My Marlin configs for Fabrikator Mini and CTC i3 Pro B
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

configuration_store.cpp 38KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152
  1. /**
  2. * Marlin 3D Printer Firmware
  3. * Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
  4. *
  5. * Based on Sprinter and grbl.
  6. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  7. *
  8. * This program is free software: you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation, either version 3 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  20. *
  21. */
  22. /**
  23. * configuration_store.cpp
  24. *
  25. * Configuration and EEPROM storage
  26. *
  27. * IMPORTANT: Whenever there are changes made to the variables stored in EEPROM
  28. * in the functions below, also increment the version number. This makes sure that
  29. * the default values are used whenever there is a change to the data, to prevent
  30. * wrong data being written to the variables.
  31. *
  32. * ALSO: Variables in the Store and Retrieve sections must be in the same order.
  33. * If a feature is disabled, some data must still be written that, when read,
  34. * either sets a Sane Default, or results in No Change to the existing value.
  35. *
  36. */
  37. #define EEPROM_VERSION "V29"
  38. // Change EEPROM version if these are changed:
  39. #define EEPROM_OFFSET 100
  40. /**
  41. * V29 EEPROM Layout:
  42. *
  43. * 100 Version (char x4)
  44. * 104 EEPROM Checksum (uint16_t)
  45. *
  46. * 106 E_STEPPERS (uint8_t)
  47. * 107 M92 XYZE planner.axis_steps_per_mm (float x4 ... x7)
  48. * 123 M203 XYZE planner.max_feedrate_mm_s (float x4 ... x7)
  49. * 139 M201 XYZE planner.max_acceleration_mm_per_s2 (uint32_t x4 ... x7)
  50. * 155 M204 P planner.acceleration (float)
  51. * 159 M204 R planner.retract_acceleration (float)
  52. * 163 M204 T planner.travel_acceleration (float)
  53. * 167 M205 S planner.min_feedrate_mm_s (float)
  54. * 171 M205 T planner.min_travel_feedrate_mm_s (float)
  55. * 175 M205 B planner.min_segment_time (ulong)
  56. * 179 M205 X planner.max_jerk[X_AXIS] (float)
  57. * 183 M205 Y planner.max_jerk[Y_AXIS] (float)
  58. * 187 M205 Z planner.max_jerk[Z_AXIS] (float)
  59. * 191 M205 E planner.max_jerk[E_AXIS] (float)
  60. * 195 M206 XYZ home_offset (float x3)
  61. * 207 M218 XYZ hotend_offset (float x3 per additional hotend)
  62. *
  63. * Mesh bed leveling:
  64. * 219 M420 S status (uint8)
  65. * 220 z_offset (float)
  66. * 224 mesh_num_x (uint8 as set in firmware)
  67. * 225 mesh_num_y (uint8 as set in firmware)
  68. * 226 G29 S3 XYZ z_values[][] (float x9, by default, up to float x 81)
  69. *
  70. * AUTO BED LEVELING
  71. * 262 M851 zprobe_zoffset (float)
  72. *
  73. * AUTO_BED_LEVELING_BILINEAR (or placeholder): 47 bytes
  74. * 266 ABL_GRID_MAX_POINTS_X (uint8_t)
  75. * 267 ABL_GRID_MAX_POINTS_Y (uint8_t)
  76. * 268 bilinear_grid_spacing (int x2) from G29: (B-F)/X, (R-L)/Y
  77. * 272 G29 L F bilinear_start (int x2)
  78. * 276 bed_level_grid[][] (float x9, up to float x256) +988
  79. *
  80. * DELTA (if deltabot): 36 bytes
  81. * 312 M666 XYZ endstop_adj (float x3)
  82. * 324 M665 R delta_radius (float)
  83. * 328 M665 L delta_diagonal_rod (float)
  84. * 332 M665 S delta_segments_per_second (float)
  85. * 336 M665 A delta_diagonal_rod_trim_tower_1 (float)
  86. * 340 M665 B delta_diagonal_rod_trim_tower_2 (float)
  87. * 344 M665 C delta_diagonal_rod_trim_tower_3 (float)
  88. *
  89. * Z_DUAL_ENDSTOPS: 4 bytes
  90. * 348 M666 Z z_endstop_adj (float)
  91. *
  92. * ULTIPANEL: 6 bytes
  93. * 352 M145 S0 H lcd_preheat_hotend_temp (int x2)
  94. * 356 M145 S0 B lcd_preheat_bed_temp (int x2)
  95. * 360 M145 S0 F lcd_preheat_fan_speed (int x2)
  96. *
  97. * PIDTEMP: 66 bytes
  98. * 364 M301 E0 PIDC Kp[0], Ki[0], Kd[0], Kc[0] (float x4)
  99. * 380 M301 E1 PIDC Kp[1], Ki[1], Kd[1], Kc[1] (float x4)
  100. * 396 M301 E2 PIDC Kp[2], Ki[2], Kd[2], Kc[2] (float x4)
  101. * 412 M301 E3 PIDC Kp[3], Ki[3], Kd[3], Kc[3] (float x4)
  102. * 428 M301 L lpq_len (int)
  103. *
  104. * PIDTEMPBED:
  105. * 430 M304 PID thermalManager.bedKp, thermalManager.bedKi, thermalManager.bedKd (float x3)
  106. *
  107. * DOGLCD: 2 bytes
  108. * 442 M250 C lcd_contrast (int)
  109. *
  110. * FWRETRACT: 29 bytes
  111. * 444 M209 S autoretract_enabled (bool)
  112. * 445 M207 S retract_length (float)
  113. * 449 M207 W retract_length_swap (float)
  114. * 453 M207 F retract_feedrate_mm_s (float)
  115. * 457 M207 Z retract_zlift (float)
  116. * 461 M208 S retract_recover_length (float)
  117. * 465 M208 W retract_recover_length_swap (float)
  118. * 469 M208 F retract_recover_feedrate_mm_s (float)
  119. *
  120. * Volumetric Extrusion: 17 bytes
  121. * 473 M200 D volumetric_enabled (bool)
  122. * 474 M200 T D filament_size (float x4) (T0..3)
  123. *
  124. * 490 Minimum end-point
  125. * 1811 (490 + 36 + 9 + 288 + 988) Maximum end-point
  126. *
  127. */
  128. #include "Marlin.h"
  129. #include "language.h"
  130. #include "endstops.h"
  131. #include "planner.h"
  132. #include "temperature.h"
  133. #include "ultralcd.h"
  134. #include "configuration_store.h"
  135. #if ENABLED(MESH_BED_LEVELING)
  136. #include "mesh_bed_leveling.h"
  137. #endif
  138. #if ENABLED(ABL_BILINEAR_SUBDIVISION)
  139. extern void bed_level_virt_prepare();
  140. extern void bed_level_virt_interpolate();
  141. #endif
  142. /**
  143. * Post-process after Retrieve or Reset
  144. */
  145. void Config_Postprocess() {
  146. // steps per s2 needs to be updated to agree with units per s2
  147. planner.reset_acceleration_rates();
  148. // Make sure delta kinematics are updated before refreshing the
  149. // planner position so the stepper counts will be set correctly.
