
  6418. if (ratio) SERIAL_ECHOLN(ratio); else SERIAL_ECHOLNPGM("Automatic");
  6419. }
  6420. }
  6421. #endif
  6422. /**
  6423. * M907: Set digital trimpot motor current using axis codes X, Y, Z, E, B, S
  6424. */
  6425. inline void gcode_M907() {
  6426. #if HAS_DIGIPOTSS
  6427. LOOP_XYZE(i)
  6428. if (code_seen(axis_codes[i])) stepper.digipot_current(i, code_value_int());
  6429. if (code_seen('B')) stepper.digipot_current(4, code_value_int());
  6430. if (code_seen('S')) for (int i = 0; i <= 4; i++) stepper.digipot_current(i, code_value_int());
  6431. #elif HAS_MOTOR_CURRENT_PWM
  6432. #if PIN_EXISTS(MOTOR_CURRENT_PWM_XY)
  6433. if (code_seen('X')) stepper.digipot_current(0, code_value_int());
  6434. #endif
  6435. #if PIN_EXISTS(MOTOR_CURRENT_PWM_Z)
  6436. if (code_seen('Z')) stepper.digipot_current(1, code_value_int());
  6437. #endif
  6438. #if PIN_EXISTS(MOTOR_CURRENT_PWM_E)
  6439. if (code_seen('E')) stepper.digipot_current(2, code_value_int());
  6440. #endif
  6441. #endif
  6442. #if ENABLED(DIGIPOT_I2C)
  6443. // this one uses actual amps in floating point
  6444. LOOP_XYZE(i) if (code_seen(axis_codes[i])) digipot_i2c_set_current(i, code_value_float());
  6445. // for each additional extruder (named B,C,D,E..., channels 4,5,6,7...)
  6446. for (int i = NUM_AXIS; i < DIGIPOT_I2C_NUM_CHANNELS; i++) if (code_seen('B' + i - (NUM_AXIS))) digipot_i2c_set_current(i, code_value_float());
  6447. #endif
  6448. #if ENABLED(DAC_STEPPER_CURRENT)
  6449. if (code_seen('S')) {
  6450. float dac_percent = code_value_float();
  6451. for (uint8_t i = 0; i <= 4; i++) dac_current_percent(i, dac_percent);
  6452. }
  6453. LOOP_XYZE(i) if (code_seen(axis_codes[i])) dac_current_percent(i, code_value_float());
  6454. #endif
  6455. }
  6456. #if HAS_DIGIPOTSS || ENABLED(DAC_STEPPER_CURRENT)
  6457. /**
  6458. * M908: Control digital trimpot directly (M908 P<pin> S<current>)
  6459. */
  6460. inline void gcode_M908() {
  6461. #if HAS_DIGIPOTSS
  6462. stepper.digitalPotWrite(
  6463. code_seen('P') ? code_value_int() : 0,
  6464. code_seen('S') ? code_value_int() : 0
  6465. );
  6466. #endif
  6467. #ifdef DAC_STEPPER_CURRENT
  6468. dac_current_raw(
  6469. code_seen('P') ? code_value_byte() : -1,
  6470. code_seen('S') ? code_value_ushort() : 0
  6471. );
  6472. #endif
  6473. }
  6474. #if ENABLED(DAC_STEPPER_CURRENT) // As with Printrbot RevF
  6475. inline void gcode_M909() { dac_print_values(); }
  6476. inline void gcode_M910() { dac_commit_eeprom(); }
  6477. #endif
  6478. #endif // HAS_DIGIPOTSS || DAC_STEPPER_CURRENT
  6479. #if HAS_MICROSTEPS
  6480. // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  6481. inline void gcode_M350() {
  6482. if (code_seen('S')) for (int i = 0; i <= 4; i++) stepper.microstep_mode(i, code_value_byte());
  6483. LOOP_XYZE(i) if (code_seen(axis_codes[i])) stepper.microstep_mode(i, code_value_byte());
  6484. if (code_seen('B')) stepper.microstep_mode(4, code_value_byte());
  6485. stepper.microstep_readings();
  6486. }
  6487. /**
  6488. * M351: Toggle MS1 MS2 pins directly with axis codes X Y Z E B
  6489. * S# determines MS1 or MS2, X# sets the pin high/low.
  6490. */
  6491. inline void gcode_M351() {
  6492. if (code_seen('S')) switch (code_value_byte()) {
  6493. case 1:
  6494. LOOP_XYZE(i) if (code_seen(axis_codes[i])) stepper.microstep_ms(i, code_value_byte(), -1);
  6495. if (code_seen('B')) stepper.microstep_ms(4, code_value_byte(), -1);
  6496. break;
  6497. case 2:
  6498. LOOP_XYZE(i) if (code_seen(axis_codes[i])) stepper.microstep_ms(i, -1, code_value_byte());
  6499. if (code_seen('B')) stepper.microstep_ms(4, -1, code_value_byte());
  6500. break;
  6501. }
  6502. stepper.microstep_readings();
  6503. }
  6504. #endif // HAS_MICROSTEPS
  6505. #if HAS_CASE_LIGHT
  6506. uint8_t case_light_brightness = 255;
  6507. void update_case_light() {
  6508. digitalWrite(CASE_LIGHT_PIN, case_light_on != INVERT_CASE_LIGHT ? HIGH : LOW);
  6509. analogWrite(CASE_LIGHT_PIN, case_light_on != INVERT_CASE_LIGHT ? case_light_brightness : 0);
  6510. }
  6511. #endif // HAS_CASE_LIGHT
  6512. /**
  6513. * M355: Turn case lights on/off and set brightness
  6514. *
  6515. * S<bool> Turn case light on or off
  6516. * P<byte> Set case light brightness (PWM pin required)
  6517. */
  6518. inline void gcode_M355() {
  6519. #if HAS_CASE_LIGHT
  6520. if (code_seen('P')) case_light_brightness = code_value_byte();
  6521. if (code_seen('S')) case_light_on = code_value_bool();
  6522. update_case_light();
  6523. SERIAL_ECHO_START;
  6524. SERIAL_ECHOPGM("Case lights ");
  6525. case_light_on ? SERIAL_ECHOLNPGM("on") : SERIAL_ECHOLNPGM("off");
  6526. #else
  6527. SERIAL_ERROR_START;
  6528. SERIAL_ERRORLNPGM(MSG_ERR_M355_NONE);
  6529. #endif // HAS_CASE_LIGHT
  6530. }
  6531. #if ENABLED(MIXING_EXTRUDER)
  6532. /**
  6533. * M163: Set a single mix factor for a mixing extruder
  6534. * This is called "weight" by some systems.
  6535. *
  6536. * S[index] The channel index to set
  6537. * P[float] The mix value
  6538. *
  6539. */
  6540. inline void gcode_M163() {
  6541. int mix_index = code_seen('S') ? code_value_int() : 0;
  6542. if (mix_index < MIXING_STEPPERS) {
  6543. float mix_value = code_seen('P') ? code_value_float() : 0.0;
  6544. NOLESS(mix_value, 0.0);
  6545. mixing_factor[mix_index] = RECIPROCAL(mix_value);
  6546. }
  6547. }
  6548. #if MIXING_VIRTUAL_TOOLS > 1
  6549. /**
  6550. * M164: Store the current mix factors as a virtual tool.
  6551. *
  6552. * S[index] The virtual tool to store
  6553. *
  6554. */
  6555. inline void gcode_M164() {
  6556. int tool_index = code_seen('S') ? code_value_int() : 0;
  6557. if (tool_index < MIXING_VIRTUAL_TOOLS) {
  6558. normalize_mix();
  6559. for (uint8_t i = 0; i < MIXING_STEPPERS; i++)
  6560. mixing_virtual_tool_mix[tool_index][i] = mixing_factor[i];
  6561. }
  6562. }
  6563. #endif
  6564. #if ENABLED(DIRECT_MIXING_IN_G1)
  6565. /**
  6566. * M165: Set multiple mix factors for a mixing extruder.
  6567. * Factors that are left out will be set to 0.
  6568. * All factors together must add up to 1.0.
  6569. *
  6570. * A[factor] Mix factor for extruder stepper 1
  6571. * B[factor] Mix factor for extruder stepper 2
  6572. * C[factor] Mix factor for extruder stepper 3
  6573. * D[factor] Mix factor for extruder stepper 4
  6574. * H[factor] Mix factor for extruder stepper 5
  6575. * I[factor] Mix factor for extruder stepper 6
  6576. *
  6577. */
  6578. inline void gcode_M165() { gcode_get_mix(); }
  6579. #endif
  6580. #endif // MIXING_EXTRUDER
  6581. /**
  6582. * M999: Restart after being stopped
  6583. *
  6584. * Default behaviour is to flush the serial buffer and request
  6585. * a resend to the host starting on the last N line received.
  6586. *
  6587. * Sending "M999 S1" will resume printing without flushing the
  6588. * existing command buffer.
  6589. *
  6590. */
  6591. inline void gcode_M999() {
  6592. Running = true;
  6593. lcd_reset_alert_level();
  6594. if (code_seen('S') && code_value_bool()) return;
  6595. // gcode_LastN = Stopped_gcode_LastN;
  6596. FlushSerialRequestResend();
  6597. }
  6598. #if ENABLED(SWITCHING_EXTRUDER)
  6599. inline void move_extruder_servo(uint8_t e) {
  6600. const int angles[2] = SWITCHING_EXTRUDER_SERVO_ANGLES;
  6601. MOVE_SERVO(SWITCHING_EXTRUDER_SERVO_NR, angles[e]);
  6602. }
  6603. #endif
  6604. inline void invalid_extruder_error(const uint8_t &e) {
  6605. SERIAL_ECHO_START;
  6606. SERIAL_CHAR('T');
  6607. SERIAL_PROTOCOL_F(e, DEC);
  6608. SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
  6609. }
  6610. /**
  6611. * Perform a tool-change, which may result in moving the
  6612. * previous tool out of the way and the new tool into place.
  6613. */
  6614. void tool_change(const uint8_t tmp_extruder, const float fr_mm_s/*=0.0*/, bool no_move/*=false*/) {
  6615. #if ENABLED(MIXING_EXTRUDER) && MIXING_VIRTUAL_TOOLS > 1
  6616. if (tmp_extruder >= MIXING_VIRTUAL_TOOLS)
  6617. return invalid_extruder_error(tmp_extruder);
  6618. // T0-Tnnn: Switch virtual tool by changing the mix
  6619. for (uint8_t j = 0; j < MIXING_STEPPERS; j++)
  6620. mixing_factor[j] = mixing_virtual_tool_mix[tmp_extruder][j];
  6621. #else //!MIXING_EXTRUDER || MIXING_VIRTUAL_TOOLS <= 1
  6622. #if HOTENDS > 1
  6623. if (tmp_extruder >= EXTRUDERS)
  6624. return invalid_extruder_error(tmp_extruder);
  6625. const float old_feedrate_mm_s = fr_mm_s > 0.0 ? fr_mm_s : feedrate_mm_s;
  6626. feedrate_mm_s = fr_mm_s > 0.0 ? fr_mm_s : XY_PROBE_FEEDRATE_MM_S;
  6627. if (tmp_extruder != active_extruder) {
  6628. if (!no_move && axis_unhomed_error(true, true, true)) {
  6629. SERIAL_ECHOLNPGM("No move on toolchange");
  6630. no_move = true;
  6631. }
  6632. // Save current position to destination, for use later
  6633. set_destination_to_current();
  6634. #if ENABLED(DUAL_X_CARRIAGE)
  6635. #if ENABLED(DEBUG_LEVELING_FEATURE)
  6636. if (DEBUGGING(LEVELING)) {
  6637. SERIAL_ECHOPGM("Dual X Carriage Mode ");
  6638. switch (dual_x_carriage_mode) {
  6639. case DXC_FULL_CONTROL_MODE: SERIAL_ECHOLNPGM("DXC_FULL_CONTROL_MODE"); break;
  6640. case DXC_AUTO_PARK_MODE: SERIAL_ECHOLNPGM("DXC_AUTO_PARK_MODE"); break;
  6641. case DXC_DUPLICATION_MODE: SERIAL_ECHOLNPGM("DXC_DUPLICATION_MODE"); break;
  6642. }
  6643. }
  6644. #endif
  6645. const float xhome = x_home_pos(active_extruder);
  6646. if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE
  6647. && IsRunning()
  6648. && (delayed_move_time || current_position[X_AXIS] != xhome)
  6649. ) {
  6650. float raised_z = current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT;
  6651. #if ENABLED(max_software_endstops)
  6652. NOMORE(raised_z, soft_endstop_max[Z_AXIS]);
  6653. #endif
  6654. #if ENABLED(DEBUG_LEVELING_FEATURE)
  6655. if (DEBUGGING(LEVELING)) {
  6656. SERIAL_ECHOLNPAIR("Raise to ", raised_z);
  6657. SERIAL_ECHOLNPAIR("MoveX to ", xhome);
  6658. SERIAL_ECHOLNPAIR("Lower to ", current_position[Z_AXIS]);
  6659. }
  6660. #endif
  6661. // Park old head: 1) raise 2) move to park position 3) lower
  6662. for (uint8_t i = 0; i < 3; i++)
  6663. planner.buffer_line(
  6664. i == 0 ? current_position[X_AXIS] : xhome,
  6665. current_position[Y_AXIS],
  6666. i == 2 ? current_position[Z_AXIS] : raised_z,
  6667. current_position[E_AXIS],
  6668. planner.max_feedrate_mm_s[i == 1 ? X_AXIS : Z_AXIS],
  6669. active_extruder
  6670. );
  6671. stepper.synchronize();
  6672. }
  6673. // Apply Y & Z extruder offset (X offset is used as home pos with Dual X)
  6674. current_position[Y_AXIS] -= hotend_offset[Y_AXIS][active_extruder] - hotend_offset[Y_AXIS][tmp_extruder];
  6675. current_position[Z_AXIS] -= hotend_offset[Z_AXIS][active_extruder] - hotend_offset[Z_AXIS][tmp_extruder];
  6676. // Activate the new extruder
  6677. active_extruder = tmp_extruder;
  6678. // This function resets the max/min values - the current position may be overwritten below.
  6679. set_axis_is_at_home(X_AXIS);
  6680. #if ENABLED(DEBUG_LEVELING_FEATURE)
  6681. if (DEBUGGING(LEVELING)) DEBUG_POS("New Extruder", current_position);
  6682. #endif
  6683. // Only when auto-parking are carriages safe to move
  6684. if (dual_x_carriage_mode != DXC_AUTO_PARK_MODE) no_move = true;
  6685. switch (dual_x_carriage_mode) {
  6686. case DXC_FULL_CONTROL_MODE:
  6687. // New current position is the position of the activated extruder
  6688. current_position[X_AXIS] = LOGICAL_X_POSITION(inactive_extruder_x_pos);
  6689. // Save the inactive extruder's position (from the old current_position)
  6690. inactive_extruder_x_pos = RAW_X_POSITION(destination[X_AXIS]);
  6691. break;
  6692. case DXC_AUTO_PARK_MODE:
  6693. // record raised toolhead position for use by unpark
  6694. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  6695. raised_parked_position[Z_AXIS] += TOOLCHANGE_UNPARK_ZLIFT;
  6696. #if ENABLED(max_software_endstops)
  6697. NOMORE(raised_parked_position[Z_AXIS], soft_endstop_max[Z_AXIS]);
  6698. #endif
  6699. active_extruder_parked = true;
  6700. delayed_move_time = 0;
  6701. break;
  6702. case DXC_DUPLICATION_MODE:
  6703. // If the new extruder is the left one, set it "parked"
  6704. // This triggers the second extruder to move into the duplication position
  6705. active_extruder_parked = (active_extruder == 0);
  6706. if (active_extruder_parked)
  6707. current_position[X_AXIS] = LOGICAL_X_POSITION(inactive_extruder_x_pos);
  6708. else
  6709. current_position[X_AXIS] = destination[X_AXIS] + duplicate_extruder_x_offset;
  6710. inactive_extruder_x_pos = RAW_X_POSITION(destination[X_AXIS]);
  6711. extruder_duplication_enabled = false;
  6712. break;
  6713. }
  6714. #if ENABLED(DEBUG_LEVELING_FEATURE)
  6715. if (DEBUGGING(LEVELING)) {
  6716. SERIAL_ECHOLNPAIR("Active extruder parked: ", active_extruder_parked ? "yes" : "no");
  6717. DEBUG_POS("New extruder (parked)", current_position);
  6718. }
  6719. #endif
  6720. // No extra case for HAS_ABL in DUAL_X_CARRIAGE. Does that mean they don't work together?
