My Marlin configs for Fabrikator Mini and CTC i3 Pro B
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

temperature.cpp 49KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619
  1. /*
  2. temperature.cpp - temperature control
  3. Part of Marlin
  4. Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  5. This program is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. This program is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with this program. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. #include "Marlin.h"
  17. #include "ultralcd.h"
  18. #include "temperature.h"
  19. #include "watchdog.h"
  20. #include "language.h"
  21. #include "Sd2PinMap.h"
  22. //===========================================================================
  23. //================================== macros =================================
  24. //===========================================================================
  25. #ifdef K1 // Defined in Configuration.h in the PID settings
  26. #define K2 (1.0-K1)
  27. #endif
  28. #if defined(PIDTEMPBED) || defined(PIDTEMP)
  29. #define PID_dT ((OVERSAMPLENR * 12.0)/(F_CPU / 64.0 / 256.0))
  30. #endif
  31. //===========================================================================
  32. //============================= public variables ============================
  33. //===========================================================================
  34. int target_temperature[4] = { 0 };
  35. int target_temperature_bed = 0;
  36. int current_temperature_raw[4] = { 0 };
  37. float current_temperature[4] = { 0.0 };
  38. int current_temperature_bed_raw = 0;
  39. float current_temperature_bed = 0.0;
  40. #ifdef TEMP_SENSOR_1_AS_REDUNDANT
  41. int redundant_temperature_raw = 0;
  42. float redundant_temperature = 0.0;
  43. #endif
  44. #ifdef PIDTEMPBED
  45. float bedKp=DEFAULT_bedKp;
  46. float bedKi=(DEFAULT_bedKi*PID_dT);
  47. float bedKd=(DEFAULT_bedKd/PID_dT);
  48. #endif //PIDTEMPBED
  49. #ifdef FAN_SOFT_PWM
  50. unsigned char fanSpeedSoftPwm;
  51. #endif
  52. unsigned char soft_pwm_bed;
  53. #ifdef BABYSTEPPING
  54. volatile int babystepsTodo[3] = { 0 };
  55. #endif
  56. #ifdef FILAMENT_SENSOR
  57. int current_raw_filwidth = 0; //Holds measured filament diameter - one extruder only
  58. #endif
  59. #if defined(THERMAL_PROTECTION_HOTENDS) || defined(THERMAL_PROTECTION_BED)
  60. enum TRState { TRReset, TRInactive, TRFirstHeating, TRStable, TRRunaway };
  61. void thermal_runaway_protection(TRState *state, millis_t *timer, float temperature, float target_temperature, int heater_id, int period_seconds, int hysteresis_degc);
  62. #ifdef THERMAL_PROTECTION_HOTENDS
  63. static TRState thermal_runaway_state_machine[4] = { TRReset, TRReset, TRReset, TRReset };
  64. static millis_t thermal_runaway_timer[4]; // = {0,0,0,0};
  65. #endif
  66. #ifdef THERMAL_PROTECTION_BED
  67. static TRState thermal_runaway_bed_state_machine = TRReset;
  68. static millis_t thermal_runaway_bed_timer;
  69. #endif
  70. #endif
  71. //===========================================================================
  72. //============================ private variables ============================
  73. //===========================================================================
  74. static volatile bool temp_meas_ready = false;
  75. #ifdef PIDTEMP
  76. //static cannot be external:
  77. static float temp_iState[EXTRUDERS] = { 0 };
  78. static float temp_dState[EXTRUDERS] = { 0 };
  79. static float pTerm[EXTRUDERS];
  80. static float iTerm[EXTRUDERS];
  81. static float dTerm[EXTRUDERS];
  82. //int output;
  83. static float pid_error[EXTRUDERS];
  84. static float temp_iState_min[EXTRUDERS];
  85. static float temp_iState_max[EXTRUDERS];
  86. static bool pid_reset[EXTRUDERS];
  87. #endif //PIDTEMP
  88. #ifdef PIDTEMPBED
  89. //static cannot be external:
  90. static float temp_iState_bed = { 0 };
  91. static float temp_dState_bed = { 0 };
  92. static float pTerm_bed;
  93. static float iTerm_bed;
  94. static float dTerm_bed;
  95. //int output;
  96. static float pid_error_bed;
  97. static float temp_iState_min_bed;
  98. static float temp_iState_max_bed;
  99. #else //PIDTEMPBED
  100. static millis_t next_bed_check_ms;
  101. #endif //PIDTEMPBED
  102. static unsigned char soft_pwm[EXTRUDERS];
  103. #ifdef FAN_SOFT_PWM
  104. static unsigned char soft_pwm_fan;
  105. #endif
  106. #if HAS_AUTO_FAN
  107. static millis_t next_auto_fan_check_ms;
  108. #endif
  109. #ifdef PIDTEMP
  110. #ifdef PID_PARAMS_PER_EXTRUDER
  111. float Kp[EXTRUDERS] = ARRAY_BY_EXTRUDERS(DEFAULT_Kp, DEFAULT_Kp, DEFAULT_Kp, DEFAULT_Kp);
  112. float Ki[EXTRUDERS] = ARRAY_BY_EXTRUDERS(DEFAULT_Ki*PID_dT, DEFAULT_Ki*PID_dT, DEFAULT_Ki*PID_dT, DEFAULT_Ki*PID_dT);
  113. float Kd[EXTRUDERS] = ARRAY_BY_EXTRUDERS(DEFAULT_Kd / PID_dT, DEFAULT_Kd / PID_dT, DEFAULT_Kd / PID_dT, DEFAULT_Kd / PID_dT);
  114. #ifdef PID_ADD_EXTRUSION_RATE
  115. float Kc[EXTRUDERS] = ARRAY_BY_EXTRUDERS(DEFAULT_Kc, DEFAULT_Kc, DEFAULT_Kc, DEFAULT_Kc);
  116. #endif // PID_ADD_EXTRUSION_RATE
  117. #else //PID_PARAMS_PER_EXTRUDER
  118. float Kp = DEFAULT_Kp;
  119. float Ki = DEFAULT_Ki * PID_dT;
  120. float Kd = DEFAULT_Kd / PID_dT;
  121. #ifdef PID_ADD_EXTRUSION_RATE
  122. float Kc = DEFAULT_Kc;
  123. #endif // PID_ADD_EXTRUSION_RATE
  124. #endif // PID_PARAMS_PER_EXTRUDER
  125. #endif //PIDTEMP
  126. // Init min and max temp with extreme values to prevent false errors during startup
  127. static int minttemp_raw[EXTRUDERS] = ARRAY_BY_EXTRUDERS( HEATER_0_RAW_LO_TEMP , HEATER_1_RAW_LO_TEMP , HEATER_2_RAW_LO_TEMP, HEATER_3_RAW_LO_TEMP);
  128. static int maxttemp_raw[EXTRUDERS] = ARRAY_BY_EXTRUDERS( HEATER_0_RAW_HI_TEMP , HEATER_1_RAW_HI_TEMP , HEATER_2_RAW_HI_TEMP, HEATER_3_RAW_HI_TEMP);
  129. static int minttemp[EXTRUDERS] = { 0 };
  130. static int maxttemp[EXTRUDERS] = ARRAY_BY_EXTRUDERS( 16383, 16383, 16383, 16383 );
  131. #ifdef BED_MINTEMP
  132. static int bed_minttemp_raw = HEATER_BED_RAW_LO_TEMP;
  133. #endif
  134. #ifdef BED_MAXTEMP
  135. static int bed_maxttemp_raw = HEATER_BED_RAW_HI_TEMP;
  136. #endif
  137. #ifdef TEMP_SENSOR_1_AS_REDUNDANT
  138. static void *heater_ttbl_map[2] = {(void *)HEATER_0_TEMPTABLE, (void *)HEATER_1_TEMPTABLE };
  139. static uint8_t heater_ttbllen_map[2] = { HEATER_0_TEMPTABLE_LEN, HEATER_1_TEMPTABLE_LEN };
  140. #else
  141. static void *heater_ttbl_map[EXTRUDERS] = ARRAY_BY_EXTRUDERS( (void *)HEATER_0_TEMPTABLE, (void *)HEATER_1_TEMPTABLE, (void *)HEATER_2_TEMPTABLE, (void *)HEATER_3_TEMPTABLE );
  142. static uint8_t heater_ttbllen_map[EXTRUDERS] = ARRAY_BY_EXTRUDERS( HEATER_0_TEMPTABLE_LEN, HEATER_1_TEMPTABLE_LEN, HEATER_2_TEMPTABLE_LEN, HEATER_3_TEMPTABLE_LEN );
  143. #endif
  144. static float analog2temp(int raw, uint8_t e);
  145. static float analog2tempBed(int raw);
  146. static void updateTemperaturesFromRawValues();
  147. #ifdef THERMAL_PROTECTION_HOTENDS
  148. int watch_target_temp[EXTRUDERS] = { 0 };
  149. millis_t watch_heater_next_ms[EXTRUDERS] = { 0 };
  150. #endif
  151. #ifndef SOFT_PWM_SCALE
  152. #define SOFT_PWM_SCALE 0
  153. #endif
  154. #ifdef FILAMENT_SENSOR
  155. static int meas_shift_index; //used to point to a delayed sample in buffer for filament width sensor
  156. #endif
  157. #ifdef HEATER_0_USES_MAX6675
  158. static int read_max6675();
  159. #endif
  160. //===========================================================================
  161. //================================ Functions ================================
  162. //===========================================================================
  163. void PID_autotune(float temp, int extruder, int ncycles) {
  164. float input = 0.0;
  165. int cycles = 0;
  166. bool heating = true;
  167. millis_t temp_ms = millis(), t1 = temp_ms, t2 = temp_ms;
  168. long t_high = 0, t_low = 0;
  169. long bias, d;
  170. float Ku, Tu;
  171. float Kp, Ki, Kd;
  172. float max = 0, min = 10000;
  173. #if HAS_AUTO_FAN
  174. millis_t next_auto_fan_check_ms = temp_ms + 2500;
  175. #endif
  176. if (extruder >= EXTRUDERS
  177. #if !HAS_TEMP_BED
  178. || extruder < 0
  179. #endif
  180. ) {
  181. SERIAL_ECHOLN(MSG_PID_BAD_EXTRUDER_NUM);
  182. return;
  183. }
  184. SERIAL_ECHOLN(MSG_PID_AUTOTUNE_START);
  185. disable_all_heaters(); // switch off all heaters.
