My Marlin configs for Fabrikator Mini and CTC i3 Pro B
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

Marlin_main.cpp 241KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718
  1. /**
  2. * Marlin 3D Printer Firmware
  3. * Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
  4. *
  5. * Based on Sprinter and grbl.
  6. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  7. *
  8. * This program is free software: you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation, either version 3 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  20. *
  21. */
  22. /**
  23. *
  24. * About Marlin
  25. *
  26. * This firmware is a mashup between Sprinter and grbl.
  27. * - https://github.com/kliment/Sprinter
  28. * - https://github.com/simen/grbl/tree
  29. *
  30. * It has preliminary support for Matthew Roberts advance algorithm
  31. * - http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  32. */
  33. #include "Marlin.h"
  34. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  35. #include "vector_3.h"
  36. #if ENABLED(AUTO_BED_LEVELING_GRID)
  37. #include "qr_solve.h"
  38. #endif
  39. #endif // AUTO_BED_LEVELING_FEATURE
  40. #if ENABLED(MESH_BED_LEVELING)
  41. #include "mesh_bed_leveling.h"
  42. #endif
  43. #include "ultralcd.h"
  44. #include "planner.h"
  45. #include "stepper.h"
  46. #include "temperature.h"
  47. #include "cardreader.h"
  48. #include "configuration_store.h"
  49. #include "language.h"
  50. #include "pins_arduino.h"
  51. #include "math.h"
  52. #include "buzzer.h"
  53. #if ENABLED(USE_WATCHDOG)
  54. #include "watchdog.h"
  55. #endif
  56. #if ENABLED(BLINKM)
  57. #include "blinkm.h"
  58. #include "Wire.h"
  59. #endif
  60. #if HAS_SERVOS
  61. #include "servo.h"
  62. #endif
  63. #if HAS_DIGIPOTSS
  64. #include <SPI.h>
  65. #endif
  66. #if ENABLED(DAC_STEPPER_CURRENT)
  67. #include "stepper_dac.h"
  68. #endif
  69. /**
  70. * Look here for descriptions of G-codes:
  71. * - http://linuxcnc.org/handbook/gcode/g-code.html
  72. * - http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  73. *
  74. * Help us document these G-codes online:
  75. * - https://github.com/MarlinFirmware/Marlin/wiki/G-Code-in-Marlin
  76. * - http://reprap.org/wiki/G-code
  77. *
  78. * -----------------
  79. * Implemented Codes
  80. * -----------------
  81. *
  82. * "G" Codes
  83. *
  84. * G0 -> G1
  85. * G1 - Coordinated Movement X Y Z E
  86. * G2 - CW ARC
  87. * G3 - CCW ARC
  88. * G4 - Dwell S<seconds> or P<milliseconds>
  89. * G10 - retract filament according to settings of M207
  90. * G11 - retract recover filament according to settings of M208
  91. * G28 - Home one or more axes
  92. * G29 - Detailed Z probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  93. * G30 - Single Z probe, probes bed at current XY location.
  94. * G31 - Dock sled (Z_PROBE_SLED only)
  95. * G32 - Undock sled (Z_PROBE_SLED only)
  96. * G90 - Use Absolute Coordinates
  97. * G91 - Use Relative Coordinates
  98. * G92 - Set current position to coordinates given
  99. *
  100. * "M" Codes
  101. *
  102. * M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
  103. * M1 - Same as M0
  104. * M17 - Enable/Power all stepper motors
  105. * M18 - Disable all stepper motors; same as M84
  106. * M20 - List SD card
  107. * M21 - Init SD card
  108. * M22 - Release SD card
  109. * M23 - Select SD file (M23 filename.g)
  110. * M24 - Start/resume SD print
  111. * M25 - Pause SD print
  112. * M26 - Set SD position in bytes (M26 S12345)
  113. * M27 - Report SD print status
  114. * M28 - Start SD write (M28 filename.g)
  115. * M29 - Stop SD write
  116. * M30 - Delete file from SD (M30 filename.g)
  117. * M31 - Output time since last M109 or SD card start to serial
  118. * M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  119. * syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  120. * Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
  121. * The '#' is necessary when calling from within sd files, as it stops buffer prereading
  122. * M33 - Get the longname version of a path
  123. * M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  124. * M48 - Measure Z_Probe repeatability. M48 [P # of points] [X position] [Y position] [V_erboseness #] [E_ngage Probe] [L # of legs of travel]
  125. * M80 - Turn on Power Supply
  126. * M81 - Turn off Power Supply
  127. * M82 - Set E codes absolute (default)
  128. * M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  129. * M84 - Disable steppers until next move,
  130. * or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  131. * M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  132. * M92 - Set axis_steps_per_unit - same syntax as G92
  133. * M104 - Set extruder target temp
  134. * M105 - Read current temp
  135. * M106 - Fan on
  136. * M107 - Fan off
  137. * M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  138. * Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  139. * IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  140. * M110 - Set the current line number
  141. * M111 - Set debug flags with S<mask>. See flag bits defined in Marlin.h.
  142. * M112 - Emergency stop
  143. * M113 - Get or set the timeout interval for Host Keepalive "busy" messages
  144. * M114 - Output current position to serial port
  145. * M115 - Capabilities string
  146. * M117 - Display a message on the controller screen
  147. * M119 - Output Endstop status to serial port
  148. * M120 - Enable endstop detection
  149. * M121 - Disable endstop detection
  150. * M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  151. * M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  152. * M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  153. * M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  154. * M140 - Set bed target temp
  155. * M145 - Set the heatup state H<hotend> B<bed> F<fan speed> for S<material> (0=PLA, 1=ABS)
  156. * M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  157. * M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  158. * Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  159. * M200 - set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).:D<millimeters>-
  160. * M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  161. * M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  162. * M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  163. * M204 - Set default acceleration: P for Printing moves, R for Retract only (no X, Y, Z) moves and T for Travel (non printing) moves (ex. M204 P800 T3000 R9000) in mm/sec^2
  164. * M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
  165. * M206 - Set additional homing offset
  166. * M207 - Set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
  167. * M208 - Set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  168. * M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  169. * M218 - Set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  170. * M220 - Set speed factor override percentage: S<factor in percent>
  171. * M221 - Set extrude factor override percentage: S<factor in percent>
  172. * M226 - Wait until the specified pin reaches the state required: P<pin number> S<pin state>
  173. * M240 - Trigger a camera to take a photograph
  174. * M250 - Set LCD contrast C<contrast value> (value 0..63)
  175. * M280 - Set servo position absolute. P: servo index, S: angle or microseconds
  176. * M300 - Play beep sound S<frequency Hz> P<duration ms>
  177. * M301 - Set PID parameters P I and D
  178. * M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  179. * M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  180. * M304 - Set bed PID parameters P I and D
  181. * M380 - Activate solenoid on active extruder
  182. * M381 - Disable all solenoids
  183. * M400 - Finish all moves
  184. * M401 - Lower Z probe if present
  185. * M402 - Raise Z probe if present
  186. * M404 - N<dia in mm> Enter the nominal filament width (3mm, 1.75mm ) or will display nominal filament width without parameters
  187. * M405 - Turn on Filament Sensor extrusion control. Optional D<delay in cm> to set delay in centimeters between sensor and extruder
  188. * M406 - Turn off Filament Sensor extrusion control
  189. * M407 - Display measured filament diameter
  190. * M410 - Quickstop. Abort all the planned moves
  191. * M420 - Enable/Disable Mesh Leveling (with current values) S1=enable S0=disable
  192. * M421 - Set a single Z coordinate in the Mesh Leveling grid. X<mm> Y<mm> Z<mm>
  193. * M428 - Set the home_offset logically based on the current_position
  194. * M500 - Store parameters in EEPROM
  195. * M501 - Read parameters from EEPROM (if you need reset them after you changed them temporarily).
  196. * M502 - Revert to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  197. * M503 - Print the current settings (from memory not from EEPROM). Use S0 to leave off headings.
  198. * M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  199. * M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  200. * M665 - Set delta configurations: L<diagonal rod> R<delta radius> S<segments/s>
  201. * M666 - Set delta endstop adjustment
  202. * M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  203. * M907 - Set digital trimpot motor current using axis codes.
  204. * M908 - Control digital trimpot directly.
  205. * M909 - DAC_STEPPER_CURRENT: Print digipot/DAC current value
  206. * M910 - DAC_STEPPER_CURRENT: Commit digipot/DAC value to external EEPROM via I2C
  207. * M350 - Set microstepping mode.
  208. * M351 - Toggle MS1 MS2 pins directly.
  209. *
  210. * ************ SCARA Specific - This can change to suit future G-code regulations
  211. * M360 - SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  212. * M361 - SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  213. * M362 - SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  214. * M363 - SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  215. * M364 - SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
  216. * M365 - SCARA calibration: Scaling factor, X, Y, Z axis
  217. * ************* SCARA End ***************
  218. *
  219. * ************ Custom codes - This can change to suit future G-code regulations
  220. * M100 - Watch Free Memory (For Debugging Only)
  221. * M851 - Set Z probe's Z offset (mm above extruder -- The value will always be negative)
  222. * M928 - Start SD logging (M928 filename.g) - ended by M29
  223. * M999 - Restart after being stopped by error
  224. *
  225. * "T" Codes
  226. *
  227. * T0-T3 - Select a tool by index (usually an extruder) [ F<mm/min> ]
  228. *
  229. */
  230. #if ENABLED(M100_FREE_MEMORY_WATCHER)
  231. void gcode_M100();
  232. #endif
  233. #if ENABLED(SDSUPPORT)
  234. CardReader card;
  235. #endif
  236. bool Running = true;
  237. uint8_t marlin_debug_flags = DEBUG_NONE;
  238. static float feedrate = 1500.0, saved_feedrate;
  239. float current_position[NUM_AXIS] = { 0.0 };
  240. static float destination[NUM_AXIS] = { 0.0 };
  241. bool axis_known_position[3] = { false };
  242. bool axis_homed[3] = { false };
  243. static long gcode_N, gcode_LastN, Stopped_gcode_LastN = 0;
  244. static char* current_command, *current_command_args;
  245. static int cmd_queue_index_r = 0;
  246. static int cmd_queue_index_w = 0;
  247. static int commands_in_queue = 0;
  248. static char command_queue[BUFSIZE][MAX_CMD_SIZE];
  249. const float homing_feedrate[] = HOMING_FEEDRATE;
  250. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  251. int feedrate_multiplier = 100; //100->1 200->2
  252. int saved_feedrate_multiplier;
  253. int extruder_multiplier[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(100);
  254. bool volumetric_enabled = false;
  255. float filament_size[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(DEFAULT_NOMINAL_FILAMENT_DIA);
  256. float volumetric_multiplier[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(1.0);
  257. float home_offset[3] = { 0 };
  258. float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  259. float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  260. #if FAN_COUNT > 0
  261. int fanSpeeds[FAN_COUNT] = { 0 };
  262. #endif
  263. uint8_t active_extruder = 0;
  264. bool cancel_heatup = false;
  265. const char errormagic[] PROGMEM = "Error:";
  266. const char echomagic[] PROGMEM = "echo:";
  267. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  268. static bool relative_mode = false; //Determines Absolute or Relative Coordinates
  269. static int serial_count = 0;
  270. static char* seen_pointer; ///< A pointer to find chars in the command string (X, Y, Z, E, etc.)
  271. const char* queued_commands_P = NULL; /* pointer to the current line in the active sequence of commands, or NULL when none */
  272. const int sensitive_pins[] = SENSITIVE_PINS; ///< Sensitive pin list for M42
  273. // Inactivity shutdown
  274. millis_t previous_cmd_ms = 0;
  275. static millis_t max_inactive_time = 0;
  276. static millis_t stepper_inactive_time = (DEFAULT_STEPPER_DEACTIVE_TIME) * 1000L;
  277. Stopwatch print_job_timer = Stopwatch();
  278. static uint8_t target_extruder;
  279. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  280. int xy_travel_speed = XY_TRAVEL_SPEED;
  281. float zprobe_zoffset = Z_PROBE_OFFSET_FROM_EXTRUDER;
  282. #endif
  283. #if ENABLED(Z_DUAL_ENDSTOPS) && DISABLED(DELTA)
  284. float z_endstop_adj = 0;
  285. #endif
  286. // Extruder offsets
  287. #if EXTRUDERS > 1
  288. #ifndef EXTRUDER_OFFSET_X
  289. #define EXTRUDER_OFFSET_X { 0 }
  290. #endif
  291. #ifndef EXTRUDER_OFFSET_Y
  292. #define EXTRUDER_OFFSET_Y { 0 }
  293. #endif
  294. float extruder_offset[][EXTRUDERS] = {
  295. EXTRUDER_OFFSET_X,
  296. EXTRUDER_OFFSET_Y
  297. #if ENABLED(DUAL_X_CARRIAGE)
  298. , { 0 } // supports offsets in XYZ plane
  299. #endif
  300. };
  301. #endif
  302. #if HAS_SERVO_ENDSTOPS
  303. const int servo_endstop_id[] = SERVO_ENDSTOP_IDS;
  304. const int servo_endstop_angle[][2] = SERVO_ENDSTOP_ANGLES;
  305. #endif
  306. #if ENABLED(BARICUDA)
  307. int ValvePressure = 0;
  308. int EtoPPressure = 0;
  309. #endif
  310. #if ENABLED(FWRETRACT)
  311. bool autoretract_enabled = false;
  312. bool retracted[EXTRUDERS] = { false };
  313. bool retracted_swap[EXTRUDERS] = { false };
  314. float retract_length = RETRACT_LENGTH;
  315. float retract_length_swap = RETRACT_LENGTH_SWAP;
  316. float retract_feedrate = RETRACT_FEEDRATE;
  317. float retract_zlift = RETRACT_ZLIFT;
  318. float retract_recover_length = RETRACT_RECOVER_LENGTH;
  319. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  320. float retract_recover_feedrate = RETRACT_RECOVER_FEEDRATE;
  321. #endif // FWRETRACT
  322. #if ENABLED(ULTIPANEL) && HAS_POWER_SWITCH
  323. bool powersupply =
  324. #if ENABLED(PS_DEFAULT_OFF)
  325. false
  326. #else
  327. true
  328. #endif
  329. ;
  330. #endif
  331. #if ENABLED(DELTA)
  332. #define TOWER_1 X_AXIS
  333. #define TOWER_2 Y_AXIS
  334. #define TOWER_3 Z_AXIS
  335. float delta[3] = { 0 };
  336. #define SIN_60 0.8660254037844386
  337. #define COS_60 0.5
  338. float endstop_adj[3] = { 0 };
  339. // these are the default values, can be overriden with M665
  340. float delta_radius = DELTA_RADIUS;
  341. float delta_tower1_x = -SIN_60 * (delta_radius + DELTA_RADIUS_TRIM_TOWER_1); // front left tower
  342. float delta_tower1_y = -COS_60 * (delta_radius + DELTA_RADIUS_TRIM_TOWER_1);
  343. float delta_tower2_x = SIN_60 * (delta_radius + DELTA_RADIUS_TRIM_TOWER_2); // front right tower
  344. float delta_tower2_y = -COS_60 * (delta_radius + DELTA_RADIUS_TRIM_TOWER_2);
  345. float delta_tower3_x = 0; // back middle tower
  346. float delta_tower3_y = (delta_radius + DELTA_RADIUS_TRIM_TOWER_3);
  347. float delta_diagonal_rod = DELTA_DIAGONAL_ROD;
  348. float delta_diagonal_rod_trim_tower_1 = DELTA_DIAGONAL_ROD_TRIM_TOWER_1;
  349. float delta_diagonal_rod_trim_tower_2 = DELTA_DIAGONAL_ROD_TRIM_TOWER_2;
  350. float delta_diagonal_rod_trim_tower_3 = DELTA_DIAGONAL_ROD_TRIM_TOWER_3;
  351. float delta_diagonal_rod_2_tower_1 = sq(delta_diagonal_rod + delta_diagonal_rod_trim_tower_1);
  352. float delta_diagonal_rod_2_tower_2 = sq(delta_diagonal_rod + delta_diagonal_rod_trim_tower_2);
  353. float delta_diagonal_rod_2_tower_3 = sq(delta_diagonal_rod + delta_diagonal_rod_trim_tower_3);
  354. //float delta_diagonal_rod_2 = sq(delta_diagonal_rod);
  355. float delta_segments_per_second = DELTA_SEGMENTS_PER_SECOND;
  356. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  357. int delta_grid_spacing[2] = { 0, 0 };
  358. float bed_level[AUTO_BED_LEVELING_GRID_POINTS][AUTO_BED_LEVELING_GRID_POINTS];
  359. #endif
  360. #else
  361. static bool home_all_axis = true;
  362. #endif
  363. #if ENABLED(SCARA)
  364. float delta_segments_per_second = SCARA_SEGMENTS_PER_SECOND;
  365. static float delta[3] = { 0 };
  366. float axis_scaling[3] = { 1, 1, 1 }; // Build size scaling, default to 1
  367. #endif
  368. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  369. //Variables for Filament Sensor input
  370. float filament_width_nominal = DEFAULT_NOMINAL_FILAMENT_DIA; //Set nominal filament width, can be changed with M404
  371. bool filament_sensor = false; //M405 turns on filament_sensor control, M406 turns it off
  372. float filament_width_meas = DEFAULT_MEASURED_FILAMENT_DIA; //Stores the measured filament diameter
  373. int8_t measurement_delay[MAX_MEASUREMENT_DELAY + 1]; //ring buffer to delay measurement store extruder factor after subtracting 100
  374. int filwidth_delay_index1 = 0; //index into ring buffer
  375. int filwidth_delay_index2 = -1; //index into ring buffer - set to -1 on startup to indicate ring buffer needs to be initialized
  376. int meas_delay_cm = MEASUREMENT_DELAY_CM; //distance delay setting
  377. #endif
  378. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  379. static bool filrunoutEnqueued = false;
  380. #endif
  381. static bool send_ok[BUFSIZE];
  382. #if HAS_SERVOS
  383. Servo servo[NUM_SERVOS];
  384. #endif
  385. #ifdef CHDK
  386. unsigned long chdkHigh = 0;
  387. boolean chdkActive = false;
  388. #endif
  389. #if ENABLED(PID_ADD_EXTRUSION_RATE)
  390. int lpq_len = 20;
  391. #endif
  392. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  393. // States for managing Marlin and host communication
  394. // Marlin sends messages if blocked or busy
  395. enum MarlinBusyState {
  396. NOT_BUSY, // Not in a handler
  397. IN_HANDLER, // Processing a GCode
  398. IN_PROCESS, // Known to be blocking command input (as in G29)
  399. PAUSED_FOR_USER, // Blocking pending any input
  400. PAUSED_FOR_INPUT // Blocking pending text input (concept)
  401. };
  402. static MarlinBusyState busy_state = NOT_BUSY;
  403. static millis_t next_busy_signal_ms = -1;
  404. uint8_t host_keepalive_interval = DEFAULT_KEEPALIVE_INTERVAL;
  405. #define KEEPALIVE_STATE(n) do{ busy_state = n; }while(0)
  406. #else
  407. #define host_keepalive() ;
  408. #define KEEPALIVE_STATE(n) ;
  409. #endif // HOST_KEEPALIVE_FEATURE
  410. /**
  411. * ***************************************************************************
  412. * ******************************** FUNCTIONS ********************************
  413. * ***************************************************************************
  414. */
  415. void get_available_commands();
  416. void process_next_command();
  417. void plan_arc(float target[NUM_AXIS], float* offset, uint8_t clockwise);
  418. bool setTargetedHotend(int code);
  419. void serial_echopair_P(const char* s_P, int v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  420. void serial_echopair_P(const char* s_P, long v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  421. void serial_echopair_P(const char* s_P, float v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  422. void serial_echopair_P(const char* s_P, double v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  423. void serial_echopair_P(const char* s_P, unsigned long v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  424. void gcode_M114();
  425. #if ENABLED(PREVENT_DANGEROUS_EXTRUDE)
  426. float extrude_min_temp = EXTRUDE_MINTEMP;
  427. #endif
  428. #if ENABLED(HAS_Z_MIN_PROBE)
  429. extern volatile bool z_probe_is_active;
  430. #endif
  431. #if ENABLED(SDSUPPORT)
  432. #include "SdFatUtil.h"
  433. int freeMemory() { return SdFatUtil::FreeRam(); }
  434. #else
  435. extern "C" {
  436. extern unsigned int __bss_end;
  437. extern unsigned int __heap_start;
  438. extern void* __brkval;
  439. int freeMemory() {
  440. int free_memory;
  441. if ((int)__brkval == 0)
  442. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  443. else
  444. free_memory = ((int)&free_memory) - ((int)__brkval);
  445. return free_memory;
  446. }
  447. }
  448. #endif //!SDSUPPORT
  449. /**
  450. * Inject the next "immediate" command, when possible.
  451. * Return true if any immediate commands remain to inject.
  452. */
  453. static bool drain_queued_commands_P() {
  454. if (queued_commands_P != NULL) {
  455. size_t i = 0;
  456. char c, cmd[30];
  457. strncpy_P(cmd, queued_commands_P, sizeof(cmd) - 1);
  458. cmd[sizeof(cmd) - 1] = '\0';
  459. while ((c = cmd[i]) && c != '\n') i++; // find the end of this gcode command
  460. cmd[i] = '\0';
  461. if (enqueue_and_echo_command(cmd)) { // success?
  462. if (c) // newline char?
  463. queued_commands_P += i + 1; // advance to the next command
  464. else
  465. queued_commands_P = NULL; // nul char? no more commands
  466. }
  467. }
  468. return (queued_commands_P != NULL); // return whether any more remain
  469. }
  470. /**
  471. * Record one or many commands to run from program memory.
  472. * Aborts the current queue, if any.
  473. * Note: drain_queued_commands_P() must be called repeatedly to drain the commands afterwards
  474. */
  475. void enqueue_and_echo_commands_P(const char* pgcode) {
  476. queued_commands_P = pgcode;
  477. drain_queued_commands_P(); // first command executed asap (when possible)
  478. }
  479. /**
  480. * Once a new command is in the ring buffer, call this to commit it
  481. */
  482. inline void _commit_command(bool say_ok) {
  483. send_ok[cmd_queue_index_w] = say_ok;
  484. cmd_queue_index_w = (cmd_queue_index_w + 1) % BUFSIZE;
  485. commands_in_queue++;
  486. }
  487. /**
  488. * Copy a command directly into the main command buffer, from RAM.
  489. * Returns true if successfully adds the command
  490. */
  491. inline bool _enqueuecommand(const char* cmd, bool say_ok=false) {
  492. if (*cmd == ';' || commands_in_queue >= BUFSIZE) return false;
  493. strcpy(command_queue[cmd_queue_index_w], cmd);
  494. _commit_command(say_ok);
  495. return true;
  496. }
  497. void enqueue_and_echo_command_now(const char* cmd) {
  498. while (!enqueue_and_echo_command(cmd)) idle();
  499. }
  500. /**
  501. * Enqueue with Serial Echo
  502. */
  503. bool enqueue_and_echo_command(const char* cmd, bool say_ok/*=false*/) {
  504. if (_enqueuecommand(cmd, say_ok)) {
  505. SERIAL_ECHO_START;
  506. SERIAL_ECHOPGM(MSG_Enqueueing);
  507. SERIAL_ECHO(cmd);
  508. SERIAL_ECHOLNPGM("\"");
  509. return true;
  510. }
  511. return false;
  512. }
  513. void setup_killpin() {
  514. #if HAS_KILL
  515. SET_INPUT(KILL_PIN);
  516. WRITE(KILL_PIN, HIGH);
  517. #endif
  518. }
  519. void setup_filrunoutpin() {
  520. #if HAS_FILRUNOUT
  521. pinMode(FILRUNOUT_PIN, INPUT);
  522. #if ENABLED(ENDSTOPPULLUP_FIL_RUNOUT)
  523. WRITE(FILRUNOUT_PIN, HIGH);
  524. #endif
  525. #endif
  526. }
  527. // Set home pin
  528. void setup_homepin(void) {
  529. #if HAS_HOME
  530. SET_INPUT(HOME_PIN);
  531. WRITE(HOME_PIN, HIGH);
  532. #endif
  533. }
  534. void setup_photpin() {
  535. #if HAS_PHOTOGRAPH
  536. OUT_WRITE(PHOTOGRAPH_PIN, LOW);
  537. #endif
  538. }
  539. void setup_powerhold() {
  540. #if HAS_SUICIDE
  541. OUT_WRITE(SUICIDE_PIN, HIGH);
  542. #endif
  543. #if HAS_POWER_SWITCH
  544. #if ENABLED(PS_DEFAULT_OFF)
  545. OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  546. #else
  547. OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE);
  548. #endif
  549. #endif
  550. }
  551. void suicide() {
  552. #if HAS_SUICIDE
  553. OUT_WRITE(SUICIDE_PIN, LOW);
  554. #endif
  555. }
  556. void servo_init() {
  557. #if NUM_SERVOS >= 1 && HAS_SERVO_0
  558. servo[0].attach(SERVO0_PIN);
  559. servo[0].detach(); // Just set up the pin. We don't have a position yet. Don't move to a random position.
  560. #endif
  561. #if NUM_SERVOS >= 2 && HAS_SERVO_1
  562. servo[1].attach(SERVO1_PIN);
  563. servo[1].detach();
  564. #endif
  565. #if NUM_SERVOS >= 3 && HAS_SERVO_2
  566. servo[2].attach(SERVO2_PIN);
  567. servo[2].detach();
  568. #endif
  569. #if NUM_SERVOS >= 4 && HAS_SERVO_3
  570. servo[3].attach(SERVO3_PIN);
  571. servo[3].detach();
  572. #endif
  573. #if HAS_SERVO_ENDSTOPS
  574. z_probe_is_active = false;
  575. /**
  576. * Set position of all defined Servo Endstops
  577. *
  578. * ** UNSAFE! - NEEDS UPDATE! **
  579. *
  580. * The servo might be deployed and positioned too low to stow
  581. * when starting up the machine or rebooting the board.
  582. * There's no way to know where the nozzle is positioned until
  583. * homing has been done - no homing with z-probe without init!
  584. *
  585. */
  586. for (int i = 0; i < 3; i++)
  587. if (servo_endstop_id[i] >= 0)
  588. servo[servo_endstop_id[i]].move(servo_endstop_angle[i][1]);
  589. #endif // HAS_SERVO_ENDSTOPS
  590. }
  591. /**
  592. * Stepper Reset (RigidBoard, et.al.)
  593. */
  594. #if HAS_STEPPER_RESET
  595. void disableStepperDrivers() {
  596. pinMode(STEPPER_RESET_PIN, OUTPUT);
  597. digitalWrite(STEPPER_RESET_PIN, LOW); // drive it down to hold in reset motor driver chips
  598. }
  599. void enableStepperDrivers() { pinMode(STEPPER_RESET_PIN, INPUT); } // set to input, which allows it to be pulled high by pullups
  600. #endif
  601. /**
  602. * Marlin entry-point: Set up before the program loop
  603. * - Set up the kill pin, filament runout, power hold
  604. * - Start the serial port
  605. * - Print startup messages and diagnostics
  606. * - Get EEPROM or default settings
  607. * - Initialize managers for:
  608. * • temperature
  609. * • planner
  610. * • watchdog
  611. * • stepper
  612. * • photo pin
  613. * • servos
  614. * • LCD controller
  615. * • Digipot I2C
  616. * • Z probe sled
  617. * • status LEDs
  618. */
  619. void setup() {
  620. #ifdef DISABLE_JTAG
  621. // Disable JTAG on AT90USB chips to free up pins for IO
  622. MCUCR = 0x80;
  623. MCUCR = 0x80;
  624. #endif
  625. setup_killpin();
  626. setup_filrunoutpin();
  627. setup_powerhold();
  628. #if HAS_STEPPER_RESET
  629. disableStepperDrivers();
  630. #endif
  631. MYSERIAL.begin(BAUDRATE);
  632. SERIAL_PROTOCOLLNPGM("start");
  633. SERIAL_ECHO_START;
  634. // Check startup - does nothing if bootloader sets MCUSR to 0
  635. byte mcu = MCUSR;
  636. if (mcu & 1) SERIAL_ECHOLNPGM(MSG_POWERUP);
  637. if (mcu & 2) SERIAL_ECHOLNPGM(MSG_EXTERNAL_RESET);
  638. if (mcu & 4) SERIAL_ECHOLNPGM(MSG_BROWNOUT_RESET);
  639. if (mcu & 8) SERIAL_ECHOLNPGM(MSG_WATCHDOG_RESET);
  640. if (mcu & 32) SERIAL_ECHOLNPGM(MSG_SOFTWARE_RESET);
  641. MCUSR = 0;
  642. SERIAL_ECHOPGM(MSG_MARLIN);
  643. SERIAL_ECHOLNPGM(" " SHORT_BUILD_VERSION);
  644. #ifdef STRING_DISTRIBUTION_DATE
  645. #ifdef STRING_CONFIG_H_AUTHOR
  646. SERIAL_ECHO_START;
  647. SERIAL_ECHOPGM(MSG_CONFIGURATION_VER);
  648. SERIAL_ECHOPGM(STRING_DISTRIBUTION_DATE);
  649. SERIAL_ECHOPGM(MSG_AUTHOR);
  650. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  651. SERIAL_ECHOPGM("Compiled: ");
  652. SERIAL_ECHOLNPGM(__DATE__);
  653. #endif // STRING_CONFIG_H_AUTHOR
  654. #endif // STRING_DISTRIBUTION_DATE
  655. SERIAL_ECHO_START;
  656. SERIAL_ECHOPGM(MSG_FREE_MEMORY);
  657. SERIAL_ECHO(freeMemory());
  658. SERIAL_ECHOPGM(MSG_PLANNER_BUFFER_BYTES);
  659. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  660. // Send "ok" after commands by default
  661. for (int8_t i = 0; i < BUFSIZE; i++) send_ok[i] = true;
  662. // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  663. Config_RetrieveSettings();
  664. lcd_init();
  665. tp_init(); // Initialize temperature loop
  666. plan_init(); // Initialize planner;
  667. #if ENABLED(USE_WATCHDOG)
  668. watchdog_init();
  669. #endif
  670. st_init(); // Initialize stepper, this enables interrupts!
  671. setup_photpin();
  672. servo_init();
  673. #if HAS_CONTROLLERFAN
  674. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  675. #endif
  676. #if HAS_STEPPER_RESET
  677. enableStepperDrivers();
  678. #endif
  679. #if ENABLED(DIGIPOT_I2C)
  680. digipot_i2c_init();
  681. #endif
  682. #if ENABLED(Z_PROBE_SLED)
  683. pinMode(SLED_PIN, OUTPUT);
  684. digitalWrite(SLED_PIN, LOW); // turn it off
  685. #endif // Z_PROBE_SLED
  686. setup_homepin();
  687. #ifdef STAT_LED_RED
  688. pinMode(STAT_LED_RED, OUTPUT);
  689. digitalWrite(STAT_LED_RED, LOW); // turn it off
  690. #endif
  691. #ifdef STAT_LED_BLUE
  692. pinMode(STAT_LED_BLUE, OUTPUT);
  693. digitalWrite(STAT_LED_BLUE, LOW); // turn it off
  694. #endif
  695. }
  696. /**
  697. * The main Marlin program loop
  698. *
  699. * - Save or log commands to SD
  700. * - Process available commands (if not saving)
  701. * - Call heater manager
  702. * - Call inactivity manager
  703. * - Call endstop manager
  704. * - Call LCD update
  705. */
  706. void loop() {
  707. if (commands_in_queue < BUFSIZE) get_available_commands();
  708. #if ENABLED(SDSUPPORT)
  709. card.checkautostart(false);
  710. #endif
  711. if (commands_in_queue) {
  712. #if ENABLED(SDSUPPORT)
  713. if (card.saving) {
  714. char* command = command_queue[cmd_queue_index_r];
  715. if (strstr_P(command, PSTR("M29"))) {
  716. // M29 closes the file
  717. card.closefile();
  718. SERIAL_PROTOCOLLNPGM(MSG_FILE_SAVED);
  719. ok_to_send();
  720. }
  721. else {
  722. // Write the string from the read buffer to SD
  723. card.write_command(command);
  724. if (card.logging)
  725. process_next_command(); // The card is saving because it's logging
  726. else
  727. ok_to_send();
  728. }
  729. }
  730. else
  731. process_next_command();
  732. #else
  733. process_next_command();
  734. #endif // SDSUPPORT
  735. commands_in_queue--;
  736. cmd_queue_index_r = (cmd_queue_index_r + 1) % BUFSIZE;
  737. }
  738. checkHitEndstops();
  739. idle();
  740. }
  741. void gcode_line_error(const char* err, bool doFlush = true) {
  742. SERIAL_ERROR_START;
  743. serialprintPGM(err);
  744. SERIAL_ERRORLN(gcode_LastN);
  745. //Serial.println(gcode_N);
  746. if (doFlush) FlushSerialRequestResend();
  747. serial_count = 0;
  748. }
  749. inline void get_serial_commands() {
  750. static char serial_line_buffer[MAX_CMD_SIZE];
  751. static boolean serial_comment_mode = false;
  752. // If the command buffer is empty for too long,
  753. // send "wait" to indicate Marlin is still waiting.
  754. #if defined(NO_TIMEOUTS) && NO_TIMEOUTS > 0
  755. static millis_t last_command_time = 0;
  756. millis_t ms = millis();
  757. if (commands_in_queue == 0 && !MYSERIAL.available() && ms > last_command_time + NO_TIMEOUTS) {
  758. SERIAL_ECHOLNPGM(MSG_WAIT);
  759. last_command_time = ms;
  760. }
  761. #endif
  762. /**
  763. * Loop while serial characters are incoming and the queue is not full
  764. */
  765. while (commands_in_queue < BUFSIZE && MYSERIAL.available() > 0) {
  766. char serial_char = MYSERIAL.read();
  767. /**
  768. * If the character ends the line
  769. */
  770. if (serial_char == '\n' || serial_char == '\r') {
  771. serial_comment_mode = false; // end of line == end of comment
  772. if (!serial_count) continue; // skip empty lines
  773. serial_line_buffer[serial_count] = 0; // terminate string
  774. serial_count = 0; //reset buffer
  775. char* command = serial_line_buffer;
  776. while (*command == ' ') command++; // skip any leading spaces
  777. char* npos = (*command == 'N') ? command : NULL; // Require the N parameter to start the line
  778. char* apos = strchr(command, '*');
  779. if (npos) {
  780. boolean M110 = strstr_P(command, PSTR("M110")) != NULL;
  781. if (M110) {
  782. char* n2pos = strchr(command + 4, 'N');
  783. if (n2pos) npos = n2pos;
  784. }
  785. gcode_N = strtol(npos + 1, NULL, 10);
  786. if (gcode_N != gcode_LastN + 1 && !M110) {
  787. gcode_line_error(PSTR(MSG_ERR_LINE_NO));
  788. return;
  789. }
  790. if (apos) {
  791. byte checksum = 0, count = 0;
  792. while (command[count] != '*') checksum ^= command[count++];
  793. if (strtol(apos + 1, NULL, 10) != checksum) {
  794. gcode_line_error(PSTR(MSG_ERR_CHECKSUM_MISMATCH));
  795. return;
  796. }
  797. // if no errors, continue parsing
  798. }
  799. else {
  800. gcode_line_error(PSTR(MSG_ERR_NO_CHECKSUM));
  801. return;
  802. }
  803. gcode_LastN = gcode_N;
  804. // if no errors, continue parsing
  805. }
  806. else if (apos) { // No '*' without 'N'
  807. gcode_line_error(PSTR(MSG_ERR_NO_LINENUMBER_WITH_CHECKSUM), false);
  808. return;
  809. }
  810. // Movement commands alert when stopped
  811. if (IsStopped()) {
  812. char* gpos = strchr(command, 'G');
  813. if (gpos) {
  814. int codenum = strtol(gpos + 1, NULL, 10);
  815. switch (codenum) {
  816. case 0:
  817. case 1:
  818. case 2:
  819. case 3:
  820. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  821. LCD_MESSAGEPGM(MSG_STOPPED);
  822. break;
  823. }
  824. }
  825. }
  826. // If command was e-stop process now
  827. if (strcmp(command, "M112") == 0) kill(PSTR(MSG_KILLED));
  828. #if defined(NO_TIMEOUTS) && NO_TIMEOUTS > 0
  829. last_command_time = ms;
  830. #endif
  831. // Add the command to the queue
  832. _enqueuecommand(serial_line_buffer, true);
  833. }
  834. else if (serial_count >= MAX_CMD_SIZE - 1) {
  835. // Keep fetching, but ignore normal characters beyond the max length
  836. // The command will be injected when EOL is reached
  837. }
  838. else if (serial_char == '\\') { // Handle escapes
  839. if (MYSERIAL.available() > 0) {
  840. // if we have one more character, copy it over
  841. serial_char = MYSERIAL.read();
  842. if (!serial_comment_mode) serial_line_buffer[serial_count++] = serial_char;
  843. }
  844. // otherwise do nothing
  845. }
  846. else { // it's not a newline, carriage return or escape char
  847. if (serial_char == ';') serial_comment_mode = true;
  848. if (!serial_comment_mode) serial_line_buffer[serial_count++] = serial_char;
  849. }
  850. } // queue has space, serial has data
  851. }
  852. #if ENABLED(SDSUPPORT)
  853. inline void get_sdcard_commands() {
  854. static bool stop_buffering = false,
  855. sd_comment_mode = false;
  856. if (!card.sdprinting) return;
  857. /**
  858. * '#' stops reading from SD to the buffer prematurely, so procedural
  859. * macro calls are possible. If it occurs, stop_buffering is triggered
  860. * and the buffer is run dry; this character _can_ occur in serial com
  861. * due to checksums, however, no checksums are used in SD printing.
