My Marlin configs for Fabrikator Mini and CTC i3 Pro B
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

G26_Mesh_Validation_Tool.cpp 35KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860
  1. /**
  2. * Marlin 3D Printer Firmware
  3. * Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
  4. *
  5. * Based on Sprinter and grbl.
  6. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  7. *
  8. * This program is free software: you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation, either version 3 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  20. *
  21. */
  22. /**
  23. * Marlin Firmware -- G26 - Mesh Validation Tool
  24. */
  25. #include "MarlinConfig.h"
  26. #if ENABLED(AUTO_BED_LEVELING_UBL) && ENABLED(UBL_G26_MESH_VALIDATION)
  27. #include "ubl.h"
  28. #include "Marlin.h"
  29. #include "planner.h"
  30. #include "stepper.h"
  31. #include "temperature.h"
  32. #include "ultralcd.h"
  33. #define EXTRUSION_MULTIPLIER 1.0
  34. #define RETRACTION_MULTIPLIER 1.0
  35. #define NOZZLE 0.4
  36. #define FILAMENT 1.75
  37. #define LAYER_HEIGHT 0.2
  38. #define PRIME_LENGTH 10.0
  39. #define BED_TEMP 60.0
  40. #define HOTEND_TEMP 205.0
  41. #define OOZE_AMOUNT 0.3
  42. #define SIZE_OF_INTERSECTION_CIRCLES 5
  43. #define SIZE_OF_CROSSHAIRS 3
  44. #if SIZE_OF_CROSSHAIRS >= SIZE_OF_INTERSECTION_CIRCLES
  45. #error "SIZE_OF_CROSSHAIRS must be less than SIZE_OF_INTERSECTION_CIRCLES."
  46. #endif
  47. /**
  48. * G26 Mesh Validation Tool
  49. *
  50. * G26 is a Mesh Validation Tool intended to provide support for the Marlin Unified Bed Leveling System.
  51. * In order to fully utilize and benefit from the Marlin Unified Bed Leveling System an accurate Mesh must
  52. * be defined. G29 is designed to allow the user to quickly validate the correctness of her Mesh. It will
  53. * first heat the bed and nozzle. It will then print lines and circles along the Mesh Cell boundaries and
  54. * the intersections of those lines (respectively).
  55. *
  56. * This action allows the user to immediately see where the Mesh is properly defined and where it needs to
  57. * be edited. The command will generate the Mesh lines closest to the nozzle's starting position. Alternatively
  58. * the user can specify the X and Y position of interest with command parameters. This allows the user to
  59. * focus on a particular area of the Mesh where attention is needed.
  60. *
  61. * B # Bed Set the Bed Temperature. If not specified, a default of 60 C. will be assumed.
  62. *
  63. * C Current When searching for Mesh Intersection points to draw, use the current nozzle location
  64. * as the base for any distance comparison.
  65. *
  66. * D Disable Disable the Unified Bed Leveling System. In the normal case the user is invoking this
  67. * command to see how well a Mesh as been adjusted to match a print surface. In order to do
  68. * this the Unified Bed Leveling System is turned on by the G26 command. The D parameter
  69. * alters the command's normal behaviour and disables the Unified Bed Leveling System even if
  70. * it is on.
  71. *
  72. * H # Hotend Set the Nozzle Temperature. If not specified, a default of 205 C. will be assumed.
  73. *
  74. * F # Filament Used to specify the diameter of the filament being used. If not specified
  75. * 1.75mm filament is assumed. If you are not getting acceptable results by using the
  76. * 'correct' numbers, you can scale this number up or down a little bit to change the amount
  77. * of filament that is being extruded during the printing of the various lines on the bed.
  78. *
  79. * K Keep-On Keep the heaters turned on at the end of the command.
  80. *
  81. * L # Layer Layer height. (Height of nozzle above bed) If not specified .20mm will be used.
  82. *
  83. * O # Ooooze How much your nozzle will Ooooze filament while getting in position to print. This
  84. * is over kill, but using this parameter will let you get the very first 'circle' perfect
  85. * so you have a trophy to peel off of the bed and hang up to show how perfectly you have your
  86. * Mesh calibrated. If not specified, a filament length of .3mm is assumed.
  87. *
  88. * P # Prime Prime the nozzle with specified length of filament. If this parameter is not
  89. * given, no prime action will take place. If the parameter specifies an amount, that much
  90. * will be purged before continuing. If no amount is specified the command will start
  91. * purging filament until the user provides an LCD Click and then it will continue with
  92. * printing the Mesh. You can carefully remove the spent filament with a needle nose
  93. * pliers while holding the LCD Click wheel in a depressed state.
  94. *
  95. * Q # Multiplier Retraction Multiplier. Normally not needed. Retraction defaults to 1.0mm and
  96. * un-retraction is at 1.2mm These numbers will be scaled by the specified amount
  97. *
  98. * R # Repeat Prints the number of patterns given as a parameter, starting at the current location.