  150. #if ENABLED(DELTA)
  151. recalc_delta_settings(delta_radius, delta_diagonal_rod);
  152. #endif
  153. // Refresh steps_to_mm with the reciprocal of axis_steps_per_mm
  154. // and init stepper.count[], planner.position[] with current_position
  155. planner.refresh_positioning();
  156. #if ENABLED(PIDTEMP)
  157. thermalManager.updatePID();
  158. #endif
  159. calculate_volumetric_multipliers();
  160. // Software endstops depend on home_offset
  161. LOOP_XYZ(i) update_software_endstops((AxisEnum)i);
  162. }
  163. #if ENABLED(EEPROM_SETTINGS)
  164. uint16_t eeprom_checksum;
  165. const char version[4] = EEPROM_VERSION;
  166. bool eeprom_write_error;
  167. void _EEPROM_writeData(int &pos, uint8_t* value, uint8_t size) {
  168. if (eeprom_write_error) return;
  169. while (size--) {
  170. uint8_t * const p = (uint8_t * const)pos;
  171. const uint8_t v = *value;
  172. // EEPROM has only ~100,000 write cycles,
  173. // so only write bytes that have changed!
  174. if (v != eeprom_read_byte(p)) {
  175. eeprom_write_byte(p, v);
  176. if (eeprom_read_byte(p) != v) {
  177. SERIAL_ECHO_START;
  178. SERIAL_ECHOLNPGM(MSG_ERR_EEPROM_WRITE);
  179. eeprom_write_error = true;
  180. return;
  181. }
  182. }
  183. eeprom_checksum += v;
  184. pos++;
  185. value++;
  186. };
  187. }
  188. bool eeprom_read_error;
  189. void _EEPROM_readData(int &pos, uint8_t* value, uint8_t size) {
  190. do {
  191. uint8_t c = eeprom_read_byte((unsigned char*)pos);
  192. if (!eeprom_read_error) *value = c;
  193. eeprom_checksum += c;
  194. pos++;
  195. value++;
  196. } while (--size);
  197. }
  198. #define DUMMY_PID_VALUE 3000.0f
  199. #define EEPROM_START() int eeprom_index = EEPROM_OFFSET
  200. #define EEPROM_SKIP(VAR) eeprom_index += sizeof(VAR)
  201. #define EEPROM_WRITE(VAR) _EEPROM_writeData(eeprom_index, (uint8_t*)&VAR, sizeof(VAR))
  202. #define EEPROM_READ(VAR) _EEPROM_readData(eeprom_index, (uint8_t*)&VAR, sizeof(VAR))
  203. #define EEPROM_ASSERT(TST,ERR) if () do{ SERIAL_ERROR_START; SERIAL_ERRORLNPGM(ERR); eeprom_read_error |= true; }while(0)
  204. /**
  205. * M500 - Store Configuration
  206. */
  207. void Config_StoreSettings() {
  208. float dummy = 0.0f;
  209. char ver[4] = "000";
  210. EEPROM_START();
  211. eeprom_write_error = false;
  212. EEPROM_WRITE(ver); // invalidate data first
  213. EEPROM_SKIP(eeprom_checksum); // Skip the checksum slot
  214. eeprom_checksum = 0; // clear before first "real data"
  215. const uint8_t esteppers = E_STEPPERS;
  216. EEPROM_WRITE(esteppers);
  217. EEPROM_WRITE(planner.axis_steps_per_mm);
  218. EEPROM_WRITE(planner.max_feedrate_mm_s);
  219. EEPROM_WRITE(planner.max_acceleration_mm_per_s2);
  220. EEPROM_WRITE(planner.acceleration);
  221. EEPROM_WRITE(planner.retract_acceleration);
  222. EEPROM_WRITE(planner.travel_acceleration);
  223. EEPROM_WRITE(planner.min_feedrate_mm_s);
  224. EEPROM_WRITE(planner.min_travel_feedrate_mm_s);
  225. EEPROM_WRITE(planner.min_segment_time);
  226. EEPROM_WRITE(planner.max_jerk);
  227. EEPROM_WRITE(home_offset);
  228. #if HOTENDS > 1
  229. // Skip hotend 0 which must be 0
  230. for (uint8_t e = 1; e < HOTENDS; e++)
  231. LOOP_XYZ(i) EEPROM_WRITE(hotend_offset[i][e]);
  232. #endif
  233. //
  234. // Mesh Bed Leveling
  235. //
  236. #if ENABLED(MESH_BED_LEVELING)
  237. // Compile time test that sizeof(mbl.z_values) is as expected
  238. typedef char c_assert[(sizeof(mbl.z_values) == (MESH_NUM_X_POINTS) * (MESH_NUM_Y_POINTS) * sizeof(dummy)) ? 1 : -1];
  239. uint8_t mesh_num_x = MESH_NUM_X_POINTS,
  240. mesh_num_y = MESH_NUM_Y_POINTS,
  241. dummy_uint8 = mbl.status & _BV(MBL_STATUS_HAS_MESH_BIT);
  242. EEPROM_WRITE(dummy_uint8);
  243. EEPROM_WRITE(mbl.z_offset);
  244. EEPROM_WRITE(mesh_num_x);
  245. EEPROM_WRITE(mesh_num_y);
  246. EEPROM_WRITE(mbl.z_values);
  247. #else
  248. // For disabled MBL write a default mesh
  249. uint8_t mesh_num_x = 3,
  250. mesh_num_y = 3,
  251. mbl_status = 0;
  252. dummy = 0.0f;
  253. EEPROM_WRITE(mbl_status);
  254. EEPROM_WRITE(dummy); // z_offset
  255. EEPROM_WRITE(mesh_num_x);
  256. EEPROM_WRITE(mesh_num_y);
  257. for (uint8_t q = mesh_num_x * mesh_num_y; q--;) EEPROM_WRITE(dummy);
  258. #endif // MESH_BED_LEVELING
  259. #if !HAS_BED_PROBE
  260. float zprobe_zoffset = 0;
  261. #endif
  262. EEPROM_WRITE(zprobe_zoffset);
  263. //
  264. // Bilinear Auto Bed Leveling
  265. //
  266. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  267. // Compile time test that sizeof(bed_level_grid) is as expected
  268. typedef char c_assert[(sizeof(bed_level_grid) == (ABL_GRID_MAX_POINTS_X) * (ABL_GRID_MAX_POINTS_Y) * sizeof(dummy)) ? 1 : -1];