  862. */
  863. if (commands_in_queue == 0) stop_buffering = false;
  864. uint16_t sd_count = 0;
  865. bool card_eof = card.eof();
  866. while (commands_in_queue < BUFSIZE && !card_eof && !stop_buffering) {
  867. int16_t n = card.get();
  868. char sd_char = (char)n;
  869. card_eof = card.eof();
  870. if (card_eof || n == -1
  871. || sd_char == '\n' || sd_char == '\r'
  872. || ((sd_char == '#' || sd_char == ':') && !sd_comment_mode)
  873. ) {
  874. if (card_eof) {
  875. SERIAL_PROTOCOLLNPGM(MSG_FILE_PRINTED);
  876. print_job_timer.stop();
  877. char time[30];
  878. millis_t t = print_job_timer.duration();
  879. int hours = t / 60 / 60, minutes = (t / 60) % 60;
  880. sprintf_P(time, PSTR("%i " MSG_END_HOUR " %i " MSG_END_MINUTE), hours, minutes);
  881. SERIAL_ECHO_START;
  882. SERIAL_ECHOLN(time);
  883. lcd_setstatus(time, true);
  884. card.printingHasFinished();
  885. card.checkautostart(true);
  886. }
  887. if (sd_char == '#') stop_buffering = true;
  888. sd_comment_mode = false; //for new command
  889. if (!sd_count) continue; //skip empty lines
  890. command_queue[cmd_queue_index_w][sd_count] = '\0'; //terminate string
  891. sd_count = 0; //clear buffer
  892. _commit_command(false);
  893. }
  894. else if (sd_count >= MAX_CMD_SIZE - 1) {
  895. /**
  896. * Keep fetching, but ignore normal characters beyond the max length
  897. * The command will be injected when EOL is reached
  898. */
  899. }
  900. else {
  901. if (sd_char == ';') sd_comment_mode = true;
  902. if (!sd_comment_mode) command_queue[cmd_queue_index_w][sd_count++] = sd_char;
  903. }
  904. }
  905. }
  906. #endif // SDSUPPORT
  907. /**
  908. * Add to the circular command queue the next command from:
  909. * - The command-injection queue (queued_commands_P)
  910. * - The active serial input (usually USB)
  911. * - The SD card file being actively printed
  912. */
  913. void get_available_commands() {
  914. // if any immediate commands remain, don't get other commands yet
  915. if (drain_queued_commands_P()) return;
  916. get_serial_commands();
  917. #if ENABLED(SDSUPPORT)
  918. get_sdcard_commands();
  919. #endif
  920. }
  921. bool code_has_value() {
  922. int i = 1;
  923. char c = seen_pointer[i];
  924. while (c == ' ') c = seen_pointer[++i];
  925. if (c == '-' || c == '+') c = seen_pointer[++i];
  926. if (c == '.') c = seen_pointer[++i];
  927. return NUMERIC(c);
  928. }
  929. float code_value() {
  930. float ret;
  931. char* e = strchr(seen_pointer, 'E');
  932. if (e) {
  933. *e = 0;
  934. ret = strtod(seen_pointer + 1, NULL);
  935. *e = 'E';
  936. }
  937. else
  938. ret = strtod(seen_pointer + 1, NULL);
  939. return ret;
  940. }
  941. long code_value_long() { return strtol(seen_pointer + 1, NULL, 10); }
  942. int16_t code_value_short() { return (int16_t)strtol(seen_pointer + 1, NULL, 10); }
  943. bool code_seen(char code) {
  944. seen_pointer = strchr(current_command_args, code);
  945. return (seen_pointer != NULL); // Return TRUE if the code-letter was found
  946. }
  947. #define DEFINE_PGM_READ_ANY(type, reader) \
  948. static inline type pgm_read_any(const type *p) \
  949. { return pgm_read_##reader##_near(p); }
  950. DEFINE_PGM_READ_ANY(float, float);
  951. DEFINE_PGM_READ_ANY(signed char, byte);
  952. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  953. static const PROGMEM type array##_P[3] = \
  954. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  955. static inline type array(int axis) \
  956. { return pgm_read_any(&array##_P[axis]); }
  957. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  958. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  959. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  960. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  961. XYZ_CONSTS_FROM_CONFIG(float, home_bump_mm, HOME_BUMP_MM);
  962. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  963. #if ENABLED(DUAL_X_CARRIAGE)
  964. #define DXC_FULL_CONTROL_MODE 0
  965. #define DXC_AUTO_PARK_MODE 1
  966. #define DXC_DUPLICATION_MODE 2
  967. static int dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  968. static float x_home_pos(int extruder) {
  969. if (extruder == 0)
  970. return base_home_pos(X_AXIS) + home_offset[X_AXIS];
  971. else
  972. /**
  973. * In dual carriage mode the extruder offset provides an override of the
  974. * second X-carriage offset when homed - otherwise X2_HOME_POS is used.
  975. * This allow soft recalibration of the second extruder offset position
  976. * without firmware reflash (through the M218 command).
  977. */
  978. return (extruder_offset[X_AXIS][1] > 0) ? extruder_offset[X_AXIS][1] : X2_HOME_POS;
  979. }
  980. static int x_home_dir(int extruder) {
  981. return (extruder == 0) ? X_HOME_DIR : X2_HOME_DIR;
  982. }
  983. static float inactive_extruder_x_pos = X2_MAX_POS; // used in mode 0 & 1
  984. static bool active_extruder_parked = false; // used in mode 1 & 2
  985. static float raised_parked_position[NUM_AXIS]; // used in mode 1
  986. static millis_t delayed_move_time = 0; // used in mode 1
  987. static float duplicate_extruder_x_offset = DEFAULT_DUPLICATION_X_OFFSET; // used in mode 2
  988. static float duplicate_extruder_temp_offset = 0; // used in mode 2
  989. bool extruder_duplication_enabled = false; // used in mode 2
  990. #endif //DUAL_X_CARRIAGE
  991. #if ENABLED(DEBUG_LEVELING_FEATURE)
  992. void print_xyz(const char* prefix, const float x, const float y, const float z) {
  993. SERIAL_ECHO(prefix);
  994. SERIAL_ECHOPAIR(": (", x);
  995. SERIAL_ECHOPAIR(", ", y);
  996. SERIAL_ECHOPAIR(", ", z);
  997. SERIAL_ECHOLNPGM(")");
  998. }
  999. void print_xyz(const char* prefix, const float xyz[]) {
  1000. print_xyz(prefix, xyz[X_AXIS], xyz[Y_AXIS], xyz[Z_AXIS]);
  1001. }
  1002. #define DEBUG_POS(PREFIX,VAR) do{ SERIAL_ECHOPGM(PREFIX); print_xyz(" > " STRINGIFY(VAR), VAR); }while(0)
  1003. #endif
  1004. static void set_axis_is_at_home(AxisEnum axis) {
  1005. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1006. if (DEBUGGING(LEVELING)) {
  1007. SERIAL_ECHOPAIR("set_axis_is_at_home(", (unsigned long)axis);
  1008. SERIAL_ECHOLNPGM(") >>>");
  1009. }
  1010. #endif
  1011. #if ENABLED(DUAL_X_CARRIAGE)
  1012. if (axis == X_AXIS) {
  1013. if (active_extruder != 0) {
  1014. current_position[X_AXIS] = x_home_pos(active_extruder);
  1015. min_pos[X_AXIS] = X2_MIN_POS;
  1016. max_pos[X_AXIS] = max(extruder_offset[X_AXIS][1], X2_MAX_POS);
  1017. return;
  1018. }
  1019. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE) {
  1020. float xoff = home_offset[X_AXIS];
  1021. current_position[X_AXIS] = base_home_pos(X_AXIS) + xoff;
  1022. min_pos[X_AXIS] = base_min_pos(X_AXIS) + xoff;
  1023. max_pos[X_AXIS] = min(base_max_pos(X_AXIS) + xoff, max(extruder_offset[X_AXIS][1], X2_MAX_POS) - duplicate_extruder_x_offset);
  1024. return;
  1025. }
  1026. }
  1027. #endif
  1028. #if ENABLED(SCARA)
  1029. if (axis == X_AXIS || axis == Y_AXIS) {
  1030. float homeposition[3];
  1031. for (int i = 0; i < 3; i++) homeposition[i] = base_home_pos(i);
  1032. // SERIAL_ECHOPGM("homeposition[x]= "); SERIAL_ECHO(homeposition[0]);
  1033. // SERIAL_ECHOPGM("homeposition[y]= "); SERIAL_ECHOLN(homeposition[1]);
  1034. /**
  1035. * Works out real Homeposition angles using inverse kinematics,
  1036. * and calculates homing offset using forward kinematics
  1037. */
  1038. calculate_delta(homeposition);
  1039. // SERIAL_ECHOPGM("base Theta= "); SERIAL_ECHO(delta[X_AXIS]);
  1040. // SERIAL_ECHOPGM(" base Psi+Theta="); SERIAL_ECHOLN(delta[Y_AXIS]);
  1041. for (int i = 0; i < 2; i++) delta[i] -= home_offset[i];
  1042. // SERIAL_ECHOPGM("addhome X="); SERIAL_ECHO(home_offset[X_AXIS]);
  1043. // SERIAL_ECHOPGM(" addhome Y="); SERIAL_ECHO(home_offset[Y_AXIS]);
  1044. // SERIAL_ECHOPGM(" addhome Theta="); SERIAL_ECHO(delta[X_AXIS]);
  1045. // SERIAL_ECHOPGM(" addhome Psi+Theta="); SERIAL_ECHOLN(delta[Y_AXIS]);
  1046. calculate_SCARA_forward_Transform(delta);
  1047. // SERIAL_ECHOPGM("Delta X="); SERIAL_ECHO(delta[X_AXIS]);
  1048. // SERIAL_ECHOPGM(" Delta Y="); SERIAL_ECHOLN(delta[Y_AXIS]);
  1049. current_position[axis] = delta[axis];
  1050. /**
  1051. * SCARA home positions are based on configuration since the actual
  1052. * limits are determined by the inverse kinematic transform.
  1053. */
  1054. min_pos[axis] = base_min_pos(axis); // + (delta[axis] - base_home_pos(axis));
  1055. max_pos[axis] = base_max_pos(axis); // + (delta[axis] - base_home_pos(axis));
  1056. }
  1057. else
  1058. #endif
  1059. {
  1060. current_position[axis] = base_home_pos(axis) + home_offset[axis];
  1061. min_pos[axis] = base_min_pos(axis) + home_offset[axis];
  1062. max_pos[axis] = base_max_pos(axis) + home_offset[axis];
  1063. #if ENABLED(AUTO_BED_LEVELING_FEATURE) && Z_HOME_DIR < 0
  1064. if (axis == Z_AXIS) {
  1065. current_position[Z_AXIS] -= zprobe_zoffset;
  1066. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1067. if (DEBUGGING(LEVELING)) SERIAL_ECHOPAIR("> zprobe_zoffset==", zprobe_zoffset);
  1068. #endif
  1069. }
  1070. #endif
  1071. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1072. if (DEBUGGING(LEVELING)) {
  1073. SERIAL_ECHOPAIR("> home_offset[axis]==", home_offset[axis]);
  1074. DEBUG_POS("", current_position);
  1075. }
  1076. #endif
  1077. }
  1078. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1079. if (DEBUGGING(LEVELING)) {
  1080. SERIAL_ECHOPAIR("<<< set_axis_is_at_home(", (unsigned long)axis);
  1081. SERIAL_ECHOLNPGM(")");
  1082. }
  1083. #endif
  1084. }
  1085. /**
  1086. * Some planner shorthand inline functions
  1087. */
  1088. inline void set_homing_bump_feedrate(AxisEnum axis) {
  1089. const int homing_bump_divisor[] = HOMING_BUMP_DIVISOR;
  1090. int hbd = homing_bump_divisor[axis];
  1091. if (hbd < 1) {
  1092. hbd = 10;
  1093. SERIAL_ECHO_START;
  1094. SERIAL_ECHOLNPGM("Warning: Homing Bump Divisor < 1");
  1095. }
  1096. feedrate = homing_feedrate[axis] / hbd;
  1097. }
  1098. inline void line_to_current_position() {
  1099. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate / 60, active_extruder);
  1100. }
  1101. inline void line_to_z(float zPosition) {
  1102. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate / 60, active_extruder);
  1103. }
  1104. inline void line_to_destination(float mm_m) {
  1105. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], mm_m / 60, active_extruder);
  1106. }
  1107. inline void line_to_destination() {
  1108. line_to_destination(feedrate);
  1109. }
  1110. inline void sync_plan_position() {
  1111. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1112. }
  1113. #if ENABLED(DELTA) || ENABLED(SCARA)
  1114. inline void sync_plan_position_delta() {
  1115. calculate_delta(current_position);
  1116. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
  1117. }
  1118. #endif
  1119. inline void set_current_to_destination() { memcpy(current_position, destination, sizeof(current_position)); }
  1120. inline void set_destination_to_current() { memcpy(destination, current_position, sizeof(destination)); }
  1121. static void setup_for_endstop_move() {
  1122. saved_feedrate = feedrate;
  1123. saved_feedrate_multiplier = feedrate_multiplier;
  1124. feedrate_multiplier = 100;
  1125. refresh_cmd_timeout();
  1126. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1127. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("setup_for_endstop_move > enable_endstops(true)");
  1128. #endif
  1129. enable_endstops(true);
  1130. }
  1131. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  1132. #if ENABLED(DELTA)
  1133. /**
  1134. * Calculate delta, start a line, and set current_position to destination
  1135. */
  1136. void prepare_move_raw() {
  1137. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1138. if (DEBUGGING(LEVELING)) DEBUG_POS("prepare_move_raw", destination);
  1139. #endif
  1140. refresh_cmd_timeout();
  1141. calculate_delta(destination);
  1142. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], destination[E_AXIS], (feedrate / 60) * (feedrate_multiplier / 100.0), active_extruder);
  1143. set_current_to_destination();
  1144. }
  1145. #endif
  1146. #if ENABLED(AUTO_BED_LEVELING_GRID)
  1147. #if DISABLED(DELTA)
  1148. static void set_bed_level_equation_lsq(double* plane_equation_coefficients) {
  1149. vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
  1150. planeNormal.debug("planeNormal");
  1151. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1152. //bedLevel.debug("bedLevel");
  1153. //plan_bed_level_matrix.debug("bed level before");
  1154. //vector_3 uncorrected_position = plan_get_position_mm();
  1155. //uncorrected_position.debug("position before");
  1156. vector_3 corrected_position = plan_get_position();
  1157. //corrected_position.debug("position after");
  1158. current_position[X_AXIS] = corrected_position.x;
  1159. current_position[Y_AXIS] = corrected_position.y;
  1160. current_position[Z_AXIS] = corrected_position.z;
  1161. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1162. if (DEBUGGING(LEVELING)) DEBUG_POS("set_bed_level_equation_lsq", current_position);
  1163. #endif
  1164. sync_plan_position();
  1165. }
  1166. #endif // !DELTA
  1167. #else // !AUTO_BED_LEVELING_GRID
  1168. static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
  1169. plan_bed_level_matrix.set_to_identity();
  1170. vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
  1171. vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
  1172. vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
  1173. vector_3 planeNormal = vector_3::cross(pt1 - pt2, pt3 - pt2).get_normal();
  1174. if (planeNormal.z < 0) {
  1175. planeNormal.x = -planeNormal.x;
  1176. planeNormal.y = -planeNormal.y;
  1177. planeNormal.z = -planeNormal.z;
  1178. }
  1179. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1180. vector_3 corrected_position = plan_get_position();
  1181. current_position[X_AXIS] = corrected_position.x;
  1182. current_position[Y_AXIS] = corrected_position.y;
  1183. current_position[Z_AXIS] = corrected_position.z;
  1184. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1185. if (DEBUGGING(LEVELING)) DEBUG_POS("set_bed_level_equation_3pts", current_position);
  1186. #endif
  1187. sync_plan_position();
  1188. }
  1189. #endif // !AUTO_BED_LEVELING_GRID
  1190. static void run_z_probe() {
  1191. /**
  1192. * To prevent stepper_inactive_time from running out and
  1193. * EXTRUDER_RUNOUT_PREVENT from extruding
  1194. */
  1195. refresh_cmd_timeout();
  1196. #if ENABLED(DELTA)
  1197. float start_z = current_position[Z_AXIS];
  1198. long start_steps = st_get_position(Z_AXIS);
  1199. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1200. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("run_z_probe (DELTA) 1");
  1201. #endif
  1202. // move down slowly until you find the bed
  1203. feedrate = homing_feedrate[Z_AXIS] / 4;
  1204. destination[Z_AXIS] = -10;
  1205. prepare_move_raw(); // this will also set_current_to_destination
  1206. st_synchronize();
  1207. endstops_hit_on_purpose(); // clear endstop hit flags
  1208. /**
  1209. * We have to let the planner know where we are right now as it
  1210. * is not where we said to go.
  1211. */
  1212. long stop_steps = st_get_position(Z_AXIS);
  1213. float mm = start_z - float(start_steps - stop_steps) / axis_steps_per_unit[Z_AXIS];
  1214. current_position[Z_AXIS] = mm;
  1215. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1216. if (DEBUGGING(LEVELING)) DEBUG_POS("run_z_probe (DELTA) 2", current_position);
  1217. #endif
  1218. sync_plan_position_delta();
  1219. #else // !DELTA
  1220. plan_bed_level_matrix.set_to_identity();
  1221. feedrate = homing_feedrate[Z_AXIS];
  1222. // Move down until the Z probe (or endstop?) is triggered
  1223. float zPosition = -(Z_MAX_LENGTH + 10);
  1224. line_to_z(zPosition);
  1225. st_synchronize();
  1226. // Tell the planner where we ended up - Get this from the stepper handler
  1227. zPosition = st_get_axis_position_mm(Z_AXIS);
  1228. plan_set_position(
  1229. current_position[X_AXIS], current_position[Y_AXIS], zPosition,
  1230. current_position[E_AXIS]
  1231. );
  1232. // move up the retract distance
  1233. zPosition += home_bump_mm(Z_AXIS);
  1234. line_to_z(zPosition);
  1235. st_synchronize();
  1236. endstops_hit_on_purpose(); // clear endstop hit flags
  1237. // move back down slowly to find bed
  1238. set_homing_bump_feedrate(Z_AXIS);
  1239. zPosition -= home_bump_mm(Z_AXIS) * 2;
  1240. line_to_z(zPosition);
  1241. st_synchronize();
  1242. endstops_hit_on_purpose(); // clear endstop hit flags
  1243. // Get the current stepper position after bumping an endstop
  1244. current_position[Z_AXIS] = st_get_axis_position_mm(Z_AXIS);
  1245. sync_plan_position();
  1246. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1247. if (DEBUGGING(LEVELING)) DEBUG_POS("run_z_probe", current_position);
  1248. #endif
  1249. #endif // !DELTA
  1250. }
  1251. /**
  1252. * Plan a move to (X, Y, Z) and set the current_position
  1253. * The final current_position may not be the one that was requested
  1254. */
  1255. static void do_blocking_move_to(float x, float y, float z) {
  1256. float oldFeedRate = feedrate;
  1257. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1258. if (DEBUGGING(LEVELING)) print_xyz("do_blocking_move_to", x, y, z);
  1259. #endif
  1260. #if ENABLED(DELTA)
  1261. feedrate = XY_TRAVEL_SPEED;
  1262. destination[X_AXIS] = x;
  1263. destination[Y_AXIS] = y;
  1264. destination[Z_AXIS] = z;
  1265. prepare_move_raw(); // this will also set_current_to_destination
  1266. st_synchronize();
  1267. #else
  1268. feedrate = homing_feedrate[Z_AXIS];
  1269. current_position[Z_AXIS] = z;
  1270. line_to_current_position();
  1271. st_synchronize();
  1272. feedrate = xy_travel_speed;
  1273. current_position[X_AXIS] = x;
  1274. current_position[Y_AXIS] = y;
  1275. line_to_current_position();
  1276. st_synchronize();
  1277. #endif
  1278. feedrate = oldFeedRate;
  1279. }
  1280. inline void do_blocking_move_to_xy(float x, float y) {
  1281. do_blocking_move_to(x, y, current_position[Z_AXIS]);
  1282. }
  1283. inline void do_blocking_move_to_x(float x) {
  1284. do_blocking_move_to(x, current_position[Y_AXIS], current_position[Z_AXIS]);
  1285. }
  1286. inline void do_blocking_move_to_z(float z) {
  1287. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z);
  1288. }
  1289. inline void raise_z_after_probing() {
  1290. do_blocking_move_to_z(current_position[Z_AXIS] + Z_RAISE_AFTER_PROBING);
  1291. }
  1292. static void clean_up_after_endstop_move() {
  1293. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1294. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("clean_up_after_endstop_move > ENDSTOPS_ONLY_FOR_HOMING > endstops_not_homing()");
  1295. #endif
  1296. endstops_not_homing();
  1297. feedrate = saved_feedrate;
  1298. feedrate_multiplier = saved_feedrate_multiplier;
  1299. refresh_cmd_timeout();
  1300. }
  1301. #if ENABLED(HAS_Z_MIN_PROBE)
  1302. static void deploy_z_probe() {
  1303. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1304. if (DEBUGGING(LEVELING)) DEBUG_POS("deploy_z_probe", current_position);
  1305. #endif
  1306. if (z_probe_is_active) return;
  1307. #if HAS_SERVO_ENDSTOPS
  1308. // Engage Z Servo endstop if enabled
  1309. if (servo_endstop_id[Z_AXIS] >= 0) servo[servo_endstop_id[Z_AXIS]].move(servo_endstop_angle[Z_AXIS][0]);
  1310. #elif ENABLED(Z_PROBE_ALLEN_KEY)
  1311. feedrate = Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE;
  1312. // If endstop is already false, the Z probe is deployed
  1313. #if ENABLED(Z_MIN_PROBE_ENDSTOP)
  1314. bool z_probe_endstop = (READ(Z_MIN_PROBE_PIN) != Z_MIN_PROBE_ENDSTOP_INVERTING);
  1315. if (z_probe_endstop)
  1316. #else
  1317. bool z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
  1318. if (z_min_endstop)
  1319. #endif
  1320. {
  1321. // Move to the start position to initiate deployment
  1322. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_1_X;
  1323. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_1_Y;
  1324. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_1_Z;
  1325. prepare_move_raw(); // this will also set_current_to_destination
  1326. // Move to engage deployment
  1327. if (Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE != Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE)
  1328. feedrate = Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE;
  1329. if (Z_PROBE_ALLEN_KEY_DEPLOY_2_X != Z_PROBE_ALLEN_KEY_DEPLOY_1_X)
  1330. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_2_X;
  1331. if (Z_PROBE_ALLEN_KEY_DEPLOY_2_Y != Z_PROBE_ALLEN_KEY_DEPLOY_1_Y)
  1332. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_2_Y;
  1333. if (Z_PROBE_ALLEN_KEY_DEPLOY_2_Z != Z_PROBE_ALLEN_KEY_DEPLOY_1_Z)
  1334. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_2_Z;
  1335. prepare_move_raw();
  1336. #ifdef Z_PROBE_ALLEN_KEY_DEPLOY_3_X
  1337. if (Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE != Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE)
  1338. feedrate = Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE;
  1339. // Move to trigger deployment
  1340. if (Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE != Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE)
  1341. feedrate = Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE;
  1342. if (Z_PROBE_ALLEN_KEY_DEPLOY_3_X != Z_PROBE_ALLEN_KEY_DEPLOY_2_X)
  1343. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_3_X;
  1344. if (Z_PROBE_ALLEN_KEY_DEPLOY_3_Y != Z_PROBE_ALLEN_KEY_DEPLOY_2_Y)
  1345. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_3_Y;
  1346. if (Z_PROBE_ALLEN_KEY_DEPLOY_3_Z != Z_PROBE_ALLEN_KEY_DEPLOY_2_Z)
  1347. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_3_Z;
  1348. prepare_move_raw();
  1349. #endif
  1350. }
  1351. // Partially Home X,Y for safety
  1352. destination[X_AXIS] = destination[X_AXIS] * 0.75;
  1353. destination[Y_AXIS] = destination[Y_AXIS] * 0.75;
  1354. prepare_move_raw(); // this will also set_current_to_destination
  1355. st_synchronize();
  1356. #if ENABLED(Z_MIN_PROBE_ENDSTOP)
  1357. z_probe_endstop = (READ(Z_MIN_PROBE_PIN) != Z_MIN_PROBE_ENDSTOP_INVERTING);
  1358. if (z_probe_endstop)
  1359. #else
  1360. z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
  1361. if (z_min_endstop)
  1362. #endif
  1363. {
  1364. if (IsRunning()) {
  1365. SERIAL_ERROR_START;
  1366. SERIAL_ERRORLNPGM("Z-Probe failed to engage!");
  1367. LCD_ALERTMESSAGEPGM("Err: ZPROBE");
  1368. }
  1369. Stop();
  1370. }
  1371. #endif // Z_PROBE_ALLEN_KEY
  1372. #if ENABLED(FIX_MOUNTED_PROBE)
  1373. // Noting to be done. Just set z_probe_is_active
  1374. #endif
  1375. z_probe_is_active = true;
  1376. }
  1377. static void stow_z_probe(bool doRaise = true) {
  1378. #if !(HAS_SERVO_ENDSTOPS && (Z_RAISE_AFTER_PROBING > 0))
  1379. UNUSED(doRaise);
  1380. #endif
  1381. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1382. if (DEBUGGING(LEVELING)) DEBUG_POS("stow_z_probe", current_position);
  1383. #endif
  1384. if (!z_probe_is_active) return;
  1385. #if HAS_SERVO_ENDSTOPS
  1386. // Retract Z Servo endstop if enabled
  1387. if (servo_endstop_id[Z_AXIS] >= 0) {
  1388. #if Z_RAISE_AFTER_PROBING > 0
  1389. if (doRaise) {
  1390. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1391. if (DEBUGGING(LEVELING)) {
  1392. SERIAL_ECHOPAIR("Raise Z (after) by ", (float)Z_RAISE_AFTER_PROBING);
  1393. SERIAL_EOL;
  1394. SERIAL_ECHO("> SERVO_ENDSTOPS > raise_z_after_probing()");
  1395. SERIAL_EOL;
  1396. }
  1397. #endif
  1398. raise_z_after_probing(); // this also updates current_position
  1399. st_synchronize();
  1400. }
  1401. #endif
  1402. // Change the Z servo angle
  1403. servo[servo_endstop_id[Z_AXIS]].move(servo_endstop_angle[Z_AXIS][1]);
  1404. }
  1405. #elif ENABLED(Z_PROBE_ALLEN_KEY)
  1406. // Move up for safety
  1407. feedrate = Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE;
  1408. #if Z_RAISE_AFTER_PROBING > 0
  1409. destination[Z_AXIS] = current_position[Z_AXIS] + Z_RAISE_AFTER_PROBING;
  1410. prepare_move_raw(); // this will also set_current_to_destination
  1411. #endif
  1412. // Move to the start position to initiate retraction
  1413. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_STOW_1_X;
  1414. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_STOW_1_Y;
  1415. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_STOW_1_Z;
  1416. prepare_move_raw();
  1417. // Move the nozzle down to push the Z probe into retracted position
  1418. if (Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE != Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE)
  1419. feedrate = Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE;
  1420. if (Z_PROBE_ALLEN_KEY_STOW_2_X != Z_PROBE_ALLEN_KEY_STOW_1_X)
  1421. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_STOW_2_X;
  1422. if (Z_PROBE_ALLEN_KEY_STOW_2_Y != Z_PROBE_ALLEN_KEY_STOW_1_Y)
  1423. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_STOW_2_Y;
  1424. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_STOW_2_Z;
  1425. prepare_move_raw();
  1426. // Move up for safety
  1427. if (Z_PROBE_ALLEN_KEY_STOW_3_FEEDRATE != Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE)
  1428. feedrate = Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE;
  1429. if (Z_PROBE_ALLEN_KEY_STOW_3_X != Z_PROBE_ALLEN_KEY_STOW_2_X)
  1430. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_STOW_3_X;
  1431. if (Z_PROBE_ALLEN_KEY_STOW_3_Y != Z_PROBE_ALLEN_KEY_STOW_2_Y)
  1432. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_STOW_3_Y;
  1433. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_STOW_3_Z;
  1434. prepare_move_raw();
  1435. // Home XY for safety
  1436. feedrate = homing_feedrate[X_AXIS] / 2;
  1437. destination[X_AXIS] = 0;
  1438. destination[Y_AXIS] = 0;
  1439. prepare_move_raw(); // this will also set_current_to_destination
  1440. st_synchronize();
  1441. #if ENABLED(Z_MIN_PROBE_ENDSTOP)
  1442. bool z_probe_endstop = (READ(Z_MIN_PROBE_PIN) != Z_MIN_PROBE_ENDSTOP_INVERTING);
  1443. if (!z_probe_endstop)
  1444. #else
  1445. bool z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
  1446. if (!z_min_endstop)
  1447. #endif
  1448. {
  1449. if (IsRunning()) {
  1450. SERIAL_ERROR_START;
  1451. SERIAL_ERRORLNPGM("Z-Probe failed to retract!");
  1452. LCD_ALERTMESSAGEPGM("Err: ZPROBE");
  1453. }
  1454. Stop();
  1455. }
  1456. #endif // Z_PROBE_ALLEN_KEY
  1457. #if ENABLED(FIX_MOUNTED_PROBE)
  1458. // Noting to be done. Just set z_probe_is_active
  1459. #endif
  1460. z_probe_is_active = false;
  1461. }
  1462. #endif // HAS_Z_MIN_PROBE
  1463. enum ProbeAction {
  1464. ProbeStay = 0,
  1465. ProbeDeploy = _BV(0),
  1466. ProbeStow = _BV(1),
  1467. ProbeDeployAndStow = (ProbeDeploy | ProbeStow)
  1468. };
  1469. // Probe bed height at position (x,y), returns the measured z value
  1470. static float probe_pt(float x, float y, float z_before, ProbeAction probe_action = ProbeDeployAndStow, int verbose_level = 1) {
  1471. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1472. if (DEBUGGING(LEVELING)) {
  1473. SERIAL_ECHOLNPGM("probe_pt >>>");
  1474. SERIAL_ECHOPAIR("> ProbeAction:", (unsigned long)probe_action);
  1475. SERIAL_EOL;
  1476. DEBUG_POS("", current_position);
  1477. }
  1478. #endif
  1479. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1480. if (DEBUGGING(LEVELING)) {
  1481. SERIAL_ECHOPAIR("Z Raise to z_before ", z_before);
  1482. SERIAL_EOL;
  1483. SERIAL_ECHOPAIR("> do_blocking_move_to_z ", z_before);
  1484. SERIAL_EOL;
  1485. }
  1486. #endif
  1487. // Move Z up to the z_before height, then move the Z probe to the given XY
  1488. do_blocking_move_to_z(z_before); // this also updates current_position
  1489. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1490. if (DEBUGGING(LEVELING)) {
  1491. SERIAL_ECHOPAIR("> do_blocking_move_to_xy ", x - (X_PROBE_OFFSET_FROM_EXTRUDER));
  1492. SERIAL_ECHOPAIR(", ", y - (Y_PROBE_OFFSET_FROM_EXTRUDER));
  1493. SERIAL_EOL;
  1494. }
  1495. #endif
  1496. // this also updates current_position
  1497. do_blocking_move_to_xy(x - (X_PROBE_OFFSET_FROM_EXTRUDER), y - (Y_PROBE_OFFSET_FROM_EXTRUDER));
  1498. #if DISABLED(Z_PROBE_SLED) && DISABLED(Z_PROBE_ALLEN_KEY)
  1499. if (probe_action & ProbeDeploy) {
  1500. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1501. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> ProbeDeploy");
  1502. #endif
  1503. deploy_z_probe();
  1504. }
  1505. #endif
  1506. run_z_probe();
  1507. float measured_z = current_position[Z_AXIS];
  1508. #if DISABLED(Z_PROBE_SLED) && DISABLED(Z_PROBE_ALLEN_KEY)
  1509. if (probe_action & ProbeStow) {
  1510. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1511. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> ProbeStow (stow_z_probe will do Z Raise)");
  1512. #endif
  1513. stow_z_probe();
  1514. }
  1515. #endif
  1516. if (verbose_level > 2) {
  1517. SERIAL_PROTOCOLPGM("Bed X: ");
  1518. SERIAL_PROTOCOL_F(x, 3);
  1519. SERIAL_PROTOCOLPGM(" Y: ");
  1520. SERIAL_PROTOCOL_F(y, 3);
  1521. SERIAL_PROTOCOLPGM(" Z: ");
  1522. SERIAL_PROTOCOL_F(measured_z, 3);
  1523. SERIAL_EOL;
  1524. }
  1525. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1526. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< probe_pt");
  1527. #endif
  1528. return measured_z;
  1529. }
  1530. #if ENABLED(DELTA)
  1531. /**
  1532. * All DELTA leveling in the Marlin uses NONLINEAR_BED_LEVELING
  1533. */
  1534. static void extrapolate_one_point(int x, int y, int xdir, int ydir) {
  1535. if (bed_level[x][y] != 0.0) {
  1536. return; // Don't overwrite good values.
  1537. }
  1538. float a = 2 * bed_level[x + xdir][y] - bed_level[x + xdir * 2][y]; // Left to right.
  1539. float b = 2 * bed_level[x][y + ydir] - bed_level[x][y + ydir * 2]; // Front to back.
  1540. float c = 2 * bed_level[x + xdir][y + ydir] - bed_level[x + xdir * 2][y + ydir * 2]; // Diagonal.
  1541. float median = c; // Median is robust (ignores outliers).
  1542. if (a < b) {
  1543. if (b < c) median = b;
  1544. if (c < a) median = a;
  1545. }
  1546. else { // b <= a
  1547. if (c < b) median = b;
  1548. if (a < c) median = a;
  1549. }
  1550. bed_level[x][y] = median;
  1551. }
  1552. /**
  1553. * Fill in the unprobed points (corners of circular print surface)
  1554. * using linear extrapolation, away from the center.
  1555. */
  1556. static void extrapolate_unprobed_bed_level() {
  1557. int half = (AUTO_BED_LEVELING_GRID_POINTS - 1) / 2;
  1558. for (int y = 0; y <= half; y++) {
  1559. for (int x = 0; x <= half; x++) {
  1560. if (x + y < 3) continue;
  1561. extrapolate_one_point(half - x, half - y, x > 1 ? +1 : 0, y > 1 ? +1 : 0);
  1562. extrapolate_one_point(half + x, half - y, x > 1 ? -1 : 0, y > 1 ? +1 : 0);
  1563. extrapolate_one_point(half - x, half + y, x > 1 ? +1 : 0, y > 1 ? -1 : 0);
  1564. extrapolate_one_point(half + x, half + y, x > 1 ? -1 : 0, y > 1 ? -1 : 0);
  1565. }
  1566. }
  1567. }
  1568. /**
  1569. * Print calibration results for plotting or manual frame adjustment.
  1570. */
  1571. static void print_bed_level() {
  1572. for (int y = 0; y < AUTO_BED_LEVELING_GRID_POINTS; y++) {
  1573. for (int x = 0; x < AUTO_BED_LEVELING_GRID_POINTS; x++) {
  1574. SERIAL_PROTOCOL_F(bed_level[x][y], 2);
  1575. SERIAL_PROTOCOLCHAR(' ');
  1576. }
  1577. SERIAL_EOL;
  1578. }
  1579. }
  1580. /**
  1581. * Reset calibration results to zero.
  1582. */
  1583. void reset_bed_level() {
  1584. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1585. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("reset_bed_level");
  1586. #endif
  1587. for (int y = 0; y < AUTO_BED_LEVELING_GRID_POINTS; y++) {
  1588. for (int x = 0; x < AUTO_BED_LEVELING_GRID_POINTS; x++) {
  1589. bed_level[x][y] = 0.0;
  1590. }
  1591. }
  1592. }
  1593. #endif // DELTA
  1594. #if HAS_SERVO_ENDSTOPS && DISABLED(Z_PROBE_SLED)
  1595. void raise_z_for_servo() {
  1596. float zpos = current_position[Z_AXIS], z_dest = Z_RAISE_BEFORE_PROBING;
  1597. /**
  1598. * The zprobe_zoffset is negative any switch below the nozzle, so
  1599. * multiply by Z_HOME_DIR (-1) to move enough away from bed for the probe
  1600. */
  1601. z_dest += axis_homed[Z_AXIS] ? zprobe_zoffset * Z_HOME_DIR : zpos;
  1602. if (zpos < z_dest) do_blocking_move_to_z(z_dest); // also updates current_position
  1603. }
  1604. #endif
  1605. #endif // AUTO_BED_LEVELING_FEATURE
  1606. #if ENABLED(Z_PROBE_SLED) || ENABLED(Z_SAFE_HOMING) || ENABLED(AUTO_BED_LEVELING_FEATURE)
  1607. static void axis_unhomed_error() {
  1608. LCD_MESSAGEPGM(MSG_YX_UNHOMED);
  1609. SERIAL_ECHO_START;
  1610. SERIAL_ECHOLNPGM(MSG_YX_UNHOMED);
  1611. }
  1612. #endif
  1613. #if ENABLED(Z_PROBE_SLED)
  1614. #ifndef SLED_DOCKING_OFFSET
  1615. #define SLED_DOCKING_OFFSET 0
  1616. #endif
  1617. /**
  1618. * Method to dock/undock a sled designed by Charles Bell.
