My Marlin configs for Fabrikator Mini and CTC i3 Pro B
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

Marlin_main.cpp 286KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861786278637864786578667867786878697870787178727873787478757876787778787879788078817882788378847885788678877888788978907891789278937894789578967897789878997900790179027903790479057906790779087909791079117912791379147915791679177918791979207921792279237924792579267927792879297930793179327933793479357936793779387939794079417942794379447945794679477948794979507951795279537954795579567957795879597960796179627963796479657966796779687969797079717972797379747975797679777978797979807981798279837984798579867987798879897990799179927993799479957996799779987999800080018002800380048005800680078008800980108011801280138014801580168017801880198020802180228023802480258026802780288029803080318032803380348035803680378038803980408041804280438044804580468047804880498050805180528053805480558056805780588059806080618062806380648065806680678068806980708071807280738074807580768077807880798080808180828083808480858086808780888089809080918092809380948095809680978098809981008101810281038104810581068107810881098110811181128113811481158116811781188119812081218122812381248125812681278128812981308131813281338134813581368137813881398140814181428143814481458146814781488149815081518152815381548155815681578158815981608161816281638164816581668167816881698170817181728173817481758176817781788179818081818182818381848185818681878188818981908191819281938194819581968197819881998200820182028203820482058206820782088209821082118212821382148215821682178218821982208221822282238224822582268227822882298230823182328233823482358236823782388239824082418242824382448245824682478248824982508251825282538254825582568257825882598260826182628263826482658266826782688269827082718272827382748275827682778278827982808281828282838284828582868287828882898290829182928293829482958296829782988299830083018302830383048305830683078308830983108311831283138314831583168317831883198320832183228323832483258326832783288329833083318332833383348335833683378338833983408341834283438344834583468347834883498350835183528353835483558356835783588359836083618362836383648365836683678368836983708371837283738374837583768377837883798380838183828383838483858386838783888389839083918392839383948395839683978398839984008401840284038404840584068407840884098410841184128413841484158416841784188419842084218422842384248425842684278428842984308431843284338434843584368437843884398440844184428443844484458446844784488449845084518452845384548455845684578458845984608461846284638464846584668467846884698470847184728473847484758476847784788479848084818482848384848485848684878488848984908491849284938494849584968497849884998500850185028503850485058506850785088509851085118512851385148515851685178518851985208521852285238524852585268527852885298530853185328533853485358536853785388539854085418542854385448545854685478548854985508551855285538554855585568557855885598560856185628563856485658566856785688569857085718572857385748575857685778578857985808581858285838584858585868587858885898590859185928593859485958596859785988599860086018602860386048605860686078608860986108611861286138614861586168617861886198620862186228623862486258626862786288629863086318632863386348635863686378638863986408641864286438644864586468647864886498650865186528653865486558656865786588659866086618662866386648665866686678668866986708671867286738674867586768677867886798680868186828683868486858686868786888689869086918692869386948695869686978698869987008701870287038704870587068707870887098710871187128713871487158716871787188719872087218722872387248725872687278728872987308731873287338734873587368737873887398740874187428743874487458746874787488749875087518752875387548755875687578758875987608761876287638764876587668767876887698770877187728773877487758776877787788779878087818782878387848785878687878788878987908791879287938794879587968797879887998800880188028803880488058806880788088809881088118812881388148815881688178818881988208821882288238824882588268827882888298830883188328833883488358836883788388839884088418842884388448845884688478848884988508851885288538854885588568857885888598860886188628863886488658866886788688869887088718872887388748875887688778878887988808881888288838884888588868887888888898890889188928893889488958896889788988899890089018902890389048905890689078908890989108911891289138914891589168917891889198920892189228923892489258926892789288929893089318932893389348935893689378938893989408941894289438944894589468947894889498950895189528953895489558956895789588959896089618962896389648965896689678968896989708971897289738974897589768977897889798980898189828983898489858986898789888989899089918992899389948995899689978998899990009001900290039004900590069007900890099010901190129013901490159016901790189019902090219022902390249025902690279028902990309031903290339034903590369037903890399040904190429043904490459046904790489049905090519052905390549055905690579058905990609061906290639064906590669067906890699070907190729073907490759076907790789079908090819082908390849085908690879088908990909091909290939094909590969097909890999100910191029103910491059106910791089109911091119112911391149115911691179118911991209121912291239124912591269127912891299130913191329133913491359136913791389139914091419142914391449145914691479148914991509151915291539154915591569157915891599160916191629163916491659166916791689169917091719172917391749175917691779178917991809181918291839184918591869187918891899190
  1. /**
  2. * Marlin 3D Printer Firmware
  3. * Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
  4. *
  5. * Based on Sprinter and grbl.
  6. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  7. *
  8. * This program is free software: you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation, either version 3 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  20. *
  21. */
  22. /**
  23. *
  24. * About Marlin
  25. *
  26. * This firmware is a mashup between Sprinter and grbl.
  27. * - https://github.com/kliment/Sprinter
  28. * - https://github.com/simen/grbl/tree
  29. *
  30. * It has preliminary support for Matthew Roberts advance algorithm
  31. * - http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  32. */
  33. #include "Marlin.h"
  34. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  35. #include "vector_3.h"
  36. #endif
  37. #if ENABLED(AUTO_BED_LEVELING_LINEAR_GRID)
  38. #include "qr_solve.h"
  39. #elif ENABLED(MESH_BED_LEVELING)
  40. #include "mesh_bed_leveling.h"
  41. #endif
  42. #if ENABLED(BEZIER_CURVE_SUPPORT)
  43. #include "planner_bezier.h"
  44. #endif
  45. #include "ultralcd.h"
  46. #include "planner.h"
  47. #include "stepper.h"
  48. #include "endstops.h"
  49. #include "temperature.h"
  50. #include "cardreader.h"
  51. #include "configuration_store.h"
  52. #include "language.h"
  53. #include "pins_arduino.h"
  54. #include "math.h"
  55. #include "nozzle.h"
  56. #include "duration_t.h"
  57. #include "types.h"
  58. #if ENABLED(USE_WATCHDOG)
  59. #include "watchdog.h"
  60. #endif
  61. #if ENABLED(BLINKM)
  62. #include "blinkm.h"
  63. #include "Wire.h"
  64. #endif
  65. #if HAS_SERVOS
  66. #include "servo.h"
  67. #endif
  68. #if HAS_DIGIPOTSS
  69. #include <SPI.h>
  70. #endif
  71. #if ENABLED(DAC_STEPPER_CURRENT)
  72. #include "stepper_dac.h"
  73. #endif
  74. #if ENABLED(EXPERIMENTAL_I2CBUS)
  75. #include "twibus.h"
  76. #endif
  77. /**
  78. * Look here for descriptions of G-codes:
  79. * - http://linuxcnc.org/handbook/gcode/g-code.html
  80. * - http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  81. *
  82. * Help us document these G-codes online:
  83. * - https://github.com/MarlinFirmware/Marlin/wiki/G-Code-in-Marlin
  84. * - http://reprap.org/wiki/G-code
  85. *
  86. * -----------------
  87. * Implemented Codes
  88. * -----------------
  89. *
  90. * "G" Codes
  91. *
  92. * G0 -> G1
  93. * G1 - Coordinated Movement X Y Z E
  94. * G2 - CW ARC
  95. * G3 - CCW ARC
  96. * G4 - Dwell S<seconds> or P<milliseconds>
  97. * G5 - Cubic B-spline with XYZE destination and IJPQ offsets
  98. * G10 - Retract filament according to settings of M207
  99. * G11 - Retract recover filament according to settings of M208
  100. * G12 - Clean tool
  101. * G20 - Set input units to inches
  102. * G21 - Set input units to millimeters
  103. * G28 - Home one or more axes
  104. * G29 - Detailed Z probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  105. * G30 - Single Z probe, probes bed at current XY location.
  106. * G31 - Dock sled (Z_PROBE_SLED only)
  107. * G32 - Undock sled (Z_PROBE_SLED only)
  108. * G90 - Use Absolute Coordinates
  109. * G91 - Use Relative Coordinates
  110. * G92 - Set current position to coordinates given
  111. *
  112. * "M" Codes
  113. *
  114. * M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
  115. * M1 - Same as M0
  116. * M17 - Enable/Power all stepper motors
  117. * M18 - Disable all stepper motors; same as M84
  118. * M20 - List SD card
  119. * M21 - Init SD card
  120. * M22 - Release SD card
  121. * M23 - Select SD file (M23 filename.g)
  122. * M24 - Start/resume SD print
  123. * M25 - Pause SD print
  124. * M26 - Set SD position in bytes (M26 S12345)
  125. * M27 - Report SD print status
  126. * M28 - Start SD write (M28 filename.g)
  127. * M29 - Stop SD write
  128. * M30 - Delete file from SD (M30 filename.g)
  129. * M31 - Output time since last M109 or SD card start to serial
  130. * M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  131. * syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  132. * Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
  133. * The '#' is necessary when calling from within sd files, as it stops buffer prereading
  134. * M33 - Get the longname version of a path
  135. * M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  136. * M48 - Measure Z_Probe repeatability. M48 [P # of points] [X position] [Y position] [V_erboseness #] [E_ngage Probe] [L # of legs of travel]
  137. * M75 - Start the print job timer
  138. * M76 - Pause the print job timer
  139. * M77 - Stop the print job timer
  140. * M78 - Show statistical information about the print jobs
  141. * M80 - Turn on Power Supply
  142. * M81 - Turn off Power Supply
  143. * M82 - Set E codes absolute (default)
  144. * M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  145. * M84 - Disable steppers until next move,
  146. * or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  147. * M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  148. * M92 - Set planner.axis_steps_per_mm - same syntax as G92
  149. * M104 - Set extruder target temp
  150. * M105 - Read current temp
  151. * M106 - Fan on
  152. * M107 - Fan off
  153. * M108 - Stop the waiting for heaters in M109, M190, M303. Does not affect the target temperature.
  154. * M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  155. * Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  156. * IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  157. * M110 - Set the current line number
  158. * M111 - Set debug flags with S<mask>. See flag bits defined in enum.h.
  159. * M112 - Emergency stop
  160. * M113 - Get or set the timeout interval for Host Keepalive "busy" messages
  161. * M114 - Output current position to serial port
  162. * M115 - Capabilities string
  163. * M117 - Display a message on the controller screen
  164. * M119 - Output Endstop status to serial port
  165. * M120 - Enable endstop detection
  166. * M121 - Disable endstop detection
  167. * M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  168. * M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  169. * M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  170. * M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  171. * M140 - Set bed target temp
  172. * M145 - Set the heatup state H<hotend> B<bed> F<fan speed> for S<material> (0=PLA, 1=ABS)
  173. * M149 - Set temperature units
  174. * M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  175. * M163 - Set a single proportion for a mixing extruder. Requires MIXING_EXTRUDER.
  176. * M164 - Save the mix as a virtual extruder. Requires MIXING_EXTRUDER and MIXING_VIRTUAL_TOOLS.
  177. * M165 - Set the proportions for a mixing extruder. Use parameters ABCDHI to set the mixing factors. Requires MIXING_EXTRUDER.
  178. * M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  179. * Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  180. * M200 - Set filament diameter, D<diameter>, setting E axis units to cubic. (Use S0 to revert to linear units.)
  181. * M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  182. * M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  183. * M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in units/sec
  184. * M204 - Set default acceleration: P for Printing moves, R for Retract only (no X, Y, Z) moves and T for Travel (non printing) moves (ex. M204 P800 T3000 R9000) in units/sec^2
  185. * M205 - Set advanced settings. Current units apply:
  186. S<print> T<travel> minimum speeds
  187. B<minimum segment time>
  188. X<max xy jerk>, Z<max Z jerk>, E<max E jerk>
  189. * M206 - Set additional homing offset
  190. * M207 - Set Retract Length: S<length>, Feedrate: F<units/min>, and Z lift: Z<distance>
  191. * M208 - Set Recover (unretract) Additional (!) Length: S<length> and Feedrate: F<units/min>
  192. * M209 - Turn Automatic Retract Detection on/off: S<bool> (For slicers that don't support G10/11).
  193. Every normal extrude-only move will be classified as retract depending on the direction.
  194. * M211 - Enable, Disable, and/or Report software endstops: [S<bool>]
  195. * M218 - Set a tool offset: T<index> X<offset> Y<offset>
  196. * M220 - Set Feedrate Percentage: S<percent> ("FR" on your LCD)
  197. * M221 - Set Flow Percentage: S<percent>
  198. * M226 - Wait until the specified pin reaches the state required: P<pin number> S<pin state>
  199. * M240 - Trigger a camera to take a photograph
  200. * M250 - Set LCD contrast C<contrast value> (value 0..63)
  201. * M280 - Set servo position absolute. P: servo index, S: angle or microseconds
  202. * M300 - Play beep sound S<frequency Hz> P<duration ms>
  203. * M301 - Set PID parameters P I and D
  204. * M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  205. * M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  206. * M304 - Set bed PID parameters P I and D
  207. * M380 - Activate solenoid on active extruder
  208. * M381 - Disable all solenoids
  209. * M400 - Finish all moves
  210. * M401 - Lower Z probe if present
  211. * M402 - Raise Z probe if present
  212. * M404 - Display or set the Nominal Filament Width: [ N<diameter> ]
  213. * M405 - Enable Filament Sensor extrusion control. Optional delay between sensor and extruder: D<cm>
  214. * M406 - Disable Filament Sensor extrusion control
  215. * M407 - Display measured filament diameter in millimeters
  216. * M410 - Quickstop. Abort all the planned moves
  217. * M420 - Enable/Disable Mesh Leveling (with current values) S1=enable S0=disable
  218. * M421 - Set a single Z coordinate in the Mesh Leveling grid. X<units> Y<units> Z<units>
  219. * M428 - Set the home_offset logically based on the current_position
  220. * M500 - Store parameters in EEPROM
  221. * M501 - Read parameters from EEPROM (if you need reset them after you changed them temporarily).
  222. * M502 - Revert to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  223. * M503 - Print the current settings (from memory not from EEPROM). Use S0 to leave off headings.
  224. * M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  225. * M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  226. * M665 - Set delta configurations: L<diagonal rod> R<delta radius> S<segments/s>
  227. * M666 - Set delta endstop adjustment
  228. * M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  229. * M851 - Set Z probe's Z offset in current units. (Negative values apply to probes that extend below the nozzle.)
  230. * M907 - Set digital trimpot motor current using axis codes.
  231. * M908 - Control digital trimpot directly.
  232. * M909 - DAC_STEPPER_CURRENT: Print digipot/DAC current value
  233. * M910 - DAC_STEPPER_CURRENT: Commit digipot/DAC value to external EEPROM via I2C
  234. * M350 - Set microstepping mode.
  235. * M351 - Toggle MS1 MS2 pins directly.
  236. *
  237. * ************ SCARA Specific - This can change to suit future G-code regulations
  238. * M360 - SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  239. * M361 - SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  240. * M362 - SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  241. * M363 - SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  242. * M364 - SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
  243. * ************* SCARA End ***************
  244. *
  245. * ************ Custom codes - This can change to suit future G-code regulations
  246. * M100 - Watch Free Memory (For Debugging Only)
  247. * M928 - Start SD logging (M928 filename.g) - ended by M29
  248. * M999 - Restart after being stopped by error
  249. *
  250. * "T" Codes
  251. *
  252. * T0-T3 - Select a tool by index (usually an extruder) [ F<units/min> ]
  253. *
  254. */
  255. #if ENABLED(M100_FREE_MEMORY_WATCHER)
  256. void gcode_M100();
  257. #endif
  258. #if ENABLED(SDSUPPORT)
  259. CardReader card;
  260. #endif
  261. #if ENABLED(EXPERIMENTAL_I2CBUS)
  262. TWIBus i2c;
  263. #endif
  264. bool Running = true;
  265. uint8_t marlin_debug_flags = DEBUG_NONE;
  266. float current_position[NUM_AXIS] = { 0.0 };
  267. static float destination[NUM_AXIS] = { 0.0 };
  268. bool axis_known_position[XYZ] = { false };
  269. bool axis_homed[XYZ] = { false };
  270. static long gcode_N, gcode_LastN, Stopped_gcode_LastN = 0;
  271. static char command_queue[BUFSIZE][MAX_CMD_SIZE];
  272. static char* current_command, *current_command_args;
  273. static uint8_t cmd_queue_index_r = 0,
  274. cmd_queue_index_w = 0,
  275. commands_in_queue = 0;
  276. #if ENABLED(INCH_MODE_SUPPORT)
  277. float linear_unit_factor = 1.0;
  278. float volumetric_unit_factor = 1.0;
  279. #endif
  280. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  281. TempUnit input_temp_units = TEMPUNIT_C;
  282. #endif
  283. /**
  284. * Feed rates are often configured with mm/m
  285. * but the planner and stepper like mm/s units.
  286. */
  287. const float homing_feedrate_mm_s[] = {
  288. #if ENABLED(DELTA)
  289. MMM_TO_MMS(HOMING_FEEDRATE_Z), MMM_TO_MMS(HOMING_FEEDRATE_Z),
  290. #else
  291. MMM_TO_MMS(HOMING_FEEDRATE_XY), MMM_TO_MMS(HOMING_FEEDRATE_XY),
  292. #endif
  293. MMM_TO_MMS(HOMING_FEEDRATE_Z), 0
  294. };
  295. static float feedrate_mm_s = MMM_TO_MMS(1500.0), saved_feedrate_mm_s;
  296. int feedrate_percentage = 100, saved_feedrate_percentage;
  297. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  298. int flow_percentage[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(100);
  299. bool volumetric_enabled = false;
  300. float filament_size[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(DEFAULT_NOMINAL_FILAMENT_DIA);
  301. float volumetric_multiplier[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(1.0);
  302. // The distance that XYZ has been offset by G92. Reset by G28.
  303. float position_shift[XYZ] = { 0 };
  304. // This offset is added to the configured home position.
  305. // Set by M206, M428, or menu item. Saved to EEPROM.
  306. float home_offset[XYZ] = { 0 };
  307. // Software Endstops are based on the configured limits.
  308. #if ENABLED(min_software_endstops) || ENABLED(max_software_endstops)
  309. bool soft_endstops_enabled = true;
  310. #endif
  311. float soft_endstop_min[XYZ] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS },
  312. soft_endstop_max[XYZ] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  313. #if FAN_COUNT > 0
  314. int fanSpeeds[FAN_COUNT] = { 0 };
  315. #endif
  316. // The active extruder (tool). Set with T<extruder> command.
  317. uint8_t active_extruder = 0;
  318. // Relative Mode. Enable with G91, disable with G90.
  319. static bool relative_mode = false;
  320. volatile bool wait_for_heatup = true;
  321. #if ENABLED(EMERGENCY_PARSER) && DISABLED(ULTIPANEL)
  322. volatile bool wait_for_user = false;
  323. #endif
  324. const char errormagic[] PROGMEM = "Error:";
  325. const char echomagic[] PROGMEM = "echo:";
  326. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  327. static int serial_count = 0;
  328. // GCode parameter pointer used by code_seen(), code_value_float(), etc.
  329. static char* seen_pointer;
  330. // Next Immediate GCode Command pointer. NULL if none.
  331. const char* queued_commands_P = NULL;
  332. const int sensitive_pins[] = SENSITIVE_PINS; ///< Sensitive pin list for M42
  333. // Inactivity shutdown
  334. millis_t previous_cmd_ms = 0;
  335. static millis_t max_inactive_time = 0;
  336. static millis_t stepper_inactive_time = (DEFAULT_STEPPER_DEACTIVE_TIME) * 1000UL;
  337. // Print Job Timer
  338. #if ENABLED(PRINTCOUNTER)
  339. PrintCounter print_job_timer = PrintCounter();
  340. #else
  341. Stopwatch print_job_timer = Stopwatch();
  342. #endif
  343. // Buzzer - I2C on the LCD or a BEEPER_PIN
  344. #if ENABLED(LCD_USE_I2C_BUZZER)
  345. #define BUZZ(d,f) lcd_buzz(d, f)
  346. #elif HAS_BUZZER
  347. Buzzer buzzer;
  348. #define BUZZ(d,f) buzzer.tone(d, f)
  349. #else
  350. #define BUZZ(d,f) NOOP
  351. #endif
  352. static uint8_t target_extruder;
  353. #if HAS_BED_PROBE
  354. float zprobe_zoffset = Z_PROBE_OFFSET_FROM_EXTRUDER;
  355. #endif
  356. #define PLANNER_XY_FEEDRATE() (min(planner.max_feedrate_mm_s[X_AXIS], planner.max_feedrate_mm_s[Y_AXIS]))
  357. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  358. float xy_probe_feedrate_mm_s = MMM_TO_MMS(XY_PROBE_SPEED);
  359. #define XY_PROBE_FEEDRATE_MM_S xy_probe_feedrate_mm_s
  360. #elif defined(XY_PROBE_SPEED)
  361. #define XY_PROBE_FEEDRATE_MM_S MMM_TO_MMS(XY_PROBE_SPEED)
  362. #else
  363. #define XY_PROBE_FEEDRATE_MM_S PLANNER_XY_FEEDRATE()
  364. #endif
  365. #if ENABLED(Z_DUAL_ENDSTOPS)
  366. float z_endstop_adj = 0;
  367. #endif
  368. // Extruder offsets
  369. #if HOTENDS > 1
  370. float hotend_offset[][HOTENDS] = {
  371. HOTEND_OFFSET_X,
  372. HOTEND_OFFSET_Y
  373. #ifdef HOTEND_OFFSET_Z
  374. , HOTEND_OFFSET_Z
  375. #endif
  376. };
  377. #endif
  378. #if HAS_Z_SERVO_ENDSTOP
  379. const int z_servo_angle[2] = Z_SERVO_ANGLES;
  380. #endif
  381. #if ENABLED(BARICUDA)
  382. int baricuda_valve_pressure = 0;
  383. int baricuda_e_to_p_pressure = 0;
  384. #endif
  385. #if ENABLED(FWRETRACT)
  386. bool autoretract_enabled = false;
  387. bool retracted[EXTRUDERS] = { false };
  388. bool retracted_swap[EXTRUDERS] = { false };
  389. float retract_length = RETRACT_LENGTH;
  390. float retract_length_swap = RETRACT_LENGTH_SWAP;
  391. float retract_feedrate_mm_s = RETRACT_FEEDRATE;
  392. float retract_zlift = RETRACT_ZLIFT;
  393. float retract_recover_length = RETRACT_RECOVER_LENGTH;
  394. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  395. float retract_recover_feedrate_mm_s = RETRACT_RECOVER_FEEDRATE;
  396. #endif // FWRETRACT
  397. #if ENABLED(ULTIPANEL) && HAS_POWER_SWITCH
  398. bool powersupply =
  399. #if ENABLED(PS_DEFAULT_OFF)
  400. false
  401. #else
  402. true
  403. #endif
  404. ;
  405. #endif
  406. #if ENABLED(DELTA)
  407. #define SIN_60 0.8660254037844386
  408. #define COS_60 0.5
  409. float delta[ABC],
  410. endstop_adj[ABC] = { 0 };
  411. // these are the default values, can be overriden with M665
  412. float delta_radius = DELTA_RADIUS,
  413. delta_tower1_x = -SIN_60 * (delta_radius + DELTA_RADIUS_TRIM_TOWER_1), // front left tower
  414. delta_tower1_y = -COS_60 * (delta_radius + DELTA_RADIUS_TRIM_TOWER_1),
  415. delta_tower2_x = SIN_60 * (delta_radius + DELTA_RADIUS_TRIM_TOWER_2), // front right tower
  416. delta_tower2_y = -COS_60 * (delta_radius + DELTA_RADIUS_TRIM_TOWER_2),
  417. delta_tower3_x = 0, // back middle tower
  418. delta_tower3_y = (delta_radius + DELTA_RADIUS_TRIM_TOWER_3),
  419. delta_diagonal_rod = DELTA_DIAGONAL_ROD,
  420. delta_diagonal_rod_trim_tower_1 = DELTA_DIAGONAL_ROD_TRIM_TOWER_1,
  421. delta_diagonal_rod_trim_tower_2 = DELTA_DIAGONAL_ROD_TRIM_TOWER_2,
  422. delta_diagonal_rod_trim_tower_3 = DELTA_DIAGONAL_ROD_TRIM_TOWER_3,
  423. delta_diagonal_rod_2_tower_1 = sq(delta_diagonal_rod + delta_diagonal_rod_trim_tower_1),
  424. delta_diagonal_rod_2_tower_2 = sq(delta_diagonal_rod + delta_diagonal_rod_trim_tower_2),
  425. delta_diagonal_rod_2_tower_3 = sq(delta_diagonal_rod + delta_diagonal_rod_trim_tower_3),
  426. delta_segments_per_second = DELTA_SEGMENTS_PER_SECOND,
  427. delta_clip_start_height = Z_MAX_POS;
  428. float delta_safe_distance_from_top();
  429. #else
  430. static bool home_all_axis = true;
  431. #endif
  432. #if ENABLED(AUTO_BED_LEVELING_NONLINEAR)
  433. int nonlinear_grid_spacing[2] = { 0 };
  434. float bed_level_grid[ABL_GRID_POINTS_X][ABL_GRID_POINTS_Y];
  435. #endif
  436. #if IS_SCARA
  437. // Float constants for SCARA calculations
  438. const float L1 = SCARA_LINKAGE_1, L2 = SCARA_LINKAGE_2,
  439. L1_2 = sq(float(L1)), L1_2_2 = 2.0 * L1_2,
  440. L2_2 = sq(float(L2));
  441. float delta_segments_per_second = SCARA_SEGMENTS_PER_SECOND,
  442. delta[ABC];
  443. #endif
  444. float cartes[XYZ] = { 0 };
  445. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  446. bool filament_sensor = false; //M405 turns on filament_sensor control, M406 turns it off
  447. float filament_width_nominal = DEFAULT_NOMINAL_FILAMENT_DIA, // Nominal filament width. Change with M404
  448. filament_width_meas = DEFAULT_MEASURED_FILAMENT_DIA; // Measured filament diameter
  449. int8_t measurement_delay[MAX_MEASUREMENT_DELAY + 1]; // Ring buffer to delayed measurement. Store extruder factor after subtracting 100
  450. int filwidth_delay_index[2] = { 0, -1 }; // Indexes into ring buffer
  451. int meas_delay_cm = MEASUREMENT_DELAY_CM; //distance delay setting
  452. #endif
  453. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  454. static bool filament_ran_out = false;
  455. #endif
  456. #if ENABLED(FILAMENT_CHANGE_FEATURE)
  457. FilamentChangeMenuResponse filament_change_menu_response;
  458. #endif
  459. #if ENABLED(MIXING_EXTRUDER)
  460. float mixing_factor[MIXING_STEPPERS];
  461. #if MIXING_VIRTUAL_TOOLS > 1
  462. float mixing_virtual_tool_mix[MIXING_VIRTUAL_TOOLS][MIXING_STEPPERS];
  463. #endif
  464. #endif
  465. static bool send_ok[BUFSIZE];
  466. #if HAS_SERVOS
  467. Servo servo[NUM_SERVOS];
  468. #define MOVE_SERVO(I, P) servo[I].move(P)
  469. #if HAS_Z_SERVO_ENDSTOP
  470. #define DEPLOY_Z_SERVO() MOVE_SERVO(Z_ENDSTOP_SERVO_NR, z_servo_angle[0])
  471. #define STOW_Z_SERVO() MOVE_SERVO(Z_ENDSTOP_SERVO_NR, z_servo_angle[1])
  472. #endif
  473. #endif
  474. #ifdef CHDK
  475. millis_t chdkHigh = 0;
  476. boolean chdkActive = false;
  477. #endif
  478. #if ENABLED(PID_EXTRUSION_SCALING)
  479. int lpq_len = 20;
  480. #endif
  481. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  482. static MarlinBusyState busy_state = NOT_BUSY;
  483. static millis_t next_busy_signal_ms = 0;
  484. uint8_t host_keepalive_interval = DEFAULT_KEEPALIVE_INTERVAL;
  485. #define KEEPALIVE_STATE(n) do{ busy_state = n; }while(0)
  486. #else
  487. #define host_keepalive() ;
  488. #define KEEPALIVE_STATE(n) ;
  489. #endif // HOST_KEEPALIVE_FEATURE
  490. #define DEFINE_PGM_READ_ANY(type, reader) \
  491. static inline type pgm_read_any(const type *p) \
  492. { return pgm_read_##reader##_near(p); }
  493. DEFINE_PGM_READ_ANY(float, float);
  494. DEFINE_PGM_READ_ANY(signed char, byte);
  495. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  496. static const PROGMEM type array##_P[XYZ] = \
  497. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  498. static inline type array(int axis) \
  499. { return pgm_read_any(&array##_P[axis]); }
  500. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  501. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  502. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  503. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  504. XYZ_CONSTS_FROM_CONFIG(float, home_bump_mm, HOME_BUMP_MM);
  505. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  506. /**
  507. * ***************************************************************************
  508. * ******************************** FUNCTIONS ********************************
  509. * ***************************************************************************
  510. */
  511. void stop();
  512. void get_available_commands();
  513. void process_next_command();
  514. void prepare_move_to_destination();
  515. void get_cartesian_from_steppers();
  516. void set_current_from_steppers_for_axis(const AxisEnum axis);
  517. #if ENABLED(ARC_SUPPORT)
  518. void plan_arc(float target[NUM_AXIS], float* offset, uint8_t clockwise);
  519. #endif
  520. #if ENABLED(BEZIER_CURVE_SUPPORT)
  521. void plan_cubic_move(const float offset[4]);
  522. #endif
  523. void serial_echopair_P(const char* s_P, const char *v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  524. void serial_echopair_P(const char* s_P, char v) { serialprintPGM(s_P); SERIAL_CHAR(v); }
  525. void serial_echopair_P(const char* s_P, int v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  526. void serial_echopair_P(const char* s_P, long v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  527. void serial_echopair_P(const char* s_P, float v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  528. void serial_echopair_P(const char* s_P, double v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  529. void serial_echopair_P(const char* s_P, unsigned long v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  530. void tool_change(const uint8_t tmp_extruder, const float fr_mm_s=0.0, bool no_move=false);
  531. static void report_current_position();
  532. #if ENABLED(DEBUG_LEVELING_FEATURE)
  533. void print_xyz(const char* prefix, const char* suffix, const float x, const float y, const float z) {
  534. serialprintPGM(prefix);
  535. SERIAL_ECHOPAIR("(", x);
  536. SERIAL_ECHOPAIR(", ", y);
  537. SERIAL_ECHOPAIR(", ", z);
  538. SERIAL_ECHOPGM(")");
  539. if (suffix) serialprintPGM(suffix);
  540. else SERIAL_EOL;
  541. }
  542. void print_xyz(const char* prefix, const char* suffix, const float xyz[]) {
  543. print_xyz(prefix, suffix, xyz[X_AXIS], xyz[Y_AXIS], xyz[Z_AXIS]);
  544. }
  545. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  546. void print_xyz(const char* prefix, const char* suffix, const vector_3 &xyz) {
  547. print_xyz(prefix, suffix, xyz.x, xyz.y, xyz.z);
  548. }
  549. #endif
  550. #define DEBUG_POS(SUFFIX,VAR) do { \
  551. print_xyz(PSTR(STRINGIFY(VAR) "="), PSTR(" : " SUFFIX "\n"), VAR); } while(0)
  552. #endif
  553. /**
  554. * sync_plan_position
  555. *
  556. * Set the planner/stepper positions directly from current_position with
  557. * no kinematic translation. Used for homing axes and cartesian/core syncing.
  558. */
  559. inline void sync_plan_position() {
  560. #if ENABLED(DEBUG_LEVELING_FEATURE)
  561. if (DEBUGGING(LEVELING)) DEBUG_POS("sync_plan_position", current_position);
  562. #endif
  563. planner.set_position_mm(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  564. }
  565. inline void sync_plan_position_e() { planner.set_e_position_mm(current_position[E_AXIS]); }
  566. #if IS_KINEMATIC
  567. inline void sync_plan_position_kinematic() {
  568. #if ENABLED(DEBUG_LEVELING_FEATURE)
  569. if (DEBUGGING(LEVELING)) DEBUG_POS("sync_plan_position_kinematic", current_position);
  570. #endif
  571. inverse_kinematics(current_position);
  572. planner.set_position_mm(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], current_position[E_AXIS]);
  573. }
  574. #define SYNC_PLAN_POSITION_KINEMATIC() sync_plan_position_kinematic()
  575. #else
  576. #define SYNC_PLAN_POSITION_KINEMATIC() sync_plan_position()
  577. #endif
  578. #if ENABLED(SDSUPPORT)
  579. #include "SdFatUtil.h"
  580. int freeMemory() { return SdFatUtil::FreeRam(); }
  581. #else
  582. extern "C" {
  583. extern unsigned int __bss_end;
  584. extern unsigned int __heap_start;
  585. extern void* __brkval;
  586. int freeMemory() {
  587. int free_memory;
  588. if ((int)__brkval == 0)
  589. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  590. else
  591. free_memory = ((int)&free_memory) - ((int)__brkval);
  592. return free_memory;
  593. }
  594. }
  595. #endif //!SDSUPPORT
  596. #if ENABLED(DIGIPOT_I2C)
  597. extern void digipot_i2c_set_current(int channel, float current);
  598. extern void digipot_i2c_init();
  599. #endif
  600. /**
  601. * Inject the next "immediate" command, when possible.
  602. * Return true if any immediate commands remain to inject.
  603. */
  604. static bool drain_queued_commands_P() {
  605. if (queued_commands_P != NULL) {
  606. size_t i = 0;
  607. char c, cmd[30];
  608. strncpy_P(cmd, queued_commands_P, sizeof(cmd) - 1);
  609. cmd[sizeof(cmd) - 1] = '\0';
  610. while ((c = cmd[i]) && c != '\n') i++; // find the end of this gcode command
  611. cmd[i] = '\0';
  612. if (enqueue_and_echo_command(cmd)) { // success?
  613. if (c) // newline char?
  614. queued_commands_P += i + 1; // advance to the next command
  615. else
  616. queued_commands_P = NULL; // nul char? no more commands
  617. }
  618. }
  619. return (queued_commands_P != NULL); // return whether any more remain
  620. }
  621. /**
  622. * Record one or many commands to run from program memory.
  623. * Aborts the current queue, if any.
  624. * Note: drain_queued_commands_P() must be called repeatedly to drain the commands afterwards
  625. */
  626. void enqueue_and_echo_commands_P(const char* pgcode) {
  627. queued_commands_P = pgcode;
  628. drain_queued_commands_P(); // first command executed asap (when possible)
  629. }
  630. void clear_command_queue() {
  631. cmd_queue_index_r = cmd_queue_index_w;
  632. commands_in_queue = 0;
  633. }
  634. /**
  635. * Once a new command is in the ring buffer, call this to commit it
  636. */
  637. inline void _commit_command(bool say_ok) {
  638. send_ok[cmd_queue_index_w] = say_ok;
  639. cmd_queue_index_w = (cmd_queue_index_w + 1) % BUFSIZE;
  640. commands_in_queue++;
  641. }
  642. /**
  643. * Copy a command directly into the main command buffer, from RAM.
  644. * Returns true if successfully adds the command
  645. */
  646. inline bool _enqueuecommand(const char* cmd, bool say_ok=false) {
  647. if (*cmd == ';' || commands_in_queue >= BUFSIZE) return false;
  648. strcpy(command_queue[cmd_queue_index_w], cmd);
  649. _commit_command(say_ok);
  650. return true;
  651. }
  652. void enqueue_and_echo_command_now(const char* cmd) {
  653. while (!enqueue_and_echo_command(cmd)) idle();
  654. }
  655. /**
  656. * Enqueue with Serial Echo
  657. */
  658. bool enqueue_and_echo_command(const char* cmd, bool say_ok/*=false*/) {
  659. if (_enqueuecommand(cmd, say_ok)) {
  660. SERIAL_ECHO_START;
  661. SERIAL_ECHOPAIR(MSG_Enqueueing, cmd);
  662. SERIAL_ECHOLNPGM("\"");
  663. return true;
  664. }
  665. return false;
  666. }
  667. void setup_killpin() {
  668. #if HAS_KILL
  669. SET_INPUT(KILL_PIN);
  670. WRITE(KILL_PIN, HIGH);
  671. #endif
  672. }
  673. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  674. void setup_filrunoutpin() {
  675. pinMode(FIL_RUNOUT_PIN, INPUT);
  676. #if ENABLED(ENDSTOPPULLUP_FIL_RUNOUT)
  677. WRITE(FIL_RUNOUT_PIN, HIGH);
  678. #endif
  679. }
  680. #endif
  681. // Set home pin
  682. void setup_homepin(void) {
  683. #if HAS_HOME
  684. SET_INPUT(HOME_PIN);
  685. WRITE(HOME_PIN, HIGH);
  686. #endif
  687. }
  688. void setup_photpin() {
  689. #if HAS_PHOTOGRAPH
  690. OUT_WRITE(PHOTOGRAPH_PIN, LOW);
  691. #endif
  692. }
  693. void setup_powerhold() {
  694. #if HAS_SUICIDE
  695. OUT_WRITE(SUICIDE_PIN, HIGH);
  696. #endif
  697. #if HAS_POWER_SWITCH
  698. #if ENABLED(PS_DEFAULT_OFF)
  699. OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  700. #else
  701. OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE);
  702. #endif
  703. #endif
  704. }
  705. void suicide() {
  706. #if HAS_SUICIDE
  707. OUT_WRITE(SUICIDE_PIN, LOW);
  708. #endif
  709. }
  710. void servo_init() {
  711. #if NUM_SERVOS >= 1 && HAS_SERVO_0
  712. servo[0].attach(SERVO0_PIN);
  713. servo[0].detach(); // Just set up the pin. We don't have a position yet. Don't move to a random position.
  714. #endif
  715. #if NUM_SERVOS >= 2 && HAS_SERVO_1
  716. servo[1].attach(SERVO1_PIN);
  717. servo[1].detach();
  718. #endif
  719. #if NUM_SERVOS >= 3 && HAS_SERVO_2
  720. servo[2].attach(SERVO2_PIN);
  721. servo[2].detach();
  722. #endif
  723. #if NUM_SERVOS >= 4 && HAS_SERVO_3
  724. servo[3].attach(SERVO3_PIN);
  725. servo[3].detach();
  726. #endif
  727. #if HAS_Z_SERVO_ENDSTOP
  728. /**
  729. * Set position of Z Servo Endstop
  730. *
  731. * The servo might be deployed and positioned too low to stow
  732. * when starting up the machine or rebooting the board.
  733. * There's no way to know where the nozzle is positioned until
  734. * homing has been done - no homing with z-probe without init!
  735. *
  736. */
  737. STOW_Z_SERVO();
  738. #endif
  739. }
  740. /**
  741. * Stepper Reset (RigidBoard, et.al.)
  742. */
  743. #if HAS_STEPPER_RESET
  744. void disableStepperDrivers() {
  745. pinMode(STEPPER_RESET_PIN, OUTPUT);
  746. digitalWrite(STEPPER_RESET_PIN, LOW); // drive it down to hold in reset motor driver chips
  747. }
  748. void enableStepperDrivers() { pinMode(STEPPER_RESET_PIN, INPUT); } // set to input, which allows it to be pulled high by pullups
  749. #endif
  750. #if ENABLED(EXPERIMENTAL_I2CBUS) && I2C_SLAVE_ADDRESS > 0
  751. void i2c_on_receive(int bytes) { // just echo all bytes received to serial
  752. i2c.receive(bytes);
  753. }
  754. void i2c_on_request() { // just send dummy data for now
  755. i2c.reply("Hello World!\n");
  756. }
  757. #endif
  758. void gcode_line_error(const char* err, bool doFlush = true) {
  759. SERIAL_ERROR_START;
  760. serialprintPGM(err);
  761. SERIAL_ERRORLN(gcode_LastN);
  762. //Serial.println(gcode_N);
  763. if (doFlush) FlushSerialRequestResend();
  764. serial_count = 0;
  765. }
  766. inline void get_serial_commands() {
  767. static char serial_line_buffer[MAX_CMD_SIZE];
  768. static boolean serial_comment_mode = false;
  769. // If the command buffer is empty for too long,
  770. // send "wait" to indicate Marlin is still waiting.
  771. #if defined(NO_TIMEOUTS) && NO_TIMEOUTS > 0
  772. static millis_t last_command_time = 0;
  773. millis_t ms = millis();
  774. if (commands_in_queue == 0 && !MYSERIAL.available() && ELAPSED(ms, last_command_time + NO_TIMEOUTS)) {
  775. SERIAL_ECHOLNPGM(MSG_WAIT);
  776. last_command_time = ms;
  777. }
  778. #endif
  779. /**
  780. * Loop while serial characters are incoming and the queue is not full
  781. */
  782. while (commands_in_queue < BUFSIZE && MYSERIAL.available() > 0) {
  783. char serial_char = MYSERIAL.read();
  784. /**
  785. * If the character ends the line
  786. */
  787. if (serial_char == '\n' || serial_char == '\r') {
  788. serial_comment_mode = false; // end of line == end of comment
  789. if (!serial_count) continue; // skip empty lines
  790. serial_line_buffer[serial_count] = 0; // terminate string
  791. serial_count = 0; //reset buffer
  792. char* command = serial_line_buffer;
  793. while (*command == ' ') command++; // skip any leading spaces
  794. char* npos = (*command == 'N') ? command : NULL; // Require the N parameter to start the line
  795. char* apos = strchr(command, '*');
  796. if (npos) {
  797. boolean M110 = strstr_P(command, PSTR("M110")) != NULL;
  798. if (M110) {
  799. char* n2pos = strchr(command + 4, 'N');
  800. if (n2pos) npos = n2pos;
  801. }
  802. gcode_N = strtol(npos + 1, NULL, 10);
  803. if (gcode_N != gcode_LastN + 1 && !M110) {
  804. gcode_line_error(PSTR(MSG_ERR_LINE_NO));
  805. return;
  806. }
  807. if (apos) {
  808. byte checksum = 0, count = 0;
  809. while (command[count] != '*') checksum ^= command[count++];
  810. if (strtol(apos + 1, NULL, 10) != checksum) {
  811. gcode_line_error(PSTR(MSG_ERR_CHECKSUM_MISMATCH));
  812. return;
  813. }
  814. // if no errors, continue parsing
  815. }
  816. else {
  817. gcode_line_error(PSTR(MSG_ERR_NO_CHECKSUM));
  818. return;
  819. }
  820. gcode_LastN = gcode_N;
  821. // if no errors, continue parsing
  822. }
  823. else if (apos) { // No '*' without 'N'
  824. gcode_line_error(PSTR(MSG_ERR_NO_LINENUMBER_WITH_CHECKSUM), false);
  825. return;
  826. }
  827. // Movement commands alert when stopped
  828. if (IsStopped()) {
  829. char* gpos = strchr(command, 'G');
  830. if (gpos) {
  831. int codenum = strtol(gpos + 1, NULL, 10);
  832. switch (codenum) {
  833. case 0:
  834. case 1:
  835. case 2:
  836. case 3:
  837. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  838. LCD_MESSAGEPGM(MSG_STOPPED);
  839. break;
  840. }
  841. }
  842. }
  843. #if DISABLED(EMERGENCY_PARSER)
  844. // If command was e-stop process now
  845. if (strcmp(command, "M108") == 0) wait_for_heatup = false;
  846. if (strcmp(command, "M112") == 0) kill(PSTR(MSG_KILLED));
  847. if (strcmp(command, "M410") == 0) { quickstop_stepper(); }
  848. #endif
  849. #if defined(NO_TIMEOUTS) && NO_TIMEOUTS > 0
  850. last_command_time = ms;
  851. #endif
  852. // Add the command to the queue
  853. _enqueuecommand(serial_line_buffer, true);
  854. }
  855. else if (serial_count >= MAX_CMD_SIZE - 1) {
  856. // Keep fetching, but ignore normal characters beyond the max length
  857. // The command will be injected when EOL is reached
  858. }
  859. else if (serial_char == '\\') { // Handle escapes
  860. if (MYSERIAL.available() > 0) {
  861. // if we have one more character, copy it over
  862. serial_char = MYSERIAL.read();
  863. if (!serial_comment_mode) serial_line_buffer[serial_count++] = serial_char;
  864. }
  865. // otherwise do nothing
  866. }
  867. else { // it's not a newline, carriage return or escape char
  868. if (serial_char == ';') serial_comment_mode = true;
  869. if (!serial_comment_mode) serial_line_buffer[serial_count++] = serial_char;
  870. }
  871. } // queue has space, serial has data
  872. }
  873. #if ENABLED(SDSUPPORT)
  874. inline void get_sdcard_commands() {
  875. static bool stop_buffering = false,
  876. sd_comment_mode = false;
  877. if (!card.sdprinting) return;
  878. /**
  879. * '#' stops reading from SD to the buffer prematurely, so procedural
  880. * macro calls are possible. If it occurs, stop_buffering is triggered
  881. * and the buffer is run dry; this character _can_ occur in serial com
  882. * due to checksums, however, no checksums are used in SD printing.
