My Marlin configs for Fabrikator Mini and CTC i3 Pro B
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

Marlin_main.cpp 157KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769
  1. /* -*- c++ -*- */
  2. /*
  3. Reprap firmware based on Sprinter and grbl.
  4. Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  5. This program is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. This program is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with this program. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. /*
  17. This firmware is a mashup between Sprinter and grbl.
  18. (https://github.com/kliment/Sprinter)
  19. (https://github.com/simen/grbl/tree)
  20. It has preliminary support for Matthew Roberts advance algorithm
  21. http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  22. */
  23. #include "Marlin.h"
  24. #ifdef ENABLE_AUTO_BED_LEVELING
  25. #include "vector_3.h"
  26. #ifdef AUTO_BED_LEVELING_GRID
  27. #include "qr_solve.h"
  28. #endif
  29. #endif // ENABLE_AUTO_BED_LEVELING
  30. #include "ultralcd.h"
  31. #include "planner.h"
  32. #include "stepper.h"
  33. #include "temperature.h"
  34. #include "motion_control.h"
  35. #include "cardreader.h"
  36. #include "watchdog.h"
  37. #include "ConfigurationStore.h"
  38. #include "language.h"
  39. #include "pins_arduino.h"
  40. #include "math.h"
  41. #ifdef BLINKM
  42. #include "BlinkM.h"
  43. #include "Wire.h"
  44. #endif
  45. #if NUM_SERVOS > 0
  46. #include "Servo.h"
  47. #endif
  48. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  49. #include <SPI.h>
  50. #endif
  51. // look here for descriptions of G-codes: http://linuxcnc.org/handbook/gcode/g-code.html
  52. // http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  53. //Implemented Codes
  54. //-------------------
  55. // G0 -> G1
  56. // G1 - Coordinated Movement X Y Z E
  57. // G2 - CW ARC
  58. // G3 - CCW ARC
  59. // G4 - Dwell S<seconds> or P<milliseconds>
  60. // G10 - retract filament according to settings of M207
  61. // G11 - retract recover filament according to settings of M208
  62. // G28 - Home all Axis
  63. // G29 - Detailed Z-Probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  64. // G30 - Single Z Probe, probes bed at current XY location.
  65. // G31 - Dock sled (Z_PROBE_SLED only)
  66. // G32 - Undock sled (Z_PROBE_SLED only)
  67. // G90 - Use Absolute Coordinates
  68. // G91 - Use Relative Coordinates
  69. // G92 - Set current position to coordinates given
  70. // M Codes
  71. // M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
  72. // M1 - Same as M0
  73. // M17 - Enable/Power all stepper motors
  74. // M18 - Disable all stepper motors; same as M84
  75. // M20 - List SD card
  76. // M21 - Init SD card
  77. // M22 - Release SD card
  78. // M23 - Select SD file (M23 filename.g)
  79. // M24 - Start/resume SD print
  80. // M25 - Pause SD print
  81. // M26 - Set SD position in bytes (M26 S12345)
  82. // M27 - Report SD print status
  83. // M28 - Start SD write (M28 filename.g)
  84. // M29 - Stop SD write
  85. // M30 - Delete file from SD (M30 filename.g)
  86. // M31 - Output time since last M109 or SD card start to serial
  87. // M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  88. // syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  89. // Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
  90. // The '#' is necessary when calling from within sd files, as it stops buffer prereading
  91. // M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  92. // M80 - Turn on Power Supply
  93. // M81 - Turn off Power Supply
  94. // M82 - Set E codes absolute (default)
  95. // M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  96. // M84 - Disable steppers until next move,
  97. // or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  98. // M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  99. // M92 - Set axis_steps_per_unit - same syntax as G92
  100. // M104 - Set extruder target temp
  101. // M105 - Read current temp
  102. // M106 - Fan on
  103. // M107 - Fan off
  104. // M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  105. // Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  106. // IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  107. // M112 - Emergency stop
  108. // M114 - Output current position to serial port
  109. // M115 - Capabilities string
  110. // M117 - display message
  111. // M119 - Output Endstop status to serial port
  112. // M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  113. // M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  114. // M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  115. // M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  116. // M140 - Set bed target temp
  117. // M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  118. // M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  119. // Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  120. // M200 D<millimeters>- set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  121. // M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  122. // M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  123. // M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  124. // M204 - Set default acceleration: S normal moves T filament only moves (M204 S3000 T7000) in mm/sec^2 also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  125. // M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
  126. // M206 - Set additional homing offset
  127. // M207 - Set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
  128. // M208 - Set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
  129. // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  130. // M218 - Set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  131. // M220 S<factor in percent>- set speed factor override percentage
  132. // M221 S<factor in percent>- set extrude factor override percentage
  133. // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  134. // M240 - Trigger a camera to take a photograph
  135. // M250 - Set LCD contrast C<contrast value> (value 0..63)
  136. // M280 - Set servo position absolute. P: servo index, S: angle or microseconds
  137. // M300 - Play beep sound S<frequency Hz> P<duration ms>
  138. // M301 - Set PID parameters P I and D
  139. // M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  140. // M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  141. // M304 - Set bed PID parameters P I and D
  142. // M380 - Activate solenoid on active extruder
  143. // M381 - Disable all solenoids
  144. // M400 - Finish all moves
  145. // M401 - Lower z-probe if present
  146. // M402 - Raise z-probe if present
  147. // M404 - N<dia in mm> Enter the nominal filament width (3mm, 1.75mm ) or will display nominal filament width without parameters
  148. // M405 - Turn on Filament Sensor extrusion control. Optional D<delay in cm> to set delay in centimeters between sensor and extruder
  149. // M406 - Turn off Filament Sensor extrusion control
  150. // M407 - Displays measured filament diameter
  151. // M500 - Store parameters in EEPROM
  152. // M501 - Read parameters from EEPROM (if you need reset them after you changed them temporarily).
  153. // M502 - Revert to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  154. // M503 - Print the current settings (from memory not from EEPROM). Use S0 to leave off headings.
  155. // M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  156. // M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  157. // M665 - Set delta configurations
  158. // M666 - Set delta endstop adjustment
  159. // M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  160. // M907 - Set digital trimpot motor current using axis codes.
  161. // M908 - Control digital trimpot directly.
  162. // M350 - Set microstepping mode.
  163. // M351 - Toggle MS1 MS2 pins directly.
  164. // ************ SCARA Specific - This can change to suit future G-code regulations
  165. // M360 - SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  166. // M361 - SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  167. // M362 - SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  168. // M363 - SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  169. // M364 - SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
  170. // M365 - SCARA calibration: Scaling factor, X, Y, Z axis
  171. //************* SCARA End ***************
  172. // M928 - Start SD logging (M928 filename.g) - ended by M29
  173. // M999 - Restart after being stopped by error
  174. #ifdef SDSUPPORT
  175. CardReader card;
  176. #endif
  177. float homing_feedrate[] = HOMING_FEEDRATE;
  178. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  179. int feedmultiply = 100; //100->1 200->2
  180. int saved_feedmultiply;
  181. int extrudemultiply = 100; //100->1 200->2
  182. int extruder_multiply[EXTRUDERS] = { 100
  183. #if EXTRUDERS > 1
  184. , 100
  185. #if EXTRUDERS > 2
  186. , 100
  187. #if EXTRUDERS > 3
  188. , 100
  189. #endif
  190. #endif
  191. #endif
  192. };
  193. bool volumetric_enabled = false;
  194. float filament_size[EXTRUDERS] = { DEFAULT_NOMINAL_FILAMENT_DIA
  195. #if EXTRUDERS > 1
  196. , DEFAULT_NOMINAL_FILAMENT_DIA
  197. #if EXTRUDERS > 2
  198. , DEFAULT_NOMINAL_FILAMENT_DIA
  199. #if EXTRUDERS > 3
  200. , DEFAULT_NOMINAL_FILAMENT_DIA
  201. #endif
  202. #endif
  203. #endif
  204. };
  205. float volumetric_multiplier[EXTRUDERS] = {1.0
  206. #if EXTRUDERS > 1
  207. , 1.0
  208. #if EXTRUDERS > 2
  209. , 1.0
  210. #if EXTRUDERS > 3
  211. , 1.0
  212. #endif
  213. #endif
  214. #endif
  215. };
  216. float current_position[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0 };
  217. float add_homing[3] = { 0, 0, 0 };
  218. #ifdef DELTA
  219. float endstop_adj[3] = { 0, 0, 0 };
  220. #endif
  221. float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  222. float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  223. bool axis_known_position[3] = { false, false, false };
  224. float zprobe_zoffset;
  225. // Extruder offset
  226. #if EXTRUDERS > 1
  227. #ifndef DUAL_X_CARRIAGE
  228. #define NUM_EXTRUDER_OFFSETS 2 // only in XY plane
  229. #else
  230. #define NUM_EXTRUDER_OFFSETS 3 // supports offsets in XYZ plane
  231. #endif
  232. float extruder_offset[NUM_EXTRUDER_OFFSETS][EXTRUDERS] = {
  233. #if defined(EXTRUDER_OFFSET_X)
  234. EXTRUDER_OFFSET_X
  235. #else
  236. 0
  237. #endif
  238. ,
  239. #if defined(EXTRUDER_OFFSET_Y)
  240. EXTRUDER_OFFSET_Y
  241. #else
  242. 0
  243. #endif
  244. };
  245. #endif
  246. uint8_t active_extruder = 0;
  247. int fanSpeed = 0;
  248. #ifdef SERVO_ENDSTOPS
  249. int servo_endstops[] = SERVO_ENDSTOPS;
  250. int servo_endstop_angles[] = SERVO_ENDSTOP_ANGLES;
  251. #endif
  252. #ifdef BARICUDA
  253. int ValvePressure = 0;
  254. int EtoPPressure = 0;
  255. #endif
  256. #ifdef FWRETRACT
  257. bool autoretract_enabled = false;
  258. bool retracted[EXTRUDERS] = { false
  259. #if EXTRUDERS > 1
  260. , false
  261. #if EXTRUDERS > 2
  262. , false
  263. #if EXTRUDERS > 3
  264. , false
  265. #endif
  266. #endif
  267. #endif
  268. };
  269. bool retracted_swap[EXTRUDERS] = { false
  270. #if EXTRUDERS > 1
  271. , false
  272. #if EXTRUDERS > 2
  273. , false
  274. #if EXTRUDERS > 3
  275. , false
  276. #endif
  277. #endif
  278. #endif
  279. };
  280. float retract_length = RETRACT_LENGTH;
  281. float retract_length_swap = RETRACT_LENGTH_SWAP;
  282. float retract_feedrate = RETRACT_FEEDRATE;
  283. float retract_zlift = RETRACT_ZLIFT;
  284. float retract_recover_length = RETRACT_RECOVER_LENGTH;
  285. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  286. float retract_recover_feedrate = RETRACT_RECOVER_FEEDRATE;
  287. #endif // FWRETRACT
  288. #ifdef ULTIPANEL
  289. bool powersupply =
  290. #ifdef PS_DEFAULT_OFF
  291. false
  292. #else
  293. true
  294. #endif
  295. ;
  296. #endif
  297. #ifdef DELTA
  298. float delta[3] = { 0, 0, 0 };
  299. #define SIN_60 0.8660254037844386
  300. #define COS_60 0.5
  301. // these are the default values, can be overriden with M665
  302. float delta_radius = DELTA_RADIUS;
  303. float delta_tower1_x = -SIN_60 * delta_radius; // front left tower
  304. float delta_tower1_y = -COS_60 * delta_radius;
  305. float delta_tower2_x = SIN_60 * delta_radius; // front right tower
  306. float delta_tower2_y = -COS_60 * delta_radius;
  307. float delta_tower3_x = 0; // back middle tower
  308. float delta_tower3_y = delta_radius;
  309. float delta_diagonal_rod = DELTA_DIAGONAL_ROD;
  310. float delta_diagonal_rod_2 = sq(delta_diagonal_rod);
  311. float delta_segments_per_second = DELTA_SEGMENTS_PER_SECOND;
  312. #endif
  313. #ifdef SCARA
  314. float axis_scaling[3] = { 1, 1, 1 }; // Build size scaling, default to 1
  315. #endif
  316. bool cancel_heatup = false;
  317. #ifdef FILAMENT_SENSOR
  318. //Variables for Filament Sensor input
  319. float filament_width_nominal=DEFAULT_NOMINAL_FILAMENT_DIA; //Set nominal filament width, can be changed with M404
  320. bool filament_sensor=false; //M405 turns on filament_sensor control, M406 turns it off
  321. float filament_width_meas=DEFAULT_MEASURED_FILAMENT_DIA; //Stores the measured filament diameter
  322. signed char measurement_delay[MAX_MEASUREMENT_DELAY+1]; //ring buffer to delay measurement store extruder factor after subtracting 100
  323. int delay_index1=0; //index into ring buffer
  324. int delay_index2=-1; //index into ring buffer - set to -1 on startup to indicate ring buffer needs to be initialized
  325. float delay_dist=0; //delay distance counter
  326. int meas_delay_cm = MEASUREMENT_DELAY_CM; //distance delay setting
  327. #endif
  328. const char errormagic[] PROGMEM = "Error:";
  329. const char echomagic[] PROGMEM = "echo:";
  330. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  331. static float destination[NUM_AXIS] = { 0, 0, 0, 0 };
  332. #ifndef DELTA
  333. static float delta[3] = { 0, 0, 0 };
  334. #endif
  335. static float offset[3] = { 0, 0, 0 };
  336. static bool home_all_axis = true;
  337. static float feedrate = 1500.0, next_feedrate, saved_feedrate;
  338. static long gcode_N, gcode_LastN, Stopped_gcode_LastN = 0;
  339. static bool relative_mode = false; //Determines Absolute or Relative Coordinates
  340. static char cmdbuffer[BUFSIZE][MAX_CMD_SIZE];
  341. static bool fromsd[BUFSIZE];
  342. static int bufindr = 0;
  343. static int bufindw = 0;
  344. static int buflen = 0;
  345. static char serial_char;
  346. static int serial_count = 0;
  347. static boolean comment_mode = false;
  348. static char *strchr_pointer; ///< A pointer to find chars in the command string (X, Y, Z, E, etc.)
  349. const char* queued_commands_P= NULL; /* pointer to the current line in the active sequence of commands, or NULL when none */
  350. const int sensitive_pins[] = SENSITIVE_PINS; ///< Sensitive pin list for M42
  351. // Inactivity shutdown
  352. static unsigned long previous_millis_cmd = 0;
  353. static unsigned long max_inactive_time = 0;
  354. static unsigned long stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME*1000l;
  355. unsigned long starttime = 0; ///< Print job start time
  356. unsigned long stoptime = 0; ///< Print job stop time
  357. static uint8_t tmp_extruder;
  358. bool Stopped = false;
  359. #if NUM_SERVOS > 0
  360. Servo servos[NUM_SERVOS];
  361. #endif
  362. bool CooldownNoWait = true;
  363. bool target_direction;
  364. #ifdef CHDK
  365. unsigned long chdkHigh = 0;
  366. boolean chdkActive = false;
  367. #endif
  368. //===========================================================================
  369. //=============================Routines======================================
  370. //===========================================================================
  371. void get_arc_coordinates();
  372. bool setTargetedHotend(int code);
  373. void serial_echopair_P(const char *s_P, float v)
  374. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  375. void serial_echopair_P(const char *s_P, double v)
  376. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  377. void serial_echopair_P(const char *s_P, unsigned long v)
  378. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  379. #ifdef SDSUPPORT
  380. #include "SdFatUtil.h"
  381. int freeMemory() { return SdFatUtil::FreeRam(); }
  382. #else
  383. extern "C" {
  384. extern unsigned int __bss_end;
  385. extern unsigned int __heap_start;
  386. extern void *__brkval;
  387. int freeMemory() {
  388. int free_memory;
  389. if ((int)__brkval == 0)
  390. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  391. else
  392. free_memory = ((int)&free_memory) - ((int)__brkval);
  393. return free_memory;
  394. }
  395. }
  396. #endif //!SDSUPPORT
  397. //Injects the next command from the pending sequence of commands, when possible
  398. //Return false if and only if no command was pending
  399. static bool drain_queued_commands_P()
  400. {
  401. char cmd[30];
  402. if(!queued_commands_P)
  403. return false;
  404. // Get the next 30 chars from the sequence of gcodes to run
  405. strncpy_P(cmd, queued_commands_P, sizeof(cmd)-1);
  406. cmd[sizeof(cmd)-1]= 0;
  407. // Look for the end of line, or the end of sequence
  408. size_t i= 0;
  409. char c;
  410. while( (c= cmd[i]) && c!='\n' )
  411. ++i; // look for the end of this gcode command
  412. cmd[i]= 0;
  413. if(enquecommand(cmd)) // buffer was not full (else we will retry later)
  414. {
  415. if(c)
  416. queued_commands_P+= i+1; // move to next command
  417. else
  418. queued_commands_P= NULL; // will have no more commands in the sequence
  419. }
  420. return true;
  421. }
  422. //Record one or many commands to run from program memory.
  423. //Aborts the current queue, if any.
  424. //Note: drain_queued_commands_P() must be called repeatedly to drain the commands afterwards
  425. void enquecommands_P(const char* pgcode)
  426. {
  427. queued_commands_P= pgcode;
  428. drain_queued_commands_P(); // first command exectuted asap (when possible)
  429. }
  430. //adds a single command to the main command buffer, from RAM
  431. //that is really done in a non-safe way.
  432. //needs overworking someday
  433. //Returns false if it failed to do so
  434. bool enquecommand(const char *cmd)
  435. {
  436. if(*cmd==';')
  437. return false;
  438. if(buflen >= BUFSIZE)
  439. return false;
  440. //this is dangerous if a mixing of serial and this happens
  441. strcpy(&(cmdbuffer[bufindw][0]),cmd);
  442. SERIAL_ECHO_START;
  443. SERIAL_ECHOPGM(MSG_Enqueing);
  444. SERIAL_ECHO(cmdbuffer[bufindw]);
  445. SERIAL_ECHOLNPGM("\"");
  446. bufindw= (bufindw + 1)%BUFSIZE;
  447. buflen += 1;
  448. return true;
  449. }
  450. void setup_killpin()
  451. {
  452. #if defined(KILL_PIN) && KILL_PIN > -1
  453. SET_INPUT(KILL_PIN);
  454. WRITE(KILL_PIN,HIGH);
  455. #endif
  456. }
  457. // Set home pin
  458. void setup_homepin(void)
  459. {
  460. #if defined(HOME_PIN) && HOME_PIN > -1
  461. SET_INPUT(HOME_PIN);
  462. WRITE(HOME_PIN,HIGH);
  463. #endif
  464. }
  465. void setup_photpin()
  466. {
  467. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  468. OUT_WRITE(PHOTOGRAPH_PIN, LOW);
  469. #endif
  470. }
  471. void setup_powerhold()
  472. {
  473. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  474. OUT_WRITE(SUICIDE_PIN, HIGH);
  475. #endif
  476. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  477. #if defined(PS_DEFAULT_OFF)
  478. OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  479. #else
  480. OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE);
  481. #endif
  482. #endif
  483. }
  484. void suicide()
  485. {
  486. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  487. OUT_WRITE(SUICIDE_PIN, LOW);
  488. #endif
  489. }
  490. void servo_init()
  491. {
  492. #if (NUM_SERVOS >= 1) && defined(SERVO0_PIN) && (SERVO0_PIN > -1)
  493. servos[0].attach(SERVO0_PIN);
  494. #endif
  495. #if (NUM_SERVOS >= 2) && defined(SERVO1_PIN) && (SERVO1_PIN > -1)
  496. servos[1].attach(SERVO1_PIN);
  497. #endif
  498. #if (NUM_SERVOS >= 3) && defined(SERVO2_PIN) && (SERVO2_PIN > -1)
  499. servos[2].attach(SERVO2_PIN);
  500. #endif
  501. #if (NUM_SERVOS >= 4) && defined(SERVO3_PIN) && (SERVO3_PIN > -1)
  502. servos[3].attach(SERVO3_PIN);
  503. #endif
  504. #if (NUM_SERVOS >= 5)
  505. #error "TODO: enter initalisation code for more servos"
  506. #endif
  507. // Set position of Servo Endstops that are defined
  508. #ifdef SERVO_ENDSTOPS
  509. for(int8_t i = 0; i < 3; i++)
  510. {
  511. if(servo_endstops[i] > -1) {
  512. servos[servo_endstops[i]].write(servo_endstop_angles[i * 2 + 1]);
  513. }
  514. }
  515. #endif
  516. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  517. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  518. servos[servo_endstops[Z_AXIS]].detach();
  519. #endif
  520. }
  521. void setup()
  522. {
  523. setup_killpin();
  524. setup_powerhold();
  525. MYSERIAL.begin(BAUDRATE);
  526. SERIAL_PROTOCOLLNPGM("start");
  527. SERIAL_ECHO_START;
  528. // Check startup - does nothing if bootloader sets MCUSR to 0
  529. byte mcu = MCUSR;
  530. if(mcu & 1) SERIAL_ECHOLNPGM(MSG_POWERUP);
  531. if(mcu & 2) SERIAL_ECHOLNPGM(MSG_EXTERNAL_RESET);
  532. if(mcu & 4) SERIAL_ECHOLNPGM(MSG_BROWNOUT_RESET);
  533. if(mcu & 8) SERIAL_ECHOLNPGM(MSG_WATCHDOG_RESET);
  534. if(mcu & 32) SERIAL_ECHOLNPGM(MSG_SOFTWARE_RESET);
  535. MCUSR=0;
  536. SERIAL_ECHOPGM(MSG_MARLIN);
  537. SERIAL_ECHOLNPGM(STRING_VERSION);
  538. #ifdef STRING_VERSION_CONFIG_H
  539. #ifdef STRING_CONFIG_H_AUTHOR
  540. SERIAL_ECHO_START;
  541. SERIAL_ECHOPGM(MSG_CONFIGURATION_VER);
  542. SERIAL_ECHOPGM(STRING_VERSION_CONFIG_H);
  543. SERIAL_ECHOPGM(MSG_AUTHOR);
  544. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  545. SERIAL_ECHOPGM("Compiled: ");
  546. SERIAL_ECHOLNPGM(__DATE__);
  547. #endif // STRING_CONFIG_H_AUTHOR
  548. #endif // STRING_VERSION_CONFIG_H
  549. SERIAL_ECHO_START;
  550. SERIAL_ECHOPGM(MSG_FREE_MEMORY);
  551. SERIAL_ECHO(freeMemory());
  552. SERIAL_ECHOPGM(MSG_PLANNER_BUFFER_BYTES);
  553. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  554. for(int8_t i = 0; i < BUFSIZE; i++)
  555. {
  556. fromsd[i] = false;
  557. }
  558. // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  559. Config_RetrieveSettings();
  560. tp_init(); // Initialize temperature loop
  561. plan_init(); // Initialize planner;
  562. watchdog_init();
  563. st_init(); // Initialize stepper, this enables interrupts!