  1619. *
  1620. * dock[in] If true, move to MAX_X and engage the electromagnet
  1621. * offset[in] The additional distance to move to adjust docking location
  1622. */
  1623. static void dock_sled(bool dock, int offset = 0) {
  1624. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1625. if (DEBUGGING(LEVELING)) {
  1626. SERIAL_ECHOPAIR("dock_sled(", dock);
  1627. SERIAL_ECHOLNPGM(")");
  1628. }
  1629. #endif
  1630. if (z_probe_is_active == dock) return;
  1631. if (!axis_homed[X_AXIS] || !axis_homed[Y_AXIS]) {
  1632. axis_unhomed_error();
  1633. return;
  1634. }
  1635. float oldXpos = current_position[X_AXIS]; // save x position
  1636. if (dock) {
  1637. #if Z_RAISE_AFTER_PROBING > 0
  1638. raise_z_after_probing(); // raise Z
  1639. #endif
  1640. // Dock sled a bit closer to ensure proper capturing
  1641. do_blocking_move_to_x(X_MAX_POS + SLED_DOCKING_OFFSET + offset - 1);
  1642. digitalWrite(SLED_PIN, LOW); // turn off magnet
  1643. }
  1644. else {
  1645. float z_loc = current_position[Z_AXIS];
  1646. if (z_loc < Z_RAISE_BEFORE_PROBING + 5) z_loc = Z_RAISE_BEFORE_PROBING;
  1647. do_blocking_move_to(X_MAX_POS + SLED_DOCKING_OFFSET + offset, current_position[Y_AXIS], z_loc); // this also updates current_position
  1648. digitalWrite(SLED_PIN, HIGH); // turn on magnet
  1649. }
  1650. do_blocking_move_to_x(oldXpos); // return to position before docking
  1651. z_probe_is_active = dock;
  1652. }
  1653. #endif // Z_PROBE_SLED
  1654. /**
  1655. * Home an individual axis
  1656. */
  1657. #define HOMEAXIS(LETTER) homeaxis(LETTER##_AXIS)
  1658. static void homeaxis(AxisEnum axis) {
  1659. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1660. if (DEBUGGING(LEVELING)) {
  1661. SERIAL_ECHOPAIR(">>> homeaxis(", (unsigned long)axis);
  1662. SERIAL_ECHOLNPGM(")");
  1663. }
  1664. #endif
  1665. #define HOMEAXIS_DO(LETTER) \
  1666. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  1667. if (axis == X_AXIS ? HOMEAXIS_DO(X) : axis == Y_AXIS ? HOMEAXIS_DO(Y) : axis == Z_AXIS ? HOMEAXIS_DO(Z) : 0) {
  1668. int axis_home_dir =
  1669. #if ENABLED(DUAL_X_CARRIAGE)
  1670. (axis == X_AXIS) ? x_home_dir(active_extruder) :
  1671. #endif
  1672. home_dir(axis);
  1673. // Set the axis position as setup for the move
  1674. current_position[axis] = 0;
  1675. sync_plan_position();
  1676. #if ENABLED(Z_PROBE_SLED)
  1677. #define _Z_SERVO_TEST (axis != Z_AXIS) // deploy Z, servo.move XY
  1678. #define _Z_PROBE_SUBTEST false // Z will never be invoked
  1679. #define _Z_DEPLOY (dock_sled(false))
  1680. #define _Z_STOW (dock_sled(true))
  1681. #elif SERVO_LEVELING || ENABLED(FIX_MOUNTED_PROBE)
  1682. #define _Z_SERVO_TEST (axis != Z_AXIS) // servo.move XY
  1683. #define _Z_PROBE_SUBTEST false // Z will never be invoked
  1684. #define _Z_DEPLOY (deploy_z_probe())
  1685. #define _Z_STOW (stow_z_probe())
  1686. #elif HAS_SERVO_ENDSTOPS
  1687. #define _Z_SERVO_TEST true // servo.move X, Y, Z
  1688. #define _Z_PROBE_SUBTEST (axis == Z_AXIS) // Z is a probe
  1689. #endif
  1690. if (axis == Z_AXIS) {
  1691. // If there's a Z probe that needs deployment...
  1692. #if ENABLED(Z_PROBE_SLED) || SERVO_LEVELING || ENABLED(FIX_MOUNTED_PROBE)
  1693. // ...and homing Z towards the bed? Deploy it.
  1694. if (axis_home_dir < 0) _Z_DEPLOY;
  1695. #endif
  1696. }
  1697. #if HAS_SERVO_ENDSTOPS
  1698. // Engage an X or Y Servo endstop if enabled
  1699. if (_Z_SERVO_TEST && servo_endstop_id[axis] >= 0) {
  1700. servo[servo_endstop_id[axis]].move(servo_endstop_angle[axis][0]);
  1701. if (_Z_PROBE_SUBTEST) z_probe_is_active = true;
  1702. }
  1703. #endif
  1704. // Set a flag for Z motor locking
  1705. #if ENABLED(Z_DUAL_ENDSTOPS)
  1706. if (axis == Z_AXIS) In_Homing_Process(true);
  1707. #endif
  1708. // Move towards the endstop until an endstop is triggered
  1709. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  1710. feedrate = homing_feedrate[axis];
  1711. line_to_destination();
  1712. st_synchronize();
  1713. // Set the axis position as setup for the move
  1714. current_position[axis] = 0;
  1715. sync_plan_position();
  1716. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1717. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> enable_endstops(false)");
  1718. #endif
  1719. enable_endstops(false); // Disable endstops while moving away
  1720. // Move away from the endstop by the axis HOME_BUMP_MM
  1721. destination[axis] = -home_bump_mm(axis) * axis_home_dir;
  1722. line_to_destination();
  1723. st_synchronize();
  1724. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1725. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> enable_endstops(true)");
  1726. #endif
  1727. enable_endstops(true); // Enable endstops for next homing move
  1728. // Slow down the feedrate for the next move
  1729. set_homing_bump_feedrate(axis);
  1730. // Move slowly towards the endstop until triggered
  1731. destination[axis] = 2 * home_bump_mm(axis) * axis_home_dir;
  1732. line_to_destination();
  1733. st_synchronize();
  1734. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1735. if (DEBUGGING(LEVELING)) DEBUG_POS("> TRIGGER ENDSTOP", current_position);
  1736. #endif
  1737. #if ENABLED(Z_DUAL_ENDSTOPS)
  1738. if (axis == Z_AXIS) {
  1739. float adj = fabs(z_endstop_adj);
  1740. bool lockZ1;
  1741. if (axis_home_dir > 0) {
  1742. adj = -adj;
  1743. lockZ1 = (z_endstop_adj > 0);
  1744. }
  1745. else
  1746. lockZ1 = (z_endstop_adj < 0);
  1747. if (lockZ1) Lock_z_motor(true); else Lock_z2_motor(true);
  1748. sync_plan_position();
  1749. // Move to the adjusted endstop height
  1750. feedrate = homing_feedrate[axis];
  1751. destination[Z_AXIS] = adj;
  1752. line_to_destination();
  1753. st_synchronize();
  1754. if (lockZ1) Lock_z_motor(false); else Lock_z2_motor(false);
  1755. In_Homing_Process(false);
  1756. } // Z_AXIS
  1757. #endif
  1758. #if ENABLED(DELTA)
  1759. // retrace by the amount specified in endstop_adj
  1760. if (endstop_adj[axis] * axis_home_dir < 0) {
  1761. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1762. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> enable_endstops(false)");
  1763. #endif
  1764. enable_endstops(false); // Disable endstops while moving away
  1765. sync_plan_position();
  1766. destination[axis] = endstop_adj[axis];
  1767. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1768. if (DEBUGGING(LEVELING)) {
  1769. SERIAL_ECHOPAIR("> endstop_adj = ", endstop_adj[axis]);
  1770. DEBUG_POS("", destination);
  1771. }
  1772. #endif
  1773. line_to_destination();
  1774. st_synchronize();
  1775. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1776. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> enable_endstops(true)");
  1777. #endif
  1778. enable_endstops(true); // Enable endstops for next homing move
  1779. }
  1780. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1781. else {
  1782. if (DEBUGGING(LEVELING)) {
  1783. SERIAL_ECHOPAIR("> endstop_adj * axis_home_dir = ", endstop_adj[axis] * axis_home_dir);
  1784. SERIAL_EOL;
  1785. }
  1786. }
  1787. #endif
  1788. #endif
  1789. // Set the axis position to its home position (plus home offsets)
  1790. set_axis_is_at_home(axis);
  1791. sync_plan_position();
  1792. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1793. if (DEBUGGING(LEVELING)) DEBUG_POS("> AFTER set_axis_is_at_home", current_position);
  1794. #endif
  1795. destination[axis] = current_position[axis];
  1796. feedrate = 0.0;
  1797. endstops_hit_on_purpose(); // clear endstop hit flags
  1798. axis_known_position[axis] = true;
  1799. axis_homed[axis] = true;
  1800. // Put away the Z probe
  1801. #if ENABLED(Z_PROBE_SLED) || SERVO_LEVELING || ENABLED(FIX_MOUNTED_PROBE)
  1802. if (axis == Z_AXIS && axis_home_dir < 0) {
  1803. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1804. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> SERVO_LEVELING > " STRINGIFY(_Z_STOW));
  1805. #endif
  1806. _Z_STOW;
  1807. }
  1808. #endif
  1809. // Retract Servo endstop if enabled
  1810. #if HAS_SERVO_ENDSTOPS
  1811. if (_Z_SERVO_TEST && servo_endstop_id[axis] >= 0) {
  1812. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1813. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> SERVO_ENDSTOPS > Stow with servo.move()");
  1814. #endif
  1815. servo[servo_endstop_id[axis]].move(servo_endstop_angle[axis][1]);
  1816. if (_Z_PROBE_SUBTEST) z_probe_is_active = false;
  1817. }
  1818. #endif
  1819. }
  1820. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1821. if (DEBUGGING(LEVELING)) {
  1822. SERIAL_ECHOPAIR("<<< homeaxis(", (unsigned long)axis);
  1823. SERIAL_ECHOLNPGM(")");
  1824. }
  1825. #endif
  1826. }
  1827. #if ENABLED(FWRETRACT)
  1828. void retract(bool retracting, bool swapping = false) {
  1829. if (retracting == retracted[active_extruder]) return;
  1830. float oldFeedrate = feedrate;
  1831. set_destination_to_current();
  1832. if (retracting) {
  1833. feedrate = retract_feedrate * 60;
  1834. current_position[E_AXIS] += (swapping ? retract_length_swap : retract_length) / volumetric_multiplier[active_extruder];
  1835. plan_set_e_position(current_position[E_AXIS]);
  1836. prepare_move();
  1837. if (retract_zlift > 0.01) {
  1838. current_position[Z_AXIS] -= retract_zlift;
  1839. #if ENABLED(DELTA)
  1840. sync_plan_position_delta();
  1841. #else
  1842. sync_plan_position();
  1843. #endif
  1844. prepare_move();
  1845. }
  1846. }
  1847. else {
  1848. if (retract_zlift > 0.01) {
  1849. current_position[Z_AXIS] += retract_zlift;
  1850. #if ENABLED(DELTA)
  1851. sync_plan_position_delta();
  1852. #else
  1853. sync_plan_position();
  1854. #endif
  1855. //prepare_move();
  1856. }
  1857. feedrate = retract_recover_feedrate * 60;
  1858. float move_e = swapping ? retract_length_swap + retract_recover_length_swap : retract_length + retract_recover_length;
  1859. current_position[E_AXIS] -= move_e / volumetric_multiplier[active_extruder];
  1860. plan_set_e_position(current_position[E_AXIS]);
  1861. prepare_move();
  1862. }
  1863. feedrate = oldFeedrate;
  1864. retracted[active_extruder] = retracting;
  1865. } // retract()
  1866. #endif // FWRETRACT
  1867. /**
  1868. * ***************************************************************************
  1869. * ***************************** G-CODE HANDLING *****************************
  1870. * ***************************************************************************
  1871. */
  1872. /**
  1873. * Set XYZE destination and feedrate from the current GCode command
  1874. *
  1875. * - Set destination from included axis codes
  1876. * - Set to current for missing axis codes
  1877. * - Set the feedrate, if included
  1878. */
  1879. void gcode_get_destination() {
  1880. for (int i = 0; i < NUM_AXIS; i++) {
  1881. if (code_seen(axis_codes[i]))
  1882. destination[i] = code_value() + (axis_relative_modes[i] || relative_mode ? current_position[i] : 0);
  1883. else
  1884. destination[i] = current_position[i];
  1885. }
  1886. if (code_seen('F')) {
  1887. float next_feedrate = code_value();
  1888. if (next_feedrate > 0.0) feedrate = next_feedrate;
  1889. }
  1890. }
  1891. void unknown_command_error() {
  1892. SERIAL_ECHO_START;
  1893. SERIAL_ECHOPGM(MSG_UNKNOWN_COMMAND);
  1894. SERIAL_ECHO(current_command);
  1895. SERIAL_ECHOPGM("\"\n");
  1896. }
  1897. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  1898. /**
  1899. * Output a "busy" message at regular intervals
  1900. * while the machine is not accepting commands.
  1901. */
  1902. void host_keepalive() {
  1903. millis_t ms = millis();
  1904. if (busy_state != NOT_BUSY) {
  1905. if (ms < next_busy_signal_ms) return;
  1906. switch (busy_state) {
  1907. case IN_HANDLER:
  1908. case IN_PROCESS:
  1909. SERIAL_ECHO_START;
  1910. SERIAL_ECHOLNPGM(MSG_BUSY_PROCESSING);
  1911. break;
  1912. case PAUSED_FOR_USER:
  1913. SERIAL_ECHO_START;
  1914. SERIAL_ECHOLNPGM(MSG_BUSY_PAUSED_FOR_USER);
  1915. break;
  1916. case PAUSED_FOR_INPUT:
  1917. SERIAL_ECHO_START;
  1918. SERIAL_ECHOLNPGM(MSG_BUSY_PAUSED_FOR_INPUT);
  1919. break;
  1920. default:
  1921. break;
  1922. }
  1923. }
  1924. next_busy_signal_ms = host_keepalive_interval ? ms + 1000UL * host_keepalive_interval : -1;
  1925. }
  1926. #endif //HOST_KEEPALIVE_FEATURE
  1927. /**
  1928. * G0, G1: Coordinated movement of X Y Z E axes
  1929. */
  1930. inline void gcode_G0_G1() {
  1931. if (IsRunning()) {
  1932. gcode_get_destination(); // For X Y Z E F
  1933. #if ENABLED(FWRETRACT)
  1934. if (autoretract_enabled && !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  1935. float echange = destination[E_AXIS] - current_position[E_AXIS];
  1936. // Is this move an attempt to retract or recover?
  1937. if ((echange < -MIN_RETRACT && !retracted[active_extruder]) || (echange > MIN_RETRACT && retracted[active_extruder])) {
  1938. current_position[E_AXIS] = destination[E_AXIS]; // hide the slicer-generated retract/recover from calculations
  1939. plan_set_e_position(current_position[E_AXIS]); // AND from the planner
  1940. retract(!retracted[active_extruder]);
  1941. return;
  1942. }
  1943. }
  1944. #endif //FWRETRACT
  1945. prepare_move();
  1946. }
  1947. }
  1948. /**
  1949. * G2: Clockwise Arc
  1950. * G3: Counterclockwise Arc
  1951. */
  1952. inline void gcode_G2_G3(bool clockwise) {
  1953. if (IsRunning()) {
  1954. #if ENABLED(SF_ARC_FIX)
  1955. bool relative_mode_backup = relative_mode;
  1956. relative_mode = true;
  1957. #endif
  1958. gcode_get_destination();
  1959. #if ENABLED(SF_ARC_FIX)
  1960. relative_mode = relative_mode_backup;
  1961. #endif
  1962. // Center of arc as offset from current_position
  1963. float arc_offset[2] = {
  1964. code_seen('I') ? code_value() : 0,
  1965. code_seen('J') ? code_value() : 0
  1966. };
  1967. // Send an arc to the planner
  1968. plan_arc(destination, arc_offset, clockwise);
  1969. refresh_cmd_timeout();
  1970. }
  1971. }
  1972. /**
  1973. * G4: Dwell S<seconds> or P<milliseconds>
  1974. */
  1975. inline void gcode_G4() {
  1976. millis_t codenum = 0;
  1977. if (code_seen('P')) codenum = code_value_long(); // milliseconds to wait
  1978. if (code_seen('S')) codenum = code_value() * 1000; // seconds to wait
  1979. st_synchronize();
  1980. refresh_cmd_timeout();
  1981. codenum += previous_cmd_ms; // keep track of when we started waiting
  1982. if (!lcd_hasstatus()) LCD_MESSAGEPGM(MSG_DWELL);
  1983. while (millis() < codenum) idle();
  1984. }
  1985. #if ENABLED(FWRETRACT)
  1986. /**
  1987. * G10 - Retract filament according to settings of M207
  1988. * G11 - Recover filament according to settings of M208
  1989. */
  1990. inline void gcode_G10_G11(bool doRetract=false) {
  1991. #if EXTRUDERS > 1
  1992. if (doRetract) {
  1993. retracted_swap[active_extruder] = (code_seen('S') && code_value_short() == 1); // checks for swap retract argument
  1994. }
  1995. #endif
  1996. retract(doRetract
  1997. #if EXTRUDERS > 1
  1998. , retracted_swap[active_extruder]
  1999. #endif
  2000. );
  2001. }
  2002. #endif //FWRETRACT
  2003. /**
  2004. * G28: Home all axes according to settings
  2005. *
  2006. * Parameters
  2007. *
  2008. * None Home to all axes with no parameters.
  2009. * With QUICK_HOME enabled XY will home together, then Z.
  2010. *
  2011. * Cartesian parameters
  2012. *
  2013. * X Home to the X endstop
  2014. * Y Home to the Y endstop
  2015. * Z Home to the Z endstop
  2016. *
  2017. */
  2018. inline void gcode_G28() {
  2019. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2020. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("gcode_G28 >>>");
  2021. #endif
  2022. // Wait for planner moves to finish!
  2023. st_synchronize();
  2024. // For auto bed leveling, clear the level matrix
  2025. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  2026. plan_bed_level_matrix.set_to_identity();
  2027. #if ENABLED(DELTA)
  2028. reset_bed_level();
  2029. #endif
  2030. #endif
  2031. /**
  2032. * For mesh bed leveling deactivate the mesh calculations, will be turned
  2033. * on again when homing all axis
  2034. */
  2035. #if ENABLED(MESH_BED_LEVELING)
  2036. uint8_t mbl_was_active = mbl.active;
  2037. mbl.active = 0;
  2038. #endif
  2039. setup_for_endstop_move();
  2040. /**
  2041. * Directly after a reset this is all 0. Later we get a hint if we have
  2042. * to raise z or not.
  2043. */
  2044. set_destination_to_current();
  2045. feedrate = 0.0;
  2046. #if ENABLED(DELTA)
  2047. /**
  2048. * A delta can only safely home all axis at the same time
  2049. * all axis have to home at the same time
  2050. */
  2051. // Pretend the current position is 0,0,0
  2052. for (int i = X_AXIS; i <= Z_AXIS; i++) current_position[i] = 0;
  2053. sync_plan_position();
  2054. // Move all carriages up together until the first endstop is hit.
  2055. for (int i = X_AXIS; i <= Z_AXIS; i++) destination[i] = 3 * (Z_MAX_LENGTH);
  2056. feedrate = 1.732 * homing_feedrate[X_AXIS];
  2057. line_to_destination();
  2058. st_synchronize();
  2059. endstops_hit_on_purpose(); // clear endstop hit flags
  2060. // Destination reached
  2061. for (int i = X_AXIS; i <= Z_AXIS; i++) current_position[i] = destination[i];
  2062. // take care of back off and rehome now we are all at the top
  2063. HOMEAXIS(X);
  2064. HOMEAXIS(Y);
  2065. HOMEAXIS(Z);
  2066. sync_plan_position_delta();
  2067. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2068. if (DEBUGGING(LEVELING)) DEBUG_POS("(DELTA)", current_position);
  2069. #endif
  2070. #else // NOT DELTA
  2071. bool homeX = code_seen(axis_codes[X_AXIS]),
  2072. homeY = code_seen(axis_codes[Y_AXIS]),
  2073. homeZ = code_seen(axis_codes[Z_AXIS]);
  2074. home_all_axis = (!homeX && !homeY && !homeZ) || (homeX && homeY && homeZ);
  2075. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  2076. if (home_all_axis || homeZ) {
  2077. HOMEAXIS(Z);
  2078. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2079. if (DEBUGGING(LEVELING)) DEBUG_POS("> HOMEAXIS(Z)", current_position);
  2080. #endif
  2081. }
  2082. #elif defined(MIN_Z_HEIGHT_FOR_HOMING) && MIN_Z_HEIGHT_FOR_HOMING > 0
  2083. // Raise Z before homing any other axes and z is not already high enough (never lower z)
  2084. if (current_position[Z_AXIS] <= MIN_Z_HEIGHT_FOR_HOMING) {
  2085. destination[Z_AXIS] = MIN_Z_HEIGHT_FOR_HOMING;
  2086. feedrate = max_feedrate[Z_AXIS] * 60; // feedrate (mm/m) = max_feedrate (mm/s)
  2087. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2088. if (DEBUGGING(LEVELING)) {
  2089. SERIAL_ECHOPAIR("Raise Z (before homing) to ", (float)(MIN_Z_HEIGHT_FOR_HOMING));
  2090. SERIAL_EOL;
  2091. DEBUG_POS("> (home_all_axis || homeZ)", current_position);
  2092. DEBUG_POS("> (home_all_axis || homeZ)", destination);
  2093. }
  2094. #endif
  2095. line_to_destination();
  2096. st_synchronize();
  2097. /**
  2098. * Update the current Z position even if it currently not real from
  2099. * Z-home otherwise each call to line_to_destination() will want to
  2100. * move Z-axis by MIN_Z_HEIGHT_FOR_HOMING.
  2101. */
  2102. current_position[Z_AXIS] = destination[Z_AXIS];
  2103. }
  2104. #endif
  2105. #if ENABLED(QUICK_HOME)
  2106. if (home_all_axis || (homeX && homeY)) { // First diagonal move
  2107. current_position[X_AXIS] = current_position[Y_AXIS] = 0;
  2108. #if ENABLED(DUAL_X_CARRIAGE)
  2109. int x_axis_home_dir = x_home_dir(active_extruder);
  2110. extruder_duplication_enabled = false;
  2111. #else
  2112. int x_axis_home_dir = home_dir(X_AXIS);
  2113. #endif
  2114. sync_plan_position();
  2115. float mlx = max_length(X_AXIS), mly = max_length(Y_AXIS),
  2116. mlratio = mlx > mly ? mly / mlx : mlx / mly;
  2117. destination[X_AXIS] = 1.5 * mlx * x_axis_home_dir;
  2118. destination[Y_AXIS] = 1.5 * mly * home_dir(Y_AXIS);
  2119. feedrate = min(homing_feedrate[X_AXIS], homing_feedrate[Y_AXIS]) * sqrt(mlratio * mlratio + 1);
  2120. line_to_destination();
  2121. st_synchronize();
  2122. set_axis_is_at_home(X_AXIS);
  2123. set_axis_is_at_home(Y_AXIS);
  2124. sync_plan_position();
  2125. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2126. if (DEBUGGING(LEVELING)) DEBUG_POS("> QUICK_HOME 1", current_position);
  2127. #endif
  2128. destination[X_AXIS] = current_position[X_AXIS];
  2129. destination[Y_AXIS] = current_position[Y_AXIS];
  2130. line_to_destination();
  2131. feedrate = 0.0;
  2132. st_synchronize();
  2133. endstops_hit_on_purpose(); // clear endstop hit flags
  2134. current_position[X_AXIS] = destination[X_AXIS];
  2135. current_position[Y_AXIS] = destination[Y_AXIS];
  2136. #if DISABLED(SCARA)
  2137. current_position[Z_AXIS] = destination[Z_AXIS];
  2138. #endif
  2139. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2140. if (DEBUGGING(LEVELING)) DEBUG_POS("> QUICK_HOME 2", current_position);
  2141. #endif
  2142. }
  2143. #endif // QUICK_HOME
  2144. #if ENABLED(HOME_Y_BEFORE_X)
  2145. // Home Y
  2146. if (home_all_axis || homeY) HOMEAXIS(Y);
  2147. #endif
  2148. // Home X
  2149. if (home_all_axis || homeX) {
  2150. #if ENABLED(DUAL_X_CARRIAGE)
  2151. int tmp_extruder = active_extruder;
  2152. extruder_duplication_enabled = false;
  2153. active_extruder = !active_extruder;
  2154. HOMEAXIS(X);
  2155. inactive_extruder_x_pos = current_position[X_AXIS];
  2156. active_extruder = tmp_extruder;
  2157. HOMEAXIS(X);
  2158. // reset state used by the different modes
  2159. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  2160. delayed_move_time = 0;
  2161. active_extruder_parked = true;
  2162. #else
  2163. HOMEAXIS(X);
  2164. #endif
  2165. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2166. if (DEBUGGING(LEVELING)) DEBUG_POS("> homeX", current_position);
  2167. #endif
  2168. }
  2169. #if DISABLED(HOME_Y_BEFORE_X)
  2170. // Home Y
  2171. if (home_all_axis || homeY) {
  2172. HOMEAXIS(Y);
  2173. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2174. if (DEBUGGING(LEVELING)) DEBUG_POS("> homeY", current_position);
  2175. #endif
  2176. }
  2177. #endif
  2178. // Home Z last if homing towards the bed
  2179. #if Z_HOME_DIR < 0
  2180. if (home_all_axis || homeZ) {
  2181. #if ENABLED(Z_SAFE_HOMING)
  2182. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2183. if (DEBUGGING(LEVELING)) {
  2184. SERIAL_ECHOLNPGM("> Z_SAFE_HOMING >>>");
  2185. }
  2186. #endif
  2187. if (home_all_axis) {
  2188. /**
  2189. * At this point we already have Z at MIN_Z_HEIGHT_FOR_HOMING height
  2190. * No need to move Z any more as this height should already be safe
  2191. * enough to reach Z_SAFE_HOMING XY positions.
  2192. * Just make sure the planner is in sync.
  2193. */
  2194. sync_plan_position();
  2195. /**
  2196. * Set the Z probe (or just the nozzle) destination to the safe
  2197. * homing point
  2198. */
  2199. destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - (X_PROBE_OFFSET_FROM_EXTRUDER));
  2200. destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - (Y_PROBE_OFFSET_FROM_EXTRUDER));
  2201. destination[Z_AXIS] = current_position[Z_AXIS]; //z is already at the right height
  2202. feedrate = XY_TRAVEL_SPEED;
  2203. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2204. if (DEBUGGING(LEVELING)) {
  2205. DEBUG_POS("> Z_SAFE_HOMING > home_all_axis", current_position);
  2206. DEBUG_POS("> Z_SAFE_HOMING > home_all_axis", destination);
  2207. }
  2208. #endif
  2209. // Move in the XY plane
  2210. line_to_destination();
  2211. st_synchronize();
  2212. /**
  2213. * Update the current positions for XY, Z is still at least at
  2214. * MIN_Z_HEIGHT_FOR_HOMING height, no changes there.
  2215. */
  2216. current_position[X_AXIS] = destination[X_AXIS];
  2217. current_position[Y_AXIS] = destination[Y_AXIS];
  2218. // Home the Z axis
  2219. HOMEAXIS(Z);
  2220. }
  2221. else if (homeZ) { // Don't need to Home Z twice
  2222. // Let's see if X and Y are homed
  2223. if (axis_homed[X_AXIS] && axis_homed[Y_AXIS]) {
  2224. /**
  2225. * Make sure the Z probe is within the physical limits
  2226. * NOTE: This doesn't necessarily ensure the Z probe is also
  2227. * within the bed!
  2228. */
  2229. float cpx = current_position[X_AXIS], cpy = current_position[Y_AXIS];
  2230. if ( cpx >= X_MIN_POS - (X_PROBE_OFFSET_FROM_EXTRUDER)
  2231. && cpx <= X_MAX_POS - (X_PROBE_OFFSET_FROM_EXTRUDER)
  2232. && cpy >= Y_MIN_POS - (Y_PROBE_OFFSET_FROM_EXTRUDER)
  2233. && cpy <= Y_MAX_POS - (Y_PROBE_OFFSET_FROM_EXTRUDER)) {
  2234. // Home the Z axis
  2235. HOMEAXIS(Z);
  2236. }
  2237. else {
  2238. LCD_MESSAGEPGM(MSG_ZPROBE_OUT);
  2239. SERIAL_ECHO_START;
  2240. SERIAL_ECHOLNPGM(MSG_ZPROBE_OUT);
  2241. }
  2242. }
  2243. else {
  2244. axis_unhomed_error();
  2245. }
  2246. } // !home_all_axes && homeZ
  2247. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2248. if (DEBUGGING(LEVELING)) {
  2249. SERIAL_ECHOLNPGM("<<< Z_SAFE_HOMING");
  2250. }
  2251. #endif
  2252. #else // !Z_SAFE_HOMING
  2253. HOMEAXIS(Z);
  2254. #endif // !Z_SAFE_HOMING
  2255. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2256. if (DEBUGGING(LEVELING)) DEBUG_POS("> (home_all_axis || homeZ) > final", current_position);
  2257. #endif
  2258. } // home_all_axis || homeZ
  2259. #endif // Z_HOME_DIR < 0
  2260. sync_plan_position();
  2261. #endif // else DELTA
  2262. #if ENABLED(SCARA)
  2263. sync_plan_position_delta();
  2264. #endif
  2265. #if ENABLED(ENDSTOPS_ONLY_FOR_HOMING)
  2266. enable_endstops(false);
  2267. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2268. if (DEBUGGING(LEVELING)) {
  2269. SERIAL_ECHOLNPGM("ENDSTOPS_ONLY_FOR_HOMING enable_endstops(false)");
  2270. }
  2271. #endif
  2272. #endif
  2273. // For mesh leveling move back to Z=0
  2274. #if ENABLED(MESH_BED_LEVELING)
  2275. if (mbl_was_active && home_all_axis) {
  2276. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z;
  2277. sync_plan_position();
  2278. mbl.active = 1;
  2279. current_position[Z_AXIS] = 0.0;
  2280. set_destination_to_current();
  2281. feedrate = homing_feedrate[Z_AXIS];
  2282. line_to_destination();
  2283. st_synchronize();
  2284. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2285. if (DEBUGGING(LEVELING)) DEBUG_POS("mbl_was_active", current_position);
  2286. #endif
  2287. }
  2288. #endif
  2289. feedrate = saved_feedrate;
  2290. feedrate_multiplier = saved_feedrate_multiplier;
  2291. refresh_cmd_timeout();
  2292. endstops_hit_on_purpose(); // clear endstop hit flags
  2293. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2294. if (DEBUGGING(LEVELING)) {
  2295. SERIAL_ECHOLNPGM("<<< gcode_G28");
  2296. }
  2297. #endif
  2298. gcode_M114(); // Send end position to RepetierHost
  2299. }
  2300. #if ENABLED(MESH_BED_LEVELING)
  2301. enum MeshLevelingState { MeshReport, MeshStart, MeshNext, MeshSet, MeshSetZOffset };
  2302. /**
  2303. * G29: Mesh-based Z probe, probes a grid and produces a
  2304. * mesh to compensate for variable bed height
  2305. *
  2306. * Parameters With MESH_BED_LEVELING:
  2307. *
  2308. * S0 Produce a mesh report
  2309. * S1 Start probing mesh points
  2310. * S2 Probe the next mesh point
  2311. * S3 Xn Yn Zn.nn Manually modify a single point
  2312. * S4 Zn.nn Set z offset. Positive away from bed, negative closer to bed.
  2313. *
  2314. * The S0 report the points as below
  2315. *
  2316. * +----> X-axis 1-n
  2317. * |
  2318. * |
  2319. * v Y-axis 1-n
  2320. *
  2321. */
  2322. inline void gcode_G29() {
  2323. static int probe_point = -1;
  2324. MeshLevelingState state = code_seen('S') ? (MeshLevelingState)code_value_short() : MeshReport;
  2325. if (state < 0 || state > 4) {
  2326. SERIAL_PROTOCOLLNPGM("S out of range (0-4).");
  2327. return;
  2328. }
  2329. int ix, iy;
  2330. float z;
  2331. switch (state) {
  2332. case MeshReport:
  2333. if (mbl.active) {
  2334. SERIAL_PROTOCOLPGM("Num X,Y: ");
  2335. SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
  2336. SERIAL_PROTOCOLCHAR(',');
  2337. SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  2338. SERIAL_PROTOCOLPGM("\nZ search height: ");
  2339. SERIAL_PROTOCOL(MESH_HOME_SEARCH_Z);
  2340. SERIAL_PROTOCOLPGM("\nZ offset: ");
  2341. SERIAL_PROTOCOL_F(mbl.z_offset, 5);
  2342. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  2343. for (int y = 0; y < MESH_NUM_Y_POINTS; y++) {
  2344. for (int x = 0; x < MESH_NUM_X_POINTS; x++) {
  2345. SERIAL_PROTOCOLPGM(" ");
  2346. SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
  2347. }
  2348. SERIAL_EOL;
  2349. }
  2350. }
  2351. else
  2352. SERIAL_PROTOCOLLNPGM("Mesh bed leveling not active.");
  2353. break;
  2354. case MeshStart:
  2355. mbl.reset();
  2356. probe_point = 0;
  2357. enqueue_and_echo_commands_P(PSTR("G28\nG29 S2"));
  2358. break;
  2359. case MeshNext:
  2360. if (probe_point < 0) {
  2361. SERIAL_PROTOCOLLNPGM("Start mesh probing with \"G29 S1\" first.");
  2362. return;
  2363. }
  2364. if (probe_point == 0) {
  2365. // Set Z to a positive value before recording the first Z.
  2366. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z;
  2367. sync_plan_position();
  2368. }
  2369. else {
  2370. // For others, save the Z of the previous point, then raise Z again.
  2371. ix = (probe_point - 1) % (MESH_NUM_X_POINTS);
  2372. iy = (probe_point - 1) / (MESH_NUM_X_POINTS);
  2373. if (iy & 1) ix = (MESH_NUM_X_POINTS - 1) - ix; // zig-zag
  2374. mbl.set_z(ix, iy, current_position[Z_AXIS]);
  2375. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z;
  2376. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[X_AXIS] / 60, active_extruder);
  2377. st_synchronize();
  2378. }
  2379. // Is there another point to sample? Move there.
  2380. if (probe_point < (MESH_NUM_X_POINTS) * (MESH_NUM_Y_POINTS)) {
  2381. ix = probe_point % (MESH_NUM_X_POINTS);
  2382. iy = probe_point / (MESH_NUM_X_POINTS);
  2383. if (iy & 1) ix = (MESH_NUM_X_POINTS - 1) - ix; // zig-zag
  2384. current_position[X_AXIS] = mbl.get_x(ix);
  2385. current_position[Y_AXIS] = mbl.get_y(iy);
  2386. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[X_AXIS] / 60, active_extruder);
  2387. st_synchronize();
  2388. probe_point++;
  2389. }
  2390. else {
  2391. // After recording the last point, activate the mbl and home
  2392. SERIAL_PROTOCOLLNPGM("Mesh probing done.");
  2393. probe_point = -1;
  2394. mbl.active = 1;
  2395. enqueue_and_echo_commands_P(PSTR("G28"));
  2396. }
  2397. break;
  2398. case MeshSet:
  2399. if (code_seen('X')) {
  2400. ix = code_value_long() - 1;
  2401. if (ix < 0 || ix >= MESH_NUM_X_POINTS) {
  2402. SERIAL_PROTOCOLPGM("X out of range (1-" STRINGIFY(MESH_NUM_X_POINTS) ").\n");
  2403. return;
  2404. }
  2405. }
  2406. else {
  2407. SERIAL_PROTOCOLPGM("X not entered.\n");
  2408. return;
  2409. }
  2410. if (code_seen('Y')) {
  2411. iy = code_value_long() - 1;
  2412. if (iy < 0 || iy >= MESH_NUM_Y_POINTS) {
  2413. SERIAL_PROTOCOLPGM("Y out of range (1-" STRINGIFY(MESH_NUM_Y_POINTS) ").\n");
  2414. return;
  2415. }
  2416. }
  2417. else {
  2418. SERIAL_PROTOCOLPGM("Y not entered.\n");
  2419. return;
  2420. }
  2421. if (code_seen('Z')) {
  2422. z = code_value();
  2423. }
  2424. else {
  2425. SERIAL_PROTOCOLPGM("Z not entered.\n");
  2426. return;
  2427. }
  2428. mbl.z_values[iy][ix] = z;
  2429. break;
  2430. case MeshSetZOffset:
  2431. if (code_seen('Z')) {
  2432. z = code_value();
  2433. }
  2434. else {
  2435. SERIAL_PROTOCOLPGM("Z not entered.\n");
  2436. return;
  2437. }
  2438. mbl.z_offset = z;
  2439. } // switch(state)
  2440. }
  2441. #elif ENABLED(AUTO_BED_LEVELING_FEATURE)
  2442. void out_of_range_error(const char* p_edge) {
  2443. SERIAL_PROTOCOLPGM("?Probe ");
  2444. serialprintPGM(p_edge);
  2445. SERIAL_PROTOCOLLNPGM(" position out of range.");
  2446. }
  2447. /**
  2448. * G29: Detailed Z probe, probes the bed at 3 or more points.
  2449. * Will fail if the printer has not been homed with G28.
  2450. *
  2451. * Enhanced G29 Auto Bed Leveling Probe Routine
  2452. *
  2453. * Parameters With AUTO_BED_LEVELING_GRID:
  2454. *
  2455. * P Set the size of the grid that will be probed (P x P points).
  2456. * Not supported by non-linear delta printer bed leveling.
  2457. * Example: "G29 P4"
  2458. *
  2459. * S Set the XY travel speed between probe points (in mm/min)
  2460. *
  2461. * D Dry-Run mode. Just evaluate the bed Topology - Don't apply
  2462. * or clean the rotation Matrix. Useful to check the topology
  2463. * after a first run of G29.
  2464. *
  2465. * V Set the verbose level (0-4). Example: "G29 V3"
  2466. *
  2467. * T Generate a Bed Topology Report. Example: "G29 P5 T" for a detailed report.
  2468. * This is useful for manual bed leveling and finding flaws in the bed (to
  2469. * assist with part placement).
  2470. * Not supported by non-linear delta printer bed leveling.
  2471. *
  2472. * F Set the Front limit of the probing grid
  2473. * B Set the Back limit of the probing grid
  2474. * L Set the Left limit of the probing grid
  2475. * R Set the Right limit of the probing grid
  2476. *
  2477. * Global Parameters:
  2478. *
  2479. * E/e By default G29 will engage the Z probe, test the bed, then disengage.
  2480. * Include "E" to engage/disengage the Z probe for each sample.
  2481. * There's no extra effect if you have a fixed Z probe.