  883. */
  884. if (commands_in_queue == 0) stop_buffering = false;
  885. uint16_t sd_count = 0;
  886. bool card_eof = card.eof();
  887. while (commands_in_queue < BUFSIZE && !card_eof && !stop_buffering) {
  888. int16_t n = card.get();
  889. char sd_char = (char)n;
  890. card_eof = card.eof();
  891. if (card_eof || n == -1
  892. || sd_char == '\n' || sd_char == '\r'
  893. || ((sd_char == '#' || sd_char == ':') && !sd_comment_mode)
  894. ) {
  895. if (card_eof) {
  896. SERIAL_PROTOCOLLNPGM(MSG_FILE_PRINTED);
  897. card.printingHasFinished();
  898. card.checkautostart(true);
  899. }
  900. else if (n == -1) {
  901. SERIAL_ERROR_START;
  902. SERIAL_ECHOLNPGM(MSG_SD_ERR_READ);
  903. }
  904. if (sd_char == '#') stop_buffering = true;
  905. sd_comment_mode = false; //for new command
  906. if (!sd_count) continue; //skip empty lines
  907. command_queue[cmd_queue_index_w][sd_count] = '\0'; //terminate string
  908. sd_count = 0; //clear buffer
  909. _commit_command(false);
  910. }
  911. else if (sd_count >= MAX_CMD_SIZE - 1) {
  912. /**
  913. * Keep fetching, but ignore normal characters beyond the max length
  914. * The command will be injected when EOL is reached
  915. */
  916. }
  917. else {
  918. if (sd_char == ';') sd_comment_mode = true;
  919. if (!sd_comment_mode) command_queue[cmd_queue_index_w][sd_count++] = sd_char;
  920. }
  921. }
  922. }
  923. #endif // SDSUPPORT
  924. /**
  925. * Add to the circular command queue the next command from:
  926. * - The command-injection queue (queued_commands_P)
  927. * - The active serial input (usually USB)
  928. * - The SD card file being actively printed
  929. */
  930. void get_available_commands() {
  931. // if any immediate commands remain, don't get other commands yet
  932. if (drain_queued_commands_P()) return;
  933. get_serial_commands();
  934. #if ENABLED(SDSUPPORT)
  935. get_sdcard_commands();
  936. #endif
  937. }
  938. inline bool code_has_value() {
  939. int i = 1;
  940. char c = seen_pointer[i];
  941. while (c == ' ') c = seen_pointer[++i];
  942. if (c == '-' || c == '+') c = seen_pointer[++i];
  943. if (c == '.') c = seen_pointer[++i];
  944. return NUMERIC(c);
  945. }
  946. inline float code_value_float() {
  947. float ret;
  948. char* e = strchr(seen_pointer, 'E');
  949. if (e) {
  950. *e = 0;
  951. ret = strtod(seen_pointer + 1, NULL);
  952. *e = 'E';
  953. }
  954. else
  955. ret = strtod(seen_pointer + 1, NULL);
  956. return ret;
  957. }
  958. inline unsigned long code_value_ulong() { return strtoul(seen_pointer + 1, NULL, 10); }
  959. inline long code_value_long() { return strtol(seen_pointer + 1, NULL, 10); }
  960. inline int code_value_int() { return (int)strtol(seen_pointer + 1, NULL, 10); }
  961. inline uint16_t code_value_ushort() { return (uint16_t)strtoul(seen_pointer + 1, NULL, 10); }
  962. inline uint8_t code_value_byte() { return (uint8_t)(constrain(strtol(seen_pointer + 1, NULL, 10), 0, 255)); }
  963. inline bool code_value_bool() { return !code_has_value() || code_value_byte() > 0; }
  964. #if ENABLED(INCH_MODE_SUPPORT)
  965. inline void set_input_linear_units(LinearUnit units) {
  966. switch (units) {
  967. case LINEARUNIT_INCH:
  968. linear_unit_factor = 25.4;
  969. break;
  970. case LINEARUNIT_MM:
  971. default:
  972. linear_unit_factor = 1.0;
  973. break;
  974. }
  975. volumetric_unit_factor = pow(linear_unit_factor, 3.0);
  976. }
  977. inline float axis_unit_factor(int axis) {
  978. return (axis == E_AXIS && volumetric_enabled ? volumetric_unit_factor : linear_unit_factor);
  979. }
  980. inline float code_value_linear_units() { return code_value_float() * linear_unit_factor; }
  981. inline float code_value_axis_units(int axis) { return code_value_float() * axis_unit_factor(axis); }
  982. inline float code_value_per_axis_unit(int axis) { return code_value_float() / axis_unit_factor(axis); }
  983. #else
  984. inline float code_value_linear_units() { return code_value_float(); }
  985. inline float code_value_axis_units(int axis) { UNUSED(axis); return code_value_float(); }
  986. inline float code_value_per_axis_unit(int axis) { UNUSED(axis); return code_value_float(); }
  987. #endif
  988. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  989. inline void set_input_temp_units(TempUnit units) { input_temp_units = units; }
  990. float code_value_temp_abs() {
  991. switch (input_temp_units) {
  992. case TEMPUNIT_C:
  993. return code_value_float();
  994. case TEMPUNIT_F:
  995. return (code_value_float() - 32) * 0.5555555556;
  996. case TEMPUNIT_K:
  997. return code_value_float() - 272.15;
  998. default:
  999. return code_value_float();
  1000. }
  1001. }
  1002. float code_value_temp_diff() {
  1003. switch (input_temp_units) {
  1004. case TEMPUNIT_C:
  1005. case TEMPUNIT_K:
  1006. return code_value_float();
  1007. case TEMPUNIT_F:
  1008. return code_value_float() * 0.5555555556;
  1009. default:
  1010. return code_value_float();
  1011. }
  1012. }
  1013. #else
  1014. float code_value_temp_abs() { return code_value_float(); }
  1015. float code_value_temp_diff() { return code_value_float(); }
  1016. #endif
  1017. FORCE_INLINE millis_t code_value_millis() { return code_value_ulong(); }
  1018. inline millis_t code_value_millis_from_seconds() { return code_value_float() * 1000; }
  1019. bool code_seen(char code) {
  1020. seen_pointer = strchr(current_command_args, code);
  1021. return (seen_pointer != NULL); // Return TRUE if the code-letter was found
  1022. }
  1023. /**
  1024. * Set target_extruder from the T parameter or the active_extruder
  1025. *
  1026. * Returns TRUE if the target is invalid
  1027. */
  1028. bool get_target_extruder_from_command(int code) {
  1029. if (code_seen('T')) {
  1030. if (code_value_byte() >= EXTRUDERS) {
  1031. SERIAL_ECHO_START;
  1032. SERIAL_CHAR('M');
  1033. SERIAL_ECHO(code);
  1034. SERIAL_ECHOLNPAIR(" " MSG_INVALID_EXTRUDER " ", code_value_byte());
  1035. return true;
  1036. }
  1037. target_extruder = code_value_byte();
  1038. }
  1039. else
  1040. target_extruder = active_extruder;
  1041. return false;
  1042. }
  1043. #if ENABLED(DUAL_X_CARRIAGE) || ENABLED(DUAL_NOZZLE_DUPLICATION_MODE)
  1044. bool extruder_duplication_enabled = false; // Used in Dual X mode 2
  1045. #endif
  1046. #if ENABLED(DUAL_X_CARRIAGE)
  1047. #define DXC_FULL_CONTROL_MODE 0
  1048. #define DXC_AUTO_PARK_MODE 1
  1049. #define DXC_DUPLICATION_MODE 2
  1050. static int dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  1051. static float x_home_pos(int extruder) {
  1052. if (extruder == 0)
  1053. return LOGICAL_X_POSITION(base_home_pos(X_AXIS));
  1054. else
  1055. /**
  1056. * In dual carriage mode the extruder offset provides an override of the
  1057. * second X-carriage offset when homed - otherwise X2_HOME_POS is used.
  1058. * This allow soft recalibration of the second extruder offset position
  1059. * without firmware reflash (through the M218 command).
  1060. */
  1061. return (hotend_offset[X_AXIS][1] > 0) ? hotend_offset[X_AXIS][1] : X2_HOME_POS;
  1062. }
  1063. static int x_home_dir(int extruder) {
  1064. return (extruder == 0) ? X_HOME_DIR : X2_HOME_DIR;
  1065. }
  1066. static float inactive_extruder_x_pos = X2_MAX_POS; // used in mode 0 & 1
  1067. static bool active_extruder_parked = false; // used in mode 1 & 2
  1068. static float raised_parked_position[NUM_AXIS]; // used in mode 1
  1069. static millis_t delayed_move_time = 0; // used in mode 1
  1070. static float duplicate_extruder_x_offset = DEFAULT_DUPLICATION_X_OFFSET; // used in mode 2
  1071. static float duplicate_extruder_temp_offset = 0; // used in mode 2
  1072. #endif //DUAL_X_CARRIAGE
  1073. /**
  1074. * Software endstops can be used to monitor the open end of
  1075. * an axis that has a hardware endstop on the other end. Or
  1076. * they can prevent axes from moving past endstops and grinding.
  1077. *
  1078. * To keep doing their job as the coordinate system changes,
  1079. * the software endstop positions must be refreshed to remain
  1080. * at the same positions relative to the machine.
  1081. */
  1082. void update_software_endstops(AxisEnum axis) {
  1083. float offs = LOGICAL_POSITION(0, axis);
  1084. #if ENABLED(DUAL_X_CARRIAGE)
  1085. if (axis == X_AXIS) {
  1086. float dual_max_x = max(hotend_offset[X_AXIS][1], X2_MAX_POS);
  1087. if (active_extruder != 0) {
  1088. soft_endstop_min[X_AXIS] = X2_MIN_POS + offs;
  1089. soft_endstop_max[X_AXIS] = dual_max_x + offs;
  1090. return;
  1091. }
  1092. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE) {
  1093. soft_endstop_min[X_AXIS] = base_min_pos(X_AXIS) + offs;
  1094. soft_endstop_max[X_AXIS] = min(base_max_pos(X_AXIS), dual_max_x - duplicate_extruder_x_offset) + offs;
  1095. return;
  1096. }
  1097. }
  1098. else
  1099. #endif
  1100. {
  1101. soft_endstop_min[axis] = base_min_pos(axis) + offs;
  1102. soft_endstop_max[axis] = base_max_pos(axis) + offs;
  1103. }
  1104. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1105. if (DEBUGGING(LEVELING)) {
  1106. SERIAL_ECHOPAIR("For ", axis_codes[axis]);
  1107. SERIAL_ECHOPAIR(" axis:\n home_offset = ", home_offset[axis]);
  1108. SERIAL_ECHOPAIR("\n position_shift = ", position_shift[axis]);
  1109. SERIAL_ECHOPAIR("\n soft_endstop_min = ", soft_endstop_min[axis]);
  1110. SERIAL_ECHOLNPAIR("\n soft_endstop_max = ", soft_endstop_max[axis]);
  1111. }
  1112. #endif
  1113. #if ENABLED(DELTA)
  1114. if (axis == Z_AXIS)
  1115. delta_clip_start_height = soft_endstop_max[axis] - delta_safe_distance_from_top();
  1116. #endif
  1117. }
  1118. /**
  1119. * Change the home offset for an axis, update the current
  1120. * position and the software endstops to retain the same
  1121. * relative distance to the new home.
  1122. *
  1123. * Since this changes the current_position, code should
  1124. * call sync_plan_position soon after this.
  1125. */
  1126. static void set_home_offset(AxisEnum axis, float v) {
  1127. current_position[axis] += v - home_offset[axis];
  1128. home_offset[axis] = v;
  1129. update_software_endstops(axis);
  1130. }
  1131. /**
  1132. * Set an axis' current position to its home position (after homing).
  1133. *
  1134. * For Core and Cartesian robots this applies one-to-one when an
  1135. * individual axis has been homed.
  1136. *
  1137. * DELTA should wait until all homing is done before setting the XYZ
  1138. * current_position to home, because homing is a single operation.
  1139. * In the case where the axis positions are already known and previously
  1140. * homed, DELTA could home to X or Y individually by moving either one
  1141. * to the center. However, homing Z always homes XY and Z.
  1142. *
  1143. * SCARA should wait until all XY homing is done before setting the XY
  1144. * current_position to home, because neither X nor Y is at home until
  1145. * both are at home. Z can however be homed individually.
  1146. *
  1147. */
  1148. static void set_axis_is_at_home(AxisEnum axis) {
  1149. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1150. if (DEBUGGING(LEVELING)) {
  1151. SERIAL_ECHOPAIR(">>> set_axis_is_at_home(", axis_codes[axis]);
  1152. SERIAL_ECHOLNPGM(")");
  1153. }
  1154. #endif
  1155. axis_known_position[axis] = axis_homed[axis] = true;
  1156. position_shift[axis] = 0;
  1157. update_software_endstops(axis);
  1158. #if ENABLED(DUAL_X_CARRIAGE)
  1159. if (axis == X_AXIS && (active_extruder != 0 || dual_x_carriage_mode == DXC_DUPLICATION_MODE)) {
  1160. if (active_extruder != 0)
  1161. current_position[X_AXIS] = x_home_pos(active_extruder);
  1162. else
  1163. current_position[X_AXIS] = LOGICAL_X_POSITION(base_home_pos(X_AXIS));
  1164. update_software_endstops(X_AXIS);
  1165. return;
  1166. }
  1167. #endif
  1168. #if ENABLED(MORGAN_SCARA)
  1169. if (axis == X_AXIS || axis == Y_AXIS) {
  1170. float homeposition[XYZ];
  1171. LOOP_XYZ(i) homeposition[i] = LOGICAL_POSITION(base_home_pos(i), i);
  1172. // SERIAL_ECHOPAIR("homeposition X:", homeposition[X_AXIS]);
  1173. // SERIAL_ECHOLNPAIR(" Y:", homeposition[Y_AXIS]);
  1174. /**
  1175. * Get Home position SCARA arm angles using inverse kinematics,
  1176. * and calculate homing offset using forward kinematics
  1177. */
  1178. inverse_kinematics(homeposition);
  1179. forward_kinematics_SCARA(delta[A_AXIS], delta[B_AXIS]);
  1180. // SERIAL_ECHOPAIR("Cartesian X:", cartes[X_AXIS]);
  1181. // SERIAL_ECHOLNPAIR(" Y:", cartes[Y_AXIS]);
  1182. current_position[axis] = LOGICAL_POSITION(cartes[axis], axis);
  1183. /**
  1184. * SCARA home positions are based on configuration since the actual
  1185. * limits are determined by the inverse kinematic transform.
  1186. */
  1187. soft_endstop_min[axis] = base_min_pos(axis); // + (cartes[axis] - base_home_pos(axis));
  1188. soft_endstop_max[axis] = base_max_pos(axis); // + (cartes[axis] - base_home_pos(axis));
  1189. }
  1190. else
  1191. #endif
  1192. {
  1193. current_position[axis] = LOGICAL_POSITION(base_home_pos(axis), axis);
  1194. if (axis == Z_AXIS) {
  1195. #if HAS_BED_PROBE && Z_HOME_DIR < 0
  1196. #if HOMING_Z_WITH_PROBE
  1197. current_position[Z_AXIS] -= zprobe_zoffset;
  1198. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1199. if (DEBUGGING(LEVELING)) {
  1200. SERIAL_ECHOLNPGM("*** Z HOMED WITH PROBE (Z_MIN_PROBE_USES_Z_MIN_ENDSTOP_PIN) ***");
  1201. SERIAL_ECHOLNPAIR("> zprobe_zoffset = ", zprobe_zoffset);
  1202. }
  1203. #endif
  1204. #elif ENABLED(DEBUG_LEVELING_FEATURE)
  1205. if (DEBUGGING(LEVELING))
  1206. SERIAL_ECHOLNPGM("*** Z HOMED TO ENDSTOP (Z_MIN_PROBE_ENDSTOP) ***");
  1207. #endif
  1208. #endif
  1209. }
  1210. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1211. if (DEBUGGING(LEVELING)) {
  1212. SERIAL_ECHOPAIR("> home_offset[", axis_codes[axis]);
  1213. SERIAL_ECHOLNPAIR("] = ", home_offset[axis]);
  1214. DEBUG_POS("", current_position);
  1215. }
  1216. #endif
  1217. }
  1218. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1219. if (DEBUGGING(LEVELING)) {
  1220. SERIAL_ECHOPAIR("<<< set_axis_is_at_home(", axis_codes[axis]);
  1221. SERIAL_ECHOLNPGM(")");
  1222. }
  1223. #endif
  1224. }
  1225. /**
  1226. * Some planner shorthand inline functions
  1227. */
  1228. inline float get_homing_bump_feedrate(AxisEnum axis) {
  1229. const int homing_bump_divisor[] = HOMING_BUMP_DIVISOR;
  1230. int hbd = homing_bump_divisor[axis];
  1231. if (hbd < 1) {
  1232. hbd = 10;
  1233. SERIAL_ECHO_START;
  1234. SERIAL_ECHOLNPGM("Warning: Homing Bump Divisor < 1");
  1235. }
  1236. return homing_feedrate_mm_s[axis] / hbd;
  1237. }
  1238. #if !IS_KINEMATIC
  1239. //
  1240. // line_to_current_position
  1241. // Move the planner to the current position from wherever it last moved
  1242. // (or from wherever it has been told it is located).
  1243. //
  1244. inline void line_to_current_position() {
  1245. planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate_mm_s, active_extruder);
  1246. }
  1247. //
  1248. // line_to_destination
  1249. // Move the planner, not necessarily synced with current_position
  1250. //
  1251. inline void line_to_destination(float fr_mm_s) {
  1252. planner.buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], fr_mm_s, active_extruder);
  1253. }
  1254. inline void line_to_destination() { line_to_destination(feedrate_mm_s); }
  1255. #endif // !IS_KINEMATIC
  1256. inline void set_current_to_destination() { memcpy(current_position, destination, sizeof(current_position)); }
  1257. inline void set_destination_to_current() { memcpy(destination, current_position, sizeof(destination)); }
  1258. #if IS_KINEMATIC
  1259. /**
  1260. * Calculate delta, start a line, and set current_position to destination
  1261. */
  1262. void prepare_uninterpolated_move_to_destination() {
  1263. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1264. if (DEBUGGING(LEVELING)) DEBUG_POS("prepare_uninterpolated_move_to_destination", destination);
  1265. #endif
  1266. refresh_cmd_timeout();
  1267. inverse_kinematics(destination);
  1268. planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], destination[E_AXIS], MMS_SCALED(feedrate_mm_s), active_extruder);
  1269. set_current_to_destination();
  1270. }
  1271. #endif
  1272. /**
  1273. * Plan a move to (X, Y, Z) and set the current_position
  1274. * The final current_position may not be the one that was requested
  1275. */
  1276. void do_blocking_move_to(const float &x, const float &y, const float &z, const float &fr_mm_s /*=0.0*/) {
  1277. float old_feedrate_mm_s = feedrate_mm_s;
  1278. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1279. if (DEBUGGING(LEVELING)) print_xyz(PSTR(">>> do_blocking_move_to"), NULL, x, y, z);
  1280. #endif
  1281. #if ENABLED(DELTA)
  1282. feedrate_mm_s = (fr_mm_s != 0.0) ? fr_mm_s : XY_PROBE_FEEDRATE_MM_S;
  1283. set_destination_to_current(); // sync destination at the start
  1284. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1285. if (DEBUGGING(LEVELING)) DEBUG_POS("set_destination_to_current", destination);
  1286. #endif
  1287. // when in the danger zone
  1288. if (current_position[Z_AXIS] > delta_clip_start_height) {
  1289. if (z > delta_clip_start_height) { // staying in the danger zone
  1290. destination[X_AXIS] = x; // move directly (uninterpolated)
  1291. destination[Y_AXIS] = y;
  1292. destination[Z_AXIS] = z;
  1293. prepare_uninterpolated_move_to_destination(); // set_current_to_destination
  1294. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1295. if (DEBUGGING(LEVELING)) DEBUG_POS("danger zone move", current_position);
  1296. #endif
  1297. return;
  1298. }
  1299. else {
  1300. destination[Z_AXIS] = delta_clip_start_height;
  1301. prepare_uninterpolated_move_to_destination(); // set_current_to_destination
  1302. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1303. if (DEBUGGING(LEVELING)) DEBUG_POS("zone border move", current_position);
  1304. #endif
  1305. }
  1306. }
  1307. if (z > current_position[Z_AXIS]) { // raising?
  1308. destination[Z_AXIS] = z;
  1309. prepare_uninterpolated_move_to_destination(); // set_current_to_destination
  1310. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1311. if (DEBUGGING(LEVELING)) DEBUG_POS("z raise move", current_position);
  1312. #endif
  1313. }
  1314. destination[X_AXIS] = x;
  1315. destination[Y_AXIS] = y;
  1316. prepare_move_to_destination(); // set_current_to_destination
  1317. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1318. if (DEBUGGING(LEVELING)) DEBUG_POS("xy move", current_position);
  1319. #endif
  1320. if (z < current_position[Z_AXIS]) { // lowering?
  1321. destination[Z_AXIS] = z;
  1322. prepare_uninterpolated_move_to_destination(); // set_current_to_destination
  1323. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1324. if (DEBUGGING(LEVELING)) DEBUG_POS("z lower move", current_position);
  1325. #endif
  1326. }
  1327. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1328. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< do_blocking_move_to");
  1329. #endif
  1330. #elif IS_SCARA
  1331. set_destination_to_current();
  1332. // If Z needs to raise, do it before moving XY
  1333. if (current_position[Z_AXIS] < z) {
  1334. feedrate_mm_s = (fr_mm_s != 0.0) ? fr_mm_s : homing_feedrate_mm_s[Z_AXIS];
  1335. destination[Z_AXIS] = z;
  1336. prepare_uninterpolated_move_to_destination();
  1337. }
  1338. feedrate_mm_s = (fr_mm_s != 0.0) ? fr_mm_s : XY_PROBE_FEEDRATE_MM_S;
  1339. destination[X_AXIS] = x;
  1340. destination[Y_AXIS] = y;
  1341. prepare_uninterpolated_move_to_destination();
  1342. // If Z needs to lower, do it after moving XY
  1343. if (current_position[Z_AXIS] > z) {
  1344. feedrate_mm_s = (fr_mm_s != 0.0) ? fr_mm_s : homing_feedrate_mm_s[Z_AXIS];
  1345. destination[Z_AXIS] = z;
  1346. prepare_uninterpolated_move_to_destination();
  1347. }
  1348. #else
  1349. // If Z needs to raise, do it before moving XY
  1350. if (current_position[Z_AXIS] < z) {
  1351. feedrate_mm_s = (fr_mm_s != 0.0) ? fr_mm_s : homing_feedrate_mm_s[Z_AXIS];
  1352. current_position[Z_AXIS] = z;
  1353. line_to_current_position();
  1354. }
  1355. feedrate_mm_s = (fr_mm_s != 0.0) ? fr_mm_s : XY_PROBE_FEEDRATE_MM_S;
  1356. current_position[X_AXIS] = x;
  1357. current_position[Y_AXIS] = y;
  1358. line_to_current_position();
  1359. // If Z needs to lower, do it after moving XY
  1360. if (current_position[Z_AXIS] > z) {
  1361. feedrate_mm_s = (fr_mm_s != 0.0) ? fr_mm_s : homing_feedrate_mm_s[Z_AXIS];
  1362. current_position[Z_AXIS] = z;
  1363. line_to_current_position();
  1364. }
  1365. #endif
  1366. stepper.synchronize();
  1367. feedrate_mm_s = old_feedrate_mm_s;
  1368. }
  1369. void do_blocking_move_to_x(const float &x, const float &fr_mm_s/*=0.0*/) {
  1370. do_blocking_move_to(x, current_position[Y_AXIS], current_position[Z_AXIS], fr_mm_s);
  1371. }
  1372. void do_blocking_move_to_z(const float &z, const float &fr_mm_s/*=0.0*/) {
  1373. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z, fr_mm_s);
  1374. }
  1375. void do_blocking_move_to_xy(const float &x, const float &y, const float &fr_mm_s/*=0.0*/) {
  1376. do_blocking_move_to(x, y, current_position[Z_AXIS], fr_mm_s);
  1377. }
  1378. //
  1379. // Prepare to do endstop or probe moves
  1380. // with custom feedrates.
  1381. //
  1382. // - Save current feedrates
  1383. // - Reset the rate multiplier
  1384. // - Reset the command timeout
  1385. // - Enable the endstops (for endstop moves)
  1386. //
  1387. static void setup_for_endstop_or_probe_move() {
  1388. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1389. if (DEBUGGING(LEVELING)) DEBUG_POS("setup_for_endstop_or_probe_move", current_position);
  1390. #endif
  1391. saved_feedrate_mm_s = feedrate_mm_s;
  1392. saved_feedrate_percentage = feedrate_percentage;
  1393. feedrate_percentage = 100;
  1394. refresh_cmd_timeout();
  1395. }
  1396. static void clean_up_after_endstop_or_probe_move() {
  1397. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1398. if (DEBUGGING(LEVELING)) DEBUG_POS("clean_up_after_endstop_or_probe_move", current_position);
  1399. #endif
  1400. feedrate_mm_s = saved_feedrate_mm_s;
  1401. feedrate_percentage = saved_feedrate_percentage;
  1402. refresh_cmd_timeout();
  1403. }
  1404. #if HAS_BED_PROBE
  1405. /**
  1406. * Raise Z to a minimum height to make room for a probe to move
  1407. */
  1408. inline void do_probe_raise(float z_raise) {
  1409. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1410. if (DEBUGGING(LEVELING)) {
  1411. SERIAL_ECHOPAIR("do_probe_raise(", z_raise);
  1412. SERIAL_ECHOLNPGM(")");
  1413. }
  1414. #endif
  1415. float z_dest = LOGICAL_Z_POSITION(z_raise);
  1416. if (z_dest > current_position[Z_AXIS])
  1417. do_blocking_move_to_z(z_dest);
  1418. }
  1419. #endif //HAS_BED_PROBE
  1420. #if ENABLED(Z_PROBE_ALLEN_KEY) || ENABLED(Z_PROBE_SLED) || ENABLED(Z_SAFE_HOMING) || HAS_PROBING_PROCEDURE || HOTENDS > 1 || ENABLED(NOZZLE_CLEAN_FEATURE) || ENABLED(NOZZLE_PARK_FEATURE)
  1421. static bool axis_unhomed_error(const bool x, const bool y, const bool z) {
  1422. const bool xx = x && !axis_homed[X_AXIS],
  1423. yy = y && !axis_homed[Y_AXIS],
  1424. zz = z && !axis_homed[Z_AXIS];
  1425. if (xx || yy || zz) {
  1426. SERIAL_ECHO_START;
  1427. SERIAL_ECHOPGM(MSG_HOME " ");
  1428. if (xx) SERIAL_ECHOPGM(MSG_X);
  1429. if (yy) SERIAL_ECHOPGM(MSG_Y);
  1430. if (zz) SERIAL_ECHOPGM(MSG_Z);
  1431. SERIAL_ECHOLNPGM(" " MSG_FIRST);
  1432. #if ENABLED(ULTRA_LCD)
  1433. char message[3 * (LCD_WIDTH) + 1] = ""; // worst case is kana.utf with up to 3*LCD_WIDTH+1
  1434. strcat_P(message, PSTR(MSG_HOME " "));
  1435. if (xx) strcat_P(message, PSTR(MSG_X));
  1436. if (yy) strcat_P(message, PSTR(MSG_Y));
  1437. if (zz) strcat_P(message, PSTR(MSG_Z));
  1438. strcat_P(message, PSTR(" " MSG_FIRST));
  1439. lcd_setstatus(message);
  1440. #endif
  1441. return true;
  1442. }
  1443. return false;
  1444. }
  1445. #endif
  1446. #if ENABLED(Z_PROBE_SLED)
  1447. #ifndef SLED_DOCKING_OFFSET
  1448. #define SLED_DOCKING_OFFSET 0
  1449. #endif
  1450. /**
  1451. * Method to dock/undock a sled designed by Charles Bell.
  1452. *
  1453. * stow[in] If false, move to MAX_X and engage the solenoid
  1454. * If true, move to MAX_X and release the solenoid
  1455. */
  1456. static void dock_sled(bool stow) {
  1457. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1458. if (DEBUGGING(LEVELING)) {
  1459. SERIAL_ECHOPAIR("dock_sled(", stow);
  1460. SERIAL_ECHOLNPGM(")");
  1461. }
  1462. #endif
  1463. // Dock sled a bit closer to ensure proper capturing
  1464. do_blocking_move_to_x(X_MAX_POS + SLED_DOCKING_OFFSET - ((stow) ? 1 : 0));
  1465. #if PIN_EXISTS(SLED)
  1466. digitalWrite(SLED_PIN, !stow); // switch solenoid
  1467. #endif
  1468. }
  1469. #endif // Z_PROBE_SLED
  1470. #if ENABLED(Z_PROBE_ALLEN_KEY)
  1471. void run_deploy_moves_script() {
  1472. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_1_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_1_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_1_Z)
  1473. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_X
  1474. #define Z_PROBE_ALLEN_KEY_DEPLOY_1_X current_position[X_AXIS]
  1475. #endif
  1476. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_Y
  1477. #define Z_PROBE_ALLEN_KEY_DEPLOY_1_Y current_position[Y_AXIS]
  1478. #endif
  1479. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_Z
  1480. #define Z_PROBE_ALLEN_KEY_DEPLOY_1_Z current_position[Z_AXIS]
  1481. #endif
  1482. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE
  1483. #define Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE 0.0
  1484. #endif
  1485. do_blocking_move_to(Z_PROBE_ALLEN_KEY_DEPLOY_1_X, Z_PROBE_ALLEN_KEY_DEPLOY_1_Y, Z_PROBE_ALLEN_KEY_DEPLOY_1_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE));
  1486. #endif
  1487. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_2_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_2_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_2_Z)
  1488. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_X
  1489. #define Z_PROBE_ALLEN_KEY_DEPLOY_2_X current_position[X_AXIS]
  1490. #endif
  1491. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_Y
  1492. #define Z_PROBE_ALLEN_KEY_DEPLOY_2_Y current_position[Y_AXIS]
  1493. #endif
  1494. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_Z
  1495. #define Z_PROBE_ALLEN_KEY_DEPLOY_2_Z current_position[Z_AXIS]
  1496. #endif
  1497. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE
  1498. #define Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE 0.0
  1499. #endif
  1500. do_blocking_move_to(Z_PROBE_ALLEN_KEY_DEPLOY_2_X, Z_PROBE_ALLEN_KEY_DEPLOY_2_Y, Z_PROBE_ALLEN_KEY_DEPLOY_2_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE));
  1501. #endif
  1502. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_3_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_3_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_3_Z)
  1503. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_X
  1504. #define Z_PROBE_ALLEN_KEY_DEPLOY_3_X current_position[X_AXIS]
  1505. #endif
  1506. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_Y
  1507. #define Z_PROBE_ALLEN_KEY_DEPLOY_3_Y current_position[Y_AXIS]
  1508. #endif
  1509. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_Z
  1510. #define Z_PROBE_ALLEN_KEY_DEPLOY_3_Z current_position[Z_AXIS]
  1511. #endif
  1512. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE
  1513. #define Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE 0.0
  1514. #endif
  1515. do_blocking_move_to(Z_PROBE_ALLEN_KEY_DEPLOY_3_X, Z_PROBE_ALLEN_KEY_DEPLOY_3_Y, Z_PROBE_ALLEN_KEY_DEPLOY_3_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE));
  1516. #endif
  1517. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_4_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_4_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_4_Z)
  1518. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_X
  1519. #define Z_PROBE_ALLEN_KEY_DEPLOY_4_X current_position[X_AXIS]
  1520. #endif
  1521. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_Y
  1522. #define Z_PROBE_ALLEN_KEY_DEPLOY_4_Y current_position[Y_AXIS]
  1523. #endif
  1524. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_Z
  1525. #define Z_PROBE_ALLEN_KEY_DEPLOY_4_Z current_position[Z_AXIS]
  1526. #endif
  1527. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_FEEDRATE
  1528. #define Z_PROBE_ALLEN_KEY_DEPLOY_4_FEEDRATE 0.0
  1529. #endif
  1530. do_blocking_move_to(Z_PROBE_ALLEN_KEY_DEPLOY_4_X, Z_PROBE_ALLEN_KEY_DEPLOY_4_Y, Z_PROBE_ALLEN_KEY_DEPLOY_4_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_4_FEEDRATE));
  1531. #endif
  1532. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_5_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_5_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_5_Z)
  1533. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_X
  1534. #define Z_PROBE_ALLEN_KEY_DEPLOY_5_X current_position[X_AXIS]
  1535. #endif
  1536. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_Y
  1537. #define Z_PROBE_ALLEN_KEY_DEPLOY_5_Y current_position[Y_AXIS]
  1538. #endif
  1539. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_Z
  1540. #define Z_PROBE_ALLEN_KEY_DEPLOY_5_Z current_position[Z_AXIS]
  1541. #endif
  1542. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_FEEDRATE
  1543. #define Z_PROBE_ALLEN_KEY_DEPLOY_5_FEEDRATE 0.0
  1544. #endif
  1545. do_blocking_move_to(Z_PROBE_ALLEN_KEY_DEPLOY_5_X, Z_PROBE_ALLEN_KEY_DEPLOY_5_Y, Z_PROBE_ALLEN_KEY_DEPLOY_5_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_5_FEEDRATE));
  1546. #endif
  1547. }
  1548. void run_stow_moves_script() {
  1549. #if defined(Z_PROBE_ALLEN_KEY_STOW_1_X) || defined(Z_PROBE_ALLEN_KEY_STOW_1_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_1_Z)
  1550. #ifndef Z_PROBE_ALLEN_KEY_STOW_1_X
  1551. #define Z_PROBE_ALLEN_KEY_STOW_1_X current_position[X_AXIS]
  1552. #endif
  1553. #ifndef Z_PROBE_ALLEN_KEY_STOW_1_Y
  1554. #define Z_PROBE_ALLEN_KEY_STOW_1_Y current_position[Y_AXIS]
  1555. #endif
  1556. #ifndef Z_PROBE_ALLEN_KEY_STOW_1_Z
  1557. #define Z_PROBE_ALLEN_KEY_STOW_1_Z current_position[Z_AXIS]
  1558. #endif
  1559. #ifndef Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE
  1560. #define Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE 0.0
  1561. #endif
  1562. do_blocking_move_to(Z_PROBE_ALLEN_KEY_STOW_1_X, Z_PROBE_ALLEN_KEY_STOW_1_Y, Z_PROBE_ALLEN_KEY_STOW_1_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE));
  1563. #endif
  1564. #if defined(Z_PROBE_ALLEN_KEY_STOW_2_X) || defined(Z_PROBE_ALLEN_KEY_STOW_2_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_2_Z)
  1565. #ifndef Z_PROBE_ALLEN_KEY_STOW_2_X
  1566. #define Z_PROBE_ALLEN_KEY_STOW_2_X current_position[X_AXIS]
  1567. #endif
  1568. #ifndef Z_PROBE_ALLEN_KEY_STOW_2_Y
  1569. #define Z_PROBE_ALLEN_KEY_STOW_2_Y current_position[Y_AXIS]
  1570. #endif
  1571. #ifndef Z_PROBE_ALLEN_KEY_STOW_2_Z
  1572. #define Z_PROBE_ALLEN_KEY_STOW_2_Z current_position[Z_AXIS]
  1573. #endif
  1574. #ifndef Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE
  1575. #define Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE 0.0
  1576. #endif
  1577. do_blocking_move_to(Z_PROBE_ALLEN_KEY_STOW_2_X, Z_PROBE_ALLEN_KEY_STOW_2_Y, Z_PROBE_ALLEN_KEY_STOW_2_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE));
  1578. #endif
  1579. #if defined(Z_PROBE_ALLEN_KEY_STOW_3_X) || defined(Z_PROBE_ALLEN_KEY_STOW_3_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_3_Z)
  1580. #ifndef Z_PROBE_ALLEN_KEY_STOW_3_X
  1581. #define Z_PROBE_ALLEN_KEY_STOW_3_X current_position[X_AXIS]
  1582. #endif
  1583. #ifndef Z_PROBE_ALLEN_KEY_STOW_3_Y
  1584. #define Z_PROBE_ALLEN_KEY_STOW_3_Y current_position[Y_AXIS]
  1585. #endif
  1586. #ifndef Z_PROBE_ALLEN_KEY_STOW_3_Z
  1587. #define Z_PROBE_ALLEN_KEY_STOW_3_Z current_position[Z_AXIS]
  1588. #endif
  1589. #ifndef Z_PROBE_ALLEN_KEY_STOW_3_FEEDRATE
  1590. #define Z_PROBE_ALLEN_KEY_STOW_3_FEEDRATE 0.0
  1591. #endif
  1592. do_blocking_move_to(Z_PROBE_ALLEN_KEY_STOW_3_X, Z_PROBE_ALLEN_KEY_STOW_3_Y, Z_PROBE_ALLEN_KEY_STOW_3_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_3_FEEDRATE));
  1593. #endif
  1594. #if defined(Z_PROBE_ALLEN_KEY_STOW_4_X) || defined(Z_PROBE_ALLEN_KEY_STOW_4_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_4_Z)
  1595. #ifndef Z_PROBE_ALLEN_KEY_STOW_4_X
  1596. #define Z_PROBE_ALLEN_KEY_STOW_4_X current_position[X_AXIS]
  1597. #endif
  1598. #ifndef Z_PROBE_ALLEN_KEY_STOW_4_Y
  1599. #define Z_PROBE_ALLEN_KEY_STOW_4_Y current_position[Y_AXIS]
  1600. #endif
  1601. #ifndef Z_PROBE_ALLEN_KEY_STOW_4_Z
  1602. #define Z_PROBE_ALLEN_KEY_STOW_4_Z current_position[Z_AXIS]
  1603. #endif
  1604. #ifndef Z_PROBE_ALLEN_KEY_STOW_4_FEEDRATE
  1605. #define Z_PROBE_ALLEN_KEY_STOW_4_FEEDRATE 0.0
  1606. #endif
  1607. do_blocking_move_to(Z_PROBE_ALLEN_KEY_STOW_4_X, Z_PROBE_ALLEN_KEY_STOW_4_Y, Z_PROBE_ALLEN_KEY_STOW_4_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_4_FEEDRATE));
  1608. #endif
  1609. #if defined(Z_PROBE_ALLEN_KEY_STOW_5_X) || defined(Z_PROBE_ALLEN_KEY_STOW_5_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_5_Z)
  1610. #ifndef Z_PROBE_ALLEN_KEY_STOW_5_X
  1611. #define Z_PROBE_ALLEN_KEY_STOW_5_X current_position[X_AXIS]
  1612. #endif
  1613. #ifndef Z_PROBE_ALLEN_KEY_STOW_5_Y
  1614. #define Z_PROBE_ALLEN_KEY_STOW_5_Y current_position[Y_AXIS]
  1615. #endif
  1616. #ifndef Z_PROBE_ALLEN_KEY_STOW_5_Z
  1617. #define Z_PROBE_ALLEN_KEY_STOW_5_Z current_position[Z_AXIS]
  1618. #endif
  1619. #ifndef Z_PROBE_ALLEN_KEY_STOW_5_FEEDRATE
  1620. #define Z_PROBE_ALLEN_KEY_STOW_5_FEEDRATE 0.0
  1621. #endif
  1622. do_blocking_move_to(Z_PROBE_ALLEN_KEY_STOW_5_X, Z_PROBE_ALLEN_KEY_STOW_5_Y, Z_PROBE_ALLEN_KEY_STOW_5_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_5_FEEDRATE));
  1623. #endif
  1624. }
  1625. #endif
  1626. #if HAS_BED_PROBE
  1627. // TRIGGERED_WHEN_STOWED_TEST can easily be extended to servo probes, ... if needed.
  1628. #if ENABLED(PROBE_IS_TRIGGERED_WHEN_STOWED_TEST)
  1629. #if ENABLED(Z_MIN_PROBE_ENDSTOP)
  1630. #define _TRIGGERED_WHEN_STOWED_TEST (READ(Z_MIN_PROBE_PIN) != Z_MIN_PROBE_ENDSTOP_INVERTING)
  1631. #else
  1632. #define _TRIGGERED_WHEN_STOWED_TEST (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING)
  1633. #endif
  1634. #endif
  1635. #define DEPLOY_PROBE() set_probe_deployed(true)
  1636. #define STOW_PROBE() set_probe_deployed(false)
  1637. #if ENABLED(BLTOUCH)
  1638. FORCE_INLINE void set_bltouch_deployed(const bool &deploy) {
  1639. servo[Z_ENDSTOP_SERVO_NR].move(deploy ? BLTOUCH_DEPLOY : BLTOUCH_STOW);
  1640. }
  1641. #endif
  1642. // returns false for ok and true for failure
  1643. static bool set_probe_deployed(bool deploy) {
  1644. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1645. if (DEBUGGING(LEVELING)) {
  1646. DEBUG_POS("set_probe_deployed", current_position);
  1647. SERIAL_ECHOLNPAIR("deploy: ", deploy);
  1648. }
  1649. #endif
  1650. if (endstops.z_probe_enabled == deploy) return false;
  1651. // Make room for probe
  1652. do_probe_raise(_Z_PROBE_DEPLOY_HEIGHT);
  1653. // When deploying make sure BLTOUCH is not already triggered
  1654. #if ENABLED(BLTOUCH)
  1655. if (deploy && TEST_BLTOUCH()) { stop(); return true; }
  1656. #endif
  1657. #if ENABLED(Z_PROBE_SLED)
  1658. if (axis_unhomed_error(true, false, false)) { stop(); return true; }
  1659. #elif ENABLED(Z_PROBE_ALLEN_KEY)
  1660. if (axis_unhomed_error(true, true, true )) { stop(); return true; }
  1661. #endif
  1662. float oldXpos = current_position[X_AXIS],
  1663. oldYpos = current_position[Y_AXIS];
  1664. #ifdef _TRIGGERED_WHEN_STOWED_TEST
  1665. // If endstop is already false, the Z probe is deployed
  1666. if (_TRIGGERED_WHEN_STOWED_TEST == deploy) { // closed after the probe specific actions.
  1667. // Would a goto be less ugly?
  1668. //while (!_TRIGGERED_WHEN_STOWED_TEST) idle(); // would offer the opportunity
  1669. // for a triggered when stowed manual probe.
  1670. if (!deploy) endstops.enable_z_probe(false); // Switch off triggered when stowed probes early
  1671. // otherwise an Allen-Key probe can't be stowed.
  1672. #endif
  1673. #if ENABLED(Z_PROBE_SLED)
  1674. dock_sled(!deploy);
  1675. #elif HAS_Z_SERVO_ENDSTOP && DISABLED(BLTOUCH)
  1676. servo[Z_ENDSTOP_SERVO_NR].move(z_servo_angle[deploy ? 0 : 1]);
  1677. #elif ENABLED(Z_PROBE_ALLEN_KEY)
  1678. deploy ? run_deploy_moves_script() : run_stow_moves_script();
  1679. #endif
  1680. #ifdef _TRIGGERED_WHEN_STOWED_TEST
  1681. } // _TRIGGERED_WHEN_STOWED_TEST == deploy
  1682. if (_TRIGGERED_WHEN_STOWED_TEST == deploy) { // State hasn't changed?
  1683. if (IsRunning()) {
  1684. SERIAL_ERROR_START;
  1685. SERIAL_ERRORLNPGM("Z-Probe failed");
  1686. LCD_ALERTMESSAGEPGM("Err: ZPROBE");
  1687. }
  1688. stop();
  1689. return true;
  1690. } // _TRIGGERED_WHEN_STOWED_TEST == deploy
  1691. #endif
  1692. do_blocking_move_to(oldXpos, oldYpos, current_position[Z_AXIS]); // return to position before deploy
  1693. endstops.enable_z_probe(deploy);
  1694. return false;
  1695. }
  1696. static void do_probe_move(float z, float fr_mm_m) {
  1697. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1698. if (DEBUGGING(LEVELING)) DEBUG_POS(">>> do_probe_move", current_position);
  1699. #endif
  1700. // Deploy BLTouch at the start of any probe
  1701. #if ENABLED(BLTOUCH)
  1702. set_bltouch_deployed(true);
  1703. #endif
  1704. // Move down until probe triggered
  1705. do_blocking_move_to_z(LOGICAL_Z_POSITION(z), MMM_TO_MMS(fr_mm_m));
  1706. // Retract BLTouch immediately after a probe
  1707. #if ENABLED(BLTOUCH)
  1708. set_bltouch_deployed(false);
  1709. #endif
  1710. // Clear endstop flags
  1711. endstops.hit_on_purpose();
  1712. // Get Z where the steppers were interrupted
  1713. set_current_from_steppers_for_axis(Z_AXIS);
  1714. // Tell the planner where we actually are
  1715. SYNC_PLAN_POSITION_KINEMATIC();
  1716. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1717. if (DEBUGGING(LEVELING)) DEBUG_POS("<<< do_probe_move", current_position);
  1718. #endif
  1719. }
  1720. // Do a single Z probe and return with current_position[Z_AXIS]
  1721. // at the height where the probe triggered.
  1722. static float run_z_probe() {
  1723. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1724. if (DEBUGGING(LEVELING)) DEBUG_POS(">>> run_z_probe", current_position);
  1725. #endif
  1726. // Prevent stepper_inactive_time from running out and EXTRUDER_RUNOUT_PREVENT from extruding
  1727. refresh_cmd_timeout();
  1728. #if ENABLED(PROBE_DOUBLE_TOUCH)
  1729. // Do a first probe at the fast speed
  1730. do_probe_move(-(Z_MAX_LENGTH) - 10, Z_PROBE_SPEED_FAST);
  1731. // move up by the bump distance
  1732. do_blocking_move_to_z(current_position[Z_AXIS] + home_bump_mm(Z_AXIS), MMM_TO_MMS(Z_PROBE_SPEED_FAST));
  1733. #else
  1734. // If the nozzle is above the travel height then
  1735. // move down quickly before doing the slow probe
  1736. float z = LOGICAL_Z_POSITION(Z_PROBE_TRAVEL_HEIGHT);
  1737. if (z < current_position[Z_AXIS])
  1738. do_blocking_move_to_z(z, MMM_TO_MMS(Z_PROBE_SPEED_FAST));
  1739. #endif
  1740. // move down slowly to find bed
  1741. do_probe_move(-(Z_MAX_LENGTH) - 10, Z_PROBE_SPEED_SLOW);
  1742. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1743. if (DEBUGGING(LEVELING)) DEBUG_POS("<<< run_z_probe", current_position);
  1744. #endif
  1745. return current_position[Z_AXIS];
  1746. }
  1747. //
  1748. // - Move to the given XY
  1749. // - Deploy the probe, if not already deployed
  1750. // - Probe the bed, get the Z position
  1751. // - Depending on the 'stow' flag
  1752. // - Stow the probe, or
  1753. // - Raise to the BETWEEN height
  1754. // - Return the probed Z position
  1755. //
  1756. static float probe_pt(const float &x, const float &y, bool stow = true, int verbose_level = 1) {
  1757. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1758. if (DEBUGGING(LEVELING)) {
  1759. SERIAL_ECHOPAIR(">>> probe_pt(", x);
  1760. SERIAL_ECHOPAIR(", ", y);
  1761. SERIAL_ECHOPAIR(", ", stow ? "stow" : "no stow");
  1762. SERIAL_ECHOLNPGM(")");
  1763. DEBUG_POS("", current_position);
  1764. }
  1765. #endif
  1766. float old_feedrate_mm_s = feedrate_mm_s;
  1767. // Ensure a minimum height before moving the probe
  1768. do_probe_raise(Z_PROBE_TRAVEL_HEIGHT);
  1769. // Move to the XY where we shall probe
  1770. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1771. if (DEBUGGING(LEVELING)) {
  1772. SERIAL_ECHOPAIR("> do_blocking_move_to_xy(", x - (X_PROBE_OFFSET_FROM_EXTRUDER));
  1773. SERIAL_ECHOPAIR(", ", y - (Y_PROBE_OFFSET_FROM_EXTRUDER));
  1774. SERIAL_ECHOLNPGM(")");
  1775. }
  1776. #endif
  1777. feedrate_mm_s = XY_PROBE_FEEDRATE_MM_S;
  1778. // Move the probe to the given XY
  1779. do_blocking_move_to_xy(x - (X_PROBE_OFFSET_FROM_EXTRUDER), y - (Y_PROBE_OFFSET_FROM_EXTRUDER));
  1780. if (DEPLOY_PROBE()) return NAN;
  1781. float measured_z = run_z_probe();
  1782. if (stow) {
  1783. if (STOW_PROBE()) return NAN;
  1784. }
  1785. else {
  1786. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1787. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> do_probe_raise");
  1788. #endif
  1789. do_probe_raise(Z_PROBE_TRAVEL_HEIGHT);
  1790. }
  1791. if (verbose_level > 2) {
  1792. SERIAL_PROTOCOLPGM("Bed X: ");
  1793. SERIAL_PROTOCOL_F(x, 3);
  1794. SERIAL_PROTOCOLPGM(" Y: ");
  1795. SERIAL_PROTOCOL_F(y, 3);
  1796. SERIAL_PROTOCOLPGM(" Z: ");
  1797. SERIAL_PROTOCOL_F(measured_z, 3);
  1798. SERIAL_EOL;
  1799. }
  1800. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1801. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< probe_pt");
  1802. #endif
  1803. feedrate_mm_s = old_feedrate_mm_s;
  1804. return measured_z;
  1805. }
  1806. #endif // HAS_BED_PROBE
  1807. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  1808. /**
  1809. * Reset calibration results to zero.
  1810. */
  1811. void reset_bed_level() {
  1812. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1813. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("reset_bed_level");
  1814. #endif
  1815. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  1816. planner.bed_level_matrix.set_to_identity();
  1817. #elif ENABLED(AUTO_BED_LEVELING_NONLINEAR)
  1818. memset(bed_level_grid, 0, sizeof(bed_level_grid));
  1819. nonlinear_grid_spacing[X_AXIS] = nonlinear_grid_spacing[Y_AXIS] = 0;
  1820. #endif
  1821. }
  1822. #endif // AUTO_BED_LEVELING_FEATURE
  1823. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  1824. /**
  1825. * Get the stepper positions, apply the rotation matrix
  1826. * using the home XY and Z0 position as the fulcrum.
