My Marlin configs for Fabrikator Mini and CTC i3 Pro B
您最多选择25个主题 主题必须以字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符

Marlin_main.cpp 353KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861786278637864786578667867786878697870787178727873787478757876787778787879788078817882788378847885788678877888788978907891789278937894789578967897789878997900790179027903790479057906790779087909791079117912791379147915791679177918791979207921792279237924792579267927792879297930793179327933793479357936793779387939794079417942794379447945794679477948794979507951795279537954795579567957795879597960796179627963796479657966796779687969797079717972797379747975797679777978797979807981798279837984798579867987798879897990799179927993799479957996799779987999800080018002800380048005800680078008800980108011801280138014801580168017801880198020802180228023802480258026802780288029803080318032803380348035803680378038803980408041804280438044804580468047804880498050805180528053805480558056805780588059806080618062806380648065806680678068806980708071807280738074807580768077807880798080808180828083808480858086808780888089809080918092809380948095809680978098809981008101810281038104810581068107810881098110811181128113811481158116811781188119812081218122812381248125812681278128812981308131813281338134813581368137813881398140814181428143814481458146814781488149815081518152815381548155815681578158815981608161816281638164816581668167816881698170817181728173817481758176817781788179818081818182818381848185818681878188818981908191819281938194819581968197819881998200820182028203820482058206820782088209821082118212821382148215821682178218821982208221822282238224822582268227822882298230823182328233823482358236823782388239824082418242824382448245824682478248824982508251825282538254825582568257825882598260826182628263826482658266826782688269827082718272827382748275827682778278827982808281828282838284828582868287828882898290829182928293829482958296829782988299830083018302830383048305830683078308830983108311831283138314831583168317831883198320832183228323832483258326832783288329833083318332833383348335833683378338833983408341834283438344834583468347834883498350835183528353835483558356835783588359836083618362836383648365836683678368836983708371837283738374837583768377837883798380838183828383838483858386838783888389839083918392839383948395839683978398839984008401840284038404840584068407840884098410841184128413841484158416841784188419842084218422842384248425842684278428842984308431843284338434843584368437843884398440844184428443844484458446844784488449845084518452845384548455845684578458845984608461846284638464846584668467846884698470847184728473847484758476847784788479848084818482848384848485848684878488848984908491849284938494849584968497849884998500850185028503850485058506850785088509851085118512851385148515851685178518851985208521852285238524852585268527852885298530853185328533853485358536853785388539854085418542854385448545854685478548854985508551855285538554855585568557855885598560856185628563856485658566856785688569857085718572857385748575857685778578857985808581858285838584858585868587858885898590859185928593859485958596859785988599860086018602860386048605860686078608860986108611861286138614861586168617861886198620862186228623862486258626862786288629863086318632863386348635863686378638863986408641864286438644864586468647864886498650865186528653865486558656865786588659866086618662866386648665866686678668866986708671867286738674867586768677867886798680868186828683868486858686868786888689869086918692869386948695869686978698869987008701870287038704870587068707870887098710871187128713871487158716871787188719872087218722872387248725872687278728872987308731873287338734873587368737873887398740874187428743874487458746874787488749875087518752875387548755875687578758875987608761876287638764876587668767876887698770877187728773877487758776877787788779878087818782878387848785878687878788878987908791879287938794879587968797879887998800880188028803880488058806880788088809881088118812881388148815881688178818881988208821882288238824882588268827882888298830883188328833883488358836883788388839884088418842884388448845884688478848884988508851885288538854885588568857885888598860886188628863886488658866886788688869887088718872887388748875887688778878887988808881888288838884888588868887888888898890889188928893889488958896889788988899890089018902890389048905890689078908890989108911891289138914891589168917891889198920892189228923892489258926892789288929893089318932893389348935893689378938893989408941894289438944894589468947894889498950895189528953895489558956895789588959896089618962896389648965896689678968896989708971897289738974897589768977897889798980898189828983898489858986898789888989899089918992899389948995899689978998899990009001900290039004900590069007900890099010901190129013901490159016901790189019902090219022902390249025902690279028902990309031903290339034903590369037903890399040904190429043904490459046904790489049905090519052905390549055905690579058905990609061906290639064906590669067906890699070907190729073907490759076907790789079908090819082908390849085908690879088908990909091909290939094909590969097909890999100910191029103910491059106910791089109911091119112911391149115911691179118911991209121912291239124912591269127912891299130913191329133913491359136913791389139914091419142914391449145914691479148914991509151915291539154915591569157915891599160916191629163916491659166916791689169917091719172917391749175917691779178917991809181918291839184918591869187918891899190919191929193919491959196919791989199920092019202920392049205920692079208920992109211921292139214921592169217921892199220922192229223922492259226922792289229923092319232923392349235923692379238923992409241924292439244924592469247924892499250925192529253925492559256925792589259926092619262926392649265926692679268926992709271927292739274927592769277927892799280928192829283928492859286928792889289929092919292929392949295929692979298929993009301930293039304930593069307930893099310931193129313931493159316931793189319932093219322932393249325932693279328932993309331933293339334933593369337933893399340934193429343934493459346934793489349935093519352935393549355935693579358935993609361936293639364936593669367936893699370937193729373937493759376937793789379938093819382938393849385938693879388938993909391939293939394939593969397939893999400940194029403940494059406940794089409941094119412941394149415941694179418941994209421942294239424942594269427942894299430943194329433943494359436943794389439944094419442944394449445944694479448944994509451945294539454945594569457945894599460946194629463946494659466946794689469947094719472947394749475947694779478947994809481948294839484948594869487948894899490949194929493949494959496949794989499950095019502950395049505950695079508950995109511951295139514951595169517951895199520952195229523952495259526952795289529953095319532953395349535953695379538953995409541954295439544954595469547954895499550955195529553955495559556955795589559956095619562956395649565956695679568956995709571957295739574957595769577957895799580958195829583958495859586958795889589959095919592959395949595959695979598959996009601960296039604960596069607960896099610961196129613961496159616961796189619962096219622962396249625962696279628962996309631963296339634963596369637963896399640964196429643964496459646964796489649965096519652965396549655965696579658965996609661966296639664966596669667966896699670967196729673967496759676967796789679968096819682968396849685968696879688968996909691969296939694969596969697969896999700970197029703970497059706970797089709971097119712971397149715971697179718971997209721972297239724972597269727972897299730973197329733973497359736973797389739974097419742974397449745974697479748974997509751975297539754975597569757975897599760976197629763976497659766976797689769977097719772977397749775977697779778977997809781978297839784978597869787978897899790979197929793979497959796979797989799980098019802980398049805980698079808980998109811981298139814981598169817981898199820982198229823982498259826982798289829983098319832983398349835983698379838983998409841984298439844984598469847984898499850985198529853985498559856985798589859986098619862986398649865986698679868986998709871987298739874987598769877987898799880988198829883988498859886988798889889989098919892989398949895989698979898989999009901990299039904990599069907990899099910991199129913991499159916991799189919992099219922992399249925992699279928992999309931993299339934993599369937993899399940994199429943994499459946994799489949995099519952995399549955995699579958995999609961996299639964996599669967996899699970997199729973997499759976997799789979998099819982998399849985998699879988998999909991999299939994999599969997999899991000010001100021000310004100051000610007100081000910010100111001210013100141001510016100171001810019100201002110022100231002410025100261002710028100291003010031100321003310034100351003610037100381003910040100411004210043100441004510046100471004810049100501005110052100531005410055100561005710058100591006010061100621006310064100651006610067100681006910070100711007210073100741007510076100771007810079100801008110082100831008410085100861008710088100891009010091100921009310094100951009610097100981009910100101011010210103101041010510106101071010810109101101011110112101131011410115101161011710118101191012010121101221012310124101251012610127101281012910130101311013210133101341013510136101371013810139101401014110142101431014410145101461014710148101491015010151101521015310154101551015610157101581015910160101611016210163101641016510166101671016810169101701017110172101731017410175101761017710178101791018010181101821018310184101851018610187101881018910190101911019210193101941019510196101971019810199102001020110202102031020410205102061020710208102091021010211102121021310214102151021610217102181021910220102211022210223102241022510226102271022810229102301023110232102331023410235102361023710238102391024010241102421024310244102451024610247102481024910250102511025210253102541025510256102571025810259102601026110262102631026410265102661026710268102691027010271102721027310274102751027610277102781027910280102811028210283102841028510286102871028810289102901029110292102931029410295102961029710298102991030010301103021030310304103051030610307103081030910310103111031210313103141031510316103171031810319103201032110322103231032410325103261032710328103291033010331103321033310334103351033610337103381033910340103411034210343103441034510346103471034810349103501035110352103531035410355103561035710358103591036010361103621036310364103651036610367103681036910370103711037210373103741037510376103771037810379103801038110382103831038410385103861038710388103891039010391103921039310394103951039610397103981039910400104011040210403104041040510406104071040810409104101041110412104131041410415104161041710418104191042010421104221042310424104251042610427104281042910430104311043210433104341043510436104371043810439104401044110442104431044410445104461044710448104491045010451104521045310454104551045610457104581045910460104611046210463104641046510466104671046810469104701047110472104731047410475104761047710478104791048010481104821048310484104851048610487104881048910490104911049210493104941049510496104971049810499105001050110502105031050410505105061050710508105091051010511105121051310514105151051610517105181051910520105211052210523105241052510526105271052810529105301053110532105331053410535105361053710538105391054010541105421054310544105451054610547105481054910550105511055210553105541055510556105571055810559105601056110562105631056410565105661056710568105691057010571105721057310574105751057610577105781057910580105811058210583105841058510586105871058810589105901059110592105931059410595105961059710598105991060010601106021060310604106051060610607106081060910610106111061210613106141061510616106171061810619106201062110622106231062410625106261062710628106291063010631106321063310634106351063610637106381063910640106411064210643106441064510646106471064810649106501065110652106531065410655106561065710658106591066010661106621066310664106651066610667106681066910670106711067210673106741067510676106771067810679106801068110682106831068410685106861068710688106891069010691106921069310694106951069610697106981069910700107011070210703107041070510706107071070810709107101071110712107131071410715107161071710718107191072010721107221072310724107251072610727107281072910730107311073210733107341073510736107371073810739107401074110742107431074410745107461074710748107491075010751107521075310754107551075610757107581075910760107611076210763107641076510766107671076810769107701077110772107731077410775107761077710778107791078010781107821078310784107851078610787107881078910790107911079210793107941079510796107971079810799108001080110802108031080410805108061080710808108091081010811108121081310814108151081610817108181081910820108211082210823108241082510826108271082810829108301083110832108331083410835108361083710838108391084010841108421084310844108451084610847108481084910850108511085210853108541085510856108571085810859108601086110862108631086410865108661086710868108691087010871108721087310874108751087610877108781087910880108811088210883108841088510886108871088810889108901089110892108931089410895108961089710898108991090010901109021090310904109051090610907109081090910910109111091210913109141091510916109171091810919109201092110922109231092410925109261092710928109291093010931109321093310934109351093610937109381093910940109411094210943109441094510946109471094810949109501095110952109531095410955109561095710958109591096010961109621096310964109651096610967109681096910970109711097210973109741097510976109771097810979109801098110982109831098410985109861098710988109891099010991109921099310994109951099610997109981099911000110011100211003110041100511006110071100811009110101101111012110131101411015110161101711018110191102011021110221102311024110251102611027110281102911030110311103211033110341103511036110371103811039110401104111042110431104411045110461104711048110491105011051110521105311054110551105611057110581105911060110611106211063110641106511066110671106811069110701107111072110731107411075110761107711078110791108011081110821108311084110851108611087110881108911090110911109211093110941109511096110971109811099111001110111102111031110411105111061110711108111091111011111111121111311114111151111611117111181111911120111211112211123111241112511126111271112811129111301113111132111331113411135111361113711138111391114011141111421114311144111451114611147111481114911150111511115211153111541115511156111571115811159111601116111162111631116411165111661116711168111691117011171111721117311174111751117611177111781117911180111811118211183111841118511186111871118811189111901119111192111931119411195111961119711198111991120011201112021120311204112051120611207112081120911210112111121211213112141121511216112171121811219112201122111222112231122411225112261122711228112291123011231112321123311234112351123611237112381123911240112411124211243112441124511246112471124811249112501125111252112531125411255112561125711258112591126011261112621126311264112651126611267112681126911270112711127211273112741127511276112771127811279112801128111282112831128411285112861128711288112891129011291112921129311294112951129611297112981129911300113011130211303113041130511306
  1. /**
  2. * Marlin 3D Printer Firmware
  3. * Copyright (C) 2016, 2017 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
  4. *
  5. * Based on Sprinter and grbl.
  6. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  7. *
  8. * This program is free software: you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation, either version 3 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  20. *
  21. */
  22. /**
  23. * About Marlin
  24. *
  25. * This firmware is a mashup between Sprinter and grbl.
  26. * - https://github.com/kliment/Sprinter
  27. * - https://github.com/simen/grbl/tree
  28. */
  29. /**
  30. * -----------------
  31. * G-Codes in Marlin
  32. * -----------------
  33. *
  34. * Helpful G-code references:
  35. * - http://linuxcnc.org/handbook/gcode/g-code.html
  36. * - http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  37. *
  38. * Help to document Marlin's G-codes online:
  39. * - http://reprap.org/wiki/G-code
  40. * - https://github.com/MarlinFirmware/MarlinDocumentation
  41. *
  42. * -----------------
  43. *
  44. * "G" Codes
  45. *
  46. * G0 -> G1
  47. * G1 - Coordinated Movement X Y Z E
  48. * G2 - CW ARC
  49. * G3 - CCW ARC
  50. * G4 - Dwell S<seconds> or P<milliseconds>
  51. * G5 - Cubic B-spline with XYZE destination and IJPQ offsets
  52. * G10 - Retract filament according to settings of M207
  53. * G11 - Retract recover filament according to settings of M208
  54. * G12 - Clean tool
  55. * G20 - Set input units to inches
  56. * G21 - Set input units to millimeters
  57. * G28 - Home one or more axes
  58. * G29 - Detailed Z probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  59. * G30 - Single Z probe, probes bed at X Y location (defaults to current XY location)
  60. * G31 - Dock sled (Z_PROBE_SLED only)
  61. * G32 - Undock sled (Z_PROBE_SLED only)
  62. * G38 - Probe target - similar to G28 except it uses the Z_MIN_PROBE for all three axes
  63. * G90 - Use Absolute Coordinates
  64. * G91 - Use Relative Coordinates
  65. * G92 - Set current position to coordinates given
  66. *
  67. * "M" Codes
  68. *
  69. * M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
  70. * M1 - Same as M0
  71. * M17 - Enable/Power all stepper motors
  72. * M18 - Disable all stepper motors; same as M84
  73. * M20 - List SD card. (Requires SDSUPPORT)
  74. * M21 - Init SD card. (Requires SDSUPPORT)
  75. * M22 - Release SD card. (Requires SDSUPPORT)
  76. * M23 - Select SD file: "M23 /path/file.gco". (Requires SDSUPPORT)
  77. * M24 - Start/resume SD print. (Requires SDSUPPORT)
  78. * M25 - Pause SD print. (Requires SDSUPPORT)
  79. * M26 - Set SD position in bytes: "M26 S12345". (Requires SDSUPPORT)
  80. * M27 - Report SD print status. (Requires SDSUPPORT)
  81. * M28 - Start SD write: "M28 /path/file.gco". (Requires SDSUPPORT)
  82. * M29 - Stop SD write. (Requires SDSUPPORT)
  83. * M30 - Delete file from SD: "M30 /path/file.gco"
  84. * M31 - Report time since last M109 or SD card start to serial.
  85. * M32 - Select file and start SD print: "M32 [S<bytepos>] !/path/file.gco#". (Requires SDSUPPORT)
  86. * Use P to run other files as sub-programs: "M32 P !filename#"
  87. * The '#' is necessary when calling from within sd files, as it stops buffer prereading
  88. * M33 - Get the longname version of a path. (Requires LONG_FILENAME_HOST_SUPPORT)
  89. * M34 - Set SD Card sorting options. (Requires SDCARD_SORT_ALPHA)
  90. * M42 - Change pin status via gcode: M42 P<pin> S<value>. LED pin assumed if P is omitted.
  91. * M43 - Monitor pins & report changes - report active pins
  92. * M48 - Measure Z Probe repeatability: M48 P<points> X<pos> Y<pos> V<level> E<engage> L<legs>. (Requires Z_MIN_PROBE_REPEATABILITY_TEST)
  93. * M75 - Start the print job timer.
  94. * M76 - Pause the print job timer.
  95. * M77 - Stop the print job timer.
  96. * M78 - Show statistical information about the print jobs. (Requires PRINTCOUNTER)
  97. * M80 - Turn on Power Supply. (Requires POWER_SUPPLY)
  98. * M81 - Turn off Power Supply. (Requires POWER_SUPPLY)
  99. * M82 - Set E codes absolute (default).
  100. * M83 - Set E codes relative while in Absolute (G90) mode.
  101. * M84 - Disable steppers until next move, or use S<seconds> to specify an idle
  102. * duration after which steppers should turn off. S0 disables the timeout.
  103. * M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  104. * M92 - Set planner.axis_steps_per_mm for one or more axes.
  105. * M104 - Set extruder target temp.
  106. * M105 - Report current temperatures.
  107. * M106 - Fan on.
  108. * M107 - Fan off.
  109. * M108 - Break out of heating loops (M109, M190, M303). With no controller, breaks out of M0/M1. (Requires EMERGENCY_PARSER)
  110. * M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  111. * Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  112. * If AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  113. * M110 - Set the current line number. (Used by host printing)
  114. * M111 - Set debug flags: "M111 S<flagbits>". See flag bits defined in enum.h.
  115. * M112 - Emergency stop.
  116. * M113 - Get or set the timeout interval for Host Keepalive "busy" messages. (Requires HOST_KEEPALIVE_FEATURE)
  117. * M114 - Report current position.
  118. * M115 - Report capabilities. (Extended capabilities requires EXTENDED_CAPABILITIES_REPORT)
  119. * M117 - Display a message on the controller screen. (Requires an LCD)
  120. * M119 - Report endstops status.
  121. * M120 - Enable endstops detection.
  122. * M121 - Disable endstops detection.
  123. * M125 - Save current position and move to filament change position. (Requires PARK_HEAD_ON_PAUSE)
  124. * M126 - Solenoid Air Valve Open. (Requires BARICUDA)
  125. * M127 - Solenoid Air Valve Closed. (Requires BARICUDA)
  126. * M128 - EtoP Open. (Requires BARICUDA)
  127. * M129 - EtoP Closed. (Requires BARICUDA)
  128. * M140 - Set bed target temp. S<temp>
  129. * M145 - Set heatup values for materials on the LCD. H<hotend> B<bed> F<fan speed> for S<material> (0=PLA, 1=ABS)
  130. * M149 - Set temperature units. (Requires TEMPERATURE_UNITS_SUPPORT)
  131. * M150 - Set Status LED Color as R<red> U<green> B<blue>. Values 0-255. (Requires BLINKM or RGB_LED)
  132. * M155 - Auto-report temperatures with interval of S<seconds>. (Requires AUTO_REPORT_TEMPERATURES)
  133. * M163 - Set a single proportion for a mixing extruder. (Requires MIXING_EXTRUDER)
  134. * M164 - Save the mix as a virtual extruder. (Requires MIXING_EXTRUDER and MIXING_VIRTUAL_TOOLS)
  135. * M165 - Set the proportions for a mixing extruder. Use parameters ABCDHI to set the mixing factors. (Requires MIXING_EXTRUDER)
  136. * M190 - Sxxx Wait for bed current temp to reach target temp. ** Waits only when heating! **
  137. * Rxxx Wait for bed current temp to reach target temp. ** Waits for heating or cooling. **
  138. * M200 - Set filament diameter, D<diameter>, setting E axis units to cubic. (Use S0 to revert to linear units.)
  139. * M201 - Set max acceleration in units/s^2 for print moves: "M201 X<accel> Y<accel> Z<accel> E<accel>"
  140. * M202 - Set max acceleration in units/s^2 for travel moves: "M202 X<accel> Y<accel> Z<accel> E<accel>" ** UNUSED IN MARLIN! **
  141. * M203 - Set maximum feedrate: "M203 X<fr> Y<fr> Z<fr> E<fr>" in units/sec.
  142. * M204 - Set default acceleration in units/sec^2: P<printing> R<extruder_only> T<travel>
  143. * M205 - Set advanced settings. Current units apply:
  144. S<print> T<travel> minimum speeds
  145. B<minimum segment time>
  146. X<max X jerk>, Y<max Y jerk>, Z<max Z jerk>, E<max E jerk>
  147. * M206 - Set additional homing offset.
  148. * M207 - Set Retract Length: S<length>, Feedrate: F<units/min>, and Z lift: Z<distance>. (Requires FWRETRACT)
  149. * M208 - Set Recover (unretract) Additional (!) Length: S<length> and Feedrate: F<units/min>. (Requires FWRETRACT)
  150. * M209 - Turn Automatic Retract Detection on/off: S<0|1> (For slicers that don't support G10/11). (Requires FWRETRACT)
  151. Every normal extrude-only move will be classified as retract depending on the direction.
  152. * M211 - Enable, Disable, and/or Report software endstops: S<0|1> (Requires MIN_SOFTWARE_ENDSTOPS or MAX_SOFTWARE_ENDSTOPS)
  153. * M218 - Set a tool offset: "M218 T<index> X<offset> Y<offset>". (Requires 2 or more extruders)
  154. * M220 - Set Feedrate Percentage: "M220 S<percent>" (i.e., "FR" on the LCD)
  155. * M221 - Set Flow Percentage: "M221 S<percent>"
  156. * M226 - Wait until a pin is in a given state: "M226 P<pin> S<state>"
  157. * M240 - Trigger a camera to take a photograph. (Requires CHDK or PHOTOGRAPH_PIN)
  158. * M250 - Set LCD contrast: "M250 C<contrast>" (0-63). (Requires LCD support)
  159. * M260 - i2c Send Data (Requires EXPERIMENTAL_I2CBUS)
  160. * M261 - i2c Request Data (Requires EXPERIMENTAL_I2CBUS)
  161. * M280 - Set servo position absolute: "M280 P<index> S<angle|µs>". (Requires servos)
  162. * M300 - Play beep sound S<frequency Hz> P<duration ms>
  163. * M301 - Set PID parameters P I and D. (Requires PIDTEMP)
  164. * M302 - Allow cold extrudes, or set the minimum extrude S<temperature>. (Requires PREVENT_COLD_EXTRUSION)
  165. * M303 - PID relay autotune S<temperature> sets the target temperature. Default 150C. (Requires PIDTEMP)
  166. * M304 - Set bed PID parameters P I and D. (Requires PIDTEMPBED)
  167. * M355 - Turn the Case Light on/off and set its brightness. (Requires CASE_LIGHT_PIN)
  168. * M380 - Activate solenoid on active extruder. (Requires EXT_SOLENOID)
  169. * M381 - Disable all solenoids. (Requires EXT_SOLENOID)
  170. * M400 - Finish all moves.
  171. * M401 - Lower Z probe. (Requires a probe)
  172. * M402 - Raise Z probe. (Requires a probe)
  173. * M404 - Display or set the Nominal Filament Width: "W<diameter>". (Requires FILAMENT_WIDTH_SENSOR)
  174. * M405 - Enable Filament Sensor flow control. "M405 D<delay_cm>". (Requires FILAMENT_WIDTH_SENSOR)
  175. * M406 - Disable Filament Sensor flow control. (Requires FILAMENT_WIDTH_SENSOR)
  176. * M407 - Display measured filament diameter in millimeters. (Requires FILAMENT_WIDTH_SENSOR)
  177. * M410 - Quickstop. Abort all planned moves.
  178. * M420 - Enable/Disable Leveling (with current values) S1=enable S0=disable (Requires MESH_BED_LEVELING or ABL)
  179. * M421 - Set a single Z coordinate in the Mesh Leveling grid. X<units> Y<units> Z<units> (Requires MESH_BED_LEVELING or AUTO_BED_LEVELING_UBL)
  180. * M428 - Set the home_offset based on the current_position. Nearest edge applies.
  181. * M500 - Store parameters in EEPROM. (Requires EEPROM_SETTINGS)
  182. * M501 - Restore parameters from EEPROM. (Requires EEPROM_SETTINGS)
  183. * M502 - Revert to the default "factory settings". ** Does not write them to EEPROM! **
  184. * M503 - Print the current settings (in memory): "M503 S<verbose>". S0 specifies compact output.
  185. * M540 - Enable/disable SD card abort on endstop hit: "M540 S<state>". (Requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  186. * M600 - Pause for filament change: "M600 X<pos> Y<pos> Z<raise> E<first_retract> L<later_retract>". (Requires FILAMENT_CHANGE_FEATURE)
  187. * M665 - Set delta configurations: "M665 L<diagonal rod> R<delta radius> S<segments/s> A<rod A trim mm> B<rod B trim mm> C<rod C trim mm> I<tower A trim angle> J<tower B trim angle> K<tower C trim angle>" (Requires DELTA)
  188. * M666 - Set delta endstop adjustment. (Requires DELTA)
  189. * M605 - Set dual x-carriage movement mode: "M605 S<mode> [X<x_offset>] [R<temp_offset>]". (Requires DUAL_X_CARRIAGE)
  190. * M851 - Set Z probe's Z offset in current units. (Negative = below the nozzle.)
  191. * M906 - Set or get motor current in milliamps using axis codes X, Y, Z, E. Report values if no axis codes given. (Requires HAVE_TMC2130)
  192. * M907 - Set digital trimpot motor current using axis codes. (Requires a board with digital trimpots)
  193. * M908 - Control digital trimpot directly. (Requires DAC_STEPPER_CURRENT or DIGIPOTSS_PIN)
  194. * M909 - Print digipot/DAC current value. (Requires DAC_STEPPER_CURRENT)
  195. * M910 - Commit digipot/DAC value to external EEPROM via I2C. (Requires DAC_STEPPER_CURRENT)
  196. * M911 - Report stepper driver overtemperature pre-warn condition. (Requires HAVE_TMC2130)
  197. * M912 - Clear stepper driver overtemperature pre-warn condition flag. (Requires HAVE_TMC2130)
  198. * M350 - Set microstepping mode. (Requires digital microstepping pins.)
  199. * M351 - Toggle MS1 MS2 pins directly. (Requires digital microstepping pins.)
  200. *
  201. * M360 - SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  202. * M361 - SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  203. * M362 - SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  204. * M363 - SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  205. * M364 - SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
  206. *
  207. * ************ Custom codes - This can change to suit future G-code regulations
  208. * M100 - Watch Free Memory (For Debugging). (Requires M100_FREE_MEMORY_WATCHER)
  209. * M928 - Start SD logging: "M928 filename.gco". Stop with M29. (Requires SDSUPPORT)
  210. * M999 - Restart after being stopped by error
  211. *
  212. * "T" Codes
  213. *
  214. * T0-T3 - Select an extruder (tool) by index: "T<n> F<units/min>"
  215. *
  216. */
  217. #include "Marlin.h"
  218. #include "ultralcd.h"
  219. #include "planner.h"
  220. #include "stepper.h"
  221. #include "endstops.h"
  222. #include "temperature.h"
  223. #include "cardreader.h"
  224. #include "configuration_store.h"
  225. #include "language.h"
  226. #include "pins_arduino.h"
  227. #include "math.h"
  228. #include "nozzle.h"
  229. #include "duration_t.h"
  230. #include "types.h"
  231. #if HAS_ABL
  232. #include "vector_3.h"
  233. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  234. #include "qr_solve.h"
  235. #endif
  236. #elif ENABLED(MESH_BED_LEVELING)
  237. #include "mesh_bed_leveling.h"
  238. #endif
  239. #if ENABLED(BEZIER_CURVE_SUPPORT)
  240. #include "planner_bezier.h"
  241. #endif
  242. #if HAS_BUZZER && DISABLED(LCD_USE_I2C_BUZZER)
  243. #include "buzzer.h"
  244. #endif
  245. #if ENABLED(USE_WATCHDOG)
  246. #include "watchdog.h"
  247. #endif
  248. #if ENABLED(BLINKM)
  249. #include "blinkm.h"
  250. #include "Wire.h"
  251. #endif
  252. #if HAS_SERVOS
  253. #include "servo.h"
  254. #endif
  255. #if HAS_DIGIPOTSS
  256. #include <SPI.h>
  257. #endif
  258. #if ENABLED(DAC_STEPPER_CURRENT)
  259. #include "stepper_dac.h"
  260. #endif
  261. #if ENABLED(EXPERIMENTAL_I2CBUS)
  262. #include "twibus.h"
  263. #endif
  264. #if ENABLED(ENDSTOP_INTERRUPTS_FEATURE)
  265. #include "endstop_interrupts.h"
  266. #endif
  267. #if ENABLED(M100_FREE_MEMORY_WATCHER)
  268. void gcode_M100();
  269. #endif
  270. #if ENABLED(SDSUPPORT)
  271. CardReader card;
  272. #endif
  273. #if ENABLED(EXPERIMENTAL_I2CBUS)
  274. TWIBus i2c;
  275. #endif
  276. #if ENABLED(G38_PROBE_TARGET)
  277. bool G38_move = false,
  278. G38_endstop_hit = false;
  279. #endif
  280. #if ENABLED(AUTO_BED_LEVELING_UBL)
  281. #include "UBL.h"
  282. unified_bed_leveling ubl;
  283. #define UBL_MESH_VALID !( ( ubl.z_values[0][0] == ubl.z_values[0][1] && ubl.z_values[0][1] == ubl.z_values[0][2] \
  284. && ubl.z_values[1][0] == ubl.z_values[1][1] && ubl.z_values[1][1] == ubl.z_values[1][2] \
  285. && ubl.z_values[2][0] == ubl.z_values[2][1] && ubl.z_values[2][1] == ubl.z_values[2][2] \
  286. && ubl.z_values[0][0] == 0 && ubl.z_values[1][0] == 0 && ubl.z_values[2][0] == 0 ) \
  287. || isnan(ubl.z_values[0][0]))
  288. #endif
  289. bool Running = true;
  290. uint8_t marlin_debug_flags = DEBUG_NONE;
  291. /**
  292. * Cartesian Current Position
  293. * Used to track the logical position as moves are queued.
  294. * Used by 'line_to_current_position' to do a move after changing it.
  295. * Used by 'SYNC_PLAN_POSITION_KINEMATIC' to update 'planner.position'.
  296. */
  297. float current_position[XYZE] = { 0.0 };
  298. /**
  299. * Cartesian Destination
  300. * A temporary position, usually applied to 'current_position'.
  301. * Set with 'gcode_get_destination' or 'set_destination_to_current'.
  302. * 'line_to_destination' sets 'current_position' to 'destination'.
  303. */
  304. float destination[XYZE] = { 0.0 };
  305. /**
  306. * axis_homed
  307. * Flags that each linear axis was homed.
  308. * XYZ on cartesian, ABC on delta, ABZ on SCARA.
  309. *
  310. * axis_known_position
  311. * Flags that the position is known in each linear axis. Set when homed.
  312. * Cleared whenever a stepper powers off, potentially losing its position.
  313. */
  314. bool axis_homed[XYZ] = { false }, axis_known_position[XYZ] = { false };
  315. /**
  316. * GCode line number handling. Hosts may opt to include line numbers when
  317. * sending commands to Marlin, and lines will be checked for sequentiality.
  318. * M110 N<int> sets the current line number.
  319. */
  320. static long gcode_N, gcode_LastN, Stopped_gcode_LastN = 0;
  321. /**
  322. * GCode Command Queue
  323. * A simple ring buffer of BUFSIZE command strings.
  324. *
  325. * Commands are copied into this buffer by the command injectors
  326. * (immediate, serial, sd card) and they are processed sequentially by
  327. * the main loop. The process_next_command function parses the next
  328. * command and hands off execution to individual handler functions.
  329. */
  330. uint8_t commands_in_queue = 0; // Count of commands in the queue
  331. static uint8_t cmd_queue_index_r = 0, // Ring buffer read position
  332. cmd_queue_index_w = 0; // Ring buffer write position
  333. static char command_queue[BUFSIZE][MAX_CMD_SIZE];
  334. /**
  335. * Current GCode Command
  336. * When a GCode handler is running, these will be set
  337. */
  338. static char *current_command, // The command currently being executed
  339. *current_command_args, // The address where arguments begin
  340. *seen_pointer; // Set by code_seen(), used by the code_value functions
  341. /**
  342. * Next Injected Command pointer. NULL if no commands are being injected.
  343. * Used by Marlin internally to ensure that commands initiated from within
  344. * are enqueued ahead of any pending serial or sd card commands.
  345. */
  346. static const char *injected_commands_P = NULL;
  347. #if ENABLED(INCH_MODE_SUPPORT)
  348. float linear_unit_factor = 1.0, volumetric_unit_factor = 1.0;
  349. #endif
  350. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  351. TempUnit input_temp_units = TEMPUNIT_C;
  352. #endif
  353. /**
  354. * Feed rates are often configured with mm/m
  355. * but the planner and stepper like mm/s units.
  356. */
  357. float constexpr homing_feedrate_mm_s[] = {
  358. #if ENABLED(DELTA)
  359. MMM_TO_MMS(HOMING_FEEDRATE_Z), MMM_TO_MMS(HOMING_FEEDRATE_Z),
  360. #else
  361. MMM_TO_MMS(HOMING_FEEDRATE_XY), MMM_TO_MMS(HOMING_FEEDRATE_XY),
  362. #endif
  363. MMM_TO_MMS(HOMING_FEEDRATE_Z), 0
  364. };
  365. static float feedrate_mm_s = MMM_TO_MMS(1500.0), saved_feedrate_mm_s;
  366. int feedrate_percentage = 100, saved_feedrate_percentage,
  367. flow_percentage[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(100);
  368. bool axis_relative_modes[] = AXIS_RELATIVE_MODES,
  369. volumetric_enabled =
  370. #if ENABLED(VOLUMETRIC_DEFAULT_ON)
  371. true
  372. #else
  373. false
  374. #endif
  375. ;
  376. float filament_size[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(DEFAULT_NOMINAL_FILAMENT_DIA),
  377. volumetric_multiplier[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(1.0);
  378. #if DISABLED(NO_WORKSPACE_OFFSETS)
  379. // The distance that XYZ has been offset by G92. Reset by G28.
  380. float position_shift[XYZ] = { 0 };
  381. // This offset is added to the configured home position.
  382. // Set by M206, M428, or menu item. Saved to EEPROM.
  383. float home_offset[XYZ] = { 0 };
  384. // The above two are combined to save on computes
  385. float workspace_offset[XYZ] = { 0 };
  386. #endif
  387. // Software Endstops are based on the configured limits.
  388. #if HAS_SOFTWARE_ENDSTOPS
  389. bool soft_endstops_enabled = true;
  390. #endif
  391. float soft_endstop_min[XYZ] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS },
  392. soft_endstop_max[XYZ] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  393. #if FAN_COUNT > 0
  394. int fanSpeeds[FAN_COUNT] = { 0 };
  395. #endif
  396. // The active extruder (tool). Set with T<extruder> command.
  397. uint8_t active_extruder = 0;
  398. // Relative Mode. Enable with G91, disable with G90.
  399. static bool relative_mode = false;
  400. // For M109 and M190, this flag may be cleared (by M108) to exit the wait loop
  401. volatile bool wait_for_heatup = true;
  402. // For M0/M1, this flag may be cleared (by M108) to exit the wait-for-user loop
  403. #if ENABLED(EMERGENCY_PARSER) || ENABLED(ULTIPANEL)
  404. volatile bool wait_for_user = false;
  405. #endif
  406. const char axis_codes[XYZE] = {'X', 'Y', 'Z', 'E'};
  407. // Number of characters read in the current line of serial input
  408. static int serial_count = 0;
  409. // Inactivity shutdown
  410. millis_t previous_cmd_ms = 0;
  411. static millis_t max_inactive_time = 0;
  412. static millis_t stepper_inactive_time = (DEFAULT_STEPPER_DEACTIVE_TIME) * 1000UL;
  413. // Print Job Timer
  414. #if ENABLED(PRINTCOUNTER)
  415. PrintCounter print_job_timer = PrintCounter();
  416. #else
  417. Stopwatch print_job_timer = Stopwatch();
  418. #endif
  419. // Buzzer - I2C on the LCD or a BEEPER_PIN
  420. #if ENABLED(LCD_USE_I2C_BUZZER)
  421. #define BUZZ(d,f) lcd_buzz(d, f)
  422. #elif PIN_EXISTS(BEEPER)
  423. Buzzer buzzer;
  424. #define BUZZ(d,f) buzzer.tone(d, f)
  425. #else
  426. #define BUZZ(d,f) NOOP
  427. #endif
  428. static uint8_t target_extruder;
  429. #if HAS_BED_PROBE
  430. float zprobe_zoffset = Z_PROBE_OFFSET_FROM_EXTRUDER;
  431. #endif
  432. #define PLANNER_XY_FEEDRATE() (min(planner.max_feedrate_mm_s[X_AXIS], planner.max_feedrate_mm_s[Y_AXIS]))
  433. #if HAS_ABL
  434. float xy_probe_feedrate_mm_s = MMM_TO_MMS(XY_PROBE_SPEED);
  435. #define XY_PROBE_FEEDRATE_MM_S xy_probe_feedrate_mm_s
  436. #elif defined(XY_PROBE_SPEED)
  437. #define XY_PROBE_FEEDRATE_MM_S MMM_TO_MMS(XY_PROBE_SPEED)
  438. #else
  439. #define XY_PROBE_FEEDRATE_MM_S PLANNER_XY_FEEDRATE()
  440. #endif
  441. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  442. #if ENABLED(DELTA)
  443. #define ADJUST_DELTA(V) \
  444. if (planner.abl_enabled) { \
  445. const float zadj = bilinear_z_offset(V); \
  446. delta[A_AXIS] += zadj; \
  447. delta[B_AXIS] += zadj; \
  448. delta[C_AXIS] += zadj; \
  449. }
  450. #else
  451. #define ADJUST_DELTA(V) if (planner.abl_enabled) { delta[Z_AXIS] += bilinear_z_offset(V); }
  452. #endif
  453. #elif IS_KINEMATIC
  454. #define ADJUST_DELTA(V) NOOP
  455. #endif
  456. #if ENABLED(Z_DUAL_ENDSTOPS)
  457. float z_endstop_adj =
  458. #ifdef Z_DUAL_ENDSTOPS_ADJUSTMENT
  459. Z_DUAL_ENDSTOPS_ADJUSTMENT
  460. #else
  461. 0
  462. #endif
  463. ;
  464. #endif
  465. // Extruder offsets
  466. #if HOTENDS > 1
  467. float hotend_offset[XYZ][HOTENDS];
  468. #endif
  469. #if HAS_Z_SERVO_ENDSTOP
  470. const int z_servo_angle[2] = Z_SERVO_ANGLES;
  471. #endif
  472. #if ENABLED(BARICUDA)
  473. int baricuda_valve_pressure = 0;
  474. int baricuda_e_to_p_pressure = 0;
  475. #endif
  476. #if ENABLED(FWRETRACT)
  477. bool autoretract_enabled = false;
  478. bool retracted[EXTRUDERS] = { false };
  479. bool retracted_swap[EXTRUDERS] = { false };
  480. float retract_length = RETRACT_LENGTH;
  481. float retract_length_swap = RETRACT_LENGTH_SWAP;
  482. float retract_feedrate_mm_s = RETRACT_FEEDRATE;
  483. float retract_zlift = RETRACT_ZLIFT;
  484. float retract_recover_length = RETRACT_RECOVER_LENGTH;
  485. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  486. float retract_recover_feedrate_mm_s = RETRACT_RECOVER_FEEDRATE;
  487. #endif // FWRETRACT
  488. #if ENABLED(ULTIPANEL) && HAS_POWER_SWITCH
  489. bool powersupply =
  490. #if ENABLED(PS_DEFAULT_OFF)
  491. false
  492. #else
  493. true
  494. #endif
  495. ;
  496. #endif
  497. #if HAS_CASE_LIGHT
  498. bool case_light_on =
  499. #if ENABLED(CASE_LIGHT_DEFAULT_ON)
  500. true
  501. #else
  502. false
  503. #endif
  504. ;
  505. #endif
  506. #if ENABLED(DELTA)
  507. float delta[ABC],
  508. endstop_adj[ABC] = { 0 };
  509. // These values are loaded or reset at boot time when setup() calls
  510. // Config_RetrieveSettings(), which calls recalc_delta_settings().
  511. float delta_radius,
  512. delta_tower_angle_trim[ABC],
  513. delta_tower[ABC][2],
  514. delta_diagonal_rod,
  515. delta_diagonal_rod_trim[ABC],
  516. delta_diagonal_rod_2_tower[ABC],
  517. delta_segments_per_second,
  518. delta_clip_start_height = Z_MAX_POS;
  519. float delta_safe_distance_from_top();
  520. #endif
  521. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  522. #define UNPROBED 9999.0f
  523. int bilinear_grid_spacing[2], bilinear_start[2];
  524. float bed_level_grid[ABL_GRID_MAX_POINTS_X][ABL_GRID_MAX_POINTS_Y];
  525. #endif
  526. #if IS_SCARA
  527. // Float constants for SCARA calculations
  528. const float L1 = SCARA_LINKAGE_1, L2 = SCARA_LINKAGE_2,
  529. L1_2 = sq(float(L1)), L1_2_2 = 2.0 * L1_2,
  530. L2_2 = sq(float(L2));
  531. float delta_segments_per_second = SCARA_SEGMENTS_PER_SECOND,
  532. delta[ABC];
  533. #endif
  534. float cartes[XYZ] = { 0 };
  535. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  536. bool filament_sensor = false; //M405 turns on filament_sensor control, M406 turns it off
  537. float filament_width_nominal = DEFAULT_NOMINAL_FILAMENT_DIA, // Nominal filament width. Change with M404
  538. filament_width_meas = DEFAULT_MEASURED_FILAMENT_DIA; // Measured filament diameter
  539. int8_t measurement_delay[MAX_MEASUREMENT_DELAY + 1]; // Ring buffer to delayed measurement. Store extruder factor after subtracting 100
  540. int filwidth_delay_index[2] = { 0, -1 }; // Indexes into ring buffer
  541. int meas_delay_cm = MEASUREMENT_DELAY_CM; //distance delay setting
  542. #endif
  543. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  544. static bool filament_ran_out = false;
  545. #endif
  546. #if ENABLED(FILAMENT_CHANGE_FEATURE)
  547. FilamentChangeMenuResponse filament_change_menu_response;
  548. #endif
  549. #if ENABLED(MIXING_EXTRUDER)
  550. float mixing_factor[MIXING_STEPPERS]; // Reciprocal of mix proportion. 0.0 = off, otherwise >= 1.0.
  551. #if MIXING_VIRTUAL_TOOLS > 1
  552. float mixing_virtual_tool_mix[MIXING_VIRTUAL_TOOLS][MIXING_STEPPERS];
  553. #endif
  554. #endif
  555. static bool send_ok[BUFSIZE];
  556. #if HAS_SERVOS
  557. Servo servo[NUM_SERVOS];
  558. #define MOVE_SERVO(I, P) servo[I].move(P)
  559. #if HAS_Z_SERVO_ENDSTOP
  560. #define DEPLOY_Z_SERVO() MOVE_SERVO(Z_ENDSTOP_SERVO_NR, z_servo_angle[0])
  561. #define STOW_Z_SERVO() MOVE_SERVO(Z_ENDSTOP_SERVO_NR, z_servo_angle[1])
  562. #endif
  563. #endif
  564. #ifdef CHDK
  565. millis_t chdkHigh = 0;
  566. bool chdkActive = false;
  567. #endif
  568. #if ENABLED(PID_EXTRUSION_SCALING)
  569. int lpq_len = 20;
  570. #endif
  571. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  572. MarlinBusyState busy_state = NOT_BUSY;
  573. static millis_t next_busy_signal_ms = 0;
  574. uint8_t host_keepalive_interval = DEFAULT_KEEPALIVE_INTERVAL;
  575. #else
  576. #define host_keepalive() NOOP
  577. #endif
  578. static inline float pgm_read_any(const float *p) { return pgm_read_float_near(p); }
  579. static inline signed char pgm_read_any(const signed char *p) { return pgm_read_byte_near(p); }
  580. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  581. static const PROGMEM type array##_P[XYZ] = { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  582. static inline type array(AxisEnum axis) { return pgm_read_any(&array##_P[axis]); }
  583. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS)
  584. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS)
  585. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS)
  586. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH)
  587. XYZ_CONSTS_FROM_CONFIG(float, home_bump_mm, HOME_BUMP_MM)
  588. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR)
  589. /**
  590. * ***************************************************************************
  591. * ******************************** FUNCTIONS ********************************
  592. * ***************************************************************************
  593. */
  594. void stop();
  595. void get_available_commands();
  596. void process_next_command();
  597. void prepare_move_to_destination();
  598. void get_cartesian_from_steppers();
  599. void set_current_from_steppers_for_axis(const AxisEnum axis);
  600. #if ENABLED(ARC_SUPPORT)
  601. void plan_arc(float target[XYZE], float* offset, uint8_t clockwise);
  602. #endif
  603. #if ENABLED(BEZIER_CURVE_SUPPORT)
  604. void plan_cubic_move(const float offset[4]);
  605. #endif
  606. void tool_change(const uint8_t tmp_extruder, const float fr_mm_s=0.0, bool no_move=false);
  607. static void report_current_position();
  608. #if ENABLED(DEBUG_LEVELING_FEATURE)
  609. void print_xyz(const char* prefix, const char* suffix, const float x, const float y, const float z) {
  610. serialprintPGM(prefix);
  611. SERIAL_ECHOPAIR("(", x);
  612. SERIAL_ECHOPAIR(", ", y);
  613. SERIAL_ECHOPAIR(", ", z);
  614. SERIAL_CHAR(')');
  615. if (suffix) serialprintPGM(suffix);
  616. else SERIAL_EOL;
  617. }
  618. void print_xyz(const char* prefix, const char* suffix, const float xyz[]) {
  619. print_xyz(prefix, suffix, xyz[X_AXIS], xyz[Y_AXIS], xyz[Z_AXIS]);
  620. }
  621. #if HAS_ABL
  622. void print_xyz(const char* prefix, const char* suffix, const vector_3 &xyz) {
  623. print_xyz(prefix, suffix, xyz.x, xyz.y, xyz.z);
  624. }
  625. #endif
  626. #define DEBUG_POS(SUFFIX,VAR) do { \
  627. print_xyz(PSTR(" " STRINGIFY(VAR) "="), PSTR(" : " SUFFIX "\n"), VAR); } while(0)
  628. #endif
  629. /**
  630. * sync_plan_position
  631. *
  632. * Set the planner/stepper positions directly from current_position with
  633. * no kinematic translation. Used for homing axes and cartesian/core syncing.
  634. */
  635. inline void sync_plan_position() {
  636. #if ENABLED(DEBUG_LEVELING_FEATURE)
  637. if (DEBUGGING(LEVELING)) DEBUG_POS("sync_plan_position", current_position);
  638. #endif
  639. planner.set_position_mm(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  640. }
  641. inline void sync_plan_position_e() { planner.set_e_position_mm(current_position[E_AXIS]); }
  642. #if IS_KINEMATIC
  643. inline void sync_plan_position_kinematic() {
  644. #if ENABLED(DEBUG_LEVELING_FEATURE)
  645. if (DEBUGGING(LEVELING)) DEBUG_POS("sync_plan_position_kinematic", current_position);
  646. #endif
  647. planner.set_position_mm_kinematic(current_position);
  648. }
  649. #define SYNC_PLAN_POSITION_KINEMATIC() sync_plan_position_kinematic()
  650. #else
  651. #define SYNC_PLAN_POSITION_KINEMATIC() sync_plan_position()
  652. #endif
  653. #if ENABLED(SDSUPPORT)
  654. #include "SdFatUtil.h"
  655. int freeMemory() { return SdFatUtil::FreeRam(); }
  656. #else
  657. extern "C" {
  658. extern char __bss_end;
  659. extern char __heap_start;
  660. extern void* __brkval;
  661. int freeMemory() {
  662. int free_memory;
  663. if ((int)__brkval == 0)
  664. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  665. else
  666. free_memory = ((int)&free_memory) - ((int)__brkval);
  667. return free_memory;
  668. }
  669. }
  670. #endif //!SDSUPPORT
  671. #if ENABLED(DIGIPOT_I2C)
  672. extern void digipot_i2c_set_current(int channel, float current);
  673. extern void digipot_i2c_init();
  674. #endif
  675. /**
  676. * Inject the next "immediate" command, when possible, onto the front of the queue.
  677. * Return true if any immediate commands remain to inject.
  678. */
  679. static bool drain_injected_commands_P() {
  680. if (injected_commands_P != NULL) {
  681. size_t i = 0;
  682. char c, cmd[30];
  683. strncpy_P(cmd, injected_commands_P, sizeof(cmd) - 1);
  684. cmd[sizeof(cmd) - 1] = '\0';
  685. while ((c = cmd[i]) && c != '\n') i++; // find the end of this gcode command
  686. cmd[i] = '\0';
  687. if (enqueue_and_echo_command(cmd)) // success?
  688. injected_commands_P = c ? injected_commands_P + i + 1 : NULL; // next command or done
  689. }
  690. return (injected_commands_P != NULL); // return whether any more remain
  691. }
  692. /**
  693. * Record one or many commands to run from program memory.
  694. * Aborts the current queue, if any.
  695. * Note: drain_injected_commands_P() must be called repeatedly to drain the commands afterwards
  696. */
  697. void enqueue_and_echo_commands_P(const char* pgcode) {
  698. injected_commands_P = pgcode;
  699. drain_injected_commands_P(); // first command executed asap (when possible)
  700. }
  701. /**
  702. * Clear the Marlin command queue
  703. */
  704. void clear_command_queue() {
  705. cmd_queue_index_r = cmd_queue_index_w;
  706. commands_in_queue = 0;
  707. }
  708. /**
  709. * Once a new command is in the ring buffer, call this to commit it
  710. */
  711. inline void _commit_command(bool say_ok) {
  712. send_ok[cmd_queue_index_w] = say_ok;
  713. cmd_queue_index_w = (cmd_queue_index_w + 1) % BUFSIZE;
  714. commands_in_queue++;
  715. }
  716. /**
  717. * Copy a command from RAM into the main command buffer.
  718. * Return true if the command was successfully added.
  719. * Return false for a full buffer, or if the 'command' is a comment.
  720. */
  721. inline bool _enqueuecommand(const char* cmd, bool say_ok=false) {
  722. if (*cmd == ';' || commands_in_queue >= BUFSIZE) return false;
  723. strcpy(command_queue[cmd_queue_index_w], cmd);
  724. _commit_command(say_ok);
  725. return true;
  726. }
  727. /**
  728. * Enqueue with Serial Echo
  729. */
  730. bool enqueue_and_echo_command(const char* cmd, bool say_ok/*=false*/) {
  731. if (_enqueuecommand(cmd, say_ok)) {
  732. SERIAL_ECHO_START;
  733. SERIAL_ECHOPAIR(MSG_ENQUEUEING, cmd);
  734. SERIAL_CHAR('"');
  735. SERIAL_EOL;
  736. return true;
  737. }
  738. return false;
  739. }
  740. void setup_killpin() {
  741. #if HAS_KILL
  742. SET_INPUT_PULLUP(KILL_PIN);
  743. #endif
  744. }
  745. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  746. void setup_filrunoutpin() {
  747. #if ENABLED(ENDSTOPPULLUP_FIL_RUNOUT)
  748. SET_INPUT_PULLUP(FIL_RUNOUT_PIN);
  749. #else
  750. SET_INPUT(FIL_RUNOUT_PIN);
  751. #endif
  752. }
  753. #endif
  754. void setup_homepin(void) {
  755. #if HAS_HOME
  756. SET_INPUT_PULLUP(HOME_PIN);
  757. #endif
  758. }
  759. void setup_powerhold() {
  760. #if HAS_SUICIDE
  761. OUT_WRITE(SUICIDE_PIN, HIGH);
  762. #endif
  763. #if HAS_POWER_SWITCH
  764. #if ENABLED(PS_DEFAULT_OFF)
  765. OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  766. #else
  767. OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE);
  768. #endif
  769. #endif
  770. }
  771. void suicide() {
  772. #if HAS_SUICIDE
  773. OUT_WRITE(SUICIDE_PIN, LOW);
  774. #endif
  775. }
  776. void servo_init() {
  777. #if NUM_SERVOS >= 1 && HAS_SERVO_0
  778. servo[0].attach(SERVO0_PIN);
  779. servo[0].detach(); // Just set up the pin. We don't have a position yet. Don't move to a random position.
  780. #endif
  781. #if NUM_SERVOS >= 2 && HAS_SERVO_1
  782. servo[1].attach(SERVO1_PIN);
  783. servo[1].detach();
  784. #endif
  785. #if NUM_SERVOS >= 3 && HAS_SERVO_2
  786. servo[2].attach(SERVO2_PIN);
  787. servo[2].detach();
  788. #endif
  789. #if NUM_SERVOS >= 4 && HAS_SERVO_3
  790. servo[3].attach(SERVO3_PIN);
  791. servo[3].detach();
  792. #endif
  793. #if HAS_Z_SERVO_ENDSTOP
  794. /**
  795. * Set position of Z Servo Endstop
  796. *
  797. * The servo might be deployed and positioned too low to stow
  798. * when starting up the machine or rebooting the board.
  799. * There's no way to know where the nozzle is positioned until
  800. * homing has been done - no homing with z-probe without init!
  801. *
  802. */
  803. STOW_Z_SERVO();
  804. #endif
  805. }
  806. /**
  807. * Stepper Reset (RigidBoard, et.al.)
  808. */
  809. #if HAS_STEPPER_RESET
  810. void disableStepperDrivers() {
  811. OUT_WRITE(STEPPER_RESET_PIN, LOW); // drive it down to hold in reset motor driver chips
  812. }
  813. void enableStepperDrivers() { SET_INPUT(STEPPER_RESET_PIN); } // set to input, which allows it to be pulled high by pullups
  814. #endif
  815. #if ENABLED(EXPERIMENTAL_I2CBUS) && I2C_SLAVE_ADDRESS > 0
  816. void i2c_on_receive(int bytes) { // just echo all bytes received to serial
  817. i2c.receive(bytes);
  818. }
  819. void i2c_on_request() { // just send dummy data for now
  820. i2c.reply("Hello World!\n");
  821. }
  822. #endif
  823. void gcode_line_error(const char* err, bool doFlush = true) {
  824. SERIAL_ERROR_START;
  825. serialprintPGM(err);
  826. SERIAL_ERRORLN(gcode_LastN);
  827. //Serial.println(gcode_N);
  828. if (doFlush) FlushSerialRequestResend();
  829. serial_count = 0;
  830. }
  831. /**
  832. * Get all commands waiting on the serial port and queue them.
  833. * Exit when the buffer is full or when no more characters are
  834. * left on the serial port.
  835. */
  836. inline void get_serial_commands() {
  837. static char serial_line_buffer[MAX_CMD_SIZE];
  838. static bool serial_comment_mode = false;
  839. // If the command buffer is empty for too long,
  840. // send "wait" to indicate Marlin is still waiting.
  841. #if defined(NO_TIMEOUTS) && NO_TIMEOUTS > 0
  842. static millis_t last_command_time = 0;
  843. const millis_t ms = millis();
  844. if (commands_in_queue == 0 && !MYSERIAL.available() && ELAPSED(ms, last_command_time + NO_TIMEOUTS)) {
  845. SERIAL_ECHOLNPGM(MSG_WAIT);
  846. last_command_time = ms;
  847. }
  848. #endif
  849. /**
  850. * Loop while serial characters are incoming and the queue is not full
  851. */
  852. while (commands_in_queue < BUFSIZE && MYSERIAL.available() > 0) {
  853. char serial_char = MYSERIAL.read();
  854. /**
  855. * If the character ends the line
  856. */
  857. if (serial_char == '\n' || serial_char == '\r') {
  858. serial_comment_mode = false; // end of line == end of comment
  859. if (!serial_count) continue; // skip empty lines
  860. serial_line_buffer[serial_count] = 0; // terminate string
  861. serial_count = 0; //reset buffer
  862. char* command = serial_line_buffer;
  863. while (*command == ' ') command++; // skip any leading spaces
  864. char* npos = (*command == 'N') ? command : NULL; // Require the N parameter to start the line
  865. char* apos = strchr(command, '*');
  866. if (npos) {
  867. bool M110 = strstr_P(command, PSTR("M110")) != NULL;
  868. if (M110) {
  869. char* n2pos = strchr(command + 4, 'N');
  870. if (n2pos) npos = n2pos;
  871. }
  872. gcode_N = strtol(npos + 1, NULL, 10);
  873. if (gcode_N != gcode_LastN + 1 && !M110) {
  874. gcode_line_error(PSTR(MSG_ERR_LINE_NO));
  875. return;
  876. }
  877. if (apos) {
  878. byte checksum = 0, count = 0;
  879. while (command[count] != '*') checksum ^= command[count++];
  880. if (strtol(apos + 1, NULL, 10) != checksum) {
  881. gcode_line_error(PSTR(MSG_ERR_CHECKSUM_MISMATCH));
  882. return;
  883. }
  884. // if no errors, continue parsing
  885. }
  886. else {
  887. gcode_line_error(PSTR(MSG_ERR_NO_CHECKSUM));
  888. return;
  889. }
  890. gcode_LastN = gcode_N;
  891. // if no errors, continue parsing
  892. }
  893. else if (apos) { // No '*' without 'N'
  894. gcode_line_error(PSTR(MSG_ERR_NO_LINENUMBER_WITH_CHECKSUM), false);
  895. return;
  896. }
  897. // Movement commands alert when stopped
  898. if (IsStopped()) {
  899. char* gpos = strchr(command, 'G');
  900. if (gpos) {
  901. int codenum = strtol(gpos + 1, NULL, 10);
  902. switch (codenum) {
  903. case 0:
  904. case 1:
  905. case 2:
  906. case 3:
  907. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  908. LCD_MESSAGEPGM(MSG_STOPPED);
  909. break;
  910. }
  911. }
  912. }
  913. #if DISABLED(EMERGENCY_PARSER)
  914. // If command was e-stop process now
  915. if (strcmp(command, "M108") == 0) {
  916. wait_for_heatup = false;
  917. #if ENABLED(ULTIPANEL)
  918. wait_for_user = false;
  919. #endif
  920. }
  921. if (strcmp(command, "M112") == 0) kill(PSTR(MSG_KILLED));
  922. if (strcmp(command, "M410") == 0) { quickstop_stepper(); }
  923. #endif
  924. #if defined(NO_TIMEOUTS) && NO_TIMEOUTS > 0
  925. last_command_time = ms;
  926. #endif
  927. // Add the command to the queue
  928. _enqueuecommand(serial_line_buffer, true);
  929. }
  930. else if (serial_count >= MAX_CMD_SIZE - 1) {
  931. // Keep fetching, but ignore normal characters beyond the max length
  932. // The command will be injected when EOL is reached
  933. }
  934. else if (serial_char == '\\') { // Handle escapes
  935. if (MYSERIAL.available() > 0) {
  936. // if we have one more character, copy it over
  937. serial_char = MYSERIAL.read();
  938. if (!serial_comment_mode) serial_line_buffer[serial_count++] = serial_char;
  939. }
  940. // otherwise do nothing
  941. }
  942. else { // it's not a newline, carriage return or escape char
  943. if (serial_char == ';') serial_comment_mode = true;
  944. if (!serial_comment_mode) serial_line_buffer[serial_count++] = serial_char;
  945. }
  946. } // queue has space, serial has data
  947. }
  948. #if ENABLED(SDSUPPORT)
  949. /**
  950. * Get commands from the SD Card until the command buffer is full
  951. * or until the end of the file is reached. The special character '#'
  952. * can also interrupt buffering.
  953. */
  954. inline void get_sdcard_commands() {
  955. static bool stop_buffering = false,
  956. sd_comment_mode = false;
  957. if (!card.sdprinting) return;
  958. /**
  959. * '#' stops reading from SD to the buffer prematurely, so procedural
  960. * macro calls are possible. If it occurs, stop_buffering is triggered
  961. * and the buffer is run dry; this character _can_ occur in serial com
  962. * due to checksums, however, no checksums are used in SD printing.