  269. const uint8_t grid_max_x = ABL_GRID_MAX_POINTS_X, grid_max_y = ABL_GRID_MAX_POINTS_Y;
  270. EEPROM_WRITE(grid_max_x); // 1 byte
  271. EEPROM_WRITE(grid_max_y); // 1 byte
  272. EEPROM_WRITE(bilinear_grid_spacing); // 2 ints
  273. EEPROM_WRITE(bilinear_start); // 2 ints
  274. EEPROM_WRITE(bed_level_grid); // 9-256 floats
  275. #else
  276. // For disabled Bilinear Grid write an empty 3x3 grid
  277. const uint8_t grid_max_x = 3, grid_max_y = 3;
  278. const int bilinear_start[2] = { 0 }, bilinear_grid_spacing[2] = { 0 };
  279. dummy = 0.0f;
  280. EEPROM_WRITE(grid_max_x);
  281. EEPROM_WRITE(grid_max_y);
  282. EEPROM_WRITE(bilinear_grid_spacing);
  283. EEPROM_WRITE(bilinear_start);
  284. for (uint16_t q = grid_max_x * grid_max_y; q--;) EEPROM_WRITE(dummy);
  285. #endif // AUTO_BED_LEVELING_BILINEAR
  286. // 9 floats for DELTA / Z_DUAL_ENDSTOPS
  287. #if ENABLED(DELTA)
  288. EEPROM_WRITE(endstop_adj); // 3 floats
  289. EEPROM_WRITE(delta_radius); // 1 float
  290. EEPROM_WRITE(delta_diagonal_rod); // 1 float
  291. EEPROM_WRITE(delta_segments_per_second); // 1 float
  292. EEPROM_WRITE(delta_diagonal_rod_trim_tower_1); // 1 float
  293. EEPROM_WRITE(delta_diagonal_rod_trim_tower_2); // 1 float
  294. EEPROM_WRITE(delta_diagonal_rod_trim_tower_3); // 1 float
  295. #elif ENABLED(Z_DUAL_ENDSTOPS)
  296. EEPROM_WRITE(z_endstop_adj); // 1 float
  297. dummy = 0.0f;
  298. for (uint8_t q = 8; q--;) EEPROM_WRITE(dummy);
  299. #else
  300. dummy = 0.0f;
  301. for (uint8_t q = 9; q--;) EEPROM_WRITE(dummy);
  302. #endif
  303. #if DISABLED(ULTIPANEL)
  304. const int lcd_preheat_hotend_temp[2] = { PREHEAT_1_TEMP_HOTEND, PREHEAT_2_TEMP_HOTEND },
  305. lcd_preheat_bed_temp[2] = { PREHEAT_1_TEMP_BED, PREHEAT_2_TEMP_BED },
  306. lcd_preheat_fan_speed[2] = { PREHEAT_1_FAN_SPEED, PREHEAT_2_FAN_SPEED };
  307. #endif // !ULTIPANEL
  308. EEPROM_WRITE(lcd_preheat_hotend_temp);
  309. EEPROM_WRITE(lcd_preheat_bed_temp);
  310. EEPROM_WRITE(lcd_preheat_fan_speed);
  311. for (uint8_t e = 0; e < MAX_EXTRUDERS; e++) {
  312. #if ENABLED(PIDTEMP)
  313. if (e < HOTENDS) {
  314. EEPROM_WRITE(PID_PARAM(Kp, e));
  315. EEPROM_WRITE(PID_PARAM(Ki, e));
  316. EEPROM_WRITE(PID_PARAM(Kd, e));
  317. #if ENABLED(PID_EXTRUSION_SCALING)
  318. EEPROM_WRITE(PID_PARAM(Kc, e));
  319. #else
  320. dummy = 1.0f; // 1.0 = default kc
  321. EEPROM_WRITE(dummy);
  322. #endif
  323. }
  324. else
  325. #endif // !PIDTEMP
  326. {
  327. dummy = DUMMY_PID_VALUE; // When read, will not change the existing value
  328. EEPROM_WRITE(dummy); // Kp
  329. dummy = 0.0f;
  330. for (uint8_t q = 3; q--;) EEPROM_WRITE(dummy); // Ki, Kd, Kc
  331. }
  332. } // Hotends Loop
  333. #if DISABLED(PID_EXTRUSION_SCALING)
  334. int lpq_len = 20;
  335. #endif
  336. EEPROM_WRITE(lpq_len);
  337. #if DISABLED(PIDTEMPBED)
  338. dummy = DUMMY_PID_VALUE;
  339. for (uint8_t q = 3; q--;) EEPROM_WRITE(dummy);
  340. #else
  341. EEPROM_WRITE(thermalManager.bedKp);
  342. EEPROM_WRITE(thermalManager.bedKi);
  343. EEPROM_WRITE(thermalManager.bedKd);
  344. #endif
  345. #if !HAS_LCD_CONTRAST
  346. const int lcd_contrast = 32;
  347. #endif
  348. EEPROM_WRITE(lcd_contrast);
  349. #if ENABLED(FWRETRACT)
  350. EEPROM_WRITE(autoretract_enabled);
  351. EEPROM_WRITE(retract_length);
  352. #if EXTRUDERS > 1
  353. EEPROM_WRITE(retract_length_swap);
  354. #else
  355. dummy = 0.0f;
  356. EEPROM_WRITE(dummy);
  357. #endif
  358. EEPROM_WRITE(retract_feedrate_mm_s);
  359. EEPROM_WRITE(retract_zlift);
  360. EEPROM_WRITE(retract_recover_length);
  361. #if EXTRUDERS > 1
  362. EEPROM_WRITE(retract_recover_length_swap);
  363. #else
  364. dummy = 0.0f;
  365. EEPROM_WRITE(dummy);
  366. #endif
  367. EEPROM_WRITE(retract_recover_feedrate_mm_s);
  368. #endif // FWRETRACT
  369. EEPROM_WRITE(volumetric_enabled);
  370. // Save filament sizes
  371. for (uint8_t q = 0; q < MAX_EXTRUDERS; q++) {
  372. if (q < COUNT(filament_size)) dummy = filament_size[q];
  373. EEPROM_WRITE(dummy);
  374. }
  375. if (!eeprom_write_error) {
  376. uint16_t final_checksum = eeprom_checksum,
  377. eeprom_size = eeprom_index;
  378. // Write the EEPROM header
  379. eeprom_index = EEPROM_OFFSET;
  380. EEPROM_WRITE(version);
  381. EEPROM_WRITE(final_checksum);
  382. // Report storage size
  383. SERIAL_ECHO_START;
  384. SERIAL_ECHOPAIR("Settings Stored (", eeprom_size);
  385. SERIAL_ECHOLNPGM(" bytes)");
  386. }
  387. }
  388. /**
  389. * M501 - Retrieve Configuration
  390. */
  391. void Config_RetrieveSettings() {
  392. EEPROM_START();