  1827. */
  1828. vector_3 untilted_stepper_position() {
  1829. get_cartesian_from_steppers();
  1830. vector_3 pos = vector_3(
  1831. cartes[X_AXIS] - X_TILT_FULCRUM,
  1832. cartes[Y_AXIS] - Y_TILT_FULCRUM,
  1833. cartes[Z_AXIS]
  1834. );
  1835. matrix_3x3 inverse = matrix_3x3::transpose(planner.bed_level_matrix);
  1836. //pos.debug("untilted_stepper_position offset");
  1837. //bed_level_matrix.debug("untilted_stepper_position");
  1838. //inverse.debug("in untilted_stepper_position");
  1839. pos.apply_rotation(inverse);
  1840. pos.x = LOGICAL_X_POSITION(pos.x + X_TILT_FULCRUM);
  1841. pos.y = LOGICAL_Y_POSITION(pos.y + Y_TILT_FULCRUM);
  1842. pos.z = LOGICAL_Z_POSITION(pos.z);
  1843. //pos.debug("after rotation and reorientation");
  1844. return pos;
  1845. }
  1846. #elif ENABLED(AUTO_BED_LEVELING_NONLINEAR)
  1847. /**
  1848. * Extrapolate a single point from its neighbors
  1849. */
  1850. static void extrapolate_one_point(uint8_t x, uint8_t y, int8_t xdir, int8_t ydir) {
  1851. if (bed_level_grid[x][y]) return; // Don't overwrite good values.
  1852. float a = 2 * bed_level_grid[x + xdir][y] - bed_level_grid[x + xdir * 2][y], // Left to right.
  1853. b = 2 * bed_level_grid[x][y + ydir] - bed_level_grid[x][y + ydir * 2], // Front to back.
  1854. c = 2 * bed_level_grid[x + xdir][y + ydir] - bed_level_grid[x + xdir * 2][y + ydir * 2]; // Diagonal.
  1855. // Median is robust (ignores outliers).
  1856. bed_level_grid[x][y] = (a < b) ? ((b < c) ? b : (c < a) ? a : c)
  1857. : ((c < b) ? b : (a < c) ? a : c);
  1858. }
  1859. /**
  1860. * Fill in the unprobed points (corners of circular print surface)
  1861. * using linear extrapolation, away from the center.
  1862. */
  1863. static void extrapolate_unprobed_bed_level() {
  1864. int half_x = (ABL_GRID_POINTS_X - 1) / 2,
  1865. half_y = (ABL_GRID_POINTS_Y - 1) / 2;
  1866. for (uint8_t y = 0; y <= half_y; y++) {
  1867. for (uint8_t x = 0; x <= half_x; x++) {
  1868. if (x + y < 3) continue;
  1869. extrapolate_one_point(half_x - x, half_y - y, x > 1 ? +1 : 0, y > 1 ? +1 : 0);
  1870. extrapolate_one_point(half_x + x, half_y - y, x > 1 ? -1 : 0, y > 1 ? +1 : 0);
  1871. extrapolate_one_point(half_x - x, half_y + y, x > 1 ? +1 : 0, y > 1 ? -1 : 0);
  1872. extrapolate_one_point(half_x + x, half_y + y, x > 1 ? -1 : 0, y > 1 ? -1 : 0);
  1873. }
  1874. }
  1875. }
  1876. /**
  1877. * Print calibration results for plotting or manual frame adjustment.
  1878. */
  1879. static void print_bed_level() {
  1880. for (uint8_t y = 0; y < ABL_GRID_POINTS_Y; y++) {
  1881. for (uint8_t x = 0; x < ABL_GRID_POINTS_X; x++) {
  1882. SERIAL_PROTOCOL_F(bed_level_grid[x][y], 2);
  1883. SERIAL_PROTOCOLCHAR(' ');
  1884. }
  1885. SERIAL_EOL;
  1886. }
  1887. }
  1888. #endif // AUTO_BED_LEVELING_NONLINEAR
  1889. /**
  1890. * Home an individual linear axis
  1891. */
  1892. static void do_homing_move(AxisEnum axis, float where, float fr_mm_s = 0.0) {
  1893. #if HOMING_Z_WITH_PROBE && ENABLED(BLTOUCH)
  1894. if (axis == Z_AXIS) set_bltouch_deployed(true);
  1895. #endif
  1896. current_position[axis] = 0;
  1897. sync_plan_position();
  1898. current_position[axis] = where;
  1899. planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], (fr_mm_s != 0.0) ? fr_mm_s : homing_feedrate_mm_s[axis], active_extruder);
  1900. stepper.synchronize();
  1901. #if HOMING_Z_WITH_PROBE && ENABLED(BLTOUCH)
  1902. if (axis == Z_AXIS) set_bltouch_deployed(false);
  1903. #endif
  1904. endstops.hit_on_purpose();
  1905. }
  1906. /**
  1907. * Home an individual "raw axis" to its endstop.
  1908. * This applies to XYZ on Cartesian and Core robots, and
  1909. * to the individual ABC steppers on DELTA and SCARA.
  1910. *
  1911. * At the end of the procedure the axis is marked as
  1912. * homed and the current position of that axis is updated.
  1913. * Kinematic robots should wait till all axes are homed
  1914. * before updating the current position.
  1915. */
  1916. #define HOMEAXIS(LETTER) homeaxis(LETTER##_AXIS)
  1917. static void homeaxis(AxisEnum axis) {
  1918. #if IS_SCARA
  1919. // Only Z homing (with probe) is permitted
  1920. if (axis != Z_AXIS) { BUZZ(100, 880); return; }
  1921. #else
  1922. #define CAN_HOME(A) \
  1923. (axis == A##_AXIS && ((A##_MIN_PIN > -1 && A##_HOME_DIR < 0) || (A##_MAX_PIN > -1 && A##_HOME_DIR > 0)))
  1924. if (!CAN_HOME(X) && !CAN_HOME(Y) && !CAN_HOME(Z)) return;
  1925. #endif
  1926. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1927. if (DEBUGGING(LEVELING)) {
  1928. SERIAL_ECHOPAIR(">>> homeaxis(", axis_codes[axis]);
  1929. SERIAL_ECHOLNPGM(")");
  1930. }
  1931. #endif
  1932. int axis_home_dir =
  1933. #if ENABLED(DUAL_X_CARRIAGE)
  1934. (axis == X_AXIS) ? x_home_dir(active_extruder) :
  1935. #endif
  1936. home_dir(axis);
  1937. // Homing Z towards the bed? Deploy the Z probe or endstop.
  1938. #if HOMING_Z_WITH_PROBE
  1939. if (axis == Z_AXIS && DEPLOY_PROBE()) return;
  1940. #endif
  1941. // Set a flag for Z motor locking
  1942. #if ENABLED(Z_DUAL_ENDSTOPS)
  1943. if (axis == Z_AXIS) stepper.set_homing_flag(true);
  1944. #endif
  1945. // Move towards the endstop until an endstop is triggered
  1946. do_homing_move(axis, 1.5 * max_length(axis) * axis_home_dir);
  1947. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1948. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPAIR("> 1st Home ", current_position[axis]);
  1949. #endif
  1950. // Move away from the endstop by the axis HOME_BUMP_MM
  1951. do_homing_move(axis, -home_bump_mm(axis) * axis_home_dir);
  1952. // Move slowly towards the endstop until triggered
  1953. do_homing_move(axis, 2 * home_bump_mm(axis) * axis_home_dir, get_homing_bump_feedrate(axis));
  1954. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1955. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPAIR("> 2nd Home ", current_position[axis]);
  1956. #endif
  1957. #if ENABLED(Z_DUAL_ENDSTOPS)
  1958. if (axis == Z_AXIS) {
  1959. float adj = fabs(z_endstop_adj);
  1960. bool lockZ1;
  1961. if (axis_home_dir > 0) {
  1962. adj = -adj;
  1963. lockZ1 = (z_endstop_adj > 0);
  1964. }
  1965. else
  1966. lockZ1 = (z_endstop_adj < 0);
  1967. if (lockZ1) stepper.set_z_lock(true); else stepper.set_z2_lock(true);
  1968. // Move to the adjusted endstop height
  1969. do_homing_move(axis, adj);
  1970. if (lockZ1) stepper.set_z_lock(false); else stepper.set_z2_lock(false);
  1971. stepper.set_homing_flag(false);
  1972. } // Z_AXIS
  1973. #endif
  1974. #if IS_SCARA
  1975. set_axis_is_at_home(axis);
  1976. SYNC_PLAN_POSITION_KINEMATIC();
  1977. #elif ENABLED(DELTA)
  1978. // Delta has already moved all three towers up in G28
  1979. // so here it re-homes each tower in turn.
  1980. // Delta homing treats the axes as normal linear axes.
  1981. // retrace by the amount specified in endstop_adj
  1982. if (endstop_adj[axis] * Z_HOME_DIR < 0) {
  1983. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1984. if (DEBUGGING(LEVELING)) {
  1985. SERIAL_ECHOPAIR("> endstop_adj = ", endstop_adj[axis] * Z_HOME_DIR);
  1986. DEBUG_POS("", current_position);
  1987. }
  1988. #endif
  1989. do_homing_move(axis, endstop_adj[axis]);
  1990. }
  1991. #else
  1992. // Set the axis position to its home position (plus home offsets)
  1993. set_axis_is_at_home(axis);
  1994. sync_plan_position();
  1995. destination[axis] = current_position[axis];
  1996. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1997. if (DEBUGGING(LEVELING)) DEBUG_POS("> AFTER set_axis_is_at_home", current_position);
  1998. #endif
  1999. #endif
  2000. // Put away the Z probe
  2001. #if HOMING_Z_WITH_PROBE
  2002. if (axis == Z_AXIS && STOW_PROBE()) return;
  2003. #endif
  2004. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2005. if (DEBUGGING(LEVELING)) {
  2006. SERIAL_ECHOPAIR("<<< homeaxis(", axis_codes[axis]);
  2007. SERIAL_ECHOLNPGM(")");
  2008. }
  2009. #endif
  2010. } // homeaxis()
  2011. #if ENABLED(FWRETRACT)
  2012. void retract(bool retracting, bool swapping = false) {
  2013. if (retracting == retracted[active_extruder]) return;
  2014. float old_feedrate_mm_s = feedrate_mm_s;
  2015. set_destination_to_current();
  2016. if (retracting) {
  2017. feedrate_mm_s = retract_feedrate_mm_s;
  2018. current_position[E_AXIS] += (swapping ? retract_length_swap : retract_length) / volumetric_multiplier[active_extruder];
  2019. sync_plan_position_e();
  2020. prepare_move_to_destination();
  2021. if (retract_zlift > 0.01) {
  2022. current_position[Z_AXIS] -= retract_zlift;
  2023. SYNC_PLAN_POSITION_KINEMATIC();
  2024. prepare_move_to_destination();
  2025. }
  2026. }
  2027. else {
  2028. if (retract_zlift > 0.01) {
  2029. current_position[Z_AXIS] += retract_zlift;
  2030. SYNC_PLAN_POSITION_KINEMATIC();
  2031. }
  2032. feedrate_mm_s = retract_recover_feedrate_mm_s;
  2033. float move_e = swapping ? retract_length_swap + retract_recover_length_swap : retract_length + retract_recover_length;
  2034. current_position[E_AXIS] -= move_e / volumetric_multiplier[active_extruder];
  2035. sync_plan_position_e();
  2036. prepare_move_to_destination();
  2037. }
  2038. feedrate_mm_s = old_feedrate_mm_s;
  2039. retracted[active_extruder] = retracting;
  2040. } // retract()
  2041. #endif // FWRETRACT
  2042. #if ENABLED(MIXING_EXTRUDER)
  2043. void normalize_mix() {
  2044. float mix_total = 0.0;
  2045. for (int i = 0; i < MIXING_STEPPERS; i++) {
  2046. float v = mixing_factor[i];
  2047. if (v < 0) v = mixing_factor[i] = 0;
  2048. mix_total += v;
  2049. }
  2050. // Scale all values if they don't add up to ~1.0
  2051. if (mix_total < 0.9999 || mix_total > 1.0001) {
  2052. SERIAL_PROTOCOLLNPGM("Warning: Mix factors must add up to 1.0. Scaling.");
  2053. float mix_scale = 1.0 / mix_total;
  2054. for (int i = 0; i < MIXING_STEPPERS; i++)
  2055. mixing_factor[i] *= mix_scale;
  2056. }
  2057. }
  2058. #if ENABLED(DIRECT_MIXING_IN_G1)
  2059. // Get mixing parameters from the GCode
  2060. // Factors that are left out are set to 0
  2061. // The total "must" be 1.0 (but it will be normalized)
  2062. void gcode_get_mix() {
  2063. const char* mixing_codes = "ABCDHI";
  2064. for (int i = 0; i < MIXING_STEPPERS; i++)
  2065. mixing_factor[i] = code_seen(mixing_codes[i]) ? code_value_float() : 0;
  2066. normalize_mix();
  2067. }
  2068. #endif
  2069. #endif
  2070. /**
  2071. * ***************************************************************************
  2072. * ***************************** G-CODE HANDLING *****************************
  2073. * ***************************************************************************
  2074. */
  2075. /**
  2076. * Set XYZE destination and feedrate from the current GCode command
  2077. *
  2078. * - Set destination from included axis codes
  2079. * - Set to current for missing axis codes
  2080. * - Set the feedrate, if included
  2081. */
  2082. void gcode_get_destination() {
  2083. LOOP_XYZE(i) {
  2084. if (code_seen(axis_codes[i]))
  2085. destination[i] = code_value_axis_units(i) + (axis_relative_modes[i] || relative_mode ? current_position[i] : 0);
  2086. else
  2087. destination[i] = current_position[i];
  2088. }
  2089. if (code_seen('F') && code_value_linear_units() > 0.0)
  2090. feedrate_mm_s = MMM_TO_MMS(code_value_linear_units());
  2091. #if ENABLED(PRINTCOUNTER)
  2092. if (!DEBUGGING(DRYRUN))
  2093. print_job_timer.incFilamentUsed(destination[E_AXIS] - current_position[E_AXIS]);
  2094. #endif
  2095. // Get ABCDHI mixing factors
  2096. #if ENABLED(MIXING_EXTRUDER) && ENABLED(DIRECT_MIXING_IN_G1)
  2097. gcode_get_mix();
  2098. #endif
  2099. }
  2100. void unknown_command_error() {
  2101. SERIAL_ECHO_START;
  2102. SERIAL_ECHOPAIR(MSG_UNKNOWN_COMMAND, current_command);
  2103. SERIAL_ECHOLNPGM("\"");
  2104. }
  2105. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  2106. /**
  2107. * Output a "busy" message at regular intervals
  2108. * while the machine is not accepting commands.
  2109. */
  2110. void host_keepalive() {
  2111. millis_t ms = millis();
  2112. if (host_keepalive_interval && busy_state != NOT_BUSY) {
  2113. if (PENDING(ms, next_busy_signal_ms)) return;
  2114. switch (busy_state) {
  2115. case IN_HANDLER:
  2116. case IN_PROCESS:
  2117. SERIAL_ECHO_START;
  2118. SERIAL_ECHOLNPGM(MSG_BUSY_PROCESSING);
  2119. break;
  2120. case PAUSED_FOR_USER:
  2121. SERIAL_ECHO_START;
  2122. SERIAL_ECHOLNPGM(MSG_BUSY_PAUSED_FOR_USER);
  2123. break;
  2124. case PAUSED_FOR_INPUT:
  2125. SERIAL_ECHO_START;
  2126. SERIAL_ECHOLNPGM(MSG_BUSY_PAUSED_FOR_INPUT);
  2127. break;
  2128. default:
  2129. break;
  2130. }
  2131. }
  2132. next_busy_signal_ms = ms + host_keepalive_interval * 1000UL;
  2133. }
  2134. #endif //HOST_KEEPALIVE_FEATURE
  2135. bool position_is_reachable(float target[XYZ]) {
  2136. float dx = RAW_X_POSITION(target[X_AXIS]),
  2137. dy = RAW_Y_POSITION(target[Y_AXIS]),
  2138. dz = RAW_Z_POSITION(target[Z_AXIS]);
  2139. bool good;
  2140. #if IS_SCARA
  2141. #if MIDDLE_DEAD_ZONE_R > 0
  2142. const float R2 = HYPOT2(dx - SCARA_OFFSET_X, dy - SCARA_OFFSET_Y);
  2143. good = (R2 >= sq(float(MIDDLE_DEAD_ZONE_R))) && (R2 <= sq(L1 + L2));
  2144. #else
  2145. good = HYPOT2(dx - SCARA_OFFSET_X, dy - SCARA_OFFSET_Y) <= sq(L1 + L2);
  2146. #endif
  2147. #elif ENABLED(DELTA)
  2148. good = HYPOT2(dx, dy) <= sq(DELTA_PRINTABLE_RADIUS);
  2149. #else
  2150. good = true;
  2151. #endif
  2152. return good && dx >= X_MIN_POS - 0.0001 && dx <= X_MAX_POS + 0.0001
  2153. && dy >= Y_MIN_POS - 0.0001 && dy <= Y_MAX_POS + 0.0001
  2154. && dz >= Z_MIN_POS - 0.0001 && dz <= Z_MAX_POS + 0.0001;
  2155. }
  2156. /**************************************************
  2157. ***************** GCode Handlers *****************
  2158. **************************************************/
  2159. /**
  2160. * G0, G1: Coordinated movement of X Y Z E axes
  2161. */
  2162. inline void gcode_G0_G1(
  2163. #if IS_SCARA
  2164. bool fast_move=false
  2165. #endif
  2166. ) {
  2167. if (IsRunning()) {
  2168. gcode_get_destination(); // For X Y Z E F
  2169. #if ENABLED(FWRETRACT)
  2170. if (autoretract_enabled && !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  2171. float echange = destination[E_AXIS] - current_position[E_AXIS];
  2172. // Is this move an attempt to retract or recover?
  2173. if ((echange < -MIN_RETRACT && !retracted[active_extruder]) || (echange > MIN_RETRACT && retracted[active_extruder])) {
  2174. current_position[E_AXIS] = destination[E_AXIS]; // hide the slicer-generated retract/recover from calculations
  2175. sync_plan_position_e(); // AND from the planner
  2176. retract(!retracted[active_extruder]);
  2177. return;
  2178. }
  2179. }
  2180. #endif //FWRETRACT
  2181. #if IS_SCARA
  2182. fast_move ? prepare_uninterpolated_move_to_destination() : prepare_move_to_destination();
  2183. #else
  2184. prepare_move_to_destination();
  2185. #endif
  2186. }
  2187. }
  2188. /**
  2189. * G2: Clockwise Arc
  2190. * G3: Counterclockwise Arc
  2191. */
  2192. #if ENABLED(ARC_SUPPORT)
  2193. inline void gcode_G2_G3(bool clockwise) {
  2194. if (IsRunning()) {
  2195. #if ENABLED(SF_ARC_FIX)
  2196. bool relative_mode_backup = relative_mode;
  2197. relative_mode = true;
  2198. #endif
  2199. gcode_get_destination();
  2200. #if ENABLED(SF_ARC_FIX)
  2201. relative_mode = relative_mode_backup;
  2202. #endif
  2203. // Center of arc as offset from current_position
  2204. float arc_offset[2] = {
  2205. code_seen('I') ? code_value_axis_units(X_AXIS) : 0,
  2206. code_seen('J') ? code_value_axis_units(Y_AXIS) : 0
  2207. };
  2208. // Send an arc to the planner
  2209. plan_arc(destination, arc_offset, clockwise);
  2210. refresh_cmd_timeout();
  2211. }
  2212. }
  2213. #endif
  2214. /**
  2215. * G4: Dwell S<seconds> or P<milliseconds>
  2216. */
  2217. inline void gcode_G4() {
  2218. millis_t dwell_ms = 0;
  2219. if (code_seen('P')) dwell_ms = code_value_millis(); // milliseconds to wait
  2220. if (code_seen('S')) dwell_ms = code_value_millis_from_seconds(); // seconds to wait
  2221. stepper.synchronize();
  2222. refresh_cmd_timeout();
  2223. dwell_ms += previous_cmd_ms; // keep track of when we started waiting
  2224. if (!lcd_hasstatus()) LCD_MESSAGEPGM(MSG_DWELL);
  2225. while (PENDING(millis(), dwell_ms)) idle();
  2226. }
  2227. #if ENABLED(BEZIER_CURVE_SUPPORT)
  2228. /**
  2229. * Parameters interpreted according to:
  2230. * http://linuxcnc.org/docs/2.6/html/gcode/gcode.html#sec:G5-Cubic-Spline
  2231. * However I, J omission is not supported at this point; all
  2232. * parameters can be omitted and default to zero.
  2233. */
  2234. /**
  2235. * G5: Cubic B-spline
  2236. */
  2237. inline void gcode_G5() {
  2238. if (IsRunning()) {
  2239. gcode_get_destination();
  2240. float offset[] = {
  2241. code_seen('I') ? code_value_axis_units(X_AXIS) : 0.0,
  2242. code_seen('J') ? code_value_axis_units(Y_AXIS) : 0.0,
  2243. code_seen('P') ? code_value_axis_units(X_AXIS) : 0.0,
  2244. code_seen('Q') ? code_value_axis_units(Y_AXIS) : 0.0
  2245. };
  2246. plan_cubic_move(offset);
  2247. }
  2248. }
  2249. #endif // BEZIER_CURVE_SUPPORT
  2250. #if ENABLED(FWRETRACT)
  2251. /**
  2252. * G10 - Retract filament according to settings of M207
  2253. * G11 - Recover filament according to settings of M208
  2254. */
  2255. inline void gcode_G10_G11(bool doRetract=false) {
  2256. #if EXTRUDERS > 1
  2257. if (doRetract) {
  2258. retracted_swap[active_extruder] = (code_seen('S') && code_value_bool()); // checks for swap retract argument
  2259. }
  2260. #endif
  2261. retract(doRetract
  2262. #if EXTRUDERS > 1
  2263. , retracted_swap[active_extruder]
  2264. #endif
  2265. );
  2266. }
  2267. #endif //FWRETRACT
  2268. #if ENABLED(NOZZLE_CLEAN_FEATURE)
  2269. /**
  2270. * G12: Clean the nozzle
  2271. */
  2272. inline void gcode_G12() {
  2273. // Don't allow nozzle cleaning without homing first
  2274. if (axis_unhomed_error(true, true, true)) { return; }
  2275. uint8_t const pattern = code_seen('P') ? code_value_ushort() : 0;
  2276. uint8_t const strokes = code_seen('S') ? code_value_ushort() : NOZZLE_CLEAN_STROKES;
  2277. uint8_t const objects = code_seen('T') ? code_value_ushort() : 3;
  2278. Nozzle::clean(pattern, strokes, objects);
  2279. }
  2280. #endif
  2281. #if ENABLED(INCH_MODE_SUPPORT)
  2282. /**
  2283. * G20: Set input mode to inches
  2284. */
  2285. inline void gcode_G20() { set_input_linear_units(LINEARUNIT_INCH); }
  2286. /**
  2287. * G21: Set input mode to millimeters
  2288. */
  2289. inline void gcode_G21() { set_input_linear_units(LINEARUNIT_MM); }
  2290. #endif
  2291. #if ENABLED(NOZZLE_PARK_FEATURE)
  2292. /**
  2293. * G27: Park the nozzle
  2294. */
  2295. inline void gcode_G27() {
  2296. // Don't allow nozzle parking without homing first
  2297. if (axis_unhomed_error(true, true, true)) { return; }
  2298. uint8_t const z_action = code_seen('P') ? code_value_ushort() : 0;
  2299. Nozzle::park(z_action);
  2300. }
  2301. #endif // NOZZLE_PARK_FEATURE
  2302. #if ENABLED(QUICK_HOME)
  2303. static void quick_home_xy() {
  2304. // Pretend the current position is 0,0
  2305. current_position[X_AXIS] = current_position[Y_AXIS] = 0.0;
  2306. sync_plan_position();
  2307. int x_axis_home_dir =
  2308. #if ENABLED(DUAL_X_CARRIAGE)
  2309. x_home_dir(active_extruder)
  2310. #else
  2311. home_dir(X_AXIS)
  2312. #endif
  2313. ;
  2314. float mlx = max_length(X_AXIS),
  2315. mly = max_length(Y_AXIS),
  2316. mlratio = mlx > mly ? mly / mlx : mlx / mly,
  2317. fr_mm_s = min(homing_feedrate_mm_s[X_AXIS], homing_feedrate_mm_s[Y_AXIS]) * sqrt(sq(mlratio) + 1.0);
  2318. do_blocking_move_to_xy(1.5 * mlx * x_axis_home_dir, 1.5 * mly * home_dir(Y_AXIS), fr_mm_s);
  2319. endstops.hit_on_purpose(); // clear endstop hit flags
  2320. current_position[X_AXIS] = current_position[Y_AXIS] = 0.0;
  2321. }
  2322. #endif // QUICK_HOME
  2323. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2324. void log_machine_info() {
  2325. SERIAL_ECHOPGM("Machine Type: ");
  2326. #if ENABLED(DELTA)
  2327. SERIAL_ECHOLNPGM("Delta");
  2328. #elif IS_SCARA
  2329. SERIAL_ECHOLNPGM("SCARA");
  2330. #elif ENABLED(COREXY) || ENABLED(COREXZ) || ENABLED(COREYZ)
  2331. SERIAL_ECHOLNPGM("Core");
  2332. #else
  2333. SERIAL_ECHOLNPGM("Cartesian");
  2334. #endif
  2335. SERIAL_ECHOPGM("Probe: ");
  2336. #if ENABLED(FIX_MOUNTED_PROBE)
  2337. SERIAL_ECHOLNPGM("FIX_MOUNTED_PROBE");
  2338. #elif HAS_Z_SERVO_ENDSTOP
  2339. SERIAL_ECHOLNPGM("SERVO PROBE");
  2340. #elif ENABLED(BLTOUCH)
  2341. SERIAL_ECHOLNPGM("BLTOUCH");
  2342. #elif ENABLED(Z_PROBE_SLED)
  2343. SERIAL_ECHOLNPGM("Z_PROBE_SLED");
  2344. #elif ENABLED(Z_PROBE_ALLEN_KEY)
  2345. SERIAL_ECHOLNPGM("Z_PROBE_ALLEN_KEY");
  2346. #else
  2347. SERIAL_ECHOLNPGM("NONE");
  2348. #endif
  2349. #if HAS_BED_PROBE
  2350. SERIAL_ECHOPAIR("Probe Offset X:", X_PROBE_OFFSET_FROM_EXTRUDER);
  2351. SERIAL_ECHOPAIR(" Y:", Y_PROBE_OFFSET_FROM_EXTRUDER);
  2352. SERIAL_ECHOPAIR(" Z:", zprobe_zoffset);
  2353. #if (X_PROBE_OFFSET_FROM_EXTRUDER > 0)
  2354. SERIAL_ECHOPGM(" (Right");
  2355. #elif (X_PROBE_OFFSET_FROM_EXTRUDER < 0)
  2356. SERIAL_ECHOPGM(" (Left");
  2357. #elif (Y_PROBE_OFFSET_FROM_EXTRUDER != 0)
  2358. SERIAL_ECHOPGM(" (Middle");
  2359. #else
  2360. SERIAL_ECHOPGM(" (Aligned With");
  2361. #endif
  2362. #if (Y_PROBE_OFFSET_FROM_EXTRUDER > 0)
  2363. SERIAL_ECHOPGM("-Back");
  2364. #elif (Y_PROBE_OFFSET_FROM_EXTRUDER < 0)
  2365. SERIAL_ECHOPGM("-Front");
  2366. #elif (X_PROBE_OFFSET_FROM_EXTRUDER != 0)
  2367. SERIAL_ECHOPGM("-Center");
  2368. #endif
  2369. if (zprobe_zoffset < 0)
  2370. SERIAL_ECHOPGM(" & Below");
  2371. else if (zprobe_zoffset > 0)
  2372. SERIAL_ECHOPGM(" & Above");
  2373. else
  2374. SERIAL_ECHOPGM(" & Same Z as");
  2375. SERIAL_ECHOLNPGM(" Nozzle)");
  2376. #endif
  2377. }
  2378. #endif // DEBUG_LEVELING_FEATURE
  2379. #if ENABLED(DELTA)
  2380. /**
  2381. * A delta can only safely home all axes at the same time
  2382. * This is like quick_home_xy() but for 3 towers.
  2383. */
  2384. inline void home_delta() {
  2385. // Init the current position of all carriages to 0,0,0
  2386. memset(current_position, 0, sizeof(current_position));
  2387. sync_plan_position();
  2388. // Move all carriages together linearly until an endstop is hit.
  2389. current_position[X_AXIS] = current_position[Y_AXIS] = current_position[Z_AXIS] = (Z_MAX_LENGTH + 10);
  2390. planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate_mm_s[X_AXIS], active_extruder);
  2391. stepper.synchronize();
  2392. endstops.hit_on_purpose(); // clear endstop hit flags
  2393. // Probably not needed. Double-check this line:
  2394. memset(current_position, 0, sizeof(current_position));
  2395. // At least one carriage has reached the top.
  2396. // Now back off and re-home each carriage separately.
  2397. HOMEAXIS(A);
  2398. HOMEAXIS(B);
  2399. HOMEAXIS(C);
  2400. // Set all carriages to their home positions
  2401. // Do this here all at once for Delta, because
  2402. // XYZ isn't ABC. Applying this per-tower would
  2403. // give the impression that they are the same.
  2404. LOOP_XYZ(i) set_axis_is_at_home((AxisEnum)i);
  2405. SYNC_PLAN_POSITION_KINEMATIC();
  2406. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2407. if (DEBUGGING(LEVELING)) DEBUG_POS("(DELTA)", current_position);
  2408. #endif
  2409. }
  2410. #endif // DELTA
  2411. #if ENABLED(Z_SAFE_HOMING)
  2412. inline void home_z_safely() {
  2413. // Disallow Z homing if X or Y are unknown
  2414. if (!axis_known_position[X_AXIS] || !axis_known_position[Y_AXIS]) {
  2415. LCD_MESSAGEPGM(MSG_ERR_Z_HOMING);
  2416. SERIAL_ECHO_START;
  2417. SERIAL_ECHOLNPGM(MSG_ERR_Z_HOMING);
  2418. return;
  2419. }
  2420. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2421. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("Z_SAFE_HOMING >>>");
  2422. #endif
  2423. SYNC_PLAN_POSITION_KINEMATIC();
  2424. /**
  2425. * Move the Z probe (or just the nozzle) to the safe homing point
  2426. */
  2427. destination[X_AXIS] = LOGICAL_X_POSITION(Z_SAFE_HOMING_X_POINT);
  2428. destination[Y_AXIS] = LOGICAL_Y_POSITION(Z_SAFE_HOMING_Y_POINT);
  2429. destination[Z_AXIS] = current_position[Z_AXIS]; // Z is already at the right height
  2430. #if HAS_BED_PROBE
  2431. destination[X_AXIS] -= X_PROBE_OFFSET_FROM_EXTRUDER;
  2432. destination[Y_AXIS] -= Y_PROBE_OFFSET_FROM_EXTRUDER;
  2433. #endif
  2434. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2435. if (DEBUGGING(LEVELING)) DEBUG_POS("Z_SAFE_HOMING", destination);
  2436. #endif
  2437. if (position_is_reachable(destination)) {
  2438. do_blocking_move_to_xy(destination[X_AXIS], destination[Y_AXIS]);
  2439. HOMEAXIS(Z);
  2440. }
  2441. else {
  2442. LCD_MESSAGEPGM(MSG_ZPROBE_OUT);
  2443. SERIAL_ECHO_START;
  2444. SERIAL_ECHOLNPGM(MSG_ZPROBE_OUT);
  2445. }
  2446. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2447. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< Z_SAFE_HOMING");
  2448. #endif
  2449. }
  2450. #endif // Z_SAFE_HOMING
  2451. /**
  2452. * G28: Home all axes according to settings
  2453. *
  2454. * Parameters
  2455. *
  2456. * None Home to all axes with no parameters.
  2457. * With QUICK_HOME enabled XY will home together, then Z.
  2458. *
  2459. * Cartesian parameters
  2460. *
  2461. * X Home to the X endstop
  2462. * Y Home to the Y endstop
  2463. * Z Home to the Z endstop
  2464. *
  2465. */
  2466. inline void gcode_G28() {
  2467. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2468. if (DEBUGGING(LEVELING)) {
  2469. SERIAL_ECHOLNPGM(">>> gcode_G28");
  2470. log_machine_info();
  2471. }
  2472. #endif
  2473. // Wait for planner moves to finish!
  2474. stepper.synchronize();
  2475. // For auto bed leveling, clear the level matrix
  2476. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  2477. reset_bed_level();
  2478. #endif
  2479. // Always home with tool 0 active
  2480. #if HOTENDS > 1
  2481. uint8_t old_tool_index = active_extruder;
  2482. tool_change(0, 0, true);
  2483. #endif
  2484. #if ENABLED(DUAL_X_CARRIAGE) || ENABLED(DUAL_NOZZLE_DUPLICATION_MODE)
  2485. extruder_duplication_enabled = false;
  2486. #endif
  2487. /**
  2488. * For mesh bed leveling deactivate the mesh calculations, will be turned
  2489. * on again when homing all axis
  2490. */
  2491. #if ENABLED(MESH_BED_LEVELING)
  2492. float pre_home_z = MESH_HOME_SEARCH_Z;
  2493. if (mbl.active()) {
  2494. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2495. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("MBL was active");
  2496. #endif
  2497. // Save known Z position if already homed
  2498. if (axis_homed[X_AXIS] && axis_homed[Y_AXIS] && axis_homed[Z_AXIS]) {
  2499. pre_home_z = current_position[Z_AXIS];
  2500. pre_home_z += mbl.get_z(RAW_CURRENT_POSITION(X_AXIS), RAW_CURRENT_POSITION(Y_AXIS));
  2501. }
  2502. mbl.set_active(false);
  2503. current_position[Z_AXIS] = pre_home_z;
  2504. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2505. if (DEBUGGING(LEVELING)) DEBUG_POS("Set Z to pre_home_z", current_position);
  2506. #endif
  2507. }
  2508. #endif
  2509. setup_for_endstop_or_probe_move();
  2510. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2511. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> endstops.enable(true)");
  2512. #endif
  2513. endstops.enable(true); // Enable endstops for next homing move
  2514. #if ENABLED(DELTA)
  2515. home_delta();
  2516. #else // NOT DELTA
  2517. bool homeX = code_seen('X'), homeY = code_seen('Y'), homeZ = code_seen('Z');
  2518. home_all_axis = (!homeX && !homeY && !homeZ) || (homeX && homeY && homeZ);
  2519. set_destination_to_current();
  2520. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  2521. if (home_all_axis || homeZ) {
  2522. HOMEAXIS(Z);
  2523. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2524. if (DEBUGGING(LEVELING)) DEBUG_POS("> HOMEAXIS(Z)", current_position);
  2525. #endif
  2526. }
  2527. #else
  2528. if (home_all_axis || homeX || homeY) {
  2529. // Raise Z before homing any other axes and z is not already high enough (never lower z)
  2530. destination[Z_AXIS] = LOGICAL_Z_POSITION(Z_HOMING_HEIGHT);
  2531. if (destination[Z_AXIS] > current_position[Z_AXIS]) {
  2532. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2533. if (DEBUGGING(LEVELING))
  2534. SERIAL_ECHOLNPAIR("Raise Z (before homing) to ", destination[Z_AXIS]);
  2535. #endif
  2536. do_blocking_move_to_z(destination[Z_AXIS]);
  2537. }
  2538. }
  2539. #endif
  2540. #if ENABLED(QUICK_HOME)
  2541. if (home_all_axis || (homeX && homeY)) quick_home_xy();
  2542. #endif
  2543. #if ENABLED(HOME_Y_BEFORE_X)
  2544. // Home Y
  2545. if (home_all_axis || homeY) {
  2546. HOMEAXIS(Y);
  2547. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2548. if (DEBUGGING(LEVELING)) DEBUG_POS("> homeY", current_position);
  2549. #endif
  2550. }
  2551. #endif
  2552. // Home X
  2553. if (home_all_axis || homeX) {
  2554. #if ENABLED(DUAL_X_CARRIAGE)
  2555. int tmp_extruder = active_extruder;
  2556. active_extruder = !active_extruder;
  2557. HOMEAXIS(X);
  2558. inactive_extruder_x_pos = RAW_X_POSITION(current_position[X_AXIS]);
  2559. active_extruder = tmp_extruder;
  2560. HOMEAXIS(X);
  2561. // reset state used by the different modes
  2562. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  2563. delayed_move_time = 0;
  2564. active_extruder_parked = true;
  2565. #else
  2566. HOMEAXIS(X);
  2567. #endif
  2568. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2569. if (DEBUGGING(LEVELING)) DEBUG_POS("> homeX", current_position);
  2570. #endif
  2571. }
  2572. #if DISABLED(HOME_Y_BEFORE_X)
  2573. // Home Y
  2574. if (home_all_axis || homeY) {
  2575. HOMEAXIS(Y);
  2576. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2577. if (DEBUGGING(LEVELING)) DEBUG_POS("> homeY", current_position);
  2578. #endif
  2579. }
  2580. #endif
  2581. // Home Z last if homing towards the bed
  2582. #if Z_HOME_DIR < 0
  2583. if (home_all_axis || homeZ) {
  2584. #if ENABLED(Z_SAFE_HOMING)
  2585. home_z_safely();
  2586. #else
  2587. HOMEAXIS(Z);
  2588. #endif
  2589. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2590. if (DEBUGGING(LEVELING)) DEBUG_POS("> (home_all_axis || homeZ) > final", current_position);
  2591. #endif
  2592. } // home_all_axis || homeZ
  2593. #endif // Z_HOME_DIR < 0
  2594. SYNC_PLAN_POSITION_KINEMATIC();
  2595. #endif // !DELTA (gcode_G28)
  2596. endstops.not_homing();
  2597. // Enable mesh leveling again
  2598. #if ENABLED(MESH_BED_LEVELING)
  2599. if (mbl.has_mesh()) {
  2600. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2601. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("MBL has mesh");
  2602. #endif
  2603. if (home_all_axis || (axis_homed[X_AXIS] && axis_homed[Y_AXIS] && homeZ)) {
  2604. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2605. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("MBL Z homing");
  2606. #endif
  2607. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z
  2608. #if Z_HOME_DIR > 0
  2609. + Z_MAX_POS
  2610. #endif
  2611. ;
  2612. SYNC_PLAN_POSITION_KINEMATIC();
  2613. mbl.set_active(true);
  2614. #if ENABLED(MESH_G28_REST_ORIGIN)
  2615. current_position[Z_AXIS] = 0.0;
  2616. set_destination_to_current();
  2617. feedrate_mm_s = homing_feedrate_mm_s[Z_AXIS];
  2618. line_to_destination();
  2619. stepper.synchronize();
  2620. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2621. if (DEBUGGING(LEVELING)) DEBUG_POS("MBL Rest Origin", current_position);
  2622. #endif
  2623. #else
  2624. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z -
  2625. mbl.get_z(RAW_CURRENT_POSITION(X_AXIS), RAW_CURRENT_POSITION(Y_AXIS))
  2626. #if Z_HOME_DIR > 0
  2627. + Z_MAX_POS
  2628. #endif
  2629. ;
  2630. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2631. if (DEBUGGING(LEVELING)) DEBUG_POS("MBL adjusted MESH_HOME_SEARCH_Z", current_position);
  2632. #endif
  2633. #endif
  2634. }
  2635. else if ((axis_homed[X_AXIS] && axis_homed[Y_AXIS] && axis_homed[Z_AXIS]) && (homeX || homeY)) {
  2636. current_position[Z_AXIS] = pre_home_z;
  2637. SYNC_PLAN_POSITION_KINEMATIC();
  2638. mbl.set_active(true);
  2639. current_position[Z_AXIS] = pre_home_z -
  2640. mbl.get_z(RAW_CURRENT_POSITION(X_AXIS), RAW_CURRENT_POSITION(Y_AXIS));
  2641. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2642. if (DEBUGGING(LEVELING)) DEBUG_POS("MBL Home X or Y", current_position);
  2643. #endif
  2644. }
  2645. }
  2646. #endif
  2647. #if ENABLED(DELTA)
  2648. // move to a height where we can use the full xy-area
  2649. do_blocking_move_to_z(delta_clip_start_height);
  2650. #endif
  2651. clean_up_after_endstop_or_probe_move();
  2652. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2653. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< gcode_G28");
  2654. #endif
  2655. // Restore the active tool after homing
  2656. #if HOTENDS > 1
  2657. tool_change(old_tool_index, 0, true);
  2658. #endif
  2659. report_current_position();
  2660. }
  2661. #if HAS_PROBING_PROCEDURE
  2662. void out_of_range_error(const char* p_edge) {
  2663. SERIAL_PROTOCOLPGM("?Probe ");
  2664. serialprintPGM(p_edge);
  2665. SERIAL_PROTOCOLLNPGM(" position out of range.");
  2666. }
  2667. #endif
  2668. #if ENABLED(MESH_BED_LEVELING)
  2669. inline void _mbl_goto_xy(float x, float y) {
  2670. float old_feedrate_mm_s = feedrate_mm_s;
  2671. feedrate_mm_s = homing_feedrate_mm_s[X_AXIS];
  2672. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z
  2673. #if Z_PROBE_TRAVEL_HEIGHT > Z_HOMING_HEIGHT
  2674. + Z_PROBE_TRAVEL_HEIGHT
  2675. #elif Z_HOMING_HEIGHT > 0
  2676. + Z_HOMING_HEIGHT
  2677. #endif
  2678. ;
  2679. line_to_current_position();
  2680. current_position[X_AXIS] = LOGICAL_X_POSITION(x);
  2681. current_position[Y_AXIS] = LOGICAL_Y_POSITION(y);
  2682. line_to_current_position();
  2683. #if Z_PROBE_TRAVEL_HEIGHT > 0 || Z_HOMING_HEIGHT > 0
  2684. current_position[Z_AXIS] = LOGICAL_Z_POSITION(MESH_HOME_SEARCH_Z);
  2685. line_to_current_position();
  2686. #endif
  2687. feedrate_mm_s = old_feedrate_mm_s;
  2688. stepper.synchronize();
  2689. }
  2690. /**
  2691. * G29: Mesh-based Z probe, probes a grid and produces a
  2692. * mesh to compensate for variable bed height
  2693. *
  2694. * Parameters With MESH_BED_LEVELING:
  2695. *
  2696. * S0 Produce a mesh report
  2697. * S1 Start probing mesh points
  2698. * S2 Probe the next mesh point
  2699. * S3 Xn Yn Zn.nn Manually modify a single point
  2700. * S4 Zn.nn Set z offset. Positive away from bed, negative closer to bed.
  2701. * S5 Reset and disable mesh
  2702. *
  2703. * The S0 report the points as below
  2704. *
  2705. * +----> X-axis 1-n
  2706. * |
  2707. * |
  2708. * v Y-axis 1-n
  2709. *
  2710. */
  2711. inline void gcode_G29() {
  2712. static int probe_point = -1;
  2713. MeshLevelingState state = code_seen('S') ? (MeshLevelingState)code_value_byte() : MeshReport;
  2714. if (state < 0 || state > 5) {
  2715. SERIAL_PROTOCOLLNPGM("S out of range (0-5).");
  2716. return;
  2717. }
  2718. int8_t px, py;
  2719. switch (state) {
  2720. case MeshReport:
  2721. if (mbl.has_mesh()) {
  2722. SERIAL_PROTOCOLPAIR("State: ", mbl.active() ? MSG_ON : MSG_OFF);
  2723. SERIAL_PROTOCOLLNPGM("\nNum X,Y: " STRINGIFY(MESH_NUM_X_POINTS) "," STRINGIFY(MESH_NUM_Y_POINTS));
  2724. SERIAL_PROTOCOLLNPGM("Z search height: " STRINGIFY(MESH_HOME_SEARCH_Z));
  2725. SERIAL_PROTOCOLPGM("Z offset: "); SERIAL_PROTOCOL_F(mbl.z_offset, 5);
  2726. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  2727. for (py = 0; py < MESH_NUM_Y_POINTS; py++) {
  2728. for (px = 0; px < MESH_NUM_X_POINTS; px++) {
  2729. SERIAL_PROTOCOLPGM(" ");
  2730. SERIAL_PROTOCOL_F(mbl.z_values[py][px], 5);
  2731. }
  2732. SERIAL_EOL;
  2733. }
  2734. }
  2735. else
  2736. SERIAL_PROTOCOLLNPGM("Mesh bed leveling not active.");
  2737. break;
  2738. case MeshStart:
  2739. mbl.reset();
  2740. probe_point = 0;
  2741. enqueue_and_echo_commands_P(PSTR("G28\nG29 S2"));
  2742. break;
  2743. case MeshNext:
  2744. if (probe_point < 0) {
  2745. SERIAL_PROTOCOLLNPGM("Start mesh probing with \"G29 S1\" first.");
  2746. return;
  2747. }
  2748. // For each G29 S2...
  2749. if (probe_point == 0) {
  2750. // For the initial G29 S2 make Z a positive value (e.g., 4.0)
  2751. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z
  2752. #if Z_HOME_DIR > 0
  2753. + Z_MAX_POS
  2754. #endif
  2755. ;
  2756. SYNC_PLAN_POSITION_KINEMATIC();
  2757. }
  2758. else {
  2759. // For G29 S2 after adjusting Z.
  2760. mbl.set_zigzag_z(probe_point - 1, current_position[Z_AXIS]);
  2761. }
  2762. // If there's another point to sample, move there with optional lift.