  2482. * Usage: "G29 E" or "G29 e"
  2483. *
  2484. */
  2485. inline void gcode_G29() {
  2486. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2487. if (DEBUGGING(LEVELING)) {
  2488. SERIAL_ECHOLNPGM("gcode_G29 >>>");
  2489. DEBUG_POS("", current_position);
  2490. }
  2491. #endif
  2492. // Don't allow auto-leveling without homing first
  2493. if (!axis_homed[X_AXIS] || !axis_homed[Y_AXIS]) {
  2494. axis_unhomed_error();
  2495. return;
  2496. }
  2497. int verbose_level = code_seen('V') ? code_value_short() : 1;
  2498. if (verbose_level < 0 || verbose_level > 4) {
  2499. SERIAL_ECHOLNPGM("?(V)erbose Level is implausible (0-4).");
  2500. return;
  2501. }
  2502. bool dryrun = code_seen('D'),
  2503. deploy_probe_for_each_reading = code_seen('E');
  2504. #if ENABLED(AUTO_BED_LEVELING_GRID)
  2505. #if DISABLED(DELTA)
  2506. bool do_topography_map = verbose_level > 2 || code_seen('T');
  2507. #endif
  2508. if (verbose_level > 0) {
  2509. SERIAL_PROTOCOLPGM("G29 Auto Bed Leveling\n");
  2510. if (dryrun) SERIAL_ECHOLNPGM("Running in DRY-RUN mode");
  2511. }
  2512. int auto_bed_leveling_grid_points = AUTO_BED_LEVELING_GRID_POINTS;
  2513. #if DISABLED(DELTA)
  2514. if (code_seen('P')) auto_bed_leveling_grid_points = code_value_short();
  2515. if (auto_bed_leveling_grid_points < 2) {
  2516. SERIAL_PROTOCOLPGM("?Number of probed (P)oints is implausible (2 minimum).\n");
  2517. return;
  2518. }
  2519. #endif
  2520. xy_travel_speed = code_seen('S') ? code_value_short() : XY_TRAVEL_SPEED;
  2521. int left_probe_bed_position = code_seen('L') ? code_value_short() : LEFT_PROBE_BED_POSITION,
  2522. right_probe_bed_position = code_seen('R') ? code_value_short() : RIGHT_PROBE_BED_POSITION,
  2523. front_probe_bed_position = code_seen('F') ? code_value_short() : FRONT_PROBE_BED_POSITION,
  2524. back_probe_bed_position = code_seen('B') ? code_value_short() : BACK_PROBE_BED_POSITION;
  2525. bool left_out_l = left_probe_bed_position < MIN_PROBE_X,
  2526. left_out = left_out_l || left_probe_bed_position > right_probe_bed_position - (MIN_PROBE_EDGE),
  2527. right_out_r = right_probe_bed_position > MAX_PROBE_X,
  2528. right_out = right_out_r || right_probe_bed_position < left_probe_bed_position + MIN_PROBE_EDGE,
  2529. front_out_f = front_probe_bed_position < MIN_PROBE_Y,
  2530. front_out = front_out_f || front_probe_bed_position > back_probe_bed_position - (MIN_PROBE_EDGE),
  2531. back_out_b = back_probe_bed_position > MAX_PROBE_Y,
  2532. back_out = back_out_b || back_probe_bed_position < front_probe_bed_position + MIN_PROBE_EDGE;
  2533. if (left_out || right_out || front_out || back_out) {
  2534. if (left_out) {
  2535. out_of_range_error(PSTR("(L)eft"));
  2536. left_probe_bed_position = left_out_l ? MIN_PROBE_X : right_probe_bed_position - (MIN_PROBE_EDGE);
  2537. }
  2538. if (right_out) {
  2539. out_of_range_error(PSTR("(R)ight"));
  2540. right_probe_bed_position = right_out_r ? MAX_PROBE_X : left_probe_bed_position + MIN_PROBE_EDGE;
  2541. }
  2542. if (front_out) {
  2543. out_of_range_error(PSTR("(F)ront"));
  2544. front_probe_bed_position = front_out_f ? MIN_PROBE_Y : back_probe_bed_position - (MIN_PROBE_EDGE);
  2545. }
  2546. if (back_out) {
  2547. out_of_range_error(PSTR("(B)ack"));
  2548. back_probe_bed_position = back_out_b ? MAX_PROBE_Y : front_probe_bed_position + MIN_PROBE_EDGE;
  2549. }
  2550. return;
  2551. }
  2552. #endif // AUTO_BED_LEVELING_GRID
  2553. #if ENABLED(Z_PROBE_SLED)
  2554. dock_sled(false); // engage (un-dock) the Z probe
  2555. #elif ENABLED(Z_PROBE_ALLEN_KEY) || (ENABLED(DELTA) && SERVO_LEVELING)
  2556. deploy_z_probe();
  2557. #endif
  2558. st_synchronize();
  2559. if (!dryrun) {
  2560. // make sure the bed_level_rotation_matrix is identity or the planner will get it wrong
  2561. plan_bed_level_matrix.set_to_identity();
  2562. #if ENABLED(DELTA)
  2563. reset_bed_level();
  2564. #else //!DELTA
  2565. //vector_3 corrected_position = plan_get_position_mm();
  2566. //corrected_position.debug("position before G29");
  2567. vector_3 uncorrected_position = plan_get_position();
  2568. //uncorrected_position.debug("position during G29");
  2569. current_position[X_AXIS] = uncorrected_position.x;
  2570. current_position[Y_AXIS] = uncorrected_position.y;
  2571. current_position[Z_AXIS] = uncorrected_position.z;
  2572. sync_plan_position();
  2573. #endif // !DELTA
  2574. }
  2575. setup_for_endstop_move();
  2576. feedrate = homing_feedrate[Z_AXIS];
  2577. #if ENABLED(AUTO_BED_LEVELING_GRID)
  2578. // probe at the points of a lattice grid
  2579. const int xGridSpacing = (right_probe_bed_position - left_probe_bed_position) / (auto_bed_leveling_grid_points - 1),
  2580. yGridSpacing = (back_probe_bed_position - front_probe_bed_position) / (auto_bed_leveling_grid_points - 1);
  2581. #if ENABLED(DELTA)
  2582. delta_grid_spacing[0] = xGridSpacing;
  2583. delta_grid_spacing[1] = yGridSpacing;
  2584. float z_offset = zprobe_zoffset;
  2585. if (code_seen(axis_codes[Z_AXIS])) z_offset += code_value();
  2586. #else // !DELTA
  2587. /**
  2588. * solve the plane equation ax + by + d = z
  2589. * A is the matrix with rows [x y 1] for all the probed points
  2590. * B is the vector of the Z positions
  2591. * the normal vector to the plane is formed by the coefficients of the
  2592. * plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  2593. * so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  2594. */
  2595. int abl2 = auto_bed_leveling_grid_points * auto_bed_leveling_grid_points;
  2596. double eqnAMatrix[abl2 * 3], // "A" matrix of the linear system of equations
  2597. eqnBVector[abl2], // "B" vector of Z points
  2598. mean = 0.0;
  2599. int8_t indexIntoAB[auto_bed_leveling_grid_points][auto_bed_leveling_grid_points];
  2600. #endif // !DELTA
  2601. int probePointCounter = 0;
  2602. bool zig = (auto_bed_leveling_grid_points & 1) ? true : false; //always end at [RIGHT_PROBE_BED_POSITION, BACK_PROBE_BED_POSITION]
  2603. for (int yCount = 0; yCount < auto_bed_leveling_grid_points; yCount++) {
  2604. double yProbe = front_probe_bed_position + yGridSpacing * yCount;
  2605. int xStart, xStop, xInc;
  2606. if (zig) {
  2607. xStart = 0;
  2608. xStop = auto_bed_leveling_grid_points;
  2609. xInc = 1;
  2610. }
  2611. else {
  2612. xStart = auto_bed_leveling_grid_points - 1;
  2613. xStop = -1;
  2614. xInc = -1;
  2615. }
  2616. zig = !zig;
  2617. for (int xCount = xStart; xCount != xStop; xCount += xInc) {
  2618. double xProbe = left_probe_bed_position + xGridSpacing * xCount;
  2619. // raise extruder
  2620. float measured_z,
  2621. z_before = probePointCounter ? Z_RAISE_BETWEEN_PROBINGS + current_position[Z_AXIS] : Z_RAISE_BEFORE_PROBING;
  2622. if (probePointCounter) {
  2623. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2624. if (DEBUGGING(LEVELING)) {
  2625. SERIAL_ECHOPAIR("z_before = (between) ", (float)(Z_RAISE_BETWEEN_PROBINGS + current_position[Z_AXIS]));
  2626. SERIAL_EOL;
  2627. }
  2628. #endif
  2629. }
  2630. else {
  2631. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2632. if (DEBUGGING(LEVELING)) {
  2633. SERIAL_ECHOPAIR("z_before = (before) ", (float)Z_RAISE_BEFORE_PROBING);
  2634. SERIAL_EOL;
  2635. }
  2636. #endif
  2637. }
  2638. #if ENABLED(DELTA)
  2639. // Avoid probing the corners (outside the round or hexagon print surface) on a delta printer.
  2640. float distance_from_center = sqrt(xProbe * xProbe + yProbe * yProbe);
  2641. if (distance_from_center > DELTA_PROBEABLE_RADIUS) continue;
  2642. #endif //DELTA
  2643. ProbeAction act;
  2644. if (deploy_probe_for_each_reading) // G29 E - Stow between probes
  2645. act = ProbeDeployAndStow;
  2646. else if (yCount == 0 && xCount == xStart)
  2647. act = ProbeDeploy;
  2648. else if (yCount == auto_bed_leveling_grid_points - 1 && xCount == xStop - xInc)
  2649. act = ProbeStow;
  2650. else
  2651. act = ProbeStay;
  2652. measured_z = probe_pt(xProbe, yProbe, z_before, act, verbose_level);
  2653. #if DISABLED(DELTA)
  2654. mean += measured_z;
  2655. eqnBVector[probePointCounter] = measured_z;
  2656. eqnAMatrix[probePointCounter + 0 * abl2] = xProbe;
  2657. eqnAMatrix[probePointCounter + 1 * abl2] = yProbe;
  2658. eqnAMatrix[probePointCounter + 2 * abl2] = 1;
  2659. indexIntoAB[xCount][yCount] = probePointCounter;
  2660. #else
  2661. bed_level[xCount][yCount] = measured_z + z_offset;
  2662. #endif
  2663. probePointCounter++;
  2664. idle();
  2665. } //xProbe
  2666. } //yProbe
  2667. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2668. if (DEBUGGING(LEVELING)) DEBUG_POS("> probing complete", current_position);
  2669. #endif
  2670. clean_up_after_endstop_move();
  2671. #if ENABLED(DELTA)
  2672. if (!dryrun) extrapolate_unprobed_bed_level();
  2673. print_bed_level();
  2674. #else // !DELTA
  2675. // solve lsq problem
  2676. double plane_equation_coefficients[3];
  2677. qr_solve(plane_equation_coefficients, abl2, 3, eqnAMatrix, eqnBVector);
  2678. mean /= abl2;
  2679. if (verbose_level) {
  2680. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  2681. SERIAL_PROTOCOL_F(plane_equation_coefficients[0], 8);
  2682. SERIAL_PROTOCOLPGM(" b: ");
  2683. SERIAL_PROTOCOL_F(plane_equation_coefficients[1], 8);
  2684. SERIAL_PROTOCOLPGM(" d: ");
  2685. SERIAL_PROTOCOL_F(plane_equation_coefficients[2], 8);
  2686. SERIAL_EOL;
  2687. if (verbose_level > 2) {
  2688. SERIAL_PROTOCOLPGM("Mean of sampled points: ");
  2689. SERIAL_PROTOCOL_F(mean, 8);
  2690. SERIAL_EOL;
  2691. }
  2692. }
  2693. if (!dryrun) set_bed_level_equation_lsq(plane_equation_coefficients);
  2694. // Show the Topography map if enabled
  2695. if (do_topography_map) {
  2696. SERIAL_PROTOCOLPGM(" \nBed Height Topography: \n");
  2697. SERIAL_PROTOCOLPGM(" +--- BACK --+\n");
  2698. SERIAL_PROTOCOLPGM(" | |\n");
  2699. SERIAL_PROTOCOLPGM(" L | (+) | R\n");
  2700. SERIAL_PROTOCOLPGM(" E | | I\n");
  2701. SERIAL_PROTOCOLPGM(" F | (-) N (+) | G\n");
  2702. SERIAL_PROTOCOLPGM(" T | | H\n");
  2703. SERIAL_PROTOCOLPGM(" | (-) | T\n");
  2704. SERIAL_PROTOCOLPGM(" | |\n");
  2705. SERIAL_PROTOCOLPGM(" O-- FRONT --+\n");
  2706. SERIAL_PROTOCOLPGM(" (0,0)\n");
  2707. float min_diff = 999;
  2708. for (int yy = auto_bed_leveling_grid_points - 1; yy >= 0; yy--) {
  2709. for (int xx = 0; xx < auto_bed_leveling_grid_points; xx++) {
  2710. int ind = indexIntoAB[xx][yy];
  2711. float diff = eqnBVector[ind] - mean;
  2712. float x_tmp = eqnAMatrix[ind + 0 * abl2],
  2713. y_tmp = eqnAMatrix[ind + 1 * abl2],
  2714. z_tmp = 0;
  2715. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp);
  2716. NOMORE(min_diff, eqnBVector[ind] - z_tmp);
  2717. if (diff >= 0.0)
  2718. SERIAL_PROTOCOLPGM(" +"); // Include + for column alignment
  2719. else
  2720. SERIAL_PROTOCOLCHAR(' ');
  2721. SERIAL_PROTOCOL_F(diff, 5);
  2722. } // xx
  2723. SERIAL_EOL;
  2724. } // yy
  2725. SERIAL_EOL;
  2726. if (verbose_level > 3) {
  2727. SERIAL_PROTOCOLPGM(" \nCorrected Bed Height vs. Bed Topology: \n");
  2728. for (int yy = auto_bed_leveling_grid_points - 1; yy >= 0; yy--) {
  2729. for (int xx = 0; xx < auto_bed_leveling_grid_points; xx++) {
  2730. int ind = indexIntoAB[xx][yy];
  2731. float x_tmp = eqnAMatrix[ind + 0 * abl2],
  2732. y_tmp = eqnAMatrix[ind + 1 * abl2],
  2733. z_tmp = 0;
  2734. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp);
  2735. float diff = eqnBVector[ind] - z_tmp - min_diff;
  2736. if (diff >= 0.0)
  2737. SERIAL_PROTOCOLPGM(" +");
  2738. // Include + for column alignment
  2739. else
  2740. SERIAL_PROTOCOLCHAR(' ');
  2741. SERIAL_PROTOCOL_F(diff, 5);
  2742. } // xx
  2743. SERIAL_EOL;
  2744. } // yy
  2745. SERIAL_EOL;
  2746. }
  2747. } //do_topography_map
  2748. #endif //!DELTA
  2749. #else // !AUTO_BED_LEVELING_GRID
  2750. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2751. if (DEBUGGING(LEVELING)) {
  2752. SERIAL_ECHOLNPGM("> 3-point Leveling");
  2753. }
  2754. #endif
  2755. // Actions for each probe
  2756. ProbeAction p1, p2, p3;
  2757. if (deploy_probe_for_each_reading)
  2758. p1 = p2 = p3 = ProbeDeployAndStow;
  2759. else
  2760. p1 = ProbeDeploy, p2 = ProbeStay, p3 = ProbeStow;
  2761. // Probe at 3 arbitrary points
  2762. float z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING, p1, verbose_level),
  2763. z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS, p2, verbose_level),
  2764. z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS, p3, verbose_level);
  2765. clean_up_after_endstop_move();
  2766. if (!dryrun) set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
  2767. #endif // !AUTO_BED_LEVELING_GRID
  2768. #if ENABLED(DELTA)
  2769. // Allen Key Probe for Delta
  2770. #if ENABLED(Z_PROBE_ALLEN_KEY) || SERVO_LEVELING
  2771. stow_z_probe();
  2772. #elif Z_RAISE_AFTER_PROBING > 0
  2773. raise_z_after_probing(); // ???
  2774. #endif
  2775. #else // !DELTA
  2776. if (verbose_level > 0)
  2777. plan_bed_level_matrix.debug(" \n\nBed Level Correction Matrix:");
  2778. if (!dryrun) {
  2779. /**
  2780. * Correct the Z height difference from Z probe position and nozzle tip position.
  2781. * The Z height on homing is measured by Z probe, but the Z probe is quite far
  2782. * from the nozzle. When the bed is uneven, this height must be corrected.
  2783. */
  2784. float x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER,
  2785. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER,
  2786. z_tmp = current_position[Z_AXIS],
  2787. real_z = st_get_axis_position_mm(Z_AXIS); //get the real Z (since plan_get_position is now correcting the plane)
  2788. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2789. if (DEBUGGING(LEVELING)) {
  2790. SERIAL_ECHOPAIR("> BEFORE apply_rotation_xyz > z_tmp = ", z_tmp);
  2791. SERIAL_EOL;
  2792. SERIAL_ECHOPAIR("> BEFORE apply_rotation_xyz > real_z = ", real_z);
  2793. SERIAL_EOL;
  2794. }
  2795. #endif
  2796. // Apply the correction sending the Z probe offset
  2797. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp);
  2798. /*
  2799. * Get the current Z position and send it to the planner.
  2800. *
  2801. * >> (z_tmp - real_z) : The rotated current Z minus the uncorrected Z
  2802. * (most recent plan_set_position/sync_plan_position)
  2803. *
  2804. * >> zprobe_zoffset : Z distance from nozzle to Z probe
  2805. * (set by default, M851, EEPROM, or Menu)
  2806. *
  2807. * >> Z_RAISE_AFTER_PROBING : The distance the Z probe will have lifted
  2808. * after the last probe
  2809. *
  2810. * >> Should home_offset[Z_AXIS] be included?
  2811. *
  2812. *
  2813. * Discussion: home_offset[Z_AXIS] was applied in G28 to set the
  2814. * starting Z. If Z is not tweaked in G29 -and- the Z probe in G29 is
  2815. * not actually "homing" Z... then perhaps it should not be included
  2816. * here. The purpose of home_offset[] is to adjust for inaccurate
  2817. * endstops, not for reasonably accurate probes. If it were added
  2818. * here, it could be seen as a compensating factor for the Z probe.
  2819. */
  2820. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2821. if (DEBUGGING(LEVELING)) {
  2822. SERIAL_ECHOPAIR("> AFTER apply_rotation_xyz > z_tmp = ", z_tmp);
  2823. SERIAL_EOL;
  2824. }
  2825. #endif
  2826. current_position[Z_AXIS] = -zprobe_zoffset + (z_tmp - real_z)
  2827. #if HAS_SERVO_ENDSTOPS || ENABLED(Z_PROBE_ALLEN_KEY) || ENABLED(Z_PROBE_SLED)
  2828. + Z_RAISE_AFTER_PROBING
  2829. #endif
  2830. ;
  2831. // current_position[Z_AXIS] += home_offset[Z_AXIS]; // The Z probe determines Z=0, not "Z home"
  2832. sync_plan_position();
  2833. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2834. if (DEBUGGING(LEVELING)) DEBUG_POS("> corrected Z in G29", current_position);
  2835. #endif
  2836. }
  2837. // Sled assembly for Cartesian bots
  2838. #if ENABLED(Z_PROBE_SLED)
  2839. dock_sled(true); // dock the sled
  2840. #elif Z_RAISE_AFTER_PROBING > 0
  2841. // Raise Z axis for non-delta and non servo based probes
  2842. #if !defined(HAS_SERVO_ENDSTOPS) && DISABLED(Z_PROBE_ALLEN_KEY) && DISABLED(Z_PROBE_SLED)
  2843. raise_z_after_probing();
  2844. #endif
  2845. #endif
  2846. #endif // !DELTA
  2847. #ifdef Z_PROBE_END_SCRIPT
  2848. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2849. if (DEBUGGING(LEVELING)) {
  2850. SERIAL_ECHO("Z Probe End Script: ");
  2851. SERIAL_ECHOLNPGM(Z_PROBE_END_SCRIPT);
  2852. }
  2853. #endif
  2854. enqueue_and_echo_commands_P(PSTR(Z_PROBE_END_SCRIPT));
  2855. #if ENABLED(HAS_Z_MIN_PROBE)
  2856. z_probe_is_active = false;
  2857. #endif
  2858. st_synchronize();
  2859. #endif
  2860. KEEPALIVE_STATE(IN_HANDLER);
  2861. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2862. if (DEBUGGING(LEVELING)) {
  2863. SERIAL_ECHOLNPGM("<<< gcode_G29");
  2864. }
  2865. #endif
  2866. gcode_M114(); // Send end position to RepetierHost
  2867. }
  2868. #if DISABLED(Z_PROBE_SLED) // could be avoided
  2869. /**
  2870. * G30: Do a single Z probe at the current XY
  2871. */
  2872. inline void gcode_G30() {
  2873. #if HAS_SERVO_ENDSTOPS
  2874. raise_z_for_servo();
  2875. #endif
  2876. deploy_z_probe(); // Engage Z Servo endstop if available. Z_PROBE_SLED is missed here.
  2877. st_synchronize();
  2878. // TODO: clear the leveling matrix or the planner will be set incorrectly
  2879. setup_for_endstop_move(); // Too late. Must be done before deploying.
  2880. feedrate = homing_feedrate[Z_AXIS];
  2881. run_z_probe();
  2882. SERIAL_PROTOCOLPGM("Bed X: ");
  2883. SERIAL_PROTOCOL(current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER + 0.0001);
  2884. SERIAL_PROTOCOLPGM(" Y: ");
  2885. SERIAL_PROTOCOL(current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER + 0.0001);
  2886. SERIAL_PROTOCOLPGM(" Z: ");
  2887. SERIAL_PROTOCOL(current_position[Z_AXIS] + 0.0001);
  2888. SERIAL_EOL;
  2889. clean_up_after_endstop_move(); // Too early. must be done after the stowing.
  2890. #if HAS_SERVO_ENDSTOPS
  2891. raise_z_for_servo();
  2892. #endif
  2893. stow_z_probe(false); // Retract Z Servo endstop if available. Z_PROBE_SLED is missed here.
  2894. gcode_M114(); // Send end position to RepetierHost
  2895. }
  2896. #endif //!Z_PROBE_SLED
  2897. #endif //AUTO_BED_LEVELING_FEATURE
  2898. /**
  2899. * G92: Set current position to given X Y Z E
  2900. */
  2901. inline void gcode_G92() {
  2902. if (!code_seen(axis_codes[E_AXIS]))
  2903. st_synchronize();
  2904. bool didXYZ = false;
  2905. for (int i = 0; i < NUM_AXIS; i++) {
  2906. if (code_seen(axis_codes[i])) {
  2907. float v = current_position[i] = code_value();
  2908. if (i == E_AXIS)
  2909. plan_set_e_position(v);
  2910. else
  2911. didXYZ = true;
  2912. }
  2913. }
  2914. if (didXYZ) {
  2915. #if ENABLED(DELTA) || ENABLED(SCARA)
  2916. sync_plan_position_delta();
  2917. #else
  2918. sync_plan_position();
  2919. #endif
  2920. }
  2921. }
  2922. #if ENABLED(ULTIPANEL)
  2923. /**
  2924. * M0: // M0 - Unconditional stop - Wait for user button press on LCD
  2925. * M1: // M1 - Conditional stop - Wait for user button press on LCD
  2926. */
  2927. inline void gcode_M0_M1() {
  2928. char* args = current_command_args;
  2929. millis_t codenum = 0;
  2930. bool hasP = false, hasS = false;
  2931. if (code_seen('P')) {
  2932. codenum = code_value_short(); // milliseconds to wait
  2933. hasP = codenum > 0;
  2934. }
  2935. if (code_seen('S')) {
  2936. codenum = code_value() * 1000; // seconds to wait
  2937. hasS = codenum > 0;
  2938. }
  2939. if (!hasP && !hasS && *args != '\0')
  2940. lcd_setstatus(args, true);
  2941. else {
  2942. LCD_MESSAGEPGM(MSG_USERWAIT);
  2943. #if ENABLED(LCD_PROGRESS_BAR) && PROGRESS_MSG_EXPIRE > 0
  2944. dontExpireStatus();
  2945. #endif
  2946. }
  2947. lcd_ignore_click();
  2948. st_synchronize();
  2949. refresh_cmd_timeout();
  2950. if (codenum > 0) {
  2951. codenum += previous_cmd_ms; // wait until this time for a click
  2952. KEEPALIVE_STATE(PAUSED_FOR_USER);
  2953. while (millis() < codenum && !lcd_clicked()) idle();
  2954. KEEPALIVE_STATE(IN_HANDLER);
  2955. lcd_ignore_click(false);
  2956. }
  2957. else {
  2958. if (!lcd_detected()) return;
  2959. KEEPALIVE_STATE(PAUSED_FOR_USER);
  2960. while (!lcd_clicked()) idle();
  2961. KEEPALIVE_STATE(IN_HANDLER);
  2962. }
  2963. if (IS_SD_PRINTING)
  2964. LCD_MESSAGEPGM(MSG_RESUMING);
  2965. else
  2966. LCD_MESSAGEPGM(WELCOME_MSG);
  2967. }
  2968. #endif // ULTIPANEL
  2969. /**
  2970. * M17: Enable power on all stepper motors
  2971. */
  2972. inline void gcode_M17() {
  2973. LCD_MESSAGEPGM(MSG_NO_MOVE);
  2974. enable_all_steppers();
  2975. }
  2976. #if ENABLED(SDSUPPORT)
  2977. /**
  2978. * M20: List SD card to serial output
  2979. */
  2980. inline void gcode_M20() {
  2981. SERIAL_PROTOCOLLNPGM(MSG_BEGIN_FILE_LIST);
  2982. card.ls();
  2983. SERIAL_PROTOCOLLNPGM(MSG_END_FILE_LIST);
  2984. }
  2985. /**
  2986. * M21: Init SD Card
  2987. */
  2988. inline void gcode_M21() {
  2989. card.initsd();
  2990. }
  2991. /**
  2992. * M22: Release SD Card
  2993. */
  2994. inline void gcode_M22() {
  2995. card.release();
  2996. }
  2997. /**
  2998. * M23: Open a file
  2999. */
  3000. inline void gcode_M23() {
  3001. card.openFile(current_command_args, true);
  3002. }
  3003. /**
  3004. * M24: Start SD Print
  3005. */
  3006. inline void gcode_M24() {
  3007. card.startFileprint();
  3008. print_job_timer.start();
  3009. }
  3010. /**
  3011. * M25: Pause SD Print
  3012. */
  3013. inline void gcode_M25() {
  3014. card.pauseSDPrint();
  3015. }
  3016. /**
  3017. * M26: Set SD Card file index
  3018. */
  3019. inline void gcode_M26() {
  3020. if (card.cardOK && code_seen('S'))
  3021. card.setIndex(code_value_short());
  3022. }
  3023. /**
  3024. * M27: Get SD Card status
  3025. */
  3026. inline void gcode_M27() {
  3027. card.getStatus();
  3028. }
  3029. /**
  3030. * M28: Start SD Write
  3031. */
  3032. inline void gcode_M28() {
  3033. card.openFile(current_command_args, false);
  3034. }
  3035. /**
  3036. * M29: Stop SD Write
  3037. * Processed in write to file routine above
  3038. */
  3039. inline void gcode_M29() {
  3040. // card.saving = false;
  3041. }
  3042. /**
  3043. * M30 <filename>: Delete SD Card file
  3044. */
  3045. inline void gcode_M30() {
  3046. if (card.cardOK) {
  3047. card.closefile();
  3048. card.removeFile(current_command_args);
  3049. }
  3050. }
  3051. #endif //SDSUPPORT
  3052. /**
  3053. * M31: Get the time since the start of SD Print (or last M109)
  3054. */
  3055. inline void gcode_M31() {
  3056. millis_t t = print_job_timer.duration();
  3057. int min = t / 60, sec = t % 60;
  3058. char time[30];
  3059. sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
  3060. SERIAL_ECHO_START;
  3061. SERIAL_ECHOLN(time);
  3062. lcd_setstatus(time);
  3063. autotempShutdown();
  3064. }
  3065. #if ENABLED(SDSUPPORT)
  3066. /**
  3067. * M32: Select file and start SD Print
  3068. */
  3069. inline void gcode_M32() {
  3070. if (card.sdprinting)
  3071. st_synchronize();
  3072. char* namestartpos = strchr(current_command_args, '!'); // Find ! to indicate filename string start.
  3073. if (!namestartpos)
  3074. namestartpos = current_command_args; // Default name position, 4 letters after the M
  3075. else
  3076. namestartpos++; //to skip the '!'
  3077. bool call_procedure = code_seen('P') && (seen_pointer < namestartpos);
  3078. if (card.cardOK) {
  3079. card.openFile(namestartpos, true, call_procedure);
  3080. if (code_seen('S') && seen_pointer < namestartpos) // "S" (must occur _before_ the filename!)
  3081. card.setIndex(code_value_short());
  3082. card.startFileprint();
  3083. // Procedure calls count as normal print time.
  3084. if (!call_procedure) print_job_timer.start();
  3085. }
  3086. }
  3087. #if ENABLED(LONG_FILENAME_HOST_SUPPORT)
  3088. /**
  3089. * M33: Get the long full path of a file or folder
  3090. *
  3091. * Parameters:
  3092. * <dospath> Case-insensitive DOS-style path to a file or folder
  3093. *
  3094. * Example:
  3095. * M33 miscel~1/armchair/armcha~1.gco
  3096. *
  3097. * Output:
  3098. * /Miscellaneous/Armchair/Armchair.gcode
  3099. */
  3100. inline void gcode_M33() {
  3101. card.printLongPath(current_command_args);
  3102. }
  3103. #endif
  3104. /**
  3105. * M928: Start SD Write
  3106. */
  3107. inline void gcode_M928() {
  3108. card.openLogFile(current_command_args);
  3109. }
  3110. #endif // SDSUPPORT
  3111. /**
  3112. * M42: Change pin status via GCode
  3113. *
  3114. * P<pin> Pin number (LED if omitted)
  3115. * S<byte> Pin status from 0 - 255
  3116. */
  3117. inline void gcode_M42() {
  3118. if (code_seen('S')) {
  3119. int pin_status = code_value_short();
  3120. if (pin_status < 0 || pin_status > 255) return;
  3121. int pin_number = code_seen('P') ? code_value_short() : LED_PIN;
  3122. if (pin_number < 0) return;
  3123. for (uint8_t i = 0; i < COUNT(sensitive_pins); i++)
  3124. if (pin_number == sensitive_pins[i]) return;
  3125. pinMode(pin_number, OUTPUT);
  3126. digitalWrite(pin_number, pin_status);
  3127. analogWrite(pin_number, pin_status);
  3128. #if FAN_COUNT > 0
  3129. switch (pin_number) {
  3130. #if HAS_FAN0
  3131. case FAN_PIN: fanSpeeds[0] = pin_status; break;
  3132. #endif
  3133. #if HAS_FAN1
  3134. case FAN1_PIN: fanSpeeds[1] = pin_status; break;
  3135. #endif
  3136. #if HAS_FAN2
  3137. case FAN2_PIN: fanSpeeds[2] = pin_status; break;
  3138. #endif
  3139. }
  3140. #endif
  3141. } // code_seen('S')
  3142. }
  3143. #if ENABLED(AUTO_BED_LEVELING_FEATURE) && ENABLED(Z_MIN_PROBE_REPEATABILITY_TEST)
  3144. /**
  3145. * This is redundant since the SanityCheck.h already checks for a valid
  3146. * Z_MIN_PROBE_PIN, but here for clarity.
  3147. */
  3148. #if ENABLED(Z_MIN_PROBE_ENDSTOP)
  3149. #if !HAS_Z_PROBE
  3150. #error You must define Z_MIN_PROBE_PIN to enable Z probe repeatability calculation.
  3151. #endif
  3152. #elif !HAS_Z_MIN
  3153. #error You must define Z_MIN_PIN to enable Z probe repeatability calculation.
  3154. #endif
  3155. /**
  3156. * M48: Z probe repeatability measurement function.
  3157. *
  3158. * Usage:
  3159. * M48 <P#> <X#> <Y#> <V#> <E> <L#>
  3160. * P = Number of sampled points (4-50, default 10)
  3161. * X = Sample X position
  3162. * Y = Sample Y position
  3163. * V = Verbose level (0-4, default=1)
  3164. * E = Engage Z probe for each reading
  3165. * L = Number of legs of movement before probe
  3166. * S = Schizoid (Or Star if you prefer)
  3167. *
  3168. * This function assumes the bed has been homed. Specifically, that a G28 command
  3169. * as been issued prior to invoking the M48 Z probe repeatability measurement function.
  3170. * Any information generated by a prior G29 Bed leveling command will be lost and need to be
  3171. * regenerated.
  3172. */
  3173. inline void gcode_M48() {
  3174. if (!axis_homed[X_AXIS] || !axis_homed[Y_AXIS] || !axis_homed[Z_AXIS]) {
  3175. axis_unhomed_error();
  3176. return;
  3177. }
  3178. double sum = 0.0, mean = 0.0, sigma = 0.0, sample_set[50];
  3179. int8_t verbose_level = 1, n_samples = 10, n_legs = 0, schizoid_flag = 0;
  3180. if (code_seen('V')) {
  3181. verbose_level = code_value_short();
  3182. if (verbose_level < 0 || verbose_level > 4) {
  3183. SERIAL_PROTOCOLPGM("?Verbose Level not plausible (0-4).\n");
  3184. return;
  3185. }
  3186. }
  3187. if (verbose_level > 0)
  3188. SERIAL_PROTOCOLPGM("M48 Z-Probe Repeatability test\n");
  3189. if (code_seen('P')) {
  3190. n_samples = code_value_short();
  3191. if (n_samples < 4 || n_samples > 50) {
  3192. SERIAL_PROTOCOLPGM("?Sample size not plausible (4-50).\n");
  3193. return;
  3194. }
  3195. }
  3196. float X_current = current_position[X_AXIS],
  3197. Y_current = current_position[Y_AXIS],
  3198. Z_current = current_position[Z_AXIS],
  3199. X_probe_location = X_current + X_PROBE_OFFSET_FROM_EXTRUDER,
  3200. Y_probe_location = Y_current + Y_PROBE_OFFSET_FROM_EXTRUDER,
  3201. Z_start_location = Z_current + Z_RAISE_BEFORE_PROBING;
  3202. bool deploy_probe_for_each_reading = code_seen('E');
  3203. if (code_seen('X')) {
  3204. X_probe_location = code_value();
  3205. #if DISABLED(DELTA)
  3206. if (X_probe_location < MIN_PROBE_X || X_probe_location > MAX_PROBE_X) {
  3207. out_of_range_error(PSTR("X"));
  3208. return;
  3209. }
  3210. #endif
  3211. }
  3212. if (code_seen('Y')) {
  3213. Y_probe_location = code_value();
  3214. #if DISABLED(DELTA)
  3215. if (Y_probe_location < MIN_PROBE_Y || Y_probe_location > MAX_PROBE_Y) {
  3216. out_of_range_error(PSTR("Y"));
  3217. return;
  3218. }
  3219. #endif
  3220. }
  3221. #if ENABLED(DELTA)
  3222. if (sqrt(X_probe_location * X_probe_location + Y_probe_location * Y_probe_location) > DELTA_PROBEABLE_RADIUS) {
  3223. SERIAL_PROTOCOLPGM("? (X,Y) location outside of probeable radius.\n");
  3224. return;
  3225. }
  3226. #endif
  3227. bool seen_L = code_seen('L');
  3228. if (seen_L) {
  3229. n_legs = code_value_short();
  3230. if (n_legs < 0 || n_legs > 15) {
  3231. SERIAL_PROTOCOLPGM("?Number of legs in movement not plausible (0-15).\n");
  3232. return;
  3233. }
  3234. if (n_legs == 1) n_legs = 2;
  3235. }
  3236. if (code_seen('S')) {
  3237. schizoid_flag++;
  3238. if (!seen_L) n_legs = 7;
  3239. }
  3240. /**
  3241. * Now get everything to the specified probe point So we can safely do a
  3242. * probe to get us close to the bed. If the Z-Axis is far from the bed,
  3243. * we don't want to use that as a starting point for each probe.
  3244. */
  3245. if (verbose_level > 2)
  3246. SERIAL_PROTOCOLPGM("Positioning the probe...\n");
  3247. #if ENABLED(DELTA)
  3248. // we don't do bed level correction in M48 because we want the raw data when we probe
  3249. reset_bed_level();
  3250. #else
  3251. // we don't do bed level correction in M48 because we want the raw data when we probe
  3252. plan_bed_level_matrix.set_to_identity();
  3253. #endif
  3254. if (Z_start_location < Z_RAISE_BEFORE_PROBING * 2.0)
  3255. do_blocking_move_to_z(Z_start_location);
  3256. do_blocking_move_to_xy(X_probe_location - X_PROBE_OFFSET_FROM_EXTRUDER, Y_probe_location - Y_PROBE_OFFSET_FROM_EXTRUDER);
  3257. /**
  3258. * OK, do the initial probe to get us close to the bed.
  3259. * Then retrace the right amount and use that in subsequent probes
  3260. */
  3261. setup_for_endstop_move();
  3262. probe_pt(X_probe_location, Y_probe_location, Z_RAISE_BEFORE_PROBING,
  3263. deploy_probe_for_each_reading ? ProbeDeployAndStow : ProbeDeploy,
  3264. verbose_level);
  3265. raise_z_after_probing();
  3266. for (uint8_t n = 0; n < n_samples; n++) {
  3267. randomSeed(millis());
  3268. delay(500);
  3269. if (n_legs) {
  3270. float radius, angle = random(0.0, 360.0);
  3271. int dir = (random(0, 10) > 5.0) ? -1 : 1; // clockwise or counter clockwise
  3272. radius = random(
  3273. #if ENABLED(DELTA)
  3274. DELTA_PROBEABLE_RADIUS / 8, DELTA_PROBEABLE_RADIUS / 3
  3275. #else
  3276. 5, X_MAX_LENGTH / 8
  3277. #endif
  3278. );
  3279. if (verbose_level > 3) {
  3280. SERIAL_ECHOPAIR("Starting radius: ", radius);
  3281. SERIAL_ECHOPAIR(" angle: ", angle);
  3282. delay(100);
  3283. if (dir > 0)
  3284. SERIAL_ECHO(" Direction: Counter Clockwise \n");
  3285. else
  3286. SERIAL_ECHO(" Direction: Clockwise \n");
  3287. delay(100);
  3288. }
  3289. for (uint8_t l = 0; l < n_legs - 1; l++) {
  3290. double delta_angle;
  3291. if (schizoid_flag)
  3292. // The points of a 5 point star are 72 degrees apart. We need to
  3293. // skip a point and go to the next one on the star.
  3294. delta_angle = dir * 2.0 * 72.0;
  3295. else
  3296. // If we do this line, we are just trying to move further
  3297. // around the circle.
  3298. delta_angle = dir * (float) random(25, 45);
  3299. angle += delta_angle;
  3300. while (angle > 360.0) // We probably do not need to keep the angle between 0 and 2*PI, but the
  3301. angle -= 360.0; // Arduino documentation says the trig functions should not be given values
  3302. while (angle < 0.0) // outside of this range. It looks like they behave correctly with
  3303. angle += 360.0; // numbers outside of the range, but just to be safe we clamp them.