  393. eeprom_read_error = false; // If set EEPROM_READ won't write into RAM
  394. char stored_ver[4];
  395. EEPROM_READ(stored_ver);
  396. uint16_t stored_checksum;
  397. EEPROM_READ(stored_checksum);
  398. // SERIAL_ECHOPAIR("Version: [", ver);
  399. // SERIAL_ECHOPAIR("] Stored version: [", stored_ver);
  400. // SERIAL_CHAR(']');
  401. // SERIAL_EOL;
  402. // Version has to match or defaults are used
  403. if (strncmp(version, stored_ver, 3) != 0) {
  404. Config_ResetDefault();
  405. }
  406. else {
  407. float dummy = 0;
  408. eeprom_checksum = 0; // clear before reading first "real data"
  409. // Number of esteppers may change
  410. uint8_t esteppers;
  411. EEPROM_READ(esteppers);
  412. // Get only the number of E stepper parameters previously stored
  413. // Any steppers added later are set to their defaults
  414. const float def1[] = DEFAULT_AXIS_STEPS_PER_UNIT, def2[] = DEFAULT_MAX_FEEDRATE;
  415. const long def3[] = DEFAULT_MAX_ACCELERATION;
  416. float tmp1[XYZ + esteppers], tmp2[XYZ + esteppers];
  417. long tmp3[XYZ + esteppers];
  418. EEPROM_READ(tmp1);
  419. EEPROM_READ(tmp2);
  420. EEPROM_READ(tmp3);
  421. LOOP_XYZE_N(i) {
  422. planner.axis_steps_per_mm[i] = i < XYZ + esteppers ? tmp1[i] : def1[i < COUNT(def1) ? i : COUNT(def1) - 1];
  423. planner.max_feedrate_mm_s[i] = i < XYZ + esteppers ? tmp2[i] : def2[i < COUNT(def2) ? i : COUNT(def2) - 1];
  424. planner.max_acceleration_mm_per_s2[i] = i < XYZ + esteppers ? tmp3[i] : def3[i < COUNT(def3) ? i : COUNT(def3) - 1];
  425. }
  426. EEPROM_READ(planner.acceleration);
  427. EEPROM_READ(planner.retract_acceleration);
  428. EEPROM_READ(planner.travel_acceleration);
  429. EEPROM_READ(planner.min_feedrate_mm_s);
  430. EEPROM_READ(planner.min_travel_feedrate_mm_s);
  431. EEPROM_READ(planner.min_segment_time);
  432. EEPROM_READ(planner.max_jerk);
  433. EEPROM_READ(home_offset);
  434. #if HOTENDS > 1
  435. // Skip hotend 0 which must be 0
  436. for (uint8_t e = 1; e < HOTENDS; e++)
  437. LOOP_XYZ(i) EEPROM_READ(hotend_offset[i][e]);
  438. #endif
  439. //
  440. // Mesh (Manual) Bed Leveling
  441. //
  442. uint8_t dummy_uint8, mesh_num_x, mesh_num_y;
  443. EEPROM_READ(dummy_uint8);
  444. EEPROM_READ(dummy);
  445. EEPROM_READ(mesh_num_x);
  446. EEPROM_READ(mesh_num_y);
  447. #if ENABLED(MESH_BED_LEVELING)
  448. mbl.status = dummy_uint8;
  449. mbl.z_offset = dummy;
  450. if (mesh_num_x == MESH_NUM_X_POINTS && mesh_num_y == MESH_NUM_Y_POINTS) {
  451. // EEPROM data fits the current mesh
  452. EEPROM_READ(mbl.z_values);
  453. }
  454. else {
  455. // EEPROM data is stale
  456. mbl.reset();
  457. for (uint16_t q = mesh_num_x * mesh_num_y; q--;) EEPROM_READ(dummy);
  458. }
  459. #else
  460. // MBL is disabled - skip the stored data
  461. for (uint16_t q = mesh_num_x * mesh_num_y; q--;) EEPROM_READ(dummy);
  462. #endif // MESH_BED_LEVELING
  463. #if !HAS_BED_PROBE
  464. float zprobe_zoffset = 0;
  465. #endif
  466. EEPROM_READ(zprobe_zoffset);
  467. //
  468. // Bilinear Auto Bed Leveling
  469. //
  470. uint8_t grid_max_x, grid_max_y;
  471. EEPROM_READ(grid_max_x); // 1 byte
  472. EEPROM_READ(grid_max_y); // 1 byte
  473. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  474. if (grid_max_x == ABL_GRID_MAX_POINTS_X && grid_max_y == ABL_GRID_MAX_POINTS_Y) {
  475. set_bed_leveling_enabled(false);
  476. EEPROM_READ(bilinear_grid_spacing); // 2 ints
  477. EEPROM_READ(bilinear_start); // 2 ints
  478. EEPROM_READ(bed_level_grid); // 9 to 256 floats
  479. #if ENABLED(ABL_BILINEAR_SUBDIVISION)
  480. bed_level_virt_prepare();
  481. bed_level_virt_interpolate();
  482. #endif
  483. }
  484. else // EEPROM data is stale
  485. #endif // AUTO_BED_LEVELING_BILINEAR
  486. {
  487. // Skip past disabled (or stale) Bilinear Grid data
  488. int bgs[2], bs[2];
  489. EEPROM_READ(bgs);
  490. EEPROM_READ(bs);
  491. for (uint16_t q = grid_max_x * grid_max_y; q--;) EEPROM_READ(dummy);
  492. }
  493. #if ENABLED(DELTA)
  494. EEPROM_READ(endstop_adj); // 3 floats
  495. EEPROM_READ(delta_radius); // 1 float
  496. EEPROM_READ(delta_diagonal_rod); // 1 float
  497. EEPROM_READ(delta_segments_per_second); // 1 float
  498. EEPROM_READ(delta_diagonal_rod_trim_tower_1); // 1 float
  499. EEPROM_READ(delta_diagonal_rod_trim_tower_2); // 1 float
  500. EEPROM_READ(delta_diagonal_rod_trim_tower_3); // 1 float
  501. #elif ENABLED(Z_DUAL_ENDSTOPS)
  502. EEPROM_READ(z_endstop_adj);
  503. dummy = 0.0f;
  504. for (uint8_t q=8; q--;) EEPROM_READ(dummy);
  505. #else
  506. dummy = 0.0f;
  507. for (uint8_t q=9; q--;) EEPROM_READ(dummy);
  508. #endif