  2763. if (probe_point < (MESH_NUM_X_POINTS) * (MESH_NUM_Y_POINTS)) {
  2764. mbl.zigzag(probe_point, px, py);
  2765. _mbl_goto_xy(mbl.get_probe_x(px), mbl.get_probe_y(py));
  2766. probe_point++;
  2767. }
  2768. else {
  2769. // One last "return to the bed" (as originally coded) at completion
  2770. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z
  2771. #if Z_PROBE_TRAVEL_HEIGHT > Z_HOMING_HEIGHT
  2772. + Z_PROBE_TRAVEL_HEIGHT
  2773. #elif Z_HOMING_HEIGHT > 0
  2774. + Z_HOMING_HEIGHT
  2775. #endif
  2776. ;
  2777. line_to_current_position();
  2778. stepper.synchronize();
  2779. // After recording the last point, activate the mbl and home
  2780. SERIAL_PROTOCOLLNPGM("Mesh probing done.");
  2781. probe_point = -1;
  2782. mbl.set_has_mesh(true);
  2783. enqueue_and_echo_commands_P(PSTR("G28"));
  2784. }
  2785. break;
  2786. case MeshSet:
  2787. if (code_seen('X')) {
  2788. px = code_value_int() - 1;
  2789. if (px < 0 || px >= MESH_NUM_X_POINTS) {
  2790. SERIAL_PROTOCOLLNPGM("X out of range (1-" STRINGIFY(MESH_NUM_X_POINTS) ").");
  2791. return;
  2792. }
  2793. }
  2794. else {
  2795. SERIAL_PROTOCOLLNPGM("X not entered.");
  2796. return;
  2797. }
  2798. if (code_seen('Y')) {
  2799. py = code_value_int() - 1;
  2800. if (py < 0 || py >= MESH_NUM_Y_POINTS) {
  2801. SERIAL_PROTOCOLLNPGM("Y out of range (1-" STRINGIFY(MESH_NUM_Y_POINTS) ").");
  2802. return;
  2803. }
  2804. }
  2805. else {
  2806. SERIAL_PROTOCOLLNPGM("Y not entered.");
  2807. return;
  2808. }
  2809. if (code_seen('Z')) {
  2810. mbl.z_values[py][px] = code_value_axis_units(Z_AXIS);
  2811. }
  2812. else {
  2813. SERIAL_PROTOCOLLNPGM("Z not entered.");
  2814. return;
  2815. }
  2816. break;
  2817. case MeshSetZOffset:
  2818. if (code_seen('Z')) {
  2819. mbl.z_offset = code_value_axis_units(Z_AXIS);
  2820. }
  2821. else {
  2822. SERIAL_PROTOCOLLNPGM("Z not entered.");
  2823. return;
  2824. }
  2825. break;
  2826. case MeshReset:
  2827. if (mbl.active()) {
  2828. current_position[Z_AXIS] +=
  2829. mbl.get_z(RAW_CURRENT_POSITION(X_AXIS), RAW_CURRENT_POSITION(Y_AXIS)) - MESH_HOME_SEARCH_Z;
  2830. mbl.reset();
  2831. SYNC_PLAN_POSITION_KINEMATIC();
  2832. }
  2833. else
  2834. mbl.reset();
  2835. } // switch(state)
  2836. report_current_position();
  2837. }
  2838. #elif ENABLED(AUTO_BED_LEVELING_FEATURE)
  2839. /**
  2840. * G29: Detailed Z probe, probes the bed at 3 or more points.
  2841. * Will fail if the printer has not been homed with G28.
  2842. *
  2843. * Enhanced G29 Auto Bed Leveling Probe Routine
  2844. *
  2845. * Parameters With AUTO_BED_LEVELING_GRID:
  2846. *
  2847. * P Set the size of the grid that will be probed (P x P points).
  2848. * Not supported by non-linear delta printer bed leveling.
  2849. * Example: "G29 P4"
  2850. *
  2851. * S Set the XY travel speed between probe points (in units/min)
  2852. *
  2853. * D Dry-Run mode. Just evaluate the bed Topology - Don't apply
  2854. * or clean the rotation Matrix. Useful to check the topology
  2855. * after a first run of G29.
  2856. *
  2857. * V Set the verbose level (0-4). Example: "G29 V3"
  2858. *
  2859. * T Generate a Bed Topology Report. Example: "G29 P5 T" for a detailed report.
  2860. * This is useful for manual bed leveling and finding flaws in the bed (to
  2861. * assist with part placement).
  2862. * Not supported by non-linear delta printer bed leveling.
  2863. *
  2864. * F Set the Front limit of the probing grid
  2865. * B Set the Back limit of the probing grid
  2866. * L Set the Left limit of the probing grid
  2867. * R Set the Right limit of the probing grid
  2868. *
  2869. * Global Parameters:
  2870. *
  2871. * E/e By default G29 will engage the Z probe, test the bed, then disengage.
  2872. * Include "E" to engage/disengage the Z probe for each sample.
  2873. * There's no extra effect if you have a fixed Z probe.
  2874. * Usage: "G29 E" or "G29 e"
  2875. *
  2876. */
  2877. inline void gcode_G29() {
  2878. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2879. if (DEBUGGING(LEVELING)) {
  2880. SERIAL_ECHOLNPGM(">>> gcode_G29");
  2881. DEBUG_POS("", current_position);
  2882. log_machine_info();
  2883. }
  2884. #endif
  2885. // Don't allow auto-leveling without homing first
  2886. if (axis_unhomed_error(true, true, true)) return;
  2887. int verbose_level = code_seen('V') ? code_value_int() : 1;
  2888. if (verbose_level < 0 || verbose_level > 4) {
  2889. SERIAL_PROTOCOLLNPGM("?(V)erbose Level is implausible (0-4).");
  2890. return;
  2891. }
  2892. bool dryrun = code_seen('D'),
  2893. stow_probe_after_each = code_seen('E');
  2894. #if ENABLED(AUTO_BED_LEVELING_GRID)
  2895. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  2896. bool do_topography_map = verbose_level > 2 || code_seen('T');
  2897. #endif
  2898. if (verbose_level > 0) {
  2899. SERIAL_PROTOCOLLNPGM("G29 Auto Bed Leveling");
  2900. if (dryrun) SERIAL_PROTOCOLLNPGM("Running in DRY-RUN mode");
  2901. }
  2902. int abl_grid_points_x = ABL_GRID_POINTS_X,
  2903. abl_grid_points_y = ABL_GRID_POINTS_Y;
  2904. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  2905. if (code_seen('P')) abl_grid_points_x = abl_grid_points_y = code_value_int();
  2906. if (abl_grid_points_x < 2) {
  2907. SERIAL_PROTOCOLLNPGM("?Number of probed (P)oints is implausible (2 minimum).");
  2908. return;
  2909. }
  2910. #endif
  2911. xy_probe_feedrate_mm_s = MMM_TO_MMS(code_seen('S') ? code_value_linear_units() : XY_PROBE_SPEED);
  2912. int left_probe_bed_position = code_seen('L') ? (int)code_value_axis_units(X_AXIS) : LOGICAL_X_POSITION(LEFT_PROBE_BED_POSITION),
  2913. right_probe_bed_position = code_seen('R') ? (int)code_value_axis_units(X_AXIS) : LOGICAL_X_POSITION(RIGHT_PROBE_BED_POSITION),
  2914. front_probe_bed_position = code_seen('F') ? (int)code_value_axis_units(Y_AXIS) : LOGICAL_Y_POSITION(FRONT_PROBE_BED_POSITION),
  2915. back_probe_bed_position = code_seen('B') ? (int)code_value_axis_units(Y_AXIS) : LOGICAL_Y_POSITION(BACK_PROBE_BED_POSITION);
  2916. bool left_out_l = left_probe_bed_position < LOGICAL_X_POSITION(MIN_PROBE_X),
  2917. left_out = left_out_l || left_probe_bed_position > right_probe_bed_position - (MIN_PROBE_EDGE),
  2918. right_out_r = right_probe_bed_position > LOGICAL_X_POSITION(MAX_PROBE_X),
  2919. right_out = right_out_r || right_probe_bed_position < left_probe_bed_position + MIN_PROBE_EDGE,
  2920. front_out_f = front_probe_bed_position < LOGICAL_Y_POSITION(MIN_PROBE_Y),
  2921. front_out = front_out_f || front_probe_bed_position > back_probe_bed_position - (MIN_PROBE_EDGE),
  2922. back_out_b = back_probe_bed_position > LOGICAL_Y_POSITION(MAX_PROBE_Y),
  2923. back_out = back_out_b || back_probe_bed_position < front_probe_bed_position + MIN_PROBE_EDGE;
  2924. if (left_out || right_out || front_out || back_out) {
  2925. if (left_out) {
  2926. out_of_range_error(PSTR("(L)eft"));
  2927. left_probe_bed_position = left_out_l ? LOGICAL_X_POSITION(MIN_PROBE_X) : right_probe_bed_position - (MIN_PROBE_EDGE);
  2928. }
  2929. if (right_out) {
  2930. out_of_range_error(PSTR("(R)ight"));
  2931. right_probe_bed_position = right_out_r ? LOGICAL_Y_POSITION(MAX_PROBE_X) : left_probe_bed_position + MIN_PROBE_EDGE;
  2932. }
  2933. if (front_out) {
  2934. out_of_range_error(PSTR("(F)ront"));
  2935. front_probe_bed_position = front_out_f ? LOGICAL_Y_POSITION(MIN_PROBE_Y) : back_probe_bed_position - (MIN_PROBE_EDGE);
  2936. }
  2937. if (back_out) {
  2938. out_of_range_error(PSTR("(B)ack"));
  2939. back_probe_bed_position = back_out_b ? LOGICAL_Y_POSITION(MAX_PROBE_Y) : front_probe_bed_position + MIN_PROBE_EDGE;
  2940. }
  2941. return;
  2942. }
  2943. #endif // AUTO_BED_LEVELING_GRID
  2944. stepper.synchronize();
  2945. if (!dryrun) {
  2946. // Reset the bed_level_matrix because leveling
  2947. // needs to be done without leveling enabled.
  2948. reset_bed_level();
  2949. //
  2950. // Re-orient the current position without leveling
  2951. // based on where the steppers are positioned.
  2952. //
  2953. get_cartesian_from_steppers();
  2954. memcpy(current_position, cartes, sizeof(cartes));
  2955. // Inform the planner about the new coordinates
  2956. SYNC_PLAN_POSITION_KINEMATIC();
  2957. }
  2958. setup_for_endstop_or_probe_move();
  2959. // Deploy the probe. Probe will raise if needed.
  2960. if (DEPLOY_PROBE()) return;
  2961. float xProbe, yProbe, measured_z = 0;
  2962. #if ENABLED(AUTO_BED_LEVELING_GRID)
  2963. // probe at the points of a lattice grid
  2964. const float xGridSpacing = (right_probe_bed_position - left_probe_bed_position) / (abl_grid_points_x - 1),
  2965. yGridSpacing = (back_probe_bed_position - front_probe_bed_position) / (abl_grid_points_y - 1);
  2966. #if ENABLED(AUTO_BED_LEVELING_NONLINEAR)
  2967. nonlinear_grid_spacing[X_AXIS] = xGridSpacing;
  2968. nonlinear_grid_spacing[Y_AXIS] = yGridSpacing;
  2969. float zoffset = zprobe_zoffset;
  2970. if (code_seen('Z')) zoffset += code_value_axis_units(Z_AXIS);
  2971. #elif ENABLED(AUTO_BED_LEVELING_LINEAR_GRID)
  2972. /**
  2973. * solve the plane equation ax + by + d = z
  2974. * A is the matrix with rows [x y 1] for all the probed points
  2975. * B is the vector of the Z positions
  2976. * the normal vector to the plane is formed by the coefficients of the
  2977. * plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  2978. * so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  2979. */
  2980. int abl2 = abl_grid_points_x * abl_grid_points_y;
  2981. double eqnAMatrix[abl2 * 3], // "A" matrix of the linear system of equations
  2982. eqnBVector[abl2], // "B" vector of Z points
  2983. mean = 0.0;
  2984. int indexIntoAB[abl_grid_points_x][abl_grid_points_y];
  2985. #endif // AUTO_BED_LEVELING_LINEAR_GRID
  2986. int probePointCounter = 0;
  2987. bool zig = abl_grid_points_y & 1; //always end at [RIGHT_PROBE_BED_POSITION, BACK_PROBE_BED_POSITION]
  2988. for (uint8_t yCount = 0; yCount < abl_grid_points_y; yCount++) {
  2989. float yBase = front_probe_bed_position + yGridSpacing * yCount;
  2990. yProbe = floor(yBase + (yBase < 0 ? 0 : 0.5));
  2991. int8_t xStart, xStop, xInc;
  2992. if (zig) {
  2993. xStart = 0;
  2994. xStop = abl_grid_points_x;
  2995. xInc = 1;
  2996. }
  2997. else {
  2998. xStart = abl_grid_points_x - 1;
  2999. xStop = -1;
  3000. xInc = -1;
  3001. }
  3002. zig = !zig;
  3003. for (int8_t xCount = xStart; xCount != xStop; xCount += xInc) {
  3004. float xBase = left_probe_bed_position + xGridSpacing * xCount;
  3005. xProbe = floor(xBase + (xBase < 0 ? 0 : 0.5));
  3006. #if ENABLED(DELTA)
  3007. // Avoid probing outside the round or hexagonal area of a delta printer
  3008. float pos[XYZ] = { xProbe + X_PROBE_OFFSET_FROM_EXTRUDER, yProbe + Y_PROBE_OFFSET_FROM_EXTRUDER, 0 };
  3009. if (!position_is_reachable(pos)) continue;
  3010. #endif
  3011. measured_z = probe_pt(xProbe, yProbe, stow_probe_after_each, verbose_level);
  3012. #if ENABLED(AUTO_BED_LEVELING_LINEAR_GRID)
  3013. mean += measured_z;
  3014. eqnBVector[probePointCounter] = measured_z;
  3015. eqnAMatrix[probePointCounter + 0 * abl2] = xProbe;
  3016. eqnAMatrix[probePointCounter + 1 * abl2] = yProbe;
  3017. eqnAMatrix[probePointCounter + 2 * abl2] = 1;
  3018. indexIntoAB[xCount][yCount] = probePointCounter;
  3019. #elif ENABLED(AUTO_BED_LEVELING_NONLINEAR)
  3020. bed_level_grid[xCount][yCount] = measured_z + zoffset;
  3021. #endif
  3022. probePointCounter++;
  3023. idle();
  3024. } //xProbe
  3025. } //yProbe
  3026. #elif ENABLED(AUTO_BED_LEVELING_3POINT)
  3027. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3028. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> 3-point Leveling");
  3029. #endif
  3030. // Probe at 3 arbitrary points
  3031. vector_3 points[3] = {
  3032. vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, 0),
  3033. vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, 0),
  3034. vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, 0)
  3035. };
  3036. for (uint8_t i = 0; i < 3; ++i) {
  3037. // Retain the last probe position
  3038. xProbe = LOGICAL_X_POSITION(points[i].x);
  3039. yProbe = LOGICAL_Y_POSITION(points[i].y);
  3040. measured_z = points[i].z = probe_pt(xProbe, yProbe, stow_probe_after_each, verbose_level);
  3041. }
  3042. if (!dryrun) {
  3043. vector_3 planeNormal = vector_3::cross(points[0] - points[1], points[2] - points[1]).get_normal();
  3044. if (planeNormal.z < 0) {
  3045. planeNormal.x *= -1;
  3046. planeNormal.y *= -1;
  3047. planeNormal.z *= -1;
  3048. }
  3049. planner.bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  3050. }
  3051. #endif // AUTO_BED_LEVELING_3POINT
  3052. // Raise to _Z_PROBE_DEPLOY_HEIGHT. Stow the probe.
  3053. if (STOW_PROBE()) return;
  3054. // Restore state after probing
  3055. clean_up_after_endstop_or_probe_move();
  3056. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3057. if (DEBUGGING(LEVELING)) DEBUG_POS("> probing complete", current_position);
  3058. #endif
  3059. // Calculate leveling, print reports, correct the position
  3060. #if ENABLED(AUTO_BED_LEVELING_NONLINEAR)
  3061. if (!dryrun) extrapolate_unprobed_bed_level();
  3062. print_bed_level();
  3063. #elif ENABLED(AUTO_BED_LEVELING_LINEAR_GRID)
  3064. // For LINEAR leveling calculate matrix, print reports, correct the position
  3065. // solve lsq problem
  3066. double plane_equation_coefficients[3];
  3067. qr_solve(plane_equation_coefficients, abl2, 3, eqnAMatrix, eqnBVector);
  3068. mean /= abl2;
  3069. if (verbose_level) {
  3070. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  3071. SERIAL_PROTOCOL_F(plane_equation_coefficients[0], 8);
  3072. SERIAL_PROTOCOLPGM(" b: ");
  3073. SERIAL_PROTOCOL_F(plane_equation_coefficients[1], 8);
  3074. SERIAL_PROTOCOLPGM(" d: ");
  3075. SERIAL_PROTOCOL_F(plane_equation_coefficients[2], 8);
  3076. SERIAL_EOL;
  3077. if (verbose_level > 2) {
  3078. SERIAL_PROTOCOLPGM("Mean of sampled points: ");
  3079. SERIAL_PROTOCOL_F(mean, 8);
  3080. SERIAL_EOL;
  3081. }
  3082. }
  3083. // Create the matrix but don't correct the position yet
  3084. if (!dryrun) {
  3085. planner.bed_level_matrix = matrix_3x3::create_look_at(
  3086. vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1)
  3087. );
  3088. }
  3089. // Show the Topography map if enabled
  3090. if (do_topography_map) {
  3091. SERIAL_PROTOCOLLNPGM("\nBed Height Topography:\n"
  3092. " +--- BACK --+\n"
  3093. " | |\n"
  3094. " L | (+) | R\n"
  3095. " E | | I\n"
  3096. " F | (-) N (+) | G\n"
  3097. " T | | H\n"
  3098. " | (-) | T\n"
  3099. " | |\n"
  3100. " O-- FRONT --+\n"
  3101. " (0,0)");
  3102. float min_diff = 999;
  3103. for (int8_t yy = abl_grid_points_y - 1; yy >= 0; yy--) {
  3104. for (uint8_t xx = 0; xx < abl_grid_points_x; xx++) {
  3105. int ind = indexIntoAB[xx][yy];
  3106. float diff = eqnBVector[ind] - mean,
  3107. x_tmp = eqnAMatrix[ind + 0 * abl2],
  3108. y_tmp = eqnAMatrix[ind + 1 * abl2],
  3109. z_tmp = 0;
  3110. apply_rotation_xyz(planner.bed_level_matrix, x_tmp, y_tmp, z_tmp);
  3111. NOMORE(min_diff, eqnBVector[ind] - z_tmp);
  3112. if (diff >= 0.0)
  3113. SERIAL_PROTOCOLPGM(" +"); // Include + for column alignment
  3114. else
  3115. SERIAL_PROTOCOLCHAR(' ');
  3116. SERIAL_PROTOCOL_F(diff, 5);
  3117. } // xx
  3118. SERIAL_EOL;
  3119. } // yy
  3120. SERIAL_EOL;
  3121. if (verbose_level > 3) {
  3122. SERIAL_PROTOCOLLNPGM("\nCorrected Bed Height vs. Bed Topology:");
  3123. for (int8_t yy = abl_grid_points_y - 1; yy >= 0; yy--) {
  3124. for (uint8_t xx = 0; xx < abl_grid_points_x; xx++) {
  3125. int ind = indexIntoAB[xx][yy];
  3126. float x_tmp = eqnAMatrix[ind + 0 * abl2],
  3127. y_tmp = eqnAMatrix[ind + 1 * abl2],
  3128. z_tmp = 0;
  3129. apply_rotation_xyz(planner.bed_level_matrix, x_tmp, y_tmp, z_tmp);
  3130. float diff = eqnBVector[ind] - z_tmp - min_diff;
  3131. if (diff >= 0.0)
  3132. SERIAL_PROTOCOLPGM(" +");
  3133. // Include + for column alignment
  3134. else
  3135. SERIAL_PROTOCOLCHAR(' ');
  3136. SERIAL_PROTOCOL_F(diff, 5);
  3137. } // xx
  3138. SERIAL_EOL;
  3139. } // yy
  3140. SERIAL_EOL;
  3141. }
  3142. } //do_topography_map
  3143. #endif // AUTO_BED_LEVELING_LINEAR_GRID
  3144. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  3145. // For LINEAR and 3POINT leveling correct the current position
  3146. if (verbose_level > 0)
  3147. planner.bed_level_matrix.debug("\n\nBed Level Correction Matrix:");
  3148. if (!dryrun) {
  3149. //
  3150. // Correct the current XYZ position based on the tilted plane.
  3151. //
  3152. // 1. Get the distance from the current position to the reference point.
  3153. float x_dist = RAW_CURRENT_POSITION(X_AXIS) - X_TILT_FULCRUM,
  3154. y_dist = RAW_CURRENT_POSITION(Y_AXIS) - Y_TILT_FULCRUM,
  3155. z_real = RAW_CURRENT_POSITION(Z_AXIS),
  3156. z_zero = 0;
  3157. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3158. if (DEBUGGING(LEVELING)) DEBUG_POS("G29 uncorrected XYZ", current_position);
  3159. #endif
  3160. matrix_3x3 inverse = matrix_3x3::transpose(planner.bed_level_matrix);
  3161. // 2. Apply the inverse matrix to the distance
  3162. // from the reference point to X, Y, and zero.
  3163. apply_rotation_xyz(inverse, x_dist, y_dist, z_zero);
  3164. // 3. Get the matrix-based corrected Z.
  3165. // (Even if not used, get it for comparison.)
  3166. float new_z = z_real + z_zero;
  3167. // 4. Use the last measured distance to the bed, if possible
  3168. if ( NEAR(current_position[X_AXIS], xProbe - (X_PROBE_OFFSET_FROM_EXTRUDER))
  3169. && NEAR(current_position[Y_AXIS], yProbe - (Y_PROBE_OFFSET_FROM_EXTRUDER))
  3170. ) {
  3171. float simple_z = z_real - (measured_z - (-zprobe_zoffset));
  3172. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3173. if (DEBUGGING(LEVELING)) {
  3174. SERIAL_ECHOPAIR("Z from Probe:", simple_z);
  3175. SERIAL_ECHOPAIR(" Matrix:", new_z);
  3176. SERIAL_ECHOLNPAIR(" Discrepancy:", simple_z - new_z);
  3177. }
  3178. #endif
  3179. new_z = simple_z;
  3180. }
  3181. // 5. The rotated XY and corrected Z are now current_position
  3182. current_position[X_AXIS] = LOGICAL_X_POSITION(x_dist) + X_TILT_FULCRUM;
  3183. current_position[Y_AXIS] = LOGICAL_Y_POSITION(y_dist) + Y_TILT_FULCRUM;
  3184. current_position[Z_AXIS] = LOGICAL_Z_POSITION(new_z);
  3185. SYNC_PLAN_POSITION_KINEMATIC();
  3186. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3187. if (DEBUGGING(LEVELING)) DEBUG_POS("G29 corrected XYZ", current_position);
  3188. #endif
  3189. }
  3190. #endif // AUTO_BED_LEVELING_LINEAR
  3191. #ifdef Z_PROBE_END_SCRIPT
  3192. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3193. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPAIR("Z Probe End Script: ", Z_PROBE_END_SCRIPT);
  3194. #endif
  3195. enqueue_and_echo_commands_P(PSTR(Z_PROBE_END_SCRIPT));
  3196. stepper.synchronize();
  3197. #endif
  3198. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3199. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< gcode_G29");
  3200. #endif
  3201. report_current_position();
  3202. KEEPALIVE_STATE(IN_HANDLER);
  3203. }
  3204. #endif // AUTO_BED_LEVELING_FEATURE
  3205. #if HAS_BED_PROBE
  3206. /**
  3207. * G30: Do a single Z probe at the current XY
  3208. */
  3209. inline void gcode_G30() {
  3210. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  3211. reset_bed_level();
  3212. #endif
  3213. setup_for_endstop_or_probe_move();
  3214. // TODO: clear the leveling matrix or the planner will be set incorrectly
  3215. float measured_z = probe_pt(current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER,
  3216. current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER,
  3217. true, 1);
  3218. SERIAL_PROTOCOLPGM("Bed X: ");
  3219. SERIAL_PROTOCOL(current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER + 0.0001);
  3220. SERIAL_PROTOCOLPGM(" Y: ");
  3221. SERIAL_PROTOCOL(current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER + 0.0001);
  3222. SERIAL_PROTOCOLPGM(" Z: ");
  3223. SERIAL_PROTOCOL(measured_z + 0.0001);
  3224. SERIAL_EOL;
  3225. clean_up_after_endstop_or_probe_move();
  3226. report_current_position();
  3227. }
  3228. #if ENABLED(Z_PROBE_SLED)
  3229. /**
  3230. * G31: Deploy the Z probe
  3231. */
  3232. inline void gcode_G31() { DEPLOY_PROBE(); }
  3233. /**
  3234. * G32: Stow the Z probe
  3235. */
  3236. inline void gcode_G32() { STOW_PROBE(); }
  3237. #endif // Z_PROBE_SLED
  3238. #endif // HAS_BED_PROBE
  3239. /**
  3240. * G92: Set current position to given X Y Z E
  3241. */
  3242. inline void gcode_G92() {
  3243. bool didXYZ = false,
  3244. didE = code_seen('E');
  3245. if (!didE) stepper.synchronize();
  3246. LOOP_XYZE(i) {
  3247. if (code_seen(axis_codes[i])) {
  3248. #if IS_SCARA
  3249. current_position[i] = code_value_axis_units(i);
  3250. if (i != E_AXIS) didXYZ = true;
  3251. #else
  3252. float p = current_position[i],
  3253. v = code_value_axis_units(i);
  3254. current_position[i] = v;
  3255. if (i != E_AXIS) {
  3256. didXYZ = true;
  3257. position_shift[i] += v - p; // Offset the coordinate space
  3258. update_software_endstops((AxisEnum)i);
  3259. }
  3260. #endif
  3261. }
  3262. }
  3263. if (didXYZ)
  3264. SYNC_PLAN_POSITION_KINEMATIC();
  3265. else if (didE)
  3266. sync_plan_position_e();
  3267. }
  3268. #if ENABLED(ULTIPANEL) || ENABLED(EMERGENCY_PARSER)
  3269. /**
  3270. * M0: Unconditional stop - Wait for user button press on LCD
  3271. * M1: Conditional stop - Wait for user button press on LCD
  3272. */
  3273. inline void gcode_M0_M1() {
  3274. char* args = current_command_args;
  3275. millis_t codenum = 0;
  3276. bool hasP = false, hasS = false;
  3277. if (code_seen('P')) {
  3278. codenum = code_value_millis(); // milliseconds to wait
  3279. hasP = codenum > 0;
  3280. }
  3281. if (code_seen('S')) {
  3282. codenum = code_value_millis_from_seconds(); // seconds to wait
  3283. hasS = codenum > 0;
  3284. }
  3285. #if ENABLED(ULTIPANEL)
  3286. if (!hasP && !hasS && *args != '\0')
  3287. lcd_setstatus(args, true);
  3288. else {
  3289. LCD_MESSAGEPGM(MSG_USERWAIT);
  3290. #if ENABLED(LCD_PROGRESS_BAR) && PROGRESS_MSG_EXPIRE > 0
  3291. dontExpireStatus();
  3292. #endif
  3293. }
  3294. lcd_ignore_click();
  3295. #else
  3296. if (!hasP && !hasS && *args != '\0') {
  3297. SERIAL_ECHO_START;
  3298. SERIAL_ECHOLN(args);
  3299. }
  3300. #endif
  3301. stepper.synchronize();
  3302. refresh_cmd_timeout();
  3303. #if ENABLED(ULTIPANEL)
  3304. if (codenum > 0) {
  3305. codenum += previous_cmd_ms; // wait until this time for a click
  3306. KEEPALIVE_STATE(PAUSED_FOR_USER);
  3307. while (PENDING(millis(), codenum) && !lcd_clicked()) idle();
  3308. lcd_ignore_click(false);
  3309. }
  3310. else if (lcd_detected()) {
  3311. KEEPALIVE_STATE(PAUSED_FOR_USER);
  3312. while (!lcd_clicked()) idle();
  3313. }
  3314. else return;
  3315. if (IS_SD_PRINTING)
  3316. LCD_MESSAGEPGM(MSG_RESUMING);
  3317. else
  3318. LCD_MESSAGEPGM(WELCOME_MSG);
  3319. #else
  3320. KEEPALIVE_STATE(PAUSED_FOR_USER);
  3321. wait_for_user = true;
  3322. if (codenum > 0) {
  3323. codenum += previous_cmd_ms; // wait until this time for an M108
  3324. while (PENDING(millis(), codenum) && wait_for_user) idle();
  3325. }
  3326. else while (wait_for_user) idle();
  3327. wait_for_user = false;
  3328. #endif
  3329. KEEPALIVE_STATE(IN_HANDLER);
  3330. }
  3331. #endif // ULTIPANEL || EMERGENCY_PARSER
  3332. /**
  3333. * M17: Enable power on all stepper motors
  3334. */
  3335. inline void gcode_M17() {
  3336. LCD_MESSAGEPGM(MSG_NO_MOVE);
  3337. enable_all_steppers();
  3338. }
  3339. #if ENABLED(SDSUPPORT)
  3340. /**
  3341. * M20: List SD card to serial output
  3342. */
  3343. inline void gcode_M20() {
  3344. SERIAL_PROTOCOLLNPGM(MSG_BEGIN_FILE_LIST);
  3345. card.ls();
  3346. SERIAL_PROTOCOLLNPGM(MSG_END_FILE_LIST);
  3347. }
  3348. /**
  3349. * M21: Init SD Card
  3350. */
  3351. inline void gcode_M21() { card.initsd(); }
  3352. /**
  3353. * M22: Release SD Card
  3354. */
  3355. inline void gcode_M22() { card.release(); }
  3356. /**
  3357. * M23: Open a file
  3358. */
  3359. inline void gcode_M23() { card.openFile(current_command_args, true); }
  3360. /**
  3361. * M24: Start SD Print
  3362. */
  3363. inline void gcode_M24() {
  3364. card.startFileprint();
  3365. print_job_timer.start();
  3366. }
  3367. /**
  3368. * M25: Pause SD Print
  3369. */
  3370. inline void gcode_M25() { card.pauseSDPrint(); }
  3371. /**
  3372. * M26: Set SD Card file index
  3373. */
  3374. inline void gcode_M26() {
  3375. if (card.cardOK && code_seen('S'))
  3376. card.setIndex(code_value_long());
  3377. }
  3378. /**
  3379. * M27: Get SD Card status
  3380. */
  3381. inline void gcode_M27() { card.getStatus(); }
  3382. /**
  3383. * M28: Start SD Write
  3384. */
  3385. inline void gcode_M28() { card.openFile(current_command_args, false); }
  3386. /**
  3387. * M29: Stop SD Write
  3388. * Processed in write to file routine above
  3389. */
  3390. inline void gcode_M29() {
  3391. // card.saving = false;
  3392. }
  3393. /**
  3394. * M30 <filename>: Delete SD Card file
  3395. */
  3396. inline void gcode_M30() {
  3397. if (card.cardOK) {
  3398. card.closefile();
  3399. card.removeFile(current_command_args);
  3400. }
  3401. }
  3402. #endif // SDSUPPORT
  3403. /**
  3404. * M31: Get the time since the start of SD Print (or last M109)
  3405. */
  3406. inline void gcode_M31() {
  3407. char buffer[21];
  3408. duration_t elapsed = print_job_timer.duration();
  3409. elapsed.toString(buffer);
  3410. lcd_setstatus(buffer);
  3411. SERIAL_ECHO_START;
  3412. SERIAL_ECHOLNPAIR("Print time: ", buffer);
  3413. thermalManager.autotempShutdown();
  3414. }
  3415. #if ENABLED(SDSUPPORT)
  3416. /**
  3417. * M32: Select file and start SD Print
  3418. */
  3419. inline void gcode_M32() {
  3420. if (card.sdprinting)
  3421. stepper.synchronize();
  3422. char* namestartpos = strchr(current_command_args, '!'); // Find ! to indicate filename string start.
  3423. if (!namestartpos)
  3424. namestartpos = current_command_args; // Default name position, 4 letters after the M
  3425. else
  3426. namestartpos++; //to skip the '!'
  3427. bool call_procedure = code_seen('P') && (seen_pointer < namestartpos);
  3428. if (card.cardOK) {
  3429. card.openFile(namestartpos, true, call_procedure);
  3430. if (code_seen('S') && seen_pointer < namestartpos) // "S" (must occur _before_ the filename!)
  3431. card.setIndex(code_value_long());
  3432. card.startFileprint();
  3433. // Procedure calls count as normal print time.
  3434. if (!call_procedure) print_job_timer.start();
  3435. }
  3436. }
  3437. #if ENABLED(LONG_FILENAME_HOST_SUPPORT)
  3438. /**
  3439. * M33: Get the long full path of a file or folder
  3440. *
  3441. * Parameters:
  3442. * <dospath> Case-insensitive DOS-style path to a file or folder
  3443. *
  3444. * Example:
  3445. * M33 miscel~1/armchair/armcha~1.gco
  3446. *
  3447. * Output:
  3448. * /Miscellaneous/Armchair/Armchair.gcode
  3449. */
  3450. inline void gcode_M33() {
  3451. card.printLongPath(current_command_args);
  3452. }
  3453. #endif
  3454. /**
  3455. * M928: Start SD Write
  3456. */
  3457. inline void gcode_M928() {
  3458. card.openLogFile(current_command_args);
  3459. }
  3460. #endif // SDSUPPORT
  3461. /**
  3462. * M42: Change pin status via GCode
  3463. *
  3464. * P<pin> Pin number (LED if omitted)
  3465. * S<byte> Pin status from 0 - 255
  3466. */
  3467. inline void gcode_M42() {
  3468. if (!code_seen('S')) return;
  3469. int pin_status = code_value_int();
  3470. if (pin_status < 0 || pin_status > 255) return;
  3471. int pin_number = code_seen('P') ? code_value_int() : LED_PIN;
  3472. if (pin_number < 0) return;
  3473. for (uint8_t i = 0; i < COUNT(sensitive_pins); i++)
  3474. if (pin_number == sensitive_pins[i]) return;
  3475. pinMode(pin_number, OUTPUT);
  3476. digitalWrite(pin_number, pin_status);
  3477. analogWrite(pin_number, pin_status);
  3478. #if FAN_COUNT > 0
  3479. switch (pin_number) {
  3480. #if HAS_FAN0
  3481. case FAN_PIN: fanSpeeds[0] = pin_status; break;
  3482. #endif
  3483. #if HAS_FAN1
  3484. case FAN1_PIN: fanSpeeds[1] = pin_status; break;
  3485. #endif
  3486. #if HAS_FAN2
  3487. case FAN2_PIN: fanSpeeds[2] = pin_status; break;
  3488. #endif
  3489. }
  3490. #endif
  3491. }
  3492. #if ENABLED(Z_MIN_PROBE_REPEATABILITY_TEST)
  3493. /**
  3494. * M48: Z probe repeatability measurement function.
  3495. *
  3496. * Usage:
  3497. * M48 <P#> <X#> <Y#> <V#> <E> <L#>
  3498. * P = Number of sampled points (4-50, default 10)
  3499. * X = Sample X position
  3500. * Y = Sample Y position
  3501. * V = Verbose level (0-4, default=1)
  3502. * E = Engage Z probe for each reading
  3503. * L = Number of legs of movement before probe
  3504. * S = Schizoid (Or Star if you prefer)
  3505. *
  3506. * This function assumes the bed has been homed. Specifically, that a G28 command
  3507. * as been issued prior to invoking the M48 Z probe repeatability measurement function.
  3508. * Any information generated by a prior G29 Bed leveling command will be lost and need to be
  3509. * regenerated.
  3510. */
  3511. inline void gcode_M48() {
  3512. if (axis_unhomed_error(true, true, true)) return;
  3513. int8_t verbose_level = code_seen('V') ? code_value_byte() : 1;
  3514. if (verbose_level < 0 || verbose_level > 4) {
  3515. SERIAL_PROTOCOLLNPGM("?Verbose Level not plausible (0-4).");
  3516. return;
  3517. }
  3518. if (verbose_level > 0)
  3519. SERIAL_PROTOCOLLNPGM("M48 Z-Probe Repeatability test");
  3520. int8_t n_samples = code_seen('P') ? code_value_byte() : 10;
  3521. if (n_samples < 4 || n_samples > 50) {
  3522. SERIAL_PROTOCOLLNPGM("?Sample size not plausible (4-50).");
  3523. return;
  3524. }
  3525. float X_current = current_position[X_AXIS],
  3526. Y_current = current_position[Y_AXIS];
  3527. bool stow_probe_after_each = code_seen('E');
  3528. float X_probe_location = code_seen('X') ? code_value_axis_units(X_AXIS) : X_current + X_PROBE_OFFSET_FROM_EXTRUDER;
  3529. #if DISABLED(DELTA)
  3530. if (X_probe_location < LOGICAL_X_POSITION(MIN_PROBE_X) || X_probe_location > LOGICAL_X_POSITION(MAX_PROBE_X)) {
  3531. out_of_range_error(PSTR("X"));
  3532. return;
  3533. }
  3534. #endif
  3535. float Y_probe_location = code_seen('Y') ? code_value_axis_units(Y_AXIS) : Y_current + Y_PROBE_OFFSET_FROM_EXTRUDER;
  3536. #if DISABLED(DELTA)
  3537. if (Y_probe_location < LOGICAL_Y_POSITION(MIN_PROBE_Y) || Y_probe_location > LOGICAL_Y_POSITION(MAX_PROBE_Y)) {
  3538. out_of_range_error(PSTR("Y"));
  3539. return;
  3540. }
  3541. #else
  3542. float pos[XYZ] = { X_probe_location, Y_probe_location, 0 };
  3543. if (!position_is_reachable(pos)) {
  3544. SERIAL_PROTOCOLLNPGM("? (X,Y) location outside of probeable radius.");
  3545. return;
  3546. }
  3547. #endif
  3548. bool seen_L = code_seen('L');
  3549. uint8_t n_legs = seen_L ? code_value_byte() : 0;
  3550. if (n_legs > 15) {
  3551. SERIAL_PROTOCOLLNPGM("?Number of legs in movement not plausible (0-15).");
  3552. return;
  3553. }
  3554. if (n_legs == 1) n_legs = 2;
  3555. bool schizoid_flag = code_seen('S');
  3556. if (schizoid_flag && !seen_L) n_legs = 7;
  3557. /**
  3558. * Now get everything to the specified probe point So we can safely do a
  3559. * probe to get us close to the bed. If the Z-Axis is far from the bed,
  3560. * we don't want to use that as a starting point for each probe.
  3561. */
  3562. if (verbose_level > 2)
  3563. SERIAL_PROTOCOLLNPGM("Positioning the probe...");
  3564. // Disable bed level correction in M48 because we want the raw data when we probe
  3565. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  3566. reset_bed_level();
  3567. #endif
  3568. setup_for_endstop_or_probe_move();
  3569. // Move to the first point, deploy, and probe
  3570. probe_pt(X_probe_location, Y_probe_location, stow_probe_after_each, verbose_level);
  3571. randomSeed(millis());
  3572. double mean = 0, sigma = 0, sample_set[n_samples];
  3573. for (uint8_t n = 0; n < n_samples; n++) {
  3574. if (n_legs) {
  3575. int dir = (random(0, 10) > 5.0) ? -1 : 1; // clockwise or counter clockwise
  3576. float angle = random(0.0, 360.0),
  3577. radius = random(
  3578. #if ENABLED(DELTA)
  3579. DELTA_PROBEABLE_RADIUS / 8, DELTA_PROBEABLE_RADIUS / 3
  3580. #else
  3581. 5, X_MAX_LENGTH / 8
  3582. #endif
  3583. );
  3584. if (verbose_level > 3) {
  3585. SERIAL_ECHOPAIR("Starting radius: ", radius);
  3586. SERIAL_ECHOPAIR(" angle: ", angle);
  3587. SERIAL_ECHOPGM(" Direction: ");
  3588. if (dir > 0) SERIAL_ECHOPGM("Counter-");
  3589. SERIAL_ECHOLNPGM("Clockwise");
  3590. }
  3591. for (uint8_t l = 0; l < n_legs - 1; l++) {
  3592. double delta_angle;
  3593. if (schizoid_flag)
  3594. // The points of a 5 point star are 72 degrees apart. We need to
  3595. // skip a point and go to the next one on the star.
  3596. delta_angle = dir * 2.0 * 72.0;
  3597. else
  3598. // If we do this line, we are just trying to move further
  3599. // around the circle.
  3600. delta_angle = dir * (float) random(25, 45);
  3601. angle += delta_angle;
  3602. while (angle > 360.0) // We probably do not need to keep the angle between 0 and 2*PI, but the
  3603. angle -= 360.0; // Arduino documentation says the trig functions should not be given values
  3604. while (angle < 0.0) // outside of this range. It looks like they behave correctly with
  3605. angle += 360.0; // numbers outside of the range, but just to be safe we clamp them.
  3606. X_current = X_probe_location - (X_PROBE_OFFSET_FROM_EXTRUDER) + cos(RADIANS(angle)) * radius;
  3607. Y_current = Y_probe_location - (Y_PROBE_OFFSET_FROM_EXTRUDER) + sin(RADIANS(angle)) * radius;
  3608. #if DISABLED(DELTA)
  3609. X_current = constrain(X_current, X_MIN_POS, X_MAX_POS);
  3610. Y_current = constrain(Y_current, Y_MIN_POS, Y_MAX_POS);
  3611. #else
  3612. // If we have gone out too far, we can do a simple fix and scale the numbers
  3613. // back in closer to the origin.
  3614. while (HYPOT(X_current, Y_current) > DELTA_PROBEABLE_RADIUS) {
  3615. X_current /= 1.25;
  3616. Y_current /= 1.25;
  3617. if (verbose_level > 3) {
  3618. SERIAL_ECHOPAIR("Pulling point towards center:", X_current);
  3619. SERIAL_ECHOLNPAIR(", ", Y_current);
  3620. }
  3621. }
  3622. #endif
  3623. if (verbose_level > 3) {
  3624. SERIAL_PROTOCOLPGM("Going to:");
  3625. SERIAL_ECHOPAIR(" X", X_current);
  3626. SERIAL_ECHOPAIR(" Y", Y_current);
  3627. SERIAL_ECHOLNPAIR(" Z", current_position[Z_AXIS]);
  3628. }
  3629. do_blocking_move_to_xy(X_current, Y_current);
  3630. } // n_legs loop
  3631. } // n_legs
  3632. // Probe a single point
  3633. sample_set[n] = probe_pt(X_probe_location, Y_probe_location, stow_probe_after_each, verbose_level);
  3634. /**
  3635. * Get the current mean for the data points we have so far
  3636. */
  3637. double sum = 0.0;
  3638. for (uint8_t j = 0; j <= n; j++) sum += sample_set[j];
  3639. mean = sum / (n + 1);
  3640. /**
  3641. * Now, use that mean to calculate the standard deviation for the
  3642. * data points we have so far
  3643. */
  3644. sum = 0.0;
  3645. for (uint8_t j = 0; j <= n; j++)
  3646. sum += sq(sample_set[j] - mean);
  3647. sigma = sqrt(sum / (n + 1));
  3648. if (verbose_level > 0) {
  3649. if (verbose_level > 1) {
  3650. SERIAL_PROTOCOL(n + 1);
  3651. SERIAL_PROTOCOLPGM(" of ");
  3652. SERIAL_PROTOCOL((int)n_samples);
  3653. SERIAL_PROTOCOLPGM(" z: ");
  3654. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
  3655. if (verbose_level > 2) {
  3656. SERIAL_PROTOCOLPGM(" mean: ");
  3657. SERIAL_PROTOCOL_F(mean, 6);
  3658. SERIAL_PROTOCOLPGM(" sigma: ");
  3659. SERIAL_PROTOCOL_F(sigma, 6);
  3660. }
  3661. }
  3662. SERIAL_EOL;
  3663. }
  3664. } // End of probe loop
  3665. if (STOW_PROBE()) return;
  3666. if (verbose_level > 0) {
  3667. SERIAL_PROTOCOLPGM("Mean: ");
  3668. SERIAL_PROTOCOL_F(mean, 6);
  3669. SERIAL_EOL;
  3670. }
  3671. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  3672. SERIAL_PROTOCOL_F(sigma, 6);
  3673. SERIAL_EOL; SERIAL_EOL;
  3674. clean_up_after_endstop_or_probe_move();
  3675. report_current_position();
  3676. }
  3677. #endif // Z_MIN_PROBE_REPEATABILITY_TEST
  3678. /**
  3679. * M75: Start print timer
  3680. */
  3681. inline void gcode_M75() { print_job_timer.start(); }
  3682. /**
  3683. * M76: Pause print timer
  3684. */
  3685. inline void gcode_M76() { print_job_timer.pause(); }
  3686. /**
  3687. * M77: Stop print timer
  3688. */
  3689. inline void gcode_M77() { print_job_timer.stop(); }
  3690. #if ENABLED(PRINTCOUNTER)
  3691. /**
  3692. * M78: Show print statistics
  3693. */
  3694. inline void gcode_M78() {
  3695. // "M78 S78" will reset the statistics
  3696. if (code_seen('S') && code_value_int() == 78)
  3697. print_job_timer.initStats();
  3698. else
  3699. print_job_timer.showStats();
  3700. }
  3701. #endif
  3702. /**
  3703. * M104: Set hot end temperature
  3704. */
  3705. inline void gcode_M104() {
  3706. if (get_target_extruder_from_command(104)) return;
  3707. if (DEBUGGING(DRYRUN)) return;
  3708. #if ENABLED(SINGLENOZZLE)
  3709. if (target_extruder != active_extruder) return;
  3710. #endif
  3711. if (code_seen('S')) {
  3712. thermalManager.setTargetHotend(code_value_temp_abs(), target_extruder);
  3713. #if ENABLED(DUAL_X_CARRIAGE)
  3714. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && target_extruder == 0)
  3715. thermalManager.setTargetHotend(code_value_temp_abs() == 0.0 ? 0.0 : code_value_temp_abs() + duplicate_extruder_temp_offset, 1);
  3716. #endif
  3717. #if ENABLED(PRINTJOB_TIMER_AUTOSTART)
  3718. /**
  3719. * Stop the timer at the end of print, starting is managed by
  3720. * 'heat and wait' M109.
  3721. * We use half EXTRUDE_MINTEMP here to allow nozzles to be put into hot
  3722. * stand by mode, for instance in a dual extruder setup, without affecting
  3723. * the running print timer.