  6721. #else // !DUAL_X_CARRIAGE
  6722. #if ENABLED(SWITCHING_EXTRUDER)
  6723. // <0 if the new nozzle is higher, >0 if lower. A bigger raise when lower.
  6724. float z_diff = hotend_offset[Z_AXIS][active_extruder] - hotend_offset[Z_AXIS][tmp_extruder],
  6725. z_raise = 0.3 + (z_diff > 0.0 ? z_diff : 0.0);
  6726. // Always raise by some amount (destination copied from current_position earlier)
  6727. destination[Z_AXIS] += z_raise;
  6728. planner.buffer_line_kinematic(destination, planner.max_feedrate_mm_s[Z_AXIS], active_extruder);
  6729. stepper.synchronize();
  6730. move_extruder_servo(active_extruder);
  6731. delay(500);
  6732. // Move back down, if needed
  6733. if (z_raise != z_diff) {
  6734. destination[Z_AXIS] = current_position[Z_AXIS] + z_diff;
  6735. planner.buffer_line_kinematic(destination, planner.max_feedrate_mm_s[Z_AXIS], active_extruder);
  6736. stepper.synchronize();
  6737. }
  6738. #endif
  6739. /**
  6740. * Set current_position to the position of the new nozzle.
  6741. * Offsets are based on linear distance, so we need to get
  6742. * the resulting position in coordinate space.
  6743. *
  6744. * - With grid or 3-point leveling, offset XYZ by a tilted vector
  6745. * - With mesh leveling, update Z for the new position
  6746. * - Otherwise, just use the raw linear distance
  6747. *
  6748. * Software endstops are altered here too. Consider a case where:
  6749. * E0 at X=0 ... E1 at X=10
  6750. * When we switch to E1 now X=10, but E1 can't move left.
  6751. * To express this we apply the change in XY to the software endstops.
  6752. * E1 can move farther right than E0, so the right limit is extended.
  6753. *
  6754. * Note that we don't adjust the Z software endstops. Why not?
  6755. * Consider a case where Z=0 (here) and switching to E1 makes Z=1
  6756. * because the bed is 1mm lower at the new position. As long as
  6757. * the first nozzle is out of the way, the carriage should be
  6758. * allowed to move 1mm lower. This technically "breaks" the
  6759. * Z software endstop. But this is technically correct (and
  6760. * there is no viable alternative).
  6761. */
  6762. #if ABL_PLANAR
  6763. // Offset extruder, make sure to apply the bed level rotation matrix
  6764. vector_3 tmp_offset_vec = vector_3(hotend_offset[X_AXIS][tmp_extruder],
  6765. hotend_offset[Y_AXIS][tmp_extruder],
  6766. 0),
  6767. act_offset_vec = vector_3(hotend_offset[X_AXIS][active_extruder],
  6768. hotend_offset[Y_AXIS][active_extruder],
  6769. 0),
  6770. offset_vec = tmp_offset_vec - act_offset_vec;
  6771. #if ENABLED(DEBUG_LEVELING_FEATURE)
  6772. if (DEBUGGING(LEVELING)) {
  6773. tmp_offset_vec.debug("tmp_offset_vec");
  6774. act_offset_vec.debug("act_offset_vec");
  6775. offset_vec.debug("offset_vec (BEFORE)");
  6776. }
  6777. #endif
  6778. offset_vec.apply_rotation(planner.bed_level_matrix.transpose(planner.bed_level_matrix));
  6779. #if ENABLED(DEBUG_LEVELING_FEATURE)
  6780. if (DEBUGGING(LEVELING)) offset_vec.debug("offset_vec (AFTER)");
  6781. #endif
  6782. // Adjustments to the current position
  6783. float xydiff[2] = { offset_vec.x, offset_vec.y };
  6784. current_position[Z_AXIS] += offset_vec.z;
  6785. #else // !ABL_PLANAR
  6786. float xydiff[2] = {
  6787. hotend_offset[X_AXIS][tmp_extruder] - hotend_offset[X_AXIS][active_extruder],
  6788. hotend_offset[Y_AXIS][tmp_extruder] - hotend_offset[Y_AXIS][active_extruder]
  6789. };
  6790. #if ENABLED(MESH_BED_LEVELING)
  6791. if (mbl.active()) {
  6792. #if ENABLED(DEBUG_LEVELING_FEATURE)
  6793. if (DEBUGGING(LEVELING)) SERIAL_ECHOPAIR("Z before MBL: ", current_position[Z_AXIS]);
  6794. #endif
  6795. float x2 = current_position[X_AXIS] + xydiff[X_AXIS],
  6796. y2 = current_position[Y_AXIS] + xydiff[Y_AXIS],
  6797. z1 = current_position[Z_AXIS], z2 = z1;
  6798. planner.apply_leveling(current_position[X_AXIS], current_position[Y_AXIS], z1);
  6799. planner.apply_leveling(x2, y2, z2);
  6800. current_position[Z_AXIS] += z2 - z1;
  6801. #if ENABLED(DEBUG_LEVELING_FEATURE)
  6802. if (DEBUGGING(LEVELING))
  6803. SERIAL_ECHOLNPAIR(" after: ", current_position[Z_AXIS]);
  6804. #endif
  6805. }
  6806. #endif // MESH_BED_LEVELING
  6807. #endif // !HAS_ABL
  6808. #if ENABLED(DEBUG_LEVELING_FEATURE)
  6809. if (DEBUGGING(LEVELING)) {
  6810. SERIAL_ECHOPAIR("Offset Tool XY by { ", xydiff[X_AXIS]);
  6811. SERIAL_ECHOPAIR(", ", xydiff[Y_AXIS]);
  6812. SERIAL_ECHOLNPGM(" }");
  6813. }
  6814. #endif
  6815. // The newly-selected extruder XY is actually at...
  6816. current_position[X_AXIS] += xydiff[X_AXIS];
  6817. current_position[Y_AXIS] += xydiff[Y_AXIS];
  6818. for (uint8_t i = X_AXIS; i <= Y_AXIS; i++) {
  6819. position_shift[i] += xydiff[i];
  6820. update_software_endstops((AxisEnum)i);
  6821. }
  6822. // Set the new active extruder
  6823. active_extruder = tmp_extruder;
  6824. #endif // !DUAL_X_CARRIAGE
  6825. #if ENABLED(DEBUG_LEVELING_FEATURE)
  6826. if (DEBUGGING(LEVELING)) DEBUG_POS("Sync After Toolchange", current_position);
  6827. #endif
  6828. // Tell the planner the new "current position"
  6829. SYNC_PLAN_POSITION_KINEMATIC();
  6830. // Move to the "old position" (move the extruder into place)
  6831. if (!no_move && IsRunning()) {
  6832. #if ENABLED(DEBUG_LEVELING_FEATURE)
  6833. if (DEBUGGING(LEVELING)) DEBUG_POS("Move back", destination);
  6834. #endif
  6835. prepare_move_to_destination();
  6836. }
  6837. } // (tmp_extruder != active_extruder)
  6838. stepper.synchronize();
  6839. #if ENABLED(EXT_SOLENOID)
  6840. disable_all_solenoids();
  6841. enable_solenoid_on_active_extruder();
  6842. #endif // EXT_SOLENOID
  6843. feedrate_mm_s = old_feedrate_mm_s;
  6844. #else // HOTENDS <= 1
  6845. // Set the new active extruder
  6846. active_extruder = tmp_extruder;
  6847. UNUSED(fr_mm_s);
  6848. UNUSED(no_move);
  6849. #endif // HOTENDS <= 1
  6850. SERIAL_ECHO_START;
  6851. SERIAL_ECHOLNPAIR(MSG_ACTIVE_EXTRUDER, (int)active_extruder);
  6852. #endif //!MIXING_EXTRUDER || MIXING_VIRTUAL_TOOLS <= 1
  6853. }
  6854. /**
  6855. * T0-T3: Switch tool, usually switching extruders
  6856. *
  6857. * F[units/min] Set the movement feedrate
  6858. * S1 Don't move the tool in XY after change
  6859. */
  6860. inline void gcode_T(uint8_t tmp_extruder) {
  6861. #if ENABLED(DEBUG_LEVELING_FEATURE)
  6862. if (DEBUGGING(LEVELING)) {
  6863. SERIAL_ECHOPAIR(">>> gcode_T(", tmp_extruder);
  6864. SERIAL_CHAR(')');
  6865. SERIAL_EOL;
  6866. DEBUG_POS("BEFORE", current_position);
  6867. }
  6868. #endif
  6869. #if HOTENDS == 1 || (ENABLED(MIXING_EXTRUDER) && MIXING_VIRTUAL_TOOLS > 1)
  6870. tool_change(tmp_extruder);
  6871. #elif HOTENDS > 1
  6872. tool_change(
  6873. tmp_extruder,
  6874. code_seen('F') ? MMM_TO_MMS(code_value_axis_units(X_AXIS)) : 0.0,
  6875. (tmp_extruder == active_extruder) || (code_seen('S') && code_value_bool())
  6876. );
  6877. #endif
  6878. #if ENABLED(DEBUG_LEVELING_FEATURE)
  6879. if (DEBUGGING(LEVELING)) {
  6880. DEBUG_POS("AFTER", current_position);
  6881. SERIAL_ECHOLNPGM("<<< gcode_T");
  6882. }
  6883. #endif
  6884. }
  6885. /**
  6886. * Process a single command and dispatch it to its handler
  6887. * This is called from the main loop()
  6888. */
  6889. void process_next_command() {
  6890. current_command = command_queue[cmd_queue_index_r];
  6891. if (DEBUGGING(ECHO)) {
  6892. SERIAL_ECHO_START;
  6893. SERIAL_ECHOLN(current_command);
  6894. }
  6895. // Sanitize the current command:
  6896. // - Skip leading spaces
  6897. // - Bypass N[-0-9][0-9]*[ ]*
  6898. // - Overwrite * with nul to mark the end
  6899. while (*current_command == ' ') ++current_command;
  6900. if (*current_command == 'N' && NUMERIC_SIGNED(current_command[1])) {
  6901. current_command += 2; // skip N[-0-9]
  6902. while (NUMERIC(*current_command)) ++current_command; // skip [0-9]*
  6903. while (*current_command == ' ') ++current_command; // skip [ ]*
  6904. }
  6905. char* starpos = strchr(current_command, '*'); // * should always be the last parameter
  6906. if (starpos) while (*starpos == ' ' || *starpos == '*') *starpos-- = '\0'; // nullify '*' and ' '
  6907. char *cmd_ptr = current_command;
  6908. // Get the command code, which must be G, M, or T
  6909. char command_code = *cmd_ptr++;
  6910. // Skip spaces to get the numeric part
  6911. while (*cmd_ptr == ' ') cmd_ptr++;
  6912. // Allow for decimal point in command
  6913. #if ENABLED(G38_PROBE_TARGET)
  6914. uint8_t subcode = 0;
  6915. #endif
  6916. uint16_t codenum = 0; // define ahead of goto
  6917. // Bail early if there's no code
  6918. bool code_is_good = NUMERIC(*cmd_ptr);
  6919. if (!code_is_good) goto ExitUnknownCommand;
  6920. // Get and skip the code number
  6921. do {
  6922. codenum = (codenum * 10) + (*cmd_ptr - '0');
  6923. cmd_ptr++;
  6924. } while (NUMERIC(*cmd_ptr));
  6925. // Allow for decimal point in command
  6926. #if ENABLED(G38_PROBE_TARGET)
  6927. if (*cmd_ptr == '.') {
  6928. cmd_ptr++;
  6929. while (NUMERIC(*cmd_ptr))
  6930. subcode = (subcode * 10) + (*cmd_ptr++ - '0');
  6931. }
  6932. #endif
  6933. // Skip all spaces to get to the first argument, or nul
  6934. while (*cmd_ptr == ' ') cmd_ptr++;
  6935. // The command's arguments (if any) start here, for sure!
  6936. current_command_args = cmd_ptr;
  6937. KEEPALIVE_STATE(IN_HANDLER);
  6938. // Handle a known G, M, or T
  6939. switch (command_code) {
  6940. case 'G': switch (codenum) {
  6941. // G0, G1
  6942. case 0:
  6943. case 1:
  6944. #if IS_SCARA
  6945. gcode_G0_G1(codenum == 0);
  6946. #else
  6947. gcode_G0_G1();
  6948. #endif
  6949. break;
  6950. // G2, G3
  6951. #if ENABLED(ARC_SUPPORT) && DISABLED(SCARA)
  6952. case 2: // G2 - CW ARC
  6953. case 3: // G3 - CCW ARC
  6954. gcode_G2_G3(codenum == 2);
  6955. break;
  6956. #endif
  6957. // G4 Dwell
  6958. case 4:
  6959. gcode_G4();
  6960. break;
  6961. #if ENABLED(BEZIER_CURVE_SUPPORT)
  6962. // G5
  6963. case 5: // G5 - Cubic B_spline
  6964. gcode_G5();
  6965. break;
  6966. #endif // BEZIER_CURVE_SUPPORT
  6967. #if ENABLED(FWRETRACT)
  6968. case 10: // G10: retract
  6969. case 11: // G11: retract_recover
  6970. gcode_G10_G11(codenum == 10);
  6971. break;
  6972. #endif // FWRETRACT
  6973. #if ENABLED(NOZZLE_CLEAN_FEATURE)
  6974. case 12:
  6975. gcode_G12(); // G12: Nozzle Clean
  6976. break;
  6977. #endif // NOZZLE_CLEAN_FEATURE
  6978. #if ENABLED(INCH_MODE_SUPPORT)
  6979. case 20: //G20: Inch Mode
  6980. gcode_G20();
  6981. break;
  6982. case 21: //G21: MM Mode
  6983. gcode_G21();
  6984. break;
  6985. #endif // INCH_MODE_SUPPORT
  6986. #if ENABLED(NOZZLE_PARK_FEATURE)
  6987. case 27: // G27: Nozzle Park
  6988. gcode_G27();
  6989. break;
  6990. #endif // NOZZLE_PARK_FEATURE
  6991. case 28: // G28: Home all axes, one at a time
  6992. gcode_G28();
  6993. break;
  6994. #if PLANNER_LEVELING
  6995. case 29: // G29 Detailed Z probe, probes the bed at 3 or more points.