  509. #if DISABLED(ULTIPANEL)
  510. int lcd_preheat_hotend_temp[2], lcd_preheat_bed_temp[2], lcd_preheat_fan_speed[2];
  511. #endif
  512. EEPROM_READ(lcd_preheat_hotend_temp);
  513. EEPROM_READ(lcd_preheat_bed_temp);
  514. EEPROM_READ(lcd_preheat_fan_speed);
  515. #if ENABLED(PIDTEMP)
  516. for (uint8_t e = 0; e < MAX_EXTRUDERS; e++) {
  517. EEPROM_READ(dummy); // Kp
  518. if (e < HOTENDS && dummy != DUMMY_PID_VALUE) {
  519. // do not need to scale PID values as the values in EEPROM are already scaled
  520. PID_PARAM(Kp, e) = dummy;
  521. EEPROM_READ(PID_PARAM(Ki, e));
  522. EEPROM_READ(PID_PARAM(Kd, e));
  523. #if ENABLED(PID_EXTRUSION_SCALING)
  524. EEPROM_READ(PID_PARAM(Kc, e));
  525. #else
  526. EEPROM_READ(dummy);
  527. #endif
  528. }
  529. else {
  530. for (uint8_t q=3; q--;) EEPROM_READ(dummy); // Ki, Kd, Kc
  531. }
  532. }
  533. #else // !PIDTEMP
  534. // 4 x 4 = 16 slots for PID parameters
  535. for (uint8_t q = MAX_EXTRUDERS * 4; q--;) EEPROM_READ(dummy); // Kp, Ki, Kd, Kc
  536. #endif // !PIDTEMP
  537. #if DISABLED(PID_EXTRUSION_SCALING)
  538. int lpq_len;
  539. #endif
  540. EEPROM_READ(lpq_len);
  541. #if ENABLED(PIDTEMPBED)
  542. EEPROM_READ(dummy); // bedKp
  543. if (dummy != DUMMY_PID_VALUE) {
  544. thermalManager.bedKp = dummy;
  545. EEPROM_READ(thermalManager.bedKi);
  546. EEPROM_READ(thermalManager.bedKd);
  547. }
  548. #else
  549. for (uint8_t q=3; q--;) EEPROM_READ(dummy); // bedKp, bedKi, bedKd
  550. #endif
  551. #if !HAS_LCD_CONTRAST
  552. int lcd_contrast;
  553. #endif
  554. EEPROM_READ(lcd_contrast);
  555. #if ENABLED(FWRETRACT)
  556. EEPROM_READ(autoretract_enabled);
  557. EEPROM_READ(retract_length);
  558. #if EXTRUDERS > 1
  559. EEPROM_READ(retract_length_swap);
  560. #else
  561. EEPROM_READ(dummy);
  562. #endif
  563. EEPROM_READ(retract_feedrate_mm_s);
  564. EEPROM_READ(retract_zlift);
  565. EEPROM_READ(retract_recover_length);
  566. #if EXTRUDERS > 1
  567. EEPROM_READ(retract_recover_length_swap);
  568. #else
  569. EEPROM_READ(dummy);
  570. #endif
  571. EEPROM_READ(retract_recover_feedrate_mm_s);
  572. #endif // FWRETRACT
  573. EEPROM_READ(volumetric_enabled);
  574. for (uint8_t q = 0; q < MAX_EXTRUDERS; q++) {
  575. EEPROM_READ(dummy);
  576. if (q < COUNT(filament_size)) filament_size[q] = dummy;
  577. }
  578. if (eeprom_checksum == stored_checksum) {
  579. if (eeprom_read_error)
  580. Config_ResetDefault();
  581. else {
  582. Config_Postprocess();
  583. SERIAL_ECHO_START;
  584. SERIAL_ECHO(version);
  585. SERIAL_ECHOPAIR(" stored settings retrieved (", eeprom_index);
  586. SERIAL_ECHOLNPGM(" bytes)");
  587. }
  588. }
  589. else {
  590. SERIAL_ERROR_START;
  591. SERIAL_ERRORLNPGM("EEPROM checksum mismatch");
  592. Config_ResetDefault();
  593. }
  594. }
  595. #if ENABLED(EEPROM_CHITCHAT)
  596. Config_PrintSettings();
  597. #endif
  598. }
  599. #else // !EEPROM_SETTINGS
  600. void Config_StoreSettings() {
  601. SERIAL_ERROR_START;
  602. SERIAL_ERRORLNPGM("EEPROM disabled");
  603. }
  604. #endif // !EEPROM_SETTINGS
  605. /**
  606. * M502 - Reset Configuration
  607. */
  608. void Config_ResetDefault() {
  609. const float tmp1[] = DEFAULT_AXIS_STEPS_PER_UNIT, tmp2[] = DEFAULT_MAX_FEEDRATE;
  610. const long tmp3[] = DEFAULT_MAX_ACCELERATION;
  611. LOOP_XYZE_N(i) {
  612. planner.axis_steps_per_mm[i] = tmp1[i < COUNT(tmp1) ? i : COUNT(tmp1) - 1];
  613. planner.max_feedrate_mm_s[i] = tmp2[i < COUNT(tmp2) ? i : COUNT(tmp2) - 1];
  614. planner.max_acceleration_mm_per_s2[i] = tmp3[i < COUNT(tmp3) ? i : COUNT(tmp3) - 1];
  615. }
  616. planner.acceleration = DEFAULT_ACCELERATION;
  617. planner.retract_acceleration = DEFAULT_RETRACT_ACCELERATION;
  618. planner.travel_acceleration = DEFAULT_TRAVEL_ACCELERATION;
  619. planner.min_feedrate_mm_s = DEFAULT_MINIMUMFEEDRATE;
  620. planner.min_segment_time = DEFAULT_MINSEGMENTTIME;
  621. planner.min_travel_feedrate_mm_s = DEFAULT_MINTRAVELFEEDRATE;
  622. planner.max_jerk[X_AXIS] = DEFAULT_XJERK;
  623. planner.max_jerk[Y_AXIS] = DEFAULT_YJERK;
  624. planner.max_jerk[Z_AXIS] = DEFAULT_ZJERK;
  625. planner.max_jerk[E_AXIS] = DEFAULT_EJERK;
  626. home_offset[X_AXIS] = home_offset[Y_AXIS] = home_offset[Z_AXIS] = 0;
  627. #if HOTENDS > 1
  628. constexpr float tmp4[XYZ][HOTENDS] = {
  629. HOTEND_OFFSET_X,
  630. HOTEND_OFFSET_Y
  631. #ifdef HOTEND_OFFSET_Z
  632. , HOTEND_OFFSET_Z
  633. #else
  634. , { 0 }
  635. #endif
  636. };
  637. static_assert(
  638. tmp4[X_AXIS][0] == 0 && tmp4[Y_AXIS][0] == 0 && tmp4[Z_AXIS][0] == 0,
  639. "Offsets for the first hotend must be 0.0."