  3724. */
  3725. if (code_value_temp_abs() <= (EXTRUDE_MINTEMP)/2) {
  3726. print_job_timer.stop();
  3727. LCD_MESSAGEPGM(WELCOME_MSG);
  3728. }
  3729. #endif
  3730. if (code_value_temp_abs() > thermalManager.degHotend(target_extruder)) LCD_MESSAGEPGM(MSG_HEATING);
  3731. }
  3732. }
  3733. #if HAS_TEMP_HOTEND || HAS_TEMP_BED
  3734. void print_heaterstates() {
  3735. #if HAS_TEMP_HOTEND
  3736. SERIAL_PROTOCOLPGM(" T:");
  3737. SERIAL_PROTOCOL_F(thermalManager.degHotend(target_extruder), 1);
  3738. SERIAL_PROTOCOLPGM(" /");
  3739. SERIAL_PROTOCOL_F(thermalManager.degTargetHotend(target_extruder), 1);
  3740. #if ENABLED(SHOW_TEMP_ADC_VALUES)
  3741. SERIAL_PROTOCOLPAIR(" (", thermalManager.current_temperature_raw[target_extruder] / OVERSAMPLENR);
  3742. SERIAL_CHAR(')');
  3743. #endif
  3744. #endif
  3745. #if HAS_TEMP_BED
  3746. SERIAL_PROTOCOLPGM(" B:");
  3747. SERIAL_PROTOCOL_F(thermalManager.degBed(), 1);
  3748. SERIAL_PROTOCOLPGM(" /");
  3749. SERIAL_PROTOCOL_F(thermalManager.degTargetBed(), 1);
  3750. #if ENABLED(SHOW_TEMP_ADC_VALUES)
  3751. SERIAL_PROTOCOLPAIR(" (", thermalManager.current_temperature_bed_raw / OVERSAMPLENR);
  3752. SERIAL_CHAR(')');
  3753. #endif
  3754. #endif
  3755. #if HOTENDS > 1
  3756. HOTEND_LOOP() {
  3757. SERIAL_PROTOCOLPAIR(" T", e);
  3758. SERIAL_PROTOCOLCHAR(':');
  3759. SERIAL_PROTOCOL_F(thermalManager.degHotend(e), 1);
  3760. SERIAL_PROTOCOLPGM(" /");
  3761. SERIAL_PROTOCOL_F(thermalManager.degTargetHotend(e), 1);
  3762. #if ENABLED(SHOW_TEMP_ADC_VALUES)
  3763. SERIAL_PROTOCOLPAIR(" (", thermalManager.current_temperature_raw[e] / OVERSAMPLENR);
  3764. SERIAL_CHAR(')');
  3765. #endif
  3766. }
  3767. #endif
  3768. SERIAL_PROTOCOLPGM(" @:");
  3769. SERIAL_PROTOCOL(thermalManager.getHeaterPower(target_extruder));
  3770. #if HAS_TEMP_BED
  3771. SERIAL_PROTOCOLPGM(" B@:");
  3772. SERIAL_PROTOCOL(thermalManager.getHeaterPower(-1));
  3773. #endif
  3774. #if HOTENDS > 1
  3775. HOTEND_LOOP() {
  3776. SERIAL_PROTOCOLPAIR(" @", e);
  3777. SERIAL_PROTOCOLCHAR(':');
  3778. SERIAL_PROTOCOL(thermalManager.getHeaterPower(e));
  3779. }
  3780. #endif
  3781. }
  3782. #endif
  3783. /**
  3784. * M105: Read hot end and bed temperature
  3785. */
  3786. inline void gcode_M105() {
  3787. if (get_target_extruder_from_command(105)) return;
  3788. #if HAS_TEMP_HOTEND || HAS_TEMP_BED
  3789. SERIAL_PROTOCOLPGM(MSG_OK);
  3790. print_heaterstates();
  3791. #else // !HAS_TEMP_HOTEND && !HAS_TEMP_BED
  3792. SERIAL_ERROR_START;
  3793. SERIAL_ERRORLNPGM(MSG_ERR_NO_THERMISTORS);
  3794. #endif
  3795. SERIAL_EOL;
  3796. }
  3797. #if FAN_COUNT > 0
  3798. /**
  3799. * M106: Set Fan Speed
  3800. *
  3801. * S<int> Speed between 0-255
  3802. * P<index> Fan index, if more than one fan
  3803. */
  3804. inline void gcode_M106() {
  3805. uint16_t s = code_seen('S') ? code_value_ushort() : 255,
  3806. p = code_seen('P') ? code_value_ushort() : 0;
  3807. NOMORE(s, 255);
  3808. if (p < FAN_COUNT) fanSpeeds[p] = s;
  3809. }
  3810. /**
  3811. * M107: Fan Off
  3812. */
  3813. inline void gcode_M107() {
  3814. uint16_t p = code_seen('P') ? code_value_ushort() : 0;
  3815. if (p < FAN_COUNT) fanSpeeds[p] = 0;
  3816. }
  3817. #endif // FAN_COUNT > 0
  3818. #if DISABLED(EMERGENCY_PARSER)
  3819. /**
  3820. * M108: Stop the waiting for heaters in M109, M190, M303. Does not affect the target temperature.
  3821. */
  3822. inline void gcode_M108() { wait_for_heatup = false; }
  3823. /**
  3824. * M112: Emergency Stop
  3825. */
  3826. inline void gcode_M112() { kill(PSTR(MSG_KILLED)); }
  3827. /**
  3828. * M410: Quickstop - Abort all planned moves
  3829. *
  3830. * This will stop the carriages mid-move, so most likely they
  3831. * will be out of sync with the stepper position after this.
  3832. */
  3833. inline void gcode_M410() { quickstop_stepper(); }
  3834. #endif
  3835. #ifndef MIN_COOLING_SLOPE_DEG
  3836. #define MIN_COOLING_SLOPE_DEG 1.50
  3837. #endif
  3838. #ifndef MIN_COOLING_SLOPE_TIME
  3839. #define MIN_COOLING_SLOPE_TIME 60
  3840. #endif
  3841. /**
  3842. * M109: Sxxx Wait for extruder(s) to reach temperature. Waits only when heating.
  3843. * Rxxx Wait for extruder(s) to reach temperature. Waits when heating and cooling.
  3844. */
  3845. inline void gcode_M109() {
  3846. if (get_target_extruder_from_command(109)) return;
  3847. if (DEBUGGING(DRYRUN)) return;
  3848. #if ENABLED(SINGLENOZZLE)
  3849. if (target_extruder != active_extruder) return;
  3850. #endif
  3851. bool no_wait_for_cooling = code_seen('S');
  3852. if (no_wait_for_cooling || code_seen('R')) {
  3853. thermalManager.setTargetHotend(code_value_temp_abs(), target_extruder);
  3854. #if ENABLED(DUAL_X_CARRIAGE)
  3855. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && target_extruder == 0)
  3856. thermalManager.setTargetHotend(code_value_temp_abs() == 0.0 ? 0.0 : code_value_temp_abs() + duplicate_extruder_temp_offset, 1);
  3857. #endif
  3858. #if ENABLED(PRINTJOB_TIMER_AUTOSTART)
  3859. /**
  3860. * We use half EXTRUDE_MINTEMP here to allow nozzles to be put into hot
  3861. * stand by mode, for instance in a dual extruder setup, without affecting
  3862. * the running print timer.
  3863. */
  3864. if (code_value_temp_abs() <= (EXTRUDE_MINTEMP)/2) {
  3865. print_job_timer.stop();
  3866. LCD_MESSAGEPGM(WELCOME_MSG);
  3867. }
  3868. /**
  3869. * We do not check if the timer is already running because this check will
  3870. * be done for us inside the Stopwatch::start() method thus a running timer
  3871. * will not restart.
  3872. */
  3873. else print_job_timer.start();
  3874. #endif
  3875. if (thermalManager.isHeatingHotend(target_extruder)) LCD_MESSAGEPGM(MSG_HEATING);
  3876. }
  3877. #if ENABLED(AUTOTEMP)
  3878. planner.autotemp_M109();
  3879. #endif
  3880. #if TEMP_RESIDENCY_TIME > 0
  3881. millis_t residency_start_ms = 0;
  3882. // Loop until the temperature has stabilized
  3883. #define TEMP_CONDITIONS (!residency_start_ms || PENDING(now, residency_start_ms + (TEMP_RESIDENCY_TIME) * 1000UL))
  3884. #else
  3885. // Loop until the temperature is very close target
  3886. #define TEMP_CONDITIONS (wants_to_cool ? thermalManager.isCoolingHotend(target_extruder) : thermalManager.isHeatingHotend(target_extruder))
  3887. #endif //TEMP_RESIDENCY_TIME > 0
  3888. float theTarget = -1.0, old_temp = 9999.0;
  3889. bool wants_to_cool = false;
  3890. wait_for_heatup = true;
  3891. millis_t now, next_temp_ms = 0, next_cool_check_ms = 0;
  3892. KEEPALIVE_STATE(NOT_BUSY);
  3893. do {
  3894. // Target temperature might be changed during the loop
  3895. if (theTarget != thermalManager.degTargetHotend(target_extruder)) {
  3896. wants_to_cool = thermalManager.isCoolingHotend(target_extruder);
  3897. theTarget = thermalManager.degTargetHotend(target_extruder);
  3898. // Exit if S<lower>, continue if S<higher>, R<lower>, or R<higher>
  3899. if (no_wait_for_cooling && wants_to_cool) break;
  3900. }
  3901. now = millis();
  3902. if (ELAPSED(now, next_temp_ms)) { //Print temp & remaining time every 1s while waiting
  3903. next_temp_ms = now + 1000UL;
  3904. print_heaterstates();
  3905. #if TEMP_RESIDENCY_TIME > 0
  3906. SERIAL_PROTOCOLPGM(" W:");
  3907. if (residency_start_ms) {
  3908. long rem = (((TEMP_RESIDENCY_TIME) * 1000UL) - (now - residency_start_ms)) / 1000UL;
  3909. SERIAL_PROTOCOLLN(rem);
  3910. }
  3911. else {
  3912. SERIAL_PROTOCOLLNPGM("?");
  3913. }
  3914. #else
  3915. SERIAL_EOL;
  3916. #endif
  3917. }
  3918. idle();
  3919. refresh_cmd_timeout(); // to prevent stepper_inactive_time from running out
  3920. float temp = thermalManager.degHotend(target_extruder);
  3921. #if TEMP_RESIDENCY_TIME > 0
  3922. float temp_diff = fabs(theTarget - temp);
  3923. if (!residency_start_ms) {
  3924. // Start the TEMP_RESIDENCY_TIME timer when we reach target temp for the first time.
  3925. if (temp_diff < TEMP_WINDOW) residency_start_ms = now;
  3926. }
  3927. else if (temp_diff > TEMP_HYSTERESIS) {
  3928. // Restart the timer whenever the temperature falls outside the hysteresis.
  3929. residency_start_ms = now;
  3930. }
  3931. #endif //TEMP_RESIDENCY_TIME > 0
  3932. // Prevent a wait-forever situation if R is misused i.e. M109 R0
  3933. if (wants_to_cool) {
  3934. // break after MIN_COOLING_SLOPE_TIME seconds
  3935. // if the temperature did not drop at least MIN_COOLING_SLOPE_DEG
  3936. if (!next_cool_check_ms || ELAPSED(now, next_cool_check_ms)) {
  3937. if (old_temp - temp < MIN_COOLING_SLOPE_DEG) break;
  3938. next_cool_check_ms = now + 1000UL * MIN_COOLING_SLOPE_TIME;
  3939. old_temp = temp;
  3940. }
  3941. }
  3942. } while (wait_for_heatup && TEMP_CONDITIONS);
  3943. if (wait_for_heatup) LCD_MESSAGEPGM(MSG_HEATING_COMPLETE);
  3944. KEEPALIVE_STATE(IN_HANDLER);
  3945. }
  3946. #if HAS_TEMP_BED
  3947. #ifndef MIN_COOLING_SLOPE_DEG_BED
  3948. #define MIN_COOLING_SLOPE_DEG_BED 1.50
  3949. #endif
  3950. #ifndef MIN_COOLING_SLOPE_TIME_BED
  3951. #define MIN_COOLING_SLOPE_TIME_BED 60
  3952. #endif
  3953. /**
  3954. * M190: Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  3955. * Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  3956. */
  3957. inline void gcode_M190() {
  3958. if (DEBUGGING(DRYRUN)) return;
  3959. LCD_MESSAGEPGM(MSG_BED_HEATING);
  3960. bool no_wait_for_cooling = code_seen('S');
  3961. if (no_wait_for_cooling || code_seen('R')) {
  3962. thermalManager.setTargetBed(code_value_temp_abs());
  3963. #if ENABLED(PRINTJOB_TIMER_AUTOSTART)
  3964. if (code_value_temp_abs() > BED_MINTEMP) {
  3965. /**
  3966. * We start the timer when 'heating and waiting' command arrives, LCD
  3967. * functions never wait. Cooling down managed by extruders.
  3968. *
  3969. * We do not check if the timer is already running because this check will
  3970. * be done for us inside the Stopwatch::start() method thus a running timer
  3971. * will not restart.
  3972. */
  3973. print_job_timer.start();
  3974. }
  3975. #endif
  3976. }
  3977. #if TEMP_BED_RESIDENCY_TIME > 0
  3978. millis_t residency_start_ms = 0;
  3979. // Loop until the temperature has stabilized
  3980. #define TEMP_BED_CONDITIONS (!residency_start_ms || PENDING(now, residency_start_ms + (TEMP_BED_RESIDENCY_TIME) * 1000UL))
  3981. #else
  3982. // Loop until the temperature is very close target
  3983. #define TEMP_BED_CONDITIONS (wants_to_cool ? thermalManager.isCoolingBed() : thermalManager.isHeatingBed())
  3984. #endif //TEMP_BED_RESIDENCY_TIME > 0
  3985. float theTarget = -1.0, old_temp = 9999.0;
  3986. bool wants_to_cool = false;
  3987. wait_for_heatup = true;
  3988. millis_t now, next_temp_ms = 0, next_cool_check_ms = 0;
  3989. KEEPALIVE_STATE(NOT_BUSY);
  3990. target_extruder = active_extruder; // for print_heaterstates
  3991. do {
  3992. // Target temperature might be changed during the loop
  3993. if (theTarget != thermalManager.degTargetBed()) {
  3994. wants_to_cool = thermalManager.isCoolingBed();
  3995. theTarget = thermalManager.degTargetBed();
  3996. // Exit if S<lower>, continue if S<higher>, R<lower>, or R<higher>
  3997. if (no_wait_for_cooling && wants_to_cool) break;
  3998. }
  3999. now = millis();
  4000. if (ELAPSED(now, next_temp_ms)) { //Print Temp Reading every 1 second while heating up.
  4001. next_temp_ms = now + 1000UL;
  4002. print_heaterstates();
  4003. #if TEMP_BED_RESIDENCY_TIME > 0
  4004. SERIAL_PROTOCOLPGM(" W:");
  4005. if (residency_start_ms) {
  4006. long rem = (((TEMP_BED_RESIDENCY_TIME) * 1000UL) - (now - residency_start_ms)) / 1000UL;
  4007. SERIAL_PROTOCOLLN(rem);
  4008. }
  4009. else {
  4010. SERIAL_PROTOCOLLNPGM("?");
  4011. }
  4012. #else
  4013. SERIAL_EOL;
  4014. #endif
  4015. }
  4016. idle();
  4017. refresh_cmd_timeout(); // to prevent stepper_inactive_time from running out
  4018. float temp = thermalManager.degBed();
  4019. #if TEMP_BED_RESIDENCY_TIME > 0
  4020. float temp_diff = fabs(theTarget - temp);
  4021. if (!residency_start_ms) {
  4022. // Start the TEMP_BED_RESIDENCY_TIME timer when we reach target temp for the first time.
  4023. if (temp_diff < TEMP_BED_WINDOW) residency_start_ms = now;
  4024. }
  4025. else if (temp_diff > TEMP_BED_HYSTERESIS) {
  4026. // Restart the timer whenever the temperature falls outside the hysteresis.
  4027. residency_start_ms = now;
  4028. }
  4029. #endif //TEMP_BED_RESIDENCY_TIME > 0
  4030. // Prevent a wait-forever situation if R is misused i.e. M190 R0
  4031. if (wants_to_cool) {
  4032. // break after MIN_COOLING_SLOPE_TIME_BED seconds
  4033. // if the temperature did not drop at least MIN_COOLING_SLOPE_DEG_BED
  4034. if (!next_cool_check_ms || ELAPSED(now, next_cool_check_ms)) {
  4035. if (old_temp - temp < MIN_COOLING_SLOPE_DEG_BED) break;
  4036. next_cool_check_ms = now + 1000UL * MIN_COOLING_SLOPE_TIME_BED;
  4037. old_temp = temp;
  4038. }
  4039. }
  4040. } while (wait_for_heatup && TEMP_BED_CONDITIONS);
  4041. if (wait_for_heatup) LCD_MESSAGEPGM(MSG_BED_DONE);
  4042. KEEPALIVE_STATE(IN_HANDLER);
  4043. }
  4044. #endif // HAS_TEMP_BED
  4045. /**
  4046. * M110: Set Current Line Number
  4047. */
  4048. inline void gcode_M110() {
  4049. if (code_seen('N')) gcode_N = code_value_long();
  4050. }
  4051. /**
  4052. * M111: Set the debug level
  4053. */
  4054. inline void gcode_M111() {
  4055. marlin_debug_flags = code_seen('S') ? code_value_byte() : (uint8_t) DEBUG_NONE;
  4056. const static char str_debug_1[] PROGMEM = MSG_DEBUG_ECHO;
  4057. const static char str_debug_2[] PROGMEM = MSG_DEBUG_INFO;
  4058. const static char str_debug_4[] PROGMEM = MSG_DEBUG_ERRORS;
  4059. const static char str_debug_8[] PROGMEM = MSG_DEBUG_DRYRUN;
  4060. const static char str_debug_16[] PROGMEM = MSG_DEBUG_COMMUNICATION;
  4061. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4062. const static char str_debug_32[] PROGMEM = MSG_DEBUG_LEVELING;
  4063. #endif
  4064. const static char* const debug_strings[] PROGMEM = {
  4065. str_debug_1, str_debug_2, str_debug_4, str_debug_8, str_debug_16,
  4066. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4067. str_debug_32
  4068. #endif
  4069. };
  4070. SERIAL_ECHO_START;
  4071. SERIAL_ECHOPGM(MSG_DEBUG_PREFIX);
  4072. if (marlin_debug_flags) {
  4073. uint8_t comma = 0;
  4074. for (uint8_t i = 0; i < COUNT(debug_strings); i++) {
  4075. if (TEST(marlin_debug_flags, i)) {
  4076. if (comma++) SERIAL_CHAR(',');
  4077. serialprintPGM((char*)pgm_read_word(&(debug_strings[i])));
  4078. }
  4079. }
  4080. }
  4081. else {
  4082. SERIAL_ECHOPGM(MSG_DEBUG_OFF);
  4083. }
  4084. SERIAL_EOL;
  4085. }
  4086. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  4087. /**
  4088. * M113: Get or set Host Keepalive interval (0 to disable)
  4089. *
  4090. * S<seconds> Optional. Set the keepalive interval.
  4091. */
  4092. inline void gcode_M113() {
  4093. if (code_seen('S')) {
  4094. host_keepalive_interval = code_value_byte();
  4095. NOMORE(host_keepalive_interval, 60);
  4096. }
  4097. else {
  4098. SERIAL_ECHO_START;
  4099. SERIAL_ECHOLNPAIR("M113 S", (unsigned long)host_keepalive_interval);
  4100. }
  4101. }
  4102. #endif
  4103. #if ENABLED(BARICUDA)
  4104. #if HAS_HEATER_1
  4105. /**
  4106. * M126: Heater 1 valve open
  4107. */
  4108. inline void gcode_M126() { baricuda_valve_pressure = code_seen('S') ? code_value_byte() : 255; }
  4109. /**
  4110. * M127: Heater 1 valve close
  4111. */
  4112. inline void gcode_M127() { baricuda_valve_pressure = 0; }
  4113. #endif
  4114. #if HAS_HEATER_2
  4115. /**
  4116. * M128: Heater 2 valve open
  4117. */
  4118. inline void gcode_M128() { baricuda_e_to_p_pressure = code_seen('S') ? code_value_byte() : 255; }
  4119. /**
  4120. * M129: Heater 2 valve close
  4121. */
  4122. inline void gcode_M129() { baricuda_e_to_p_pressure = 0; }
  4123. #endif
  4124. #endif //BARICUDA
  4125. /**
  4126. * M140: Set bed temperature
  4127. */
  4128. inline void gcode_M140() {
  4129. if (DEBUGGING(DRYRUN)) return;
  4130. if (code_seen('S')) thermalManager.setTargetBed(code_value_temp_abs());
  4131. }
  4132. #if ENABLED(ULTIPANEL)
  4133. /**
  4134. * M145: Set the heatup state for a material in the LCD menu
  4135. * S<material> (0=PLA, 1=ABS)
  4136. * H<hotend temp>
  4137. * B<bed temp>
  4138. * F<fan speed>
  4139. */
  4140. inline void gcode_M145() {
  4141. int8_t material = code_seen('S') ? (int8_t)code_value_int() : 0;
  4142. if (material < 0 || material > 1) {
  4143. SERIAL_ERROR_START;
  4144. SERIAL_ERRORLNPGM(MSG_ERR_MATERIAL_INDEX);
  4145. }
  4146. else {
  4147. int v;
  4148. switch (material) {
  4149. case 0:
  4150. if (code_seen('H')) {
  4151. v = code_value_int();
  4152. preheatHotendTemp1 = constrain(v, EXTRUDE_MINTEMP, HEATER_0_MAXTEMP - 15);
  4153. }
  4154. if (code_seen('F')) {
  4155. v = code_value_int();
  4156. preheatFanSpeed1 = constrain(v, 0, 255);
  4157. }
  4158. #if TEMP_SENSOR_BED != 0
  4159. if (code_seen('B')) {
  4160. v = code_value_int();
  4161. preheatBedTemp1 = constrain(v, BED_MINTEMP, BED_MAXTEMP - 15);
  4162. }
  4163. #endif
  4164. break;
  4165. case 1:
  4166. if (code_seen('H')) {
  4167. v = code_value_int();
  4168. preheatHotendTemp2 = constrain(v, EXTRUDE_MINTEMP, HEATER_0_MAXTEMP - 15);
  4169. }
  4170. if (code_seen('F')) {
  4171. v = code_value_int();
  4172. preheatFanSpeed2 = constrain(v, 0, 255);
  4173. }
  4174. #if TEMP_SENSOR_BED != 0
  4175. if (code_seen('B')) {
  4176. v = code_value_int();
  4177. preheatBedTemp2 = constrain(v, BED_MINTEMP, BED_MAXTEMP - 15);
  4178. }
  4179. #endif
  4180. break;
  4181. }
  4182. }
  4183. }
  4184. #endif // ULTIPANEL
  4185. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  4186. /**
  4187. * M149: Set temperature units
  4188. */
  4189. inline void gcode_M149() {
  4190. if (code_seen('C')) {
  4191. set_input_temp_units(TEMPUNIT_C);
  4192. } else if (code_seen('K')) {
  4193. set_input_temp_units(TEMPUNIT_K);
  4194. } else if (code_seen('F')) {
  4195. set_input_temp_units(TEMPUNIT_F);
  4196. }
  4197. }
  4198. #endif
  4199. #if HAS_POWER_SWITCH
  4200. /**
  4201. * M80: Turn on Power Supply
  4202. */
  4203. inline void gcode_M80() {
  4204. OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE); //GND
  4205. /**
  4206. * If you have a switch on suicide pin, this is useful
  4207. * if you want to start another print with suicide feature after
  4208. * a print without suicide...
  4209. */
  4210. #if HAS_SUICIDE
  4211. OUT_WRITE(SUICIDE_PIN, HIGH);
  4212. #endif
  4213. #if ENABLED(ULTIPANEL)
  4214. powersupply = true;
  4215. LCD_MESSAGEPGM(WELCOME_MSG);
  4216. lcd_update();
  4217. #endif
  4218. }
  4219. #endif // HAS_POWER_SWITCH
  4220. /**
  4221. * M81: Turn off Power, including Power Supply, if there is one.
  4222. *
  4223. * This code should ALWAYS be available for EMERGENCY SHUTDOWN!
  4224. */
  4225. inline void gcode_M81() {
  4226. thermalManager.disable_all_heaters();
  4227. stepper.finish_and_disable();
  4228. #if FAN_COUNT > 0
  4229. #if FAN_COUNT > 1
  4230. for (uint8_t i = 0; i < FAN_COUNT; i++) fanSpeeds[i] = 0;
  4231. #else
  4232. fanSpeeds[0] = 0;
  4233. #endif
  4234. #endif
  4235. delay(1000); // Wait 1 second before switching off
  4236. #if HAS_SUICIDE
  4237. stepper.synchronize();
  4238. suicide();
  4239. #elif HAS_POWER_SWITCH
  4240. OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  4241. #endif
  4242. #if ENABLED(ULTIPANEL)
  4243. #if HAS_POWER_SWITCH
  4244. powersupply = false;
  4245. #endif
  4246. LCD_MESSAGEPGM(MACHINE_NAME " " MSG_OFF ".");
  4247. lcd_update();
  4248. #endif
  4249. }
  4250. /**
  4251. * M82: Set E codes absolute (default)
  4252. */
  4253. inline void gcode_M82() { axis_relative_modes[E_AXIS] = false; }
  4254. /**
  4255. * M83: Set E codes relative while in Absolute Coordinates (G90) mode
  4256. */
  4257. inline void gcode_M83() { axis_relative_modes[E_AXIS] = true; }
  4258. /**
  4259. * M18, M84: Disable all stepper motors
  4260. */
  4261. inline void gcode_M18_M84() {
  4262. if (code_seen('S')) {
  4263. stepper_inactive_time = code_value_millis_from_seconds();
  4264. }
  4265. else {
  4266. bool all_axis = !((code_seen('X')) || (code_seen('Y')) || (code_seen('Z')) || (code_seen('E')));
  4267. if (all_axis) {
  4268. stepper.finish_and_disable();
  4269. }
  4270. else {
  4271. stepper.synchronize();
  4272. if (code_seen('X')) disable_x();
  4273. if (code_seen('Y')) disable_y();
  4274. if (code_seen('Z')) disable_z();
  4275. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  4276. if (code_seen('E')) {
  4277. disable_e0();
  4278. disable_e1();
  4279. disable_e2();
  4280. disable_e3();
  4281. }
  4282. #endif
  4283. }
  4284. }
  4285. }
  4286. /**
  4287. * M85: Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  4288. */
  4289. inline void gcode_M85() {
  4290. if (code_seen('S')) max_inactive_time = code_value_millis_from_seconds();
  4291. }
  4292. /**
  4293. * M92: Set axis steps-per-unit for one or more axes, X, Y, Z, and E.
  4294. * (Follows the same syntax as G92)
  4295. */
  4296. inline void gcode_M92() {
  4297. LOOP_XYZE(i) {
  4298. if (code_seen(axis_codes[i])) {
  4299. if (i == E_AXIS) {
  4300. float value = code_value_per_axis_unit(i);
  4301. if (value < 20.0) {
  4302. float factor = planner.axis_steps_per_mm[i] / value; // increase e constants if M92 E14 is given for netfab.
  4303. planner.max_e_jerk *= factor;
  4304. planner.max_feedrate_mm_s[i] *= factor;
  4305. planner.max_acceleration_steps_per_s2[i] *= factor;
  4306. }
  4307. planner.axis_steps_per_mm[i] = value;
  4308. }
  4309. else {
  4310. planner.axis_steps_per_mm[i] = code_value_per_axis_unit(i);
  4311. }
  4312. }
  4313. }
  4314. planner.refresh_positioning();
  4315. }
  4316. /**
  4317. * Output the current position to serial
  4318. */
  4319. static void report_current_position() {
  4320. SERIAL_PROTOCOLPGM("X:");
  4321. SERIAL_PROTOCOL(current_position[X_AXIS]);
  4322. SERIAL_PROTOCOLPGM(" Y:");
  4323. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  4324. SERIAL_PROTOCOLPGM(" Z:");
  4325. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  4326. SERIAL_PROTOCOLPGM(" E:");
  4327. SERIAL_PROTOCOL(current_position[E_AXIS]);
  4328. stepper.report_positions();
  4329. #if IS_SCARA
  4330. SERIAL_PROTOCOLPAIR("SCARA Theta:", stepper.get_axis_position_mm(A_AXIS));
  4331. SERIAL_PROTOCOLLNPAIR(" Psi+Theta:", stepper.get_axis_position_mm(B_AXIS));
  4332. SERIAL_EOL;
  4333. #endif
  4334. }
  4335. /**
  4336. * M114: Output current position to serial port
  4337. */
  4338. inline void gcode_M114() { report_current_position(); }
  4339. /**
  4340. * M115: Capabilities string
  4341. */
  4342. inline void gcode_M115() {
  4343. SERIAL_PROTOCOLPGM(MSG_M115_REPORT);
  4344. }
  4345. /**
  4346. * M117: Set LCD Status Message
  4347. */
  4348. inline void gcode_M117() {
  4349. lcd_setstatus(current_command_args);
  4350. }
  4351. /**
  4352. * M119: Output endstop states to serial output
  4353. */
  4354. inline void gcode_M119() { endstops.M119(); }
  4355. /**
  4356. * M120: Enable endstops and set non-homing endstop state to "enabled"
  4357. */
  4358. inline void gcode_M120() { endstops.enable_globally(true); }
  4359. /**
  4360. * M121: Disable endstops and set non-homing endstop state to "disabled"
  4361. */
  4362. inline void gcode_M121() { endstops.enable_globally(false); }
  4363. #if ENABLED(BLINKM)
  4364. /**
  4365. * M150: Set Status LED Color - Use R-U-B for R-G-B
  4366. */
  4367. inline void gcode_M150() {
  4368. SendColors(
  4369. code_seen('R') ? code_value_byte() : 0,
  4370. code_seen('U') ? code_value_byte() : 0,
  4371. code_seen('B') ? code_value_byte() : 0
  4372. );
  4373. }
  4374. #endif // BLINKM
  4375. #if ENABLED(EXPERIMENTAL_I2CBUS)
  4376. /**
  4377. * M155: Send data to a I2C slave device
  4378. *
  4379. * This is a PoC, the formating and arguments for the GCODE will
  4380. * change to be more compatible, the current proposal is:
  4381. *
  4382. * M155 A<slave device address base 10> ; Sets the I2C slave address the data will be sent to
  4383. *
  4384. * M155 B<byte-1 value in base 10>
  4385. * M155 B<byte-2 value in base 10>
  4386. * M155 B<byte-3 value in base 10>
  4387. *
  4388. * M155 S1 ; Send the buffered data and reset the buffer
  4389. * M155 R1 ; Reset the buffer without sending data
  4390. *
  4391. */
  4392. inline void gcode_M155() {
  4393. // Set the target address
  4394. if (code_seen('A')) i2c.address(code_value_byte());
  4395. // Add a new byte to the buffer
  4396. if (code_seen('B')) i2c.addbyte(code_value_byte());
  4397. // Flush the buffer to the bus
  4398. if (code_seen('S')) i2c.send();
  4399. // Reset and rewind the buffer
  4400. else if (code_seen('R')) i2c.reset();
  4401. }
  4402. /**
  4403. * M156: Request X bytes from I2C slave device
  4404. *
  4405. * Usage: M156 A<slave device address base 10> B<number of bytes>
  4406. */
  4407. inline void gcode_M156() {
  4408. if (code_seen('A')) i2c.address(code_value_byte());
  4409. uint8_t bytes = code_seen('B') ? code_value_byte() : 1;
  4410. if (i2c.addr && bytes && bytes <= TWIBUS_BUFFER_SIZE) {
  4411. i2c.relay(bytes);
  4412. }
  4413. else {
  4414. SERIAL_ERROR_START;
  4415. SERIAL_ERRORLN("Bad i2c request");
  4416. }
  4417. }
  4418. #endif // EXPERIMENTAL_I2CBUS
  4419. /**
  4420. * M200: Set filament diameter and set E axis units to cubic units
  4421. *
  4422. * T<extruder> - Optional extruder number. Current extruder if omitted.
  4423. * D<linear> - Diameter of the filament. Use "D0" to switch back to linear units on the E axis.
  4424. */
  4425. inline void gcode_M200() {
  4426. if (get_target_extruder_from_command(200)) return;
  4427. if (code_seen('D')) {
  4428. // setting any extruder filament size disables volumetric on the assumption that
  4429. // slicers either generate in extruder values as cubic mm or as as filament feeds
  4430. // for all extruders
  4431. volumetric_enabled = (code_value_linear_units() != 0.0);
  4432. if (volumetric_enabled) {
  4433. filament_size[target_extruder] = code_value_linear_units();
  4434. // make sure all extruders have some sane value for the filament size
  4435. for (uint8_t i = 0; i < COUNT(filament_size); i++)
  4436. if (! filament_size[i]) filament_size[i] = DEFAULT_NOMINAL_FILAMENT_DIA;
  4437. }
  4438. }
  4439. else {
  4440. //reserved for setting filament diameter via UFID or filament measuring device
  4441. return;
  4442. }
  4443. calculate_volumetric_multipliers();
  4444. }
  4445. /**
  4446. * M201: Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  4447. */
  4448. inline void gcode_M201() {
  4449. LOOP_XYZE(i) {
  4450. if (code_seen(axis_codes[i])) {
  4451. planner.max_acceleration_mm_per_s2[i] = code_value_axis_units(i);
  4452. }
  4453. }
  4454. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  4455. planner.reset_acceleration_rates();
  4456. }
  4457. #if 0 // Not used for Sprinter/grbl gen6
  4458. inline void gcode_M202() {
  4459. LOOP_XYZE(i) {
  4460. if (code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value_axis_units(i) * planner.axis_steps_per_mm[i];
  4461. }
  4462. }
  4463. #endif
  4464. /**
  4465. * M203: Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in units/sec
  4466. */
  4467. inline void gcode_M203() {
  4468. LOOP_XYZE(i)
  4469. if (code_seen(axis_codes[i]))
  4470. planner.max_feedrate_mm_s[i] = code_value_axis_units(i);
  4471. }
  4472. /**
  4473. * M204: Set Accelerations in units/sec^2 (M204 P1200 R3000 T3000)
  4474. *
  4475. * P = Printing moves
  4476. * R = Retract only (no X, Y, Z) moves
  4477. * T = Travel (non printing) moves
  4478. *
  4479. * Also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  4480. */
  4481. inline void gcode_M204() {
  4482. if (code_seen('S')) { // Kept for legacy compatibility. Should NOT BE USED for new developments.
  4483. planner.travel_acceleration = planner.acceleration = code_value_linear_units();
  4484. SERIAL_ECHOLNPAIR("Setting Print and Travel Acceleration: ", planner.acceleration);
  4485. }
  4486. if (code_seen('P')) {
  4487. planner.acceleration = code_value_linear_units();
  4488. SERIAL_ECHOLNPAIR("Setting Print Acceleration: ", planner.acceleration);
  4489. }
  4490. if (code_seen('R')) {
  4491. planner.retract_acceleration = code_value_linear_units();
  4492. SERIAL_ECHOLNPAIR("Setting Retract Acceleration: ", planner.retract_acceleration);
  4493. }
  4494. if (code_seen('T')) {
  4495. planner.travel_acceleration = code_value_linear_units();
  4496. SERIAL_ECHOLNPAIR("Setting Travel Acceleration: ", planner.travel_acceleration);
  4497. }
  4498. }
  4499. /**
  4500. * M205: Set Advanced Settings
  4501. *
  4502. * S = Min Feed Rate (units/s)
  4503. * T = Min Travel Feed Rate (units/s)
  4504. * B = Min Segment Time (µs)
  4505. * X = Max XY Jerk (units/sec^2)
  4506. * Z = Max Z Jerk (units/sec^2)
  4507. * E = Max E Jerk (units/sec^2)
  4508. */
  4509. inline void gcode_M205() {
  4510. if (code_seen('S')) planner.min_feedrate_mm_s = code_value_linear_units();
  4511. if (code_seen('T')) planner.min_travel_feedrate_mm_s = code_value_linear_units();
  4512. if (code_seen('B')) planner.min_segment_time = code_value_millis();
  4513. if (code_seen('X')) planner.max_xy_jerk = code_value_linear_units();
  4514. if (code_seen('Z')) planner.max_z_jerk = code_value_axis_units(Z_AXIS);
  4515. if (code_seen('E')) planner.max_e_jerk = code_value_axis_units(E_AXIS);
  4516. }
  4517. /**
  4518. * M206: Set Additional Homing Offset (X Y Z). SCARA aliases T=X, P=Y
  4519. */
  4520. inline void gcode_M206() {
  4521. LOOP_XYZ(i)
  4522. if (code_seen(axis_codes[i]))
  4523. set_home_offset((AxisEnum)i, code_value_axis_units(i));
  4524. #if ENABLED(MORGAN_SCARA)
  4525. if (code_seen('T')) set_home_offset(A_AXIS, code_value_axis_units(A_AXIS)); // Theta
  4526. if (code_seen('P')) set_home_offset(B_AXIS, code_value_axis_units(B_AXIS)); // Psi
  4527. #endif
  4528. SYNC_PLAN_POSITION_KINEMATIC();
  4529. report_current_position();
  4530. }
  4531. #if ENABLED(DELTA)
  4532. /**
  4533. * M665: Set delta configurations
  4534. *
  4535. * L = diagonal rod
  4536. * R = delta radius
  4537. * S = segments per second
  4538. * A = Alpha (Tower 1) diagonal rod trim
  4539. * B = Beta (Tower 2) diagonal rod trim
  4540. * C = Gamma (Tower 3) diagonal rod trim
  4541. */
  4542. inline void gcode_M665() {
  4543. if (code_seen('L')) delta_diagonal_rod = code_value_linear_units();
  4544. if (code_seen('R')) delta_radius = code_value_linear_units();
  4545. if (code_seen('S')) delta_segments_per_second = code_value_float();
  4546. if (code_seen('A')) delta_diagonal_rod_trim_tower_1 = code_value_linear_units();
  4547. if (code_seen('B')) delta_diagonal_rod_trim_tower_2 = code_value_linear_units();
  4548. if (code_seen('C')) delta_diagonal_rod_trim_tower_3 = code_value_linear_units();
  4549. recalc_delta_settings(delta_radius, delta_diagonal_rod);
  4550. }
  4551. /**
  4552. * M666: Set delta endstop adjustment
  4553. */
  4554. inline void gcode_M666() {
  4555. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4556. if (DEBUGGING(LEVELING)) {
  4557. SERIAL_ECHOLNPGM(">>> gcode_M666");
  4558. }
  4559. #endif
  4560. LOOP_XYZ(i) {
  4561. if (code_seen(axis_codes[i])) {
  4562. endstop_adj[i] = code_value_axis_units(i);
  4563. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4564. if (DEBUGGING(LEVELING)) {
  4565. SERIAL_ECHOPAIR("endstop_adj[", axis_codes[i]);
  4566. SERIAL_ECHOLNPAIR("] = ", endstop_adj[i]);
  4567. }
  4568. #endif
  4569. }
  4570. }
  4571. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4572. if (DEBUGGING(LEVELING)) {
  4573. SERIAL_ECHOLNPGM("<<< gcode_M666");
  4574. }
  4575. #endif
  4576. }
  4577. #elif ENABLED(Z_DUAL_ENDSTOPS) // !DELTA && ENABLED(Z_DUAL_ENDSTOPS)
  4578. /**
  4579. * M666: For Z Dual Endstop setup, set z axis offset to the z2 axis.
  4580. */
  4581. inline void gcode_M666() {
  4582. if (code_seen('Z')) z_endstop_adj = code_value_axis_units(Z_AXIS);
  4583. SERIAL_ECHOLNPAIR("Z Endstop Adjustment set to (mm):", z_endstop_adj);
  4584. }
  4585. #endif // !DELTA && Z_DUAL_ENDSTOPS
  4586. #if ENABLED(FWRETRACT)
  4587. /**
  4588. * M207: Set firmware retraction values
  4589. *
  4590. * S[+units] retract_length
  4591. * W[+units] retract_length_swap (multi-extruder)
  4592. * F[units/min] retract_feedrate_mm_s
  4593. * Z[units] retract_zlift
  4594. */
  4595. inline void gcode_M207() {
  4596. if (code_seen('S')) retract_length = code_value_axis_units(E_AXIS);
  4597. if (code_seen('F')) retract_feedrate_mm_s = MMM_TO_MMS(code_value_axis_units(E_AXIS));
  4598. if (code_seen('Z')) retract_zlift = code_value_axis_units(Z_AXIS);
  4599. #if EXTRUDERS > 1
  4600. if (code_seen('W')) retract_length_swap = code_value_axis_units(E_AXIS);
  4601. #endif
  4602. }
  4603. /**
  4604. * M208: Set firmware un-retraction values
  4605. *
  4606. * S[+units] retract_recover_length (in addition to M207 S*)
  4607. * W[+units] retract_recover_length_swap (multi-extruder)
  4608. * F[units/min] retract_recover_feedrate_mm_s
  4609. */
  4610. inline void gcode_M208() {
  4611. if (code_seen('S')) retract_recover_length = code_value_axis_units(E_AXIS);
  4612. if (code_seen('F')) retract_recover_feedrate_mm_s = MMM_TO_MMS(code_value_axis_units(E_AXIS));
  4613. #if EXTRUDERS > 1
  4614. if (code_seen('W')) retract_recover_length_swap = code_value_axis_units(E_AXIS);
  4615. #endif
  4616. }
  4617. /**
  4618. * M209: Enable automatic retract (M209 S1)
  4619. * detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  4620. */
  4621. inline void gcode_M209() {
  4622. if (code_seen('S')) {
  4623. autoretract_enabled = code_value_bool();
  4624. for (int i = 0; i < EXTRUDERS; i++) retracted[i] = false;
  4625. }
  4626. }
  4627. #endif // FWRETRACT
  4628. /**
  4629. * M211: Enable, Disable, and/or Report software endstops
  4630. *
  4631. * Usage: M211 S1 to enable, M211 S0 to disable, M211 alone for report
  4632. */
  4633. inline void gcode_M211() {
  4634. SERIAL_ECHO_START;
  4635. #if ENABLED(min_software_endstops) || ENABLED(max_software_endstops)
  4636. if (code_seen('S')) soft_endstops_enabled = code_value_bool();
  4637. #endif
  4638. #if ENABLED(min_software_endstops) || ENABLED(max_software_endstops)
  4639. SERIAL_ECHOPGM(MSG_SOFT_ENDSTOPS);
  4640. serialprintPGM(soft_endstops_enabled ? PSTR(MSG_ON) : PSTR(MSG_OFF));
  4641. #else
  4642. SERIAL_ECHOPGM(MSG_SOFT_ENDSTOPS);
  4643. SERIAL_ECHOPGM(MSG_OFF);
  4644. #endif
  4645. SERIAL_ECHOPGM(MSG_SOFT_MIN);
  4646. SERIAL_ECHOPAIR( MSG_X, soft_endstop_min[X_AXIS]);
  4647. SERIAL_ECHOPAIR(" " MSG_Y, soft_endstop_min[Y_AXIS]);
  4648. SERIAL_ECHOPAIR(" " MSG_Z, soft_endstop_min[Z_AXIS]);
  4649. SERIAL_ECHOPGM(MSG_SOFT_MAX);
  4650. SERIAL_ECHOPAIR( MSG_X, soft_endstop_max[X_AXIS]);
  4651. SERIAL_ECHOPAIR(" " MSG_Y, soft_endstop_max[Y_AXIS]);
  4652. SERIAL_ECHOLNPAIR(" " MSG_Z, soft_endstop_max[Z_AXIS]);
  4653. }
  4654. #if HOTENDS > 1
  4655. /**
  4656. * M218 - set hotend offset (in linear units)
  4657. *
  4658. * T<tool>
  4659. * X<xoffset>
  4660. * Y<yoffset>
  4661. * Z<zoffset> - Available with DUAL_X_CARRIAGE and SWITCHING_EXTRUDER
  4662. */
  4663. inline void gcode_M218() {
  4664. if (get_target_extruder_from_command(218)) return;
  4665. if (code_seen('X')) hotend_offset[X_AXIS][target_extruder] = code_value_axis_units(X_AXIS);
  4666. if (code_seen('Y')) hotend_offset[Y_AXIS][target_extruder] = code_value_axis_units(Y_AXIS);
  4667. #if ENABLED(DUAL_X_CARRIAGE) || ENABLED(SWITCHING_EXTRUDER)
  4668. if (code_seen('Z')) hotend_offset[Z_AXIS][target_extruder] = code_value_axis_units(Z_AXIS);
  4669. #endif
  4670. SERIAL_ECHO_START;
  4671. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  4672. HOTEND_LOOP() {
  4673. SERIAL_CHAR(' ');
  4674. SERIAL_ECHO(hotend_offset[X_AXIS][e]);
  4675. SERIAL_CHAR(',');
  4676. SERIAL_ECHO(hotend_offset[Y_AXIS][e]);
  4677. #if ENABLED(DUAL_X_CARRIAGE) || ENABLED(SWITCHING_EXTRUDER)
  4678. SERIAL_CHAR(',');
  4679. SERIAL_ECHO(hotend_offset[Z_AXIS][e]);
  4680. #endif
  4681. }
  4682. SERIAL_EOL;
  4683. }
  4684. #endif // HOTENDS > 1
  4685. /**
  4686. * M220: Set speed percentage factor, aka "Feed Rate" (M220 S95)
  4687. */
  4688. inline void gcode_M220() {
  4689. if (code_seen('S')) feedrate_percentage = code_value_int();
  4690. }
  4691. /**
  4692. * M221: Set extrusion percentage (M221 T0 S95)
  4693. */
  4694. inline void gcode_M221() {
  4695. if (get_target_extruder_from_command(221)) return;
  4696. if (code_seen('S'))
  4697. flow_percentage[target_extruder] = code_value_int();
  4698. }
  4699. /**
  4700. * M226: Wait until the specified pin reaches the state required (M226 P<pin> S<state>)
  4701. */
  4702. inline void gcode_M226() {
  4703. if (code_seen('P')) {
  4704. int pin_number = code_value_int();
  4705. int pin_state = code_seen('S') ? code_value_int() : -1; // required pin state - default is inverted
  4706. if (pin_state >= -1 && pin_state <= 1) {
  4707. for (uint8_t i = 0; i < COUNT(sensitive_pins); i++) {
  4708. if (sensitive_pins[i] == pin_number) {
  4709. pin_number = -1;
  4710. break;
  4711. }
  4712. }
  4713. if (pin_number > -1) {
  4714. int target = LOW;
  4715. stepper.synchronize();
  4716. pinMode(pin_number, INPUT);
  4717. switch (pin_state) {
  4718. case 1:
  4719. target = HIGH;
  4720. break;
  4721. case 0:
  4722. target = LOW;
  4723. break;
  4724. case -1:
  4725. target = !digitalRead(pin_number);
  4726. break;
  4727. }
  4728. while (digitalRead(pin_number) != target) idle();
  4729. } // pin_number > -1
  4730. } // pin_state -1 0 1
  4731. } // code_seen('P')
  4732. }
  4733. #if HAS_SERVOS
  4734. /**
  4735. * M280: Get or set servo position. P<index> [S<angle>]
  4736. */
  4737. inline void gcode_M280() {
  4738. if (!code_seen('P')) return;
  4739. int servo_index = code_value_int();
  4740. if (servo_index >= 0 && servo_index < NUM_SERVOS) {
  4741. if (code_seen('S'))
  4742. MOVE_SERVO(servo_index, code_value_int());
  4743. else {
  4744. SERIAL_ECHO_START;
  4745. SERIAL_ECHOPAIR(" Servo ", servo_index);
  4746. SERIAL_ECHOLNPAIR(": ", servo[servo_index].read());
  4747. }
  4748. }
  4749. else {
  4750. SERIAL_ERROR_START;
  4751. SERIAL_ECHOPAIR("Servo ", servo_index);
  4752. SERIAL_ECHOLNPGM(" out of range");
  4753. }
  4754. }
  4755. #endif // HAS_SERVOS
  4756. #if HAS_BUZZER
  4757. /**
  4758. * M300: Play beep sound S<frequency Hz> P<duration ms>
  4759. */
  4760. inline void gcode_M300() {
  4761. uint16_t const frequency = code_seen('S') ? code_value_ushort() : 260;
  4762. uint16_t duration = code_seen('P') ? code_value_ushort() : 1000;
  4763. // Limits the tone duration to 0-5 seconds.