  564. setup_photpin();
  565. servo_init();
  566. lcd_init();
  567. _delay_ms(1000); // wait 1sec to display the splash screen
  568. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  569. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  570. #endif
  571. #ifdef DIGIPOT_I2C
  572. digipot_i2c_init();
  573. #endif
  574. #ifdef Z_PROBE_SLED
  575. pinMode(SERVO0_PIN, OUTPUT);
  576. digitalWrite(SERVO0_PIN, LOW); // turn it off
  577. #endif // Z_PROBE_SLED
  578. setup_homepin();
  579. #ifdef STAT_LED_RED
  580. pinMode(STAT_LED_RED, OUTPUT);
  581. digitalWrite(STAT_LED_RED, LOW); // turn it off
  582. #endif
  583. #ifdef STAT_LED_BLUE
  584. pinMode(STAT_LED_BLUE, OUTPUT);
  585. digitalWrite(STAT_LED_BLUE, LOW); // turn it off
  586. #endif
  587. }
  588. void loop()
  589. {
  590. if(buflen < (BUFSIZE-1))
  591. get_command();
  592. #ifdef SDSUPPORT
  593. card.checkautostart(false);
  594. #endif
  595. if(buflen)
  596. {
  597. #ifdef SDSUPPORT
  598. if(card.saving)
  599. {
  600. if(strstr_P(cmdbuffer[bufindr], PSTR("M29")) == NULL)
  601. {
  602. card.write_command(cmdbuffer[bufindr]);
  603. if(card.logging)
  604. {
  605. process_commands();
  606. }
  607. else
  608. {
  609. SERIAL_PROTOCOLLNPGM(MSG_OK);
  610. }
  611. }
  612. else
  613. {
  614. card.closefile();
  615. SERIAL_PROTOCOLLNPGM(MSG_FILE_SAVED);
  616. }
  617. }
  618. else
  619. {
  620. process_commands();
  621. }
  622. #else
  623. process_commands();
  624. #endif //SDSUPPORT
  625. buflen = (buflen-1);
  626. bufindr = (bufindr + 1)%BUFSIZE;
  627. }
  628. //check heater every n milliseconds
  629. manage_heater();
  630. manage_inactivity();
  631. checkHitEndstops();
  632. lcd_update();
  633. }
  634. void get_command()
  635. {
  636. if(drain_queued_commands_P()) // priority is given to non-serial commands
  637. return;
  638. while( MYSERIAL.available() > 0 && buflen < BUFSIZE) {
  639. serial_char = MYSERIAL.read();
  640. if(serial_char == '\n' ||
  641. serial_char == '\r' ||
  642. (serial_char == ':' && comment_mode == false) ||
  643. serial_count >= (MAX_CMD_SIZE - 1) )
  644. {
  645. if(!serial_count) { //if empty line
  646. comment_mode = false; //for new command
  647. return;
  648. }
  649. cmdbuffer[bufindw][serial_count] = 0; //terminate string
  650. if(!comment_mode){
  651. comment_mode = false; //for new command
  652. fromsd[bufindw] = false;
  653. if(strchr(cmdbuffer[bufindw], 'N') != NULL)
  654. {
  655. strchr_pointer = strchr(cmdbuffer[bufindw], 'N');
  656. gcode_N = (strtol(&cmdbuffer[bufindw][strchr_pointer - cmdbuffer[bufindw] + 1], NULL, 10));
  657. if(gcode_N != gcode_LastN+1 && (strstr_P(cmdbuffer[bufindw], PSTR("M110")) == NULL) ) {
  658. SERIAL_ERROR_START;
  659. SERIAL_ERRORPGM(MSG_ERR_LINE_NO);
  660. SERIAL_ERRORLN(gcode_LastN);
  661. //Serial.println(gcode_N);
  662. FlushSerialRequestResend();
  663. serial_count = 0;
  664. return;
  665. }
  666. if(strchr(cmdbuffer[bufindw], '*') != NULL)
  667. {
  668. byte checksum = 0;
  669. byte count = 0;
  670. while(cmdbuffer[bufindw][count] != '*') checksum = checksum^cmdbuffer[bufindw][count++];
  671. strchr_pointer = strchr(cmdbuffer[bufindw], '*');
  672. if( (int)(strtod(&cmdbuffer[bufindw][strchr_pointer - cmdbuffer[bufindw] + 1], NULL)) != checksum) {
  673. SERIAL_ERROR_START;
  674. SERIAL_ERRORPGM(MSG_ERR_CHECKSUM_MISMATCH);
  675. SERIAL_ERRORLN(gcode_LastN);
  676. FlushSerialRequestResend();
  677. serial_count = 0;
  678. return;
  679. }
  680. //if no errors, continue parsing
  681. }
  682. else
  683. {
  684. SERIAL_ERROR_START;
  685. SERIAL_ERRORPGM(MSG_ERR_NO_CHECKSUM);
  686. SERIAL_ERRORLN(gcode_LastN);
  687. FlushSerialRequestResend();
  688. serial_count = 0;
  689. return;
  690. }
  691. gcode_LastN = gcode_N;
  692. //if no errors, continue parsing
  693. }
  694. else // if we don't receive 'N' but still see '*'
  695. {
  696. if((strchr(cmdbuffer[bufindw], '*') != NULL))
  697. {
  698. SERIAL_ERROR_START;
  699. SERIAL_ERRORPGM(MSG_ERR_NO_LINENUMBER_WITH_CHECKSUM);
  700. SERIAL_ERRORLN(gcode_LastN);
  701. serial_count = 0;
  702. return;
  703. }
  704. }
  705. if((strchr(cmdbuffer[bufindw], 'G') != NULL)){
  706. strchr_pointer = strchr(cmdbuffer[bufindw], 'G');
  707. switch((int)((strtod(&cmdbuffer[bufindw][strchr_pointer - cmdbuffer[bufindw] + 1], NULL)))){
  708. case 0:
  709. case 1:
  710. case 2:
  711. case 3:
  712. if (Stopped == true) {
  713. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  714. LCD_MESSAGEPGM(MSG_STOPPED);
  715. }
  716. break;
  717. default:
  718. break;
  719. }
  720. }
  721. //If command was e-stop process now
  722. if(strcmp(cmdbuffer[bufindw], "M112") == 0)
  723. kill();
  724. bufindw = (bufindw + 1)%BUFSIZE;
  725. buflen += 1;
  726. }
  727. serial_count = 0; //clear buffer
  728. }
  729. else
  730. {
  731. if(serial_char == ';') comment_mode = true;
  732. if(!comment_mode) cmdbuffer[bufindw][serial_count++] = serial_char;
  733. }
  734. }
  735. #ifdef SDSUPPORT
  736. if(!card.sdprinting || serial_count!=0){
  737. return;
  738. }
  739. //'#' stops reading from SD to the buffer prematurely, so procedural macro calls are possible
  740. // if it occurs, stop_buffering is triggered and the buffer is ran dry.
  741. // this character _can_ occur in serial com, due to checksums. however, no checksums are used in SD printing
  742. static bool stop_buffering=false;
  743. if(buflen==0) stop_buffering=false;
  744. while( !card.eof() && buflen < BUFSIZE && !stop_buffering) {
  745. int16_t n=card.get();
  746. serial_char = (char)n;
  747. if(serial_char == '\n' ||
  748. serial_char == '\r' ||
  749. (serial_char == '#' && comment_mode == false) ||
  750. (serial_char == ':' && comment_mode == false) ||
  751. serial_count >= (MAX_CMD_SIZE - 1)||n==-1)
  752. {
  753. if(card.eof()){
  754. SERIAL_PROTOCOLLNPGM(MSG_FILE_PRINTED);
  755. stoptime=millis();
  756. char time[30];
  757. unsigned long t=(stoptime-starttime)/1000;
  758. int hours, minutes;
  759. minutes=(t/60)%60;
  760. hours=t/60/60;
  761. sprintf_P(time, PSTR("%i hours %i minutes"),hours, minutes);
  762. SERIAL_ECHO_START;
  763. SERIAL_ECHOLN(time);
  764. lcd_setstatus(time);
  765. card.printingHasFinished();
  766. card.checkautostart(true);
  767. }
  768. if(serial_char=='#')
  769. stop_buffering=true;
  770. if(!serial_count)
  771. {
  772. comment_mode = false; //for new command
  773. return; //if empty line
  774. }
  775. cmdbuffer[bufindw][serial_count] = 0; //terminate string
  776. // if(!comment_mode){
  777. fromsd[bufindw] = true;
  778. buflen += 1;
  779. bufindw = (bufindw + 1)%BUFSIZE;
  780. // }
  781. comment_mode = false; //for new command
  782. serial_count = 0; //clear buffer
  783. }
  784. else
  785. {
  786. if(serial_char == ';') comment_mode = true;
  787. if(!comment_mode) cmdbuffer[bufindw][serial_count++] = serial_char;
  788. }
  789. }
  790. #endif //SDSUPPORT
  791. }
  792. float code_value()
  793. {
  794. return (strtod(&cmdbuffer[bufindr][strchr_pointer - cmdbuffer[bufindr] + 1], NULL));
  795. }
  796. long code_value_long()
  797. {
  798. return (strtol(&cmdbuffer[bufindr][strchr_pointer - cmdbuffer[bufindr] + 1], NULL, 10));
  799. }
  800. bool code_seen(char code)
  801. {
  802. strchr_pointer = strchr(cmdbuffer[bufindr], code);
  803. return (strchr_pointer != NULL); //Return True if a character was found
  804. }
  805. #define DEFINE_PGM_READ_ANY(type, reader) \
  806. static inline type pgm_read_any(const type *p) \
  807. { return pgm_read_##reader##_near(p); }
  808. DEFINE_PGM_READ_ANY(float, float);
  809. DEFINE_PGM_READ_ANY(signed char, byte);
  810. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  811. static const PROGMEM type array##_P[3] = \
  812. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  813. static inline type array(int axis) \
  814. { return pgm_read_any(&array##_P[axis]); }
  815. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  816. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  817. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  818. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  819. XYZ_CONSTS_FROM_CONFIG(float, home_retract_mm, HOME_RETRACT_MM);
  820. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  821. #ifdef DUAL_X_CARRIAGE
  822. #if EXTRUDERS == 1 || defined(COREXY) \
  823. || !defined(X2_ENABLE_PIN) || !defined(X2_STEP_PIN) || !defined(X2_DIR_PIN) \
  824. || !defined(X2_HOME_POS) || !defined(X2_MIN_POS) || !defined(X2_MAX_POS) \
  825. || !defined(X_MAX_PIN) || X_MAX_PIN < 0
  826. #error "Missing or invalid definitions for DUAL_X_CARRIAGE mode."
  827. #endif
  828. #if X_HOME_DIR != -1 || X2_HOME_DIR != 1
  829. #error "Please use canonical x-carriage assignment" // the x-carriages are defined by their homing directions
  830. #endif
  831. #define DXC_FULL_CONTROL_MODE 0
  832. #define DXC_AUTO_PARK_MODE 1
  833. #define DXC_DUPLICATION_MODE 2
  834. static int dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  835. static float x_home_pos(int extruder) {
  836. if (extruder == 0)
  837. return base_home_pos(X_AXIS) + add_homing[X_AXIS];
  838. else
  839. // In dual carriage mode the extruder offset provides an override of the
  840. // second X-carriage offset when homed - otherwise X2_HOME_POS is used.
  841. // This allow soft recalibration of the second extruder offset position without firmware reflash
  842. // (through the M218 command).
  843. return (extruder_offset[X_AXIS][1] > 0) ? extruder_offset[X_AXIS][1] : X2_HOME_POS;
  844. }
  845. static int x_home_dir(int extruder) {
  846. return (extruder == 0) ? X_HOME_DIR : X2_HOME_DIR;
  847. }
  848. static float inactive_extruder_x_pos = X2_MAX_POS; // used in mode 0 & 1
  849. static bool active_extruder_parked = false; // used in mode 1 & 2
  850. static float raised_parked_position[NUM_AXIS]; // used in mode 1
  851. static unsigned long delayed_move_time = 0; // used in mode 1
  852. static float duplicate_extruder_x_offset = DEFAULT_DUPLICATION_X_OFFSET; // used in mode 2
  853. static float duplicate_extruder_temp_offset = 0; // used in mode 2
  854. bool extruder_duplication_enabled = false; // used in mode 2
  855. #endif //DUAL_X_CARRIAGE
  856. static void axis_is_at_home(int axis) {
  857. #ifdef DUAL_X_CARRIAGE
  858. if (axis == X_AXIS) {
  859. if (active_extruder != 0) {
  860. current_position[X_AXIS] = x_home_pos(active_extruder);
  861. min_pos[X_AXIS] = X2_MIN_POS;
  862. max_pos[X_AXIS] = max(extruder_offset[X_AXIS][1], X2_MAX_POS);
  863. return;
  864. }
  865. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && active_extruder == 0) {
  866. current_position[X_AXIS] = base_home_pos(X_AXIS) + add_homing[X_AXIS];
  867. min_pos[X_AXIS] = base_min_pos(X_AXIS) + add_homing[X_AXIS];
  868. max_pos[X_AXIS] = min(base_max_pos(X_AXIS) + add_homing[X_AXIS],
  869. max(extruder_offset[X_AXIS][1], X2_MAX_POS) - duplicate_extruder_x_offset);
  870. return;
  871. }
  872. }
  873. #endif
  874. #ifdef SCARA
  875. float homeposition[3];
  876. char i;
  877. if (axis < 2)
  878. {
  879. for (i=0; i<3; i++)
  880. {
  881. homeposition[i] = base_home_pos(i);
  882. }
  883. // SERIAL_ECHOPGM("homeposition[x]= "); SERIAL_ECHO(homeposition[0]);
  884. // SERIAL_ECHOPGM("homeposition[y]= "); SERIAL_ECHOLN(homeposition[1]);
  885. // Works out real Homeposition angles using inverse kinematics,
  886. // and calculates homing offset using forward kinematics
  887. calculate_delta(homeposition);
  888. // SERIAL_ECHOPGM("base Theta= "); SERIAL_ECHO(delta[X_AXIS]);
  889. // SERIAL_ECHOPGM(" base Psi+Theta="); SERIAL_ECHOLN(delta[Y_AXIS]);
  890. for (i=0; i<2; i++)
  891. {
  892. delta[i] -= add_homing[i];
  893. }
  894. // SERIAL_ECHOPGM("addhome X="); SERIAL_ECHO(add_homing[X_AXIS]);
  895. // SERIAL_ECHOPGM(" addhome Y="); SERIAL_ECHO(add_homing[Y_AXIS]);
  896. // SERIAL_ECHOPGM(" addhome Theta="); SERIAL_ECHO(delta[X_AXIS]);
  897. // SERIAL_ECHOPGM(" addhome Psi+Theta="); SERIAL_ECHOLN(delta[Y_AXIS]);
  898. calculate_SCARA_forward_Transform(delta);
  899. // SERIAL_ECHOPGM("Delta X="); SERIAL_ECHO(delta[X_AXIS]);
  900. // SERIAL_ECHOPGM(" Delta Y="); SERIAL_ECHOLN(delta[Y_AXIS]);
  901. current_position[axis] = delta[axis];
  902. // SCARA home positions are based on configuration since the actual limits are determined by the
  903. // inverse kinematic transform.
  904. min_pos[axis] = base_min_pos(axis); // + (delta[axis] - base_home_pos(axis));
  905. max_pos[axis] = base_max_pos(axis); // + (delta[axis] - base_home_pos(axis));
  906. }
  907. else
  908. {
  909. current_position[axis] = base_home_pos(axis) + add_homing[axis];
  910. min_pos[axis] = base_min_pos(axis) + add_homing[axis];
  911. max_pos[axis] = base_max_pos(axis) + add_homing[axis];
  912. }
  913. #else
  914. current_position[axis] = base_home_pos(axis) + add_homing[axis];
  915. min_pos[axis] = base_min_pos(axis) + add_homing[axis];
  916. max_pos[axis] = base_max_pos(axis) + add_homing[axis];
  917. #endif
  918. }
  919. #ifdef ENABLE_AUTO_BED_LEVELING
  920. #ifdef AUTO_BED_LEVELING_GRID
  921. static void set_bed_level_equation_lsq(double *plane_equation_coefficients)
  922. {
  923. vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
  924. planeNormal.debug("planeNormal");
  925. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  926. //bedLevel.debug("bedLevel");
  927. //plan_bed_level_matrix.debug("bed level before");
  928. //vector_3 uncorrected_position = plan_get_position_mm();
  929. //uncorrected_position.debug("position before");
  930. vector_3 corrected_position = plan_get_position();
  931. // corrected_position.debug("position after");
  932. current_position[X_AXIS] = corrected_position.x;
  933. current_position[Y_AXIS] = corrected_position.y;
  934. current_position[Z_AXIS] = corrected_position.z;
  935. // put the bed at 0 so we don't go below it.
  936. current_position[Z_AXIS] = zprobe_zoffset; // in the lsq we reach here after raising the extruder due to the loop structure
  937. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  938. }
  939. #else // not AUTO_BED_LEVELING_GRID
  940. static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
  941. plan_bed_level_matrix.set_to_identity();
  942. vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
  943. vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
  944. vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
  945. vector_3 from_2_to_1 = (pt1 - pt2).get_normal();
  946. vector_3 from_2_to_3 = (pt3 - pt2).get_normal();
  947. vector_3 planeNormal = vector_3::cross(from_2_to_1, from_2_to_3).get_normal();
  948. planeNormal = vector_3(planeNormal.x, planeNormal.y, abs(planeNormal.z));
  949. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  950. vector_3 corrected_position = plan_get_position();
  951. current_position[X_AXIS] = corrected_position.x;
  952. current_position[Y_AXIS] = corrected_position.y;
  953. current_position[Z_AXIS] = corrected_position.z;
  954. // put the bed at 0 so we don't go below it.
  955. current_position[Z_AXIS] = zprobe_zoffset;
  956. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  957. }
  958. #endif // AUTO_BED_LEVELING_GRID
  959. static void run_z_probe() {
  960. plan_bed_level_matrix.set_to_identity();
  961. feedrate = homing_feedrate[Z_AXIS];
  962. // move down until you find the bed
  963. float zPosition = -10;
  964. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  965. st_synchronize();
  966. // we have to let the planner know where we are right now as it is not where we said to go.