  963. */
  964. if (commands_in_queue == 0) stop_buffering = false;
  965. uint16_t sd_count = 0;
  966. bool card_eof = card.eof();
  967. while (commands_in_queue < BUFSIZE && !card_eof && !stop_buffering) {
  968. const int16_t n = card.get();
  969. char sd_char = (char)n;
  970. card_eof = card.eof();
  971. if (card_eof || n == -1
  972. || sd_char == '\n' || sd_char == '\r'
  973. || ((sd_char == '#' || sd_char == ':') && !sd_comment_mode)
  974. ) {
  975. if (card_eof) {
  976. SERIAL_PROTOCOLLNPGM(MSG_FILE_PRINTED);
  977. card.printingHasFinished();
  978. card.checkautostart(true);
  979. }
  980. else if (n == -1) {
  981. SERIAL_ERROR_START;
  982. SERIAL_ECHOLNPGM(MSG_SD_ERR_READ);
  983. }
  984. if (sd_char == '#') stop_buffering = true;
  985. sd_comment_mode = false; // for new command
  986. if (!sd_count) continue; // skip empty lines (and comment lines)
  987. command_queue[cmd_queue_index_w][sd_count] = '\0'; // terminate string
  988. sd_count = 0; // clear sd line buffer
  989. _commit_command(false);
  990. }
  991. else if (sd_count >= MAX_CMD_SIZE - 1) {
  992. /**
  993. * Keep fetching, but ignore normal characters beyond the max length
  994. * The command will be injected when EOL is reached
  995. */
  996. }
  997. else {
  998. if (sd_char == ';') sd_comment_mode = true;
  999. if (!sd_comment_mode) command_queue[cmd_queue_index_w][sd_count++] = sd_char;
  1000. }
  1001. }
  1002. }
  1003. #endif // SDSUPPORT
  1004. /**
  1005. * Add to the circular command queue the next command from:
  1006. * - The command-injection queue (injected_commands_P)
  1007. * - The active serial input (usually USB)
  1008. * - The SD card file being actively printed
  1009. */
  1010. void get_available_commands() {
  1011. // if any immediate commands remain, don't get other commands yet
  1012. if (drain_injected_commands_P()) return;
  1013. get_serial_commands();
  1014. #if ENABLED(SDSUPPORT)
  1015. get_sdcard_commands();
  1016. #endif
  1017. }
  1018. inline bool code_has_value() {
  1019. int i = 1;
  1020. char c = seen_pointer[i];
  1021. while (c == ' ') c = seen_pointer[++i];
  1022. if (c == '-' || c == '+') c = seen_pointer[++i];
  1023. if (c == '.') c = seen_pointer[++i];
  1024. return NUMERIC(c);
  1025. }
  1026. inline float code_value_float() {
  1027. char* e = strchr(seen_pointer, 'E');
  1028. if (!e) return strtod(seen_pointer + 1, NULL);
  1029. *e = 0;
  1030. float ret = strtod(seen_pointer + 1, NULL);
  1031. *e = 'E';
  1032. return ret;
  1033. }
  1034. inline unsigned long code_value_ulong() { return strtoul(seen_pointer + 1, NULL, 10); }
  1035. inline long code_value_long() { return strtol(seen_pointer + 1, NULL, 10); }
  1036. inline int code_value_int() { return (int)strtol(seen_pointer + 1, NULL, 10); }
  1037. inline uint16_t code_value_ushort() { return (uint16_t)strtoul(seen_pointer + 1, NULL, 10); }
  1038. inline uint8_t code_value_byte() { return (uint8_t)(constrain(strtol(seen_pointer + 1, NULL, 10), 0, 255)); }
  1039. inline bool code_value_bool() { return !code_has_value() || code_value_byte() > 0; }
  1040. #if ENABLED(INCH_MODE_SUPPORT)
  1041. inline void set_input_linear_units(LinearUnit units) {
  1042. switch (units) {
  1043. case LINEARUNIT_INCH:
  1044. linear_unit_factor = 25.4;
  1045. break;
  1046. case LINEARUNIT_MM:
  1047. default:
  1048. linear_unit_factor = 1.0;
  1049. break;
  1050. }
  1051. volumetric_unit_factor = pow(linear_unit_factor, 3.0);
  1052. }
  1053. inline float axis_unit_factor(int axis) {
  1054. return (axis >= E_AXIS && volumetric_enabled ? volumetric_unit_factor : linear_unit_factor);
  1055. }
  1056. inline float code_value_linear_units() { return code_value_float() * linear_unit_factor; }
  1057. inline float code_value_axis_units(int axis) { return code_value_float() * axis_unit_factor(axis); }
  1058. inline float code_value_per_axis_unit(int axis) { return code_value_float() / axis_unit_factor(axis); }
  1059. #else
  1060. inline float code_value_linear_units() { return code_value_float(); }
  1061. inline float code_value_axis_units(int axis) { UNUSED(axis); return code_value_float(); }
  1062. inline float code_value_per_axis_unit(int axis) { UNUSED(axis); return code_value_float(); }
  1063. #endif
  1064. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  1065. inline void set_input_temp_units(TempUnit units) { input_temp_units = units; }
  1066. float code_value_temp_abs() {
  1067. switch (input_temp_units) {
  1068. case TEMPUNIT_C:
  1069. return code_value_float();
  1070. case TEMPUNIT_F:
  1071. return (code_value_float() - 32) * 0.5555555556;
  1072. case TEMPUNIT_K:
  1073. return code_value_float() - 273.15;
  1074. default:
  1075. return code_value_float();
  1076. }
  1077. }
  1078. float code_value_temp_diff() {
  1079. switch (input_temp_units) {
  1080. case TEMPUNIT_C:
  1081. case TEMPUNIT_K:
  1082. return code_value_float();
  1083. case TEMPUNIT_F:
  1084. return code_value_float() * 0.5555555556;
  1085. default:
  1086. return code_value_float();
  1087. }
  1088. }
  1089. #else
  1090. float code_value_temp_abs() { return code_value_float(); }
  1091. float code_value_temp_diff() { return code_value_float(); }
  1092. #endif
  1093. FORCE_INLINE millis_t code_value_millis() { return code_value_ulong(); }
  1094. inline millis_t code_value_millis_from_seconds() { return code_value_float() * 1000; }
  1095. bool code_seen(char code) {
  1096. seen_pointer = strchr(current_command_args, code);
  1097. return (seen_pointer != NULL); // Return TRUE if the code-letter was found
  1098. }
  1099. /**
  1100. * Set target_extruder from the T parameter or the active_extruder
  1101. *
  1102. * Returns TRUE if the target is invalid
  1103. */
  1104. bool get_target_extruder_from_command(int code) {
  1105. if (code_seen('T')) {
  1106. if (code_value_byte() >= EXTRUDERS) {
  1107. SERIAL_ECHO_START;
  1108. SERIAL_CHAR('M');
  1109. SERIAL_ECHO(code);
  1110. SERIAL_ECHOLNPAIR(" " MSG_INVALID_EXTRUDER " ", code_value_byte());
  1111. return true;
  1112. }
  1113. target_extruder = code_value_byte();
  1114. }
  1115. else
  1116. target_extruder = active_extruder;
  1117. return false;
  1118. }
  1119. #if ENABLED(DUAL_X_CARRIAGE) || ENABLED(DUAL_NOZZLE_DUPLICATION_MODE)
  1120. bool extruder_duplication_enabled = false; // Used in Dual X mode 2
  1121. #endif
  1122. #if ENABLED(DUAL_X_CARRIAGE)
  1123. static DualXMode dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  1124. static float x_home_pos(const int extruder) {
  1125. if (extruder == 0)
  1126. return LOGICAL_X_POSITION(base_home_pos(X_AXIS));
  1127. else
  1128. /**
  1129. * In dual carriage mode the extruder offset provides an override of the
  1130. * second X-carriage position when homed - otherwise X2_HOME_POS is used.
  1131. * This allows soft recalibration of the second extruder home position
  1132. * without firmware reflash (through the M218 command).
  1133. */
  1134. return LOGICAL_X_POSITION(hotend_offset[X_AXIS][1] > 0 ? hotend_offset[X_AXIS][1] : X2_HOME_POS);
  1135. }
  1136. static int x_home_dir(const int extruder) { return extruder ? X2_HOME_DIR : X_HOME_DIR; }
  1137. static float inactive_extruder_x_pos = X2_MAX_POS; // used in mode 0 & 1
  1138. static bool active_extruder_parked = false; // used in mode 1 & 2
  1139. static float raised_parked_position[XYZE]; // used in mode 1
  1140. static millis_t delayed_move_time = 0; // used in mode 1
  1141. static float duplicate_extruder_x_offset = DEFAULT_DUPLICATION_X_OFFSET; // used in mode 2
  1142. static float duplicate_extruder_temp_offset = 0; // used in mode 2
  1143. #endif // DUAL_X_CARRIAGE
  1144. #if DISABLED(NO_WORKSPACE_OFFSETS) || ENABLED(DUAL_X_CARRIAGE) || ENABLED(DELTA)
  1145. /**
  1146. * Software endstops can be used to monitor the open end of
  1147. * an axis that has a hardware endstop on the other end. Or
  1148. * they can prevent axes from moving past endstops and grinding.
  1149. *
  1150. * To keep doing their job as the coordinate system changes,
  1151. * the software endstop positions must be refreshed to remain
  1152. * at the same positions relative to the machine.
  1153. */
  1154. void update_software_endstops(const AxisEnum axis) {
  1155. const float offs = workspace_offset[axis] = home_offset[axis] + position_shift[axis];
  1156. #if ENABLED(DUAL_X_CARRIAGE)
  1157. if (axis == X_AXIS) {
  1158. // In Dual X mode hotend_offset[X] is T1's home position
  1159. float dual_max_x = max(hotend_offset[X_AXIS][1], X2_MAX_POS);
  1160. if (active_extruder != 0) {
  1161. // T1 can move from X2_MIN_POS to X2_MAX_POS or X2 home position (whichever is larger)
  1162. soft_endstop_min[X_AXIS] = X2_MIN_POS + offs;
  1163. soft_endstop_max[X_AXIS] = dual_max_x + offs;
  1164. }
  1165. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE) {
  1166. // In Duplication Mode, T0 can move as far left as X_MIN_POS
  1167. // but not so far to the right that T1 would move past the end
  1168. soft_endstop_min[X_AXIS] = base_min_pos(X_AXIS) + offs;
  1169. soft_endstop_max[X_AXIS] = min(base_max_pos(X_AXIS), dual_max_x - duplicate_extruder_x_offset) + offs;
  1170. }
  1171. else {
  1172. // In other modes, T0 can move from X_MIN_POS to X_MAX_POS
  1173. soft_endstop_min[axis] = base_min_pos(axis) + offs;
  1174. soft_endstop_max[axis] = base_max_pos(axis) + offs;
  1175. }
  1176. }
  1177. #else
  1178. soft_endstop_min[axis] = base_min_pos(axis) + offs;
  1179. soft_endstop_max[axis] = base_max_pos(axis) + offs;
  1180. #endif
  1181. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1182. if (DEBUGGING(LEVELING)) {
  1183. SERIAL_ECHOPAIR("For ", axis_codes[axis]);
  1184. #if DISABLED(NO_WORKSPACE_OFFSETS)
  1185. SERIAL_ECHOPAIR(" axis:\n home_offset = ", home_offset[axis]);
  1186. SERIAL_ECHOPAIR("\n position_shift = ", position_shift[axis]);
  1187. #endif
  1188. SERIAL_ECHOPAIR("\n soft_endstop_min = ", soft_endstop_min[axis]);
  1189. SERIAL_ECHOLNPAIR("\n soft_endstop_max = ", soft_endstop_max[axis]);
  1190. }
  1191. #endif
  1192. #if ENABLED(DELTA)
  1193. if (axis == Z_AXIS)
  1194. delta_clip_start_height = soft_endstop_max[axis] - delta_safe_distance_from_top();
  1195. #endif
  1196. }
  1197. #endif // NO_WORKSPACE_OFFSETS
  1198. #if DISABLED(NO_WORKSPACE_OFFSETS)
  1199. /**
  1200. * Change the home offset for an axis, update the current
  1201. * position and the software endstops to retain the same
  1202. * relative distance to the new home.
  1203. *
  1204. * Since this changes the current_position, code should
  1205. * call sync_plan_position soon after this.
  1206. */
  1207. static void set_home_offset(const AxisEnum axis, const float v) {
  1208. current_position[axis] += v - home_offset[axis];
  1209. home_offset[axis] = v;
  1210. update_software_endstops(axis);
  1211. }
  1212. #endif // NO_WORKSPACE_OFFSETS
  1213. /**
  1214. * Set an axis' current position to its home position (after homing).
  1215. *
  1216. * For Core and Cartesian robots this applies one-to-one when an
  1217. * individual axis has been homed.
  1218. *
  1219. * DELTA should wait until all homing is done before setting the XYZ
  1220. * current_position to home, because homing is a single operation.
  1221. * In the case where the axis positions are already known and previously
  1222. * homed, DELTA could home to X or Y individually by moving either one
  1223. * to the center. However, homing Z always homes XY and Z.
  1224. *
  1225. * SCARA should wait until all XY homing is done before setting the XY
  1226. * current_position to home, because neither X nor Y is at home until
  1227. * both are at home. Z can however be homed individually.
  1228. *
  1229. * Callers must sync the planner position after calling this!
  1230. */
  1231. static void set_axis_is_at_home(AxisEnum axis) {
  1232. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1233. if (DEBUGGING(LEVELING)) {
  1234. SERIAL_ECHOPAIR(">>> set_axis_is_at_home(", axis_codes[axis]);
  1235. SERIAL_CHAR(')');
  1236. SERIAL_EOL;
  1237. }
  1238. #endif
  1239. axis_known_position[axis] = axis_homed[axis] = true;
  1240. #if DISABLED(NO_WORKSPACE_OFFSETS)
  1241. position_shift[axis] = 0;
  1242. update_software_endstops(axis);
  1243. #endif
  1244. #if ENABLED(DUAL_X_CARRIAGE)
  1245. if (axis == X_AXIS && (active_extruder == 1 || dual_x_carriage_mode == DXC_DUPLICATION_MODE)) {
  1246. current_position[X_AXIS] = x_home_pos(active_extruder);
  1247. return;
  1248. }
  1249. #endif
  1250. #if ENABLED(MORGAN_SCARA)
  1251. /**
  1252. * Morgan SCARA homes XY at the same time
  1253. */
  1254. if (axis == X_AXIS || axis == Y_AXIS) {
  1255. float homeposition[XYZ];
  1256. LOOP_XYZ(i) homeposition[i] = LOGICAL_POSITION(base_home_pos((AxisEnum)i), i);
  1257. // SERIAL_ECHOPAIR("homeposition X:", homeposition[X_AXIS]);
  1258. // SERIAL_ECHOLNPAIR(" Y:", homeposition[Y_AXIS]);
  1259. /**
  1260. * Get Home position SCARA arm angles using inverse kinematics,
  1261. * and calculate homing offset using forward kinematics
  1262. */
  1263. inverse_kinematics(homeposition);
  1264. forward_kinematics_SCARA(delta[A_AXIS], delta[B_AXIS]);
  1265. // SERIAL_ECHOPAIR("Cartesian X:", cartes[X_AXIS]);
  1266. // SERIAL_ECHOLNPAIR(" Y:", cartes[Y_AXIS]);
  1267. current_position[axis] = LOGICAL_POSITION(cartes[axis], axis);
  1268. /**
  1269. * SCARA home positions are based on configuration since the actual
  1270. * limits are determined by the inverse kinematic transform.
  1271. */
  1272. soft_endstop_min[axis] = base_min_pos(axis); // + (cartes[axis] - base_home_pos(axis));
  1273. soft_endstop_max[axis] = base_max_pos(axis); // + (cartes[axis] - base_home_pos(axis));
  1274. }
  1275. else
  1276. #endif
  1277. {
  1278. current_position[axis] = LOGICAL_POSITION(base_home_pos(axis), axis);
  1279. }
  1280. /**
  1281. * Z Probe Z Homing? Account for the probe's Z offset.
  1282. */
  1283. #if HAS_BED_PROBE && Z_HOME_DIR < 0
  1284. if (axis == Z_AXIS) {
  1285. #if HOMING_Z_WITH_PROBE
  1286. current_position[Z_AXIS] -= zprobe_zoffset;
  1287. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1288. if (DEBUGGING(LEVELING)) {
  1289. SERIAL_ECHOLNPGM("*** Z HOMED WITH PROBE (Z_MIN_PROBE_USES_Z_MIN_ENDSTOP_PIN) ***");
  1290. SERIAL_ECHOLNPAIR("> zprobe_zoffset = ", zprobe_zoffset);
  1291. }
  1292. #endif
  1293. #elif ENABLED(DEBUG_LEVELING_FEATURE)
  1294. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("*** Z HOMED TO ENDSTOP (Z_MIN_PROBE_ENDSTOP) ***");
  1295. #endif
  1296. }
  1297. #endif
  1298. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1299. if (DEBUGGING(LEVELING)) {
  1300. #if DISABLED(NO_WORKSPACE_OFFSETS)
  1301. SERIAL_ECHOPAIR("> home_offset[", axis_codes[axis]);
  1302. SERIAL_ECHOLNPAIR("] = ", home_offset[axis]);
  1303. #endif
  1304. DEBUG_POS("", current_position);
  1305. SERIAL_ECHOPAIR("<<< set_axis_is_at_home(", axis_codes[axis]);
  1306. SERIAL_CHAR(')');
  1307. SERIAL_EOL;
  1308. }
  1309. #endif
  1310. }
  1311. /**
  1312. * Some planner shorthand inline functions
  1313. */
  1314. inline float get_homing_bump_feedrate(AxisEnum axis) {
  1315. int constexpr homing_bump_divisor[] = HOMING_BUMP_DIVISOR;
  1316. int hbd = homing_bump_divisor[axis];
  1317. if (hbd < 1) {
  1318. hbd = 10;
  1319. SERIAL_ECHO_START;
  1320. SERIAL_ECHOLNPGM("Warning: Homing Bump Divisor < 1");
  1321. }
  1322. return homing_feedrate_mm_s[axis] / hbd;
  1323. }
  1324. //
  1325. // line_to_current_position
  1326. // Move the planner to the current position from wherever it last moved
  1327. // (or from wherever it has been told it is located).
  1328. //
  1329. inline void line_to_current_position() {
  1330. planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate_mm_s, active_extruder);
  1331. }
  1332. //
  1333. // line_to_destination
  1334. // Move the planner, not necessarily synced with current_position
  1335. //
  1336. inline void line_to_destination(float fr_mm_s) {
  1337. planner.buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], fr_mm_s, active_extruder);
  1338. }
  1339. inline void line_to_destination() { line_to_destination(feedrate_mm_s); }
  1340. inline void set_current_to_destination() { COPY(current_position, destination); }
  1341. inline void set_destination_to_current() { COPY(destination, current_position); }
  1342. #if IS_KINEMATIC
  1343. /**
  1344. * Calculate delta, start a line, and set current_position to destination
  1345. */
  1346. void prepare_uninterpolated_move_to_destination(const float fr_mm_s=0.0) {
  1347. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1348. if (DEBUGGING(LEVELING)) DEBUG_POS("prepare_uninterpolated_move_to_destination", destination);
  1349. #endif
  1350. if ( current_position[X_AXIS] == destination[X_AXIS]
  1351. && current_position[Y_AXIS] == destination[Y_AXIS]
  1352. && current_position[Z_AXIS] == destination[Z_AXIS]
  1353. && current_position[E_AXIS] == destination[E_AXIS]
  1354. ) return;
  1355. refresh_cmd_timeout();
  1356. planner.buffer_line_kinematic(destination, MMS_SCALED(fr_mm_s ? fr_mm_s : feedrate_mm_s), active_extruder);
  1357. set_current_to_destination();
  1358. }
  1359. #endif // IS_KINEMATIC
  1360. /**
  1361. * Plan a move to (X, Y, Z) and set the current_position
  1362. * The final current_position may not be the one that was requested
  1363. */
  1364. void do_blocking_move_to(const float &x, const float &y, const float &z, const float &fr_mm_s /*=0.0*/) {
  1365. const float old_feedrate_mm_s = feedrate_mm_s;
  1366. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1367. if (DEBUGGING(LEVELING)) print_xyz(PSTR(">>> do_blocking_move_to"), NULL, x, y, z);
  1368. #endif
  1369. #if ENABLED(DELTA)
  1370. feedrate_mm_s = fr_mm_s ? fr_mm_s : XY_PROBE_FEEDRATE_MM_S;
  1371. set_destination_to_current(); // sync destination at the start
  1372. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1373. if (DEBUGGING(LEVELING)) DEBUG_POS("set_destination_to_current", destination);
  1374. #endif
  1375. // when in the danger zone
  1376. if (current_position[Z_AXIS] > delta_clip_start_height) {
  1377. if (z > delta_clip_start_height) { // staying in the danger zone
  1378. destination[X_AXIS] = x; // move directly (uninterpolated)
  1379. destination[Y_AXIS] = y;
  1380. destination[Z_AXIS] = z;
  1381. prepare_uninterpolated_move_to_destination(); // set_current_to_destination
  1382. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1383. if (DEBUGGING(LEVELING)) DEBUG_POS("danger zone move", current_position);
  1384. #endif
  1385. return;
  1386. }
  1387. else {
  1388. destination[Z_AXIS] = delta_clip_start_height;
  1389. prepare_uninterpolated_move_to_destination(); // set_current_to_destination
  1390. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1391. if (DEBUGGING(LEVELING)) DEBUG_POS("zone border move", current_position);
  1392. #endif
  1393. }
  1394. }
  1395. if (z > current_position[Z_AXIS]) { // raising?
  1396. destination[Z_AXIS] = z;
  1397. prepare_uninterpolated_move_to_destination(); // set_current_to_destination
  1398. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1399. if (DEBUGGING(LEVELING)) DEBUG_POS("z raise move", current_position);
  1400. #endif
  1401. }
  1402. destination[X_AXIS] = x;
  1403. destination[Y_AXIS] = y;
  1404. prepare_move_to_destination(); // set_current_to_destination
  1405. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1406. if (DEBUGGING(LEVELING)) DEBUG_POS("xy move", current_position);
  1407. #endif
  1408. if (z < current_position[Z_AXIS]) { // lowering?
  1409. destination[Z_AXIS] = z;
  1410. prepare_uninterpolated_move_to_destination(); // set_current_to_destination
  1411. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1412. if (DEBUGGING(LEVELING)) DEBUG_POS("z lower move", current_position);
  1413. #endif
  1414. }
  1415. #elif IS_SCARA
  1416. set_destination_to_current();
  1417. // If Z needs to raise, do it before moving XY
  1418. if (destination[Z_AXIS] < z) {
  1419. destination[Z_AXIS] = z;
  1420. prepare_uninterpolated_move_to_destination(fr_mm_s ? fr_mm_s : homing_feedrate_mm_s[Z_AXIS]);
  1421. }
  1422. destination[X_AXIS] = x;
  1423. destination[Y_AXIS] = y;
  1424. prepare_uninterpolated_move_to_destination(fr_mm_s ? fr_mm_s : XY_PROBE_FEEDRATE_MM_S);
  1425. // If Z needs to lower, do it after moving XY
  1426. if (destination[Z_AXIS] > z) {
  1427. destination[Z_AXIS] = z;
  1428. prepare_uninterpolated_move_to_destination(fr_mm_s ? fr_mm_s : homing_feedrate_mm_s[Z_AXIS]);
  1429. }
  1430. #else
  1431. // If Z needs to raise, do it before moving XY
  1432. if (current_position[Z_AXIS] < z) {
  1433. feedrate_mm_s = fr_mm_s ? fr_mm_s : homing_feedrate_mm_s[Z_AXIS];
  1434. current_position[Z_AXIS] = z;
  1435. line_to_current_position();
  1436. }
  1437. feedrate_mm_s = fr_mm_s ? fr_mm_s : XY_PROBE_FEEDRATE_MM_S;
  1438. current_position[X_AXIS] = x;
  1439. current_position[Y_AXIS] = y;
  1440. line_to_current_position();
  1441. // If Z needs to lower, do it after moving XY
  1442. if (current_position[Z_AXIS] > z) {
  1443. feedrate_mm_s = fr_mm_s ? fr_mm_s : homing_feedrate_mm_s[Z_AXIS];
  1444. current_position[Z_AXIS] = z;
  1445. line_to_current_position();
  1446. }
  1447. #endif
  1448. stepper.synchronize();
  1449. feedrate_mm_s = old_feedrate_mm_s;
  1450. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1451. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< do_blocking_move_to");
  1452. #endif
  1453. }
  1454. void do_blocking_move_to_x(const float &x, const float &fr_mm_s/*=0.0*/) {
  1455. do_blocking_move_to(x, current_position[Y_AXIS], current_position[Z_AXIS], fr_mm_s);
  1456. }
  1457. void do_blocking_move_to_z(const float &z, const float &fr_mm_s/*=0.0*/) {
  1458. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z, fr_mm_s);
  1459. }
  1460. void do_blocking_move_to_xy(const float &x, const float &y, const float &fr_mm_s/*=0.0*/) {
  1461. do_blocking_move_to(x, y, current_position[Z_AXIS], fr_mm_s);
  1462. }
  1463. //
  1464. // Prepare to do endstop or probe moves
  1465. // with custom feedrates.
  1466. //
  1467. // - Save current feedrates
  1468. // - Reset the rate multiplier
  1469. // - Reset the command timeout
  1470. // - Enable the endstops (for endstop moves)
  1471. //
  1472. static void setup_for_endstop_or_probe_move() {
  1473. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1474. if (DEBUGGING(LEVELING)) DEBUG_POS("setup_for_endstop_or_probe_move", current_position);
  1475. #endif
  1476. saved_feedrate_mm_s = feedrate_mm_s;
  1477. saved_feedrate_percentage = feedrate_percentage;
  1478. feedrate_percentage = 100;
  1479. refresh_cmd_timeout();
  1480. }
  1481. static void clean_up_after_endstop_or_probe_move() {
  1482. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1483. if (DEBUGGING(LEVELING)) DEBUG_POS("clean_up_after_endstop_or_probe_move", current_position);
  1484. #endif
  1485. feedrate_mm_s = saved_feedrate_mm_s;
  1486. feedrate_percentage = saved_feedrate_percentage;
  1487. refresh_cmd_timeout();
  1488. }
  1489. #if HAS_BED_PROBE
  1490. /**
  1491. * Raise Z to a minimum height to make room for a probe to move
  1492. */
  1493. inline void do_probe_raise(float z_raise) {
  1494. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1495. if (DEBUGGING(LEVELING)) {
  1496. SERIAL_ECHOPAIR("do_probe_raise(", z_raise);
  1497. SERIAL_CHAR(')');
  1498. SERIAL_EOL;
  1499. }
  1500. #endif
  1501. float z_dest = LOGICAL_Z_POSITION(z_raise);
  1502. if (zprobe_zoffset < 0) z_dest -= zprobe_zoffset;
  1503. if (z_dest > current_position[Z_AXIS])
  1504. do_blocking_move_to_z(z_dest);
  1505. }
  1506. #endif //HAS_BED_PROBE
  1507. #if ENABLED(Z_PROBE_ALLEN_KEY) || ENABLED(Z_PROBE_SLED) || HAS_PROBING_PROCEDURE || HOTENDS > 1 || ENABLED(NOZZLE_CLEAN_FEATURE) || ENABLED(NOZZLE_PARK_FEATURE)
  1508. bool axis_unhomed_error(const bool x, const bool y, const bool z) {
  1509. const bool xx = x && !axis_homed[X_AXIS],
  1510. yy = y && !axis_homed[Y_AXIS],
  1511. zz = z && !axis_homed[Z_AXIS];
  1512. if (xx || yy || zz) {
  1513. SERIAL_ECHO_START;
  1514. SERIAL_ECHOPGM(MSG_HOME " ");
  1515. if (xx) SERIAL_ECHOPGM(MSG_X);
  1516. if (yy) SERIAL_ECHOPGM(MSG_Y);
  1517. if (zz) SERIAL_ECHOPGM(MSG_Z);
  1518. SERIAL_ECHOLNPGM(" " MSG_FIRST);
  1519. #if ENABLED(ULTRA_LCD)
  1520. lcd_status_printf_P(0, PSTR(MSG_HOME " %s%s%s " MSG_FIRST), xx ? MSG_X : "", yy ? MSG_Y : "", zz ? MSG_Z : "");
  1521. #endif
  1522. return true;
  1523. }
  1524. return false;
  1525. }
  1526. #endif
  1527. #if ENABLED(Z_PROBE_SLED)
  1528. #ifndef SLED_DOCKING_OFFSET
  1529. #define SLED_DOCKING_OFFSET 0
  1530. #endif
  1531. /**
  1532. * Method to dock/undock a sled designed by Charles Bell.
  1533. *
  1534. * stow[in] If false, move to MAX_X and engage the solenoid
  1535. * If true, move to MAX_X and release the solenoid
  1536. */
  1537. static void dock_sled(bool stow) {
  1538. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1539. if (DEBUGGING(LEVELING)) {
  1540. SERIAL_ECHOPAIR("dock_sled(", stow);
  1541. SERIAL_CHAR(')');
  1542. SERIAL_EOL;
  1543. }
  1544. #endif
  1545. // Dock sled a bit closer to ensure proper capturing
  1546. do_blocking_move_to_x(X_MAX_POS + SLED_DOCKING_OFFSET - ((stow) ? 1 : 0));
  1547. #if PIN_EXISTS(SLED)
  1548. digitalWrite(SLED_PIN, !stow); // switch solenoid
  1549. #endif
  1550. }
  1551. #elif ENABLED(Z_PROBE_ALLEN_KEY)
  1552. void run_deploy_moves_script() {
  1553. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_1_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_1_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_1_Z)
  1554. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_X
  1555. #define Z_PROBE_ALLEN_KEY_DEPLOY_1_X current_position[X_AXIS]
  1556. #endif
  1557. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_Y
  1558. #define Z_PROBE_ALLEN_KEY_DEPLOY_1_Y current_position[Y_AXIS]
  1559. #endif
  1560. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_Z
  1561. #define Z_PROBE_ALLEN_KEY_DEPLOY_1_Z current_position[Z_AXIS]
  1562. #endif
  1563. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE
  1564. #define Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE 0.0
  1565. #endif
  1566. do_blocking_move_to(Z_PROBE_ALLEN_KEY_DEPLOY_1_X, Z_PROBE_ALLEN_KEY_DEPLOY_1_Y, Z_PROBE_ALLEN_KEY_DEPLOY_1_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE));
  1567. #endif
  1568. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_2_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_2_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_2_Z)
  1569. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_X
  1570. #define Z_PROBE_ALLEN_KEY_DEPLOY_2_X current_position[X_AXIS]
  1571. #endif
  1572. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_Y
  1573. #define Z_PROBE_ALLEN_KEY_DEPLOY_2_Y current_position[Y_AXIS]
  1574. #endif
  1575. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_Z
  1576. #define Z_PROBE_ALLEN_KEY_DEPLOY_2_Z current_position[Z_AXIS]
  1577. #endif
  1578. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE
  1579. #define Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE 0.0
  1580. #endif
  1581. do_blocking_move_to(Z_PROBE_ALLEN_KEY_DEPLOY_2_X, Z_PROBE_ALLEN_KEY_DEPLOY_2_Y, Z_PROBE_ALLEN_KEY_DEPLOY_2_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE));
  1582. #endif
  1583. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_3_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_3_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_3_Z)
  1584. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_X
  1585. #define Z_PROBE_ALLEN_KEY_DEPLOY_3_X current_position[X_AXIS]
  1586. #endif
  1587. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_Y
  1588. #define Z_PROBE_ALLEN_KEY_DEPLOY_3_Y current_position[Y_AXIS]
  1589. #endif
  1590. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_Z
  1591. #define Z_PROBE_ALLEN_KEY_DEPLOY_3_Z current_position[Z_AXIS]
  1592. #endif
  1593. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE
  1594. #define Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE 0.0
  1595. #endif
  1596. do_blocking_move_to(Z_PROBE_ALLEN_KEY_DEPLOY_3_X, Z_PROBE_ALLEN_KEY_DEPLOY_3_Y, Z_PROBE_ALLEN_KEY_DEPLOY_3_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE));
  1597. #endif
  1598. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_4_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_4_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_4_Z)
  1599. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_X
  1600. #define Z_PROBE_ALLEN_KEY_DEPLOY_4_X current_position[X_AXIS]
  1601. #endif
  1602. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_Y
  1603. #define Z_PROBE_ALLEN_KEY_DEPLOY_4_Y current_position[Y_AXIS]
  1604. #endif
  1605. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_Z
  1606. #define Z_PROBE_ALLEN_KEY_DEPLOY_4_Z current_position[Z_AXIS]
  1607. #endif
  1608. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_FEEDRATE
  1609. #define Z_PROBE_ALLEN_KEY_DEPLOY_4_FEEDRATE 0.0
  1610. #endif
  1611. do_blocking_move_to(Z_PROBE_ALLEN_KEY_DEPLOY_4_X, Z_PROBE_ALLEN_KEY_DEPLOY_4_Y, Z_PROBE_ALLEN_KEY_DEPLOY_4_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_4_FEEDRATE));
  1612. #endif
  1613. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_5_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_5_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_5_Z)
  1614. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_X
  1615. #define Z_PROBE_ALLEN_KEY_DEPLOY_5_X current_position[X_AXIS]
  1616. #endif
  1617. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_Y
  1618. #define Z_PROBE_ALLEN_KEY_DEPLOY_5_Y current_position[Y_AXIS]
  1619. #endif
  1620. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_Z
  1621. #define Z_PROBE_ALLEN_KEY_DEPLOY_5_Z current_position[Z_AXIS]
  1622. #endif
  1623. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_FEEDRATE
  1624. #define Z_PROBE_ALLEN_KEY_DEPLOY_5_FEEDRATE 0.0
  1625. #endif
  1626. do_blocking_move_to(Z_PROBE_ALLEN_KEY_DEPLOY_5_X, Z_PROBE_ALLEN_KEY_DEPLOY_5_Y, Z_PROBE_ALLEN_KEY_DEPLOY_5_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_5_FEEDRATE));
  1627. #endif
  1628. }
  1629. void run_stow_moves_script() {
  1630. #if defined(Z_PROBE_ALLEN_KEY_STOW_1_X) || defined(Z_PROBE_ALLEN_KEY_STOW_1_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_1_Z)
  1631. #ifndef Z_PROBE_ALLEN_KEY_STOW_1_X
  1632. #define Z_PROBE_ALLEN_KEY_STOW_1_X current_position[X_AXIS]
  1633. #endif
  1634. #ifndef Z_PROBE_ALLEN_KEY_STOW_1_Y
  1635. #define Z_PROBE_ALLEN_KEY_STOW_1_Y current_position[Y_AXIS]
  1636. #endif
  1637. #ifndef Z_PROBE_ALLEN_KEY_STOW_1_Z
  1638. #define Z_PROBE_ALLEN_KEY_STOW_1_Z current_position[Z_AXIS]
  1639. #endif
  1640. #ifndef Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE
  1641. #define Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE 0.0
  1642. #endif
  1643. do_blocking_move_to(Z_PROBE_ALLEN_KEY_STOW_1_X, Z_PROBE_ALLEN_KEY_STOW_1_Y, Z_PROBE_ALLEN_KEY_STOW_1_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE));
  1644. #endif
  1645. #if defined(Z_PROBE_ALLEN_KEY_STOW_2_X) || defined(Z_PROBE_ALLEN_KEY_STOW_2_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_2_Z)
  1646. #ifndef Z_PROBE_ALLEN_KEY_STOW_2_X
  1647. #define Z_PROBE_ALLEN_KEY_STOW_2_X current_position[X_AXIS]
  1648. #endif
  1649. #ifndef Z_PROBE_ALLEN_KEY_STOW_2_Y
  1650. #define Z_PROBE_ALLEN_KEY_STOW_2_Y current_position[Y_AXIS]
  1651. #endif
  1652. #ifndef Z_PROBE_ALLEN_KEY_STOW_2_Z
  1653. #define Z_PROBE_ALLEN_KEY_STOW_2_Z current_position[Z_AXIS]
  1654. #endif
  1655. #ifndef Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE
  1656. #define Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE 0.0
  1657. #endif
  1658. do_blocking_move_to(Z_PROBE_ALLEN_KEY_STOW_2_X, Z_PROBE_ALLEN_KEY_STOW_2_Y, Z_PROBE_ALLEN_KEY_STOW_2_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE));
  1659. #endif
  1660. #if defined(Z_PROBE_ALLEN_KEY_STOW_3_X) || defined(Z_PROBE_ALLEN_KEY_STOW_3_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_3_Z)
  1661. #ifndef Z_PROBE_ALLEN_KEY_STOW_3_X
  1662. #define Z_PROBE_ALLEN_KEY_STOW_3_X current_position[X_AXIS]
  1663. #endif
  1664. #ifndef Z_PROBE_ALLEN_KEY_STOW_3_Y
  1665. #define Z_PROBE_ALLEN_KEY_STOW_3_Y current_position[Y_AXIS]
  1666. #endif
  1667. #ifndef Z_PROBE_ALLEN_KEY_STOW_3_Z
  1668. #define Z_PROBE_ALLEN_KEY_STOW_3_Z current_position[Z_AXIS]
  1669. #endif
  1670. #ifndef Z_PROBE_ALLEN_KEY_STOW_3_FEEDRATE
  1671. #define Z_PROBE_ALLEN_KEY_STOW_3_FEEDRATE 0.0
  1672. #endif
  1673. do_blocking_move_to(Z_PROBE_ALLEN_KEY_STOW_3_X, Z_PROBE_ALLEN_KEY_STOW_3_Y, Z_PROBE_ALLEN_KEY_STOW_3_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_3_FEEDRATE));
  1674. #endif
  1675. #if defined(Z_PROBE_ALLEN_KEY_STOW_4_X) || defined(Z_PROBE_ALLEN_KEY_STOW_4_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_4_Z)
  1676. #ifndef Z_PROBE_ALLEN_KEY_STOW_4_X
  1677. #define Z_PROBE_ALLEN_KEY_STOW_4_X current_position[X_AXIS]
  1678. #endif
  1679. #ifndef Z_PROBE_ALLEN_KEY_STOW_4_Y
  1680. #define Z_PROBE_ALLEN_KEY_STOW_4_Y current_position[Y_AXIS]
  1681. #endif
  1682. #ifndef Z_PROBE_ALLEN_KEY_STOW_4_Z
  1683. #define Z_PROBE_ALLEN_KEY_STOW_4_Z current_position[Z_AXIS]
  1684. #endif
  1685. #ifndef Z_PROBE_ALLEN_KEY_STOW_4_FEEDRATE
  1686. #define Z_PROBE_ALLEN_KEY_STOW_4_FEEDRATE 0.0
  1687. #endif
  1688. do_blocking_move_to(Z_PROBE_ALLEN_KEY_STOW_4_X, Z_PROBE_ALLEN_KEY_STOW_4_Y, Z_PROBE_ALLEN_KEY_STOW_4_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_4_FEEDRATE));
  1689. #endif
  1690. #if defined(Z_PROBE_ALLEN_KEY_STOW_5_X) || defined(Z_PROBE_ALLEN_KEY_STOW_5_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_5_Z)
  1691. #ifndef Z_PROBE_ALLEN_KEY_STOW_5_X
  1692. #define Z_PROBE_ALLEN_KEY_STOW_5_X current_position[X_AXIS]
  1693. #endif
  1694. #ifndef Z_PROBE_ALLEN_KEY_STOW_5_Y
  1695. #define Z_PROBE_ALLEN_KEY_STOW_5_Y current_position[Y_AXIS]
  1696. #endif
  1697. #ifndef Z_PROBE_ALLEN_KEY_STOW_5_Z
  1698. #define Z_PROBE_ALLEN_KEY_STOW_5_Z current_position[Z_AXIS]
  1699. #endif
  1700. #ifndef Z_PROBE_ALLEN_KEY_STOW_5_FEEDRATE
  1701. #define Z_PROBE_ALLEN_KEY_STOW_5_FEEDRATE 0.0
  1702. #endif
  1703. do_blocking_move_to(Z_PROBE_ALLEN_KEY_STOW_5_X, Z_PROBE_ALLEN_KEY_STOW_5_Y, Z_PROBE_ALLEN_KEY_STOW_5_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_5_FEEDRATE));
  1704. #endif
  1705. }
  1706. #endif
  1707. #if HAS_BED_PROBE
  1708. // TRIGGERED_WHEN_STOWED_TEST can easily be extended to servo probes, ... if needed.
  1709. #if ENABLED(PROBE_IS_TRIGGERED_WHEN_STOWED_TEST)
  1710. #if ENABLED(Z_MIN_PROBE_ENDSTOP)
  1711. #define _TRIGGERED_WHEN_STOWED_TEST (READ(Z_MIN_PROBE_PIN) != Z_MIN_PROBE_ENDSTOP_INVERTING)
  1712. #else
  1713. #define _TRIGGERED_WHEN_STOWED_TEST (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING)
  1714. #endif
  1715. #endif
  1716. #define DEPLOY_PROBE() set_probe_deployed(true)
  1717. #define STOW_PROBE() set_probe_deployed(false)
  1718. #if ENABLED(BLTOUCH)
  1719. void bltouch_command(int angle) {
  1720. servo[Z_ENDSTOP_SERVO_NR].move(angle); // Give the BL-Touch the command and wait
  1721. safe_delay(BLTOUCH_DELAY);
  1722. }
  1723. void set_bltouch_deployed(const bool deploy) {
  1724. bltouch_command(deploy ? BLTOUCH_DEPLOY : BLTOUCH_STOW);
  1725. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1726. if (DEBUGGING(LEVELING)) {
  1727. SERIAL_ECHOPAIR("set_bltouch_deployed(", deploy);
  1728. SERIAL_CHAR(')');
  1729. SERIAL_EOL;
  1730. }
  1731. #endif
  1732. }
  1733. #endif
  1734. // returns false for ok and true for failure
  1735. bool set_probe_deployed(bool deploy) {
  1736. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1737. if (DEBUGGING(LEVELING)) {
  1738. DEBUG_POS("set_probe_deployed", current_position);
  1739. SERIAL_ECHOLNPAIR("deploy: ", deploy);
  1740. }
  1741. #endif
  1742. if (endstops.z_probe_enabled == deploy) return false;
  1743. // Make room for probe
  1744. do_probe_raise(_Z_CLEARANCE_DEPLOY_PROBE);
  1745. // When deploying make sure BLTOUCH is not already triggered
  1746. #if ENABLED(BLTOUCH)
  1747. if (deploy && TEST_BLTOUCH()) { // If BL-Touch says it's triggered
  1748. bltouch_command(BLTOUCH_RESET); // try to reset it.
  1749. set_bltouch_deployed(true); // Also needs to deploy and stow to
  1750. set_bltouch_deployed(false); // clear the triggered condition.
  1751. if (TEST_BLTOUCH()) { // If it still claims to be triggered...
  1752. SERIAL_ERROR_START;
  1753. SERIAL_ERRORLNPGM(MSG_STOP_BLTOUCH);
  1754. stop(); // punt!
  1755. return true;
  1756. }
  1757. }
  1758. #elif ENABLED(Z_PROBE_SLED)
  1759. if (axis_unhomed_error(true, false, false)) {
  1760. SERIAL_ERROR_START;
  1761. SERIAL_ERRORLNPGM(MSG_STOP_UNHOMED);
  1762. stop();
  1763. return true;
  1764. }
  1765. #elif ENABLED(Z_PROBE_ALLEN_KEY)
  1766. if (axis_unhomed_error(true, true, true )) {
  1767. SERIAL_ERROR_START;
  1768. SERIAL_ERRORLNPGM(MSG_STOP_UNHOMED);
  1769. stop();
  1770. return true;
  1771. }
  1772. #endif
  1773. const float oldXpos = current_position[X_AXIS],
  1774. oldYpos = current_position[Y_AXIS];
  1775. #ifdef _TRIGGERED_WHEN_STOWED_TEST
  1776. // If endstop is already false, the Z probe is deployed
  1777. if (_TRIGGERED_WHEN_STOWED_TEST == deploy) { // closed after the probe specific actions.
  1778. // Would a goto be less ugly?
  1779. //while (!_TRIGGERED_WHEN_STOWED_TEST) idle(); // would offer the opportunity
  1780. // for a triggered when stowed manual probe.
  1781. if (!deploy) endstops.enable_z_probe(false); // Switch off triggered when stowed probes early
  1782. // otherwise an Allen-Key probe can't be stowed.
  1783. #endif
  1784. #if ENABLED(Z_PROBE_SLED)
  1785. dock_sled(!deploy);
  1786. #elif HAS_Z_SERVO_ENDSTOP && DISABLED(BLTOUCH)
  1787. servo[Z_ENDSTOP_SERVO_NR].move(z_servo_angle[deploy ? 0 : 1]);
  1788. #elif ENABLED(Z_PROBE_ALLEN_KEY)
  1789. deploy ? run_deploy_moves_script() : run_stow_moves_script();
  1790. #endif
  1791. #ifdef _TRIGGERED_WHEN_STOWED_TEST
  1792. } // _TRIGGERED_WHEN_STOWED_TEST == deploy
  1793. if (_TRIGGERED_WHEN_STOWED_TEST == deploy) { // State hasn't changed?
  1794. if (IsRunning()) {
  1795. SERIAL_ERROR_START;
  1796. SERIAL_ERRORLNPGM("Z-Probe failed");
  1797. LCD_ALERTMESSAGEPGM("Err: ZPROBE");
  1798. }
  1799. stop();
  1800. return true;
  1801. } // _TRIGGERED_WHEN_STOWED_TEST == deploy
  1802. #endif
  1803. do_blocking_move_to(oldXpos, oldYpos, current_position[Z_AXIS]); // return to position before deploy
  1804. endstops.enable_z_probe(deploy);
  1805. return false;
  1806. }
  1807. static void do_probe_move(float z, float fr_mm_m) {
  1808. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1809. if (DEBUGGING(LEVELING)) DEBUG_POS(">>> do_probe_move", current_position);
  1810. #endif
  1811. // Deploy BLTouch at the start of any probe
  1812. #if ENABLED(BLTOUCH)
  1813. set_bltouch_deployed(true);
  1814. #endif
  1815. // Move down until probe triggered
  1816. do_blocking_move_to_z(LOGICAL_Z_POSITION(z), MMM_TO_MMS(fr_mm_m));
  1817. // Retract BLTouch immediately after a probe
  1818. #if ENABLED(BLTOUCH)
  1819. set_bltouch_deployed(false);
  1820. #endif
  1821. // Clear endstop flags
  1822. endstops.hit_on_purpose();
  1823. // Get Z where the steppers were interrupted
  1824. set_current_from_steppers_for_axis(Z_AXIS);
  1825. // Tell the planner where we actually are
  1826. SYNC_PLAN_POSITION_KINEMATIC();
  1827. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1828. if (DEBUGGING(LEVELING)) DEBUG_POS("<<< do_probe_move", current_position);
  1829. #endif
  1830. }
  1831. // Do a single Z probe and return with current_position[Z_AXIS]
  1832. // at the height where the probe triggered.
  1833. static float run_z_probe() {
  1834. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1835. if (DEBUGGING(LEVELING)) DEBUG_POS(">>> run_z_probe", current_position);
  1836. #endif
  1837. // Prevent stepper_inactive_time from running out and EXTRUDER_RUNOUT_PREVENT from extruding
  1838. refresh_cmd_timeout();
  1839. #if ENABLED(PROBE_DOUBLE_TOUCH)
  1840. // Do a first probe at the fast speed
  1841. do_probe_move(-(Z_MAX_LENGTH) - 10, Z_PROBE_SPEED_FAST);
  1842. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1843. float first_probe_z = current_position[Z_AXIS];
  1844. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPAIR("1st Probe Z:", first_probe_z);
  1845. #endif
  1846. // move up by the bump distance
  1847. do_blocking_move_to_z(current_position[Z_AXIS] + home_bump_mm(Z_AXIS), MMM_TO_MMS(Z_PROBE_SPEED_FAST));
  1848. #else
  1849. // If the nozzle is above the travel height then
  1850. // move down quickly before doing the slow probe
  1851. float z = LOGICAL_Z_POSITION(Z_CLEARANCE_BETWEEN_PROBES);
  1852. if (zprobe_zoffset < 0) z -= zprobe_zoffset;
  1853. if (z < current_position[Z_AXIS])
  1854. do_blocking_move_to_z(z, MMM_TO_MMS(Z_PROBE_SPEED_FAST));
  1855. #endif
  1856. // move down slowly to find bed
  1857. do_probe_move(-(Z_MAX_LENGTH) - 10, Z_PROBE_SPEED_SLOW);
  1858. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1859. if (DEBUGGING(LEVELING)) DEBUG_POS("<<< run_z_probe", current_position);
  1860. #endif
  1861. // Debug: compare probe heights
  1862. #if ENABLED(PROBE_DOUBLE_TOUCH) && ENABLED(DEBUG_LEVELING_FEATURE)
  1863. if (DEBUGGING(LEVELING)) {
  1864. SERIAL_ECHOPAIR("2nd Probe Z:", current_position[Z_AXIS]);
  1865. SERIAL_ECHOLNPAIR(" Discrepancy:", first_probe_z - current_position[Z_AXIS]);
  1866. }
  1867. #endif
  1868. return current_position[Z_AXIS] + zprobe_zoffset;
  1869. }
  1870. //
  1871. // - Move to the given XY
  1872. // - Deploy the probe, if not already deployed
  1873. // - Probe the bed, get the Z position
  1874. // - Depending on the 'stow' flag
  1875. // - Stow the probe, or
  1876. // - Raise to the BETWEEN height
  1877. // - Return the probed Z position
  1878. //
  1879. //float probe_pt(const float &x, const float &y, const bool stow = true, const int verbose_level = 1) {
  1880. float probe_pt(const float x, const float y, const bool stow, const int verbose_level) {
  1881. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1882. if (DEBUGGING(LEVELING)) {
  1883. SERIAL_ECHOPAIR(">>> probe_pt(", x);
  1884. SERIAL_ECHOPAIR(", ", y);
  1885. SERIAL_ECHOPAIR(", ", stow ? "" : "no ");
  1886. SERIAL_ECHOLNPGM("stow)");
  1887. DEBUG_POS("", current_position);
  1888. }
  1889. #endif
  1890. const float old_feedrate_mm_s = feedrate_mm_s;
  1891. #if ENABLED(DELTA)
  1892. if (current_position[Z_AXIS] > delta_clip_start_height)
  1893. do_blocking_move_to_z(delta_clip_start_height);
  1894. #endif
  1895. // Ensure a minimum height before moving the probe
  1896. do_probe_raise(Z_CLEARANCE_BETWEEN_PROBES);
  1897. feedrate_mm_s = XY_PROBE_FEEDRATE_MM_S;
  1898. // Move the probe to the given XY
  1899. do_blocking_move_to_xy(x - (X_PROBE_OFFSET_FROM_EXTRUDER), y - (Y_PROBE_OFFSET_FROM_EXTRUDER));
  1900. if (DEPLOY_PROBE()) return NAN;
  1901. const float measured_z = run_z_probe();
  1902. if (!stow)
  1903. do_probe_raise(Z_CLEARANCE_BETWEEN_PROBES);
  1904. else
  1905. if (STOW_PROBE()) return NAN;
  1906. if (verbose_level > 2) {
  1907. SERIAL_PROTOCOLPGM("Bed X: ");
  1908. SERIAL_PROTOCOL_F(x, 3);
  1909. SERIAL_PROTOCOLPGM(" Y: ");
  1910. SERIAL_PROTOCOL_F(y, 3);
  1911. SERIAL_PROTOCOLPGM(" Z: ");
  1912. SERIAL_PROTOCOL_F(FIXFLOAT(measured_z), 3);
  1913. SERIAL_EOL;
  1914. }
  1915. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1916. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< probe_pt");
  1917. #endif
  1918. feedrate_mm_s = old_feedrate_mm_s;
  1919. return measured_z;
  1920. }
  1921. #endif // HAS_BED_PROBE
  1922. #if PLANNER_LEVELING
  1923. /**
  1924. * Turn bed leveling on or off, fixing the current
  1925. * position as-needed.
  1926. *
  1927. * Disable: Current position = physical position
  1928. * Enable: Current position = "unleveled" physical position
  1929. */
  1930. void set_bed_leveling_enabled(bool enable/*=true*/) {
  1931. #if ENABLED(MESH_BED_LEVELING)
  1932. if (enable != mbl.active()) {
  1933. if (!enable)
  1934. planner.apply_leveling(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS]);
  1935. mbl.set_active(enable && mbl.has_mesh());
  1936. if (enable && mbl.has_mesh()) planner.unapply_leveling(current_position);
  1937. }
  1938. #elif HAS_ABL && !ENABLED(AUTO_BED_LEVELING_UBL)
  1939. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  1940. const bool can_change = (!enable || (bilinear_grid_spacing[0] && bilinear_grid_spacing[1]));
  1941. #else
  1942. constexpr bool can_change = true;
  1943. #endif
  1944. if (can_change && enable != planner.abl_enabled) {
  1945. planner.abl_enabled = enable;
  1946. if (!enable)
  1947. set_current_from_steppers_for_axis(
  1948. #if ABL_PLANAR
  1949. ALL_AXES
  1950. #else
  1951. Z_AXIS
  1952. #endif
  1953. );
  1954. else
  1955. planner.unapply_leveling(current_position);
  1956. }
  1957. #elif ENABLED(AUTO_BED_LEVELING_UBL)
  1958. ubl.state.active = enable;
  1959. //set_current_from_steppers_for_axis(Z_AXIS);
  1960. #endif
  1961. }
  1962. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  1963. void set_z_fade_height(const float zfh) {
  1964. planner.z_fade_height = zfh;
  1965. planner.inverse_z_fade_height = RECIPROCAL(zfh);
  1966. if (
  1967. #if ENABLED(MESH_BED_LEVELING)
  1968. mbl.active()
  1969. #else
  1970. planner.abl_enabled
  1971. #endif
  1972. ) {
  1973. set_current_from_steppers_for_axis(
  1974. #if ABL_PLANAR
  1975. ALL_AXES
  1976. #else
  1977. Z_AXIS
  1978. #endif
  1979. );
  1980. }
  1981. }
  1982. #endif // LEVELING_FADE_HEIGHT
  1983. /**
  1984. * Reset calibration results to zero.
  1985. */
  1986. void reset_bed_level() {
  1987. set_bed_leveling_enabled(false);
  1988. #if ENABLED(MESH_BED_LEVELING)
  1989. if (mbl.has_mesh()) {
  1990. mbl.reset();
  1991. mbl.set_has_mesh(false);
  1992. }
  1993. #else
  1994. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1995. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("reset_bed_level");
  1996. #endif
  1997. #if ABL_PLANAR
  1998. planner.bed_level_matrix.set_to_identity();
  1999. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  2000. bilinear_start[X_AXIS] = bilinear_start[Y_AXIS] =
  2001. bilinear_grid_spacing[X_AXIS] = bilinear_grid_spacing[Y_AXIS] = 0;
  2002. for (uint8_t x = 0; x < ABL_GRID_MAX_POINTS_X; x++)
  2003. for (uint8_t y = 0; y < ABL_GRID_MAX_POINTS_Y; y++)
  2004. bed_level_grid[x][y] = UNPROBED;
  2005. #elif ENABLED(AUTO_BED_LEVELING_UBL)
  2006. ubl.reset();
  2007. #endif
  2008. #endif
  2009. }
  2010. #endif // PLANNER_LEVELING
  2011. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  2012. /**
  2013. * Extrapolate a single point from its neighbors
  2014. */
  2015. static void extrapolate_one_point(uint8_t x, uint8_t y, int8_t xdir, int8_t ydir) {
  2016. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2017. if (DEBUGGING(LEVELING)) {
  2018. SERIAL_ECHOPGM("Extrapolate [");
  2019. if (x < 10) SERIAL_CHAR(' ');
  2020. SERIAL_ECHO((int)x);
  2021. SERIAL_CHAR(xdir ? (xdir > 0 ? '+' : '-') : ' ');
  2022. SERIAL_CHAR(' ');
  2023. if (y < 10) SERIAL_CHAR(' ');
  2024. SERIAL_ECHO((int)y);
  2025. SERIAL_CHAR(ydir ? (ydir > 0 ? '+' : '-') : ' ');
  2026. SERIAL_CHAR(']');
  2027. }
  2028. #endif
  2029. if (bed_level_grid[x][y] != UNPROBED) {
  2030. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2031. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM(" (done)");
  2032. #endif
  2033. return; // Don't overwrite good values.
  2034. }
  2035. SERIAL_EOL;
  2036. // Get X neighbors, Y neighbors, and XY neighbors
  2037. float a1 = bed_level_grid[x + xdir][y], a2 = bed_level_grid[x + xdir * 2][y],
  2038. b1 = bed_level_grid[x][y + ydir], b2 = bed_level_grid[x][y + ydir * 2],
  2039. c1 = bed_level_grid[x + xdir][y + ydir], c2 = bed_level_grid[x + xdir * 2][y + ydir * 2];
  2040. // Treat far unprobed points as zero, near as equal to far
  2041. if (a2 == UNPROBED) a2 = 0.0; if (a1 == UNPROBED) a1 = a2;
  2042. if (b2 == UNPROBED) b2 = 0.0; if (b1 == UNPROBED) b1 = b2;
  2043. if (c2 == UNPROBED) c2 = 0.0; if (c1 == UNPROBED) c1 = c2;
  2044. const float a = 2 * a1 - a2, b = 2 * b1 - b2, c = 2 * c1 - c2;
  2045. // Take the average instead of the median
  2046. bed_level_grid[x][y] = (a + b + c) / 3.0;
  2047. // Median is robust (ignores outliers).
  2048. // bed_level_grid[x][y] = (a < b) ? ((b < c) ? b : (c < a) ? a : c)
  2049. // : ((c < b) ? b : (a < c) ? a : c);
  2050. }
  2051. //Enable this if your SCARA uses 180° of total area
  2052. //#define EXTRAPOLATE_FROM_EDGE
  2053. #if ENABLED(EXTRAPOLATE_FROM_EDGE)
  2054. #if ABL_GRID_MAX_POINTS_X < ABL_GRID_MAX_POINTS_Y
  2055. #define HALF_IN_X
  2056. #elif ABL_GRID_MAX_POINTS_Y < ABL_GRID_MAX_POINTS_X
  2057. #define HALF_IN_Y
  2058. #endif
  2059. #endif
  2060. /**
  2061. * Fill in the unprobed points (corners of circular print surface)
  2062. * using linear extrapolation, away from the center.
  2063. */
  2064. static void extrapolate_unprobed_bed_level() {
  2065. #ifdef HALF_IN_X
  2066. const uint8_t ctrx2 = 0, xlen = ABL_GRID_MAX_POINTS_X - 1;
  2067. #else
  2068. const uint8_t ctrx1 = (ABL_GRID_MAX_POINTS_X - 1) / 2, // left-of-center
  2069. ctrx2 = ABL_GRID_MAX_POINTS_X / 2, // right-of-center
  2070. xlen = ctrx1;
  2071. #endif
  2072. #ifdef HALF_IN_Y
  2073. const uint8_t ctry2 = 0, ylen = ABL_GRID_MAX_POINTS_Y - 1;
  2074. #else
  2075. const uint8_t ctry1 = (ABL_GRID_MAX_POINTS_Y - 1) / 2, // top-of-center
  2076. ctry2 = ABL_GRID_MAX_POINTS_Y / 2, // bottom-of-center
  2077. ylen = ctry1;
  2078. #endif
  2079. for (uint8_t xo = 0; xo <= xlen; xo++)
  2080. for (uint8_t yo = 0; yo <= ylen; yo++) {
  2081. uint8_t x2 = ctrx2 + xo, y2 = ctry2 + yo;
  2082. #ifndef HALF_IN_X
  2083. const uint8_t x1 = ctrx1 - xo;
  2084. #endif
  2085. #ifndef HALF_IN_Y
  2086. const uint8_t y1 = ctry1 - yo;
  2087. #ifndef HALF_IN_X
  2088. extrapolate_one_point(x1, y1, +1, +1); // left-below + +
  2089. #endif
  2090. extrapolate_one_point(x2, y1, -1, +1); // right-below - +
  2091. #endif
  2092. #ifndef HALF_IN_X
  2093. extrapolate_one_point(x1, y2, +1, -1); // left-above + -
  2094. #endif
  2095. extrapolate_one_point(x2, y2, -1, -1); // right-above - -
  2096. }
  2097. }
  2098. /**
  2099. * Print calibration results for plotting or manual frame adjustment.