  4764. NOMORE(duration, 5000);
  4765. BUZZ(duration, frequency);
  4766. }
  4767. #endif // HAS_BUZZER
  4768. #if ENABLED(PIDTEMP)
  4769. /**
  4770. * M301: Set PID parameters P I D (and optionally C, L)
  4771. *
  4772. * P[float] Kp term
  4773. * I[float] Ki term (unscaled)
  4774. * D[float] Kd term (unscaled)
  4775. *
  4776. * With PID_EXTRUSION_SCALING:
  4777. *
  4778. * C[float] Kc term
  4779. * L[float] LPQ length
  4780. */
  4781. inline void gcode_M301() {
  4782. // multi-extruder PID patch: M301 updates or prints a single extruder's PID values
  4783. // default behaviour (omitting E parameter) is to update for extruder 0 only
  4784. int e = code_seen('E') ? code_value_int() : 0; // extruder being updated
  4785. if (e < HOTENDS) { // catch bad input value
  4786. if (code_seen('P')) PID_PARAM(Kp, e) = code_value_float();
  4787. if (code_seen('I')) PID_PARAM(Ki, e) = scalePID_i(code_value_float());
  4788. if (code_seen('D')) PID_PARAM(Kd, e) = scalePID_d(code_value_float());
  4789. #if ENABLED(PID_EXTRUSION_SCALING)
  4790. if (code_seen('C')) PID_PARAM(Kc, e) = code_value_float();
  4791. if (code_seen('L')) lpq_len = code_value_float();
  4792. NOMORE(lpq_len, LPQ_MAX_LEN);
  4793. #endif
  4794. thermalManager.updatePID();
  4795. SERIAL_ECHO_START;
  4796. #if ENABLED(PID_PARAMS_PER_HOTEND)
  4797. SERIAL_ECHOPAIR(" e:", e); // specify extruder in serial output
  4798. #endif // PID_PARAMS_PER_HOTEND
  4799. SERIAL_ECHOPAIR(" p:", PID_PARAM(Kp, e));
  4800. SERIAL_ECHOPAIR(" i:", unscalePID_i(PID_PARAM(Ki, e)));
  4801. SERIAL_ECHOPAIR(" d:", unscalePID_d(PID_PARAM(Kd, e)));
  4802. #if ENABLED(PID_EXTRUSION_SCALING)
  4803. //Kc does not have scaling applied above, or in resetting defaults
  4804. SERIAL_ECHOPAIR(" c:", PID_PARAM(Kc, e));
  4805. #endif
  4806. SERIAL_EOL;
  4807. }
  4808. else {
  4809. SERIAL_ERROR_START;
  4810. SERIAL_ERRORLN(MSG_INVALID_EXTRUDER);
  4811. }
  4812. }
  4813. #endif // PIDTEMP
  4814. #if ENABLED(PIDTEMPBED)
  4815. inline void gcode_M304() {
  4816. if (code_seen('P')) thermalManager.bedKp = code_value_float();
  4817. if (code_seen('I')) thermalManager.bedKi = scalePID_i(code_value_float());
  4818. if (code_seen('D')) thermalManager.bedKd = scalePID_d(code_value_float());
  4819. thermalManager.updatePID();
  4820. SERIAL_ECHO_START;
  4821. SERIAL_ECHOPAIR(" p:", thermalManager.bedKp);
  4822. SERIAL_ECHOPAIR(" i:", unscalePID_i(thermalManager.bedKi));
  4823. SERIAL_ECHOLNPAIR(" d:", unscalePID_d(thermalManager.bedKd));
  4824. }
  4825. #endif // PIDTEMPBED
  4826. #if defined(CHDK) || HAS_PHOTOGRAPH
  4827. /**
  4828. * M240: Trigger a camera by emulating a Canon RC-1
  4829. * See http://www.doc-diy.net/photo/rc-1_hacked/
  4830. */
  4831. inline void gcode_M240() {
  4832. #ifdef CHDK
  4833. OUT_WRITE(CHDK, HIGH);
  4834. chdkHigh = millis();
  4835. chdkActive = true;
  4836. #elif HAS_PHOTOGRAPH
  4837. const uint8_t NUM_PULSES = 16;
  4838. const float PULSE_LENGTH = 0.01524;
  4839. for (int i = 0; i < NUM_PULSES; i++) {
  4840. WRITE(PHOTOGRAPH_PIN, HIGH);
  4841. _delay_ms(PULSE_LENGTH);
  4842. WRITE(PHOTOGRAPH_PIN, LOW);
  4843. _delay_ms(PULSE_LENGTH);
  4844. }
  4845. delay(7.33);
  4846. for (int i = 0; i < NUM_PULSES; i++) {
  4847. WRITE(PHOTOGRAPH_PIN, HIGH);
  4848. _delay_ms(PULSE_LENGTH);
  4849. WRITE(PHOTOGRAPH_PIN, LOW);
  4850. _delay_ms(PULSE_LENGTH);
  4851. }
  4852. #endif // !CHDK && HAS_PHOTOGRAPH
  4853. }
  4854. #endif // CHDK || PHOTOGRAPH_PIN
  4855. #if HAS_LCD_CONTRAST
  4856. /**
  4857. * M250: Read and optionally set the LCD contrast
  4858. */
  4859. inline void gcode_M250() {
  4860. if (code_seen('C')) set_lcd_contrast(code_value_int());
  4861. SERIAL_PROTOCOLPGM("lcd contrast value: ");
  4862. SERIAL_PROTOCOL(lcd_contrast);
  4863. SERIAL_EOL;
  4864. }
  4865. #endif // HAS_LCD_CONTRAST
  4866. #if ENABLED(PREVENT_COLD_EXTRUSION)
  4867. /**
  4868. * M302: Allow cold extrudes, or set the minimum extrude temperature
  4869. *
  4870. * S<temperature> sets the minimum extrude temperature
  4871. * P<bool> enables (1) or disables (0) cold extrusion
  4872. *
  4873. * Examples:
  4874. *
  4875. * M302 ; report current cold extrusion state
  4876. * M302 P0 ; enable cold extrusion checking
  4877. * M302 P1 ; disables cold extrusion checking
  4878. * M302 S0 ; always allow extrusion (disables checking)
  4879. * M302 S170 ; only allow extrusion above 170
  4880. * M302 S170 P1 ; set min extrude temp to 170 but leave disabled
  4881. */
  4882. inline void gcode_M302() {
  4883. bool seen_S = code_seen('S');
  4884. if (seen_S) {
  4885. thermalManager.extrude_min_temp = code_value_temp_abs();
  4886. thermalManager.allow_cold_extrude = (thermalManager.extrude_min_temp == 0);
  4887. }
  4888. if (code_seen('P'))
  4889. thermalManager.allow_cold_extrude = (thermalManager.extrude_min_temp == 0) || code_value_bool();
  4890. else if (!seen_S) {
  4891. // Report current state
  4892. SERIAL_ECHO_START;
  4893. SERIAL_ECHOPAIR("Cold extrudes are ", (thermalManager.allow_cold_extrude ? "en" : "dis"));
  4894. SERIAL_ECHOPAIR("abled (min temp ", int(thermalManager.extrude_min_temp + 0.5));
  4895. SERIAL_ECHOLNPGM("C)");
  4896. }
  4897. }
  4898. #endif // PREVENT_COLD_EXTRUSION
  4899. /**
  4900. * M303: PID relay autotune
  4901. *
  4902. * S<temperature> sets the target temperature. (default 150C)
  4903. * E<extruder> (-1 for the bed) (default 0)
  4904. * C<cycles>
  4905. * U<bool> with a non-zero value will apply the result to current settings
  4906. */
  4907. inline void gcode_M303() {
  4908. #if HAS_PID_HEATING
  4909. int e = code_seen('E') ? code_value_int() : 0;
  4910. int c = code_seen('C') ? code_value_int() : 5;
  4911. bool u = code_seen('U') && code_value_bool();
  4912. float temp = code_seen('S') ? code_value_temp_abs() : (e < 0 ? 70.0 : 150.0);
  4913. if (e >= 0 && e < HOTENDS)
  4914. target_extruder = e;
  4915. KEEPALIVE_STATE(NOT_BUSY); // don't send "busy: processing" messages during autotune output
  4916. thermalManager.PID_autotune(temp, e, c, u);
  4917. KEEPALIVE_STATE(IN_HANDLER);
  4918. #else
  4919. SERIAL_ERROR_START;
  4920. SERIAL_ERRORLNPGM(MSG_ERR_M303_DISABLED);
  4921. #endif
  4922. }
  4923. #if ENABLED(MORGAN_SCARA)
  4924. bool SCARA_move_to_cal(uint8_t delta_a, uint8_t delta_b) {
  4925. if (IsRunning()) {
  4926. forward_kinematics_SCARA(delta_a, delta_b);
  4927. destination[X_AXIS] = LOGICAL_X_POSITION(cartes[X_AXIS]);
  4928. destination[Y_AXIS] = LOGICAL_Y_POSITION(cartes[Y_AXIS]);
  4929. destination[Z_AXIS] = current_position[Z_AXIS];
  4930. prepare_move_to_destination();
  4931. return true;
  4932. }
  4933. return false;
  4934. }
  4935. /**
  4936. * M360: SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  4937. */
  4938. inline bool gcode_M360() {
  4939. SERIAL_ECHOLNPGM(" Cal: Theta 0");
  4940. return SCARA_move_to_cal(0, 120);
  4941. }
  4942. /**
  4943. * M361: SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  4944. */
  4945. inline bool gcode_M361() {
  4946. SERIAL_ECHOLNPGM(" Cal: Theta 90");
  4947. return SCARA_move_to_cal(90, 130);
  4948. }
  4949. /**
  4950. * M362: SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  4951. */
  4952. inline bool gcode_M362() {
  4953. SERIAL_ECHOLNPGM(" Cal: Psi 0");
  4954. return SCARA_move_to_cal(60, 180);
  4955. }
  4956. /**
  4957. * M363: SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  4958. */
  4959. inline bool gcode_M363() {
  4960. SERIAL_ECHOLNPGM(" Cal: Psi 90");
  4961. return SCARA_move_to_cal(50, 90);
  4962. }
  4963. /**
  4964. * M364: SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
  4965. */
  4966. inline bool gcode_M364() {
  4967. SERIAL_ECHOLNPGM(" Cal: Theta-Psi 90");
  4968. return SCARA_move_to_cal(45, 135);
  4969. }
  4970. #endif // SCARA
  4971. #if ENABLED(EXT_SOLENOID)
  4972. void enable_solenoid(uint8_t num) {
  4973. switch (num) {
  4974. case 0:
  4975. OUT_WRITE(SOL0_PIN, HIGH);
  4976. break;
  4977. #if HAS_SOLENOID_1
  4978. case 1:
  4979. OUT_WRITE(SOL1_PIN, HIGH);
  4980. break;
  4981. #endif
  4982. #if HAS_SOLENOID_2
  4983. case 2:
  4984. OUT_WRITE(SOL2_PIN, HIGH);
  4985. break;
  4986. #endif
  4987. #if HAS_SOLENOID_3
  4988. case 3:
  4989. OUT_WRITE(SOL3_PIN, HIGH);
  4990. break;
  4991. #endif
  4992. default:
  4993. SERIAL_ECHO_START;
  4994. SERIAL_ECHOLNPGM(MSG_INVALID_SOLENOID);
  4995. break;
  4996. }
  4997. }
  4998. void enable_solenoid_on_active_extruder() { enable_solenoid(active_extruder); }
  4999. void disable_all_solenoids() {
  5000. OUT_WRITE(SOL0_PIN, LOW);
  5001. OUT_WRITE(SOL1_PIN, LOW);
  5002. OUT_WRITE(SOL2_PIN, LOW);
  5003. OUT_WRITE(SOL3_PIN, LOW);
  5004. }
  5005. /**
  5006. * M380: Enable solenoid on the active extruder
  5007. */
  5008. inline void gcode_M380() { enable_solenoid_on_active_extruder(); }
  5009. /**
  5010. * M381: Disable all solenoids
  5011. */
  5012. inline void gcode_M381() { disable_all_solenoids(); }
  5013. #endif // EXT_SOLENOID
  5014. /**
  5015. * M400: Finish all moves
  5016. */
  5017. inline void gcode_M400() { stepper.synchronize(); }
  5018. #if HAS_BED_PROBE
  5019. /**
  5020. * M401: Engage Z Servo endstop if available
  5021. */
  5022. inline void gcode_M401() { DEPLOY_PROBE(); }
  5023. /**
  5024. * M402: Retract Z Servo endstop if enabled
  5025. */
  5026. inline void gcode_M402() { STOW_PROBE(); }
  5027. #endif // HAS_BED_PROBE
  5028. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  5029. /**
  5030. * M404: Display or set (in current units) the nominal filament width (3mm, 1.75mm ) W<3.0>
  5031. */
  5032. inline void gcode_M404() {
  5033. if (code_seen('W')) {
  5034. filament_width_nominal = code_value_linear_units();
  5035. }
  5036. else {
  5037. SERIAL_PROTOCOLPGM("Filament dia (nominal mm):");
  5038. SERIAL_PROTOCOLLN(filament_width_nominal);
  5039. }
  5040. }
  5041. /**
  5042. * M405: Turn on filament sensor for control
  5043. */
  5044. inline void gcode_M405() {
  5045. // This is technically a linear measurement, but since it's quantized to centimeters and is a different unit than
  5046. // everything else, it uses code_value_int() instead of code_value_linear_units().
  5047. if (code_seen('D')) meas_delay_cm = code_value_int();
  5048. NOMORE(meas_delay_cm, MAX_MEASUREMENT_DELAY);
  5049. if (filwidth_delay_index[1] == -1) { // Initialize the ring buffer if not done since startup
  5050. int temp_ratio = thermalManager.widthFil_to_size_ratio();
  5051. for (uint8_t i = 0; i < COUNT(measurement_delay); ++i)
  5052. measurement_delay[i] = temp_ratio - 100; // Subtract 100 to scale within a signed byte
  5053. filwidth_delay_index[0] = filwidth_delay_index[1] = 0;
  5054. }
  5055. filament_sensor = true;
  5056. //SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  5057. //SERIAL_PROTOCOL(filament_width_meas);
  5058. //SERIAL_PROTOCOLPGM("Extrusion ratio(%):");
  5059. //SERIAL_PROTOCOL(flow_percentage[active_extruder]);
  5060. }
  5061. /**
  5062. * M406: Turn off filament sensor for control
  5063. */
  5064. inline void gcode_M406() { filament_sensor = false; }
  5065. /**
  5066. * M407: Get measured filament diameter on serial output
  5067. */
  5068. inline void gcode_M407() {
  5069. SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  5070. SERIAL_PROTOCOLLN(filament_width_meas);
  5071. }
  5072. #endif // FILAMENT_WIDTH_SENSOR
  5073. void quickstop_stepper() {
  5074. stepper.quick_stop();
  5075. #if DISABLED(SCARA)
  5076. stepper.synchronize();
  5077. LOOP_XYZ(i) set_current_from_steppers_for_axis((AxisEnum)i);
  5078. SYNC_PLAN_POSITION_KINEMATIC();
  5079. #endif
  5080. }
  5081. #if ENABLED(MESH_BED_LEVELING)
  5082. /**
  5083. * M420: Enable/Disable Mesh Bed Leveling
  5084. */
  5085. inline void gcode_M420() { if (code_seen('S')) mbl.set_has_mesh(code_value_bool()); }
  5086. /**
  5087. * M421: Set a single Mesh Bed Leveling Z coordinate
  5088. * Use either 'M421 X<linear> Y<linear> Z<linear>' or 'M421 I<xindex> J<yindex> Z<linear>'
  5089. */
  5090. inline void gcode_M421() {
  5091. int8_t px = 0, py = 0;
  5092. float z = 0;
  5093. bool hasX, hasY, hasZ, hasI, hasJ;
  5094. if ((hasX = code_seen('X'))) px = mbl.probe_index_x(code_value_axis_units(X_AXIS));
  5095. if ((hasY = code_seen('Y'))) py = mbl.probe_index_y(code_value_axis_units(Y_AXIS));
  5096. if ((hasI = code_seen('I'))) px = code_value_axis_units(X_AXIS);
  5097. if ((hasJ = code_seen('J'))) py = code_value_axis_units(Y_AXIS);
  5098. if ((hasZ = code_seen('Z'))) z = code_value_axis_units(Z_AXIS);
  5099. if (hasX && hasY && hasZ) {
  5100. if (px >= 0 && py >= 0)
  5101. mbl.set_z(px, py, z);
  5102. else {
  5103. SERIAL_ERROR_START;
  5104. SERIAL_ERRORLNPGM(MSG_ERR_MESH_XY);
  5105. }
  5106. }
  5107. else if (hasI && hasJ && hasZ) {
  5108. if (px >= 0 && px < MESH_NUM_X_POINTS && py >= 0 && py < MESH_NUM_Y_POINTS)
  5109. mbl.set_z(px, py, z);
  5110. else {
  5111. SERIAL_ERROR_START;
  5112. SERIAL_ERRORLNPGM(MSG_ERR_MESH_XY);
  5113. }
  5114. }
  5115. else {
  5116. SERIAL_ERROR_START;
  5117. SERIAL_ERRORLNPGM(MSG_ERR_M421_PARAMETERS);
  5118. }
  5119. }
  5120. #endif
  5121. /**
  5122. * M428: Set home_offset based on the distance between the
  5123. * current_position and the nearest "reference point."
  5124. * If an axis is past center its endstop position
  5125. * is the reference-point. Otherwise it uses 0. This allows
  5126. * the Z offset to be set near the bed when using a max endstop.
  5127. *
  5128. * M428 can't be used more than 2cm away from 0 or an endstop.
  5129. *
  5130. * Use M206 to set these values directly.
  5131. */
  5132. inline void gcode_M428() {
  5133. bool err = false;
  5134. LOOP_XYZ(i) {
  5135. if (axis_homed[i]) {
  5136. float base = (current_position[i] > (soft_endstop_min[i] + soft_endstop_max[i]) * 0.5) ? base_home_pos(i) : 0,
  5137. diff = current_position[i] - LOGICAL_POSITION(base, i);
  5138. if (diff > -20 && diff < 20) {
  5139. set_home_offset((AxisEnum)i, home_offset[i] - diff);
  5140. }
  5141. else {
  5142. SERIAL_ERROR_START;
  5143. SERIAL_ERRORLNPGM(MSG_ERR_M428_TOO_FAR);
  5144. LCD_ALERTMESSAGEPGM("Err: Too far!");
  5145. BUZZ(200, 40);
  5146. err = true;
  5147. break;
  5148. }
  5149. }
  5150. }
  5151. if (!err) {
  5152. SYNC_PLAN_POSITION_KINEMATIC();
  5153. report_current_position();
  5154. LCD_MESSAGEPGM(MSG_HOME_OFFSETS_APPLIED);
  5155. BUZZ(200, 659);
  5156. BUZZ(200, 698);
  5157. }
  5158. }
  5159. /**
  5160. * M500: Store settings in EEPROM
  5161. */
  5162. inline void gcode_M500() {
  5163. Config_StoreSettings();
  5164. }
  5165. /**
  5166. * M501: Read settings from EEPROM
  5167. */
  5168. inline void gcode_M501() {
  5169. Config_RetrieveSettings();
  5170. }
  5171. /**
  5172. * M502: Revert to default settings
  5173. */
  5174. inline void gcode_M502() {
  5175. Config_ResetDefault();
  5176. }
  5177. /**
  5178. * M503: print settings currently in memory
  5179. */
  5180. inline void gcode_M503() {
  5181. Config_PrintSettings(code_seen('S') && !code_value_bool());
  5182. }
  5183. #if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  5184. /**
  5185. * M540: Set whether SD card print should abort on endstop hit (M540 S<0|1>)
  5186. */
  5187. inline void gcode_M540() {
  5188. if (code_seen('S')) stepper.abort_on_endstop_hit = code_value_bool();
  5189. }
  5190. #endif // ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  5191. #if HAS_BED_PROBE
  5192. inline void gcode_M851() {
  5193. SERIAL_ECHO_START;
  5194. SERIAL_ECHOPGM(MSG_ZPROBE_ZOFFSET);
  5195. SERIAL_CHAR(' ');
  5196. if (code_seen('Z')) {
  5197. float value = code_value_axis_units(Z_AXIS);
  5198. if (Z_PROBE_OFFSET_RANGE_MIN <= value && value <= Z_PROBE_OFFSET_RANGE_MAX) {
  5199. zprobe_zoffset = value;
  5200. SERIAL_ECHO(zprobe_zoffset);
  5201. }
  5202. else {
  5203. SERIAL_ECHOPAIR(MSG_Z_MIN, Z_PROBE_OFFSET_RANGE_MIN);
  5204. SERIAL_CHAR(' ');
  5205. SERIAL_ECHOPAIR(MSG_Z_MAX, Z_PROBE_OFFSET_RANGE_MAX);
  5206. }
  5207. }
  5208. else {
  5209. SERIAL_ECHOPAIR(": ", zprobe_zoffset);
  5210. }
  5211. SERIAL_EOL;
  5212. }
  5213. #endif // HAS_BED_PROBE
  5214. #if ENABLED(FILAMENT_CHANGE_FEATURE)
  5215. /**
  5216. * M600: Pause for filament change
  5217. *
  5218. * E[distance] - Retract the filament this far (negative value)
  5219. * Z[distance] - Move the Z axis by this distance
  5220. * X[position] - Move to this X position, with Y
  5221. * Y[position] - Move to this Y position, with X
  5222. * L[distance] - Retract distance for removal (manual reload)
  5223. *
  5224. * Default values are used for omitted arguments.
  5225. *
  5226. */
  5227. inline void gcode_M600() {
  5228. if (thermalManager.tooColdToExtrude(active_extruder)) {
  5229. SERIAL_ERROR_START;
  5230. SERIAL_ERRORLNPGM(MSG_TOO_COLD_FOR_M600);
  5231. return;
  5232. }
  5233. // Show initial message and wait for synchronize steppers
  5234. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_INIT);
  5235. stepper.synchronize();
  5236. float lastpos[NUM_AXIS];
  5237. // Save current position of all axes
  5238. LOOP_XYZE(i)
  5239. lastpos[i] = destination[i] = current_position[i];
  5240. // Define runplan for move axes
  5241. #if IS_KINEMATIC
  5242. #define RUNPLAN(RATE_MM_S) inverse_kinematics(destination); \
  5243. planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], destination[E_AXIS], RATE_MM_S, active_extruder);
  5244. #else
  5245. #define RUNPLAN(RATE_MM_S) line_to_destination(RATE_MM_S);
  5246. #endif
  5247. KEEPALIVE_STATE(IN_HANDLER);
  5248. // Initial retract before move to filament change position
  5249. if (code_seen('E')) destination[E_AXIS] += code_value_axis_units(E_AXIS);
  5250. #if defined(FILAMENT_CHANGE_RETRACT_LENGTH) && FILAMENT_CHANGE_RETRACT_LENGTH > 0
  5251. else destination[E_AXIS] -= FILAMENT_CHANGE_RETRACT_LENGTH;
  5252. #endif
  5253. RUNPLAN(FILAMENT_CHANGE_RETRACT_FEEDRATE);
  5254. // Lift Z axis
  5255. float z_lift = code_seen('Z') ? code_value_axis_units(Z_AXIS) :
  5256. #if defined(FILAMENT_CHANGE_Z_ADD) && FILAMENT_CHANGE_Z_ADD > 0
  5257. FILAMENT_CHANGE_Z_ADD
  5258. #else
  5259. 0
  5260. #endif
  5261. ;
  5262. if (z_lift > 0) {
  5263. destination[Z_AXIS] += z_lift;
  5264. NOMORE(destination[Z_AXIS], Z_MAX_POS);
  5265. RUNPLAN(FILAMENT_CHANGE_Z_FEEDRATE);
  5266. }
  5267. // Move XY axes to filament exchange position
  5268. if (code_seen('X')) destination[X_AXIS] = code_value_axis_units(X_AXIS);
  5269. #ifdef FILAMENT_CHANGE_X_POS
  5270. else destination[X_AXIS] = FILAMENT_CHANGE_X_POS;
  5271. #endif
  5272. if (code_seen('Y')) destination[Y_AXIS] = code_value_axis_units(Y_AXIS);
  5273. #ifdef FILAMENT_CHANGE_Y_POS
  5274. else destination[Y_AXIS] = FILAMENT_CHANGE_Y_POS;
  5275. #endif
  5276. RUNPLAN(FILAMENT_CHANGE_XY_FEEDRATE);
  5277. stepper.synchronize();
  5278. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_UNLOAD);
  5279. // Unload filament
  5280. if (code_seen('L')) destination[E_AXIS] += code_value_axis_units(E_AXIS);
  5281. #if defined(FILAMENT_CHANGE_UNLOAD_LENGTH) && FILAMENT_CHANGE_UNLOAD_LENGTH > 0
  5282. else destination[E_AXIS] -= FILAMENT_CHANGE_UNLOAD_LENGTH;
  5283. #endif
  5284. RUNPLAN(FILAMENT_CHANGE_UNLOAD_FEEDRATE);
  5285. // Synchronize steppers and then disable extruders steppers for manual filament changing
  5286. stepper.synchronize();
  5287. disable_e0();
  5288. disable_e1();
  5289. disable_e2();
  5290. disable_e3();
  5291. delay(100);
  5292. #if HAS_BUZZER
  5293. millis_t next_tick = 0;
  5294. #endif
  5295. // Wait for filament insert by user and press button
  5296. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_INSERT);
  5297. while (!lcd_clicked()) {
  5298. #if HAS_BUZZER
  5299. millis_t ms = millis();
  5300. if (ms >= next_tick) {
  5301. BUZZ(300, 2000);
  5302. next_tick = ms + 2500; // Beep every 2.5s while waiting
  5303. }
  5304. #endif
  5305. idle(true);
  5306. }
  5307. delay(100);
  5308. while (lcd_clicked()) idle(true);
  5309. delay(100);
  5310. // Show load message
  5311. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_LOAD);
  5312. // Load filament
  5313. if (code_seen('L')) destination[E_AXIS] -= code_value_axis_units(E_AXIS);
  5314. #if defined(FILAMENT_CHANGE_LOAD_LENGTH) && FILAMENT_CHANGE_LOAD_LENGTH > 0
  5315. else destination[E_AXIS] += FILAMENT_CHANGE_LOAD_LENGTH;
  5316. #endif
  5317. RUNPLAN(FILAMENT_CHANGE_LOAD_FEEDRATE);
  5318. stepper.synchronize();
  5319. #if defined(FILAMENT_CHANGE_EXTRUDE_LENGTH) && FILAMENT_CHANGE_EXTRUDE_LENGTH > 0
  5320. do {
  5321. // Extrude filament to get into hotend
  5322. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_EXTRUDE);
  5323. destination[E_AXIS] += FILAMENT_CHANGE_EXTRUDE_LENGTH;
  5324. RUNPLAN(FILAMENT_CHANGE_EXTRUDE_FEEDRATE);
  5325. stepper.synchronize();
  5326. // Ask user if more filament should be extruded
  5327. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5328. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_OPTION);
  5329. while (filament_change_menu_response == FILAMENT_CHANGE_RESPONSE_WAIT_FOR) idle(true);
  5330. KEEPALIVE_STATE(IN_HANDLER);
  5331. } while (filament_change_menu_response != FILAMENT_CHANGE_RESPONSE_RESUME_PRINT);
  5332. #endif
  5333. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_RESUME);
  5334. KEEPALIVE_STATE(IN_HANDLER);
  5335. // Set extruder to saved position
  5336. current_position[E_AXIS] = lastpos[E_AXIS];
  5337. destination[E_AXIS] = lastpos[E_AXIS];
  5338. planner.set_e_position_mm(current_position[E_AXIS]);
  5339. #if IS_KINEMATIC
  5340. // Move XYZ to starting position, then E
  5341. inverse_kinematics(lastpos);
  5342. planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], destination[E_AXIS], FILAMENT_CHANGE_XY_FEEDRATE, active_extruder);
  5343. planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], lastpos[E_AXIS], FILAMENT_CHANGE_XY_FEEDRATE, active_extruder);
  5344. #else
  5345. // Move XY to starting position, then Z, then E
  5346. destination[X_AXIS] = lastpos[X_AXIS];
  5347. destination[Y_AXIS] = lastpos[Y_AXIS];
  5348. RUNPLAN(FILAMENT_CHANGE_XY_FEEDRATE);
  5349. destination[Z_AXIS] = lastpos[Z_AXIS];
  5350. RUNPLAN(FILAMENT_CHANGE_Z_FEEDRATE);
  5351. #endif
  5352. stepper.synchronize();
  5353. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  5354. filament_ran_out = false;
  5355. #endif
  5356. // Show status screen
  5357. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_STATUS);
  5358. }
  5359. #endif // FILAMENT_CHANGE_FEATURE
  5360. #if ENABLED(DUAL_X_CARRIAGE)
  5361. /**
  5362. * M605: Set dual x-carriage movement mode
  5363. *
  5364. * M605 S0: Full control mode. The slicer has full control over x-carriage movement
  5365. * M605 S1: Auto-park mode. The inactive head will auto park/unpark without slicer involvement
  5366. * M605 S2 [Xnnn] [Rmmm]: Duplication mode. The second extruder will duplicate the first with nnn
  5367. * units x-offset and an optional differential hotend temperature of
  5368. * mmm degrees. E.g., with "M605 S2 X100 R2" the second extruder will duplicate
  5369. * the first with a spacing of 100mm in the x direction and 2 degrees hotter.
  5370. *
  5371. * Note: the X axis should be homed after changing dual x-carriage mode.
  5372. */
  5373. inline void gcode_M605() {
  5374. stepper.synchronize();
  5375. if (code_seen('S')) dual_x_carriage_mode = code_value_byte();
  5376. switch (dual_x_carriage_mode) {
  5377. case DXC_DUPLICATION_MODE:
  5378. if (code_seen('X')) duplicate_extruder_x_offset = max(code_value_axis_units(X_AXIS), X2_MIN_POS - x_home_pos(0));
  5379. if (code_seen('R')) duplicate_extruder_temp_offset = code_value_temp_diff();
  5380. SERIAL_ECHO_START;
  5381. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  5382. SERIAL_CHAR(' ');
  5383. SERIAL_ECHO(hotend_offset[X_AXIS][0]);
  5384. SERIAL_CHAR(',');
  5385. SERIAL_ECHO(hotend_offset[Y_AXIS][0]);
  5386. SERIAL_CHAR(' ');
  5387. SERIAL_ECHO(duplicate_extruder_x_offset);
  5388. SERIAL_CHAR(',');
  5389. SERIAL_ECHOLN(hotend_offset[Y_AXIS][1]);
  5390. break;
  5391. case DXC_FULL_CONTROL_MODE:
  5392. case DXC_AUTO_PARK_MODE:
  5393. break;
  5394. default:
  5395. dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  5396. break;
  5397. }
  5398. active_extruder_parked = false;
  5399. extruder_duplication_enabled = false;
  5400. delayed_move_time = 0;
  5401. }
  5402. #elif ENABLED(DUAL_NOZZLE_DUPLICATION_MODE)
  5403. inline void gcode_M605() {
  5404. stepper.synchronize();
  5405. extruder_duplication_enabled = code_seen('S') && code_value_int() == 2;
  5406. SERIAL_ECHO_START;
  5407. SERIAL_ECHOLNPAIR(MSG_DUPLICATION_MODE, extruder_duplication_enabled ? MSG_ON : MSG_OFF);
  5408. }
  5409. #endif // M605
  5410. #if ENABLED(LIN_ADVANCE)
  5411. /**
  5412. * M905: Set advance factor
  5413. */
  5414. inline void gcode_M905() {
  5415. stepper.synchronize();
  5416. stepper.advance_M905(code_seen('K') ? code_value_float() : -1.0);
  5417. }
  5418. #endif
  5419. /**
  5420. * M907: Set digital trimpot motor current using axis codes X, Y, Z, E, B, S
  5421. */
  5422. inline void gcode_M907() {
  5423. #if HAS_DIGIPOTSS
  5424. LOOP_XYZE(i)
  5425. if (code_seen(axis_codes[i])) stepper.digipot_current(i, code_value_int());
  5426. if (code_seen('B')) stepper.digipot_current(4, code_value_int());
  5427. if (code_seen('S')) for (int i = 0; i <= 4; i++) stepper.digipot_current(i, code_value_int());
  5428. #endif
  5429. #if PIN_EXISTS(MOTOR_CURRENT_PWM_XY)
  5430. if (code_seen('X')) stepper.digipot_current(0, code_value_int());
  5431. #endif
  5432. #if PIN_EXISTS(MOTOR_CURRENT_PWM_Z)
  5433. if (code_seen('Z')) stepper.digipot_current(1, code_value_int());
  5434. #endif
  5435. #if PIN_EXISTS(MOTOR_CURRENT_PWM_E)
  5436. if (code_seen('E')) stepper.digipot_current(2, code_value_int());
  5437. #endif
  5438. #if ENABLED(DIGIPOT_I2C)
  5439. // this one uses actual amps in floating point
  5440. LOOP_XYZE(i) if (code_seen(axis_codes[i])) digipot_i2c_set_current(i, code_value_float());
  5441. // for each additional extruder (named B,C,D,E..., channels 4,5,6,7...)
  5442. for (int i = NUM_AXIS; i < DIGIPOT_I2C_NUM_CHANNELS; i++) if (code_seen('B' + i - (NUM_AXIS))) digipot_i2c_set_current(i, code_value_float());
  5443. #endif
  5444. #if ENABLED(DAC_STEPPER_CURRENT)
  5445. if (code_seen('S')) {
  5446. float dac_percent = code_value_float();
  5447. for (uint8_t i = 0; i <= 4; i++) dac_current_percent(i, dac_percent);
  5448. }
  5449. LOOP_XYZE(i) if (code_seen(axis_codes[i])) dac_current_percent(i, code_value_float());
  5450. #endif
  5451. }
  5452. #if HAS_DIGIPOTSS || ENABLED(DAC_STEPPER_CURRENT)
  5453. /**
  5454. * M908: Control digital trimpot directly (M908 P<pin> S<current>)
  5455. */
  5456. inline void gcode_M908() {
  5457. #if HAS_DIGIPOTSS
  5458. stepper.digitalPotWrite(
  5459. code_seen('P') ? code_value_int() : 0,
  5460. code_seen('S') ? code_value_int() : 0
  5461. );
  5462. #endif
  5463. #ifdef DAC_STEPPER_CURRENT
  5464. dac_current_raw(
  5465. code_seen('P') ? code_value_byte() : -1,
  5466. code_seen('S') ? code_value_ushort() : 0
  5467. );
  5468. #endif
  5469. }
  5470. #if ENABLED(DAC_STEPPER_CURRENT) // As with Printrbot RevF
  5471. inline void gcode_M909() { dac_print_values(); }
  5472. inline void gcode_M910() { dac_commit_eeprom(); }
  5473. #endif
  5474. #endif // HAS_DIGIPOTSS || DAC_STEPPER_CURRENT
  5475. #if HAS_MICROSTEPS
  5476. // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  5477. inline void gcode_M350() {
  5478. if (code_seen('S')) for (int i = 0; i <= 4; i++) stepper.microstep_mode(i, code_value_byte());
  5479. LOOP_XYZE(i) if (code_seen(axis_codes[i])) stepper.microstep_mode(i, code_value_byte());
  5480. if (code_seen('B')) stepper.microstep_mode(4, code_value_byte());
  5481. stepper.microstep_readings();
  5482. }
  5483. /**
  5484. * M351: Toggle MS1 MS2 pins directly with axis codes X Y Z E B
  5485. * S# determines MS1 or MS2, X# sets the pin high/low.
  5486. */
  5487. inline void gcode_M351() {
  5488. if (code_seen('S')) switch (code_value_byte()) {
  5489. case 1:
  5490. LOOP_XYZE(i) if (code_seen(axis_codes[i])) stepper.microstep_ms(i, code_value_byte(), -1);
  5491. if (code_seen('B')) stepper.microstep_ms(4, code_value_byte(), -1);
  5492. break;
  5493. case 2:
  5494. LOOP_XYZE(i) if (code_seen(axis_codes[i])) stepper.microstep_ms(i, -1, code_value_byte());
  5495. if (code_seen('B')) stepper.microstep_ms(4, -1, code_value_byte());
  5496. break;
  5497. }
  5498. stepper.microstep_readings();
  5499. }
  5500. #endif // HAS_MICROSTEPS
  5501. #if ENABLED(MIXING_EXTRUDER)
  5502. /**
  5503. * M163: Set a single mix factor for a mixing extruder
  5504. * This is called "weight" by some systems.
  5505. *
  5506. * S[index] The channel index to set
  5507. * P[float] The mix value
  5508. *
  5509. */
  5510. inline void gcode_M163() {
  5511. int mix_index = code_seen('S') ? code_value_int() : 0;
  5512. float mix_value = code_seen('P') ? code_value_float() : 0.0;
  5513. if (mix_index < MIXING_STEPPERS) mixing_factor[mix_index] = mix_value;
  5514. }
  5515. #if MIXING_VIRTUAL_TOOLS > 1
  5516. /**
  5517. * M164: Store the current mix factors as a virtual tool.
  5518. *
  5519. * S[index] The virtual tool to store
  5520. *
  5521. */
  5522. inline void gcode_M164() {
  5523. int tool_index = code_seen('S') ? code_value_int() : 0;
  5524. if (tool_index < MIXING_VIRTUAL_TOOLS) {
  5525. normalize_mix();
  5526. for (uint8_t i = 0; i < MIXING_STEPPERS; i++)
  5527. mixing_virtual_tool_mix[tool_index][i] = mixing_factor[i];
  5528. }
  5529. }
  5530. #endif
  5531. #if ENABLED(DIRECT_MIXING_IN_G1)
  5532. /**
  5533. * M165: Set multiple mix factors for a mixing extruder.
  5534. * Factors that are left out will be set to 0.
  5535. * All factors together must add up to 1.0.
  5536. *
  5537. * A[factor] Mix factor for extruder stepper 1
  5538. * B[factor] Mix factor for extruder stepper 2
  5539. * C[factor] Mix factor for extruder stepper 3
  5540. * D[factor] Mix factor for extruder stepper 4
  5541. * H[factor] Mix factor for extruder stepper 5
  5542. * I[factor] Mix factor for extruder stepper 6
  5543. *
  5544. */
  5545. inline void gcode_M165() { gcode_get_mix(); }
  5546. #endif
  5547. #endif // MIXING_EXTRUDER
  5548. /**
  5549. * M999: Restart after being stopped
  5550. *
  5551. * Default behaviour is to flush the serial buffer and request
  5552. * a resend to the host starting on the last N line received.
  5553. *
  5554. * Sending "M999 S1" will resume printing without flushing the
  5555. * existing command buffer.
  5556. *
  5557. */
  5558. inline void gcode_M999() {
  5559. Running = true;
  5560. lcd_reset_alert_level();
  5561. if (code_seen('S') && code_value_bool()) return;
  5562. // gcode_LastN = Stopped_gcode_LastN;
  5563. FlushSerialRequestResend();
  5564. }
  5565. #if ENABLED(SWITCHING_EXTRUDER)
  5566. inline void move_extruder_servo(uint8_t e) {
  5567. const int angles[2] = SWITCHING_EXTRUDER_SERVO_ANGLES;
  5568. MOVE_SERVO(SWITCHING_EXTRUDER_SERVO_NR, angles[e]);
  5569. }
  5570. #endif
  5571. inline void invalid_extruder_error(const uint8_t &e) {
  5572. SERIAL_ECHO_START;
  5573. SERIAL_CHAR('T');
  5574. SERIAL_PROTOCOL_F(e, DEC);
  5575. SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
  5576. }
  5577. /**
  5578. * Perform a tool-change, which may result in moving the
  5579. * previous tool out of the way and the new tool into place.
  5580. */
  5581. void tool_change(const uint8_t tmp_extruder, const float fr_mm_s/*=0.0*/, bool no_move/*=false*/) {
  5582. #if ENABLED(MIXING_EXTRUDER) && MIXING_VIRTUAL_TOOLS > 1
  5583. if (tmp_extruder >= MIXING_VIRTUAL_TOOLS) {
  5584. invalid_extruder_error(tmp_extruder);
  5585. return;
  5586. }
  5587. // T0-Tnnn: Switch virtual tool by changing the mix
  5588. for (uint8_t j = 0; j < MIXING_STEPPERS; j++)
  5589. mixing_factor[j] = mixing_virtual_tool_mix[tmp_extruder][j];
  5590. #else //!MIXING_EXTRUDER || MIXING_VIRTUAL_TOOLS <= 1
  5591. #if HOTENDS > 1
  5592. if (tmp_extruder >= EXTRUDERS) {
  5593. invalid_extruder_error(tmp_extruder);
  5594. return;
  5595. }
  5596. float old_feedrate_mm_s = feedrate_mm_s;
  5597. feedrate_mm_s = fr_mm_s > 0.0 ? (old_feedrate_mm_s = fr_mm_s) : XY_PROBE_FEEDRATE_MM_S;
  5598. if (tmp_extruder != active_extruder) {
  5599. if (!no_move && axis_unhomed_error(true, true, true)) {
  5600. SERIAL_ECHOLNPGM("No move on toolchange");
  5601. no_move = true;
  5602. }
  5603. // Save current position to destination, for use later
  5604. set_destination_to_current();
  5605. #if ENABLED(DUAL_X_CARRIAGE)
  5606. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5607. if (DEBUGGING(LEVELING)) {
  5608. SERIAL_ECHOPGM("Dual X Carriage Mode ");
  5609. switch (dual_x_carriage_mode) {
  5610. case DXC_DUPLICATION_MODE: SERIAL_ECHOLNPGM("DXC_DUPLICATION_MODE"); break;
  5611. case DXC_AUTO_PARK_MODE: SERIAL_ECHOLNPGM("DXC_AUTO_PARK_MODE"); break;
  5612. case DXC_FULL_CONTROL_MODE: SERIAL_ECHOLNPGM("DXC_FULL_CONTROL_MODE"); break;
  5613. }
  5614. }
  5615. #endif
  5616. if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE && IsRunning() &&
  5617. (delayed_move_time || current_position[X_AXIS] != x_home_pos(active_extruder))
  5618. ) {
  5619. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5620. if (DEBUGGING(LEVELING)) {
  5621. SERIAL_ECHOPAIR("Raise to ", current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT); SERIAL_EOL;
  5622. SERIAL_ECHOPAIR("MoveX to ", x_home_pos(active_extruder)); SERIAL_EOL;
  5623. SERIAL_ECHOPAIR("Lower to ", current_position[Z_AXIS]); SERIAL_EOL;
  5624. }
  5625. #endif
  5626. // Park old head: 1) raise 2) move to park position 3) lower
  5627. for (uint8_t i = 0; i < 3; i++)
  5628. planner.buffer_line(
  5629. i == 0 ? current_position[X_AXIS] : x_home_pos(active_extruder),
  5630. current_position[Y_AXIS],
  5631. current_position[Z_AXIS] + (i == 2 ? 0 : TOOLCHANGE_PARK_ZLIFT),
  5632. current_position[E_AXIS],
  5633. planner.max_feedrate_mm_s[i == 1 ? X_AXIS : Z_AXIS],
  5634. active_extruder
  5635. );
  5636. stepper.synchronize();
  5637. }
  5638. // apply Y & Z extruder offset (x offset is already used in determining home pos)
  5639. current_position[Y_AXIS] -= hotend_offset[Y_AXIS][active_extruder] - hotend_offset[Y_AXIS][tmp_extruder];
  5640. current_position[Z_AXIS] -= hotend_offset[Z_AXIS][active_extruder] - hotend_offset[Z_AXIS][tmp_extruder];
  5641. active_extruder = tmp_extruder;
  5642. // This function resets the max/min values - the current position may be overwritten below.
  5643. set_axis_is_at_home(X_AXIS);
  5644. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5645. if (DEBUGGING(LEVELING)) DEBUG_POS("New Extruder", current_position);
  5646. #endif
  5647. switch (dual_x_carriage_mode) {
  5648. case DXC_FULL_CONTROL_MODE:
  5649. current_position[X_AXIS] = LOGICAL_X_POSITION(inactive_extruder_x_pos);
  5650. inactive_extruder_x_pos = RAW_X_POSITION(destination[X_AXIS]);
  5651. break;
  5652. case DXC_DUPLICATION_MODE:
  5653. active_extruder_parked = (active_extruder == 0); // this triggers the second extruder to move into the duplication position
  5654. if (active_extruder_parked)
  5655. current_position[X_AXIS] = LOGICAL_X_POSITION(inactive_extruder_x_pos);
  5656. else
  5657. current_position[X_AXIS] = destination[X_AXIS] + duplicate_extruder_x_offset;
  5658. inactive_extruder_x_pos = RAW_X_POSITION(destination[X_AXIS]);
  5659. extruder_duplication_enabled = false;
  5660. break;
  5661. default:
  5662. // record raised toolhead position for use by unpark
  5663. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  5664. raised_parked_position[Z_AXIS] += TOOLCHANGE_UNPARK_ZLIFT;
  5665. active_extruder_parked = true;
  5666. delayed_move_time = 0;
  5667. break;
  5668. }
  5669. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5670. if (DEBUGGING(LEVELING)) {
  5671. SERIAL_ECHOLNPAIR("Active extruder parked: ", active_extruder_parked ? "yes" : "no");
  5672. DEBUG_POS("New extruder (parked)", current_position);
  5673. }
  5674. #endif
  5675. // No extra case for AUTO_BED_LEVELING_FEATURE in DUAL_X_CARRIAGE. Does that mean they don't work together?
  5676. #else // !DUAL_X_CARRIAGE
  5677. #if ENABLED(SWITCHING_EXTRUDER)
  5678. // <0 if the new nozzle is higher, >0 if lower. A bigger raise when lower.
  5679. float z_diff = hotend_offset[Z_AXIS][active_extruder] - hotend_offset[Z_AXIS][tmp_extruder],
  5680. z_raise = 0.3 + (z_diff > 0.0 ? z_diff : 0.0);
  5681. // Always raise by some amount
  5682. planner.buffer_line(
  5683. current_position[X_AXIS],
  5684. current_position[Y_AXIS],
  5685. current_position[Z_AXIS] + z_raise,
  5686. current_position[E_AXIS],
  5687. planner.max_feedrate_mm_s[Z_AXIS],
  5688. active_extruder
  5689. );
  5690. stepper.synchronize();
  5691. move_extruder_servo(active_extruder);
  5692. delay(500);
  5693. // Move back down, if needed
  5694. if (z_raise != z_diff) {
  5695. planner.buffer_line(
  5696. current_position[X_AXIS],
  5697. current_position[Y_AXIS],
  5698. current_position[Z_AXIS] + z_diff,
  5699. current_position[E_AXIS],
  5700. planner.max_feedrate_mm_s[Z_AXIS],
  5701. active_extruder
  5702. );
  5703. stepper.synchronize();
  5704. }
  5705. #endif
  5706. /**
  5707. * Set current_position to the position of the new nozzle.
  5708. * Offsets are based on linear distance, so we need to get
  5709. * the resulting position in coordinate space.
  5710. *
  5711. * - With grid or 3-point leveling, offset XYZ by a tilted vector
  5712. * - With mesh leveling, update Z for the new position
  5713. * - Otherwise, just use the raw linear distance
  5714. *
  5715. * Software endstops are altered here too. Consider a case where:
  5716. * E0 at X=0 ... E1 at X=10
  5717. * When we switch to E1 now X=10, but E1 can't move left.
  5718. * To express this we apply the change in XY to the software endstops.
  5719. * E1 can move farther right than E0, so the right limit is extended.
  5720. *
  5721. * Note that we don't adjust the Z software endstops. Why not?
  5722. * Consider a case where Z=0 (here) and switching to E1 makes Z=1
  5723. * because the bed is 1mm lower at the new position. As long as
  5724. * the first nozzle is out of the way, the carriage should be
  5725. * allowed to move 1mm lower. This technically "breaks" the
  5726. * Z software endstop. But this is technically correct (and
  5727. * there is no viable alternative).