  186. if (extruder < 0)
  187. soft_pwm_bed = bias = d = MAX_BED_POWER / 2;
  188. else
  189. soft_pwm[extruder] = bias = d = PID_MAX / 2;
  190. // PID Tuning loop
  191. for (;;) {
  192. millis_t ms = millis();
  193. if (temp_meas_ready) { // temp sample ready
  194. updateTemperaturesFromRawValues();
  195. input = (extruder<0)?current_temperature_bed:current_temperature[extruder];
  196. max = max(max, input);
  197. min = min(min, input);
  198. #if HAS_AUTO_FAN
  199. if (ms > next_auto_fan_check_ms) {
  200. checkExtruderAutoFans();
  201. next_auto_fan_check_ms = ms + 2500;
  202. }
  203. #endif
  204. if (heating && input > temp) {
  205. if (ms > t2 + 5000) {
  206. heating = false;
  207. if (extruder < 0)
  208. soft_pwm_bed = (bias - d) >> 1;
  209. else
  210. soft_pwm[extruder] = (bias - d) >> 1;
  211. t1 = ms;
  212. t_high = t1 - t2;
  213. max = temp;
  214. }
  215. }
  216. if (!heating && input < temp) {
  217. if (ms > t1 + 5000) {
  218. heating = true;
  219. t2 = ms;
  220. t_low = t2 - t1;
  221. if (cycles > 0) {
  222. long max_pow = extruder < 0 ? MAX_BED_POWER : PID_MAX;
  223. bias += (d*(t_high - t_low))/(t_low + t_high);
  224. bias = constrain(bias, 20, max_pow - 20);
  225. d = (bias > max_pow / 2) ? max_pow - 1 - bias : bias;
  226. SERIAL_PROTOCOLPGM(MSG_BIAS); SERIAL_PROTOCOL(bias);
  227. SERIAL_PROTOCOLPGM(MSG_D); SERIAL_PROTOCOL(d);
  228. SERIAL_PROTOCOLPGM(MSG_T_MIN); SERIAL_PROTOCOL(min);
  229. SERIAL_PROTOCOLPGM(MSG_T_MAX); SERIAL_PROTOCOLLN(max);
  230. if (cycles > 2) {
  231. Ku = (4.0 * d) / (3.14159265 * (max - min) / 2.0);
  232. Tu = ((float)(t_low + t_high) / 1000.0);
  233. SERIAL_PROTOCOLPGM(MSG_KU); SERIAL_PROTOCOL(Ku);
  234. SERIAL_PROTOCOLPGM(MSG_TU); SERIAL_PROTOCOLLN(Tu);
  235. Kp = 0.6 * Ku;
  236. Ki = 2 * Kp / Tu;
  237. Kd = Kp * Tu / 8;
  238. SERIAL_PROTOCOLLNPGM(MSG_CLASSIC_PID);
  239. SERIAL_PROTOCOLPGM(MSG_KP); SERIAL_PROTOCOLLN(Kp);
  240. SERIAL_PROTOCOLPGM(MSG_KI); SERIAL_PROTOCOLLN(Ki);
  241. SERIAL_PROTOCOLPGM(MSG_KD); SERIAL_PROTOCOLLN(Kd);
  242. /*
  243. Kp = 0.33*Ku;
  244. Ki = Kp/Tu;
  245. Kd = Kp*Tu/3;
  246. SERIAL_PROTOCOLLNPGM(" Some overshoot ");
  247. SERIAL_PROTOCOLPGM(" Kp: "); SERIAL_PROTOCOLLN(Kp);
  248. SERIAL_PROTOCOLPGM(" Ki: "); SERIAL_PROTOCOLLN(Ki);
  249. SERIAL_PROTOCOLPGM(" Kd: "); SERIAL_PROTOCOLLN(Kd);
  250. Kp = 0.2*Ku;
  251. Ki = 2*Kp/Tu;
  252. Kd = Kp*Tu/3;
  253. SERIAL_PROTOCOLLNPGM(" No overshoot ");
  254. SERIAL_PROTOCOLPGM(" Kp: "); SERIAL_PROTOCOLLN(Kp);
  255. SERIAL_PROTOCOLPGM(" Ki: "); SERIAL_PROTOCOLLN(Ki);
  256. SERIAL_PROTOCOLPGM(" Kd: "); SERIAL_PROTOCOLLN(Kd);
  257. */
  258. }
  259. }
  260. if (extruder < 0)
  261. soft_pwm_bed = (bias + d) >> 1;
  262. else
  263. soft_pwm[extruder] = (bias + d) >> 1;
  264. cycles++;
  265. min = temp;
  266. }
  267. }
  268. }
  269. #define MAX_OVERSHOOT_PID_AUTOTUNE 20
  270. if (input > temp + MAX_OVERSHOOT_PID_AUTOTUNE) {
  271. SERIAL_PROTOCOLLNPGM(MSG_PID_TEMP_TOO_HIGH);
  272. return;
  273. }
  274. // Every 2 seconds...
  275. if (ms > temp_ms + 2000) {
  276. int p;
  277. if (extruder < 0) {
  278. p = soft_pwm_bed;
  279. SERIAL_PROTOCOLPGM(MSG_B);
  280. }
  281. else {
  282. p = soft_pwm[extruder];
  283. SERIAL_PROTOCOLPGM(MSG_T);
  284. }
  285. SERIAL_PROTOCOL(input);
  286. SERIAL_PROTOCOLPGM(MSG_AT);
  287. SERIAL_PROTOCOLLN(p);
  288. temp_ms = ms;
  289. } // every 2 seconds
  290. // Over 2 minutes?
  291. if (((ms - t1) + (ms - t2)) > (10L*60L*1000L*2L)) {
  292. SERIAL_PROTOCOLLNPGM(MSG_PID_TIMEOUT);
  293. return;
  294. }
  295. if (cycles > ncycles) {
  296. SERIAL_PROTOCOLLNPGM(MSG_PID_AUTOTUNE_FINISHED);
  297. const char *estring = extruder < 0 ? "bed" : "";
  298. SERIAL_PROTOCOLPGM("#define DEFAULT_"); SERIAL_PROTOCOL(estring); SERIAL_PROTOCOLPGM("Kp "); SERIAL_PROTOCOLLN(Kp);
  299. SERIAL_PROTOCOLPGM("#define DEFAULT_"); SERIAL_PROTOCOL(estring); SERIAL_PROTOCOLPGM("Ki "); SERIAL_PROTOCOLLN(Ki);
  300. SERIAL_PROTOCOLPGM("#define DEFAULT_"); SERIAL_PROTOCOL(estring); SERIAL_PROTOCOLPGM("Kd "); SERIAL_PROTOCOLLN(Kd);
  301. return;
  302. }
  303. lcd_update();
  304. }
  305. }
  306. void updatePID() {
  307. #ifdef PIDTEMP
  308. for (int e = 0; e < EXTRUDERS; e++) {
  309. temp_iState_max[e] = PID_INTEGRAL_DRIVE_MAX / PID_PARAM(Ki,e);
  310. }
  311. #endif
  312. #ifdef PIDTEMPBED
  313. temp_iState_max_bed = PID_BED_INTEGRAL_DRIVE_MAX / bedKi;
  314. #endif
  315. }
  316. int getHeaterPower(int heater) {
  317. return heater < 0 ? soft_pwm_bed : soft_pwm[heater];
  318. }
  319. #if HAS_AUTO_FAN
  320. void setExtruderAutoFanState(int pin, bool state)
  321. {
  322. unsigned char newFanSpeed = (state != 0) ? EXTRUDER_AUTO_FAN_SPEED : 0;
  323. // this idiom allows both digital and PWM fan outputs (see M42 handling).
  324. digitalWrite(pin, newFanSpeed);
  325. analogWrite(pin, newFanSpeed);
  326. }
  327. void checkExtruderAutoFans()
  328. {
  329. uint8_t fanState = 0;
  330. // which fan pins need to be turned on?