  2100. */
  2101. static void print_2d_array(const uint8_t sx, const uint8_t sy, const uint8_t precision, float (*fn)(const uint8_t, const uint8_t)) {
  2102. for (uint8_t x = 0; x < sx; x++) {
  2103. for (uint8_t i = 0; i < precision + 2 + (x < 10 ? 1 : 0); i++)
  2104. SERIAL_PROTOCOLCHAR(' ');
  2105. SERIAL_PROTOCOL((int)x);
  2106. }
  2107. SERIAL_EOL;
  2108. for (uint8_t y = 0; y < sy; y++) {
  2109. if (y < 10) SERIAL_PROTOCOLCHAR(' ');
  2110. SERIAL_PROTOCOL((int)y);
  2111. for (uint8_t x = 0; x < sx; x++) {
  2112. SERIAL_PROTOCOLCHAR(' ');
  2113. float offset = fn(x, y);
  2114. if (offset != UNPROBED) {
  2115. if (offset >= 0) SERIAL_PROTOCOLCHAR('+');
  2116. SERIAL_PROTOCOL_F(offset, precision);
  2117. }
  2118. else
  2119. for (uint8_t i = 0; i < precision + 3; i++)
  2120. SERIAL_PROTOCOLCHAR(i ? '=' : ' ');
  2121. }
  2122. SERIAL_EOL;
  2123. }
  2124. SERIAL_EOL;
  2125. }
  2126. static void print_bilinear_leveling_grid() {
  2127. SERIAL_ECHOLNPGM("Bilinear Leveling Grid:");
  2128. print_2d_array(ABL_GRID_MAX_POINTS_X, ABL_GRID_MAX_POINTS_Y, 2,
  2129. [](const uint8_t x, const uint8_t y) { return bed_level_grid[x][y]; }
  2130. );
  2131. }
  2132. #if ENABLED(ABL_BILINEAR_SUBDIVISION)
  2133. #define ABL_GRID_POINTS_VIRT_X (ABL_GRID_MAX_POINTS_X - 1) * (BILINEAR_SUBDIVISIONS) + 1
  2134. #define ABL_GRID_POINTS_VIRT_Y (ABL_GRID_MAX_POINTS_Y - 1) * (BILINEAR_SUBDIVISIONS) + 1
  2135. #define ABL_TEMP_POINTS_X (ABL_GRID_MAX_POINTS_X + 2)
  2136. #define ABL_TEMP_POINTS_Y (ABL_GRID_MAX_POINTS_Y + 2)
  2137. float bed_level_grid_virt[ABL_GRID_POINTS_VIRT_X][ABL_GRID_POINTS_VIRT_Y];
  2138. int bilinear_grid_spacing_virt[2] = { 0 };
  2139. static void bed_level_virt_print() {
  2140. SERIAL_ECHOLNPGM("Subdivided with CATMULL ROM Leveling Grid:");
  2141. print_2d_array(ABL_GRID_POINTS_VIRT_X, ABL_GRID_POINTS_VIRT_Y, 5,
  2142. [](const uint8_t x, const uint8_t y) { return bed_level_grid_virt[x][y]; }
  2143. );
  2144. }
  2145. #define LINEAR_EXTRAPOLATION(E, I) ((E) * 2 - (I))
  2146. float bed_level_virt_coord(const uint8_t x, const uint8_t y) {
  2147. uint8_t ep = 0, ip = 1;
  2148. if (!x || x == ABL_TEMP_POINTS_X - 1) {
  2149. if (x) {
  2150. ep = ABL_GRID_MAX_POINTS_X - 1;
  2151. ip = ABL_GRID_MAX_POINTS_X - 2;
  2152. }
  2153. if (WITHIN(y, 1, ABL_TEMP_POINTS_Y - 2))
  2154. return LINEAR_EXTRAPOLATION(
  2155. bed_level_grid[ep][y - 1],
  2156. bed_level_grid[ip][y - 1]
  2157. );
  2158. else
  2159. return LINEAR_EXTRAPOLATION(
  2160. bed_level_virt_coord(ep + 1, y),
  2161. bed_level_virt_coord(ip + 1, y)
  2162. );
  2163. }
  2164. if (!y || y == ABL_TEMP_POINTS_Y - 1) {
  2165. if (y) {
  2166. ep = ABL_GRID_MAX_POINTS_Y - 1;
  2167. ip = ABL_GRID_MAX_POINTS_Y - 2;
  2168. }
  2169. if (WITHIN(x, 1, ABL_TEMP_POINTS_X - 2))
  2170. return LINEAR_EXTRAPOLATION(
  2171. bed_level_grid[x - 1][ep],
  2172. bed_level_grid[x - 1][ip]
  2173. );
  2174. else
  2175. return LINEAR_EXTRAPOLATION(
  2176. bed_level_virt_coord(x, ep + 1),
  2177. bed_level_virt_coord(x, ip + 1)
  2178. );
  2179. }
  2180. return bed_level_grid[x - 1][y - 1];
  2181. }
  2182. static float bed_level_virt_cmr(const float p[4], const uint8_t i, const float t) {
  2183. return (
  2184. p[i-1] * -t * sq(1 - t)
  2185. + p[i] * (2 - 5 * sq(t) + 3 * t * sq(t))
  2186. + p[i+1] * t * (1 + 4 * t - 3 * sq(t))
  2187. - p[i+2] * sq(t) * (1 - t)
  2188. ) * 0.5;
  2189. }
  2190. static float bed_level_virt_2cmr(const uint8_t x, const uint8_t y, const float &tx, const float &ty) {
  2191. float row[4], column[4];
  2192. for (uint8_t i = 0; i < 4; i++) {
  2193. for (uint8_t j = 0; j < 4; j++) {
  2194. column[j] = bed_level_virt_coord(i + x - 1, j + y - 1);
  2195. }
  2196. row[i] = bed_level_virt_cmr(column, 1, ty);
  2197. }
  2198. return bed_level_virt_cmr(row, 1, tx);
  2199. }
  2200. void bed_level_virt_interpolate() {
  2201. for (uint8_t y = 0; y < ABL_GRID_MAX_POINTS_Y; y++)
  2202. for (uint8_t x = 0; x < ABL_GRID_MAX_POINTS_X; x++)
  2203. for (uint8_t ty = 0; ty < BILINEAR_SUBDIVISIONS; ty++)
  2204. for (uint8_t tx = 0; tx < BILINEAR_SUBDIVISIONS; tx++) {
  2205. if ((ty && y == ABL_GRID_MAX_POINTS_Y - 1) || (tx && x == ABL_GRID_MAX_POINTS_X - 1))
  2206. continue;
  2207. bed_level_grid_virt[x * (BILINEAR_SUBDIVISIONS) + tx][y * (BILINEAR_SUBDIVISIONS) + ty] =
  2208. bed_level_virt_2cmr(
  2209. x + 1,
  2210. y + 1,
  2211. (float)tx / (BILINEAR_SUBDIVISIONS),
  2212. (float)ty / (BILINEAR_SUBDIVISIONS)
  2213. );
  2214. }
  2215. }
  2216. #endif // ABL_BILINEAR_SUBDIVISION
  2217. #endif // AUTO_BED_LEVELING_BILINEAR
  2218. /**
  2219. * Home an individual linear axis
  2220. */
  2221. static void do_homing_move(const AxisEnum axis, float distance, float fr_mm_s=0.0) {
  2222. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2223. if (DEBUGGING(LEVELING)) {
  2224. SERIAL_ECHOPAIR(">>> do_homing_move(", axis_codes[axis]);
  2225. SERIAL_ECHOPAIR(", ", distance);
  2226. SERIAL_ECHOPAIR(", ", fr_mm_s);
  2227. SERIAL_CHAR(')');
  2228. SERIAL_EOL;
  2229. }
  2230. #endif
  2231. #if HOMING_Z_WITH_PROBE && ENABLED(BLTOUCH)
  2232. const bool deploy_bltouch = (axis == Z_AXIS && distance < 0);
  2233. if (deploy_bltouch) set_bltouch_deployed(true);
  2234. #endif
  2235. // Tell the planner we're at Z=0
  2236. current_position[axis] = 0;
  2237. #if IS_SCARA
  2238. SYNC_PLAN_POSITION_KINEMATIC();
  2239. current_position[axis] = distance;
  2240. inverse_kinematics(current_position);
  2241. planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], current_position[E_AXIS], fr_mm_s ? fr_mm_s : homing_feedrate_mm_s[axis], active_extruder);
  2242. #else
  2243. sync_plan_position();
  2244. current_position[axis] = distance;
  2245. planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], fr_mm_s ? fr_mm_s : homing_feedrate_mm_s[axis], active_extruder);
  2246. #endif
  2247. stepper.synchronize();
  2248. #if HOMING_Z_WITH_PROBE && ENABLED(BLTOUCH)
  2249. if (deploy_bltouch) set_bltouch_deployed(false);
  2250. #endif
  2251. endstops.hit_on_purpose();
  2252. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2253. if (DEBUGGING(LEVELING)) {
  2254. SERIAL_ECHOPAIR("<<< do_homing_move(", axis_codes[axis]);
  2255. SERIAL_CHAR(')');
  2256. SERIAL_EOL;
  2257. }
  2258. #endif
  2259. }
  2260. /**
  2261. * Home an individual "raw axis" to its endstop.
  2262. * This applies to XYZ on Cartesian and Core robots, and
  2263. * to the individual ABC steppers on DELTA and SCARA.
  2264. *
  2265. * At the end of the procedure the axis is marked as
  2266. * homed and the current position of that axis is updated.
  2267. * Kinematic robots should wait till all axes are homed
  2268. * before updating the current position.
  2269. */
  2270. #define HOMEAXIS(LETTER) homeaxis(LETTER##_AXIS)
  2271. static void homeaxis(const AxisEnum axis) {
  2272. #if IS_SCARA
  2273. // Only Z homing (with probe) is permitted
  2274. if (axis != Z_AXIS) { BUZZ(100, 880); return; }
  2275. #else
  2276. #define CAN_HOME(A) \
  2277. (axis == A##_AXIS && ((A##_MIN_PIN > -1 && A##_HOME_DIR < 0) || (A##_MAX_PIN > -1 && A##_HOME_DIR > 0)))
  2278. if (!CAN_HOME(X) && !CAN_HOME(Y) && !CAN_HOME(Z)) return;
  2279. #endif
  2280. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2281. if (DEBUGGING(LEVELING)) {
  2282. SERIAL_ECHOPAIR(">>> homeaxis(", axis_codes[axis]);
  2283. SERIAL_CHAR(')');
  2284. SERIAL_EOL;
  2285. }
  2286. #endif
  2287. const int axis_home_dir =
  2288. #if ENABLED(DUAL_X_CARRIAGE)
  2289. (axis == X_AXIS) ? x_home_dir(active_extruder) :
  2290. #endif
  2291. home_dir(axis);
  2292. // Homing Z towards the bed? Deploy the Z probe or endstop.
  2293. #if HOMING_Z_WITH_PROBE
  2294. if (axis == Z_AXIS && DEPLOY_PROBE()) return;
  2295. #endif
  2296. // Set a flag for Z motor locking
  2297. #if ENABLED(Z_DUAL_ENDSTOPS)
  2298. if (axis == Z_AXIS) stepper.set_homing_flag(true);
  2299. #endif
  2300. // Fast move towards endstop until triggered
  2301. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2302. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("Home 1 Fast:");
  2303. #endif
  2304. do_homing_move(axis, 1.5 * max_length(axis) * axis_home_dir);
  2305. // When homing Z with probe respect probe clearance
  2306. const float bump = axis_home_dir * (
  2307. #if HOMING_Z_WITH_PROBE
  2308. (axis == Z_AXIS) ? max(Z_CLEARANCE_BETWEEN_PROBES, home_bump_mm(Z_AXIS)) :
  2309. #endif
  2310. home_bump_mm(axis)
  2311. );
  2312. // If a second homing move is configured...
  2313. if (bump) {
  2314. // Move away from the endstop by the axis HOME_BUMP_MM
  2315. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2316. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("Move Away:");
  2317. #endif
  2318. do_homing_move(axis, -bump);
  2319. // Slow move towards endstop until triggered
  2320. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2321. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("Home 2 Slow:");
  2322. #endif
  2323. do_homing_move(axis, 2 * bump, get_homing_bump_feedrate(axis));
  2324. }
  2325. #if ENABLED(Z_DUAL_ENDSTOPS)
  2326. if (axis == Z_AXIS) {
  2327. float adj = fabs(z_endstop_adj);
  2328. bool lockZ1;
  2329. if (axis_home_dir > 0) {
  2330. adj = -adj;
  2331. lockZ1 = (z_endstop_adj > 0);
  2332. }
  2333. else
  2334. lockZ1 = (z_endstop_adj < 0);
  2335. if (lockZ1) stepper.set_z_lock(true); else stepper.set_z2_lock(true);
  2336. // Move to the adjusted endstop height
  2337. do_homing_move(axis, adj);
  2338. if (lockZ1) stepper.set_z_lock(false); else stepper.set_z2_lock(false);
  2339. stepper.set_homing_flag(false);
  2340. } // Z_AXIS
  2341. #endif
  2342. #if IS_SCARA
  2343. set_axis_is_at_home(axis);
  2344. SYNC_PLAN_POSITION_KINEMATIC();
  2345. #elif ENABLED(DELTA)
  2346. // Delta has already moved all three towers up in G28
  2347. // so here it re-homes each tower in turn.
  2348. // Delta homing treats the axes as normal linear axes.
  2349. // retrace by the amount specified in endstop_adj
  2350. if (endstop_adj[axis] * Z_HOME_DIR < 0) {
  2351. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2352. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("endstop_adj:");
  2353. #endif
  2354. do_homing_move(axis, endstop_adj[axis]);
  2355. }
  2356. #else
  2357. // For cartesian/core machines,
  2358. // set the axis to its home position
  2359. set_axis_is_at_home(axis);
  2360. sync_plan_position();
  2361. destination[axis] = current_position[axis];
  2362. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2363. if (DEBUGGING(LEVELING)) DEBUG_POS("> AFTER set_axis_is_at_home", current_position);
  2364. #endif
  2365. #endif
  2366. // Put away the Z probe
  2367. #if HOMING_Z_WITH_PROBE
  2368. if (axis == Z_AXIS && STOW_PROBE()) return;
  2369. #endif
  2370. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2371. if (DEBUGGING(LEVELING)) {
  2372. SERIAL_ECHOPAIR("<<< homeaxis(", axis_codes[axis]);
  2373. SERIAL_CHAR(')');
  2374. SERIAL_EOL;
  2375. }
  2376. #endif
  2377. } // homeaxis()
  2378. #if ENABLED(FWRETRACT)
  2379. void retract(const bool retracting, const bool swapping = false) {
  2380. static float hop_height;
  2381. if (retracting == retracted[active_extruder]) return;
  2382. const float old_feedrate_mm_s = feedrate_mm_s;
  2383. set_destination_to_current();
  2384. if (retracting) {
  2385. feedrate_mm_s = retract_feedrate_mm_s;
  2386. current_position[E_AXIS] += (swapping ? retract_length_swap : retract_length) / volumetric_multiplier[active_extruder];
  2387. sync_plan_position_e();
  2388. prepare_move_to_destination();
  2389. if (retract_zlift > 0.01) {
  2390. hop_height = current_position[Z_AXIS];
  2391. // Pretend current position is lower
  2392. current_position[Z_AXIS] -= retract_zlift;
  2393. SYNC_PLAN_POSITION_KINEMATIC();
  2394. // Raise up to the old current_position
  2395. prepare_move_to_destination();
  2396. }
  2397. }
  2398. else {
  2399. // If the height hasn't been altered, undo the Z hop
  2400. if (retract_zlift > 0.01 && hop_height == current_position[Z_AXIS]) {
  2401. // Pretend current position is higher. Z will lower on the next move
  2402. current_position[Z_AXIS] += retract_zlift;
  2403. SYNC_PLAN_POSITION_KINEMATIC();
  2404. }
  2405. feedrate_mm_s = retract_recover_feedrate_mm_s;
  2406. const float move_e = swapping ? retract_length_swap + retract_recover_length_swap : retract_length + retract_recover_length;
  2407. current_position[E_AXIS] -= move_e / volumetric_multiplier[active_extruder];
  2408. sync_plan_position_e();
  2409. // Lower Z and recover E
  2410. prepare_move_to_destination();
  2411. }
  2412. feedrate_mm_s = old_feedrate_mm_s;
  2413. retracted[active_extruder] = retracting;
  2414. } // retract()
  2415. #endif // FWRETRACT
  2416. #if ENABLED(MIXING_EXTRUDER)
  2417. void normalize_mix() {
  2418. float mix_total = 0.0;
  2419. for (uint8_t i = 0; i < MIXING_STEPPERS; i++) mix_total += RECIPROCAL(mixing_factor[i]);
  2420. // Scale all values if they don't add up to ~1.0
  2421. if (!NEAR(mix_total, 1.0)) {
  2422. SERIAL_PROTOCOLLNPGM("Warning: Mix factors must add up to 1.0. Scaling.");
  2423. for (uint8_t i = 0; i < MIXING_STEPPERS; i++) mixing_factor[i] *= mix_total;
  2424. }
  2425. }
  2426. #if ENABLED(DIRECT_MIXING_IN_G1)
  2427. // Get mixing parameters from the GCode
  2428. // The total "must" be 1.0 (but it will be normalized)
  2429. // If no mix factors are given, the old mix is preserved
  2430. void gcode_get_mix() {
  2431. const char* mixing_codes = "ABCDHI";
  2432. byte mix_bits = 0;
  2433. for (uint8_t i = 0; i < MIXING_STEPPERS; i++) {
  2434. if (code_seen(mixing_codes[i])) {
  2435. SBI(mix_bits, i);
  2436. float v = code_value_float();
  2437. NOLESS(v, 0.0);
  2438. mixing_factor[i] = RECIPROCAL(v);
  2439. }
  2440. }
  2441. // If any mixing factors were included, clear the rest
  2442. // If none were included, preserve the last mix
  2443. if (mix_bits) {
  2444. for (uint8_t i = 0; i < MIXING_STEPPERS; i++)
  2445. if (!TEST(mix_bits, i)) mixing_factor[i] = 0.0;
  2446. normalize_mix();
  2447. }
  2448. }
  2449. #endif
  2450. #endif
  2451. /**
  2452. * ***************************************************************************
  2453. * ***************************** G-CODE HANDLING *****************************
  2454. * ***************************************************************************
  2455. */
  2456. /**
  2457. * Set XYZE destination and feedrate from the current GCode command
  2458. *
  2459. * - Set destination from included axis codes
  2460. * - Set to current for missing axis codes
  2461. * - Set the feedrate, if included
  2462. */
  2463. void gcode_get_destination() {
  2464. LOOP_XYZE(i) {
  2465. if (code_seen(axis_codes[i]))
  2466. destination[i] = code_value_axis_units(i) + (axis_relative_modes[i] || relative_mode ? current_position[i] : 0);
  2467. else
  2468. destination[i] = current_position[i];
  2469. }
  2470. if (code_seen('F') && code_value_linear_units() > 0.0)
  2471. feedrate_mm_s = MMM_TO_MMS(code_value_linear_units());
  2472. #if ENABLED(PRINTCOUNTER)
  2473. if (!DEBUGGING(DRYRUN))
  2474. print_job_timer.incFilamentUsed(destination[E_AXIS] - current_position[E_AXIS]);
  2475. #endif
  2476. // Get ABCDHI mixing factors
  2477. #if ENABLED(MIXING_EXTRUDER) && ENABLED(DIRECT_MIXING_IN_G1)
  2478. gcode_get_mix();
  2479. #endif
  2480. }
  2481. void unknown_command_error() {
  2482. SERIAL_ECHO_START;
  2483. SERIAL_ECHOPAIR(MSG_UNKNOWN_COMMAND, current_command);
  2484. SERIAL_CHAR('"');
  2485. SERIAL_EOL;
  2486. }
  2487. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  2488. /**
  2489. * Output a "busy" message at regular intervals
  2490. * while the machine is not accepting commands.
  2491. */
  2492. void host_keepalive() {
  2493. const millis_t ms = millis();
  2494. if (host_keepalive_interval && busy_state != NOT_BUSY) {
  2495. if (PENDING(ms, next_busy_signal_ms)) return;
  2496. switch (busy_state) {
  2497. case IN_HANDLER:
  2498. case IN_PROCESS:
  2499. SERIAL_ECHO_START;
  2500. SERIAL_ECHOLNPGM(MSG_BUSY_PROCESSING);
  2501. break;
  2502. case PAUSED_FOR_USER:
  2503. SERIAL_ECHO_START;
  2504. SERIAL_ECHOLNPGM(MSG_BUSY_PAUSED_FOR_USER);
  2505. break;
  2506. case PAUSED_FOR_INPUT:
  2507. SERIAL_ECHO_START;
  2508. SERIAL_ECHOLNPGM(MSG_BUSY_PAUSED_FOR_INPUT);
  2509. break;
  2510. default:
  2511. break;
  2512. }
  2513. }
  2514. next_busy_signal_ms = ms + host_keepalive_interval * 1000UL;
  2515. }
  2516. #endif //HOST_KEEPALIVE_FEATURE
  2517. bool position_is_reachable(float target[XYZ]
  2518. #if HAS_BED_PROBE
  2519. , bool by_probe=false
  2520. #endif
  2521. ) {
  2522. float dx = RAW_X_POSITION(target[X_AXIS]),
  2523. dy = RAW_Y_POSITION(target[Y_AXIS]);
  2524. #if HAS_BED_PROBE
  2525. if (by_probe) {
  2526. dx -= X_PROBE_OFFSET_FROM_EXTRUDER;
  2527. dy -= Y_PROBE_OFFSET_FROM_EXTRUDER;
  2528. }
  2529. #endif
  2530. #if IS_SCARA
  2531. #if MIDDLE_DEAD_ZONE_R > 0
  2532. const float R2 = HYPOT2(dx - SCARA_OFFSET_X, dy - SCARA_OFFSET_Y);
  2533. return R2 >= sq(float(MIDDLE_DEAD_ZONE_R)) && R2 <= sq(L1 + L2);
  2534. #else
  2535. return HYPOT2(dx - SCARA_OFFSET_X, dy - SCARA_OFFSET_Y) <= sq(L1 + L2);
  2536. #endif
  2537. #elif ENABLED(DELTA)
  2538. return HYPOT2(dx, dy) <= sq((float)(DELTA_PRINTABLE_RADIUS));
  2539. #else
  2540. const float dz = RAW_Z_POSITION(target[Z_AXIS]);
  2541. return WITHIN(dx, X_MIN_POS - 0.0001, X_MAX_POS + 0.0001)
  2542. && WITHIN(dy, Y_MIN_POS - 0.0001, Y_MAX_POS + 0.0001)
  2543. && WITHIN(dz, Z_MIN_POS - 0.0001, Z_MAX_POS + 0.0001);
  2544. #endif
  2545. }
  2546. /**************************************************
  2547. ***************** GCode Handlers *****************
  2548. **************************************************/
  2549. /**
  2550. * G0, G1: Coordinated movement of X Y Z E axes
  2551. */
  2552. inline void gcode_G0_G1(
  2553. #if IS_SCARA
  2554. bool fast_move=false
  2555. #endif
  2556. ) {
  2557. if (IsRunning()) {
  2558. gcode_get_destination(); // For X Y Z E F
  2559. #if ENABLED(FWRETRACT)
  2560. if (autoretract_enabled && !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  2561. const float echange = destination[E_AXIS] - current_position[E_AXIS];
  2562. // Is this move an attempt to retract or recover?
  2563. if ((echange < -MIN_RETRACT && !retracted[active_extruder]) || (echange > MIN_RETRACT && retracted[active_extruder])) {
  2564. current_position[E_AXIS] = destination[E_AXIS]; // hide the slicer-generated retract/recover from calculations
  2565. sync_plan_position_e(); // AND from the planner
  2566. retract(!retracted[active_extruder]);
  2567. return;
  2568. }
  2569. }
  2570. #endif //FWRETRACT
  2571. #if IS_SCARA
  2572. fast_move ? prepare_uninterpolated_move_to_destination() : prepare_move_to_destination();
  2573. #else
  2574. prepare_move_to_destination();
  2575. #endif
  2576. }
  2577. }
  2578. /**
  2579. * G2: Clockwise Arc
  2580. * G3: Counterclockwise Arc
  2581. *
  2582. * This command has two forms: IJ-form and R-form.
  2583. *
  2584. * - I specifies an X offset. J specifies a Y offset.
  2585. * At least one of the IJ parameters is required.
  2586. * X and Y can be omitted to do a complete circle.
  2587. * The given XY is not error-checked. The arc ends
  2588. * based on the angle of the destination.
  2589. * Mixing I or J with R will throw an error.
  2590. *
  2591. * - R specifies the radius. X or Y is required.
  2592. * Omitting both X and Y will throw an error.
  2593. * X or Y must differ from the current XY.
  2594. * Mixing R with I or J will throw an error.
  2595. *
  2596. * Examples:
  2597. *
  2598. * G2 I10 ; CW circle centered at X+10
  2599. * G3 X20 Y12 R14 ; CCW circle with r=14 ending at X20 Y12
  2600. */
  2601. #if ENABLED(ARC_SUPPORT)
  2602. inline void gcode_G2_G3(bool clockwise) {
  2603. if (IsRunning()) {
  2604. #if ENABLED(SF_ARC_FIX)
  2605. const bool relative_mode_backup = relative_mode;
  2606. relative_mode = true;
  2607. #endif
  2608. gcode_get_destination();
  2609. #if ENABLED(SF_ARC_FIX)
  2610. relative_mode = relative_mode_backup;
  2611. #endif
  2612. float arc_offset[2] = { 0.0, 0.0 };
  2613. if (code_seen('R')) {
  2614. const float r = code_value_axis_units(X_AXIS),
  2615. x1 = current_position[X_AXIS], y1 = current_position[Y_AXIS],
  2616. x2 = destination[X_AXIS], y2 = destination[Y_AXIS];
  2617. if (r && (x2 != x1 || y2 != y1)) {
  2618. const float e = clockwise ^ (r < 0) ? -1 : 1, // clockwise -1/1, counterclockwise 1/-1
  2619. dx = x2 - x1, dy = y2 - y1, // X and Y differences
  2620. d = HYPOT(dx, dy), // Linear distance between the points
  2621. h = sqrt(sq(r) - sq(d * 0.5)), // Distance to the arc pivot-point
  2622. mx = (x1 + x2) * 0.5, my = (y1 + y2) * 0.5, // Point between the two points
  2623. sx = -dy / d, sy = dx / d, // Slope of the perpendicular bisector
  2624. cx = mx + e * h * sx, cy = my + e * h * sy; // Pivot-point of the arc
  2625. arc_offset[X_AXIS] = cx - x1;
  2626. arc_offset[Y_AXIS] = cy - y1;
  2627. }
  2628. }
  2629. else {
  2630. if (code_seen('I')) arc_offset[X_AXIS] = code_value_axis_units(X_AXIS);
  2631. if (code_seen('J')) arc_offset[Y_AXIS] = code_value_axis_units(Y_AXIS);
  2632. }
  2633. if (arc_offset[0] || arc_offset[1]) {
  2634. // Send an arc to the planner
  2635. plan_arc(destination, arc_offset, clockwise);
  2636. refresh_cmd_timeout();
  2637. }
  2638. else {
  2639. // Bad arguments
  2640. SERIAL_ERROR_START;
  2641. SERIAL_ERRORLNPGM(MSG_ERR_ARC_ARGS);
  2642. }
  2643. }
  2644. }
  2645. #endif
  2646. /**
  2647. * G4: Dwell S<seconds> or P<milliseconds>
  2648. */
  2649. inline void gcode_G4() {
  2650. millis_t dwell_ms = 0;
  2651. if (code_seen('P')) dwell_ms = code_value_millis(); // milliseconds to wait
  2652. if (code_seen('S')) dwell_ms = code_value_millis_from_seconds(); // seconds to wait
  2653. stepper.synchronize();
  2654. refresh_cmd_timeout();
  2655. dwell_ms += previous_cmd_ms; // keep track of when we started waiting
  2656. if (!lcd_hasstatus()) LCD_MESSAGEPGM(MSG_DWELL);
  2657. while (PENDING(millis(), dwell_ms)) idle();
  2658. }
  2659. #if ENABLED(BEZIER_CURVE_SUPPORT)
  2660. /**
  2661. * Parameters interpreted according to:
  2662. * http://linuxcnc.org/docs/2.6/html/gcode/gcode.html#sec:G5-Cubic-Spline
  2663. * However I, J omission is not supported at this point; all
  2664. * parameters can be omitted and default to zero.
  2665. */
  2666. /**
  2667. * G5: Cubic B-spline
  2668. */
  2669. inline void gcode_G5() {
  2670. if (IsRunning()) {
  2671. gcode_get_destination();
  2672. const float offset[] = {
  2673. code_seen('I') ? code_value_axis_units(X_AXIS) : 0.0,
  2674. code_seen('J') ? code_value_axis_units(Y_AXIS) : 0.0,
  2675. code_seen('P') ? code_value_axis_units(X_AXIS) : 0.0,
  2676. code_seen('Q') ? code_value_axis_units(Y_AXIS) : 0.0
  2677. };
  2678. plan_cubic_move(offset);
  2679. }
  2680. }
  2681. #endif // BEZIER_CURVE_SUPPORT
  2682. #if ENABLED(FWRETRACT)
  2683. /**
  2684. * G10 - Retract filament according to settings of M207
  2685. * G11 - Recover filament according to settings of M208
  2686. */
  2687. inline void gcode_G10_G11(bool doRetract=false) {
  2688. #if EXTRUDERS > 1
  2689. if (doRetract) {
  2690. retracted_swap[active_extruder] = (code_seen('S') && code_value_bool()); // checks for swap retract argument
  2691. }
  2692. #endif
  2693. retract(doRetract
  2694. #if EXTRUDERS > 1
  2695. , retracted_swap[active_extruder]
  2696. #endif
  2697. );
  2698. }
  2699. #endif //FWRETRACT
  2700. #if ENABLED(NOZZLE_CLEAN_FEATURE)
  2701. /**
  2702. * G12: Clean the nozzle
  2703. */
  2704. inline void gcode_G12() {
  2705. // Don't allow nozzle cleaning without homing first
  2706. if (axis_unhomed_error(true, true, true)) return;
  2707. const uint8_t pattern = code_seen('P') ? code_value_ushort() : 0,
  2708. strokes = code_seen('S') ? code_value_ushort() : NOZZLE_CLEAN_STROKES,
  2709. objects = code_seen('T') ? code_value_ushort() : NOZZLE_CLEAN_TRIANGLES;
  2710. const float radius = code_seen('R') ? code_value_float() : NOZZLE_CLEAN_CIRCLE_RADIUS;
  2711. Nozzle::clean(pattern, strokes, radius, objects);
  2712. }
  2713. #endif
  2714. #if ENABLED(INCH_MODE_SUPPORT)
  2715. /**
  2716. * G20: Set input mode to inches
  2717. */
  2718. inline void gcode_G20() { set_input_linear_units(LINEARUNIT_INCH); }
  2719. /**
  2720. * G21: Set input mode to millimeters
  2721. */
  2722. inline void gcode_G21() { set_input_linear_units(LINEARUNIT_MM); }
  2723. #endif
  2724. #if ENABLED(NOZZLE_PARK_FEATURE)
  2725. /**
  2726. * G27: Park the nozzle
  2727. */
  2728. inline void gcode_G27() {
  2729. // Don't allow nozzle parking without homing first
  2730. if (axis_unhomed_error(true, true, true)) return;
  2731. Nozzle::park(code_seen('P') ? code_value_ushort() : 0);
  2732. }
  2733. #endif // NOZZLE_PARK_FEATURE
  2734. #if ENABLED(QUICK_HOME)
  2735. static void quick_home_xy() {
  2736. // Pretend the current position is 0,0
  2737. current_position[X_AXIS] = current_position[Y_AXIS] = 0.0;
  2738. sync_plan_position();
  2739. const int x_axis_home_dir =
  2740. #if ENABLED(DUAL_X_CARRIAGE)
  2741. x_home_dir(active_extruder)
  2742. #else
  2743. home_dir(X_AXIS)
  2744. #endif
  2745. ;
  2746. const float mlx = max_length(X_AXIS),
  2747. mly = max_length(Y_AXIS),
  2748. mlratio = mlx > mly ? mly / mlx : mlx / mly,
  2749. fr_mm_s = min(homing_feedrate_mm_s[X_AXIS], homing_feedrate_mm_s[Y_AXIS]) * sqrt(sq(mlratio) + 1.0);
  2750. do_blocking_move_to_xy(1.5 * mlx * x_axis_home_dir, 1.5 * mly * home_dir(Y_AXIS), fr_mm_s);
  2751. endstops.hit_on_purpose(); // clear endstop hit flags
  2752. current_position[X_AXIS] = current_position[Y_AXIS] = 0.0;
  2753. }
  2754. #endif // QUICK_HOME
  2755. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2756. void log_machine_info() {
  2757. SERIAL_ECHOPGM("Machine Type: ");
  2758. #if ENABLED(DELTA)
  2759. SERIAL_ECHOLNPGM("Delta");
  2760. #elif IS_SCARA
  2761. SERIAL_ECHOLNPGM("SCARA");
  2762. #elif IS_CORE
  2763. SERIAL_ECHOLNPGM("Core");
  2764. #else
  2765. SERIAL_ECHOLNPGM("Cartesian");
  2766. #endif
  2767. SERIAL_ECHOPGM("Probe: ");
  2768. #if ENABLED(PROBE_MANUALLY)
  2769. SERIAL_ECHOLNPGM("PROBE_MANUALLY");
  2770. #elif ENABLED(FIX_MOUNTED_PROBE)
  2771. SERIAL_ECHOLNPGM("FIX_MOUNTED_PROBE");
  2772. #elif ENABLED(BLTOUCH)
  2773. SERIAL_ECHOLNPGM("BLTOUCH");
  2774. #elif HAS_Z_SERVO_ENDSTOP
  2775. SERIAL_ECHOLNPGM("SERVO PROBE");
  2776. #elif ENABLED(Z_PROBE_SLED)
  2777. SERIAL_ECHOLNPGM("Z_PROBE_SLED");
  2778. #elif ENABLED(Z_PROBE_ALLEN_KEY)
  2779. SERIAL_ECHOLNPGM("Z_PROBE_ALLEN_KEY");
  2780. #else
  2781. SERIAL_ECHOLNPGM("NONE");
  2782. #endif
  2783. #if HAS_BED_PROBE
  2784. SERIAL_ECHOPAIR("Probe Offset X:", X_PROBE_OFFSET_FROM_EXTRUDER);
  2785. SERIAL_ECHOPAIR(" Y:", Y_PROBE_OFFSET_FROM_EXTRUDER);
  2786. SERIAL_ECHOPAIR(" Z:", zprobe_zoffset);
  2787. #if (X_PROBE_OFFSET_FROM_EXTRUDER > 0)
  2788. SERIAL_ECHOPGM(" (Right");
  2789. #elif (X_PROBE_OFFSET_FROM_EXTRUDER < 0)
  2790. SERIAL_ECHOPGM(" (Left");
  2791. #elif (Y_PROBE_OFFSET_FROM_EXTRUDER != 0)
  2792. SERIAL_ECHOPGM(" (Middle");
  2793. #else
  2794. SERIAL_ECHOPGM(" (Aligned With");
  2795. #endif
  2796. #if (Y_PROBE_OFFSET_FROM_EXTRUDER > 0)
  2797. SERIAL_ECHOPGM("-Back");
  2798. #elif (Y_PROBE_OFFSET_FROM_EXTRUDER < 0)
  2799. SERIAL_ECHOPGM("-Front");
  2800. #elif (X_PROBE_OFFSET_FROM_EXTRUDER != 0)
  2801. SERIAL_ECHOPGM("-Center");
  2802. #endif
  2803. if (zprobe_zoffset < 0)
  2804. SERIAL_ECHOPGM(" & Below");
  2805. else if (zprobe_zoffset > 0)
  2806. SERIAL_ECHOPGM(" & Above");
  2807. else
  2808. SERIAL_ECHOPGM(" & Same Z as");
  2809. SERIAL_ECHOLNPGM(" Nozzle)");
  2810. #endif
  2811. #if HAS_ABL
  2812. SERIAL_ECHOPGM("Auto Bed Leveling: ");
  2813. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  2814. SERIAL_ECHOPGM("LINEAR");
  2815. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  2816. SERIAL_ECHOPGM("BILINEAR");
  2817. #elif ENABLED(AUTO_BED_LEVELING_3POINT)
  2818. SERIAL_ECHOPGM("3POINT");
  2819. #elif ENABLED(AUTO_BED_LEVELING_UBL)
  2820. SERIAL_ECHOPGM("UBL");
  2821. #endif
  2822. if (planner.abl_enabled) {
  2823. SERIAL_ECHOLNPGM(" (enabled)");
  2824. #if ABL_PLANAR
  2825. float diff[XYZ] = {
  2826. stepper.get_axis_position_mm(X_AXIS) - current_position[X_AXIS],
  2827. stepper.get_axis_position_mm(Y_AXIS) - current_position[Y_AXIS],
  2828. stepper.get_axis_position_mm(Z_AXIS) - current_position[Z_AXIS]
  2829. };
  2830. SERIAL_ECHOPGM("ABL Adjustment X");
  2831. if (diff[X_AXIS] > 0) SERIAL_CHAR('+');
  2832. SERIAL_ECHO(diff[X_AXIS]);
  2833. SERIAL_ECHOPGM(" Y");
  2834. if (diff[Y_AXIS] > 0) SERIAL_CHAR('+');
  2835. SERIAL_ECHO(diff[Y_AXIS]);
  2836. SERIAL_ECHOPGM(" Z");
  2837. if (diff[Z_AXIS] > 0) SERIAL_CHAR('+');
  2838. SERIAL_ECHO(diff[Z_AXIS]);
  2839. #elif ENABLED(AUTO_BED_LEVELING_UBL)
  2840. SERIAL_ECHOPAIR("UBL Adjustment Z", stepper.get_axis_position_mm(Z_AXIS) - current_position[Z_AXIS]);
  2841. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  2842. SERIAL_ECHOPAIR("ABL Adjustment Z", bilinear_z_offset(current_position));
  2843. #endif
  2844. }
  2845. else
  2846. SERIAL_ECHOLNPGM(" (disabled)");
  2847. SERIAL_EOL;
  2848. #elif ENABLED(MESH_BED_LEVELING)
  2849. SERIAL_ECHOPGM("Mesh Bed Leveling");
  2850. if (mbl.active()) {
  2851. float lz = current_position[Z_AXIS];
  2852. planner.apply_leveling(current_position[X_AXIS], current_position[Y_AXIS], lz);
  2853. SERIAL_ECHOLNPGM(" (enabled)");
  2854. SERIAL_ECHOPAIR("MBL Adjustment Z", lz);
  2855. }
  2856. else
  2857. SERIAL_ECHOPGM(" (disabled)");
  2858. SERIAL_EOL;
  2859. #endif // MESH_BED_LEVELING
  2860. }
  2861. #endif // DEBUG_LEVELING_FEATURE
  2862. #if ENABLED(DELTA)
  2863. /**
  2864. * A delta can only safely home all axes at the same time
  2865. * This is like quick_home_xy() but for 3 towers.
  2866. */
  2867. inline void home_delta() {
  2868. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2869. if (DEBUGGING(LEVELING)) DEBUG_POS(">>> home_delta", current_position);
  2870. #endif
  2871. // Init the current position of all carriages to 0,0,0
  2872. ZERO(current_position);
  2873. sync_plan_position();
  2874. // Move all carriages together linearly until an endstop is hit.
  2875. current_position[X_AXIS] = current_position[Y_AXIS] = current_position[Z_AXIS] = (Z_MAX_LENGTH + 10);
  2876. feedrate_mm_s = homing_feedrate_mm_s[X_AXIS];
  2877. line_to_current_position();
  2878. stepper.synchronize();
  2879. endstops.hit_on_purpose(); // clear endstop hit flags
  2880. // At least one carriage has reached the top.
  2881. // Now re-home each carriage separately.
  2882. HOMEAXIS(A);
  2883. HOMEAXIS(B);
  2884. HOMEAXIS(C);
  2885. // Set all carriages to their home positions
  2886. // Do this here all at once for Delta, because
  2887. // XYZ isn't ABC. Applying this per-tower would
  2888. // give the impression that they are the same.
  2889. LOOP_XYZ(i) set_axis_is_at_home((AxisEnum)i);
  2890. SYNC_PLAN_POSITION_KINEMATIC();
  2891. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2892. if (DEBUGGING(LEVELING)) DEBUG_POS("<<< home_delta", current_position);
  2893. #endif
  2894. }
  2895. #endif // DELTA
  2896. #if ENABLED(Z_SAFE_HOMING)
  2897. inline void home_z_safely() {
  2898. // Disallow Z homing if X or Y are unknown
  2899. if (!axis_known_position[X_AXIS] || !axis_known_position[Y_AXIS]) {
  2900. LCD_MESSAGEPGM(MSG_ERR_Z_HOMING);
  2901. SERIAL_ECHO_START;
  2902. SERIAL_ECHOLNPGM(MSG_ERR_Z_HOMING);
  2903. return;
  2904. }
  2905. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2906. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("Z_SAFE_HOMING >>>");
  2907. #endif
  2908. SYNC_PLAN_POSITION_KINEMATIC();
  2909. /**
  2910. * Move the Z probe (or just the nozzle) to the safe homing point
  2911. */
  2912. destination[X_AXIS] = LOGICAL_X_POSITION(Z_SAFE_HOMING_X_POINT);
  2913. destination[Y_AXIS] = LOGICAL_Y_POSITION(Z_SAFE_HOMING_Y_POINT);
  2914. destination[Z_AXIS] = current_position[Z_AXIS]; // Z is already at the right height
  2915. if (position_is_reachable(
  2916. destination
  2917. #if HOMING_Z_WITH_PROBE
  2918. , true
  2919. #endif
  2920. )
  2921. ) {
  2922. #if HOMING_Z_WITH_PROBE
  2923. destination[X_AXIS] -= X_PROBE_OFFSET_FROM_EXTRUDER;
  2924. destination[Y_AXIS] -= Y_PROBE_OFFSET_FROM_EXTRUDER;
  2925. #endif
  2926. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2927. if (DEBUGGING(LEVELING)) DEBUG_POS("Z_SAFE_HOMING", destination);
  2928. #endif
  2929. // This causes the carriage on Dual X to unpark
  2930. #if ENABLED(DUAL_X_CARRIAGE)
  2931. active_extruder_parked = false;
  2932. #endif
  2933. do_blocking_move_to_xy(destination[X_AXIS], destination[Y_AXIS]);
  2934. HOMEAXIS(Z);
  2935. }
  2936. else {
  2937. LCD_MESSAGEPGM(MSG_ZPROBE_OUT);
  2938. SERIAL_ECHO_START;
  2939. SERIAL_ECHOLNPGM(MSG_ZPROBE_OUT);
  2940. }
  2941. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2942. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< Z_SAFE_HOMING");
  2943. #endif
  2944. }
  2945. #endif // Z_SAFE_HOMING
  2946. #if ENABLED(PROBE_MANUALLY)
  2947. bool g29_in_progress = false;
  2948. #else
  2949. constexpr bool g29_in_progress = false;
  2950. #endif
  2951. /**
  2952. * G28: Home all axes according to settings
  2953. *
  2954. * Parameters
  2955. *
  2956. * None Home to all axes with no parameters.
  2957. * With QUICK_HOME enabled XY will home together, then Z.
  2958. *
  2959. * Cartesian parameters
  2960. *
  2961. * X Home to the X endstop
  2962. * Y Home to the Y endstop
  2963. * Z Home to the Z endstop
  2964. *
  2965. */
  2966. inline void gcode_G28() {
  2967. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2968. if (DEBUGGING(LEVELING)) {
  2969. SERIAL_ECHOLNPGM(">>> gcode_G28");
  2970. log_machine_info();
  2971. }
  2972. #endif
  2973. // Wait for planner moves to finish!
  2974. stepper.synchronize();
  2975. // Cancel the active G29 session
  2976. #if ENABLED(PROBE_MANUALLY)
  2977. g29_in_progress = false;
  2978. #endif
  2979. // Disable the leveling matrix before homing
  2980. #if PLANNER_LEVELING
  2981. #if ENABLED(AUTO_BED_LEVELING_UBL)
  2982. const bool bed_leveling_state_at_entry = ubl.state.active;
  2983. #endif
  2984. set_bed_leveling_enabled(false);
  2985. #endif
  2986. // Always home with tool 0 active
  2987. #if HOTENDS > 1
  2988. const uint8_t old_tool_index = active_extruder;
  2989. tool_change(0, 0, true);
  2990. #endif
  2991. #if ENABLED(DUAL_X_CARRIAGE) || ENABLED(DUAL_NOZZLE_DUPLICATION_MODE)
  2992. extruder_duplication_enabled = false;
  2993. #endif
  2994. setup_for_endstop_or_probe_move();
  2995. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2996. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> endstops.enable(true)");
  2997. #endif
  2998. endstops.enable(true); // Enable endstops for next homing move
  2999. #if ENABLED(DELTA)
  3000. home_delta();
  3001. #else // NOT DELTA
  3002. const bool homeX = code_seen('X'), homeY = code_seen('Y'), homeZ = code_seen('Z'),
  3003. home_all_axis = (!homeX && !homeY && !homeZ) || (homeX && homeY && homeZ);
  3004. set_destination_to_current();
  3005. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  3006. if (home_all_axis || homeZ) {
  3007. HOMEAXIS(Z);
  3008. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3009. if (DEBUGGING(LEVELING)) DEBUG_POS("> HOMEAXIS(Z)", current_position);
  3010. #endif
  3011. }
  3012. #else
  3013. if (home_all_axis || homeX || homeY) {
  3014. // Raise Z before homing any other axes and z is not already high enough (never lower z)
  3015. destination[Z_AXIS] = LOGICAL_Z_POSITION(Z_HOMING_HEIGHT);
  3016. if (destination[Z_AXIS] > current_position[Z_AXIS]) {
  3017. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3018. if (DEBUGGING(LEVELING))
  3019. SERIAL_ECHOLNPAIR("Raise Z (before homing) to ", destination[Z_AXIS]);
  3020. #endif
  3021. do_blocking_move_to_z(destination[Z_AXIS]);
  3022. }
  3023. }
  3024. #endif
  3025. #if ENABLED(QUICK_HOME)
  3026. if (home_all_axis || (homeX && homeY)) quick_home_xy();
  3027. #endif
  3028. #if ENABLED(HOME_Y_BEFORE_X)
  3029. // Home Y
  3030. if (home_all_axis || homeY) {
  3031. HOMEAXIS(Y);
  3032. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3033. if (DEBUGGING(LEVELING)) DEBUG_POS("> homeY", current_position);
  3034. #endif
  3035. }
  3036. #endif
  3037. // Home X
  3038. if (home_all_axis || homeX) {
  3039. #if ENABLED(DUAL_X_CARRIAGE)
  3040. // Always home the 2nd (right) extruder first
  3041. active_extruder = 1;
  3042. HOMEAXIS(X);
  3043. // Remember this extruder's position for later tool change
  3044. inactive_extruder_x_pos = RAW_X_POSITION(current_position[X_AXIS]);
  3045. // Home the 1st (left) extruder
  3046. active_extruder = 0;
  3047. HOMEAXIS(X);
  3048. // Consider the active extruder to be parked
  3049. COPY(raised_parked_position, current_position);
  3050. delayed_move_time = 0;
  3051. active_extruder_parked = true;
  3052. #else
  3053. HOMEAXIS(X);
  3054. #endif
  3055. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3056. if (DEBUGGING(LEVELING)) DEBUG_POS("> homeX", current_position);
  3057. #endif
  3058. }
  3059. #if DISABLED(HOME_Y_BEFORE_X)
  3060. // Home Y
  3061. if (home_all_axis || homeY) {
  3062. HOMEAXIS(Y);
  3063. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3064. if (DEBUGGING(LEVELING)) DEBUG_POS("> homeY", current_position);
  3065. #endif
  3066. }
  3067. #endif
  3068. // Home Z last if homing towards the bed
  3069. #if Z_HOME_DIR < 0
  3070. if (home_all_axis || homeZ) {
  3071. #if ENABLED(Z_SAFE_HOMING)
  3072. home_z_safely();
  3073. #else
  3074. HOMEAXIS(Z);
  3075. #endif
  3076. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3077. if (DEBUGGING(LEVELING)) DEBUG_POS("> (home_all_axis || homeZ) > final", current_position);
  3078. #endif
  3079. } // home_all_axis || homeZ
  3080. #endif // Z_HOME_DIR < 0
  3081. SYNC_PLAN_POSITION_KINEMATIC();
  3082. #endif // !DELTA (gcode_G28)
  3083. endstops.not_homing();
  3084. #if ENABLED(DELTA) && ENABLED(DELTA_HOME_TO_SAFE_ZONE)
  3085. // move to a height where we can use the full xy-area
  3086. do_blocking_move_to_z(delta_clip_start_height);
  3087. #endif
  3088. #if ENABLED(AUTO_BED_LEVELING_UBL)
  3089. set_bed_leveling_enabled(bed_leveling_state_at_entry);
  3090. #endif
  3091. // Enable mesh leveling again
  3092. #if ENABLED(MESH_BED_LEVELING)
  3093. if (mbl.reactivate()) {
  3094. set_bed_leveling_enabled(true);
  3095. if (home_all_axis || (axis_homed[X_AXIS] && axis_homed[Y_AXIS] && homeZ)) {
  3096. #if ENABLED(MESH_G28_REST_ORIGIN)
  3097. current_position[Z_AXIS] = LOGICAL_Z_POSITION(Z_MIN_POS);
  3098. set_destination_to_current();
  3099. line_to_destination(homing_feedrate_mm_s[Z_AXIS]);
  3100. stepper.synchronize();
  3101. #endif
  3102. }
  3103. }
  3104. #endif
  3105. clean_up_after_endstop_or_probe_move();
  3106. // Restore the active tool after homing
  3107. #if HOTENDS > 1
  3108. tool_change(old_tool_index, 0, true);
  3109. #endif
  3110. report_current_position();
  3111. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3112. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< gcode_G28");
  3113. #endif
  3114. }
  3115. #if HAS_PROBING_PROCEDURE
  3116. void out_of_range_error(const char* p_edge) {
  3117. SERIAL_PROTOCOLPGM("?Probe ");
  3118. serialprintPGM(p_edge);
  3119. SERIAL_PROTOCOLLNPGM(" position out of range.");
  3120. }
  3121. #endif
  3122. #if ENABLED(MESH_BED_LEVELING) || ENABLED(PROBE_MANUALLY)
  3123. inline void _manual_goto_xy(const float &x, const float &y) {
  3124. const float old_feedrate_mm_s = feedrate_mm_s;
  3125. #if MANUAL_PROBE_HEIGHT > 0
  3126. feedrate_mm_s = homing_feedrate_mm_s[Z_AXIS];
  3127. current_position[Z_AXIS] = LOGICAL_Z_POSITION(Z_MIN_POS) + MANUAL_PROBE_HEIGHT;
  3128. line_to_current_position();
  3129. #endif
  3130. feedrate_mm_s = MMM_TO_MMS(XY_PROBE_SPEED);
  3131. current_position[X_AXIS] = LOGICAL_X_POSITION(x);
  3132. current_position[Y_AXIS] = LOGICAL_Y_POSITION(y);
  3133. line_to_current_position();
  3134. #if MANUAL_PROBE_HEIGHT > 0
  3135. feedrate_mm_s = homing_feedrate_mm_s[Z_AXIS];
  3136. current_position[Z_AXIS] = LOGICAL_Z_POSITION(Z_MIN_POS) + 0.2; // just slightly over the bed
  3137. line_to_current_position();
  3138. #endif
  3139. feedrate_mm_s = old_feedrate_mm_s;
  3140. stepper.synchronize();
  3141. }
  3142. #endif
  3143. #if ENABLED(MESH_BED_LEVELING)
  3144. // Save 130 bytes with non-duplication of PSTR
  3145. void say_not_entered() { SERIAL_PROTOCOLLNPGM(" not entered."); }
  3146. void mbl_mesh_report() {
  3147. SERIAL_PROTOCOLLNPGM("Num X,Y: " STRINGIFY(MESH_NUM_X_POINTS) "," STRINGIFY(MESH_NUM_Y_POINTS));
  3148. SERIAL_PROTOCOLPGM("Z offset: "); SERIAL_PROTOCOL_F(mbl.z_offset, 5);
  3149. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  3150. for (uint8_t py = 0; py < MESH_NUM_Y_POINTS; py++) {
  3151. for (uint8_t px = 0; px < MESH_NUM_X_POINTS; px++) {
  3152. SERIAL_PROTOCOLPGM(" ");
  3153. SERIAL_PROTOCOL_F(mbl.z_values[py][px], 5);
  3154. }
  3155. SERIAL_EOL;
  3156. }
  3157. }
  3158. /**
  3159. * G29: Mesh-based Z probe, probes a grid and produces a
  3160. * mesh to compensate for variable bed height
  3161. *
  3162. * Parameters With MESH_BED_LEVELING:
  3163. *
  3164. * S0 Produce a mesh report
  3165. * S1 Start probing mesh points
  3166. * S2 Probe the next mesh point
  3167. * S3 Xn Yn Zn.nn Manually modify a single point
  3168. * S4 Zn.nn Set z offset. Positive away from bed, negative closer to bed.
  3169. * S5 Reset and disable mesh
  3170. *
  3171. * The S0 report the points as below
  3172. *
  3173. * +----> X-axis 1-n
  3174. * |
  3175. * |
  3176. * v Y-axis 1-n
  3177. *
  3178. */
  3179. inline void gcode_G29() {
  3180. static int mbl_probe_index = -1;
  3181. #if HAS_SOFTWARE_ENDSTOPS
  3182. static bool enable_soft_endstops;
  3183. #endif
  3184. const MeshLevelingState state = code_seen('S') ? (MeshLevelingState)code_value_byte() : MeshReport;
  3185. if (!WITHIN(state, 0, 5)) {
  3186. SERIAL_PROTOCOLLNPGM("S out of range (0-5).");
  3187. return;
  3188. }
  3189. int8_t px, py;
  3190. switch (state) {
  3191. case MeshReport:
  3192. if (mbl.has_mesh()) {
  3193. SERIAL_PROTOCOLLNPAIR("State: ", mbl.active() ? MSG_ON : MSG_OFF);
  3194. mbl_mesh_report();
  3195. }
  3196. else
  3197. SERIAL_PROTOCOLLNPGM("Mesh bed leveling has no data.");
  3198. break;
  3199. case MeshStart:
  3200. mbl.reset();
  3201. mbl_probe_index = 0;
  3202. enqueue_and_echo_commands_P(PSTR("G28\nG29 S2"));
  3203. break;
  3204. case MeshNext:
  3205. if (mbl_probe_index < 0) {
  3206. SERIAL_PROTOCOLLNPGM("Start mesh probing with \"G29 S1\" first.");
  3207. return;
  3208. }
  3209. // For each G29 S2...
  3210. if (mbl_probe_index == 0) {
  3211. #if HAS_SOFTWARE_ENDSTOPS
  3212. // For the initial G29 S2 save software endstop state
  3213. enable_soft_endstops = soft_endstops_enabled;
  3214. #endif
  3215. }
  3216. else {
  3217. // For G29 S2 after adjusting Z.
  3218. mbl.set_zigzag_z(mbl_probe_index - 1, current_position[Z_AXIS]);
  3219. #if HAS_SOFTWARE_ENDSTOPS
  3220. soft_endstops_enabled = enable_soft_endstops;
  3221. #endif
  3222. }
  3223. // If there's another point to sample, move there with optional lift.
  3224. if (mbl_probe_index < (MESH_NUM_X_POINTS) * (MESH_NUM_Y_POINTS)) {
  3225. mbl.zigzag(mbl_probe_index, px, py);
  3226. _manual_goto_xy(mbl.index_to_xpos[px], mbl.index_to_ypos[py]);
  3227. #if HAS_SOFTWARE_ENDSTOPS
  3228. // Disable software endstops to allow manual adjustment
  3229. // If G29 is not completed, they will not be re-enabled
  3230. soft_endstops_enabled = false;
  3231. #endif
  3232. mbl_probe_index++;
  3233. }
  3234. else {
  3235. // One last "return to the bed" (as originally coded) at completion
  3236. current_position[Z_AXIS] = LOGICAL_Z_POSITION(Z_MIN_POS) + MANUAL_PROBE_HEIGHT;
  3237. line_to_current_position();
  3238. stepper.synchronize();
  3239. // After recording the last point, activate the mbl and home
  3240. SERIAL_PROTOCOLLNPGM("Mesh probing done.");
  3241. mbl_probe_index = -1;
  3242. mbl.set_has_mesh(true);
  3243. mbl.set_reactivate(true);
  3244. enqueue_and_echo_commands_P(PSTR("G28"));
  3245. BUZZ(100, 659);
  3246. BUZZ(100, 698);
  3247. }
  3248. break;
  3249. case MeshSet:
  3250. if (code_seen('X')) {
  3251. px = code_value_int() - 1;
  3252. if (!WITHIN(px, 0, MESH_NUM_X_POINTS - 1)) {
  3253. SERIAL_PROTOCOLLNPGM("X out of range (1-" STRINGIFY(MESH_NUM_X_POINTS) ").");
  3254. return;
  3255. }
  3256. }
  3257. else {
  3258. SERIAL_CHAR('X'); say_not_entered();
  3259. return;
  3260. }
  3261. if (code_seen('Y')) {
  3262. py = code_value_int() - 1;
  3263. if (!WITHIN(py, 0, MESH_NUM_Y_POINTS - 1)) {
  3264. SERIAL_PROTOCOLLNPGM("Y out of range (1-" STRINGIFY(MESH_NUM_Y_POINTS) ").");
  3265. return;
  3266. }
  3267. }
  3268. else {
  3269. SERIAL_CHAR('Y'); say_not_entered();
  3270. return;
  3271. }
  3272. if (code_seen('Z')) {
  3273. mbl.z_values[py][px] = code_value_axis_units(Z_AXIS);
  3274. }
  3275. else {
  3276. SERIAL_CHAR('Z'); say_not_entered();
  3277. return;
  3278. }
  3279. break;
  3280. case MeshSetZOffset:
  3281. if (code_seen('Z')) {
  3282. mbl.z_offset = code_value_axis_units(Z_AXIS);
  3283. }
  3284. else {
  3285. SERIAL_CHAR('Z'); say_not_entered();
  3286. return;
  3287. }
  3288. break;
  3289. case MeshReset:
  3290. reset_bed_level();
  3291. break;
  3292. } // switch(state)
  3293. report_current_position();
  3294. }
  3295. #elif HAS_ABL && DISABLED(AUTO_BED_LEVELING_UBL)
  3296. #if ABL_GRID
  3297. #if ENABLED(PROBE_Y_FIRST)
  3298. #define PR_OUTER_VAR xCount
  3299. #define PR_OUTER_END abl_grid_points_x
  3300. #define PR_INNER_VAR yCount
  3301. #define PR_INNER_END abl_grid_points_y
  3302. #else
  3303. #define PR_OUTER_VAR yCount
  3304. #define PR_OUTER_END abl_grid_points_y
  3305. #define PR_INNER_VAR xCount
  3306. #define PR_INNER_END abl_grid_points_x
  3307. #endif
  3308. #endif
  3309. /**
  3310. * G29: Detailed Z probe, probes the bed at 3 or more points.
  3311. * Will fail if the printer has not been homed with G28.
  3312. *
  3313. * Enhanced G29 Auto Bed Leveling Probe Routine
  3314. *
  3315. * D Dry-Run mode. Just evaluate the bed Topology - Don't apply
  3316. * or alter the bed level data. Useful to check the topology
  3317. * after a first run of G29.
  3318. *
  3319. * J Jettison current bed leveling data
  3320. *
  3321. * V Set the verbose level (0-4). Example: "G29 V3"
  3322. *
  3323. * Parameters With LINEAR leveling only:
  3324. *
  3325. * P Set the size of the grid that will be probed (P x P points).
  3326. * Example: "G29 P4"
  3327. *
  3328. * X Set the X size of the grid that will be probed (X x Y points).
  3329. * Example: "G29 X7 Y5"
  3330. *
  3331. * Y Set the Y size of the grid that will be probed (X x Y points).
  3332. *
  3333. * T Generate a Bed Topology Report. Example: "G29 P5 T" for a detailed report.
  3334. * This is useful for manual bed leveling and finding flaws in the bed (to
  3335. * assist with part placement).
  3336. * Not supported by non-linear delta printer bed leveling.
  3337. *
  3338. * Parameters With LINEAR and BILINEAR leveling only:
  3339. *
  3340. * S Set the XY travel speed between probe points (in units/min)
  3341. *
  3342. * F Set the Front limit of the probing grid
  3343. * B Set the Back limit of the probing grid
  3344. * L Set the Left limit of the probing grid
  3345. * R Set the Right limit of the probing grid
  3346. *
  3347. * Parameters with BILINEAR leveling only:
  3348. *
  3349. * Z Supply an additional Z probe offset
  3350. *
  3351. * Extra parameters with PROBE_MANUALLY:
  3352. *
  3353. * To do manual probing simply repeat G29 until the procedure is complete.
  3354. * The first G29 accepts parameters. 'G29 Q' for status, 'G29 A' to abort.