  640. );
  641. LOOP_XYZ(i) HOTEND_LOOP() hotend_offset[i][e] = tmp4[i][e];
  642. #endif
  643. #if PLANNER_LEVELING
  644. reset_bed_level();
  645. #endif
  646. #if HAS_BED_PROBE
  647. zprobe_zoffset = Z_PROBE_OFFSET_FROM_EXTRUDER;
  648. #endif
  649. #if ENABLED(DELTA)
  650. const float adj[ABC] = DELTA_ENDSTOP_ADJ;
  651. endstop_adj[A_AXIS] = adj[A_AXIS];
  652. endstop_adj[B_AXIS] = adj[B_AXIS];
  653. endstop_adj[C_AXIS] = adj[C_AXIS];
  654. delta_radius = DELTA_RADIUS;
  655. delta_diagonal_rod = DELTA_DIAGONAL_ROD;
  656. delta_segments_per_second = DELTA_SEGMENTS_PER_SECOND;
  657. delta_diagonal_rod_trim_tower_1 = DELTA_DIAGONAL_ROD_TRIM_TOWER_1;
  658. delta_diagonal_rod_trim_tower_2 = DELTA_DIAGONAL_ROD_TRIM_TOWER_2;
  659. delta_diagonal_rod_trim_tower_3 = DELTA_DIAGONAL_ROD_TRIM_TOWER_3;
  660. #elif ENABLED(Z_DUAL_ENDSTOPS)
  661. z_endstop_adj = 0;
  662. #endif
  663. #if ENABLED(ULTIPANEL)
  664. lcd_preheat_hotend_temp[0] = PREHEAT_1_TEMP_HOTEND;
  665. lcd_preheat_hotend_temp[1] = PREHEAT_2_TEMP_HOTEND;
  666. lcd_preheat_bed_temp[0] = PREHEAT_1_TEMP_BED;
  667. lcd_preheat_bed_temp[1] = PREHEAT_2_TEMP_BED;
  668. lcd_preheat_fan_speed[0] = PREHEAT_1_FAN_SPEED;
  669. lcd_preheat_fan_speed[1] = PREHEAT_2_FAN_SPEED;
  670. #endif
  671. #if HAS_LCD_CONTRAST
  672. lcd_contrast = DEFAULT_LCD_CONTRAST;
  673. #endif
  674. #if ENABLED(PIDTEMP)
  675. #if ENABLED(PID_PARAMS_PER_HOTEND) && HOTENDS > 1
  676. HOTEND_LOOP()
  677. #else
  678. int e = 0; UNUSED(e); // only need to write once
  679. #endif
  680. {
  681. PID_PARAM(Kp, e) = DEFAULT_Kp;
  682. PID_PARAM(Ki, e) = scalePID_i(DEFAULT_Ki);
  683. PID_PARAM(Kd, e) = scalePID_d(DEFAULT_Kd);
  684. #if ENABLED(PID_EXTRUSION_SCALING)
  685. PID_PARAM(Kc, e) = DEFAULT_Kc;
  686. #endif
  687. }
  688. #if ENABLED(PID_EXTRUSION_SCALING)
  689. lpq_len = 20; // default last-position-queue size
  690. #endif
  691. #endif // PIDTEMP
  692. #if ENABLED(PIDTEMPBED)
  693. thermalManager.bedKp = DEFAULT_bedKp;
  694. thermalManager.bedKi = scalePID_i(DEFAULT_bedKi);
  695. thermalManager.bedKd = scalePID_d(DEFAULT_bedKd);
  696. #endif
  697. #if ENABLED(FWRETRACT)
  698. autoretract_enabled = false;
  699. retract_length = RETRACT_LENGTH;
  700. #if EXTRUDERS > 1
  701. retract_length_swap = RETRACT_LENGTH_SWAP;
  702. #endif
  703. retract_feedrate_mm_s = RETRACT_FEEDRATE;
  704. retract_zlift = RETRACT_ZLIFT;
  705. retract_recover_length = RETRACT_RECOVER_LENGTH;
  706. #if EXTRUDERS > 1
  707. retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  708. #endif
  709. retract_recover_feedrate_mm_s = RETRACT_RECOVER_FEEDRATE;
  710. #endif
  711. volumetric_enabled = false;
  712. for (uint8_t q = 0; q < COUNT(filament_size); q++)
  713. filament_size[q] = DEFAULT_NOMINAL_FILAMENT_DIA;
  714. endstops.enable_globally(
  715. #if ENABLED(ENDSTOPS_ALWAYS_ON_DEFAULT)
  716. (true)
  717. #else
  718. (false)
  719. #endif
  720. );
  721. Config_Postprocess();
  722. SERIAL_ECHO_START;
  723. SERIAL_ECHOLNPGM("Hardcoded Default Settings Loaded");
  724. }
  725. #if DISABLED(DISABLE_M503)
  726. #define CONFIG_ECHO_START do{ if (!forReplay) SERIAL_ECHO_START; }while(0)
  727. /**
  728. * M503 - Print Configuration
  729. */
  730. void Config_PrintSettings(bool forReplay) {
  731. // Always have this function, even with EEPROM_SETTINGS disabled, the current values will be shown
  732. CONFIG_ECHO_START;
  733. if (!forReplay) {
  734. SERIAL_ECHOLNPGM("Steps per unit:");
  735. CONFIG_ECHO_START;
  736. }
  737. SERIAL_ECHOPAIR(" M92 X", planner.axis_steps_per_mm[X_AXIS]);
  738. SERIAL_ECHOPAIR(" Y", planner.axis_steps_per_mm[Y_AXIS]);
  739. SERIAL_ECHOPAIR(" Z", planner.axis_steps_per_mm[Z_AXIS]);
  740. #if DISABLED(DISTINCT_E_FACTORS)
  741. SERIAL_ECHOPAIR(" E", planner.axis_steps_per_mm[E_AXIS]);
  742. #endif
  743. SERIAL_EOL;
  744. #if ENABLED(DISTINCT_E_FACTORS)
  745. for (uint8_t i = 0; i < E_STEPPERS; i++) {
  746. SERIAL_ECHOPAIR(" M92 T", (int)i);
  747. SERIAL_ECHOLNPAIR(" E", planner.axis_steps_per_mm[E_AXIS + i]);
  748. }
  749. #endif
  750. CONFIG_ECHO_START;
  751. if (!forReplay) {
  752. SERIAL_ECHOLNPGM("Maximum feedrates (mm/s):");
  753. CONFIG_ECHO_START;
  754. }
  755. SERIAL_ECHOPAIR(" M203 X", planner.max_feedrate_mm_s[X_AXIS]);
  756. SERIAL_ECHOPAIR(" Y", planner.max_feedrate_mm_s[Y_AXIS]);
  757. SERIAL_ECHOPAIR(" Z", planner.max_feedrate_mm_s[Z_AXIS]);
  758. #if DISABLED(DISTINCT_E_FACTORS)
  759. SERIAL_ECHOPAIR(" E", planner.max_feedrate_mm_s[E_AXIS]);
  760. #endif
  761. SERIAL_EOL;
  762. #if ENABLED(DISTINCT_E_FACTORS)
  763. for (uint8_t i = 0; i < E_STEPPERS; i++) {
  764. SERIAL_ECHOPAIR(" M203 T", (int)i);