  331. #if HAS_AUTO_FAN_0
  332. if (current_temperature[0] > EXTRUDER_AUTO_FAN_TEMPERATURE)
  333. fanState |= 1;
  334. #endif
  335. #if HAS_AUTO_FAN_1
  336. if (current_temperature[1] > EXTRUDER_AUTO_FAN_TEMPERATURE)
  337. {
  338. if (EXTRUDER_1_AUTO_FAN_PIN == EXTRUDER_0_AUTO_FAN_PIN)
  339. fanState |= 1;
  340. else
  341. fanState |= 2;
  342. }
  343. #endif
  344. #if HAS_AUTO_FAN_2
  345. if (current_temperature[2] > EXTRUDER_AUTO_FAN_TEMPERATURE)
  346. {
  347. if (EXTRUDER_2_AUTO_FAN_PIN == EXTRUDER_0_AUTO_FAN_PIN)
  348. fanState |= 1;
  349. else if (EXTRUDER_2_AUTO_FAN_PIN == EXTRUDER_1_AUTO_FAN_PIN)
  350. fanState |= 2;
  351. else
  352. fanState |= 4;
  353. }
  354. #endif
  355. #if HAS_AUTO_FAN_3
  356. if (current_temperature[3] > EXTRUDER_AUTO_FAN_TEMPERATURE)
  357. {
  358. if (EXTRUDER_3_AUTO_FAN_PIN == EXTRUDER_0_AUTO_FAN_PIN)
  359. fanState |= 1;
  360. else if (EXTRUDER_3_AUTO_FAN_PIN == EXTRUDER_1_AUTO_FAN_PIN)
  361. fanState |= 2;
  362. else if (EXTRUDER_3_AUTO_FAN_PIN == EXTRUDER_2_AUTO_FAN_PIN)
  363. fanState |= 4;
  364. else
  365. fanState |= 8;
  366. }
  367. #endif
  368. // update extruder auto fan states
  369. #if HAS_AUTO_FAN_0
  370. setExtruderAutoFanState(EXTRUDER_0_AUTO_FAN_PIN, (fanState & 1) != 0);
  371. #endif
  372. #if HAS_AUTO_FAN_1
  373. if (EXTRUDER_1_AUTO_FAN_PIN != EXTRUDER_0_AUTO_FAN_PIN)
  374. setExtruderAutoFanState(EXTRUDER_1_AUTO_FAN_PIN, (fanState & 2) != 0);
  375. #endif
  376. #if HAS_AUTO_FAN_2
  377. if (EXTRUDER_2_AUTO_FAN_PIN != EXTRUDER_0_AUTO_FAN_PIN
  378. && EXTRUDER_2_AUTO_FAN_PIN != EXTRUDER_1_AUTO_FAN_PIN)
  379. setExtruderAutoFanState(EXTRUDER_2_AUTO_FAN_PIN, (fanState & 4) != 0);
  380. #endif
  381. #if HAS_AUTO_FAN_3
  382. if (EXTRUDER_3_AUTO_FAN_PIN != EXTRUDER_0_AUTO_FAN_PIN
  383. && EXTRUDER_3_AUTO_FAN_PIN != EXTRUDER_1_AUTO_FAN_PIN
  384. && EXTRUDER_3_AUTO_FAN_PIN != EXTRUDER_2_AUTO_FAN_PIN)
  385. setExtruderAutoFanState(EXTRUDER_3_AUTO_FAN_PIN, (fanState & 8) != 0);
  386. #endif
  387. }
  388. #endif // any extruder auto fan pins set
  389. //
  390. // Temperature Error Handlers
  391. //
  392. inline void _temp_error(int e, const char *serial_msg, const char *lcd_msg) {
  393. static bool killed = false;
  394. if (IsRunning()) {
  395. SERIAL_ERROR_START;
  396. serialprintPGM(serial_msg);
  397. SERIAL_ERRORPGM(MSG_STOPPED_HEATER);
  398. if (e >= 0) SERIAL_ERRORLN((int)e); else SERIAL_ERRORLNPGM(MSG_HEATER_BED);
  399. }
  400. #ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE
  401. if (!killed) {
  402. Running = false;
  403. killed = true;
  404. kill(lcd_msg);
  405. }
  406. else
  407. disable_all_heaters(); // paranoia
  408. #endif
  409. }
  410. void max_temp_error(uint8_t e) {
  411. _temp_error(e, PSTR(MSG_T_MAXTEMP), PSTR(MSG_ERR_MAXTEMP));
  412. }
  413. void min_temp_error(uint8_t e) {
  414. _temp_error(e, PSTR(MSG_T_MINTEMP), PSTR(MSG_ERR_MINTEMP));
  415. }
  416. float get_pid_output(int e) {
  417. float pid_output;
  418. #ifdef PIDTEMP
  419. #ifndef PID_OPENLOOP
  420. pid_error[e] = target_temperature[e] - current_temperature[e];
  421. if (pid_error[e] > PID_FUNCTIONAL_RANGE) {
  422. pid_output = BANG_MAX;
  423. pid_reset[e] = true;
  424. }
  425. else if (pid_error[e] < -PID_FUNCTIONAL_RANGE || target_temperature[e] == 0) {
  426. pid_output = 0;
  427. pid_reset[e] = true;
  428. }
  429. else {
  430. if (pid_reset[e]) {
  431. temp_iState[e] = 0.0;
  432. pid_reset[e] = false;
  433. }
  434. pTerm[e] = PID_PARAM(Kp,e) * pid_error[e];
  435. temp_iState[e] += pid_error[e];
  436. temp_iState[e] = constrain(temp_iState[e], temp_iState_min[e], temp_iState_max[e]);
  437. iTerm[e] = PID_PARAM(Ki,e) * temp_iState[e];
  438. dTerm[e] = K2 * PID_PARAM(Kd,e) * (current_temperature[e] - temp_dState[e]) + K1 * dTerm[e];
  439. pid_output = pTerm[e] + iTerm[e] - dTerm[e];
  440. if (pid_output > PID_MAX) {
  441. if (pid_error[e] > 0) temp_iState[e] -= pid_error[e]; // conditional un-integration
  442. pid_output = PID_MAX;
  443. }
  444. else if (pid_output < 0) {
  445. if (pid_error[e] < 0) temp_iState[e] -= pid_error[e]; // conditional un-integration
  446. pid_output = 0;
  447. }
  448. }
  449. temp_dState[e] = current_temperature[e];
  450. #else
  451. pid_output = constrain(target_temperature[e], 0, PID_MAX);
  452. #endif //PID_OPENLOOP
  453. #ifdef PID_DEBUG
  454. SERIAL_ECHO_START;
  455. SERIAL_ECHO(MSG_PID_DEBUG);
  456. SERIAL_ECHO(e);
  457. SERIAL_ECHO(MSG_PID_DEBUG_INPUT);
  458. SERIAL_ECHO(current_temperature[e]);
  459. SERIAL_ECHO(MSG_PID_DEBUG_OUTPUT);
  460. SERIAL_ECHO(pid_output);
  461. SERIAL_ECHO(MSG_PID_DEBUG_PTERM);
  462. SERIAL_ECHO(pTerm[e]);
  463. SERIAL_ECHO(MSG_PID_DEBUG_ITERM);
  464. SERIAL_ECHO(iTerm[e]);
  465. SERIAL_ECHO(MSG_PID_DEBUG_DTERM);
  466. SERIAL_ECHOLN(dTerm[e]);
  467. #endif //PID_DEBUG
  468. #else /* PID off */
  469. pid_output = (current_temperature[e] < target_temperature[e]) ? PID_MAX : 0;
  470. #endif
  471. return pid_output;
  472. }
  473. #ifdef PIDTEMPBED
  474. float get_pid_output_bed() {
  475. float pid_output;
  476. #ifndef PID_OPENLOOP
  477. pid_error_bed = target_temperature_bed - current_temperature_bed;
  478. pTerm_bed = bedKp * pid_error_bed;
  479. temp_iState_bed += pid_error_bed;
  480. temp_iState_bed = constrain(temp_iState_bed, temp_iState_min_bed, temp_iState_max_bed);
  481. iTerm_bed = bedKi * temp_iState_bed;
  482. dTerm_bed = K2 * bedKd * (current_temperature_bed - temp_dState_bed) + K1 * dTerm_bed;
  483. temp_dState_bed = current_temperature_bed;
  484. pid_output = pTerm_bed + iTerm_bed - dTerm_bed;
  485. if (pid_output > MAX_BED_POWER) {
  486. if (pid_error_bed > 0) temp_iState_bed -= pid_error_bed; // conditional un-integration
  487. pid_output = MAX_BED_POWER;
  488. }
  489. else if (pid_output < 0) {
  490. if (pid_error_bed < 0) temp_iState_bed -= pid_error_bed; // conditional un-integration
  491. pid_output = 0;
  492. }
  493. #else
  494. pid_output = constrain(target_temperature_bed, 0, MAX_BED_POWER);
  495. #endif // PID_OPENLOOP
  496. #ifdef PID_BED_DEBUG
  497. SERIAL_ECHO_START;
  498. SERIAL_ECHO(" PID_BED_DEBUG ");
  499. SERIAL_ECHO(": Input ");
  500. SERIAL_ECHO(current_temperature_bed);
  501. SERIAL_ECHO(" Output ");
  502. SERIAL_ECHO(pid_output);
  503. SERIAL_ECHO(" pTerm ");
  504. SERIAL_ECHO(pTerm_bed);
  505. SERIAL_ECHO(" iTerm ");
  506. SERIAL_ECHO(iTerm_bed);
  507. SERIAL_ECHO(" dTerm ");
  508. SERIAL_ECHOLN(dTerm_bed);
  509. #endif //PID_BED_DEBUG
  510. return pid_output;
  511. }
  512. #endif
  513. /**
  514. * Manage heating activities for extruder hot-ends and a heated bed
  515. * - Acquire updated temperature readings
  516. * - Invoke thermal runaway protection
  517. * - Manage extruder auto-fan
  518. * - Apply filament width to the extrusion rate (may move)
  519. * - Update the heated bed PID output value
  520. */
  521. void manage_heater() {
  522. if (!temp_meas_ready) return;
  523. updateTemperaturesFromRawValues();
  524. #ifdef HEATER_0_USES_MAX6675
  525. float ct = current_temperature[0];
  526. if (ct > min(HEATER_0_MAXTEMP, 1023)) max_temp_error(0);
  527. if (ct < max(HEATER_0_MINTEMP, 0.01)) min_temp_error(0);
  528. #endif
  529. #if defined(THERMAL_PROTECTION_HOTENDS) || !defined(PIDTEMPBED) || HAS_AUTO_FAN
  530. millis_t ms = millis();
  531. #endif
  532. // Loop through all extruders
  533. for (int e = 0; e < EXTRUDERS; e++) {
  534. #ifdef THERMAL_PROTECTION_HOTENDS
  535. thermal_runaway_protection(&thermal_runaway_state_machine[e], &thermal_runaway_timer[e], current_temperature[e], target_temperature[e], e, THERMAL_PROTECTION_PERIOD, THERMAL_PROTECTION_HYSTERESIS);
  536. #endif
  537. float pid_output = get_pid_output(e);
  538. // Check if temperature is within the correct range
  539. soft_pwm[e] = current_temperature[e] > minttemp[e] && current_temperature[e] < maxttemp[e] ? (int)pid_output >> 1 : 0;
  540. // Check if the temperature is failing to increase
  541. #ifdef THERMAL_PROTECTION_HOTENDS
  542. // Is it time to check this extruder's heater?
