My Marlin configs for Fabrikator Mini and CTC i3 Pro B
Du kan inte välja fler än 25 ämnen Ämnen måste starta med en bokstav eller siffra, kan innehålla bindestreck ('-') och vara max 35 tecken långa.

Marlin_main.cpp 287KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997799879998000800180028003800480058006800780088009801080118012801380148015801680178018801980208021802280238024802580268027802880298030803180328033803480358036803780388039804080418042804380448045804680478048804980508051805280538054805580568057805880598060806180628063806480658066806780688069807080718072807380748075807680778078807980808081808280838084808580868087808880898090809180928093809480958096809780988099810081018102810381048105810681078108810981108111811281138114811581168117811881198120812181228123812481258126812781288129813081318132813381348135813681378138813981408141814281438144814581468147814881498150815181528153815481558156815781588159816081618162816381648165816681678168816981708171817281738174817581768177817881798180818181828183818481858186818781888189819081918192819381948195819681978198819982008201820282038204820582068207820882098210821182128213821482158216821782188219822082218222822382248225822682278228822982308231823282338234823582368237823882398240824182428243824482458246824782488249825082518252825382548255825682578258825982608261826282638264826582668267826882698270827182728273827482758276827782788279828082818282828382848285828682878288828982908291829282938294829582968297829882998300830183028303830483058306830783088309831083118312831383148315831683178318831983208321832283238324832583268327832883298330833183328333833483358336833783388339834083418342834383448345834683478348834983508351835283538354835583568357835883598360836183628363836483658366836783688369837083718372837383748375837683778378837983808381838283838384838583868387838883898390839183928393839483958396839783988399840084018402840384048405840684078408840984108411841284138414841584168417841884198420842184228423842484258426842784288429843084318432843384348435843684378438843984408441844284438444844584468447844884498450845184528453845484558456845784588459846084618462846384648465846684678468846984708471847284738474847584768477847884798480848184828483848484858486848784888489849084918492849384948495849684978498849985008501850285038504850585068507850885098510851185128513851485158516851785188519852085218522852385248525852685278528852985308531853285338534853585368537853885398540854185428543854485458546854785488549855085518552855385548555855685578558855985608561856285638564856585668567856885698570857185728573857485758576857785788579858085818582858385848585858685878588858985908591859285938594859585968597859885998600860186028603860486058606860786088609861086118612861386148615861686178618861986208621862286238624862586268627862886298630863186328633863486358636863786388639864086418642864386448645864686478648864986508651865286538654865586568657865886598660866186628663866486658666866786688669867086718672867386748675867686778678867986808681868286838684868586868687868886898690869186928693869486958696869786988699870087018702870387048705870687078708870987108711871287138714871587168717871887198720872187228723872487258726872787288729873087318732873387348735873687378738873987408741874287438744874587468747874887498750875187528753875487558756875787588759876087618762876387648765876687678768876987708771877287738774877587768777877887798780878187828783878487858786878787888789879087918792879387948795879687978798879988008801880288038804880588068807880888098810881188128813881488158816881788188819882088218822882388248825882688278828882988308831883288338834883588368837883888398840884188428843884488458846884788488849885088518852885388548855885688578858885988608861886288638864886588668867886888698870887188728873887488758876887788788879888088818882888388848885888688878888888988908891889288938894889588968897889888998900890189028903890489058906890789088909891089118912891389148915891689178918891989208921892289238924892589268927892889298930893189328933893489358936893789388939894089418942894389448945894689478948894989508951895289538954895589568957895889598960896189628963896489658966896789688969897089718972897389748975897689778978897989808981898289838984898589868987898889898990899189928993899489958996899789988999900090019002900390049005900690079008900990109011901290139014901590169017901890199020902190229023902490259026902790289029903090319032903390349035903690379038903990409041904290439044904590469047904890499050905190529053905490559056905790589059906090619062906390649065906690679068906990709071907290739074907590769077907890799080908190829083908490859086908790889089909090919092909390949095909690979098909991009101910291039104910591069107910891099110911191129113911491159116911791189119912091219122912391249125912691279128912991309131913291339134913591369137913891399140914191429143914491459146914791489149915091519152915391549155915691579158915991609161916291639164916591669167916891699170917191729173917491759176917791789179918091819182918391849185918691879188918991909191919291939194919591969197919891999200920192029203920492059206920792089209921092119212921392149215921692179218921992209221922292239224
  1. /**
  2. * Marlin 3D Printer Firmware
  3. * Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
  4. *
  5. * Based on Sprinter and grbl.