  6996. gcode_G29();
  6997. break;
  6998. #endif // PLANNER_LEVELING
  6999. #if HAS_BED_PROBE
  7000. case 30: // G30 Single Z probe
  7001. gcode_G30();
  7002. break;
  7003. #if ENABLED(Z_PROBE_SLED)
  7004. case 31: // G31: dock the sled
  7005. gcode_G31();
  7006. break;
  7007. case 32: // G32: undock the sled
  7008. gcode_G32();
  7009. break;
  7010. #endif // Z_PROBE_SLED
  7011. #endif // HAS_BED_PROBE
  7012. #if ENABLED(G38_PROBE_TARGET)
  7013. case 38: // G38.2 & G38.3
  7014. if (subcode == 2 || subcode == 3)
  7015. gcode_G38(subcode == 2);
  7016. break;
  7017. #endif
  7018. case 90: // G90
  7019. relative_mode = false;
  7020. break;
  7021. case 91: // G91
  7022. relative_mode = true;
  7023. break;
  7024. case 92: // G92
  7025. gcode_G92();
  7026. break;
  7027. }
  7028. break;
  7029. case 'M': switch (codenum) {
  7030. #if ENABLED(ULTIPANEL) || ENABLED(EMERGENCY_PARSER)
  7031. case 0: // M0: Unconditional stop - Wait for user button press on LCD
  7032. case 1: // M1: Conditional stop - Wait for user button press on LCD
  7033. gcode_M0_M1();
  7034. break;
  7035. #endif // ULTIPANEL
  7036. case 17: // M17: Enable all stepper motors
  7037. gcode_M17();
  7038. break;
  7039. #if ENABLED(SDSUPPORT)
  7040. case 20: // M20: list SD card
  7041. gcode_M20(); break;
  7042. case 21: // M21: init SD card
  7043. gcode_M21(); break;
  7044. case 22: // M22: release SD card
  7045. gcode_M22(); break;
  7046. case 23: // M23: Select file
  7047. gcode_M23(); break;
  7048. case 24: // M24: Start SD print
  7049. gcode_M24(); break;
  7050. case 25: // M25: Pause SD print
  7051. gcode_M25(); break;
  7052. case 26: // M26: Set SD index
  7053. gcode_M26(); break;
  7054. case 27: // M27: Get SD status
  7055. gcode_M27(); break;
  7056. case 28: // M28: Start SD write
  7057. gcode_M28(); break;
  7058. case 29: // M29: Stop SD write
  7059. gcode_M29(); break;
  7060. case 30: // M30 <filename> Delete File
  7061. gcode_M30(); break;
  7062. case 32: // M32: Select file and start SD print
  7063. gcode_M32(); break;
  7064. #if ENABLED(LONG_FILENAME_HOST_SUPPORT)
  7065. case 33: // M33: Get the long full path to a file or folder
  7066. gcode_M33(); break;
  7067. #endif
  7068. #if ENABLED(SDCARD_SORT_ALPHA) && ENABLED(SDSORT_GCODE)
  7069. case 34: //M34 - Set SD card sorting options
  7070. gcode_M34(); break;
  7071. #endif // SDCARD_SORT_ALPHA && SDSORT_GCODE
  7072. case 928: // M928: Start SD write
  7073. gcode_M928(); break;
  7074. #endif //SDSUPPORT
  7075. case 31: // M31: Report time since the start of SD print or last M109
  7076. gcode_M31(); break;
  7077. case 42: // M42: Change pin state
  7078. gcode_M42(); break;
  7079. #if ENABLED(PINS_DEBUGGING)
  7080. case 43: // M43: Read pin state
  7081. gcode_M43(); break;
  7082. #endif
  7083. #if ENABLED(Z_MIN_PROBE_REPEATABILITY_TEST)
  7084. case 48: // M48: Z probe repeatability test
  7085. gcode_M48();
  7086. break;
  7087. #endif // Z_MIN_PROBE_REPEATABILITY_TEST
  7088. case 75: // M75: Start print timer
  7089. gcode_M75(); break;
  7090. case 76: // M76: Pause print timer
  7091. gcode_M76(); break;
  7092. case 77: // M77: Stop print timer
  7093. gcode_M77(); break;
  7094. #if ENABLED(PRINTCOUNTER)
  7095. case 78: // M78: Show print statistics
  7096. gcode_M78(); break;
  7097. #endif
  7098. #if ENABLED(M100_FREE_MEMORY_WATCHER)
  7099. case 100: // M100: Free Memory Report
  7100. gcode_M100();
  7101. break;
  7102. #endif
  7103. case 104: // M104: Set hot end temperature
  7104. gcode_M104();
  7105. break;
  7106. case 110: // M110: Set Current Line Number
  7107. gcode_M110();
  7108. break;
  7109. case 111: // M111: Set debug level
  7110. gcode_M111();
  7111. break;
  7112. #if DISABLED(EMERGENCY_PARSER)
  7113. case 108: // M108: Cancel Waiting
  7114. gcode_M108();
  7115. break;
  7116. case 112: // M112: Emergency Stop
  7117. gcode_M112();
  7118. break;
  7119. case 410: // M410 quickstop - Abort all the planned moves.
  7120. gcode_M410();
  7121. break;
  7122. #endif
  7123. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  7124. case 113: // M113: Set Host Keepalive interval
  7125. gcode_M113();
  7126. break;
  7127. #endif
  7128. case 140: // M140: Set bed temperature
  7129. gcode_M140();
  7130. break;
  7131. case 105: // M105: Report current temperature
  7132. gcode_M105();
  7133. KEEPALIVE_STATE(NOT_BUSY);
  7134. return; // "ok" already printed
  7135. #if ENABLED(AUTO_REPORT_TEMPERATURES) && (HAS_TEMP_HOTEND || HAS_TEMP_BED)
  7136. case 155: // M155: Set temperature auto-report interval
  7137. gcode_M155();
  7138. break;
  7139. #endif
  7140. case 109: // M109: Wait for hotend temperature to reach target
  7141. gcode_M109();
  7142. break;
  7143. #if HAS_TEMP_BED
  7144. case 190: // M190: Wait for bed temperature to reach target
  7145. gcode_M190();
  7146. break;
  7147. #endif // HAS_TEMP_BED
  7148. #if FAN_COUNT > 0
  7149. case 106: // M106: Fan On
  7150. gcode_M106();
  7151. break;
  7152. case 107: // M107: Fan Off
  7153. gcode_M107();
  7154. break;
  7155. #endif // FAN_COUNT > 0
  7156. #if ENABLED(BARICUDA)
  7157. // PWM for HEATER_1_PIN
  7158. #if HAS_HEATER_1
  7159. case 126: // M126: valve open
  7160. gcode_M126();
  7161. break;
  7162. case 127: // M127: valve closed
  7163. gcode_M127();
  7164. break;
  7165. #endif // HAS_HEATER_1
  7166. // PWM for HEATER_2_PIN
  7167. #if HAS_HEATER_2
  7168. case 128: // M128: valve open
  7169. gcode_M128();
  7170. break;
  7171. case 129: // M129: valve closed
  7172. gcode_M129();
  7173. break;
  7174. #endif // HAS_HEATER_2
  7175. #endif // BARICUDA
  7176. #if HAS_POWER_SWITCH
  7177. case 80: // M80: Turn on Power Supply
  7178. gcode_M80();
  7179. break;
  7180. #endif // HAS_POWER_SWITCH
  7181. case 81: // M81: Turn off Power, including Power Supply, if possible
  7182. gcode_M81();
  7183. break;
  7184. case 82: // M83: Set E axis normal mode (same as other axes)
  7185. gcode_M82();
  7186. break;
  7187. case 83: // M83: Set E axis relative mode
  7188. gcode_M83();
  7189. break;
  7190. case 18: // M18 => M84
  7191. case 84: // M84: Disable all steppers or set timeout
  7192. gcode_M18_M84();
  7193. break;
  7194. case 85: // M85: Set inactivity stepper shutdown timeout
  7195. gcode_M85();
  7196. break;
  7197. case 92: // M92: Set the steps-per-unit for one or more axes
  7198. gcode_M92();
  7199. break;
  7200. case 114: // M114: Report current position
  7201. gcode_M114();
  7202. break;
  7203. case 115: // M115: Report capabilities
  7204. gcode_M115();
  7205. break;
  7206. case 117: // M117: Set LCD message text, if possible
  7207. gcode_M117();
  7208. break;
  7209. case 119: // M119: Report endstop states
  7210. gcode_M119();
  7211. break;
  7212. case 120: // M120: Enable endstops
  7213. gcode_M120();
  7214. break;
  7215. case 121: // M121: Disable endstops
  7216. gcode_M121();
  7217. break;
  7218. #if ENABLED(HAVE_TMC2130DRIVER)
  7219. case 122: // M122: Diagnose, used to debug TMC2130
  7220. gcode_M122();
  7221. break;
  7222. #endif
  7223. #if ENABLED(ULTIPANEL)
  7224. case 145: // M145: Set material heatup parameters
  7225. gcode_M145();
  7226. break;
  7227. #endif
  7228. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  7229. case 149: // M149: Set temperature units
  7230. gcode_M149();
  7231. break;
  7232. #endif
  7233. #if ENABLED(BLINKM) || ENABLED(RGB_LED)
  7234. case 150: // M150: Set Status LED Color
  7235. gcode_M150();
  7236. break;
  7237. #endif // BLINKM
  7238. #if ENABLED(MIXING_EXTRUDER)
  7239. case 163: // M163: Set a component weight for mixing extruder
  7240. gcode_M163();
  7241. break;
  7242. #if MIXING_VIRTUAL_TOOLS > 1
  7243. case 164: // M164: Save current mix as a virtual extruder
  7244. gcode_M164();
  7245. break;
  7246. #endif
  7247. #if ENABLED(DIRECT_MIXING_IN_G1)
  7248. case 165: // M165: Set multiple mix weights
  7249. gcode_M165();
  7250. break;
  7251. #endif
  7252. #endif
  7253. case 200: // M200: Set filament diameter, E to cubic units
  7254. gcode_M200();
  7255. break;
  7256. case 201: // M201: Set max acceleration for print moves (units/s^2)
  7257. gcode_M201();
  7258. break;
  7259. #if 0 // Not used for Sprinter/grbl gen6
  7260. case 202: // M202
  7261. gcode_M202();
  7262. break;
  7263. #endif
  7264. case 203: // M203: Set max feedrate (units/sec)
  7265. gcode_M203();
  7266. break;
  7267. case 204: // M204: Set acceleration
  7268. gcode_M204();
  7269. break;
  7270. case 205: //M205: Set advanced settings
  7271. gcode_M205();
  7272. break;
  7273. case 206: // M206: Set home offsets
  7274. gcode_M206();
  7275. break;
  7276. #if ENABLED(DELTA)
  7277. case 665: // M665: Set delta configurations
  7278. gcode_M665();
  7279. break;
  7280. #endif
  7281. #if ENABLED(DELTA) || ENABLED(Z_DUAL_ENDSTOPS)
  7282. case 666: // M666: Set delta or dual endstop adjustment
  7283. gcode_M666();
  7284. break;
  7285. #endif
  7286. #if ENABLED(FWRETRACT)
  7287. case 207: // M207: Set Retract Length, Feedrate, and Z lift
  7288. gcode_M207();
  7289. break;
  7290. case 208: // M208: Set Recover (unretract) Additional Length and Feedrate
  7291. gcode_M208();
  7292. break;
  7293. case 209: // M209: Turn Automatic Retract Detection on/off
  7294. gcode_M209();
  7295. break;
  7296. #endif // FWRETRACT
  7297. case 211: // M211: Enable, Disable, and/or Report software endstops
  7298. gcode_M211();
  7299. break;
  7300. #if HOTENDS > 1
  7301. case 218: // M218: Set a tool offset
  7302. gcode_M218();
  7303. break;
  7304. #endif
  7305. case 220: // M220: Set Feedrate Percentage: S<percent> ("FR" on your LCD)
  7306. gcode_M220();
  7307. break;
  7308. case 221: // M221: Set Flow Percentage
  7309. gcode_M221();
  7310. break;
  7311. case 226: // M226: Wait until a pin reaches a state
  7312. gcode_M226();
  7313. break;
  7314. #if HAS_SERVOS
  7315. case 280: // M280: Set servo position absolute
  7316. gcode_M280();
  7317. break;
  7318. #endif // HAS_SERVOS
  7319. #if HAS_BUZZER
  7320. case 300: // M300: Play beep tone
  7321. gcode_M300();
  7322. break;
  7323. #endif // HAS_BUZZER
  7324. #if ENABLED(PIDTEMP)
  7325. case 301: // M301: Set hotend PID parameters
  7326. gcode_M301();
  7327. break;
  7328. #endif // PIDTEMP
  7329. #if ENABLED(PIDTEMPBED)
  7330. case 304: // M304: Set bed PID parameters
  7331. gcode_M304();
  7332. break;
  7333. #endif // PIDTEMPBED
  7334. #if defined(CHDK) || HAS_PHOTOGRAPH
  7335. case 240: // M240: Trigger a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  7336. gcode_M240();
  7337. break;
  7338. #endif // CHDK || PHOTOGRAPH_PIN
  7339. #if HAS_LCD_CONTRAST
  7340. case 250: // M250: Set LCD contrast
  7341. gcode_M250();
  7342. break;
  7343. #endif // HAS_LCD_CONTRAST
  7344. #if ENABLED(EXPERIMENTAL_I2CBUS)
  7345. case 260: // M260: Send data to an i2c slave
  7346. gcode_M260();
  7347. break;
  7348. case 261: // M261: Request data from an i2c slave
  7349. gcode_M261();
  7350. break;
  7351. #endif // EXPERIMENTAL_I2CBUS
  7352. #if ENABLED(PREVENT_COLD_EXTRUSION)
  7353. case 302: // M302: Allow cold extrudes (set the minimum extrude temperature)
  7354. gcode_M302();
  7355. break;
  7356. #endif // PREVENT_COLD_EXTRUSION
  7357. case 303: // M303: PID autotune
  7358. gcode_M303();
  7359. break;
  7360. #if ENABLED(MORGAN_SCARA)
  7361. case 360: // M360: SCARA Theta pos1
  7362. if (gcode_M360()) return;
  7363. break;
  7364. case 361: // M361: SCARA Theta pos2
  7365. if (gcode_M361()) return;
  7366. break;
  7367. case 362: // M362: SCARA Psi pos1
  7368. if (gcode_M362()) return;
  7369. break;
  7370. case 363: // M363: SCARA Psi pos2
  7371. if (gcode_M363()) return;
  7372. break;
  7373. case 364: // M364: SCARA Psi pos3 (90 deg to Theta)
  7374. if (gcode_M364()) return;
  7375. break;
  7376. #endif // SCARA
  7377. case 400: // M400: Finish all moves
  7378. gcode_M400();
  7379. break;
  7380. #if HAS_BED_PROBE
  7381. case 401: // M401: Deploy probe
  7382. gcode_M401();
  7383. break;
  7384. case 402: // M402: Stow probe
  7385. gcode_M402();
  7386. break;
  7387. #endif // HAS_BED_PROBE
  7388. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  7389. case 404: // M404: Enter the nominal filament width (3mm, 1.75mm ) N<3.0> or display nominal filament width
  7390. gcode_M404();
  7391. break;
  7392. case 405: // M405: Turn on filament sensor for control
  7393. gcode_M405();
  7394. break;
  7395. case 406: // M406: Turn off filament sensor for control
  7396. gcode_M406();
  7397. break;
  7398. case 407: // M407: Display measured filament diameter
  7399. gcode_M407();
  7400. break;
  7401. #endif // ENABLED(FILAMENT_WIDTH_SENSOR)
  7402. #if PLANNER_LEVELING
  7403. case 420: // M420: Enable/Disable Bed Leveling
  7404. gcode_M420();
  7405. break;
  7406. #endif
  7407. #if ENABLED(MESH_BED_LEVELING)
  7408. case 421: // M421: Set a Mesh Bed Leveling Z coordinate
  7409. gcode_M421();
  7410. break;
  7411. #endif
  7412. case 428: // M428: Apply current_position to home_offset
  7413. gcode_M428();
  7414. break;
  7415. case 500: // M500: Store settings in EEPROM
  7416. gcode_M500();
  7417. break;
  7418. case 501: // M501: Read settings from EEPROM
  7419. gcode_M501();
  7420. break;
  7421. case 502: // M502: Revert to default settings
  7422. gcode_M502();
  7423. break;
  7424. case 503: // M503: print settings currently in memory
  7425. gcode_M503();
  7426. break;
  7427. #if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  7428. case 540: // M540: Set abort on endstop hit for SD printing
  7429. gcode_M540();
  7430. break;
  7431. #endif
  7432. #if HAS_BED_PROBE
  7433. case 851: // M851: Set Z Probe Z Offset
  7434. gcode_M851();
  7435. break;
  7436. #endif // HAS_BED_PROBE
  7437. #if ENABLED(FILAMENT_CHANGE_FEATURE)
  7438. case 600: // M600: Pause for filament change
  7439. gcode_M600();
  7440. break;
  7441. #endif // FILAMENT_CHANGE_FEATURE
  7442. #if ENABLED(DUAL_X_CARRIAGE)
  7443. case 605: // M605: Set Dual X Carriage movement mode
  7444. gcode_M605();
  7445. break;
  7446. #endif // DUAL_X_CARRIAGE
  7447. #if ENABLED(LIN_ADVANCE)
  7448. case 905: // M905: Set advance K factor.