  543. if (watch_heater_next_ms[e] && ms > watch_heater_next_ms[e]) {
  544. // Has it failed to increase enough?
  545. if (degHotend(e) < watch_target_temp[e]) {
  546. // Stop!
  547. _temp_error(e, PSTR(MSG_T_HEATING_FAILED), PSTR(MSG_HEATING_FAILED_LCD));
  548. }
  549. else {
  550. // Start again if the target is still far off
  551. start_watching_heater(e);
  552. }
  553. }
  554. #endif // THERMAL_PROTECTION_HOTENDS
  555. #ifdef TEMP_SENSOR_1_AS_REDUNDANT
  556. if (fabs(current_temperature[0] - redundant_temperature) > MAX_REDUNDANT_TEMP_SENSOR_DIFF) {
  557. _temp_error(0, PSTR(MSG_EXTRUDER_SWITCHED_OFF), PSTR(MSG_ERR_REDUNDANT_TEMP));
  558. }
  559. #endif
  560. } // Extruders Loop
  561. #if HAS_AUTO_FAN
  562. if (ms > next_auto_fan_check_ms) { // only need to check fan state very infrequently
  563. checkExtruderAutoFans();
  564. next_auto_fan_check_ms = ms + 2500;
  565. }
  566. #endif
  567. // Control the extruder rate based on the width sensor
  568. #ifdef FILAMENT_SENSOR
  569. if (filament_sensor) {
  570. meas_shift_index = delay_index1 - meas_delay_cm;
  571. if (meas_shift_index < 0) meas_shift_index += MAX_MEASUREMENT_DELAY + 1; //loop around buffer if needed
  572. // Get the delayed info and add 100 to reconstitute to a percent of
  573. // the nominal filament diameter then square it to get an area
  574. meas_shift_index = constrain(meas_shift_index, 0, MAX_MEASUREMENT_DELAY);
  575. float vm = pow((measurement_delay[meas_shift_index] + 100.0) / 100.0, 2);
  576. if (vm < 0.01) vm = 0.01;
  577. volumetric_multiplier[FILAMENT_SENSOR_EXTRUDER_NUM] = vm;
  578. }
  579. #endif //FILAMENT_SENSOR
  580. #ifndef PIDTEMPBED
  581. if (ms < next_bed_check_ms) return;
  582. next_bed_check_ms = ms + BED_CHECK_INTERVAL;
  583. #endif
  584. #if TEMP_SENSOR_BED != 0
  585. #ifdef THERMAL_PROTECTION_BED
  586. thermal_runaway_protection(&thermal_runaway_bed_state_machine, &thermal_runaway_bed_timer, current_temperature_bed, target_temperature_bed, -1, THERMAL_PROTECTION_BED_PERIOD, THERMAL_PROTECTION_BED_HYSTERESIS);
  587. #endif
  588. #ifdef PIDTEMPBED
  589. float pid_output = get_pid_output_bed();
  590. soft_pwm_bed = current_temperature_bed > BED_MINTEMP && current_temperature_bed < BED_MAXTEMP ? (int)pid_output >> 1 : 0;
  591. #elif defined(BED_LIMIT_SWITCHING)
  592. // Check if temperature is within the correct band
  593. if (current_temperature_bed > BED_MINTEMP && current_temperature_bed < BED_MAXTEMP) {
  594. if (current_temperature_bed >= target_temperature_bed + BED_HYSTERESIS)
  595. soft_pwm_bed = 0;
  596. else if (current_temperature_bed <= target_temperature_bed - BED_HYSTERESIS)
  597. soft_pwm_bed = MAX_BED_POWER >> 1;
  598. }
  599. else {
  600. soft_pwm_bed = 0;
  601. WRITE_HEATER_BED(LOW);
  602. }
  603. #else // BED_LIMIT_SWITCHING
  604. // Check if temperature is within the correct range
  605. if (current_temperature_bed > BED_MINTEMP && current_temperature_bed < BED_MAXTEMP) {
  606. soft_pwm_bed = current_temperature_bed < target_temperature_bed ? MAX_BED_POWER >> 1 : 0;
  607. }
  608. else {
  609. soft_pwm_bed = 0;
  610. WRITE_HEATER_BED(LOW);
  611. }
  612. #endif
  613. #endif //TEMP_SENSOR_BED != 0
  614. }
  615. #define PGM_RD_W(x) (short)pgm_read_word(&x)
  616. // Derived from RepRap FiveD extruder::getTemperature()
  617. // For hot end temperature measurement.
  618. static float analog2temp(int raw, uint8_t e) {
  619. #ifdef TEMP_SENSOR_1_AS_REDUNDANT
  620. if (e > EXTRUDERS)
  621. #else
  622. if (e >= EXTRUDERS)
  623. #endif
  624. {
  625. SERIAL_ERROR_START;
  626. SERIAL_ERROR((int)e);
  627. SERIAL_ERRORLNPGM(MSG_INVALID_EXTRUDER_NUM);
  628. kill(PSTR(MSG_KILLED));
  629. return 0.0;
  630. }
  631. #ifdef HEATER_0_USES_MAX6675
  632. if (e == 0) return 0.25 * raw;
  633. #endif
  634. if (heater_ttbl_map[e] != NULL) {
  635. float celsius = 0;
  636. uint8_t i;
  637. short (*tt)[][2] = (short (*)[][2])(heater_ttbl_map[e]);
  638. for (i = 1; i < heater_ttbllen_map[e]; i++) {
  639. if (PGM_RD_W((*tt)[i][0]) > raw) {
  640. celsius = PGM_RD_W((*tt)[i-1][1]) +
  641. (raw - PGM_RD_W((*tt)[i-1][0])) *
  642. (float)(PGM_RD_W((*tt)[i][1]) - PGM_RD_W((*tt)[i-1][1])) /
  643. (float)(PGM_RD_W((*tt)[i][0]) - PGM_RD_W((*tt)[i-1][0]));
  644. break;
  645. }
  646. }
  647. // Overflow: Set to last value in the table
  648. if (i == heater_ttbllen_map[e]) celsius = PGM_RD_W((*tt)[i-1][1]);
  649. return celsius;
  650. }
  651. return ((raw * ((5.0 * 100.0) / 1024.0) / OVERSAMPLENR) * TEMP_SENSOR_AD595_GAIN) + TEMP_SENSOR_AD595_OFFSET;
  652. }
  653. // Derived from RepRap FiveD extruder::getTemperature()
  654. // For bed temperature measurement.
  655. static float analog2tempBed(int raw) {
  656. #ifdef BED_USES_THERMISTOR
  657. float celsius = 0;
  658. byte i;
  659. for (i = 1; i < BEDTEMPTABLE_LEN; i++) {
  660. if (PGM_RD_W(BEDTEMPTABLE[i][0]) > raw) {
  661. celsius = PGM_RD_W(BEDTEMPTABLE[i-1][1]) +
  662. (raw - PGM_RD_W(BEDTEMPTABLE[i-1][0])) *
  663. (float)(PGM_RD_W(BEDTEMPTABLE[i][1]) - PGM_RD_W(BEDTEMPTABLE[i-1][1])) /
  664. (float)(PGM_RD_W(BEDTEMPTABLE[i][0]) - PGM_RD_W(BEDTEMPTABLE[i-1][0]));
  665. break;
  666. }
  667. }
  668. // Overflow: Set to last value in the table
  669. if (i == BEDTEMPTABLE_LEN) celsius = PGM_RD_W(BEDTEMPTABLE[i-1][1]);
  670. return celsius;
  671. #elif defined BED_USES_AD595
  672. return ((raw * ((5.0 * 100.0) / 1024.0) / OVERSAMPLENR) * TEMP_SENSOR_AD595_GAIN) + TEMP_SENSOR_AD595_OFFSET;
  673. #else
  674. return 0;
  675. #endif
  676. }
  677. /* Called to get the raw values into the the actual temperatures. The raw values are created in interrupt context,
  678. and this function is called from normal context as it is too slow to run in interrupts and will block the stepper routine otherwise */
  679. static void updateTemperaturesFromRawValues() {
  680. #ifdef HEATER_0_USES_MAX6675
  681. current_temperature_raw[0] = read_max6675();
  682. #endif
  683. for (uint8_t e = 0; e < EXTRUDERS; e++) {
  684. current_temperature[e] = analog2temp(current_temperature_raw[e], e);
  685. }
  686. current_temperature_bed = analog2tempBed(current_temperature_bed_raw);
  687. #ifdef TEMP_SENSOR_1_AS_REDUNDANT
  688. redundant_temperature = analog2temp(redundant_temperature_raw, 1);
  689. #endif
  690. #if HAS_FILAMENT_SENSOR
  691. filament_width_meas = analog2widthFil();
  692. #endif
  693. //Reset the watchdog after we know we have a temperature measurement.