  99. * If a parameter isn't given, every point will be printed unless G26 is interrupted.
  100. * This works the same way that the UBL G29 P4 R parameter works.
  101. *
  102. * S # Nozzle Used to control the size of nozzle diameter. If not specified, a .4mm nozzle is assumed.
  103. *
  104. * U # Random Randomize the order that the circles are drawn on the bed. The search for the closest
  105. * undrawn cicle is still done. But the distance to the location for each circle has a
  106. * random number of the size specified added to it. Specifying S50 will give an interesting
  107. * deviation from the normal behaviour on a 10 x 10 Mesh.
  108. *
  109. * X # X Coord. Specify the starting location of the drawing activity.
  110. *
  111. * Y # Y Coord. Specify the starting location of the drawing activity.
  112. */
  113. // External references
  114. extern float feedrate_mm_s; // must set before calling prepare_move_to_destination
  115. extern Planner planner;
  116. #if ENABLED(ULTRA_LCD)
  117. extern char lcd_status_message[];
  118. #endif
  119. extern float destination[XYZE];
  120. void set_destination_to_current();
  121. void set_current_to_destination();
  122. void prepare_move_to_destination();
  123. float code_value_float();
  124. float code_value_linear_units();
  125. float code_value_axis_units(const AxisEnum axis);
  126. bool code_value_bool();
  127. bool code_has_value();
  128. void lcd_init();
  129. void lcd_setstatuspgm(const char* const message, const uint8_t level);
  130. void sync_plan_position_e();
  131. void chirp_at_user();
  132. // Private functions
  133. void un_retract_filament(float where[XYZE]);
  134. void retract_filament(float where[XYZE]);
  135. bool look_for_lines_to_connect();
  136. bool parse_G26_parameters();
  137. void move_to(const float&, const float&, const float&, const float&) ;
  138. void print_line_from_here_to_there(const float&, const float&, const float&, const float&, const float&, const float&);
  139. bool turn_on_heaters();
  140. bool prime_nozzle();
  141. static uint16_t circle_flags[16], horizontal_mesh_line_flags[16], vertical_mesh_line_flags[16];
  142. float g26_e_axis_feedrate = 0.020,
  143. random_deviation = 0.0,
  144. layer_height = LAYER_HEIGHT;
  145. static bool g26_retracted = false; // Track the retracted state of the nozzle so mismatched
  146. // retracts/recovers won't result in a bad state.
  147. float valid_trig_angle(float);
  148. mesh_index_pair find_closest_circle_to_print(const float&, const float&);
  149. static float extrusion_multiplier = EXTRUSION_MULTIPLIER,
  150. retraction_multiplier = RETRACTION_MULTIPLIER,
  151. nozzle = NOZZLE,
  152. filament_diameter = FILAMENT,
  153. prime_length = PRIME_LENGTH,
  154. x_pos, y_pos,
  155. ooze_amount = OOZE_AMOUNT;
  156. static int16_t bed_temp = BED_TEMP,
  157. hotend_temp = HOTEND_TEMP;
  158. static int8_t prime_flag = 0;
  159. static bool continue_with_closest, keep_heaters_on;
  160. static int16_t g26_repeats;
  161. void G26_line_to_destination(const float &feed_rate) {
  162. const float save_feedrate = feedrate_mm_s;
  163. feedrate_mm_s = feed_rate; // use specified feed rate
  164. prepare_move_to_destination(); // will ultimately call ubl_line_to_destination_cartesian or ubl_prepare_linear_move_to for UBL_DELTA
  165. feedrate_mm_s = save_feedrate; // restore global feed rate
  166. }
  167. /**
  168. * Detect ubl_lcd_clicked, debounce it, and return true for cancel
  169. */
  170. bool user_canceled() {
  171. if (!ubl_lcd_clicked()) return false;
  172. safe_delay(10); // Wait for click to settle
  173. #if ENABLED(ULTRA_LCD)
  174. lcd_setstatuspgm(PSTR("Mesh Validation Stopped."), 99);
  175. lcd_quick_feedback();
  176. #endif
  177. lcd_reset_alert_level();
  178. while (!ubl_lcd_clicked()) idle(); // Wait for button release
  179. // If the button is suddenly pressed again,
  180. // ask the user to resolve the issue
  181. lcd_setstatuspgm(PSTR("Release button"), 99); // will never appear...
  182. while (ubl_lcd_clicked()) idle(); // unless this loop happens
  183. lcd_setstatuspgm(PSTR(""));
  184. return true;
  185. }
  186. /**
  187. * G26: Mesh Validation Pattern generation.
  188. *
  189. * Used to interactively edit UBL's Mesh by placing the
  190. * nozzle in a problem area and doing a G29 P4 R command.