  7449. gcode_M905();
  7450. break;
  7451. #endif
  7452. case 907: // M907: Set digital trimpot motor current using axis codes.
  7453. gcode_M907();
  7454. break;
  7455. #if HAS_DIGIPOTSS || ENABLED(DAC_STEPPER_CURRENT)
  7456. case 908: // M908: Control digital trimpot directly.
  7457. gcode_M908();
  7458. break;
  7459. #if ENABLED(DAC_STEPPER_CURRENT) // As with Printrbot RevF
  7460. case 909: // M909: Print digipot/DAC current value
  7461. gcode_M909();
  7462. break;
  7463. case 910: // M910: Commit digipot/DAC value to external EEPROM
  7464. gcode_M910();
  7465. break;
  7466. #endif
  7467. #endif // HAS_DIGIPOTSS || DAC_STEPPER_CURRENT
  7468. #if HAS_MICROSTEPS
  7469. case 350: // M350: Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  7470. gcode_M350();
  7471. break;
  7472. case 351: // M351: Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  7473. gcode_M351();
  7474. break;
  7475. #endif // HAS_MICROSTEPS
  7476. case 355: // M355 Turn case lights on/off
  7477. gcode_M355();
  7478. break;
  7479. case 999: // M999: Restart after being Stopped
  7480. gcode_M999();
  7481. break;
  7482. }
  7483. break;
  7484. case 'T':
  7485. gcode_T(codenum);
  7486. break;
  7487. default: code_is_good = false;
  7488. }
  7489. KEEPALIVE_STATE(NOT_BUSY);
  7490. ExitUnknownCommand:
  7491. // Still unknown command? Throw an error
  7492. if (!code_is_good) unknown_command_error();
  7493. ok_to_send();
  7494. }
  7495. /**
  7496. * Send a "Resend: nnn" message to the host to
  7497. * indicate that a command needs to be re-sent.
  7498. */
  7499. void FlushSerialRequestResend() {
  7500. //char command_queue[cmd_queue_index_r][100]="Resend:";
  7501. MYSERIAL.flush();
  7502. SERIAL_PROTOCOLPGM(MSG_RESEND);
  7503. SERIAL_PROTOCOLLN(gcode_LastN + 1);
  7504. ok_to_send();
  7505. }
  7506. /**
  7507. * Send an "ok" message to the host, indicating
  7508. * that a command was successfully processed.
  7509. *
  7510. * If ADVANCED_OK is enabled also include:
  7511. * N<int> Line number of the command, if any
  7512. * P<int> Planner space remaining
  7513. * B<int> Block queue space remaining
  7514. */
  7515. void ok_to_send() {
  7516. refresh_cmd_timeout();
  7517. if (!send_ok[cmd_queue_index_r]) return;
  7518. SERIAL_PROTOCOLPGM(MSG_OK);
  7519. #if ENABLED(ADVANCED_OK)
  7520. char* p = command_queue[cmd_queue_index_r];
  7521. if (*p == 'N') {
  7522. SERIAL_PROTOCOL(' ');
  7523. SERIAL_ECHO(*p++);
  7524. while (NUMERIC_SIGNED(*p))
  7525. SERIAL_ECHO(*p++);
  7526. }
  7527. SERIAL_PROTOCOLPGM(" P"); SERIAL_PROTOCOL(int(BLOCK_BUFFER_SIZE - planner.movesplanned() - 1));
  7528. SERIAL_PROTOCOLPGM(" B"); SERIAL_PROTOCOL(BUFSIZE - commands_in_queue);
  7529. #endif
  7530. SERIAL_EOL;
  7531. }
  7532. #if ENABLED(min_software_endstops) || ENABLED(max_software_endstops)
  7533. /**
  7534. * Constrain the given coordinates to the software endstops.
  7535. */
  7536. void clamp_to_software_endstops(float target[XYZ]) {
  7537. #if ENABLED(min_software_endstops)
  7538. NOLESS(target[X_AXIS], soft_endstop_min[X_AXIS]);
  7539. NOLESS(target[Y_AXIS], soft_endstop_min[Y_AXIS]);
  7540. NOLESS(target[Z_AXIS], soft_endstop_min[Z_AXIS]);
  7541. #endif
  7542. #if ENABLED(max_software_endstops)
  7543. NOMORE(target[X_AXIS], soft_endstop_max[X_AXIS]);
  7544. NOMORE(target[Y_AXIS], soft_endstop_max[Y_AXIS]);
  7545. NOMORE(target[Z_AXIS], soft_endstop_max[Z_AXIS]);
  7546. #endif
  7547. }
  7548. #endif
  7549. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  7550. #if ENABLED(ABL_BILINEAR_SUBDIVISION)
  7551. #define ABL_BG_SPACING(A) bilinear_grid_spacing_virt[A]
  7552. #define ABL_BG_POINTS_X ABL_GRID_POINTS_VIRT_X
  7553. #define ABL_BG_POINTS_Y ABL_GRID_POINTS_VIRT_Y
  7554. #define ABL_BG_GRID(X,Y) bed_level_grid_virt[X][Y]
  7555. #else
  7556. #define ABL_BG_SPACING(A) bilinear_grid_spacing[A]
  7557. #define ABL_BG_POINTS_X ABL_GRID_MAX_POINTS_X
  7558. #define ABL_BG_POINTS_Y ABL_GRID_MAX_POINTS_Y
  7559. #define ABL_BG_GRID(X,Y) bed_level_grid[X][Y]
  7560. #endif
  7561. // Get the Z adjustment for non-linear bed leveling
  7562. float bilinear_z_offset(float cartesian[XYZ]) {
  7563. // XY relative to the probed area
  7564. const float x = RAW_X_POSITION(cartesian[X_AXIS]) - bilinear_start[X_AXIS],
  7565. y = RAW_Y_POSITION(cartesian[Y_AXIS]) - bilinear_start[Y_AXIS];
  7566. // Convert to grid box units
  7567. float ratio_x = x / ABL_BG_SPACING(X_AXIS),
  7568. ratio_y = y / ABL_BG_SPACING(Y_AXIS);
  7569. // Whole units for the grid line indices. Constrained within bounds.
  7570. const int gridx = constrain(floor(ratio_x), 0, ABL_BG_POINTS_X - 1),
  7571. gridy = constrain(floor(ratio_y), 0, ABL_BG_POINTS_Y - 1),
  7572. nextx = min(gridx + 1, ABL_BG_POINTS_X - 1),
  7573. nexty = min(gridy + 1, ABL_BG_POINTS_Y - 1);
  7574. // Subtract whole to get the ratio within the grid box
  7575. ratio_x -= gridx; ratio_y -= gridy;
  7576. // Never less than 0.0. (Over 1.0 is fine due to previous contraints.)
  7577. NOLESS(ratio_x, 0); NOLESS(ratio_y, 0);
  7578. // Z at the box corners
  7579. const float z1 = ABL_BG_GRID(gridx, gridy), // left-front
  7580. z2 = ABL_BG_GRID(gridx, nexty), // left-back
  7581. z3 = ABL_BG_GRID(nextx, gridy), // right-front
  7582. z4 = ABL_BG_GRID(nextx, nexty), // right-back
  7583. // Bilinear interpolate
  7584. L = z1 + (z2 - z1) * ratio_y, // Linear interp. LF -> LB
  7585. R = z3 + (z4 - z3) * ratio_y, // Linear interp. RF -> RB
  7586. offset = L + ratio_x * (R - L);
  7587. /*
  7588. static float last_offset = 0;
  7589. if (fabs(last_offset - offset) > 0.2) {
  7590. SERIAL_ECHOPGM("Sudden Shift at ");
  7591. SERIAL_ECHOPAIR("x=", x);
  7592. SERIAL_ECHOPAIR(" / ", bilinear_grid_spacing[X_AXIS]);
  7593. SERIAL_ECHOLNPAIR(" -> gridx=", gridx);
  7594. SERIAL_ECHOPAIR(" y=", y);
  7595. SERIAL_ECHOPAIR(" / ", bilinear_grid_spacing[Y_AXIS]);
  7596. SERIAL_ECHOLNPAIR(" -> gridy=", gridy);
  7597. SERIAL_ECHOPAIR(" ratio_x=", ratio_x);
  7598. SERIAL_ECHOLNPAIR(" ratio_y=", ratio_y);
  7599. SERIAL_ECHOPAIR(" z1=", z1);
  7600. SERIAL_ECHOPAIR(" z2=", z2);
  7601. SERIAL_ECHOPAIR(" z3=", z3);
  7602. SERIAL_ECHOLNPAIR(" z4=", z4);
  7603. SERIAL_ECHOPAIR(" L=", L);
  7604. SERIAL_ECHOPAIR(" R=", R);
  7605. SERIAL_ECHOLNPAIR(" offset=", offset);
  7606. }
  7607. last_offset = offset;
  7608. //*/
  7609. return offset;
  7610. }
  7611. #endif // AUTO_BED_LEVELING_BILINEAR
  7612. #if ENABLED(DELTA)
  7613. /**
  7614. * Recalculate factors used for delta kinematics whenever
  7615. * settings have been changed (e.g., by M665).
  7616. */
  7617. void recalc_delta_settings(float radius, float diagonal_rod) {
  7618. delta_tower1_x = -SIN_60 * (radius + DELTA_RADIUS_TRIM_TOWER_1); // front left tower
  7619. delta_tower1_y = -COS_60 * (radius + DELTA_RADIUS_TRIM_TOWER_1);
  7620. delta_tower2_x = SIN_60 * (radius + DELTA_RADIUS_TRIM_TOWER_2); // front right tower
  7621. delta_tower2_y = -COS_60 * (radius + DELTA_RADIUS_TRIM_TOWER_2);
  7622. delta_tower3_x = 0.0; // back middle tower
  7623. delta_tower3_y = (radius + DELTA_RADIUS_TRIM_TOWER_3);
  7624. delta_diagonal_rod_2_tower_1 = sq(diagonal_rod + delta_diagonal_rod_trim_tower_1);
  7625. delta_diagonal_rod_2_tower_2 = sq(diagonal_rod + delta_diagonal_rod_trim_tower_2);
  7626. delta_diagonal_rod_2_tower_3 = sq(diagonal_rod + delta_diagonal_rod_trim_tower_3);
  7627. }
  7628. #if ENABLED(DELTA_FAST_SQRT)
  7629. /**
  7630. * Fast inverse sqrt from Quake III Arena
  7631. * See: https://en.wikipedia.org/wiki/Fast_inverse_square_root
  7632. */
  7633. float Q_rsqrt(float number) {
  7634. long i;
  7635. float x2, y;
  7636. const float threehalfs = 1.5f;
  7637. x2 = number * 0.5f;
  7638. y = number;
  7639. i = * ( long * ) &y; // evil floating point bit level hacking
  7640. i = 0x5f3759df - ( i >> 1 ); // what the f***?
  7641. y = * ( float * ) &i;
  7642. y = y * ( threehalfs - ( x2 * y * y ) ); // 1st iteration
  7643. // y = y * ( threehalfs - ( x2 * y * y ) ); // 2nd iteration, this can be removed
  7644. return y;
  7645. }
  7646. #define _SQRT(n) (1.0f / Q_rsqrt(n))
  7647. #else
  7648. #define _SQRT(n) sqrt(n)
  7649. #endif
  7650. /**
  7651. * Delta Inverse Kinematics
  7652. *
  7653. * Calculate the tower positions for a given logical
  7654. * position, storing the result in the delta[] array.
  7655. *
  7656. * This is an expensive calculation, requiring 3 square
  7657. * roots per segmented linear move, and strains the limits
  7658. * of a Mega2560 with a Graphical Display.
  7659. *
  7660. * Suggested optimizations include:
  7661. *
  7662. * - Disable the home_offset (M206) and/or position_shift (G92)
  7663. * features to remove up to 12 float additions.
  7664. *
  7665. * - Use a fast-inverse-sqrt function and add the reciprocal.
  7666. * (see above)
  7667. */
  7668. // Macro to obtain the Z position of an individual tower
  7669. #define DELTA_Z(T) raw[Z_AXIS] + _SQRT( \
  7670. delta_diagonal_rod_2_tower_##T - HYPOT2( \
  7671. delta_tower##T##_x - raw[X_AXIS], \
  7672. delta_tower##T##_y - raw[Y_AXIS] \
  7673. ) \
  7674. )
  7675. #define DELTA_RAW_IK() do { \
  7676. delta[A_AXIS] = DELTA_Z(1); \
  7677. delta[B_AXIS] = DELTA_Z(2); \
  7678. delta[C_AXIS] = DELTA_Z(3); \
  7679. } while(0)
  7680. #define DELTA_LOGICAL_IK() do { \
  7681. const float raw[XYZ] = { \
  7682. RAW_X_POSITION(logical[X_AXIS]), \
  7683. RAW_Y_POSITION(logical[Y_AXIS]), \
  7684. RAW_Z_POSITION(logical[Z_AXIS]) \
  7685. }; \
  7686. DELTA_RAW_IK(); \
  7687. } while(0)
  7688. #define DELTA_DEBUG() do { \
  7689. SERIAL_ECHOPAIR("cartesian X:", raw[X_AXIS]); \
  7690. SERIAL_ECHOPAIR(" Y:", raw[Y_AXIS]); \
  7691. SERIAL_ECHOLNPAIR(" Z:", raw[Z_AXIS]); \
  7692. SERIAL_ECHOPAIR("delta A:", delta[A_AXIS]); \
  7693. SERIAL_ECHOPAIR(" B:", delta[B_AXIS]); \
  7694. SERIAL_ECHOLNPAIR(" C:", delta[C_AXIS]); \
  7695. } while(0)
  7696. void inverse_kinematics(const float logical[XYZ]) {
  7697. DELTA_LOGICAL_IK();
  7698. // DELTA_DEBUG();
  7699. }
  7700. /**
  7701. * Calculate the highest Z position where the
  7702. * effector has the full range of XY motion.
  7703. */
  7704. float delta_safe_distance_from_top() {
  7705. float cartesian[XYZ] = {
  7706. LOGICAL_X_POSITION(0),
  7707. LOGICAL_Y_POSITION(0),
  7708. LOGICAL_Z_POSITION(0)
  7709. };
  7710. inverse_kinematics(cartesian);
  7711. float distance = delta[A_AXIS];
  7712. cartesian[Y_AXIS] = LOGICAL_Y_POSITION(DELTA_PRINTABLE_RADIUS);
  7713. inverse_kinematics(cartesian);
  7714. return abs(distance - delta[A_AXIS]);
  7715. }
  7716. /**
  7717. * Delta Forward Kinematics
  7718. *
  7719. * See the Wikipedia article "Trilateration"
  7720. * https://en.wikipedia.org/wiki/Trilateration
  7721. *
  7722. * Establish a new coordinate system in the plane of the
  7723. * three carriage points. This system has its origin at
  7724. * tower1, with tower2 on the X axis. Tower3 is in the X-Y
  7725. * plane with a Z component of zero.
  7726. * We will define unit vectors in this coordinate system
  7727. * in our original coordinate system. Then when we calculate
  7728. * the Xnew, Ynew and Znew values, we can translate back into
  7729. * the original system by moving along those unit vectors
  7730. * by the corresponding values.
  7731. *
  7732. * Variable names matched to Marlin, c-version, and avoid the
  7733. * use of any vector library.