  3304. X_current = X_probe_location - X_PROBE_OFFSET_FROM_EXTRUDER + cos(RADIANS(angle)) * radius;
  3305. Y_current = Y_probe_location - Y_PROBE_OFFSET_FROM_EXTRUDER + sin(RADIANS(angle)) * radius;
  3306. #if DISABLED(DELTA)
  3307. X_current = constrain(X_current, X_MIN_POS, X_MAX_POS);
  3308. Y_current = constrain(Y_current, Y_MIN_POS, Y_MAX_POS);
  3309. #else
  3310. // If we have gone out too far, we can do a simple fix and scale the numbers
  3311. // back in closer to the origin.
  3312. while (sqrt(X_current * X_current + Y_current * Y_current) > DELTA_PROBEABLE_RADIUS) {
  3313. X_current /= 1.25;
  3314. Y_current /= 1.25;
  3315. if (verbose_level > 3) {
  3316. SERIAL_ECHOPAIR("Pulling point towards center:", X_current);
  3317. SERIAL_ECHOPAIR(", ", Y_current);
  3318. SERIAL_EOL;
  3319. delay(50);
  3320. }
  3321. }
  3322. #endif
  3323. if (verbose_level > 3) {
  3324. SERIAL_PROTOCOL("Going to:");
  3325. SERIAL_ECHOPAIR("x: ", X_current);
  3326. SERIAL_ECHOPAIR("y: ", Y_current);
  3327. SERIAL_ECHOPAIR(" z: ", current_position[Z_AXIS]);
  3328. SERIAL_EOL;
  3329. delay(55);
  3330. }
  3331. do_blocking_move_to_xy(X_current, Y_current);
  3332. } // n_legs loop
  3333. } // n_legs
  3334. /**
  3335. * We don't really have to do this move, but if we don't we can see a
  3336. * funny shift in the Z Height because the user might not have the
  3337. * Z_RAISE_BEFORE_PROBING height identical to the Z_RAISE_BETWEEN_PROBING
  3338. * height. This gets us back to the probe location at the same height that
  3339. * we have been running around the circle at.
  3340. */
  3341. do_blocking_move_to_xy(X_probe_location - X_PROBE_OFFSET_FROM_EXTRUDER, Y_probe_location - Y_PROBE_OFFSET_FROM_EXTRUDER);
  3342. if (deploy_probe_for_each_reading)
  3343. sample_set[n] = probe_pt(X_probe_location, Y_probe_location, Z_RAISE_BEFORE_PROBING, ProbeDeployAndStow, verbose_level);
  3344. else {
  3345. if (n == n_samples - 1)
  3346. sample_set[n] = probe_pt(X_probe_location, Y_probe_location, Z_RAISE_BEFORE_PROBING, ProbeStow, verbose_level); else
  3347. sample_set[n] = probe_pt(X_probe_location, Y_probe_location, Z_RAISE_BEFORE_PROBING, ProbeStay, verbose_level);
  3348. }
  3349. /**
  3350. * Get the current mean for the data points we have so far
  3351. */
  3352. sum = 0.0;
  3353. for (uint8_t j = 0; j <= n; j++) sum += sample_set[j];
  3354. mean = sum / (n + 1);
  3355. /**
  3356. * Now, use that mean to calculate the standard deviation for the
  3357. * data points we have so far
  3358. */
  3359. sum = 0.0;
  3360. for (uint8_t j = 0; j <= n; j++) {
  3361. float ss = sample_set[j] - mean;
  3362. sum += ss * ss;
  3363. }
  3364. sigma = sqrt(sum / (n + 1));
  3365. if (verbose_level > 1) {
  3366. SERIAL_PROTOCOL(n + 1);
  3367. SERIAL_PROTOCOLPGM(" of ");
  3368. SERIAL_PROTOCOL((int)n_samples);
  3369. SERIAL_PROTOCOLPGM(" z: ");
  3370. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
  3371. delay(50);
  3372. if (verbose_level > 2) {
  3373. SERIAL_PROTOCOLPGM(" mean: ");
  3374. SERIAL_PROTOCOL_F(mean, 6);
  3375. SERIAL_PROTOCOLPGM(" sigma: ");
  3376. SERIAL_PROTOCOL_F(sigma, 6);
  3377. }
  3378. }
  3379. if (verbose_level > 0) SERIAL_EOL;
  3380. delay(50);
  3381. do_blocking_move_to_z(current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  3382. } // End of probe loop code
  3383. // raise_z_after_probing();
  3384. if (verbose_level > 0) {
  3385. SERIAL_PROTOCOLPGM("Mean: ");
  3386. SERIAL_PROTOCOL_F(mean, 6);
  3387. SERIAL_EOL;
  3388. delay(25);
  3389. }
  3390. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  3391. SERIAL_PROTOCOL_F(sigma, 6);
  3392. SERIAL_EOL; SERIAL_EOL;
  3393. delay(25);
  3394. clean_up_after_endstop_move();
  3395. gcode_M114(); // Send end position to RepetierHost
  3396. }
  3397. #endif // AUTO_BED_LEVELING_FEATURE && Z_MIN_PROBE_REPEATABILITY_TEST
  3398. /**
  3399. * M75: Start print timer
  3400. */
  3401. inline void gcode_M75() {
  3402. print_job_timer.start();
  3403. }
  3404. /**
  3405. * M76: Pause print timer
  3406. */
  3407. inline void gcode_M76() {
  3408. print_job_timer.pause();
  3409. }
  3410. /**
  3411. * M77: Stop print timer
  3412. */
  3413. inline void gcode_M77() {
  3414. print_job_timer.stop();
  3415. }
  3416. /**
  3417. * M104: Set hot end temperature
  3418. */
  3419. inline void gcode_M104() {
  3420. if (setTargetedHotend(104)) return;
  3421. if (DEBUGGING(DRYRUN)) return;
  3422. if (code_seen('S')) {
  3423. float temp = code_value();
  3424. setTargetHotend(temp, target_extruder);
  3425. #if ENABLED(DUAL_X_CARRIAGE)
  3426. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && target_extruder == 0)
  3427. setTargetHotend1(temp == 0.0 ? 0.0 : temp + duplicate_extruder_temp_offset);
  3428. #endif
  3429. /**
  3430. * We use half EXTRUDE_MINTEMP here to allow nozzles to be put into hot
  3431. * stand by mode, for instance in a dual extruder setup, without affecting
  3432. * the running print timer.
  3433. */
  3434. if (temp <= (EXTRUDE_MINTEMP)/2) {
  3435. print_job_timer.stop();
  3436. LCD_MESSAGEPGM(WELCOME_MSG);
  3437. }
  3438. /**
  3439. * We do not check if the timer is already running because this check will
  3440. * be done for us inside the Stopwatch::start() method thus a running timer
  3441. * will not restart.
  3442. */
  3443. else print_job_timer.start();
  3444. if (temp > degHotend(target_extruder)) LCD_MESSAGEPGM(MSG_HEATING);
  3445. }
  3446. }
  3447. #if HAS_TEMP_HOTEND || HAS_TEMP_BED
  3448. void print_heaterstates() {
  3449. #if HAS_TEMP_HOTEND
  3450. SERIAL_PROTOCOLPGM(" T:");
  3451. SERIAL_PROTOCOL_F(degHotend(target_extruder), 1);
  3452. SERIAL_PROTOCOLPGM(" /");
  3453. SERIAL_PROTOCOL_F(degTargetHotend(target_extruder), 1);
  3454. #endif
  3455. #if HAS_TEMP_BED
  3456. SERIAL_PROTOCOLPGM(" B:");
  3457. SERIAL_PROTOCOL_F(degBed(), 1);
  3458. SERIAL_PROTOCOLPGM(" /");
  3459. SERIAL_PROTOCOL_F(degTargetBed(), 1);
  3460. #endif
  3461. #if EXTRUDERS > 1
  3462. for (int8_t e = 0; e < EXTRUDERS; ++e) {
  3463. SERIAL_PROTOCOLPGM(" T");
  3464. SERIAL_PROTOCOL(e);
  3465. SERIAL_PROTOCOLCHAR(':');
  3466. SERIAL_PROTOCOL_F(degHotend(e), 1);
  3467. SERIAL_PROTOCOLPGM(" /");
  3468. SERIAL_PROTOCOL_F(degTargetHotend(e), 1);
  3469. }
  3470. #endif
  3471. #if HAS_TEMP_BED
  3472. SERIAL_PROTOCOLPGM(" B@:");
  3473. #ifdef BED_WATTS
  3474. SERIAL_PROTOCOL(((BED_WATTS) * getHeaterPower(-1)) / 127);
  3475. SERIAL_PROTOCOLCHAR('W');
  3476. #else
  3477. SERIAL_PROTOCOL(getHeaterPower(-1));
  3478. #endif
  3479. #endif
  3480. SERIAL_PROTOCOLPGM(" @:");
  3481. #ifdef EXTRUDER_WATTS
  3482. SERIAL_PROTOCOL(((EXTRUDER_WATTS) * getHeaterPower(target_extruder)) / 127);
  3483. SERIAL_PROTOCOLCHAR('W');
  3484. #else
  3485. SERIAL_PROTOCOL(getHeaterPower(target_extruder));
  3486. #endif
  3487. #if EXTRUDERS > 1
  3488. for (int8_t e = 0; e < EXTRUDERS; ++e) {
  3489. SERIAL_PROTOCOLPGM(" @");
  3490. SERIAL_PROTOCOL(e);
  3491. SERIAL_PROTOCOLCHAR(':');
  3492. #ifdef EXTRUDER_WATTS
  3493. SERIAL_PROTOCOL(((EXTRUDER_WATTS) * getHeaterPower(e)) / 127);
  3494. SERIAL_PROTOCOLCHAR('W');
  3495. #else
  3496. SERIAL_PROTOCOL(getHeaterPower(e));
  3497. #endif
  3498. }
  3499. #endif
  3500. #if ENABLED(SHOW_TEMP_ADC_VALUES)
  3501. #if HAS_TEMP_BED
  3502. SERIAL_PROTOCOLPGM(" ADC B:");
  3503. SERIAL_PROTOCOL_F(degBed(), 1);
  3504. SERIAL_PROTOCOLPGM("C->");
  3505. SERIAL_PROTOCOL_F(rawBedTemp() / OVERSAMPLENR, 0);
  3506. #endif
  3507. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  3508. SERIAL_PROTOCOLPGM(" T");
  3509. SERIAL_PROTOCOL(cur_extruder);
  3510. SERIAL_PROTOCOLCHAR(':');
  3511. SERIAL_PROTOCOL_F(degHotend(cur_extruder), 1);
  3512. SERIAL_PROTOCOLPGM("C->");
  3513. SERIAL_PROTOCOL_F(rawHotendTemp(cur_extruder) / OVERSAMPLENR, 0);
  3514. }
  3515. #endif
  3516. }
  3517. #endif
  3518. /**
  3519. * M105: Read hot end and bed temperature
  3520. */
  3521. inline void gcode_M105() {
  3522. if (setTargetedHotend(105)) return;
  3523. #if HAS_TEMP_HOTEND || HAS_TEMP_BED
  3524. SERIAL_PROTOCOLPGM(MSG_OK);
  3525. print_heaterstates();
  3526. #else // !HAS_TEMP_HOTEND && !HAS_TEMP_BED
  3527. SERIAL_ERROR_START;
  3528. SERIAL_ERRORLNPGM(MSG_ERR_NO_THERMISTORS);
  3529. #endif
  3530. SERIAL_EOL;
  3531. }
  3532. #if FAN_COUNT > 0
  3533. /**
  3534. * M106: Set Fan Speed
  3535. *
  3536. * S<int> Speed between 0-255
  3537. * P<index> Fan index, if more than one fan
  3538. */
  3539. inline void gcode_M106() {
  3540. uint16_t s = code_seen('S') ? code_value_short() : 255,
  3541. p = code_seen('P') ? code_value_short() : 0;
  3542. NOMORE(s, 255);
  3543. if (p < FAN_COUNT) fanSpeeds[p] = s;
  3544. }
  3545. /**
  3546. * M107: Fan Off
  3547. */
  3548. inline void gcode_M107() {
  3549. uint16_t p = code_seen('P') ? code_value_short() : 0;
  3550. if (p < FAN_COUNT) fanSpeeds[p] = 0;
  3551. }
  3552. #endif // FAN_COUNT > 0
  3553. /**
  3554. * M109: Sxxx Wait for extruder(s) to reach temperature. Waits only when heating.
  3555. * Rxxx Wait for extruder(s) to reach temperature. Waits when heating and cooling.
  3556. */
  3557. inline void gcode_M109() {
  3558. bool no_wait_for_cooling = true;
  3559. if (setTargetedHotend(109)) return;
  3560. if (DEBUGGING(DRYRUN)) return;
  3561. no_wait_for_cooling = code_seen('S');
  3562. if (no_wait_for_cooling || code_seen('R')) {
  3563. float temp = code_value();
  3564. setTargetHotend(temp, target_extruder);
  3565. #if ENABLED(DUAL_X_CARRIAGE)
  3566. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && target_extruder == 0)
  3567. setTargetHotend1(temp == 0.0 ? 0.0 : temp + duplicate_extruder_temp_offset);
  3568. #endif
  3569. /**
  3570. * We use half EXTRUDE_MINTEMP here to allow nozzles to be put into hot
  3571. * stand by mode, for instance in a dual extruder setup, without affecting
  3572. * the running print timer.
  3573. */
  3574. if (temp <= (EXTRUDE_MINTEMP)/2) {
  3575. print_job_timer.stop();
  3576. LCD_MESSAGEPGM(WELCOME_MSG);
  3577. }
  3578. /**
  3579. * We do not check if the timer is already running because this check will
  3580. * be done for us inside the Stopwatch::start() method thus a running timer
  3581. * will not restart.
  3582. */
  3583. else print_job_timer.start();
  3584. if (temp > degHotend(target_extruder)) LCD_MESSAGEPGM(MSG_HEATING);
  3585. }
  3586. #if ENABLED(AUTOTEMP)
  3587. autotemp_enabled = code_seen('F');
  3588. if (autotemp_enabled) autotemp_factor = code_value();
  3589. if (code_seen('S')) autotemp_min = code_value();
  3590. if (code_seen('B')) autotemp_max = code_value();
  3591. #endif
  3592. // Exit if the temperature is above target and not waiting for cooling
  3593. if (no_wait_for_cooling && !isHeatingHotend(target_extruder)) return;
  3594. // Prevents a wait-forever situation if R is misused i.e. M109 R0
  3595. // Try to calculate a ballpark safe margin by halving EXTRUDE_MINTEMP
  3596. if (degTargetHotend(target_extruder) < (EXTRUDE_MINTEMP)/2) return;
  3597. #ifdef TEMP_RESIDENCY_TIME
  3598. long residency_start_ms = -1;
  3599. // Loop until the temperature has stabilized
  3600. #define TEMP_CONDITIONS (residency_start_ms < 0 || now < residency_start_ms + (TEMP_RESIDENCY_TIME) * 1000UL)
  3601. #else
  3602. // Loop until the temperature is very close target
  3603. #define TEMP_CONDITIONS (isHeatingHotend(target_extruder))
  3604. #endif //TEMP_RESIDENCY_TIME
  3605. cancel_heatup = false;
  3606. millis_t now = millis(), next_temp_ms = now + 1000UL;
  3607. while (!cancel_heatup && TEMP_CONDITIONS) {
  3608. now = millis();
  3609. if (now > next_temp_ms) { //Print temp & remaining time every 1s while waiting
  3610. next_temp_ms = now + 1000UL;
  3611. #if HAS_TEMP_HOTEND || HAS_TEMP_BED
  3612. print_heaterstates();
  3613. #endif
  3614. #ifdef TEMP_RESIDENCY_TIME
  3615. SERIAL_PROTOCOLPGM(" W:");
  3616. if (residency_start_ms >= 0) {
  3617. long rem = (((TEMP_RESIDENCY_TIME) * 1000UL) - (now - residency_start_ms)) / 1000UL;
  3618. SERIAL_PROTOCOLLN(rem);
  3619. }
  3620. else {
  3621. SERIAL_PROTOCOLLNPGM("?");
  3622. }
  3623. #else
  3624. SERIAL_EOL;
  3625. #endif
  3626. }
  3627. idle();
  3628. refresh_cmd_timeout(); // to prevent stepper_inactive_time from running out
  3629. #ifdef TEMP_RESIDENCY_TIME
  3630. // Start the TEMP_RESIDENCY_TIME timer when we reach target temp for the first time.
  3631. // Restart the timer whenever the temperature falls outside the hysteresis.
  3632. if (labs(degHotend(target_extruder) - degTargetHotend(target_extruder)) > ((residency_start_ms < 0) ? TEMP_WINDOW : TEMP_HYSTERESIS))
  3633. residency_start_ms = millis();
  3634. #endif //TEMP_RESIDENCY_TIME
  3635. } // while(!cancel_heatup && TEMP_CONDITIONS)
  3636. LCD_MESSAGEPGM(MSG_HEATING_COMPLETE);
  3637. }
  3638. #if HAS_TEMP_BED
  3639. /**
  3640. * M190: Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  3641. * Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  3642. */
  3643. inline void gcode_M190() {
  3644. if (DEBUGGING(DRYRUN)) return;
  3645. LCD_MESSAGEPGM(MSG_BED_HEATING);
  3646. bool no_wait_for_cooling = code_seen('S');
  3647. if (no_wait_for_cooling || code_seen('R'))
  3648. setTargetBed(code_value());
  3649. // Exit if the temperature is above target and not waiting for cooling
  3650. if (no_wait_for_cooling && !isHeatingBed()) return;
  3651. cancel_heatup = false;
  3652. millis_t now = millis(), next_temp_ms = now + 1000UL;
  3653. while (!cancel_heatup && isHeatingBed()) {
  3654. millis_t now = millis();
  3655. if (now > next_temp_ms) { //Print Temp Reading every 1 second while heating up.
  3656. next_temp_ms = now + 1000UL;
  3657. print_heaterstates();
  3658. SERIAL_EOL;
  3659. }
  3660. idle();
  3661. refresh_cmd_timeout(); // to prevent stepper_inactive_time from running out
  3662. }
  3663. LCD_MESSAGEPGM(MSG_BED_DONE);
  3664. }
  3665. #endif // HAS_TEMP_BED
  3666. /**
  3667. * M110: Set Current Line Number
  3668. */
  3669. inline void gcode_M110() {
  3670. if (code_seen('N')) gcode_N = code_value_long();
  3671. }
  3672. /**
  3673. * M111: Set the debug level
  3674. */
  3675. inline void gcode_M111() {
  3676. marlin_debug_flags = code_seen('S') ? code_value_short() : DEBUG_NONE;
  3677. const static char str_debug_1[] PROGMEM = MSG_DEBUG_ECHO;
  3678. const static char str_debug_2[] PROGMEM = MSG_DEBUG_INFO;
  3679. const static char str_debug_4[] PROGMEM = MSG_DEBUG_ERRORS;
  3680. const static char str_debug_8[] PROGMEM = MSG_DEBUG_DRYRUN;
  3681. const static char str_debug_16[] PROGMEM = MSG_DEBUG_COMMUNICATION;
  3682. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3683. const static char str_debug_32[] PROGMEM = MSG_DEBUG_LEVELING;
  3684. #endif
  3685. const static char* const debug_strings[] PROGMEM = {
  3686. str_debug_1, str_debug_2, str_debug_4, str_debug_8, str_debug_16,
  3687. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3688. str_debug_32
  3689. #endif
  3690. };
  3691. SERIAL_ECHO_START;
  3692. SERIAL_ECHOPGM(MSG_DEBUG_PREFIX);
  3693. if (marlin_debug_flags) {
  3694. uint8_t comma = 0;
  3695. for (uint8_t i = 0; i < COUNT(debug_strings); i++) {
  3696. if (TEST(marlin_debug_flags, i)) {
  3697. if (comma++) SERIAL_CHAR(',');
  3698. serialprintPGM((char*)pgm_read_word(&(debug_strings[i])));
  3699. }
  3700. }
  3701. }
  3702. else {
  3703. SERIAL_ECHOPGM(MSG_DEBUG_OFF);
  3704. }
  3705. SERIAL_EOL;
  3706. }
  3707. /**
  3708. * M112: Emergency Stop
  3709. */
  3710. inline void gcode_M112() { kill(PSTR(MSG_KILLED)); }
  3711. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  3712. /**
  3713. * M113: Get or set Host Keepalive interval (0 to disable)
  3714. *
  3715. * S<seconds> Optional. Set the keepalive interval.
  3716. */
  3717. inline void gcode_M113() {
  3718. if (code_seen('S')) {
  3719. host_keepalive_interval = (uint8_t)code_value_short();
  3720. NOMORE(host_keepalive_interval, 60);
  3721. }
  3722. else {
  3723. SERIAL_ECHO_START;
  3724. SERIAL_ECHOPAIR("M113 S", (unsigned long)host_keepalive_interval);
  3725. SERIAL_EOL;
  3726. }
  3727. }
  3728. #endif
  3729. #if ENABLED(BARICUDA)
  3730. #if HAS_HEATER_1
  3731. /**
  3732. * M126: Heater 1 valve open
  3733. */
  3734. inline void gcode_M126() { ValvePressure = code_seen('S') ? constrain(code_value(), 0, 255) : 255; }
  3735. /**
  3736. * M127: Heater 1 valve close
  3737. */
  3738. inline void gcode_M127() { ValvePressure = 0; }
  3739. #endif
  3740. #if HAS_HEATER_2
  3741. /**
  3742. * M128: Heater 2 valve open
  3743. */
  3744. inline void gcode_M128() { EtoPPressure = code_seen('S') ? constrain(code_value(), 0, 255) : 255; }
  3745. /**
  3746. * M129: Heater 2 valve close
  3747. */
  3748. inline void gcode_M129() { EtoPPressure = 0; }
  3749. #endif
  3750. #endif //BARICUDA
  3751. /**
  3752. * M140: Set bed temperature
  3753. */
  3754. inline void gcode_M140() {
  3755. if (DEBUGGING(DRYRUN)) return;
  3756. if (code_seen('S')) setTargetBed(code_value());
  3757. }
  3758. #if ENABLED(ULTIPANEL)
  3759. /**
  3760. * M145: Set the heatup state for a material in the LCD menu
  3761. * S<material> (0=PLA, 1=ABS)
  3762. * H<hotend temp>
  3763. * B<bed temp>
  3764. * F<fan speed>
  3765. */
  3766. inline void gcode_M145() {
  3767. int8_t material = code_seen('S') ? code_value_short() : 0;
  3768. if (material < 0 || material > 1) {
  3769. SERIAL_ERROR_START;
  3770. SERIAL_ERRORLNPGM(MSG_ERR_MATERIAL_INDEX);
  3771. }
  3772. else {
  3773. int v;
  3774. switch (material) {
  3775. case 0:
  3776. if (code_seen('H')) {
  3777. v = code_value_short();
  3778. plaPreheatHotendTemp = constrain(v, EXTRUDE_MINTEMP, HEATER_0_MAXTEMP - 15);
  3779. }
  3780. if (code_seen('F')) {
  3781. v = code_value_short();
  3782. plaPreheatFanSpeed = constrain(v, 0, 255);
  3783. }
  3784. #if TEMP_SENSOR_BED != 0
  3785. if (code_seen('B')) {
  3786. v = code_value_short();
  3787. plaPreheatHPBTemp = constrain(v, BED_MINTEMP, BED_MAXTEMP - 15);
  3788. }
  3789. #endif
  3790. break;
  3791. case 1:
  3792. if (code_seen('H')) {
  3793. v = code_value_short();
  3794. absPreheatHotendTemp = constrain(v, EXTRUDE_MINTEMP, HEATER_0_MAXTEMP - 15);
  3795. }
  3796. if (code_seen('F')) {
  3797. v = code_value_short();
  3798. absPreheatFanSpeed = constrain(v, 0, 255);
  3799. }
  3800. #if TEMP_SENSOR_BED != 0
  3801. if (code_seen('B')) {
  3802. v = code_value_short();
  3803. absPreheatHPBTemp = constrain(v, BED_MINTEMP, BED_MAXTEMP - 15);
  3804. }
  3805. #endif
  3806. break;
  3807. }
  3808. }
  3809. }
  3810. #endif
  3811. #if HAS_POWER_SWITCH
  3812. /**
  3813. * M80: Turn on Power Supply
  3814. */
  3815. inline void gcode_M80() {
  3816. OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE); //GND
  3817. /**
  3818. * If you have a switch on suicide pin, this is useful
  3819. * if you want to start another print with suicide feature after
  3820. * a print without suicide...
  3821. */
  3822. #if HAS_SUICIDE
  3823. OUT_WRITE(SUICIDE_PIN, HIGH);
  3824. #endif
  3825. #if ENABLED(ULTIPANEL)
  3826. powersupply = true;
  3827. LCD_MESSAGEPGM(WELCOME_MSG);
  3828. lcd_update();
  3829. #endif
  3830. }
  3831. #endif // HAS_POWER_SWITCH
  3832. /**
  3833. * M81: Turn off Power, including Power Supply, if there is one.
  3834. *
  3835. * This code should ALWAYS be available for EMERGENCY SHUTDOWN!
  3836. */
  3837. inline void gcode_M81() {
  3838. disable_all_heaters();
  3839. finishAndDisableSteppers();
  3840. #if FAN_COUNT > 0
  3841. #if FAN_COUNT > 1
  3842. for (uint8_t i = 0; i < FAN_COUNT; i++) fanSpeeds[i] = 0;
  3843. #else
  3844. fanSpeeds[0] = 0;
  3845. #endif
  3846. #endif
  3847. delay(1000); // Wait 1 second before switching off
  3848. #if HAS_SUICIDE
  3849. st_synchronize();
  3850. suicide();
  3851. #elif HAS_POWER_SWITCH
  3852. OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  3853. #endif
  3854. #if ENABLED(ULTIPANEL)
  3855. #if HAS_POWER_SWITCH
  3856. powersupply = false;
  3857. #endif
  3858. LCD_MESSAGEPGM(MACHINE_NAME " " MSG_OFF ".");
  3859. lcd_update();
  3860. #endif
  3861. }
  3862. /**
  3863. * M82: Set E codes absolute (default)
  3864. */
  3865. inline void gcode_M82() { axis_relative_modes[E_AXIS] = false; }
  3866. /**
  3867. * M83: Set E codes relative while in Absolute Coordinates (G90) mode
  3868. */
  3869. inline void gcode_M83() { axis_relative_modes[E_AXIS] = true; }
  3870. /**
  3871. * M18, M84: Disable all stepper motors
  3872. */
  3873. inline void gcode_M18_M84() {
  3874. if (code_seen('S')) {
  3875. stepper_inactive_time = code_value() * 1000;
  3876. }
  3877. else {
  3878. bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS])) || (code_seen(axis_codes[E_AXIS])));
  3879. if (all_axis) {
  3880. finishAndDisableSteppers();
  3881. }
  3882. else {
  3883. st_synchronize();
  3884. if (code_seen('X')) disable_x();
  3885. if (code_seen('Y')) disable_y();
  3886. if (code_seen('Z')) disable_z();
  3887. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  3888. if (code_seen('E')) {
  3889. disable_e0();
  3890. disable_e1();
  3891. disable_e2();
  3892. disable_e3();
  3893. }
  3894. #endif
  3895. }
  3896. }
  3897. }
  3898. /**
  3899. * M85: Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  3900. */
  3901. inline void gcode_M85() {
  3902. if (code_seen('S')) max_inactive_time = code_value() * 1000;
  3903. }
  3904. /**
  3905. * M92: Set axis steps-per-unit for one or more axes, X, Y, Z, and E.
  3906. * (Follows the same syntax as G92)
  3907. */
  3908. inline void gcode_M92() {
  3909. for (int8_t i = 0; i < NUM_AXIS; i++) {
  3910. if (code_seen(axis_codes[i])) {
  3911. if (i == E_AXIS) {
  3912. float value = code_value();
  3913. if (value < 20.0) {
  3914. float factor = axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
  3915. max_e_jerk *= factor;
  3916. max_feedrate[i] *= factor;
  3917. axis_steps_per_sqr_second[i] *= factor;
  3918. }
  3919. axis_steps_per_unit[i] = value;
  3920. }
  3921. else {
  3922. axis_steps_per_unit[i] = code_value();
  3923. }
  3924. }
  3925. }
  3926. }
  3927. /**
  3928. * M114: Output current position to serial port
  3929. */
  3930. inline void gcode_M114() {
  3931. SERIAL_PROTOCOLPGM("X:");
  3932. SERIAL_PROTOCOL(current_position[X_AXIS]);
  3933. SERIAL_PROTOCOLPGM(" Y:");
  3934. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  3935. SERIAL_PROTOCOLPGM(" Z:");
  3936. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  3937. SERIAL_PROTOCOLPGM(" E:");
  3938. SERIAL_PROTOCOL(current_position[E_AXIS]);
  3939. CRITICAL_SECTION_START;
  3940. extern volatile long count_position[NUM_AXIS];
  3941. long xpos = count_position[X_AXIS],
  3942. ypos = count_position[Y_AXIS],
  3943. zpos = count_position[Z_AXIS];
  3944. CRITICAL_SECTION_END;
  3945. #if ENABLED(COREXY) || ENABLED(COREXZ)
  3946. SERIAL_PROTOCOLPGM(MSG_COUNT_A);
  3947. #else
  3948. SERIAL_PROTOCOLPGM(MSG_COUNT_X);
  3949. #endif
  3950. SERIAL_PROTOCOL(xpos);
  3951. #if ENABLED(COREXY)
  3952. SERIAL_PROTOCOLPGM(" B:");
  3953. #else
  3954. SERIAL_PROTOCOLPGM(" Y:");
  3955. #endif
  3956. SERIAL_PROTOCOL(ypos);
  3957. #if ENABLED(COREXZ)
  3958. SERIAL_PROTOCOLPGM(" C:");
  3959. #else
  3960. SERIAL_PROTOCOLPGM(" Z:");
  3961. #endif
  3962. SERIAL_PROTOCOL(zpos);
  3963. SERIAL_EOL;
  3964. #if ENABLED(SCARA)
  3965. SERIAL_PROTOCOLPGM("SCARA Theta:");
  3966. SERIAL_PROTOCOL(delta[X_AXIS]);
  3967. SERIAL_PROTOCOLPGM(" Psi+Theta:");
  3968. SERIAL_PROTOCOL(delta[Y_AXIS]);
  3969. SERIAL_EOL;
  3970. SERIAL_PROTOCOLPGM("SCARA Cal - Theta:");
  3971. SERIAL_PROTOCOL(delta[X_AXIS] + home_offset[X_AXIS]);
  3972. SERIAL_PROTOCOLPGM(" Psi+Theta (90):");
  3973. SERIAL_PROTOCOL(delta[Y_AXIS] - delta[X_AXIS] - 90 + home_offset[Y_AXIS]);
  3974. SERIAL_EOL;
  3975. SERIAL_PROTOCOLPGM("SCARA step Cal - Theta:");
  3976. SERIAL_PROTOCOL(delta[X_AXIS] / 90 * axis_steps_per_unit[X_AXIS]);
  3977. SERIAL_PROTOCOLPGM(" Psi+Theta:");
  3978. SERIAL_PROTOCOL((delta[Y_AXIS] - delta[X_AXIS]) / 90 * axis_steps_per_unit[Y_AXIS]);
  3979. SERIAL_EOL; SERIAL_EOL;
  3980. #endif
  3981. }
  3982. /**
  3983. * M115: Capabilities string
  3984. */
  3985. inline void gcode_M115() {
  3986. SERIAL_PROTOCOLPGM(MSG_M115_REPORT);
  3987. }
  3988. /**
  3989. * M117: Set LCD Status Message
  3990. */
  3991. inline void gcode_M117() {
  3992. lcd_setstatus(current_command_args);
  3993. }
  3994. /**
  3995. * M119: Output endstop states to serial output
  3996. */
  3997. inline void gcode_M119() {
  3998. SERIAL_PROTOCOLLN(MSG_M119_REPORT);
  3999. #if HAS_X_MIN
  4000. SERIAL_PROTOCOLPGM(MSG_X_MIN);
  4001. SERIAL_PROTOCOLLN(((READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING) ? MSG_ENDSTOP_HIT : MSG_ENDSTOP_OPEN));
  4002. #endif
  4003. #if HAS_X_MAX
  4004. SERIAL_PROTOCOLPGM(MSG_X_MAX);
  4005. SERIAL_PROTOCOLLN(((READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING) ? MSG_ENDSTOP_HIT : MSG_ENDSTOP_OPEN));
  4006. #endif
  4007. #if HAS_Y_MIN
  4008. SERIAL_PROTOCOLPGM(MSG_Y_MIN);
  4009. SERIAL_PROTOCOLLN(((READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING) ? MSG_ENDSTOP_HIT : MSG_ENDSTOP_OPEN));
  4010. #endif
  4011. #if HAS_Y_MAX
  4012. SERIAL_PROTOCOLPGM(MSG_Y_MAX);
  4013. SERIAL_PROTOCOLLN(((READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING) ? MSG_ENDSTOP_HIT : MSG_ENDSTOP_OPEN));
  4014. #endif
  4015. #if HAS_Z_MIN
  4016. SERIAL_PROTOCOLPGM(MSG_Z_MIN);
  4017. SERIAL_PROTOCOLLN(((READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING) ? MSG_ENDSTOP_HIT : MSG_ENDSTOP_OPEN));
  4018. #endif
  4019. #if HAS_Z_MAX
  4020. SERIAL_PROTOCOLPGM(MSG_Z_MAX);
  4021. SERIAL_PROTOCOLLN(((READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING) ? MSG_ENDSTOP_HIT : MSG_ENDSTOP_OPEN));
  4022. #endif
  4023. #if HAS_Z2_MAX
  4024. SERIAL_PROTOCOLPGM(MSG_Z2_MAX);
  4025. SERIAL_PROTOCOLLN(((READ(Z2_MAX_PIN)^Z2_MAX_ENDSTOP_INVERTING) ? MSG_ENDSTOP_HIT : MSG_ENDSTOP_OPEN));
  4026. #endif
  4027. #if HAS_Z_PROBE
  4028. SERIAL_PROTOCOLPGM(MSG_Z_PROBE);
  4029. SERIAL_PROTOCOLLN(((READ(Z_MIN_PROBE_PIN)^Z_MIN_PROBE_ENDSTOP_INVERTING) ? MSG_ENDSTOP_HIT : MSG_ENDSTOP_OPEN));
  4030. #endif
  4031. }
  4032. /**
  4033. * M120: Enable endstops and set non-homing endstop state to "enabled"
  4034. */
  4035. inline void gcode_M120() { enable_endstops_globally(true); }
  4036. /**
  4037. * M121: Disable endstops and set non-homing endstop state to "disabled"
  4038. */
  4039. inline void gcode_M121() { enable_endstops_globally(false); }
  4040. #if ENABLED(BLINKM)
  4041. /**
  4042. * M150: Set Status LED Color - Use R-U-B for R-G-B
  4043. */
  4044. inline void gcode_M150() {
  4045. SendColors(
  4046. code_seen('R') ? (byte)code_value_short() : 0,
  4047. code_seen('U') ? (byte)code_value_short() : 0,
  4048. code_seen('B') ? (byte)code_value_short() : 0
  4049. );
  4050. }
  4051. #endif // BLINKM
  4052. /**
  4053. * M200: Set filament diameter and set E axis units to cubic millimeters
  4054. *
  4055. * T<extruder> - Optional extruder number. Current extruder if omitted.
  4056. * D<mm> - Diameter of the filament. Use "D0" to set units back to millimeters.
  4057. */
  4058. inline void gcode_M200() {
  4059. if (setTargetedHotend(200)) return;
  4060. if (code_seen('D')) {
  4061. float diameter = code_value();
  4062. // setting any extruder filament size disables volumetric on the assumption that
  4063. // slicers either generate in extruder values as cubic mm or as as filament feeds
  4064. // for all extruders
  4065. volumetric_enabled = (diameter != 0.0);
  4066. if (volumetric_enabled) {
  4067. filament_size[target_extruder] = diameter;
  4068. // make sure all extruders have some sane value for the filament size
  4069. for (int i = 0; i < EXTRUDERS; i++)
  4070. if (! filament_size[i]) filament_size[i] = DEFAULT_NOMINAL_FILAMENT_DIA;
  4071. }
  4072. }
  4073. else {
  4074. //reserved for setting filament diameter via UFID or filament measuring device
  4075. return;
  4076. }
  4077. calculate_volumetric_multipliers();
  4078. }
  4079. /**
  4080. * M201: Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  4081. */
  4082. inline void gcode_M201() {
  4083. for (int8_t i = 0; i < NUM_AXIS; i++) {
  4084. if (code_seen(axis_codes[i])) {
  4085. max_acceleration_units_per_sq_second[i] = code_value();
  4086. }
  4087. }
  4088. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  4089. reset_acceleration_rates();
  4090. }
  4091. #if 0 // Not used for Sprinter/grbl gen6
  4092. inline void gcode_M202() {
  4093. for (int8_t i = 0; i < NUM_AXIS; i++) {
  4094. if (code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
  4095. }
  4096. }
  4097. #endif
  4098. /**
  4099. * M203: Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  4100. */
  4101. inline void gcode_M203() {
  4102. for (int8_t i = 0; i < NUM_AXIS; i++) {
  4103. if (code_seen(axis_codes[i])) {
  4104. max_feedrate[i] = code_value();
  4105. }
  4106. }
  4107. }
  4108. /**
  4109. * M204: Set Accelerations in mm/sec^2 (M204 P1200 R3000 T3000)
  4110. *
  4111. * P = Printing moves
  4112. * R = Retract only (no X, Y, Z) moves
  4113. * T = Travel (non printing) moves
  4114. *
  4115. * Also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  4116. */
  4117. inline void gcode_M204() {
  4118. if (code_seen('S')) { // Kept for legacy compatibility. Should NOT BE USED for new developments.