  191. */
  192. void gcode_G26() {
  193. SERIAL_ECHOLNPGM("G26 command started. Waiting for heater(s).");
  194. float tmp, start_angle, end_angle;
  195. int i, xi, yi;
  196. mesh_index_pair location;
  197. // Don't allow Mesh Validation without homing first,
  198. // or if the parameter parsing did not go OK, abort
  199. if (axis_unhomed_error() || parse_G26_parameters()) return;
  200. if (current_position[Z_AXIS] < Z_CLEARANCE_BETWEEN_PROBES) {
  201. do_blocking_move_to_z(Z_CLEARANCE_BETWEEN_PROBES);
  202. stepper.synchronize();
  203. set_current_to_destination();
  204. }
  205. if (turn_on_heaters()) goto LEAVE;
  206. current_position[E_AXIS] = 0.0;
  207. sync_plan_position_e();
  208. if (prime_flag && prime_nozzle()) goto LEAVE;
  209. /**
  210. * Bed is preheated
  211. *
  212. * Nozzle is at temperature
  213. *
  214. * Filament is primed!
  215. *
  216. * It's "Show Time" !!!
  217. */
  218. ZERO(circle_flags);
  219. ZERO(horizontal_mesh_line_flags);
  220. ZERO(vertical_mesh_line_flags);
  221. // Move nozzle to the specified height for the first layer
  222. set_destination_to_current();
  223. destination[Z_AXIS] = layer_height;
  224. move_to(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], 0.0);
  225. move_to(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], ooze_amount);
  226. ubl.has_control_of_lcd_panel = true;
  227. //debug_current_and_destination(PSTR("Starting G26 Mesh Validation Pattern."));
  228. /**
  229. * Declare and generate a sin() & cos() table to be used during the circle drawing. This will lighten
  230. * the CPU load and make the arc drawing faster and more smooth
  231. */
  232. float sin_table[360 / 30 + 1], cos_table[360 / 30 + 1];
  233. for (i = 0; i <= 360 / 30; i++) {
  234. cos_table[i] = SIZE_OF_INTERSECTION_CIRCLES * cos(RADIANS(valid_trig_angle(i * 30.0)));
  235. sin_table[i] = SIZE_OF_INTERSECTION_CIRCLES * sin(RADIANS(valid_trig_angle(i * 30.0)));
  236. }
  237. do {
  238. location = continue_with_closest
  239. ? find_closest_circle_to_print(current_position[X_AXIS], current_position[Y_AXIS])
  240. : find_closest_circle_to_print(x_pos, y_pos); // Find the closest Mesh Intersection to where we are now.
  241. if (location.x_index >= 0 && location.y_index >= 0) {
  242. const float circle_x = pgm_read_float(&ubl.mesh_index_to_xpos[location.x_index]),
  243. circle_y = pgm_read_float(&ubl.mesh_index_to_ypos[location.y_index]);
  244. // If this mesh location is outside the printable_radius, skip it.
  245. if (!position_is_reachable_raw_xy(circle_x, circle_y)) continue;
  246. xi = location.x_index; // Just to shrink the next few lines and make them easier to understand
  247. yi = location.y_index;
  248. if (ubl.g26_debug_flag) {
  249. SERIAL_ECHOPAIR(" Doing circle at: (xi=", xi);
  250. SERIAL_ECHOPAIR(", yi=", yi);
  251. SERIAL_CHAR(')');
  252. SERIAL_EOL;
  253. }
  254. start_angle = 0.0; // assume it is going to be a full circle
  255. end_angle = 360.0;
  256. if (xi == 0) { // Check for bottom edge
  257. start_angle = -90.0;
  258. end_angle = 90.0;
  259. if (yi == 0) // it is an edge, check for the two left corners
  260. start_angle = 0.0;
  261. else if (yi == GRID_MAX_POINTS_Y - 1)
  262. end_angle = 0.0;
  263. }
  264. else if (xi == GRID_MAX_POINTS_X - 1) { // Check for top edge
  265. start_angle = 90.0;
  266. end_angle = 270.0;
  267. if (yi == 0) // it is an edge, check for the two right corners
  268. end_angle = 180.0;
  269. else if (yi == GRID_MAX_POINTS_Y - 1)
  270. start_angle = 180.0;
  271. }
  272. else if (yi == 0) {
  273. start_angle = 0.0; // only do the top side of the cirlce
  274. end_angle = 180.0;
  275. }
  276. else if (yi == GRID_MAX_POINTS_Y - 1) {
  277. start_angle = 180.0; // only do the bottom side of the cirlce
  278. end_angle = 360.0;
  279. }
  280. for (tmp = start_angle; tmp < end_angle - 0.1; tmp += 30.0) {
  281. if (user_canceled()) goto LEAVE; // Check if the user wants to stop the Mesh Validation
  282. int tmp_div_30 = tmp / 30.0;
  283. if (tmp_div_30 < 0) tmp_div_30 += 360 / 30;
  284. if (tmp_div_30 > 11) tmp_div_30 -= 360 / 30;
  285. float x = circle_x + cos_table[tmp_div_30], // for speed, these are now a lookup table entry
  286. y = circle_y + sin_table[tmp_div_30],
  287. xe = circle_x + cos_table[tmp_div_30 + 1],
  288. ye = circle_y + sin_table[tmp_div_30 + 1];
  289. #if IS_KINEMATIC
  290. // Check to make sure this segment is entirely on the bed, skip if not.