  7734. *
  7735. * by Andreas Hardtung 2016-06-07
  7736. * based on a Java function from "Delta Robot Kinematics V3"
  7737. * by Steve Graves
  7738. *
  7739. * The result is stored in the cartes[] array.
  7740. */
  7741. void forward_kinematics_DELTA(float z1, float z2, float z3) {
  7742. // Create a vector in old coordinates along x axis of new coordinate
  7743. float p12[3] = { delta_tower2_x - delta_tower1_x, delta_tower2_y - delta_tower1_y, z2 - z1 };
  7744. // Get the Magnitude of vector.
  7745. float d = sqrt( sq(p12[0]) + sq(p12[1]) + sq(p12[2]) );
  7746. // Create unit vector by dividing by magnitude.
  7747. float ex[3] = { p12[0] / d, p12[1] / d, p12[2] / d };
  7748. // Get the vector from the origin of the new system to the third point.
  7749. float p13[3] = { delta_tower3_x - delta_tower1_x, delta_tower3_y - delta_tower1_y, z3 - z1 };
  7750. // Use the dot product to find the component of this vector on the X axis.
  7751. float i = ex[0] * p13[0] + ex[1] * p13[1] + ex[2] * p13[2];
  7752. // Create a vector along the x axis that represents the x component of p13.
  7753. float iex[3] = { ex[0] * i, ex[1] * i, ex[2] * i };
  7754. // Subtract the X component from the original vector leaving only Y. We use the
  7755. // variable that will be the unit vector after we scale it.
  7756. float ey[3] = { p13[0] - iex[0], p13[1] - iex[1], p13[2] - iex[2] };
  7757. // The magnitude of Y component
  7758. float j = sqrt( sq(ey[0]) + sq(ey[1]) + sq(ey[2]) );
  7759. // Convert to a unit vector
  7760. ey[0] /= j; ey[1] /= j; ey[2] /= j;
  7761. // The cross product of the unit x and y is the unit z
  7762. // float[] ez = vectorCrossProd(ex, ey);
  7763. float ez[3] = {
  7764. ex[1] * ey[2] - ex[2] * ey[1],
  7765. ex[2] * ey[0] - ex[0] * ey[2],
  7766. ex[0] * ey[1] - ex[1] * ey[0]
  7767. };
  7768. // We now have the d, i and j values defined in Wikipedia.
  7769. // Plug them into the equations defined in Wikipedia for Xnew, Ynew and Znew
  7770. float Xnew = (delta_diagonal_rod_2_tower_1 - delta_diagonal_rod_2_tower_2 + sq(d)) / (d * 2),
  7771. Ynew = ((delta_diagonal_rod_2_tower_1 - delta_diagonal_rod_2_tower_3 + HYPOT2(i, j)) / 2 - i * Xnew) / j,
  7772. Znew = sqrt(delta_diagonal_rod_2_tower_1 - HYPOT2(Xnew, Ynew));
  7773. // Start from the origin of the old coordinates and add vectors in the
  7774. // old coords that represent the Xnew, Ynew and Znew to find the point
  7775. // in the old system.
  7776. cartes[X_AXIS] = delta_tower1_x + ex[0] * Xnew + ey[0] * Ynew - ez[0] * Znew;
  7777. cartes[Y_AXIS] = delta_tower1_y + ex[1] * Xnew + ey[1] * Ynew - ez[1] * Znew;
  7778. cartes[Z_AXIS] = z1 + ex[2] * Xnew + ey[2] * Ynew - ez[2] * Znew;
  7779. }
  7780. void forward_kinematics_DELTA(float point[ABC]) {
  7781. forward_kinematics_DELTA(point[A_AXIS], point[B_AXIS], point[C_AXIS]);
  7782. }
  7783. #endif // DELTA
  7784. /**
  7785. * Get the stepper positions in the cartes[] array.
  7786. * Forward kinematics are applied for DELTA and SCARA.
  7787. *
  7788. * The result is in the current coordinate space with
  7789. * leveling applied. The coordinates need to be run through
  7790. * unapply_leveling to obtain the "ideal" coordinates
  7791. * suitable for current_position, etc.
  7792. */
  7793. void get_cartesian_from_steppers() {
  7794. #if ENABLED(DELTA)
  7795. forward_kinematics_DELTA(
  7796. stepper.get_axis_position_mm(A_AXIS),
  7797. stepper.get_axis_position_mm(B_AXIS),
  7798. stepper.get_axis_position_mm(C_AXIS)
  7799. );
  7800. cartes[X_AXIS] += LOGICAL_X_POSITION(0);
  7801. cartes[Y_AXIS] += LOGICAL_Y_POSITION(0);
  7802. cartes[Z_AXIS] += LOGICAL_Z_POSITION(0);
  7803. #elif IS_SCARA
  7804. forward_kinematics_SCARA(
  7805. stepper.get_axis_position_degrees(A_AXIS),
  7806. stepper.get_axis_position_degrees(B_AXIS)
  7807. );
  7808. cartes[X_AXIS] += LOGICAL_X_POSITION(0);
  7809. cartes[Y_AXIS] += LOGICAL_Y_POSITION(0);
  7810. cartes[Z_AXIS] = stepper.get_axis_position_mm(Z_AXIS);
  7811. #else
  7812. cartes[X_AXIS] = stepper.get_axis_position_mm(X_AXIS);
  7813. cartes[Y_AXIS] = stepper.get_axis_position_mm(Y_AXIS);
  7814. cartes[Z_AXIS] = stepper.get_axis_position_mm(Z_AXIS);
  7815. #endif
  7816. }
  7817. /**
  7818. * Set the current_position for an axis based on
  7819. * the stepper positions, removing any leveling that
  7820. * may have been applied.
  7821. */
  7822. void set_current_from_steppers_for_axis(const AxisEnum axis) {
  7823. get_cartesian_from_steppers();
  7824. #if PLANNER_LEVELING
  7825. planner.unapply_leveling(cartes);
  7826. #endif
  7827. if (axis == ALL_AXES)
  7828. memcpy(current_position, cartes, sizeof(cartes));
  7829. else
  7830. current_position[axis] = cartes[axis];
  7831. }
  7832. #if ENABLED(MESH_BED_LEVELING)
  7833. /**
  7834. * Prepare a mesh-leveled linear move in a Cartesian setup,
  7835. * splitting the move where it crosses mesh borders.
  7836. */
  7837. void mesh_line_to_destination(float fr_mm_s, uint8_t x_splits = 0xff, uint8_t y_splits = 0xff) {
  7838. int cx1 = mbl.cell_index_x(RAW_CURRENT_POSITION(X_AXIS)),
  7839. cy1 = mbl.cell_index_y(RAW_CURRENT_POSITION(Y_AXIS)),
  7840. cx2 = mbl.cell_index_x(RAW_X_POSITION(destination[X_AXIS])),
  7841. cy2 = mbl.cell_index_y(RAW_Y_POSITION(destination[Y_AXIS]));
  7842. NOMORE(cx1, MESH_NUM_X_POINTS - 2);
  7843. NOMORE(cy1, MESH_NUM_Y_POINTS - 2);
  7844. NOMORE(cx2, MESH_NUM_X_POINTS - 2);
  7845. NOMORE(cy2, MESH_NUM_Y_POINTS - 2);
  7846. if (cx1 == cx2 && cy1 == cy2) {
  7847. // Start and end on same mesh square
  7848. line_to_destination(fr_mm_s);
  7849. set_current_to_destination();
  7850. return;
  7851. }
  7852. #define MBL_SEGMENT_END(A) (current_position[A ##_AXIS] + (destination[A ##_AXIS] - current_position[A ##_AXIS]) * normalized_dist)
  7853. float normalized_dist, end[XYZE];
  7854. // Split at the left/front border of the right/top square
  7855. int8_t gcx = max(cx1, cx2), gcy = max(cy1, cy2);
  7856. if (cx2 != cx1 && TEST(x_splits, gcx)) {
  7857. memcpy(end, destination, sizeof(end));
  7858. destination[X_AXIS] = LOGICAL_X_POSITION(mbl.get_probe_x(gcx));
  7859. normalized_dist = (destination[X_AXIS] - current_position[X_AXIS]) / (end[X_AXIS] - current_position[X_AXIS]);
  7860. destination[Y_AXIS] = MBL_SEGMENT_END(Y);
  7861. CBI(x_splits, gcx);
  7862. }
  7863. else if (cy2 != cy1 && TEST(y_splits, gcy)) {
  7864. memcpy(end, destination, sizeof(end));
  7865. destination[Y_AXIS] = LOGICAL_Y_POSITION(mbl.get_probe_y(gcy));
  7866. normalized_dist = (destination[Y_AXIS] - current_position[Y_AXIS]) / (end[Y_AXIS] - current_position[Y_AXIS]);
  7867. destination[X_AXIS] = MBL_SEGMENT_END(X);
  7868. CBI(y_splits, gcy);
  7869. }
  7870. else {
  7871. // Already split on a border
  7872. line_to_destination(fr_mm_s);
  7873. set_current_to_destination();
  7874. return;
  7875. }
  7876. destination[Z_AXIS] = MBL_SEGMENT_END(Z);
  7877. destination[E_AXIS] = MBL_SEGMENT_END(E);
  7878. // Do the split and look for more borders
  7879. mesh_line_to_destination(fr_mm_s, x_splits, y_splits);
  7880. // Restore destination from stack
  7881. memcpy(destination, end, sizeof(end));
  7882. mesh_line_to_destination(fr_mm_s, x_splits, y_splits);
  7883. }
  7884. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR) && !IS_KINEMATIC
  7885. #define CELL_INDEX(A,V) ((RAW_##A##_POSITION(V) - bilinear_start[A##_AXIS]) / ABL_BG_SPACING(A##_AXIS))
  7886. /**
  7887. * Prepare a bilinear-leveled linear move on Cartesian,
  7888. * splitting the move where it crosses grid borders.
  7889. */
  7890. void bilinear_line_to_destination(float fr_mm_s, uint16_t x_splits = 0xFFFF, uint16_t y_splits = 0xFFFF) {
  7891. int cx1 = CELL_INDEX(X, current_position[X_AXIS]),
  7892. cy1 = CELL_INDEX(Y, current_position[Y_AXIS]),
  7893. cx2 = CELL_INDEX(X, destination[X_AXIS]),
  7894. cy2 = CELL_INDEX(Y, destination[Y_AXIS]);
  7895. cx1 = constrain(cx1, 0, ABL_BG_POINTS_X - 2);
  7896. cy1 = constrain(cy1, 0, ABL_BG_POINTS_Y - 2);
  7897. cx2 = constrain(cx2, 0, ABL_BG_POINTS_X - 2);
  7898. cy2 = constrain(cy2, 0, ABL_BG_POINTS_Y - 2);
  7899. if (cx1 == cx2 && cy1 == cy2) {
  7900. // Start and end on same mesh square
  7901. line_to_destination(fr_mm_s);
  7902. set_current_to_destination();
  7903. return;
  7904. }
  7905. #define LINE_SEGMENT_END(A) (current_position[A ##_AXIS] + (destination[A ##_AXIS] - current_position[A ##_AXIS]) * normalized_dist)
  7906. float normalized_dist, end[XYZE];
  7907. // Split at the left/front border of the right/top square
  7908. int8_t gcx = max(cx1, cx2), gcy = max(cy1, cy2);
  7909. if (cx2 != cx1 && TEST(x_splits, gcx)) {
  7910. memcpy(end, destination, sizeof(end));
  7911. destination[X_AXIS] = LOGICAL_X_POSITION(bilinear_start[X_AXIS] + ABL_BG_SPACING(X_AXIS) * gcx);
  7912. normalized_dist = (destination[X_AXIS] - current_position[X_AXIS]) / (end[X_AXIS] - current_position[X_AXIS]);
  7913. destination[Y_AXIS] = LINE_SEGMENT_END(Y);
  7914. CBI(x_splits, gcx);
  7915. }
  7916. else if (cy2 != cy1 && TEST(y_splits, gcy)) {
  7917. memcpy(end, destination, sizeof(end));
  7918. destination[Y_AXIS] = LOGICAL_Y_POSITION(bilinear_start[Y_AXIS] + ABL_BG_SPACING(Y_AXIS) * gcy);
  7919. normalized_dist = (destination[Y_AXIS] - current_position[Y_AXIS]) / (end[Y_AXIS] - current_position[Y_AXIS]);
  7920. destination[X_AXIS] = LINE_SEGMENT_END(X);
  7921. CBI(y_splits, gcy);
  7922. }
  7923. else {
  7924. // Already split on a border
  7925. line_to_destination(fr_mm_s);
  7926. set_current_to_destination();
  7927. return;
  7928. }
  7929. destination[Z_AXIS] = LINE_SEGMENT_END(Z);
  7930. destination[E_AXIS] = LINE_SEGMENT_END(E);
  7931. // Do the split and look for more borders
  7932. bilinear_line_to_destination(fr_mm_s, x_splits, y_splits);
  7933. // Restore destination from stack
  7934. memcpy(destination, end, sizeof(end));
  7935. bilinear_line_to_destination(fr_mm_s, x_splits, y_splits);
  7936. }
  7937. #endif // AUTO_BED_LEVELING_BILINEAR
  7938. #if IS_KINEMATIC
  7939. /**
  7940. * Prepare a linear move in a DELTA or SCARA setup.
  7941. *
  7942. * This calls planner.buffer_line several times, adding
  7943. * small incremental moves for DELTA or SCARA.
  7944. */
  7945. inline bool prepare_kinematic_move_to(float ltarget[NUM_AXIS]) {
  7946. // Get the top feedrate of the move in the XY plane
  7947. float _feedrate_mm_s = MMS_SCALED(feedrate_mm_s);
  7948. // If the move is only in Z/E don't split up the move
  7949. if (ltarget[X_AXIS] == current_position[X_AXIS] && ltarget[Y_AXIS] == current_position[Y_AXIS]) {
  7950. planner.buffer_line_kinematic(ltarget, _feedrate_mm_s, active_extruder);
  7951. return true;
  7952. }
  7953. // Get the cartesian distances moved in XYZE
  7954. float difference[NUM_AXIS];
  7955. LOOP_XYZE(i) difference[i] = ltarget[i] - current_position[i];
  7956. // Get the linear distance in XYZ
  7957. float cartesian_mm = sqrt(sq(difference[X_AXIS]) + sq(difference[Y_AXIS]) + sq(difference[Z_AXIS]));
  7958. // If the move is very short, check the E move distance
  7959. if (UNEAR_ZERO(cartesian_mm)) cartesian_mm = abs(difference[E_AXIS]);
  7960. // No E move either? Game over.
  7961. if (UNEAR_ZERO(cartesian_mm)) return false;
  7962. // Minimum number of seconds to move the given distance
  7963. float seconds = cartesian_mm / _feedrate_mm_s;
  7964. // The number of segments-per-second times the duration
  7965. // gives the number of segments
  7966. uint16_t segments = delta_segments_per_second * seconds;
  7967. // For SCARA minimum segment size is 0.5mm
  7968. #if IS_SCARA
  7969. NOMORE(segments, cartesian_mm * 2);
  7970. #endif
  7971. // At least one segment is required
  7972. NOLESS(segments, 1);
  7973. // The approximate length of each segment
  7974. float segment_distance[XYZE] = {
  7975. difference[X_AXIS] / segments,
  7976. difference[Y_AXIS] / segments,
  7977. difference[Z_AXIS] / segments,
  7978. difference[E_AXIS] / segments
  7979. };
  7980. // SERIAL_ECHOPAIR("mm=", cartesian_mm);
  7981. // SERIAL_ECHOPAIR(" seconds=", seconds);
  7982. // SERIAL_ECHOLNPAIR(" segments=", segments);
  7983. // Drop one segment so the last move is to the exact target.
  7984. // If there's only 1 segment, loops will be skipped entirely.