  4119. travel_acceleration = acceleration = code_value();
  4120. SERIAL_ECHOPAIR("Setting Print and Travel Acceleration: ", acceleration);
  4121. SERIAL_EOL;
  4122. }
  4123. if (code_seen('P')) {
  4124. acceleration = code_value();
  4125. SERIAL_ECHOPAIR("Setting Print Acceleration: ", acceleration);
  4126. SERIAL_EOL;
  4127. }
  4128. if (code_seen('R')) {
  4129. retract_acceleration = code_value();
  4130. SERIAL_ECHOPAIR("Setting Retract Acceleration: ", retract_acceleration);
  4131. SERIAL_EOL;
  4132. }
  4133. if (code_seen('T')) {
  4134. travel_acceleration = code_value();
  4135. SERIAL_ECHOPAIR("Setting Travel Acceleration: ", travel_acceleration);
  4136. SERIAL_EOL;
  4137. }
  4138. }
  4139. /**
  4140. * M205: Set Advanced Settings
  4141. *
  4142. * S = Min Feed Rate (mm/s)
  4143. * T = Min Travel Feed Rate (mm/s)
  4144. * B = Min Segment Time (µs)
  4145. * X = Max XY Jerk (mm/s/s)
  4146. * Z = Max Z Jerk (mm/s/s)
  4147. * E = Max E Jerk (mm/s/s)
  4148. */
  4149. inline void gcode_M205() {
  4150. if (code_seen('S')) minimumfeedrate = code_value();
  4151. if (code_seen('T')) mintravelfeedrate = code_value();
  4152. if (code_seen('B')) minsegmenttime = code_value();
  4153. if (code_seen('X')) max_xy_jerk = code_value();
  4154. if (code_seen('Z')) max_z_jerk = code_value();
  4155. if (code_seen('E')) max_e_jerk = code_value();
  4156. }
  4157. /**
  4158. * M206: Set Additional Homing Offset (X Y Z). SCARA aliases T=X, P=Y
  4159. */
  4160. inline void gcode_M206() {
  4161. for (int8_t i = X_AXIS; i <= Z_AXIS; i++) {
  4162. if (code_seen(axis_codes[i])) {
  4163. home_offset[i] = code_value();
  4164. }
  4165. }
  4166. #if ENABLED(SCARA)
  4167. if (code_seen('T')) home_offset[X_AXIS] = code_value(); // Theta
  4168. if (code_seen('P')) home_offset[Y_AXIS] = code_value(); // Psi
  4169. #endif
  4170. }
  4171. #if ENABLED(DELTA)
  4172. /**
  4173. * M665: Set delta configurations
  4174. *
  4175. * L = diagonal rod
  4176. * R = delta radius
  4177. * S = segments per second
  4178. * A = Alpha (Tower 1) diagonal rod trim
  4179. * B = Beta (Tower 2) diagonal rod trim
  4180. * C = Gamma (Tower 3) diagonal rod trim
  4181. */
  4182. inline void gcode_M665() {
  4183. if (code_seen('L')) delta_diagonal_rod = code_value();
  4184. if (code_seen('R')) delta_radius = code_value();
  4185. if (code_seen('S')) delta_segments_per_second = code_value();
  4186. if (code_seen('A')) delta_diagonal_rod_trim_tower_1 = code_value();
  4187. if (code_seen('B')) delta_diagonal_rod_trim_tower_2 = code_value();
  4188. if (code_seen('C')) delta_diagonal_rod_trim_tower_3 = code_value();
  4189. recalc_delta_settings(delta_radius, delta_diagonal_rod);
  4190. }
  4191. /**
  4192. * M666: Set delta endstop adjustment
  4193. */
  4194. inline void gcode_M666() {
  4195. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4196. if (DEBUGGING(LEVELING)) {
  4197. SERIAL_ECHOLNPGM(">>> gcode_M666");
  4198. }
  4199. #endif
  4200. for (int8_t i = X_AXIS; i <= Z_AXIS; i++) {
  4201. if (code_seen(axis_codes[i])) {
  4202. endstop_adj[i] = code_value();
  4203. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4204. if (DEBUGGING(LEVELING)) {
  4205. SERIAL_ECHOPGM("endstop_adj[");
  4206. SERIAL_ECHO(axis_codes[i]);
  4207. SERIAL_ECHOPAIR("] = ", endstop_adj[i]);
  4208. SERIAL_EOL;
  4209. }
  4210. #endif
  4211. }
  4212. }
  4213. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4214. if (DEBUGGING(LEVELING)) {
  4215. SERIAL_ECHOLNPGM("<<< gcode_M666");
  4216. }
  4217. #endif
  4218. }
  4219. #elif ENABLED(Z_DUAL_ENDSTOPS) // !DELTA && ENABLED(Z_DUAL_ENDSTOPS)
  4220. /**
  4221. * M666: For Z Dual Endstop setup, set z axis offset to the z2 axis.
  4222. */
  4223. inline void gcode_M666() {
  4224. if (code_seen('Z')) z_endstop_adj = code_value();
  4225. SERIAL_ECHOPAIR("Z Endstop Adjustment set to (mm):", z_endstop_adj);
  4226. SERIAL_EOL;
  4227. }
  4228. #endif // !DELTA && Z_DUAL_ENDSTOPS
  4229. #if ENABLED(FWRETRACT)
  4230. /**
  4231. * M207: Set firmware retraction values
  4232. *
  4233. * S[+mm] retract_length
  4234. * W[+mm] retract_length_swap (multi-extruder)
  4235. * F[mm/min] retract_feedrate
  4236. * Z[mm] retract_zlift
  4237. */
  4238. inline void gcode_M207() {
  4239. if (code_seen('S')) retract_length = code_value();
  4240. if (code_seen('F')) retract_feedrate = code_value() / 60;
  4241. if (code_seen('Z')) retract_zlift = code_value();
  4242. #if EXTRUDERS > 1
  4243. if (code_seen('W')) retract_length_swap = code_value();
  4244. #endif
  4245. }
  4246. /**
  4247. * M208: Set firmware un-retraction values
  4248. *
  4249. * S[+mm] retract_recover_length (in addition to M207 S*)
  4250. * W[+mm] retract_recover_length_swap (multi-extruder)
  4251. * F[mm/min] retract_recover_feedrate
  4252. */
  4253. inline void gcode_M208() {
  4254. if (code_seen('S')) retract_recover_length = code_value();
  4255. if (code_seen('F')) retract_recover_feedrate = code_value() / 60;
  4256. #if EXTRUDERS > 1
  4257. if (code_seen('W')) retract_recover_length_swap = code_value();
  4258. #endif
  4259. }
  4260. /**
  4261. * M209: Enable automatic retract (M209 S1)
  4262. * detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  4263. */
  4264. inline void gcode_M209() {
  4265. if (code_seen('S')) {
  4266. int t = code_value_short();
  4267. switch (t) {
  4268. case 0:
  4269. autoretract_enabled = false;
  4270. break;
  4271. case 1:
  4272. autoretract_enabled = true;
  4273. break;
  4274. default:
  4275. unknown_command_error();
  4276. return;
  4277. }
  4278. for (int i = 0; i < EXTRUDERS; i++) retracted[i] = false;
  4279. }
  4280. }
  4281. #endif // FWRETRACT
  4282. #if EXTRUDERS > 1
  4283. /**
  4284. * M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  4285. */
  4286. inline void gcode_M218() {
  4287. if (setTargetedHotend(218)) return;
  4288. if (code_seen('X')) extruder_offset[X_AXIS][target_extruder] = code_value();
  4289. if (code_seen('Y')) extruder_offset[Y_AXIS][target_extruder] = code_value();
  4290. #if ENABLED(DUAL_X_CARRIAGE)
  4291. if (code_seen('Z')) extruder_offset[Z_AXIS][target_extruder] = code_value();
  4292. #endif
  4293. SERIAL_ECHO_START;
  4294. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  4295. for (int e = 0; e < EXTRUDERS; e++) {
  4296. SERIAL_CHAR(' ');
  4297. SERIAL_ECHO(extruder_offset[X_AXIS][e]);
  4298. SERIAL_CHAR(',');
  4299. SERIAL_ECHO(extruder_offset[Y_AXIS][e]);
  4300. #if ENABLED(DUAL_X_CARRIAGE)
  4301. SERIAL_CHAR(',');
  4302. SERIAL_ECHO(extruder_offset[Z_AXIS][e]);
  4303. #endif
  4304. }
  4305. SERIAL_EOL;
  4306. }
  4307. #endif // EXTRUDERS > 1
  4308. /**
  4309. * M220: Set speed percentage factor, aka "Feed Rate" (M220 S95)
  4310. */
  4311. inline void gcode_M220() {
  4312. if (code_seen('S')) feedrate_multiplier = code_value();
  4313. }
  4314. /**
  4315. * M221: Set extrusion percentage (M221 T0 S95)
  4316. */
  4317. inline void gcode_M221() {
  4318. if (code_seen('S')) {
  4319. int sval = code_value();
  4320. if (setTargetedHotend(221)) return;
  4321. extruder_multiplier[target_extruder] = sval;
  4322. }
  4323. }
  4324. /**
  4325. * M226: Wait until the specified pin reaches the state required (M226 P<pin> S<state>)
  4326. */
  4327. inline void gcode_M226() {
  4328. if (code_seen('P')) {
  4329. int pin_number = code_value();
  4330. int pin_state = code_seen('S') ? code_value() : -1; // required pin state - default is inverted
  4331. if (pin_state >= -1 && pin_state <= 1) {
  4332. for (uint8_t i = 0; i < COUNT(sensitive_pins); i++) {
  4333. if (sensitive_pins[i] == pin_number) {
  4334. pin_number = -1;
  4335. break;
  4336. }
  4337. }
  4338. if (pin_number > -1) {
  4339. int target = LOW;
  4340. st_synchronize();
  4341. pinMode(pin_number, INPUT);
  4342. switch (pin_state) {
  4343. case 1:
  4344. target = HIGH;
  4345. break;
  4346. case 0:
  4347. target = LOW;
  4348. break;
  4349. case -1:
  4350. target = !digitalRead(pin_number);
  4351. break;
  4352. }
  4353. while (digitalRead(pin_number) != target) idle();
  4354. } // pin_number > -1
  4355. } // pin_state -1 0 1
  4356. } // code_seen('P')
  4357. }
  4358. #if HAS_SERVOS
  4359. /**
  4360. * M280: Get or set servo position. P<index> S<angle>
  4361. */
  4362. inline void gcode_M280() {
  4363. int servo_index = code_seen('P') ? code_value_short() : -1;
  4364. int servo_position = 0;
  4365. if (code_seen('S')) {
  4366. servo_position = code_value_short();
  4367. if (servo_index >= 0 && servo_index < NUM_SERVOS)
  4368. servo[servo_index].move(servo_position);
  4369. else {
  4370. SERIAL_ERROR_START;
  4371. SERIAL_ERROR("Servo ");
  4372. SERIAL_ERROR(servo_index);
  4373. SERIAL_ERRORLN(" out of range");
  4374. }
  4375. }
  4376. else if (servo_index >= 0) {
  4377. SERIAL_ECHO_START;
  4378. SERIAL_ECHO(" Servo ");
  4379. SERIAL_ECHO(servo_index);
  4380. SERIAL_ECHO(": ");
  4381. SERIAL_ECHOLN(servo[servo_index].read());
  4382. }
  4383. }
  4384. #endif // HAS_SERVOS
  4385. #if HAS_BUZZER
  4386. /**
  4387. * M300: Play beep sound S<frequency Hz> P<duration ms>
  4388. */
  4389. inline void gcode_M300() {
  4390. uint16_t beepS = code_seen('S') ? code_value_short() : 110;
  4391. uint32_t beepP = code_seen('P') ? code_value_long() : 1000;
  4392. if (beepP > 5000) beepP = 5000; // limit to 5 seconds
  4393. buzz(beepP, beepS);
  4394. }
  4395. #endif // HAS_BUZZER
  4396. #if ENABLED(PIDTEMP)
  4397. /**
  4398. * M301: Set PID parameters P I D (and optionally C, L)
  4399. *
  4400. * P[float] Kp term
  4401. * I[float] Ki term (unscaled)
  4402. * D[float] Kd term (unscaled)
  4403. *
  4404. * With PID_ADD_EXTRUSION_RATE:
  4405. *
  4406. * C[float] Kc term
  4407. * L[float] LPQ length
  4408. */
  4409. inline void gcode_M301() {
  4410. // multi-extruder PID patch: M301 updates or prints a single extruder's PID values
  4411. // default behaviour (omitting E parameter) is to update for extruder 0 only
  4412. int e = code_seen('E') ? code_value() : 0; // extruder being updated
  4413. if (e < EXTRUDERS) { // catch bad input value
  4414. if (code_seen('P')) PID_PARAM(Kp, e) = code_value();
  4415. if (code_seen('I')) PID_PARAM(Ki, e) = scalePID_i(code_value());
  4416. if (code_seen('D')) PID_PARAM(Kd, e) = scalePID_d(code_value());
  4417. #if ENABLED(PID_ADD_EXTRUSION_RATE)
  4418. if (code_seen('C')) PID_PARAM(Kc, e) = code_value();
  4419. if (code_seen('L')) lpq_len = code_value();
  4420. NOMORE(lpq_len, LPQ_MAX_LEN);
  4421. #endif
  4422. updatePID();
  4423. SERIAL_ECHO_START;
  4424. #if ENABLED(PID_PARAMS_PER_EXTRUDER)
  4425. SERIAL_ECHO(" e:"); // specify extruder in serial output
  4426. SERIAL_ECHO(e);
  4427. #endif // PID_PARAMS_PER_EXTRUDER
  4428. SERIAL_ECHO(" p:");
  4429. SERIAL_ECHO(PID_PARAM(Kp, e));
  4430. SERIAL_ECHO(" i:");
  4431. SERIAL_ECHO(unscalePID_i(PID_PARAM(Ki, e)));
  4432. SERIAL_ECHO(" d:");
  4433. SERIAL_ECHO(unscalePID_d(PID_PARAM(Kd, e)));
  4434. #if ENABLED(PID_ADD_EXTRUSION_RATE)
  4435. SERIAL_ECHO(" c:");
  4436. //Kc does not have scaling applied above, or in resetting defaults
  4437. SERIAL_ECHO(PID_PARAM(Kc, e));
  4438. #endif
  4439. SERIAL_EOL;
  4440. }
  4441. else {
  4442. SERIAL_ERROR_START;
  4443. SERIAL_ERRORLN(MSG_INVALID_EXTRUDER);
  4444. }
  4445. }
  4446. #endif // PIDTEMP
  4447. #if ENABLED(PIDTEMPBED)
  4448. inline void gcode_M304() {
  4449. if (code_seen('P')) bedKp = code_value();
  4450. if (code_seen('I')) bedKi = scalePID_i(code_value());
  4451. if (code_seen('D')) bedKd = scalePID_d(code_value());
  4452. updatePID();
  4453. SERIAL_ECHO_START;
  4454. SERIAL_ECHO(" p:");
  4455. SERIAL_ECHO(bedKp);
  4456. SERIAL_ECHO(" i:");
  4457. SERIAL_ECHO(unscalePID_i(bedKi));
  4458. SERIAL_ECHO(" d:");
  4459. SERIAL_ECHOLN(unscalePID_d(bedKd));
  4460. }
  4461. #endif // PIDTEMPBED
  4462. #if defined(CHDK) || HAS_PHOTOGRAPH
  4463. /**
  4464. * M240: Trigger a camera by emulating a Canon RC-1
  4465. * See http://www.doc-diy.net/photo/rc-1_hacked/
  4466. */
  4467. inline void gcode_M240() {
  4468. #ifdef CHDK
  4469. OUT_WRITE(CHDK, HIGH);
  4470. chdkHigh = millis();
  4471. chdkActive = true;
  4472. #elif HAS_PHOTOGRAPH
  4473. const uint8_t NUM_PULSES = 16;
  4474. const float PULSE_LENGTH = 0.01524;
  4475. for (int i = 0; i < NUM_PULSES; i++) {
  4476. WRITE(PHOTOGRAPH_PIN, HIGH);
  4477. _delay_ms(PULSE_LENGTH);
  4478. WRITE(PHOTOGRAPH_PIN, LOW);
  4479. _delay_ms(PULSE_LENGTH);
  4480. }
  4481. delay(7.33);
  4482. for (int i = 0; i < NUM_PULSES; i++) {
  4483. WRITE(PHOTOGRAPH_PIN, HIGH);
  4484. _delay_ms(PULSE_LENGTH);
  4485. WRITE(PHOTOGRAPH_PIN, LOW);
  4486. _delay_ms(PULSE_LENGTH);
  4487. }
  4488. #endif // !CHDK && HAS_PHOTOGRAPH
  4489. }
  4490. #endif // CHDK || PHOTOGRAPH_PIN
  4491. #if ENABLED(HAS_LCD_CONTRAST)
  4492. /**
  4493. * M250: Read and optionally set the LCD contrast
  4494. */
  4495. inline void gcode_M250() {
  4496. if (code_seen('C')) lcd_setcontrast(code_value_short() & 0x3F);
  4497. SERIAL_PROTOCOLPGM("lcd contrast value: ");
  4498. SERIAL_PROTOCOL(lcd_contrast);
  4499. SERIAL_EOL;
  4500. }
  4501. #endif // HAS_LCD_CONTRAST
  4502. #if ENABLED(PREVENT_DANGEROUS_EXTRUDE)
  4503. void set_extrude_min_temp(float temp) { extrude_min_temp = temp; }
  4504. /**
  4505. * M302: Allow cold extrudes, or set the minimum extrude S<temperature>.
  4506. */
  4507. inline void gcode_M302() {
  4508. set_extrude_min_temp(code_seen('S') ? code_value() : 0);
  4509. }
  4510. #endif // PREVENT_DANGEROUS_EXTRUDE
  4511. /**
  4512. * M303: PID relay autotune
  4513. *
  4514. * S<temperature> sets the target temperature. (default 150C)
  4515. * E<extruder> (-1 for the bed) (default 0)
  4516. * C<cycles>
  4517. * U<bool> with a non-zero value will apply the result to current settings
  4518. */
  4519. inline void gcode_M303() {
  4520. int e = code_seen('E') ? code_value_short() : 0;
  4521. int c = code_seen('C') ? code_value_short() : 5;
  4522. bool u = code_seen('U') && code_value_short() != 0;
  4523. float temp = code_seen('S') ? code_value() : (e < 0 ? 70.0 : 150.0);
  4524. if (e >= 0 && e < EXTRUDERS)
  4525. target_extruder = e;
  4526. KEEPALIVE_STATE(NOT_BUSY); // don't send "busy: processing" messages during autotune output
  4527. PID_autotune(temp, e, c, u);
  4528. KEEPALIVE_STATE(IN_HANDLER);
  4529. }
  4530. #if ENABLED(SCARA)
  4531. bool SCARA_move_to_cal(uint8_t delta_x, uint8_t delta_y) {
  4532. //SoftEndsEnabled = false; // Ignore soft endstops during calibration
  4533. //SERIAL_ECHOLN(" Soft endstops disabled ");
  4534. if (IsRunning()) {
  4535. //gcode_get_destination(); // For X Y Z E F
  4536. delta[X_AXIS] = delta_x;
  4537. delta[Y_AXIS] = delta_y;
  4538. calculate_SCARA_forward_Transform(delta);
  4539. destination[X_AXIS] = delta[X_AXIS] / axis_scaling[X_AXIS];
  4540. destination[Y_AXIS] = delta[Y_AXIS] / axis_scaling[Y_AXIS];
  4541. prepare_move();
  4542. //ok_to_send();
  4543. return true;
  4544. }
  4545. return false;
  4546. }
  4547. /**
  4548. * M360: SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  4549. */
  4550. inline bool gcode_M360() {
  4551. SERIAL_ECHOLN(" Cal: Theta 0 ");
  4552. return SCARA_move_to_cal(0, 120);
  4553. }
  4554. /**
  4555. * M361: SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  4556. */
  4557. inline bool gcode_M361() {
  4558. SERIAL_ECHOLN(" Cal: Theta 90 ");
  4559. return SCARA_move_to_cal(90, 130);
  4560. }
  4561. /**
  4562. * M362: SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  4563. */
  4564. inline bool gcode_M362() {
  4565. SERIAL_ECHOLN(" Cal: Psi 0 ");
  4566. return SCARA_move_to_cal(60, 180);
  4567. }
  4568. /**
  4569. * M363: SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  4570. */
  4571. inline bool gcode_M363() {
  4572. SERIAL_ECHOLN(" Cal: Psi 90 ");
  4573. return SCARA_move_to_cal(50, 90);
  4574. }
  4575. /**
  4576. * M364: SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
  4577. */
  4578. inline bool gcode_M364() {
  4579. SERIAL_ECHOLN(" Cal: Theta-Psi 90 ");
  4580. return SCARA_move_to_cal(45, 135);
  4581. }
  4582. /**
  4583. * M365: SCARA calibration: Scaling factor, X, Y, Z axis
  4584. */
  4585. inline void gcode_M365() {
  4586. for (int8_t i = X_AXIS; i <= Z_AXIS; i++) {
  4587. if (code_seen(axis_codes[i])) {
  4588. axis_scaling[i] = code_value();
  4589. }
  4590. }
  4591. }
  4592. #endif // SCARA
  4593. #if ENABLED(EXT_SOLENOID)
  4594. void enable_solenoid(uint8_t num) {
  4595. switch (num) {
  4596. case 0:
  4597. OUT_WRITE(SOL0_PIN, HIGH);
  4598. break;
  4599. #if HAS_SOLENOID_1
  4600. case 1:
  4601. OUT_WRITE(SOL1_PIN, HIGH);
  4602. break;
  4603. #endif
  4604. #if HAS_SOLENOID_2
  4605. case 2:
  4606. OUT_WRITE(SOL2_PIN, HIGH);
  4607. break;
  4608. #endif
  4609. #if HAS_SOLENOID_3
  4610. case 3:
  4611. OUT_WRITE(SOL3_PIN, HIGH);
  4612. break;
  4613. #endif
  4614. default:
  4615. SERIAL_ECHO_START;
  4616. SERIAL_ECHOLNPGM(MSG_INVALID_SOLENOID);
  4617. break;
  4618. }
  4619. }
  4620. void enable_solenoid_on_active_extruder() { enable_solenoid(active_extruder); }
  4621. void disable_all_solenoids() {
  4622. OUT_WRITE(SOL0_PIN, LOW);
  4623. OUT_WRITE(SOL1_PIN, LOW);
  4624. OUT_WRITE(SOL2_PIN, LOW);
  4625. OUT_WRITE(SOL3_PIN, LOW);
  4626. }
  4627. /**
  4628. * M380: Enable solenoid on the active extruder
  4629. */
  4630. inline void gcode_M380() { enable_solenoid_on_active_extruder(); }
  4631. /**
  4632. * M381: Disable all solenoids
  4633. */
  4634. inline void gcode_M381() { disable_all_solenoids(); }
  4635. #endif // EXT_SOLENOID
  4636. /**
  4637. * M400: Finish all moves
  4638. */
  4639. inline void gcode_M400() { st_synchronize(); }
  4640. #if ENABLED(AUTO_BED_LEVELING_FEATURE) && DISABLED(Z_PROBE_SLED) && (HAS_SERVO_ENDSTOPS || ENABLED(Z_PROBE_ALLEN_KEY))
  4641. /**
  4642. * M401: Engage Z Servo endstop if available
  4643. */
  4644. inline void gcode_M401() {
  4645. #if HAS_SERVO_ENDSTOPS
  4646. raise_z_for_servo();
  4647. #endif
  4648. deploy_z_probe();
  4649. }
  4650. /**
  4651. * M402: Retract Z Servo endstop if enabled
  4652. */
  4653. inline void gcode_M402() {
  4654. #if HAS_SERVO_ENDSTOPS
  4655. raise_z_for_servo();
  4656. #endif
  4657. stow_z_probe(false);
  4658. }
  4659. #endif // AUTO_BED_LEVELING_FEATURE && (HAS_SERVO_ENDSTOPS || Z_PROBE_ALLEN_KEY) && !Z_PROBE_SLED
  4660. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  4661. /**
  4662. * M404: Display or set the nominal filament width (3mm, 1.75mm ) W<3.0>
  4663. */
  4664. inline void gcode_M404() {
  4665. if (code_seen('W')) {
  4666. filament_width_nominal = code_value();
  4667. }
  4668. else {
  4669. SERIAL_PROTOCOLPGM("Filament dia (nominal mm):");
  4670. SERIAL_PROTOCOLLN(filament_width_nominal);
  4671. }
  4672. }
  4673. /**
  4674. * M405: Turn on filament sensor for control
  4675. */
  4676. inline void gcode_M405() {
  4677. if (code_seen('D')) meas_delay_cm = code_value();
  4678. NOMORE(meas_delay_cm, MAX_MEASUREMENT_DELAY);
  4679. if (filwidth_delay_index2 == -1) { // Initialize the ring buffer if not done since startup
  4680. int temp_ratio = widthFil_to_size_ratio();
  4681. for (uint8_t i = 0; i < COUNT(measurement_delay); ++i)
  4682. measurement_delay[i] = temp_ratio - 100; // Subtract 100 to scale within a signed byte
  4683. filwidth_delay_index1 = filwidth_delay_index2 = 0;
  4684. }
  4685. filament_sensor = true;
  4686. //SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  4687. //SERIAL_PROTOCOL(filament_width_meas);
  4688. //SERIAL_PROTOCOLPGM("Extrusion ratio(%):");
  4689. //SERIAL_PROTOCOL(extruder_multiplier[active_extruder]);
  4690. }
  4691. /**
  4692. * M406: Turn off filament sensor for control
  4693. */
  4694. inline void gcode_M406() { filament_sensor = false; }
  4695. /**
  4696. * M407: Get measured filament diameter on serial output
  4697. */
  4698. inline void gcode_M407() {
  4699. SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  4700. SERIAL_PROTOCOLLN(filament_width_meas);
  4701. }
  4702. #endif // FILAMENT_WIDTH_SENSOR
  4703. /**
  4704. * M410: Quickstop - Abort all planned moves
  4705. *
  4706. * This will stop the carriages mid-move, so most likely they
  4707. * will be out of sync with the stepper position after this.
  4708. */
  4709. inline void gcode_M410() { quickStop(); }
  4710. #if ENABLED(MESH_BED_LEVELING)
  4711. /**
  4712. * M420: Enable/Disable Mesh Bed Leveling
  4713. */
  4714. inline void gcode_M420() { if (code_seen('S') && code_has_value()) mbl.active = !!code_value_short(); }
  4715. /**
  4716. * M421: Set a single Mesh Bed Leveling Z coordinate
  4717. */
  4718. inline void gcode_M421() {
  4719. float x = 0, y = 0, z = 0;
  4720. bool err = false, hasX, hasY, hasZ;
  4721. if ((hasX = code_seen('X'))) x = code_value();
  4722. if ((hasY = code_seen('Y'))) y = code_value();
  4723. if ((hasZ = code_seen('Z'))) z = code_value();
  4724. if (!hasX || !hasY || !hasZ) {
  4725. SERIAL_ERROR_START;
  4726. SERIAL_ERRORLNPGM(MSG_ERR_M421_REQUIRES_XYZ);
  4727. err = true;
  4728. }
  4729. if (x >= MESH_NUM_X_POINTS || y >= MESH_NUM_Y_POINTS) {
  4730. SERIAL_ERROR_START;
  4731. SERIAL_ERRORLNPGM(MSG_ERR_MESH_INDEX_OOB);
  4732. err = true;
  4733. }
  4734. if (!err) mbl.set_z(mbl.select_x_index(x), mbl.select_y_index(y), z);
  4735. }
  4736. #endif
  4737. /**
  4738. * M428: Set home_offset based on the distance between the
  4739. * current_position and the nearest "reference point."
  4740. * If an axis is past center its endstop position
  4741. * is the reference-point. Otherwise it uses 0. This allows
  4742. * the Z offset to be set near the bed when using a max endstop.
  4743. *
  4744. * M428 can't be used more than 2cm away from 0 or an endstop.
  4745. *
  4746. * Use M206 to set these values directly.
  4747. */
  4748. inline void gcode_M428() {
  4749. bool err = false;
  4750. float new_offs[3], new_pos[3];
  4751. memcpy(new_pos, current_position, sizeof(new_pos));
  4752. memcpy(new_offs, home_offset, sizeof(new_offs));
  4753. for (int8_t i = X_AXIS; i <= Z_AXIS; i++) {
  4754. if (axis_homed[i]) {
  4755. float base = (new_pos[i] > (min_pos[i] + max_pos[i]) / 2) ? base_home_pos(i) : 0,
  4756. diff = new_pos[i] - base;
  4757. if (diff > -20 && diff < 20) {
  4758. new_offs[i] -= diff;
  4759. new_pos[i] = base;
  4760. }
  4761. else {
  4762. SERIAL_ERROR_START;
  4763. SERIAL_ERRORLNPGM(MSG_ERR_M428_TOO_FAR);
  4764. LCD_ALERTMESSAGEPGM("Err: Too far!");
  4765. #if HAS_BUZZER
  4766. buzz(200, 40);
  4767. #endif
  4768. err = true;
  4769. break;
  4770. }
  4771. }
  4772. }
  4773. if (!err) {
  4774. memcpy(current_position, new_pos, sizeof(new_pos));
  4775. memcpy(home_offset, new_offs, sizeof(new_offs));
  4776. sync_plan_position();
  4777. LCD_ALERTMESSAGEPGM(MSG_HOME_OFFSETS_APPLIED);
  4778. #if HAS_BUZZER
  4779. buzz(200, 659);
  4780. buzz(200, 698);
  4781. #endif
  4782. }
  4783. }
  4784. /**
  4785. * M500: Store settings in EEPROM
  4786. */
  4787. inline void gcode_M500() {
  4788. Config_StoreSettings();
  4789. }
  4790. /**
  4791. * M501: Read settings from EEPROM
  4792. */
  4793. inline void gcode_M501() {
  4794. Config_RetrieveSettings();
  4795. }
  4796. /**
  4797. * M502: Revert to default settings
  4798. */
  4799. inline void gcode_M502() {
  4800. Config_ResetDefault();
  4801. }
  4802. /**
  4803. * M503: print settings currently in memory
  4804. */
  4805. inline void gcode_M503() {
  4806. Config_PrintSettings(code_seen('S') && code_value() == 0);
  4807. }
  4808. #if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  4809. /**
  4810. * M540: Set whether SD card print should abort on endstop hit (M540 S<0|1>)
  4811. */
  4812. inline void gcode_M540() {
  4813. if (code_seen('S')) abort_on_endstop_hit = (code_value() > 0);
  4814. }
  4815. #endif // ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  4816. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  4817. inline void gcode_SET_Z_PROBE_OFFSET() {
  4818. SERIAL_ECHO_START;
  4819. SERIAL_ECHOPGM(MSG_ZPROBE_ZOFFSET);
  4820. SERIAL_CHAR(' ');
  4821. if (code_seen('Z')) {
  4822. float value = code_value();
  4823. if (Z_PROBE_OFFSET_RANGE_MIN <= value && value <= Z_PROBE_OFFSET_RANGE_MAX) {
  4824. zprobe_zoffset = value;
  4825. SERIAL_ECHO(zprobe_zoffset);
  4826. }
  4827. else {
  4828. SERIAL_ECHOPGM(MSG_Z_MIN);
  4829. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
  4830. SERIAL_ECHOPGM(MSG_Z_MAX);
  4831. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
  4832. }
  4833. }
  4834. else {
  4835. SERIAL_ECHOPAIR(": ", zprobe_zoffset);
  4836. }
  4837. SERIAL_EOL;
  4838. }
  4839. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  4840. #if ENABLED(FILAMENTCHANGEENABLE)
  4841. /**
  4842. * M600: Pause for filament change
  4843. *
  4844. * E[distance] - Retract the filament this far (negative value)
  4845. * Z[distance] - Move the Z axis by this distance
  4846. * X[position] - Move to this X position, with Y
  4847. * Y[position] - Move to this Y position, with X
  4848. * L[distance] - Retract distance for removal (manual reload)
  4849. *
  4850. * Default values are used for omitted arguments.
  4851. *
  4852. */
  4853. inline void gcode_M600() {
  4854. if (degHotend(active_extruder) < extrude_min_temp) {
  4855. SERIAL_ERROR_START;
  4856. SERIAL_ERRORLNPGM(MSG_TOO_COLD_FOR_M600);
  4857. return;
  4858. }
  4859. float lastpos[NUM_AXIS];
  4860. #if ENABLED(DELTA)
  4861. float fr60 = feedrate / 60;
  4862. #endif
  4863. for (int i = 0; i < NUM_AXIS; i++)
  4864. lastpos[i] = destination[i] = current_position[i];
  4865. #if ENABLED(DELTA)
  4866. #define RUNPLAN calculate_delta(destination); \
  4867. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], destination[E_AXIS], fr60, active_extruder);
  4868. #else
  4869. #define RUNPLAN line_to_destination();
  4870. #endif
  4871. //retract by E
  4872. if (code_seen('E')) destination[E_AXIS] += code_value();
  4873. #ifdef FILAMENTCHANGE_FIRSTRETRACT
  4874. else destination[E_AXIS] += FILAMENTCHANGE_FIRSTRETRACT;
  4875. #endif
  4876. RUNPLAN;
  4877. //lift Z
  4878. if (code_seen('Z')) destination[Z_AXIS] += code_value();
  4879. #ifdef FILAMENTCHANGE_ZADD
  4880. else destination[Z_AXIS] += FILAMENTCHANGE_ZADD;
  4881. #endif
  4882. RUNPLAN;
  4883. //move xy
  4884. if (code_seen('X')) destination[X_AXIS] = code_value();
  4885. #ifdef FILAMENTCHANGE_XPOS
  4886. else destination[X_AXIS] = FILAMENTCHANGE_XPOS;
  4887. #endif
  4888. if (code_seen('Y')) destination[Y_AXIS] = code_value();
  4889. #ifdef FILAMENTCHANGE_YPOS
  4890. else destination[Y_AXIS] = FILAMENTCHANGE_YPOS;
  4891. #endif
  4892. RUNPLAN;
  4893. if (code_seen('L')) destination[E_AXIS] += code_value();
  4894. #ifdef FILAMENTCHANGE_FINALRETRACT
  4895. else destination[E_AXIS] += FILAMENTCHANGE_FINALRETRACT;
  4896. #endif
  4897. RUNPLAN;
  4898. //finish moves
  4899. st_synchronize();
  4900. //disable extruder steppers so filament can be removed
  4901. disable_e0();
  4902. disable_e1();
  4903. disable_e2();
  4904. disable_e3();
  4905. delay(100);
  4906. LCD_ALERTMESSAGEPGM(MSG_FILAMENTCHANGE);
  4907. #if DISABLED(AUTO_FILAMENT_CHANGE)
  4908. millis_t next_tick = 0;
  4909. #endif
  4910. KEEPALIVE_STATE(PAUSED_FOR_USER);
  4911. while (!lcd_clicked()) {
  4912. #if DISABLED(AUTO_FILAMENT_CHANGE)
  4913. millis_t ms = millis();
  4914. if (ms >= next_tick) {
  4915. lcd_quick_feedback();
  4916. next_tick = ms + 2500; // feedback every 2.5s while waiting
  4917. }
  4918. idle(true);
  4919. #else
  4920. current_position[E_AXIS] += AUTO_FILAMENT_CHANGE_LENGTH;
  4921. destination[E_AXIS] = current_position[E_AXIS];
  4922. line_to_destination(AUTO_FILAMENT_CHANGE_FEEDRATE);
  4923. st_synchronize();
  4924. #endif
  4925. } // while(!lcd_clicked)
  4926. KEEPALIVE_STATE(IN_HANDLER);
  4927. lcd_quick_feedback(); // click sound feedback
  4928. #if ENABLED(AUTO_FILAMENT_CHANGE)
  4929. current_position[E_AXIS] = 0;
  4930. st_synchronize();
  4931. #endif
  4932. //return to normal
  4933. if (code_seen('L')) destination[E_AXIS] -= code_value();
  4934. #ifdef FILAMENTCHANGE_FINALRETRACT
  4935. else destination[E_AXIS] -= FILAMENTCHANGE_FINALRETRACT;
  4936. #endif
  4937. current_position[E_AXIS] = destination[E_AXIS]; //the long retract of L is compensated by manual filament feeding
  4938. plan_set_e_position(current_position[E_AXIS]);
  4939. RUNPLAN; //should do nothing
  4940. lcd_reset_alert_level();
  4941. #if ENABLED(DELTA)
  4942. // Move XYZ to starting position, then E
  4943. calculate_delta(lastpos);
  4944. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], destination[E_AXIS], fr60, active_extruder);
  4945. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], lastpos[E_AXIS], fr60, active_extruder);
  4946. #else
  4947. // Move XY to starting position, then Z, then E
  4948. destination[X_AXIS] = lastpos[X_AXIS];
  4949. destination[Y_AXIS] = lastpos[Y_AXIS];
  4950. line_to_destination();
  4951. destination[Z_AXIS] = lastpos[Z_AXIS];
  4952. line_to_destination();
  4953. destination[E_AXIS] = lastpos[E_AXIS];
  4954. line_to_destination();
  4955. #endif
  4956. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  4957. filrunoutEnqueued = false;
  4958. #endif
  4959. }
  4960. #endif // FILAMENTCHANGEENABLE
  4961. #if ENABLED(DUAL_X_CARRIAGE)
  4962. /**
  4963. * M605: Set dual x-carriage movement mode
  4964. *
  4965. * M605 S0: Full control mode. The slicer has full control over x-carriage movement
  4966. * M605 S1: Auto-park mode. The inactive head will auto park/unpark without slicer involvement
  4967. * M605 S2 [Xnnn] [Rmmm]: Duplication mode. The second extruder will duplicate the first with nnn
  4968. * millimeters x-offset and an optional differential hotend temperature of
  4969. * mmm degrees. E.g., with "M605 S2 X100 R2" the second extruder will duplicate
  4970. * the first with a spacing of 100mm in the x direction and 2 degrees hotter.
  4971. *
  4972. * Note: the X axis should be homed after changing dual x-carriage mode.