  291. if (!position_is_reachable_raw_xy(x, y) || !position_is_reachable_raw_xy(xe, ye)) continue;
  292. #else // not, we need to skip
  293. x = constrain(x, X_MIN_POS + 1, X_MAX_POS - 1); // This keeps us from bumping the endstops
  294. y = constrain(y, Y_MIN_POS + 1, Y_MAX_POS - 1);
  295. xe = constrain(xe, X_MIN_POS + 1, X_MAX_POS - 1);
  296. ye = constrain(ye, Y_MIN_POS + 1, Y_MAX_POS - 1);
  297. #endif
  298. //if (ubl.g26_debug_flag) {
  299. // char ccc, *cptr, seg_msg[50], seg_num[10];
  300. // strcpy(seg_msg, " segment: ");
  301. // strcpy(seg_num, " \n");
  302. // cptr = (char*) "01234567890ABCDEF????????";
  303. // ccc = cptr[tmp_div_30];
  304. // seg_num[1] = ccc;
  305. // strcat(seg_msg, seg_num);
  306. // debug_current_and_destination(seg_msg);
  307. //}
  308. print_line_from_here_to_there(LOGICAL_X_POSITION(x), LOGICAL_Y_POSITION(y), layer_height, LOGICAL_X_POSITION(xe), LOGICAL_Y_POSITION(ye), layer_height);
  309. }
  310. if (look_for_lines_to_connect())
  311. goto LEAVE;
  312. }
  313. } while (--g26_repeats && location.x_index >= 0 && location.y_index >= 0);
  314. LEAVE:
  315. lcd_reset_alert_level();
  316. lcd_setstatuspgm(PSTR("Leaving G26"));
  317. retract_filament(destination);
  318. destination[Z_AXIS] = Z_CLEARANCE_BETWEEN_PROBES;
  319. //debug_current_and_destination(PSTR("ready to do Z-Raise."));
  320. move_to(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], 0); // Raise the nozzle
  321. //debug_current_and_destination(PSTR("done doing Z-Raise."));
  322. destination[X_AXIS] = x_pos; // Move back to the starting position
  323. destination[Y_AXIS] = y_pos;
  324. //destination[Z_AXIS] = Z_CLEARANCE_BETWEEN_PROBES; // Keep the nozzle where it is
  325. move_to(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], 0); // Move back to the starting position
  326. //debug_current_and_destination(PSTR("done doing X/Y move."));
  327. ubl.has_control_of_lcd_panel = false; // Give back control of the LCD Panel!
  328. if (!keep_heaters_on) {
  329. #if HAS_TEMP_BED
  330. thermalManager.setTargetBed(0);
  331. #endif
  332. thermalManager.setTargetHotend(0, 0);
  333. }
  334. }
  335. float valid_trig_angle(float d) {
  336. while (d > 360.0) d -= 360.0;
  337. while (d < 0.0) d += 360.0;
  338. return d;
  339. }
  340. mesh_index_pair find_closest_circle_to_print(const float &X, const float &Y) {
  341. float closest = 99999.99;
  342. mesh_index_pair return_val;
  343. return_val.x_index = return_val.y_index = -1;
  344. for (uint8_t i = 0; i < GRID_MAX_POINTS_X; i++) {
  345. for (uint8_t j = 0; j < GRID_MAX_POINTS_Y; j++) {
  346. if (!is_bit_set(circle_flags, i, j)) {
  347. const float mx = pgm_read_float(&ubl.mesh_index_to_xpos[i]), // We found a circle that needs to be printed
  348. my = pgm_read_float(&ubl.mesh_index_to_ypos[j]);
  349. // Get the distance to this intersection
  350. float f = HYPOT(X - mx, Y - my);
  351. // It is possible that we are being called with the values
  352. // to let us find the closest circle to the start position.
  353. // But if this is not the case, add a small weighting to the
  354. // distance calculation to help it choose a better place to continue.
  355. f += HYPOT(x_pos - mx, y_pos - my) / 15.0;
  356. // Add in the specified amount of Random Noise to our search
  357. if (random_deviation > 1.0)
  358. f += random(0.0, random_deviation);
  359. if (f < closest) {
  360. closest = f; // We found a closer location that is still
  361. return_val.x_index = i; // un-printed --- save the data for it
  362. return_val.y_index = j;
  363. return_val.distance = closest;
  364. }
  365. }
  366. }
  367. }
  368. bit_set(circle_flags, return_val.x_index, return_val.y_index); // Mark this location as done.