  3355. *
  3356. * Q Query leveling and G29 state
  3357. *
  3358. * A Abort current leveling procedure
  3359. *
  3360. * W Write a mesh point. (Ignored during leveling.)
  3361. * X Required X for mesh point
  3362. * Y Required Y for mesh point
  3363. * Z Required Z for mesh point
  3364. *
  3365. * Without PROBE_MANUALLY:
  3366. *
  3367. * E By default G29 will engage the Z probe, test the bed, then disengage.
  3368. * Include "E" to engage/disengage the Z probe for each sample.
  3369. * There's no extra effect if you have a fixed Z probe.
  3370. *
  3371. */
  3372. inline void gcode_G29() {
  3373. // G29 Q is also available if debugging
  3374. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3375. const bool query = code_seen('Q');
  3376. const uint8_t old_debug_flags = marlin_debug_flags;
  3377. if (query) marlin_debug_flags |= DEBUG_LEVELING;
  3378. if (DEBUGGING(LEVELING)) {
  3379. DEBUG_POS(">>> gcode_G29", current_position);
  3380. log_machine_info();
  3381. }
  3382. marlin_debug_flags = old_debug_flags;
  3383. #if DISABLED(PROBE_MANUALLY)
  3384. if (query) return;
  3385. #endif
  3386. #endif
  3387. // Don't allow auto-leveling without homing first
  3388. if (axis_unhomed_error(true, true, true)) return;
  3389. // Define local vars 'static' for manual probing, 'auto' otherwise
  3390. #if ENABLED(PROBE_MANUALLY)
  3391. #define ABL_VAR static
  3392. #else
  3393. #define ABL_VAR
  3394. #endif
  3395. ABL_VAR int verbose_level, abl_probe_index;
  3396. ABL_VAR float xProbe, yProbe, measured_z;
  3397. ABL_VAR bool dryrun, abl_should_enable;
  3398. #if HAS_SOFTWARE_ENDSTOPS
  3399. ABL_VAR bool enable_soft_endstops = true;
  3400. #endif
  3401. #if ABL_GRID
  3402. ABL_VAR uint8_t PR_OUTER_VAR;
  3403. ABL_VAR int8_t PR_INNER_VAR;
  3404. ABL_VAR int left_probe_bed_position, right_probe_bed_position, front_probe_bed_position, back_probe_bed_position;
  3405. ABL_VAR float xGridSpacing, yGridSpacing;
  3406. #define ABL_GRID_MAX (ABL_GRID_MAX_POINTS_X) * (ABL_GRID_MAX_POINTS_Y)
  3407. #if ABL_PLANAR
  3408. ABL_VAR uint8_t abl_grid_points_x = ABL_GRID_MAX_POINTS_X,
  3409. abl_grid_points_y = ABL_GRID_MAX_POINTS_Y;
  3410. ABL_VAR int abl2;
  3411. ABL_VAR bool do_topography_map;
  3412. #else // 3-point
  3413. uint8_t constexpr abl_grid_points_x = ABL_GRID_MAX_POINTS_X,
  3414. abl_grid_points_y = ABL_GRID_MAX_POINTS_Y;
  3415. int constexpr abl2 = ABL_GRID_MAX;
  3416. #endif
  3417. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  3418. ABL_VAR float zoffset;
  3419. #elif ENABLED(AUTO_BED_LEVELING_LINEAR)
  3420. ABL_VAR int indexIntoAB[ABL_GRID_MAX_POINTS_X][ABL_GRID_MAX_POINTS_Y];
  3421. ABL_VAR float eqnAMatrix[ABL_GRID_MAX * 3], // "A" matrix of the linear system of equations
  3422. eqnBVector[ABL_GRID_MAX], // "B" vector of Z points
  3423. mean;
  3424. #endif
  3425. #elif ENABLED(AUTO_BED_LEVELING_3POINT)
  3426. // Probe at 3 arbitrary points
  3427. ABL_VAR vector_3 points[3] = {
  3428. vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, 0),
  3429. vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, 0),
  3430. vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, 0)
  3431. };
  3432. #endif // AUTO_BED_LEVELING_3POINT
  3433. /**
  3434. * On the initial G29 fetch command parameters.
  3435. */
  3436. if (!g29_in_progress) {
  3437. abl_probe_index = 0;
  3438. abl_should_enable = planner.abl_enabled;
  3439. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  3440. if (code_seen('W')) {
  3441. if (!bilinear_grid_spacing[X_AXIS]) {
  3442. SERIAL_ERROR_START;
  3443. SERIAL_ERRORLNPGM("No bilinear grid");
  3444. return;
  3445. }
  3446. const float z = code_seen('Z') && code_has_value() ? code_value_float() : 99999;
  3447. if (!WITHIN(z, -10, 10)) {
  3448. SERIAL_ERROR_START;
  3449. SERIAL_ERRORLNPGM("Bad Z value");
  3450. return;
  3451. }
  3452. const float x = code_seen('X') && code_has_value() ? code_value_float() : 99999,
  3453. y = code_seen('Y') && code_has_value() ? code_value_float() : 99999;
  3454. int8_t i = code_seen('I') && code_has_value() ? code_value_byte() : -1,
  3455. j = code_seen('J') && code_has_value() ? code_value_byte() : -1;
  3456. if (x < 99998 && y < 99998) {
  3457. // Get nearest i / j from x / y
  3458. i = (x - LOGICAL_X_POSITION(bilinear_start[X_AXIS]) + 0.5 * xGridSpacing) / xGridSpacing;
  3459. j = (y - LOGICAL_Y_POSITION(bilinear_start[Y_AXIS]) + 0.5 * yGridSpacing) / yGridSpacing;
  3460. i = constrain(i, 0, ABL_GRID_MAX_POINTS_X - 1);
  3461. j = constrain(j, 0, ABL_GRID_MAX_POINTS_Y - 1);
  3462. }
  3463. if (WITHIN(i, 0, ABL_GRID_MAX_POINTS_X - 1) && WITHIN(j, 0, ABL_GRID_MAX_POINTS_Y)) {
  3464. set_bed_leveling_enabled(false);
  3465. bed_level_grid[i][j] = z;
  3466. #if ENABLED(ABL_BILINEAR_SUBDIVISION)
  3467. bed_level_virt_interpolate();
  3468. #endif
  3469. set_bed_leveling_enabled(abl_should_enable);
  3470. }
  3471. return;
  3472. } // code_seen('W')
  3473. #endif
  3474. #if PLANNER_LEVELING
  3475. // Jettison bed leveling data
  3476. if (code_seen('J')) {
  3477. reset_bed_level();
  3478. return;
  3479. }
  3480. #endif
  3481. verbose_level = code_seen('V') && code_has_value() ? code_value_int() : 0;
  3482. if (!WITHIN(verbose_level, 0, 4)) {
  3483. SERIAL_PROTOCOLLNPGM("?(V)erbose Level is implausible (0-4).");
  3484. return;
  3485. }
  3486. dryrun = code_seen('D') ? code_value_bool() : false;
  3487. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  3488. do_topography_map = verbose_level > 2 || code_seen('T');
  3489. // X and Y specify points in each direction, overriding the default
  3490. // These values may be saved with the completed mesh
  3491. abl_grid_points_x = code_seen('X') ? code_value_int() : ABL_GRID_MAX_POINTS_X;
  3492. abl_grid_points_y = code_seen('Y') ? code_value_int() : ABL_GRID_MAX_POINTS_Y;
  3493. if (code_seen('P')) abl_grid_points_x = abl_grid_points_y = code_value_int();
  3494. if (abl_grid_points_x < 2 || abl_grid_points_y < 2) {
  3495. SERIAL_PROTOCOLLNPGM("?Number of probe points is implausible (2 minimum).");
  3496. return;
  3497. }
  3498. abl2 = abl_grid_points_x * abl_grid_points_y;
  3499. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  3500. zoffset = code_seen('Z') ? code_value_axis_units(Z_AXIS) : 0;
  3501. #if HAS_BED_PROBE
  3502. zoffset += zprobe_zoffset;
  3503. #endif
  3504. #endif
  3505. #if ABL_GRID
  3506. xy_probe_feedrate_mm_s = MMM_TO_MMS(code_seen('S') ? code_value_linear_units() : XY_PROBE_SPEED);
  3507. left_probe_bed_position = code_seen('L') ? (int)code_value_axis_units(X_AXIS) : LOGICAL_X_POSITION(LEFT_PROBE_BED_POSITION);
  3508. right_probe_bed_position = code_seen('R') ? (int)code_value_axis_units(X_AXIS) : LOGICAL_X_POSITION(RIGHT_PROBE_BED_POSITION);
  3509. front_probe_bed_position = code_seen('F') ? (int)code_value_axis_units(Y_AXIS) : LOGICAL_Y_POSITION(FRONT_PROBE_BED_POSITION);
  3510. back_probe_bed_position = code_seen('B') ? (int)code_value_axis_units(Y_AXIS) : LOGICAL_Y_POSITION(BACK_PROBE_BED_POSITION);
  3511. const bool left_out_l = left_probe_bed_position < LOGICAL_X_POSITION(MIN_PROBE_X),
  3512. left_out = left_out_l || left_probe_bed_position > right_probe_bed_position - (MIN_PROBE_EDGE),
  3513. right_out_r = right_probe_bed_position > LOGICAL_X_POSITION(MAX_PROBE_X),
  3514. right_out = right_out_r || right_probe_bed_position < left_probe_bed_position + MIN_PROBE_EDGE,
  3515. front_out_f = front_probe_bed_position < LOGICAL_Y_POSITION(MIN_PROBE_Y),
  3516. front_out = front_out_f || front_probe_bed_position > back_probe_bed_position - (MIN_PROBE_EDGE),
  3517. back_out_b = back_probe_bed_position > LOGICAL_Y_POSITION(MAX_PROBE_Y),
  3518. back_out = back_out_b || back_probe_bed_position < front_probe_bed_position + MIN_PROBE_EDGE;
  3519. if (left_out || right_out || front_out || back_out) {
  3520. if (left_out) {
  3521. out_of_range_error(PSTR("(L)eft"));
  3522. left_probe_bed_position = left_out_l ? LOGICAL_X_POSITION(MIN_PROBE_X) : right_probe_bed_position - (MIN_PROBE_EDGE);
  3523. }
  3524. if (right_out) {
  3525. out_of_range_error(PSTR("(R)ight"));
  3526. right_probe_bed_position = right_out_r ? LOGICAL_Y_POSITION(MAX_PROBE_X) : left_probe_bed_position + MIN_PROBE_EDGE;
  3527. }
  3528. if (front_out) {
  3529. out_of_range_error(PSTR("(F)ront"));
  3530. front_probe_bed_position = front_out_f ? LOGICAL_Y_POSITION(MIN_PROBE_Y) : back_probe_bed_position - (MIN_PROBE_EDGE);
  3531. }
  3532. if (back_out) {
  3533. out_of_range_error(PSTR("(B)ack"));
  3534. back_probe_bed_position = back_out_b ? LOGICAL_Y_POSITION(MAX_PROBE_Y) : front_probe_bed_position + MIN_PROBE_EDGE;
  3535. }
  3536. return;
  3537. }
  3538. // probe at the points of a lattice grid
  3539. xGridSpacing = (right_probe_bed_position - left_probe_bed_position) / (abl_grid_points_x - 1);
  3540. yGridSpacing = (back_probe_bed_position - front_probe_bed_position) / (abl_grid_points_y - 1);
  3541. #endif // ABL_GRID
  3542. if (verbose_level > 0) {
  3543. SERIAL_PROTOCOLLNPGM("G29 Auto Bed Leveling");
  3544. if (dryrun) SERIAL_PROTOCOLLNPGM("Running in DRY-RUN mode");
  3545. }
  3546. stepper.synchronize();
  3547. // Disable auto bed leveling during G29
  3548. planner.abl_enabled = false;
  3549. if (!dryrun) {
  3550. // Re-orient the current position without leveling
  3551. // based on where the steppers are positioned.
  3552. set_current_from_steppers_for_axis(ALL_AXES);
  3553. // Sync the planner to where the steppers stopped
  3554. SYNC_PLAN_POSITION_KINEMATIC();
  3555. }
  3556. setup_for_endstop_or_probe_move();
  3557. //xProbe = yProbe = measured_z = 0;
  3558. #if HAS_BED_PROBE
  3559. // Deploy the probe. Probe will raise if needed.
  3560. if (DEPLOY_PROBE()) {
  3561. planner.abl_enabled = abl_should_enable;
  3562. return;
  3563. }
  3564. #endif
  3565. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  3566. if ( xGridSpacing != bilinear_grid_spacing[X_AXIS]
  3567. || yGridSpacing != bilinear_grid_spacing[Y_AXIS]
  3568. || left_probe_bed_position != LOGICAL_X_POSITION(bilinear_start[X_AXIS])
  3569. || front_probe_bed_position != LOGICAL_Y_POSITION(bilinear_start[Y_AXIS])
  3570. ) {
  3571. if (dryrun) {
  3572. // Before reset bed level, re-enable to correct the position
  3573. planner.abl_enabled = abl_should_enable;
  3574. }
  3575. // Reset grid to 0.0 or "not probed". (Also disables ABL)
  3576. reset_bed_level();
  3577. // Initialize a grid with the given dimensions
  3578. bilinear_grid_spacing[X_AXIS] = xGridSpacing;
  3579. bilinear_grid_spacing[Y_AXIS] = yGridSpacing;
  3580. bilinear_start[X_AXIS] = RAW_X_POSITION(left_probe_bed_position);
  3581. bilinear_start[Y_AXIS] = RAW_Y_POSITION(front_probe_bed_position);
  3582. #if ENABLED(ABL_BILINEAR_SUBDIVISION)
  3583. bilinear_grid_spacing_virt[X_AXIS] = xGridSpacing / (BILINEAR_SUBDIVISIONS);
  3584. bilinear_grid_spacing_virt[Y_AXIS] = yGridSpacing / (BILINEAR_SUBDIVISIONS);
  3585. #endif
  3586. // Can't re-enable (on error) until the new grid is written
  3587. abl_should_enable = false;
  3588. }
  3589. #elif ENABLED(AUTO_BED_LEVELING_LINEAR)
  3590. mean = 0.0;
  3591. #endif // AUTO_BED_LEVELING_LINEAR
  3592. #if ENABLED(AUTO_BED_LEVELING_3POINT)
  3593. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3594. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> 3-point Leveling");
  3595. #endif
  3596. // Probe at 3 arbitrary points
  3597. points[0].z = points[1].z = points[2].z = 0;
  3598. #endif // AUTO_BED_LEVELING_3POINT
  3599. } // !g29_in_progress
  3600. #if ENABLED(PROBE_MANUALLY)
  3601. // Abort current G29 procedure, go back to ABLStart
  3602. if (code_seen('A') && g29_in_progress) {
  3603. SERIAL_PROTOCOLLNPGM("Manual G29 aborted");
  3604. #if HAS_SOFTWARE_ENDSTOPS
  3605. soft_endstops_enabled = enable_soft_endstops;
  3606. #endif
  3607. planner.abl_enabled = abl_should_enable;
  3608. g29_in_progress = false;
  3609. }
  3610. // Query G29 status
  3611. if (code_seen('Q')) {
  3612. if (!g29_in_progress)
  3613. SERIAL_PROTOCOLLNPGM("Manual G29 idle");
  3614. else {
  3615. SERIAL_PROTOCOLPAIR("Manual G29 point ", abl_probe_index + 1);
  3616. SERIAL_PROTOCOLLNPAIR(" of ", abl2);
  3617. }
  3618. }
  3619. if (code_seen('A') || code_seen('Q')) return;
  3620. // Fall through to probe the first point
  3621. g29_in_progress = true;
  3622. if (abl_probe_index == 0) {
  3623. // For the initial G29 S2 save software endstop state
  3624. #if HAS_SOFTWARE_ENDSTOPS
  3625. enable_soft_endstops = soft_endstops_enabled;
  3626. #endif
  3627. }
  3628. else {
  3629. // For G29 after adjusting Z.
  3630. // Save the previous Z before going to the next point
  3631. measured_z = current_position[Z_AXIS];
  3632. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  3633. mean += measured_z;
  3634. eqnBVector[abl_probe_index] = measured_z;
  3635. eqnAMatrix[abl_probe_index + 0 * abl2] = xProbe;
  3636. eqnAMatrix[abl_probe_index + 1 * abl2] = yProbe;
  3637. eqnAMatrix[abl_probe_index + 2 * abl2] = 1;
  3638. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  3639. bed_level_grid[xCount][yCount] = measured_z;
  3640. #elif ENABLED(AUTO_BED_LEVELING_3POINT)
  3641. points[i].z = measured_z;
  3642. #endif
  3643. }
  3644. //
  3645. // If there's another point to sample, move there with optional lift.
  3646. //
  3647. #if ABL_GRID
  3648. // Find a next point to probe
  3649. // On the first G29 this will be the first probe point
  3650. while (abl_probe_index < abl2) {
  3651. // Set xCount, yCount based on abl_probe_index, with zig-zag
  3652. PR_OUTER_VAR = abl_probe_index / PR_INNER_END;
  3653. PR_INNER_VAR = abl_probe_index - (PR_OUTER_VAR * PR_INNER_END);
  3654. bool zig = (PR_OUTER_VAR & 1) != ((PR_OUTER_END) & 1);
  3655. if (zig) PR_INNER_VAR = (PR_INNER_END - 1) - PR_INNER_VAR;
  3656. const float xBase = left_probe_bed_position + xGridSpacing * xCount,
  3657. yBase = front_probe_bed_position + yGridSpacing * yCount;
  3658. xProbe = floor(xBase + (xBase < 0 ? 0 : 0.5));
  3659. yProbe = floor(yBase + (yBase < 0 ? 0 : 0.5));
  3660. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  3661. indexIntoAB[xCount][yCount] = abl_probe_index;
  3662. #endif
  3663. float pos[XYZ] = { xProbe, yProbe, 0 };
  3664. if (position_is_reachable(pos)) break;
  3665. ++abl_probe_index;
  3666. }
  3667. // Is there a next point to move to?
  3668. if (abl_probe_index < abl2) {
  3669. _manual_goto_xy(xProbe, yProbe); // Can be used here too!
  3670. ++abl_probe_index;
  3671. #if HAS_SOFTWARE_ENDSTOPS
  3672. // Disable software endstops to allow manual adjustment
  3673. // If G29 is not completed, they will not be re-enabled
  3674. soft_endstops_enabled = false;
  3675. #endif
  3676. return;
  3677. }
  3678. else {
  3679. // Then leveling is done!
  3680. // G29 finishing code goes here
  3681. // After recording the last point, activate abl
  3682. SERIAL_PROTOCOLLNPGM("Grid probing done.");
  3683. g29_in_progress = false;
  3684. // Re-enable software endstops, if needed
  3685. #if HAS_SOFTWARE_ENDSTOPS
  3686. soft_endstops_enabled = enable_soft_endstops;
  3687. #endif
  3688. }
  3689. #elif ENABLED(AUTO_BED_LEVELING_3POINT)
  3690. // Probe at 3 arbitrary points
  3691. if (abl_probe_index < 3) {
  3692. xProbe = LOGICAL_X_POSITION(points[i].x);
  3693. yProbe = LOGICAL_Y_POSITION(points[i].y);
  3694. ++abl_probe_index;
  3695. #if HAS_SOFTWARE_ENDSTOPS
  3696. // Disable software endstops to allow manual adjustment
  3697. // If G29 is not completed, they will not be re-enabled
  3698. soft_endstops_enabled = false;
  3699. #endif
  3700. return;
  3701. }
  3702. else {
  3703. SERIAL_PROTOCOLLNPGM("3-point probing done.");
  3704. g29_in_progress = false;
  3705. // Re-enable software endstops, if needed
  3706. #if HAS_SOFTWARE_ENDSTOPS
  3707. soft_endstops_enabled = enable_soft_endstops;
  3708. #endif
  3709. if (!dryrun) {
  3710. vector_3 planeNormal = vector_3::cross(points[0] - points[1], points[2] - points[1]).get_normal();
  3711. if (planeNormal.z < 0) {
  3712. planeNormal.x *= -1;
  3713. planeNormal.y *= -1;
  3714. planeNormal.z *= -1;
  3715. }
  3716. planner.bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  3717. // Can't re-enable (on error) until the new grid is written
  3718. abl_should_enable = false;
  3719. }
  3720. }
  3721. #endif // AUTO_BED_LEVELING_3POINT
  3722. #else // !PROBE_MANUALLY
  3723. bool stow_probe_after_each = code_seen('E');
  3724. #if ABL_GRID
  3725. bool zig = PR_OUTER_END & 1; // Always end at RIGHT and BACK_PROBE_BED_POSITION
  3726. // Outer loop is Y with PROBE_Y_FIRST disabled
  3727. for (uint8_t PR_OUTER_VAR = 0; PR_OUTER_VAR < PR_OUTER_END; PR_OUTER_VAR++) {
  3728. int8_t inStart, inStop, inInc;
  3729. if (zig) { // away from origin
  3730. inStart = 0;
  3731. inStop = PR_INNER_END;
  3732. inInc = 1;
  3733. }
  3734. else { // towards origin
  3735. inStart = PR_INNER_END - 1;
  3736. inStop = -1;
  3737. inInc = -1;
  3738. }
  3739. zig = !zig; // zag
  3740. // Inner loop is Y with PROBE_Y_FIRST enabled
  3741. for (int8_t PR_INNER_VAR = inStart; PR_INNER_VAR != inStop; PR_INNER_VAR += inInc) {
  3742. float xBase = left_probe_bed_position + xGridSpacing * xCount,
  3743. yBase = front_probe_bed_position + yGridSpacing * yCount;
  3744. xProbe = floor(xBase + (xBase < 0 ? 0 : 0.5));
  3745. yProbe = floor(yBase + (yBase < 0 ? 0 : 0.5));
  3746. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  3747. indexIntoAB[xCount][yCount] = ++abl_probe_index;
  3748. #endif
  3749. #if IS_KINEMATIC
  3750. // Avoid probing outside the round or hexagonal area
  3751. float pos[XYZ] = { xProbe, yProbe, 0 };
  3752. if (!position_is_reachable(pos, true)) continue;
  3753. #endif
  3754. measured_z = probe_pt(xProbe, yProbe, stow_probe_after_each, verbose_level);
  3755. if (measured_z == NAN) {
  3756. planner.abl_enabled = abl_should_enable;
  3757. return;
  3758. }
  3759. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  3760. mean += measured_z;
  3761. eqnBVector[abl_probe_index] = measured_z;
  3762. eqnAMatrix[abl_probe_index + 0 * abl2] = xProbe;
  3763. eqnAMatrix[abl_probe_index + 1 * abl2] = yProbe;
  3764. eqnAMatrix[abl_probe_index + 2 * abl2] = 1;
  3765. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  3766. bed_level_grid[xCount][yCount] = measured_z;
  3767. #endif
  3768. abl_should_enable = false;
  3769. idle();
  3770. } // inner
  3771. } // outer
  3772. #elif ENABLED(AUTO_BED_LEVELING_3POINT)
  3773. // Probe at 3 arbitrary points
  3774. for (uint8_t i = 0; i < 3; ++i) {
  3775. // Retain the last probe position
  3776. xProbe = LOGICAL_X_POSITION(points[i].x);
  3777. yProbe = LOGICAL_Y_POSITION(points[i].y);
  3778. measured_z = points[i].z = probe_pt(xProbe, yProbe, stow_probe_after_each, verbose_level);
  3779. }
  3780. if (measured_z == NAN) {
  3781. planner.abl_enabled = abl_should_enable;
  3782. return;
  3783. }
  3784. if (!dryrun) {
  3785. vector_3 planeNormal = vector_3::cross(points[0] - points[1], points[2] - points[1]).get_normal();
  3786. if (planeNormal.z < 0) {
  3787. planeNormal.x *= -1;
  3788. planeNormal.y *= -1;
  3789. planeNormal.z *= -1;
  3790. }
  3791. planner.bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  3792. // Can't re-enable (on error) until the new grid is written
  3793. abl_should_enable = false;
  3794. }
  3795. #endif // AUTO_BED_LEVELING_3POINT
  3796. // Raise to _Z_CLEARANCE_DEPLOY_PROBE. Stow the probe.
  3797. if (STOW_PROBE()) {
  3798. planner.abl_enabled = abl_should_enable;
  3799. return;
  3800. }
  3801. #endif // !PROBE_MANUALLY
  3802. //
  3803. // G29 Finishing Code
  3804. //
  3805. // Unless this is a dry run, auto bed leveling will
  3806. // definitely be enabled after this point
  3807. //
  3808. // Restore state after probing
  3809. clean_up_after_endstop_or_probe_move();
  3810. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3811. if (DEBUGGING(LEVELING)) DEBUG_POS("> probing complete", current_position);
  3812. #endif
  3813. // Calculate leveling, print reports, correct the position
  3814. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  3815. if (!dryrun) extrapolate_unprobed_bed_level();
  3816. print_bilinear_leveling_grid();
  3817. #if ENABLED(ABL_BILINEAR_SUBDIVISION)
  3818. bed_level_virt_interpolate();
  3819. bed_level_virt_print();
  3820. #endif
  3821. #elif ENABLED(AUTO_BED_LEVELING_LINEAR)
  3822. // For LINEAR leveling calculate matrix, print reports, correct the position
  3823. /**
  3824. * solve the plane equation ax + by + d = z
  3825. * A is the matrix with rows [x y 1] for all the probed points
  3826. * B is the vector of the Z positions
  3827. * the normal vector to the plane is formed by the coefficients of the
  3828. * plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  3829. * so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  3830. */
  3831. float plane_equation_coefficients[3];
  3832. qr_solve(plane_equation_coefficients, abl2, 3, eqnAMatrix, eqnBVector);
  3833. mean /= abl2;
  3834. if (verbose_level) {
  3835. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  3836. SERIAL_PROTOCOL_F(plane_equation_coefficients[0], 8);
  3837. SERIAL_PROTOCOLPGM(" b: ");
  3838. SERIAL_PROTOCOL_F(plane_equation_coefficients[1], 8);
  3839. SERIAL_PROTOCOLPGM(" d: ");
  3840. SERIAL_PROTOCOL_F(plane_equation_coefficients[2], 8);
  3841. SERIAL_EOL;
  3842. if (verbose_level > 2) {
  3843. SERIAL_PROTOCOLPGM("Mean of sampled points: ");
  3844. SERIAL_PROTOCOL_F(mean, 8);
  3845. SERIAL_EOL;
  3846. }
  3847. }
  3848. // Create the matrix but don't correct the position yet
  3849. if (!dryrun) {
  3850. planner.bed_level_matrix = matrix_3x3::create_look_at(
  3851. vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1)
  3852. );
  3853. }
  3854. // Show the Topography map if enabled
  3855. if (do_topography_map) {
  3856. SERIAL_PROTOCOLLNPGM("\nBed Height Topography:\n"
  3857. " +--- BACK --+\n"
  3858. " | |\n"
  3859. " L | (+) | R\n"
  3860. " E | | I\n"
  3861. " F | (-) N (+) | G\n"
  3862. " T | | H\n"
  3863. " | (-) | T\n"
  3864. " | |\n"
  3865. " O-- FRONT --+\n"
  3866. " (0,0)");
  3867. float min_diff = 999;
  3868. for (int8_t yy = abl_grid_points_y - 1; yy >= 0; yy--) {
  3869. for (uint8_t xx = 0; xx < abl_grid_points_x; xx++) {
  3870. int ind = indexIntoAB[xx][yy];
  3871. float diff = eqnBVector[ind] - mean,
  3872. x_tmp = eqnAMatrix[ind + 0 * abl2],
  3873. y_tmp = eqnAMatrix[ind + 1 * abl2],
  3874. z_tmp = 0;
  3875. apply_rotation_xyz(planner.bed_level_matrix, x_tmp, y_tmp, z_tmp);
  3876. NOMORE(min_diff, eqnBVector[ind] - z_tmp);
  3877. if (diff >= 0.0)
  3878. SERIAL_PROTOCOLPGM(" +"); // Include + for column alignment
  3879. else
  3880. SERIAL_PROTOCOLCHAR(' ');
  3881. SERIAL_PROTOCOL_F(diff, 5);
  3882. } // xx
  3883. SERIAL_EOL;
  3884. } // yy
  3885. SERIAL_EOL;
  3886. if (verbose_level > 3) {
  3887. SERIAL_PROTOCOLLNPGM("\nCorrected Bed Height vs. Bed Topology:");
  3888. for (int8_t yy = abl_grid_points_y - 1; yy >= 0; yy--) {
  3889. for (uint8_t xx = 0; xx < abl_grid_points_x; xx++) {
  3890. int ind = indexIntoAB[xx][yy];
  3891. float x_tmp = eqnAMatrix[ind + 0 * abl2],
  3892. y_tmp = eqnAMatrix[ind + 1 * abl2],
  3893. z_tmp = 0;
  3894. apply_rotation_xyz(planner.bed_level_matrix, x_tmp, y_tmp, z_tmp);
  3895. float diff = eqnBVector[ind] - z_tmp - min_diff;
  3896. if (diff >= 0.0)
  3897. SERIAL_PROTOCOLPGM(" +");
  3898. // Include + for column alignment
  3899. else
  3900. SERIAL_PROTOCOLCHAR(' ');
  3901. SERIAL_PROTOCOL_F(diff, 5);
  3902. } // xx
  3903. SERIAL_EOL;
  3904. } // yy
  3905. SERIAL_EOL;
  3906. }
  3907. } //do_topography_map
  3908. #endif // AUTO_BED_LEVELING_LINEAR
  3909. #if ABL_PLANAR
  3910. // For LINEAR and 3POINT leveling correct the current position
  3911. if (verbose_level > 0)
  3912. planner.bed_level_matrix.debug("\n\nBed Level Correction Matrix:");
  3913. if (!dryrun) {
  3914. //
  3915. // Correct the current XYZ position based on the tilted plane.
  3916. //
  3917. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3918. if (DEBUGGING(LEVELING)) DEBUG_POS("G29 uncorrected XYZ", current_position);
  3919. #endif
  3920. float converted[XYZ];
  3921. COPY(converted, current_position);
  3922. planner.abl_enabled = true;
  3923. planner.unapply_leveling(converted); // use conversion machinery
  3924. planner.abl_enabled = false;
  3925. // Use the last measured distance to the bed, if possible
  3926. if ( NEAR(current_position[X_AXIS], xProbe - (X_PROBE_OFFSET_FROM_EXTRUDER))
  3927. && NEAR(current_position[Y_AXIS], yProbe - (Y_PROBE_OFFSET_FROM_EXTRUDER))
  3928. ) {
  3929. float simple_z = current_position[Z_AXIS] - measured_z;
  3930. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3931. if (DEBUGGING(LEVELING)) {
  3932. SERIAL_ECHOPAIR("Z from Probe:", simple_z);
  3933. SERIAL_ECHOPAIR(" Matrix:", converted[Z_AXIS]);
  3934. SERIAL_ECHOLNPAIR(" Discrepancy:", simple_z - converted[Z_AXIS]);
  3935. }
  3936. #endif
  3937. converted[Z_AXIS] = simple_z;
  3938. }
  3939. // The rotated XY and corrected Z are now current_position
  3940. COPY(current_position, converted);
  3941. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3942. if (DEBUGGING(LEVELING)) DEBUG_POS("G29 corrected XYZ", current_position);
  3943. #endif
  3944. }
  3945. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  3946. if (!dryrun) {
  3947. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3948. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPAIR("G29 uncorrected Z:", current_position[Z_AXIS]);
  3949. #endif
  3950. // Unapply the offset because it is going to be immediately applied
  3951. // and cause compensation movement in Z
  3952. current_position[Z_AXIS] -= bilinear_z_offset(current_position);
  3953. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3954. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPAIR(" corrected Z:", current_position[Z_AXIS]);
  3955. #endif
  3956. }
  3957. #endif // ABL_PLANAR
  3958. #ifdef Z_PROBE_END_SCRIPT
  3959. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3960. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPAIR("Z Probe End Script: ", Z_PROBE_END_SCRIPT);
  3961. #endif
  3962. enqueue_and_echo_commands_P(PSTR(Z_PROBE_END_SCRIPT));
  3963. stepper.synchronize();
  3964. #endif
  3965. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3966. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< gcode_G29");
  3967. #endif
  3968. report_current_position();
  3969. KEEPALIVE_STATE(IN_HANDLER);
  3970. // Auto Bed Leveling is complete! Enable if possible.
  3971. planner.abl_enabled = dryrun ? abl_should_enable : true;
  3972. if (planner.abl_enabled)
  3973. SYNC_PLAN_POSITION_KINEMATIC();
  3974. }
  3975. #endif // HAS_ABL && DISABLED(AUTO_BED_LEVELING_UBL)
  3976. #if HAS_BED_PROBE
  3977. /**
  3978. * G30: Do a single Z probe at the current XY
  3979. * Usage:
  3980. * G30 <X#> <Y#> <S#>
  3981. * X = Probe X position (default=current probe position)
  3982. * Y = Probe Y position (default=current probe position)
  3983. * S = Stows the probe if 1 (default=1)
  3984. */
  3985. inline void gcode_G30() {
  3986. float X_probe_location = code_seen('X') ? code_value_axis_units(X_AXIS) : current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER,
  3987. Y_probe_location = code_seen('Y') ? code_value_axis_units(Y_AXIS) : current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER;
  3988. float pos[XYZ] = { X_probe_location, Y_probe_location, LOGICAL_Z_POSITION(0) };
  3989. if (!position_is_reachable(pos, true)) return;
  3990. bool stow = code_seen('S') ? code_value_bool() : true;
  3991. // Disable leveling so the planner won't mess with us
  3992. #if PLANNER_LEVELING
  3993. set_bed_leveling_enabled(false);
  3994. #endif
  3995. setup_for_endstop_or_probe_move();
  3996. float measured_z = probe_pt(X_probe_location, Y_probe_location, stow, 1);
  3997. SERIAL_PROTOCOLPGM("Bed X: ");
  3998. SERIAL_PROTOCOL(FIXFLOAT(X_probe_location));
  3999. SERIAL_PROTOCOLPGM(" Y: ");
  4000. SERIAL_PROTOCOL(FIXFLOAT(Y_probe_location));
  4001. SERIAL_PROTOCOLPGM(" Z: ");
  4002. SERIAL_PROTOCOLLN(FIXFLOAT(measured_z));
  4003. clean_up_after_endstop_or_probe_move();
  4004. report_current_position();
  4005. }
  4006. #if ENABLED(Z_PROBE_SLED)
  4007. /**
  4008. * G31: Deploy the Z probe
  4009. */
  4010. inline void gcode_G31() { DEPLOY_PROBE(); }
  4011. /**
  4012. * G32: Stow the Z probe
  4013. */
  4014. inline void gcode_G32() { STOW_PROBE(); }
  4015. #endif // Z_PROBE_SLED
  4016. #endif // HAS_BED_PROBE
  4017. #if ENABLED(G38_PROBE_TARGET)
  4018. static bool G38_run_probe() {
  4019. bool G38_pass_fail = false;
  4020. // Get direction of move and retract
  4021. float retract_mm[XYZ];
  4022. LOOP_XYZ(i) {
  4023. float dist = destination[i] - current_position[i];
  4024. retract_mm[i] = fabs(dist) < G38_MINIMUM_MOVE ? 0 : home_bump_mm((AxisEnum)i) * (dist > 0 ? -1 : 1);
  4025. }
  4026. stepper.synchronize(); // wait until the machine is idle
  4027. // Move until destination reached or target hit
  4028. endstops.enable(true);
  4029. G38_move = true;
  4030. G38_endstop_hit = false;
  4031. prepare_move_to_destination();
  4032. stepper.synchronize();
  4033. G38_move = false;
  4034. endstops.hit_on_purpose();
  4035. set_current_from_steppers_for_axis(ALL_AXES);
  4036. SYNC_PLAN_POSITION_KINEMATIC();
  4037. if (G38_endstop_hit) {
  4038. G38_pass_fail = true;
  4039. #if ENABLED(PROBE_DOUBLE_TOUCH)
  4040. // Move away by the retract distance
  4041. set_destination_to_current();
  4042. LOOP_XYZ(i) destination[i] += retract_mm[i];
  4043. endstops.enable(false);
  4044. prepare_move_to_destination();
  4045. stepper.synchronize();
  4046. feedrate_mm_s /= 4;
  4047. // Bump the target more slowly
  4048. LOOP_XYZ(i) destination[i] -= retract_mm[i] * 2;
  4049. endstops.enable(true);
  4050. G38_move = true;
  4051. prepare_move_to_destination();
  4052. stepper.synchronize();
  4053. G38_move = false;
  4054. set_current_from_steppers_for_axis(ALL_AXES);
  4055. SYNC_PLAN_POSITION_KINEMATIC();
  4056. #endif
  4057. }
  4058. endstops.hit_on_purpose();
  4059. endstops.not_homing();
  4060. return G38_pass_fail;
  4061. }
  4062. /**
  4063. * G38.2 - probe toward workpiece, stop on contact, signal error if failure
  4064. * G38.3 - probe toward workpiece, stop on contact
  4065. *
  4066. * Like G28 except uses Z min probe for all axes
  4067. */
  4068. inline void gcode_G38(bool is_38_2) {
  4069. // Get X Y Z E F
  4070. gcode_get_destination();
  4071. setup_for_endstop_or_probe_move();
  4072. // If any axis has enough movement, do the move
  4073. LOOP_XYZ(i)
  4074. if (fabs(destination[i] - current_position[i]) >= G38_MINIMUM_MOVE) {
  4075. if (!code_seen('F')) feedrate_mm_s = homing_feedrate_mm_s[i];
  4076. // If G38.2 fails throw an error
  4077. if (!G38_run_probe() && is_38_2) {
  4078. SERIAL_ERROR_START;
  4079. SERIAL_ERRORLNPGM("Failed to reach target");
  4080. }
  4081. break;
  4082. }
  4083. clean_up_after_endstop_or_probe_move();
  4084. }
  4085. #endif // G38_PROBE_TARGET
  4086. /**
  4087. * G92: Set current position to given X Y Z E
  4088. */
  4089. inline void gcode_G92() {
  4090. bool didXYZ = false,
  4091. didE = code_seen('E');
  4092. if (!didE) stepper.synchronize();
  4093. LOOP_XYZE(i) {
  4094. if (code_seen(axis_codes[i])) {
  4095. #if IS_SCARA
  4096. current_position[i] = code_value_axis_units(i);
  4097. if (i != E_AXIS) didXYZ = true;
  4098. #else
  4099. #if DISABLED(NO_WORKSPACE_OFFSETS)
  4100. float p = current_position[i];
  4101. #endif
  4102. float v = code_value_axis_units(i);
  4103. current_position[i] = v;
  4104. if (i != E_AXIS) {
  4105. didXYZ = true;
  4106. #if DISABLED(NO_WORKSPACE_OFFSETS)
  4107. position_shift[i] += v - p; // Offset the coordinate space
  4108. update_software_endstops((AxisEnum)i);
  4109. #endif
  4110. }
  4111. #endif
  4112. }
  4113. }
  4114. if (didXYZ)
  4115. SYNC_PLAN_POSITION_KINEMATIC();
  4116. else if (didE)
  4117. sync_plan_position_e();
  4118. report_current_position();
  4119. }
  4120. #if ENABLED(EMERGENCY_PARSER) || ENABLED(ULTIPANEL)
  4121. /**
  4122. * M0: Unconditional stop - Wait for user button press on LCD
  4123. * M1: Conditional stop - Wait for user button press on LCD
  4124. */
  4125. inline void gcode_M0_M1() {
  4126. char* args = current_command_args;
  4127. millis_t codenum = 0;
  4128. bool hasP = false, hasS = false;
  4129. if (code_seen('P')) {
  4130. codenum = code_value_millis(); // milliseconds to wait
  4131. hasP = codenum > 0;
  4132. }
  4133. if (code_seen('S')) {
  4134. codenum = code_value_millis_from_seconds(); // seconds to wait
  4135. hasS = codenum > 0;
  4136. }
  4137. #if ENABLED(ULTIPANEL)
  4138. if (!hasP && !hasS && *args != '\0')
  4139. lcd_setstatus(args, true);
  4140. else {
  4141. LCD_MESSAGEPGM(MSG_USERWAIT);
  4142. #if ENABLED(LCD_PROGRESS_BAR) && PROGRESS_MSG_EXPIRE > 0
  4143. dontExpireStatus();
  4144. #endif
  4145. }
  4146. #else
  4147. if (!hasP && !hasS && *args != '\0') {
  4148. SERIAL_ECHO_START;
  4149. SERIAL_ECHOLN(args);
  4150. }
  4151. #endif
  4152. KEEPALIVE_STATE(PAUSED_FOR_USER);
  4153. wait_for_user = true;
  4154. stepper.synchronize();
  4155. refresh_cmd_timeout();
  4156. if (codenum > 0) {
  4157. codenum += previous_cmd_ms; // wait until this time for a click
  4158. while (PENDING(millis(), codenum) && wait_for_user) idle();
  4159. }
  4160. else {
  4161. #if ENABLED(ULTIPANEL)
  4162. if (lcd_detected()) {
  4163. while (wait_for_user) idle();
  4164. IS_SD_PRINTING ? LCD_MESSAGEPGM(MSG_RESUMING) : LCD_MESSAGEPGM(WELCOME_MSG);
  4165. }
  4166. #else
  4167. while (wait_for_user) idle();
  4168. #endif
  4169. }
  4170. wait_for_user = false;
  4171. KEEPALIVE_STATE(IN_HANDLER);
  4172. }
  4173. #endif // EMERGENCY_PARSER || ULTIPANEL
  4174. /**
  4175. * M17: Enable power on all stepper motors
  4176. */
  4177. inline void gcode_M17() {
  4178. LCD_MESSAGEPGM(MSG_NO_MOVE);
  4179. enable_all_steppers();
  4180. }
  4181. #if IS_KINEMATIC
  4182. #define RUNPLAN(RATE_MM_S) planner.buffer_line_kinematic(destination, RATE_MM_S, active_extruder)
  4183. #else
  4184. #define RUNPLAN(RATE_MM_S) line_to_destination(RATE_MM_S)
  4185. #endif
  4186. #if ENABLED(PARK_HEAD_ON_PAUSE)
  4187. float resume_position[XYZE];
  4188. bool move_away_flag = false;
  4189. inline void move_back_on_resume() {
  4190. if (!move_away_flag) return;
  4191. move_away_flag = false;
  4192. // Set extruder to saved position
  4193. destination[E_AXIS] = current_position[E_AXIS] = resume_position[E_AXIS];
  4194. planner.set_e_position_mm(current_position[E_AXIS]);
  4195. #if IS_KINEMATIC
  4196. // Move XYZ to starting position
  4197. planner.buffer_line_kinematic(lastpos, FILAMENT_CHANGE_XY_FEEDRATE, active_extruder);
  4198. #else
  4199. // Move XY to starting position, then Z
  4200. destination[X_AXIS] = resume_position[X_AXIS];
  4201. destination[Y_AXIS] = resume_position[Y_AXIS];
  4202. RUNPLAN(FILAMENT_CHANGE_XY_FEEDRATE);
  4203. destination[Z_AXIS] = resume_position[Z_AXIS];
  4204. RUNPLAN(FILAMENT_CHANGE_Z_FEEDRATE);
  4205. #endif
  4206. stepper.synchronize();
  4207. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  4208. filament_ran_out = false;
  4209. #endif
  4210. set_current_to_destination();
  4211. }
  4212. #endif // PARK_HEAD_ON_PAUSE
  4213. #if ENABLED(SDSUPPORT)
  4214. /**
  4215. * M20: List SD card to serial output
  4216. */
  4217. inline void gcode_M20() {
  4218. SERIAL_PROTOCOLLNPGM(MSG_BEGIN_FILE_LIST);
  4219. card.ls();
  4220. SERIAL_PROTOCOLLNPGM(MSG_END_FILE_LIST);
  4221. }
  4222. /**
  4223. * M21: Init SD Card
  4224. */
  4225. inline void gcode_M21() { card.initsd(); }
  4226. /**
  4227. * M22: Release SD Card
  4228. */
  4229. inline void gcode_M22() { card.release(); }
  4230. /**
  4231. * M23: Open a file
  4232. */
  4233. inline void gcode_M23() { card.openFile(current_command_args, true); }
  4234. /**
  4235. * M24: Start or Resume SD Print
  4236. */
  4237. inline void gcode_M24() {
  4238. #if ENABLED(PARK_HEAD_ON_PAUSE)
  4239. move_back_on_resume();
  4240. #endif
  4241. card.startFileprint();
  4242. print_job_timer.start();
  4243. }
  4244. /**
  4245. * M25: Pause SD Print
  4246. */
  4247. inline void gcode_M25() {
  4248. card.pauseSDPrint();
  4249. print_job_timer.pause();
  4250. #if ENABLED(PARK_HEAD_ON_PAUSE)
  4251. enqueue_and_echo_commands_P(PSTR("M125")); // Must be enqueued with pauseSDPrint set to be last in the buffer
  4252. #endif
  4253. }
  4254. /**
  4255. * M26: Set SD Card file index
  4256. */
  4257. inline void gcode_M26() {
  4258. if (card.cardOK && code_seen('S'))
  4259. card.setIndex(code_value_long());
  4260. }
  4261. /**
  4262. * M27: Get SD Card status
  4263. */
  4264. inline void gcode_M27() { card.getStatus(); }
  4265. /**
  4266. * M28: Start SD Write
  4267. */
  4268. inline void gcode_M28() { card.openFile(current_command_args, false); }
  4269. /**
  4270. * M29: Stop SD Write
  4271. * Processed in write to file routine above
  4272. */
  4273. inline void gcode_M29() {
  4274. // card.saving = false;
  4275. }
  4276. /**
  4277. * M30 <filename>: Delete SD Card file
  4278. */
  4279. inline void gcode_M30() {
  4280. if (card.cardOK) {
  4281. card.closefile();
  4282. card.removeFile(current_command_args);
  4283. }
  4284. }
  4285. #endif // SDSUPPORT
  4286. /**
  4287. * M31: Get the time since the start of SD Print (or last M109)
  4288. */
  4289. inline void gcode_M31() {
  4290. char buffer[21];
  4291. duration_t elapsed = print_job_timer.duration();
  4292. elapsed.toString(buffer);
  4293. lcd_setstatus(buffer);
  4294. SERIAL_ECHO_START;
  4295. SERIAL_ECHOLNPAIR("Print time: ", buffer);
  4296. #if ENABLED(AUTOTEMP)
  4297. thermalManager.autotempShutdown();
  4298. #endif
  4299. }
  4300. #if ENABLED(SDSUPPORT)
  4301. /**
  4302. * M32: Select file and start SD Print
  4303. */
  4304. inline void gcode_M32() {
  4305. if (card.sdprinting)
  4306. stepper.synchronize();
  4307. char* namestartpos = strchr(current_command_args, '!'); // Find ! to indicate filename string start.
  4308. if (!namestartpos)
  4309. namestartpos = current_command_args; // Default name position, 4 letters after the M
  4310. else
  4311. namestartpos++; //to skip the '!'
  4312. bool call_procedure = code_seen('P') && (seen_pointer < namestartpos);
  4313. if (card.cardOK) {
  4314. card.openFile(namestartpos, true, call_procedure);
  4315. if (code_seen('S') && seen_pointer < namestartpos) // "S" (must occur _before_ the filename!)
  4316. card.setIndex(code_value_long());
  4317. card.startFileprint();
  4318. // Procedure calls count as normal print time.
  4319. if (!call_procedure) print_job_timer.start();
  4320. }
  4321. }
  4322. #if ENABLED(LONG_FILENAME_HOST_SUPPORT)
  4323. /**
  4324. * M33: Get the long full path of a file or folder
  4325. *
  4326. * Parameters:
  4327. * <dospath> Case-insensitive DOS-style path to a file or folder
  4328. *
  4329. * Example:
  4330. * M33 miscel~1/armchair/armcha~1.gco
  4331. *
  4332. * Output:
  4333. * /Miscellaneous/Armchair/Armchair.gcode
  4334. */
  4335. inline void gcode_M33() {
  4336. card.printLongPath(current_command_args);
  4337. }
  4338. #endif
  4339. #if ENABLED(SDCARD_SORT_ALPHA) && ENABLED(SDSORT_GCODE)
  4340. /**
  4341. * M34: Set SD Card Sorting Options
  4342. */
  4343. inline void gcode_M34() {
  4344. if (code_seen('S')) card.setSortOn(code_value_bool());
  4345. if (code_seen('F')) {
  4346. int v = code_value_long();
  4347. card.setSortFolders(v < 0 ? -1 : v > 0 ? 1 : 0);
  4348. }
  4349. //if (code_seen('R')) card.setSortReverse(code_value_bool());
  4350. }
  4351. #endif // SDCARD_SORT_ALPHA && SDSORT_GCODE
  4352. /**
  4353. * M928: Start SD Write
  4354. */
  4355. inline void gcode_M928() {
  4356. card.openLogFile(current_command_args);
  4357. }
  4358. #endif // SDSUPPORT
  4359. /**
  4360. * Sensitive pin test for M42, M226
  4361. */
  4362. static bool pin_is_protected(uint8_t pin) {
  4363. static const int sensitive_pins[] = SENSITIVE_PINS;
  4364. for (uint8_t i = 0; i < COUNT(sensitive_pins); i++)
  4365. if (sensitive_pins[i] == pin) return true;
  4366. return false;
  4367. }
  4368. /**
  4369. * M42: Change pin status via GCode
  4370. *
  4371. * P<pin> Pin number (LED if omitted)
  4372. * S<byte> Pin status from 0 - 255
  4373. */
  4374. inline void gcode_M42() {
  4375. if (!code_seen('S')) return;
  4376. int pin_status = code_value_int();
  4377. if (!WITHIN(pin_status, 0, 255)) return;
  4378. int pin_number = code_seen('P') ? code_value_int() : LED_PIN;
  4379. if (pin_number < 0) return;
  4380. if (pin_is_protected(pin_number)) {
  4381. SERIAL_ERROR_START;
  4382. SERIAL_ERRORLNPGM(MSG_ERR_PROTECTED_PIN);
  4383. return;
  4384. }
  4385. pinMode(pin_number, OUTPUT);
  4386. digitalWrite(pin_number, pin_status);
  4387. analogWrite(pin_number, pin_status);
  4388. #if FAN_COUNT > 0
  4389. switch (pin_number) {
  4390. #if HAS_FAN0
  4391. case FAN_PIN: fanSpeeds[0] = pin_status; break;
  4392. #endif
  4393. #if HAS_FAN1
  4394. case FAN1_PIN: fanSpeeds[1] = pin_status; break;
  4395. #endif
  4396. #if HAS_FAN2
  4397. case FAN2_PIN: fanSpeeds[2] = pin_status; break;
  4398. #endif
  4399. }
  4400. #endif
  4401. }
  4402. #if ENABLED(PINS_DEBUGGING)
  4403. #include "pinsDebug.h"
  4404. /**
  4405. * M43: Pin report and debug
  4406. *
  4407. * E<bool> Enable / disable background endstop monitoring
  4408. * - Machine continues to operate
  4409. * - Reports changes to endstops
  4410. * - Toggles LED when an endstop changes
  4411. *
  4412. * or
  4413. *
  4414. * P<pin> Pin to read or watch. If omitted, read/watch all pins.
  4415. * W<bool> Watch pins -reporting changes- until reset, click, or M108.
  4416. * I<bool> Flag to ignore Marlin's pin protection.
  4417. *
  4418. */
  4419. inline void gcode_M43() {
  4420. // Enable or disable endstop monitoring
  4421. if (code_seen('E')) {
  4422. endstop_monitor_flag = code_value_bool();
  4423. SERIAL_PROTOCOLPGM("endstop monitor ");
  4424. SERIAL_PROTOCOL(endstop_monitor_flag ? "en" : "dis");
  4425. SERIAL_PROTOCOLLNPGM("abled");
  4426. return;
  4427. }
  4428. // Get the range of pins to test or watch
  4429. int first_pin = 0, last_pin = NUM_DIGITAL_PINS - 1;
  4430. if (code_seen('P')) {
  4431. first_pin = last_pin = code_value_byte();
  4432. if (first_pin > NUM_DIGITAL_PINS - 1) return;
  4433. }
  4434. const bool ignore_protection = code_seen('I') ? code_value_bool() : false;
  4435. // Watch until click, M108, or reset
  4436. if (code_seen('W') && code_value_bool()) { // watch digital pins
  4437. byte pin_state[last_pin - first_pin + 1];
  4438. for (int8_t pin = first_pin; pin <= last_pin; pin++) {
  4439. if (pin_is_protected(pin) && !ignore_protection) continue;
  4440. pinMode(pin, INPUT_PULLUP);
  4441. // if (IS_ANALOG(pin))
  4442. // pin_state[pin - first_pin] = analogRead(pin - analogInputToDigitalPin(0)); // int16_t pin_state[...]
  4443. // else
  4444. pin_state[pin - first_pin] = digitalRead(pin);
  4445. }
  4446. #if ENABLED(EMERGENCY_PARSER) || ENABLED(ULTIPANEL)
  4447. wait_for_user = true;
  4448. #endif
  4449. for(;;) {
  4450. for (int8_t pin = first_pin; pin <= last_pin; pin++) {
  4451. if (pin_is_protected(pin)) continue;
  4452. byte val;
  4453. // if (IS_ANALOG(pin))
  4454. // val = analogRead(pin - analogInputToDigitalPin(0)); // int16_t val
  4455. // else
  4456. val = digitalRead(pin);
  4457. if (val != pin_state[pin - first_pin]) {
  4458. report_pin_state(pin);
  4459. pin_state[pin - first_pin] = val;
  4460. }
  4461. }
  4462. #if ENABLED(EMERGENCY_PARSER) || ENABLED(ULTIPANEL)
  4463. if (!wait_for_user) break;
  4464. #endif
  4465. safe_delay(500);
  4466. }
  4467. return;
  4468. }
  4469. // Report current state of selected pin(s)
  4470. for (uint8_t pin = first_pin; pin <= last_pin; pin++)
  4471. report_pin_state_extended(pin, ignore_protection);
  4472. }
  4473. #endif // PINS_DEBUGGING
  4474. #if ENABLED(Z_MIN_PROBE_REPEATABILITY_TEST)
  4475. /**
  4476. * M48: Z probe repeatability measurement function.
  4477. *
  4478. * Usage:
  4479. * M48 <P#> <X#> <Y#> <V#> <E> <L#>
  4480. * P = Number of sampled points (4-50, default 10)
  4481. * X = Sample X position
  4482. * Y = Sample Y position
  4483. * V = Verbose level (0-4, default=1)
  4484. * E = Engage Z probe for each reading
  4485. * L = Number of legs of movement before probe
  4486. * S = Schizoid (Or Star if you prefer)
  4487. *
  4488. * This function assumes the bed has been homed. Specifically, that a G28 command
  4489. * as been issued prior to invoking the M48 Z probe repeatability measurement function.
  4490. * Any information generated by a prior G29 Bed leveling command will be lost and need to be
  4491. * regenerated.
  4492. */
  4493. inline void gcode_M48() {
  4494. #if ENABLED(AUTO_BED_LEVELING_UBL)
  4495. bool bed_leveling_state_at_entry=0;
  4496. bed_leveling_state_at_entry = ubl.state.active;
  4497. #endif
  4498. if (axis_unhomed_error(true, true, true)) return;
  4499. int8_t verbose_level = code_seen('V') ? code_value_byte() : 1;
  4500. if (!WITHIN(verbose_level, 0, 4)) {
  4501. SERIAL_PROTOCOLLNPGM("?Verbose Level not plausible (0-4).");
  4502. return;
  4503. }
  4504. if (verbose_level > 0)
  4505. SERIAL_PROTOCOLLNPGM("M48 Z-Probe Repeatability Test");
  4506. int8_t n_samples = code_seen('P') ? code_value_byte() : 10;
  4507. if (!WITHIN(n_samples, 4, 50)) {
  4508. SERIAL_PROTOCOLLNPGM("?Sample size not plausible (4-50).");
  4509. return;
  4510. }
  4511. float X_current = current_position[X_AXIS],
  4512. Y_current = current_position[Y_AXIS];
  4513. bool stow_probe_after_each = code_seen('E');
  4514. float X_probe_location = code_seen('X') ? code_value_axis_units(X_AXIS) : X_current + X_PROBE_OFFSET_FROM_EXTRUDER;
  4515. #if DISABLED(DELTA)
  4516. if (!WITHIN(X_probe_location, LOGICAL_X_POSITION(MIN_PROBE_X), LOGICAL_X_POSITION(MAX_PROBE_X))) {
  4517. out_of_range_error(PSTR("X"));
  4518. return;
  4519. }
  4520. #endif
  4521. float Y_probe_location = code_seen('Y') ? code_value_axis_units(Y_AXIS) : Y_current + Y_PROBE_OFFSET_FROM_EXTRUDER;
  4522. #if DISABLED(DELTA)
  4523. if (!WITHIN(Y_probe_location, LOGICAL_Y_POSITION(MIN_PROBE_Y), LOGICAL_Y_POSITION(MAX_PROBE_Y))) {
  4524. out_of_range_error(PSTR("Y"));
  4525. return;
  4526. }
  4527. #else
  4528. float pos[XYZ] = { X_probe_location, Y_probe_location, 0 };
  4529. if (!position_is_reachable(pos, true)) {
  4530. SERIAL_PROTOCOLLNPGM("? (X,Y) location outside of probeable radius.");
  4531. return;
  4532. }
  4533. #endif
  4534. bool seen_L = code_seen('L');
  4535. uint8_t n_legs = seen_L ? code_value_byte() : 0;
  4536. if (n_legs > 15) {
  4537. SERIAL_PROTOCOLLNPGM("?Number of legs in movement not plausible (0-15).");
  4538. return;
  4539. }
  4540. if (n_legs == 1) n_legs = 2;
  4541. bool schizoid_flag = code_seen('S');
  4542. if (schizoid_flag && !seen_L) n_legs = 7;
  4543. /**
  4544. * Now get everything to the specified probe point So we can safely do a
  4545. * probe to get us close to the bed. If the Z-Axis is far from the bed,
  4546. * we don't want to use that as a starting point for each probe.
  4547. */
  4548. if (verbose_level > 2)
  4549. SERIAL_PROTOCOLLNPGM("Positioning the probe...");
  4550. // Disable bed level correction in M48 because we want the raw data when we probe
  4551. #if HAS_ABL
  4552. const bool abl_was_enabled = planner.abl_enabled;
  4553. set_bed_leveling_enabled(false);
  4554. #endif
  4555. setup_for_endstop_or_probe_move();
  4556. // Move to the first point, deploy, and probe
  4557. probe_pt(X_probe_location, Y_probe_location, stow_probe_after_each, verbose_level);
  4558. randomSeed(millis());
  4559. double mean = 0.0, sigma = 0.0, min = 99999.9, max = -99999.9, sample_set[n_samples];
  4560. for (uint8_t n = 0; n < n_samples; n++) {
  4561. if (n_legs) {
  4562. int dir = (random(0, 10) > 5.0) ? -1 : 1; // clockwise or counter clockwise
  4563. float angle = random(0.0, 360.0),
  4564. radius = random(
  4565. #if ENABLED(DELTA)
  4566. DELTA_PROBEABLE_RADIUS / 8, DELTA_PROBEABLE_RADIUS / 3
  4567. #else
  4568. 5, X_MAX_LENGTH / 8
  4569. #endif
  4570. );
  4571. if (verbose_level > 3) {
  4572. SERIAL_ECHOPAIR("Starting radius: ", radius);
  4573. SERIAL_ECHOPAIR(" angle: ", angle);
  4574. SERIAL_ECHOPGM(" Direction: ");
  4575. if (dir > 0) SERIAL_ECHOPGM("Counter-");
  4576. SERIAL_ECHOLNPGM("Clockwise");
  4577. }
  4578. for (uint8_t l = 0; l < n_legs - 1; l++) {
  4579. double delta_angle;
  4580. if (schizoid_flag)
  4581. // The points of a 5 point star are 72 degrees apart. We need to
  4582. // skip a point and go to the next one on the star.
  4583. delta_angle = dir * 2.0 * 72.0;
  4584. else
  4585. // If we do this line, we are just trying to move further
  4586. // around the circle.
  4587. delta_angle = dir * (float) random(25, 45);
  4588. angle += delta_angle;
  4589. while (angle > 360.0) // We probably do not need to keep the angle between 0 and 2*PI, but the
  4590. angle -= 360.0; // Arduino documentation says the trig functions should not be given values
  4591. while (angle < 0.0) // outside of this range. It looks like they behave correctly with
  4592. angle += 360.0; // numbers outside of the range, but just to be safe we clamp them.