  694. watchdog_reset();
  695. CRITICAL_SECTION_START;
  696. temp_meas_ready = false;
  697. CRITICAL_SECTION_END;
  698. }
  699. #ifdef FILAMENT_SENSOR
  700. // Convert raw Filament Width to millimeters
  701. float analog2widthFil() {
  702. return current_raw_filwidth / 16383.0 * 5.0;
  703. //return current_raw_filwidth;
  704. }
  705. // Convert raw Filament Width to a ratio
  706. int widthFil_to_size_ratio() {
  707. float temp = filament_width_meas;
  708. if (temp < MEASURED_LOWER_LIMIT) temp = filament_width_nominal; //assume sensor cut out
  709. else if (temp > MEASURED_UPPER_LIMIT) temp = MEASURED_UPPER_LIMIT;
  710. return filament_width_nominal / temp * 100;
  711. }
  712. #endif
  713. /**
  714. * Initialize the temperature manager
  715. * The manager is implemented by periodic calls to manage_heater()
  716. */
  717. void tp_init() {
  718. #if MB(RUMBA) && ((TEMP_SENSOR_0==-1)||(TEMP_SENSOR_1==-1)||(TEMP_SENSOR_2==-1)||(TEMP_SENSOR_BED==-1))
  719. //disable RUMBA JTAG in case the thermocouple extension is plugged on top of JTAG connector
  720. MCUCR=BIT(JTD);
  721. MCUCR=BIT(JTD);
  722. #endif
  723. // Finish init of mult extruder arrays
  724. for (int e = 0; e < EXTRUDERS; e++) {
  725. // populate with the first value
  726. maxttemp[e] = maxttemp[0];
  727. #ifdef PIDTEMP
  728. temp_iState_min[e] = 0.0;
  729. temp_iState_max[e] = PID_INTEGRAL_DRIVE_MAX / PID_PARAM(Ki,e);
  730. #endif //PIDTEMP
  731. #ifdef PIDTEMPBED
  732. temp_iState_min_bed = 0.0;
  733. temp_iState_max_bed = PID_BED_INTEGRAL_DRIVE_MAX / bedKi;
  734. #endif //PIDTEMPBED
  735. }
  736. #if HAS_HEATER_0
  737. SET_OUTPUT(HEATER_0_PIN);
  738. #endif
  739. #if HAS_HEATER_1
  740. SET_OUTPUT(HEATER_1_PIN);
  741. #endif
  742. #if HAS_HEATER_2
  743. SET_OUTPUT(HEATER_2_PIN);
  744. #endif
  745. #if HAS_HEATER_3
  746. SET_OUTPUT(HEATER_3_PIN);
  747. #endif
  748. #if HAS_HEATER_BED
  749. SET_OUTPUT(HEATER_BED_PIN);
  750. #endif
  751. #if HAS_FAN
  752. SET_OUTPUT(FAN_PIN);
  753. #ifdef FAST_PWM_FAN
  754. setPwmFrequency(FAN_PIN, 1); // No prescaling. Pwm frequency = F_CPU/256/8
  755. #endif
  756. #ifdef FAN_SOFT_PWM
  757. soft_pwm_fan = fanSpeedSoftPwm / 2;
  758. #endif
  759. #endif
  760. #ifdef HEATER_0_USES_MAX6675
  761. #ifndef SDSUPPORT
  762. OUT_WRITE(SCK_PIN, LOW);
  763. OUT_WRITE(MOSI_PIN, HIGH);
  764. OUT_WRITE(MISO_PIN, HIGH);
  765. #else
  766. pinMode(SS_PIN, OUTPUT);
  767. digitalWrite(SS_PIN, HIGH);
  768. #endif
  769. OUT_WRITE(MAX6675_SS,HIGH);
  770. #endif //HEATER_0_USES_MAX6675
  771. #ifdef DIDR2
  772. #define ANALOG_SELECT(pin) do{ if (pin < 8) DIDR0 |= BIT(pin); else DIDR2 |= BIT(pin - 8); }while(0)
  773. #else
  774. #define ANALOG_SELECT(pin) do{ DIDR0 |= BIT(pin); }while(0)
  775. #endif
  776. // Set analog inputs
  777. ADCSRA = BIT(ADEN) | BIT(ADSC) | BIT(ADIF) | 0x07;
  778. DIDR0 = 0;
  779. #ifdef DIDR2
  780. DIDR2 = 0;
  781. #endif
  782. #if HAS_TEMP_0
  783. ANALOG_SELECT(TEMP_0_PIN);
  784. #endif
  785. #if HAS_TEMP_1
  786. ANALOG_SELECT(TEMP_1_PIN);
  787. #endif
  788. #if HAS_TEMP_2
  789. ANALOG_SELECT(TEMP_2_PIN);
  790. #endif
  791. #if HAS_TEMP_3
  792. ANALOG_SELECT(TEMP_3_PIN);
  793. #endif
  794. #if HAS_TEMP_BED
  795. ANALOG_SELECT(TEMP_BED_PIN);
  796. #endif
  797. #if HAS_FILAMENT_SENSOR
  798. ANALOG_SELECT(FILWIDTH_PIN);
  799. #endif
  800. #if HAS_AUTO_FAN_0
  801. pinMode(EXTRUDER_0_AUTO_FAN_PIN, OUTPUT);
  802. #endif
  803. #if HAS_AUTO_FAN_1 && (EXTRUDER_1_AUTO_FAN_PIN != EXTRUDER_0_AUTO_FAN_PIN)
  804. pinMode(EXTRUDER_1_AUTO_FAN_PIN, OUTPUT);
  805. #endif
  806. #if HAS_AUTO_FAN_2 && (EXTRUDER_2_AUTO_FAN_PIN != EXTRUDER_0_AUTO_FAN_PIN) && (EXTRUDER_2_AUTO_FAN_PIN != EXTRUDER_1_AUTO_FAN_PIN)
  807. pinMode(EXTRUDER_2_AUTO_FAN_PIN, OUTPUT);
  808. #endif
  809. #if HAS_AUTO_FAN_3 && (EXTRUDER_3_AUTO_FAN_PIN != EXTRUDER_0_AUTO_FAN_PIN) && (EXTRUDER_3_AUTO_FAN_PIN != EXTRUDER_1_AUTO_FAN_PIN) && (EXTRUDER_3_AUTO_FAN_PIN != EXTRUDER_2_AUTO_FAN_PIN)
  810. pinMode(EXTRUDER_3_AUTO_FAN_PIN, OUTPUT);
  811. #endif
  812. // Use timer0 for temperature measurement
  813. // Interleave temperature interrupt with millies interrupt
  814. OCR0B = 128;
  815. TIMSK0 |= BIT(OCIE0B);
  816. // Wait for temperature measurement to settle
  817. delay(250);
  818. #define TEMP_MIN_ROUTINE(NR) \
  819. minttemp[NR] = HEATER_ ## NR ## _MINTEMP; \
  820. while(analog2temp(minttemp_raw[NR], NR) < HEATER_ ## NR ## _MINTEMP) { \
  821. if (HEATER_ ## NR ## _RAW_LO_TEMP < HEATER_ ## NR ## _RAW_HI_TEMP) \
  822. minttemp_raw[NR] += OVERSAMPLENR; \
  823. else \
  824. minttemp_raw[NR] -= OVERSAMPLENR; \
  825. }
  826. #define TEMP_MAX_ROUTINE(NR) \
  827. maxttemp[NR] = HEATER_ ## NR ## _MAXTEMP; \
  828. while(analog2temp(maxttemp_raw[NR], NR) > HEATER_ ## NR ## _MAXTEMP) { \
  829. if (HEATER_ ## NR ## _RAW_LO_TEMP < HEATER_ ## NR ## _RAW_HI_TEMP) \
  830. maxttemp_raw[NR] -= OVERSAMPLENR; \
  831. else \
  832. maxttemp_raw[NR] += OVERSAMPLENR; \
  833. }
  834. #ifdef HEATER_0_MINTEMP
  835. TEMP_MIN_ROUTINE(0);
  836. #endif
  837. #ifdef HEATER_0_MAXTEMP
  838. TEMP_MAX_ROUTINE(0);
  839. #endif
  840. #if EXTRUDERS > 1
  841. #ifdef HEATER_1_MINTEMP
  842. TEMP_MIN_ROUTINE(1);
  843. #endif
  844. #ifdef HEATER_1_MAXTEMP
  845. TEMP_MAX_ROUTINE(1);
  846. #endif
  847. #if EXTRUDERS > 2
  848. #ifdef HEATER_2_MINTEMP
  849. TEMP_MIN_ROUTINE(2);
  850. #endif
  851. #ifdef HEATER_2_MAXTEMP
  852. TEMP_MAX_ROUTINE(2);
  853. #endif
  854. #if EXTRUDERS > 3
  855. #ifdef HEATER_3_MINTEMP
  856. TEMP_MIN_ROUTINE(3);
  857. #endif
  858. #ifdef HEATER_3_MAXTEMP
  859. TEMP_MAX_ROUTINE(3);
  860. #endif
  861. #endif // EXTRUDERS > 3
  862. #endif // EXTRUDERS > 2
  863. #endif // EXTRUDERS > 1
  864. #ifdef BED_MINTEMP
  865. while(analog2tempBed(bed_minttemp_raw) < BED_MINTEMP) {
  866. #if HEATER_BED_RAW_LO_TEMP < HEATER_BED_RAW_HI_TEMP
  867. bed_minttemp_raw += OVERSAMPLENR;
  868. #else
  869. bed_minttemp_raw -= OVERSAMPLENR;
  870. #endif
  871. }
  872. #endif //BED_MINTEMP
  873. #ifdef BED_MAXTEMP
  874. while(analog2tempBed(bed_maxttemp_raw) > BED_MAXTEMP) {
  875. #if HEATER_BED_RAW_LO_TEMP < HEATER_BED_RAW_HI_TEMP
  876. bed_maxttemp_raw -= OVERSAMPLENR;
  877. #else
  878. bed_maxttemp_raw += OVERSAMPLENR;
  879. #endif
  880. }
  881. #endif //BED_MAXTEMP
  882. }
  883. #ifdef THERMAL_PROTECTION_HOTENDS
  884. /**
  885. * Start Heating Sanity Check for hotends that are below
  886. * their target temperature by a configurable margin.