  967. zPosition = st_get_position_mm(Z_AXIS);
  968. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]);
  969. // move up the retract distance
  970. zPosition += home_retract_mm(Z_AXIS);
  971. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  972. st_synchronize();
  973. // move back down slowly to find bed
  974. feedrate = homing_feedrate[Z_AXIS]/4;
  975. zPosition -= home_retract_mm(Z_AXIS) * 2;
  976. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  977. st_synchronize();
  978. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  979. // make sure the planner knows where we are as it may be a bit different than we last said to move to
  980. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  981. }
  982. static void do_blocking_move_to(float x, float y, float z) {
  983. float oldFeedRate = feedrate;
  984. feedrate = homing_feedrate[Z_AXIS];
  985. current_position[Z_AXIS] = z;
  986. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  987. st_synchronize();
  988. feedrate = XY_TRAVEL_SPEED;
  989. current_position[X_AXIS] = x;
  990. current_position[Y_AXIS] = y;
  991. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  992. st_synchronize();
  993. feedrate = oldFeedRate;
  994. }
  995. static void do_blocking_move_relative(float offset_x, float offset_y, float offset_z) {
  996. do_blocking_move_to(current_position[X_AXIS] + offset_x, current_position[Y_AXIS] + offset_y, current_position[Z_AXIS] + offset_z);
  997. }
  998. static void setup_for_endstop_move() {
  999. saved_feedrate = feedrate;
  1000. saved_feedmultiply = feedmultiply;
  1001. feedmultiply = 100;
  1002. previous_millis_cmd = millis();
  1003. enable_endstops(true);
  1004. }
  1005. static void clean_up_after_endstop_move() {
  1006. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1007. enable_endstops(false);
  1008. #endif
  1009. feedrate = saved_feedrate;
  1010. feedmultiply = saved_feedmultiply;
  1011. previous_millis_cmd = millis();
  1012. }
  1013. static void engage_z_probe() {
  1014. // Engage Z Servo endstop if enabled
  1015. #ifdef SERVO_ENDSTOPS
  1016. if (servo_endstops[Z_AXIS] > -1) {
  1017. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  1018. servos[servo_endstops[Z_AXIS]].attach(0);
  1019. #endif
  1020. servos[servo_endstops[Z_AXIS]].write(servo_endstop_angles[Z_AXIS * 2]);
  1021. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  1022. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  1023. servos[servo_endstops[Z_AXIS]].detach();
  1024. #endif
  1025. }
  1026. #endif
  1027. }
  1028. static void retract_z_probe() {
  1029. // Retract Z Servo endstop if enabled
  1030. #ifdef SERVO_ENDSTOPS
  1031. if (servo_endstops[Z_AXIS] > -1) {
  1032. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  1033. servos[servo_endstops[Z_AXIS]].attach(0);
  1034. #endif
  1035. servos[servo_endstops[Z_AXIS]].write(servo_endstop_angles[Z_AXIS * 2 + 1]);
  1036. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  1037. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  1038. servos[servo_endstops[Z_AXIS]].detach();
  1039. #endif
  1040. }
  1041. #endif
  1042. }
  1043. /// Probe bed height at position (x,y), returns the measured z value
  1044. static float probe_pt(float x, float y, float z_before, int retract_action=0) {
  1045. // move to right place
  1046. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_before);
  1047. do_blocking_move_to(x - X_PROBE_OFFSET_FROM_EXTRUDER, y - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
  1048. #ifndef Z_PROBE_SLED
  1049. if ((retract_action==0) || (retract_action==1))
  1050. engage_z_probe(); // Engage Z Servo endstop if available
  1051. #endif // Z_PROBE_SLED
  1052. run_z_probe();
  1053. float measured_z = current_position[Z_AXIS];
  1054. #ifndef Z_PROBE_SLED
  1055. if ((retract_action==0) || (retract_action==3))
  1056. retract_z_probe();
  1057. #endif // Z_PROBE_SLED
  1058. SERIAL_PROTOCOLPGM(MSG_BED);
  1059. SERIAL_PROTOCOLPGM(" x: ");
  1060. SERIAL_PROTOCOL(x);
  1061. SERIAL_PROTOCOLPGM(" y: ");
  1062. SERIAL_PROTOCOL(y);
  1063. SERIAL_PROTOCOLPGM(" z: ");
  1064. SERIAL_PROTOCOL(measured_z);
  1065. SERIAL_PROTOCOLPGM("\n");
  1066. return measured_z;
  1067. }
  1068. #endif // #ifdef ENABLE_AUTO_BED_LEVELING
  1069. static void homeaxis(int axis) {
  1070. #define HOMEAXIS_DO(LETTER) \
  1071. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  1072. if (axis==X_AXIS ? HOMEAXIS_DO(X) :
  1073. axis==Y_AXIS ? HOMEAXIS_DO(Y) :
  1074. axis==Z_AXIS ? HOMEAXIS_DO(Z) :
  1075. 0) {
  1076. int axis_home_dir = home_dir(axis);
  1077. #ifdef DUAL_X_CARRIAGE
  1078. if (axis == X_AXIS)
  1079. axis_home_dir = x_home_dir(active_extruder);
  1080. #endif
  1081. current_position[axis] = 0;
  1082. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1083. #ifndef Z_PROBE_SLED
  1084. // Engage Servo endstop if enabled
  1085. #ifdef SERVO_ENDSTOPS
  1086. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  1087. if (axis==Z_AXIS) {
  1088. engage_z_probe();
  1089. }
  1090. else
  1091. #endif
  1092. if (servo_endstops[axis] > -1) {
  1093. servos[servo_endstops[axis]].write(servo_endstop_angles[axis * 2]);
  1094. }
  1095. #endif
  1096. #endif // Z_PROBE_SLED
  1097. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  1098. feedrate = homing_feedrate[axis];
  1099. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1100. st_synchronize();
  1101. current_position[axis] = 0;
  1102. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1103. destination[axis] = -home_retract_mm(axis) * axis_home_dir;
  1104. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1105. st_synchronize();
  1106. destination[axis] = 2*home_retract_mm(axis) * axis_home_dir;
  1107. #ifdef DELTA
  1108. feedrate = homing_feedrate[axis]/10;
  1109. #else
  1110. feedrate = homing_feedrate[axis]/2 ;
  1111. #endif
  1112. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1113. st_synchronize();
  1114. #ifdef DELTA
  1115. // retrace by the amount specified in endstop_adj
  1116. if (endstop_adj[axis] * axis_home_dir < 0) {
  1117. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1118. destination[axis] = endstop_adj[axis];
  1119. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1120. st_synchronize();
  1121. }
  1122. #endif
  1123. axis_is_at_home(axis);
  1124. destination[axis] = current_position[axis];
  1125. feedrate = 0.0;
  1126. endstops_hit_on_purpose();
  1127. axis_known_position[axis] = true;
  1128. // Retract Servo endstop if enabled
  1129. #ifdef SERVO_ENDSTOPS
  1130. if (servo_endstops[axis] > -1) {
  1131. servos[servo_endstops[axis]].write(servo_endstop_angles[axis * 2 + 1]);
  1132. }
  1133. #endif
  1134. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  1135. #ifndef Z_PROBE_SLED
  1136. if (axis==Z_AXIS) retract_z_probe();
  1137. #endif
  1138. #endif
  1139. }
  1140. }
  1141. #define HOMEAXIS(LETTER) homeaxis(LETTER##_AXIS)
  1142. void refresh_cmd_timeout(void)
  1143. {
  1144. previous_millis_cmd = millis();
  1145. }
  1146. #ifdef FWRETRACT
  1147. void retract(bool retracting, bool swapretract = false) {
  1148. if(retracting && !retracted[active_extruder]) {
  1149. destination[X_AXIS]=current_position[X_AXIS];
  1150. destination[Y_AXIS]=current_position[Y_AXIS];
  1151. destination[Z_AXIS]=current_position[Z_AXIS];
  1152. destination[E_AXIS]=current_position[E_AXIS];
  1153. if (swapretract) {
  1154. current_position[E_AXIS]+=retract_length_swap/volumetric_multiplier[active_extruder];
  1155. } else {
  1156. current_position[E_AXIS]+=retract_length/volumetric_multiplier[active_extruder];
  1157. }
  1158. plan_set_e_position(current_position[E_AXIS]);
  1159. float oldFeedrate = feedrate;
  1160. feedrate=retract_feedrate*60;
  1161. retracted[active_extruder]=true;
  1162. prepare_move();
  1163. if(retract_zlift > 0.01) {
  1164. current_position[Z_AXIS]-=retract_zlift;
  1165. #ifdef DELTA
  1166. calculate_delta(current_position); // change cartesian kinematic to delta kinematic;
  1167. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
  1168. #else
  1169. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1170. #endif
  1171. prepare_move();
  1172. }
  1173. feedrate = oldFeedrate;
  1174. } else if(!retracting && retracted[active_extruder]) {
  1175. destination[X_AXIS]=current_position[X_AXIS];
  1176. destination[Y_AXIS]=current_position[Y_AXIS];
  1177. destination[Z_AXIS]=current_position[Z_AXIS];
  1178. destination[E_AXIS]=current_position[E_AXIS];
  1179. if(retract_zlift > 0.01) {
  1180. current_position[Z_AXIS]+=retract_zlift;
  1181. #ifdef DELTA
  1182. calculate_delta(current_position); // change cartesian kinematic to delta kinematic;
  1183. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
  1184. #else
  1185. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1186. #endif
  1187. //prepare_move();
  1188. }
  1189. if (swapretract) {
  1190. current_position[E_AXIS]-=(retract_length_swap+retract_recover_length_swap)/volumetric_multiplier[active_extruder];
  1191. } else {
  1192. current_position[E_AXIS]-=(retract_length+retract_recover_length)/volumetric_multiplier[active_extruder];
  1193. }
  1194. plan_set_e_position(current_position[E_AXIS]);
  1195. float oldFeedrate = feedrate;
  1196. feedrate=retract_recover_feedrate*60;
  1197. retracted[active_extruder]=false;
  1198. prepare_move();
  1199. feedrate = oldFeedrate;
  1200. }
  1201. } //retract
  1202. #endif //FWRETRACT
  1203. #ifdef Z_PROBE_SLED
  1204. //
  1205. // Method to dock/undock a sled designed by Charles Bell.
  1206. //
  1207. // dock[in] If true, move to MAX_X and engage the electromagnet
  1208. // offset[in] The additional distance to move to adjust docking location
  1209. //
  1210. static void dock_sled(bool dock, int offset=0) {
  1211. int z_loc;
  1212. if (!((axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]))) {
  1213. LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN);
  1214. SERIAL_ECHO_START;
  1215. SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN);
  1216. return;
  1217. }
  1218. if (dock) {
  1219. do_blocking_move_to(X_MAX_POS + SLED_DOCKING_OFFSET + offset,
  1220. current_position[Y_AXIS],
  1221. current_position[Z_AXIS]);
  1222. // turn off magnet
  1223. digitalWrite(SERVO0_PIN, LOW);
  1224. } else {
  1225. if (current_position[Z_AXIS] < (Z_RAISE_BEFORE_PROBING + 5))
  1226. z_loc = Z_RAISE_BEFORE_PROBING;
  1227. else
  1228. z_loc = current_position[Z_AXIS];
  1229. do_blocking_move_to(X_MAX_POS + SLED_DOCKING_OFFSET + offset,
  1230. Y_PROBE_OFFSET_FROM_EXTRUDER, z_loc);
  1231. // turn on magnet
  1232. digitalWrite(SERVO0_PIN, HIGH);
  1233. }
  1234. }
  1235. #endif
  1236. void process_commands()
  1237. {
  1238. unsigned long codenum; //throw away variable
  1239. char *starpos = NULL;
  1240. #ifdef ENABLE_AUTO_BED_LEVELING
  1241. float x_tmp, y_tmp, z_tmp, real_z;
  1242. #endif
  1243. if(code_seen('G'))
  1244. {
  1245. switch((int)code_value())
  1246. {
  1247. case 0: // G0 -> G1
  1248. case 1: // G1
  1249. if(Stopped == false) {
  1250. get_coordinates(); // For X Y Z E F
  1251. #ifdef FWRETRACT
  1252. if(autoretract_enabled)
  1253. if( !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  1254. float echange=destination[E_AXIS]-current_position[E_AXIS];
  1255. if((echange<-MIN_RETRACT && !retracted) || (echange>MIN_RETRACT && retracted)) { //move appears to be an attempt to retract or recover
  1256. current_position[E_AXIS] = destination[E_AXIS]; //hide the slicer-generated retract/recover from calculations
  1257. plan_set_e_position(current_position[E_AXIS]); //AND from the planner
  1258. retract(!retracted);
  1259. return;
  1260. }
  1261. }
  1262. #endif //FWRETRACT
  1263. prepare_move();
  1264. //ClearToSend();
  1265. }
  1266. break;
  1267. #ifndef SCARA //disable arc support
  1268. case 2: // G2 - CW ARC
  1269. if(Stopped == false) {
  1270. get_arc_coordinates();
  1271. prepare_arc_move(true);
  1272. }
  1273. break;
  1274. case 3: // G3 - CCW ARC
  1275. if(Stopped == false) {
  1276. get_arc_coordinates();
  1277. prepare_arc_move(false);
  1278. }
  1279. break;
  1280. #endif
  1281. case 4: // G4 dwell
  1282. LCD_MESSAGEPGM(MSG_DWELL);
  1283. codenum = 0;
  1284. if(code_seen('P')) codenum = code_value(); // milliseconds to wait
  1285. if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait
  1286. st_synchronize();
  1287. codenum += millis(); // keep track of when we started waiting
  1288. previous_millis_cmd = millis();
  1289. while(millis() < codenum) {
  1290. manage_heater();
  1291. manage_inactivity();
  1292. lcd_update();
  1293. }
  1294. break;
  1295. #ifdef FWRETRACT
  1296. case 10: // G10 retract
  1297. #if EXTRUDERS > 1
  1298. retracted_swap[active_extruder]=(code_seen('S') && code_value_long() == 1); // checks for swap retract argument
  1299. retract(true,retracted_swap[active_extruder]);
  1300. #else
  1301. retract(true);
  1302. #endif
  1303. break;
  1304. case 11: // G11 retract_recover
  1305. #if EXTRUDERS > 1
  1306. retract(false,retracted_swap[active_extruder]);
  1307. #else
  1308. retract(false);
  1309. #endif
  1310. break;
  1311. #endif //FWRETRACT
  1312. case 28: //G28 Home all Axis one at a time
  1313. #ifdef ENABLE_AUTO_BED_LEVELING
  1314. plan_bed_level_matrix.set_to_identity(); //Reset the plane ("erase" all leveling data)
  1315. #endif //ENABLE_AUTO_BED_LEVELING
  1316. saved_feedrate = feedrate;
  1317. saved_feedmultiply = feedmultiply;
  1318. feedmultiply = 100;
  1319. previous_millis_cmd = millis();
  1320. enable_endstops(true);
  1321. for(int8_t i=0; i < NUM_AXIS; i++) {
  1322. destination[i] = current_position[i];
  1323. }
  1324. feedrate = 0.0;
  1325. #ifdef DELTA
  1326. // A delta can only safely home all axis at the same time
  1327. // all axis have to home at the same time
  1328. // Move all carriages up together until the first endstop is hit.
  1329. current_position[X_AXIS] = 0;
  1330. current_position[Y_AXIS] = 0;
  1331. current_position[Z_AXIS] = 0;
  1332. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1333. destination[X_AXIS] = 3 * Z_MAX_LENGTH;
  1334. destination[Y_AXIS] = 3 * Z_MAX_LENGTH;
  1335. destination[Z_AXIS] = 3 * Z_MAX_LENGTH;
  1336. feedrate = 1.732 * homing_feedrate[X_AXIS];
  1337. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1338. st_synchronize();
  1339. endstops_hit_on_purpose();
  1340. current_position[X_AXIS] = destination[X_AXIS];
  1341. current_position[Y_AXIS] = destination[Y_AXIS];
  1342. current_position[Z_AXIS] = destination[Z_AXIS];
  1343. // take care of back off and rehome now we are all at the top
  1344. HOMEAXIS(X);
  1345. HOMEAXIS(Y);
  1346. HOMEAXIS(Z);
  1347. calculate_delta(current_position);
  1348. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
  1349. #else // NOT DELTA
  1350. home_all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS])));
  1351. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  1352. if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
  1353. HOMEAXIS(Z);
  1354. }
  1355. #endif
  1356. #ifdef QUICK_HOME
  1357. if((home_all_axis)||( code_seen(axis_codes[X_AXIS]) && code_seen(axis_codes[Y_AXIS])) ) //first diagonal move
  1358. {
  1359. current_position[X_AXIS] = 0;current_position[Y_AXIS] = 0;
  1360. #ifndef DUAL_X_CARRIAGE
  1361. int x_axis_home_dir = home_dir(X_AXIS);
  1362. #else
  1363. int x_axis_home_dir = x_home_dir(active_extruder);
  1364. extruder_duplication_enabled = false;
  1365. #endif
  1366. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1367. destination[X_AXIS] = 1.5 * max_length(X_AXIS) * x_axis_home_dir;destination[Y_AXIS] = 1.5 * max_length(Y_AXIS) * home_dir(Y_AXIS);
  1368. feedrate = homing_feedrate[X_AXIS];
  1369. if(homing_feedrate[Y_AXIS]<feedrate)
  1370. feedrate = homing_feedrate[Y_AXIS];
  1371. if (max_length(X_AXIS) > max_length(Y_AXIS)) {
  1372. feedrate *= sqrt(pow(max_length(Y_AXIS) / max_length(X_AXIS), 2) + 1);
  1373. } else {
  1374. feedrate *= sqrt(pow(max_length(X_AXIS) / max_length(Y_AXIS), 2) + 1);
  1375. }
  1376. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1377. st_synchronize();
  1378. axis_is_at_home(X_AXIS);
  1379. axis_is_at_home(Y_AXIS);
  1380. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1381. destination[X_AXIS] = current_position[X_AXIS];
  1382. destination[Y_AXIS] = current_position[Y_AXIS];
  1383. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1384. feedrate = 0.0;
  1385. st_synchronize();
  1386. endstops_hit_on_purpose();
  1387. current_position[X_AXIS] = destination[X_AXIS];
  1388. current_position[Y_AXIS] = destination[Y_AXIS];
  1389. #ifndef SCARA
  1390. current_position[Z_AXIS] = destination[Z_AXIS];
  1391. #endif
  1392. }
  1393. #endif
  1394. if((home_all_axis) || (code_seen(axis_codes[X_AXIS])))
  1395. {
  1396. #ifdef DUAL_X_CARRIAGE
  1397. int tmp_extruder = active_extruder;
  1398. extruder_duplication_enabled = false;
  1399. active_extruder = !active_extruder;
  1400. HOMEAXIS(X);
  1401. inactive_extruder_x_pos = current_position[X_AXIS];
  1402. active_extruder = tmp_extruder;
  1403. HOMEAXIS(X);
  1404. // reset state used by the different modes
  1405. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  1406. delayed_move_time = 0;
  1407. active_extruder_parked = true;
  1408. #else
  1409. HOMEAXIS(X);
  1410. #endif
  1411. }
  1412. if((home_all_axis) || (code_seen(axis_codes[Y_AXIS]))) {
  1413. HOMEAXIS(Y);
  1414. }
  1415. if(code_seen(axis_codes[X_AXIS]))
  1416. {
  1417. if(code_value_long() != 0) {
  1418. #ifdef SCARA
  1419. current_position[X_AXIS]=code_value();
  1420. #else
  1421. current_position[X_AXIS]=code_value()+add_homing[X_AXIS];
  1422. #endif
  1423. }
  1424. }
  1425. if(code_seen(axis_codes[Y_AXIS])) {
  1426. if(code_value_long() != 0) {
  1427. #ifdef SCARA
  1428. current_position[Y_AXIS]=code_value();
  1429. #else
  1430. current_position[Y_AXIS]=code_value()+add_homing[Y_AXIS];
  1431. #endif
  1432. }
  1433. }
  1434. #if Z_HOME_DIR < 0 // If homing towards BED do Z last
  1435. #ifndef Z_SAFE_HOMING
  1436. if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
  1437. #if defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  1438. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  1439. feedrate = max_feedrate[Z_AXIS];
  1440. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  1441. st_synchronize();
  1442. #endif
  1443. HOMEAXIS(Z);
  1444. }
  1445. #else // Z Safe mode activated.
  1446. if(home_all_axis) {
  1447. destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - X_PROBE_OFFSET_FROM_EXTRUDER);
  1448. destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - Y_PROBE_OFFSET_FROM_EXTRUDER);
  1449. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  1450. feedrate = XY_TRAVEL_SPEED/60;
  1451. current_position[Z_AXIS] = 0;
  1452. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1453. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  1454. st_synchronize();
  1455. current_position[X_AXIS] = destination[X_AXIS];
  1456. current_position[Y_AXIS] = destination[Y_AXIS];
  1457. HOMEAXIS(Z);
  1458. }
  1459. // Let's see if X and Y are homed and probe is inside bed area.
  1460. if(code_seen(axis_codes[Z_AXIS])) {
  1461. if ( (axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]) \
  1462. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER >= X_MIN_POS) \
  1463. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER <= X_MAX_POS) \
  1464. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER >= Y_MIN_POS) \
  1465. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER <= Y_MAX_POS)) {
  1466. current_position[Z_AXIS] = 0;
  1467. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1468. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  1469. feedrate = max_feedrate[Z_AXIS];
  1470. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  1471. st_synchronize();
  1472. HOMEAXIS(Z);
  1473. } else if (!((axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]))) {
  1474. LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN);
  1475. SERIAL_ECHO_START;
  1476. SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN);
  1477. } else {
  1478. LCD_MESSAGEPGM(MSG_ZPROBE_OUT);
  1479. SERIAL_ECHO_START;
  1480. SERIAL_ECHOLNPGM(MSG_ZPROBE_OUT);
  1481. }
  1482. }
  1483. #endif
  1484. #endif
  1485. if(code_seen(axis_codes[Z_AXIS])) {
  1486. if(code_value_long() != 0) {
  1487. current_position[Z_AXIS]=code_value()+add_homing[Z_AXIS];
  1488. }
  1489. }
  1490. #ifdef ENABLE_AUTO_BED_LEVELING
  1491. if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
  1492. current_position[Z_AXIS] += zprobe_zoffset; //Add Z_Probe offset (the distance is negative)
  1493. }
  1494. #endif
  1495. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1496. #endif // else DELTA
  1497. #ifdef SCARA
  1498. calculate_delta(current_position);
  1499. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
  1500. #endif // SCARA
  1501. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1502. enable_endstops(false);
  1503. #endif
  1504. feedrate = saved_feedrate;
  1505. feedmultiply = saved_feedmultiply;
  1506. previous_millis_cmd = millis();
  1507. endstops_hit_on_purpose();
  1508. break;
  1509. #ifdef ENABLE_AUTO_BED_LEVELING
  1510. case 29: // G29 Detailed Z-Probe, probes the bed at 3 or more points.
  1511. // Override probing area by providing [F]ront [B]ack [L]eft [R]ight Grid[P]oints values
  1512. {
  1513. #if Z_MIN_PIN == -1
  1514. #error "You must have a Z_MIN endstop in order to enable Auto Bed Leveling feature!!! Z_MIN_PIN must point to a valid hardware pin."
  1515. #endif
  1516. // Prevent user from running a G29 without first homing in X and Y
  1517. if (! (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS]) )
  1518. {
  1519. LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN);
  1520. SERIAL_ECHO_START;
  1521. SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN);
  1522. break; // abort G29, since we don't know where we are
  1523. }
  1524. #ifdef Z_PROBE_SLED
  1525. dock_sled(false);
  1526. #endif // Z_PROBE_SLED
  1527. st_synchronize();
  1528. // make sure the bed_level_rotation_matrix is identity or the planner will get it incorectly
  1529. //vector_3 corrected_position = plan_get_position_mm();
  1530. //corrected_position.debug("position before G29");
  1531. plan_bed_level_matrix.set_to_identity();
  1532. vector_3 uncorrected_position = plan_get_position();
  1533. //uncorrected_position.debug("position durring G29");
  1534. current_position[X_AXIS] = uncorrected_position.x;
  1535. current_position[Y_AXIS] = uncorrected_position.y;
  1536. current_position[Z_AXIS] = uncorrected_position.z;
  1537. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1538. setup_for_endstop_move();
  1539. feedrate = homing_feedrate[Z_AXIS];
  1540. #ifdef AUTO_BED_LEVELING_GRID
  1541. // probe at the points of a lattice grid
  1542. int left_probe_bed_position=LEFT_PROBE_BED_POSITION;
  1543. int right_probe_bed_position=RIGHT_PROBE_BED_POSITION;
  1544. int back_probe_bed_position=BACK_PROBE_BED_POSITION;
  1545. int front_probe_bed_position=FRONT_PROBE_BED_POSITION;
  1546. int auto_bed_leveling_grid_points=AUTO_BED_LEVELING_GRID_POINTS;
  1547. if (code_seen('L')) left_probe_bed_position=(int)code_value();
  1548. if (code_seen('R')) right_probe_bed_position=(int)code_value();
  1549. if (code_seen('B')) back_probe_bed_position=(int)code_value();
  1550. if (code_seen('F')) front_probe_bed_position=(int)code_value();
  1551. if (code_seen('P')) auto_bed_leveling_grid_points=(int)code_value();
  1552. int xGridSpacing = (right_probe_bed_position - left_probe_bed_position) / (auto_bed_leveling_grid_points-1);
  1553. int yGridSpacing = (back_probe_bed_position - front_probe_bed_position) / (auto_bed_leveling_grid_points-1);
  1554. // solve the plane equation ax + by + d = z
  1555. // A is the matrix with rows [x y 1] for all the probed points
  1556. // B is the vector of the Z positions
  1557. // the normal vector to the plane is formed by the coefficients of the plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  1558. // so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  1559. // "A" matrix of the linear system of equations
  1560. double eqnAMatrix[auto_bed_leveling_grid_points*auto_bed_leveling_grid_points*3];
  1561. // "B" vector of Z points
  1562. double eqnBVector[auto_bed_leveling_grid_points*auto_bed_leveling_grid_points];
  1563. int probePointCounter = 0;
  1564. bool zig = true;
  1565. for (int yProbe=front_probe_bed_position; yProbe <= back_probe_bed_position; yProbe += yGridSpacing)
  1566. {
  1567. int xProbe, xInc;
  1568. if (zig)
  1569. {
  1570. xProbe = left_probe_bed_position;
  1571. //xEnd = right_probe_bed_position;
  1572. xInc = xGridSpacing;
  1573. zig = false;
  1574. } else // zag
  1575. {
  1576. xProbe = right_probe_bed_position;
  1577. //xEnd = left_probe_bed_position;
  1578. xInc = -xGridSpacing;
  1579. zig = true;
  1580. }
  1581. for (int xCount=0; xCount < auto_bed_leveling_grid_points; xCount++)
  1582. {
  1583. float z_before;
  1584. if (probePointCounter == 0)
  1585. {
  1586. // raise before probing
  1587. z_before = Z_RAISE_BEFORE_PROBING;
  1588. } else
  1589. {
  1590. // raise extruder
  1591. z_before = current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS;
  1592. }
  1593. float measured_z;
  1594. //Enhanced G29 - Do not retract servo between probes
  1595. if (code_seen('E') || code_seen('e') )
  1596. {
  1597. if ((yProbe==FRONT_PROBE_BED_POSITION) && (xCount==0))
  1598. {
  1599. measured_z = probe_pt(xProbe, yProbe, z_before,1);
  1600. } else if ((yProbe==FRONT_PROBE_BED_POSITION + (yGridSpacing * (AUTO_BED_LEVELING_GRID_POINTS-1))) && (xCount == AUTO_BED_LEVELING_GRID_POINTS-1))
  1601. {
  1602. measured_z = probe_pt(xProbe, yProbe, z_before,3);
  1603. } else {
  1604. measured_z = probe_pt(xProbe, yProbe, z_before,2);
  1605. }
  1606. } else {
  1607. measured_z = probe_pt(xProbe, yProbe, z_before);
  1608. }
  1609. eqnBVector[probePointCounter] = measured_z;
  1610. eqnAMatrix[probePointCounter + 0*auto_bed_leveling_grid_points*auto_bed_leveling_grid_points] = xProbe;
  1611. eqnAMatrix[probePointCounter + 1*auto_bed_leveling_grid_points*auto_bed_leveling_grid_points] = yProbe;
  1612. eqnAMatrix[probePointCounter + 2*auto_bed_leveling_grid_points*auto_bed_leveling_grid_points] = 1;
  1613. probePointCounter++;
  1614. xProbe += xInc;
  1615. }
  1616. }
  1617. clean_up_after_endstop_move();
  1618. // solve lsq problem
  1619. double *plane_equation_coefficients = qr_solve(auto_bed_leveling_grid_points*auto_bed_leveling_grid_points, 3, eqnAMatrix, eqnBVector);
  1620. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  1621. SERIAL_PROTOCOL(plane_equation_coefficients[0]);
  1622. SERIAL_PROTOCOLPGM(" b: ");
  1623. SERIAL_PROTOCOL(plane_equation_coefficients[1]);
  1624. SERIAL_PROTOCOLPGM(" d: ");
  1625. SERIAL_PROTOCOLLN(plane_equation_coefficients[2]);
  1626. set_bed_level_equation_lsq(plane_equation_coefficients);
  1627. free(plane_equation_coefficients);
  1628. #else // AUTO_BED_LEVELING_GRID not defined
  1629. // Probe at 3 arbitrary points
  1630. // Enhanced G29
  1631. float z_at_pt_1, z_at_pt_2, z_at_pt_3;
  1632. if (code_seen('E') || code_seen('e')) {
  1633. // probe 1
  1634. z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING,1);
  1635. // probe 2
  1636. z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS,2);
  1637. // probe 3
  1638. z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS,3);
  1639. }
  1640. else {
  1641. // probe 1
  1642. z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING);
  1643. // probe 2
  1644. z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  1645. // probe 3
  1646. z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  1647. }
  1648. clean_up_after_endstop_move();
  1649. set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
  1650. #endif // AUTO_BED_LEVELING_GRID
  1651. st_synchronize();
  1652. // The following code correct the Z height difference from z-probe position and hotend tip position.