  4593. X_current = X_probe_location - (X_PROBE_OFFSET_FROM_EXTRUDER) + cos(RADIANS(angle)) * radius;
  4594. Y_current = Y_probe_location - (Y_PROBE_OFFSET_FROM_EXTRUDER) + sin(RADIANS(angle)) * radius;
  4595. #if DISABLED(DELTA)
  4596. X_current = constrain(X_current, X_MIN_POS, X_MAX_POS);
  4597. Y_current = constrain(Y_current, Y_MIN_POS, Y_MAX_POS);
  4598. #else
  4599. // If we have gone out too far, we can do a simple fix and scale the numbers
  4600. // back in closer to the origin.
  4601. while (HYPOT(X_current, Y_current) > DELTA_PROBEABLE_RADIUS) {
  4602. X_current /= 1.25;
  4603. Y_current /= 1.25;
  4604. if (verbose_level > 3) {
  4605. SERIAL_ECHOPAIR("Pulling point towards center:", X_current);
  4606. SERIAL_ECHOLNPAIR(", ", Y_current);
  4607. }
  4608. }
  4609. #endif
  4610. if (verbose_level > 3) {
  4611. SERIAL_PROTOCOLPGM("Going to:");
  4612. SERIAL_ECHOPAIR(" X", X_current);
  4613. SERIAL_ECHOPAIR(" Y", Y_current);
  4614. SERIAL_ECHOLNPAIR(" Z", current_position[Z_AXIS]);
  4615. }
  4616. do_blocking_move_to_xy(X_current, Y_current);
  4617. } // n_legs loop
  4618. } // n_legs
  4619. // Probe a single point
  4620. sample_set[n] = probe_pt(X_probe_location, Y_probe_location, stow_probe_after_each, 0);
  4621. /**
  4622. * Get the current mean for the data points we have so far
  4623. */
  4624. double sum = 0.0;
  4625. for (uint8_t j = 0; j <= n; j++) sum += sample_set[j];
  4626. mean = sum / (n + 1);
  4627. NOMORE(min, sample_set[n]);
  4628. NOLESS(max, sample_set[n]);
  4629. /**
  4630. * Now, use that mean to calculate the standard deviation for the
  4631. * data points we have so far
  4632. */
  4633. sum = 0.0;
  4634. for (uint8_t j = 0; j <= n; j++)
  4635. sum += sq(sample_set[j] - mean);
  4636. sigma = sqrt(sum / (n + 1));
  4637. if (verbose_level > 0) {
  4638. if (verbose_level > 1) {
  4639. SERIAL_PROTOCOL(n + 1);
  4640. SERIAL_PROTOCOLPGM(" of ");
  4641. SERIAL_PROTOCOL((int)n_samples);
  4642. SERIAL_PROTOCOLPGM(": z: ");
  4643. SERIAL_PROTOCOL_F(sample_set[n], 3);
  4644. if (verbose_level > 2) {
  4645. SERIAL_PROTOCOLPGM(" mean: ");
  4646. SERIAL_PROTOCOL_F(mean, 4);
  4647. SERIAL_PROTOCOLPGM(" sigma: ");
  4648. SERIAL_PROTOCOL_F(sigma, 6);
  4649. SERIAL_PROTOCOLPGM(" min: ");
  4650. SERIAL_PROTOCOL_F(min, 3);
  4651. SERIAL_PROTOCOLPGM(" max: ");
  4652. SERIAL_PROTOCOL_F(max, 3);
  4653. SERIAL_PROTOCOLPGM(" range: ");
  4654. SERIAL_PROTOCOL_F(max-min, 3);
  4655. }
  4656. SERIAL_EOL;
  4657. }
  4658. }
  4659. } // End of probe loop
  4660. if (STOW_PROBE()) return;
  4661. SERIAL_PROTOCOLPGM("Finished!");
  4662. SERIAL_EOL;
  4663. if (verbose_level > 0) {
  4664. SERIAL_PROTOCOLPGM("Mean: ");
  4665. SERIAL_PROTOCOL_F(mean, 6);
  4666. SERIAL_PROTOCOLPGM(" Min: ");
  4667. SERIAL_PROTOCOL_F(min, 3);
  4668. SERIAL_PROTOCOLPGM(" Max: ");
  4669. SERIAL_PROTOCOL_F(max, 3);
  4670. SERIAL_PROTOCOLPGM(" Range: ");
  4671. SERIAL_PROTOCOL_F(max-min, 3);
  4672. SERIAL_EOL;
  4673. }
  4674. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  4675. SERIAL_PROTOCOL_F(sigma, 6);
  4676. SERIAL_EOL;
  4677. SERIAL_EOL;
  4678. clean_up_after_endstop_or_probe_move();
  4679. // Re-enable bed level correction if it has been on
  4680. #if HAS_ABL
  4681. set_bed_leveling_enabled(abl_was_enabled);
  4682. #endif
  4683. #if ENABLED(AUTO_BED_LEVELING_UBL)
  4684. set_bed_leveling_enabled(bed_leveling_state_at_entry);
  4685. ubl.state.active = bed_leveling_state_at_entry;
  4686. #endif
  4687. report_current_position();
  4688. }
  4689. #endif // Z_MIN_PROBE_REPEATABILITY_TEST
  4690. #if ENABLED(AUTO_BED_LEVELING_UBL) && ENABLED(UBL_G26_MESH_EDITING)
  4691. inline void gcode_M49() {
  4692. ubl.g26_debug_flag = !ubl.g26_debug_flag;
  4693. SERIAL_PROTOCOLPGM("UBL Debug Flag turned ");
  4694. serialprintPGM(ubl.g26_debug_flag ? PSTR("on.") : PSTR("off."));
  4695. }
  4696. #endif // AUTO_BED_LEVELING_UBL && UBL_G26_MESH_EDITING
  4697. /**
  4698. * M75: Start print timer
  4699. */
  4700. inline void gcode_M75() { print_job_timer.start(); }
  4701. /**
  4702. * M76: Pause print timer
  4703. */
  4704. inline void gcode_M76() { print_job_timer.pause(); }
  4705. /**
  4706. * M77: Stop print timer
  4707. */
  4708. inline void gcode_M77() { print_job_timer.stop(); }
  4709. #if ENABLED(PRINTCOUNTER)
  4710. /**
  4711. * M78: Show print statistics
  4712. */
  4713. inline void gcode_M78() {
  4714. // "M78 S78" will reset the statistics
  4715. if (code_seen('S') && code_value_int() == 78)
  4716. print_job_timer.initStats();
  4717. else
  4718. print_job_timer.showStats();
  4719. }
  4720. #endif
  4721. /**
  4722. * M104: Set hot end temperature
  4723. */
  4724. inline void gcode_M104() {
  4725. if (get_target_extruder_from_command(104)) return;
  4726. if (DEBUGGING(DRYRUN)) return;
  4727. #if ENABLED(SINGLENOZZLE)
  4728. if (target_extruder != active_extruder) return;
  4729. #endif
  4730. if (code_seen('S')) {
  4731. thermalManager.setTargetHotend(code_value_temp_abs(), target_extruder);
  4732. #if ENABLED(DUAL_X_CARRIAGE)
  4733. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && target_extruder == 0)
  4734. thermalManager.setTargetHotend(code_value_temp_abs() == 0.0 ? 0.0 : code_value_temp_abs() + duplicate_extruder_temp_offset, 1);
  4735. #endif
  4736. #if ENABLED(PRINTJOB_TIMER_AUTOSTART)
  4737. /**
  4738. * Stop the timer at the end of print, starting is managed by
  4739. * 'heat and wait' M109.
  4740. * We use half EXTRUDE_MINTEMP here to allow nozzles to be put into hot
  4741. * stand by mode, for instance in a dual extruder setup, without affecting
  4742. * the running print timer.
  4743. */
  4744. if (code_value_temp_abs() <= (EXTRUDE_MINTEMP)/2) {
  4745. print_job_timer.stop();
  4746. LCD_MESSAGEPGM(WELCOME_MSG);
  4747. }
  4748. #endif
  4749. if (code_value_temp_abs() > thermalManager.degHotend(target_extruder)) lcd_status_printf_P(0, PSTR("E%i %s"), target_extruder + 1, MSG_HEATING);
  4750. }
  4751. #if ENABLED(AUTOTEMP)
  4752. planner.autotemp_M104_M109();
  4753. #endif
  4754. }
  4755. #if HAS_TEMP_HOTEND || HAS_TEMP_BED
  4756. void print_heaterstates() {
  4757. #if HAS_TEMP_HOTEND
  4758. SERIAL_PROTOCOLPGM(" T:");
  4759. SERIAL_PROTOCOL_F(thermalManager.degHotend(target_extruder), 1);
  4760. SERIAL_PROTOCOLPGM(" /");
  4761. SERIAL_PROTOCOL_F(thermalManager.degTargetHotend(target_extruder), 1);
  4762. #if ENABLED(SHOW_TEMP_ADC_VALUES)
  4763. SERIAL_PROTOCOLPAIR(" (", thermalManager.current_temperature_raw[target_extruder] / OVERSAMPLENR);
  4764. SERIAL_PROTOCOLCHAR(')');
  4765. #endif
  4766. #endif
  4767. #if HAS_TEMP_BED
  4768. SERIAL_PROTOCOLPGM(" B:");
  4769. SERIAL_PROTOCOL_F(thermalManager.degBed(), 1);
  4770. SERIAL_PROTOCOLPGM(" /");
  4771. SERIAL_PROTOCOL_F(thermalManager.degTargetBed(), 1);
  4772. #if ENABLED(SHOW_TEMP_ADC_VALUES)
  4773. SERIAL_PROTOCOLPAIR(" (", thermalManager.current_temperature_bed_raw / OVERSAMPLENR);
  4774. SERIAL_PROTOCOLCHAR(')');
  4775. #endif
  4776. #endif
  4777. #if HOTENDS > 1
  4778. HOTEND_LOOP() {
  4779. SERIAL_PROTOCOLPAIR(" T", e);
  4780. SERIAL_PROTOCOLCHAR(':');
  4781. SERIAL_PROTOCOL_F(thermalManager.degHotend(e), 1);
  4782. SERIAL_PROTOCOLPGM(" /");
  4783. SERIAL_PROTOCOL_F(thermalManager.degTargetHotend(e), 1);
  4784. #if ENABLED(SHOW_TEMP_ADC_VALUES)
  4785. SERIAL_PROTOCOLPAIR(" (", thermalManager.current_temperature_raw[e] / OVERSAMPLENR);
  4786. SERIAL_PROTOCOLCHAR(')');
  4787. #endif
  4788. }
  4789. #endif
  4790. SERIAL_PROTOCOLPGM(" @:");
  4791. SERIAL_PROTOCOL(thermalManager.getHeaterPower(target_extruder));
  4792. #if HAS_TEMP_BED
  4793. SERIAL_PROTOCOLPGM(" B@:");
  4794. SERIAL_PROTOCOL(thermalManager.getHeaterPower(-1));
  4795. #endif
  4796. #if HOTENDS > 1
  4797. HOTEND_LOOP() {
  4798. SERIAL_PROTOCOLPAIR(" @", e);
  4799. SERIAL_PROTOCOLCHAR(':');
  4800. SERIAL_PROTOCOL(thermalManager.getHeaterPower(e));
  4801. }
  4802. #endif
  4803. }
  4804. #endif
  4805. /**
  4806. * M105: Read hot end and bed temperature
  4807. */
  4808. inline void gcode_M105() {
  4809. if (get_target_extruder_from_command(105)) return;
  4810. #if HAS_TEMP_HOTEND || HAS_TEMP_BED
  4811. SERIAL_PROTOCOLPGM(MSG_OK);
  4812. print_heaterstates();
  4813. #else // !HAS_TEMP_HOTEND && !HAS_TEMP_BED
  4814. SERIAL_ERROR_START;
  4815. SERIAL_ERRORLNPGM(MSG_ERR_NO_THERMISTORS);
  4816. #endif
  4817. SERIAL_EOL;
  4818. }
  4819. #if ENABLED(AUTO_REPORT_TEMPERATURES) && (HAS_TEMP_HOTEND || HAS_TEMP_BED)
  4820. static uint8_t auto_report_temp_interval;
  4821. static millis_t next_temp_report_ms;
  4822. /**
  4823. * M155: Set temperature auto-report interval. M155 S<seconds>
  4824. */
  4825. inline void gcode_M155() {
  4826. if (code_seen('S')) {
  4827. auto_report_temp_interval = code_value_byte();
  4828. NOMORE(auto_report_temp_interval, 60);
  4829. next_temp_report_ms = millis() + 1000UL * auto_report_temp_interval;
  4830. }
  4831. }
  4832. inline void auto_report_temperatures() {
  4833. if (auto_report_temp_interval && ELAPSED(millis(), next_temp_report_ms)) {
  4834. next_temp_report_ms = millis() + 1000UL * auto_report_temp_interval;
  4835. print_heaterstates();
  4836. SERIAL_EOL;
  4837. }
  4838. }
  4839. #endif // AUTO_REPORT_TEMPERATURES
  4840. #if FAN_COUNT > 0
  4841. /**
  4842. * M106: Set Fan Speed
  4843. *
  4844. * S<int> Speed between 0-255
  4845. * P<index> Fan index, if more than one fan
  4846. */
  4847. inline void gcode_M106() {
  4848. uint16_t s = code_seen('S') ? code_value_ushort() : 255,
  4849. p = code_seen('P') ? code_value_ushort() : 0;
  4850. NOMORE(s, 255);
  4851. if (p < FAN_COUNT) fanSpeeds[p] = s;
  4852. }
  4853. /**
  4854. * M107: Fan Off
  4855. */
  4856. inline void gcode_M107() {
  4857. uint16_t p = code_seen('P') ? code_value_ushort() : 0;
  4858. if (p < FAN_COUNT) fanSpeeds[p] = 0;
  4859. }
  4860. #endif // FAN_COUNT > 0
  4861. #if DISABLED(EMERGENCY_PARSER)
  4862. /**
  4863. * M108: Stop the waiting for heaters in M109, M190, M303. Does not affect the target temperature.
  4864. */
  4865. inline void gcode_M108() { wait_for_heatup = false; }
  4866. /**
  4867. * M112: Emergency Stop
  4868. */
  4869. inline void gcode_M112() { kill(PSTR(MSG_KILLED)); }
  4870. /**
  4871. * M410: Quickstop - Abort all planned moves
  4872. *
  4873. * This will stop the carriages mid-move, so most likely they
  4874. * will be out of sync with the stepper position after this.
  4875. */
  4876. inline void gcode_M410() { quickstop_stepper(); }
  4877. #endif
  4878. #ifndef MIN_COOLING_SLOPE_DEG
  4879. #define MIN_COOLING_SLOPE_DEG 1.50
  4880. #endif
  4881. #ifndef MIN_COOLING_SLOPE_TIME
  4882. #define MIN_COOLING_SLOPE_TIME 60
  4883. #endif
  4884. /**
  4885. * M109: Sxxx Wait for extruder(s) to reach temperature. Waits only when heating.
  4886. * Rxxx Wait for extruder(s) to reach temperature. Waits when heating and cooling.
  4887. */
  4888. inline void gcode_M109() {
  4889. if (get_target_extruder_from_command(109)) return;
  4890. if (DEBUGGING(DRYRUN)) return;
  4891. #if ENABLED(SINGLENOZZLE)
  4892. if (target_extruder != active_extruder) return;
  4893. #endif
  4894. bool no_wait_for_cooling = code_seen('S');
  4895. if (no_wait_for_cooling || code_seen('R')) {
  4896. thermalManager.setTargetHotend(code_value_temp_abs(), target_extruder);
  4897. #if ENABLED(DUAL_X_CARRIAGE)
  4898. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && target_extruder == 0)
  4899. thermalManager.setTargetHotend(code_value_temp_abs() == 0.0 ? 0.0 : code_value_temp_abs() + duplicate_extruder_temp_offset, 1);
  4900. #endif
  4901. #if ENABLED(PRINTJOB_TIMER_AUTOSTART)
  4902. /**
  4903. * We use half EXTRUDE_MINTEMP here to allow nozzles to be put into hot
  4904. * stand by mode, for instance in a dual extruder setup, without affecting
  4905. * the running print timer.
  4906. */
  4907. if (code_value_temp_abs() <= (EXTRUDE_MINTEMP)/2) {
  4908. print_job_timer.stop();
  4909. LCD_MESSAGEPGM(WELCOME_MSG);
  4910. }
  4911. /**
  4912. * We do not check if the timer is already running because this check will
  4913. * be done for us inside the Stopwatch::start() method thus a running timer
  4914. * will not restart.
  4915. */
  4916. else print_job_timer.start();
  4917. #endif
  4918. if (thermalManager.isHeatingHotend(target_extruder)) lcd_status_printf_P(0, PSTR("E%i %s"), target_extruder + 1, MSG_HEATING);
  4919. }
  4920. #if ENABLED(AUTOTEMP)
  4921. planner.autotemp_M104_M109();
  4922. #endif
  4923. #if TEMP_RESIDENCY_TIME > 0
  4924. millis_t residency_start_ms = 0;
  4925. // Loop until the temperature has stabilized
  4926. #define TEMP_CONDITIONS (!residency_start_ms || PENDING(now, residency_start_ms + (TEMP_RESIDENCY_TIME) * 1000UL))
  4927. #else
  4928. // Loop until the temperature is very close target
  4929. #define TEMP_CONDITIONS (wants_to_cool ? thermalManager.isCoolingHotend(target_extruder) : thermalManager.isHeatingHotend(target_extruder))
  4930. #endif //TEMP_RESIDENCY_TIME > 0
  4931. float theTarget = -1.0, old_temp = 9999.0;
  4932. bool wants_to_cool = false;
  4933. wait_for_heatup = true;
  4934. millis_t now, next_temp_ms = 0, next_cool_check_ms = 0;
  4935. KEEPALIVE_STATE(NOT_BUSY);
  4936. do {
  4937. // Target temperature might be changed during the loop
  4938. if (theTarget != thermalManager.degTargetHotend(target_extruder)) {
  4939. wants_to_cool = thermalManager.isCoolingHotend(target_extruder);
  4940. theTarget = thermalManager.degTargetHotend(target_extruder);
  4941. // Exit if S<lower>, continue if S<higher>, R<lower>, or R<higher>
  4942. if (no_wait_for_cooling && wants_to_cool) break;
  4943. }
  4944. now = millis();
  4945. if (ELAPSED(now, next_temp_ms)) { //Print temp & remaining time every 1s while waiting
  4946. next_temp_ms = now + 1000UL;
  4947. print_heaterstates();
  4948. #if TEMP_RESIDENCY_TIME > 0
  4949. SERIAL_PROTOCOLPGM(" W:");
  4950. if (residency_start_ms) {
  4951. long rem = (((TEMP_RESIDENCY_TIME) * 1000UL) - (now - residency_start_ms)) / 1000UL;
  4952. SERIAL_PROTOCOLLN(rem);
  4953. }
  4954. else {
  4955. SERIAL_PROTOCOLLNPGM("?");
  4956. }
  4957. #else
  4958. SERIAL_EOL;
  4959. #endif
  4960. }
  4961. idle();
  4962. refresh_cmd_timeout(); // to prevent stepper_inactive_time from running out
  4963. float temp = thermalManager.degHotend(target_extruder);
  4964. #if TEMP_RESIDENCY_TIME > 0
  4965. float temp_diff = fabs(theTarget - temp);
  4966. if (!residency_start_ms) {
  4967. // Start the TEMP_RESIDENCY_TIME timer when we reach target temp for the first time.
  4968. if (temp_diff < TEMP_WINDOW) residency_start_ms = now;
  4969. }
  4970. else if (temp_diff > TEMP_HYSTERESIS) {
  4971. // Restart the timer whenever the temperature falls outside the hysteresis.
  4972. residency_start_ms = now;
  4973. }
  4974. #endif //TEMP_RESIDENCY_TIME > 0
  4975. // Prevent a wait-forever situation if R is misused i.e. M109 R0
  4976. if (wants_to_cool) {
  4977. // break after MIN_COOLING_SLOPE_TIME seconds
  4978. // if the temperature did not drop at least MIN_COOLING_SLOPE_DEG
  4979. if (!next_cool_check_ms || ELAPSED(now, next_cool_check_ms)) {
  4980. if (old_temp - temp < MIN_COOLING_SLOPE_DEG) break;
  4981. next_cool_check_ms = now + 1000UL * MIN_COOLING_SLOPE_TIME;
  4982. old_temp = temp;
  4983. }
  4984. }
  4985. } while (wait_for_heatup && TEMP_CONDITIONS);
  4986. if (wait_for_heatup) LCD_MESSAGEPGM(MSG_HEATING_COMPLETE);
  4987. KEEPALIVE_STATE(IN_HANDLER);
  4988. }
  4989. #if HAS_TEMP_BED
  4990. #ifndef MIN_COOLING_SLOPE_DEG_BED
  4991. #define MIN_COOLING_SLOPE_DEG_BED 1.50
  4992. #endif
  4993. #ifndef MIN_COOLING_SLOPE_TIME_BED
  4994. #define MIN_COOLING_SLOPE_TIME_BED 60
  4995. #endif
  4996. /**
  4997. * M190: Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  4998. * Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  4999. */
  5000. inline void gcode_M190() {
  5001. if (DEBUGGING(DRYRUN)) return;
  5002. LCD_MESSAGEPGM(MSG_BED_HEATING);
  5003. bool no_wait_for_cooling = code_seen('S');
  5004. if (no_wait_for_cooling || code_seen('R')) {
  5005. thermalManager.setTargetBed(code_value_temp_abs());
  5006. #if ENABLED(PRINTJOB_TIMER_AUTOSTART)
  5007. if (code_value_temp_abs() > BED_MINTEMP) {
  5008. /**
  5009. * We start the timer when 'heating and waiting' command arrives, LCD
  5010. * functions never wait. Cooling down managed by extruders.
  5011. *
  5012. * We do not check if the timer is already running because this check will
  5013. * be done for us inside the Stopwatch::start() method thus a running timer
  5014. * will not restart.
  5015. */
  5016. print_job_timer.start();
  5017. }
  5018. #endif
  5019. }
  5020. #if TEMP_BED_RESIDENCY_TIME > 0
  5021. millis_t residency_start_ms = 0;
  5022. // Loop until the temperature has stabilized
  5023. #define TEMP_BED_CONDITIONS (!residency_start_ms || PENDING(now, residency_start_ms + (TEMP_BED_RESIDENCY_TIME) * 1000UL))
  5024. #else
  5025. // Loop until the temperature is very close target
  5026. #define TEMP_BED_CONDITIONS (wants_to_cool ? thermalManager.isCoolingBed() : thermalManager.isHeatingBed())
  5027. #endif //TEMP_BED_RESIDENCY_TIME > 0
  5028. float theTarget = -1.0, old_temp = 9999.0;
  5029. bool wants_to_cool = false;
  5030. wait_for_heatup = true;
  5031. millis_t now, next_temp_ms = 0, next_cool_check_ms = 0;
  5032. KEEPALIVE_STATE(NOT_BUSY);
  5033. target_extruder = active_extruder; // for print_heaterstates
  5034. do {
  5035. // Target temperature might be changed during the loop
  5036. if (theTarget != thermalManager.degTargetBed()) {
  5037. wants_to_cool = thermalManager.isCoolingBed();
  5038. theTarget = thermalManager.degTargetBed();
  5039. // Exit if S<lower>, continue if S<higher>, R<lower>, or R<higher>
  5040. if (no_wait_for_cooling && wants_to_cool) break;
  5041. }
  5042. now = millis();
  5043. if (ELAPSED(now, next_temp_ms)) { //Print Temp Reading every 1 second while heating up.
  5044. next_temp_ms = now + 1000UL;
  5045. print_heaterstates();
  5046. #if TEMP_BED_RESIDENCY_TIME > 0
  5047. SERIAL_PROTOCOLPGM(" W:");
  5048. if (residency_start_ms) {
  5049. long rem = (((TEMP_BED_RESIDENCY_TIME) * 1000UL) - (now - residency_start_ms)) / 1000UL;
  5050. SERIAL_PROTOCOLLN(rem);
  5051. }
  5052. else {
  5053. SERIAL_PROTOCOLLNPGM("?");
  5054. }
  5055. #else
  5056. SERIAL_EOL;
  5057. #endif
  5058. }
  5059. idle();
  5060. refresh_cmd_timeout(); // to prevent stepper_inactive_time from running out
  5061. float temp = thermalManager.degBed();
  5062. #if TEMP_BED_RESIDENCY_TIME > 0
  5063. float temp_diff = fabs(theTarget - temp);
  5064. if (!residency_start_ms) {
  5065. // Start the TEMP_BED_RESIDENCY_TIME timer when we reach target temp for the first time.
  5066. if (temp_diff < TEMP_BED_WINDOW) residency_start_ms = now;
  5067. }
  5068. else if (temp_diff > TEMP_BED_HYSTERESIS) {
  5069. // Restart the timer whenever the temperature falls outside the hysteresis.
  5070. residency_start_ms = now;
  5071. }
  5072. #endif //TEMP_BED_RESIDENCY_TIME > 0
  5073. // Prevent a wait-forever situation if R is misused i.e. M190 R0
  5074. if (wants_to_cool) {
  5075. // break after MIN_COOLING_SLOPE_TIME_BED seconds
  5076. // if the temperature did not drop at least MIN_COOLING_SLOPE_DEG_BED
  5077. if (!next_cool_check_ms || ELAPSED(now, next_cool_check_ms)) {
  5078. if (old_temp - temp < MIN_COOLING_SLOPE_DEG_BED) break;
  5079. next_cool_check_ms = now + 1000UL * MIN_COOLING_SLOPE_TIME_BED;
  5080. old_temp = temp;
  5081. }
  5082. }
  5083. } while (wait_for_heatup && TEMP_BED_CONDITIONS);
  5084. if (wait_for_heatup) LCD_MESSAGEPGM(MSG_BED_DONE);
  5085. KEEPALIVE_STATE(IN_HANDLER);
  5086. }
  5087. #endif // HAS_TEMP_BED
  5088. /**
  5089. * M110: Set Current Line Number
  5090. */
  5091. inline void gcode_M110() {
  5092. if (code_seen('N')) gcode_LastN = code_value_long();
  5093. }
  5094. /**
  5095. * M111: Set the debug level
  5096. */
  5097. inline void gcode_M111() {
  5098. marlin_debug_flags = code_seen('S') ? code_value_byte() : (uint8_t) DEBUG_NONE;
  5099. const static char str_debug_1[] PROGMEM = MSG_DEBUG_ECHO;
  5100. const static char str_debug_2[] PROGMEM = MSG_DEBUG_INFO;
  5101. const static char str_debug_4[] PROGMEM = MSG_DEBUG_ERRORS;
  5102. const static char str_debug_8[] PROGMEM = MSG_DEBUG_DRYRUN;
  5103. const static char str_debug_16[] PROGMEM = MSG_DEBUG_COMMUNICATION;
  5104. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5105. const static char str_debug_32[] PROGMEM = MSG_DEBUG_LEVELING;
  5106. #endif
  5107. const static char* const debug_strings[] PROGMEM = {
  5108. str_debug_1, str_debug_2, str_debug_4, str_debug_8, str_debug_16,
  5109. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5110. str_debug_32
  5111. #endif
  5112. };
  5113. SERIAL_ECHO_START;
  5114. SERIAL_ECHOPGM(MSG_DEBUG_PREFIX);
  5115. if (marlin_debug_flags) {
  5116. uint8_t comma = 0;
  5117. for (uint8_t i = 0; i < COUNT(debug_strings); i++) {
  5118. if (TEST(marlin_debug_flags, i)) {
  5119. if (comma++) SERIAL_CHAR(',');
  5120. serialprintPGM((char*)pgm_read_word(&(debug_strings[i])));
  5121. }
  5122. }
  5123. }
  5124. else {
  5125. SERIAL_ECHOPGM(MSG_DEBUG_OFF);
  5126. }
  5127. SERIAL_EOL;
  5128. }
  5129. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  5130. /**
  5131. * M113: Get or set Host Keepalive interval (0 to disable)
  5132. *
  5133. * S<seconds> Optional. Set the keepalive interval.
  5134. */
  5135. inline void gcode_M113() {
  5136. if (code_seen('S')) {
  5137. host_keepalive_interval = code_value_byte();
  5138. NOMORE(host_keepalive_interval, 60);
  5139. }
  5140. else {
  5141. SERIAL_ECHO_START;
  5142. SERIAL_ECHOLNPAIR("M113 S", (unsigned long)host_keepalive_interval);
  5143. }
  5144. }
  5145. #endif
  5146. #if ENABLED(BARICUDA)
  5147. #if HAS_HEATER_1
  5148. /**
  5149. * M126: Heater 1 valve open
  5150. */
  5151. inline void gcode_M126() { baricuda_valve_pressure = code_seen('S') ? code_value_byte() : 255; }
  5152. /**
  5153. * M127: Heater 1 valve close
  5154. */
  5155. inline void gcode_M127() { baricuda_valve_pressure = 0; }
  5156. #endif
  5157. #if HAS_HEATER_2
  5158. /**
  5159. * M128: Heater 2 valve open
  5160. */
  5161. inline void gcode_M128() { baricuda_e_to_p_pressure = code_seen('S') ? code_value_byte() : 255; }
  5162. /**
  5163. * M129: Heater 2 valve close
  5164. */
  5165. inline void gcode_M129() { baricuda_e_to_p_pressure = 0; }
  5166. #endif
  5167. #endif //BARICUDA
  5168. /**
  5169. * M140: Set bed temperature
  5170. */
  5171. inline void gcode_M140() {
  5172. if (DEBUGGING(DRYRUN)) return;
  5173. if (code_seen('S')) thermalManager.setTargetBed(code_value_temp_abs());
  5174. }
  5175. #if ENABLED(ULTIPANEL)
  5176. /**
  5177. * M145: Set the heatup state for a material in the LCD menu
  5178. * S<material> (0=PLA, 1=ABS)
  5179. * H<hotend temp>
  5180. * B<bed temp>
  5181. * F<fan speed>
  5182. */
  5183. inline void gcode_M145() {
  5184. uint8_t material = code_seen('S') ? (uint8_t)code_value_int() : 0;
  5185. if (material >= COUNT(lcd_preheat_hotend_temp)) {
  5186. SERIAL_ERROR_START;
  5187. SERIAL_ERRORLNPGM(MSG_ERR_MATERIAL_INDEX);
  5188. }
  5189. else {
  5190. int v;
  5191. if (code_seen('H')) {
  5192. v = code_value_int();
  5193. lcd_preheat_hotend_temp[material] = constrain(v, EXTRUDE_MINTEMP, HEATER_0_MAXTEMP - 15);
  5194. }
  5195. if (code_seen('F')) {
  5196. v = code_value_int();
  5197. lcd_preheat_fan_speed[material] = constrain(v, 0, 255);
  5198. }
  5199. #if TEMP_SENSOR_BED != 0
  5200. if (code_seen('B')) {
  5201. v = code_value_int();
  5202. lcd_preheat_bed_temp[material] = constrain(v, BED_MINTEMP, BED_MAXTEMP - 15);
  5203. }
  5204. #endif
  5205. }
  5206. }
  5207. #endif // ULTIPANEL
  5208. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  5209. /**
  5210. * M149: Set temperature units
  5211. */
  5212. inline void gcode_M149() {
  5213. if (code_seen('C')) set_input_temp_units(TEMPUNIT_C);
  5214. else if (code_seen('K')) set_input_temp_units(TEMPUNIT_K);
  5215. else if (code_seen('F')) set_input_temp_units(TEMPUNIT_F);
  5216. }
  5217. #endif
  5218. #if HAS_POWER_SWITCH
  5219. /**
  5220. * M80: Turn on Power Supply
  5221. */
  5222. inline void gcode_M80() {
  5223. OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE); //GND
  5224. /**
  5225. * If you have a switch on suicide pin, this is useful
  5226. * if you want to start another print with suicide feature after
  5227. * a print without suicide...
  5228. */
  5229. #if HAS_SUICIDE
  5230. OUT_WRITE(SUICIDE_PIN, HIGH);
  5231. #endif
  5232. #if ENABLED(ULTIPANEL)
  5233. powersupply = true;
  5234. LCD_MESSAGEPGM(WELCOME_MSG);
  5235. lcd_update();
  5236. #endif
  5237. }
  5238. #endif // HAS_POWER_SWITCH
  5239. /**
  5240. * M81: Turn off Power, including Power Supply, if there is one.
  5241. *
  5242. * This code should ALWAYS be available for EMERGENCY SHUTDOWN!
  5243. */
  5244. inline void gcode_M81() {
  5245. thermalManager.disable_all_heaters();
  5246. stepper.finish_and_disable();
  5247. #if FAN_COUNT > 0
  5248. #if FAN_COUNT > 1
  5249. for (uint8_t i = 0; i < FAN_COUNT; i++) fanSpeeds[i] = 0;
  5250. #else
  5251. fanSpeeds[0] = 0;
  5252. #endif
  5253. #endif
  5254. safe_delay(1000); // Wait 1 second before switching off
  5255. #if HAS_SUICIDE
  5256. stepper.synchronize();
  5257. suicide();
  5258. #elif HAS_POWER_SWITCH
  5259. OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  5260. #endif
  5261. #if ENABLED(ULTIPANEL)
  5262. #if HAS_POWER_SWITCH
  5263. powersupply = false;
  5264. #endif
  5265. LCD_MESSAGEPGM(MACHINE_NAME " " MSG_OFF ".");
  5266. lcd_update();
  5267. #endif
  5268. }
  5269. /**
  5270. * M82: Set E codes absolute (default)
  5271. */
  5272. inline void gcode_M82() { axis_relative_modes[E_AXIS] = false; }
  5273. /**
  5274. * M83: Set E codes relative while in Absolute Coordinates (G90) mode
  5275. */
  5276. inline void gcode_M83() { axis_relative_modes[E_AXIS] = true; }
  5277. /**
  5278. * M18, M84: Disable all stepper motors
  5279. */
  5280. inline void gcode_M18_M84() {
  5281. if (code_seen('S')) {
  5282. stepper_inactive_time = code_value_millis_from_seconds();
  5283. }
  5284. else {
  5285. bool all_axis = !((code_seen('X')) || (code_seen('Y')) || (code_seen('Z')) || (code_seen('E')));
  5286. if (all_axis) {
  5287. stepper.finish_and_disable();
  5288. }
  5289. else {
  5290. stepper.synchronize();
  5291. if (code_seen('X')) disable_x();
  5292. if (code_seen('Y')) disable_y();
  5293. if (code_seen('Z')) disable_z();
  5294. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  5295. if (code_seen('E')) disable_e_steppers();
  5296. #endif
  5297. }
  5298. }
  5299. }
  5300. /**
  5301. * M85: Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  5302. */
  5303. inline void gcode_M85() {
  5304. if (code_seen('S')) max_inactive_time = code_value_millis_from_seconds();
  5305. }
  5306. /**
  5307. * Multi-stepper support for M92, M201, M203
  5308. */
  5309. #if ENABLED(DISTINCT_E_FACTORS)
  5310. #define GET_TARGET_EXTRUDER(CMD) if (get_target_extruder_from_command(CMD)) return
  5311. #define TARGET_EXTRUDER target_extruder
  5312. #else
  5313. #define GET_TARGET_EXTRUDER(CMD) NOOP
  5314. #define TARGET_EXTRUDER 0
  5315. #endif
  5316. /**
  5317. * M92: Set axis steps-per-unit for one or more axes, X, Y, Z, and E.
  5318. * (Follows the same syntax as G92)
  5319. *
  5320. * With multiple extruders use T to specify which one.
  5321. */
  5322. inline void gcode_M92() {
  5323. GET_TARGET_EXTRUDER(92);
  5324. LOOP_XYZE(i) {
  5325. if (code_seen(axis_codes[i])) {
  5326. if (i == E_AXIS) {
  5327. float value = code_value_per_axis_unit(E_AXIS + TARGET_EXTRUDER);
  5328. if (value < 20.0) {
  5329. float factor = planner.axis_steps_per_mm[E_AXIS + TARGET_EXTRUDER] / value; // increase e constants if M92 E14 is given for netfab.
  5330. planner.max_jerk[E_AXIS] *= factor;
  5331. planner.max_feedrate_mm_s[E_AXIS + TARGET_EXTRUDER] *= factor;
  5332. planner.max_acceleration_steps_per_s2[E_AXIS + TARGET_EXTRUDER] *= factor;
  5333. }
  5334. planner.axis_steps_per_mm[E_AXIS + TARGET_EXTRUDER] = value;
  5335. }
  5336. else {
  5337. planner.axis_steps_per_mm[i] = code_value_per_axis_unit(i);
  5338. }
  5339. }
  5340. }
  5341. planner.refresh_positioning();
  5342. }
  5343. /**
  5344. * Output the current position to serial
  5345. */
  5346. static void report_current_position() {
  5347. SERIAL_PROTOCOLPGM("X:");
  5348. SERIAL_PROTOCOL(current_position[X_AXIS]);
  5349. SERIAL_PROTOCOLPGM(" Y:");
  5350. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  5351. SERIAL_PROTOCOLPGM(" Z:");
  5352. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  5353. SERIAL_PROTOCOLPGM(" E:");
  5354. SERIAL_PROTOCOL(current_position[E_AXIS]);
  5355. stepper.report_positions();
  5356. #if IS_SCARA
  5357. SERIAL_PROTOCOLPAIR("SCARA Theta:", stepper.get_axis_position_degrees(A_AXIS));
  5358. SERIAL_PROTOCOLLNPAIR(" Psi+Theta:", stepper.get_axis_position_degrees(B_AXIS));
  5359. SERIAL_EOL;
  5360. #endif
  5361. }
  5362. /**
  5363. * M114: Output current position to serial port
  5364. */
  5365. inline void gcode_M114() { stepper.synchronize(); report_current_position(); }
  5366. /**
  5367. * M115: Capabilities string
  5368. */
  5369. inline void gcode_M115() {
  5370. SERIAL_PROTOCOLLNPGM(MSG_M115_REPORT);
  5371. #if ENABLED(EXTENDED_CAPABILITIES_REPORT)
  5372. // EEPROM (M500, M501)
  5373. #if ENABLED(EEPROM_SETTINGS)
  5374. SERIAL_PROTOCOLLNPGM("Cap:EEPROM:1");
  5375. #else
  5376. SERIAL_PROTOCOLLNPGM("Cap:EEPROM:0");
  5377. #endif
  5378. // AUTOREPORT_TEMP (M155)
  5379. #if ENABLED(AUTO_REPORT_TEMPERATURES)
  5380. SERIAL_PROTOCOLLNPGM("Cap:AUTOREPORT_TEMP:1");
  5381. #else
  5382. SERIAL_PROTOCOLLNPGM("Cap:AUTOREPORT_TEMP:0");
  5383. #endif
  5384. // PROGRESS (M530 S L, M531 <file>, M532 X L)
  5385. SERIAL_PROTOCOLLNPGM("Cap:PROGRESS:0");
  5386. // AUTOLEVEL (G29)
  5387. #if HAS_ABL
  5388. SERIAL_PROTOCOLLNPGM("Cap:AUTOLEVEL:1");
  5389. #else
  5390. SERIAL_PROTOCOLLNPGM("Cap:AUTOLEVEL:0");
  5391. #endif
  5392. // Z_PROBE (G30)
  5393. #if HAS_BED_PROBE
  5394. SERIAL_PROTOCOLLNPGM("Cap:Z_PROBE:1");
  5395. #else
  5396. SERIAL_PROTOCOLLNPGM("Cap:Z_PROBE:0");
  5397. #endif
  5398. // MESH_REPORT (M420 V)
  5399. #if PLANNER_LEVELING
  5400. SERIAL_PROTOCOLLNPGM("Cap:LEVELING_DATA:1");
  5401. #else
  5402. SERIAL_PROTOCOLLNPGM("Cap:LEVELING_DATA:0");
  5403. #endif
  5404. // SOFTWARE_POWER (G30)
  5405. #if HAS_POWER_SWITCH
  5406. SERIAL_PROTOCOLLNPGM("Cap:SOFTWARE_POWER:1");
  5407. #else
  5408. SERIAL_PROTOCOLLNPGM("Cap:SOFTWARE_POWER:0");
  5409. #endif
  5410. // TOGGLE_LIGHTS (M355)
  5411. #if HAS_CASE_LIGHT
  5412. SERIAL_PROTOCOLLNPGM("Cap:TOGGLE_LIGHTS:1");
  5413. #else
  5414. SERIAL_PROTOCOLLNPGM("Cap:TOGGLE_LIGHTS:0");
  5415. #endif
  5416. // EMERGENCY_PARSER (M108, M112, M410)
  5417. #if ENABLED(EMERGENCY_PARSER)
  5418. SERIAL_PROTOCOLLNPGM("Cap:EMERGENCY_PARSER:1");
  5419. #else
  5420. SERIAL_PROTOCOLLNPGM("Cap:EMERGENCY_PARSER:0");
  5421. #endif
  5422. #endif // EXTENDED_CAPABILITIES_REPORT
  5423. }
  5424. /**
  5425. * M117: Set LCD Status Message
  5426. */
  5427. inline void gcode_M117() {
  5428. lcd_setstatus(current_command_args);
  5429. }
  5430. /**
  5431. * M119: Output endstop states to serial output
  5432. */
  5433. inline void gcode_M119() { endstops.M119(); }
  5434. /**
  5435. * M120: Enable endstops and set non-homing endstop state to "enabled"
  5436. */
  5437. inline void gcode_M120() { endstops.enable_globally(true); }
  5438. /**
  5439. * M121: Disable endstops and set non-homing endstop state to "disabled"
  5440. */
  5441. inline void gcode_M121() { endstops.enable_globally(false); }
  5442. #if ENABLED(PARK_HEAD_ON_PAUSE)
  5443. /**
  5444. * M125: Store current position and move to filament change position.
  5445. * Called on pause (by M25) to prevent material leaking onto the
  5446. * object. On resume (M24) the head will be moved back and the
  5447. * print will resume.
  5448. *
  5449. * If Marlin is compiled without SD Card support, M125 can be
  5450. * used directly to pause the print and move to park position,
  5451. * resuming with a button click or M108.
  5452. *
  5453. * L = override retract length
  5454. * X = override X
  5455. * Y = override Y
  5456. * Z = override Z raise
  5457. */
  5458. inline void gcode_M125() {
  5459. if (move_away_flag) return; // already paused
  5460. const bool job_running = print_job_timer.isRunning();
  5461. // there are blocks after this one, or sd printing
  5462. move_away_flag = job_running || planner.blocks_queued()
  5463. #if ENABLED(SDSUPPORT)
  5464. || card.sdprinting
  5465. #endif
  5466. ;
  5467. if (!move_away_flag) return; // nothing to pause
  5468. // M125 can be used to pause a print too
  5469. #if ENABLED(SDSUPPORT)
  5470. card.pauseSDPrint();
  5471. #endif
  5472. print_job_timer.pause();
  5473. // Save current position
  5474. COPY(resume_position, current_position);
  5475. set_destination_to_current();
  5476. // Initial retract before move to filament change position
  5477. destination[E_AXIS] += code_seen('L') ? code_value_axis_units(E_AXIS) : 0
  5478. #if defined(FILAMENT_CHANGE_RETRACT_LENGTH) && FILAMENT_CHANGE_RETRACT_LENGTH > 0
  5479. - (FILAMENT_CHANGE_RETRACT_LENGTH)
  5480. #endif
  5481. ;
  5482. RUNPLAN(FILAMENT_CHANGE_RETRACT_FEEDRATE);
  5483. // Lift Z axis
  5484. const float z_lift = code_seen('Z') ? code_value_axis_units(Z_AXIS) :
  5485. #if defined(FILAMENT_CHANGE_Z_ADD) && FILAMENT_CHANGE_Z_ADD > 0
  5486. FILAMENT_CHANGE_Z_ADD
  5487. #else
  5488. 0
  5489. #endif
  5490. ;
  5491. if (z_lift > 0) {
  5492. destination[Z_AXIS] += z_lift;
  5493. NOMORE(destination[Z_AXIS], Z_MAX_POS);
  5494. RUNPLAN(FILAMENT_CHANGE_Z_FEEDRATE);
  5495. }
  5496. // Move XY axes to filament change position or given position
  5497. destination[X_AXIS] = code_seen('X') ? code_value_axis_units(X_AXIS) : 0
  5498. #ifdef FILAMENT_CHANGE_X_POS
  5499. + FILAMENT_CHANGE_X_POS
  5500. #endif
  5501. ;
  5502. destination[Y_AXIS] = code_seen('Y') ? code_value_axis_units(Y_AXIS) : 0
  5503. #ifdef FILAMENT_CHANGE_Y_POS
  5504. + FILAMENT_CHANGE_Y_POS
  5505. #endif
  5506. ;
  5507. #if HOTENDS > 1 && DISABLED(DUAL_X_CARRIAGE)
  5508. if (active_extruder > 0) {
  5509. if (!code_seen('X')) destination[X_AXIS] += hotend_offset[X_AXIS][active_extruder];
  5510. if (!code_seen('Y')) destination[Y_AXIS] += hotend_offset[Y_AXIS][active_extruder];
  5511. }
  5512. #endif
  5513. clamp_to_software_endstops(destination);
  5514. RUNPLAN(FILAMENT_CHANGE_XY_FEEDRATE);
  5515. set_current_to_destination();
  5516. stepper.synchronize();
  5517. disable_e_steppers();
  5518. #if DISABLED(SDSUPPORT)
  5519. // Wait for lcd click or M108
  5520. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5521. wait_for_user = true;
  5522. while (wait_for_user) idle();
  5523. KEEPALIVE_STATE(IN_HANDLER);
  5524. // Return to print position and continue
  5525. move_back_on_resume();
  5526. if (job_running) print_job_timer.start();
  5527. move_away_flag = false;
  5528. #endif
  5529. }
  5530. #endif // PARK_HEAD_ON_PAUSE
  5531. #if ENABLED(BLINKM) || ENABLED(RGB_LED)
  5532. void set_led_color(const uint8_t r, const uint8_t g, const uint8_t b) {
  5533. #if ENABLED(BLINKM)
  5534. // This variant uses i2c to send the RGB components to the device.
  5535. SendColors(r, g, b);
  5536. #else
  5537. // This variant uses 3 separate pins for the RGB components.
  5538. // If the pins can do PWM then their intensity will be set.
  5539. digitalWrite(RGB_LED_R_PIN, r ? HIGH : LOW);
  5540. digitalWrite(RGB_LED_G_PIN, g ? HIGH : LOW);
  5541. digitalWrite(RGB_LED_B_PIN, b ? HIGH : LOW);
  5542. analogWrite(RGB_LED_R_PIN, r);
  5543. analogWrite(RGB_LED_G_PIN, g);
  5544. analogWrite(RGB_LED_B_PIN, b);
  5545. #endif
  5546. }
  5547. /**
  5548. * M150: Set Status LED Color - Use R-U-B for R-G-B
  5549. *
  5550. * Always sets all 3 components. If a component is left out, set to 0.
  5551. *
  5552. * Examples:
  5553. *
  5554. * M150 R255 ; Turn LED red
  5555. * M150 R255 U127 ; Turn LED orange (PWM only)
  5556. * M150 ; Turn LED off
  5557. * M150 R U B ; Turn LED white
  5558. *
  5559. */
  5560. inline void gcode_M150() {
  5561. set_led_color(
  5562. code_seen('R') ? (code_has_value() ? code_value_byte() : 255) : 0,
  5563. code_seen('U') ? (code_has_value() ? code_value_byte() : 255) : 0,
  5564. code_seen('B') ? (code_has_value() ? code_value_byte() : 255) : 0
  5565. );
  5566. }
  5567. #endif // BLINKM || RGB_LED
  5568. /**
  5569. * M200: Set filament diameter and set E axis units to cubic units
  5570. *
  5571. * T<extruder> - Optional extruder number. Current extruder if omitted.
  5572. * D<linear> - Diameter of the filament. Use "D0" to switch back to linear units on the E axis.
  5573. */
  5574. inline void gcode_M200() {
  5575. if (get_target_extruder_from_command(200)) return;
  5576. if (code_seen('D')) {
  5577. // setting any extruder filament size disables volumetric on the assumption that
  5578. // slicers either generate in extruder values as cubic mm or as as filament feeds
  5579. // for all extruders
  5580. volumetric_enabled = (code_value_linear_units() != 0.0);
  5581. if (volumetric_enabled) {
  5582. filament_size[target_extruder] = code_value_linear_units();
  5583. // make sure all extruders have some sane value for the filament size
  5584. for (uint8_t i = 0; i < COUNT(filament_size); i++)
  5585. if (! filament_size[i]) filament_size[i] = DEFAULT_NOMINAL_FILAMENT_DIA;
  5586. }
  5587. }
  5588. else {
  5589. //reserved for setting filament diameter via UFID or filament measuring device
  5590. return;
  5591. }
  5592. calculate_volumetric_multipliers();
  5593. }
  5594. /**
  5595. * M201: Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  5596. *
  5597. * With multiple extruders use T to specify which one.
  5598. */
  5599. inline void gcode_M201() {
  5600. GET_TARGET_EXTRUDER(201);
  5601. LOOP_XYZE(i) {
  5602. if (code_seen(axis_codes[i])) {
  5603. const uint8_t a = i + (i == E_AXIS ? TARGET_EXTRUDER : 0);
  5604. planner.max_acceleration_mm_per_s2[a] = code_value_axis_units(a);
  5605. }
  5606. }
  5607. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  5608. planner.reset_acceleration_rates();
  5609. }
  5610. #if 0 // Not used for Sprinter/grbl gen6
  5611. inline void gcode_M202() {
  5612. LOOP_XYZE(i) {
  5613. if (code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value_axis_units(i) * planner.axis_steps_per_mm[i];
  5614. }
  5615. }
  5616. #endif
  5617. /**
  5618. * M203: Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in units/sec
  5619. *
  5620. * With multiple extruders use T to specify which one.
  5621. */
  5622. inline void gcode_M203() {
  5623. GET_TARGET_EXTRUDER(203);
  5624. LOOP_XYZE(i)
  5625. if (code_seen(axis_codes[i])) {
  5626. const uint8_t a = i + (i == E_AXIS ? TARGET_EXTRUDER : 0);
  5627. planner.max_feedrate_mm_s[a] = code_value_axis_units(a);
  5628. }
  5629. }
  5630. /**
  5631. * M204: Set Accelerations in units/sec^2 (M204 P1200 R3000 T3000)
  5632. *
  5633. * P = Printing moves
  5634. * R = Retract only (no X, Y, Z) moves
  5635. * T = Travel (non printing) moves
  5636. *
  5637. * Also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  5638. */
  5639. inline void gcode_M204() {
  5640. if (code_seen('S')) { // Kept for legacy compatibility. Should NOT BE USED for new developments.
  5641. planner.travel_acceleration = planner.acceleration = code_value_linear_units();
  5642. SERIAL_ECHOLNPAIR("Setting Print and Travel Acceleration: ", planner.acceleration);
  5643. }
  5644. if (code_seen('P')) {
  5645. planner.acceleration = code_value_linear_units();
  5646. SERIAL_ECHOLNPAIR("Setting Print Acceleration: ", planner.acceleration);
  5647. }
  5648. if (code_seen('R')) {
  5649. planner.retract_acceleration = code_value_linear_units();
  5650. SERIAL_ECHOLNPAIR("Setting Retract Acceleration: ", planner.retract_acceleration);
  5651. }
  5652. if (code_seen('T')) {
  5653. planner.travel_acceleration = code_value_linear_units();
  5654. SERIAL_ECHOLNPAIR("Setting Travel Acceleration: ", planner.travel_acceleration);
  5655. }
  5656. }
  5657. /**
  5658. * M205: Set Advanced Settings
  5659. *
  5660. * S = Min Feed Rate (units/s)
  5661. * T = Min Travel Feed Rate (units/s)
  5662. * B = Min Segment Time (µs)
  5663. * X = Max X Jerk (units/sec^2)
  5664. * Y = Max Y Jerk (units/sec^2)
  5665. * Z = Max Z Jerk (units/sec^2)
  5666. * E = Max E Jerk (units/sec^2)
  5667. */
  5668. inline void gcode_M205() {
  5669. if (code_seen('S')) planner.min_feedrate_mm_s = code_value_linear_units();
  5670. if (code_seen('T')) planner.min_travel_feedrate_mm_s = code_value_linear_units();
  5671. if (code_seen('B')) planner.min_segment_time = code_value_millis();
  5672. if (code_seen('X')) planner.max_jerk[X_AXIS] = code_value_axis_units(X_AXIS);
  5673. if (code_seen('Y')) planner.max_jerk[Y_AXIS] = code_value_axis_units(Y_AXIS);
  5674. if (code_seen('Z')) planner.max_jerk[Z_AXIS] = code_value_axis_units(Z_AXIS);
  5675. if (code_seen('E')) planner.max_jerk[E_AXIS] = code_value_axis_units(E_AXIS);
  5676. }
  5677. #if DISABLED(NO_WORKSPACE_OFFSETS)
  5678. /**
  5679. * M206: Set Additional Homing Offset (X Y Z). SCARA aliases T=X, P=Y
  5680. */
  5681. inline void gcode_M206() {
  5682. LOOP_XYZ(i)
  5683. if (code_seen(axis_codes[i]))
  5684. set_home_offset((AxisEnum)i, code_value_axis_units(i));
  5685. #if ENABLED(MORGAN_SCARA)
  5686. if (code_seen('T')) set_home_offset(A_AXIS, code_value_axis_units(A_AXIS)); // Theta
  5687. if (code_seen('P')) set_home_offset(B_AXIS, code_value_axis_units(B_AXIS)); // Psi
  5688. #endif
  5689. SYNC_PLAN_POSITION_KINEMATIC();
  5690. report_current_position();
  5691. }
  5692. #endif // NO_WORKSPACE_OFFSETS
  5693. #if ENABLED(DELTA)
  5694. /**
  5695. * M665: Set delta configurations
  5696. *
  5697. * L = diagonal rod
  5698. * R = delta radius
  5699. * S = segments per second
  5700. * A = Alpha (Tower 1) diagonal rod trim
  5701. * B = Beta (Tower 2) diagonal rod trim
  5702. * C = Gamma (Tower 3) diagonal rod trim
  5703. */
  5704. inline void gcode_M665() {
  5705. if (code_seen('L')) delta_diagonal_rod = code_value_linear_units();
  5706. if (code_seen('R')) delta_radius = code_value_linear_units();
  5707. if (code_seen('S')) delta_segments_per_second = code_value_float();
  5708. if (code_seen('A')) delta_diagonal_rod_trim[A_AXIS] = code_value_linear_units();
  5709. if (code_seen('B')) delta_diagonal_rod_trim[B_AXIS] = code_value_linear_units();
  5710. if (code_seen('C')) delta_diagonal_rod_trim[C_AXIS] = code_value_linear_units();
  5711. if (code_seen('I')) delta_tower_angle_trim[A_AXIS] = code_value_linear_units();
  5712. if (code_seen('J')) delta_tower_angle_trim[B_AXIS] = code_value_linear_units();
  5713. if (code_seen('K')) delta_tower_angle_trim[C_AXIS] = code_value_linear_units();
  5714. recalc_delta_settings(delta_radius, delta_diagonal_rod);
  5715. }
  5716. /**
  5717. * M666: Set delta endstop adjustment
  5718. */
  5719. inline void gcode_M666() {
  5720. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5721. if (DEBUGGING(LEVELING)) {
  5722. SERIAL_ECHOLNPGM(">>> gcode_M666");
  5723. }
  5724. #endif
  5725. LOOP_XYZ(i) {
  5726. if (code_seen(axis_codes[i])) {
  5727. endstop_adj[i] = code_value_axis_units(i);
  5728. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5729. if (DEBUGGING(LEVELING)) {
  5730. SERIAL_ECHOPAIR("endstop_adj[", axis_codes[i]);
  5731. SERIAL_ECHOLNPAIR("] = ", endstop_adj[i]);
  5732. }
  5733. #endif
  5734. }
  5735. }
  5736. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5737. if (DEBUGGING(LEVELING)) {
  5738. SERIAL_ECHOLNPGM("<<< gcode_M666");
  5739. }
  5740. #endif
  5741. }
  5742. #elif ENABLED(Z_DUAL_ENDSTOPS) // !DELTA && ENABLED(Z_DUAL_ENDSTOPS)
  5743. /**
  5744. * M666: For Z Dual Endstop setup, set z axis offset to the z2 axis.
  5745. */
  5746. inline void gcode_M666() {
  5747. if (code_seen('Z')) z_endstop_adj = code_value_axis_units(Z_AXIS);
  5748. SERIAL_ECHOLNPAIR("Z Endstop Adjustment set to (mm):", z_endstop_adj);
  5749. }
  5750. #endif // !DELTA && Z_DUAL_ENDSTOPS
  5751. #if ENABLED(FWRETRACT)
  5752. /**
  5753. * M207: Set firmware retraction values
  5754. *
  5755. * S[+units] retract_length
  5756. * W[+units] retract_length_swap (multi-extruder)
  5757. * F[units/min] retract_feedrate_mm_s
  5758. * Z[units] retract_zlift
  5759. */
  5760. inline void gcode_M207() {
  5761. if (code_seen('S')) retract_length = code_value_axis_units(E_AXIS);
  5762. if (code_seen('F')) retract_feedrate_mm_s = MMM_TO_MMS(code_value_axis_units(E_AXIS));
  5763. if (code_seen('Z')) retract_zlift = code_value_axis_units(Z_AXIS);
  5764. #if EXTRUDERS > 1
  5765. if (code_seen('W')) retract_length_swap = code_value_axis_units(E_AXIS);
  5766. #endif
  5767. }
  5768. /**
  5769. * M208: Set firmware un-retraction values
  5770. *
  5771. * S[+units] retract_recover_length (in addition to M207 S*)
  5772. * W[+units] retract_recover_length_swap (multi-extruder)
  5773. * F[units/min] retract_recover_feedrate_mm_s
  5774. */
  5775. inline void gcode_M208() {
  5776. if (code_seen('S')) retract_recover_length = code_value_axis_units(E_AXIS);
  5777. if (code_seen('F')) retract_recover_feedrate_mm_s = MMM_TO_MMS(code_value_axis_units(E_AXIS));
  5778. #if EXTRUDERS > 1
  5779. if (code_seen('W')) retract_recover_length_swap = code_value_axis_units(E_AXIS);
  5780. #endif
  5781. }
  5782. /**
  5783. * M209: Enable automatic retract (M209 S1)
  5784. * For slicers that don't support G10/11, reversed extrude-only
  5785. * moves will be classified as retraction.