  765. SERIAL_ECHOLNPAIR(" E", planner.max_feedrate_mm_s[E_AXIS + i]);
  766. }
  767. #endif
  768. CONFIG_ECHO_START;
  769. if (!forReplay) {
  770. SERIAL_ECHOLNPGM("Maximum Acceleration (mm/s2):");
  771. CONFIG_ECHO_START;
  772. }
  773. SERIAL_ECHOPAIR(" M201 X", planner.max_acceleration_mm_per_s2[X_AXIS]);
  774. SERIAL_ECHOPAIR(" Y", planner.max_acceleration_mm_per_s2[Y_AXIS]);
  775. SERIAL_ECHOPAIR(" Z", planner.max_acceleration_mm_per_s2[Z_AXIS]);
  776. #if DISABLED(DISTINCT_E_FACTORS)
  777. SERIAL_ECHOPAIR(" E", planner.max_acceleration_mm_per_s2[E_AXIS]);
  778. #endif
  779. SERIAL_EOL;
  780. #if ENABLED(DISTINCT_E_FACTORS)
  781. for (uint8_t i = 0; i < E_STEPPERS; i++) {
  782. SERIAL_ECHOPAIR(" M201 T", (int)i);
  783. SERIAL_ECHOLNPAIR(" E", planner.max_acceleration_mm_per_s2[E_AXIS + i]);
  784. }
  785. #endif
  786. CONFIG_ECHO_START;
  787. if (!forReplay) {
  788. SERIAL_ECHOLNPGM("Accelerations: P=printing, R=retract and T=travel");
  789. CONFIG_ECHO_START;
  790. }
  791. SERIAL_ECHOPAIR(" M204 P", planner.acceleration);
  792. SERIAL_ECHOPAIR(" R", planner.retract_acceleration);
  793. SERIAL_ECHOPAIR(" T", planner.travel_acceleration);
  794. SERIAL_EOL;
  795. CONFIG_ECHO_START;
  796. if (!forReplay) {
  797. SERIAL_ECHOLNPGM("Advanced variables: S=Min feedrate (mm/s), T=Min travel feedrate (mm/s), B=minimum segment time (ms), X=maximum XY jerk (mm/s), Z=maximum Z jerk (mm/s), E=maximum E jerk (mm/s)");
  798. CONFIG_ECHO_START;
  799. }
  800. SERIAL_ECHOPAIR(" M205 S", planner.min_feedrate_mm_s);
  801. SERIAL_ECHOPAIR(" T", planner.min_travel_feedrate_mm_s);
  802. SERIAL_ECHOPAIR(" B", planner.min_segment_time);
  803. SERIAL_ECHOPAIR(" X", planner.max_jerk[X_AXIS]);
  804. SERIAL_ECHOPAIR(" Y", planner.max_jerk[Y_AXIS]);
  805. SERIAL_ECHOPAIR(" Z", planner.max_jerk[Z_AXIS]);
  806. SERIAL_ECHOPAIR(" E", planner.max_jerk[E_AXIS]);
  807. SERIAL_EOL;
  808. CONFIG_ECHO_START;
  809. if (!forReplay) {
  810. SERIAL_ECHOLNPGM("Home offset (mm)");
  811. CONFIG_ECHO_START;
  812. }
  813. SERIAL_ECHOPAIR(" M206 X", home_offset[X_AXIS]);
  814. SERIAL_ECHOPAIR(" Y", home_offset[Y_AXIS]);
  815. SERIAL_ECHOPAIR(" Z", home_offset[Z_AXIS]);
  816. SERIAL_EOL;
  817. #if HOTENDS > 1
  818. CONFIG_ECHO_START;
  819. if (!forReplay) {
  820. SERIAL_ECHOLNPGM("Hotend offsets (mm)");
  821. CONFIG_ECHO_START;
  822. }
  823. for (uint8_t e = 1; e < HOTENDS; e++) {
  824. SERIAL_ECHOPAIR(" M218 T", (int)e);
  825. SERIAL_ECHOPAIR(" X", hotend_offset[X_AXIS][e]);
  826. SERIAL_ECHOPAIR(" Y", hotend_offset[Y_AXIS][e]);
  827. #if ENABLED(DUAL_X_CARRIAGE) || ENABLED(SWITCHING_EXTRUDER)
  828. SERIAL_ECHOPAIR(" Z", hotend_offset[Z_AXIS][e]);
  829. #endif
  830. SERIAL_EOL;
  831. }
  832. #endif
  833. #if ENABLED(MESH_BED_LEVELING)
  834. if (!forReplay) {
  835. SERIAL_ECHOLNPGM("Mesh Bed Leveling:");
  836. CONFIG_ECHO_START;
  837. }
  838. SERIAL_ECHOLNPAIR(" M420 S", mbl.has_mesh() ? 1 : 0);
  839. for (uint8_t py = 1; py <= MESH_NUM_Y_POINTS; py++) {
  840. for (uint8_t px = 1; px <= MESH_NUM_X_POINTS; px++) {
  841. CONFIG_ECHO_START;
  842. SERIAL_ECHOPAIR(" G29 S3 X", (int)px);
  843. SERIAL_ECHOPAIR(" Y", (int)py);
  844. SERIAL_ECHOPGM(" Z");
  845. SERIAL_PROTOCOL_F(mbl.z_values[py-1][px-1], 5);
  846. SERIAL_EOL;
  847. }
  848. }
  849. #elif HAS_ABL
  850. if (!forReplay) {
  851. SERIAL_ECHOLNPGM("Auto Bed Leveling:");
  852. CONFIG_ECHO_START;
  853. }
  854. SERIAL_ECHOLNPAIR(" M420 S", planner.abl_enabled ? 1 : 0);
  855. #endif
  856. #if ENABLED(DELTA)
  857. CONFIG_ECHO_START;
  858. if (!forReplay) {
  859. SERIAL_ECHOLNPGM("Endstop adjustment (mm):");
  860. CONFIG_ECHO_START;
  861. }
  862. SERIAL_ECHOPAIR(" M666 X", endstop_adj[X_AXIS]);
  863. SERIAL_ECHOPAIR(" Y", endstop_adj[Y_AXIS]);
  864. SERIAL_ECHOPAIR(" Z", endstop_adj[Z_AXIS]);
  865. SERIAL_EOL;
  866. CONFIG_ECHO_START;
  867. if (!forReplay) {
  868. SERIAL_ECHOLNPGM("Delta settings: L=diagonal_rod, R=radius, S=segments_per_second, ABC=diagonal_rod_trim_tower_[123]");
  869. CONFIG_ECHO_START;
  870. }
  871. SERIAL_ECHOPAIR(" M665 L", delta_diagonal_rod);
  872. SERIAL_ECHOPAIR(" R", delta_radius);
  873. SERIAL_ECHOPAIR(" S", delta_segments_per_second);
  874. SERIAL_ECHOPAIR(" A", delta_diagonal_rod_trim_tower_1);
  875. SERIAL_ECHOPAIR(" B", delta_diagonal_rod_trim_tower_2);
  876. SERIAL_ECHOPAIR(" C", delta_diagonal_rod_trim_tower_3);
  877. SERIAL_EOL;
  878. #elif ENABLED(Z_DUAL_ENDSTOPS)
  879. CONFIG_ECHO_START;
  880. if (!forReplay) {
  881. SERIAL_ECHOLNPGM("Z2 Endstop adjustment (mm):");
  882. CONFIG_ECHO_START;
  883. }
  884. SERIAL_ECHOPAIR(" M666 Z", z_endstop_adj);
  885. SERIAL_EOL;