  7985. --segments;
  7986. // Using "raw" coordinates saves 6 float subtractions
  7987. // per segment, saving valuable CPU cycles
  7988. #if ENABLED(USE_RAW_KINEMATICS)
  7989. // Get the raw current position as starting point
  7990. float raw[XYZE] = {
  7991. RAW_CURRENT_POSITION(X_AXIS),
  7992. RAW_CURRENT_POSITION(Y_AXIS),
  7993. RAW_CURRENT_POSITION(Z_AXIS),
  7994. current_position[E_AXIS]
  7995. };
  7996. #define DELTA_VAR raw
  7997. // Delta can inline its kinematics
  7998. #if ENABLED(DELTA)
  7999. #define DELTA_IK() DELTA_RAW_IK()
  8000. #else
  8001. #define DELTA_IK() inverse_kinematics(raw)
  8002. #endif
  8003. #else
  8004. // Get the logical current position as starting point
  8005. float logical[XYZE];
  8006. memcpy(logical, current_position, sizeof(logical));
  8007. #define DELTA_VAR logical
  8008. // Delta can inline its kinematics
  8009. #if ENABLED(DELTA)
  8010. #define DELTA_IK() DELTA_LOGICAL_IK()
  8011. #else
  8012. #define DELTA_IK() inverse_kinematics(logical)
  8013. #endif
  8014. #endif
  8015. #if ENABLED(USE_DELTA_IK_INTERPOLATION)
  8016. // Only interpolate XYZ. Advance E normally.
  8017. #define DELTA_NEXT(ADDEND) LOOP_XYZ(i) DELTA_VAR[i] += ADDEND;
  8018. // Get the starting delta if interpolation is possible
  8019. if (segments >= 2) {
  8020. DELTA_IK();
  8021. ADJUST_DELTA(DELTA_VAR); // Adjust Z if bed leveling is enabled
  8022. }
  8023. // Loop using decrement
  8024. for (uint16_t s = segments + 1; --s;) {
  8025. // Are there at least 2 moves left?
  8026. if (s >= 2) {
  8027. // Save the previous delta for interpolation
  8028. float prev_delta[ABC] = { delta[A_AXIS], delta[B_AXIS], delta[C_AXIS] };
  8029. // Get the delta 2 segments ahead (rather than the next)
  8030. DELTA_NEXT(segment_distance[i] + segment_distance[i]);
  8031. // Advance E normally
  8032. DELTA_VAR[E_AXIS] += segment_distance[E_AXIS];
  8033. // Get the exact delta for the move after this
  8034. DELTA_IK();
  8035. ADJUST_DELTA(DELTA_VAR); // Adjust Z if bed leveling is enabled
  8036. // Move to the interpolated delta position first
  8037. planner.buffer_line(
  8038. (prev_delta[A_AXIS] + delta[A_AXIS]) * 0.5,
  8039. (prev_delta[B_AXIS] + delta[B_AXIS]) * 0.5,
  8040. (prev_delta[C_AXIS] + delta[C_AXIS]) * 0.5,
  8041. DELTA_VAR[E_AXIS], _feedrate_mm_s, active_extruder
  8042. );
  8043. // Advance E once more for the next move
  8044. DELTA_VAR[E_AXIS] += segment_distance[E_AXIS];
  8045. // Do an extra decrement of the loop
  8046. --s;
  8047. }
  8048. else {
  8049. // Get the last segment delta. (Used when segments is odd)
  8050. DELTA_NEXT(segment_distance[i]);
  8051. DELTA_VAR[E_AXIS] += segment_distance[E_AXIS];
  8052. DELTA_IK();
  8053. ADJUST_DELTA(DELTA_VAR); // Adjust Z if bed leveling is enabled
  8054. }
  8055. // Move to the non-interpolated position
  8056. planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], DELTA_VAR[E_AXIS], _feedrate_mm_s, active_extruder);
  8057. }
  8058. #else
  8059. #define DELTA_NEXT(ADDEND) LOOP_XYZE(i) DELTA_VAR[i] += ADDEND;
  8060. // For non-interpolated delta calculate every segment
  8061. for (uint16_t s = segments + 1; --s;) {
  8062. DELTA_NEXT(segment_distance[i]);
  8063. DELTA_IK();
  8064. ADJUST_DELTA(DELTA_VAR); // Adjust Z if bed leveling is enabled
  8065. planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], DELTA_VAR[E_AXIS], _feedrate_mm_s, active_extruder);
  8066. }
  8067. #endif
  8068. // Since segment_distance is only approximate,
  8069. // the final move must be to the exact destination.
  8070. planner.buffer_line_kinematic(ltarget, _feedrate_mm_s, active_extruder);
  8071. return true;
  8072. }
  8073. #else // !IS_KINEMATIC
  8074. /**
  8075. * Prepare a linear move in a Cartesian setup.
  8076. * If Mesh Bed Leveling is enabled, perform a mesh move.
  8077. */
  8078. inline bool prepare_move_to_destination_cartesian() {
  8079. // Do not use feedrate_percentage for E or Z only moves
  8080. if (current_position[X_AXIS] == destination[X_AXIS] && current_position[Y_AXIS] == destination[Y_AXIS]) {
  8081. line_to_destination();
  8082. }
  8083. else {
  8084. #if ENABLED(MESH_BED_LEVELING)
  8085. if (mbl.active()) {
  8086. mesh_line_to_destination(MMS_SCALED(feedrate_mm_s));
  8087. return false;
  8088. }
  8089. else
  8090. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  8091. if (planner.abl_enabled) {
  8092. bilinear_line_to_destination(MMS_SCALED(feedrate_mm_s));
  8093. return false;
  8094. }
  8095. else
  8096. #endif
  8097. line_to_destination(MMS_SCALED(feedrate_mm_s));
  8098. }
  8099. return true;
  8100. }
  8101. #endif // !IS_KINEMATIC
  8102. #if ENABLED(DUAL_X_CARRIAGE)
  8103. /**
  8104. * Prepare a linear move in a dual X axis setup
  8105. */
  8106. inline bool prepare_move_to_destination_dualx() {
  8107. if (active_extruder_parked) {
  8108. switch (dual_x_carriage_mode) {
  8109. case DXC_FULL_CONTROL_MODE:
  8110. break;
  8111. case DXC_AUTO_PARK_MODE:
  8112. if (current_position[E_AXIS] == destination[E_AXIS]) {
  8113. // This is a travel move (with no extrusion)
  8114. // Skip it, but keep track of the current position
  8115. // (so it can be used as the start of the next non-travel move)
  8116. if (delayed_move_time != 0xFFFFFFFFUL) {
  8117. set_current_to_destination();
  8118. NOLESS(raised_parked_position[Z_AXIS], destination[Z_AXIS]);
  8119. delayed_move_time = millis();
  8120. return false;
  8121. }
  8122. }
  8123. // unpark extruder: 1) raise, 2) move into starting XY position, 3) lower
  8124. for (uint8_t i = 0; i < 3; i++)
  8125. planner.buffer_line(
  8126. i == 0 ? raised_parked_position[X_AXIS] : current_position[X_AXIS],
  8127. i == 0 ? raised_parked_position[Y_AXIS] : current_position[Y_AXIS],
  8128. i == 2 ? current_position[Z_AXIS] : raised_parked_position[Z_AXIS],
  8129. current_position[E_AXIS],
  8130. i == 1 ? PLANNER_XY_FEEDRATE() : planner.max_feedrate_mm_s[Z_AXIS],
  8131. active_extruder
  8132. );
  8133. delayed_move_time = 0;
  8134. active_extruder_parked = false;
  8135. break;
  8136. case DXC_DUPLICATION_MODE:
  8137. if (active_extruder == 0) {
  8138. // move duplicate extruder into correct duplication position.
  8139. planner.set_position_mm(
  8140. LOGICAL_X_POSITION(inactive_extruder_x_pos),
  8141. current_position[Y_AXIS],
  8142. current_position[Z_AXIS],
  8143. current_position[E_AXIS]
  8144. );
  8145. planner.buffer_line(
  8146. current_position[X_AXIS] + duplicate_extruder_x_offset,
  8147. current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS],
  8148. planner.max_feedrate_mm_s[X_AXIS], 1
  8149. );
  8150. SYNC_PLAN_POSITION_KINEMATIC();
  8151. stepper.synchronize();
  8152. extruder_duplication_enabled = true;
  8153. active_extruder_parked = false;
  8154. }
  8155. break;
  8156. }
  8157. }
  8158. return true;
  8159. }
  8160. #endif // DUAL_X_CARRIAGE
  8161. /**
  8162. * Prepare a single move and get ready for the next one
  8163. *
  8164. * This may result in several calls to planner.buffer_line to
  8165. * do smaller moves for DELTA, SCARA, mesh moves, etc.
  8166. */
  8167. void prepare_move_to_destination() {
  8168. clamp_to_software_endstops(destination);
  8169. refresh_cmd_timeout();
  8170. #if ENABLED(PREVENT_COLD_EXTRUSION)
  8171. if (!DEBUGGING(DRYRUN)) {
  8172. if (destination[E_AXIS] != current_position[E_AXIS]) {
  8173. if (thermalManager.tooColdToExtrude(active_extruder)) {
  8174. current_position[E_AXIS] = destination[E_AXIS]; // Behave as if the move really took place, but ignore E part
  8175. SERIAL_ECHO_START;
  8176. SERIAL_ECHOLNPGM(MSG_ERR_COLD_EXTRUDE_STOP);
  8177. }
  8178. #if ENABLED(PREVENT_LENGTHY_EXTRUDE)
  8179. if (labs(destination[E_AXIS] - current_position[E_AXIS]) > EXTRUDE_MAXLENGTH) {
  8180. current_position[E_AXIS] = destination[E_AXIS]; // Behave as if the move really took place, but ignore E part
  8181. SERIAL_ECHO_START;
  8182. SERIAL_ECHOLNPGM(MSG_ERR_LONG_EXTRUDE_STOP);
  8183. }
  8184. #endif
  8185. }
  8186. }
  8187. #endif
  8188. #if IS_KINEMATIC
  8189. if (!prepare_kinematic_move_to(destination)) return;
  8190. #else
  8191. #if ENABLED(DUAL_X_CARRIAGE)
  8192. if (!prepare_move_to_destination_dualx()) return;
  8193. #endif
  8194. if (!prepare_move_to_destination_cartesian()) return;
  8195. #endif
  8196. set_current_to_destination();
  8197. }
  8198. #if ENABLED(ARC_SUPPORT)
  8199. /**
  8200. * Plan an arc in 2 dimensions
  8201. *
  8202. * The arc is approximated by generating many small linear segments.
  8203. * The length of each segment is configured in MM_PER_ARC_SEGMENT (Default 1mm)
  8204. * Arcs should only be made relatively large (over 5mm), as larger arcs with
  8205. * larger segments will tend to be more efficient. Your slicer should have
  8206. * options for G2/G3 arc generation. In future these options may be GCode tunable.
  8207. */
  8208. void plan_arc(
  8209. float logical[NUM_AXIS], // Destination position
  8210. float* offset, // Center of rotation relative to current_position
  8211. uint8_t clockwise // Clockwise?
  8212. ) {
  8213. float radius = HYPOT(offset[X_AXIS], offset[Y_AXIS]),
  8214. center_X = current_position[X_AXIS] + offset[X_AXIS],
  8215. center_Y = current_position[Y_AXIS] + offset[Y_AXIS],
  8216. linear_travel = logical[Z_AXIS] - current_position[Z_AXIS],
  8217. extruder_travel = logical[E_AXIS] - current_position[E_AXIS],
  8218. r_X = -offset[X_AXIS], // Radius vector from center to current location
  8219. r_Y = -offset[Y_AXIS],
  8220. rt_X = logical[X_AXIS] - center_X,
  8221. rt_Y = logical[Y_AXIS] - center_Y;
  8222. // CCW angle of rotation between position and target from the circle center. Only one atan2() trig computation required.
  8223. float angular_travel = atan2(r_X * rt_Y - r_Y * rt_X, r_X * rt_X + r_Y * rt_Y);
  8224. if (angular_travel < 0) angular_travel += RADIANS(360);
  8225. if (clockwise) angular_travel -= RADIANS(360);
  8226. // Make a circle if the angular rotation is 0
  8227. if (angular_travel == 0 && current_position[X_AXIS] == logical[X_AXIS] && current_position[Y_AXIS] == logical[Y_AXIS])
  8228. angular_travel += RADIANS(360);
  8229. float mm_of_travel = HYPOT(angular_travel * radius, fabs(linear_travel));
  8230. if (mm_of_travel < 0.001) return;
  8231. uint16_t segments = floor(mm_of_travel / (MM_PER_ARC_SEGMENT));
  8232. if (segments == 0) segments = 1;
  8233. /**
  8234. * Vector rotation by transformation matrix: r is the original vector, r_T is the rotated vector,
  8235. * and phi is the angle of rotation. Based on the solution approach by Jens Geisler.
  8236. * r_T = [cos(phi) -sin(phi);
  8237. * sin(phi) cos(phi)] * r ;
  8238. *
  8239. * For arc generation, the center of the circle is the axis of rotation and the radius vector is
  8240. * defined from the circle center to the initial position. Each line segment is formed by successive
  8241. * vector rotations. This requires only two cos() and sin() computations to form the rotation
  8242. * matrix for the duration of the entire arc. Error may accumulate from numerical round-off, since
  8243. * all double numbers are single precision on the Arduino. (True double precision will not have
  8244. * round off issues for CNC applications.) Single precision error can accumulate to be greater than
  8245. * tool precision in some cases. Therefore, arc path correction is implemented.
  8246. *
  8247. * Small angle approximation may be used to reduce computation overhead further. This approximation
  8248. * holds for everything, but very small circles and large MM_PER_ARC_SEGMENT values. In other words,
  8249. * theta_per_segment would need to be greater than 0.1 rad and N_ARC_CORRECTION would need to be large
  8250. * to cause an appreciable drift error. N_ARC_CORRECTION~=25 is more than small enough to correct for
  8251. * numerical drift error. N_ARC_CORRECTION may be on the order a hundred(s) before error becomes an
  8252. * issue for CNC machines with the single precision Arduino calculations.
  8253. *
  8254. * This approximation also allows plan_arc to immediately insert a line segment into the planner
  8255. * without the initial overhead of computing cos() or sin(). By the time the arc needs to be applied
  8256. * a correction, the planner should have caught up to the lag caused by the initial plan_arc overhead.
  8257. * This is important when there are successive arc motions.
  8258. */
  8259. // Vector rotation matrix values
  8260. float arc_target[XYZE],
  8261. theta_per_segment = angular_travel / segments,
  8262. linear_per_segment = linear_travel / segments,
  8263. extruder_per_segment = extruder_travel / segments,
  8264. sin_T = theta_per_segment,
  8265. cos_T = 1 - 0.5 * sq(theta_per_segment); // Small angle approximation
  8266. // Initialize the linear axis
  8267. arc_target[Z_AXIS] = current_position[Z_AXIS];
  8268. // Initialize the extruder axis
  8269. arc_target[E_AXIS] = current_position[E_AXIS];
  8270. float fr_mm_s = MMS_SCALED(feedrate_mm_s);
  8271. millis_t next_idle_ms = millis() + 200UL;
  8272. int8_t count = 0;
  8273. for (uint16_t i = 1; i < segments; i++) { // Iterate (segments-1) times
  8274. thermalManager.manage_heater();
  8275. if (ELAPSED(millis(), next_idle_ms)) {
  8276. next_idle_ms = millis() + 200UL;
  8277. idle();
  8278. }
  8279. if (++count < N_ARC_CORRECTION) {
  8280. // Apply vector rotation matrix to previous r_X / 1
  8281. float r_new_Y = r_X * sin_T + r_Y * cos_T;
  8282. r_X = r_X * cos_T - r_Y * sin_T;
  8283. r_Y = r_new_Y;
  8284. }
  8285. else {
  8286. // Arc correction to radius vector. Computed only every N_ARC_CORRECTION increments.
  8287. // Compute exact location by applying transformation matrix from initial radius vector(=-offset).