  5786. */
  5787. inline void gcode_M209() {
  5788. if (code_seen('S')) {
  5789. autoretract_enabled = code_value_bool();
  5790. for (int i = 0; i < EXTRUDERS; i++) retracted[i] = false;
  5791. }
  5792. }
  5793. #endif // FWRETRACT
  5794. /**
  5795. * M211: Enable, Disable, and/or Report software endstops
  5796. *
  5797. * Usage: M211 S1 to enable, M211 S0 to disable, M211 alone for report
  5798. */
  5799. inline void gcode_M211() {
  5800. SERIAL_ECHO_START;
  5801. #if HAS_SOFTWARE_ENDSTOPS
  5802. if (code_seen('S')) soft_endstops_enabled = code_value_bool();
  5803. SERIAL_ECHOPGM(MSG_SOFT_ENDSTOPS);
  5804. serialprintPGM(soft_endstops_enabled ? PSTR(MSG_ON) : PSTR(MSG_OFF));
  5805. #else
  5806. SERIAL_ECHOPGM(MSG_SOFT_ENDSTOPS);
  5807. SERIAL_ECHOPGM(MSG_OFF);
  5808. #endif
  5809. SERIAL_ECHOPGM(MSG_SOFT_MIN);
  5810. SERIAL_ECHOPAIR( MSG_X, soft_endstop_min[X_AXIS]);
  5811. SERIAL_ECHOPAIR(" " MSG_Y, soft_endstop_min[Y_AXIS]);
  5812. SERIAL_ECHOPAIR(" " MSG_Z, soft_endstop_min[Z_AXIS]);
  5813. SERIAL_ECHOPGM(MSG_SOFT_MAX);
  5814. SERIAL_ECHOPAIR( MSG_X, soft_endstop_max[X_AXIS]);
  5815. SERIAL_ECHOPAIR(" " MSG_Y, soft_endstop_max[Y_AXIS]);
  5816. SERIAL_ECHOLNPAIR(" " MSG_Z, soft_endstop_max[Z_AXIS]);
  5817. }
  5818. #if HOTENDS > 1
  5819. /**
  5820. * M218 - set hotend offset (in linear units)
  5821. *
  5822. * T<tool>
  5823. * X<xoffset>
  5824. * Y<yoffset>
  5825. * Z<zoffset> - Available with DUAL_X_CARRIAGE and SWITCHING_EXTRUDER
  5826. */
  5827. inline void gcode_M218() {
  5828. if (get_target_extruder_from_command(218) || target_extruder == 0) return;
  5829. if (code_seen('X')) hotend_offset[X_AXIS][target_extruder] = code_value_axis_units(X_AXIS);
  5830. if (code_seen('Y')) hotend_offset[Y_AXIS][target_extruder] = code_value_axis_units(Y_AXIS);
  5831. #if ENABLED(DUAL_X_CARRIAGE) || ENABLED(SWITCHING_EXTRUDER)
  5832. if (code_seen('Z')) hotend_offset[Z_AXIS][target_extruder] = code_value_axis_units(Z_AXIS);
  5833. #endif
  5834. SERIAL_ECHO_START;
  5835. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  5836. HOTEND_LOOP() {
  5837. SERIAL_CHAR(' ');
  5838. SERIAL_ECHO(hotend_offset[X_AXIS][e]);
  5839. SERIAL_CHAR(',');
  5840. SERIAL_ECHO(hotend_offset[Y_AXIS][e]);
  5841. #if ENABLED(DUAL_X_CARRIAGE) || ENABLED(SWITCHING_EXTRUDER)
  5842. SERIAL_CHAR(',');
  5843. SERIAL_ECHO(hotend_offset[Z_AXIS][e]);
  5844. #endif
  5845. }
  5846. SERIAL_EOL;
  5847. }
  5848. #endif // HOTENDS > 1
  5849. /**
  5850. * M220: Set speed percentage factor, aka "Feed Rate" (M220 S95)
  5851. */
  5852. inline void gcode_M220() {
  5853. if (code_seen('S')) feedrate_percentage = code_value_int();
  5854. }
  5855. /**
  5856. * M221: Set extrusion percentage (M221 T0 S95)
  5857. */
  5858. inline void gcode_M221() {
  5859. if (get_target_extruder_from_command(221)) return;
  5860. if (code_seen('S'))
  5861. flow_percentage[target_extruder] = code_value_int();
  5862. }
  5863. /**
  5864. * M226: Wait until the specified pin reaches the state required (M226 P<pin> S<state>)
  5865. */
  5866. inline void gcode_M226() {
  5867. if (code_seen('P')) {
  5868. int pin_number = code_value_int(),
  5869. pin_state = code_seen('S') ? code_value_int() : -1; // required pin state - default is inverted
  5870. if (pin_state >= -1 && pin_state <= 1 && pin_number > -1 && !pin_is_protected(pin_number)) {
  5871. int target = LOW;
  5872. stepper.synchronize();
  5873. pinMode(pin_number, INPUT);
  5874. switch (pin_state) {
  5875. case 1:
  5876. target = HIGH;
  5877. break;
  5878. case 0:
  5879. target = LOW;
  5880. break;
  5881. case -1:
  5882. target = !digitalRead(pin_number);
  5883. break;
  5884. }
  5885. while (digitalRead(pin_number) != target) idle();
  5886. } // pin_state -1 0 1 && pin_number > -1
  5887. } // code_seen('P')
  5888. }
  5889. #if ENABLED(EXPERIMENTAL_I2CBUS)
  5890. /**
  5891. * M260: Send data to a I2C slave device
  5892. *
  5893. * This is a PoC, the formating and arguments for the GCODE will
  5894. * change to be more compatible, the current proposal is:
  5895. *
  5896. * M260 A<slave device address base 10> ; Sets the I2C slave address the data will be sent to
  5897. *
  5898. * M260 B<byte-1 value in base 10>
  5899. * M260 B<byte-2 value in base 10>
  5900. * M260 B<byte-3 value in base 10>
  5901. *
  5902. * M260 S1 ; Send the buffered data and reset the buffer
  5903. * M260 R1 ; Reset the buffer without sending data
  5904. *
  5905. */
  5906. inline void gcode_M260() {
  5907. // Set the target address
  5908. if (code_seen('A')) i2c.address(code_value_byte());
  5909. // Add a new byte to the buffer
  5910. if (code_seen('B')) i2c.addbyte(code_value_byte());
  5911. // Flush the buffer to the bus
  5912. if (code_seen('S')) i2c.send();
  5913. // Reset and rewind the buffer
  5914. else if (code_seen('R')) i2c.reset();
  5915. }
  5916. /**
  5917. * M261: Request X bytes from I2C slave device
  5918. *
  5919. * Usage: M261 A<slave device address base 10> B<number of bytes>
  5920. */
  5921. inline void gcode_M261() {
  5922. if (code_seen('A')) i2c.address(code_value_byte());
  5923. uint8_t bytes = code_seen('B') ? code_value_byte() : 1;
  5924. if (i2c.addr && bytes && bytes <= TWIBUS_BUFFER_SIZE) {
  5925. i2c.relay(bytes);
  5926. }
  5927. else {
  5928. SERIAL_ERROR_START;
  5929. SERIAL_ERRORLN("Bad i2c request");
  5930. }
  5931. }
  5932. #endif // EXPERIMENTAL_I2CBUS
  5933. #if HAS_SERVOS
  5934. /**
  5935. * M280: Get or set servo position. P<index> [S<angle>]
  5936. */
  5937. inline void gcode_M280() {
  5938. if (!code_seen('P')) return;
  5939. int servo_index = code_value_int();
  5940. if (WITHIN(servo_index, 0, NUM_SERVOS - 1)) {
  5941. if (code_seen('S'))
  5942. MOVE_SERVO(servo_index, code_value_int());
  5943. else {
  5944. SERIAL_ECHO_START;
  5945. SERIAL_ECHOPAIR(" Servo ", servo_index);
  5946. SERIAL_ECHOLNPAIR(": ", servo[servo_index].read());
  5947. }
  5948. }
  5949. else {
  5950. SERIAL_ERROR_START;
  5951. SERIAL_ECHOPAIR("Servo ", servo_index);
  5952. SERIAL_ECHOLNPGM(" out of range");
  5953. }
  5954. }
  5955. #endif // HAS_SERVOS
  5956. #if HAS_BUZZER
  5957. /**
  5958. * M300: Play beep sound S<frequency Hz> P<duration ms>
  5959. */
  5960. inline void gcode_M300() {
  5961. uint16_t const frequency = code_seen('S') ? code_value_ushort() : 260;
  5962. uint16_t duration = code_seen('P') ? code_value_ushort() : 1000;
  5963. // Limits the tone duration to 0-5 seconds.
  5964. NOMORE(duration, 5000);
  5965. BUZZ(duration, frequency);
  5966. }
  5967. #endif // HAS_BUZZER
  5968. #if ENABLED(PIDTEMP)
  5969. /**
  5970. * M301: Set PID parameters P I D (and optionally C, L)
  5971. *
  5972. * P[float] Kp term
  5973. * I[float] Ki term (unscaled)
  5974. * D[float] Kd term (unscaled)
  5975. *
  5976. * With PID_EXTRUSION_SCALING:
  5977. *
  5978. * C[float] Kc term
  5979. * L[float] LPQ length
  5980. */
  5981. inline void gcode_M301() {
  5982. // multi-extruder PID patch: M301 updates or prints a single extruder's PID values
  5983. // default behaviour (omitting E parameter) is to update for extruder 0 only
  5984. int e = code_seen('E') ? code_value_int() : 0; // extruder being updated
  5985. if (e < HOTENDS) { // catch bad input value
  5986. if (code_seen('P')) PID_PARAM(Kp, e) = code_value_float();
  5987. if (code_seen('I')) PID_PARAM(Ki, e) = scalePID_i(code_value_float());
  5988. if (code_seen('D')) PID_PARAM(Kd, e) = scalePID_d(code_value_float());
  5989. #if ENABLED(PID_EXTRUSION_SCALING)
  5990. if (code_seen('C')) PID_PARAM(Kc, e) = code_value_float();
  5991. if (code_seen('L')) lpq_len = code_value_float();
  5992. NOMORE(lpq_len, LPQ_MAX_LEN);
  5993. #endif
  5994. thermalManager.updatePID();
  5995. SERIAL_ECHO_START;
  5996. #if ENABLED(PID_PARAMS_PER_HOTEND)
  5997. SERIAL_ECHOPAIR(" e:", e); // specify extruder in serial output
  5998. #endif // PID_PARAMS_PER_HOTEND
  5999. SERIAL_ECHOPAIR(" p:", PID_PARAM(Kp, e));
  6000. SERIAL_ECHOPAIR(" i:", unscalePID_i(PID_PARAM(Ki, e)));
  6001. SERIAL_ECHOPAIR(" d:", unscalePID_d(PID_PARAM(Kd, e)));
  6002. #if ENABLED(PID_EXTRUSION_SCALING)
  6003. //Kc does not have scaling applied above, or in resetting defaults
  6004. SERIAL_ECHOPAIR(" c:", PID_PARAM(Kc, e));
  6005. #endif
  6006. SERIAL_EOL;
  6007. }
  6008. else {
  6009. SERIAL_ERROR_START;
  6010. SERIAL_ERRORLN(MSG_INVALID_EXTRUDER);
  6011. }
  6012. }
  6013. #endif // PIDTEMP
  6014. #if ENABLED(PIDTEMPBED)
  6015. inline void gcode_M304() {
  6016. if (code_seen('P')) thermalManager.bedKp = code_value_float();
  6017. if (code_seen('I')) thermalManager.bedKi = scalePID_i(code_value_float());
  6018. if (code_seen('D')) thermalManager.bedKd = scalePID_d(code_value_float());
  6019. thermalManager.updatePID();
  6020. SERIAL_ECHO_START;
  6021. SERIAL_ECHOPAIR(" p:", thermalManager.bedKp);
  6022. SERIAL_ECHOPAIR(" i:", unscalePID_i(thermalManager.bedKi));
  6023. SERIAL_ECHOLNPAIR(" d:", unscalePID_d(thermalManager.bedKd));
  6024. }
  6025. #endif // PIDTEMPBED
  6026. #if defined(CHDK) || HAS_PHOTOGRAPH
  6027. /**
  6028. * M240: Trigger a camera by emulating a Canon RC-1
  6029. * See http://www.doc-diy.net/photo/rc-1_hacked/
  6030. */
  6031. inline void gcode_M240() {
  6032. #ifdef CHDK
  6033. OUT_WRITE(CHDK, HIGH);
  6034. chdkHigh = millis();
  6035. chdkActive = true;
  6036. #elif HAS_PHOTOGRAPH
  6037. const uint8_t NUM_PULSES = 16;
  6038. const float PULSE_LENGTH = 0.01524;
  6039. for (int i = 0; i < NUM_PULSES; i++) {
  6040. WRITE(PHOTOGRAPH_PIN, HIGH);
  6041. _delay_ms(PULSE_LENGTH);
  6042. WRITE(PHOTOGRAPH_PIN, LOW);
  6043. _delay_ms(PULSE_LENGTH);
  6044. }
  6045. delay(7.33);
  6046. for (int i = 0; i < NUM_PULSES; i++) {
  6047. WRITE(PHOTOGRAPH_PIN, HIGH);
  6048. _delay_ms(PULSE_LENGTH);
  6049. WRITE(PHOTOGRAPH_PIN, LOW);
  6050. _delay_ms(PULSE_LENGTH);
  6051. }
  6052. #endif // !CHDK && HAS_PHOTOGRAPH
  6053. }
  6054. #endif // CHDK || PHOTOGRAPH_PIN
  6055. #if HAS_LCD_CONTRAST
  6056. /**
  6057. * M250: Read and optionally set the LCD contrast
  6058. */
  6059. inline void gcode_M250() {
  6060. if (code_seen('C')) set_lcd_contrast(code_value_int());
  6061. SERIAL_PROTOCOLPGM("lcd contrast value: ");
  6062. SERIAL_PROTOCOL(lcd_contrast);
  6063. SERIAL_EOL;
  6064. }
  6065. #endif // HAS_LCD_CONTRAST
  6066. #if ENABLED(PREVENT_COLD_EXTRUSION)
  6067. /**
  6068. * M302: Allow cold extrudes, or set the minimum extrude temperature
  6069. *
  6070. * S<temperature> sets the minimum extrude temperature
  6071. * P<bool> enables (1) or disables (0) cold extrusion
  6072. *
  6073. * Examples:
  6074. *
  6075. * M302 ; report current cold extrusion state
  6076. * M302 P0 ; enable cold extrusion checking
  6077. * M302 P1 ; disables cold extrusion checking
  6078. * M302 S0 ; always allow extrusion (disables checking)
  6079. * M302 S170 ; only allow extrusion above 170
  6080. * M302 S170 P1 ; set min extrude temp to 170 but leave disabled
  6081. */
  6082. inline void gcode_M302() {
  6083. bool seen_S = code_seen('S');
  6084. if (seen_S) {
  6085. thermalManager.extrude_min_temp = code_value_temp_abs();
  6086. thermalManager.allow_cold_extrude = (thermalManager.extrude_min_temp == 0);
  6087. }
  6088. if (code_seen('P'))
  6089. thermalManager.allow_cold_extrude = (thermalManager.extrude_min_temp == 0) || code_value_bool();
  6090. else if (!seen_S) {
  6091. // Report current state
  6092. SERIAL_ECHO_START;
  6093. SERIAL_ECHOPAIR("Cold extrudes are ", (thermalManager.allow_cold_extrude ? "en" : "dis"));
  6094. SERIAL_ECHOPAIR("abled (min temp ", int(thermalManager.extrude_min_temp + 0.5));
  6095. SERIAL_ECHOLNPGM("C)");
  6096. }
  6097. }
  6098. #endif // PREVENT_COLD_EXTRUSION
  6099. /**
  6100. * M303: PID relay autotune
  6101. *
  6102. * S<temperature> sets the target temperature. (default 150C)
  6103. * E<extruder> (-1 for the bed) (default 0)
  6104. * C<cycles>
  6105. * U<bool> with a non-zero value will apply the result to current settings
  6106. */
  6107. inline void gcode_M303() {
  6108. #if HAS_PID_HEATING
  6109. int e = code_seen('E') ? code_value_int() : 0;
  6110. int c = code_seen('C') ? code_value_int() : 5;
  6111. bool u = code_seen('U') && code_value_bool();
  6112. float temp = code_seen('S') ? code_value_temp_abs() : (e < 0 ? 70.0 : 150.0);
  6113. if (WITHIN(e, 0, HOTENDS - 1))
  6114. target_extruder = e;
  6115. KEEPALIVE_STATE(NOT_BUSY); // don't send "busy: processing" messages during autotune output
  6116. thermalManager.PID_autotune(temp, e, c, u);
  6117. KEEPALIVE_STATE(IN_HANDLER);
  6118. #else
  6119. SERIAL_ERROR_START;
  6120. SERIAL_ERRORLNPGM(MSG_ERR_M303_DISABLED);
  6121. #endif
  6122. }
  6123. #if ENABLED(MORGAN_SCARA)
  6124. bool SCARA_move_to_cal(uint8_t delta_a, uint8_t delta_b) {
  6125. if (IsRunning()) {
  6126. forward_kinematics_SCARA(delta_a, delta_b);
  6127. destination[X_AXIS] = LOGICAL_X_POSITION(cartes[X_AXIS]);
  6128. destination[Y_AXIS] = LOGICAL_Y_POSITION(cartes[Y_AXIS]);
  6129. destination[Z_AXIS] = current_position[Z_AXIS];
  6130. prepare_move_to_destination();
  6131. return true;
  6132. }
  6133. return false;
  6134. }
  6135. /**
  6136. * M360: SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  6137. */
  6138. inline bool gcode_M360() {
  6139. SERIAL_ECHOLNPGM(" Cal: Theta 0");
  6140. return SCARA_move_to_cal(0, 120);
  6141. }
  6142. /**
  6143. * M361: SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  6144. */
  6145. inline bool gcode_M361() {
  6146. SERIAL_ECHOLNPGM(" Cal: Theta 90");
  6147. return SCARA_move_to_cal(90, 130);
  6148. }
  6149. /**
  6150. * M362: SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  6151. */
  6152. inline bool gcode_M362() {
  6153. SERIAL_ECHOLNPGM(" Cal: Psi 0");
  6154. return SCARA_move_to_cal(60, 180);
  6155. }
  6156. /**
  6157. * M363: SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  6158. */
  6159. inline bool gcode_M363() {
  6160. SERIAL_ECHOLNPGM(" Cal: Psi 90");
  6161. return SCARA_move_to_cal(50, 90);
  6162. }
  6163. /**
  6164. * M364: SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
  6165. */
  6166. inline bool gcode_M364() {
  6167. SERIAL_ECHOLNPGM(" Cal: Theta-Psi 90");
  6168. return SCARA_move_to_cal(45, 135);
  6169. }
  6170. #endif // SCARA
  6171. #if ENABLED(EXT_SOLENOID)
  6172. void enable_solenoid(uint8_t num) {
  6173. switch (num) {
  6174. case 0:
  6175. OUT_WRITE(SOL0_PIN, HIGH);
  6176. break;
  6177. #if HAS_SOLENOID_1
  6178. case 1:
  6179. OUT_WRITE(SOL1_PIN, HIGH);
  6180. break;
  6181. #endif
  6182. #if HAS_SOLENOID_2
  6183. case 2:
  6184. OUT_WRITE(SOL2_PIN, HIGH);
  6185. break;
  6186. #endif
  6187. #if HAS_SOLENOID_3
  6188. case 3:
  6189. OUT_WRITE(SOL3_PIN, HIGH);
  6190. break;
  6191. #endif
  6192. default:
  6193. SERIAL_ECHO_START;
  6194. SERIAL_ECHOLNPGM(MSG_INVALID_SOLENOID);
  6195. break;
  6196. }
  6197. }
  6198. void enable_solenoid_on_active_extruder() { enable_solenoid(active_extruder); }
  6199. void disable_all_solenoids() {
  6200. OUT_WRITE(SOL0_PIN, LOW);
  6201. OUT_WRITE(SOL1_PIN, LOW);
  6202. OUT_WRITE(SOL2_PIN, LOW);
  6203. OUT_WRITE(SOL3_PIN, LOW);
  6204. }
  6205. /**
  6206. * M380: Enable solenoid on the active extruder
  6207. */
  6208. inline void gcode_M380() { enable_solenoid_on_active_extruder(); }
  6209. /**
  6210. * M381: Disable all solenoids
  6211. */
  6212. inline void gcode_M381() { disable_all_solenoids(); }
  6213. #endif // EXT_SOLENOID
  6214. /**
  6215. * M400: Finish all moves
  6216. */
  6217. inline void gcode_M400() { stepper.synchronize(); }
  6218. #if HAS_BED_PROBE
  6219. /**
  6220. * M401: Engage Z Servo endstop if available
  6221. */
  6222. inline void gcode_M401() { DEPLOY_PROBE(); }
  6223. /**
  6224. * M402: Retract Z Servo endstop if enabled
  6225. */
  6226. inline void gcode_M402() { STOW_PROBE(); }
  6227. #endif // HAS_BED_PROBE
  6228. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  6229. /**
  6230. * M404: Display or set (in current units) the nominal filament width (3mm, 1.75mm ) W<3.0>
  6231. */
  6232. inline void gcode_M404() {
  6233. if (code_seen('W')) {
  6234. filament_width_nominal = code_value_linear_units();
  6235. }
  6236. else {
  6237. SERIAL_PROTOCOLPGM("Filament dia (nominal mm):");
  6238. SERIAL_PROTOCOLLN(filament_width_nominal);
  6239. }
  6240. }
  6241. /**
  6242. * M405: Turn on filament sensor for control
  6243. */
  6244. inline void gcode_M405() {
  6245. // This is technically a linear measurement, but since it's quantized to centimeters and is a different unit than
  6246. // everything else, it uses code_value_int() instead of code_value_linear_units().
  6247. if (code_seen('D')) meas_delay_cm = code_value_int();
  6248. NOMORE(meas_delay_cm, MAX_MEASUREMENT_DELAY);
  6249. if (filwidth_delay_index[1] == -1) { // Initialize the ring buffer if not done since startup
  6250. int temp_ratio = thermalManager.widthFil_to_size_ratio();
  6251. for (uint8_t i = 0; i < COUNT(measurement_delay); ++i)
  6252. measurement_delay[i] = temp_ratio - 100; // Subtract 100 to scale within a signed byte
  6253. filwidth_delay_index[0] = filwidth_delay_index[1] = 0;
  6254. }
  6255. filament_sensor = true;
  6256. //SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  6257. //SERIAL_PROTOCOL(filament_width_meas);
  6258. //SERIAL_PROTOCOLPGM("Extrusion ratio(%):");
  6259. //SERIAL_PROTOCOL(flow_percentage[active_extruder]);
  6260. }
  6261. /**
  6262. * M406: Turn off filament sensor for control
  6263. */
  6264. inline void gcode_M406() { filament_sensor = false; }
  6265. /**
  6266. * M407: Get measured filament diameter on serial output
  6267. */
  6268. inline void gcode_M407() {
  6269. SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  6270. SERIAL_PROTOCOLLN(filament_width_meas);
  6271. }
  6272. #endif // FILAMENT_WIDTH_SENSOR
  6273. void quickstop_stepper() {
  6274. stepper.quick_stop();
  6275. stepper.synchronize();
  6276. set_current_from_steppers_for_axis(ALL_AXES);
  6277. SYNC_PLAN_POSITION_KINEMATIC();
  6278. }
  6279. #if PLANNER_LEVELING
  6280. /**
  6281. * M420: Enable/Disable Bed Leveling and/or set the Z fade height.
  6282. *
  6283. * S[bool] Turns leveling on or off
  6284. * Z[height] Sets the Z fade height (0 or none to disable)
  6285. * V[bool] Verbose - Print the leveling grid
  6286. *
  6287. * With AUTO_BED_LEVELING_UBL only:
  6288. *
  6289. * L[index] Load UBL mesh from index (0 is default)
  6290. */
  6291. inline void gcode_M420() {
  6292. #if ENABLED(AUTO_BED_LEVELING_UBL)
  6293. // L to load a mesh from the EEPROM
  6294. if (code_seen('L')) {
  6295. const int8_t storage_slot = code_has_value() ? code_value_int() : ubl.state.eeprom_storage_slot;
  6296. const int16_t j = (UBL_LAST_EEPROM_INDEX - ubl.eeprom_start) / sizeof(ubl.z_values);
  6297. if (!WITHIN(storage_slot, 0, j - 1) || ubl.eeprom_start <= 0) {
  6298. SERIAL_PROTOCOLLNPGM("?EEPROM storage not available for use.\n");
  6299. return;
  6300. }
  6301. ubl.load_mesh(storage_slot);
  6302. if (storage_slot != ubl.state.eeprom_storage_slot) ubl.store_state();
  6303. ubl.state.eeprom_storage_slot = storage_slot;
  6304. }
  6305. #endif // AUTO_BED_LEVELING_UBL
  6306. // V to print the matrix or mesh
  6307. if (code_seen('V')) {
  6308. #if ABL_PLANAR
  6309. planner.bed_level_matrix.debug("Bed Level Correction Matrix:");
  6310. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  6311. if (bilinear_grid_spacing[X_AXIS]) {
  6312. print_bilinear_leveling_grid();
  6313. #if ENABLED(ABL_BILINEAR_SUBDIVISION)
  6314. bed_level_virt_print();
  6315. #endif
  6316. }
  6317. #elif ENABLED(MESH_BED_LEVELING)
  6318. if (mbl.has_mesh()) {
  6319. SERIAL_ECHOLNPGM("Mesh Bed Level data:");
  6320. mbl_mesh_report();
  6321. }
  6322. #endif
  6323. }
  6324. #if ENABLED(AUTO_BED_LEVELING_UBL)
  6325. // L to load a mesh from the EEPROM
  6326. if (code_seen('L') || code_seen('V')) {
  6327. ubl.display_map(0); // Currently only supports one map type
  6328. SERIAL_ECHOLNPAIR("UBL_MESH_VALID = ", UBL_MESH_VALID);
  6329. SERIAL_ECHOLNPAIR("eeprom_storage_slot = ", ubl.state.eeprom_storage_slot);
  6330. }
  6331. #endif
  6332. bool to_enable = false;
  6333. if (code_seen('S')) {
  6334. to_enable = code_value_bool();
  6335. set_bed_leveling_enabled(to_enable);
  6336. }
  6337. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  6338. if (code_seen('Z')) set_z_fade_height(code_value_linear_units());
  6339. #endif
  6340. const bool new_status =
  6341. #if ENABLED(MESH_BED_LEVELING)
  6342. mbl.active()
  6343. #elif ENABLED(AUTO_BED_LEVELING_UBL)
  6344. ubl.state.active
  6345. #else
  6346. planner.abl_enabled
  6347. #endif
  6348. ;
  6349. if (to_enable && !new_status) {
  6350. SERIAL_ERROR_START;
  6351. SERIAL_ERRORLNPGM(MSG_ERR_M420_FAILED);
  6352. }
  6353. SERIAL_ECHO_START;
  6354. SERIAL_ECHOLNPAIR("Bed Leveling ", new_status ? MSG_ON : MSG_OFF);
  6355. }
  6356. #endif
  6357. #if ENABLED(MESH_BED_LEVELING)
  6358. /**
  6359. * M421: Set a single Mesh Bed Leveling Z coordinate
  6360. * Use either 'M421 X<linear> Y<linear> Z<linear>' or 'M421 I<xindex> J<yindex> Z<linear>'
  6361. */
  6362. inline void gcode_M421() {
  6363. int8_t px = 0, py = 0;
  6364. float z = 0;
  6365. bool hasX, hasY, hasZ, hasI, hasJ;
  6366. if ((hasX = code_seen('X'))) px = mbl.probe_index_x(code_value_axis_units(X_AXIS));
  6367. if ((hasY = code_seen('Y'))) py = mbl.probe_index_y(code_value_axis_units(Y_AXIS));
  6368. if ((hasI = code_seen('I'))) px = code_value_axis_units(X_AXIS);
  6369. if ((hasJ = code_seen('J'))) py = code_value_axis_units(Y_AXIS);
  6370. if ((hasZ = code_seen('Z'))) z = code_value_axis_units(Z_AXIS);
  6371. if (hasX && hasY && hasZ) {
  6372. if (px >= 0 && py >= 0)
  6373. mbl.set_z(px, py, z);
  6374. else {
  6375. SERIAL_ERROR_START;
  6376. SERIAL_ERRORLNPGM(MSG_ERR_MESH_XY);
  6377. }
  6378. }
  6379. else if (hasI && hasJ && hasZ) {
  6380. if (WITHIN(px, 0, MESH_NUM_X_POINTS - 1) && WITHIN(py, 0, MESH_NUM_Y_POINTS - 1))
  6381. mbl.set_z(px, py, z);
  6382. else {
  6383. SERIAL_ERROR_START;
  6384. SERIAL_ERRORLNPGM(MSG_ERR_MESH_XY);
  6385. }
  6386. }
  6387. else {
  6388. SERIAL_ERROR_START;
  6389. SERIAL_ERRORLNPGM(MSG_ERR_M421_PARAMETERS);
  6390. }
  6391. }
  6392. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  6393. /**
  6394. * M421: Set a single Mesh Bed Leveling Z coordinate
  6395. *
  6396. * M421 I<xindex> J<yindex> Z<linear>
  6397. */
  6398. inline void gcode_M421() {
  6399. int8_t px = 0, py = 0;
  6400. float z = 0;
  6401. bool hasI, hasJ, hasZ;
  6402. if ((hasI = code_seen('I'))) px = code_value_axis_units(X_AXIS);
  6403. if ((hasJ = code_seen('J'))) py = code_value_axis_units(Y_AXIS);
  6404. if ((hasZ = code_seen('Z'))) z = code_value_axis_units(Z_AXIS);
  6405. if (hasI && hasJ && hasZ) {
  6406. if (WITHIN(px, 0, ABL_GRID_MAX_POINTS_X - 1) && WITHIN(py, 0, ABL_GRID_MAX_POINTS_X - 1)) {
  6407. bed_level_grid[px][py] = z;
  6408. #if ENABLED(ABL_BILINEAR_SUBDIVISION)
  6409. bed_level_virt_interpolate();
  6410. #endif
  6411. }
  6412. else {
  6413. SERIAL_ERROR_START;
  6414. SERIAL_ERRORLNPGM(MSG_ERR_MESH_XY);
  6415. }
  6416. }
  6417. else {
  6418. SERIAL_ERROR_START;
  6419. SERIAL_ERRORLNPGM(MSG_ERR_M421_PARAMETERS);
  6420. }
  6421. }
  6422. #elif ENABLED(AUTO_BED_LEVELING_UBL)
  6423. /**
  6424. * M421: Set a single Mesh Bed Leveling Z coordinate
  6425. *
  6426. * M421 I<xindex> J<yindex> Z<linear>
  6427. */
  6428. inline void gcode_M421() {
  6429. int8_t px = 0, py = 0;
  6430. float z = 0;
  6431. bool hasI, hasJ, hasZ;
  6432. if ((hasI = code_seen('I'))) px = code_value_axis_units(X_AXIS);
  6433. if ((hasJ = code_seen('J'))) py = code_value_axis_units(Y_AXIS);
  6434. if ((hasZ = code_seen('Z'))) z = code_value_axis_units(Z_AXIS);
  6435. if (hasI && hasJ && hasZ) {
  6436. if (WITHIN(px, 0, UBL_MESH_NUM_Y_POINTS - 1) && WITHIN(py, 0, UBL_MESH_NUM_Y_POINTS - 1)) {
  6437. ubl.z_values[px][py] = z;
  6438. }
  6439. else {
  6440. SERIAL_ERROR_START;
  6441. SERIAL_ERRORLNPGM(MSG_ERR_MESH_XY);
  6442. }
  6443. }
  6444. else {
  6445. SERIAL_ERROR_START;
  6446. SERIAL_ERRORLNPGM(MSG_ERR_M421_PARAMETERS);
  6447. }
  6448. }
  6449. #endif
  6450. #if DISABLED(NO_WORKSPACE_OFFSETS)
  6451. /**
  6452. * M428: Set home_offset based on the distance between the
  6453. * current_position and the nearest "reference point."
  6454. * If an axis is past center its endstop position
  6455. * is the reference-point. Otherwise it uses 0. This allows
  6456. * the Z offset to be set near the bed when using a max endstop.
  6457. *
  6458. * M428 can't be used more than 2cm away from 0 or an endstop.
  6459. *
  6460. * Use M206 to set these values directly.
  6461. */
  6462. inline void gcode_M428() {
  6463. bool err = false;
  6464. LOOP_XYZ(i) {
  6465. if (axis_homed[i]) {
  6466. float base = (current_position[i] > (soft_endstop_min[i] + soft_endstop_max[i]) * 0.5) ? base_home_pos((AxisEnum)i) : 0,
  6467. diff = current_position[i] - LOGICAL_POSITION(base, i);
  6468. if (WITHIN(diff, -20, 20)) {
  6469. set_home_offset((AxisEnum)i, home_offset[i] - diff);
  6470. }
  6471. else {
  6472. SERIAL_ERROR_START;
  6473. SERIAL_ERRORLNPGM(MSG_ERR_M428_TOO_FAR);
  6474. LCD_ALERTMESSAGEPGM("Err: Too far!");
  6475. BUZZ(200, 40);
  6476. err = true;
  6477. break;
  6478. }
  6479. }
  6480. }
  6481. if (!err) {
  6482. SYNC_PLAN_POSITION_KINEMATIC();
  6483. report_current_position();
  6484. LCD_MESSAGEPGM(MSG_HOME_OFFSETS_APPLIED);
  6485. BUZZ(100, 659);
  6486. BUZZ(100, 698);
  6487. }
  6488. }
  6489. #endif // NO_WORKSPACE_OFFSETS
  6490. /**
  6491. * M500: Store settings in EEPROM
  6492. */
  6493. inline void gcode_M500() {
  6494. (void)Config_StoreSettings();
  6495. }
  6496. /**
  6497. * M501: Read settings from EEPROM
  6498. */
  6499. inline void gcode_M501() {
  6500. (void)Config_RetrieveSettings();
  6501. }
  6502. /**
  6503. * M502: Revert to default settings
  6504. */
  6505. inline void gcode_M502() {
  6506. (void)Config_ResetDefault();
  6507. }
  6508. /**
  6509. * M503: print settings currently in memory
  6510. */
  6511. inline void gcode_M503() {
  6512. (void)Config_PrintSettings(code_seen('S') && !code_value_bool());
  6513. }
  6514. #if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  6515. /**
  6516. * M540: Set whether SD card print should abort on endstop hit (M540 S<0|1>)
  6517. */
  6518. inline void gcode_M540() {
  6519. if (code_seen('S')) stepper.abort_on_endstop_hit = code_value_bool();
  6520. }
  6521. #endif // ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  6522. #if HAS_BED_PROBE
  6523. inline void gcode_M851() {
  6524. SERIAL_ECHO_START;
  6525. SERIAL_ECHOPGM(MSG_ZPROBE_ZOFFSET);
  6526. SERIAL_CHAR(' ');
  6527. if (code_seen('Z')) {
  6528. float value = code_value_axis_units(Z_AXIS);
  6529. if (WITHIN(value, Z_PROBE_OFFSET_RANGE_MIN, Z_PROBE_OFFSET_RANGE_MAX)) {
  6530. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  6531. // Correct bilinear grid for new probe offset
  6532. const float diff = value - zprobe_zoffset;
  6533. if (diff) {
  6534. for (uint8_t x = 0; x < ABL_GRID_MAX_POINTS_X; x++)
  6535. for (uint8_t y = 0; y < ABL_GRID_MAX_POINTS_Y; y++)
  6536. bed_level_grid[x][y] += diff;
  6537. }
  6538. #if ENABLED(ABL_BILINEAR_SUBDIVISION)
  6539. bed_level_virt_interpolate();
  6540. #endif
  6541. #endif
  6542. zprobe_zoffset = value;
  6543. SERIAL_ECHO(zprobe_zoffset);
  6544. }
  6545. else {
  6546. SERIAL_ECHOPAIR(MSG_Z_MIN, Z_PROBE_OFFSET_RANGE_MIN);
  6547. SERIAL_CHAR(' ');
  6548. SERIAL_ECHOPAIR(MSG_Z_MAX, Z_PROBE_OFFSET_RANGE_MAX);
  6549. }
  6550. }
  6551. else {
  6552. SERIAL_ECHOPAIR(": ", zprobe_zoffset);
  6553. }
  6554. SERIAL_EOL;
  6555. }
  6556. #endif // HAS_BED_PROBE
  6557. #if ENABLED(FILAMENT_CHANGE_FEATURE)
  6558. void filament_change_beep(const bool init=false) {
  6559. static millis_t next_buzz = 0;
  6560. static uint16_t runout_beep = 0;
  6561. if (init) next_buzz = runout_beep = 0;
  6562. const millis_t ms = millis();
  6563. if (ELAPSED(ms, next_buzz)) {
  6564. if (runout_beep <= FILAMENT_CHANGE_NUMBER_OF_ALERT_BEEPS + 5) { // Only beep as long as we're supposed to
  6565. next_buzz = ms + (runout_beep <= FILAMENT_CHANGE_NUMBER_OF_ALERT_BEEPS ? 2500 : 400);
  6566. BUZZ(300, 2000);
  6567. runout_beep++;
  6568. }
  6569. }
  6570. }
  6571. static bool busy_doing_M600 = false;
  6572. /**
  6573. * M600: Pause for filament change
  6574. *
  6575. * E[distance] - Retract the filament this far (negative value)
  6576. * Z[distance] - Move the Z axis by this distance
  6577. * X[position] - Move to this X position, with Y
  6578. * Y[position] - Move to this Y position, with X
  6579. * L[distance] - Retract distance for removal (manual reload)
  6580. *
  6581. * Default values are used for omitted arguments.
  6582. *
  6583. */
  6584. inline void gcode_M600() {
  6585. if (!DEBUGGING(DRYRUN) && thermalManager.tooColdToExtrude(active_extruder)) {
  6586. SERIAL_ERROR_START;
  6587. SERIAL_ERRORLNPGM(MSG_TOO_COLD_FOR_M600);
  6588. return;
  6589. }
  6590. busy_doing_M600 = true; // Stepper Motors can't timeout when this is set
  6591. // Pause the print job timer
  6592. const bool job_running = print_job_timer.isRunning();
  6593. print_job_timer.pause();
  6594. // Show initial message and wait for synchronize steppers
  6595. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_INIT);
  6596. stepper.synchronize();
  6597. // Save current position of all axes
  6598. float lastpos[XYZE];
  6599. COPY(lastpos, current_position);
  6600. set_destination_to_current();
  6601. // Initial retract before move to filament change position
  6602. destination[E_AXIS] += code_seen('E') ? code_value_axis_units(E_AXIS) : 0
  6603. #if defined(FILAMENT_CHANGE_RETRACT_LENGTH) && FILAMENT_CHANGE_RETRACT_LENGTH > 0
  6604. - (FILAMENT_CHANGE_RETRACT_LENGTH)
  6605. #endif
  6606. ;
  6607. RUNPLAN(FILAMENT_CHANGE_RETRACT_FEEDRATE);
  6608. // Lift Z axis
  6609. float z_lift = code_seen('Z') ? code_value_axis_units(Z_AXIS) :
  6610. #if defined(FILAMENT_CHANGE_Z_ADD) && FILAMENT_CHANGE_Z_ADD > 0
  6611. FILAMENT_CHANGE_Z_ADD
  6612. #else
  6613. 0
  6614. #endif
  6615. ;
  6616. if (z_lift > 0) {
  6617. destination[Z_AXIS] += z_lift;
  6618. NOMORE(destination[Z_AXIS], Z_MAX_POS);
  6619. RUNPLAN(FILAMENT_CHANGE_Z_FEEDRATE);
  6620. }
  6621. // Move XY axes to filament exchange position
  6622. if (code_seen('X')) destination[X_AXIS] = code_value_axis_units(X_AXIS);
  6623. #ifdef FILAMENT_CHANGE_X_POS
  6624. else destination[X_AXIS] = FILAMENT_CHANGE_X_POS;
  6625. #endif
  6626. if (code_seen('Y')) destination[Y_AXIS] = code_value_axis_units(Y_AXIS);
  6627. #ifdef FILAMENT_CHANGE_Y_POS
  6628. else destination[Y_AXIS] = FILAMENT_CHANGE_Y_POS;
  6629. #endif
  6630. RUNPLAN(FILAMENT_CHANGE_XY_FEEDRATE);
  6631. stepper.synchronize();
  6632. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_UNLOAD);
  6633. idle();
  6634. // Unload filament
  6635. destination[E_AXIS] += code_seen('L') ? code_value_axis_units(E_AXIS) : 0
  6636. #if FILAMENT_CHANGE_UNLOAD_LENGTH > 0
  6637. - (FILAMENT_CHANGE_UNLOAD_LENGTH)
  6638. #endif
  6639. ;
  6640. RUNPLAN(FILAMENT_CHANGE_UNLOAD_FEEDRATE);
  6641. // Synchronize steppers and then disable extruders steppers for manual filament changing
  6642. stepper.synchronize();
  6643. disable_e_steppers();
  6644. safe_delay(100);
  6645. const millis_t nozzle_timeout = millis() + (millis_t)(FILAMENT_CHANGE_NOZZLE_TIMEOUT) * 1000UL;
  6646. bool nozzle_timed_out = false;
  6647. float temps[4];
  6648. // Wait for filament insert by user and press button
  6649. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_INSERT);
  6650. #if HAS_BUZZER
  6651. filament_change_beep(true);
  6652. #endif
  6653. idle();
  6654. HOTEND_LOOP() temps[e] = thermalManager.target_temperature[e]; // Save nozzle temps
  6655. KEEPALIVE_STATE(PAUSED_FOR_USER);
  6656. wait_for_user = true; // LCD click or M108 will clear this
  6657. while (wait_for_user) {
  6658. if (nozzle_timed_out)
  6659. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_CLICK_TO_HEAT_NOZZLE);
  6660. #if HAS_BUZZER
  6661. filament_change_beep();
  6662. #endif
  6663. if (!nozzle_timed_out && ELAPSED(millis(), nozzle_timeout)) {
  6664. nozzle_timed_out = true; // on nozzle timeout remember the nozzles need to be reheated
  6665. HOTEND_LOOP() thermalManager.setTargetHotend(0, e); // Turn off all the nozzles
  6666. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_CLICK_TO_HEAT_NOZZLE);
  6667. }
  6668. idle(true);
  6669. }
  6670. KEEPALIVE_STATE(IN_HANDLER);
  6671. if (nozzle_timed_out) // Turn nozzles back on if they were turned off
  6672. HOTEND_LOOP() thermalManager.setTargetHotend(temps[e], e);
  6673. // Show "wait for heating"
  6674. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_WAIT_FOR_NOZZLES_TO_HEAT);
  6675. wait_for_heatup = true;
  6676. while (wait_for_heatup) {
  6677. idle();
  6678. wait_for_heatup = false;
  6679. HOTEND_LOOP() {
  6680. if (abs(thermalManager.degHotend(e) - temps[e]) > 3) {
  6681. wait_for_heatup = true;
  6682. break;
  6683. }
  6684. }
  6685. }
  6686. // Show "insert filament"
  6687. if (nozzle_timed_out)
  6688. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_INSERT);
  6689. #if HAS_BUZZER
  6690. filament_change_beep(true);
  6691. #endif
  6692. KEEPALIVE_STATE(PAUSED_FOR_USER);
  6693. wait_for_user = true; // LCD click or M108 will clear this
  6694. while (wait_for_user && nozzle_timed_out) {
  6695. #if HAS_BUZZER
  6696. filament_change_beep();
  6697. #endif
  6698. idle(true);
  6699. }
  6700. KEEPALIVE_STATE(IN_HANDLER);
  6701. // Show "load" message
  6702. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_LOAD);
  6703. // Load filament
  6704. destination[E_AXIS] += code_seen('L') ? -code_value_axis_units(E_AXIS) : 0
  6705. #if FILAMENT_CHANGE_LOAD_LENGTH > 0
  6706. + FILAMENT_CHANGE_LOAD_LENGTH
  6707. #endif
  6708. ;
  6709. RUNPLAN(FILAMENT_CHANGE_LOAD_FEEDRATE);
  6710. stepper.synchronize();
  6711. #if defined(FILAMENT_CHANGE_EXTRUDE_LENGTH) && FILAMENT_CHANGE_EXTRUDE_LENGTH > 0
  6712. do {
  6713. // "Wait for filament extrude"
  6714. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_EXTRUDE);
  6715. // Extrude filament to get into hotend
  6716. destination[E_AXIS] += FILAMENT_CHANGE_EXTRUDE_LENGTH;
  6717. RUNPLAN(FILAMENT_CHANGE_EXTRUDE_FEEDRATE);
  6718. stepper.synchronize();
  6719. // Show "Extrude More" / "Resume" menu and wait for reply
  6720. KEEPALIVE_STATE(PAUSED_FOR_USER);
  6721. wait_for_user = false;
  6722. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_OPTION);
  6723. while (filament_change_menu_response == FILAMENT_CHANGE_RESPONSE_WAIT_FOR) idle(true);
  6724. KEEPALIVE_STATE(IN_HANDLER);
  6725. // Keep looping if "Extrude More" was selected
  6726. } while (filament_change_menu_response == FILAMENT_CHANGE_RESPONSE_EXTRUDE_MORE);
  6727. #endif
  6728. // "Wait for print to resume"
  6729. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_RESUME);
  6730. // Set extruder to saved position
  6731. destination[E_AXIS] = current_position[E_AXIS] = lastpos[E_AXIS];
  6732. planner.set_e_position_mm(current_position[E_AXIS]);
  6733. #if IS_KINEMATIC
  6734. // Move XYZ to starting position
  6735. planner.buffer_line_kinematic(lastpos, FILAMENT_CHANGE_XY_FEEDRATE, active_extruder);
  6736. #else
  6737. // Move XY to starting position, then Z
  6738. destination[X_AXIS] = lastpos[X_AXIS];
  6739. destination[Y_AXIS] = lastpos[Y_AXIS];
  6740. RUNPLAN(FILAMENT_CHANGE_XY_FEEDRATE);
  6741. destination[Z_AXIS] = lastpos[Z_AXIS];
  6742. RUNPLAN(FILAMENT_CHANGE_Z_FEEDRATE);
  6743. #endif
  6744. stepper.synchronize();
  6745. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  6746. filament_ran_out = false;
  6747. #endif
  6748. // Show status screen
  6749. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_STATUS);
  6750. // Resume the print job timer if it was running
  6751. if (job_running) print_job_timer.start();
  6752. busy_doing_M600 = false; // Allow Stepper Motors to be turned off during inactivity
  6753. }
  6754. #endif // FILAMENT_CHANGE_FEATURE
  6755. #if ENABLED(DUAL_X_CARRIAGE)
  6756. /**
  6757. * M605: Set dual x-carriage movement mode
  6758. *
  6759. * M605 S0: Full control mode. The slicer has full control over x-carriage movement
  6760. * M605 S1: Auto-park mode. The inactive head will auto park/unpark without slicer involvement
  6761. * M605 S2 [Xnnn] [Rmmm]: Duplication mode. The second extruder will duplicate the first with nnn
  6762. * units x-offset and an optional differential hotend temperature of
  6763. * mmm degrees. E.g., with "M605 S2 X100 R2" the second extruder will duplicate
  6764. * the first with a spacing of 100mm in the x direction and 2 degrees hotter.
  6765. *
  6766. * Note: the X axis should be homed after changing dual x-carriage mode.
  6767. */
  6768. inline void gcode_M605() {
  6769. stepper.synchronize();
  6770. if (code_seen('S')) dual_x_carriage_mode = (DualXMode)code_value_byte();
  6771. switch (dual_x_carriage_mode) {
  6772. case DXC_FULL_CONTROL_MODE:
  6773. case DXC_AUTO_PARK_MODE:
  6774. break;
  6775. case DXC_DUPLICATION_MODE:
  6776. if (code_seen('X')) duplicate_extruder_x_offset = max(code_value_axis_units(X_AXIS), X2_MIN_POS - x_home_pos(0));
  6777. if (code_seen('R')) duplicate_extruder_temp_offset = code_value_temp_diff();
  6778. SERIAL_ECHO_START;
  6779. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  6780. SERIAL_CHAR(' ');
  6781. SERIAL_ECHO(hotend_offset[X_AXIS][0]);
  6782. SERIAL_CHAR(',');
  6783. SERIAL_ECHO(hotend_offset[Y_AXIS][0]);
  6784. SERIAL_CHAR(' ');
  6785. SERIAL_ECHO(duplicate_extruder_x_offset);
  6786. SERIAL_CHAR(',');
  6787. SERIAL_ECHOLN(hotend_offset[Y_AXIS][1]);
  6788. break;
  6789. default:
  6790. dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  6791. break;
  6792. }
  6793. active_extruder_parked = false;
  6794. extruder_duplication_enabled = false;
  6795. delayed_move_time = 0;
  6796. }
  6797. #elif ENABLED(DUAL_NOZZLE_DUPLICATION_MODE)
  6798. inline void gcode_M605() {
  6799. stepper.synchronize();
  6800. extruder_duplication_enabled = code_seen('S') && code_value_int() == 2;
  6801. SERIAL_ECHO_START;
  6802. SERIAL_ECHOLNPAIR(MSG_DUPLICATION_MODE, extruder_duplication_enabled ? MSG_ON : MSG_OFF);
  6803. }
  6804. #endif // DUAL_NOZZLE_DUPLICATION_MODE
  6805. #if ENABLED(LIN_ADVANCE)
  6806. /**
  6807. * M905: Set advance factor
  6808. */
  6809. inline void gcode_M905() {
  6810. stepper.synchronize();
  6811. const float newK = code_seen('K') ? code_value_float() : -1,
  6812. newD = code_seen('D') ? code_value_float() : -1,
  6813. newW = code_seen('W') ? code_value_float() : -1,
  6814. newH = code_seen('H') ? code_value_float() : -1;
  6815. if (newK >= 0.0) planner.set_extruder_advance_k(newK);
  6816. SERIAL_ECHO_START;
  6817. SERIAL_ECHOLNPAIR("Advance factor: ", planner.get_extruder_advance_k());
  6818. if (newD >= 0 || newW >= 0 || newH >= 0) {
  6819. const float ratio = (!newD || !newW || !newH) ? 0 : (newW * newH) / (sq(newD * 0.5) * M_PI);
  6820. planner.set_advance_ed_ratio(ratio);
  6821. SERIAL_ECHO_START;
  6822. SERIAL_ECHOPGM("E/D ratio: ");
  6823. if (ratio) SERIAL_ECHOLN(ratio); else SERIAL_ECHOLNPGM("Automatic");
  6824. }
  6825. }
  6826. #endif // LIN_ADVANCE
  6827. #if ENABLED(HAVE_TMC2130)
  6828. static void tmc2130_print_current(const int mA, const char name) {
  6829. SERIAL_CHAR(name);
  6830. SERIAL_ECHOPGM(" axis driver current: ");
  6831. SERIAL_ECHOLN(mA);
  6832. }
  6833. static void tmc2130_set_current(const int mA, TMC2130Stepper &st, const char name) {
  6834. tmc2130_print_current(mA, name);
  6835. st.setCurrent(mA, 0.11, 0.5);
  6836. }
  6837. static void tmc2130_get_current(TMC2130Stepper &st, const char name) {
  6838. tmc2130_print_current(st.getCurrent(), name);
  6839. }
  6840. static void tmc2130_report_otpw(TMC2130Stepper &st, const char name) {
  6841. SERIAL_CHAR(name);
  6842. SERIAL_ECHOPGM(" axis temperature prewarn triggered: ");
  6843. serialprintPGM(st.getOTPW() ? PSTR("true") : PSTR("false"));
  6844. }
  6845. static void tmc2130_clear_otpw(TMC2130Stepper &st, const char name) {
  6846. st.clear_otpw();
  6847. SERIAL_CHAR(name);
  6848. SERIAL_ECHOLNPGM(" prewarn flag cleared");
  6849. }
  6850. /**
  6851. * M906: Set motor current in milliamps using axis codes X, Y, Z, E
  6852. *
  6853. * Report driver currents when no axis specified
  6854. */
  6855. inline void gcode_M906() {
  6856. uint16_t values[XYZE];
  6857. LOOP_XYZE(i)
  6858. values[i] = code_seen(axis_codes[i]) ? code_value_int() : 0;
  6859. #if ENABLED(X_IS_TMC2130)
  6860. if (values[X_AXIS]) tmc2130_set_current(values[X_AXIS], stepperX, 'X');
  6861. else tmc2130_get_current(stepperX, 'X');
  6862. #endif
  6863. #if ENABLED(Y_IS_TMC2130)
  6864. if (values[Y_AXIS]) tmc2130_set_current(values[Y_AXIS], stepperY, 'Y');
  6865. else tmc2130_get_current(stepperY, 'Y');
  6866. #endif
  6867. #if ENABLED(Z_IS_TMC2130)
  6868. if (values[Z_AXIS]) tmc2130_set_current(values[Z_AXIS], stepperZ, 'Z');
  6869. else tmc2130_get_current(stepperZ, 'Z');
  6870. #endif
  6871. #if ENABLED(E0_IS_TMC2130)
  6872. if (values[E_AXIS]) tmc2130_set_current(values[E_AXIS], stepperE0, 'E');
  6873. else tmc2130_get_current(stepperE0, 'E');
  6874. #endif
  6875. }
  6876. /**
  6877. * M911: Report TMC2130 stepper driver overtemperature pre-warn flag
  6878. * The flag is held by the library and persist until manually cleared by M912
  6879. */
  6880. inline void gcode_M911() {
  6881. #if ENABLED(X_IS_TMC2130)
  6882. tmc2130_report_otpw(stepperX, 'X');
  6883. #endif
  6884. #if ENABLED(Y_IS_TMC2130)
  6885. tmc2130_report_otpw(stepperY, 'Y');
  6886. #endif
  6887. #if ENABLED(Z_IS_TMC2130)
  6888. tmc2130_report_otpw(stepperZ, 'Z');
  6889. #endif
  6890. #if ENABLED(E0_IS_TMC2130)
  6891. tmc2130_report_otpw(stepperE0, 'E');
  6892. #endif
  6893. }
  6894. /**
  6895. * M912: Clear TMC2130 stepper driver overtemperature pre-warn flag held by the library
  6896. */
  6897. inline void gcode_M912() {
  6898. #if ENABLED(X_IS_TMC2130)
  6899. if (code_seen('X')) tmc2130_clear_otpw(stepperX, 'X');
  6900. #endif
  6901. #if ENABLED(Y_IS_TMC2130)
  6902. if (code_seen('Y')) tmc2130_clear_otpw(stepperY, 'Y');
  6903. #endif
  6904. #if ENABLED(Z_IS_TMC2130)
  6905. if (code_seen('Z')) tmc2130_clear_otpw(stepperZ, 'Z');
  6906. #endif
  6907. #if ENABLED(E0_IS_TMC2130)
  6908. if (code_seen('E')) tmc2130_clear_otpw(stepperE0, 'E');
  6909. #endif
  6910. }
  6911. #endif // HAVE_TMC2130
  6912. /**
  6913. * M907: Set digital trimpot motor current using axis codes X, Y, Z, E, B, S
  6914. */
  6915. inline void gcode_M907() {
  6916. #if HAS_DIGIPOTSS
  6917. LOOP_XYZE(i)
  6918. if (code_seen(axis_codes[i])) stepper.digipot_current(i, code_value_int());
  6919. if (code_seen('B')) stepper.digipot_current(4, code_value_int());
  6920. if (code_seen('S')) for (int i = 0; i <= 4; i++) stepper.digipot_current(i, code_value_int());
  6921. #elif HAS_MOTOR_CURRENT_PWM
  6922. #if PIN_EXISTS(MOTOR_CURRENT_PWM_XY)
  6923. if (code_seen('X')) stepper.digipot_current(0, code_value_int());
  6924. #endif
  6925. #if PIN_EXISTS(MOTOR_CURRENT_PWM_Z)
  6926. if (code_seen('Z')) stepper.digipot_current(1, code_value_int());
  6927. #endif
  6928. #if PIN_EXISTS(MOTOR_CURRENT_PWM_E)
  6929. if (code_seen('E')) stepper.digipot_current(2, code_value_int());
  6930. #endif
  6931. #endif
  6932. #if ENABLED(DIGIPOT_I2C)
  6933. // this one uses actual amps in floating point
  6934. LOOP_XYZE(i) if (code_seen(axis_codes[i])) digipot_i2c_set_current(i, code_value_float());
  6935. // for each additional extruder (named B,C,D,E..., channels 4,5,6,7...)
  6936. for (int i = NUM_AXIS; i < DIGIPOT_I2C_NUM_CHANNELS; i++) if (code_seen('B' + i - (NUM_AXIS))) digipot_i2c_set_current(i, code_value_float());
  6937. #endif
  6938. #if ENABLED(DAC_STEPPER_CURRENT)
  6939. if (code_seen('S')) {
  6940. float dac_percent = code_value_float();
  6941. for (uint8_t i = 0; i <= 4; i++) dac_current_percent(i, dac_percent);
  6942. }
  6943. LOOP_XYZE(i) if (code_seen(axis_codes[i])) dac_current_percent(i, code_value_float());
  6944. #endif
  6945. }
  6946. #if HAS_DIGIPOTSS || ENABLED(DAC_STEPPER_CURRENT)
  6947. /**
  6948. * M908: Control digital trimpot directly (M908 P<pin> S<current>)
  6949. */
  6950. inline void gcode_M908() {
  6951. #if HAS_DIGIPOTSS
  6952. stepper.digitalPotWrite(
  6953. code_seen('P') ? code_value_int() : 0,
  6954. code_seen('S') ? code_value_int() : 0
  6955. );
  6956. #endif
  6957. #ifdef DAC_STEPPER_CURRENT
  6958. dac_current_raw(
  6959. code_seen('P') ? code_value_byte() : -1,
  6960. code_seen('S') ? code_value_ushort() : 0
  6961. );
  6962. #endif
  6963. }
  6964. #if ENABLED(DAC_STEPPER_CURRENT) // As with Printrbot RevF
  6965. inline void gcode_M909() { dac_print_values(); }
  6966. inline void gcode_M910() { dac_commit_eeprom(); }
  6967. #endif
  6968. #endif // HAS_DIGIPOTSS || DAC_STEPPER_CURRENT
  6969. #if HAS_MICROSTEPS
  6970. // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  6971. inline void gcode_M350() {
  6972. if (code_seen('S')) for (int i = 0; i <= 4; i++) stepper.microstep_mode(i, code_value_byte());
  6973. LOOP_XYZE(i) if (code_seen(axis_codes[i])) stepper.microstep_mode(i, code_value_byte());
  6974. if (code_seen('B')) stepper.microstep_mode(4, code_value_byte());
  6975. stepper.microstep_readings();
  6976. }
  6977. /**
  6978. * M351: Toggle MS1 MS2 pins directly with axis codes X Y Z E B
  6979. * S# determines MS1 or MS2, X# sets the pin high/low.
  6980. */
  6981. inline void gcode_M351() {
  6982. if (code_seen('S')) switch (code_value_byte()) {
  6983. case 1:
  6984. LOOP_XYZE(i) if (code_seen(axis_codes[i])) stepper.microstep_ms(i, code_value_byte(), -1);
  6985. if (code_seen('B')) stepper.microstep_ms(4, code_value_byte(), -1);
  6986. break;
  6987. case 2:
  6988. LOOP_XYZE(i) if (code_seen(axis_codes[i])) stepper.microstep_ms(i, -1, code_value_byte());
  6989. if (code_seen('B')) stepper.microstep_ms(4, -1, code_value_byte());
  6990. break;
  6991. }
  6992. stepper.microstep_readings();
  6993. }
  6994. #endif // HAS_MICROSTEPS
  6995. #if HAS_CASE_LIGHT
  6996. uint8_t case_light_brightness = 255;
  6997. void update_case_light() {
  6998. digitalWrite(CASE_LIGHT_PIN, case_light_on != INVERT_CASE_LIGHT ? HIGH : LOW);
  6999. analogWrite(CASE_LIGHT_PIN, case_light_on != INVERT_CASE_LIGHT ? case_light_brightness : 0);
  7000. }
  7001. #endif // HAS_CASE_LIGHT
  7002. /**
  7003. * M355: Turn case lights on/off and set brightness
  7004. *
  7005. * S<bool> Turn case light on or off
  7006. * P<byte> Set case light brightness (PWM pin required)
  7007. */
  7008. inline void gcode_M355() {
  7009. #if HAS_CASE_LIGHT
  7010. if (code_seen('P')) case_light_brightness = code_value_byte();
  7011. if (code_seen('S')) case_light_on = code_value_bool();
  7012. update_case_light();
  7013. SERIAL_ECHO_START;
  7014. SERIAL_ECHOPGM("Case lights ");
  7015. case_light_on ? SERIAL_ECHOLNPGM("on") : SERIAL_ECHOLNPGM("off");
  7016. #else
  7017. SERIAL_ERROR_START;
  7018. SERIAL_ERRORLNPGM(MSG_ERR_M355_NONE);
  7019. #endif // HAS_CASE_LIGHT
  7020. }
  7021. #if ENABLED(MIXING_EXTRUDER)
  7022. /**
  7023. * M163: Set a single mix factor for a mixing extruder
  7024. * This is called "weight" by some systems.
  7025. *
  7026. * S[index] The channel index to set
  7027. * P[float] The mix value
  7028. *
  7029. */
  7030. inline void gcode_M163() {
  7031. int mix_index = code_seen('S') ? code_value_int() : 0;
  7032. if (mix_index < MIXING_STEPPERS) {
  7033. float mix_value = code_seen('P') ? code_value_float() : 0.0;
  7034. NOLESS(mix_value, 0.0);
  7035. mixing_factor[mix_index] = RECIPROCAL(mix_value);
  7036. }
  7037. }
  7038. #if MIXING_VIRTUAL_TOOLS > 1
  7039. /**
  7040. * M164: Store the current mix factors as a virtual tool.
  7041. *
  7042. * S[index] The virtual tool to store
  7043. *
  7044. */
  7045. inline void gcode_M164() {
  7046. int tool_index = code_seen('S') ? code_value_int() : 0;
  7047. if (tool_index < MIXING_VIRTUAL_TOOLS) {
  7048. normalize_mix();
  7049. for (uint8_t i = 0; i < MIXING_STEPPERS; i++)
  7050. mixing_virtual_tool_mix[tool_index][i] = mixing_factor[i];
  7051. }
  7052. }
  7053. #endif
  7054. #if ENABLED(DIRECT_MIXING_IN_G1)
  7055. /**
  7056. * M165: Set multiple mix factors for a mixing extruder.
  7057. * Factors that are left out will be set to 0.
  7058. * All factors together must add up to 1.0.
  7059. *
  7060. * A[factor] Mix factor for extruder stepper 1
  7061. * B[factor] Mix factor for extruder stepper 2
  7062. * C[factor] Mix factor for extruder stepper 3
  7063. * D[factor] Mix factor for extruder stepper 4
  7064. * H[factor] Mix factor for extruder stepper 5
  7065. * I[factor] Mix factor for extruder stepper 6
  7066. *
  7067. */
  7068. inline void gcode_M165() { gcode_get_mix(); }
  7069. #endif
  7070. #endif // MIXING_EXTRUDER
  7071. /**
  7072. * M999: Restart after being stopped
  7073. *
  7074. * Default behaviour is to flush the serial buffer and request
  7075. * a resend to the host starting on the last N line received.