  886. #endif // DELTA
  887. #if ENABLED(ULTIPANEL)
  888. CONFIG_ECHO_START;
  889. if (!forReplay) {
  890. SERIAL_ECHOLNPGM("Material heatup parameters:");
  891. CONFIG_ECHO_START;
  892. }
  893. for (uint8_t i = 0; i < COUNT(lcd_preheat_hotend_temp); i++) {
  894. SERIAL_ECHOPAIR(" M145 S", (int)i);
  895. SERIAL_ECHOPAIR(" H", lcd_preheat_hotend_temp[i]);
  896. SERIAL_ECHOPAIR(" B", lcd_preheat_bed_temp[i]);
  897. SERIAL_ECHOPAIR(" F", lcd_preheat_fan_speed[i]);
  898. SERIAL_EOL;
  899. }
  900. #endif // ULTIPANEL
  901. #if HAS_PID_HEATING
  902. CONFIG_ECHO_START;
  903. if (!forReplay) {
  904. SERIAL_ECHOLNPGM("PID settings:");
  905. }
  906. #if ENABLED(PIDTEMP)
  907. #if HOTENDS > 1
  908. if (forReplay) {
  909. HOTEND_LOOP() {
  910. CONFIG_ECHO_START;
  911. SERIAL_ECHOPAIR(" M301 E", e);
  912. SERIAL_ECHOPAIR(" P", PID_PARAM(Kp, e));
  913. SERIAL_ECHOPAIR(" I", unscalePID_i(PID_PARAM(Ki, e)));
  914. SERIAL_ECHOPAIR(" D", unscalePID_d(PID_PARAM(Kd, e)));
  915. #if ENABLED(PID_EXTRUSION_SCALING)
  916. SERIAL_ECHOPAIR(" C", PID_PARAM(Kc, e));
  917. if (e == 0) SERIAL_ECHOPAIR(" L", lpq_len);
  918. #endif
  919. SERIAL_EOL;
  920. }
  921. }
  922. else
  923. #endif // HOTENDS > 1
  924. // !forReplay || HOTENDS == 1
  925. {
  926. CONFIG_ECHO_START;
  927. SERIAL_ECHOPAIR(" M301 P", PID_PARAM(Kp, 0)); // for compatibility with hosts, only echo values for E0
  928. SERIAL_ECHOPAIR(" I", unscalePID_i(PID_PARAM(Ki, 0)));
  929. SERIAL_ECHOPAIR(" D", unscalePID_d(PID_PARAM(Kd, 0)));
  930. #if ENABLED(PID_EXTRUSION_SCALING)
  931. SERIAL_ECHOPAIR(" C", PID_PARAM(Kc, 0));
  932. SERIAL_ECHOPAIR(" L", lpq_len);
  933. #endif
  934. SERIAL_EOL;
  935. }
  936. #endif // PIDTEMP
  937. #if ENABLED(PIDTEMPBED)
  938. CONFIG_ECHO_START;
  939. SERIAL_ECHOPAIR(" M304 P", thermalManager.bedKp);
  940. SERIAL_ECHOPAIR(" I", unscalePID_i(thermalManager.bedKi));
  941. SERIAL_ECHOPAIR(" D", unscalePID_d(thermalManager.bedKd));
  942. SERIAL_EOL;
  943. #endif
  944. #endif // PIDTEMP || PIDTEMPBED
  945. #if HAS_LCD_CONTRAST
  946. CONFIG_ECHO_START;
  947. if (!forReplay) {
  948. SERIAL_ECHOLNPGM("LCD Contrast:");
  949. CONFIG_ECHO_START;
  950. }
  951. SERIAL_ECHOPAIR(" M250 C", lcd_contrast);
  952. SERIAL_EOL;
  953. #endif
  954. #if ENABLED(FWRETRACT)
  955. CONFIG_ECHO_START;
  956. if (!forReplay) {
  957. SERIAL_ECHOLNPGM("Retract: S=Length (mm) F:Speed (mm/m) Z: ZLift (mm)");
  958. CONFIG_ECHO_START;
  959. }
  960. SERIAL_ECHOPAIR(" M207 S", retract_length);
  961. #if EXTRUDERS > 1
  962. SERIAL_ECHOPAIR(" W", retract_length_swap);
  963. #endif
  964. SERIAL_ECHOPAIR(" F", MMS_TO_MMM(retract_feedrate_mm_s));
  965. SERIAL_ECHOPAIR(" Z", retract_zlift);
  966. SERIAL_EOL;
  967. CONFIG_ECHO_START;
  968. if (!forReplay) {
  969. SERIAL_ECHOLNPGM("Recover: S=Extra length (mm) F:Speed (mm/m)");
  970. CONFIG_ECHO_START;
  971. }
  972. SERIAL_ECHOPAIR(" M208 S", retract_recover_length);
  973. #if EXTRUDERS > 1
  974. SERIAL_ECHOPAIR(" W", retract_recover_length_swap);
  975. #endif
  976. SERIAL_ECHOPAIR(" F", MMS_TO_MMM(retract_recover_feedrate_mm_s));
  977. SERIAL_EOL;
  978. CONFIG_ECHO_START;
  979. if (!forReplay) {
  980. SERIAL_ECHOLNPGM("Auto-Retract: S=0 to disable, 1 to interpret extrude-only moves as retracts or recoveries");
  981. CONFIG_ECHO_START;
  982. }
  983. SERIAL_ECHOPAIR(" M209 S", autoretract_enabled ? 1 : 0);
  984. SERIAL_EOL;
  985. #endif // FWRETRACT
  986. /**
  987. * Volumetric extrusion M200
  988. */
  989. if (!forReplay) {
  990. CONFIG_ECHO_START;
  991. SERIAL_ECHOPGM("Filament settings:");
  992. if (volumetric_enabled)
  993. SERIAL_EOL;
  994. else
  995. SERIAL_ECHOLNPGM(" Disabled");
  996. }
  997. CONFIG_ECHO_START;
  998. SERIAL_ECHOPAIR(" M200 D", filament_size[0]);
  999. SERIAL_EOL;
  1000. #if EXTRUDERS > 1
  1001. CONFIG_ECHO_START;
  1002. SERIAL_ECHOPAIR(" M200 T1 D", filament_size[1]);
  1003. SERIAL_EOL;
  1004. #if EXTRUDERS > 2
  1005. CONFIG_ECHO_START;
  1006. SERIAL_ECHOPAIR(" M200 T2 D", filament_size[2]);
  1007. SERIAL_EOL;
  1008. #if EXTRUDERS > 3
  1009. CONFIG_ECHO_START;
  1010. SERIAL_ECHOPAIR(" M200 T3 D", filament_size[3]);
  1011. SERIAL_EOL;
  1012. #endif
  1013. #endif
  1014. #endif
  1015. if (!volumetric_enabled) {
  1016. CONFIG_ECHO_START;
  1017. SERIAL_ECHOLNPGM(" M200 D0");
  1018. }
  1019. /**
  1020. * Auto Bed Leveling
  1021. */
  1022. #if HAS_BED_PROBE
  1023. if (!forReplay) {
  1024. CONFIG_ECHO_START;
  1025. SERIAL_ECHOLNPGM("Z-Probe Offset (mm):");
  1026. }
  1027. CONFIG_ECHO_START;
  1028. SERIAL_ECHOPAIR(" M851 Z", zprobe_zoffset);
  1029. SERIAL_EOL;
  1030. #endif
  1031. }
  1032. #endif // !DISABLE_M503