  887. * This is called when the temperature is set. (M104, M109)
  888. */
  889. void start_watching_heater(int e) {
  890. if (degHotend(e) < degTargetHotend(e) - (WATCH_TEMP_INCREASE + TEMP_HYSTERESIS + 1)) {
  891. watch_target_temp[e] = degHotend(e) + WATCH_TEMP_INCREASE;
  892. watch_heater_next_ms[e] = millis() + WATCH_TEMP_PERIOD * 1000;
  893. }
  894. else
  895. watch_heater_next_ms[e] = 0;
  896. }
  897. #endif
  898. #if defined(THERMAL_PROTECTION_HOTENDS) || defined(THERMAL_PROTECTION_BED)
  899. void thermal_runaway_protection(TRState *state, millis_t *timer, float temperature, float target_temperature, int heater_id, int period_seconds, int hysteresis_degc) {
  900. static float tr_target_temperature[EXTRUDERS+1] = { 0.0 };
  901. /*
  902. SERIAL_ECHO_START;
  903. SERIAL_ECHOPGM("Thermal Thermal Runaway Running. Heater ID: ");
  904. if (heater_id < 0) SERIAL_ECHOPGM("bed"); else SERIAL_ECHOPGM(heater_id);
  905. SERIAL_ECHOPGM(" ; State:");
  906. SERIAL_ECHOPGM(*state);
  907. SERIAL_ECHOPGM(" ; Timer:");
  908. SERIAL_ECHOPGM(*timer);
  909. SERIAL_ECHOPGM(" ; Temperature:");
  910. SERIAL_ECHOPGM(temperature);
  911. SERIAL_ECHOPGM(" ; Target Temp:");
  912. SERIAL_ECHOPGM(target_temperature);
  913. SERIAL_EOL;
  914. */
  915. int heater_index = heater_id >= 0 ? heater_id : EXTRUDERS;
  916. // If the target temperature changes, restart
  917. if (tr_target_temperature[heater_index] != target_temperature)
  918. *state = TRReset;
  919. switch (*state) {
  920. case TRReset:
  921. *timer = 0;
  922. *state = TRInactive;
  923. // Inactive state waits for a target temperature to be set
  924. case TRInactive:
  925. if (target_temperature > 0) {
  926. tr_target_temperature[heater_index] = target_temperature;
  927. *state = TRFirstHeating;
  928. }
  929. break;
  930. // When first heating, wait for the temperature to be reached then go to Stable state
  931. case TRFirstHeating:
  932. if (temperature >= tr_target_temperature[heater_index]) *state = TRStable;
  933. break;
  934. // While the temperature is stable watch for a bad temperature
  935. case TRStable:
  936. // If the temperature is over the target (-hysteresis) restart the timer
  937. if (temperature >= tr_target_temperature[heater_index] - hysteresis_degc)
  938. *timer = millis();
  939. // If the timer goes too long without a reset, trigger shutdown
  940. else if (millis() > *timer + period_seconds * 1000UL)
  941. *state = TRRunaway;
  942. break;
  943. case TRRunaway:
  944. _temp_error(heater_id, PSTR(MSG_T_THERMAL_RUNAWAY), PSTR(MSG_THERMAL_RUNAWAY));
  945. }
  946. }
  947. #endif // THERMAL_PROTECTION_HOTENDS || THERMAL_PROTECTION_BED
  948. void disable_all_heaters() {
  949. for (int i=0; i<EXTRUDERS; i++) setTargetHotend(0, i);
  950. setTargetBed(0);
  951. #define DISABLE_HEATER(NR) { \
  952. target_temperature[NR] = 0; \
  953. soft_pwm[NR] = 0; \
  954. WRITE_HEATER_ ## NR (LOW); \
  955. }
  956. #if HAS_TEMP_0
  957. target_temperature[0] = 0;
  958. soft_pwm[0] = 0;
  959. WRITE_HEATER_0P(LOW); // Should HEATERS_PARALLEL apply here? Then change to DISABLE_HEATER(0)
  960. #endif
  961. #if EXTRUDERS > 1 && HAS_TEMP_1
  962. DISABLE_HEATER(1);
  963. #endif
  964. #if EXTRUDERS > 2 && HAS_TEMP_2
  965. DISABLE_HEATER(2);
  966. #endif
  967. #if EXTRUDERS > 3 && HAS_TEMP_3
  968. DISABLE_HEATER(3);
  969. #endif
  970. #if HAS_TEMP_BED
  971. target_temperature_bed = 0;
  972. soft_pwm_bed = 0;
  973. #if HAS_HEATER_BED
  974. WRITE_HEATER_BED(LOW);
  975. #endif
  976. #endif
  977. }
  978. #ifdef HEATER_0_USES_MAX6675
  979. #define MAX6675_HEAT_INTERVAL 250u
  980. static millis_t next_max6675_ms = 0;
  981. int max6675_temp = 2000;
  982. static int read_max6675() {
  983. millis_t ms = millis();
  984. if (ms < next_max6675_ms)
  985. return max6675_temp;
  986. next_max6675_ms = ms + MAX6675_HEAT_INTERVAL;
  987. max6675_temp = 0;
  988. #ifdef PRR
  989. PRR &= ~BIT(PRSPI);
  990. #elif defined(PRR0)
  991. PRR0 &= ~BIT(PRSPI);
  992. #endif
  993. SPCR = BIT(MSTR) | BIT(SPE) | BIT(SPR0);
  994. // enable TT_MAX6675
  995. WRITE(MAX6675_SS, 0);
  996. // ensure 100ns delay - a bit extra is fine
  997. asm("nop");//50ns on 20Mhz, 62.5ns on 16Mhz
  998. asm("nop");//50ns on 20Mhz, 62.5ns on 16Mhz
  999. // read MSB
  1000. SPDR = 0;
  1001. for (;(SPSR & BIT(SPIF)) == 0;);
  1002. max6675_temp = SPDR;
  1003. max6675_temp <<= 8;
  1004. // read LSB
  1005. SPDR = 0;
  1006. for (;(SPSR & BIT(SPIF)) == 0;);
  1007. max6675_temp |= SPDR;
  1008. // disable TT_MAX6675
  1009. WRITE(MAX6675_SS, 1);
  1010. if (max6675_temp & 4) {
  1011. // thermocouple open
  1012. max6675_temp = 4000;
  1013. }
  1014. else {
  1015. max6675_temp = max6675_temp >> 3;
  1016. }
  1017. return max6675_temp;
  1018. }
  1019. #endif //HEATER_0_USES_MAX6675
  1020. /**
  1021. * Stages in the ISR loop
  1022. */
  1023. enum TempState {
  1024. PrepareTemp_0,
  1025. MeasureTemp_0,
  1026. PrepareTemp_BED,
  1027. MeasureTemp_BED,
  1028. PrepareTemp_1,
  1029. MeasureTemp_1,
  1030. PrepareTemp_2,
  1031. MeasureTemp_2,
  1032. PrepareTemp_3,
  1033. MeasureTemp_3,
  1034. Prepare_FILWIDTH,
  1035. Measure_FILWIDTH,
  1036. StartupDelay // Startup, delay initial temp reading a tiny bit so the hardware can settle
  1037. };
  1038. static unsigned long raw_temp_value[4] = { 0 };
  1039. static unsigned long raw_temp_bed_value = 0;
  1040. static void set_current_temp_raw() {
  1041. #if HAS_TEMP_0 && !defined(HEATER_0_USES_MAX6675)
  1042. current_temperature_raw[0] = raw_temp_value[0];
  1043. #endif
  1044. #if HAS_TEMP_1
  1045. #ifdef TEMP_SENSOR_1_AS_REDUNDANT
  1046. redundant_temperature_raw = raw_temp_value[1];
  1047. #else
  1048. current_temperature_raw[1] = raw_temp_value[1];
  1049. #endif
  1050. #if HAS_TEMP_2
  1051. current_temperature_raw[2] = raw_temp_value[2];
  1052. #if HAS_TEMP_3
  1053. current_temperature_raw[3] = raw_temp_value[3];
  1054. #endif
  1055. #endif
  1056. #endif
  1057. current_temperature_bed_raw = raw_temp_bed_value;
  1058. temp_meas_ready = true;
  1059. }
  1060. /**
  1061. * Timer 0 is shared with millies