  8288. // To reduce stuttering, the sin and cos could be computed at different times.
  8289. // For now, compute both at the same time.
  8290. float cos_Ti = cos(i * theta_per_segment),
  8291. sin_Ti = sin(i * theta_per_segment);
  8292. r_X = -offset[X_AXIS] * cos_Ti + offset[Y_AXIS] * sin_Ti;
  8293. r_Y = -offset[X_AXIS] * sin_Ti - offset[Y_AXIS] * cos_Ti;
  8294. count = 0;
  8295. }
  8296. // Update arc_target location
  8297. arc_target[X_AXIS] = center_X + r_X;
  8298. arc_target[Y_AXIS] = center_Y + r_Y;
  8299. arc_target[Z_AXIS] += linear_per_segment;
  8300. arc_target[E_AXIS] += extruder_per_segment;
  8301. clamp_to_software_endstops(arc_target);
  8302. planner.buffer_line_kinematic(arc_target, fr_mm_s, active_extruder);
  8303. }
  8304. // Ensure last segment arrives at target location.
  8305. planner.buffer_line_kinematic(logical, fr_mm_s, active_extruder);
  8306. // As far as the parser is concerned, the position is now == target. In reality the
  8307. // motion control system might still be processing the action and the real tool position
  8308. // in any intermediate location.
  8309. set_current_to_destination();
  8310. }
  8311. #endif
  8312. #if ENABLED(BEZIER_CURVE_SUPPORT)
  8313. void plan_cubic_move(const float offset[4]) {
  8314. cubic_b_spline(current_position, destination, offset, MMS_SCALED(feedrate_mm_s), active_extruder);
  8315. // As far as the parser is concerned, the position is now == destination. In reality the
  8316. // motion control system might still be processing the action and the real tool position
  8317. // in any intermediate location.
  8318. set_current_to_destination();
  8319. }
  8320. #endif // BEZIER_CURVE_SUPPORT
  8321. #if HAS_CONTROLLERFAN
  8322. void controllerFan() {
  8323. static millis_t lastMotorOn = 0; // Last time a motor was turned on
  8324. static millis_t nextMotorCheck = 0; // Last time the state was checked
  8325. millis_t ms = millis();
  8326. if (ELAPSED(ms, nextMotorCheck)) {
  8327. nextMotorCheck = ms + 2500UL; // Not a time critical function, so only check every 2.5s
  8328. if (X_ENABLE_READ == X_ENABLE_ON || Y_ENABLE_READ == Y_ENABLE_ON || Z_ENABLE_READ == Z_ENABLE_ON || thermalManager.soft_pwm_bed > 0
  8329. || E0_ENABLE_READ == E_ENABLE_ON // If any of the drivers are enabled...
  8330. #if E_STEPPERS > 1
  8331. || E1_ENABLE_READ == E_ENABLE_ON
  8332. #if HAS_X2_ENABLE
  8333. || X2_ENABLE_READ == X_ENABLE_ON
  8334. #endif
  8335. #if E_STEPPERS > 2
  8336. || E2_ENABLE_READ == E_ENABLE_ON
  8337. #if E_STEPPERS > 3
  8338. || E3_ENABLE_READ == E_ENABLE_ON
  8339. #endif
  8340. #endif
  8341. #endif
  8342. ) {
  8343. lastMotorOn = ms; //... set time to NOW so the fan will turn on
  8344. }
  8345. // Fan off if no steppers have been enabled for CONTROLLERFAN_SECS seconds
  8346. uint8_t speed = (!lastMotorOn || ELAPSED(ms, lastMotorOn + (CONTROLLERFAN_SECS) * 1000UL)) ? 0 : CONTROLLERFAN_SPEED;
  8347. // allows digital or PWM fan output to be used (see M42 handling)
  8348. digitalWrite(CONTROLLERFAN_PIN, speed);
  8349. analogWrite(CONTROLLERFAN_PIN, speed);
  8350. }
  8351. }
  8352. #endif // HAS_CONTROLLERFAN
  8353. #if ENABLED(MORGAN_SCARA)
  8354. /**
  8355. * Morgan SCARA Forward Kinematics. Results in cartes[].
  8356. * Maths and first version by QHARLEY.
  8357. * Integrated into Marlin and slightly restructured by Joachim Cerny.
  8358. */
  8359. void forward_kinematics_SCARA(const float &a, const float &b) {
  8360. float a_sin = sin(RADIANS(a)) * L1,
  8361. a_cos = cos(RADIANS(a)) * L1,
  8362. b_sin = sin(RADIANS(b)) * L2,
  8363. b_cos = cos(RADIANS(b)) * L2;
  8364. cartes[X_AXIS] = a_cos + b_cos + SCARA_OFFSET_X; //theta
  8365. cartes[Y_AXIS] = a_sin + b_sin + SCARA_OFFSET_Y; //theta+phi
  8366. /*
  8367. SERIAL_ECHOPAIR("SCARA FK Angle a=", a);
  8368. SERIAL_ECHOPAIR(" b=", b);
  8369. SERIAL_ECHOPAIR(" a_sin=", a_sin);
  8370. SERIAL_ECHOPAIR(" a_cos=", a_cos);
  8371. SERIAL_ECHOPAIR(" b_sin=", b_sin);
  8372. SERIAL_ECHOLNPAIR(" b_cos=", b_cos);
  8373. SERIAL_ECHOPAIR(" cartes[X_AXIS]=", cartes[X_AXIS]);
  8374. SERIAL_ECHOLNPAIR(" cartes[Y_AXIS]=", cartes[Y_AXIS]);
  8375. //*/
  8376. }
  8377. /**
  8378. * Morgan SCARA Inverse Kinematics. Results in delta[].
  8379. *
  8380. * See http://forums.reprap.org/read.php?185,283327
  8381. *
  8382. * Maths and first version by QHARLEY.
  8383. * Integrated into Marlin and slightly restructured by Joachim Cerny.
  8384. */
  8385. void inverse_kinematics(const float logical[XYZ]) {
  8386. static float C2, S2, SK1, SK2, THETA, PSI;
  8387. float sx = RAW_X_POSITION(logical[X_AXIS]) - SCARA_OFFSET_X, // Translate SCARA to standard X Y
  8388. sy = RAW_Y_POSITION(logical[Y_AXIS]) - SCARA_OFFSET_Y; // With scaling factor.
  8389. if (L1 == L2)
  8390. C2 = HYPOT2(sx, sy) / L1_2_2 - 1;
  8391. else
  8392. C2 = (HYPOT2(sx, sy) - (L1_2 + L2_2)) / (2.0 * L1 * L2);
  8393. S2 = sqrt(sq(C2) - 1);
  8394. // Unrotated Arm1 plus rotated Arm2 gives the distance from Center to End
  8395. SK1 = L1 + L2 * C2;
  8396. // Rotated Arm2 gives the distance from Arm1 to Arm2
  8397. SK2 = L2 * S2;
  8398. // Angle of Arm1 is the difference between Center-to-End angle and the Center-to-Elbow
  8399. THETA = atan2(SK1, SK2) - atan2(sx, sy);
  8400. // Angle of Arm2
  8401. PSI = atan2(S2, C2);
  8402. delta[A_AXIS] = DEGREES(THETA); // theta is support arm angle
  8403. delta[B_AXIS] = DEGREES(THETA + PSI); // equal to sub arm angle (inverted motor)
  8404. delta[C_AXIS] = logical[Z_AXIS];
  8405. /*
  8406. DEBUG_POS("SCARA IK", logical);
  8407. DEBUG_POS("SCARA IK", delta);
  8408. SERIAL_ECHOPAIR(" SCARA (x,y) ", sx);
  8409. SERIAL_ECHOPAIR(",", sy);
  8410. SERIAL_ECHOPAIR(" C2=", C2);
  8411. SERIAL_ECHOPAIR(" S2=", S2);
  8412. SERIAL_ECHOPAIR(" Theta=", THETA);
  8413. SERIAL_ECHOLNPAIR(" Phi=", PHI);
  8414. //*/
  8415. }
  8416. #endif // MORGAN_SCARA
  8417. #if ENABLED(TEMP_STAT_LEDS)
  8418. static bool red_led = false;
  8419. static millis_t next_status_led_update_ms = 0;
  8420. void handle_status_leds(void) {
  8421. if (ELAPSED(millis(), next_status_led_update_ms)) {
  8422. next_status_led_update_ms += 500; // Update every 0.5s
  8423. float max_temp = 0.0;
  8424. #if HAS_TEMP_BED
  8425. max_temp = MAX3(max_temp, thermalManager.degTargetBed(), thermalManager.degBed());
  8426. #endif
  8427. HOTEND_LOOP() {
  8428. max_temp = MAX3(max_temp, thermalManager.degHotend(e), thermalManager.degTargetHotend(e));
  8429. }
  8430. bool new_led = (max_temp > 55.0) ? true : (max_temp < 54.0) ? false : red_led;
  8431. if (new_led != red_led) {
  8432. red_led = new_led;
  8433. #if PIN_EXISTS(STAT_LED_RED)
  8434. WRITE(STAT_LED_RED_PIN, new_led ? HIGH : LOW);
  8435. #if PIN_EXISTS(STAT_LED_BLUE)
  8436. WRITE(STAT_LED_BLUE_PIN, new_led ? LOW : HIGH);
  8437. #endif
  8438. #else
  8439. WRITE(STAT_LED_BLUE_PIN, new_led ? HIGH : LOW);
  8440. #endif
  8441. }
  8442. }
  8443. }
  8444. #endif
  8445. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  8446. void handle_filament_runout() {
  8447. if (!filament_ran_out) {
  8448. filament_ran_out = true;
  8449. enqueue_and_echo_commands_P(PSTR(FILAMENT_RUNOUT_SCRIPT));
  8450. stepper.synchronize();
  8451. }
  8452. }
  8453. #endif // FILAMENT_RUNOUT_SENSOR
  8454. #if ENABLED(FAST_PWM_FAN)
  8455. void setPwmFrequency(uint8_t pin, int val) {
  8456. val &= 0x07;
  8457. switch (digitalPinToTimer(pin)) {
  8458. #if defined(TCCR0A)
  8459. case TIMER0A:
  8460. case TIMER0B:
  8461. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  8462. // TCCR0B |= val;
  8463. break;
  8464. #endif
  8465. #if defined(TCCR1A)
  8466. case TIMER1A:
  8467. case TIMER1B:
  8468. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  8469. // TCCR1B |= val;
  8470. break;
  8471. #endif
  8472. #if defined(TCCR2)
  8473. case TIMER2:
  8474. case TIMER2:
  8475. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  8476. TCCR2 |= val;
  8477. break;
  8478. #endif
  8479. #if defined(TCCR2A)
  8480. case TIMER2A:
  8481. case TIMER2B:
  8482. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  8483. TCCR2B |= val;
  8484. break;
  8485. #endif
  8486. #if defined(TCCR3A)
  8487. case TIMER3A:
  8488. case TIMER3B:
  8489. case TIMER3C:
  8490. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  8491. TCCR3B |= val;
  8492. break;
  8493. #endif
  8494. #if defined(TCCR4A)
  8495. case TIMER4A:
  8496. case TIMER4B:
  8497. case TIMER4C:
  8498. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  8499. TCCR4B |= val;
  8500. break;
  8501. #endif
  8502. #if defined(TCCR5A)
  8503. case TIMER5A:
  8504. case TIMER5B:
  8505. case TIMER5C:
  8506. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  8507. TCCR5B |= val;
  8508. break;
  8509. #endif
  8510. }
  8511. }
  8512. #endif // FAST_PWM_FAN
  8513. float calculate_volumetric_multiplier(float diameter) {
  8514. if (!volumetric_enabled || diameter == 0) return 1.0;
  8515. return 1.0 / (M_PI * diameter * 0.5 * diameter * 0.5);
  8516. }
  8517. void calculate_volumetric_multipliers() {
  8518. for (uint8_t i = 0; i < COUNT(filament_size); i++)
  8519. volumetric_multiplier[i] = calculate_volumetric_multiplier(filament_size[i]);
  8520. }
  8521. void enable_all_steppers() {
  8522. enable_x();
  8523. enable_y();
  8524. enable_z();
  8525. enable_e0();
  8526. enable_e1();
  8527. enable_e2();
  8528. enable_e3();
  8529. }
  8530. void disable_all_steppers() {
  8531. disable_x();
  8532. disable_y();
  8533. disable_z();
  8534. disable_e0();
  8535. disable_e1();
  8536. disable_e2();
  8537. disable_e3();
  8538. }
  8539. /**
  8540. * Manage several activities:
  8541. * - Check for Filament Runout
  8542. * - Keep the command buffer full
  8543. * - Check for maximum inactive time between commands
  8544. * - Check for maximum inactive time between stepper commands
  8545. * - Check if pin CHDK needs to go LOW
  8546. * - Check for KILL button held down
  8547. * - Check for HOME button held down
  8548. * - Check if cooling fan needs to be switched on
  8549. * - Check if an idle but hot extruder needs filament extruded (EXTRUDER_RUNOUT_PREVENT)
  8550. */
  8551. void manage_inactivity(bool ignore_stepper_queue/*=false*/) {
  8552. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  8553. if ((IS_SD_PRINTING || print_job_timer.isRunning()) && (READ(FIL_RUNOUT_PIN) == FIL_RUNOUT_INVERTING))
  8554. handle_filament_runout();
  8555. #endif
  8556. if (commands_in_queue < BUFSIZE) get_available_commands();
  8557. millis_t ms = millis();
  8558. if (max_inactive_time && ELAPSED(ms, previous_cmd_ms + max_inactive_time)) kill(PSTR(MSG_KILLED));
  8559. // Prevent steppers timing-out in the middle of M600
  8560. #if ENABLED(FILAMENT_CHANGE_FEATURE) && ENABLED(FILAMENT_CHANGE_NO_STEPPER_TIMEOUT)
  8561. #define M600_TEST !busy_doing_M600
  8562. #else
  8563. #define M600_TEST true
  8564. #endif
  8565. if (M600_TEST && stepper_inactive_time && ELAPSED(ms, previous_cmd_ms + stepper_inactive_time)
  8566. && !ignore_stepper_queue && !planner.blocks_queued()) {
  8567. #if ENABLED(DISABLE_INACTIVE_X)
  8568. disable_x();
  8569. #endif
  8570. #if ENABLED(DISABLE_INACTIVE_Y)
  8571. disable_y();
  8572. #endif
  8573. #if ENABLED(DISABLE_INACTIVE_Z)
  8574. disable_z();
  8575. #endif
  8576. #if ENABLED(DISABLE_INACTIVE_E)
  8577. disable_e0();
  8578. disable_e1();
  8579. disable_e2();
  8580. disable_e3();
  8581. #endif
  8582. }
  8583. #ifdef CHDK // Check if pin should be set to LOW after M240 set it to HIGH
  8584. if (chdkActive && PENDING(ms, chdkHigh + CHDK_DELAY)) {
  8585. chdkActive = false;
  8586. WRITE(CHDK, LOW);
  8587. }
  8588. #endif
  8589. #if HAS_KILL
  8590. // Check if the kill button was pressed and wait just in case it was an accidental
  8591. // key kill key press
  8592. // -------------------------------------------------------------------------------
  8593. static int killCount = 0; // make the inactivity button a bit less responsive
  8594. const int KILL_DELAY = 750;
  8595. if (!READ(KILL_PIN))
  8596. killCount++;
  8597. else if (killCount > 0)
  8598. killCount--;
  8599. // Exceeded threshold and we can confirm that it was not accidental
  8600. // KILL the machine