  1653. // The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
  1654. // When the bed is uneven, this height must be corrected.
  1655. real_z = float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]; //get the real Z (since the auto bed leveling is already correcting the plane)
  1656. x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER;
  1657. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER;
  1658. z_tmp = current_position[Z_AXIS];
  1659. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); //Apply the correction sending the probe offset
  1660. current_position[Z_AXIS] = z_tmp - real_z + current_position[Z_AXIS]; //The difference is added to current position and sent to planner.
  1661. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1662. #ifdef Z_PROBE_SLED
  1663. dock_sled(true, -SLED_DOCKING_OFFSET); // correct for over travel.
  1664. #endif // Z_PROBE_SLED
  1665. }
  1666. break;
  1667. #ifndef Z_PROBE_SLED
  1668. case 30: // G30 Single Z Probe
  1669. {
  1670. engage_z_probe(); // Engage Z Servo endstop if available
  1671. st_synchronize();
  1672. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  1673. setup_for_endstop_move();
  1674. feedrate = homing_feedrate[Z_AXIS];
  1675. run_z_probe();
  1676. SERIAL_PROTOCOLPGM(MSG_BED);
  1677. SERIAL_PROTOCOLPGM(" X: ");
  1678. SERIAL_PROTOCOL(current_position[X_AXIS]);
  1679. SERIAL_PROTOCOLPGM(" Y: ");
  1680. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  1681. SERIAL_PROTOCOLPGM(" Z: ");
  1682. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  1683. SERIAL_PROTOCOLPGM("\n");
  1684. clean_up_after_endstop_move();
  1685. retract_z_probe(); // Retract Z Servo endstop if available
  1686. }
  1687. break;
  1688. #else
  1689. case 31: // dock the sled
  1690. dock_sled(true);
  1691. break;
  1692. case 32: // undock the sled
  1693. dock_sled(false);
  1694. break;
  1695. #endif // Z_PROBE_SLED
  1696. #endif // ENABLE_AUTO_BED_LEVELING
  1697. case 90: // G90
  1698. relative_mode = false;
  1699. break;
  1700. case 91: // G91
  1701. relative_mode = true;
  1702. break;
  1703. case 92: // G92
  1704. if(!code_seen(axis_codes[E_AXIS]))
  1705. st_synchronize();
  1706. for(int8_t i=0; i < NUM_AXIS; i++) {
  1707. if(code_seen(axis_codes[i])) {
  1708. if(i == E_AXIS) {
  1709. current_position[i] = code_value();
  1710. plan_set_e_position(current_position[E_AXIS]);
  1711. }
  1712. else {
  1713. #ifdef SCARA
  1714. if (i == X_AXIS || i == Y_AXIS) {
  1715. current_position[i] = code_value();
  1716. }
  1717. else {
  1718. current_position[i] = code_value()+add_homing[i];
  1719. }
  1720. #else
  1721. current_position[i] = code_value()+add_homing[i];
  1722. #endif
  1723. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1724. }
  1725. }
  1726. }
  1727. break;
  1728. }
  1729. }
  1730. else if(code_seen('M'))
  1731. {
  1732. switch( (int)code_value() )
  1733. {
  1734. #ifdef ULTIPANEL
  1735. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  1736. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  1737. {
  1738. char *src = strchr_pointer + 2;
  1739. codenum = 0;
  1740. bool hasP = false, hasS = false;
  1741. if (code_seen('P')) {
  1742. codenum = code_value(); // milliseconds to wait
  1743. hasP = codenum > 0;
  1744. }
  1745. if (code_seen('S')) {
  1746. codenum = code_value() * 1000; // seconds to wait
  1747. hasS = codenum > 0;
  1748. }
  1749. starpos = strchr(src, '*');
  1750. if (starpos != NULL) *(starpos) = '\0';
  1751. while (*src == ' ') ++src;
  1752. if (!hasP && !hasS && *src != '\0') {
  1753. lcd_setstatus(src);
  1754. } else {
  1755. LCD_MESSAGEPGM(MSG_USERWAIT);
  1756. }
  1757. lcd_ignore_click();
  1758. st_synchronize();
  1759. previous_millis_cmd = millis();
  1760. if (codenum > 0){
  1761. codenum += millis(); // keep track of when we started waiting
  1762. while(millis() < codenum && !lcd_clicked()){
  1763. manage_heater();
  1764. manage_inactivity();
  1765. lcd_update();
  1766. }
  1767. lcd_ignore_click(false);
  1768. }else{
  1769. if (!lcd_detected())
  1770. break;
  1771. while(!lcd_clicked()){
  1772. manage_heater();
  1773. manage_inactivity();
  1774. lcd_update();
  1775. }
  1776. }
  1777. if (IS_SD_PRINTING)
  1778. LCD_MESSAGEPGM(MSG_RESUMING);
  1779. else
  1780. LCD_MESSAGEPGM(WELCOME_MSG);
  1781. }
  1782. break;
  1783. #endif
  1784. case 17:
  1785. LCD_MESSAGEPGM(MSG_NO_MOVE);
  1786. enable_x();
  1787. enable_y();
  1788. enable_z();
  1789. enable_e0();
  1790. enable_e1();
  1791. enable_e2();
  1792. break;
  1793. #ifdef SDSUPPORT
  1794. case 20: // M20 - list SD card
  1795. SERIAL_PROTOCOLLNPGM(MSG_BEGIN_FILE_LIST);
  1796. card.ls();
  1797. SERIAL_PROTOCOLLNPGM(MSG_END_FILE_LIST);
  1798. break;
  1799. case 21: // M21 - init SD card
  1800. card.initsd();
  1801. break;
  1802. case 22: //M22 - release SD card
  1803. card.release();
  1804. break;
  1805. case 23: //M23 - Select file
  1806. starpos = (strchr(strchr_pointer + 4,'*'));
  1807. if(starpos!=NULL)
  1808. *(starpos)='\0';
  1809. card.openFile(strchr_pointer + 4,true);
  1810. break;
  1811. case 24: //M24 - Start SD print
  1812. card.startFileprint();
  1813. starttime=millis();
  1814. break;
  1815. case 25: //M25 - Pause SD print
  1816. card.pauseSDPrint();
  1817. break;
  1818. case 26: //M26 - Set SD index
  1819. if(card.cardOK && code_seen('S')) {
  1820. card.setIndex(code_value_long());
  1821. }
  1822. break;
  1823. case 27: //M27 - Get SD status
  1824. card.getStatus();
  1825. break;
  1826. case 28: //M28 - Start SD write
  1827. starpos = (strchr(strchr_pointer + 4,'*'));
  1828. if(starpos != NULL){
  1829. char* npos = strchr(cmdbuffer[bufindr], 'N');
  1830. strchr_pointer = strchr(npos,' ') + 1;
  1831. *(starpos) = '\0';
  1832. }
  1833. card.openFile(strchr_pointer+4,false);
  1834. break;
  1835. case 29: //M29 - Stop SD write
  1836. //processed in write to file routine above
  1837. //card,saving = false;
  1838. break;
  1839. case 30: //M30 <filename> Delete File
  1840. if (card.cardOK){
  1841. card.closefile();
  1842. starpos = (strchr(strchr_pointer + 4,'*'));
  1843. if(starpos != NULL){
  1844. char* npos = strchr(cmdbuffer[bufindr], 'N');
  1845. strchr_pointer = strchr(npos,' ') + 1;
  1846. *(starpos) = '\0';
  1847. }
  1848. card.removeFile(strchr_pointer + 4);
  1849. }
  1850. break;
  1851. case 32: //M32 - Select file and start SD print
  1852. {
  1853. if(card.sdprinting) {
  1854. st_synchronize();
  1855. }
  1856. starpos = (strchr(strchr_pointer + 4,'*'));
  1857. char* namestartpos = (strchr(strchr_pointer + 4,'!')); //find ! to indicate filename string start.
  1858. if(namestartpos==NULL)
  1859. {
  1860. namestartpos=strchr_pointer + 4; //default name position, 4 letters after the M
  1861. }
  1862. else
  1863. namestartpos++; //to skip the '!'
  1864. if(starpos!=NULL)
  1865. *(starpos)='\0';
  1866. bool call_procedure=(code_seen('P'));
  1867. if(strchr_pointer>namestartpos)
  1868. call_procedure=false; //false alert, 'P' found within filename
  1869. if( card.cardOK )
  1870. {
  1871. card.openFile(namestartpos,true,!call_procedure);
  1872. if(code_seen('S'))
  1873. if(strchr_pointer<namestartpos) //only if "S" is occuring _before_ the filename
  1874. card.setIndex(code_value_long());
  1875. card.startFileprint();
  1876. if(!call_procedure)
  1877. starttime=millis(); //procedure calls count as normal print time.
  1878. }
  1879. } break;
  1880. case 928: //M928 - Start SD write
  1881. starpos = (strchr(strchr_pointer + 5,'*'));
  1882. if(starpos != NULL){
  1883. char* npos = strchr(cmdbuffer[bufindr], 'N');
  1884. strchr_pointer = strchr(npos,' ') + 1;
  1885. *(starpos) = '\0';
  1886. }
  1887. card.openLogFile(strchr_pointer+5);
  1888. break;
  1889. #endif //SDSUPPORT
  1890. case 31: //M31 take time since the start of the SD print or an M109 command
  1891. {
  1892. stoptime=millis();
  1893. char time[30];
  1894. unsigned long t=(stoptime-starttime)/1000;
  1895. int sec,min;
  1896. min=t/60;
  1897. sec=t%60;
  1898. sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
  1899. SERIAL_ECHO_START;
  1900. SERIAL_ECHOLN(time);
  1901. lcd_setstatus(time);
  1902. autotempShutdown();
  1903. }
  1904. break;
  1905. case 42: //M42 -Change pin status via gcode
  1906. if (code_seen('S'))
  1907. {
  1908. int pin_status = code_value();
  1909. int pin_number = LED_PIN;
  1910. if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
  1911. pin_number = code_value();
  1912. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  1913. {
  1914. if (sensitive_pins[i] == pin_number)
  1915. {
  1916. pin_number = -1;
  1917. break;
  1918. }
  1919. }
  1920. #if defined(FAN_PIN) && FAN_PIN > -1
  1921. if (pin_number == FAN_PIN)
  1922. fanSpeed = pin_status;
  1923. #endif
  1924. if (pin_number > -1)
  1925. {
  1926. pinMode(pin_number, OUTPUT);
  1927. digitalWrite(pin_number, pin_status);
  1928. analogWrite(pin_number, pin_status);
  1929. }
  1930. }
  1931. break;
  1932. // M48 Z-Probe repeatability measurement function.
  1933. //
  1934. // Usage: M48 <n #_samples> <X X_position_for_samples> <Y Y_position_for_samples> <V Verbose_Level> <Engage_probe_for_each_reading> <L legs_of_movement_prior_to_doing_probe>
  1935. //
  1936. // This function assumes the bed has been homed. Specificaly, that a G28 command
  1937. // as been issued prior to invoking the M48 Z-Probe repeatability measurement function.
  1938. // Any information generated by a prior G29 Bed leveling command will be lost and need to be
  1939. // regenerated.
  1940. //
  1941. // The number of samples will default to 10 if not specified. You can use upper or lower case
  1942. // letters for any of the options EXCEPT n. n must be in lower case because Marlin uses a capital
  1943. // N for its communication protocol and will get horribly confused if you send it a capital N.
  1944. //
  1945. #ifdef ENABLE_AUTO_BED_LEVELING
  1946. #ifdef Z_PROBE_REPEATABILITY_TEST
  1947. case 48: // M48 Z-Probe repeatability
  1948. {
  1949. #if Z_MIN_PIN == -1
  1950. #error "You must have a Z_MIN endstop in order to enable calculation of Z-Probe repeatability."
  1951. #endif
  1952. double sum=0.0;
  1953. double mean=0.0;
  1954. double sigma=0.0;
  1955. double sample_set[50];
  1956. int verbose_level=1, n=0, j, n_samples = 10, n_legs=0, engage_probe_for_each_reading=0 ;
  1957. double X_current, Y_current, Z_current;
  1958. double X_probe_location, Y_probe_location, Z_start_location, ext_position;
  1959. if (code_seen('V') || code_seen('v')) {
  1960. verbose_level = code_value();
  1961. if (verbose_level<0 || verbose_level>4 ) {
  1962. SERIAL_PROTOCOLPGM("?Verbose Level not plausable.\n");
  1963. goto Sigma_Exit;
  1964. }
  1965. }
  1966. if (verbose_level > 0) {
  1967. SERIAL_PROTOCOLPGM("M48 Z-Probe Repeatability test. Version 2.00\n");
  1968. SERIAL_PROTOCOLPGM("Full support at: http://3dprintboard.com/forum.php\n");
  1969. }
  1970. if (code_seen('n')) {
  1971. n_samples = code_value();
  1972. if (n_samples<4 || n_samples>50 ) {
  1973. SERIAL_PROTOCOLPGM("?Specified sample size not plausable.\n");
  1974. goto Sigma_Exit;
  1975. }
  1976. }
  1977. X_current = X_probe_location = st_get_position_mm(X_AXIS);
  1978. Y_current = Y_probe_location = st_get_position_mm(Y_AXIS);
  1979. Z_current = st_get_position_mm(Z_AXIS);
  1980. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  1981. ext_position = st_get_position_mm(E_AXIS);
  1982. if (code_seen('E') || code_seen('e') )
  1983. engage_probe_for_each_reading++;
  1984. if (code_seen('X') || code_seen('x') ) {
  1985. X_probe_location = code_value() - X_PROBE_OFFSET_FROM_EXTRUDER;
  1986. if (X_probe_location<X_MIN_POS || X_probe_location>X_MAX_POS ) {
  1987. SERIAL_PROTOCOLPGM("?Specified X position out of range.\n");
  1988. goto Sigma_Exit;
  1989. }
  1990. }
  1991. if (code_seen('Y') || code_seen('y') ) {
  1992. Y_probe_location = code_value() - Y_PROBE_OFFSET_FROM_EXTRUDER;
  1993. if (Y_probe_location<Y_MIN_POS || Y_probe_location>Y_MAX_POS ) {
  1994. SERIAL_PROTOCOLPGM("?Specified Y position out of range.\n");
  1995. goto Sigma_Exit;
  1996. }
  1997. }
  1998. if (code_seen('L') || code_seen('l') ) {
  1999. n_legs = code_value();
  2000. if ( n_legs==1 )
  2001. n_legs = 2;
  2002. if ( n_legs<0 || n_legs>15 ) {
  2003. SERIAL_PROTOCOLPGM("?Specified number of legs in movement not plausable.\n");
  2004. goto Sigma_Exit;
  2005. }
  2006. }
  2007. //
  2008. // Do all the preliminary setup work. First raise the probe.
  2009. //
  2010. st_synchronize();
  2011. plan_bed_level_matrix.set_to_identity();
  2012. plan_buffer_line( X_current, Y_current, Z_start_location,
  2013. ext_position,
  2014. homing_feedrate[Z_AXIS]/60,
  2015. active_extruder);
  2016. st_synchronize();
  2017. //
  2018. // Now get everything to the specified probe point So we can safely do a probe to
  2019. // get us close to the bed. If the Z-Axis is far from the bed, we don't want to
  2020. // use that as a starting point for each probe.
  2021. //
  2022. if (verbose_level > 2)
  2023. SERIAL_PROTOCOL("Positioning probe for the test.\n");
  2024. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  2025. ext_position,
  2026. homing_feedrate[X_AXIS]/60,
  2027. active_extruder);
  2028. st_synchronize();
  2029. current_position[X_AXIS] = X_current = st_get_position_mm(X_AXIS);
  2030. current_position[Y_AXIS] = Y_current = st_get_position_mm(Y_AXIS);
  2031. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  2032. current_position[E_AXIS] = ext_position = st_get_position_mm(E_AXIS);
  2033. //
  2034. // OK, do the inital probe to get us close to the bed.