  1062. * - Manage PWM to all the heaters and fan
  1063. * - Update the raw temperature values
  1064. * - Check new temperature values for MIN/MAX errors
  1065. * - Step the babysteps value for each axis towards 0
  1066. */
  1067. ISR(TIMER0_COMPB_vect) {
  1068. static unsigned char temp_count = 0;
  1069. static TempState temp_state = StartupDelay;
  1070. static unsigned char pwm_count = BIT(SOFT_PWM_SCALE);
  1071. // Static members for each heater
  1072. #ifdef SLOW_PWM_HEATERS
  1073. static unsigned char slow_pwm_count = 0;
  1074. #define ISR_STATICS(n) \
  1075. static unsigned char soft_pwm_ ## n; \
  1076. static unsigned char state_heater_ ## n = 0; \
  1077. static unsigned char state_timer_heater_ ## n = 0
  1078. #else
  1079. #define ISR_STATICS(n) static unsigned char soft_pwm_ ## n
  1080. #endif
  1081. // Statics per heater
  1082. ISR_STATICS(0);
  1083. #if (EXTRUDERS > 1) || defined(HEATERS_PARALLEL)
  1084. ISR_STATICS(1);
  1085. #if EXTRUDERS > 2
  1086. ISR_STATICS(2);
  1087. #if EXTRUDERS > 3
  1088. ISR_STATICS(3);
  1089. #endif
  1090. #endif
  1091. #endif
  1092. #if HAS_HEATER_BED
  1093. ISR_STATICS(BED);
  1094. #endif
  1095. #if HAS_FILAMENT_SENSOR
  1096. static unsigned long raw_filwidth_value = 0;
  1097. #endif
  1098. #ifndef SLOW_PWM_HEATERS
  1099. /**
  1100. * standard PWM modulation
  1101. */
  1102. if (pwm_count == 0) {
  1103. soft_pwm_0 = soft_pwm[0];
  1104. if (soft_pwm_0 > 0) {
  1105. WRITE_HEATER_0(1);
  1106. }
  1107. else WRITE_HEATER_0P(0); // If HEATERS_PARALLEL should apply, change to WRITE_HEATER_0
  1108. #if EXTRUDERS > 1
  1109. soft_pwm_1 = soft_pwm[1];
  1110. WRITE_HEATER_1(soft_pwm_1 > 0 ? 1 : 0);
  1111. #if EXTRUDERS > 2
  1112. soft_pwm_2 = soft_pwm[2];
  1113. WRITE_HEATER_2(soft_pwm_2 > 0 ? 1 : 0);
  1114. #if EXTRUDERS > 3
  1115. soft_pwm_3 = soft_pwm[3];
  1116. WRITE_HEATER_3(soft_pwm_3 > 0 ? 1 : 0);
  1117. #endif
  1118. #endif
  1119. #endif
  1120. #if HAS_HEATER_BED
  1121. soft_pwm_BED = soft_pwm_bed;
  1122. WRITE_HEATER_BED(soft_pwm_BED > 0 ? 1 : 0);
  1123. #endif
  1124. #ifdef FAN_SOFT_PWM
  1125. soft_pwm_fan = fanSpeedSoftPwm / 2;
  1126. WRITE_FAN(soft_pwm_fan > 0 ? 1 : 0);
  1127. #endif
  1128. }
  1129. if (soft_pwm_0 < pwm_count) { WRITE_HEATER_0(0); }
  1130. #if EXTRUDERS > 1
  1131. if (soft_pwm_1 < pwm_count) WRITE_HEATER_1(0);
  1132. #if EXTRUDERS > 2
  1133. if (soft_pwm_2 < pwm_count) WRITE_HEATER_2(0);
  1134. #if EXTRUDERS > 3
  1135. if (soft_pwm_3 < pwm_count) WRITE_HEATER_3(0);
  1136. #endif
  1137. #endif
  1138. #endif
  1139. #if HAS_HEATER_BED
  1140. if (soft_pwm_BED < pwm_count) WRITE_HEATER_BED(0);
  1141. #endif
  1142. #ifdef FAN_SOFT_PWM
  1143. if (soft_pwm_fan < pwm_count) WRITE_FAN(0);
  1144. #endif
  1145. pwm_count += BIT(SOFT_PWM_SCALE);
  1146. pwm_count &= 0x7f;
  1147. #else // SLOW_PWM_HEATERS
  1148. /*
  1149. * SLOW PWM HEATERS
  1150. *
  1151. * for heaters drived by relay
  1152. */
  1153. #ifndef MIN_STATE_TIME
  1154. #define MIN_STATE_TIME 16 // MIN_STATE_TIME * 65.5 = time in milliseconds
  1155. #endif
  1156. // Macros for Slow PWM timer logic - HEATERS_PARALLEL applies
  1157. #define _SLOW_PWM_ROUTINE(NR, src) \
  1158. soft_pwm_ ## NR = src; \
  1159. if (soft_pwm_ ## NR > 0) { \
  1160. if (state_timer_heater_ ## NR == 0) { \
  1161. if (state_heater_ ## NR == 0) state_timer_heater_ ## NR = MIN_STATE_TIME; \
  1162. state_heater_ ## NR = 1; \
  1163. WRITE_HEATER_ ## NR(1); \
  1164. } \
  1165. } \
  1166. else { \
  1167. if (state_timer_heater_ ## NR == 0) { \
  1168. if (state_heater_ ## NR == 1) state_timer_heater_ ## NR = MIN_STATE_TIME; \
  1169. state_heater_ ## NR = 0; \
  1170. WRITE_HEATER_ ## NR(0); \
  1171. } \
  1172. }
  1173. #define SLOW_PWM_ROUTINE(n) _SLOW_PWM_ROUTINE(n, soft_pwm[n])
  1174. #define PWM_OFF_ROUTINE(NR) \
  1175. if (soft_pwm_ ## NR < slow_pwm_count) { \
  1176. if (state_timer_heater_ ## NR == 0) { \
  1177. if (state_heater_ ## NR == 1) state_timer_heater_ ## NR = MIN_STATE_TIME; \
  1178. state_heater_ ## NR = 0; \
  1179. WRITE_HEATER_ ## NR (0); \
  1180. } \
  1181. }
  1182. if (slow_pwm_count == 0) {
  1183. SLOW_PWM_ROUTINE(0); // EXTRUDER 0
  1184. #if EXTRUDERS > 1
  1185. SLOW_PWM_ROUTINE(1); // EXTRUDER 1
  1186. #if EXTRUDERS > 2
  1187. SLOW_PWM_ROUTINE(2); // EXTRUDER 2
  1188. #if EXTRUDERS > 3
  1189. SLOW_PWM_ROUTINE(3); // EXTRUDER 3
  1190. #endif
  1191. #endif
  1192. #endif
  1193. #if HAS_HEATER_BED
  1194. _SLOW_PWM_ROUTINE(BED, soft_pwm_bed); // BED
  1195. #endif
  1196. } // slow_pwm_count == 0
  1197. PWM_OFF_ROUTINE(0); // EXTRUDER 0
  1198. #if EXTRUDERS > 1
  1199. PWM_OFF_ROUTINE(1); // EXTRUDER 1
  1200. #if EXTRUDERS > 2
  1201. PWM_OFF_ROUTINE(2); // EXTRUDER 2
  1202. #if EXTRUDERS > 3
  1203. PWM_OFF_ROUTINE(3); // EXTRUDER 3
  1204. #endif
  1205. #endif
  1206. #endif
  1207. #if HAS_HEATER_BED
  1208. PWM_OFF_ROUTINE(BED); // BED
  1209. #endif
  1210. #ifdef FAN_SOFT_PWM
  1211. if (pwm_count == 0) {
  1212. soft_pwm_fan = fanSpeedSoftPwm / 2;
  1213. WRITE_FAN(soft_pwm_fan > 0 ? 1 : 0);
  1214. }
  1215. if (soft_pwm_fan < pwm_count) WRITE_FAN(0);
  1216. #endif //FAN_SOFT_PWM
  1217. pwm_count += BIT(SOFT_PWM_SCALE);
  1218. pwm_count &= 0x7f;
  1219. // increment slow_pwm_count only every 64 pwm_count circa 65.5ms
  1220. if ((pwm_count % 64) == 0) {
  1221. slow_pwm_count++;
  1222. slow_pwm_count &= 0x7f;
  1223. // EXTRUDER 0
  1224. if (state_timer_heater_0 > 0) state_timer_heater_0--;
  1225. #if EXTRUDERS > 1 // EXTRUDER 1
  1226. if (state_timer_heater_1 > 0) state_timer_heater_1--;
  1227. #if EXTRUDERS > 2 // EXTRUDER 2
  1228. if (state_timer_heater_2 > 0) state_timer_heater_2--;
  1229. #if EXTRUDERS > 3 // EXTRUDER 3
  1230. if (state_timer_heater_3 > 0) state_timer_heater_3--;
  1231. #endif
  1232. #endif
  1233. #endif
  1234. #if HAS_HEATER_BED
  1235. if (state_timer_heater_BED > 0) state_timer_heater_BED--;
  1236. #endif
  1237. } // (pwm_count % 64) == 0
  1238. #endif // SLOW_PWM_HEATERS
  1239. #define SET_ADMUX_ADCSRA(pin) ADMUX = BIT(REFS0) | (pin & 0x07); ADCSRA |= BIT(ADSC)
  1240. #ifdef MUX5