  369. return return_val;
  370. }
  371. bool look_for_lines_to_connect() {
  372. float sx, sy, ex, ey;
  373. for (uint8_t i = 0; i < GRID_MAX_POINTS_X; i++) {
  374. for (uint8_t j = 0; j < GRID_MAX_POINTS_Y; j++) {
  375. if (user_canceled()) return true; // Check if the user wants to stop the Mesh Validation
  376. if (i < GRID_MAX_POINTS_X) { // We can't connect to anything to the right than GRID_MAX_POINTS_X.
  377. // This is already a half circle because we are at the edge of the bed.
  378. if (is_bit_set(circle_flags, i, j) && is_bit_set(circle_flags, i + 1, j)) { // check if we can do a line to the left
  379. if (!is_bit_set(horizontal_mesh_line_flags, i, j)) {
  380. //
  381. // We found two circles that need a horizontal line to connect them
  382. // Print it!
  383. //
  384. sx = pgm_read_float(&ubl.mesh_index_to_xpos[ i ]) + (SIZE_OF_INTERSECTION_CIRCLES - (SIZE_OF_CROSSHAIRS)); // right edge
  385. ex = pgm_read_float(&ubl.mesh_index_to_xpos[i + 1]) - (SIZE_OF_INTERSECTION_CIRCLES - (SIZE_OF_CROSSHAIRS)); // left edge
  386. sx = constrain(sx, X_MIN_POS + 1, X_MAX_POS - 1);
  387. sy = ey = constrain(pgm_read_float(&ubl.mesh_index_to_ypos[j]), Y_MIN_POS + 1, Y_MAX_POS - 1);
  388. ex = constrain(ex, X_MIN_POS + 1, X_MAX_POS - 1);
  389. if (position_is_reachable_raw_xy(sx, sy) && position_is_reachable_raw_xy(ex, ey)) {
  390. if (ubl.g26_debug_flag) {
  391. SERIAL_ECHOPAIR(" Connecting with horizontal line (sx=", sx);
  392. SERIAL_ECHOPAIR(", sy=", sy);
  393. SERIAL_ECHOPAIR(") -> (ex=", ex);
  394. SERIAL_ECHOPAIR(", ey=", ey);
  395. SERIAL_CHAR(')');
  396. SERIAL_EOL;
  397. //debug_current_and_destination(PSTR("Connecting horizontal line."));
  398. }
  399. print_line_from_here_to_there(LOGICAL_X_POSITION(sx), LOGICAL_Y_POSITION(sy), layer_height, LOGICAL_X_POSITION(ex), LOGICAL_Y_POSITION(ey), layer_height);
  400. }
  401. bit_set(horizontal_mesh_line_flags, i, j); // Mark it as done so we don't do it again, even if we skipped it
  402. }
  403. }
  404. if (j < GRID_MAX_POINTS_Y) { // We can't connect to anything further back than GRID_MAX_POINTS_Y.
  405. // This is already a half circle because we are at the edge of the bed.
  406. if (is_bit_set(circle_flags, i, j) && is_bit_set(circle_flags, i, j + 1)) { // check if we can do a line straight down
  407. if (!is_bit_set( vertical_mesh_line_flags, i, j)) {
  408. //
  409. // We found two circles that need a vertical line to connect them
  410. // Print it!
  411. //
  412. sy = pgm_read_float(&ubl.mesh_index_to_ypos[ j ]) + (SIZE_OF_INTERSECTION_CIRCLES - (SIZE_OF_CROSSHAIRS)); // top edge
  413. ey = pgm_read_float(&ubl.mesh_index_to_ypos[j + 1]) - (SIZE_OF_INTERSECTION_CIRCLES - (SIZE_OF_CROSSHAIRS)); // bottom edge
  414. sx = ex = constrain(pgm_read_float(&ubl.mesh_index_to_xpos[i]), X_MIN_POS + 1, X_MAX_POS - 1);
  415. sy = constrain(sy, Y_MIN_POS + 1, Y_MAX_POS - 1);
  416. ey = constrain(ey, Y_MIN_POS + 1, Y_MAX_POS - 1);
  417. if (position_is_reachable_raw_xy(sx, sy) && position_is_reachable_raw_xy(ex, ey)) {
  418. if (ubl.g26_debug_flag) {
  419. SERIAL_ECHOPAIR(" Connecting with vertical line (sx=", sx);
  420. SERIAL_ECHOPAIR(", sy=", sy);
  421. SERIAL_ECHOPAIR(") -> (ex=", ex);
  422. SERIAL_ECHOPAIR(", ey=", ey);
  423. SERIAL_CHAR(')');
  424. SERIAL_EOL;
  425. debug_current_and_destination(PSTR("Connecting vertical line."));
  426. }
  427. print_line_from_here_to_there(LOGICAL_X_POSITION(sx), LOGICAL_Y_POSITION(sy), layer_height, LOGICAL_X_POSITION(ex), LOGICAL_Y_POSITION(ey), layer_height);
  428. }
  429. bit_set(vertical_mesh_line_flags, i, j); // Mark it as done so we don't do it again, even if skipped
  430. }
  431. }
  432. }
  433. }
  434. }
  435. }
  436. return false;
  437. }
  438. void move_to(const float &x, const float &y, const float &z, const float &e_delta) {
  439. float feed_value;
  440. static float last_z = -999.99;
  441. bool has_xy_component = (x != current_position[X_AXIS] || y != current_position[Y_AXIS]); // Check if X or Y is involved in the movement.