  4973. */
  4974. inline void gcode_M605() {
  4975. st_synchronize();
  4976. if (code_seen('S')) dual_x_carriage_mode = code_value();
  4977. switch (dual_x_carriage_mode) {
  4978. case DXC_DUPLICATION_MODE:
  4979. if (code_seen('X')) duplicate_extruder_x_offset = max(code_value(), X2_MIN_POS - x_home_pos(0));
  4980. if (code_seen('R')) duplicate_extruder_temp_offset = code_value();
  4981. SERIAL_ECHO_START;
  4982. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  4983. SERIAL_CHAR(' ');
  4984. SERIAL_ECHO(extruder_offset[X_AXIS][0]);
  4985. SERIAL_CHAR(',');
  4986. SERIAL_ECHO(extruder_offset[Y_AXIS][0]);
  4987. SERIAL_CHAR(' ');
  4988. SERIAL_ECHO(duplicate_extruder_x_offset);
  4989. SERIAL_CHAR(',');
  4990. SERIAL_ECHOLN(extruder_offset[Y_AXIS][1]);
  4991. break;
  4992. case DXC_FULL_CONTROL_MODE:
  4993. case DXC_AUTO_PARK_MODE:
  4994. break;
  4995. default:
  4996. dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  4997. break;
  4998. }
  4999. active_extruder_parked = false;
  5000. extruder_duplication_enabled = false;
  5001. delayed_move_time = 0;
  5002. }
  5003. #endif // DUAL_X_CARRIAGE
  5004. /**
  5005. * M907: Set digital trimpot motor current using axis codes X, Y, Z, E, B, S
  5006. */
  5007. inline void gcode_M907() {
  5008. #if HAS_DIGIPOTSS
  5009. for (int i = 0; i < NUM_AXIS; i++)
  5010. if (code_seen(axis_codes[i])) digipot_current(i, code_value());
  5011. if (code_seen('B')) digipot_current(4, code_value());
  5012. if (code_seen('S')) for (int i = 0; i <= 4; i++) digipot_current(i, code_value());
  5013. #endif
  5014. #if PIN_EXISTS(MOTOR_CURRENT_PWM_XY)
  5015. if (code_seen('X')) digipot_current(0, code_value());
  5016. #endif
  5017. #if PIN_EXISTS(MOTOR_CURRENT_PWM_Z)
  5018. if (code_seen('Z')) digipot_current(1, code_value());
  5019. #endif
  5020. #if PIN_EXISTS(MOTOR_CURRENT_PWM_E)
  5021. if (code_seen('E')) digipot_current(2, code_value());
  5022. #endif
  5023. #if ENABLED(DIGIPOT_I2C)
  5024. // this one uses actual amps in floating point
  5025. for (int i = 0; i < NUM_AXIS; i++) if (code_seen(axis_codes[i])) digipot_i2c_set_current(i, code_value());
  5026. // for each additional extruder (named B,C,D,E..., channels 4,5,6,7...)
  5027. for (int i = NUM_AXIS; i < DIGIPOT_I2C_NUM_CHANNELS; i++) if (code_seen('B' + i - (NUM_AXIS))) digipot_i2c_set_current(i, code_value());
  5028. #endif
  5029. #if ENABLED(DAC_STEPPER_CURRENT)
  5030. if (code_seen('S')) {
  5031. float dac_percent = code_value();
  5032. for (uint8_t i = 0; i <= 4; i++) dac_current_percent(i, dac_percent);
  5033. }
  5034. for (uint8_t i = 0; i < NUM_AXIS; i++) if (code_seen(axis_codes[i])) dac_current_percent(i, code_value());
  5035. #endif
  5036. }
  5037. #if HAS_DIGIPOTSS || ENABLED(DAC_STEPPER_CURRENT)
  5038. /**
  5039. * M908: Control digital trimpot directly (M908 P<pin> S<current>)
  5040. */
  5041. inline void gcode_M908() {
  5042. #if HAS_DIGIPOTSS
  5043. digitalPotWrite(
  5044. code_seen('P') ? code_value() : 0,
  5045. code_seen('S') ? code_value() : 0
  5046. );
  5047. #endif
  5048. #ifdef DAC_STEPPER_CURRENT
  5049. dac_current_raw(
  5050. code_seen('P') ? code_value_long() : -1,
  5051. code_seen('S') ? code_value_short() : 0
  5052. );
  5053. #endif
  5054. }
  5055. #if ENABLED(DAC_STEPPER_CURRENT) // As with Printrbot RevF
  5056. inline void gcode_M909() { dac_print_values(); }
  5057. inline void gcode_M910() { dac_commit_eeprom(); }
  5058. #endif
  5059. #endif // HAS_DIGIPOTSS || DAC_STEPPER_CURRENT
  5060. #if HAS_MICROSTEPS
  5061. // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  5062. inline void gcode_M350() {
  5063. if (code_seen('S')) for (int i = 0; i <= 4; i++) microstep_mode(i, code_value());
  5064. for (int i = 0; i < NUM_AXIS; i++) if (code_seen(axis_codes[i])) microstep_mode(i, (uint8_t)code_value());
  5065. if (code_seen('B')) microstep_mode(4, code_value());
  5066. microstep_readings();
  5067. }
  5068. /**
  5069. * M351: Toggle MS1 MS2 pins directly with axis codes X Y Z E B
  5070. * S# determines MS1 or MS2, X# sets the pin high/low.
  5071. */
  5072. inline void gcode_M351() {
  5073. if (code_seen('S')) switch (code_value_short()) {
  5074. case 1:
  5075. for (int i = 0; i < NUM_AXIS; i++) if (code_seen(axis_codes[i])) microstep_ms(i, code_value(), -1);
  5076. if (code_seen('B')) microstep_ms(4, code_value(), -1);
  5077. break;
  5078. case 2:
  5079. for (int i = 0; i < NUM_AXIS; i++) if (code_seen(axis_codes[i])) microstep_ms(i, -1, code_value());
  5080. if (code_seen('B')) microstep_ms(4, -1, code_value());
  5081. break;
  5082. }
  5083. microstep_readings();
  5084. }
  5085. #endif // HAS_MICROSTEPS
  5086. /**
  5087. * M999: Restart after being stopped
  5088. */
  5089. inline void gcode_M999() {
  5090. Running = true;
  5091. lcd_reset_alert_level();
  5092. // gcode_LastN = Stopped_gcode_LastN;
  5093. FlushSerialRequestResend();
  5094. }
  5095. /**
  5096. * T0-T3: Switch tool, usually switching extruders
  5097. *
  5098. * F[mm/min] Set the movement feedrate
  5099. */
  5100. inline void gcode_T(uint8_t tmp_extruder) {
  5101. if (tmp_extruder >= EXTRUDERS) {
  5102. SERIAL_ECHO_START;
  5103. SERIAL_CHAR('T');
  5104. SERIAL_PROTOCOL_F(tmp_extruder, DEC);
  5105. SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
  5106. }
  5107. else {
  5108. target_extruder = tmp_extruder;
  5109. #if EXTRUDERS > 1
  5110. bool make_move = false;
  5111. #endif
  5112. if (code_seen('F')) {
  5113. #if EXTRUDERS > 1
  5114. make_move = true;
  5115. #endif
  5116. float next_feedrate = code_value();
  5117. if (next_feedrate > 0.0) feedrate = next_feedrate;
  5118. }
  5119. #if EXTRUDERS > 1
  5120. if (tmp_extruder != active_extruder) {
  5121. // Save current position to return to after applying extruder offset
  5122. set_destination_to_current();
  5123. #if ENABLED(DUAL_X_CARRIAGE)
  5124. if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE && IsRunning() &&
  5125. (delayed_move_time != 0 || current_position[X_AXIS] != x_home_pos(active_extruder))) {
  5126. // Park old head: 1) raise 2) move to park position 3) lower
  5127. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
  5128. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  5129. plan_buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
  5130. current_position[E_AXIS], max_feedrate[X_AXIS], active_extruder);
  5131. plan_buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS],
  5132. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  5133. st_synchronize();
  5134. }
  5135. // apply Y & Z extruder offset (x offset is already used in determining home pos)
  5136. current_position[Y_AXIS] -= extruder_offset[Y_AXIS][active_extruder] - extruder_offset[Y_AXIS][tmp_extruder];
  5137. current_position[Z_AXIS] -= extruder_offset[Z_AXIS][active_extruder] - extruder_offset[Z_AXIS][tmp_extruder];
  5138. active_extruder = tmp_extruder;
  5139. // This function resets the max/min values - the current position may be overwritten below.
  5140. set_axis_is_at_home(X_AXIS);
  5141. if (dual_x_carriage_mode == DXC_FULL_CONTROL_MODE) {
  5142. current_position[X_AXIS] = inactive_extruder_x_pos;
  5143. inactive_extruder_x_pos = destination[X_AXIS];
  5144. }
  5145. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE) {
  5146. active_extruder_parked = (active_extruder == 0); // this triggers the second extruder to move into the duplication position
  5147. if (active_extruder == 0 || active_extruder_parked)
  5148. current_position[X_AXIS] = inactive_extruder_x_pos;
  5149. else
  5150. current_position[X_AXIS] = destination[X_AXIS] + duplicate_extruder_x_offset;
  5151. inactive_extruder_x_pos = destination[X_AXIS];
  5152. extruder_duplication_enabled = false;
  5153. }
  5154. else {
  5155. // record raised toolhead position for use by unpark
  5156. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  5157. raised_parked_position[Z_AXIS] += TOOLCHANGE_UNPARK_ZLIFT;
  5158. active_extruder_parked = true;
  5159. delayed_move_time = 0;
  5160. }
  5161. #else // !DUAL_X_CARRIAGE
  5162. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  5163. // Offset extruder, make sure to apply the bed level rotation matrix
  5164. vector_3 tmp_offset_vec = vector_3(extruder_offset[X_AXIS][tmp_extruder],
  5165. extruder_offset[Y_AXIS][tmp_extruder],
  5166. extruder_offset[Z_AXIS][tmp_extruder]),
  5167. act_offset_vec = vector_3(extruder_offset[X_AXIS][active_extruder],
  5168. extruder_offset[Y_AXIS][active_extruder],
  5169. extruder_offset[Z_AXIS][active_extruder]),
  5170. offset_vec = tmp_offset_vec - act_offset_vec;
  5171. offset_vec.apply_rotation(plan_bed_level_matrix.transpose(plan_bed_level_matrix));
  5172. current_position[X_AXIS] += offset_vec.x;
  5173. current_position[Y_AXIS] += offset_vec.y;
  5174. current_position[Z_AXIS] += offset_vec.z;
  5175. #else // !AUTO_BED_LEVELING_FEATURE
  5176. // Offset extruder (only by XY)
  5177. for (int i=X_AXIS; i<=Y_AXIS; i++)
  5178. current_position[i] += extruder_offset[i][tmp_extruder] - extruder_offset[i][active_extruder];
  5179. #endif // !AUTO_BED_LEVELING_FEATURE
  5180. // Set the new active extruder and position
  5181. active_extruder = tmp_extruder;
  5182. #endif // !DUAL_X_CARRIAGE
  5183. #if ENABLED(DELTA)
  5184. sync_plan_position_delta();
  5185. #else
  5186. sync_plan_position();
  5187. #endif
  5188. // Move to the old position if 'F' was in the parameters
  5189. if (make_move && IsRunning()) prepare_move();
  5190. }
  5191. #if ENABLED(EXT_SOLENOID)
  5192. st_synchronize();
  5193. disable_all_solenoids();
  5194. enable_solenoid_on_active_extruder();
  5195. #endif // EXT_SOLENOID
  5196. #endif // EXTRUDERS > 1
  5197. SERIAL_ECHO_START;
  5198. SERIAL_ECHO(MSG_ACTIVE_EXTRUDER);
  5199. SERIAL_PROTOCOLLN((int)active_extruder);
  5200. }
  5201. }
  5202. /**
  5203. * Process a single command and dispatch it to its handler
  5204. * This is called from the main loop()
  5205. */
  5206. void process_next_command() {
  5207. current_command = command_queue[cmd_queue_index_r];
  5208. if (DEBUGGING(ECHO)) {
  5209. SERIAL_ECHO_START;
  5210. SERIAL_ECHOLN(current_command);
  5211. }
  5212. // Sanitize the current command:
  5213. // - Skip leading spaces
  5214. // - Bypass N[-0-9][0-9]*[ ]*
  5215. // - Overwrite * with nul to mark the end
  5216. while (*current_command == ' ') ++current_command;
  5217. if (*current_command == 'N' && NUMERIC_SIGNED(current_command[1])) {
  5218. current_command += 2; // skip N[-0-9]
  5219. while (NUMERIC(*current_command)) ++current_command; // skip [0-9]*
  5220. while (*current_command == ' ') ++current_command; // skip [ ]*
  5221. }
  5222. char* starpos = strchr(current_command, '*'); // * should always be the last parameter
  5223. if (starpos) while (*starpos == ' ' || *starpos == '*') *starpos-- = '\0'; // nullify '*' and ' '
  5224. char *cmd_ptr = current_command;
  5225. // Get the command code, which must be G, M, or T
  5226. char command_code = *cmd_ptr++;
  5227. // Skip spaces to get the numeric part
  5228. while (*cmd_ptr == ' ') cmd_ptr++;
  5229. uint16_t codenum = 0; // define ahead of goto
  5230. // Bail early if there's no code
  5231. bool code_is_good = NUMERIC(*cmd_ptr);
  5232. if (!code_is_good) goto ExitUnknownCommand;
  5233. // Get and skip the code number
  5234. do {
  5235. codenum = (codenum * 10) + (*cmd_ptr - '0');
  5236. cmd_ptr++;
  5237. } while (NUMERIC(*cmd_ptr));
  5238. // Skip all spaces to get to the first argument, or nul
  5239. while (*cmd_ptr == ' ') cmd_ptr++;
  5240. // The command's arguments (if any) start here, for sure!
  5241. current_command_args = cmd_ptr;
  5242. KEEPALIVE_STATE(IN_HANDLER);
  5243. // Handle a known G, M, or T
  5244. switch (command_code) {
  5245. case 'G': switch (codenum) {
  5246. // G0, G1
  5247. case 0:
  5248. case 1:
  5249. gcode_G0_G1();
  5250. break;
  5251. // G2, G3
  5252. #if DISABLED(SCARA)
  5253. case 2: // G2 - CW ARC
  5254. case 3: // G3 - CCW ARC
  5255. gcode_G2_G3(codenum == 2);
  5256. break;
  5257. #endif
  5258. // G4 Dwell
  5259. case 4:
  5260. gcode_G4();
  5261. break;
  5262. #if ENABLED(FWRETRACT)
  5263. case 10: // G10: retract
  5264. case 11: // G11: retract_recover
  5265. gcode_G10_G11(codenum == 10);
  5266. break;
  5267. #endif //FWRETRACT
  5268. case 28: // G28: Home all axes, one at a time
  5269. gcode_G28();
  5270. break;
  5271. #if ENABLED(AUTO_BED_LEVELING_FEATURE) || ENABLED(MESH_BED_LEVELING)
  5272. case 29: // G29 Detailed Z probe, probes the bed at 3 or more points.
  5273. gcode_G29();
  5274. break;
  5275. #endif
  5276. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  5277. #if DISABLED(Z_PROBE_SLED)
  5278. case 30: // G30 Single Z probe
  5279. gcode_G30();
  5280. break;
  5281. #else // Z_PROBE_SLED
  5282. case 31: // G31: dock the sled
  5283. case 32: // G32: undock the sled
  5284. dock_sled(codenum == 31);
  5285. break;
  5286. #endif // Z_PROBE_SLED
  5287. #endif // AUTO_BED_LEVELING_FEATURE
  5288. case 90: // G90
  5289. relative_mode = false;
  5290. break;
  5291. case 91: // G91
  5292. relative_mode = true;
  5293. break;
  5294. case 92: // G92
  5295. gcode_G92();
  5296. break;
  5297. }
  5298. break;
  5299. case 'M': switch (codenum) {
  5300. #if ENABLED(ULTIPANEL)
  5301. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  5302. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  5303. gcode_M0_M1();
  5304. break;
  5305. #endif // ULTIPANEL
  5306. case 17:
  5307. gcode_M17();
  5308. break;
  5309. #if ENABLED(SDSUPPORT)
  5310. case 20: // M20 - list SD card
  5311. gcode_M20(); break;
  5312. case 21: // M21 - init SD card
  5313. gcode_M21(); break;
  5314. case 22: //M22 - release SD card
  5315. gcode_M22(); break;
  5316. case 23: //M23 - Select file
  5317. gcode_M23(); break;
  5318. case 24: //M24 - Start SD print
  5319. gcode_M24(); break;
  5320. case 25: //M25 - Pause SD print
  5321. gcode_M25(); break;
  5322. case 26: //M26 - Set SD index
  5323. gcode_M26(); break;
  5324. case 27: //M27 - Get SD status
  5325. gcode_M27(); break;
  5326. case 28: //M28 - Start SD write
  5327. gcode_M28(); break;
  5328. case 29: //M29 - Stop SD write
  5329. gcode_M29(); break;
  5330. case 30: //M30 <filename> Delete File
  5331. gcode_M30(); break;
  5332. case 32: //M32 - Select file and start SD print
  5333. gcode_M32(); break;
  5334. #if ENABLED(LONG_FILENAME_HOST_SUPPORT)
  5335. case 33: //M33 - Get the long full path to a file or folder
  5336. gcode_M33(); break;
  5337. #endif // LONG_FILENAME_HOST_SUPPORT
  5338. case 928: //M928 - Start SD write
  5339. gcode_M928(); break;
  5340. #endif //SDSUPPORT
  5341. case 31: //M31 take time since the start of the SD print or an M109 command
  5342. gcode_M31();
  5343. break;
  5344. case 42: //M42 -Change pin status via gcode
  5345. gcode_M42();
  5346. break;
  5347. #if ENABLED(AUTO_BED_LEVELING_FEATURE) && ENABLED(Z_MIN_PROBE_REPEATABILITY_TEST)
  5348. case 48: // M48 Z probe repeatability
  5349. gcode_M48();
  5350. break;
  5351. #endif // AUTO_BED_LEVELING_FEATURE && Z_MIN_PROBE_REPEATABILITY_TEST
  5352. case 75: // Start print timer
  5353. gcode_M75();
  5354. break;
  5355. case 76: // Pause print timer
  5356. gcode_M76();
  5357. break;
  5358. case 77: // Stop print timer
  5359. gcode_M77();
  5360. break;
  5361. #if ENABLED(M100_FREE_MEMORY_WATCHER)
  5362. case 100:
  5363. gcode_M100();
  5364. break;
  5365. #endif
  5366. case 104: // M104
  5367. gcode_M104();
  5368. break;
  5369. case 110: // M110: Set Current Line Number
  5370. gcode_M110();
  5371. break;
  5372. case 111: // M111: Set debug level
  5373. gcode_M111();
  5374. break;
  5375. case 112: // M112: Emergency Stop
  5376. gcode_M112();
  5377. break;
  5378. case 140: // M140: Set bed temp
  5379. gcode_M140();
  5380. break;
  5381. case 105: // M105: Read current temperature
  5382. gcode_M105();
  5383. KEEPALIVE_STATE(NOT_BUSY);
  5384. return; // "ok" already printed
  5385. case 109: // M109: Wait for temperature
  5386. gcode_M109();
  5387. break;
  5388. #if HAS_TEMP_BED
  5389. case 190: // M190: Wait for bed heater to reach target
  5390. gcode_M190();
  5391. break;
  5392. #endif // HAS_TEMP_BED
  5393. #if FAN_COUNT > 0
  5394. case 106: // M106: Fan On
  5395. gcode_M106();
  5396. break;
  5397. case 107: // M107: Fan Off
  5398. gcode_M107();
  5399. break;
  5400. #endif // FAN_COUNT > 0
  5401. #if ENABLED(BARICUDA)
  5402. // PWM for HEATER_1_PIN
  5403. #if HAS_HEATER_1
  5404. case 126: // M126: valve open
  5405. gcode_M126();
  5406. break;
  5407. case 127: // M127: valve closed
  5408. gcode_M127();
  5409. break;
  5410. #endif // HAS_HEATER_1
  5411. // PWM for HEATER_2_PIN
  5412. #if HAS_HEATER_2
  5413. case 128: // M128: valve open
  5414. gcode_M128();
  5415. break;
  5416. case 129: // M129: valve closed
  5417. gcode_M129();
  5418. break;
  5419. #endif // HAS_HEATER_2
  5420. #endif // BARICUDA
  5421. #if HAS_POWER_SWITCH
  5422. case 80: // M80: Turn on Power Supply
  5423. gcode_M80();
  5424. break;
  5425. #endif // HAS_POWER_SWITCH
  5426. case 81: // M81: Turn off Power, including Power Supply, if possible
  5427. gcode_M81();
  5428. break;
  5429. case 82:
  5430. gcode_M82();
  5431. break;
  5432. case 83:
  5433. gcode_M83();
  5434. break;
  5435. case 18: // (for compatibility)
  5436. case 84: // M84
  5437. gcode_M18_M84();
  5438. break;
  5439. case 85: // M85
  5440. gcode_M85();
  5441. break;
  5442. case 92: // M92: Set the steps-per-unit for one or more axes
  5443. gcode_M92();
  5444. break;
  5445. case 115: // M115: Report capabilities
  5446. gcode_M115();
  5447. break;
  5448. case 117: // M117: Set LCD message text, if possible
  5449. gcode_M117();
  5450. break;
  5451. case 114: // M114: Report current position
  5452. gcode_M114();
  5453. break;
  5454. case 120: // M120: Enable endstops
  5455. gcode_M120();
  5456. break;
  5457. case 121: // M121: Disable endstops
  5458. gcode_M121();
  5459. break;
  5460. case 119: // M119: Report endstop states
  5461. gcode_M119();
  5462. break;
  5463. #if ENABLED(ULTIPANEL)
  5464. case 145: // M145: Set material heatup parameters
  5465. gcode_M145();
  5466. break;
  5467. #endif
  5468. #if ENABLED(BLINKM)
  5469. case 150: // M150
  5470. gcode_M150();
  5471. break;
  5472. #endif //BLINKM
  5473. case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  5474. gcode_M200();
  5475. break;
  5476. case 201: // M201
  5477. gcode_M201();
  5478. break;
  5479. #if 0 // Not used for Sprinter/grbl gen6
  5480. case 202: // M202
  5481. gcode_M202();
  5482. break;
  5483. #endif
  5484. case 203: // M203 max feedrate mm/sec
  5485. gcode_M203();
  5486. break;
  5487. case 204: // M204 acclereration S normal moves T filmanent only moves
  5488. gcode_M204();
  5489. break;
  5490. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  5491. gcode_M205();
  5492. break;
  5493. case 206: // M206 additional homing offset
  5494. gcode_M206();
  5495. break;
  5496. #if ENABLED(DELTA)
  5497. case 665: // M665 set delta configurations L<diagonal_rod> R<delta_radius> S<segments_per_sec>
  5498. gcode_M665();
  5499. break;
  5500. #endif
  5501. #if ENABLED(DELTA) || ENABLED(Z_DUAL_ENDSTOPS)
  5502. case 666: // M666 set delta / dual endstop adjustment
  5503. gcode_M666();
  5504. break;
  5505. #endif
  5506. #if ENABLED(FWRETRACT)
  5507. case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
  5508. gcode_M207();
  5509. break;
  5510. case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  5511. gcode_M208();
  5512. break;
  5513. case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  5514. gcode_M209();
  5515. break;
  5516. #endif // FWRETRACT
  5517. #if EXTRUDERS > 1
  5518. case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  5519. gcode_M218();
  5520. break;
  5521. #endif
  5522. case 220: // M220 S<factor in percent>- set speed factor override percentage
  5523. gcode_M220();
  5524. break;
  5525. case 221: // M221 S<factor in percent>- set extrude factor override percentage
  5526. gcode_M221();
  5527. break;
  5528. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  5529. gcode_M226();
  5530. break;
  5531. #if HAS_SERVOS
  5532. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  5533. gcode_M280();
  5534. break;
  5535. #endif // HAS_SERVOS
  5536. #if HAS_BUZZER
  5537. case 300: // M300 - Play beep tone
  5538. gcode_M300();
  5539. break;
  5540. #endif // HAS_BUZZER
  5541. #if ENABLED(PIDTEMP)
  5542. case 301: // M301
  5543. gcode_M301();
  5544. break;
  5545. #endif // PIDTEMP
  5546. #if ENABLED(PIDTEMPBED)
  5547. case 304: // M304
  5548. gcode_M304();
  5549. break;
  5550. #endif // PIDTEMPBED
  5551. #if defined(CHDK) || HAS_PHOTOGRAPH
  5552. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  5553. gcode_M240();
  5554. break;
  5555. #endif // CHDK || PHOTOGRAPH_PIN
  5556. #if ENABLED(HAS_LCD_CONTRAST)
  5557. case 250: // M250 Set LCD contrast value: C<value> (value 0..63)
  5558. gcode_M250();
  5559. break;
  5560. #endif // HAS_LCD_CONTRAST
  5561. #if ENABLED(PREVENT_DANGEROUS_EXTRUDE)
  5562. case 302: // allow cold extrudes, or set the minimum extrude temperature
  5563. gcode_M302();
  5564. break;
  5565. #endif // PREVENT_DANGEROUS_EXTRUDE
  5566. case 303: // M303 PID autotune
  5567. gcode_M303();
  5568. break;
  5569. #if ENABLED(SCARA)
  5570. case 360: // M360 SCARA Theta pos1
  5571. if (gcode_M360()) return;
  5572. break;
  5573. case 361: // M361 SCARA Theta pos2
  5574. if (gcode_M361()) return;
  5575. break;
  5576. case 362: // M362 SCARA Psi pos1
  5577. if (gcode_M362()) return;
  5578. break;
  5579. case 363: // M363 SCARA Psi pos2
  5580. if (gcode_M363()) return;
  5581. break;
  5582. case 364: // M364 SCARA Psi pos3 (90 deg to Theta)
  5583. if (gcode_M364()) return;
  5584. break;
  5585. case 365: // M365 Set SCARA scaling for X Y Z
  5586. gcode_M365();
  5587. break;
  5588. #endif // SCARA
  5589. case 400: // M400 finish all moves
  5590. gcode_M400();
  5591. break;
  5592. #if ENABLED(AUTO_BED_LEVELING_FEATURE) && (HAS_SERVO_ENDSTOPS || ENABLED(Z_PROBE_ALLEN_KEY)) && DISABLED(Z_PROBE_SLED)
  5593. case 401:
  5594. gcode_M401();
  5595. break;
  5596. case 402:
  5597. gcode_M402();
  5598. break;
  5599. #endif // AUTO_BED_LEVELING_FEATURE && (HAS_SERVO_ENDSTOPS || Z_PROBE_ALLEN_KEY) && !Z_PROBE_SLED
  5600. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  5601. case 404: //M404 Enter the nominal filament width (3mm, 1.75mm ) N<3.0> or display nominal filament width
  5602. gcode_M404();
  5603. break;
  5604. case 405: //M405 Turn on filament sensor for control
  5605. gcode_M405();
  5606. break;
  5607. case 406: //M406 Turn off filament sensor for control
  5608. gcode_M406();
  5609. break;
  5610. case 407: //M407 Display measured filament diameter
  5611. gcode_M407();
  5612. break;
  5613. #endif // ENABLED(FILAMENT_WIDTH_SENSOR)
  5614. case 410: // M410 quickstop - Abort all the planned moves.
  5615. gcode_M410();
  5616. break;
  5617. #if ENABLED(MESH_BED_LEVELING)
  5618. case 420: // M420 Enable/Disable Mesh Bed Leveling
  5619. gcode_M420();
  5620. break;
  5621. case 421: // M421 Set a Mesh Bed Leveling Z coordinate
  5622. gcode_M421();
  5623. break;
  5624. #endif
  5625. case 428: // M428 Apply current_position to home_offset
  5626. gcode_M428();
  5627. break;
  5628. case 500: // M500 Store settings in EEPROM
  5629. gcode_M500();
  5630. break;
  5631. case 501: // M501 Read settings from EEPROM
  5632. gcode_M501();
  5633. break;
  5634. case 502: // M502 Revert to default settings
  5635. gcode_M502();
  5636. break;
  5637. case 503: // M503 print settings currently in memory
  5638. gcode_M503();
  5639. break;
  5640. #if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  5641. case 540:
  5642. gcode_M540();
  5643. break;
  5644. #endif
  5645. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  5646. case CUSTOM_M_CODE_SET_Z_PROBE_OFFSET:
  5647. gcode_SET_Z_PROBE_OFFSET();
  5648. break;
  5649. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  5650. #if ENABLED(FILAMENTCHANGEENABLE)
  5651. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  5652. gcode_M600();
  5653. break;
  5654. #endif // FILAMENTCHANGEENABLE
  5655. #if ENABLED(DUAL_X_CARRIAGE)
  5656. case 605:
  5657. gcode_M605();
  5658. break;
  5659. #endif // DUAL_X_CARRIAGE
  5660. case 907: // M907 Set digital trimpot motor current using axis codes.
  5661. gcode_M907();
  5662. break;
  5663. #if HAS_DIGIPOTSS || ENABLED(DAC_STEPPER_CURRENT)
  5664. case 908: // M908 Control digital trimpot directly.
  5665. gcode_M908();
  5666. break;
  5667. #if ENABLED(DAC_STEPPER_CURRENT) // As with Printrbot RevF
  5668. case 909: // M909 Print digipot/DAC current value
  5669. gcode_M909();
  5670. break;
  5671. case 910: // M910 Commit digipot/DAC value to external EEPROM
  5672. gcode_M910();
  5673. break;
  5674. #endif
  5675. #endif // HAS_DIGIPOTSS || DAC_STEPPER_CURRENT
  5676. #if HAS_MICROSTEPS
  5677. case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  5678. gcode_M350();
  5679. break;
  5680. case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  5681. gcode_M351();
  5682. break;
  5683. #endif // HAS_MICROSTEPS
  5684. case 999: // M999: Restart after being Stopped
  5685. gcode_M999();
  5686. break;
  5687. }
  5688. break;
  5689. case 'T':
  5690. gcode_T(codenum);
  5691. break;
  5692. default: code_is_good = false;
  5693. }
  5694. KEEPALIVE_STATE(NOT_BUSY);
  5695. ExitUnknownCommand:
  5696. // Still unknown command? Throw an error
  5697. if (!code_is_good) unknown_command_error();
  5698. ok_to_send();
  5699. }
  5700. void FlushSerialRequestResend() {
  5701. //char command_queue[cmd_queue_index_r][100]="Resend:";
  5702. MYSERIAL.flush();
  5703. SERIAL_PROTOCOLPGM(MSG_RESEND);
  5704. SERIAL_PROTOCOLLN(gcode_LastN + 1);
  5705. ok_to_send();
  5706. }
  5707. void ok_to_send() {
  5708. refresh_cmd_timeout();
  5709. if (!send_ok[cmd_queue_index_r]) return;
  5710. SERIAL_PROTOCOLPGM(MSG_OK);
  5711. #if ENABLED(ADVANCED_OK)
  5712. char* p = command_queue[cmd_queue_index_r];
  5713. if (*p == 'N') {
  5714. SERIAL_PROTOCOL(' ');
  5715. SERIAL_ECHO(*p++);
  5716. while (NUMERIC_SIGNED(*p))
  5717. SERIAL_ECHO(*p++);
  5718. }
  5719. SERIAL_PROTOCOLPGM(" P"); SERIAL_PROTOCOL(int(BLOCK_BUFFER_SIZE - movesplanned() - 1));
  5720. SERIAL_PROTOCOLPGM(" B"); SERIAL_PROTOCOL(BUFSIZE - commands_in_queue);
  5721. #endif
  5722. SERIAL_EOL;
  5723. }
  5724. void clamp_to_software_endstops(float target[3]) {
  5725. if (min_software_endstops) {
  5726. NOLESS(target[X_AXIS], min_pos[X_AXIS]);
  5727. NOLESS(target[Y_AXIS], min_pos[Y_AXIS]);
  5728. float negative_z_offset = 0;
  5729. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  5730. if (zprobe_zoffset < 0) negative_z_offset += zprobe_zoffset;
  5731. if (home_offset[Z_AXIS] < 0) {
  5732. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5733. if (DEBUGGING(LEVELING)) {
  5734. SERIAL_ECHOPAIR("> clamp_to_software_endstops > Add home_offset[Z_AXIS]:", home_offset[Z_AXIS]);
  5735. SERIAL_EOL;
  5736. }
  5737. #endif
  5738. negative_z_offset += home_offset[Z_AXIS];
  5739. }
  5740. #endif
  5741. NOLESS(target[Z_AXIS], min_pos[Z_AXIS] + negative_z_offset);
  5742. }
  5743. if (max_software_endstops) {
  5744. NOMORE(target[X_AXIS], max_pos[X_AXIS]);
  5745. NOMORE(target[Y_AXIS], max_pos[Y_AXIS]);
  5746. NOMORE(target[Z_AXIS], max_pos[Z_AXIS]);
  5747. }
  5748. }
  5749. #if ENABLED(DELTA)
  5750. void recalc_delta_settings(float radius, float diagonal_rod) {
  5751. delta_tower1_x = -SIN_60 * (radius + DELTA_RADIUS_TRIM_TOWER_1); // front left tower
  5752. delta_tower1_y = -COS_60 * (radius + DELTA_RADIUS_TRIM_TOWER_1);
  5753. delta_tower2_x = SIN_60 * (radius + DELTA_RADIUS_TRIM_TOWER_2); // front right tower
  5754. delta_tower2_y = -COS_60 * (radius + DELTA_RADIUS_TRIM_TOWER_2);
  5755. delta_tower3_x = 0.0; // back middle tower
  5756. delta_tower3_y = (radius + DELTA_RADIUS_TRIM_TOWER_3);
  5757. delta_diagonal_rod_2_tower_1 = sq(diagonal_rod + delta_diagonal_rod_trim_tower_1);
  5758. delta_diagonal_rod_2_tower_2 = sq(diagonal_rod + delta_diagonal_rod_trim_tower_2);
  5759. delta_diagonal_rod_2_tower_3 = sq(diagonal_rod + delta_diagonal_rod_trim_tower_3);
  5760. }
  5761. void calculate_delta(float cartesian[3]) {
  5762. delta[TOWER_1] = sqrt(delta_diagonal_rod_2_tower_1
  5763. - sq(delta_tower1_x - cartesian[X_AXIS])
  5764. - sq(delta_tower1_y - cartesian[Y_AXIS])
  5765. ) + cartesian[Z_AXIS];
  5766. delta[TOWER_2] = sqrt(delta_diagonal_rod_2_tower_2
  5767. - sq(delta_tower2_x - cartesian[X_AXIS])
  5768. - sq(delta_tower2_y - cartesian[Y_AXIS])
  5769. ) + cartesian[Z_AXIS];
  5770. delta[TOWER_3] = sqrt(delta_diagonal_rod_2_tower_3
  5771. - sq(delta_tower3_x - cartesian[X_AXIS])
  5772. - sq(delta_tower3_y - cartesian[Y_AXIS])
  5773. ) + cartesian[Z_AXIS];
  5774. /**
  5775. SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);
  5776. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]);
  5777. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]);
  5778. SERIAL_ECHOPGM("delta a="); SERIAL_ECHO(delta[TOWER_1]);
  5779. SERIAL_ECHOPGM(" b="); SERIAL_ECHO(delta[TOWER_2]);
  5780. SERIAL_ECHOPGM(" c="); SERIAL_ECHOLN(delta[TOWER_3]);
  5781. */
  5782. }
  5783. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  5784. // Adjust print surface height by linear interpolation over the bed_level array.
  5785. void adjust_delta(float cartesian[3]) {
  5786. if (delta_grid_spacing[0] == 0 || delta_grid_spacing[1] == 0) return; // G29 not done!