  2035. // Then retrace the right amount and use that in subsequent probes
  2036. //
  2037. engage_z_probe();
  2038. setup_for_endstop_move();
  2039. run_z_probe();
  2040. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  2041. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  2042. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  2043. ext_position,
  2044. homing_feedrate[X_AXIS]/60,
  2045. active_extruder);
  2046. st_synchronize();
  2047. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  2048. if (engage_probe_for_each_reading)
  2049. retract_z_probe();
  2050. for( n=0; n<n_samples; n++) {
  2051. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Make sure we are at the probe location
  2052. if ( n_legs) {
  2053. double radius=0.0, theta=0.0, x_sweep, y_sweep;
  2054. int rotational_direction, l;
  2055. rotational_direction = (unsigned long) millis() & 0x0001; // clockwise or counter clockwise
  2056. radius = (unsigned long) millis() % (long) (X_MAX_LENGTH/4); // limit how far out to go
  2057. theta = (float) ((unsigned long) millis() % (long) 360) / (360./(2*3.1415926)); // turn into radians
  2058. //SERIAL_ECHOPAIR("starting radius: ",radius);
  2059. //SERIAL_ECHOPAIR(" theta: ",theta);
  2060. //SERIAL_ECHOPAIR(" direction: ",rotational_direction);
  2061. //SERIAL_PROTOCOLLNPGM("");
  2062. for( l=0; l<n_legs-1; l++) {
  2063. if (rotational_direction==1)
  2064. theta += (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  2065. else
  2066. theta -= (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  2067. radius += (float) ( ((long) ((unsigned long) millis() % (long) 10)) - 5);
  2068. if ( radius<0.0 )
  2069. radius = -radius;
  2070. X_current = X_probe_location + cos(theta) * radius;
  2071. Y_current = Y_probe_location + sin(theta) * radius;
  2072. if ( X_current<X_MIN_POS) // Make sure our X & Y are sane
  2073. X_current = X_MIN_POS;
  2074. if ( X_current>X_MAX_POS)
  2075. X_current = X_MAX_POS;
  2076. if ( Y_current<Y_MIN_POS) // Make sure our X & Y are sane
  2077. Y_current = Y_MIN_POS;
  2078. if ( Y_current>Y_MAX_POS)
  2079. Y_current = Y_MAX_POS;
  2080. if (verbose_level>3 ) {
  2081. SERIAL_ECHOPAIR("x: ", X_current);
  2082. SERIAL_ECHOPAIR("y: ", Y_current);
  2083. SERIAL_PROTOCOLLNPGM("");
  2084. }
  2085. do_blocking_move_to( X_current, Y_current, Z_current );
  2086. }
  2087. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Go back to the probe location
  2088. }
  2089. if (engage_probe_for_each_reading) {
  2090. engage_z_probe();
  2091. delay(1000);
  2092. }
  2093. setup_for_endstop_move();
  2094. run_z_probe();
  2095. sample_set[n] = current_position[Z_AXIS];
  2096. //
  2097. // Get the current mean for the data points we have so far
  2098. //
  2099. sum=0.0;
  2100. for( j=0; j<=n; j++) {
  2101. sum = sum + sample_set[j];
  2102. }
  2103. mean = sum / (double (n+1));
  2104. //
  2105. // Now, use that mean to calculate the standard deviation for the
  2106. // data points we have so far
  2107. //
  2108. sum=0.0;
  2109. for( j=0; j<=n; j++) {
  2110. sum = sum + (sample_set[j]-mean) * (sample_set[j]-mean);
  2111. }
  2112. sigma = sqrt( sum / (double (n+1)) );
  2113. if (verbose_level > 1) {
  2114. SERIAL_PROTOCOL(n+1);
  2115. SERIAL_PROTOCOL(" of ");
  2116. SERIAL_PROTOCOL(n_samples);
  2117. SERIAL_PROTOCOLPGM(" z: ");
  2118. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
  2119. }
  2120. if (verbose_level > 2) {
  2121. SERIAL_PROTOCOL(" mean: ");
  2122. SERIAL_PROTOCOL_F(mean,6);
  2123. SERIAL_PROTOCOL(" sigma: ");
  2124. SERIAL_PROTOCOL_F(sigma,6);
  2125. }
  2126. if (verbose_level > 0)
  2127. SERIAL_PROTOCOLPGM("\n");
  2128. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  2129. current_position[E_AXIS], homing_feedrate[Z_AXIS]/60, active_extruder);
  2130. st_synchronize();
  2131. if (engage_probe_for_each_reading) {
  2132. retract_z_probe();
  2133. delay(1000);
  2134. }
  2135. }
  2136. retract_z_probe();
  2137. delay(1000);
  2138. clean_up_after_endstop_move();
  2139. // enable_endstops(true);
  2140. if (verbose_level > 0) {
  2141. SERIAL_PROTOCOLPGM("Mean: ");
  2142. SERIAL_PROTOCOL_F(mean, 6);
  2143. SERIAL_PROTOCOLPGM("\n");
  2144. }
  2145. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  2146. SERIAL_PROTOCOL_F(sigma, 6);
  2147. SERIAL_PROTOCOLPGM("\n\n");
  2148. Sigma_Exit:
  2149. break;
  2150. }
  2151. #endif // Z_PROBE_REPEATABILITY_TEST
  2152. #endif // ENABLE_AUTO_BED_LEVELING
  2153. case 104: // M104
  2154. if(setTargetedHotend(104)){
  2155. break;
  2156. }
  2157. if (code_seen('S')) setTargetHotend(code_value(), tmp_extruder);
  2158. #ifdef DUAL_X_CARRIAGE
  2159. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && tmp_extruder == 0)
  2160. setTargetHotend1(code_value() == 0.0 ? 0.0 : code_value() + duplicate_extruder_temp_offset);
  2161. #endif
  2162. setWatch();
  2163. break;
  2164. case 112: // M112 -Emergency Stop
  2165. kill();
  2166. break;
  2167. case 140: // M140 set bed temp
  2168. if (code_seen('S')) setTargetBed(code_value());
  2169. break;
  2170. case 105 : // M105
  2171. if(setTargetedHotend(105)){
  2172. break;
  2173. }
  2174. #if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
  2175. SERIAL_PROTOCOLPGM("ok T:");
  2176. SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
  2177. SERIAL_PROTOCOLPGM(" /");
  2178. SERIAL_PROTOCOL_F(degTargetHotend(tmp_extruder),1);
  2179. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  2180. SERIAL_PROTOCOLPGM(" B:");
  2181. SERIAL_PROTOCOL_F(degBed(),1);
  2182. SERIAL_PROTOCOLPGM(" /");
  2183. SERIAL_PROTOCOL_F(degTargetBed(),1);
  2184. #endif //TEMP_BED_PIN
  2185. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  2186. SERIAL_PROTOCOLPGM(" T");
  2187. SERIAL_PROTOCOL(cur_extruder);
  2188. SERIAL_PROTOCOLPGM(":");
  2189. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  2190. SERIAL_PROTOCOLPGM(" /");
  2191. SERIAL_PROTOCOL_F(degTargetHotend(cur_extruder),1);
  2192. }
  2193. #else
  2194. SERIAL_ERROR_START;
  2195. SERIAL_ERRORLNPGM(MSG_ERR_NO_THERMISTORS);
  2196. #endif
  2197. SERIAL_PROTOCOLPGM(" @:");
  2198. #ifdef EXTRUDER_WATTS
  2199. SERIAL_PROTOCOL((EXTRUDER_WATTS * getHeaterPower(tmp_extruder))/127);
  2200. SERIAL_PROTOCOLPGM("W");
  2201. #else
  2202. SERIAL_PROTOCOL(getHeaterPower(tmp_extruder));
  2203. #endif
  2204. SERIAL_PROTOCOLPGM(" B@:");
  2205. #ifdef BED_WATTS
  2206. SERIAL_PROTOCOL((BED_WATTS * getHeaterPower(-1))/127);
  2207. SERIAL_PROTOCOLPGM("W");
  2208. #else
  2209. SERIAL_PROTOCOL(getHeaterPower(-1));
  2210. #endif
  2211. #ifdef SHOW_TEMP_ADC_VALUES
  2212. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  2213. SERIAL_PROTOCOLPGM(" ADC B:");
  2214. SERIAL_PROTOCOL_F(degBed(),1);
  2215. SERIAL_PROTOCOLPGM("C->");
  2216. SERIAL_PROTOCOL_F(rawBedTemp()/OVERSAMPLENR,0);
  2217. #endif
  2218. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  2219. SERIAL_PROTOCOLPGM(" T");
  2220. SERIAL_PROTOCOL(cur_extruder);
  2221. SERIAL_PROTOCOLPGM(":");
  2222. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  2223. SERIAL_PROTOCOLPGM("C->");
  2224. SERIAL_PROTOCOL_F(rawHotendTemp(cur_extruder)/OVERSAMPLENR,0);
  2225. }
  2226. #endif
  2227. SERIAL_PROTOCOLLN("");
  2228. return;
  2229. break;
  2230. case 109:
  2231. {// M109 - Wait for extruder heater to reach target.
  2232. if(setTargetedHotend(109)){
  2233. break;
  2234. }
  2235. LCD_MESSAGEPGM(MSG_HEATING);
  2236. #ifdef AUTOTEMP
  2237. autotemp_enabled=false;
  2238. #endif
  2239. if (code_seen('S')) {
  2240. setTargetHotend(code_value(), tmp_extruder);
  2241. #ifdef DUAL_X_CARRIAGE
  2242. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && tmp_extruder == 0)
  2243. setTargetHotend1(code_value() == 0.0 ? 0.0 : code_value() + duplicate_extruder_temp_offset);
  2244. #endif
  2245. CooldownNoWait = true;
  2246. } else if (code_seen('R')) {
  2247. setTargetHotend(code_value(), tmp_extruder);
  2248. #ifdef DUAL_X_CARRIAGE
  2249. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && tmp_extruder == 0)
  2250. setTargetHotend1(code_value() == 0.0 ? 0.0 : code_value() + duplicate_extruder_temp_offset);
  2251. #endif
  2252. CooldownNoWait = false;
  2253. }
  2254. #ifdef AUTOTEMP
  2255. if (code_seen('S')) autotemp_min=code_value();
  2256. if (code_seen('B')) autotemp_max=code_value();
  2257. if (code_seen('F'))
  2258. {
  2259. autotemp_factor=code_value();
  2260. autotemp_enabled=true;
  2261. }
  2262. #endif
  2263. setWatch();
  2264. codenum = millis();
  2265. /* See if we are heating up or cooling down */
  2266. target_direction = isHeatingHotend(tmp_extruder); // true if heating, false if cooling
  2267. cancel_heatup = false;
  2268. #ifdef TEMP_RESIDENCY_TIME
  2269. long residencyStart;
  2270. residencyStart = -1;
  2271. /* continue to loop until we have reached the target temp
  2272. _and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
  2273. while((!cancel_heatup)&&((residencyStart == -1) ||
  2274. (residencyStart >= 0 && (((unsigned int) (millis() - residencyStart)) < (TEMP_RESIDENCY_TIME * 1000UL)))) ) {
  2275. #else
  2276. while ( target_direction ? (isHeatingHotend(tmp_extruder)) : (isCoolingHotend(tmp_extruder)&&(CooldownNoWait==false)) ) {
  2277. #endif //TEMP_RESIDENCY_TIME
  2278. if( (millis() - codenum) > 1000UL )
  2279. { //Print Temp Reading and remaining time every 1 second while heating up/cooling down
  2280. SERIAL_PROTOCOLPGM("T:");
  2281. SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
  2282. SERIAL_PROTOCOLPGM(" E:");
  2283. SERIAL_PROTOCOL((int)tmp_extruder);
  2284. #ifdef TEMP_RESIDENCY_TIME
  2285. SERIAL_PROTOCOLPGM(" W:");
  2286. if(residencyStart > -1)
  2287. {
  2288. codenum = ((TEMP_RESIDENCY_TIME * 1000UL) - (millis() - residencyStart)) / 1000UL;
  2289. SERIAL_PROTOCOLLN( codenum );
  2290. }
  2291. else
  2292. {
  2293. SERIAL_PROTOCOLLN( "?" );
  2294. }
  2295. #else
  2296. SERIAL_PROTOCOLLN("");
  2297. #endif
  2298. codenum = millis();
  2299. }
  2300. manage_heater();
  2301. manage_inactivity();
  2302. lcd_update();
  2303. #ifdef TEMP_RESIDENCY_TIME
  2304. /* start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
  2305. or when current temp falls outside the hysteresis after target temp was reached */
  2306. if ((residencyStart == -1 && target_direction && (degHotend(tmp_extruder) >= (degTargetHotend(tmp_extruder)-TEMP_WINDOW))) ||
  2307. (residencyStart == -1 && !target_direction && (degHotend(tmp_extruder) <= (degTargetHotend(tmp_extruder)+TEMP_WINDOW))) ||
  2308. (residencyStart > -1 && labs(degHotend(tmp_extruder) - degTargetHotend(tmp_extruder)) > TEMP_HYSTERESIS) )
  2309. {
  2310. residencyStart = millis();
  2311. }
  2312. #endif //TEMP_RESIDENCY_TIME
  2313. }
  2314. LCD_MESSAGEPGM(MSG_HEATING_COMPLETE);
  2315. starttime=millis();
  2316. previous_millis_cmd = millis();
  2317. }
  2318. break;
  2319. case 190: // M190 - Wait for bed heater to reach target.
  2320. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  2321. LCD_MESSAGEPGM(MSG_BED_HEATING);
  2322. if (code_seen('S')) {
  2323. setTargetBed(code_value());
  2324. CooldownNoWait = true;
  2325. } else if (code_seen('R')) {
  2326. setTargetBed(code_value());
  2327. CooldownNoWait = false;
  2328. }
  2329. codenum = millis();
  2330. cancel_heatup = false;
  2331. target_direction = isHeatingBed(); // true if heating, false if cooling
  2332. while ( (target_direction)&&(!cancel_heatup) ? (isHeatingBed()) : (isCoolingBed()&&(CooldownNoWait==false)) )
  2333. {
  2334. if(( millis() - codenum) > 1000 ) //Print Temp Reading every 1 second while heating up.
  2335. {
  2336. float tt=degHotend(active_extruder);
  2337. SERIAL_PROTOCOLPGM("T:");
  2338. SERIAL_PROTOCOL(tt);
  2339. SERIAL_PROTOCOLPGM(" E:");
  2340. SERIAL_PROTOCOL((int)active_extruder);
  2341. SERIAL_PROTOCOLPGM(" B:");
  2342. SERIAL_PROTOCOL_F(degBed(),1);
  2343. SERIAL_PROTOCOLLN("");
  2344. codenum = millis();
  2345. }
  2346. manage_heater();
  2347. manage_inactivity();
  2348. lcd_update();
  2349. }
  2350. LCD_MESSAGEPGM(MSG_BED_DONE);
  2351. previous_millis_cmd = millis();
  2352. #endif
  2353. break;
  2354. #if defined(FAN_PIN) && FAN_PIN > -1
  2355. case 106: //M106 Fan On
  2356. if (code_seen('S')){
  2357. fanSpeed=constrain(code_value(),0,255);
  2358. }
  2359. else {
  2360. fanSpeed=255;
  2361. }
  2362. break;
  2363. case 107: //M107 Fan Off
  2364. fanSpeed = 0;
  2365. break;
  2366. #endif //FAN_PIN
  2367. #ifdef BARICUDA
  2368. // PWM for HEATER_1_PIN
  2369. #if defined(HEATER_1_PIN) && HEATER_1_PIN > -1
  2370. case 126: //M126 valve open
  2371. if (code_seen('S')){
  2372. ValvePressure=constrain(code_value(),0,255);
  2373. }
  2374. else {
  2375. ValvePressure=255;
  2376. }
  2377. break;
  2378. case 127: //M127 valve closed
  2379. ValvePressure = 0;
  2380. break;
  2381. #endif //HEATER_1_PIN
  2382. // PWM for HEATER_2_PIN
  2383. #if defined(HEATER_2_PIN) && HEATER_2_PIN > -1
  2384. case 128: //M128 valve open
  2385. if (code_seen('S')){
  2386. EtoPPressure=constrain(code_value(),0,255);
  2387. }
  2388. else {
  2389. EtoPPressure=255;
  2390. }
  2391. break;
  2392. case 129: //M129 valve closed
  2393. EtoPPressure = 0;
  2394. break;
  2395. #endif //HEATER_2_PIN
  2396. #endif
  2397. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  2398. case 80: // M80 - Turn on Power Supply
  2399. OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE); // GND
  2400. // If you have a switch on suicide pin, this is useful
  2401. // if you want to start another print with suicide feature after
  2402. // a print without suicide...
  2403. #if defined SUICIDE_PIN && SUICIDE_PIN > -1
  2404. OUT_WRITE(SUICIDE_PIN, HIGH);
  2405. #endif
  2406. #ifdef ULTIPANEL
  2407. powersupply = true;
  2408. LCD_MESSAGEPGM(WELCOME_MSG);
  2409. lcd_update();
  2410. #endif
  2411. break;
  2412. #endif
  2413. case 81: // M81 - Turn off Power Supply
  2414. disable_heater();
  2415. st_synchronize();
  2416. disable_e0();
  2417. disable_e1();
  2418. disable_e2();
  2419. finishAndDisableSteppers();
  2420. fanSpeed = 0;
  2421. delay(1000); // Wait a little before to switch off
  2422. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  2423. st_synchronize();
  2424. suicide();
  2425. #elif defined(PS_ON_PIN) && PS_ON_PIN > -1
  2426. OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  2427. #endif
  2428. #ifdef ULTIPANEL
  2429. powersupply = false;
  2430. LCD_MESSAGEPGM(MACHINE_NAME" "MSG_OFF".");
  2431. lcd_update();
  2432. #endif
  2433. break;
  2434. case 82:
  2435. axis_relative_modes[3] = false;
  2436. break;
  2437. case 83:
  2438. axis_relative_modes[3] = true;
  2439. break;
  2440. case 18: //compatibility
  2441. case 84: // M84
  2442. if(code_seen('S')){
  2443. stepper_inactive_time = code_value() * 1000;
  2444. }
  2445. else
  2446. {
  2447. bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS]))|| (code_seen(axis_codes[E_AXIS])));
  2448. if(all_axis)
  2449. {
  2450. st_synchronize();
  2451. disable_e0();
  2452. disable_e1();
  2453. disable_e2();
  2454. finishAndDisableSteppers();
  2455. }
  2456. else
  2457. {
  2458. st_synchronize();
  2459. if(code_seen('X')) disable_x();
  2460. if(code_seen('Y')) disable_y();
  2461. if(code_seen('Z')) disable_z();
  2462. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  2463. if(code_seen('E')) {
  2464. disable_e0();
  2465. disable_e1();
  2466. disable_e2();
  2467. }
  2468. #endif
  2469. }
  2470. }
  2471. break;
  2472. case 85: // M85
  2473. if(code_seen('S')) {
  2474. max_inactive_time = code_value() * 1000;
  2475. }
  2476. break;
  2477. case 92: // M92
  2478. for(int8_t i=0; i < NUM_AXIS; i++)
  2479. {
  2480. if(code_seen(axis_codes[i]))
  2481. {
  2482. if(i == 3) { // E
  2483. float value = code_value();
  2484. if(value < 20.0) {
  2485. float factor = axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
  2486. max_e_jerk *= factor;
  2487. max_feedrate[i] *= factor;
  2488. axis_steps_per_sqr_second[i] *= factor;
  2489. }
  2490. axis_steps_per_unit[i] = value;
  2491. }
  2492. else {
  2493. axis_steps_per_unit[i] = code_value();
  2494. }
  2495. }
  2496. }
  2497. break;
  2498. case 115: // M115
  2499. SERIAL_PROTOCOLPGM(MSG_M115_REPORT);
  2500. break;
  2501. case 117: // M117 display message
  2502. starpos = (strchr(strchr_pointer + 5,'*'));
  2503. if(starpos!=NULL)
  2504. *(starpos)='\0';
  2505. lcd_setstatus(strchr_pointer + 5);
  2506. break;
  2507. case 114: // M114
  2508. SERIAL_PROTOCOLPGM("X:");
  2509. SERIAL_PROTOCOL(current_position[X_AXIS]);
  2510. SERIAL_PROTOCOLPGM(" Y:");
  2511. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  2512. SERIAL_PROTOCOLPGM(" Z:");
  2513. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  2514. SERIAL_PROTOCOLPGM(" E:");
  2515. SERIAL_PROTOCOL(current_position[E_AXIS]);
  2516. SERIAL_PROTOCOLPGM(MSG_COUNT_X);
  2517. SERIAL_PROTOCOL(float(st_get_position(X_AXIS))/axis_steps_per_unit[X_AXIS]);
  2518. SERIAL_PROTOCOLPGM(" Y:");
  2519. SERIAL_PROTOCOL(float(st_get_position(Y_AXIS))/axis_steps_per_unit[Y_AXIS]);
  2520. SERIAL_PROTOCOLPGM(" Z:");
  2521. SERIAL_PROTOCOL(float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]);
  2522. SERIAL_PROTOCOLLN("");
  2523. #ifdef SCARA
  2524. SERIAL_PROTOCOLPGM("SCARA Theta:");
  2525. SERIAL_PROTOCOL(delta[X_AXIS]);
  2526. SERIAL_PROTOCOLPGM(" Psi+Theta:");
  2527. SERIAL_PROTOCOL(delta[Y_AXIS]);
  2528. SERIAL_PROTOCOLLN("");
  2529. SERIAL_PROTOCOLPGM("SCARA Cal - Theta:");
  2530. SERIAL_PROTOCOL(delta[X_AXIS]+add_homing[X_AXIS]);
  2531. SERIAL_PROTOCOLPGM(" Psi+Theta (90):");
  2532. SERIAL_PROTOCOL(delta[Y_AXIS]-delta[X_AXIS]-90+add_homing[Y_AXIS]);
  2533. SERIAL_PROTOCOLLN("");
  2534. SERIAL_PROTOCOLPGM("SCARA step Cal - Theta:");
  2535. SERIAL_PROTOCOL(delta[X_AXIS]/90*axis_steps_per_unit[X_AXIS]);
  2536. SERIAL_PROTOCOLPGM(" Psi+Theta:");
  2537. SERIAL_PROTOCOL((delta[Y_AXIS]-delta[X_AXIS])/90*axis_steps_per_unit[Y_AXIS]);
  2538. SERIAL_PROTOCOLLN("");
  2539. SERIAL_PROTOCOLLN("");
  2540. #endif
  2541. break;
  2542. case 120: // M120
  2543. enable_endstops(false) ;
  2544. break;
  2545. case 121: // M121
  2546. enable_endstops(true) ;
  2547. break;
  2548. case 119: // M119
  2549. SERIAL_PROTOCOLLN(MSG_M119_REPORT);
  2550. #if defined(X_MIN_PIN) && X_MIN_PIN > -1
  2551. SERIAL_PROTOCOLPGM(MSG_X_MIN);
  2552. SERIAL_PROTOCOLLN(((READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  2553. #endif
  2554. #if defined(X_MAX_PIN) && X_MAX_PIN > -1
  2555. SERIAL_PROTOCOLPGM(MSG_X_MAX);
  2556. SERIAL_PROTOCOLLN(((READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  2557. #endif
  2558. #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
  2559. SERIAL_PROTOCOLPGM(MSG_Y_MIN);
  2560. SERIAL_PROTOCOLLN(((READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  2561. #endif
  2562. #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
  2563. SERIAL_PROTOCOLPGM(MSG_Y_MAX);
  2564. SERIAL_PROTOCOLLN(((READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  2565. #endif
  2566. #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
  2567. SERIAL_PROTOCOLPGM(MSG_Z_MIN);
  2568. SERIAL_PROTOCOLLN(((READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  2569. #endif
  2570. #if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
  2571. SERIAL_PROTOCOLPGM(MSG_Z_MAX);
  2572. SERIAL_PROTOCOLLN(((READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  2573. #endif
  2574. break;
  2575. //TODO: update for all axis, use for loop
  2576. #ifdef BLINKM
  2577. case 150: // M150
  2578. {
  2579. byte red;
  2580. byte grn;
  2581. byte blu;
  2582. if(code_seen('R')) red = code_value();
  2583. if(code_seen('U')) grn = code_value();
  2584. if(code_seen('B')) blu = code_value();
  2585. SendColors(red,grn,blu);
  2586. }
  2587. break;
  2588. #endif //BLINKM
  2589. case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  2590. {
  2591. tmp_extruder = active_extruder;
  2592. if(code_seen('T')) {
  2593. tmp_extruder = code_value();
  2594. if(tmp_extruder >= EXTRUDERS) {
  2595. SERIAL_ECHO_START;
  2596. SERIAL_ECHO(MSG_M200_INVALID_EXTRUDER);
  2597. break;
  2598. }
  2599. }
  2600. float area = .0;
  2601. if(code_seen('D')) {
  2602. float diameter = code_value();
  2603. // setting any extruder filament size disables volumetric on the assumption that
  2604. // slicers either generate in extruder values as cubic mm or as as filament feeds
  2605. // for all extruders
  2606. volumetric_enabled = (diameter != 0.0);
  2607. if (volumetric_enabled) {
  2608. filament_size[tmp_extruder] = diameter;
  2609. // make sure all extruders have some sane value for the filament size
  2610. for (int i=0; i<EXTRUDERS; i++)
  2611. if (! filament_size[i]) filament_size[i] = DEFAULT_NOMINAL_FILAMENT_DIA;
  2612. }
  2613. } else {
  2614. //reserved for setting filament diameter via UFID or filament measuring device
  2615. break;
  2616. }
  2617. calculate_volumetric_multipliers();
  2618. }
  2619. break;
  2620. case 201: // M201
  2621. for(int8_t i=0; i < NUM_AXIS; i++)
  2622. {
  2623. if(code_seen(axis_codes[i]))
  2624. {
  2625. max_acceleration_units_per_sq_second[i] = code_value();
  2626. }
  2627. }
  2628. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  2629. reset_acceleration_rates();
  2630. break;
  2631. #if 0 // Not used for Sprinter/grbl gen6
  2632. case 202: // M202
  2633. for(int8_t i=0; i < NUM_AXIS; i++) {
  2634. if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
  2635. }
  2636. break;
  2637. #endif
  2638. case 203: // M203 max feedrate mm/sec
  2639. for(int8_t i=0; i < NUM_AXIS; i++) {
  2640. if(code_seen(axis_codes[i])) max_feedrate[i] = code_value();
  2641. }
  2642. break;
  2643. case 204: // M204 acclereration S normal moves T filmanent only moves
  2644. {
  2645. if(code_seen('S')) acceleration = code_value() ;
  2646. if(code_seen('T')) retract_acceleration = code_value() ;
  2647. }
  2648. break;
  2649. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  2650. {
  2651. if(code_seen('S')) minimumfeedrate = code_value();
  2652. if(code_seen('T')) mintravelfeedrate = code_value();
  2653. if(code_seen('B')) minsegmenttime = code_value() ;
  2654. if(code_seen('X')) max_xy_jerk = code_value() ;
  2655. if(code_seen('Z')) max_z_jerk = code_value() ;
  2656. if(code_seen('E')) max_e_jerk = code_value() ;
  2657. }
  2658. break;
  2659. case 206: // M206 additional homing offset
  2660. for(int8_t i=0; i < 3; i++)
  2661. {
  2662. if(code_seen(axis_codes[i])) add_homing[i] = code_value();