  442. if (z != last_z) {
  443. last_z = z;
  444. feed_value = planner.max_feedrate_mm_s[Z_AXIS]/(3.0); // Base the feed rate off of the configured Z_AXIS feed rate
  445. destination[X_AXIS] = current_position[X_AXIS];
  446. destination[Y_AXIS] = current_position[Y_AXIS];
  447. destination[Z_AXIS] = z; // We know the last_z==z or we wouldn't be in this block of code.
  448. destination[E_AXIS] = current_position[E_AXIS];
  449. G26_line_to_destination(feed_value);
  450. stepper.synchronize();
  451. set_destination_to_current();
  452. }
  453. // Check if X or Y is involved in the movement.
  454. // Yes: a 'normal' movement. No: a retract() or un_retract()
  455. feed_value = has_xy_component ? PLANNER_XY_FEEDRATE() / 10.0 : planner.max_feedrate_mm_s[E_AXIS] / 1.5;
  456. if (ubl.g26_debug_flag) SERIAL_ECHOLNPAIR("in move_to() feed_value for XY:", feed_value);
  457. destination[X_AXIS] = x;
  458. destination[Y_AXIS] = y;
  459. destination[E_AXIS] += e_delta;
  460. G26_line_to_destination(feed_value);
  461. stepper.synchronize();
  462. set_destination_to_current();
  463. }
  464. void retract_filament(float where[XYZE]) {
  465. if (!g26_retracted) { // Only retract if we are not already retracted!
  466. g26_retracted = true;
  467. move_to(where[X_AXIS], where[Y_AXIS], where[Z_AXIS], -1.0 * retraction_multiplier);
  468. }
  469. }
  470. void un_retract_filament(float where[XYZE]) {
  471. if (g26_retracted) { // Only un-retract if we are retracted.
  472. move_to(where[X_AXIS], where[Y_AXIS], where[Z_AXIS], 1.2 * retraction_multiplier);
  473. g26_retracted = false;
  474. }
  475. }
  476. /**
  477. * print_line_from_here_to_there() takes two cartesian coordinates and draws a line from one
  478. * to the other. But there are really three sets of coordinates involved. The first coordinate
  479. * is the present location of the nozzle. We don't necessarily want to print from this location.
  480. * We first need to move the nozzle to the start of line segment where we want to print. Once
  481. * there, we can use the two coordinates supplied to draw the line.
  482. *
  483. * Note: Although we assume the first set of coordinates is the start of the line and the second
  484. * set of coordinates is the end of the line, it does not always work out that way. This function
  485. * optimizes the movement to minimize the travel distance before it can start printing. This saves
  486. * a lot of time and eleminates a lot of non-sensical movement of the nozzle. However, it does
  487. * cause a lot of very little short retracement of th nozzle when it draws the very first line
  488. * segment of a 'circle'. The time this requires is very short and is easily saved by the other
  489. * cases where the optimization comes into play.
  490. */
  491. void print_line_from_here_to_there(const float &sx, const float &sy, const float &sz, const float &ex, const float &ey, const float &ez) {
  492. const float dx_s = current_position[X_AXIS] - sx, // find our distance from the start of the actual line segment
  493. dy_s = current_position[Y_AXIS] - sy,
  494. dist_start = HYPOT2(dx_s, dy_s), // We don't need to do a sqrt(), we can compare the distance^2
  495. // to save computation time
  496. dx_e = current_position[X_AXIS] - ex, // find our distance from the end of the actual line segment
  497. dy_e = current_position[Y_AXIS] - ey,
  498. dist_end = HYPOT2(dx_e, dy_e),
  499. line_length = HYPOT(ex - sx, ey - sy);
  500. // If the end point of the line is closer to the nozzle, flip the direction,
  501. // moving from the end to the start. On very small lines the optimization isn't worth it.
  502. if (dist_end < dist_start && (SIZE_OF_INTERSECTION_CIRCLES) < abs(line_length)) {
  503. return print_line_from_here_to_there(ex, ey, ez, sx, sy, sz);
  504. }
  505. // Decide whether to retract & bump
  506. if (dist_start > 2.0) {
  507. retract_filament(destination);
  508. //todo: parameterize the bump height with a define
  509. move_to(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] + 0.500, 0.0); // Z bump to minimize scraping
  510. move_to(sx, sy, sz + 0.500, 0.0); // Get to the starting point with no extrusion while bumped
  511. }
  512. move_to(sx, sy, sz, 0.0); // Get to the starting point with no extrusion / un-Z bump
  513. const float e_pos_delta = line_length * g26_e_axis_feedrate * extrusion_multiplier;
  514. un_retract_filament(destination);
  515. move_to(ex, ey, ez, e_pos_delta); // Get to the ending point with an appropriate amount of extrusion
  516. }
  517. /**
  518. * This function used to be inline code in G26. But there are so many
  519. * parameters it made sense to turn them into static globals and get
  520. * this code out of sight of the main routine.