  1241. #define START_ADC(pin) if (pin > 7) ADCSRB = BIT(MUX5); else ADCSRB = 0; SET_ADMUX_ADCSRA(pin)
  1242. #else
  1243. #define START_ADC(pin) ADCSRB = 0; SET_ADMUX_ADCSRA(pin)
  1244. #endif
  1245. // Prepare or measure a sensor, each one every 12th frame
  1246. switch(temp_state) {
  1247. case PrepareTemp_0:
  1248. #if HAS_TEMP_0
  1249. START_ADC(TEMP_0_PIN);
  1250. #endif
  1251. lcd_buttons_update();
  1252. temp_state = MeasureTemp_0;
  1253. break;
  1254. case MeasureTemp_0:
  1255. #if HAS_TEMP_0
  1256. raw_temp_value[0] += ADC;
  1257. #endif
  1258. temp_state = PrepareTemp_BED;
  1259. break;
  1260. case PrepareTemp_BED:
  1261. #if HAS_TEMP_BED
  1262. START_ADC(TEMP_BED_PIN);
  1263. #endif
  1264. lcd_buttons_update();
  1265. temp_state = MeasureTemp_BED;
  1266. break;
  1267. case MeasureTemp_BED:
  1268. #if HAS_TEMP_BED
  1269. raw_temp_bed_value += ADC;
  1270. #endif
  1271. temp_state = PrepareTemp_1;
  1272. break;
  1273. case PrepareTemp_1:
  1274. #if HAS_TEMP_1
  1275. START_ADC(TEMP_1_PIN);
  1276. #endif
  1277. lcd_buttons_update();
  1278. temp_state = MeasureTemp_1;
  1279. break;
  1280. case MeasureTemp_1:
  1281. #if HAS_TEMP_1
  1282. raw_temp_value[1] += ADC;
  1283. #endif
  1284. temp_state = PrepareTemp_2;
  1285. break;
  1286. case PrepareTemp_2:
  1287. #if HAS_TEMP_2
  1288. START_ADC(TEMP_2_PIN);
  1289. #endif
  1290. lcd_buttons_update();
  1291. temp_state = MeasureTemp_2;
  1292. break;
  1293. case MeasureTemp_2:
  1294. #if HAS_TEMP_2
  1295. raw_temp_value[2] += ADC;
  1296. #endif
  1297. temp_state = PrepareTemp_3;
  1298. break;
  1299. case PrepareTemp_3:
  1300. #if HAS_TEMP_3
  1301. START_ADC(TEMP_3_PIN);
  1302. #endif
  1303. lcd_buttons_update();
  1304. temp_state = MeasureTemp_3;
  1305. break;
  1306. case MeasureTemp_3:
  1307. #if HAS_TEMP_3
  1308. raw_temp_value[3] += ADC;
  1309. #endif
  1310. temp_state = Prepare_FILWIDTH;
  1311. break;
  1312. case Prepare_FILWIDTH:
  1313. #if HAS_FILAMENT_SENSOR
  1314. START_ADC(FILWIDTH_PIN);
  1315. #endif
  1316. lcd_buttons_update();
  1317. temp_state = Measure_FILWIDTH;
  1318. break;
  1319. case Measure_FILWIDTH:
  1320. #if HAS_FILAMENT_SENSOR
  1321. // raw_filwidth_value += ADC; //remove to use an IIR filter approach
  1322. if (ADC > 102) { //check that ADC is reading a voltage > 0.5 volts, otherwise don't take in the data.
  1323. raw_filwidth_value -= (raw_filwidth_value>>7); //multiply raw_filwidth_value by 127/128
  1324. raw_filwidth_value += ((unsigned long)ADC<<7); //add new ADC reading
  1325. }
  1326. #endif
  1327. temp_state = PrepareTemp_0;
  1328. temp_count++;
  1329. break;
  1330. case StartupDelay:
  1331. temp_state = PrepareTemp_0;
  1332. break;
  1333. // default:
  1334. // SERIAL_ERROR_START;
  1335. // SERIAL_ERRORLNPGM("Temp measurement error!");
  1336. // break;
  1337. } // switch(temp_state)
  1338. if (temp_count >= OVERSAMPLENR) { // 10 * 16 * 1/(16000000/64/256) = 164ms.
  1339. // Update the raw values if they've been read. Else we could be updating them during reading.
  1340. if (!temp_meas_ready) set_current_temp_raw();
  1341. // Filament Sensor - can be read any time since IIR filtering is used
  1342. #if HAS_FILAMENT_SENSOR
  1343. current_raw_filwidth = raw_filwidth_value >> 10; // Divide to get to 0-16384 range since we used 1/128 IIR filter approach
  1344. #endif
  1345. temp_count = 0;
  1346. for (int i = 0; i < 4; i++) raw_temp_value[i] = 0;
  1347. raw_temp_bed_value = 0;
  1348. #if HAS_TEMP_0 && !defined(HEATER_0_USES_MAX6675)
  1349. #if HEATER_0_RAW_LO_TEMP > HEATER_0_RAW_HI_TEMP
  1350. #define GE0 <=
  1351. #else
  1352. #define GE0 >=
  1353. #endif
  1354. if (current_temperature_raw[0] GE0 maxttemp_raw[0]) max_temp_error(0);
  1355. if (minttemp_raw[0] GE0 current_temperature_raw[0]) min_temp_error(0);
  1356. #endif
  1357. #if HAS_TEMP_1
  1358. #if HEATER_1_RAW_LO_TEMP > HEATER_1_RAW_HI_TEMP
  1359. #define GE1 <=
  1360. #else
  1361. #define GE1 >=
  1362. #endif
  1363. if (current_temperature_raw[1] GE1 maxttemp_raw[1]) max_temp_error(1);
  1364. if (minttemp_raw[1] GE1 current_temperature_raw[1]) min_temp_error(1);
  1365. #endif // TEMP_SENSOR_1
  1366. #if HAS_TEMP_2
  1367. #if HEATER_2_RAW_LO_TEMP > HEATER_2_RAW_HI_TEMP
  1368. #define GE2 <=
  1369. #else
  1370. #define GE2 >=
  1371. #endif
  1372. if (current_temperature_raw[2] GE2 maxttemp_raw[2]) max_temp_error(2);
  1373. if (minttemp_raw[2] GE2 current_temperature_raw[2]) min_temp_error(2);
  1374. #endif // TEMP_SENSOR_2
  1375. #if HAS_TEMP_3
  1376. #if HEATER_3_RAW_LO_TEMP > HEATER_3_RAW_HI_TEMP
  1377. #define GE3 <=
  1378. #else
  1379. #define GE3 >=
  1380. #endif
  1381. if (current_temperature_raw[3] GE3 maxttemp_raw[3]) max_temp_error(3);
  1382. if (minttemp_raw[3] GE3 current_temperature_raw[3]) min_temp_error(3);
  1383. #endif // TEMP_SENSOR_3
  1384. #if HAS_TEMP_BED
  1385. #if HEATER_BED_RAW_LO_TEMP > HEATER_BED_RAW_HI_TEMP
  1386. #define GEBED <=
  1387. #else
  1388. #define GEBED >=
  1389. #endif
  1390. if (current_temperature_bed_raw GEBED bed_maxttemp_raw) _temp_error(-1, PSTR(MSG_T_MAXTEMP), PSTR(MSG_ERR_MAXTEMP_BED));
  1391. if (bed_minttemp_raw GEBED current_temperature_bed_raw) _temp_error(-1, PSTR(MSG_T_MINTEMP), PSTR(MSG_ERR_MINTEMP_BED));
  1392. #endif
  1393. } // temp_count >= OVERSAMPLENR
  1394. #ifdef BABYSTEPPING
  1395. for (uint8_t axis = X_AXIS; axis <= Z_AXIS; axis++) {
  1396. int curTodo = babystepsTodo[axis]; //get rid of volatile for performance
  1397. if (curTodo > 0) {
  1398. babystep(axis,/*fwd*/true);
  1399. babystepsTodo[axis]--; //fewer to do next time
  1400. }
  1401. else if (curTodo < 0) {
  1402. babystep(axis,/*fwd*/false);
  1403. babystepsTodo[axis]++; //fewer to do next time
  1404. }
  1405. }
  1406. #endif //BABYSTEPPING
  1407. }
  1408. #ifdef PIDTEMP
  1409. // Apply the scale factors to the PID values
  1410. float scalePID_i(float i) { return i * PID_dT; }
  1411. float unscalePID_i(float i) { return i / PID_dT; }
  1412. float scalePID_d(float d) { return d / PID_dT; }
  1413. float unscalePID_d(float d) { return d * PID_dT; }
  1414. #endif //PIDTEMP