  7076. *
  7077. * Sending "M999 S1" will resume printing without flushing the
  7078. * existing command buffer.
  7079. *
  7080. */
  7081. inline void gcode_M999() {
  7082. Running = true;
  7083. lcd_reset_alert_level();
  7084. if (code_seen('S') && code_value_bool()) return;
  7085. // gcode_LastN = Stopped_gcode_LastN;
  7086. FlushSerialRequestResend();
  7087. }
  7088. #if ENABLED(SWITCHING_EXTRUDER)
  7089. inline void move_extruder_servo(uint8_t e) {
  7090. const int angles[2] = SWITCHING_EXTRUDER_SERVO_ANGLES;
  7091. MOVE_SERVO(SWITCHING_EXTRUDER_SERVO_NR, angles[e]);
  7092. safe_delay(500);
  7093. }
  7094. #endif
  7095. inline void invalid_extruder_error(const uint8_t &e) {
  7096. SERIAL_ECHO_START;
  7097. SERIAL_CHAR('T');
  7098. SERIAL_ECHO_F(e, DEC);
  7099. SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
  7100. }
  7101. /**
  7102. * Perform a tool-change, which may result in moving the
  7103. * previous tool out of the way and the new tool into place.
  7104. */
  7105. void tool_change(const uint8_t tmp_extruder, const float fr_mm_s/*=0.0*/, bool no_move/*=false*/) {
  7106. #if ENABLED(MIXING_EXTRUDER) && MIXING_VIRTUAL_TOOLS > 1
  7107. if (tmp_extruder >= MIXING_VIRTUAL_TOOLS)
  7108. return invalid_extruder_error(tmp_extruder);
  7109. // T0-Tnnn: Switch virtual tool by changing the mix
  7110. for (uint8_t j = 0; j < MIXING_STEPPERS; j++)
  7111. mixing_factor[j] = mixing_virtual_tool_mix[tmp_extruder][j];
  7112. #else //!MIXING_EXTRUDER || MIXING_VIRTUAL_TOOLS <= 1
  7113. #if HOTENDS > 1
  7114. if (tmp_extruder >= EXTRUDERS)
  7115. return invalid_extruder_error(tmp_extruder);
  7116. const float old_feedrate_mm_s = fr_mm_s > 0.0 ? fr_mm_s : feedrate_mm_s;
  7117. feedrate_mm_s = fr_mm_s > 0.0 ? fr_mm_s : XY_PROBE_FEEDRATE_MM_S;
  7118. if (tmp_extruder != active_extruder) {
  7119. if (!no_move && axis_unhomed_error(true, true, true)) {
  7120. SERIAL_ECHOLNPGM("No move on toolchange");
  7121. no_move = true;
  7122. }
  7123. // Save current position to destination, for use later
  7124. set_destination_to_current();
  7125. #if ENABLED(DUAL_X_CARRIAGE)
  7126. #if ENABLED(DEBUG_LEVELING_FEATURE)
  7127. if (DEBUGGING(LEVELING)) {
  7128. SERIAL_ECHOPGM("Dual X Carriage Mode ");
  7129. switch (dual_x_carriage_mode) {
  7130. case DXC_FULL_CONTROL_MODE: SERIAL_ECHOLNPGM("DXC_FULL_CONTROL_MODE"); break;
  7131. case DXC_AUTO_PARK_MODE: SERIAL_ECHOLNPGM("DXC_AUTO_PARK_MODE"); break;
  7132. case DXC_DUPLICATION_MODE: SERIAL_ECHOLNPGM("DXC_DUPLICATION_MODE"); break;
  7133. }
  7134. }
  7135. #endif
  7136. const float xhome = x_home_pos(active_extruder);
  7137. if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE
  7138. && IsRunning()
  7139. && (delayed_move_time || current_position[X_AXIS] != xhome)
  7140. ) {
  7141. float raised_z = current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT;
  7142. #if ENABLED(MAX_SOFTWARE_ENDSTOPS)
  7143. NOMORE(raised_z, soft_endstop_max[Z_AXIS]);
  7144. #endif
  7145. #if ENABLED(DEBUG_LEVELING_FEATURE)
  7146. if (DEBUGGING(LEVELING)) {
  7147. SERIAL_ECHOLNPAIR("Raise to ", raised_z);
  7148. SERIAL_ECHOLNPAIR("MoveX to ", xhome);
  7149. SERIAL_ECHOLNPAIR("Lower to ", current_position[Z_AXIS]);
  7150. }
  7151. #endif
  7152. // Park old head: 1) raise 2) move to park position 3) lower
  7153. for (uint8_t i = 0; i < 3; i++)
  7154. planner.buffer_line(
  7155. i == 0 ? current_position[X_AXIS] : xhome,
  7156. current_position[Y_AXIS],
  7157. i == 2 ? current_position[Z_AXIS] : raised_z,
  7158. current_position[E_AXIS],
  7159. planner.max_feedrate_mm_s[i == 1 ? X_AXIS : Z_AXIS],
  7160. active_extruder
  7161. );
  7162. stepper.synchronize();
  7163. }
  7164. // Apply Y & Z extruder offset (X offset is used as home pos with Dual X)
  7165. current_position[Y_AXIS] -= hotend_offset[Y_AXIS][active_extruder] - hotend_offset[Y_AXIS][tmp_extruder];
  7166. current_position[Z_AXIS] -= hotend_offset[Z_AXIS][active_extruder] - hotend_offset[Z_AXIS][tmp_extruder];
  7167. // Activate the new extruder
  7168. active_extruder = tmp_extruder;
  7169. // This function resets the max/min values - the current position may be overwritten below.
  7170. set_axis_is_at_home(X_AXIS);
  7171. #if ENABLED(DEBUG_LEVELING_FEATURE)
  7172. if (DEBUGGING(LEVELING)) DEBUG_POS("New Extruder", current_position);
  7173. #endif
  7174. // Only when auto-parking are carriages safe to move
  7175. if (dual_x_carriage_mode != DXC_AUTO_PARK_MODE) no_move = true;
  7176. switch (dual_x_carriage_mode) {
  7177. case DXC_FULL_CONTROL_MODE:
  7178. // New current position is the position of the activated extruder
  7179. current_position[X_AXIS] = LOGICAL_X_POSITION(inactive_extruder_x_pos);
  7180. // Save the inactive extruder's position (from the old current_position)
  7181. inactive_extruder_x_pos = RAW_X_POSITION(destination[X_AXIS]);
  7182. break;
  7183. case DXC_AUTO_PARK_MODE:
  7184. // record raised toolhead position for use by unpark
  7185. COPY(raised_parked_position, current_position);
  7186. raised_parked_position[Z_AXIS] += TOOLCHANGE_UNPARK_ZLIFT;
  7187. #if ENABLED(MAX_SOFTWARE_ENDSTOPS)
  7188. NOMORE(raised_parked_position[Z_AXIS], soft_endstop_max[Z_AXIS]);
  7189. #endif
  7190. active_extruder_parked = true;
  7191. delayed_move_time = 0;
  7192. break;
  7193. case DXC_DUPLICATION_MODE:
  7194. // If the new extruder is the left one, set it "parked"
  7195. // This triggers the second extruder to move into the duplication position
  7196. active_extruder_parked = (active_extruder == 0);
  7197. if (active_extruder_parked)
  7198. current_position[X_AXIS] = LOGICAL_X_POSITION(inactive_extruder_x_pos);
  7199. else
  7200. current_position[X_AXIS] = destination[X_AXIS] + duplicate_extruder_x_offset;
  7201. inactive_extruder_x_pos = RAW_X_POSITION(destination[X_AXIS]);
  7202. extruder_duplication_enabled = false;
  7203. break;
  7204. }
  7205. #if ENABLED(DEBUG_LEVELING_FEATURE)
  7206. if (DEBUGGING(LEVELING)) {
  7207. SERIAL_ECHOLNPAIR("Active extruder parked: ", active_extruder_parked ? "yes" : "no");
  7208. DEBUG_POS("New extruder (parked)", current_position);
  7209. }
  7210. #endif
  7211. // No extra case for HAS_ABL in DUAL_X_CARRIAGE. Does that mean they don't work together?
  7212. #else // !DUAL_X_CARRIAGE
  7213. #if ENABLED(SWITCHING_EXTRUDER)
  7214. // <0 if the new nozzle is higher, >0 if lower. A bigger raise when lower.
  7215. const float z_diff = hotend_offset[Z_AXIS][active_extruder] - hotend_offset[Z_AXIS][tmp_extruder],
  7216. z_raise = 0.3 + (z_diff > 0.0 ? z_diff : 0.0);
  7217. // Always raise by some amount (destination copied from current_position earlier)
  7218. current_position[Z_AXIS] += z_raise;
  7219. planner.buffer_line_kinematic(current_position, planner.max_feedrate_mm_s[Z_AXIS], active_extruder);
  7220. stepper.synchronize();
  7221. move_extruder_servo(active_extruder);
  7222. #endif
  7223. /**
  7224. * Set current_position to the position of the new nozzle.
  7225. * Offsets are based on linear distance, so we need to get
  7226. * the resulting position in coordinate space.
  7227. *
  7228. * - With grid or 3-point leveling, offset XYZ by a tilted vector
  7229. * - With mesh leveling, update Z for the new position
  7230. * - Otherwise, just use the raw linear distance
  7231. *
  7232. * Software endstops are altered here too. Consider a case where:
  7233. * E0 at X=0 ... E1 at X=10
  7234. * When we switch to E1 now X=10, but E1 can't move left.
  7235. * To express this we apply the change in XY to the software endstops.
  7236. * E1 can move farther right than E0, so the right limit is extended.
  7237. *
  7238. * Note that we don't adjust the Z software endstops. Why not?
  7239. * Consider a case where Z=0 (here) and switching to E1 makes Z=1
  7240. * because the bed is 1mm lower at the new position. As long as
  7241. * the first nozzle is out of the way, the carriage should be
  7242. * allowed to move 1mm lower. This technically "breaks" the
  7243. * Z software endstop. But this is technically correct (and
  7244. * there is no viable alternative).
  7245. */
  7246. #if ABL_PLANAR
  7247. // Offset extruder, make sure to apply the bed level rotation matrix
  7248. vector_3 tmp_offset_vec = vector_3(hotend_offset[X_AXIS][tmp_extruder],
  7249. hotend_offset[Y_AXIS][tmp_extruder],
  7250. 0),
  7251. act_offset_vec = vector_3(hotend_offset[X_AXIS][active_extruder],
  7252. hotend_offset[Y_AXIS][active_extruder],
  7253. 0),
  7254. offset_vec = tmp_offset_vec - act_offset_vec;
  7255. #if ENABLED(DEBUG_LEVELING_FEATURE)
  7256. if (DEBUGGING(LEVELING)) {
  7257. tmp_offset_vec.debug("tmp_offset_vec");
  7258. act_offset_vec.debug("act_offset_vec");
  7259. offset_vec.debug("offset_vec (BEFORE)");
  7260. }
  7261. #endif
  7262. offset_vec.apply_rotation(planner.bed_level_matrix.transpose(planner.bed_level_matrix));
  7263. #if ENABLED(DEBUG_LEVELING_FEATURE)
  7264. if (DEBUGGING(LEVELING)) offset_vec.debug("offset_vec (AFTER)");
  7265. #endif
  7266. // Adjustments to the current position
  7267. const float xydiff[2] = { offset_vec.x, offset_vec.y };
  7268. current_position[Z_AXIS] += offset_vec.z;
  7269. #else // !ABL_PLANAR
  7270. const float xydiff[2] = {
  7271. hotend_offset[X_AXIS][tmp_extruder] - hotend_offset[X_AXIS][active_extruder],
  7272. hotend_offset[Y_AXIS][tmp_extruder] - hotend_offset[Y_AXIS][active_extruder]
  7273. };
  7274. #if ENABLED(MESH_BED_LEVELING)
  7275. if (mbl.active()) {
  7276. #if ENABLED(DEBUG_LEVELING_FEATURE)
  7277. if (DEBUGGING(LEVELING)) SERIAL_ECHOPAIR("Z before MBL: ", current_position[Z_AXIS]);
  7278. #endif
  7279. float x2 = current_position[X_AXIS] + xydiff[X_AXIS],
  7280. y2 = current_position[Y_AXIS] + xydiff[Y_AXIS],
  7281. z1 = current_position[Z_AXIS], z2 = z1;
  7282. planner.apply_leveling(current_position[X_AXIS], current_position[Y_AXIS], z1);
  7283. planner.apply_leveling(x2, y2, z2);
  7284. current_position[Z_AXIS] += z2 - z1;
  7285. #if ENABLED(DEBUG_LEVELING_FEATURE)
  7286. if (DEBUGGING(LEVELING))
  7287. SERIAL_ECHOLNPAIR(" after: ", current_position[Z_AXIS]);
  7288. #endif
  7289. }
  7290. #endif // MESH_BED_LEVELING
  7291. #endif // !HAS_ABL
  7292. #if ENABLED(DEBUG_LEVELING_FEATURE)
  7293. if (DEBUGGING(LEVELING)) {
  7294. SERIAL_ECHOPAIR("Offset Tool XY by { ", xydiff[X_AXIS]);
  7295. SERIAL_ECHOPAIR(", ", xydiff[Y_AXIS]);
  7296. SERIAL_ECHOLNPGM(" }");
  7297. }
  7298. #endif
  7299. // The newly-selected extruder XY is actually at...
  7300. current_position[X_AXIS] += xydiff[X_AXIS];
  7301. current_position[Y_AXIS] += xydiff[Y_AXIS];
  7302. #if DISABLED(NO_WORKSPACE_OFFSETS) || ENABLED(DUAL_X_CARRIAGE)
  7303. for (uint8_t i = X_AXIS; i <= Y_AXIS; i++) {
  7304. #if DISABLED(NO_WORKSPACE_OFFSETS)
  7305. position_shift[i] += xydiff[i];
  7306. #endif
  7307. update_software_endstops((AxisEnum)i);
  7308. }
  7309. #endif
  7310. // Set the new active extruder
  7311. active_extruder = tmp_extruder;
  7312. #endif // !DUAL_X_CARRIAGE
  7313. #if ENABLED(DEBUG_LEVELING_FEATURE)
  7314. if (DEBUGGING(LEVELING)) DEBUG_POS("Sync After Toolchange", current_position);
  7315. #endif
  7316. // Tell the planner the new "current position"
  7317. SYNC_PLAN_POSITION_KINEMATIC();
  7318. // Move to the "old position" (move the extruder into place)
  7319. if (!no_move && IsRunning()) {
  7320. #if ENABLED(DEBUG_LEVELING_FEATURE)
  7321. if (DEBUGGING(LEVELING)) DEBUG_POS("Move back", destination);
  7322. #endif
  7323. prepare_move_to_destination();
  7324. }
  7325. #if ENABLED(SWITCHING_EXTRUDER)
  7326. // Move back down, if needed. (Including when the new tool is higher.)
  7327. if (z_raise != z_diff) {
  7328. destination[Z_AXIS] += z_diff;
  7329. feedrate_mm_s = planner.max_feedrate_mm_s[Z_AXIS];
  7330. prepare_move_to_destination();
  7331. }
  7332. #endif
  7333. } // (tmp_extruder != active_extruder)
  7334. stepper.synchronize();
  7335. #if ENABLED(EXT_SOLENOID)
  7336. disable_all_solenoids();
  7337. enable_solenoid_on_active_extruder();
  7338. #endif // EXT_SOLENOID
  7339. feedrate_mm_s = old_feedrate_mm_s;
  7340. #else // HOTENDS <= 1
  7341. // Set the new active extruder
  7342. active_extruder = tmp_extruder;
  7343. UNUSED(fr_mm_s);
  7344. UNUSED(no_move);
  7345. #endif // HOTENDS <= 1
  7346. SERIAL_ECHO_START;
  7347. SERIAL_ECHOLNPAIR(MSG_ACTIVE_EXTRUDER, (int)active_extruder);
  7348. #endif //!MIXING_EXTRUDER || MIXING_VIRTUAL_TOOLS <= 1
  7349. }
  7350. /**
  7351. * T0-T3: Switch tool, usually switching extruders
  7352. *
  7353. * F[units/min] Set the movement feedrate
  7354. * S1 Don't move the tool in XY after change
  7355. */
  7356. inline void gcode_T(uint8_t tmp_extruder) {
  7357. #if ENABLED(DEBUG_LEVELING_FEATURE)
  7358. if (DEBUGGING(LEVELING)) {
  7359. SERIAL_ECHOPAIR(">>> gcode_T(", tmp_extruder);
  7360. SERIAL_CHAR(')');
  7361. SERIAL_EOL;
  7362. DEBUG_POS("BEFORE", current_position);
  7363. }
  7364. #endif
  7365. #if HOTENDS == 1 || (ENABLED(MIXING_EXTRUDER) && MIXING_VIRTUAL_TOOLS > 1)
  7366. tool_change(tmp_extruder);
  7367. #elif HOTENDS > 1
  7368. tool_change(
  7369. tmp_extruder,
  7370. code_seen('F') ? MMM_TO_MMS(code_value_axis_units(X_AXIS)) : 0.0,
  7371. (tmp_extruder == active_extruder) || (code_seen('S') && code_value_bool())
  7372. );
  7373. #endif
  7374. #if ENABLED(DEBUG_LEVELING_FEATURE)
  7375. if (DEBUGGING(LEVELING)) {
  7376. DEBUG_POS("AFTER", current_position);
  7377. SERIAL_ECHOLNPGM("<<< gcode_T");
  7378. }
  7379. #endif
  7380. }
  7381. /**
  7382. * Process a single command and dispatch it to its handler
  7383. * This is called from the main loop()
  7384. */
  7385. void process_next_command() {
  7386. current_command = command_queue[cmd_queue_index_r];
  7387. if (DEBUGGING(ECHO)) {
  7388. SERIAL_ECHO_START;
  7389. SERIAL_ECHOLN(current_command);
  7390. }
  7391. // Sanitize the current command:
  7392. // - Skip leading spaces
  7393. // - Bypass N[-0-9][0-9]*[ ]*
  7394. // - Overwrite * with nul to mark the end
  7395. while (*current_command == ' ') ++current_command;
  7396. if (*current_command == 'N' && NUMERIC_SIGNED(current_command[1])) {
  7397. current_command += 2; // skip N[-0-9]
  7398. while (NUMERIC(*current_command)) ++current_command; // skip [0-9]*
  7399. while (*current_command == ' ') ++current_command; // skip [ ]*
  7400. }
  7401. char* starpos = strchr(current_command, '*'); // * should always be the last parameter
  7402. if (starpos) while (*starpos == ' ' || *starpos == '*') *starpos-- = '\0'; // nullify '*' and ' '
  7403. char *cmd_ptr = current_command;
  7404. // Get the command code, which must be G, M, or T
  7405. char command_code = *cmd_ptr++;
  7406. // Skip spaces to get the numeric part
  7407. while (*cmd_ptr == ' ') cmd_ptr++;
  7408. // Allow for decimal point in command
  7409. #if ENABLED(G38_PROBE_TARGET)
  7410. uint8_t subcode = 0;
  7411. #endif
  7412. uint16_t codenum = 0; // define ahead of goto
  7413. // Bail early if there's no code
  7414. bool code_is_good = NUMERIC(*cmd_ptr);
  7415. if (!code_is_good) goto ExitUnknownCommand;
  7416. // Get and skip the code number
  7417. do {
  7418. codenum = (codenum * 10) + (*cmd_ptr - '0');
  7419. cmd_ptr++;
  7420. } while (NUMERIC(*cmd_ptr));
  7421. // Allow for decimal point in command
  7422. #if ENABLED(G38_PROBE_TARGET)
  7423. if (*cmd_ptr == '.') {
  7424. cmd_ptr++;
  7425. while (NUMERIC(*cmd_ptr))
  7426. subcode = (subcode * 10) + (*cmd_ptr++ - '0');
  7427. }
  7428. #endif
  7429. // Skip all spaces to get to the first argument, or nul
  7430. while (*cmd_ptr == ' ') cmd_ptr++;
  7431. // The command's arguments (if any) start here, for sure!
  7432. current_command_args = cmd_ptr;
  7433. KEEPALIVE_STATE(IN_HANDLER);
  7434. // Handle a known G, M, or T
  7435. switch (command_code) {
  7436. case 'G': switch (codenum) {
  7437. // G0, G1
  7438. case 0:
  7439. case 1:
  7440. #if IS_SCARA
  7441. gcode_G0_G1(codenum == 0);
  7442. #else
  7443. gcode_G0_G1();
  7444. #endif
  7445. break;
  7446. // G2, G3
  7447. #if ENABLED(ARC_SUPPORT) && DISABLED(SCARA)
  7448. case 2: // G2 - CW ARC
  7449. case 3: // G3 - CCW ARC
  7450. gcode_G2_G3(codenum == 2);
  7451. break;
  7452. #endif
  7453. // G4 Dwell
  7454. case 4:
  7455. gcode_G4();
  7456. break;
  7457. #if ENABLED(BEZIER_CURVE_SUPPORT)
  7458. // G5
  7459. case 5: // G5 - Cubic B_spline
  7460. gcode_G5();
  7461. break;
  7462. #endif // BEZIER_CURVE_SUPPORT
  7463. #if ENABLED(FWRETRACT)
  7464. case 10: // G10: retract
  7465. case 11: // G11: retract_recover
  7466. gcode_G10_G11(codenum == 10);
  7467. break;
  7468. #endif // FWRETRACT
  7469. #if ENABLED(NOZZLE_CLEAN_FEATURE)
  7470. case 12:
  7471. gcode_G12(); // G12: Nozzle Clean
  7472. break;
  7473. #endif // NOZZLE_CLEAN_FEATURE
  7474. #if ENABLED(INCH_MODE_SUPPORT)
  7475. case 20: //G20: Inch Mode
  7476. gcode_G20();
  7477. break;
  7478. case 21: //G21: MM Mode
  7479. gcode_G21();
  7480. break;
  7481. #endif // INCH_MODE_SUPPORT
  7482. #if ENABLED(AUTO_BED_LEVELING_UBL) && ENABLED(UBL_G26_MESH_EDITING)
  7483. case 26: // G26: Mesh Validation Pattern generation
  7484. gcode_G26();
  7485. break;
  7486. #endif // AUTO_BED_LEVELING_UBL
  7487. #if ENABLED(NOZZLE_PARK_FEATURE)
  7488. case 27: // G27: Nozzle Park
  7489. gcode_G27();
  7490. break;
  7491. #endif // NOZZLE_PARK_FEATURE
  7492. case 28: // G28: Home all axes, one at a time
  7493. gcode_G28();
  7494. break;
  7495. #if PLANNER_LEVELING || ENABLED(AUTO_BED_LEVELING_UBL)
  7496. case 29: // G29 Detailed Z probe, probes the bed at 3 or more points,
  7497. // or provides access to the UBL System if enabled.
  7498. gcode_G29();
  7499. break;
  7500. #endif // PLANNER_LEVELING
  7501. #if HAS_BED_PROBE
  7502. case 30: // G30 Single Z probe
  7503. gcode_G30();
  7504. break;
  7505. #if ENABLED(Z_PROBE_SLED)
  7506. case 31: // G31: dock the sled
  7507. gcode_G31();
  7508. break;
  7509. case 32: // G32: undock the sled
  7510. gcode_G32();
  7511. break;
  7512. #endif // Z_PROBE_SLED
  7513. #endif // HAS_BED_PROBE
  7514. #if ENABLED(G38_PROBE_TARGET)
  7515. case 38: // G38.2 & G38.3
  7516. if (subcode == 2 || subcode == 3)
  7517. gcode_G38(subcode == 2);
  7518. break;
  7519. #endif
  7520. case 90: // G90
  7521. relative_mode = false;
  7522. break;
  7523. case 91: // G91
  7524. relative_mode = true;
  7525. break;
  7526. case 92: // G92
  7527. gcode_G92();
  7528. break;
  7529. }
  7530. break;
  7531. case 'M': switch (codenum) {
  7532. #if ENABLED(ULTIPANEL) || ENABLED(EMERGENCY_PARSER)
  7533. case 0: // M0: Unconditional stop - Wait for user button press on LCD
  7534. case 1: // M1: Conditional stop - Wait for user button press on LCD
  7535. gcode_M0_M1();
  7536. break;
  7537. #endif // ULTIPANEL
  7538. case 17: // M17: Enable all stepper motors
  7539. gcode_M17();
  7540. break;
  7541. #if ENABLED(SDSUPPORT)
  7542. case 20: // M20: list SD card
  7543. gcode_M20(); break;
  7544. case 21: // M21: init SD card
  7545. gcode_M21(); break;
  7546. case 22: // M22: release SD card
  7547. gcode_M22(); break;
  7548. case 23: // M23: Select file
  7549. gcode_M23(); break;
  7550. case 24: // M24: Start SD print
  7551. gcode_M24(); break;
  7552. case 25: // M25: Pause SD print
  7553. gcode_M25(); break;
  7554. case 26: // M26: Set SD index
  7555. gcode_M26(); break;
  7556. case 27: // M27: Get SD status
  7557. gcode_M27(); break;
  7558. case 28: // M28: Start SD write
  7559. gcode_M28(); break;
  7560. case 29: // M29: Stop SD write
  7561. gcode_M29(); break;
  7562. case 30: // M30 <filename> Delete File
  7563. gcode_M30(); break;
  7564. case 32: // M32: Select file and start SD print
  7565. gcode_M32(); break;
  7566. #if ENABLED(LONG_FILENAME_HOST_SUPPORT)
  7567. case 33: // M33: Get the long full path to a file or folder
  7568. gcode_M33(); break;
  7569. #endif
  7570. #if ENABLED(SDCARD_SORT_ALPHA) && ENABLED(SDSORT_GCODE)
  7571. case 34: //M34 - Set SD card sorting options
  7572. gcode_M34(); break;
  7573. #endif // SDCARD_SORT_ALPHA && SDSORT_GCODE
  7574. case 928: // M928: Start SD write
  7575. gcode_M928(); break;
  7576. #endif //SDSUPPORT
  7577. case 31: // M31: Report time since the start of SD print or last M109
  7578. gcode_M31(); break;
  7579. case 42: // M42: Change pin state
  7580. gcode_M42(); break;
  7581. #if ENABLED(PINS_DEBUGGING)
  7582. case 43: // M43: Read pin state
  7583. gcode_M43(); break;
  7584. #endif
  7585. #if ENABLED(Z_MIN_PROBE_REPEATABILITY_TEST)
  7586. case 48: // M48: Z probe repeatability test
  7587. gcode_M48();
  7588. break;
  7589. #endif // Z_MIN_PROBE_REPEATABILITY_TEST
  7590. #if ENABLED(AUTO_BED_LEVELING_UBL) && ENABLED(UBL_G26_MESH_EDITING)
  7591. case 49: // M49: Turn on or off G26 debug flag for verbose output
  7592. gcode_M49();
  7593. break;
  7594. #endif // AUTO_BED_LEVELING_UBL && UBL_G26_MESH_EDITING
  7595. case 75: // M75: Start print timer
  7596. gcode_M75(); break;
  7597. case 76: // M76: Pause print timer
  7598. gcode_M76(); break;
  7599. case 77: // M77: Stop print timer
  7600. gcode_M77(); break;
  7601. #if ENABLED(PRINTCOUNTER)
  7602. case 78: // M78: Show print statistics
  7603. gcode_M78(); break;
  7604. #endif
  7605. #if ENABLED(M100_FREE_MEMORY_WATCHER)
  7606. case 100: // M100: Free Memory Report
  7607. gcode_M100();
  7608. break;
  7609. #endif
  7610. case 104: // M104: Set hot end temperature
  7611. gcode_M104();
  7612. break;
  7613. case 110: // M110: Set Current Line Number
  7614. gcode_M110();
  7615. break;
  7616. case 111: // M111: Set debug level
  7617. gcode_M111();
  7618. break;
  7619. #if DISABLED(EMERGENCY_PARSER)
  7620. case 108: // M108: Cancel Waiting
  7621. gcode_M108();
  7622. break;
  7623. case 112: // M112: Emergency Stop
  7624. gcode_M112();
  7625. break;
  7626. case 410: // M410 quickstop - Abort all the planned moves.
  7627. gcode_M410();
  7628. break;
  7629. #endif
  7630. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  7631. case 113: // M113: Set Host Keepalive interval
  7632. gcode_M113();
  7633. break;
  7634. #endif
  7635. case 140: // M140: Set bed temperature
  7636. gcode_M140();
  7637. break;
  7638. case 105: // M105: Report current temperature
  7639. gcode_M105();
  7640. KEEPALIVE_STATE(NOT_BUSY);
  7641. return; // "ok" already printed
  7642. #if ENABLED(AUTO_REPORT_TEMPERATURES) && (HAS_TEMP_HOTEND || HAS_TEMP_BED)
  7643. case 155: // M155: Set temperature auto-report interval
  7644. gcode_M155();
  7645. break;
  7646. #endif
  7647. case 109: // M109: Wait for hotend temperature to reach target
  7648. gcode_M109();
  7649. break;
  7650. #if HAS_TEMP_BED
  7651. case 190: // M190: Wait for bed temperature to reach target
  7652. gcode_M190();
  7653. break;
  7654. #endif // HAS_TEMP_BED
  7655. #if FAN_COUNT > 0
  7656. case 106: // M106: Fan On
  7657. gcode_M106();
  7658. break;
  7659. case 107: // M107: Fan Off
  7660. gcode_M107();
  7661. break;
  7662. #endif // FAN_COUNT > 0
  7663. #if ENABLED(PARK_HEAD_ON_PAUSE)
  7664. case 125: // M125: Store current position and move to filament change position
  7665. gcode_M125(); break;
  7666. #endif
  7667. #if ENABLED(BARICUDA)
  7668. // PWM for HEATER_1_PIN
  7669. #if HAS_HEATER_1
  7670. case 126: // M126: valve open
  7671. gcode_M126();
  7672. break;
  7673. case 127: // M127: valve closed
  7674. gcode_M127();
  7675. break;
  7676. #endif // HAS_HEATER_1
  7677. // PWM for HEATER_2_PIN
  7678. #if HAS_HEATER_2
  7679. case 128: // M128: valve open
  7680. gcode_M128();
  7681. break;
  7682. case 129: // M129: valve closed
  7683. gcode_M129();
  7684. break;
  7685. #endif // HAS_HEATER_2
  7686. #endif // BARICUDA
  7687. #if HAS_POWER_SWITCH
  7688. case 80: // M80: Turn on Power Supply
  7689. gcode_M80();
  7690. break;
  7691. #endif // HAS_POWER_SWITCH
  7692. case 81: // M81: Turn off Power, including Power Supply, if possible
  7693. gcode_M81();
  7694. break;
  7695. case 82: // M83: Set E axis normal mode (same as other axes)
  7696. gcode_M82();
  7697. break;
  7698. case 83: // M83: Set E axis relative mode
  7699. gcode_M83();
  7700. break;
  7701. case 18: // M18 => M84
  7702. case 84: // M84: Disable all steppers or set timeout
  7703. gcode_M18_M84();
  7704. break;
  7705. case 85: // M85: Set inactivity stepper shutdown timeout
  7706. gcode_M85();
  7707. break;
  7708. case 92: // M92: Set the steps-per-unit for one or more axes
  7709. gcode_M92();
  7710. break;
  7711. case 114: // M114: Report current position
  7712. gcode_M114();
  7713. break;
  7714. case 115: // M115: Report capabilities
  7715. gcode_M115();
  7716. break;
  7717. case 117: // M117: Set LCD message text, if possible
  7718. gcode_M117();
  7719. break;
  7720. case 119: // M119: Report endstop states
  7721. gcode_M119();
  7722. break;
  7723. case 120: // M120: Enable endstops
  7724. gcode_M120();
  7725. break;
  7726. case 121: // M121: Disable endstops
  7727. gcode_M121();
  7728. break;
  7729. #if ENABLED(ULTIPANEL)
  7730. case 145: // M145: Set material heatup parameters
  7731. gcode_M145();
  7732. break;
  7733. #endif
  7734. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  7735. case 149: // M149: Set temperature units
  7736. gcode_M149();
  7737. break;
  7738. #endif
  7739. #if ENABLED(BLINKM) || ENABLED(RGB_LED)
  7740. case 150: // M150: Set Status LED Color
  7741. gcode_M150();
  7742. break;
  7743. #endif // BLINKM
  7744. #if ENABLED(MIXING_EXTRUDER)
  7745. case 163: // M163: Set a component weight for mixing extruder
  7746. gcode_M163();
  7747. break;
  7748. #if MIXING_VIRTUAL_TOOLS > 1
  7749. case 164: // M164: Save current mix as a virtual extruder
  7750. gcode_M164();
  7751. break;
  7752. #endif
  7753. #if ENABLED(DIRECT_MIXING_IN_G1)
  7754. case 165: // M165: Set multiple mix weights
  7755. gcode_M165();
  7756. break;
  7757. #endif
  7758. #endif
  7759. case 200: // M200: Set filament diameter, E to cubic units
  7760. gcode_M200();
  7761. break;
  7762. case 201: // M201: Set max acceleration for print moves (units/s^2)
  7763. gcode_M201();
  7764. break;
  7765. #if 0 // Not used for Sprinter/grbl gen6
  7766. case 202: // M202
  7767. gcode_M202();
  7768. break;
  7769. #endif
  7770. case 203: // M203: Set max feedrate (units/sec)
  7771. gcode_M203();
  7772. break;
  7773. case 204: // M204: Set acceleration
  7774. gcode_M204();
  7775. break;
  7776. case 205: //M205: Set advanced settings
  7777. gcode_M205();
  7778. break;
  7779. #if DISABLED(NO_WORKSPACE_OFFSETS)
  7780. case 206: // M206: Set home offsets
  7781. gcode_M206();
  7782. break;
  7783. #endif
  7784. #if ENABLED(DELTA)
  7785. case 665: // M665: Set delta configurations
  7786. gcode_M665();
  7787. break;
  7788. #endif
  7789. #if ENABLED(DELTA) || ENABLED(Z_DUAL_ENDSTOPS)
  7790. case 666: // M666: Set delta or dual endstop adjustment
  7791. gcode_M666();
  7792. break;
  7793. #endif
  7794. #if ENABLED(FWRETRACT)
  7795. case 207: // M207: Set Retract Length, Feedrate, and Z lift
  7796. gcode_M207();
  7797. break;
  7798. case 208: // M208: Set Recover (unretract) Additional Length and Feedrate
  7799. gcode_M208();
  7800. break;
  7801. case 209: // M209: Turn Automatic Retract Detection on/off
  7802. gcode_M209();
  7803. break;
  7804. #endif // FWRETRACT
  7805. case 211: // M211: Enable, Disable, and/or Report software endstops
  7806. gcode_M211();
  7807. break;
  7808. #if HOTENDS > 1
  7809. case 218: // M218: Set a tool offset
  7810. gcode_M218();
  7811. break;
  7812. #endif
  7813. case 220: // M220: Set Feedrate Percentage: S<percent> ("FR" on your LCD)
  7814. gcode_M220();
  7815. break;
  7816. case 221: // M221: Set Flow Percentage
  7817. gcode_M221();
  7818. break;
  7819. case 226: // M226: Wait until a pin reaches a state
  7820. gcode_M226();
  7821. break;
  7822. #if HAS_SERVOS
  7823. case 280: // M280: Set servo position absolute
  7824. gcode_M280();
  7825. break;
  7826. #endif // HAS_SERVOS
  7827. #if HAS_BUZZER
  7828. case 300: // M300: Play beep tone
  7829. gcode_M300();
  7830. break;
  7831. #endif // HAS_BUZZER
  7832. #if ENABLED(PIDTEMP)
  7833. case 301: // M301: Set hotend PID parameters
  7834. gcode_M301();
  7835. break;
  7836. #endif // PIDTEMP
  7837. #if ENABLED(PIDTEMPBED)
  7838. case 304: // M304: Set bed PID parameters
  7839. gcode_M304();
  7840. break;
  7841. #endif // PIDTEMPBED
  7842. #if defined(CHDK) || HAS_PHOTOGRAPH
  7843. case 240: // M240: Trigger a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  7844. gcode_M240();
  7845. break;
  7846. #endif // CHDK || PHOTOGRAPH_PIN
  7847. #if HAS_LCD_CONTRAST
  7848. case 250: // M250: Set LCD contrast
  7849. gcode_M250();
  7850. break;
  7851. #endif // HAS_LCD_CONTRAST
  7852. #if ENABLED(EXPERIMENTAL_I2CBUS)
  7853. case 260: // M260: Send data to an i2c slave
  7854. gcode_M260();
  7855. break;
  7856. case 261: // M261: Request data from an i2c slave
  7857. gcode_M261();
  7858. break;
  7859. #endif // EXPERIMENTAL_I2CBUS
  7860. #if ENABLED(PREVENT_COLD_EXTRUSION)
  7861. case 302: // M302: Allow cold extrudes (set the minimum extrude temperature)
  7862. gcode_M302();
  7863. break;
  7864. #endif // PREVENT_COLD_EXTRUSION
  7865. case 303: // M303: PID autotune
  7866. gcode_M303();
  7867. break;
  7868. #if ENABLED(MORGAN_SCARA)
  7869. case 360: // M360: SCARA Theta pos1
  7870. if (gcode_M360()) return;
  7871. break;
  7872. case 361: // M361: SCARA Theta pos2
  7873. if (gcode_M361()) return;
  7874. break;
  7875. case 362: // M362: SCARA Psi pos1
  7876. if (gcode_M362()) return;
  7877. break;
  7878. case 363: // M363: SCARA Psi pos2
  7879. if (gcode_M363()) return;
  7880. break;
  7881. case 364: // M364: SCARA Psi pos3 (90 deg to Theta)
  7882. if (gcode_M364()) return;
  7883. break;
  7884. #endif // SCARA
  7885. case 400: // M400: Finish all moves
  7886. gcode_M400();
  7887. break;
  7888. #if HAS_BED_PROBE
  7889. case 401: // M401: Deploy probe
  7890. gcode_M401();
  7891. break;
  7892. case 402: // M402: Stow probe
  7893. gcode_M402();
  7894. break;
  7895. #endif // HAS_BED_PROBE
  7896. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  7897. case 404: // M404: Enter the nominal filament width (3mm, 1.75mm ) N<3.0> or display nominal filament width
  7898. gcode_M404();
  7899. break;
  7900. case 405: // M405: Turn on filament sensor for control
  7901. gcode_M405();
  7902. break;
  7903. case 406: // M406: Turn off filament sensor for control
  7904. gcode_M406();
  7905. break;
  7906. case 407: // M407: Display measured filament diameter
  7907. gcode_M407();
  7908. break;
  7909. #endif // ENABLED(FILAMENT_WIDTH_SENSOR)
  7910. #if PLANNER_LEVELING
  7911. case 420: // M420: Enable/Disable Bed Leveling
  7912. gcode_M420();
  7913. break;
  7914. #endif
  7915. #if ENABLED(MESH_BED_LEVELING) || ENABLED(AUTO_BED_LEVELING_UBL) || ENABLED(AUTO_BED_LEVELING_BILINEAR)
  7916. case 421: // M421: Set a Mesh Bed Leveling Z coordinate
  7917. gcode_M421();
  7918. break;
  7919. #endif
  7920. #if DISABLED(NO_WORKSPACE_OFFSETS)
  7921. case 428: // M428: Apply current_position to home_offset
  7922. gcode_M428();
  7923. break;
  7924. #endif
  7925. case 500: // M500: Store settings in EEPROM
  7926. gcode_M500();
  7927. break;
  7928. case 501: // M501: Read settings from EEPROM
  7929. gcode_M501();
  7930. break;
  7931. case 502: // M502: Revert to default settings
  7932. gcode_M502();
  7933. break;
  7934. case 503: // M503: print settings currently in memory
  7935. gcode_M503();
  7936. break;
  7937. #if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  7938. case 540: // M540: Set abort on endstop hit for SD printing
  7939. gcode_M540();
  7940. break;
  7941. #endif
  7942. #if HAS_BED_PROBE
  7943. case 851: // M851: Set Z Probe Z Offset
  7944. gcode_M851();
  7945. break;
  7946. #endif // HAS_BED_PROBE
  7947. #if ENABLED(FILAMENT_CHANGE_FEATURE)
  7948. case 600: // M600: Pause for filament change
  7949. gcode_M600();
  7950. break;
  7951. #endif // FILAMENT_CHANGE_FEATURE
  7952. #if ENABLED(DUAL_X_CARRIAGE)
  7953. case 605: // M605: Set Dual X Carriage movement mode
  7954. gcode_M605();
  7955. break;
  7956. #endif // DUAL_X_CARRIAGE
  7957. #if ENABLED(LIN_ADVANCE)
  7958. case 905: // M905: Set advance K factor.
  7959. gcode_M905();
  7960. break;
  7961. #endif
  7962. #if ENABLED(HAVE_TMC2130)
  7963. case 906: // M906: Set motor current in milliamps using axis codes X, Y, Z, E
  7964. gcode_M906();
  7965. break;
  7966. #endif
  7967. case 907: // M907: Set digital trimpot motor current using axis codes.
  7968. gcode_M907();
  7969. break;
  7970. #if HAS_DIGIPOTSS || ENABLED(DAC_STEPPER_CURRENT)
  7971. case 908: // M908: Control digital trimpot directly.
  7972. gcode_M908();
  7973. break;
  7974. #if ENABLED(DAC_STEPPER_CURRENT) // As with Printrbot RevF
  7975. case 909: // M909: Print digipot/DAC current value
  7976. gcode_M909();
  7977. break;
  7978. case 910: // M910: Commit digipot/DAC value to external EEPROM
  7979. gcode_M910();
  7980. break;
  7981. #endif
  7982. #endif // HAS_DIGIPOTSS || DAC_STEPPER_CURRENT
  7983. #if ENABLED(HAVE_TMC2130)
  7984. case 911: // M911: Report TMC2130 prewarn triggered flags
  7985. gcode_M911();
  7986. break;
  7987. case 912: // M911: Clear TMC2130 prewarn triggered flags
  7988. gcode_M912();
  7989. break;
  7990. #endif
  7991. #if HAS_MICROSTEPS
  7992. case 350: // M350: Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  7993. gcode_M350();
  7994. break;
  7995. case 351: // M351: Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  7996. gcode_M351();
  7997. break;
  7998. #endif // HAS_MICROSTEPS
  7999. case 355: // M355 Turn case lights on/off
  8000. gcode_M355();
  8001. break;
  8002. case 999: // M999: Restart after being Stopped
  8003. gcode_M999();
  8004. break;
  8005. }
  8006. break;
  8007. case 'T':
  8008. gcode_T(codenum);
  8009. break;
  8010. default: code_is_good = false;
  8011. }
  8012. KEEPALIVE_STATE(NOT_BUSY);
  8013. ExitUnknownCommand:
  8014. // Still unknown command? Throw an error
  8015. if (!code_is_good) unknown_command_error();
  8016. ok_to_send();
  8017. }
  8018. /**
  8019. * Send a "Resend: nnn" message to the host to
  8020. * indicate that a command needs to be re-sent.
  8021. */
  8022. void FlushSerialRequestResend() {
  8023. //char command_queue[cmd_queue_index_r][100]="Resend:";
  8024. MYSERIAL.flush();
  8025. SERIAL_PROTOCOLPGM(MSG_RESEND);
  8026. SERIAL_PROTOCOLLN(gcode_LastN + 1);
  8027. ok_to_send();
  8028. }
  8029. /**
  8030. * Send an "ok" message to the host, indicating
  8031. * that a command was successfully processed.
  8032. *
  8033. * If ADVANCED_OK is enabled also include:
  8034. * N<int> Line number of the command, if any
  8035. * P<int> Planner space remaining
  8036. * B<int> Block queue space remaining
  8037. */
  8038. void ok_to_send() {
  8039. refresh_cmd_timeout();
  8040. if (!send_ok[cmd_queue_index_r]) return;
  8041. SERIAL_PROTOCOLPGM(MSG_OK);
  8042. #if ENABLED(ADVANCED_OK)
  8043. char* p = command_queue[cmd_queue_index_r];
  8044. if (*p == 'N') {
  8045. SERIAL_PROTOCOL(' ');
  8046. SERIAL_ECHO(*p++);
  8047. while (NUMERIC_SIGNED(*p))
  8048. SERIAL_ECHO(*p++);
  8049. }
  8050. SERIAL_PROTOCOLPGM(" P"); SERIAL_PROTOCOL(int(BLOCK_BUFFER_SIZE - planner.movesplanned() - 1));
  8051. SERIAL_PROTOCOLPGM(" B"); SERIAL_PROTOCOL(BUFSIZE - commands_in_queue);
  8052. #endif
  8053. SERIAL_EOL;
  8054. }
  8055. #if HAS_SOFTWARE_ENDSTOPS
  8056. /**
  8057. * Constrain the given coordinates to the software endstops.
  8058. */
  8059. void clamp_to_software_endstops(float target[XYZ]) {
  8060. if (!soft_endstops_enabled) return;
  8061. #if ENABLED(MIN_SOFTWARE_ENDSTOPS)
  8062. NOLESS(target[X_AXIS], soft_endstop_min[X_AXIS]);
  8063. NOLESS(target[Y_AXIS], soft_endstop_min[Y_AXIS]);
  8064. NOLESS(target[Z_AXIS], soft_endstop_min[Z_AXIS]);
  8065. #endif
  8066. #if ENABLED(MAX_SOFTWARE_ENDSTOPS)
  8067. NOMORE(target[X_AXIS], soft_endstop_max[X_AXIS]);
  8068. NOMORE(target[Y_AXIS], soft_endstop_max[Y_AXIS]);
  8069. NOMORE(target[Z_AXIS], soft_endstop_max[Z_AXIS]);
  8070. #endif
  8071. }
  8072. #endif
  8073. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  8074. #if ENABLED(ABL_BILINEAR_SUBDIVISION)
  8075. #define ABL_BG_SPACING(A) bilinear_grid_spacing_virt[A]
  8076. #define ABL_BG_POINTS_X ABL_GRID_POINTS_VIRT_X
  8077. #define ABL_BG_POINTS_Y ABL_GRID_POINTS_VIRT_Y
  8078. #define ABL_BG_GRID(X,Y) bed_level_grid_virt[X][Y]
  8079. #else
  8080. #define ABL_BG_SPACING(A) bilinear_grid_spacing[A]
  8081. #define ABL_BG_POINTS_X ABL_GRID_MAX_POINTS_X
  8082. #define ABL_BG_POINTS_Y ABL_GRID_MAX_POINTS_Y
  8083. #define ABL_BG_GRID(X,Y) bed_level_grid[X][Y]
  8084. #endif
  8085. // Get the Z adjustment for non-linear bed leveling
  8086. float bilinear_z_offset(float cartesian[XYZ]) {
  8087. // XY relative to the probed area
  8088. const float x = RAW_X_POSITION(cartesian[X_AXIS]) - bilinear_start[X_AXIS],
  8089. y = RAW_Y_POSITION(cartesian[Y_AXIS]) - bilinear_start[Y_AXIS];
  8090. // Convert to grid box units
  8091. float ratio_x = x / ABL_BG_SPACING(X_AXIS),
  8092. ratio_y = y / ABL_BG_SPACING(Y_AXIS);
  8093. // Whole units for the grid line indices. Constrained within bounds.
  8094. const int gridx = constrain(floor(ratio_x), 0, ABL_BG_POINTS_X - 1),
  8095. gridy = constrain(floor(ratio_y), 0, ABL_BG_POINTS_Y - 1),
  8096. nextx = min(gridx + 1, ABL_BG_POINTS_X - 1),
  8097. nexty = min(gridy + 1, ABL_BG_POINTS_Y - 1);
  8098. // Subtract whole to get the ratio within the grid box
  8099. ratio_x -= gridx; ratio_y -= gridy;
  8100. // Never less than 0.0. (Over 1.0 is fine due to previous contraints.)
  8101. NOLESS(ratio_x, 0); NOLESS(ratio_y, 0);
  8102. // Z at the box corners
  8103. const float z1 = ABL_BG_GRID(gridx, gridy), // left-front
  8104. z2 = ABL_BG_GRID(gridx, nexty), // left-back
  8105. z3 = ABL_BG_GRID(nextx, gridy), // right-front
  8106. z4 = ABL_BG_GRID(nextx, nexty), // right-back
  8107. // Bilinear interpolate
  8108. L = z1 + (z2 - z1) * ratio_y, // Linear interp. LF -> LB
  8109. R = z3 + (z4 - z3) * ratio_y, // Linear interp. RF -> RB
  8110. offset = L + ratio_x * (R - L);
  8111. /*
  8112. static float last_offset = 0;
  8113. if (fabs(last_offset - offset) > 0.2) {
  8114. SERIAL_ECHOPGM("Sudden Shift at ");
  8115. SERIAL_ECHOPAIR("x=", x);
  8116. SERIAL_ECHOPAIR(" / ", bilinear_grid_spacing[X_AXIS]);
  8117. SERIAL_ECHOLNPAIR(" -> gridx=", gridx);
  8118. SERIAL_ECHOPAIR(" y=", y);
  8119. SERIAL_ECHOPAIR(" / ", bilinear_grid_spacing[Y_AXIS]);
  8120. SERIAL_ECHOLNPAIR(" -> gridy=", gridy);
  8121. SERIAL_ECHOPAIR(" ratio_x=", ratio_x);
  8122. SERIAL_ECHOLNPAIR(" ratio_y=", ratio_y);
  8123. SERIAL_ECHOPAIR(" z1=", z1);
  8124. SERIAL_ECHOPAIR(" z2=", z2);
  8125. SERIAL_ECHOPAIR(" z3=", z3);
  8126. SERIAL_ECHOLNPAIR(" z4=", z4);
  8127. SERIAL_ECHOPAIR(" L=", L);
  8128. SERIAL_ECHOPAIR(" R=", R);
  8129. SERIAL_ECHOLNPAIR(" offset=", offset);
  8130. }
  8131. last_offset = offset;
  8132. */
  8133. return offset;
  8134. }
  8135. #endif // AUTO_BED_LEVELING_BILINEAR
  8136. #if ENABLED(DELTA)
  8137. /**
  8138. * Recalculate factors used for delta kinematics whenever
  8139. * settings have been changed (e.g., by M665).
  8140. */
  8141. void recalc_delta_settings(float radius, float diagonal_rod) {
  8142. delta_tower[A_AXIS][X_AXIS] = -sin(RADIANS(60 - delta_tower_angle_trim[A_AXIS])) * (radius + DELTA_RADIUS_TRIM_TOWER_1); // front left tower
  8143. delta_tower[A_AXIS][Y_AXIS] = -cos(RADIANS(60 - delta_tower_angle_trim[A_AXIS])) * (radius + DELTA_RADIUS_TRIM_TOWER_1);
  8144. delta_tower[B_AXIS][X_AXIS] = sin(RADIANS(60 + delta_tower_angle_trim[B_AXIS])) * (radius + DELTA_RADIUS_TRIM_TOWER_2); // front right tower
  8145. delta_tower[B_AXIS][Y_AXIS] = -cos(RADIANS(60 + delta_tower_angle_trim[B_AXIS])) * (radius + DELTA_RADIUS_TRIM_TOWER_2);
  8146. delta_tower[C_AXIS][X_AXIS] = -sin(RADIANS( delta_tower_angle_trim[C_AXIS])) * (radius + DELTA_RADIUS_TRIM_TOWER_3); // back middle tower
  8147. delta_tower[C_AXIS][Y_AXIS] = cos(RADIANS( delta_tower_angle_trim[C_AXIS])) * (radius + DELTA_RADIUS_TRIM_TOWER_3);
  8148. delta_diagonal_rod_2_tower[A_AXIS] = sq(diagonal_rod + delta_diagonal_rod_trim[A_AXIS]);
  8149. delta_diagonal_rod_2_tower[B_AXIS] = sq(diagonal_rod + delta_diagonal_rod_trim[B_AXIS]);
  8150. delta_diagonal_rod_2_tower[C_AXIS] = sq(diagonal_rod + delta_diagonal_rod_trim[C_AXIS]);
  8151. }
  8152. #if ENABLED(DELTA_FAST_SQRT)
  8153. /**
  8154. * Fast inverse sqrt from Quake III Arena
  8155. * See: https://en.wikipedia.org/wiki/Fast_inverse_square_root
  8156. */
  8157. float Q_rsqrt(float number) {
  8158. long i;
  8159. float x2, y;
  8160. const float threehalfs = 1.5f;
  8161. x2 = number * 0.5f;
  8162. y = number;
  8163. i = * ( long * ) &y; // evil floating point bit level hacking
  8164. i = 0x5f3759df - ( i >> 1 ); // what the f***?
  8165. y = * ( float * ) &i;
  8166. y = y * ( threehalfs - ( x2 * y * y ) ); // 1st iteration
  8167. // y = y * ( threehalfs - ( x2 * y * y ) ); // 2nd iteration, this can be removed
  8168. return y;
  8169. }
  8170. #define _SQRT(n) (1.0f / Q_rsqrt(n))
  8171. #else
  8172. #define _SQRT(n) sqrt(n)
  8173. #endif
  8174. /**
  8175. * Delta Inverse Kinematics
  8176. *
  8177. * Calculate the tower positions for a given logical
  8178. * position, storing the result in the delta[] array.
  8179. *
  8180. * This is an expensive calculation, requiring 3 square
  8181. * roots per segmented linear move, and strains the limits
  8182. * of a Mega2560 with a Graphical Display.
  8183. *
  8184. * Suggested optimizations include:
  8185. *
  8186. * - Disable the home_offset (M206) and/or position_shift (G92)
  8187. * features to remove up to 12 float additions.
  8188. *
  8189. * - Use a fast-inverse-sqrt function and add the reciprocal.
  8190. * (see above)
  8191. */
  8192. // Macro to obtain the Z position of an individual tower
  8193. #define DELTA_Z(T) raw[Z_AXIS] + _SQRT( \
  8194. delta_diagonal_rod_2_tower[T] - HYPOT2( \
  8195. delta_tower[T][X_AXIS] - raw[X_AXIS], \
  8196. delta_tower[T][Y_AXIS] - raw[Y_AXIS] \
  8197. ) \
  8198. )
  8199. #define DELTA_RAW_IK() do { \
  8200. delta[A_AXIS] = DELTA_Z(A_AXIS); \
  8201. delta[B_AXIS] = DELTA_Z(B_AXIS); \
  8202. delta[C_AXIS] = DELTA_Z(C_AXIS); \
  8203. } while(0)
  8204. #define DELTA_LOGICAL_IK() do { \
  8205. const float raw[XYZ] = { \
  8206. RAW_X_POSITION(logical[X_AXIS]), \
  8207. RAW_Y_POSITION(logical[Y_AXIS]), \
  8208. RAW_Z_POSITION(logical[Z_AXIS]) \
  8209. }; \
  8210. DELTA_RAW_IK(); \
  8211. } while(0)
  8212. #define DELTA_DEBUG() do { \
  8213. SERIAL_ECHOPAIR("cartesian X:", raw[X_AXIS]); \
  8214. SERIAL_ECHOPAIR(" Y:", raw[Y_AXIS]); \
  8215. SERIAL_ECHOLNPAIR(" Z:", raw[Z_AXIS]); \
  8216. SERIAL_ECHOPAIR("delta A:", delta[A_AXIS]); \
  8217. SERIAL_ECHOPAIR(" B:", delta[B_AXIS]); \
  8218. SERIAL_ECHOLNPAIR(" C:", delta[C_AXIS]); \
  8219. } while(0)
  8220. void inverse_kinematics(const float logical[XYZ]) {
  8221. DELTA_LOGICAL_IK();
  8222. // DELTA_DEBUG();
  8223. }
  8224. /**
  8225. * Calculate the highest Z position where the
  8226. * effector has the full range of XY motion.
  8227. */
  8228. float delta_safe_distance_from_top() {
  8229. float cartesian[XYZ] = {
  8230. LOGICAL_X_POSITION(0),
  8231. LOGICAL_Y_POSITION(0),
  8232. LOGICAL_Z_POSITION(0)
  8233. };
  8234. inverse_kinematics(cartesian);
  8235. float distance = delta[A_AXIS];
  8236. cartesian[Y_AXIS] = LOGICAL_Y_POSITION(DELTA_PRINTABLE_RADIUS);
  8237. inverse_kinematics(cartesian);
  8238. return abs(distance - delta[A_AXIS]);
  8239. }
  8240. /**
  8241. * Delta Forward Kinematics
  8242. *
  8243. * See the Wikipedia article "Trilateration"
  8244. * https://en.wikipedia.org/wiki/Trilateration
  8245. *
  8246. * Establish a new coordinate system in the plane of the
  8247. * three carriage points. This system has its origin at
  8248. * tower1, with tower2 on the X axis. Tower3 is in the X-Y
  8249. * plane with a Z component of zero.
  8250. * We will define unit vectors in this coordinate system
  8251. * in our original coordinate system. Then when we calculate
  8252. * the Xnew, Ynew and Znew values, we can translate back into
  8253. * the original system by moving along those unit vectors
  8254. * by the corresponding values.
  8255. *
  8256. * Variable names matched to Marlin, c-version, and avoid the
  8257. * use of any vector library.
  8258. *
  8259. * by Andreas Hardtung 2016-06-07
  8260. * based on a Java function from "Delta Robot Kinematics V3"
  8261. * by Steve Graves
  8262. *
  8263. * The result is stored in the cartes[] array.
  8264. */
  8265. void forward_kinematics_DELTA(float z1, float z2, float z3) {
  8266. // Create a vector in old coordinates along x axis of new coordinate
  8267. float p12[3] = { delta_tower[B_AXIS][X_AXIS] - delta_tower[A_AXIS][X_AXIS], delta_tower[B_AXIS][Y_AXIS] - delta_tower[A_AXIS][Y_AXIS], z2 - z1 };
  8268. // Get the Magnitude of vector.
  8269. float d = sqrt( sq(p12[0]) + sq(p12[1]) + sq(p12[2]) );
  8270. // Create unit vector by dividing by magnitude.
  8271. float ex[3] = { p12[0] / d, p12[1] / d, p12[2] / d };
  8272. // Get the vector from the origin of the new system to the third point.
  8273. float p13[3] = { delta_tower[C_AXIS][X_AXIS] - delta_tower[A_AXIS][X_AXIS], delta_tower[C_AXIS][Y_AXIS] - delta_tower[A_AXIS][Y_AXIS], z3 - z1 };
  8274. // Use the dot product to find the component of this vector on the X axis.
  8275. float i = ex[0] * p13[0] + ex[1] * p13[1] + ex[2] * p13[2];
  8276. // Create a vector along the x axis that represents the x component of p13.
  8277. float iex[3] = { ex[0] * i, ex[1] * i, ex[2] * i };
  8278. // Subtract the X component from the original vector leaving only Y. We use the
  8279. // variable that will be the unit vector after we scale it.
  8280. float ey[3] = { p13[0] - iex[0], p13[1] - iex[1], p13[2] - iex[2] };
  8281. // The magnitude of Y component
  8282. float j = sqrt( sq(ey[0]) + sq(ey[1]) + sq(ey[2]) );
  8283. // Convert to a unit vector
  8284. ey[0] /= j; ey[1] /= j; ey[2] /= j;
  8285. // The cross product of the unit x and y is the unit z
  8286. // float[] ez = vectorCrossProd(ex, ey);
  8287. float ez[3] = {
  8288. ex[1] * ey[2] - ex[2] * ey[1],
  8289. ex[2] * ey[0] - ex[0] * ey[2],
  8290. ex[0] * ey[1] - ex[1] * ey[0]
  8291. };
  8292. // We now have the d, i and j values defined in Wikipedia.
  8293. // Plug them into the equations defined in Wikipedia for Xnew, Ynew and Znew
  8294. float Xnew = (delta_diagonal_rod_2_tower[A_AXIS] - delta_diagonal_rod_2_tower[B_AXIS] + sq(d)) / (d * 2),
  8295. Ynew = ((delta_diagonal_rod_2_tower[A_AXIS] - delta_diagonal_rod_2_tower[C_AXIS] + HYPOT2(i, j)) / 2 - i * Xnew) / j,
  8296. Znew = sqrt(delta_diagonal_rod_2_tower[A_AXIS] - HYPOT2(Xnew, Ynew));
  8297. // Start from the origin of the old coordinates and add vectors in the
  8298. // old coords that represent the Xnew, Ynew and Znew to find the point
  8299. // in the old system.