  5787. int half = (AUTO_BED_LEVELING_GRID_POINTS - 1) / 2;
  5788. float h1 = 0.001 - half, h2 = half - 0.001,
  5789. grid_x = max(h1, min(h2, cartesian[X_AXIS] / delta_grid_spacing[0])),
  5790. grid_y = max(h1, min(h2, cartesian[Y_AXIS] / delta_grid_spacing[1]));
  5791. int floor_x = floor(grid_x), floor_y = floor(grid_y);
  5792. float ratio_x = grid_x - floor_x, ratio_y = grid_y - floor_y,
  5793. z1 = bed_level[floor_x + half][floor_y + half],
  5794. z2 = bed_level[floor_x + half][floor_y + half + 1],
  5795. z3 = bed_level[floor_x + half + 1][floor_y + half],
  5796. z4 = bed_level[floor_x + half + 1][floor_y + half + 1],
  5797. left = (1 - ratio_y) * z1 + ratio_y * z2,
  5798. right = (1 - ratio_y) * z3 + ratio_y * z4,
  5799. offset = (1 - ratio_x) * left + ratio_x * right;
  5800. delta[X_AXIS] += offset;
  5801. delta[Y_AXIS] += offset;
  5802. delta[Z_AXIS] += offset;
  5803. /**
  5804. SERIAL_ECHOPGM("grid_x="); SERIAL_ECHO(grid_x);
  5805. SERIAL_ECHOPGM(" grid_y="); SERIAL_ECHO(grid_y);
  5806. SERIAL_ECHOPGM(" floor_x="); SERIAL_ECHO(floor_x);
  5807. SERIAL_ECHOPGM(" floor_y="); SERIAL_ECHO(floor_y);
  5808. SERIAL_ECHOPGM(" ratio_x="); SERIAL_ECHO(ratio_x);
  5809. SERIAL_ECHOPGM(" ratio_y="); SERIAL_ECHO(ratio_y);
  5810. SERIAL_ECHOPGM(" z1="); SERIAL_ECHO(z1);
  5811. SERIAL_ECHOPGM(" z2="); SERIAL_ECHO(z2);
  5812. SERIAL_ECHOPGM(" z3="); SERIAL_ECHO(z3);
  5813. SERIAL_ECHOPGM(" z4="); SERIAL_ECHO(z4);
  5814. SERIAL_ECHOPGM(" left="); SERIAL_ECHO(left);
  5815. SERIAL_ECHOPGM(" right="); SERIAL_ECHO(right);
  5816. SERIAL_ECHOPGM(" offset="); SERIAL_ECHOLN(offset);
  5817. */
  5818. }
  5819. #endif // AUTO_BED_LEVELING_FEATURE
  5820. #endif // DELTA
  5821. #if ENABLED(MESH_BED_LEVELING)
  5822. // This function is used to split lines on mesh borders so each segment is only part of one mesh area
  5823. void mesh_plan_buffer_line(float x, float y, float z, const float e, float feed_rate, const uint8_t& extruder, uint8_t x_splits = 0xff, uint8_t y_splits = 0xff) {
  5824. if (!mbl.active) {
  5825. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  5826. set_current_to_destination();
  5827. return;
  5828. }
  5829. int pix = mbl.select_x_index(current_position[X_AXIS]);
  5830. int piy = mbl.select_y_index(current_position[Y_AXIS]);
  5831. int ix = mbl.select_x_index(x);
  5832. int iy = mbl.select_y_index(y);
  5833. pix = min(pix, MESH_NUM_X_POINTS - 2);
  5834. piy = min(piy, MESH_NUM_Y_POINTS - 2);
  5835. ix = min(ix, MESH_NUM_X_POINTS - 2);
  5836. iy = min(iy, MESH_NUM_Y_POINTS - 2);
  5837. if (pix == ix && piy == iy) {
  5838. // Start and end on same mesh square
  5839. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  5840. set_current_to_destination();
  5841. return;
  5842. }
  5843. float nx, ny, nz, ne, normalized_dist;
  5844. if (ix > pix && TEST(x_splits, ix)) {
  5845. nx = mbl.get_x(ix);
  5846. normalized_dist = (nx - current_position[X_AXIS]) / (x - current_position[X_AXIS]);
  5847. ny = current_position[Y_AXIS] + (y - current_position[Y_AXIS]) * normalized_dist;
  5848. nz = current_position[Z_AXIS] + (z - current_position[Z_AXIS]) * normalized_dist;
  5849. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  5850. CBI(x_splits, ix);
  5851. }
  5852. else if (ix < pix && TEST(x_splits, pix)) {
  5853. nx = mbl.get_x(pix);
  5854. normalized_dist = (nx - current_position[X_AXIS]) / (x - current_position[X_AXIS]);
  5855. ny = current_position[Y_AXIS] + (y - current_position[Y_AXIS]) * normalized_dist;
  5856. nz = current_position[Z_AXIS] + (z - current_position[Z_AXIS]) * normalized_dist;
  5857. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  5858. CBI(x_splits, pix);
  5859. }
  5860. else if (iy > piy && TEST(y_splits, iy)) {
  5861. ny = mbl.get_y(iy);
  5862. normalized_dist = (ny - current_position[Y_AXIS]) / (y - current_position[Y_AXIS]);
  5863. nx = current_position[X_AXIS] + (x - current_position[X_AXIS]) * normalized_dist;
  5864. nz = current_position[Z_AXIS] + (z - current_position[Z_AXIS]) * normalized_dist;
  5865. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  5866. CBI(y_splits, iy);
  5867. }
  5868. else if (iy < piy && TEST(y_splits, piy)) {
  5869. ny = mbl.get_y(piy);
  5870. normalized_dist = (ny - current_position[Y_AXIS]) / (y - current_position[Y_AXIS]);
  5871. nx = current_position[X_AXIS] + (x - current_position[X_AXIS]) * normalized_dist;
  5872. nz = current_position[Z_AXIS] + (z - current_position[Z_AXIS]) * normalized_dist;
  5873. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  5874. CBI(y_splits, piy);
  5875. }
  5876. else {
  5877. // Already split on a border
  5878. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  5879. set_current_to_destination();
  5880. return;
  5881. }
  5882. // Do the split and look for more borders
  5883. destination[X_AXIS] = nx;
  5884. destination[Y_AXIS] = ny;
  5885. destination[Z_AXIS] = nz;
  5886. destination[E_AXIS] = ne;
  5887. mesh_plan_buffer_line(nx, ny, nz, ne, feed_rate, extruder, x_splits, y_splits);
  5888. destination[X_AXIS] = x;
  5889. destination[Y_AXIS] = y;
  5890. destination[Z_AXIS] = z;
  5891. destination[E_AXIS] = e;
  5892. mesh_plan_buffer_line(x, y, z, e, feed_rate, extruder, x_splits, y_splits);
  5893. }
  5894. #endif // MESH_BED_LEVELING
  5895. #if ENABLED(PREVENT_DANGEROUS_EXTRUDE)
  5896. inline void prevent_dangerous_extrude(float& curr_e, float& dest_e) {
  5897. if (DEBUGGING(DRYRUN)) return;
  5898. float de = dest_e - curr_e;
  5899. if (de) {
  5900. if (degHotend(active_extruder) < extrude_min_temp) {
  5901. curr_e = dest_e; // Behave as if the move really took place, but ignore E part
  5902. SERIAL_ECHO_START;
  5903. SERIAL_ECHOLNPGM(MSG_ERR_COLD_EXTRUDE_STOP);
  5904. }
  5905. #if ENABLED(PREVENT_LENGTHY_EXTRUDE)
  5906. if (labs(de) > EXTRUDE_MAXLENGTH) {
  5907. curr_e = dest_e; // Behave as if the move really took place, but ignore E part
  5908. SERIAL_ECHO_START;
  5909. SERIAL_ECHOLNPGM(MSG_ERR_LONG_EXTRUDE_STOP);
  5910. }
  5911. #endif
  5912. }
  5913. }
  5914. #endif // PREVENT_DANGEROUS_EXTRUDE
  5915. #if ENABLED(DELTA) || ENABLED(SCARA)
  5916. inline bool prepare_move_delta(float target[NUM_AXIS]) {
  5917. float difference[NUM_AXIS];
  5918. for (int8_t i = 0; i < NUM_AXIS; i++) difference[i] = target[i] - current_position[i];
  5919. float cartesian_mm = sqrt(sq(difference[X_AXIS]) + sq(difference[Y_AXIS]) + sq(difference[Z_AXIS]));
  5920. if (cartesian_mm < 0.000001) cartesian_mm = abs(difference[E_AXIS]);
  5921. if (cartesian_mm < 0.000001) return false;
  5922. float seconds = 6000 * cartesian_mm / feedrate / feedrate_multiplier;
  5923. int steps = max(1, int(delta_segments_per_second * seconds));
  5924. // SERIAL_ECHOPGM("mm="); SERIAL_ECHO(cartesian_mm);
  5925. // SERIAL_ECHOPGM(" seconds="); SERIAL_ECHO(seconds);
  5926. // SERIAL_ECHOPGM(" steps="); SERIAL_ECHOLN(steps);
  5927. for (int s = 1; s <= steps; s++) {
  5928. float fraction = float(s) / float(steps);
  5929. for (int8_t i = 0; i < NUM_AXIS; i++)
  5930. target[i] = current_position[i] + difference[i] * fraction;
  5931. calculate_delta(target);
  5932. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  5933. adjust_delta(target);
  5934. #endif
  5935. //SERIAL_ECHOPGM("target[X_AXIS]="); SERIAL_ECHOLN(target[X_AXIS]);
  5936. //SERIAL_ECHOPGM("target[Y_AXIS]="); SERIAL_ECHOLN(target[Y_AXIS]);
  5937. //SERIAL_ECHOPGM("target[Z_AXIS]="); SERIAL_ECHOLN(target[Z_AXIS]);
  5938. //SERIAL_ECHOPGM("delta[X_AXIS]="); SERIAL_ECHOLN(delta[X_AXIS]);
  5939. //SERIAL_ECHOPGM("delta[Y_AXIS]="); SERIAL_ECHOLN(delta[Y_AXIS]);
  5940. //SERIAL_ECHOPGM("delta[Z_AXIS]="); SERIAL_ECHOLN(delta[Z_AXIS]);
  5941. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], target[E_AXIS], feedrate / 60 * feedrate_multiplier / 100.0, active_extruder);
  5942. }
  5943. return true;
  5944. }
  5945. #endif // DELTA || SCARA
  5946. #if ENABLED(SCARA)
  5947. inline bool prepare_move_scara(float target[NUM_AXIS]) { return prepare_move_delta(target); }
  5948. #endif
  5949. #if ENABLED(DUAL_X_CARRIAGE)
  5950. inline bool prepare_move_dual_x_carriage() {
  5951. if (active_extruder_parked) {
  5952. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && active_extruder == 0) {
  5953. // move duplicate extruder into correct duplication position.
  5954. plan_set_position(inactive_extruder_x_pos, current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  5955. plan_buffer_line(current_position[X_AXIS] + duplicate_extruder_x_offset,
  5956. current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], max_feedrate[X_AXIS], 1);
  5957. sync_plan_position();
  5958. st_synchronize();
  5959. extruder_duplication_enabled = true;
  5960. active_extruder_parked = false;
  5961. }
  5962. else if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE) { // handle unparking of head
  5963. if (current_position[E_AXIS] == destination[E_AXIS]) {
  5964. // This is a travel move (with no extrusion)
  5965. // Skip it, but keep track of the current position
  5966. // (so it can be used as the start of the next non-travel move)
  5967. if (delayed_move_time != 0xFFFFFFFFUL) {
  5968. set_current_to_destination();
  5969. NOLESS(raised_parked_position[Z_AXIS], destination[Z_AXIS]);
  5970. delayed_move_time = millis();
  5971. return false;
  5972. }
  5973. }
  5974. delayed_move_time = 0;
  5975. // unpark extruder: 1) raise, 2) move into starting XY position, 3) lower
  5976. plan_buffer_line(raised_parked_position[X_AXIS], raised_parked_position[Y_AXIS], raised_parked_position[Z_AXIS], current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  5977. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], raised_parked_position[Z_AXIS], current_position[E_AXIS], min(max_feedrate[X_AXIS], max_feedrate[Y_AXIS]), active_extruder);
  5978. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  5979. active_extruder_parked = false;
  5980. }
  5981. }
  5982. return true;
  5983. }
  5984. #endif // DUAL_X_CARRIAGE
  5985. #if DISABLED(DELTA) && DISABLED(SCARA)
  5986. inline bool prepare_move_cartesian() {
  5987. // Do not use feedrate_multiplier for E or Z only moves
  5988. if (current_position[X_AXIS] == destination[X_AXIS] && current_position[Y_AXIS] == destination[Y_AXIS]) {
  5989. line_to_destination();
  5990. }
  5991. else {
  5992. #if ENABLED(MESH_BED_LEVELING)
  5993. mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], (feedrate / 60) * (feedrate_multiplier / 100.0), active_extruder);
  5994. return false;
  5995. #else
  5996. line_to_destination(feedrate * feedrate_multiplier / 100.0);
  5997. #endif
  5998. }
  5999. return true;
  6000. }
  6001. #endif // !DELTA && !SCARA
  6002. /**
  6003. * Prepare a single move and get ready for the next one
  6004. *
  6005. * (This may call plan_buffer_line several times to put
  6006. * smaller moves into the planner for DELTA or SCARA.)
  6007. */
  6008. void prepare_move() {
  6009. clamp_to_software_endstops(destination);
  6010. refresh_cmd_timeout();
  6011. #if ENABLED(PREVENT_DANGEROUS_EXTRUDE)
  6012. prevent_dangerous_extrude(current_position[E_AXIS], destination[E_AXIS]);
  6013. #endif
  6014. #if ENABLED(SCARA)
  6015. if (!prepare_move_scara(destination)) return;
  6016. #elif ENABLED(DELTA)
  6017. if (!prepare_move_delta(destination)) return;
  6018. #endif
  6019. #if ENABLED(DUAL_X_CARRIAGE)
  6020. if (!prepare_move_dual_x_carriage()) return;
  6021. #endif
  6022. #if DISABLED(DELTA) && DISABLED(SCARA)
  6023. if (!prepare_move_cartesian()) return;
  6024. #endif
  6025. set_current_to_destination();
  6026. }
  6027. /**
  6028. * Plan an arc in 2 dimensions
  6029. *
  6030. * The arc is approximated by generating many small linear segments.
  6031. * The length of each segment is configured in MM_PER_ARC_SEGMENT (Default 1mm)
  6032. * Arcs should only be made relatively large (over 5mm), as larger arcs with
  6033. * larger segments will tend to be more efficient. Your slicer should have
  6034. * options for G2/G3 arc generation. In future these options may be GCode tunable.
  6035. */
  6036. void plan_arc(
  6037. float target[NUM_AXIS], // Destination position
  6038. float* offset, // Center of rotation relative to current_position
  6039. uint8_t clockwise // Clockwise?
  6040. ) {
  6041. float radius = hypot(offset[X_AXIS], offset[Y_AXIS]),
  6042. center_axis0 = current_position[X_AXIS] + offset[X_AXIS],
  6043. center_axis1 = current_position[Y_AXIS] + offset[Y_AXIS],
  6044. linear_travel = target[Z_AXIS] - current_position[Z_AXIS],
  6045. extruder_travel = target[E_AXIS] - current_position[E_AXIS],
  6046. r_axis0 = -offset[X_AXIS], // Radius vector from center to current location
  6047. r_axis1 = -offset[Y_AXIS],
  6048. rt_axis0 = target[X_AXIS] - center_axis0,
  6049. rt_axis1 = target[Y_AXIS] - center_axis1;
  6050. // CCW angle of rotation between position and target from the circle center. Only one atan2() trig computation required.
  6051. float angular_travel = atan2(r_axis0 * rt_axis1 - r_axis1 * rt_axis0, r_axis0 * rt_axis0 + r_axis1 * rt_axis1);
  6052. if (angular_travel < 0) angular_travel += RADIANS(360);
  6053. if (clockwise) angular_travel -= RADIANS(360);
  6054. // Make a circle if the angular rotation is 0
  6055. if (current_position[X_AXIS] == target[X_AXIS] && current_position[Y_AXIS] == target[Y_AXIS] && angular_travel == 0)
  6056. angular_travel += RADIANS(360);
  6057. float mm_of_travel = hypot(angular_travel * radius, fabs(linear_travel));
  6058. if (mm_of_travel < 0.001) return;
  6059. uint16_t segments = floor(mm_of_travel / (MM_PER_ARC_SEGMENT));
  6060. if (segments == 0) segments = 1;
  6061. float theta_per_segment = angular_travel / segments;
  6062. float linear_per_segment = linear_travel / segments;
  6063. float extruder_per_segment = extruder_travel / segments;
  6064. /**
  6065. * Vector rotation by transformation matrix: r is the original vector, r_T is the rotated vector,
  6066. * and phi is the angle of rotation. Based on the solution approach by Jens Geisler.
  6067. * r_T = [cos(phi) -sin(phi);
  6068. * sin(phi) cos(phi] * r ;
  6069. *
  6070. * For arc generation, the center of the circle is the axis of rotation and the radius vector is
  6071. * defined from the circle center to the initial position. Each line segment is formed by successive
  6072. * vector rotations. This requires only two cos() and sin() computations to form the rotation
  6073. * matrix for the duration of the entire arc. Error may accumulate from numerical round-off, since
  6074. * all double numbers are single precision on the Arduino. (True double precision will not have
  6075. * round off issues for CNC applications.) Single precision error can accumulate to be greater than
  6076. * tool precision in some cases. Therefore, arc path correction is implemented.
  6077. *
  6078. * Small angle approximation may be used to reduce computation overhead further. This approximation
  6079. * holds for everything, but very small circles and large MM_PER_ARC_SEGMENT values. In other words,
  6080. * theta_per_segment would need to be greater than 0.1 rad and N_ARC_CORRECTION would need to be large
  6081. * to cause an appreciable drift error. N_ARC_CORRECTION~=25 is more than small enough to correct for
  6082. * numerical drift error. N_ARC_CORRECTION may be on the order a hundred(s) before error becomes an
  6083. * issue for CNC machines with the single precision Arduino calculations.
  6084. *
  6085. * This approximation also allows plan_arc to immediately insert a line segment into the planner
  6086. * without the initial overhead of computing cos() or sin(). By the time the arc needs to be applied
  6087. * a correction, the planner should have caught up to the lag caused by the initial plan_arc overhead.
  6088. * This is important when there are successive arc motions.
  6089. */
  6090. // Vector rotation matrix values
  6091. float cos_T = 1 - 0.5 * theta_per_segment * theta_per_segment; // Small angle approximation
  6092. float sin_T = theta_per_segment;
  6093. float arc_target[NUM_AXIS];
  6094. float sin_Ti;
  6095. float cos_Ti;
  6096. float r_axisi;
  6097. uint16_t i;
  6098. int8_t count = 0;
  6099. // Initialize the linear axis
  6100. arc_target[Z_AXIS] = current_position[Z_AXIS];
  6101. // Initialize the extruder axis
  6102. arc_target[E_AXIS] = current_position[E_AXIS];
  6103. float feed_rate = feedrate * feedrate_multiplier / 60 / 100.0;
  6104. for (i = 1; i < segments; i++) { // Increment (segments-1)
  6105. if (count < N_ARC_CORRECTION) {
  6106. // Apply vector rotation matrix to previous r_axis0 / 1
  6107. r_axisi = r_axis0 * sin_T + r_axis1 * cos_T;
  6108. r_axis0 = r_axis0 * cos_T - r_axis1 * sin_T;
  6109. r_axis1 = r_axisi;
  6110. count++;
  6111. }
  6112. else {
  6113. // Arc correction to radius vector. Computed only every N_ARC_CORRECTION increments.
  6114. // Compute exact location by applying transformation matrix from initial radius vector(=-offset).
  6115. cos_Ti = cos(i * theta_per_segment);
  6116. sin_Ti = sin(i * theta_per_segment);
  6117. r_axis0 = -offset[X_AXIS] * cos_Ti + offset[Y_AXIS] * sin_Ti;
  6118. r_axis1 = -offset[X_AXIS] * sin_Ti - offset[Y_AXIS] * cos_Ti;
  6119. count = 0;
  6120. }
  6121. // Update arc_target location
  6122. arc_target[X_AXIS] = center_axis0 + r_axis0;
  6123. arc_target[Y_AXIS] = center_axis1 + r_axis1;
  6124. arc_target[Z_AXIS] += linear_per_segment;
  6125. arc_target[E_AXIS] += extruder_per_segment;
  6126. clamp_to_software_endstops(arc_target);
  6127. #if ENABLED(DELTA) || ENABLED(SCARA)
  6128. calculate_delta(arc_target);
  6129. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  6130. adjust_delta(arc_target);
  6131. #endif
  6132. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], arc_target[E_AXIS], feed_rate, active_extruder);
  6133. #else
  6134. plan_buffer_line(arc_target[X_AXIS], arc_target[Y_AXIS], arc_target[Z_AXIS], arc_target[E_AXIS], feed_rate, active_extruder);
  6135. #endif
  6136. }
  6137. // Ensure last segment arrives at target location.
  6138. #if ENABLED(DELTA) || ENABLED(SCARA)
  6139. calculate_delta(target);
  6140. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  6141. adjust_delta(target);
  6142. #endif
  6143. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], target[E_AXIS], feed_rate, active_extruder);
  6144. #else
  6145. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feed_rate, active_extruder);
  6146. #endif
  6147. // As far as the parser is concerned, the position is now == target. In reality the
  6148. // motion control system might still be processing the action and the real tool position
  6149. // in any intermediate location.
  6150. set_current_to_destination();
  6151. }
  6152. #if HAS_CONTROLLERFAN
  6153. void controllerFan() {
  6154. static millis_t lastMotorOn = 0; // Last time a motor was turned on
  6155. static millis_t nextMotorCheck = 0; // Last time the state was checked
  6156. millis_t ms = millis();
  6157. if (ms >= nextMotorCheck) {
  6158. nextMotorCheck = ms + 2500; // Not a time critical function, so only check every 2.5s
  6159. if (X_ENABLE_READ == X_ENABLE_ON || Y_ENABLE_READ == Y_ENABLE_ON || Z_ENABLE_READ == Z_ENABLE_ON || soft_pwm_bed > 0
  6160. || E0_ENABLE_READ == E_ENABLE_ON // If any of the drivers are enabled...
  6161. #if EXTRUDERS > 1
  6162. || E1_ENABLE_READ == E_ENABLE_ON
  6163. #if HAS_X2_ENABLE
  6164. || X2_ENABLE_READ == X_ENABLE_ON
  6165. #endif
  6166. #if EXTRUDERS > 2
  6167. || E2_ENABLE_READ == E_ENABLE_ON
  6168. #if EXTRUDERS > 3
  6169. || E3_ENABLE_READ == E_ENABLE_ON
  6170. #endif
  6171. #endif
  6172. #endif
  6173. ) {
  6174. lastMotorOn = ms; //... set time to NOW so the fan will turn on
  6175. }
  6176. // Fan off if no steppers have been enabled for CONTROLLERFAN_SECS seconds
  6177. uint8_t speed = (lastMotorOn == 0 || ms >= lastMotorOn + (CONTROLLERFAN_SECS) * 1000UL) ? 0 : CONTROLLERFAN_SPEED;
  6178. // allows digital or PWM fan output to be used (see M42 handling)
  6179. digitalWrite(CONTROLLERFAN_PIN, speed);
  6180. analogWrite(CONTROLLERFAN_PIN, speed);
  6181. }
  6182. }
  6183. #endif // HAS_CONTROLLERFAN
  6184. #if ENABLED(SCARA)
  6185. void calculate_SCARA_forward_Transform(float f_scara[3]) {
  6186. // Perform forward kinematics, and place results in delta[3]
  6187. // The maths and first version has been done by QHARLEY . Integrated into masterbranch 06/2014 and slightly restructured by Joachim Cerny in June 2014
  6188. float x_sin, x_cos, y_sin, y_cos;
  6189. //SERIAL_ECHOPGM("f_delta x="); SERIAL_ECHO(f_scara[X_AXIS]);
  6190. //SERIAL_ECHOPGM(" y="); SERIAL_ECHO(f_scara[Y_AXIS]);
  6191. x_sin = sin(f_scara[X_AXIS] / SCARA_RAD2DEG) * Linkage_1;
  6192. x_cos = cos(f_scara[X_AXIS] / SCARA_RAD2DEG) * Linkage_1;
  6193. y_sin = sin(f_scara[Y_AXIS] / SCARA_RAD2DEG) * Linkage_2;
  6194. y_cos = cos(f_scara[Y_AXIS] / SCARA_RAD2DEG) * Linkage_2;
  6195. //SERIAL_ECHOPGM(" x_sin="); SERIAL_ECHO(x_sin);
  6196. //SERIAL_ECHOPGM(" x_cos="); SERIAL_ECHO(x_cos);
  6197. //SERIAL_ECHOPGM(" y_sin="); SERIAL_ECHO(y_sin);
  6198. //SERIAL_ECHOPGM(" y_cos="); SERIAL_ECHOLN(y_cos);
  6199. delta[X_AXIS] = x_cos + y_cos + SCARA_offset_x; //theta
  6200. delta[Y_AXIS] = x_sin + y_sin + SCARA_offset_y; //theta+phi
  6201. //SERIAL_ECHOPGM(" delta[X_AXIS]="); SERIAL_ECHO(delta[X_AXIS]);
  6202. //SERIAL_ECHOPGM(" delta[Y_AXIS]="); SERIAL_ECHOLN(delta[Y_AXIS]);
  6203. }
  6204. void calculate_delta(float cartesian[3]) {
  6205. //reverse kinematics.
  6206. // Perform reversed kinematics, and place results in delta[3]
  6207. // The maths and first version has been done by QHARLEY . Integrated into masterbranch 06/2014 and slightly restructured by Joachim Cerny in June 2014
  6208. float SCARA_pos[2];
  6209. static float SCARA_C2, SCARA_S2, SCARA_K1, SCARA_K2, SCARA_theta, SCARA_psi;
  6210. SCARA_pos[X_AXIS] = cartesian[X_AXIS] * axis_scaling[X_AXIS] - SCARA_offset_x; //Translate SCARA to standard X Y
  6211. SCARA_pos[Y_AXIS] = cartesian[Y_AXIS] * axis_scaling[Y_AXIS] - SCARA_offset_y; // With scaling factor.
  6212. #if (Linkage_1 == Linkage_2)
  6213. SCARA_C2 = ((sq(SCARA_pos[X_AXIS]) + sq(SCARA_pos[Y_AXIS])) / (2 * (float)L1_2)) - 1;
  6214. #else
  6215. SCARA_C2 = (sq(SCARA_pos[X_AXIS]) + sq(SCARA_pos[Y_AXIS]) - (float)L1_2 - (float)L2_2) / 45000;
  6216. #endif
  6217. SCARA_S2 = sqrt(1 - sq(SCARA_C2));
  6218. SCARA_K1 = Linkage_1 + Linkage_2 * SCARA_C2;
  6219. SCARA_K2 = Linkage_2 * SCARA_S2;
  6220. SCARA_theta = (atan2(SCARA_pos[X_AXIS], SCARA_pos[Y_AXIS]) - atan2(SCARA_K1, SCARA_K2)) * -1;
  6221. SCARA_psi = atan2(SCARA_S2, SCARA_C2);
  6222. delta[X_AXIS] = SCARA_theta * SCARA_RAD2DEG; // Multiply by 180/Pi - theta is support arm angle
  6223. delta[Y_AXIS] = (SCARA_theta + SCARA_psi) * SCARA_RAD2DEG; // - equal to sub arm angle (inverted motor)
  6224. delta[Z_AXIS] = cartesian[Z_AXIS];
  6225. /**
  6226. SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);
  6227. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]);
  6228. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]);
  6229. SERIAL_ECHOPGM("scara x="); SERIAL_ECHO(SCARA_pos[X_AXIS]);
  6230. SERIAL_ECHOPGM(" y="); SERIAL_ECHOLN(SCARA_pos[Y_AXIS]);
  6231. SERIAL_ECHOPGM("delta x="); SERIAL_ECHO(delta[X_AXIS]);
  6232. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(delta[Y_AXIS]);
  6233. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(delta[Z_AXIS]);
  6234. SERIAL_ECHOPGM("C2="); SERIAL_ECHO(SCARA_C2);
  6235. SERIAL_ECHOPGM(" S2="); SERIAL_ECHO(SCARA_S2);
  6236. SERIAL_ECHOPGM(" Theta="); SERIAL_ECHO(SCARA_theta);
  6237. SERIAL_ECHOPGM(" Psi="); SERIAL_ECHOLN(SCARA_psi);
  6238. SERIAL_EOL;
  6239. */
  6240. }
  6241. #endif // SCARA
  6242. #if ENABLED(TEMP_STAT_LEDS)
  6243. static bool red_led = false;
  6244. static millis_t next_status_led_update_ms = 0;
  6245. void handle_status_leds(void) {
  6246. float max_temp = 0.0;
  6247. if (millis() > next_status_led_update_ms) {
  6248. next_status_led_update_ms += 500; // Update every 0.5s
  6249. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder)
  6250. max_temp = max(max(max_temp, degHotend(cur_extruder)), degTargetHotend(cur_extruder));
  6251. #if HAS_TEMP_BED
  6252. max_temp = max(max(max_temp, degTargetBed()), degBed());
  6253. #endif
  6254. bool new_led = (max_temp > 55.0) ? true : (max_temp < 54.0) ? false : red_led;
  6255. if (new_led != red_led) {
  6256. red_led = new_led;
  6257. digitalWrite(STAT_LED_RED, new_led ? HIGH : LOW);
  6258. digitalWrite(STAT_LED_BLUE, new_led ? LOW : HIGH);
  6259. }
  6260. }
  6261. }
  6262. #endif
  6263. void enable_all_steppers() {
  6264. enable_x();
  6265. enable_y();
  6266. enable_z();
  6267. enable_e0();
  6268. enable_e1();
  6269. enable_e2();
  6270. enable_e3();
  6271. }
  6272. void disable_all_steppers() {
  6273. disable_x();
  6274. disable_y();
  6275. disable_z();
  6276. disable_e0();
  6277. disable_e1();
  6278. disable_e2();
  6279. disable_e3();
  6280. }
  6281. /**
  6282. * Standard idle routine keeps the machine alive
  6283. */
  6284. void idle(
  6285. #if ENABLED(FILAMENTCHANGEENABLE)
  6286. bool no_stepper_sleep/*=false*/
  6287. #endif
  6288. ) {
  6289. manage_heater();
  6290. manage_inactivity(
  6291. #if ENABLED(FILAMENTCHANGEENABLE)
  6292. no_stepper_sleep
  6293. #endif
  6294. );
  6295. host_keepalive();
  6296. lcd_update();
  6297. }
  6298. /**
  6299. * Manage several activities:
  6300. * - Check for Filament Runout
  6301. * - Keep the command buffer full
  6302. * - Check for maximum inactive time between commands
  6303. * - Check for maximum inactive time between stepper commands
  6304. * - Check if pin CHDK needs to go LOW
  6305. * - Check for KILL button held down
  6306. * - Check for HOME button held down
  6307. * - Check if cooling fan needs to be switched on
  6308. * - Check if an idle but hot extruder needs filament extruded (EXTRUDER_RUNOUT_PREVENT)
  6309. */
  6310. void manage_inactivity(bool ignore_stepper_queue/*=false*/) {
  6311. #if HAS_FILRUNOUT
  6312. if (IS_SD_PRINTING && !(READ(FILRUNOUT_PIN) ^ FIL_RUNOUT_INVERTING))
  6313. filrunout();
  6314. #endif
  6315. if (commands_in_queue < BUFSIZE) get_available_commands();
  6316. millis_t ms = millis();
  6317. if (max_inactive_time && ms > previous_cmd_ms + max_inactive_time) kill(PSTR(MSG_KILLED));
  6318. if (stepper_inactive_time && ms > previous_cmd_ms + stepper_inactive_time
  6319. && !ignore_stepper_queue && !blocks_queued()) {
  6320. #if ENABLED(DISABLE_INACTIVE_X)
  6321. disable_x();
  6322. #endif
  6323. #if ENABLED(DISABLE_INACTIVE_Y)
  6324. disable_y();
  6325. #endif
  6326. #if ENABLED(DISABLE_INACTIVE_Z)
  6327. disable_z();
  6328. #endif
  6329. #if ENABLED(DISABLE_INACTIVE_E)
  6330. disable_e0();
  6331. disable_e1();
  6332. disable_e2();
  6333. disable_e3();
  6334. #endif
  6335. }
  6336. #ifdef CHDK // Check if pin should be set to LOW after M240 set it to HIGH
  6337. if (chdkActive && ms > chdkHigh + CHDK_DELAY) {
  6338. chdkActive = false;
  6339. WRITE(CHDK, LOW);
  6340. }
  6341. #endif
  6342. #if HAS_KILL
  6343. // Check if the kill button was pressed and wait just in case it was an accidental
  6344. // key kill key press
  6345. // -------------------------------------------------------------------------------
  6346. static int killCount = 0; // make the inactivity button a bit less responsive
  6347. const int KILL_DELAY = 750;
  6348. if (!READ(KILL_PIN))
  6349. killCount++;
  6350. else if (killCount > 0)
  6351. killCount--;
  6352. // Exceeded threshold and we can confirm that it was not accidental
  6353. // KILL the machine
  6354. // ----------------------------------------------------------------
  6355. if (killCount >= KILL_DELAY) kill(PSTR(MSG_KILLED));
  6356. #endif
  6357. #if HAS_HOME
  6358. // Check to see if we have to home, use poor man's debouncer
  6359. // ---------------------------------------------------------
  6360. static int homeDebounceCount = 0; // poor man's debouncing count
  6361. const int HOME_DEBOUNCE_DELAY = 2500;
  6362. if (!READ(HOME_PIN)) {
  6363. if (!homeDebounceCount) {
  6364. enqueue_and_echo_commands_P(PSTR("G28"));
  6365. LCD_MESSAGEPGM(MSG_AUTO_HOME);
  6366. }
  6367. if (homeDebounceCount < HOME_DEBOUNCE_DELAY)
  6368. homeDebounceCount++;
  6369. else
  6370. homeDebounceCount = 0;
  6371. }
  6372. #endif
  6373. #if HAS_CONTROLLERFAN
  6374. controllerFan(); // Check if fan should be turned on to cool stepper drivers down
  6375. #endif
  6376. #if ENABLED(EXTRUDER_RUNOUT_PREVENT)
  6377. if (ms > previous_cmd_ms + (EXTRUDER_RUNOUT_SECONDS) * 1000)
  6378. if (degHotend(active_extruder) > EXTRUDER_RUNOUT_MINTEMP) {
  6379. bool oldstatus;
  6380. switch (active_extruder) {
  6381. case 0:
  6382. oldstatus = E0_ENABLE_READ;
  6383. enable_e0();
  6384. break;
  6385. #if EXTRUDERS > 1
  6386. case 1:
  6387. oldstatus = E1_ENABLE_READ;
  6388. enable_e1();
  6389. break;
  6390. #if EXTRUDERS > 2
  6391. case 2:
  6392. oldstatus = E2_ENABLE_READ;
  6393. enable_e2();
  6394. break;
  6395. #if EXTRUDERS > 3
  6396. case 3:
  6397. oldstatus = E3_ENABLE_READ;
  6398. enable_e3();
  6399. break;
  6400. #endif
  6401. #endif
  6402. #endif
  6403. }
  6404. float oldepos = current_position[E_AXIS], oldedes = destination[E_AXIS];
  6405. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
  6406. destination[E_AXIS] + (EXTRUDER_RUNOUT_EXTRUDE) * (EXTRUDER_RUNOUT_ESTEPS) / axis_steps_per_unit[E_AXIS],
  6407. (EXTRUDER_RUNOUT_SPEED) / 60. * (EXTRUDER_RUNOUT_ESTEPS) / axis_steps_per_unit[E_AXIS], active_extruder);
  6408. current_position[E_AXIS] = oldepos;
  6409. destination[E_AXIS] = oldedes;
  6410. plan_set_e_position(oldepos);
  6411. previous_cmd_ms = ms; // refresh_cmd_timeout()
  6412. st_synchronize();
  6413. switch (active_extruder) {
  6414. case 0:
  6415. E0_ENABLE_WRITE(oldstatus);
  6416. break;
  6417. #if EXTRUDERS > 1
  6418. case 1:
  6419. E1_ENABLE_WRITE(oldstatus);
  6420. break;
  6421. #if EXTRUDERS > 2
  6422. case 2:
  6423. E2_ENABLE_WRITE(oldstatus);
  6424. break;
  6425. #if EXTRUDERS > 3
  6426. case 3:
  6427. E3_ENABLE_WRITE(oldstatus);
  6428. break;
  6429. #endif
  6430. #endif
  6431. #endif
  6432. }
  6433. }
  6434. #endif
  6435. #if ENABLED(DUAL_X_CARRIAGE)
  6436. // handle delayed move timeout
  6437. if (delayed_move_time && ms > delayed_move_time + 1000 && IsRunning()) {
  6438. // travel moves have been received so enact them
  6439. delayed_move_time = 0xFFFFFFFFUL; // force moves to be done
  6440. set_destination_to_current();
  6441. prepare_move();
  6442. }
  6443. #endif
  6444. #if ENABLED(TEMP_STAT_LEDS)
  6445. handle_status_leds();
  6446. #endif
  6447. check_axes_activity();
  6448. }
  6449. void kill(const char* lcd_msg) {
  6450. #if ENABLED(ULTRA_LCD)
  6451. lcd_setalertstatuspgm(lcd_msg);
  6452. #else
  6453. UNUSED(lcd_msg);
  6454. #endif
  6455. cli(); // Stop interrupts
  6456. disable_all_heaters();
  6457. disable_all_steppers();
  6458. #if HAS_POWER_SWITCH
  6459. pinMode(PS_ON_PIN, INPUT);
  6460. #endif
  6461. SERIAL_ERROR_START;
  6462. SERIAL_ERRORLNPGM(MSG_ERR_KILLED);
  6463. // FMC small patch to update the LCD before ending
  6464. sei(); // enable interrupts
  6465. for (int i = 5; i--; lcd_update()) delay(200); // Wait a short time
  6466. cli(); // disable interrupts
  6467. suicide();
  6468. while (1) {
  6469. #if ENABLED(USE_WATCHDOG)
  6470. watchdog_reset();
  6471. #endif
  6472. } // Wait for reset
  6473. }
  6474. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  6475. void filrunout() {
  6476. if (!filrunoutEnqueued) {
  6477. filrunoutEnqueued = true;
  6478. enqueue_and_echo_commands_P(PSTR(FILAMENT_RUNOUT_SCRIPT));
  6479. st_synchronize();
  6480. }
  6481. }
  6482. #endif // FILAMENT_RUNOUT_SENSOR
  6483. #if ENABLED(FAST_PWM_FAN)
  6484. void setPwmFrequency(uint8_t pin, int val) {
  6485. val &= 0x07;
  6486. switch (digitalPinToTimer(pin)) {
  6487. #if defined(TCCR0A)
  6488. case TIMER0A:
  6489. case TIMER0B:
  6490. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  6491. // TCCR0B |= val;
  6492. break;
  6493. #endif
  6494. #if defined(TCCR1A)
  6495. case TIMER1A:
  6496. case TIMER1B:
  6497. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  6498. // TCCR1B |= val;
  6499. break;
  6500. #endif
  6501. #if defined(TCCR2)
  6502. case TIMER2:
  6503. case TIMER2:
  6504. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  6505. TCCR2 |= val;
  6506. break;
  6507. #endif
  6508. #if defined(TCCR2A)
  6509. case TIMER2A:
  6510. case TIMER2B:
  6511. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  6512. TCCR2B |= val;
  6513. break;
  6514. #endif
  6515. #if defined(TCCR3A)
  6516. case TIMER3A:
  6517. case TIMER3B:
  6518. case TIMER3C:
  6519. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  6520. TCCR3B |= val;
  6521. break;
  6522. #endif
  6523. #if defined(TCCR4A)
  6524. case TIMER4A:
  6525. case TIMER4B:
  6526. case TIMER4C:
  6527. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  6528. TCCR4B |= val;
  6529. break;
  6530. #endif
  6531. #if defined(TCCR5A)
  6532. case TIMER5A:
  6533. case TIMER5B:
  6534. case TIMER5C:
  6535. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  6536. TCCR5B |= val;
  6537. break;
  6538. #endif
  6539. }
  6540. }
  6541. #endif // FAST_PWM_FAN
  6542. void Stop() {
  6543. disable_all_heaters();
  6544. if (IsRunning()) {
  6545. Running = false;
  6546. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  6547. SERIAL_ERROR_START;
  6548. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  6549. LCD_MESSAGEPGM(MSG_STOPPED);
  6550. }
  6551. }
  6552. /**
  6553. * Set target_extruder from the T parameter or the active_extruder
  6554. *
  6555. * Returns TRUE if the target is invalid
  6556. */
  6557. bool setTargetedHotend(int code) {
  6558. target_extruder = active_extruder;
  6559. if (code_seen('T')) {
  6560. target_extruder = code_value_short();
  6561. if (target_extruder >= EXTRUDERS) {
  6562. SERIAL_ECHO_START;
  6563. SERIAL_CHAR('M');
  6564. SERIAL_ECHO(code);
  6565. SERIAL_ECHOPGM(" " MSG_INVALID_EXTRUDER " ");
  6566. SERIAL_ECHOLN((int)target_extruder);
  6567. return true;
  6568. }
  6569. }
  6570. return false;
  6571. }
  6572. float calculate_volumetric_multiplier(float diameter) {
  6573. if (!volumetric_enabled || diameter == 0) return 1.0;
  6574. float d2 = diameter * 0.5;
  6575. return 1.0 / (M_PI * d2 * d2);
  6576. }
  6577. void calculate_volumetric_multipliers() {
  6578. for (int i = 0; i < EXTRUDERS; i++)
  6579. volumetric_multiplier[i] = calculate_volumetric_multiplier(filament_size[i]);
  6580. }