  5728. */
  5729. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  5730. // Offset extruder, make sure to apply the bed level rotation matrix
  5731. vector_3 tmp_offset_vec = vector_3(hotend_offset[X_AXIS][tmp_extruder],
  5732. hotend_offset[Y_AXIS][tmp_extruder],
  5733. 0),
  5734. act_offset_vec = vector_3(hotend_offset[X_AXIS][active_extruder],
  5735. hotend_offset[Y_AXIS][active_extruder],
  5736. 0),
  5737. offset_vec = tmp_offset_vec - act_offset_vec;
  5738. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5739. if (DEBUGGING(LEVELING)) {
  5740. tmp_offset_vec.debug("tmp_offset_vec");
  5741. act_offset_vec.debug("act_offset_vec");
  5742. offset_vec.debug("offset_vec (BEFORE)");
  5743. }
  5744. #endif
  5745. offset_vec.apply_rotation(planner.bed_level_matrix.transpose(planner.bed_level_matrix));
  5746. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5747. if (DEBUGGING(LEVELING)) offset_vec.debug("offset_vec (AFTER)");
  5748. #endif
  5749. // Adjustments to the current position
  5750. float xydiff[2] = { offset_vec.x, offset_vec.y };
  5751. current_position[Z_AXIS] += offset_vec.z;
  5752. #else // !AUTO_BED_LEVELING_LINEAR
  5753. float xydiff[2] = {
  5754. hotend_offset[X_AXIS][tmp_extruder] - hotend_offset[X_AXIS][active_extruder],
  5755. hotend_offset[Y_AXIS][tmp_extruder] - hotend_offset[Y_AXIS][active_extruder]
  5756. };
  5757. #if ENABLED(MESH_BED_LEVELING)
  5758. if (mbl.active()) {
  5759. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5760. if (DEBUGGING(LEVELING)) SERIAL_ECHOPAIR("Z before MBL: ", current_position[Z_AXIS]);
  5761. #endif
  5762. float xpos = RAW_CURRENT_POSITION(X_AXIS),
  5763. ypos = RAW_CURRENT_POSITION(Y_AXIS);
  5764. current_position[Z_AXIS] += mbl.get_z(xpos + xydiff[X_AXIS], ypos + xydiff[Y_AXIS]) - mbl.get_z(xpos, ypos);
  5765. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5766. if (DEBUGGING(LEVELING))
  5767. SERIAL_ECHOLNPAIR(" after: ", current_position[Z_AXIS]);
  5768. #endif
  5769. }
  5770. #endif // MESH_BED_LEVELING
  5771. #endif // !AUTO_BED_LEVELING_FEATURE
  5772. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5773. if (DEBUGGING(LEVELING)) {
  5774. SERIAL_ECHOPAIR("Offset Tool XY by { ", xydiff[X_AXIS]);
  5775. SERIAL_ECHOPAIR(", ", xydiff[Y_AXIS]);
  5776. SERIAL_ECHOLNPGM(" }");
  5777. }
  5778. #endif
  5779. // The newly-selected extruder XY is actually at...
  5780. current_position[X_AXIS] += xydiff[X_AXIS];
  5781. current_position[Y_AXIS] += xydiff[Y_AXIS];
  5782. for (uint8_t i = X_AXIS; i <= Y_AXIS; i++) {
  5783. position_shift[i] += xydiff[i];
  5784. update_software_endstops((AxisEnum)i);
  5785. }
  5786. // Set the new active extruder
  5787. active_extruder = tmp_extruder;
  5788. #endif // !DUAL_X_CARRIAGE
  5789. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5790. if (DEBUGGING(LEVELING)) DEBUG_POS("Sync After Toolchange", current_position);
  5791. #endif
  5792. // Tell the planner the new "current position"
  5793. SYNC_PLAN_POSITION_KINEMATIC();
  5794. // Move to the "old position" (move the extruder into place)
  5795. if (!no_move && IsRunning()) {
  5796. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5797. if (DEBUGGING(LEVELING)) DEBUG_POS("Move back", destination);
  5798. #endif
  5799. prepare_move_to_destination();
  5800. }
  5801. } // (tmp_extruder != active_extruder)
  5802. stepper.synchronize();
  5803. #if ENABLED(EXT_SOLENOID)
  5804. disable_all_solenoids();
  5805. enable_solenoid_on_active_extruder();
  5806. #endif // EXT_SOLENOID
  5807. feedrate_mm_s = old_feedrate_mm_s;
  5808. #else // HOTENDS <= 1
  5809. // Set the new active extruder
  5810. active_extruder = tmp_extruder;
  5811. UNUSED(fr_mm_s);
  5812. UNUSED(no_move);
  5813. #endif // HOTENDS <= 1
  5814. SERIAL_ECHO_START;
  5815. SERIAL_ECHOLNPAIR(MSG_ACTIVE_EXTRUDER, (int)active_extruder);
  5816. #endif //!MIXING_EXTRUDER || MIXING_VIRTUAL_TOOLS <= 1
  5817. }
  5818. /**
  5819. * T0-T3: Switch tool, usually switching extruders
  5820. *
  5821. * F[units/min] Set the movement feedrate
  5822. * S1 Don't move the tool in XY after change
  5823. */
  5824. inline void gcode_T(uint8_t tmp_extruder) {
  5825. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5826. if (DEBUGGING(LEVELING)) {
  5827. SERIAL_ECHOPAIR(">>> gcode_T(", tmp_extruder);
  5828. SERIAL_ECHOLNPGM(")");
  5829. DEBUG_POS("BEFORE", current_position);
  5830. }
  5831. #endif
  5832. #if HOTENDS == 1 || (ENABLED(MIXING_EXTRUDER) && MIXING_VIRTUAL_TOOLS > 1)
  5833. tool_change(tmp_extruder);
  5834. #elif HOTENDS > 1
  5835. tool_change(
  5836. tmp_extruder,
  5837. code_seen('F') ? MMM_TO_MMS(code_value_axis_units(X_AXIS)) : 0.0,
  5838. (tmp_extruder == active_extruder) || (code_seen('S') && code_value_bool())
  5839. );
  5840. #endif
  5841. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5842. if (DEBUGGING(LEVELING)) {
  5843. DEBUG_POS("AFTER", current_position);
  5844. SERIAL_ECHOLNPGM("<<< gcode_T");
  5845. }
  5846. #endif
  5847. }
  5848. /**
  5849. * Process a single command and dispatch it to its handler
  5850. * This is called from the main loop()
  5851. */
  5852. void process_next_command() {
  5853. current_command = command_queue[cmd_queue_index_r];
  5854. if (DEBUGGING(ECHO)) {
  5855. SERIAL_ECHO_START;
  5856. SERIAL_ECHOLN(current_command);
  5857. }
  5858. // Sanitize the current command:
  5859. // - Skip leading spaces
  5860. // - Bypass N[-0-9][0-9]*[ ]*
  5861. // - Overwrite * with nul to mark the end
  5862. while (*current_command == ' ') ++current_command;
  5863. if (*current_command == 'N' && NUMERIC_SIGNED(current_command[1])) {
  5864. current_command += 2; // skip N[-0-9]
  5865. while (NUMERIC(*current_command)) ++current_command; // skip [0-9]*
  5866. while (*current_command == ' ') ++current_command; // skip [ ]*
  5867. }
  5868. char* starpos = strchr(current_command, '*'); // * should always be the last parameter
  5869. if (starpos) while (*starpos == ' ' || *starpos == '*') *starpos-- = '\0'; // nullify '*' and ' '
  5870. char *cmd_ptr = current_command;
  5871. // Get the command code, which must be G, M, or T
  5872. char command_code = *cmd_ptr++;
  5873. // Skip spaces to get the numeric part
  5874. while (*cmd_ptr == ' ') cmd_ptr++;
  5875. uint16_t codenum = 0; // define ahead of goto
  5876. // Bail early if there's no code
  5877. bool code_is_good = NUMERIC(*cmd_ptr);
  5878. if (!code_is_good) goto ExitUnknownCommand;
  5879. // Get and skip the code number
  5880. do {
  5881. codenum = (codenum * 10) + (*cmd_ptr - '0');
  5882. cmd_ptr++;
  5883. } while (NUMERIC(*cmd_ptr));
  5884. // Skip all spaces to get to the first argument, or nul
  5885. while (*cmd_ptr == ' ') cmd_ptr++;
  5886. // The command's arguments (if any) start here, for sure!
  5887. current_command_args = cmd_ptr;
  5888. KEEPALIVE_STATE(IN_HANDLER);
  5889. // Handle a known G, M, or T
  5890. switch (command_code) {
  5891. case 'G': switch (codenum) {
  5892. // G0, G1
  5893. case 0:
  5894. case 1:
  5895. #if IS_SCARA
  5896. gcode_G0_G1(codenum == 0);
  5897. #else
  5898. gcode_G0_G1();
  5899. #endif
  5900. break;
  5901. // G2, G3
  5902. #if ENABLED(ARC_SUPPORT) && DISABLED(SCARA)
  5903. case 2: // G2 - CW ARC
  5904. case 3: // G3 - CCW ARC
  5905. gcode_G2_G3(codenum == 2);
  5906. break;
  5907. #endif
  5908. // G4 Dwell
  5909. case 4:
  5910. gcode_G4();
  5911. break;
  5912. #if ENABLED(BEZIER_CURVE_SUPPORT)
  5913. // G5
  5914. case 5: // G5 - Cubic B_spline
  5915. gcode_G5();
  5916. break;
  5917. #endif // BEZIER_CURVE_SUPPORT
  5918. #if ENABLED(FWRETRACT)
  5919. case 10: // G10: retract
  5920. case 11: // G11: retract_recover
  5921. gcode_G10_G11(codenum == 10);
  5922. break;
  5923. #endif // FWRETRACT
  5924. #if ENABLED(NOZZLE_CLEAN_FEATURE)
  5925. case 12:
  5926. gcode_G12(); // G12: Nozzle Clean
  5927. break;
  5928. #endif // NOZZLE_CLEAN_FEATURE
  5929. #if ENABLED(INCH_MODE_SUPPORT)
  5930. case 20: //G20: Inch Mode
  5931. gcode_G20();
  5932. break;
  5933. case 21: //G21: MM Mode
  5934. gcode_G21();
  5935. break;
  5936. #endif // INCH_MODE_SUPPORT
  5937. #if ENABLED(NOZZLE_PARK_FEATURE)
  5938. case 27: // G27: Nozzle Park
  5939. gcode_G27();
  5940. break;
  5941. #endif // NOZZLE_PARK_FEATURE
  5942. case 28: // G28: Home all axes, one at a time
  5943. gcode_G28();
  5944. break;
  5945. #if ENABLED(AUTO_BED_LEVELING_FEATURE) || ENABLED(MESH_BED_LEVELING)
  5946. case 29: // G29 Detailed Z probe, probes the bed at 3 or more points.
  5947. gcode_G29();
  5948. break;
  5949. #endif // AUTO_BED_LEVELING_FEATURE
  5950. #if HAS_BED_PROBE
  5951. case 30: // G30 Single Z probe
  5952. gcode_G30();
  5953. break;
  5954. #if ENABLED(Z_PROBE_SLED)
  5955. case 31: // G31: dock the sled
  5956. gcode_G31();
  5957. break;
  5958. case 32: // G32: undock the sled
  5959. gcode_G32();
  5960. break;
  5961. #endif // Z_PROBE_SLED
  5962. #endif // HAS_BED_PROBE
  5963. case 90: // G90
  5964. relative_mode = false;
  5965. break;
  5966. case 91: // G91
  5967. relative_mode = true;
  5968. break;
  5969. case 92: // G92
  5970. gcode_G92();
  5971. break;
  5972. }
  5973. break;
  5974. case 'M': switch (codenum) {
  5975. #if ENABLED(ULTIPANEL) || ENABLED(EMERGENCY_PARSER)
  5976. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  5977. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  5978. gcode_M0_M1();
  5979. break;
  5980. #endif // ULTIPANEL
  5981. case 17:
  5982. gcode_M17();
  5983. break;
  5984. #if ENABLED(SDSUPPORT)
  5985. case 20: // M20 - list SD card
  5986. gcode_M20(); break;
  5987. case 21: // M21 - init SD card
  5988. gcode_M21(); break;
  5989. case 22: //M22 - release SD card
  5990. gcode_M22(); break;
  5991. case 23: //M23 - Select file
  5992. gcode_M23(); break;
  5993. case 24: //M24 - Start SD print
  5994. gcode_M24(); break;
  5995. case 25: //M25 - Pause SD print
  5996. gcode_M25(); break;
  5997. case 26: //M26 - Set SD index
  5998. gcode_M26(); break;
  5999. case 27: //M27 - Get SD status
  6000. gcode_M27(); break;
  6001. case 28: //M28 - Start SD write
  6002. gcode_M28(); break;
  6003. case 29: //M29 - Stop SD write
  6004. gcode_M29(); break;
  6005. case 30: //M30 <filename> Delete File
  6006. gcode_M30(); break;
  6007. case 32: //M32 - Select file and start SD print
  6008. gcode_M32(); break;
  6009. #if ENABLED(LONG_FILENAME_HOST_SUPPORT)
  6010. case 33: //M33 - Get the long full path to a file or folder
  6011. gcode_M33(); break;
  6012. #endif // LONG_FILENAME_HOST_SUPPORT
  6013. case 928: //M928 - Start SD write
  6014. gcode_M928(); break;
  6015. #endif //SDSUPPORT
  6016. case 31: //M31 take time since the start of the SD print or an M109 command
  6017. gcode_M31();
  6018. break;
  6019. case 42: //M42 -Change pin status via gcode
  6020. gcode_M42();
  6021. break;
  6022. #if ENABLED(Z_MIN_PROBE_REPEATABILITY_TEST)
  6023. case 48: // M48 Z probe repeatability
  6024. gcode_M48();
  6025. break;
  6026. #endif // Z_MIN_PROBE_REPEATABILITY_TEST
  6027. case 75: // Start print timer
  6028. gcode_M75();
  6029. break;
  6030. case 76: // Pause print timer
  6031. gcode_M76();
  6032. break;
  6033. case 77: // Stop print timer
  6034. gcode_M77();
  6035. break;
  6036. #if ENABLED(PRINTCOUNTER)
  6037. case 78: // Show print statistics
  6038. gcode_M78();
  6039. break;
  6040. #endif
  6041. #if ENABLED(M100_FREE_MEMORY_WATCHER)
  6042. case 100:
  6043. gcode_M100();
  6044. break;
  6045. #endif
  6046. case 104: // M104
  6047. gcode_M104();
  6048. break;
  6049. case 110: // M110: Set Current Line Number
  6050. gcode_M110();
  6051. break;
  6052. case 111: // M111: Set debug level
  6053. gcode_M111();
  6054. break;
  6055. #if DISABLED(EMERGENCY_PARSER)
  6056. case 108: // M108: Cancel Waiting
  6057. gcode_M108();
  6058. break;
  6059. case 112: // M112: Emergency Stop
  6060. gcode_M112();
  6061. break;
  6062. case 410: // M410 quickstop - Abort all the planned moves.
  6063. gcode_M410();
  6064. break;
  6065. #endif
  6066. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  6067. case 113: // M113: Set Host Keepalive interval
  6068. gcode_M113();
  6069. break;
  6070. #endif
  6071. case 140: // M140: Set bed temp
  6072. gcode_M140();
  6073. break;
  6074. case 105: // M105: Read current temperature
  6075. gcode_M105();
  6076. KEEPALIVE_STATE(NOT_BUSY);
  6077. return; // "ok" already printed
  6078. case 109: // M109: Wait for temperature
  6079. gcode_M109();
  6080. break;
  6081. #if HAS_TEMP_BED
  6082. case 190: // M190: Wait for bed heater to reach target
  6083. gcode_M190();
  6084. break;
  6085. #endif // HAS_TEMP_BED
  6086. #if FAN_COUNT > 0
  6087. case 106: // M106: Fan On
  6088. gcode_M106();
  6089. break;
  6090. case 107: // M107: Fan Off
  6091. gcode_M107();
  6092. break;
  6093. #endif // FAN_COUNT > 0
  6094. #if ENABLED(BARICUDA)
  6095. // PWM for HEATER_1_PIN
  6096. #if HAS_HEATER_1
  6097. case 126: // M126: valve open
  6098. gcode_M126();
  6099. break;
  6100. case 127: // M127: valve closed
  6101. gcode_M127();
  6102. break;
  6103. #endif // HAS_HEATER_1
  6104. // PWM for HEATER_2_PIN
  6105. #if HAS_HEATER_2
  6106. case 128: // M128: valve open
  6107. gcode_M128();
  6108. break;
  6109. case 129: // M129: valve closed
  6110. gcode_M129();
  6111. break;
  6112. #endif // HAS_HEATER_2
  6113. #endif // BARICUDA
  6114. #if HAS_POWER_SWITCH
  6115. case 80: // M80: Turn on Power Supply
  6116. gcode_M80();
  6117. break;
  6118. #endif // HAS_POWER_SWITCH
  6119. case 81: // M81: Turn off Power, including Power Supply, if possible
  6120. gcode_M81();
  6121. break;
  6122. case 82:
  6123. gcode_M82();
  6124. break;
  6125. case 83:
  6126. gcode_M83();
  6127. break;
  6128. case 18: // (for compatibility)
  6129. case 84: // M84
  6130. gcode_M18_M84();
  6131. break;
  6132. case 85: // M85
  6133. gcode_M85();
  6134. break;
  6135. case 92: // M92: Set the steps-per-unit for one or more axes
  6136. gcode_M92();
  6137. break;
  6138. case 115: // M115: Report capabilities
  6139. gcode_M115();
  6140. break;
  6141. case 117: // M117: Set LCD message text, if possible
  6142. gcode_M117();
  6143. break;
  6144. case 114: // M114: Report current position
  6145. gcode_M114();
  6146. break;
  6147. case 120: // M120: Enable endstops
  6148. gcode_M120();
  6149. break;
  6150. case 121: // M121: Disable endstops
  6151. gcode_M121();
  6152. break;
  6153. case 119: // M119: Report endstop states
  6154. gcode_M119();
  6155. break;
  6156. #if ENABLED(ULTIPANEL)
  6157. case 145: // M145: Set material heatup parameters
  6158. gcode_M145();
  6159. break;
  6160. #endif
  6161. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  6162. case 149:
  6163. gcode_M149();
  6164. break;
  6165. #endif
  6166. #if ENABLED(BLINKM)
  6167. case 150: // M150
  6168. gcode_M150();
  6169. break;
  6170. #endif //BLINKM
  6171. #if ENABLED(EXPERIMENTAL_I2CBUS)
  6172. case 155:
  6173. gcode_M155();
  6174. break;
  6175. case 156:
  6176. gcode_M156();
  6177. break;
  6178. #endif //EXPERIMENTAL_I2CBUS
  6179. #if ENABLED(MIXING_EXTRUDER)
  6180. case 163: // M163 S<int> P<float> set weight for a mixing extruder
  6181. gcode_M163();
  6182. break;
  6183. #if MIXING_VIRTUAL_TOOLS > 1
  6184. case 164: // M164 S<int> save current mix as a virtual extruder
  6185. gcode_M164();
  6186. break;
  6187. #endif
  6188. #if ENABLED(DIRECT_MIXING_IN_G1)
  6189. case 165: // M165 [ABCDHI]<float> set multiple mix weights
  6190. gcode_M165();
  6191. break;
  6192. #endif
  6193. #endif
  6194. case 200: // M200 D<diameter> Set filament diameter and set E axis units to cubic. (Use S0 to revert to linear units.)
  6195. gcode_M200();
  6196. break;
  6197. case 201: // M201
  6198. gcode_M201();
  6199. break;
  6200. #if 0 // Not used for Sprinter/grbl gen6
  6201. case 202: // M202
  6202. gcode_M202();
  6203. break;
  6204. #endif
  6205. case 203: // M203 max feedrate units/sec
  6206. gcode_M203();
  6207. break;
  6208. case 204: // M204 acclereration S normal moves T filmanent only moves
  6209. gcode_M204();
  6210. break;
  6211. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  6212. gcode_M205();
  6213. break;
  6214. case 206: // M206 additional homing offset
  6215. gcode_M206();
  6216. break;
  6217. #if ENABLED(DELTA)
  6218. case 665: // M665 set delta configurations L<diagonal_rod> R<delta_radius> S<segments_per_sec>
  6219. gcode_M665();
  6220. break;
  6221. #endif
  6222. #if ENABLED(DELTA) || ENABLED(Z_DUAL_ENDSTOPS)
  6223. case 666: // M666 set delta / dual endstop adjustment
  6224. gcode_M666();
  6225. break;
  6226. #endif
  6227. #if ENABLED(FWRETRACT)
  6228. case 207: // M207 - Set Retract Length: S<length>, Feedrate: F<units/min>, and Z lift: Z<distance>
  6229. gcode_M207();
  6230. break;
  6231. case 208: // M208 - Set Recover (unretract) Additional (!) Length: S<length> and Feedrate: F<units/min>
  6232. gcode_M208();
  6233. break;
  6234. case 209: // M209 - Turn Automatic Retract Detection on/off: S<bool> (For slicers that don't support G10/11). Every normal extrude-only move will be classified as retract depending on the direction.
  6235. gcode_M209();
  6236. break;
  6237. #endif // FWRETRACT
  6238. case 211: // M211 - Enable, Disable, and/or Report software endstops
  6239. gcode_M211();
  6240. break;
  6241. #if HOTENDS > 1
  6242. case 218: // M218 - Set a tool offset: T<index> X<offset> Y<offset>
  6243. gcode_M218();
  6244. break;
  6245. #endif
  6246. case 220: // M220 - Set Feedrate Percentage: S<percent> ("FR" on your LCD)
  6247. gcode_M220();
  6248. break;
  6249. case 221: // M221 - Set Flow Percentage: S<percent>
  6250. gcode_M221();
  6251. break;
  6252. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  6253. gcode_M226();
  6254. break;
  6255. #if HAS_SERVOS
  6256. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  6257. gcode_M280();
  6258. break;
  6259. #endif // HAS_SERVOS
  6260. #if HAS_BUZZER
  6261. case 300: // M300 - Play beep tone
  6262. gcode_M300();
  6263. break;
  6264. #endif // HAS_BUZZER
  6265. #if ENABLED(PIDTEMP)
  6266. case 301: // M301
  6267. gcode_M301();
  6268. break;
  6269. #endif // PIDTEMP
  6270. #if ENABLED(PIDTEMPBED)
  6271. case 304: // M304
  6272. gcode_M304();
  6273. break;
  6274. #endif // PIDTEMPBED
  6275. #if defined(CHDK) || HAS_PHOTOGRAPH
  6276. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  6277. gcode_M240();
  6278. break;
  6279. #endif // CHDK || PHOTOGRAPH_PIN
  6280. #if HAS_LCD_CONTRAST
  6281. case 250: // M250 Set LCD contrast value: C<value> (value 0..63)
  6282. gcode_M250();
  6283. break;
  6284. #endif // HAS_LCD_CONTRAST
  6285. #if ENABLED(PREVENT_COLD_EXTRUSION)
  6286. case 302: // allow cold extrudes, or set the minimum extrude temperature
  6287. gcode_M302();
  6288. break;
  6289. #endif // PREVENT_COLD_EXTRUSION
  6290. case 303: // M303 PID autotune
  6291. gcode_M303();
  6292. break;
  6293. #if ENABLED(MORGAN_SCARA)
  6294. case 360: // M360 SCARA Theta pos1
  6295. if (gcode_M360()) return;
  6296. break;
  6297. case 361: // M361 SCARA Theta pos2
  6298. if (gcode_M361()) return;
  6299. break;
  6300. case 362: // M362 SCARA Psi pos1
  6301. if (gcode_M362()) return;
  6302. break;
  6303. case 363: // M363 SCARA Psi pos2
  6304. if (gcode_M363()) return;
  6305. break;
  6306. case 364: // M364 SCARA Psi pos3 (90 deg to Theta)
  6307. if (gcode_M364()) return;
  6308. break;
  6309. #endif // SCARA
  6310. case 400: // M400 finish all moves
  6311. gcode_M400();
  6312. break;
  6313. #if HAS_BED_PROBE
  6314. case 401:
  6315. gcode_M401();
  6316. break;
  6317. case 402:
  6318. gcode_M402();
  6319. break;
  6320. #endif // HAS_BED_PROBE
  6321. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  6322. case 404: //M404 Enter the nominal filament width (3mm, 1.75mm ) N<3.0> or display nominal filament width
  6323. gcode_M404();
  6324. break;
  6325. case 405: //M405 Turn on filament sensor for control
  6326. gcode_M405();
  6327. break;
  6328. case 406: //M406 Turn off filament sensor for control
  6329. gcode_M406();
  6330. break;
  6331. case 407: //M407 Display measured filament diameter
  6332. gcode_M407();
  6333. break;
  6334. #endif // ENABLED(FILAMENT_WIDTH_SENSOR)
  6335. #if ENABLED(MESH_BED_LEVELING)
  6336. case 420: // M420 Enable/Disable Mesh Bed Leveling
  6337. gcode_M420();
  6338. break;
  6339. case 421: // M421 Set a Mesh Bed Leveling Z coordinate
  6340. gcode_M421();
  6341. break;
  6342. #endif
  6343. case 428: // M428 Apply current_position to home_offset
  6344. gcode_M428();
  6345. break;
  6346. case 500: // M500 Store settings in EEPROM
  6347. gcode_M500();
  6348. break;
  6349. case 501: // M501 Read settings from EEPROM
  6350. gcode_M501();
  6351. break;
  6352. case 502: // M502 Revert to default settings
  6353. gcode_M502();
  6354. break;
  6355. case 503: // M503 print settings currently in memory
  6356. gcode_M503();
  6357. break;
  6358. #if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  6359. case 540:
  6360. gcode_M540();
  6361. break;
  6362. #endif
  6363. #if HAS_BED_PROBE
  6364. case 851:
  6365. gcode_M851();
  6366. break;
  6367. #endif // HAS_BED_PROBE
  6368. #if ENABLED(FILAMENT_CHANGE_FEATURE)
  6369. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  6370. gcode_M600();
  6371. break;
  6372. #endif // FILAMENT_CHANGE_FEATURE
  6373. #if ENABLED(DUAL_X_CARRIAGE)
  6374. case 605:
  6375. gcode_M605();
  6376. break;
  6377. #endif // DUAL_X_CARRIAGE
  6378. #if ENABLED(LIN_ADVANCE)
  6379. case 905: // M905 Set advance factor.
  6380. gcode_M905();
  6381. break;
  6382. #endif
  6383. case 907: // M907 Set digital trimpot motor current using axis codes.
  6384. gcode_M907();
  6385. break;
  6386. #if HAS_DIGIPOTSS || ENABLED(DAC_STEPPER_CURRENT)
  6387. case 908: // M908 Control digital trimpot directly.
  6388. gcode_M908();
  6389. break;
  6390. #if ENABLED(DAC_STEPPER_CURRENT) // As with Printrbot RevF
  6391. case 909: // M909 Print digipot/DAC current value
  6392. gcode_M909();
  6393. break;
  6394. case 910: // M910 Commit digipot/DAC value to external EEPROM
  6395. gcode_M910();
  6396. break;
  6397. #endif
  6398. #endif // HAS_DIGIPOTSS || DAC_STEPPER_CURRENT
  6399. #if HAS_MICROSTEPS
  6400. case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  6401. gcode_M350();
  6402. break;
  6403. case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  6404. gcode_M351();
  6405. break;
  6406. #endif // HAS_MICROSTEPS
  6407. case 999: // M999: Restart after being Stopped
  6408. gcode_M999();
  6409. break;
  6410. }
  6411. break;
  6412. case 'T':
  6413. gcode_T(codenum);
  6414. break;
  6415. default: code_is_good = false;
  6416. }
  6417. KEEPALIVE_STATE(NOT_BUSY);
  6418. ExitUnknownCommand:
  6419. // Still unknown command? Throw an error
  6420. if (!code_is_good) unknown_command_error();
  6421. ok_to_send();
  6422. }
  6423. /**
  6424. * Send a "Resend: nnn" message to the host to
  6425. * indicate that a command needs to be re-sent.
  6426. */
  6427. void FlushSerialRequestResend() {
  6428. //char command_queue[cmd_queue_index_r][100]="Resend:";
  6429. MYSERIAL.flush();
  6430. SERIAL_PROTOCOLPGM(MSG_RESEND);
  6431. SERIAL_PROTOCOLLN(gcode_LastN + 1);
  6432. ok_to_send();
  6433. }
  6434. /**
  6435. * Send an "ok" message to the host, indicating
  6436. * that a command was successfully processed.
  6437. *
  6438. * If ADVANCED_OK is enabled also include:
  6439. * N<int> Line number of the command, if any
  6440. * P<int> Planner space remaining
  6441. * B<int> Block queue space remaining
  6442. */
  6443. void ok_to_send() {
  6444. refresh_cmd_timeout();
  6445. if (!send_ok[cmd_queue_index_r]) return;
  6446. SERIAL_PROTOCOLPGM(MSG_OK);
  6447. #if ENABLED(ADVANCED_OK)
  6448. char* p = command_queue[cmd_queue_index_r];
  6449. if (*p == 'N') {
  6450. SERIAL_PROTOCOL(' ');
  6451. SERIAL_ECHO(*p++);
  6452. while (NUMERIC_SIGNED(*p))
  6453. SERIAL_ECHO(*p++);
  6454. }
  6455. SERIAL_PROTOCOLPGM(" P"); SERIAL_PROTOCOL(int(BLOCK_BUFFER_SIZE - planner.movesplanned() - 1));
  6456. SERIAL_PROTOCOLPGM(" B"); SERIAL_PROTOCOL(BUFSIZE - commands_in_queue);
  6457. #endif
  6458. SERIAL_EOL;
  6459. }
  6460. #if ENABLED(min_software_endstops) || ENABLED(max_software_endstops)
  6461. /**
  6462. * Constrain the given coordinates to the software endstops.
  6463. */
  6464. void clamp_to_software_endstops(float target[XYZ]) {
  6465. #if ENABLED(min_software_endstops)
  6466. NOLESS(target[X_AXIS], soft_endstop_min[X_AXIS]);
  6467. NOLESS(target[Y_AXIS], soft_endstop_min[Y_AXIS]);
  6468. NOLESS(target[Z_AXIS], soft_endstop_min[Z_AXIS]);
  6469. #endif
  6470. #if ENABLED(max_software_endstops)
  6471. NOMORE(target[X_AXIS], soft_endstop_max[X_AXIS]);
  6472. NOMORE(target[Y_AXIS], soft_endstop_max[Y_AXIS]);
  6473. NOMORE(target[Z_AXIS], soft_endstop_max[Z_AXIS]);
  6474. #endif
  6475. }
  6476. #endif
  6477. #if ENABLED(AUTO_BED_LEVELING_NONLINEAR)
  6478. // Get the Z adjustment for non-linear bed leveling
  6479. float nonlinear_z_offset(float cartesian[XYZ]) {
  6480. if (nonlinear_grid_spacing[X_AXIS] == 0 || nonlinear_grid_spacing[Y_AXIS] == 0) return 0; // G29 not done!
  6481. int half_x = (ABL_GRID_POINTS_X - 1) / 2,
  6482. half_y = (ABL_GRID_POINTS_Y - 1) / 2;
  6483. float hx2 = half_x - 0.001, hx1 = -hx2,
  6484. hy2 = half_y - 0.001, hy1 = -hy2,
  6485. grid_x = max(hx1, min(hx2, RAW_X_POSITION(cartesian[X_AXIS]) / nonlinear_grid_spacing[X_AXIS])),
  6486. grid_y = max(hy1, min(hy2, RAW_Y_POSITION(cartesian[Y_AXIS]) / nonlinear_grid_spacing[Y_AXIS]));
  6487. int floor_x = floor(grid_x), floor_y = floor(grid_y);
  6488. float ratio_x = grid_x - floor_x, ratio_y = grid_y - floor_y,
  6489. z1 = bed_level_grid[floor_x + half_x][floor_y + half_y],
  6490. z2 = bed_level_grid[floor_x + half_x][floor_y + half_y + 1],
  6491. z3 = bed_level_grid[floor_x + half_x + 1][floor_y + half_y],
  6492. z4 = bed_level_grid[floor_x + half_x + 1][floor_y + half_y + 1],
  6493. left = (1 - ratio_y) * z1 + ratio_y * z2,
  6494. right = (1 - ratio_y) * z3 + ratio_y * z4;
  6495. /*
  6496. SERIAL_ECHOPAIR("grid_x=", grid_x);
  6497. SERIAL_ECHOPAIR(" grid_y=", grid_y);
  6498. SERIAL_ECHOPAIR(" floor_x=", floor_x);
  6499. SERIAL_ECHOPAIR(" floor_y=", floor_y);
  6500. SERIAL_ECHOPAIR(" ratio_x=", ratio_x);
  6501. SERIAL_ECHOPAIR(" ratio_y=", ratio_y);
  6502. SERIAL_ECHOPAIR(" z1=", z1);
  6503. SERIAL_ECHOPAIR(" z2=", z2);
  6504. SERIAL_ECHOPAIR(" z3=", z3);
  6505. SERIAL_ECHOPAIR(" z4=", z4);
  6506. SERIAL_ECHOPAIR(" left=", left);
  6507. SERIAL_ECHOPAIR(" right=", right);
  6508. SERIAL_ECHOPAIR(" offset=", (1 - ratio_x) * left + ratio_x * right);
  6509. //*/
  6510. return (1 - ratio_x) * left + ratio_x * right;
  6511. }
  6512. #endif // AUTO_BED_LEVELING_NONLINEAR
  6513. #if ENABLED(DELTA)
  6514. /**
  6515. * Recalculate factors used for delta kinematics whenever
  6516. * settings have been changed (e.g., by M665).
  6517. */
  6518. void recalc_delta_settings(float radius, float diagonal_rod) {
  6519. delta_tower1_x = -SIN_60 * (radius + DELTA_RADIUS_TRIM_TOWER_1); // front left tower
  6520. delta_tower1_y = -COS_60 * (radius + DELTA_RADIUS_TRIM_TOWER_1);
  6521. delta_tower2_x = SIN_60 * (radius + DELTA_RADIUS_TRIM_TOWER_2); // front right tower
  6522. delta_tower2_y = -COS_60 * (radius + DELTA_RADIUS_TRIM_TOWER_2);
  6523. delta_tower3_x = 0.0; // back middle tower
  6524. delta_tower3_y = (radius + DELTA_RADIUS_TRIM_TOWER_3);
  6525. delta_diagonal_rod_2_tower_1 = sq(diagonal_rod + delta_diagonal_rod_trim_tower_1);
  6526. delta_diagonal_rod_2_tower_2 = sq(diagonal_rod + delta_diagonal_rod_trim_tower_2);
  6527. delta_diagonal_rod_2_tower_3 = sq(diagonal_rod + delta_diagonal_rod_trim_tower_3);
  6528. }
  6529. #if ENABLED(DELTA_FAST_SQRT)
  6530. /**
  6531. * Fast inverse sqrt from Quake III Arena
  6532. * See: https://en.wikipedia.org/wiki/Fast_inverse_square_root
  6533. */
  6534. float Q_rsqrt(float number) {
  6535. long i;
  6536. float x2, y;
  6537. const float threehalfs = 1.5f;
  6538. x2 = number * 0.5f;
  6539. y = number;
  6540. i = * ( long * ) &y; // evil floating point bit level hacking
  6541. i = 0x5f3759df - ( i >> 1 ); // what the f***?
  6542. y = * ( float * ) &i;
  6543. y = y * ( threehalfs - ( x2 * y * y ) ); // 1st iteration
  6544. // y = y * ( threehalfs - ( x2 * y * y ) ); // 2nd iteration, this can be removed
  6545. return y;
  6546. }
  6547. #define _SQRT(n) (1.0f / Q_rsqrt(n))
  6548. #else
  6549. #define _SQRT(n) sqrt(n)
  6550. #endif
  6551. /**
  6552. * Delta Inverse Kinematics
  6553. *
  6554. * Calculate the tower positions for a given logical
  6555. * position, storing the result in the delta[] array.
  6556. *
  6557. * This is an expensive calculation, requiring 3 square
  6558. * roots per segmented linear move, and strains the limits
  6559. * of a Mega2560 with a Graphical Display.
  6560. *
  6561. * Suggested optimizations include:
  6562. *
  6563. * - Disable the home_offset (M206) and/or position_shift (G92)
  6564. * features to remove up to 12 float additions.
  6565. *
  6566. * - Use a fast-inverse-sqrt function and add the reciprocal.
  6567. * (see above)
  6568. */
  6569. // Macro to obtain the Z position of an individual tower
  6570. #define DELTA_Z(T) raw[Z_AXIS] + _SQRT( \
  6571. delta_diagonal_rod_2_tower_##T - HYPOT2( \
  6572. delta_tower##T##_x - raw[X_AXIS], \
  6573. delta_tower##T##_y - raw[Y_AXIS] \
  6574. ) \
  6575. )
  6576. #define DELTA_LOGICAL_IK() do { \
  6577. const float raw[XYZ] = { \
  6578. RAW_X_POSITION(logical[X_AXIS]), \
  6579. RAW_Y_POSITION(logical[Y_AXIS]), \
  6580. RAW_Z_POSITION(logical[Z_AXIS]) \
  6581. }; \
  6582. delta[A_AXIS] = DELTA_Z(1); \
  6583. delta[B_AXIS] = DELTA_Z(2); \
  6584. delta[C_AXIS] = DELTA_Z(3); \
  6585. } while(0)
  6586. #define DELTA_DEBUG() do { \
  6587. SERIAL_ECHOPAIR("cartesian X:", raw[X_AXIS]); \
  6588. SERIAL_ECHOPAIR(" Y:", raw[Y_AXIS]); \
  6589. SERIAL_ECHOLNPAIR(" Z:", raw[Z_AXIS]); \
  6590. SERIAL_ECHOPAIR("delta A:", delta[A_AXIS]); \
  6591. SERIAL_ECHOPAIR(" B:", delta[B_AXIS]); \
  6592. SERIAL_ECHOLNPAIR(" C:", delta[C_AXIS]); \
  6593. } while(0)
  6594. void inverse_kinematics(const float logical[XYZ]) {
  6595. DELTA_LOGICAL_IK();
  6596. // DELTA_DEBUG();
  6597. }
  6598. /**
  6599. * Calculate the highest Z position where the
  6600. * effector has the full range of XY motion.
  6601. */
  6602. float delta_safe_distance_from_top() {
  6603. float cartesian[XYZ] = {
  6604. LOGICAL_X_POSITION(0),
  6605. LOGICAL_Y_POSITION(0),
  6606. LOGICAL_Z_POSITION(0)
  6607. };
  6608. inverse_kinematics(cartesian);
  6609. float distance = delta[A_AXIS];
  6610. cartesian[Y_AXIS] = LOGICAL_Y_POSITION(DELTA_PRINTABLE_RADIUS);
  6611. inverse_kinematics(cartesian);
  6612. return abs(distance - delta[A_AXIS]);
  6613. }
  6614. /**
  6615. * Delta Forward Kinematics
  6616. *
  6617. * See the Wikipedia article "Trilateration"
  6618. * https://en.wikipedia.org/wiki/Trilateration
  6619. *
  6620. * Establish a new coordinate system in the plane of the
  6621. * three carriage points. This system has its origin at
  6622. * tower1, with tower2 on the X axis. Tower3 is in the X-Y
  6623. * plane with a Z component of zero.
  6624. * We will define unit vectors in this coordinate system
  6625. * in our original coordinate system. Then when we calculate
  6626. * the Xnew, Ynew and Znew values, we can translate back into
  6627. * the original system by moving along those unit vectors
  6628. * by the corresponding values.
  6629. *
  6630. * Variable names matched to Marlin, c-version, and avoid the
  6631. * use of any vector library.
  6632. *
  6633. * by Andreas Hardtung 2016-06-07
  6634. * based on a Java function from "Delta Robot Kinematics V3"
  6635. * by Steve Graves
  6636. *
  6637. * The result is stored in the cartes[] array.
  6638. */
  6639. void forward_kinematics_DELTA(float z1, float z2, float z3) {
  6640. // Create a vector in old coordinates along x axis of new coordinate
  6641. float p12[3] = { delta_tower2_x - delta_tower1_x, delta_tower2_y - delta_tower1_y, z2 - z1 };
  6642. // Get the Magnitude of vector.
  6643. float d = sqrt( sq(p12[0]) + sq(p12[1]) + sq(p12[2]) );
  6644. // Create unit vector by dividing by magnitude.
  6645. float ex[3] = { p12[0] / d, p12[1] / d, p12[2] / d };
  6646. // Get the vector from the origin of the new system to the third point.
  6647. float p13[3] = { delta_tower3_x - delta_tower1_x, delta_tower3_y - delta_tower1_y, z3 - z1 };
  6648. // Use the dot product to find the component of this vector on the X axis.
  6649. float i = ex[0] * p13[0] + ex[1] * p13[1] + ex[2] * p13[2];
  6650. // Create a vector along the x axis that represents the x component of p13.
  6651. float iex[3] = { ex[0] * i, ex[1] * i, ex[2] * i };
  6652. // Subtract the X component from the original vector leaving only Y. We use the
  6653. // variable that will be the unit vector after we scale it.
  6654. float ey[3] = { p13[0] - iex[0], p13[1] - iex[1], p13[2] - iex[2] };
  6655. // The magnitude of Y component
  6656. float j = sqrt( sq(ey[0]) + sq(ey[1]) + sq(ey[2]) );
  6657. // Convert to a unit vector
  6658. ey[0] /= j; ey[1] /= j; ey[2] /= j;
  6659. // The cross product of the unit x and y is the unit z
  6660. // float[] ez = vectorCrossProd(ex, ey);
  6661. float ez[3] = {
  6662. ex[1] * ey[2] - ex[2] * ey[1],
  6663. ex[2] * ey[0] - ex[0] * ey[2],
  6664. ex[0] * ey[1] - ex[1] * ey[0]
  6665. };
  6666. // We now have the d, i and j values defined in Wikipedia.
  6667. // Plug them into the equations defined in Wikipedia for Xnew, Ynew and Znew
  6668. float Xnew = (delta_diagonal_rod_2_tower_1 - delta_diagonal_rod_2_tower_2 + sq(d)) / (d * 2),
  6669. Ynew = ((delta_diagonal_rod_2_tower_1 - delta_diagonal_rod_2_tower_3 + HYPOT2(i, j)) / 2 - i * Xnew) / j,
  6670. Znew = sqrt(delta_diagonal_rod_2_tower_1 - HYPOT2(Xnew, Ynew));
  6671. // Start from the origin of the old coordinates and add vectors in the
  6672. // old coords that represent the Xnew, Ynew and Znew to find the point
  6673. // in the old system.
  6674. cartes[X_AXIS] = delta_tower1_x + ex[0] * Xnew + ey[0] * Ynew - ez[0] * Znew;
  6675. cartes[Y_AXIS] = delta_tower1_y + ex[1] * Xnew + ey[1] * Ynew - ez[1] * Znew;
  6676. cartes[Z_AXIS] = z1 + ex[2] * Xnew + ey[2] * Ynew - ez[2] * Znew;
  6677. };
  6678. void forward_kinematics_DELTA(float point[ABC]) {
  6679. forward_kinematics_DELTA(point[A_AXIS], point[B_AXIS], point[C_AXIS]);
  6680. }
  6681. #endif // DELTA
  6682. /**
  6683. * Get the stepper positions in the cartes[] array.
  6684. * Forward kinematics are applied for DELTA and SCARA.
  6685. *
  6686. * The result is in the current coordinate space with
  6687. * leveling applied. The coordinates need to be run through
  6688. * unapply_leveling to obtain the "ideal" coordinates
  6689. * suitable for current_position, etc.
  6690. */
  6691. void get_cartesian_from_steppers() {
  6692. #if ENABLED(DELTA)
  6693. forward_kinematics_DELTA(
  6694. stepper.get_axis_position_mm(A_AXIS),
  6695. stepper.get_axis_position_mm(B_AXIS),
  6696. stepper.get_axis_position_mm(C_AXIS)
  6697. );
  6698. cartes[X_AXIS] += LOGICAL_X_POSITION(0);
  6699. cartes[Y_AXIS] += LOGICAL_Y_POSITION(0);
  6700. cartes[Z_AXIS] += LOGICAL_Z_POSITION(0);
  6701. #elif IS_SCARA
  6702. forward_kinematics_SCARA(
  6703. stepper.get_axis_position_degrees(A_AXIS),
  6704. stepper.get_axis_position_degrees(B_AXIS)
  6705. );
  6706. cartes[X_AXIS] += LOGICAL_X_POSITION(0);
  6707. cartes[Y_AXIS] += LOGICAL_Y_POSITION(0);
  6708. cartes[Z_AXIS] = stepper.get_axis_position_mm(Z_AXIS);
  6709. #else
  6710. cartes[X_AXIS] = stepper.get_axis_position_mm(X_AXIS);
  6711. cartes[Y_AXIS] = stepper.get_axis_position_mm(Y_AXIS);
  6712. cartes[Z_AXIS] = stepper.get_axis_position_mm(Z_AXIS);
  6713. #endif
  6714. }
  6715. /**
  6716. * Set the current_position for an axis based on
  6717. * the stepper positions, removing any leveling that
  6718. * may have been applied.
  6719. *
  6720. * << INCOMPLETE! Still needs to unapply leveling! >>
  6721. */
  6722. void set_current_from_steppers_for_axis(const AxisEnum axis) {
  6723. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  6724. vector_3 pos = untilted_stepper_position();
  6725. current_position[axis] = axis == X_AXIS ? pos.x : axis == Y_AXIS ? pos.y : pos.z;
  6726. #elif IS_KINEMATIC
  6727. get_cartesian_from_steppers();
  6728. current_position[axis] = LOGICAL_POSITION(cartes[axis], axis);
  6729. #else
  6730. current_position[axis] = stepper.get_axis_position_mm(axis); // CORE handled transparently
  6731. #endif
  6732. }
  6733. #if ENABLED(MESH_BED_LEVELING)
  6734. /**
  6735. * Prepare a mesh-leveled linear move in a Cartesian setup,
  6736. * splitting the move where it crosses mesh borders.
  6737. */
  6738. void mesh_line_to_destination(float fr_mm_s, uint8_t x_splits = 0xff, uint8_t y_splits = 0xff) {
  6739. int cx1 = mbl.cell_index_x(RAW_CURRENT_POSITION(X_AXIS)),
  6740. cy1 = mbl.cell_index_y(RAW_CURRENT_POSITION(Y_AXIS)),
  6741. cx2 = mbl.cell_index_x(RAW_X_POSITION(destination[X_AXIS])),
  6742. cy2 = mbl.cell_index_y(RAW_Y_POSITION(destination[Y_AXIS]));
  6743. NOMORE(cx1, MESH_NUM_X_POINTS - 2);
  6744. NOMORE(cy1, MESH_NUM_Y_POINTS - 2);
  6745. NOMORE(cx2, MESH_NUM_X_POINTS - 2);
  6746. NOMORE(cy2, MESH_NUM_Y_POINTS - 2);
  6747. if (cx1 == cx2 && cy1 == cy2) {
  6748. // Start and end on same mesh square
  6749. line_to_destination(fr_mm_s);
  6750. set_current_to_destination();
  6751. return;
  6752. }
  6753. #define MBL_SEGMENT_END(A) (current_position[A ##_AXIS] + (destination[A ##_AXIS] - current_position[A ##_AXIS]) * normalized_dist)
  6754. float normalized_dist, end[NUM_AXIS];
  6755. // Split at the left/front border of the right/top square
  6756. int8_t gcx = max(cx1, cx2), gcy = max(cy1, cy2);
  6757. if (cx2 != cx1 && TEST(x_splits, gcx)) {
  6758. memcpy(end, destination, sizeof(end));
  6759. destination[X_AXIS] = LOGICAL_X_POSITION(mbl.get_probe_x(gcx));
  6760. normalized_dist = (destination[X_AXIS] - current_position[X_AXIS]) / (end[X_AXIS] - current_position[X_AXIS]);
  6761. destination[Y_AXIS] = MBL_SEGMENT_END(Y);
  6762. CBI(x_splits, gcx);
  6763. }
  6764. else if (cy2 != cy1 && TEST(y_splits, gcy)) {
  6765. memcpy(end, destination, sizeof(end));
  6766. destination[Y_AXIS] = LOGICAL_Y_POSITION(mbl.get_probe_y(gcy));
  6767. normalized_dist = (destination[Y_AXIS] - current_position[Y_AXIS]) / (end[Y_AXIS] - current_position[Y_AXIS]);
  6768. destination[X_AXIS] = MBL_SEGMENT_END(X);
  6769. CBI(y_splits, gcy);
  6770. }
  6771. else {
  6772. // Already split on a border
  6773. line_to_destination(fr_mm_s);
  6774. set_current_to_destination();
  6775. return;
  6776. }
  6777. destination[Z_AXIS] = MBL_SEGMENT_END(Z);
  6778. destination[E_AXIS] = MBL_SEGMENT_END(E);
  6779. // Do the split and look for more borders
  6780. mesh_line_to_destination(fr_mm_s, x_splits, y_splits);
  6781. // Restore destination from stack
  6782. memcpy(destination, end, sizeof(end));
  6783. mesh_line_to_destination(fr_mm_s, x_splits, y_splits);
  6784. }
  6785. #endif // MESH_BED_LEVELING
  6786. #if IS_KINEMATIC
  6787. /**
  6788. * Prepare a linear move in a DELTA or SCARA setup.