  2663. }
  2664. #ifdef SCARA
  2665. if(code_seen('T')) // Theta
  2666. {
  2667. add_homing[X_AXIS] = code_value() ;
  2668. }
  2669. if(code_seen('P')) // Psi
  2670. {
  2671. add_homing[Y_AXIS] = code_value() ;
  2672. }
  2673. #endif
  2674. break;
  2675. #ifdef DELTA
  2676. case 665: // M665 set delta configurations L<diagonal_rod> R<delta_radius> S<segments_per_sec>
  2677. if(code_seen('L')) {
  2678. delta_diagonal_rod= code_value();
  2679. }
  2680. if(code_seen('R')) {
  2681. delta_radius= code_value();
  2682. }
  2683. if(code_seen('S')) {
  2684. delta_segments_per_second= code_value();
  2685. }
  2686. recalc_delta_settings(delta_radius, delta_diagonal_rod);
  2687. break;
  2688. case 666: // M666 set delta endstop adjustemnt
  2689. for(int8_t i=0; i < 3; i++)
  2690. {
  2691. if(code_seen(axis_codes[i])) endstop_adj[i] = code_value();
  2692. }
  2693. break;
  2694. #endif
  2695. #ifdef FWRETRACT
  2696. case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
  2697. {
  2698. if(code_seen('S'))
  2699. {
  2700. retract_length = code_value() ;
  2701. }
  2702. if(code_seen('F'))
  2703. {
  2704. retract_feedrate = code_value()/60 ;
  2705. }
  2706. if(code_seen('Z'))
  2707. {
  2708. retract_zlift = code_value() ;
  2709. }
  2710. }break;
  2711. case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  2712. {
  2713. if(code_seen('S'))
  2714. {
  2715. retract_recover_length = code_value() ;
  2716. }
  2717. if(code_seen('F'))
  2718. {
  2719. retract_recover_feedrate = code_value()/60 ;
  2720. }
  2721. }break;
  2722. case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  2723. {
  2724. if(code_seen('S'))
  2725. {
  2726. int t= code_value() ;
  2727. switch(t)
  2728. {
  2729. case 0:
  2730. case 1:
  2731. {
  2732. autoretract_enabled = (t == 1);
  2733. for (int i=0; i<EXTRUDERS; i++) retracted[i] = false;
  2734. }break;
  2735. default:
  2736. SERIAL_ECHO_START;
  2737. SERIAL_ECHOPGM(MSG_UNKNOWN_COMMAND);
  2738. SERIAL_ECHO(cmdbuffer[bufindr]);
  2739. SERIAL_ECHOLNPGM("\"");
  2740. }
  2741. }
  2742. }break;
  2743. #endif // FWRETRACT
  2744. #if EXTRUDERS > 1
  2745. case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  2746. {
  2747. if(setTargetedHotend(218)){
  2748. break;
  2749. }
  2750. if(code_seen('X'))
  2751. {
  2752. extruder_offset[X_AXIS][tmp_extruder] = code_value();
  2753. }
  2754. if(code_seen('Y'))
  2755. {
  2756. extruder_offset[Y_AXIS][tmp_extruder] = code_value();
  2757. }
  2758. #ifdef DUAL_X_CARRIAGE
  2759. if(code_seen('Z'))
  2760. {
  2761. extruder_offset[Z_AXIS][tmp_extruder] = code_value();
  2762. }
  2763. #endif
  2764. SERIAL_ECHO_START;
  2765. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  2766. for(tmp_extruder = 0; tmp_extruder < EXTRUDERS; tmp_extruder++)
  2767. {
  2768. SERIAL_ECHO(" ");
  2769. SERIAL_ECHO(extruder_offset[X_AXIS][tmp_extruder]);
  2770. SERIAL_ECHO(",");
  2771. SERIAL_ECHO(extruder_offset[Y_AXIS][tmp_extruder]);
  2772. #ifdef DUAL_X_CARRIAGE
  2773. SERIAL_ECHO(",");
  2774. SERIAL_ECHO(extruder_offset[Z_AXIS][tmp_extruder]);
  2775. #endif
  2776. }
  2777. SERIAL_EOL;
  2778. }break;
  2779. #endif
  2780. case 220: // M220 S<factor in percent>- set speed factor override percentage
  2781. {
  2782. if(code_seen('S'))
  2783. {
  2784. feedmultiply = code_value() ;
  2785. }
  2786. }
  2787. break;
  2788. case 221: // M221 S<factor in percent>- set extrude factor override percentage
  2789. {
  2790. if(code_seen('S'))
  2791. {
  2792. int tmp_code = code_value();
  2793. if (code_seen('T'))
  2794. {
  2795. if(setTargetedHotend(221)){
  2796. break;
  2797. }
  2798. extruder_multiply[tmp_extruder] = tmp_code;
  2799. }
  2800. else
  2801. {
  2802. extrudemultiply = tmp_code ;
  2803. }
  2804. }
  2805. }
  2806. break;
  2807. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  2808. {
  2809. if(code_seen('P')){
  2810. int pin_number = code_value(); // pin number
  2811. int pin_state = -1; // required pin state - default is inverted
  2812. if(code_seen('S')) pin_state = code_value(); // required pin state
  2813. if(pin_state >= -1 && pin_state <= 1){
  2814. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  2815. {
  2816. if (sensitive_pins[i] == pin_number)
  2817. {
  2818. pin_number = -1;
  2819. break;
  2820. }
  2821. }
  2822. if (pin_number > -1)
  2823. {
  2824. int target = LOW;
  2825. st_synchronize();
  2826. pinMode(pin_number, INPUT);
  2827. switch(pin_state){
  2828. case 1:
  2829. target = HIGH;
  2830. break;
  2831. case 0:
  2832. target = LOW;
  2833. break;
  2834. case -1:
  2835. target = !digitalRead(pin_number);
  2836. break;
  2837. }
  2838. while(digitalRead(pin_number) != target){
  2839. manage_heater();
  2840. manage_inactivity();
  2841. lcd_update();
  2842. }
  2843. }
  2844. }
  2845. }
  2846. }
  2847. break;
  2848. #if NUM_SERVOS > 0
  2849. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  2850. {
  2851. int servo_index = -1;
  2852. int servo_position = 0;
  2853. if (code_seen('P'))
  2854. servo_index = code_value();
  2855. if (code_seen('S')) {
  2856. servo_position = code_value();
  2857. if ((servo_index >= 0) && (servo_index < NUM_SERVOS)) {
  2858. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  2859. servos[servo_index].attach(0);
  2860. #endif
  2861. servos[servo_index].write(servo_position);
  2862. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  2863. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  2864. servos[servo_index].detach();
  2865. #endif
  2866. }
  2867. else {
  2868. SERIAL_ECHO_START;
  2869. SERIAL_ECHO("Servo ");
  2870. SERIAL_ECHO(servo_index);
  2871. SERIAL_ECHOLN(" out of range");
  2872. }
  2873. }
  2874. else if (servo_index >= 0) {
  2875. SERIAL_PROTOCOL(MSG_OK);
  2876. SERIAL_PROTOCOL(" Servo ");
  2877. SERIAL_PROTOCOL(servo_index);
  2878. SERIAL_PROTOCOL(": ");
  2879. SERIAL_PROTOCOL(servos[servo_index].read());
  2880. SERIAL_PROTOCOLLN("");
  2881. }
  2882. }
  2883. break;
  2884. #endif // NUM_SERVOS > 0
  2885. #if (LARGE_FLASH == true && ( BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER)))
  2886. case 300: // M300
  2887. {
  2888. int beepS = code_seen('S') ? code_value() : 110;
  2889. int beepP = code_seen('P') ? code_value() : 1000;
  2890. if (beepS > 0)
  2891. {
  2892. #if BEEPER > 0
  2893. tone(BEEPER, beepS);
  2894. delay(beepP);
  2895. noTone(BEEPER);
  2896. #elif defined(ULTRALCD)
  2897. lcd_buzz(beepS, beepP);
  2898. #elif defined(LCD_USE_I2C_BUZZER)
  2899. lcd_buzz(beepP, beepS);
  2900. #endif
  2901. }
  2902. else
  2903. {
  2904. delay(beepP);
  2905. }
  2906. }
  2907. break;
  2908. #endif // M300
  2909. #ifdef PIDTEMP
  2910. case 301: // M301
  2911. {
  2912. // multi-extruder PID patch: M301 updates or prints a single extruder's PID values
  2913. // default behaviour (omitting E parameter) is to update for extruder 0 only
  2914. int e = 0; // extruder being updated
  2915. if (code_seen('E'))
  2916. {
  2917. e = (int)code_value();
  2918. }
  2919. if (e < EXTRUDERS) // catch bad input value
  2920. {
  2921. if (code_seen('P')) PID_PARAM(Kp,e) = code_value();
  2922. if (code_seen('I')) PID_PARAM(Ki,e) = scalePID_i(code_value());
  2923. if (code_seen('D')) PID_PARAM(Kd,e) = scalePID_d(code_value());
  2924. #ifdef PID_ADD_EXTRUSION_RATE
  2925. if (code_seen('C')) PID_PARAM(Kc,e) = code_value();
  2926. #endif
  2927. updatePID();
  2928. SERIAL_PROTOCOL(MSG_OK);
  2929. #ifdef PID_PARAMS_PER_EXTRUDER
  2930. SERIAL_PROTOCOL(" e:"); // specify extruder in serial output
  2931. SERIAL_PROTOCOL(e);
  2932. #endif // PID_PARAMS_PER_EXTRUDER
  2933. SERIAL_PROTOCOL(" p:");
  2934. SERIAL_PROTOCOL(PID_PARAM(Kp,e));
  2935. SERIAL_PROTOCOL(" i:");
  2936. SERIAL_PROTOCOL(unscalePID_i(PID_PARAM(Ki,e)));
  2937. SERIAL_PROTOCOL(" d:");
  2938. SERIAL_PROTOCOL(unscalePID_d(PID_PARAM(Kd,e)));
  2939. #ifdef PID_ADD_EXTRUSION_RATE
  2940. SERIAL_PROTOCOL(" c:");
  2941. //Kc does not have scaling applied above, or in resetting defaults
  2942. SERIAL_PROTOCOL(PID_PARAM(Kc,e));
  2943. #endif
  2944. SERIAL_PROTOCOLLN("");
  2945. }
  2946. else
  2947. {
  2948. SERIAL_ECHO_START;
  2949. SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
  2950. }
  2951. }
  2952. break;
  2953. #endif //PIDTEMP
  2954. #ifdef PIDTEMPBED
  2955. case 304: // M304
  2956. {
  2957. if(code_seen('P')) bedKp = code_value();
  2958. if(code_seen('I')) bedKi = scalePID_i(code_value());
  2959. if(code_seen('D')) bedKd = scalePID_d(code_value());
  2960. updatePID();
  2961. SERIAL_PROTOCOL(MSG_OK);
  2962. SERIAL_PROTOCOL(" p:");
  2963. SERIAL_PROTOCOL(bedKp);
  2964. SERIAL_PROTOCOL(" i:");
  2965. SERIAL_PROTOCOL(unscalePID_i(bedKi));
  2966. SERIAL_PROTOCOL(" d:");
  2967. SERIAL_PROTOCOL(unscalePID_d(bedKd));
  2968. SERIAL_PROTOCOLLN("");
  2969. }
  2970. break;
  2971. #endif //PIDTEMP
  2972. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  2973. {
  2974. #ifdef CHDK
  2975. OUT_WRITE(CHDK, HIGH);
  2976. chdkHigh = millis();
  2977. chdkActive = true;
  2978. #else
  2979. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  2980. const uint8_t NUM_PULSES=16;
  2981. const float PULSE_LENGTH=0.01524;
  2982. for(int i=0; i < NUM_PULSES; i++) {
  2983. WRITE(PHOTOGRAPH_PIN, HIGH);
  2984. _delay_ms(PULSE_LENGTH);
  2985. WRITE(PHOTOGRAPH_PIN, LOW);
  2986. _delay_ms(PULSE_LENGTH);
  2987. }
  2988. delay(7.33);
  2989. for(int i=0; i < NUM_PULSES; i++) {
  2990. WRITE(PHOTOGRAPH_PIN, HIGH);
  2991. _delay_ms(PULSE_LENGTH);
  2992. WRITE(PHOTOGRAPH_PIN, LOW);
  2993. _delay_ms(PULSE_LENGTH);
  2994. }
  2995. #endif
  2996. #endif //chdk end if
  2997. }
  2998. break;
  2999. #ifdef DOGLCD
  3000. case 250: // M250 Set LCD contrast value: C<value> (value 0..63)
  3001. {
  3002. if (code_seen('C')) {
  3003. lcd_setcontrast( ((int)code_value())&63 );
  3004. }
  3005. SERIAL_PROTOCOLPGM("lcd contrast value: ");
  3006. SERIAL_PROTOCOL(lcd_contrast);
  3007. SERIAL_PROTOCOLLN("");
  3008. }
  3009. break;
  3010. #endif
  3011. #ifdef PREVENT_DANGEROUS_EXTRUDE
  3012. case 302: // allow cold extrudes, or set the minimum extrude temperature
  3013. {
  3014. float temp = .0;
  3015. if (code_seen('S')) temp=code_value();
  3016. set_extrude_min_temp(temp);
  3017. }
  3018. break;
  3019. #endif
  3020. case 303: // M303 PID autotune
  3021. {
  3022. float temp = 150.0;
  3023. int e=0;
  3024. int c=5;
  3025. if (code_seen('E')) e=code_value();
  3026. if (e<0)
  3027. temp=70;
  3028. if (code_seen('S')) temp=code_value();
  3029. if (code_seen('C')) c=code_value();
  3030. PID_autotune(temp, e, c);
  3031. }
  3032. break;
  3033. #ifdef SCARA
  3034. case 360: // M360 SCARA Theta pos1
  3035. SERIAL_ECHOLN(" Cal: Theta 0 ");
  3036. //SoftEndsEnabled = false; // Ignore soft endstops during calibration
  3037. //SERIAL_ECHOLN(" Soft endstops disabled ");
  3038. if(Stopped == false) {
  3039. //get_coordinates(); // For X Y Z E F
  3040. delta[X_AXIS] = 0;
  3041. delta[Y_AXIS] = 120;
  3042. calculate_SCARA_forward_Transform(delta);
  3043. destination[X_AXIS] = delta[X_AXIS]/axis_scaling[X_AXIS];
  3044. destination[Y_AXIS] = delta[Y_AXIS]/axis_scaling[Y_AXIS];
  3045. prepare_move();
  3046. //ClearToSend();
  3047. return;
  3048. }
  3049. break;
  3050. case 361: // SCARA Theta pos2
  3051. SERIAL_ECHOLN(" Cal: Theta 90 ");
  3052. //SoftEndsEnabled = false; // Ignore soft endstops during calibration
  3053. //SERIAL_ECHOLN(" Soft endstops disabled ");
  3054. if(Stopped == false) {
  3055. //get_coordinates(); // For X Y Z E F
  3056. delta[X_AXIS] = 90;
  3057. delta[Y_AXIS] = 130;
  3058. calculate_SCARA_forward_Transform(delta);
  3059. destination[X_AXIS] = delta[X_AXIS]/axis_scaling[X_AXIS];
  3060. destination[Y_AXIS] = delta[Y_AXIS]/axis_scaling[Y_AXIS];
  3061. prepare_move();
  3062. //ClearToSend();
  3063. return;
  3064. }
  3065. break;
  3066. case 362: // SCARA Psi pos1
  3067. SERIAL_ECHOLN(" Cal: Psi 0 ");
  3068. //SoftEndsEnabled = false; // Ignore soft endstops during calibration
  3069. //SERIAL_ECHOLN(" Soft endstops disabled ");
  3070. if(Stopped == false) {
  3071. //get_coordinates(); // For X Y Z E F
  3072. delta[X_AXIS] = 60;
  3073. delta[Y_AXIS] = 180;
  3074. calculate_SCARA_forward_Transform(delta);
  3075. destination[X_AXIS] = delta[X_AXIS]/axis_scaling[X_AXIS];
  3076. destination[Y_AXIS] = delta[Y_AXIS]/axis_scaling[Y_AXIS];
  3077. prepare_move();
  3078. //ClearToSend();
  3079. return;
  3080. }
  3081. break;
  3082. case 363: // SCARA Psi pos2
  3083. SERIAL_ECHOLN(" Cal: Psi 90 ");
  3084. //SoftEndsEnabled = false; // Ignore soft endstops during calibration
  3085. //SERIAL_ECHOLN(" Soft endstops disabled ");
  3086. if(Stopped == false) {
  3087. //get_coordinates(); // For X Y Z E F
  3088. delta[X_AXIS] = 50;
  3089. delta[Y_AXIS] = 90;
  3090. calculate_SCARA_forward_Transform(delta);
  3091. destination[X_AXIS] = delta[X_AXIS]/axis_scaling[X_AXIS];
  3092. destination[Y_AXIS] = delta[Y_AXIS]/axis_scaling[Y_AXIS];
  3093. prepare_move();
  3094. //ClearToSend();
  3095. return;
  3096. }
  3097. break;
  3098. case 364: // SCARA Psi pos3 (90 deg to Theta)
  3099. SERIAL_ECHOLN(" Cal: Theta-Psi 90 ");
  3100. // SoftEndsEnabled = false; // Ignore soft endstops during calibration
  3101. //SERIAL_ECHOLN(" Soft endstops disabled ");
  3102. if(Stopped == false) {
  3103. //get_coordinates(); // For X Y Z E F
  3104. delta[X_AXIS] = 45;
  3105. delta[Y_AXIS] = 135;
  3106. calculate_SCARA_forward_Transform(delta);
  3107. destination[X_AXIS] = delta[X_AXIS]/axis_scaling[X_AXIS];
  3108. destination[Y_AXIS] = delta[Y_AXIS]/axis_scaling[Y_AXIS];
  3109. prepare_move();
  3110. //ClearToSend();
  3111. return;
  3112. }
  3113. break;
  3114. case 365: // M364 Set SCARA scaling for X Y Z
  3115. for(int8_t i=0; i < 3; i++)
  3116. {
  3117. if(code_seen(axis_codes[i]))
  3118. {
  3119. axis_scaling[i] = code_value();
  3120. }
  3121. }
  3122. break;
  3123. #endif
  3124. #ifdef EXT_SOLENOID
  3125. case 380:
  3126. enable_solenoid_on_active_extruder();
  3127. break;
  3128. case 381:
  3129. disable_all_solenoids();
  3130. break;
  3131. #endif //EXT_SOLENOID
  3132. case 400: // M400 finish all moves
  3133. {
  3134. st_synchronize();
  3135. }
  3136. break;
  3137. #if defined(ENABLE_AUTO_BED_LEVELING) && defined(SERVO_ENDSTOPS) && not defined(Z_PROBE_SLED)
  3138. case 401:
  3139. {
  3140. engage_z_probe(); // Engage Z Servo endstop if available
  3141. }
  3142. break;
  3143. case 402:
  3144. {
  3145. retract_z_probe(); // Retract Z Servo endstop if enabled
  3146. }
  3147. break;
  3148. #endif
  3149. #ifdef FILAMENT_SENSOR
  3150. case 404: //M404 Enter the nominal filament width (3mm, 1.75mm ) N<3.0> or display nominal filament width
  3151. {
  3152. #if (FILWIDTH_PIN > -1)
  3153. if(code_seen('N')) filament_width_nominal=code_value();
  3154. else{
  3155. SERIAL_PROTOCOLPGM("Filament dia (nominal mm):");
  3156. SERIAL_PROTOCOLLN(filament_width_nominal);
  3157. }
  3158. #endif
  3159. }
  3160. break;
  3161. case 405: //M405 Turn on filament sensor for control
  3162. {
  3163. if(code_seen('D')) meas_delay_cm=code_value();
  3164. if(meas_delay_cm> MAX_MEASUREMENT_DELAY)
  3165. meas_delay_cm = MAX_MEASUREMENT_DELAY;
  3166. if(delay_index2 == -1) //initialize the ring buffer if it has not been done since startup
  3167. {
  3168. int temp_ratio = widthFil_to_size_ratio();
  3169. for (delay_index1=0; delay_index1<(MAX_MEASUREMENT_DELAY+1); ++delay_index1 ){
  3170. measurement_delay[delay_index1]=temp_ratio-100; //subtract 100 to scale within a signed byte
  3171. }
  3172. delay_index1=0;
  3173. delay_index2=0;
  3174. }
  3175. filament_sensor = true ;
  3176. //SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  3177. //SERIAL_PROTOCOL(filament_width_meas);
  3178. //SERIAL_PROTOCOLPGM("Extrusion ratio(%):");
  3179. //SERIAL_PROTOCOL(extrudemultiply);
  3180. }
  3181. break;
  3182. case 406: //M406 Turn off filament sensor for control
  3183. {
  3184. filament_sensor = false ;
  3185. }
  3186. break;
  3187. case 407: //M407 Display measured filament diameter
  3188. {
  3189. SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  3190. SERIAL_PROTOCOLLN(filament_width_meas);
  3191. }
  3192. break;
  3193. #endif
  3194. case 500: // M500 Store settings in EEPROM
  3195. {
  3196. Config_StoreSettings();
  3197. }
  3198. break;
  3199. case 501: // M501 Read settings from EEPROM
  3200. {
  3201. Config_RetrieveSettings();
  3202. }
  3203. break;
  3204. case 502: // M502 Revert to default settings
  3205. {
  3206. Config_ResetDefault();
  3207. }
  3208. break;
  3209. case 503: // M503 print settings currently in memory
  3210. {
  3211. Config_PrintSettings(code_seen('S') && code_value == 0);
  3212. }
  3213. break;
  3214. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  3215. case 540:
  3216. {
  3217. if(code_seen('S')) abort_on_endstop_hit = code_value() > 0;
  3218. }
  3219. break;
  3220. #endif
  3221. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  3222. case CUSTOM_M_CODE_SET_Z_PROBE_OFFSET:
  3223. {
  3224. float value;
  3225. if (code_seen('Z'))
  3226. {
  3227. value = code_value();
  3228. if ((Z_PROBE_OFFSET_RANGE_MIN <= value) && (value <= Z_PROBE_OFFSET_RANGE_MAX))
  3229. {
  3230. zprobe_zoffset = -value; // compare w/ line 278 of ConfigurationStore.cpp
  3231. SERIAL_ECHO_START;
  3232. SERIAL_ECHOLNPGM(MSG_ZPROBE_ZOFFSET " " MSG_OK);
  3233. SERIAL_PROTOCOLLN("");
  3234. }
  3235. else
  3236. {
  3237. SERIAL_ECHO_START;
  3238. SERIAL_ECHOPGM(MSG_ZPROBE_ZOFFSET);
  3239. SERIAL_ECHOPGM(MSG_Z_MIN);
  3240. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
  3241. SERIAL_ECHOPGM(MSG_Z_MAX);
  3242. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
  3243. SERIAL_PROTOCOLLN("");
  3244. }
  3245. }
  3246. else
  3247. {
  3248. SERIAL_ECHO_START;
  3249. SERIAL_ECHOLNPGM(MSG_ZPROBE_ZOFFSET " : ");
  3250. SERIAL_ECHO(-zprobe_zoffset);
  3251. SERIAL_PROTOCOLLN("");
  3252. }
  3253. break;
  3254. }
  3255. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  3256. #ifdef FILAMENTCHANGEENABLE
  3257. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  3258. {
  3259. float target[NUM_AXIS], lastpos[NUM_AXIS], fr60 = feedrate/60;
  3260. for (int i=0; i<NUM_AXIS; i++)
  3261. target[i] = lastpos[i] = current_position[i];
  3262. #define BASICPLAN plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], fr60, active_extruder);
  3263. #ifdef DELTA
  3264. #define RUNPLAN calculate_delta(target); BASICPLAN
  3265. #else
  3266. #define RUNPLAN BASICPLAN
  3267. #endif
  3268. //retract by E
  3269. if(code_seen('E'))
  3270. {
  3271. target[E_AXIS]+= code_value();
  3272. }
  3273. else
  3274. {
  3275. #ifdef FILAMENTCHANGE_FIRSTRETRACT
  3276. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  3277. #endif
  3278. }
  3279. RUNPLAN;
  3280. //lift Z
  3281. if(code_seen('Z'))
  3282. {
  3283. target[Z_AXIS]+= code_value();
  3284. }
  3285. else
  3286. {
  3287. #ifdef FILAMENTCHANGE_ZADD
  3288. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  3289. #endif
  3290. }
  3291. RUNPLAN;
  3292. //move xy
  3293. if(code_seen('X'))
  3294. {
  3295. target[X_AXIS]= code_value();
  3296. }
  3297. else
  3298. {
  3299. #ifdef FILAMENTCHANGE_XPOS
  3300. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  3301. #endif
  3302. }
  3303. if(code_seen('Y'))
  3304. {
  3305. target[Y_AXIS]= code_value();
  3306. }
  3307. else
  3308. {
  3309. #ifdef FILAMENTCHANGE_YPOS
  3310. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  3311. #endif
  3312. }
  3313. RUNPLAN;
  3314. if(code_seen('L'))
  3315. {
  3316. target[E_AXIS]+= code_value();
  3317. }
  3318. else
  3319. {
  3320. #ifdef FILAMENTCHANGE_FINALRETRACT
  3321. target[E_AXIS]+= FILAMENTCHANGE_FINALRETRACT ;
  3322. #endif
  3323. }
  3324. RUNPLAN;
  3325. //finish moves
  3326. st_synchronize();
  3327. //disable extruder steppers so filament can be removed
  3328. disable_e0();
  3329. disable_e1();
  3330. disable_e2();
  3331. delay(100);
  3332. LCD_ALERTMESSAGEPGM(MSG_FILAMENTCHANGE);
  3333. uint8_t cnt=0;
  3334. while(!lcd_clicked()){
  3335. cnt++;
  3336. manage_heater();
  3337. manage_inactivity(true);
  3338. lcd_update();
  3339. if(cnt==0)
  3340. {
  3341. #if BEEPER > 0
  3342. OUT_WRITE(BEEPER,HIGH);
  3343. delay(3);
  3344. WRITE(BEEPER,LOW);
  3345. delay(3);
  3346. #else
  3347. #if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)
  3348. lcd_buzz(1000/6,100);
  3349. #else
  3350. lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS,LCD_FEEDBACK_FREQUENCY_HZ);
  3351. #endif
  3352. #endif
  3353. }
  3354. }
  3355. //return to normal
  3356. if(code_seen('L'))
  3357. {
  3358. target[E_AXIS]+= -code_value();
  3359. }
  3360. else
  3361. {
  3362. #ifdef FILAMENTCHANGE_FINALRETRACT
  3363. target[E_AXIS]+=(-1)*FILAMENTCHANGE_FINALRETRACT ;
  3364. #endif
  3365. }
  3366. current_position[E_AXIS]=target[E_AXIS]; //the long retract of L is compensated by manual filament feeding
  3367. plan_set_e_position(current_position[E_AXIS]);
  3368. RUNPLAN; //should do nothing
  3369. //reset LCD alert message
  3370. lcd_reset_alert_level();
  3371. #ifdef DELTA
  3372. calculate_delta(lastpos);
  3373. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], target[E_AXIS], fr60, active_extruder); //move xyz back
  3374. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], lastpos[E_AXIS], fr60, active_extruder); //final untretract
  3375. #else
  3376. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], fr60, active_extruder); //move xy back
  3377. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], fr60, active_extruder); //move z back
  3378. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], lastpos[E_AXIS], fr60, active_extruder); //final untretract
  3379. #endif
  3380. }
  3381. break;
  3382. #endif //FILAMENTCHANGEENABLE
  3383. #ifdef DUAL_X_CARRIAGE
  3384. case 605: // Set dual x-carriage movement mode:
  3385. // M605 S0: Full control mode. The slicer has full control over x-carriage movement
  3386. // M605 S1: Auto-park mode. The inactive head will auto park/unpark without slicer involvement
  3387. // M605 S2 [Xnnn] [Rmmm]: Duplication mode. The second extruder will duplicate the first with nnn
  3388. // millimeters x-offset and an optional differential hotend temperature of
  3389. // mmm degrees. E.g., with "M605 S2 X100 R2" the second extruder will duplicate
  3390. // the first with a spacing of 100mm in the x direction and 2 degrees hotter.