  521. */
  522. bool parse_G26_parameters() {
  523. extrusion_multiplier = EXTRUSION_MULTIPLIER;
  524. retraction_multiplier = RETRACTION_MULTIPLIER;
  525. nozzle = NOZZLE;
  526. filament_diameter = FILAMENT;
  527. layer_height = LAYER_HEIGHT;
  528. prime_length = PRIME_LENGTH;
  529. bed_temp = BED_TEMP;
  530. hotend_temp = HOTEND_TEMP;
  531. prime_flag = 0;
  532. ooze_amount = code_seen('O') && code_has_value() ? code_value_linear_units() : OOZE_AMOUNT;
  533. keep_heaters_on = code_seen('K') && code_value_bool();
  534. continue_with_closest = code_seen('C') && code_value_bool();
  535. if (code_seen('B')) {
  536. bed_temp = code_value_temp_abs();
  537. if (!WITHIN(bed_temp, 15, 140)) {
  538. SERIAL_PROTOCOLLNPGM("?Specified bed temperature not plausible.");
  539. return UBL_ERR;
  540. }
  541. }
  542. if (code_seen('L')) {
  543. layer_height = code_value_linear_units();
  544. if (!WITHIN(layer_height, 0.0, 2.0)) {
  545. SERIAL_PROTOCOLLNPGM("?Specified layer height not plausible.");
  546. return UBL_ERR;
  547. }
  548. }
  549. if (code_seen('Q')) {
  550. if (code_has_value()) {
  551. retraction_multiplier = code_value_float();
  552. if (!WITHIN(retraction_multiplier, 0.05, 15.0)) {
  553. SERIAL_PROTOCOLLNPGM("?Specified Retraction Multiplier not plausible.");
  554. return UBL_ERR;
  555. }
  556. }
  557. else {
  558. SERIAL_PROTOCOLLNPGM("?Retraction Multiplier must be specified.");
  559. return UBL_ERR;
  560. }
  561. }
  562. if (code_seen('S')) {
  563. nozzle = code_value_float();
  564. if (!WITHIN(nozzle, 0.1, 1.0)) {
  565. SERIAL_PROTOCOLLNPGM("?Specified nozzle size not plausible.");
  566. return UBL_ERR;
  567. }
  568. }
  569. if (code_seen('P')) {
  570. if (!code_has_value())
  571. prime_flag = -1;
  572. else {
  573. prime_flag++;
  574. prime_length = code_value_linear_units();
  575. if (!WITHIN(prime_length, 0.0, 25.0)) {
  576. SERIAL_PROTOCOLLNPGM("?Specified prime length not plausible.");
  577. return UBL_ERR;
  578. }
  579. }
  580. }
  581. if (code_seen('F')) {
  582. filament_diameter = code_value_linear_units();
  583. if (!WITHIN(filament_diameter, 1.0, 4.0)) {
  584. SERIAL_PROTOCOLLNPGM("?Specified filament size not plausible.");
  585. return UBL_ERR;
  586. }
  587. }
  588. extrusion_multiplier *= sq(1.75) / sq(filament_diameter); // If we aren't using 1.75mm filament, we need to
  589. // scale up or down the length needed to get the
  590. // same volume of filament
  591. extrusion_multiplier *= filament_diameter * sq(nozzle) / sq(0.3); // Scale up by nozzle size
  592. if (code_seen('H')) {
  593. hotend_temp = code_value_temp_abs();
  594. if (!WITHIN(hotend_temp, 165, 280)) {
  595. SERIAL_PROTOCOLLNPGM("?Specified nozzle temperature not plausible.");
  596. return UBL_ERR;
  597. }
  598. }
  599. if (code_seen('U')) {
  600. randomSeed(millis());
  601. random_deviation = code_has_value() ? code_value_float() : 50.0;
  602. }
  603. g26_repeats = code_seen('R') ? (code_has_value() ? code_value_int() : GRID_MAX_POINTS+1) : GRID_MAX_POINTS+1;
  604. if (g26_repeats < 1) {
  605. SERIAL_PROTOCOLLNPGM("?(R)epeat value not plausible; must be at least 1.");
  606. return UBL_ERR;
  607. }
  608. x_pos = code_seen('X') ? code_value_linear_units() : current_position[X_AXIS];
  609. y_pos = code_seen('Y') ? code_value_linear_units() : current_position[Y_AXIS];
  610. if (!position_is_reachable_xy(x_pos, y_pos)) {
  611. SERIAL_PROTOCOLLNPGM("?Specified X,Y coordinate out of bounds.");
  612. return UBL_ERR;
  613. }
  614. /**
  615. * Wait until all parameters are verified before altering the state!