  6789. *
  6790. * This calls planner.buffer_line several times, adding
  6791. * small incremental moves for DELTA or SCARA.
  6792. */
  6793. inline bool prepare_kinematic_move_to(float logical[NUM_AXIS]) {
  6794. // Get the top feedrate of the move in the XY plane
  6795. float _feedrate_mm_s = MMS_SCALED(feedrate_mm_s);
  6796. // If the move is only in Z don't split up the move.
  6797. // This shortcut cannot be used if planar bed leveling
  6798. // is in use, but is fine with mesh-based bed leveling
  6799. if (logical[X_AXIS] == current_position[X_AXIS] && logical[Y_AXIS] == current_position[Y_AXIS]) {
  6800. inverse_kinematics(logical);
  6801. planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], logical[E_AXIS], _feedrate_mm_s, active_extruder);
  6802. return true;
  6803. }
  6804. // Get the distance moved in XYZ
  6805. float difference[NUM_AXIS];
  6806. LOOP_XYZE(i) difference[i] = logical[i] - current_position[i];
  6807. float cartesian_mm = sqrt(sq(difference[X_AXIS]) + sq(difference[Y_AXIS]) + sq(difference[Z_AXIS]));
  6808. if (UNEAR_ZERO(cartesian_mm)) cartesian_mm = abs(difference[E_AXIS]);
  6809. if (UNEAR_ZERO(cartesian_mm)) return false;
  6810. // Minimum number of seconds to move the given distance
  6811. float seconds = cartesian_mm / _feedrate_mm_s;
  6812. // The number of segments-per-second times the duration
  6813. // gives the number of segments we should produce
  6814. uint16_t segments = delta_segments_per_second * seconds;
  6815. #if IS_SCARA
  6816. NOMORE(segments, cartesian_mm * 2);
  6817. #endif
  6818. NOLESS(segments, 1);
  6819. // Each segment produces this much of the move
  6820. float inv_segments = 1.0 / segments,
  6821. segment_distance[XYZE] = {
  6822. difference[X_AXIS] * inv_segments,
  6823. difference[Y_AXIS] * inv_segments,
  6824. difference[Z_AXIS] * inv_segments,
  6825. difference[E_AXIS] * inv_segments
  6826. };
  6827. // SERIAL_ECHOPAIR("mm=", cartesian_mm);
  6828. // SERIAL_ECHOPAIR(" seconds=", seconds);
  6829. // SERIAL_ECHOLNPAIR(" segments=", segments);
  6830. // Send all the segments to the planner
  6831. #if ENABLED(DELTA) && ENABLED(USE_RAW_KINEMATICS)
  6832. #define DELTA_E raw[E_AXIS]
  6833. #define DELTA_NEXT(ADDEND) LOOP_XYZE(i) raw[i] += ADDEND;
  6834. #define DELTA_IK() do { \
  6835. delta[A_AXIS] = DELTA_Z(1); \
  6836. delta[B_AXIS] = DELTA_Z(2); \
  6837. delta[C_AXIS] = DELTA_Z(3); \
  6838. } while(0)
  6839. // Get the raw current position as starting point
  6840. float raw[ABC] = {
  6841. RAW_CURRENT_POSITION(X_AXIS),
  6842. RAW_CURRENT_POSITION(Y_AXIS),
  6843. RAW_CURRENT_POSITION(Z_AXIS)
  6844. };
  6845. #else
  6846. #define DELTA_E logical[E_AXIS]
  6847. #define DELTA_NEXT(ADDEND) LOOP_XYZE(i) logical[i] += ADDEND;
  6848. #if ENABLED(DELTA)
  6849. #define DELTA_IK() DELTA_LOGICAL_IK()
  6850. #else
  6851. #define DELTA_IK() inverse_kinematics(logical)
  6852. #endif
  6853. // Get the logical current position as starting point
  6854. LOOP_XYZE(i) logical[i] = current_position[i];
  6855. #endif
  6856. #if ENABLED(USE_DELTA_IK_INTERPOLATION)
  6857. // Get the starting delta for interpolation
  6858. if (segments >= 2) inverse_kinematics(logical);
  6859. for (uint16_t s = segments + 1; --s;) {
  6860. if (s > 1) {
  6861. // Save the previous delta for interpolation
  6862. float prev_delta[ABC] = { delta[A_AXIS], delta[B_AXIS], delta[C_AXIS] };
  6863. // Get the delta 2 segments ahead (rather than the next)
  6864. DELTA_NEXT(segment_distance[i] + segment_distance[i]);
  6865. DELTA_IK();
  6866. // Move to the interpolated delta position first
  6867. planner.buffer_line(
  6868. (prev_delta[A_AXIS] + delta[A_AXIS]) * 0.5,
  6869. (prev_delta[B_AXIS] + delta[B_AXIS]) * 0.5,
  6870. (prev_delta[C_AXIS] + delta[C_AXIS]) * 0.5,
  6871. logical[E_AXIS], _feedrate_mm_s, active_extruder
  6872. );
  6873. // Do an extra decrement of the loop
  6874. --s;
  6875. }
  6876. else {
  6877. // Get the last segment delta (only when segments is odd)
  6878. DELTA_NEXT(segment_distance[i])
  6879. DELTA_IK();
  6880. }
  6881. // Move to the non-interpolated position
  6882. planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], DELTA_E, _feedrate_mm_s, active_extruder);
  6883. }
  6884. #else
  6885. // For non-interpolated delta calculate every segment
  6886. for (uint16_t s = segments + 1; --s;) {
  6887. DELTA_NEXT(segment_distance[i])
  6888. DELTA_IK();
  6889. planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], logical[E_AXIS], _feedrate_mm_s, active_extruder);
  6890. }
  6891. #endif
  6892. return true;
  6893. }
  6894. #else
  6895. /**
  6896. * Prepare a linear move in a Cartesian setup.
  6897. * If Mesh Bed Leveling is enabled, perform a mesh move.
  6898. */
  6899. inline bool prepare_move_to_destination_cartesian() {
  6900. // Do not use feedrate_percentage for E or Z only moves
  6901. if (current_position[X_AXIS] == destination[X_AXIS] && current_position[Y_AXIS] == destination[Y_AXIS]) {
  6902. line_to_destination();
  6903. }
  6904. else {
  6905. #if ENABLED(MESH_BED_LEVELING)
  6906. if (mbl.active()) {
  6907. mesh_line_to_destination(MMS_SCALED(feedrate_mm_s));
  6908. return false;
  6909. }
  6910. else
  6911. #endif
  6912. line_to_destination(MMS_SCALED(feedrate_mm_s));
  6913. }
  6914. return true;
  6915. }
  6916. #endif // !IS_KINEMATIC
  6917. #if ENABLED(DUAL_X_CARRIAGE)
  6918. /**
  6919. * Prepare a linear move in a dual X axis setup
  6920. */
  6921. inline bool prepare_move_to_destination_dualx() {
  6922. if (active_extruder_parked) {
  6923. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && active_extruder == 0) {
  6924. // move duplicate extruder into correct duplication position.
  6925. planner.set_position_mm(
  6926. LOGICAL_X_POSITION(inactive_extruder_x_pos),
  6927. current_position[Y_AXIS],
  6928. current_position[Z_AXIS],
  6929. current_position[E_AXIS]
  6930. );
  6931. planner.buffer_line(current_position[X_AXIS] + duplicate_extruder_x_offset,
  6932. current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], planner.max_feedrate_mm_s[X_AXIS], 1);
  6933. SYNC_PLAN_POSITION_KINEMATIC();
  6934. stepper.synchronize();
  6935. extruder_duplication_enabled = true;
  6936. active_extruder_parked = false;
  6937. }
  6938. else if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE) { // handle unparking of head
  6939. if (current_position[E_AXIS] == destination[E_AXIS]) {
  6940. // This is a travel move (with no extrusion)
  6941. // Skip it, but keep track of the current position
  6942. // (so it can be used as the start of the next non-travel move)
  6943. if (delayed_move_time != 0xFFFFFFFFUL) {
  6944. set_current_to_destination();
  6945. NOLESS(raised_parked_position[Z_AXIS], destination[Z_AXIS]);
  6946. delayed_move_time = millis();
  6947. return false;
  6948. }
  6949. }
  6950. delayed_move_time = 0;
  6951. // unpark extruder: 1) raise, 2) move into starting XY position, 3) lower
  6952. planner.buffer_line(raised_parked_position[X_AXIS], raised_parked_position[Y_AXIS], raised_parked_position[Z_AXIS], current_position[E_AXIS], planner.max_feedrate_mm_s[Z_AXIS], active_extruder);
  6953. planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], raised_parked_position[Z_AXIS], current_position[E_AXIS], PLANNER_XY_FEEDRATE(), active_extruder);
  6954. planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], planner.max_feedrate_mm_s[Z_AXIS], active_extruder);
  6955. active_extruder_parked = false;
  6956. }
  6957. }
  6958. return true;
  6959. }
  6960. #endif // DUAL_X_CARRIAGE
  6961. /**
  6962. * Prepare a single move and get ready for the next one
  6963. *
  6964. * This may result in several calls to planner.buffer_line to
  6965. * do smaller moves for DELTA, SCARA, mesh moves, etc.
  6966. */
  6967. void prepare_move_to_destination() {
  6968. clamp_to_software_endstops(destination);
  6969. refresh_cmd_timeout();
  6970. #if ENABLED(PREVENT_COLD_EXTRUSION)
  6971. if (!DEBUGGING(DRYRUN)) {
  6972. if (destination[E_AXIS] != current_position[E_AXIS]) {
  6973. if (thermalManager.tooColdToExtrude(active_extruder)) {
  6974. current_position[E_AXIS] = destination[E_AXIS]; // Behave as if the move really took place, but ignore E part
  6975. SERIAL_ECHO_START;
  6976. SERIAL_ECHOLNPGM(MSG_ERR_COLD_EXTRUDE_STOP);
  6977. }
  6978. #if ENABLED(PREVENT_LENGTHY_EXTRUDE)
  6979. if (labs(destination[E_AXIS] - current_position[E_AXIS]) > EXTRUDE_MAXLENGTH) {
  6980. current_position[E_AXIS] = destination[E_AXIS]; // Behave as if the move really took place, but ignore E part
  6981. SERIAL_ECHO_START;
  6982. SERIAL_ECHOLNPGM(MSG_ERR_LONG_EXTRUDE_STOP);
  6983. }
  6984. #endif
  6985. }
  6986. }
  6987. #endif
  6988. #if IS_KINEMATIC
  6989. if (!prepare_kinematic_move_to(destination)) return;
  6990. #else
  6991. #if ENABLED(DUAL_X_CARRIAGE)
  6992. if (!prepare_move_to_destination_dualx()) return;
  6993. #endif
  6994. if (!prepare_move_to_destination_cartesian()) return;
  6995. #endif
  6996. set_current_to_destination();
  6997. }
  6998. #if ENABLED(ARC_SUPPORT)
  6999. /**
  7000. * Plan an arc in 2 dimensions
  7001. *
  7002. * The arc is approximated by generating many small linear segments.
  7003. * The length of each segment is configured in MM_PER_ARC_SEGMENT (Default 1mm)
  7004. * Arcs should only be made relatively large (over 5mm), as larger arcs with
  7005. * larger segments will tend to be more efficient. Your slicer should have
  7006. * options for G2/G3 arc generation. In future these options may be GCode tunable.
  7007. */
  7008. void plan_arc(
  7009. float logical[NUM_AXIS], // Destination position
  7010. float* offset, // Center of rotation relative to current_position
  7011. uint8_t clockwise // Clockwise?
  7012. ) {
  7013. float radius = HYPOT(offset[X_AXIS], offset[Y_AXIS]),
  7014. center_X = current_position[X_AXIS] + offset[X_AXIS],
  7015. center_Y = current_position[Y_AXIS] + offset[Y_AXIS],
  7016. linear_travel = logical[Z_AXIS] - current_position[Z_AXIS],
  7017. extruder_travel = logical[E_AXIS] - current_position[E_AXIS],
  7018. r_X = -offset[X_AXIS], // Radius vector from center to current location
  7019. r_Y = -offset[Y_AXIS],
  7020. rt_X = logical[X_AXIS] - center_X,
  7021. rt_Y = logical[Y_AXIS] - center_Y;
  7022. // CCW angle of rotation between position and target from the circle center. Only one atan2() trig computation required.
  7023. float angular_travel = atan2(r_X * rt_Y - r_Y * rt_X, r_X * rt_X + r_Y * rt_Y);
  7024. if (angular_travel < 0) angular_travel += RADIANS(360);
  7025. if (clockwise) angular_travel -= RADIANS(360);
  7026. // Make a circle if the angular rotation is 0
  7027. if (angular_travel == 0 && current_position[X_AXIS] == logical[X_AXIS] && current_position[Y_AXIS] == logical[Y_AXIS])
  7028. angular_travel += RADIANS(360);
  7029. float mm_of_travel = HYPOT(angular_travel * radius, fabs(linear_travel));
  7030. if (mm_of_travel < 0.001) return;
  7031. uint16_t segments = floor(mm_of_travel / (MM_PER_ARC_SEGMENT));
  7032. if (segments == 0) segments = 1;
  7033. float theta_per_segment = angular_travel / segments;
  7034. float linear_per_segment = linear_travel / segments;
  7035. float extruder_per_segment = extruder_travel / segments;
  7036. /**
  7037. * Vector rotation by transformation matrix: r is the original vector, r_T is the rotated vector,
  7038. * and phi is the angle of rotation. Based on the solution approach by Jens Geisler.
  7039. * r_T = [cos(phi) -sin(phi);
  7040. * sin(phi) cos(phi] * r ;
  7041. *
  7042. * For arc generation, the center of the circle is the axis of rotation and the radius vector is
  7043. * defined from the circle center to the initial position. Each line segment is formed by successive
  7044. * vector rotations. This requires only two cos() and sin() computations to form the rotation
  7045. * matrix for the duration of the entire arc. Error may accumulate from numerical round-off, since
  7046. * all double numbers are single precision on the Arduino. (True double precision will not have
  7047. * round off issues for CNC applications.) Single precision error can accumulate to be greater than
  7048. * tool precision in some cases. Therefore, arc path correction is implemented.
  7049. *
  7050. * Small angle approximation may be used to reduce computation overhead further. This approximation
  7051. * holds for everything, but very small circles and large MM_PER_ARC_SEGMENT values. In other words,
  7052. * theta_per_segment would need to be greater than 0.1 rad and N_ARC_CORRECTION would need to be large
  7053. * to cause an appreciable drift error. N_ARC_CORRECTION~=25 is more than small enough to correct for
  7054. * numerical drift error. N_ARC_CORRECTION may be on the order a hundred(s) before error becomes an
  7055. * issue for CNC machines with the single precision Arduino calculations.
  7056. *
  7057. * This approximation also allows plan_arc to immediately insert a line segment into the planner
  7058. * without the initial overhead of computing cos() or sin(). By the time the arc needs to be applied
  7059. * a correction, the planner should have caught up to the lag caused by the initial plan_arc overhead.
  7060. * This is important when there are successive arc motions.
  7061. */
  7062. // Vector rotation matrix values
  7063. float cos_T = 1 - 0.5 * sq(theta_per_segment); // Small angle approximation
  7064. float sin_T = theta_per_segment;
  7065. float arc_target[NUM_AXIS];
  7066. float sin_Ti, cos_Ti, r_new_Y;
  7067. uint16_t i;
  7068. int8_t count = 0;
  7069. // Initialize the linear axis
  7070. arc_target[Z_AXIS] = current_position[Z_AXIS];
  7071. // Initialize the extruder axis
  7072. arc_target[E_AXIS] = current_position[E_AXIS];
  7073. float fr_mm_s = MMS_SCALED(feedrate_mm_s);
  7074. millis_t next_idle_ms = millis() + 200UL;
  7075. for (i = 1; i < segments; i++) { // Iterate (segments-1) times
  7076. thermalManager.manage_heater();
  7077. millis_t now = millis();
  7078. if (ELAPSED(now, next_idle_ms)) {
  7079. next_idle_ms = now + 200UL;
  7080. idle();
  7081. }
  7082. if (++count < N_ARC_CORRECTION) {
  7083. // Apply vector rotation matrix to previous r_X / 1
  7084. r_new_Y = r_X * sin_T + r_Y * cos_T;
  7085. r_X = r_X * cos_T - r_Y * sin_T;
  7086. r_Y = r_new_Y;
  7087. }
  7088. else {
  7089. // Arc correction to radius vector. Computed only every N_ARC_CORRECTION increments.
  7090. // Compute exact location by applying transformation matrix from initial radius vector(=-offset).
  7091. // To reduce stuttering, the sin and cos could be computed at different times.
  7092. // For now, compute both at the same time.
  7093. cos_Ti = cos(i * theta_per_segment);
  7094. sin_Ti = sin(i * theta_per_segment);
  7095. r_X = -offset[X_AXIS] * cos_Ti + offset[Y_AXIS] * sin_Ti;
  7096. r_Y = -offset[X_AXIS] * sin_Ti - offset[Y_AXIS] * cos_Ti;
  7097. count = 0;
  7098. }
  7099. // Update arc_target location
  7100. arc_target[X_AXIS] = center_X + r_X;
  7101. arc_target[Y_AXIS] = center_Y + r_Y;
  7102. arc_target[Z_AXIS] += linear_per_segment;
  7103. arc_target[E_AXIS] += extruder_per_segment;
  7104. clamp_to_software_endstops(arc_target);
  7105. #if IS_KINEMATIC
  7106. inverse_kinematics(arc_target);
  7107. planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], arc_target[E_AXIS], fr_mm_s, active_extruder);
  7108. #else
  7109. planner.buffer_line(arc_target[X_AXIS], arc_target[Y_AXIS], arc_target[Z_AXIS], arc_target[E_AXIS], fr_mm_s, active_extruder);
  7110. #endif
  7111. }
  7112. // Ensure last segment arrives at target location.
  7113. #if IS_KINEMATIC
  7114. inverse_kinematics(logical);
  7115. planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], logical[E_AXIS], fr_mm_s, active_extruder);
  7116. #else
  7117. planner.buffer_line(logical[X_AXIS], logical[Y_AXIS], logical[Z_AXIS], logical[E_AXIS], fr_mm_s, active_extruder);
  7118. #endif
  7119. // As far as the parser is concerned, the position is now == target. In reality the
  7120. // motion control system might still be processing the action and the real tool position
  7121. // in any intermediate location.
  7122. set_current_to_destination();
  7123. }
  7124. #endif
  7125. #if ENABLED(BEZIER_CURVE_SUPPORT)
  7126. void plan_cubic_move(const float offset[4]) {
  7127. cubic_b_spline(current_position, destination, offset, MMS_SCALED(feedrate_mm_s), active_extruder);
  7128. // As far as the parser is concerned, the position is now == destination. In reality the
  7129. // motion control system might still be processing the action and the real tool position
  7130. // in any intermediate location.
  7131. set_current_to_destination();
  7132. }
  7133. #endif // BEZIER_CURVE_SUPPORT
  7134. #if HAS_CONTROLLERFAN
  7135. void controllerFan() {
  7136. static millis_t lastMotorOn = 0; // Last time a motor was turned on
  7137. static millis_t nextMotorCheck = 0; // Last time the state was checked
  7138. millis_t ms = millis();
  7139. if (ELAPSED(ms, nextMotorCheck)) {
  7140. nextMotorCheck = ms + 2500UL; // Not a time critical function, so only check every 2.5s
  7141. if (X_ENABLE_READ == X_ENABLE_ON || Y_ENABLE_READ == Y_ENABLE_ON || Z_ENABLE_READ == Z_ENABLE_ON || thermalManager.soft_pwm_bed > 0
  7142. || E0_ENABLE_READ == E_ENABLE_ON // If any of the drivers are enabled...
  7143. #if E_STEPPERS > 1
  7144. || E1_ENABLE_READ == E_ENABLE_ON
  7145. #if HAS_X2_ENABLE
  7146. || X2_ENABLE_READ == X_ENABLE_ON
  7147. #endif
  7148. #if E_STEPPERS > 2
  7149. || E2_ENABLE_READ == E_ENABLE_ON
  7150. #if E_STEPPERS > 3
  7151. || E3_ENABLE_READ == E_ENABLE_ON
  7152. #endif
  7153. #endif
  7154. #endif
  7155. ) {
  7156. lastMotorOn = ms; //... set time to NOW so the fan will turn on
  7157. }
  7158. // Fan off if no steppers have been enabled for CONTROLLERFAN_SECS seconds
  7159. uint8_t speed = (!lastMotorOn || ELAPSED(ms, lastMotorOn + (CONTROLLERFAN_SECS) * 1000UL)) ? 0 : CONTROLLERFAN_SPEED;
  7160. // allows digital or PWM fan output to be used (see M42 handling)
  7161. digitalWrite(CONTROLLERFAN_PIN, speed);
  7162. analogWrite(CONTROLLERFAN_PIN, speed);
  7163. }
  7164. }
  7165. #endif // HAS_CONTROLLERFAN
  7166. #if ENABLED(MORGAN_SCARA)
  7167. /**
  7168. * Morgan SCARA Forward Kinematics. Results in cartes[].
  7169. * Maths and first version by QHARLEY.
  7170. * Integrated into Marlin and slightly restructured by Joachim Cerny.
  7171. */
  7172. void forward_kinematics_SCARA(const float &a, const float &b) {
  7173. float a_sin = sin(RADIANS(a)) * L1,
  7174. a_cos = cos(RADIANS(a)) * L1,
  7175. b_sin = sin(RADIANS(b)) * L2,
  7176. b_cos = cos(RADIANS(b)) * L2;
  7177. cartes[X_AXIS] = a_cos + b_cos + SCARA_OFFSET_X; //theta
  7178. cartes[Y_AXIS] = a_sin + b_sin + SCARA_OFFSET_Y; //theta+phi
  7179. /*
  7180. SERIAL_ECHOPAIR("Angle a=", a);
  7181. SERIAL_ECHOPAIR(" b=", b);
  7182. SERIAL_ECHOPAIR(" a_sin=", a_sin);
  7183. SERIAL_ECHOPAIR(" a_cos=", a_cos);
  7184. SERIAL_ECHOPAIR(" b_sin=", b_sin);
  7185. SERIAL_ECHOLNPAIR(" b_cos=", b_cos);
  7186. SERIAL_ECHOPAIR(" cartes[X_AXIS]=", cartes[X_AXIS]);
  7187. SERIAL_ECHOLNPAIR(" cartes[Y_AXIS]=", cartes[Y_AXIS]);
  7188. //*/
  7189. }
  7190. /**
  7191. * Morgan SCARA Inverse Kinematics. Results in delta[].
  7192. *
  7193. * See http://forums.reprap.org/read.php?185,283327
  7194. *
  7195. * Maths and first version by QHARLEY.
  7196. * Integrated into Marlin and slightly restructured by Joachim Cerny.
  7197. */
  7198. void inverse_kinematics(const float logical[XYZ]) {
  7199. static float C2, S2, SK1, SK2, THETA, PSI;
  7200. float sx = RAW_X_POSITION(logical[X_AXIS]) - SCARA_OFFSET_X, // Translate SCARA to standard X Y
  7201. sy = RAW_Y_POSITION(logical[Y_AXIS]) - SCARA_OFFSET_Y; // With scaling factor.
  7202. if (L1 == L2)
  7203. C2 = HYPOT2(sx, sy) / L1_2_2 - 1;
  7204. else
  7205. C2 = (HYPOT2(sx, sy) - (L1_2 + L2_2)) / (2.0 * L1 * L2);
  7206. S2 = sqrt(sq(C2) - 1);
  7207. // Unrotated Arm1 plus rotated Arm2 gives the distance from Center to End
  7208. SK1 = L1 + L2 * C2;
  7209. // Rotated Arm2 gives the distance from Arm1 to Arm2
  7210. SK2 = L2 * S2;
  7211. // Angle of Arm1 is the difference between Center-to-End angle and the Center-to-Elbow
  7212. THETA = atan2(SK1, SK2) - atan2(sx, sy);
  7213. // Angle of Arm2
  7214. PSI = atan2(S2, C2);
  7215. delta[A_AXIS] = DEGREES(THETA); // theta is support arm angle
  7216. delta[B_AXIS] = DEGREES(THETA + PSI); // equal to sub arm angle (inverted motor)
  7217. delta[C_AXIS] = logical[Z_AXIS];
  7218. /*
  7219. DEBUG_POS("SCARA IK", logical);
  7220. DEBUG_POS("SCARA IK", delta);
  7221. SERIAL_ECHOPAIR(" SCARA (x,y) ", sx);
  7222. SERIAL_ECHOPAIR(",", sy);
  7223. SERIAL_ECHOPAIR(" C2=", C2);
  7224. SERIAL_ECHOPAIR(" S2=", S2);
  7225. SERIAL_ECHOPAIR(" Theta=", THETA);
  7226. SERIAL_ECHOLNPAIR(" Phi=", PHI);
  7227. //*/
  7228. }
  7229. #endif // MORGAN_SCARA
  7230. #if ENABLED(TEMP_STAT_LEDS)
  7231. static bool red_led = false;
  7232. static millis_t next_status_led_update_ms = 0;
  7233. void handle_status_leds(void) {
  7234. if (ELAPSED(millis(), next_status_led_update_ms)) {
  7235. next_status_led_update_ms += 500; // Update every 0.5s
  7236. float max_temp = 0.0;
  7237. #if HAS_TEMP_BED
  7238. max_temp = MAX3(max_temp, thermalManager.degTargetBed(), thermalManager.degBed());
  7239. #endif
  7240. HOTEND_LOOP() {
  7241. max_temp = MAX3(max_temp, thermalManager.degHotend(e), thermalManager.degTargetHotend(e));
  7242. }
  7243. bool new_led = (max_temp > 55.0) ? true : (max_temp < 54.0) ? false : red_led;
  7244. if (new_led != red_led) {
  7245. red_led = new_led;
  7246. digitalWrite(STAT_LED_RED, new_led ? HIGH : LOW);
  7247. digitalWrite(STAT_LED_BLUE, new_led ? LOW : HIGH);
  7248. }
  7249. }
  7250. }
  7251. #endif
  7252. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  7253. void handle_filament_runout() {
  7254. if (!filament_ran_out) {
  7255. filament_ran_out = true;
  7256. enqueue_and_echo_commands_P(PSTR(FILAMENT_RUNOUT_SCRIPT));
  7257. stepper.synchronize();
  7258. }
  7259. }
  7260. #endif // FILAMENT_RUNOUT_SENSOR
  7261. #if ENABLED(FAST_PWM_FAN)
  7262. void setPwmFrequency(uint8_t pin, int val) {
  7263. val &= 0x07;
  7264. switch (digitalPinToTimer(pin)) {
  7265. #if defined(TCCR0A)
  7266. case TIMER0A:
  7267. case TIMER0B:
  7268. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  7269. // TCCR0B |= val;
  7270. break;
  7271. #endif
  7272. #if defined(TCCR1A)
  7273. case TIMER1A:
  7274. case TIMER1B:
  7275. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  7276. // TCCR1B |= val;
  7277. break;
  7278. #endif
  7279. #if defined(TCCR2)
  7280. case TIMER2:
  7281. case TIMER2:
  7282. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  7283. TCCR2 |= val;
  7284. break;
  7285. #endif
  7286. #if defined(TCCR2A)
  7287. case TIMER2A:
  7288. case TIMER2B:
  7289. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  7290. TCCR2B |= val;
  7291. break;
  7292. #endif
  7293. #if defined(TCCR3A)
  7294. case TIMER3A:
  7295. case TIMER3B:
  7296. case TIMER3C:
  7297. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  7298. TCCR3B |= val;
  7299. break;
  7300. #endif
  7301. #if defined(TCCR4A)
  7302. case TIMER4A:
  7303. case TIMER4B:
  7304. case TIMER4C:
  7305. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  7306. TCCR4B |= val;
  7307. break;
  7308. #endif
  7309. #if defined(TCCR5A)
  7310. case TIMER5A:
  7311. case TIMER5B:
  7312. case TIMER5C:
  7313. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  7314. TCCR5B |= val;
  7315. break;
  7316. #endif
  7317. }
  7318. }
  7319. #endif // FAST_PWM_FAN
  7320. float calculate_volumetric_multiplier(float diameter) {
  7321. if (!volumetric_enabled || diameter == 0) return 1.0;
  7322. float d2 = diameter * 0.5;
  7323. return 1.0 / (M_PI * d2 * d2);
  7324. }
  7325. void calculate_volumetric_multipliers() {
  7326. for (uint8_t i = 0; i < COUNT(filament_size); i++)
  7327. volumetric_multiplier[i] = calculate_volumetric_multiplier(filament_size[i]);
  7328. }
  7329. void enable_all_steppers() {
  7330. enable_x();
  7331. enable_y();
  7332. enable_z();
  7333. enable_e0();
  7334. enable_e1();
  7335. enable_e2();
  7336. enable_e3();
  7337. }
  7338. void disable_all_steppers() {
  7339. disable_x();
  7340. disable_y();
  7341. disable_z();
  7342. disable_e0();
  7343. disable_e1();
  7344. disable_e2();
  7345. disable_e3();
  7346. }
  7347. /**
  7348. * Manage several activities:
  7349. * - Check for Filament Runout
  7350. * - Keep the command buffer full
  7351. * - Check for maximum inactive time between commands
  7352. * - Check for maximum inactive time between stepper commands
  7353. * - Check if pin CHDK needs to go LOW
  7354. * - Check for KILL button held down
  7355. * - Check for HOME button held down
  7356. * - Check if cooling fan needs to be switched on
  7357. * - Check if an idle but hot extruder needs filament extruded (EXTRUDER_RUNOUT_PREVENT)
  7358. */
  7359. void manage_inactivity(bool ignore_stepper_queue/*=false*/) {
  7360. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  7361. if ((IS_SD_PRINTING || print_job_timer.isRunning()) && !(READ(FIL_RUNOUT_PIN) ^ FIL_RUNOUT_INVERTING))
  7362. handle_filament_runout();
  7363. #endif
  7364. if (commands_in_queue < BUFSIZE) get_available_commands();
  7365. millis_t ms = millis();
  7366. if (max_inactive_time && ELAPSED(ms, previous_cmd_ms + max_inactive_time)) kill(PSTR(MSG_KILLED));
  7367. if (stepper_inactive_time && ELAPSED(ms, previous_cmd_ms + stepper_inactive_time)
  7368. && !ignore_stepper_queue && !planner.blocks_queued()) {
  7369. #if ENABLED(DISABLE_INACTIVE_X)
  7370. disable_x();
  7371. #endif
  7372. #if ENABLED(DISABLE_INACTIVE_Y)
  7373. disable_y();
  7374. #endif
  7375. #if ENABLED(DISABLE_INACTIVE_Z)
  7376. disable_z();
  7377. #endif
  7378. #if ENABLED(DISABLE_INACTIVE_E)
  7379. disable_e0();
  7380. disable_e1();
  7381. disable_e2();
  7382. disable_e3();
  7383. #endif
  7384. }
  7385. #ifdef CHDK // Check if pin should be set to LOW after M240 set it to HIGH
  7386. if (chdkActive && PENDING(ms, chdkHigh + CHDK_DELAY)) {
  7387. chdkActive = false;
  7388. WRITE(CHDK, LOW);
  7389. }
  7390. #endif
  7391. #if HAS_KILL
  7392. // Check if the kill button was pressed and wait just in case it was an accidental
  7393. // key kill key press
  7394. // -------------------------------------------------------------------------------
  7395. static int killCount = 0; // make the inactivity button a bit less responsive
  7396. const int KILL_DELAY = 750;
  7397. if (!READ(KILL_PIN))
  7398. killCount++;
  7399. else if (killCount > 0)
  7400. killCount--;
  7401. // Exceeded threshold and we can confirm that it was not accidental
  7402. // KILL the machine
  7403. // ----------------------------------------------------------------
  7404. if (killCount >= KILL_DELAY) kill(PSTR(MSG_KILLED));
  7405. #endif
  7406. #if HAS_HOME
  7407. // Check to see if we have to home, use poor man's debouncer
  7408. // ---------------------------------------------------------
  7409. static int homeDebounceCount = 0; // poor man's debouncing count
  7410. const int HOME_DEBOUNCE_DELAY = 2500;
  7411. if (!READ(HOME_PIN)) {
  7412. if (!homeDebounceCount) {
  7413. enqueue_and_echo_commands_P(PSTR("G28"));
  7414. LCD_MESSAGEPGM(MSG_AUTO_HOME);
  7415. }
  7416. if (homeDebounceCount < HOME_DEBOUNCE_DELAY)
  7417. homeDebounceCount++;
  7418. else
  7419. homeDebounceCount = 0;
  7420. }
  7421. #endif
  7422. #if HAS_CONTROLLERFAN
  7423. controllerFan(); // Check if fan should be turned on to cool stepper drivers down
  7424. #endif
  7425. #if ENABLED(EXTRUDER_RUNOUT_PREVENT)
  7426. if (ELAPSED(ms, previous_cmd_ms + (EXTRUDER_RUNOUT_SECONDS) * 1000UL)
  7427. && thermalManager.degHotend(active_extruder) > EXTRUDER_RUNOUT_MINTEMP) {
  7428. bool oldstatus;
  7429. #if ENABLED(SWITCHING_EXTRUDER)
  7430. oldstatus = E0_ENABLE_READ;
  7431. enable_e0();
  7432. #else // !SWITCHING_EXTRUDER
  7433. switch (active_extruder) {
  7434. case 0:
  7435. oldstatus = E0_ENABLE_READ;
  7436. enable_e0();
  7437. break;
  7438. #if E_STEPPERS > 1
  7439. case 1:
  7440. oldstatus = E1_ENABLE_READ;
  7441. enable_e1();
  7442. break;
  7443. #if E_STEPPERS > 2
  7444. case 2:
  7445. oldstatus = E2_ENABLE_READ;
  7446. enable_e2();
  7447. break;
  7448. #if E_STEPPERS > 3
  7449. case 3:
  7450. oldstatus = E3_ENABLE_READ;
  7451. enable_e3();
  7452. break;
  7453. #endif
  7454. #endif
  7455. #endif
  7456. }
  7457. #endif // !SWITCHING_EXTRUDER
  7458. previous_cmd_ms = ms; // refresh_cmd_timeout()
  7459. planner.buffer_line(
  7460. current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS],
  7461. current_position[E_AXIS] + EXTRUDER_RUNOUT_EXTRUDE,
  7462. MMM_TO_MMS(EXTRUDER_RUNOUT_SPEED), active_extruder
  7463. );
  7464. stepper.synchronize();
  7465. planner.set_e_position_mm(current_position[E_AXIS]);
  7466. #if ENABLED(SWITCHING_EXTRUDER)
  7467. E0_ENABLE_WRITE(oldstatus);
  7468. #else
  7469. switch (active_extruder) {
  7470. case 0:
  7471. E0_ENABLE_WRITE(oldstatus);
  7472. break;
  7473. #if E_STEPPERS > 1
  7474. case 1:
  7475. E1_ENABLE_WRITE(oldstatus);
  7476. break;
  7477. #if E_STEPPERS > 2
  7478. case 2:
  7479. E2_ENABLE_WRITE(oldstatus);
  7480. break;
  7481. #if E_STEPPERS > 3
  7482. case 3:
  7483. E3_ENABLE_WRITE(oldstatus);
  7484. break;
  7485. #endif
  7486. #endif
  7487. #endif
  7488. }
  7489. #endif // !SWITCHING_EXTRUDER
  7490. }
  7491. #endif // EXTRUDER_RUNOUT_PREVENT
  7492. #if ENABLED(DUAL_X_CARRIAGE)
  7493. // handle delayed move timeout
  7494. if (delayed_move_time && ELAPSED(ms, delayed_move_time + 1000UL) && IsRunning()) {
  7495. // travel moves have been received so enact them
  7496. delayed_move_time = 0xFFFFFFFFUL; // force moves to be done
  7497. set_destination_to_current();
  7498. prepare_move_to_destination();
  7499. }
  7500. #endif
  7501. #if ENABLED(TEMP_STAT_LEDS)
  7502. handle_status_leds();
  7503. #endif
  7504. planner.check_axes_activity();
  7505. }
  7506. /**
  7507. * Standard idle routine keeps the machine alive
  7508. */
  7509. void idle(
  7510. #if ENABLED(FILAMENT_CHANGE_FEATURE)
  7511. bool no_stepper_sleep/*=false*/
  7512. #endif
  7513. ) {
  7514. lcd_update();
  7515. host_keepalive();
  7516. manage_inactivity(
  7517. #if ENABLED(FILAMENT_CHANGE_FEATURE)
  7518. no_stepper_sleep
  7519. #endif
  7520. );
  7521. thermalManager.manage_heater();
  7522. #if ENABLED(PRINTCOUNTER)
  7523. print_job_timer.tick();
  7524. #endif
  7525. #if HAS_BUZZER && PIN_EXISTS(BEEPER)
  7526. buzzer.tick();
  7527. #endif
  7528. }
  7529. /**
  7530. * Kill all activity and lock the machine.
  7531. * After this the machine will need to be reset.
  7532. */
  7533. void kill(const char* lcd_msg) {
  7534. SERIAL_ERROR_START;
  7535. SERIAL_ERRORLNPGM(MSG_ERR_KILLED);
  7536. #if ENABLED(ULTRA_LCD)
  7537. kill_screen(lcd_msg);
  7538. #else
  7539. UNUSED(lcd_msg);
  7540. #endif
  7541. delay(500); // Wait a short time
  7542. cli(); // Stop interrupts
  7543. thermalManager.disable_all_heaters();
  7544. disable_all_steppers();
  7545. #if HAS_POWER_SWITCH
  7546. pinMode(PS_ON_PIN, INPUT);
  7547. #endif
  7548. suicide();
  7549. while (1) {
  7550. #if ENABLED(USE_WATCHDOG)
  7551. watchdog_reset();
  7552. #endif
  7553. } // Wait for reset
  7554. }
  7555. /**
  7556. * Turn off heaters and stop the print in progress
  7557. * After a stop the machine may be resumed with M999
  7558. */
  7559. void stop() {
  7560. thermalManager.disable_all_heaters();
  7561. if (IsRunning()) {
  7562. Running = false;
  7563. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  7564. SERIAL_ERROR_START;
  7565. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  7566. LCD_MESSAGEPGM(MSG_STOPPED);
  7567. }
  7568. }
  7569. /**
  7570. * Marlin entry-point: Set up before the program loop
  7571. * - Set up the kill pin, filament runout, power hold
  7572. * - Start the serial port
  7573. * - Print startup messages and diagnostics
  7574. * - Get EEPROM or default settings
  7575. * - Initialize managers for:
  7576. * • temperature
  7577. * • planner
  7578. * • watchdog
  7579. * • stepper
  7580. * • photo pin
  7581. * • servos
  7582. * • LCD controller
  7583. * • Digipot I2C
  7584. * • Z probe sled
  7585. * • status LEDs
  7586. */
  7587. void setup() {
  7588. #ifdef DISABLE_JTAG
  7589. // Disable JTAG on AT90USB chips to free up pins for IO
  7590. MCUCR = 0x80;
  7591. MCUCR = 0x80;
  7592. #endif
  7593. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  7594. setup_filrunoutpin();
  7595. #endif
  7596. setup_killpin();
  7597. setup_powerhold();
  7598. #if HAS_STEPPER_RESET
  7599. disableStepperDrivers();
  7600. #endif
  7601. MYSERIAL.begin(BAUDRATE);
  7602. SERIAL_PROTOCOLLNPGM("start");
  7603. SERIAL_ECHO_START;
  7604. // Check startup - does nothing if bootloader sets MCUSR to 0
  7605. byte mcu = MCUSR;
  7606. if (mcu & 1) SERIAL_ECHOLNPGM(MSG_POWERUP);
  7607. if (mcu & 2) SERIAL_ECHOLNPGM(MSG_EXTERNAL_RESET);
  7608. if (mcu & 4) SERIAL_ECHOLNPGM(MSG_BROWNOUT_RESET);
  7609. if (mcu & 8) SERIAL_ECHOLNPGM(MSG_WATCHDOG_RESET);
  7610. if (mcu & 32) SERIAL_ECHOLNPGM(MSG_SOFTWARE_RESET);
  7611. MCUSR = 0;
  7612. SERIAL_ECHOPGM(MSG_MARLIN);
  7613. SERIAL_CHAR(' ');
  7614. SERIAL_ECHOLNPGM(SHORT_BUILD_VERSION);
  7615. SERIAL_EOL;
  7616. #if defined(STRING_DISTRIBUTION_DATE) && defined(STRING_CONFIG_H_AUTHOR)
  7617. SERIAL_ECHO_START;
  7618. SERIAL_ECHOPGM(MSG_CONFIGURATION_VER);
  7619. SERIAL_ECHOPGM(STRING_DISTRIBUTION_DATE);
  7620. SERIAL_ECHOLNPGM(MSG_AUTHOR STRING_CONFIG_H_AUTHOR);
  7621. SERIAL_ECHOLNPGM("Compiled: " __DATE__);
  7622. #endif
  7623. SERIAL_ECHO_START;
  7624. SERIAL_ECHOPAIR(MSG_FREE_MEMORY, freeMemory());
  7625. SERIAL_ECHOLNPAIR(MSG_PLANNER_BUFFER_BYTES, (int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  7626. // Send "ok" after commands by default
  7627. for (int8_t i = 0; i < BUFSIZE; i++) send_ok[i] = true;
  7628. // Load data from EEPROM if available (or use defaults)
  7629. // This also updates variables in the planner, elsewhere
  7630. Config_RetrieveSettings();
  7631. // Initialize current position based on home_offset
  7632. memcpy(current_position, home_offset, sizeof(home_offset));
  7633. // Vital to init stepper/planner equivalent for current_position
  7634. SYNC_PLAN_POSITION_KINEMATIC();
  7635. thermalManager.init(); // Initialize temperature loop
  7636. #if ENABLED(USE_WATCHDOG)
  7637. watchdog_init();
  7638. #endif
  7639. stepper.init(); // Initialize stepper, this enables interrupts!
  7640. setup_photpin();
  7641. servo_init();
  7642. #if HAS_BED_PROBE
  7643. endstops.enable_z_probe(false);
  7644. #endif
  7645. #if HAS_CONTROLLERFAN
  7646. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  7647. #endif
  7648. #if HAS_STEPPER_RESET
  7649. enableStepperDrivers();
  7650. #endif
  7651. #if ENABLED(DIGIPOT_I2C)
  7652. digipot_i2c_init();
  7653. #endif
  7654. #if ENABLED(DAC_STEPPER_CURRENT)
  7655. dac_init();
  7656. #endif
  7657. #if ENABLED(Z_PROBE_SLED) && PIN_EXISTS(SLED)
  7658. pinMode(SLED_PIN, OUTPUT);
  7659. digitalWrite(SLED_PIN, LOW); // turn it off
  7660. #endif // Z_PROBE_SLED
  7661. setup_homepin();
  7662. #ifdef STAT_LED_RED
  7663. pinMode(STAT_LED_RED, OUTPUT);
  7664. digitalWrite(STAT_LED_RED, LOW); // turn it off
  7665. #endif
  7666. #ifdef STAT_LED_BLUE
  7667. pinMode(STAT_LED_BLUE, OUTPUT);
  7668. digitalWrite(STAT_LED_BLUE, LOW); // turn it off
  7669. #endif
  7670. lcd_init();
  7671. #if ENABLED(SHOW_BOOTSCREEN)
  7672. #if ENABLED(DOGLCD)
  7673. safe_delay(BOOTSCREEN_TIMEOUT);
  7674. #elif ENABLED(ULTRA_LCD)
  7675. bootscreen();
  7676. lcd_init();
  7677. #endif
  7678. #endif
  7679. #if ENABLED(MIXING_EXTRUDER) && MIXING_VIRTUAL_TOOLS > 1
  7680. // Initialize mixing to 100% color 1
  7681. for (uint8_t i = 0; i < MIXING_STEPPERS; i++)
  7682. mixing_factor[i] = (i == 0) ? 1 : 0;
  7683. for (uint8_t t = 0; t < MIXING_VIRTUAL_TOOLS; t++)
  7684. for (uint8_t i = 0; i < MIXING_STEPPERS; i++)
  7685. mixing_virtual_tool_mix[t][i] = mixing_factor[i];
  7686. #endif
  7687. #if ENABLED(EXPERIMENTAL_I2CBUS) && I2C_SLAVE_ADDRESS > 0
  7688. i2c.onReceive(i2c_on_receive);
  7689. i2c.onRequest(i2c_on_request);
  7690. #endif
  7691. }
  7692. /**
  7693. * The main Marlin program loop
  7694. *
  7695. * - Save or log commands to SD
  7696. * - Process available commands (if not saving)
  7697. * - Call heater manager
  7698. * - Call inactivity manager
  7699. * - Call endstop manager
  7700. * - Call LCD update
  7701. */
  7702. void loop() {
  7703. if (commands_in_queue < BUFSIZE) get_available_commands();
  7704. #if ENABLED(SDSUPPORT)
  7705. card.checkautostart(false);
  7706. #endif
  7707. if (commands_in_queue) {
  7708. #if ENABLED(SDSUPPORT)
  7709. if (card.saving) {
  7710. char* command = command_queue[cmd_queue_index_r];
  7711. if (strstr_P(command, PSTR("M29"))) {
  7712. // M29 closes the file
  7713. card.closefile();
  7714. SERIAL_PROTOCOLLNPGM(MSG_FILE_SAVED);
  7715. ok_to_send();
  7716. }
  7717. else {
  7718. // Write the string from the read buffer to SD
  7719. card.write_command(command);
  7720. if (card.logging)
  7721. process_next_command(); // The card is saving because it's logging
  7722. else
  7723. ok_to_send();
  7724. }
  7725. }
  7726. else
  7727. process_next_command();
  7728. #else
  7729. process_next_command();
  7730. #endif // SDSUPPORT
  7731. // The queue may be reset by a command handler or by code invoked by idle() within a handler
  7732. if (commands_in_queue) {
  7733. --commands_in_queue;
  7734. cmd_queue_index_r = (cmd_queue_index_r + 1) % BUFSIZE;
  7735. }
  7736. }
  7737. endstops.report_state();
  7738. idle();
  7739. }