  3391. //
  3392. // Note: the X axis should be homed after changing dual x-carriage mode.
  3393. {
  3394. st_synchronize();
  3395. if (code_seen('S'))
  3396. dual_x_carriage_mode = code_value();
  3397. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE)
  3398. {
  3399. if (code_seen('X'))
  3400. duplicate_extruder_x_offset = max(code_value(),X2_MIN_POS - x_home_pos(0));
  3401. if (code_seen('R'))
  3402. duplicate_extruder_temp_offset = code_value();
  3403. SERIAL_ECHO_START;
  3404. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  3405. SERIAL_ECHO(" ");
  3406. SERIAL_ECHO(extruder_offset[X_AXIS][0]);
  3407. SERIAL_ECHO(",");
  3408. SERIAL_ECHO(extruder_offset[Y_AXIS][0]);
  3409. SERIAL_ECHO(" ");
  3410. SERIAL_ECHO(duplicate_extruder_x_offset);
  3411. SERIAL_ECHO(",");
  3412. SERIAL_ECHOLN(extruder_offset[Y_AXIS][1]);
  3413. }
  3414. else if (dual_x_carriage_mode != DXC_FULL_CONTROL_MODE && dual_x_carriage_mode != DXC_AUTO_PARK_MODE)
  3415. {
  3416. dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  3417. }
  3418. active_extruder_parked = false;
  3419. extruder_duplication_enabled = false;
  3420. delayed_move_time = 0;
  3421. }
  3422. break;
  3423. #endif //DUAL_X_CARRIAGE
  3424. case 907: // M907 Set digital trimpot motor current using axis codes.
  3425. {
  3426. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  3427. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_current(i,code_value());
  3428. if(code_seen('B')) digipot_current(4,code_value());
  3429. if(code_seen('S')) for(int i=0;i<=4;i++) digipot_current(i,code_value());
  3430. #endif
  3431. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  3432. if(code_seen('X')) digipot_current(0, code_value());
  3433. #endif
  3434. #ifdef MOTOR_CURRENT_PWM_Z_PIN
  3435. if(code_seen('Z')) digipot_current(1, code_value());
  3436. #endif
  3437. #ifdef MOTOR_CURRENT_PWM_E_PIN
  3438. if(code_seen('E')) digipot_current(2, code_value());
  3439. #endif
  3440. #ifdef DIGIPOT_I2C
  3441. // this one uses actual amps in floating point
  3442. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_i2c_set_current(i, code_value());
  3443. // for each additional extruder (named B,C,D,E..., channels 4,5,6,7...)
  3444. for(int i=NUM_AXIS;i<DIGIPOT_I2C_NUM_CHANNELS;i++) if(code_seen('B'+i-NUM_AXIS)) digipot_i2c_set_current(i, code_value());
  3445. #endif
  3446. }
  3447. break;
  3448. case 908: // M908 Control digital trimpot directly.
  3449. {
  3450. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  3451. uint8_t channel,current;
  3452. if(code_seen('P')) channel=code_value();
  3453. if(code_seen('S')) current=code_value();
  3454. digitalPotWrite(channel, current);
  3455. #endif
  3456. }
  3457. break;
  3458. case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  3459. {
  3460. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  3461. if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value());
  3462. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_mode(i,(uint8_t)code_value());
  3463. if(code_seen('B')) microstep_mode(4,code_value());
  3464. microstep_readings();
  3465. #endif
  3466. }
  3467. break;
  3468. case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  3469. {
  3470. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  3471. if(code_seen('S')) switch((int)code_value())
  3472. {
  3473. case 1:
  3474. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,code_value(),-1);
  3475. if(code_seen('B')) microstep_ms(4,code_value(),-1);
  3476. break;
  3477. case 2:
  3478. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,-1,code_value());
  3479. if(code_seen('B')) microstep_ms(4,-1,code_value());
  3480. break;
  3481. }
  3482. microstep_readings();
  3483. #endif
  3484. }
  3485. break;
  3486. case 999: // M999: Restart after being stopped
  3487. Stopped = false;
  3488. lcd_reset_alert_level();
  3489. gcode_LastN = Stopped_gcode_LastN;
  3490. FlushSerialRequestResend();
  3491. break;
  3492. }
  3493. }
  3494. else if(code_seen('T'))
  3495. {
  3496. tmp_extruder = code_value();
  3497. if(tmp_extruder >= EXTRUDERS) {
  3498. SERIAL_ECHO_START;
  3499. SERIAL_ECHO("T");
  3500. SERIAL_ECHO(tmp_extruder);
  3501. SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
  3502. }
  3503. else {
  3504. boolean make_move = false;
  3505. if(code_seen('F')) {
  3506. make_move = true;
  3507. next_feedrate = code_value();
  3508. if(next_feedrate > 0.0) {
  3509. feedrate = next_feedrate;
  3510. }
  3511. }
  3512. #if EXTRUDERS > 1
  3513. if(tmp_extruder != active_extruder) {
  3514. // Save current position to return to after applying extruder offset
  3515. memcpy(destination, current_position, sizeof(destination));
  3516. #ifdef DUAL_X_CARRIAGE
  3517. if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE && Stopped == false &&
  3518. (delayed_move_time != 0 || current_position[X_AXIS] != x_home_pos(active_extruder)))
  3519. {
  3520. // Park old head: 1) raise 2) move to park position 3) lower
  3521. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
  3522. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  3523. plan_buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
  3524. current_position[E_AXIS], max_feedrate[X_AXIS], active_extruder);
  3525. plan_buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS],
  3526. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  3527. st_synchronize();
  3528. }
  3529. // apply Y & Z extruder offset (x offset is already used in determining home pos)
  3530. current_position[Y_AXIS] = current_position[Y_AXIS] -
  3531. extruder_offset[Y_AXIS][active_extruder] +
  3532. extruder_offset[Y_AXIS][tmp_extruder];
  3533. current_position[Z_AXIS] = current_position[Z_AXIS] -
  3534. extruder_offset[Z_AXIS][active_extruder] +
  3535. extruder_offset[Z_AXIS][tmp_extruder];
  3536. active_extruder = tmp_extruder;
  3537. // This function resets the max/min values - the current position may be overwritten below.
  3538. axis_is_at_home(X_AXIS);
  3539. if (dual_x_carriage_mode == DXC_FULL_CONTROL_MODE)
  3540. {
  3541. current_position[X_AXIS] = inactive_extruder_x_pos;
  3542. inactive_extruder_x_pos = destination[X_AXIS];
  3543. }
  3544. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE)
  3545. {
  3546. active_extruder_parked = (active_extruder == 0); // this triggers the second extruder to move into the duplication position
  3547. if (active_extruder == 0 || active_extruder_parked)
  3548. current_position[X_AXIS] = inactive_extruder_x_pos;
  3549. else
  3550. current_position[X_AXIS] = destination[X_AXIS] + duplicate_extruder_x_offset;
  3551. inactive_extruder_x_pos = destination[X_AXIS];
  3552. extruder_duplication_enabled = false;
  3553. }
  3554. else
  3555. {
  3556. // record raised toolhead position for use by unpark
  3557. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  3558. raised_parked_position[Z_AXIS] += TOOLCHANGE_UNPARK_ZLIFT;
  3559. active_extruder_parked = true;
  3560. delayed_move_time = 0;
  3561. }
  3562. #else
  3563. // Offset extruder (only by XY)
  3564. int i;
  3565. for(i = 0; i < 2; i++) {
  3566. current_position[i] = current_position[i] -
  3567. extruder_offset[i][active_extruder] +
  3568. extruder_offset[i][tmp_extruder];
  3569. }
  3570. // Set the new active extruder and position
  3571. active_extruder = tmp_extruder;
  3572. #endif //else DUAL_X_CARRIAGE
  3573. #ifdef DELTA
  3574. calculate_delta(current_position); // change cartesian kinematic to delta kinematic;
  3575. //sent position to plan_set_position();
  3576. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS],current_position[E_AXIS]);
  3577. #else
  3578. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  3579. #endif
  3580. // Move to the old position if 'F' was in the parameters
  3581. if(make_move && Stopped == false) {
  3582. prepare_move();
  3583. }
  3584. }
  3585. #ifdef EXT_SOLENOID
  3586. st_synchronize();
  3587. disable_all_solenoids();
  3588. enable_solenoid_on_active_extruder();
  3589. #endif //EXT_SOLENOID
  3590. #endif
  3591. SERIAL_ECHO_START;
  3592. SERIAL_ECHO(MSG_ACTIVE_EXTRUDER);
  3593. SERIAL_PROTOCOLLN((int)active_extruder);
  3594. }
  3595. }
  3596. else
  3597. {
  3598. SERIAL_ECHO_START;
  3599. SERIAL_ECHOPGM(MSG_UNKNOWN_COMMAND);
  3600. SERIAL_ECHO(cmdbuffer[bufindr]);
  3601. SERIAL_ECHOLNPGM("\"");
  3602. }
  3603. ClearToSend();
  3604. }
  3605. void FlushSerialRequestResend()
  3606. {
  3607. //char cmdbuffer[bufindr][100]="Resend:";
  3608. MYSERIAL.flush();
  3609. SERIAL_PROTOCOLPGM(MSG_RESEND);
  3610. SERIAL_PROTOCOLLN(gcode_LastN + 1);
  3611. ClearToSend();
  3612. }
  3613. void ClearToSend()
  3614. {
  3615. previous_millis_cmd = millis();
  3616. #ifdef SDSUPPORT
  3617. if(fromsd[bufindr])
  3618. return;
  3619. #endif //SDSUPPORT
  3620. SERIAL_PROTOCOLLNPGM(MSG_OK);
  3621. }
  3622. void get_coordinates()
  3623. {
  3624. bool seen[4]={false,false,false,false};
  3625. for(int8_t i=0; i < NUM_AXIS; i++) {
  3626. if(code_seen(axis_codes[i]))
  3627. {
  3628. destination[i] = (float)code_value() + (axis_relative_modes[i] || relative_mode)*current_position[i];
  3629. seen[i]=true;
  3630. }
  3631. else destination[i] = current_position[i]; //Are these else lines really needed?
  3632. }
  3633. if(code_seen('F')) {
  3634. next_feedrate = code_value();
  3635. if(next_feedrate > 0.0) feedrate = next_feedrate;
  3636. }
  3637. }
  3638. void get_arc_coordinates()
  3639. {
  3640. #ifdef SF_ARC_FIX
  3641. bool relative_mode_backup = relative_mode;
  3642. relative_mode = true;
  3643. #endif
  3644. get_coordinates();
  3645. #ifdef SF_ARC_FIX
  3646. relative_mode=relative_mode_backup;
  3647. #endif
  3648. if(code_seen('I')) {
  3649. offset[0] = code_value();
  3650. }
  3651. else {
  3652. offset[0] = 0.0;
  3653. }
  3654. if(code_seen('J')) {
  3655. offset[1] = code_value();
  3656. }
  3657. else {
  3658. offset[1] = 0.0;
  3659. }
  3660. }
  3661. void clamp_to_software_endstops(float target[3])
  3662. {
  3663. if (min_software_endstops) {
  3664. if (target[X_AXIS] < min_pos[X_AXIS]) target[X_AXIS] = min_pos[X_AXIS];
  3665. if (target[Y_AXIS] < min_pos[Y_AXIS]) target[Y_AXIS] = min_pos[Y_AXIS];
  3666. float negative_z_offset = 0;
  3667. #ifdef ENABLE_AUTO_BED_LEVELING
  3668. if (Z_PROBE_OFFSET_FROM_EXTRUDER < 0) negative_z_offset = negative_z_offset + Z_PROBE_OFFSET_FROM_EXTRUDER;
  3669. if (add_homing[Z_AXIS] < 0) negative_z_offset = negative_z_offset + add_homing[Z_AXIS];
  3670. #endif
  3671. if (target[Z_AXIS] < min_pos[Z_AXIS]+negative_z_offset) target[Z_AXIS] = min_pos[Z_AXIS]+negative_z_offset;
  3672. }
  3673. if (max_software_endstops) {
  3674. if (target[X_AXIS] > max_pos[X_AXIS]) target[X_AXIS] = max_pos[X_AXIS];
  3675. if (target[Y_AXIS] > max_pos[Y_AXIS]) target[Y_AXIS] = max_pos[Y_AXIS];
  3676. if (target[Z_AXIS] > max_pos[Z_AXIS]) target[Z_AXIS] = max_pos[Z_AXIS];
  3677. }
  3678. }
  3679. #ifdef DELTA
  3680. void recalc_delta_settings(float radius, float diagonal_rod)
  3681. {
  3682. delta_tower1_x= -SIN_60*radius; // front left tower
  3683. delta_tower1_y= -COS_60*radius;
  3684. delta_tower2_x= SIN_60*radius; // front right tower
  3685. delta_tower2_y= -COS_60*radius;
  3686. delta_tower3_x= 0.0; // back middle tower
  3687. delta_tower3_y= radius;
  3688. delta_diagonal_rod_2= sq(diagonal_rod);
  3689. }
  3690. void calculate_delta(float cartesian[3])
  3691. {
  3692. delta[X_AXIS] = sqrt(delta_diagonal_rod_2
  3693. - sq(delta_tower1_x-cartesian[X_AXIS])
  3694. - sq(delta_tower1_y-cartesian[Y_AXIS])
  3695. ) + cartesian[Z_AXIS];
  3696. delta[Y_AXIS] = sqrt(delta_diagonal_rod_2
  3697. - sq(delta_tower2_x-cartesian[X_AXIS])
  3698. - sq(delta_tower2_y-cartesian[Y_AXIS])
  3699. ) + cartesian[Z_AXIS];
  3700. delta[Z_AXIS] = sqrt(delta_diagonal_rod_2
  3701. - sq(delta_tower3_x-cartesian[X_AXIS])
  3702. - sq(delta_tower3_y-cartesian[Y_AXIS])
  3703. ) + cartesian[Z_AXIS];
  3704. /*
  3705. SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);
  3706. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]);
  3707. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]);
  3708. SERIAL_ECHOPGM("delta x="); SERIAL_ECHO(delta[X_AXIS]);
  3709. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(delta[Y_AXIS]);
  3710. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(delta[Z_AXIS]);
  3711. */
  3712. }
  3713. #endif
  3714. void prepare_move()
  3715. {
  3716. clamp_to_software_endstops(destination);
  3717. previous_millis_cmd = millis();
  3718. #ifdef SCARA //for now same as delta-code
  3719. float difference[NUM_AXIS];
  3720. for (int8_t i=0; i < NUM_AXIS; i++) {
  3721. difference[i] = destination[i] - current_position[i];
  3722. }
  3723. float cartesian_mm = sqrt( sq(difference[X_AXIS]) +
  3724. sq(difference[Y_AXIS]) +
  3725. sq(difference[Z_AXIS]));
  3726. if (cartesian_mm < 0.000001) { cartesian_mm = abs(difference[E_AXIS]); }
  3727. if (cartesian_mm < 0.000001) { return; }
  3728. float seconds = 6000 * cartesian_mm / feedrate / feedmultiply;
  3729. int steps = max(1, int(scara_segments_per_second * seconds));
  3730. //SERIAL_ECHOPGM("mm="); SERIAL_ECHO(cartesian_mm);
  3731. //SERIAL_ECHOPGM(" seconds="); SERIAL_ECHO(seconds);
  3732. //SERIAL_ECHOPGM(" steps="); SERIAL_ECHOLN(steps);
  3733. for (int s = 1; s <= steps; s++) {
  3734. float fraction = float(s) / float(steps);
  3735. for(int8_t i=0; i < NUM_AXIS; i++) {
  3736. destination[i] = current_position[i] + difference[i] * fraction;
  3737. }
  3738. calculate_delta(destination);
  3739. //SERIAL_ECHOPGM("destination[X_AXIS]="); SERIAL_ECHOLN(destination[X_AXIS]);
  3740. //SERIAL_ECHOPGM("destination[Y_AXIS]="); SERIAL_ECHOLN(destination[Y_AXIS]);
  3741. //SERIAL_ECHOPGM("destination[Z_AXIS]="); SERIAL_ECHOLN(destination[Z_AXIS]);
  3742. //SERIAL_ECHOPGM("delta[X_AXIS]="); SERIAL_ECHOLN(delta[X_AXIS]);
  3743. //SERIAL_ECHOPGM("delta[Y_AXIS]="); SERIAL_ECHOLN(delta[Y_AXIS]);
  3744. //SERIAL_ECHOPGM("delta[Z_AXIS]="); SERIAL_ECHOLN(delta[Z_AXIS]);
  3745. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS],
  3746. destination[E_AXIS], feedrate*feedmultiply/60/100.0,
  3747. active_extruder);
  3748. }
  3749. #endif // SCARA
  3750. #ifdef DELTA
  3751. float difference[NUM_AXIS];
  3752. for (int8_t i=0; i < NUM_AXIS; i++) {
  3753. difference[i] = destination[i] - current_position[i];
  3754. }
  3755. float cartesian_mm = sqrt(sq(difference[X_AXIS]) +
  3756. sq(difference[Y_AXIS]) +
  3757. sq(difference[Z_AXIS]));
  3758. if (cartesian_mm < 0.000001) { cartesian_mm = abs(difference[E_AXIS]); }
  3759. if (cartesian_mm < 0.000001) { return; }
  3760. float seconds = 6000 * cartesian_mm / feedrate / feedmultiply;
  3761. int steps = max(1, int(delta_segments_per_second * seconds));
  3762. // SERIAL_ECHOPGM("mm="); SERIAL_ECHO(cartesian_mm);
  3763. // SERIAL_ECHOPGM(" seconds="); SERIAL_ECHO(seconds);
  3764. // SERIAL_ECHOPGM(" steps="); SERIAL_ECHOLN(steps);
  3765. for (int s = 1; s <= steps; s++) {
  3766. float fraction = float(s) / float(steps);
  3767. for(int8_t i=0; i < NUM_AXIS; i++) {
  3768. destination[i] = current_position[i] + difference[i] * fraction;
  3769. }
  3770. calculate_delta(destination);
  3771. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS],
  3772. destination[E_AXIS], feedrate*feedmultiply/60/100.0,
  3773. active_extruder);
  3774. }
  3775. #endif // DELTA
  3776. #ifdef DUAL_X_CARRIAGE
  3777. if (active_extruder_parked)
  3778. {
  3779. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && active_extruder == 0)
  3780. {
  3781. // move duplicate extruder into correct duplication position.