  8601. // ----------------------------------------------------------------
  8602. if (killCount >= KILL_DELAY) kill(PSTR(MSG_KILLED));
  8603. #endif
  8604. #if HAS_HOME
  8605. // Check to see if we have to home, use poor man's debouncer
  8606. // ---------------------------------------------------------
  8607. static int homeDebounceCount = 0; // poor man's debouncing count
  8608. const int HOME_DEBOUNCE_DELAY = 2500;
  8609. if (!IS_SD_PRINTING && !READ(HOME_PIN)) {
  8610. if (!homeDebounceCount) {
  8611. enqueue_and_echo_commands_P(PSTR("G28"));
  8612. LCD_MESSAGEPGM(MSG_AUTO_HOME);
  8613. }
  8614. if (homeDebounceCount < HOME_DEBOUNCE_DELAY)
  8615. homeDebounceCount++;
  8616. else
  8617. homeDebounceCount = 0;
  8618. }
  8619. #endif
  8620. #if HAS_CONTROLLERFAN
  8621. controllerFan(); // Check if fan should be turned on to cool stepper drivers down
  8622. #endif
  8623. #if ENABLED(EXTRUDER_RUNOUT_PREVENT)
  8624. if (ELAPSED(ms, previous_cmd_ms + (EXTRUDER_RUNOUT_SECONDS) * 1000UL)
  8625. && thermalManager.degHotend(active_extruder) > EXTRUDER_RUNOUT_MINTEMP) {
  8626. bool oldstatus;
  8627. #if ENABLED(SWITCHING_EXTRUDER)
  8628. oldstatus = E0_ENABLE_READ;
  8629. enable_e0();
  8630. #else // !SWITCHING_EXTRUDER
  8631. switch (active_extruder) {
  8632. case 0:
  8633. oldstatus = E0_ENABLE_READ;
  8634. enable_e0();
  8635. break;
  8636. #if E_STEPPERS > 1
  8637. case 1:
  8638. oldstatus = E1_ENABLE_READ;
  8639. enable_e1();
  8640. break;
  8641. #if E_STEPPERS > 2
  8642. case 2:
  8643. oldstatus = E2_ENABLE_READ;
  8644. enable_e2();
  8645. break;
  8646. #if E_STEPPERS > 3
  8647. case 3:
  8648. oldstatus = E3_ENABLE_READ;
  8649. enable_e3();
  8650. break;
  8651. #endif
  8652. #endif
  8653. #endif
  8654. }
  8655. #endif // !SWITCHING_EXTRUDER
  8656. previous_cmd_ms = ms; // refresh_cmd_timeout()
  8657. #if IS_KINEMATIC
  8658. inverse_kinematics(current_position);
  8659. ADJUST_DELTA(current_position);
  8660. planner.buffer_line(
  8661. delta[A_AXIS], delta[B_AXIS], delta[C_AXIS],
  8662. current_position[E_AXIS] + EXTRUDER_RUNOUT_EXTRUDE,
  8663. MMM_TO_MMS(EXTRUDER_RUNOUT_SPEED), active_extruder
  8664. );
  8665. #else
  8666. planner.buffer_line(
  8667. current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS],
  8668. current_position[E_AXIS] + EXTRUDER_RUNOUT_EXTRUDE,
  8669. MMM_TO_MMS(EXTRUDER_RUNOUT_SPEED), active_extruder
  8670. );
  8671. #endif
  8672. stepper.synchronize();
  8673. planner.set_e_position_mm(current_position[E_AXIS]);
  8674. #if ENABLED(SWITCHING_EXTRUDER)
  8675. E0_ENABLE_WRITE(oldstatus);
  8676. #else
  8677. switch (active_extruder) {
  8678. case 0:
  8679. E0_ENABLE_WRITE(oldstatus);
  8680. break;
  8681. #if E_STEPPERS > 1
  8682. case 1:
  8683. E1_ENABLE_WRITE(oldstatus);
  8684. break;
  8685. #if E_STEPPERS > 2
  8686. case 2:
  8687. E2_ENABLE_WRITE(oldstatus);
  8688. break;
  8689. #if E_STEPPERS > 3
  8690. case 3:
  8691. E3_ENABLE_WRITE(oldstatus);
  8692. break;
  8693. #endif
  8694. #endif
  8695. #endif
  8696. }
  8697. #endif // !SWITCHING_EXTRUDER
  8698. }
  8699. #endif // EXTRUDER_RUNOUT_PREVENT
  8700. #if ENABLED(DUAL_X_CARRIAGE)
  8701. // handle delayed move timeout
  8702. if (delayed_move_time && ELAPSED(ms, delayed_move_time + 1000UL) && IsRunning()) {
  8703. // travel moves have been received so enact them
  8704. delayed_move_time = 0xFFFFFFFFUL; // force moves to be done
  8705. set_destination_to_current();
  8706. prepare_move_to_destination();
  8707. }
  8708. #endif
  8709. #if ENABLED(TEMP_STAT_LEDS)
  8710. handle_status_leds();
  8711. #endif
  8712. planner.check_axes_activity();
  8713. }
  8714. /**
  8715. * Standard idle routine keeps the machine alive
  8716. */
  8717. void idle(
  8718. #if ENABLED(FILAMENT_CHANGE_FEATURE)
  8719. bool no_stepper_sleep/*=false*/
  8720. #endif
  8721. ) {
  8722. lcd_update();
  8723. host_keepalive();
  8724. #if ENABLED(AUTO_REPORT_TEMPERATURES) && (HAS_TEMP_HOTEND || HAS_TEMP_BED)
  8725. auto_report_temperatures();
  8726. #endif
  8727. manage_inactivity(
  8728. #if ENABLED(FILAMENT_CHANGE_FEATURE)
  8729. no_stepper_sleep
  8730. #endif
  8731. );
  8732. thermalManager.manage_heater();
  8733. #if ENABLED(PRINTCOUNTER)
  8734. print_job_timer.tick();
  8735. #endif
  8736. #if HAS_BUZZER && DISABLED(LCD_USE_I2C_BUZZER)
  8737. buzzer.tick();
  8738. #endif
  8739. }
  8740. /**
  8741. * Kill all activity and lock the machine.
  8742. * After this the machine will need to be reset.
  8743. */
  8744. void kill(const char* lcd_msg) {
  8745. SERIAL_ERROR_START;
  8746. SERIAL_ERRORLNPGM(MSG_ERR_KILLED);
  8747. #if ENABLED(ULTRA_LCD)
  8748. kill_screen(lcd_msg);
  8749. #else
  8750. UNUSED(lcd_msg);
  8751. #endif
  8752. delay(500); // Wait a short time
  8753. cli(); // Stop interrupts
  8754. thermalManager.disable_all_heaters();
  8755. disable_all_steppers();
  8756. #if HAS_POWER_SWITCH
  8757. SET_INPUT(PS_ON_PIN);
  8758. #endif
  8759. suicide();
  8760. while (1) {
  8761. #if ENABLED(USE_WATCHDOG)
  8762. watchdog_reset();
  8763. #endif
  8764. } // Wait for reset
  8765. }
  8766. /**
  8767. * Turn off heaters and stop the print in progress
  8768. * After a stop the machine may be resumed with M999
  8769. */
  8770. void stop() {
  8771. thermalManager.disable_all_heaters();
  8772. if (IsRunning()) {
  8773. Running = false;
  8774. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  8775. SERIAL_ERROR_START;
  8776. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  8777. LCD_MESSAGEPGM(MSG_STOPPED);
  8778. }
  8779. }
  8780. /**
  8781. * Marlin entry-point: Set up before the program loop
  8782. * - Set up the kill pin, filament runout, power hold
  8783. * - Start the serial port
  8784. * - Print startup messages and diagnostics
  8785. * - Get EEPROM or default settings
  8786. * - Initialize managers for:
  8787. * • temperature
  8788. * • planner
  8789. * • watchdog
  8790. * • stepper
  8791. * • photo pin
  8792. * • servos
  8793. * • LCD controller
  8794. * • Digipot I2C
  8795. * • Z probe sled
  8796. * • status LEDs
  8797. */
  8798. void setup() {
  8799. #ifdef DISABLE_JTAG
  8800. // Disable JTAG on AT90USB chips to free up pins for IO
  8801. MCUCR = 0x80;
  8802. MCUCR = 0x80;
  8803. #endif
  8804. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  8805. setup_filrunoutpin();
  8806. #endif
  8807. setup_killpin();
  8808. setup_powerhold();
  8809. #if HAS_STEPPER_RESET
  8810. disableStepperDrivers();
  8811. #endif
  8812. MYSERIAL.begin(BAUDRATE);
  8813. SERIAL_PROTOCOLLNPGM("start");
  8814. SERIAL_ECHO_START;
  8815. // Check startup - does nothing if bootloader sets MCUSR to 0
  8816. byte mcu = MCUSR;
  8817. if (mcu & 1) SERIAL_ECHOLNPGM(MSG_POWERUP);
  8818. if (mcu & 2) SERIAL_ECHOLNPGM(MSG_EXTERNAL_RESET);
  8819. if (mcu & 4) SERIAL_ECHOLNPGM(MSG_BROWNOUT_RESET);
  8820. if (mcu & 8) SERIAL_ECHOLNPGM(MSG_WATCHDOG_RESET);
  8821. if (mcu & 32) SERIAL_ECHOLNPGM(MSG_SOFTWARE_RESET);
  8822. MCUSR = 0;
  8823. SERIAL_ECHOPGM(MSG_MARLIN);
  8824. SERIAL_CHAR(' ');
  8825. SERIAL_ECHOLNPGM(SHORT_BUILD_VERSION);
  8826. SERIAL_EOL;
  8827. #if defined(STRING_DISTRIBUTION_DATE) && defined(STRING_CONFIG_H_AUTHOR)
  8828. SERIAL_ECHO_START;
  8829. SERIAL_ECHOPGM(MSG_CONFIGURATION_VER);
  8830. SERIAL_ECHOPGM(STRING_DISTRIBUTION_DATE);
  8831. SERIAL_ECHOLNPGM(MSG_AUTHOR STRING_CONFIG_H_AUTHOR);
  8832. SERIAL_ECHOLNPGM("Compiled: " __DATE__);
  8833. #endif
  8834. SERIAL_ECHO_START;
  8835. SERIAL_ECHOPAIR(MSG_FREE_MEMORY, freeMemory());
  8836. SERIAL_ECHOLNPAIR(MSG_PLANNER_BUFFER_BYTES, (int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  8837. // Send "ok" after commands by default
  8838. for (int8_t i = 0; i < BUFSIZE; i++) send_ok[i] = true;
  8839. // Load data from EEPROM if available (or use defaults)
  8840. // This also updates variables in the planner, elsewhere
  8841. Config_RetrieveSettings();
  8842. // Initialize current position based on home_offset
  8843. memcpy(current_position, home_offset, sizeof(home_offset));
  8844. // Vital to init stepper/planner equivalent for current_position
  8845. SYNC_PLAN_POSITION_KINEMATIC();
  8846. thermalManager.init(); // Initialize temperature loop
  8847. #if ENABLED(USE_WATCHDOG)
  8848. watchdog_init();
  8849. #endif
  8850. stepper.init(); // Initialize stepper, this enables interrupts!
  8851. servo_init();
  8852. #if HAS_PHOTOGRAPH
  8853. OUT_WRITE(PHOTOGRAPH_PIN, LOW);
  8854. #endif
  8855. #if HAS_CASE_LIGHT
  8856. update_case_light();
  8857. #endif
  8858. #if HAS_BED_PROBE
  8859. endstops.enable_z_probe(false);
  8860. #endif
  8861. #if HAS_CONTROLLERFAN
  8862. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  8863. #endif
  8864. #if HAS_STEPPER_RESET
  8865. enableStepperDrivers();
  8866. #endif
  8867. #if ENABLED(DIGIPOT_I2C)
  8868. digipot_i2c_init();
  8869. #endif
  8870. #if ENABLED(DAC_STEPPER_CURRENT)
  8871. dac_init();
  8872. #endif
  8873. #if ENABLED(Z_PROBE_SLED) && PIN_EXISTS(SLED)
  8874. OUT_WRITE(SLED_PIN, LOW); // turn it off
  8875. #endif // Z_PROBE_SLED
  8876. setup_homepin();
  8877. #if PIN_EXISTS(STAT_LED_RED)
  8878. OUT_WRITE(STAT_LED_RED_PIN, LOW); // turn it off
  8879. #endif
  8880. #if PIN_EXISTS(STAT_LED_BLUE)
  8881. OUT_WRITE(STAT_LED_BLUE_PIN, LOW); // turn it off
  8882. #endif
  8883. #if ENABLED(RGB_LED)
  8884. pinMode(RGB_LED_R_PIN, OUTPUT);
  8885. pinMode(RGB_LED_G_PIN, OUTPUT);
  8886. pinMode(RGB_LED_B_PIN, OUTPUT);
  8887. #endif
  8888. lcd_init();
  8889. #if ENABLED(SHOW_BOOTSCREEN)
  8890. #if ENABLED(DOGLCD)
  8891. safe_delay(BOOTSCREEN_TIMEOUT);
  8892. #elif ENABLED(ULTRA_LCD)
  8893. bootscreen();
  8894. #if DISABLED(SDSUPPORT)
  8895. lcd_init();
  8896. #endif
  8897. #endif
  8898. #endif
  8899. #if ENABLED(MIXING_EXTRUDER) && MIXING_VIRTUAL_TOOLS > 1
  8900. // Initialize mixing to 100% color 1
  8901. for (uint8_t i = 0; i < MIXING_STEPPERS; i++)
  8902. mixing_factor[i] = (i == 0) ? 1.0 : 0.0;
  8903. for (uint8_t t = 0; t < MIXING_VIRTUAL_TOOLS; t++)
  8904. for (uint8_t i = 0; i < MIXING_STEPPERS; i++)
  8905. mixing_virtual_tool_mix[t][i] = mixing_factor[i];
  8906. #endif
  8907. #if ENABLED(BLTOUCH)
  8908. bltouch_command(BLTOUCH_RESET); // Just in case the BLTouch is in the error state, try to
  8909. set_bltouch_deployed(true); // reset it. Also needs to deploy and stow to clear the
  8910. set_bltouch_deployed(false); // error condition.
  8911. #endif
  8912. #if ENABLED(EXPERIMENTAL_I2CBUS) && I2C_SLAVE_ADDRESS > 0
  8913. i2c.onReceive(i2c_on_receive);
  8914. i2c.onRequest(i2c_on_request);
  8915. #endif
  8916. #if ENABLED(ENDSTOP_INTERRUPTS_FEATURE)
  8917. setup_endstop_interrupts();
  8918. #endif
  8919. }
  8920. /**
  8921. * The main Marlin program loop
  8922. *
  8923. * - Save or log commands to SD
  8924. * - Process available commands (if not saving)
  8925. * - Call heater manager
  8926. * - Call inactivity manager
  8927. * - Call endstop manager
  8928. * - Call LCD update
  8929. */
  8930. void loop() {
  8931. if (commands_in_queue < BUFSIZE) get_available_commands();
  8932. #if ENABLED(SDSUPPORT)
  8933. card.checkautostart(false);
  8934. #endif
  8935. if (commands_in_queue) {
  8936. #if ENABLED(SDSUPPORT)
  8937. if (card.saving) {
  8938. char* command = command_queue[cmd_queue_index_r];
  8939. if (strstr_P(command, PSTR("M29"))) {
  8940. // M29 closes the file
  8941. card.closefile();
  8942. SERIAL_PROTOCOLLNPGM(MSG_FILE_SAVED);
  8943. ok_to_send();
  8944. }
  8945. else {
  8946. // Write the string from the read buffer to SD
  8947. card.write_command(command);
  8948. if (card.logging)
  8949. process_next_command(); // The card is saving because it's logging
  8950. else
  8951. ok_to_send();
  8952. }
  8953. }
  8954. else
  8955. process_next_command();
  8956. #else
  8957. process_next_command();
  8958. #endif // SDSUPPORT
  8959. // The queue may be reset by a command handler or by code invoked by idle() within a handler
  8960. if (commands_in_queue) {
  8961. --commands_in_queue;
  8962. cmd_queue_index_r = (cmd_queue_index_r + 1) % BUFSIZE;
  8963. }
  8964. }
  8965. endstops.report_state();
  8966. idle();
  8967. }