  616. */
  617. ubl.state.active = !code_seen('D');
  618. return UBL_OK;
  619. }
  620. bool exit_from_g26() {
  621. lcd_reset_alert_level();
  622. lcd_setstatuspgm(PSTR("Leaving G26"));
  623. while (ubl_lcd_clicked()) idle();
  624. return UBL_ERR;
  625. }
  626. /**
  627. * Turn on the bed and nozzle heat and
  628. * wait for them to get up to temperature.
  629. */
  630. bool turn_on_heaters() {
  631. millis_t next;
  632. #if HAS_TEMP_BED
  633. #if ENABLED(ULTRA_LCD)
  634. if (bed_temp > 25) {
  635. lcd_setstatuspgm(PSTR("G26 Heating Bed."), 99);
  636. lcd_quick_feedback();
  637. #endif
  638. ubl.has_control_of_lcd_panel = true;
  639. thermalManager.setTargetBed(bed_temp);
  640. next = millis() + 5000UL;
  641. while (abs(thermalManager.degBed() - bed_temp) > 3) {
  642. if (ubl_lcd_clicked()) return exit_from_g26();
  643. if (PENDING(millis(), next)) {
  644. next = millis() + 5000UL;
  645. print_heaterstates();
  646. }
  647. idle();
  648. }
  649. #if ENABLED(ULTRA_LCD)
  650. }
  651. lcd_setstatuspgm(PSTR("G26 Heating Nozzle."), 99);
  652. lcd_quick_feedback();
  653. #endif
  654. #endif
  655. // Start heating the nozzle and wait for it to reach temperature.
  656. thermalManager.setTargetHotend(hotend_temp, 0);
  657. while (abs(thermalManager.degHotend(0) - hotend_temp) > 3) {
  658. if (ubl_lcd_clicked()) return exit_from_g26();
  659. if (PENDING(millis(), next)) {
  660. next = millis() + 5000UL;
  661. print_heaterstates();
  662. }
  663. idle();
  664. }
  665. #if ENABLED(ULTRA_LCD)
  666. lcd_reset_alert_level();
  667. lcd_setstatuspgm(PSTR(""));
  668. lcd_quick_feedback();
  669. #endif
  670. return UBL_OK;
  671. }
  672. /**
  673. * Prime the nozzle if needed. Return true on error.
  674. */
  675. bool prime_nozzle() {
  676. float Total_Prime = 0.0;
  677. if (prime_flag == -1) { // The user wants to control how much filament gets purged
  678. ubl.has_control_of_lcd_panel = true;
  679. lcd_setstatuspgm(PSTR("User-Controlled Prime"), 99);
  680. chirp_at_user();
  681. set_destination_to_current();
  682. un_retract_filament(destination); // Make sure G26 doesn't think the filament is retracted().
  683. while (!ubl_lcd_clicked()) {
  684. chirp_at_user();
  685. destination[E_AXIS] += 0.25;
  686. #ifdef PREVENT_LENGTHY_EXTRUDE
  687. Total_Prime += 0.25;
  688. if (Total_Prime >= EXTRUDE_MAXLENGTH) return UBL_ERR;
  689. #endif
  690. G26_line_to_destination(planner.max_feedrate_mm_s[E_AXIS] / 15.0);
  691. stepper.synchronize(); // Without this synchronize, the purge is more consistent,
  692. // but because the planner has a buffer, we won't be able
  693. // to stop as quickly. So we put up with the less smooth
  694. // action to give the user a more responsive 'Stop'.
  695. set_destination_to_current();
  696. idle();
  697. }
  698. while (ubl_lcd_clicked()) idle(); // Debounce Encoder Wheel
  699. #if ENABLED(ULTRA_LCD)
  700. strcpy_P(lcd_status_message, PSTR("Done Priming")); // We can't do lcd_setstatuspgm() without having it continue;
  701. // So... We cheat to get a message up.
  702. lcd_setstatuspgm(PSTR("Done Priming"), 99);
  703. lcd_quick_feedback();
  704. #endif
  705. ubl.has_control_of_lcd_panel = false;
  706. }
  707. else {
  708. #if ENABLED(ULTRA_LCD)
  709. lcd_setstatuspgm(PSTR("Fixed Length Prime."), 99);
  710. lcd_quick_feedback();
  711. #endif
  712. set_destination_to_current();
  713. destination[E_AXIS] += prime_length;
  714. G26_line_to_destination(planner.max_feedrate_mm_s[E_AXIS] / 15.0);
  715. stepper.synchronize();
  716. set_destination_to_current();
  717. retract_filament(destination);
  718. }
  719. return UBL_OK;
  720. }
  721. #endif // AUTO_BED_LEVELING_UBL && UBL_G26_MESH_VALIDATION