  3782. plan_set_position(inactive_extruder_x_pos, current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  3783. plan_buffer_line(current_position[X_AXIS] + duplicate_extruder_x_offset, current_position[Y_AXIS], current_position[Z_AXIS],
  3784. current_position[E_AXIS], max_feedrate[X_AXIS], 1);
  3785. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  3786. st_synchronize();
  3787. extruder_duplication_enabled = true;
  3788. active_extruder_parked = false;
  3789. }
  3790. else if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE) // handle unparking of head
  3791. {
  3792. if (current_position[E_AXIS] == destination[E_AXIS])
  3793. {
  3794. // this is a travel move - skit it but keep track of current position (so that it can later
  3795. // be used as start of first non-travel move)
  3796. if (delayed_move_time != 0xFFFFFFFFUL)
  3797. {
  3798. memcpy(current_position, destination, sizeof(current_position));
  3799. if (destination[Z_AXIS] > raised_parked_position[Z_AXIS])
  3800. raised_parked_position[Z_AXIS] = destination[Z_AXIS];
  3801. delayed_move_time = millis();
  3802. return;
  3803. }
  3804. }
  3805. delayed_move_time = 0;
  3806. // unpark extruder: 1) raise, 2) move into starting XY position, 3) lower
  3807. plan_buffer_line(raised_parked_position[X_AXIS], raised_parked_position[Y_AXIS], raised_parked_position[Z_AXIS], current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  3808. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], raised_parked_position[Z_AXIS],
  3809. current_position[E_AXIS], min(max_feedrate[X_AXIS],max_feedrate[Y_AXIS]), active_extruder);
  3810. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS],
  3811. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  3812. active_extruder_parked = false;
  3813. }
  3814. }
  3815. #endif //DUAL_X_CARRIAGE
  3816. #if ! (defined DELTA || defined SCARA)
  3817. // Do not use feedmultiply for E or Z only moves
  3818. if( (current_position[X_AXIS] == destination [X_AXIS]) && (current_position[Y_AXIS] == destination [Y_AXIS])) {
  3819. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  3820. }
  3821. else {
  3822. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply/60/100.0, active_extruder);
  3823. }
  3824. #endif // !(DELTA || SCARA)
  3825. for(int8_t i=0; i < NUM_AXIS; i++) {
  3826. current_position[i] = destination[i];
  3827. }
  3828. }
  3829. void prepare_arc_move(char isclockwise) {
  3830. float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
  3831. // Trace the arc
  3832. mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedmultiply/60/100.0, r, isclockwise, active_extruder);
  3833. // As far as the parser is concerned, the position is now == target. In reality the
  3834. // motion control system might still be processing the action and the real tool position
  3835. // in any intermediate location.
  3836. for(int8_t i=0; i < NUM_AXIS; i++) {
  3837. current_position[i] = destination[i];
  3838. }
  3839. previous_millis_cmd = millis();
  3840. }
  3841. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  3842. #if defined(FAN_PIN)
  3843. #if CONTROLLERFAN_PIN == FAN_PIN
  3844. #error "You cannot set CONTROLLERFAN_PIN equal to FAN_PIN"
  3845. #endif
  3846. #endif
  3847. unsigned long lastMotor = 0; //Save the time for when a motor was turned on last
  3848. unsigned long lastMotorCheck = 0;
  3849. void controllerFan()
  3850. {
  3851. if ((millis() - lastMotorCheck) >= 2500) //Not a time critical function, so we only check every 2500ms
  3852. {
  3853. lastMotorCheck = millis();
  3854. if(!READ(X_ENABLE_PIN) || !READ(Y_ENABLE_PIN) || !READ(Z_ENABLE_PIN) || (soft_pwm_bed > 0)
  3855. #if EXTRUDERS > 2
  3856. || !READ(E2_ENABLE_PIN)
  3857. #endif
  3858. #if EXTRUDER > 1
  3859. #if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1
  3860. || !READ(X2_ENABLE_PIN)
  3861. #endif
  3862. || !READ(E1_ENABLE_PIN)
  3863. #endif
  3864. || !READ(E0_ENABLE_PIN)) //If any of the drivers are enabled...
  3865. {
  3866. lastMotor = millis(); //... set time to NOW so the fan will turn on
  3867. }
  3868. if ((millis() - lastMotor) >= (CONTROLLERFAN_SECS*1000UL) || lastMotor == 0) //If the last time any driver was enabled, is longer since than CONTROLLERSEC...
  3869. {
  3870. digitalWrite(CONTROLLERFAN_PIN, 0);
  3871. analogWrite(CONTROLLERFAN_PIN, 0);
  3872. }
  3873. else
  3874. {
  3875. // allows digital or PWM fan output to be used (see M42 handling)
  3876. digitalWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  3877. analogWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  3878. }
  3879. }
  3880. }
  3881. #endif
  3882. #ifdef SCARA
  3883. void calculate_SCARA_forward_Transform(float f_scara[3])
  3884. {
  3885. // Perform forward kinematics, and place results in delta[3]
  3886. // The maths and first version has been done by QHARLEY . Integrated into masterbranch 06/2014 and slightly restructured by Joachim Cerny in June 2014
  3887. float x_sin, x_cos, y_sin, y_cos;
  3888. //SERIAL_ECHOPGM("f_delta x="); SERIAL_ECHO(f_scara[X_AXIS]);
  3889. //SERIAL_ECHOPGM(" y="); SERIAL_ECHO(f_scara[Y_AXIS]);
  3890. x_sin = sin(f_scara[X_AXIS]/SCARA_RAD2DEG) * Linkage_1;
  3891. x_cos = cos(f_scara[X_AXIS]/SCARA_RAD2DEG) * Linkage_1;
  3892. y_sin = sin(f_scara[Y_AXIS]/SCARA_RAD2DEG) * Linkage_2;
  3893. y_cos = cos(f_scara[Y_AXIS]/SCARA_RAD2DEG) * Linkage_2;
  3894. // SERIAL_ECHOPGM(" x_sin="); SERIAL_ECHO(x_sin);
  3895. // SERIAL_ECHOPGM(" x_cos="); SERIAL_ECHO(x_cos);
  3896. // SERIAL_ECHOPGM(" y_sin="); SERIAL_ECHO(y_sin);
  3897. // SERIAL_ECHOPGM(" y_cos="); SERIAL_ECHOLN(y_cos);
  3898. delta[X_AXIS] = x_cos + y_cos + SCARA_offset_x; //theta
  3899. delta[Y_AXIS] = x_sin + y_sin + SCARA_offset_y; //theta+phi
  3900. //SERIAL_ECHOPGM(" delta[X_AXIS]="); SERIAL_ECHO(delta[X_AXIS]);
  3901. //SERIAL_ECHOPGM(" delta[Y_AXIS]="); SERIAL_ECHOLN(delta[Y_AXIS]);
  3902. }
  3903. void calculate_delta(float cartesian[3]){
  3904. //reverse kinematics.
  3905. // Perform reversed kinematics, and place results in delta[3]
  3906. // The maths and first version has been done by QHARLEY . Integrated into masterbranch 06/2014 and slightly restructured by Joachim Cerny in June 2014
  3907. float SCARA_pos[2];
  3908. static float SCARA_C2, SCARA_S2, SCARA_K1, SCARA_K2, SCARA_theta, SCARA_psi;
  3909. SCARA_pos[X_AXIS] = cartesian[X_AXIS] * axis_scaling[X_AXIS] - SCARA_offset_x; //Translate SCARA to standard X Y
  3910. SCARA_pos[Y_AXIS] = cartesian[Y_AXIS] * axis_scaling[Y_AXIS] - SCARA_offset_y; // With scaling factor.
  3911. #if (Linkage_1 == Linkage_2)
  3912. SCARA_C2 = ( ( sq(SCARA_pos[X_AXIS]) + sq(SCARA_pos[Y_AXIS]) ) / (2 * (float)L1_2) ) - 1;
  3913. #else
  3914. SCARA_C2 = ( sq(SCARA_pos[X_AXIS]) + sq(SCARA_pos[Y_AXIS]) - (float)L1_2 - (float)L2_2 ) / 45000;
  3915. #endif
  3916. SCARA_S2 = sqrt( 1 - sq(SCARA_C2) );
  3917. SCARA_K1 = Linkage_1 + Linkage_2 * SCARA_C2;
  3918. SCARA_K2 = Linkage_2 * SCARA_S2;
  3919. SCARA_theta = ( atan2(SCARA_pos[X_AXIS],SCARA_pos[Y_AXIS])-atan2(SCARA_K1, SCARA_K2) ) * -1;
  3920. SCARA_psi = atan2(SCARA_S2,SCARA_C2);
  3921. delta[X_AXIS] = SCARA_theta * SCARA_RAD2DEG; // Multiply by 180/Pi - theta is support arm angle
  3922. delta[Y_AXIS] = (SCARA_theta + SCARA_psi) * SCARA_RAD2DEG; // - equal to sub arm angle (inverted motor)
  3923. delta[Z_AXIS] = cartesian[Z_AXIS];
  3924. /*
  3925. SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);
  3926. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]);
  3927. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]);
  3928. SERIAL_ECHOPGM("scara x="); SERIAL_ECHO(SCARA_pos[X_AXIS]);
  3929. SERIAL_ECHOPGM(" y="); SERIAL_ECHOLN(SCARA_pos[Y_AXIS]);
  3930. SERIAL_ECHOPGM("delta x="); SERIAL_ECHO(delta[X_AXIS]);
  3931. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(delta[Y_AXIS]);
  3932. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(delta[Z_AXIS]);
  3933. SERIAL_ECHOPGM("C2="); SERIAL_ECHO(SCARA_C2);
  3934. SERIAL_ECHOPGM(" S2="); SERIAL_ECHO(SCARA_S2);
  3935. SERIAL_ECHOPGM(" Theta="); SERIAL_ECHO(SCARA_theta);
  3936. SERIAL_ECHOPGM(" Psi="); SERIAL_ECHOLN(SCARA_psi);
  3937. SERIAL_ECHOLN(" ");*/
  3938. }
  3939. #endif
  3940. #ifdef TEMP_STAT_LEDS
  3941. static bool blue_led = false;
  3942. static bool red_led = false;
  3943. static uint32_t stat_update = 0;
  3944. void handle_status_leds(void) {
  3945. float max_temp = 0.0;
  3946. if(millis() > stat_update) {
  3947. stat_update += 500; // Update every 0.5s
  3948. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  3949. max_temp = max(max_temp, degHotend(cur_extruder));
  3950. max_temp = max(max_temp, degTargetHotend(cur_extruder));
  3951. }
  3952. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  3953. max_temp = max(max_temp, degTargetBed());
  3954. max_temp = max(max_temp, degBed());
  3955. #endif
  3956. if((max_temp > 55.0) && (red_led == false)) {
  3957. digitalWrite(STAT_LED_RED, 1);
  3958. digitalWrite(STAT_LED_BLUE, 0);
  3959. red_led = true;
  3960. blue_led = false;
  3961. }
  3962. if((max_temp < 54.0) && (blue_led == false)) {
  3963. digitalWrite(STAT_LED_RED, 0);
  3964. digitalWrite(STAT_LED_BLUE, 1);
  3965. red_led = false;
  3966. blue_led = true;
  3967. }
  3968. }
  3969. }
  3970. #endif
  3971. void manage_inactivity(bool ignore_stepper_queue/*=false*/) //default argument set in Marlin.h
  3972. {
  3973. #if defined(KILL_PIN) && KILL_PIN > -1
  3974. static int killCount = 0; // make the inactivity button a bit less responsive
  3975. const int KILL_DELAY = 10000;
  3976. #endif
  3977. #if defined(HOME_PIN) && HOME_PIN > -1
  3978. static int homeDebounceCount = 0; // poor man's debouncing count
  3979. const int HOME_DEBOUNCE_DELAY = 10000;
  3980. #endif
  3981. if(buflen < (BUFSIZE-1))
  3982. get_command();
  3983. if( (millis() - previous_millis_cmd) > max_inactive_time )
  3984. if(max_inactive_time)
  3985. kill();
  3986. if(stepper_inactive_time) {
  3987. if( (millis() - previous_millis_cmd) > stepper_inactive_time )
  3988. {
  3989. if(blocks_queued() == false && ignore_stepper_queue == false) {
  3990. disable_x();
  3991. disable_y();
  3992. disable_z();
  3993. disable_e0();
  3994. disable_e1();
  3995. disable_e2();
  3996. }
  3997. }
  3998. }
  3999. #ifdef CHDK //Check if pin should be set to LOW after M240 set it to HIGH
  4000. if (chdkActive && (millis() - chdkHigh > CHDK_DELAY))
  4001. {
  4002. chdkActive = false;
  4003. WRITE(CHDK, LOW);
  4004. }
  4005. #endif
  4006. #if defined(KILL_PIN) && KILL_PIN > -1
  4007. // Check if the kill button was pressed and wait just in case it was an accidental
  4008. // key kill key press
  4009. // -------------------------------------------------------------------------------
  4010. if( 0 == READ(KILL_PIN) )
  4011. {
  4012. killCount++;
  4013. }
  4014. else if (killCount > 0)
  4015. {
  4016. killCount--;
  4017. }
  4018. // Exceeded threshold and we can confirm that it was not accidental
  4019. // KILL the machine
  4020. // ----------------------------------------------------------------
  4021. if ( killCount >= KILL_DELAY)
  4022. {
  4023. kill();
  4024. }
  4025. #endif
  4026. #if defined(HOME_PIN) && HOME_PIN > -1
  4027. // Check to see if we have to home, use poor man's debouncer
  4028. // ---------------------------------------------------------
  4029. if ( 0 == READ(HOME_PIN) )
  4030. {
  4031. if (homeDebounceCount == 0)
  4032. {
  4033. enquecommands_P((PSTR("G28")));
  4034. homeDebounceCount++;
  4035. LCD_ALERTMESSAGEPGM(MSG_AUTO_HOME);
  4036. }
  4037. else if (homeDebounceCount < HOME_DEBOUNCE_DELAY)
  4038. {
  4039. homeDebounceCount++;
  4040. }
  4041. else
  4042. {
  4043. homeDebounceCount = 0;
  4044. }
  4045. }
  4046. #endif
  4047. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  4048. controllerFan(); //Check if fan should be turned on to cool stepper drivers down
  4049. #endif
  4050. #ifdef EXTRUDER_RUNOUT_PREVENT
  4051. if( (millis() - previous_millis_cmd) > EXTRUDER_RUNOUT_SECONDS*1000 )
  4052. if(degHotend(active_extruder)>EXTRUDER_RUNOUT_MINTEMP)
  4053. {
  4054. bool oldstatus=READ(E0_ENABLE_PIN);
  4055. enable_e0();
  4056. float oldepos=current_position[E_AXIS];
  4057. float oldedes=destination[E_AXIS];
  4058. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
  4059. destination[E_AXIS]+EXTRUDER_RUNOUT_EXTRUDE*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS],
  4060. EXTRUDER_RUNOUT_SPEED/60.*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS], active_extruder);
  4061. current_position[E_AXIS]=oldepos;
  4062. destination[E_AXIS]=oldedes;
  4063. plan_set_e_position(oldepos);
  4064. previous_millis_cmd=millis();
  4065. st_synchronize();
  4066. WRITE(E0_ENABLE_PIN,oldstatus);
  4067. }
  4068. #endif
  4069. #if defined(DUAL_X_CARRIAGE)
  4070. // handle delayed move timeout
  4071. if (delayed_move_time != 0 && (millis() - delayed_move_time) > 1000 && Stopped == false)
  4072. {
  4073. // travel moves have been received so enact them
  4074. delayed_move_time = 0xFFFFFFFFUL; // force moves to be done
  4075. memcpy(destination,current_position,sizeof(destination));
  4076. prepare_move();
  4077. }
  4078. #endif
  4079. #ifdef TEMP_STAT_LEDS
  4080. handle_status_leds();
  4081. #endif
  4082. check_axes_activity();
  4083. }
  4084. void kill()
  4085. {
  4086. cli(); // Stop interrupts
  4087. disable_heater();
  4088. disable_x();
  4089. disable_y();
  4090. disable_z();
  4091. disable_e0();
  4092. disable_e1();
  4093. disable_e2();
  4094. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  4095. pinMode(PS_ON_PIN,INPUT);
  4096. #endif
  4097. SERIAL_ERROR_START;
  4098. SERIAL_ERRORLNPGM(MSG_ERR_KILLED);
  4099. LCD_ALERTMESSAGEPGM(MSG_KILLED);
  4100. // FMC small patch to update the LCD before ending
  4101. sei(); // enable interrupts
  4102. for ( int i=5; i--; lcd_update())
  4103. {
  4104. delay(200);
  4105. }
  4106. cli(); // disable interrupts
  4107. suicide();
  4108. while(1) { /* Intentionally left empty */ } // Wait for reset
  4109. }
  4110. void Stop()
  4111. {
  4112. disable_heater();
  4113. if(Stopped == false) {
  4114. Stopped = true;
  4115. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  4116. SERIAL_ERROR_START;
  4117. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  4118. LCD_MESSAGEPGM(MSG_STOPPED);
  4119. }
  4120. }
  4121. bool IsStopped() { return Stopped; };
  4122. #ifdef FAST_PWM_FAN
  4123. void setPwmFrequency(uint8_t pin, int val)
  4124. {
  4125. val &= 0x07;
  4126. switch(digitalPinToTimer(pin))
  4127. {
  4128. #if defined(TCCR0A)
  4129. case TIMER0A:
  4130. case TIMER0B:
  4131. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  4132. // TCCR0B |= val;
  4133. break;
  4134. #endif
  4135. #if defined(TCCR1A)
  4136. case TIMER1A:
  4137. case TIMER1B:
  4138. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  4139. // TCCR1B |= val;
  4140. break;
  4141. #endif
  4142. #if defined(TCCR2)
  4143. case TIMER2:
  4144. case TIMER2:
  4145. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  4146. TCCR2 |= val;
  4147. break;
  4148. #endif
  4149. #if defined(TCCR2A)
  4150. case TIMER2A:
  4151. case TIMER2B:
  4152. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  4153. TCCR2B |= val;
  4154. break;
  4155. #endif
  4156. #if defined(TCCR3A)
  4157. case TIMER3A:
  4158. case TIMER3B:
  4159. case TIMER3C:
  4160. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  4161. TCCR3B |= val;
  4162. break;
  4163. #endif
  4164. #if defined(TCCR4A)
  4165. case TIMER4A:
  4166. case TIMER4B:
  4167. case TIMER4C:
  4168. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  4169. TCCR4B |= val;
  4170. break;
  4171. #endif
  4172. #if defined(TCCR5A)
  4173. case TIMER5A:
  4174. case TIMER5B:
  4175. case TIMER5C:
  4176. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  4177. TCCR5B |= val;
  4178. break;
  4179. #endif
  4180. }
  4181. }
  4182. #endif //FAST_PWM_FAN
  4183. bool setTargetedHotend(int code){
  4184. tmp_extruder = active_extruder;
  4185. if(code_seen('T')) {
  4186. tmp_extruder = code_value();
  4187. if(tmp_extruder >= EXTRUDERS) {
  4188. SERIAL_ECHO_START;
  4189. switch(code){
  4190. case 104:
  4191. SERIAL_ECHO(MSG_M104_INVALID_EXTRUDER);
  4192. break;
  4193. case 105:
  4194. SERIAL_ECHO(MSG_M105_INVALID_EXTRUDER);
  4195. break;
  4196. case 109:
  4197. SERIAL_ECHO(MSG_M109_INVALID_EXTRUDER);
  4198. break;
  4199. case 218:
  4200. SERIAL_ECHO(MSG_M218_INVALID_EXTRUDER);
  4201. break;
  4202. case 221:
  4203. SERIAL_ECHO(MSG_M221_INVALID_EXTRUDER);
  4204. break;
  4205. }
  4206. SERIAL_ECHOLN(tmp_extruder);
  4207. return true;
  4208. }
  4209. }
  4210. return false;
  4211. }
  4212. float calculate_volumetric_multiplier(float diameter) {
  4213. if (!volumetric_enabled || diameter == 0) return 1.0;
  4214. float d2 = diameter * 0.5;
  4215. return 1.0 / (M_PI * d2 * d2);
  4216. }
  4217. void calculate_volumetric_multipliers() {
  4218. for (int i=0; i<EXTRUDERS; i++)
  4219. volumetric_multiplier[i] = calculate_volumetric_multiplier(filament_size[i]);
  4220. }
  4221. #ifdef EXT_SOLENOID
  4222. void enable_solenoid(uint8_t num) {
  4223. switch(num) {
  4224. case 0:
  4225. OUT_WRITE(SOL0_PIN, HIGH);
  4226. break;
  4227. #if defined(SOL1_PIN) && SOL1_PIN > -1
  4228. case 1:
  4229. OUT_WRITE(SOL1_PIN, HIGH);
  4230. break;
  4231. #endif
  4232. #if defined(SOL2_PIN) && SOL2_PIN > -1
  4233. case 2:
  4234. OUT_WRITE(SOL2_PIN, HIGH);
  4235. break;
  4236. #endif
  4237. #if defined(SOL3_PIN) && SOL3_PIN > -1
  4238. case 3:
  4239. OUT_WRITE(SOL3_PIN, HIGH);
  4240. break;
  4241. #endif
  4242. default:
  4243. SERIAL_ECHO_START;
  4244. SERIAL_ECHOLNPGM(MSG_INVALID_SOLENOID);
  4245. break;
  4246. }
  4247. }
  4248. void enable_solenoid_on_active_extruder() { enable_solenoid(active_extruder); }
  4249. void disable_all_solenoids() {
  4250. OUT_WRITE(SOL0_PIN, LOW);
  4251. OUT_WRITE(SOL1_PIN, LOW);
  4252. OUT_WRITE(SOL2_PIN, LOW);
  4253. OUT_WRITE(SOL3_PIN, LOW);
  4254. }
  4255. #endif //EXT_SOLENOID