  8300. cartes[X_AXIS] = delta_tower[A_AXIS][X_AXIS] + ex[0] * Xnew + ey[0] * Ynew - ez[0] * Znew;
  8301. cartes[Y_AXIS] = delta_tower[A_AXIS][Y_AXIS] + ex[1] * Xnew + ey[1] * Ynew - ez[1] * Znew;
  8302. cartes[Z_AXIS] = z1 + ex[2] * Xnew + ey[2] * Ynew - ez[2] * Znew;
  8303. }
  8304. void forward_kinematics_DELTA(float point[ABC]) {
  8305. forward_kinematics_DELTA(point[A_AXIS], point[B_AXIS], point[C_AXIS]);
  8306. }
  8307. #endif // DELTA
  8308. /**
  8309. * Get the stepper positions in the cartes[] array.
  8310. * Forward kinematics are applied for DELTA and SCARA.
  8311. *
  8312. * The result is in the current coordinate space with
  8313. * leveling applied. The coordinates need to be run through
  8314. * unapply_leveling to obtain the "ideal" coordinates
  8315. * suitable for current_position, etc.
  8316. */
  8317. void get_cartesian_from_steppers() {
  8318. #if ENABLED(DELTA)
  8319. forward_kinematics_DELTA(
  8320. stepper.get_axis_position_mm(A_AXIS),
  8321. stepper.get_axis_position_mm(B_AXIS),
  8322. stepper.get_axis_position_mm(C_AXIS)
  8323. );
  8324. cartes[X_AXIS] += LOGICAL_X_POSITION(0);
  8325. cartes[Y_AXIS] += LOGICAL_Y_POSITION(0);
  8326. cartes[Z_AXIS] += LOGICAL_Z_POSITION(0);
  8327. #elif IS_SCARA
  8328. forward_kinematics_SCARA(
  8329. stepper.get_axis_position_degrees(A_AXIS),
  8330. stepper.get_axis_position_degrees(B_AXIS)
  8331. );
  8332. cartes[X_AXIS] += LOGICAL_X_POSITION(0);
  8333. cartes[Y_AXIS] += LOGICAL_Y_POSITION(0);
  8334. cartes[Z_AXIS] = stepper.get_axis_position_mm(Z_AXIS);
  8335. #else
  8336. cartes[X_AXIS] = stepper.get_axis_position_mm(X_AXIS);
  8337. cartes[Y_AXIS] = stepper.get_axis_position_mm(Y_AXIS);
  8338. cartes[Z_AXIS] = stepper.get_axis_position_mm(Z_AXIS);
  8339. #endif
  8340. }
  8341. /**
  8342. * Set the current_position for an axis based on
  8343. * the stepper positions, removing any leveling that
  8344. * may have been applied.
  8345. */
  8346. void set_current_from_steppers_for_axis(const AxisEnum axis) {
  8347. get_cartesian_from_steppers();
  8348. #if PLANNER_LEVELING && DISABLED(AUTO_BED_LEVELING_UBL)
  8349. planner.unapply_leveling(cartes);
  8350. #endif
  8351. if (axis == ALL_AXES)
  8352. COPY(current_position, cartes);
  8353. else
  8354. current_position[axis] = cartes[axis];
  8355. }
  8356. #if ENABLED(MESH_BED_LEVELING)
  8357. /**
  8358. * Prepare a mesh-leveled linear move in a Cartesian setup,
  8359. * splitting the move where it crosses mesh borders.
  8360. */
  8361. void mesh_line_to_destination(float fr_mm_s, uint8_t x_splits = 0xff, uint8_t y_splits = 0xff) {
  8362. int cx1 = mbl.cell_index_x(RAW_CURRENT_POSITION(X_AXIS)),
  8363. cy1 = mbl.cell_index_y(RAW_CURRENT_POSITION(Y_AXIS)),
  8364. cx2 = mbl.cell_index_x(RAW_X_POSITION(destination[X_AXIS])),
  8365. cy2 = mbl.cell_index_y(RAW_Y_POSITION(destination[Y_AXIS]));
  8366. NOMORE(cx1, MESH_NUM_X_POINTS - 2);
  8367. NOMORE(cy1, MESH_NUM_Y_POINTS - 2);
  8368. NOMORE(cx2, MESH_NUM_X_POINTS - 2);
  8369. NOMORE(cy2, MESH_NUM_Y_POINTS - 2);
  8370. if (cx1 == cx2 && cy1 == cy2) {
  8371. // Start and end on same mesh square
  8372. line_to_destination(fr_mm_s);
  8373. set_current_to_destination();
  8374. return;
  8375. }
  8376. #define MBL_SEGMENT_END(A) (current_position[A ##_AXIS] + (destination[A ##_AXIS] - current_position[A ##_AXIS]) * normalized_dist)
  8377. float normalized_dist, end[XYZE];
  8378. // Split at the left/front border of the right/top square
  8379. const int8_t gcx = max(cx1, cx2), gcy = max(cy1, cy2);
  8380. if (cx2 != cx1 && TEST(x_splits, gcx)) {
  8381. COPY(end, destination);
  8382. destination[X_AXIS] = LOGICAL_X_POSITION(mbl.index_to_xpos[gcx]);
  8383. normalized_dist = (destination[X_AXIS] - current_position[X_AXIS]) / (end[X_AXIS] - current_position[X_AXIS]);
  8384. destination[Y_AXIS] = MBL_SEGMENT_END(Y);
  8385. CBI(x_splits, gcx);
  8386. }
  8387. else if (cy2 != cy1 && TEST(y_splits, gcy)) {
  8388. COPY(end, destination);
  8389. destination[Y_AXIS] = LOGICAL_Y_POSITION(mbl.index_to_ypos[gcy]);
  8390. normalized_dist = (destination[Y_AXIS] - current_position[Y_AXIS]) / (end[Y_AXIS] - current_position[Y_AXIS]);
  8391. destination[X_AXIS] = MBL_SEGMENT_END(X);
  8392. CBI(y_splits, gcy);
  8393. }
  8394. else {
  8395. // Already split on a border
  8396. line_to_destination(fr_mm_s);
  8397. set_current_to_destination();
  8398. return;
  8399. }
  8400. destination[Z_AXIS] = MBL_SEGMENT_END(Z);
  8401. destination[E_AXIS] = MBL_SEGMENT_END(E);
  8402. // Do the split and look for more borders
  8403. mesh_line_to_destination(fr_mm_s, x_splits, y_splits);
  8404. // Restore destination from stack
  8405. COPY(destination, end);
  8406. mesh_line_to_destination(fr_mm_s, x_splits, y_splits);
  8407. }
  8408. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR) && !IS_KINEMATIC
  8409. #define CELL_INDEX(A,V) ((RAW_##A##_POSITION(V) - bilinear_start[A##_AXIS]) / ABL_BG_SPACING(A##_AXIS))
  8410. /**
  8411. * Prepare a bilinear-leveled linear move on Cartesian,
  8412. * splitting the move where it crosses grid borders.
  8413. */
  8414. void bilinear_line_to_destination(float fr_mm_s, uint16_t x_splits = 0xFFFF, uint16_t y_splits = 0xFFFF) {
  8415. int cx1 = CELL_INDEX(X, current_position[X_AXIS]),
  8416. cy1 = CELL_INDEX(Y, current_position[Y_AXIS]),
  8417. cx2 = CELL_INDEX(X, destination[X_AXIS]),
  8418. cy2 = CELL_INDEX(Y, destination[Y_AXIS]);
  8419. cx1 = constrain(cx1, 0, ABL_BG_POINTS_X - 2);
  8420. cy1 = constrain(cy1, 0, ABL_BG_POINTS_Y - 2);
  8421. cx2 = constrain(cx2, 0, ABL_BG_POINTS_X - 2);
  8422. cy2 = constrain(cy2, 0, ABL_BG_POINTS_Y - 2);
  8423. if (cx1 == cx2 && cy1 == cy2) {
  8424. // Start and end on same mesh square
  8425. line_to_destination(fr_mm_s);
  8426. set_current_to_destination();
  8427. return;
  8428. }
  8429. #define LINE_SEGMENT_END(A) (current_position[A ##_AXIS] + (destination[A ##_AXIS] - current_position[A ##_AXIS]) * normalized_dist)
  8430. float normalized_dist, end[XYZE];
  8431. // Split at the left/front border of the right/top square
  8432. const int8_t gcx = max(cx1, cx2), gcy = max(cy1, cy2);
  8433. if (cx2 != cx1 && TEST(x_splits, gcx)) {
  8434. COPY(end, destination);
  8435. destination[X_AXIS] = LOGICAL_X_POSITION(bilinear_start[X_AXIS] + ABL_BG_SPACING(X_AXIS) * gcx);
  8436. normalized_dist = (destination[X_AXIS] - current_position[X_AXIS]) / (end[X_AXIS] - current_position[X_AXIS]);
  8437. destination[Y_AXIS] = LINE_SEGMENT_END(Y);
  8438. CBI(x_splits, gcx);
  8439. }
  8440. else if (cy2 != cy1 && TEST(y_splits, gcy)) {
  8441. COPY(end, destination);
  8442. destination[Y_AXIS] = LOGICAL_Y_POSITION(bilinear_start[Y_AXIS] + ABL_BG_SPACING(Y_AXIS) * gcy);
  8443. normalized_dist = (destination[Y_AXIS] - current_position[Y_AXIS]) / (end[Y_AXIS] - current_position[Y_AXIS]);
  8444. destination[X_AXIS] = LINE_SEGMENT_END(X);
  8445. CBI(y_splits, gcy);
  8446. }
  8447. else {
  8448. // Already split on a border
  8449. line_to_destination(fr_mm_s);
  8450. set_current_to_destination();
  8451. return;
  8452. }
  8453. destination[Z_AXIS] = LINE_SEGMENT_END(Z);
  8454. destination[E_AXIS] = LINE_SEGMENT_END(E);
  8455. // Do the split and look for more borders
  8456. bilinear_line_to_destination(fr_mm_s, x_splits, y_splits);
  8457. // Restore destination from stack
  8458. COPY(destination, end);
  8459. bilinear_line_to_destination(fr_mm_s, x_splits, y_splits);
  8460. }
  8461. #endif // AUTO_BED_LEVELING_BILINEAR
  8462. #if IS_KINEMATIC
  8463. /**
  8464. * Prepare a linear move in a DELTA or SCARA setup.
  8465. *
  8466. * This calls planner.buffer_line several times, adding
  8467. * small incremental moves for DELTA or SCARA.
  8468. */
  8469. inline bool prepare_kinematic_move_to(float ltarget[XYZE]) {
  8470. // Get the top feedrate of the move in the XY plane
  8471. float _feedrate_mm_s = MMS_SCALED(feedrate_mm_s);
  8472. // If the move is only in Z/E don't split up the move
  8473. if (ltarget[X_AXIS] == current_position[X_AXIS] && ltarget[Y_AXIS] == current_position[Y_AXIS]) {
  8474. planner.buffer_line_kinematic(ltarget, _feedrate_mm_s, active_extruder);
  8475. return true;
  8476. }
  8477. // Get the cartesian distances moved in XYZE
  8478. float difference[XYZE];
  8479. LOOP_XYZE(i) difference[i] = ltarget[i] - current_position[i];
  8480. // Get the linear distance in XYZ
  8481. float cartesian_mm = sqrt(sq(difference[X_AXIS]) + sq(difference[Y_AXIS]) + sq(difference[Z_AXIS]));
  8482. // If the move is very short, check the E move distance
  8483. if (UNEAR_ZERO(cartesian_mm)) cartesian_mm = abs(difference[E_AXIS]);
  8484. // No E move either? Game over.
  8485. if (UNEAR_ZERO(cartesian_mm)) return false;
  8486. // Minimum number of seconds to move the given distance
  8487. float seconds = cartesian_mm / _feedrate_mm_s;
  8488. // The number of segments-per-second times the duration
  8489. // gives the number of segments
  8490. uint16_t segments = delta_segments_per_second * seconds;
  8491. // For SCARA minimum segment size is 0.25mm
  8492. #if IS_SCARA
  8493. NOMORE(segments, cartesian_mm * 4);
  8494. #endif
  8495. // At least one segment is required
  8496. NOLESS(segments, 1);
  8497. // The approximate length of each segment
  8498. const float inv_segments = 1.0 / float(segments),
  8499. segment_distance[XYZE] = {
  8500. difference[X_AXIS] * inv_segments,
  8501. difference[Y_AXIS] * inv_segments,
  8502. difference[Z_AXIS] * inv_segments,
  8503. difference[E_AXIS] * inv_segments
  8504. };
  8505. // SERIAL_ECHOPAIR("mm=", cartesian_mm);
  8506. // SERIAL_ECHOPAIR(" seconds=", seconds);
  8507. // SERIAL_ECHOLNPAIR(" segments=", segments);
  8508. #if IS_SCARA
  8509. // SCARA needs to scale the feed rate from mm/s to degrees/s
  8510. const float inv_segment_length = min(10.0, float(segments) / cartesian_mm), // 1/mm/segs
  8511. feed_factor = inv_segment_length * _feedrate_mm_s;
  8512. float oldA = stepper.get_axis_position_degrees(A_AXIS),
  8513. oldB = stepper.get_axis_position_degrees(B_AXIS);
  8514. #endif
  8515. // Get the logical current position as starting point
  8516. float logical[XYZE];
  8517. COPY(logical, current_position);
  8518. // Drop one segment so the last move is to the exact target.
  8519. // If there's only 1 segment, loops will be skipped entirely.
  8520. --segments;
  8521. // Calculate and execute the segments
  8522. for (uint16_t s = segments + 1; --s;) {
  8523. LOOP_XYZE(i) logical[i] += segment_distance[i];
  8524. #if ENABLED(DELTA)
  8525. DELTA_LOGICAL_IK(); // Delta can inline its kinematics
  8526. #else
  8527. inverse_kinematics(logical);
  8528. #endif
  8529. ADJUST_DELTA(logical); // Adjust Z if bed leveling is enabled
  8530. #if IS_SCARA
  8531. // For SCARA scale the feed rate from mm/s to degrees/s
  8532. // Use ratio between the length of the move and the larger angle change
  8533. const float adiff = abs(delta[A_AXIS] - oldA),
  8534. bdiff = abs(delta[B_AXIS] - oldB);
  8535. planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], logical[E_AXIS], max(adiff, bdiff) * feed_factor, active_extruder);
  8536. oldA = delta[A_AXIS];
  8537. oldB = delta[B_AXIS];
  8538. #else
  8539. planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], logical[E_AXIS], _feedrate_mm_s, active_extruder);
  8540. #endif
  8541. }
  8542. // Since segment_distance is only approximate,
  8543. // the final move must be to the exact destination.
  8544. #if IS_SCARA
  8545. // For SCARA scale the feed rate from mm/s to degrees/s
  8546. // With segments > 1 length is 1 segment, otherwise total length
  8547. inverse_kinematics(ltarget);
  8548. ADJUST_DELTA(logical);
  8549. const float adiff = abs(delta[A_AXIS] - oldA),
  8550. bdiff = abs(delta[B_AXIS] - oldB);
  8551. planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], logical[E_AXIS], max(adiff, bdiff) * feed_factor, active_extruder);
  8552. #else
  8553. planner.buffer_line_kinematic(ltarget, _feedrate_mm_s, active_extruder);
  8554. #endif
  8555. return true;
  8556. }
  8557. #else // !IS_KINEMATIC
  8558. /**
  8559. * Prepare a linear move in a Cartesian setup.
  8560. * If Mesh Bed Leveling is enabled, perform a mesh move.
  8561. *
  8562. * Returns true if the caller didn't update current_position.
  8563. */
  8564. inline bool prepare_move_to_destination_cartesian() {
  8565. // Do not use feedrate_percentage for E or Z only moves
  8566. if (current_position[X_AXIS] == destination[X_AXIS] && current_position[Y_AXIS] == destination[Y_AXIS]) {
  8567. line_to_destination();
  8568. }
  8569. else {
  8570. #if ENABLED(MESH_BED_LEVELING)
  8571. if (mbl.active()) {
  8572. mesh_line_to_destination(MMS_SCALED(feedrate_mm_s));
  8573. return false;
  8574. }
  8575. else
  8576. #elif ENABLED(AUTO_BED_LEVELING_UBL)
  8577. if (ubl.state.active) {
  8578. ubl_line_to_destination(MMS_SCALED(feedrate_mm_s), active_extruder);
  8579. return false;
  8580. }
  8581. else
  8582. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  8583. if (planner.abl_enabled) {
  8584. bilinear_line_to_destination(MMS_SCALED(feedrate_mm_s));
  8585. return false;
  8586. }
  8587. else
  8588. #endif
  8589. line_to_destination(MMS_SCALED(feedrate_mm_s));
  8590. }
  8591. return true;
  8592. }
  8593. #endif // !IS_KINEMATIC
  8594. #if ENABLED(DUAL_X_CARRIAGE)
  8595. /**
  8596. * Prepare a linear move in a dual X axis setup
  8597. */
  8598. inline bool prepare_move_to_destination_dualx() {
  8599. if (active_extruder_parked) {
  8600. switch (dual_x_carriage_mode) {
  8601. case DXC_FULL_CONTROL_MODE:
  8602. break;
  8603. case DXC_AUTO_PARK_MODE:
  8604. if (current_position[E_AXIS] == destination[E_AXIS]) {
  8605. // This is a travel move (with no extrusion)
  8606. // Skip it, but keep track of the current position
  8607. // (so it can be used as the start of the next non-travel move)
  8608. if (delayed_move_time != 0xFFFFFFFFUL) {
  8609. set_current_to_destination();
  8610. NOLESS(raised_parked_position[Z_AXIS], destination[Z_AXIS]);
  8611. delayed_move_time = millis();
  8612. return false;
  8613. }
  8614. }
  8615. // unpark extruder: 1) raise, 2) move into starting XY position, 3) lower
  8616. for (uint8_t i = 0; i < 3; i++)
  8617. planner.buffer_line(
  8618. i == 0 ? raised_parked_position[X_AXIS] : current_position[X_AXIS],
  8619. i == 0 ? raised_parked_position[Y_AXIS] : current_position[Y_AXIS],
  8620. i == 2 ? current_position[Z_AXIS] : raised_parked_position[Z_AXIS],
  8621. current_position[E_AXIS],
  8622. i == 1 ? PLANNER_XY_FEEDRATE() : planner.max_feedrate_mm_s[Z_AXIS],
  8623. active_extruder
  8624. );
  8625. delayed_move_time = 0;
  8626. active_extruder_parked = false;
  8627. break;
  8628. case DXC_DUPLICATION_MODE:
  8629. if (active_extruder == 0) {
  8630. // move duplicate extruder into correct duplication position.
  8631. planner.set_position_mm(
  8632. LOGICAL_X_POSITION(inactive_extruder_x_pos),
  8633. current_position[Y_AXIS],
  8634. current_position[Z_AXIS],
  8635. current_position[E_AXIS]
  8636. );
  8637. planner.buffer_line(
  8638. current_position[X_AXIS] + duplicate_extruder_x_offset,
  8639. current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS],
  8640. planner.max_feedrate_mm_s[X_AXIS], 1
  8641. );
  8642. SYNC_PLAN_POSITION_KINEMATIC();
  8643. stepper.synchronize();
  8644. extruder_duplication_enabled = true;
  8645. active_extruder_parked = false;
  8646. }
  8647. break;
  8648. }
  8649. }
  8650. return true;
  8651. }
  8652. #endif // DUAL_X_CARRIAGE
  8653. /**
  8654. * Prepare a single move and get ready for the next one
  8655. *
  8656. * This may result in several calls to planner.buffer_line to
  8657. * do smaller moves for DELTA, SCARA, mesh moves, etc.
  8658. */
  8659. void prepare_move_to_destination() {
  8660. clamp_to_software_endstops(destination);
  8661. refresh_cmd_timeout();
  8662. #if ENABLED(PREVENT_COLD_EXTRUSION)
  8663. if (!DEBUGGING(DRYRUN)) {
  8664. if (destination[E_AXIS] != current_position[E_AXIS]) {
  8665. if (thermalManager.tooColdToExtrude(active_extruder)) {
  8666. current_position[E_AXIS] = destination[E_AXIS]; // Behave as if the move really took place, but ignore E part
  8667. SERIAL_ECHO_START;
  8668. SERIAL_ECHOLNPGM(MSG_ERR_COLD_EXTRUDE_STOP);
  8669. }
  8670. #if ENABLED(PREVENT_LENGTHY_EXTRUDE)
  8671. if (labs(destination[E_AXIS] - current_position[E_AXIS]) > EXTRUDE_MAXLENGTH) {
  8672. current_position[E_AXIS] = destination[E_AXIS]; // Behave as if the move really took place, but ignore E part
  8673. SERIAL_ECHO_START;
  8674. SERIAL_ECHOLNPGM(MSG_ERR_LONG_EXTRUDE_STOP);
  8675. }
  8676. #endif
  8677. }
  8678. }
  8679. #endif
  8680. #if IS_KINEMATIC
  8681. if (!prepare_kinematic_move_to(destination)) return;
  8682. #else
  8683. #if ENABLED(DUAL_X_CARRIAGE)
  8684. if (!prepare_move_to_destination_dualx()) return;
  8685. #endif
  8686. if (!prepare_move_to_destination_cartesian()) return;
  8687. #endif
  8688. set_current_to_destination();
  8689. }
  8690. #if ENABLED(ARC_SUPPORT)
  8691. /**
  8692. * Plan an arc in 2 dimensions
  8693. *
  8694. * The arc is approximated by generating many small linear segments.
  8695. * The length of each segment is configured in MM_PER_ARC_SEGMENT (Default 1mm)
  8696. * Arcs should only be made relatively large (over 5mm), as larger arcs with
  8697. * larger segments will tend to be more efficient. Your slicer should have
  8698. * options for G2/G3 arc generation. In future these options may be GCode tunable.
  8699. */
  8700. void plan_arc(
  8701. float logical[XYZE], // Destination position
  8702. float* offset, // Center of rotation relative to current_position
  8703. uint8_t clockwise // Clockwise?
  8704. ) {
  8705. float radius = HYPOT(offset[X_AXIS], offset[Y_AXIS]),
  8706. center_X = current_position[X_AXIS] + offset[X_AXIS],
  8707. center_Y = current_position[Y_AXIS] + offset[Y_AXIS],
  8708. linear_travel = logical[Z_AXIS] - current_position[Z_AXIS],
  8709. extruder_travel = logical[E_AXIS] - current_position[E_AXIS],
  8710. r_X = -offset[X_AXIS], // Radius vector from center to current location
  8711. r_Y = -offset[Y_AXIS],
  8712. rt_X = logical[X_AXIS] - center_X,
  8713. rt_Y = logical[Y_AXIS] - center_Y;
  8714. // CCW angle of rotation between position and target from the circle center. Only one atan2() trig computation required.
  8715. float angular_travel = atan2(r_X * rt_Y - r_Y * rt_X, r_X * rt_X + r_Y * rt_Y);
  8716. if (angular_travel < 0) angular_travel += RADIANS(360);
  8717. if (clockwise) angular_travel -= RADIANS(360);
  8718. // Make a circle if the angular rotation is 0
  8719. if (angular_travel == 0 && current_position[X_AXIS] == logical[X_AXIS] && current_position[Y_AXIS] == logical[Y_AXIS])
  8720. angular_travel += RADIANS(360);
  8721. float mm_of_travel = HYPOT(angular_travel * radius, fabs(linear_travel));
  8722. if (mm_of_travel < 0.001) return;
  8723. uint16_t segments = floor(mm_of_travel / (MM_PER_ARC_SEGMENT));
  8724. if (segments == 0) segments = 1;
  8725. /**
  8726. * Vector rotation by transformation matrix: r is the original vector, r_T is the rotated vector,
  8727. * and phi is the angle of rotation. Based on the solution approach by Jens Geisler.
  8728. * r_T = [cos(phi) -sin(phi);
  8729. * sin(phi) cos(phi)] * r ;
  8730. *
  8731. * For arc generation, the center of the circle is the axis of rotation and the radius vector is
  8732. * defined from the circle center to the initial position. Each line segment is formed by successive
  8733. * vector rotations. This requires only two cos() and sin() computations to form the rotation
  8734. * matrix for the duration of the entire arc. Error may accumulate from numerical round-off, since
  8735. * all double numbers are single precision on the Arduino. (True double precision will not have
  8736. * round off issues for CNC applications.) Single precision error can accumulate to be greater than
  8737. * tool precision in some cases. Therefore, arc path correction is implemented.
  8738. *
  8739. * Small angle approximation may be used to reduce computation overhead further. This approximation
  8740. * holds for everything, but very small circles and large MM_PER_ARC_SEGMENT values. In other words,
  8741. * theta_per_segment would need to be greater than 0.1 rad and N_ARC_CORRECTION would need to be large
  8742. * to cause an appreciable drift error. N_ARC_CORRECTION~=25 is more than small enough to correct for
  8743. * numerical drift error. N_ARC_CORRECTION may be on the order a hundred(s) before error becomes an
  8744. * issue for CNC machines with the single precision Arduino calculations.
  8745. *
  8746. * This approximation also allows plan_arc to immediately insert a line segment into the planner
  8747. * without the initial overhead of computing cos() or sin(). By the time the arc needs to be applied
  8748. * a correction, the planner should have caught up to the lag caused by the initial plan_arc overhead.
  8749. * This is important when there are successive arc motions.
  8750. */
  8751. // Vector rotation matrix values
  8752. float arc_target[XYZE],
  8753. theta_per_segment = angular_travel / segments,
  8754. linear_per_segment = linear_travel / segments,
  8755. extruder_per_segment = extruder_travel / segments,
  8756. sin_T = theta_per_segment,
  8757. cos_T = 1 - 0.5 * sq(theta_per_segment); // Small angle approximation
  8758. // Initialize the linear axis
  8759. arc_target[Z_AXIS] = current_position[Z_AXIS];
  8760. // Initialize the extruder axis
  8761. arc_target[E_AXIS] = current_position[E_AXIS];
  8762. float fr_mm_s = MMS_SCALED(feedrate_mm_s);
  8763. millis_t next_idle_ms = millis() + 200UL;
  8764. int8_t count = 0;
  8765. for (uint16_t i = 1; i < segments; i++) { // Iterate (segments-1) times
  8766. thermalManager.manage_heater();
  8767. if (ELAPSED(millis(), next_idle_ms)) {
  8768. next_idle_ms = millis() + 200UL;
  8769. idle();
  8770. }
  8771. if (++count < N_ARC_CORRECTION) {
  8772. // Apply vector rotation matrix to previous r_X / 1
  8773. float r_new_Y = r_X * sin_T + r_Y * cos_T;
  8774. r_X = r_X * cos_T - r_Y * sin_T;
  8775. r_Y = r_new_Y;
  8776. }
  8777. else {
  8778. // Arc correction to radius vector. Computed only every N_ARC_CORRECTION increments.
  8779. // Compute exact location by applying transformation matrix from initial radius vector(=-offset).
  8780. // To reduce stuttering, the sin and cos could be computed at different times.
  8781. // For now, compute both at the same time.
  8782. float cos_Ti = cos(i * theta_per_segment),
  8783. sin_Ti = sin(i * theta_per_segment);
  8784. r_X = -offset[X_AXIS] * cos_Ti + offset[Y_AXIS] * sin_Ti;
  8785. r_Y = -offset[X_AXIS] * sin_Ti - offset[Y_AXIS] * cos_Ti;
  8786. count = 0;
  8787. }
  8788. // Update arc_target location
  8789. arc_target[X_AXIS] = center_X + r_X;
  8790. arc_target[Y_AXIS] = center_Y + r_Y;
  8791. arc_target[Z_AXIS] += linear_per_segment;
  8792. arc_target[E_AXIS] += extruder_per_segment;
  8793. clamp_to_software_endstops(arc_target);
  8794. planner.buffer_line_kinematic(arc_target, fr_mm_s, active_extruder);
  8795. }
  8796. // Ensure last segment arrives at target location.
  8797. planner.buffer_line_kinematic(logical, fr_mm_s, active_extruder);
  8798. // As far as the parser is concerned, the position is now == target. In reality the
  8799. // motion control system might still be processing the action and the real tool position
  8800. // in any intermediate location.
  8801. set_current_to_destination();
  8802. }
  8803. #endif
  8804. #if ENABLED(BEZIER_CURVE_SUPPORT)
  8805. void plan_cubic_move(const float offset[4]) {
  8806. cubic_b_spline(current_position, destination, offset, MMS_SCALED(feedrate_mm_s), active_extruder);
  8807. // As far as the parser is concerned, the position is now == destination. In reality the
  8808. // motion control system might still be processing the action and the real tool position
  8809. // in any intermediate location.
  8810. set_current_to_destination();
  8811. }
  8812. #endif // BEZIER_CURVE_SUPPORT
  8813. #if HAS_CONTROLLERFAN
  8814. void controllerFan() {
  8815. static millis_t lastMotorOn = 0, // Last time a motor was turned on
  8816. nextMotorCheck = 0; // Last time the state was checked
  8817. const millis_t ms = millis();
  8818. if (ELAPSED(ms, nextMotorCheck)) {
  8819. nextMotorCheck = ms + 2500UL; // Not a time critical function, so only check every 2.5s
  8820. if (X_ENABLE_READ == X_ENABLE_ON || Y_ENABLE_READ == Y_ENABLE_ON || Z_ENABLE_READ == Z_ENABLE_ON || thermalManager.soft_pwm_bed > 0
  8821. || E0_ENABLE_READ == E_ENABLE_ON // If any of the drivers are enabled...
  8822. #if E_STEPPERS > 1
  8823. || E1_ENABLE_READ == E_ENABLE_ON
  8824. #if HAS_X2_ENABLE
  8825. || X2_ENABLE_READ == X_ENABLE_ON
  8826. #endif
  8827. #if E_STEPPERS > 2
  8828. || E2_ENABLE_READ == E_ENABLE_ON
  8829. #if E_STEPPERS > 3
  8830. || E3_ENABLE_READ == E_ENABLE_ON
  8831. #endif
  8832. #endif
  8833. #endif
  8834. ) {
  8835. lastMotorOn = ms; //... set time to NOW so the fan will turn on
  8836. }
  8837. // Fan off if no steppers have been enabled for CONTROLLERFAN_SECS seconds
  8838. uint8_t speed = (!lastMotorOn || ELAPSED(ms, lastMotorOn + (CONTROLLERFAN_SECS) * 1000UL)) ? 0 : CONTROLLERFAN_SPEED;
  8839. // allows digital or PWM fan output to be used (see M42 handling)
  8840. digitalWrite(CONTROLLERFAN_PIN, speed);
  8841. analogWrite(CONTROLLERFAN_PIN, speed);
  8842. }
  8843. }
  8844. #endif // HAS_CONTROLLERFAN
  8845. #if ENABLED(MORGAN_SCARA)
  8846. /**
  8847. * Morgan SCARA Forward Kinematics. Results in cartes[].
  8848. * Maths and first version by QHARLEY.
  8849. * Integrated into Marlin and slightly restructured by Joachim Cerny.
  8850. */
  8851. void forward_kinematics_SCARA(const float &a, const float &b) {
  8852. float a_sin = sin(RADIANS(a)) * L1,
  8853. a_cos = cos(RADIANS(a)) * L1,
  8854. b_sin = sin(RADIANS(b)) * L2,
  8855. b_cos = cos(RADIANS(b)) * L2;
  8856. cartes[X_AXIS] = a_cos + b_cos + SCARA_OFFSET_X; //theta
  8857. cartes[Y_AXIS] = a_sin + b_sin + SCARA_OFFSET_Y; //theta+phi
  8858. /*
  8859. SERIAL_ECHOPAIR("SCARA FK Angle a=", a);
  8860. SERIAL_ECHOPAIR(" b=", b);
  8861. SERIAL_ECHOPAIR(" a_sin=", a_sin);
  8862. SERIAL_ECHOPAIR(" a_cos=", a_cos);
  8863. SERIAL_ECHOPAIR(" b_sin=", b_sin);
  8864. SERIAL_ECHOLNPAIR(" b_cos=", b_cos);
  8865. SERIAL_ECHOPAIR(" cartes[X_AXIS]=", cartes[X_AXIS]);
  8866. SERIAL_ECHOLNPAIR(" cartes[Y_AXIS]=", cartes[Y_AXIS]);
  8867. //*/
  8868. }
  8869. /**
  8870. * Morgan SCARA Inverse Kinematics. Results in delta[].
  8871. *
  8872. * See http://forums.reprap.org/read.php?185,283327
  8873. *
  8874. * Maths and first version by QHARLEY.
  8875. * Integrated into Marlin and slightly restructured by Joachim Cerny.
  8876. */
  8877. void inverse_kinematics(const float logical[XYZ]) {
  8878. static float C2, S2, SK1, SK2, THETA, PSI;
  8879. float sx = RAW_X_POSITION(logical[X_AXIS]) - SCARA_OFFSET_X, // Translate SCARA to standard X Y
  8880. sy = RAW_Y_POSITION(logical[Y_AXIS]) - SCARA_OFFSET_Y; // With scaling factor.
  8881. if (L1 == L2)
  8882. C2 = HYPOT2(sx, sy) / L1_2_2 - 1;
  8883. else
  8884. C2 = (HYPOT2(sx, sy) - (L1_2 + L2_2)) / (2.0 * L1 * L2);
  8885. S2 = sqrt(sq(C2) - 1);
  8886. // Unrotated Arm1 plus rotated Arm2 gives the distance from Center to End
  8887. SK1 = L1 + L2 * C2;
  8888. // Rotated Arm2 gives the distance from Arm1 to Arm2
  8889. SK2 = L2 * S2;
  8890. // Angle of Arm1 is the difference between Center-to-End angle and the Center-to-Elbow
  8891. THETA = atan2(SK1, SK2) - atan2(sx, sy);
  8892. // Angle of Arm2
  8893. PSI = atan2(S2, C2);
  8894. delta[A_AXIS] = DEGREES(THETA); // theta is support arm angle
  8895. delta[B_AXIS] = DEGREES(THETA + PSI); // equal to sub arm angle (inverted motor)
  8896. delta[C_AXIS] = logical[Z_AXIS];
  8897. /*
  8898. DEBUG_POS("SCARA IK", logical);
  8899. DEBUG_POS("SCARA IK", delta);
  8900. SERIAL_ECHOPAIR(" SCARA (x,y) ", sx);
  8901. SERIAL_ECHOPAIR(",", sy);
  8902. SERIAL_ECHOPAIR(" C2=", C2);
  8903. SERIAL_ECHOPAIR(" S2=", S2);
  8904. SERIAL_ECHOPAIR(" Theta=", THETA);
  8905. SERIAL_ECHOLNPAIR(" Phi=", PHI);
  8906. //*/
  8907. }
  8908. #endif // MORGAN_SCARA
  8909. #if ENABLED(TEMP_STAT_LEDS)
  8910. static bool red_led = false;
  8911. static millis_t next_status_led_update_ms = 0;
  8912. void handle_status_leds(void) {
  8913. if (ELAPSED(millis(), next_status_led_update_ms)) {
  8914. next_status_led_update_ms += 500; // Update every 0.5s
  8915. float max_temp = 0.0;
  8916. #if HAS_TEMP_BED
  8917. max_temp = MAX3(max_temp, thermalManager.degTargetBed(), thermalManager.degBed());
  8918. #endif
  8919. HOTEND_LOOP() {
  8920. max_temp = MAX3(max_temp, thermalManager.degHotend(e), thermalManager.degTargetHotend(e));
  8921. }
  8922. bool new_led = (max_temp > 55.0) ? true : (max_temp < 54.0) ? false : red_led;
  8923. if (new_led != red_led) {
  8924. red_led = new_led;
  8925. #if PIN_EXISTS(STAT_LED_RED)
  8926. WRITE(STAT_LED_RED_PIN, new_led ? HIGH : LOW);
  8927. #if PIN_EXISTS(STAT_LED_BLUE)
  8928. WRITE(STAT_LED_BLUE_PIN, new_led ? LOW : HIGH);
  8929. #endif
  8930. #else
  8931. WRITE(STAT_LED_BLUE_PIN, new_led ? HIGH : LOW);
  8932. #endif
  8933. }
  8934. }
  8935. }
  8936. #endif
  8937. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  8938. void handle_filament_runout() {
  8939. if (!filament_ran_out) {
  8940. filament_ran_out = true;
  8941. enqueue_and_echo_commands_P(PSTR(FILAMENT_RUNOUT_SCRIPT));
  8942. stepper.synchronize();
  8943. }
  8944. }
  8945. #endif // FILAMENT_RUNOUT_SENSOR
  8946. #if ENABLED(FAST_PWM_FAN)
  8947. void setPwmFrequency(uint8_t pin, int val) {
  8948. val &= 0x07;
  8949. switch (digitalPinToTimer(pin)) {
  8950. #ifdef TCCR0A
  8951. case TIMER0A:
  8952. case TIMER0B:
  8953. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  8954. // TCCR0B |= val;
  8955. break;
  8956. #endif
  8957. #ifdef TCCR1A
  8958. case TIMER1A:
  8959. case TIMER1B:
  8960. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  8961. // TCCR1B |= val;
  8962. break;
  8963. #endif
  8964. #ifdef TCCR2
  8965. case TIMER2:
  8966. case TIMER2:
  8967. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  8968. TCCR2 |= val;
  8969. break;
  8970. #endif
  8971. #ifdef TCCR2A
  8972. case TIMER2A:
  8973. case TIMER2B:
  8974. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  8975. TCCR2B |= val;
  8976. break;
  8977. #endif
  8978. #ifdef TCCR3A
  8979. case TIMER3A:
  8980. case TIMER3B:
  8981. case TIMER3C:
  8982. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  8983. TCCR3B |= val;
  8984. break;
  8985. #endif
  8986. #ifdef TCCR4A
  8987. case TIMER4A:
  8988. case TIMER4B:
  8989. case TIMER4C:
  8990. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  8991. TCCR4B |= val;
  8992. break;
  8993. #endif
  8994. #ifdef TCCR5A
  8995. case TIMER5A:
  8996. case TIMER5B:
  8997. case TIMER5C:
  8998. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  8999. TCCR5B |= val;
  9000. break;
  9001. #endif
  9002. }
  9003. }
  9004. #endif // FAST_PWM_FAN
  9005. float calculate_volumetric_multiplier(float diameter) {
  9006. if (!volumetric_enabled || diameter == 0) return 1.0;
  9007. return 1.0 / (M_PI * sq(diameter * 0.5));
  9008. }
  9009. void calculate_volumetric_multipliers() {
  9010. for (uint8_t i = 0; i < COUNT(filament_size); i++)
  9011. volumetric_multiplier[i] = calculate_volumetric_multiplier(filament_size[i]);
  9012. }
  9013. void enable_all_steppers() {
  9014. enable_x();
  9015. enable_y();
  9016. enable_z();
  9017. enable_e0();
  9018. enable_e1();
  9019. enable_e2();
  9020. enable_e3();
  9021. }
  9022. void disable_e_steppers() {
  9023. disable_e0();
  9024. disable_e1();
  9025. disable_e2();
  9026. disable_e3();
  9027. }
  9028. void disable_all_steppers() {
  9029. disable_x();
  9030. disable_y();
  9031. disable_z();
  9032. disable_e_steppers();
  9033. }
  9034. #if ENABLED(AUTOMATIC_CURRENT_CONTROL)
  9035. void automatic_current_control(const TMC2130Stepper &st) {
  9036. #if CURRENT_STEP > 0
  9037. const bool is_otpw = st.checkOT(), // Check otpw even if we don't adjust. Allows for flag inspection.
  9038. is_otpw_triggered = st.getOTPW();
  9039. if (!is_otpw && !is_otpw_triggered) {
  9040. // OTPW bit not triggered yet -> Increase current
  9041. const uint16_t current = st.getCurrent() + CURRENT_STEP;
  9042. if (current <= AUTO_ADJUST_MAX) st.SilentStepStick2130(current);
  9043. }
  9044. else if (is_otpw && is_otpw_triggered) {
  9045. // OTPW bit triggered, triggered flag raised -> Decrease current
  9046. st.SilentStepStick2130((float)st.getCurrent() - CURRENT_STEP);
  9047. }
  9048. // OTPW bit cleared (we've cooled down), triggered flag still raised until manually cleared -> Do nothing, we're good
  9049. #endif
  9050. }
  9051. void checkOverTemp() {
  9052. static millis_t next_cOT = 0;
  9053. if (ELAPSED(millis(), next_cOT)) {
  9054. next_cOT = millis() + 5000;
  9055. #if ENABLED(X_IS_TMC2130)
  9056. automatic_current_control(stepperX);
  9057. #endif
  9058. #if ENABLED(Y_IS_TMC2130)
  9059. automatic_current_control(stepperY);
  9060. #endif
  9061. #if ENABLED(Z_IS_TMC2130)
  9062. automatic_current_control(stepperZ);
  9063. #endif
  9064. #if ENABLED(X2_IS_TMC2130)
  9065. automatic_current_control(stepperX2);
  9066. #endif
  9067. #if ENABLED(Y2_IS_TMC2130)
  9068. automatic_current_control(stepperY2);
  9069. #endif
  9070. #if ENABLED(Z2_IS_TMC2130)
  9071. automatic_current_control(stepperZ2);
  9072. #endif
  9073. #if ENABLED(E0_IS_TMC2130)
  9074. automatic_current_control(stepperE0);
  9075. #endif
  9076. #if ENABLED(E1_IS_TMC2130)
  9077. automatic_current_control(stepperE1);
  9078. #endif
  9079. #if ENABLED(E2_IS_TMC2130)
  9080. automatic_current_control(stepperE2);
  9081. #endif
  9082. #if ENABLED(E3_IS_TMC2130)
  9083. automatic_current_control(stepperE3);
  9084. #endif
  9085. }
  9086. }
  9087. #endif // AUTOMATIC_CURRENT_CONTROL
  9088. /**
  9089. * Manage several activities:
  9090. * - Check for Filament Runout
  9091. * - Keep the command buffer full
  9092. * - Check for maximum inactive time between commands
  9093. * - Check for maximum inactive time between stepper commands
  9094. * - Check if pin CHDK needs to go LOW
  9095. * - Check for KILL button held down
  9096. * - Check for HOME button held down
  9097. * - Check if cooling fan needs to be switched on
  9098. * - Check if an idle but hot extruder needs filament extruded (EXTRUDER_RUNOUT_PREVENT)
  9099. */
  9100. void manage_inactivity(bool ignore_stepper_queue/*=false*/) {
  9101. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  9102. if ((IS_SD_PRINTING || print_job_timer.isRunning()) && (READ(FIL_RUNOUT_PIN) == FIL_RUNOUT_INVERTING))
  9103. handle_filament_runout();
  9104. #endif
  9105. if (commands_in_queue < BUFSIZE) get_available_commands();
  9106. const millis_t ms = millis();
  9107. if (max_inactive_time && ELAPSED(ms, previous_cmd_ms + max_inactive_time)) {
  9108. SERIAL_ERROR_START;
  9109. SERIAL_ECHOLNPAIR(MSG_KILL_INACTIVE_TIME, current_command);
  9110. kill(PSTR(MSG_KILLED));
  9111. }
  9112. // Prevent steppers timing-out in the middle of M600
  9113. #if ENABLED(FILAMENT_CHANGE_FEATURE) && ENABLED(FILAMENT_CHANGE_NO_STEPPER_TIMEOUT)
  9114. #define M600_TEST !busy_doing_M600
  9115. #else
  9116. #define M600_TEST true
  9117. #endif
  9118. if (M600_TEST && stepper_inactive_time && ELAPSED(ms, previous_cmd_ms + stepper_inactive_time)
  9119. && !ignore_stepper_queue && !planner.blocks_queued()) {
  9120. #if ENABLED(DISABLE_INACTIVE_X)
  9121. disable_x();
  9122. #endif
  9123. #if ENABLED(DISABLE_INACTIVE_Y)
  9124. disable_y();
  9125. #endif
  9126. #if ENABLED(DISABLE_INACTIVE_Z)
  9127. disable_z();
  9128. #endif
  9129. #if ENABLED(DISABLE_INACTIVE_E)
  9130. disable_e_steppers();
  9131. #endif
  9132. }
  9133. #ifdef CHDK // Check if pin should be set to LOW after M240 set it to HIGH
  9134. if (chdkActive && ELAPSED(ms, chdkHigh + CHDK_DELAY)) {
  9135. chdkActive = false;
  9136. WRITE(CHDK, LOW);
  9137. }
  9138. #endif
  9139. #if HAS_KILL
  9140. // Check if the kill button was pressed and wait just in case it was an accidental
  9141. // key kill key press
  9142. // -------------------------------------------------------------------------------
  9143. static int killCount = 0; // make the inactivity button a bit less responsive
  9144. const int KILL_DELAY = 750;
  9145. if (!READ(KILL_PIN))
  9146. killCount++;
  9147. else if (killCount > 0)
  9148. killCount--;
  9149. // Exceeded threshold and we can confirm that it was not accidental
  9150. // KILL the machine
  9151. // ----------------------------------------------------------------
  9152. if (killCount >= KILL_DELAY) {
  9153. SERIAL_ERROR_START;
  9154. SERIAL_ERRORLNPGM(MSG_KILL_BUTTON);
  9155. kill(PSTR(MSG_KILLED));
  9156. }
  9157. #endif
  9158. #if HAS_HOME
  9159. // Check to see if we have to home, use poor man's debouncer
  9160. // ---------------------------------------------------------
  9161. static int homeDebounceCount = 0; // poor man's debouncing count
  9162. const int HOME_DEBOUNCE_DELAY = 2500;
  9163. if (!IS_SD_PRINTING && !READ(HOME_PIN)) {
  9164. if (!homeDebounceCount) {
  9165. enqueue_and_echo_commands_P(PSTR("G28"));
  9166. LCD_MESSAGEPGM(MSG_AUTO_HOME);
  9167. }
  9168. if (homeDebounceCount < HOME_DEBOUNCE_DELAY)
  9169. homeDebounceCount++;
  9170. else
  9171. homeDebounceCount = 0;
  9172. }
  9173. #endif
  9174. #if HAS_CONTROLLERFAN
  9175. controllerFan(); // Check if fan should be turned on to cool stepper drivers down
  9176. #endif
  9177. #if ENABLED(EXTRUDER_RUNOUT_PREVENT)
  9178. if (ELAPSED(ms, previous_cmd_ms + (EXTRUDER_RUNOUT_SECONDS) * 1000UL)
  9179. && thermalManager.degHotend(active_extruder) > EXTRUDER_RUNOUT_MINTEMP) {
  9180. bool oldstatus;
  9181. #if ENABLED(SWITCHING_EXTRUDER)
  9182. oldstatus = E0_ENABLE_READ;
  9183. enable_e0();
  9184. #else // !SWITCHING_EXTRUDER
  9185. switch (active_extruder) {
  9186. case 0:
  9187. oldstatus = E0_ENABLE_READ;
  9188. enable_e0();
  9189. break;
  9190. #if E_STEPPERS > 1
  9191. case 1:
  9192. oldstatus = E1_ENABLE_READ;
  9193. enable_e1();
  9194. break;
  9195. #if E_STEPPERS > 2
  9196. case 2:
  9197. oldstatus = E2_ENABLE_READ;
  9198. enable_e2();
  9199. break;
  9200. #if E_STEPPERS > 3
  9201. case 3:
  9202. oldstatus = E3_ENABLE_READ;
  9203. enable_e3();
  9204. break;
  9205. #endif
  9206. #endif
  9207. #endif
  9208. }
  9209. #endif // !SWITCHING_EXTRUDER
  9210. previous_cmd_ms = ms; // refresh_cmd_timeout()
  9211. const float olde = current_position[E_AXIS];
  9212. current_position[E_AXIS] += EXTRUDER_RUNOUT_EXTRUDE;
  9213. planner.buffer_line_kinematic(current_position, MMM_TO_MMS(EXTRUDER_RUNOUT_SPEED), active_extruder);
  9214. current_position[E_AXIS] = olde;
  9215. planner.set_e_position_mm(olde);
  9216. stepper.synchronize();
  9217. #if ENABLED(SWITCHING_EXTRUDER)
  9218. E0_ENABLE_WRITE(oldstatus);
  9219. #else
  9220. switch (active_extruder) {
  9221. case 0:
  9222. E0_ENABLE_WRITE(oldstatus);
  9223. break;
  9224. #if E_STEPPERS > 1
  9225. case 1:
  9226. E1_ENABLE_WRITE(oldstatus);
  9227. break;
  9228. #if E_STEPPERS > 2
  9229. case 2:
  9230. E2_ENABLE_WRITE(oldstatus);
  9231. break;
  9232. #if E_STEPPERS > 3
  9233. case 3:
  9234. E3_ENABLE_WRITE(oldstatus);
  9235. break;
  9236. #endif
  9237. #endif
  9238. #endif
  9239. }
  9240. #endif // !SWITCHING_EXTRUDER
  9241. }
  9242. #endif // EXTRUDER_RUNOUT_PREVENT
  9243. #if ENABLED(DUAL_X_CARRIAGE)
  9244. // handle delayed move timeout
  9245. if (delayed_move_time && ELAPSED(ms, delayed_move_time + 1000UL) && IsRunning()) {
  9246. // travel moves have been received so enact them
  9247. delayed_move_time = 0xFFFFFFFFUL; // force moves to be done
  9248. set_destination_to_current();
  9249. prepare_move_to_destination();
  9250. }
  9251. #endif
  9252. #if ENABLED(TEMP_STAT_LEDS)
  9253. handle_status_leds();
  9254. #endif
  9255. #if ENABLED(AUTOMATIC_CURRENT_CONTROL)
  9256. checkOverTemp();
  9257. #endif
  9258. planner.check_axes_activity();
  9259. }
  9260. /**
  9261. * Standard idle routine keeps the machine alive
  9262. */
  9263. void idle(
  9264. #if ENABLED(FILAMENT_CHANGE_FEATURE)
  9265. bool no_stepper_sleep/*=false*/
  9266. #endif
  9267. ) {
  9268. lcd_update();
  9269. host_keepalive();
  9270. #if ENABLED(AUTO_REPORT_TEMPERATURES) && (HAS_TEMP_HOTEND || HAS_TEMP_BED)
  9271. auto_report_temperatures();
  9272. #endif
  9273. manage_inactivity(
  9274. #if ENABLED(FILAMENT_CHANGE_FEATURE)
  9275. no_stepper_sleep
  9276. #endif
  9277. );
  9278. thermalManager.manage_heater();
  9279. #if ENABLED(PRINTCOUNTER)
  9280. print_job_timer.tick();
  9281. #endif
  9282. #if HAS_BUZZER && DISABLED(LCD_USE_I2C_BUZZER)
  9283. buzzer.tick();
  9284. #endif
  9285. }
  9286. /**
  9287. * Kill all activity and lock the machine.
  9288. * After this the machine will need to be reset.
  9289. */
  9290. void kill(const char* lcd_msg) {
  9291. SERIAL_ERROR_START;
  9292. SERIAL_ERRORLNPGM(MSG_ERR_KILLED);
  9293. thermalManager.disable_all_heaters();
  9294. disable_all_steppers();
  9295. #if ENABLED(ULTRA_LCD)
  9296. kill_screen(lcd_msg);
  9297. #else
  9298. UNUSED(lcd_msg);
  9299. #endif
  9300. _delay_ms(250); // Wait a short time
  9301. cli(); // Stop interrupts
  9302. _delay_ms(250); //Wait to ensure all interrupts routines stopped
  9303. thermalManager.disable_all_heaters(); //turn off heaters again
  9304. #if HAS_POWER_SWITCH
  9305. SET_INPUT(PS_ON_PIN);
  9306. #endif
  9307. suicide();
  9308. while (1) {
  9309. #if ENABLED(USE_WATCHDOG)
  9310. watchdog_reset();
  9311. #endif
  9312. } // Wait for reset
  9313. }
  9314. /**
  9315. * Turn off heaters and stop the print in progress
  9316. * After a stop the machine may be resumed with M999
  9317. */
  9318. void stop() {
  9319. thermalManager.disable_all_heaters();
  9320. if (IsRunning()) {
  9321. Running = false;
  9322. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  9323. SERIAL_ERROR_START;
  9324. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  9325. LCD_MESSAGEPGM(MSG_STOPPED);
  9326. }
  9327. }
  9328. /**
  9329. * Marlin entry-point: Set up before the program loop
  9330. * - Set up the kill pin, filament runout, power hold
  9331. * - Start the serial port
  9332. * - Print startup messages and diagnostics
  9333. * - Get EEPROM or default settings
  9334. * - Initialize managers for:
  9335. * • temperature
  9336. * • planner
  9337. * • watchdog
  9338. * • stepper
  9339. * • photo pin
  9340. * • servos
  9341. * • LCD controller
  9342. * • Digipot I2C
  9343. * • Z probe sled
  9344. * • status LEDs
  9345. */
  9346. void setup() {
  9347. #ifdef DISABLE_JTAG
  9348. // Disable JTAG on AT90USB chips to free up pins for IO
  9349. MCUCR = 0x80;
  9350. MCUCR = 0x80;
  9351. #endif
  9352. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  9353. setup_filrunoutpin();
  9354. #endif
  9355. setup_killpin();
  9356. setup_powerhold();
  9357. #if HAS_STEPPER_RESET
  9358. disableStepperDrivers();
  9359. #endif
  9360. MYSERIAL.begin(BAUDRATE);
  9361. SERIAL_PROTOCOLLNPGM("start");
  9362. SERIAL_ECHO_START;
  9363. // Check startup - does nothing if bootloader sets MCUSR to 0
  9364. byte mcu = MCUSR;
  9365. if (mcu & 1) SERIAL_ECHOLNPGM(MSG_POWERUP);
  9366. if (mcu & 2) SERIAL_ECHOLNPGM(MSG_EXTERNAL_RESET);
  9367. if (mcu & 4) SERIAL_ECHOLNPGM(MSG_BROWNOUT_RESET);
  9368. if (mcu & 8) SERIAL_ECHOLNPGM(MSG_WATCHDOG_RESET);
  9369. if (mcu & 32) SERIAL_ECHOLNPGM(MSG_SOFTWARE_RESET);
  9370. MCUSR = 0;
  9371. SERIAL_ECHOPGM(MSG_MARLIN);
  9372. SERIAL_CHAR(' ');
  9373. SERIAL_ECHOLNPGM(SHORT_BUILD_VERSION);
  9374. SERIAL_EOL;
  9375. #if defined(STRING_DISTRIBUTION_DATE) && defined(STRING_CONFIG_H_AUTHOR)
  9376. SERIAL_ECHO_START;
  9377. SERIAL_ECHOPGM(MSG_CONFIGURATION_VER);
  9378. SERIAL_ECHOPGM(STRING_DISTRIBUTION_DATE);
  9379. SERIAL_ECHOLNPGM(MSG_AUTHOR STRING_CONFIG_H_AUTHOR);
  9380. SERIAL_ECHOLNPGM("Compiled: " __DATE__);
  9381. #endif
  9382. SERIAL_ECHO_START;
  9383. SERIAL_ECHOPAIR(MSG_FREE_MEMORY, freeMemory());
  9384. SERIAL_ECHOLNPAIR(MSG_PLANNER_BUFFER_BYTES, (int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  9385. // Send "ok" after commands by default
  9386. for (int8_t i = 0; i < BUFSIZE; i++) send_ok[i] = true;
  9387. // Load data from EEPROM if available (or use defaults)
  9388. // This also updates variables in the planner, elsewhere
  9389. (void)Config_RetrieveSettings();
  9390. #if DISABLED(NO_WORKSPACE_OFFSETS)
  9391. // Initialize current position based on home_offset
  9392. COPY(current_position, home_offset);
  9393. #else
  9394. ZERO(current_position);
  9395. #endif
  9396. // Vital to init stepper/planner equivalent for current_position
  9397. SYNC_PLAN_POSITION_KINEMATIC();
  9398. thermalManager.init(); // Initialize temperature loop
  9399. #if ENABLED(USE_WATCHDOG)
  9400. watchdog_init();
  9401. #endif
  9402. stepper.init(); // Initialize stepper, this enables interrupts!
  9403. servo_init();
  9404. #if HAS_PHOTOGRAPH
  9405. OUT_WRITE(PHOTOGRAPH_PIN, LOW);
  9406. #endif
  9407. #if HAS_CASE_LIGHT
  9408. update_case_light();
  9409. #endif
  9410. #if HAS_BED_PROBE
  9411. endstops.enable_z_probe(false);
  9412. #endif
  9413. #if HAS_CONTROLLERFAN
  9414. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  9415. #endif
  9416. #if HAS_STEPPER_RESET
  9417. enableStepperDrivers();
  9418. #endif
  9419. #if ENABLED(DIGIPOT_I2C)
  9420. digipot_i2c_init();
  9421. #endif
  9422. #if ENABLED(DAC_STEPPER_CURRENT)
  9423. dac_init();
  9424. #endif
  9425. #if ENABLED(Z_PROBE_SLED) && PIN_EXISTS(SLED)
  9426. OUT_WRITE(SLED_PIN, LOW); // turn it off
  9427. #endif // Z_PROBE_SLED
  9428. setup_homepin();
  9429. #if PIN_EXISTS(STAT_LED_RED)
  9430. OUT_WRITE(STAT_LED_RED_PIN, LOW); // turn it off
  9431. #endif
  9432. #if PIN_EXISTS(STAT_LED_BLUE)
  9433. OUT_WRITE(STAT_LED_BLUE_PIN, LOW); // turn it off
  9434. #endif
  9435. #if ENABLED(RGB_LED)
  9436. SET_OUTPUT(RGB_LED_R_PIN);
  9437. SET_OUTPUT(RGB_LED_G_PIN);
  9438. SET_OUTPUT(RGB_LED_B_PIN);
  9439. #endif
  9440. lcd_init();
  9441. #if ENABLED(SHOW_BOOTSCREEN)
  9442. #if ENABLED(DOGLCD)
  9443. safe_delay(BOOTSCREEN_TIMEOUT);
  9444. #elif ENABLED(ULTRA_LCD)
  9445. bootscreen();
  9446. #if DISABLED(SDSUPPORT)
  9447. lcd_init();
  9448. #endif
  9449. #endif
  9450. #endif
  9451. #if ENABLED(MIXING_EXTRUDER) && MIXING_VIRTUAL_TOOLS > 1
  9452. // Initialize mixing to 100% color 1
  9453. for (uint8_t i = 0; i < MIXING_STEPPERS; i++)
  9454. mixing_factor[i] = (i == 0) ? 1.0 : 0.0;
  9455. for (uint8_t t = 0; t < MIXING_VIRTUAL_TOOLS; t++)
  9456. for (uint8_t i = 0; i < MIXING_STEPPERS; i++)
  9457. mixing_virtual_tool_mix[t][i] = mixing_factor[i];
  9458. #endif
  9459. #if ENABLED(BLTOUCH)
  9460. bltouch_command(BLTOUCH_RESET); // Just in case the BLTouch is in the error state, try to
  9461. set_bltouch_deployed(true); // reset it. Also needs to deploy and stow to clear the
  9462. set_bltouch_deployed(false); // error condition.
  9463. #endif
  9464. #if ENABLED(EXPERIMENTAL_I2CBUS) && I2C_SLAVE_ADDRESS > 0
  9465. i2c.onReceive(i2c_on_receive);
  9466. i2c.onRequest(i2c_on_request);
  9467. #endif
  9468. #if ENABLED(ENDSTOP_INTERRUPTS_FEATURE)
  9469. setup_endstop_interrupts();
  9470. #endif
  9471. }
  9472. /**
  9473. * The main Marlin program loop
  9474. *
  9475. * - Save or log commands to SD
  9476. * - Process available commands (if not saving)
  9477. * - Call heater manager
  9478. * - Call inactivity manager
  9479. * - Call endstop manager
  9480. * - Call LCD update
  9481. */
  9482. void loop() {
  9483. if (commands_in_queue < BUFSIZE) get_available_commands();
  9484. #if ENABLED(SDSUPPORT)
  9485. card.checkautostart(false);
  9486. #endif
  9487. if (commands_in_queue) {
  9488. #if ENABLED(SDSUPPORT)
  9489. if (card.saving) {
  9490. char* command = command_queue[cmd_queue_index_r];
  9491. if (strstr_P(command, PSTR("M29"))) {
  9492. // M29 closes the file
  9493. card.closefile();
  9494. SERIAL_PROTOCOLLNPGM(MSG_FILE_SAVED);
  9495. ok_to_send();
  9496. }
  9497. else {
  9498. // Write the string from the read buffer to SD
  9499. card.write_command(command);
  9500. if (card.logging)
  9501. process_next_command(); // The card is saving because it's logging
  9502. else
  9503. ok_to_send();
  9504. }
  9505. }
  9506. else
  9507. process_next_command();
  9508. #else
  9509. process_next_command();
  9510. #endif // SDSUPPORT
  9511. // The queue may be reset by a command handler or by code invoked by idle() within a handler
  9512. if (commands_in_queue) {
  9513. --commands_in_queue;
  9514. cmd_queue_index_r = (cmd_queue_index_r + 1) % BUFSIZE;
  9515. }
  9516. }
  9517. endstops.report_state();
  9518. idle();
  9519. }