  6. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  7. *
  8. * This program is free software: you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation, either version 3 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  20. *
  21. */
  22. /**
  23. *
  24. * About Marlin
  25. *
  26. * This firmware is a mashup between Sprinter and grbl.
  27. * - https://github.com/kliment/Sprinter
  28. * - https://github.com/simen/grbl/tree
  29. *
  30. * It has preliminary support for Matthew Roberts advance algorithm
  31. * - http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  32. */
  33. #include "Marlin.h"
  34. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  35. #include "vector_3.h"
  36. #endif
  37. #if ENABLED(AUTO_BED_LEVELING_LINEAR_GRID)
  38. #include "qr_solve.h"
  39. #elif ENABLED(MESH_BED_LEVELING)
  40. #include "mesh_bed_leveling.h"
  41. #endif
  42. #if ENABLED(BEZIER_CURVE_SUPPORT)
  43. #include "planner_bezier.h"
  44. #endif
  45. #include "ultralcd.h"
  46. #include "planner.h"
  47. #include "stepper.h"
  48. #include "endstops.h"
  49. #include "temperature.h"
  50. #include "cardreader.h"
  51. #include "configuration_store.h"
  52. #include "language.h"
  53. #include "pins_arduino.h"
  54. #include "math.h"
  55. #include "nozzle.h"
  56. #include "duration_t.h"
  57. #include "types.h"
  58. #if ENABLED(USE_WATCHDOG)
  59. #include "watchdog.h"
  60. #endif
  61. #if ENABLED(BLINKM)
  62. #include "blinkm.h"
  63. #include "Wire.h"
  64. #endif
  65. #if HAS_SERVOS
  66. #include "servo.h"
  67. #endif
  68. #if HAS_DIGIPOTSS
  69. #include <SPI.h>
  70. #endif
  71. #if ENABLED(DAC_STEPPER_CURRENT)
  72. #include "stepper_dac.h"
  73. #endif
  74. #if ENABLED(EXPERIMENTAL_I2CBUS)
  75. #include "twibus.h"
  76. #endif
  77. /**
  78. * Look here for descriptions of G-codes:
  79. * - http://linuxcnc.org/handbook/gcode/g-code.html
  80. * - http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  81. *
  82. * Help us document these G-codes online:
  83. * - https://github.com/MarlinFirmware/Marlin/wiki/G-Code-in-Marlin
  84. * - http://reprap.org/wiki/G-code
  85. *
  86. * -----------------
  87. * Implemented Codes
  88. * -----------------
  89. *
  90. * "G" Codes
  91. *
  92. * G0 -> G1
  93. * G1 - Coordinated Movement X Y Z E
  94. * G2 - CW ARC
  95. * G3 - CCW ARC
  96. * G4 - Dwell S<seconds> or P<milliseconds>
  97. * G5 - Cubic B-spline with XYZE destination and IJPQ offsets
  98. * G10 - Retract filament according to settings of M207
  99. * G11 - Retract recover filament according to settings of M208
  100. * G12 - Clean tool
  101. * G20 - Set input units to inches
  102. * G21 - Set input units to millimeters
  103. * G28 - Home one or more axes
  104. * G29 - Detailed Z probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  105. * G30 - Single Z probe, probes bed at current XY location.
  106. * G31 - Dock sled (Z_PROBE_SLED only)
  107. * G32 - Undock sled (Z_PROBE_SLED only)
  108. * G90 - Use Absolute Coordinates
  109. * G91 - Use Relative Coordinates
  110. * G92 - Set current position to coordinates given
  111. *
  112. * "M" Codes
  113. *
  114. * M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
  115. * M1 - Same as M0
  116. * M17 - Enable/Power all stepper motors
  117. * M18 - Disable all stepper motors; same as M84
  118. * M20 - List SD card
  119. * M21 - Init SD card
  120. * M22 - Release SD card
  121. * M23 - Select SD file (M23 filename.g)
  122. * M24 - Start/resume SD print
  123. * M25 - Pause SD print
  124. * M26 - Set SD position in bytes (M26 S12345)
  125. * M27 - Report SD print status
  126. * M28 - Start SD write (M28 filename.g)
  127. * M29 - Stop SD write
  128. * M30 - Delete file from SD (M30 filename.g)
  129. * M31 - Output time since last M109 or SD card start to serial
  130. * M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  131. * syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  132. * Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
  133. * The '#' is necessary when calling from within sd files, as it stops buffer prereading
  134. * M33 - Get the longname version of a path
  135. * M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  136. * M48 - Measure Z_Probe repeatability. M48 [P # of points] [X position] [Y position] [V_erboseness #] [E_ngage Probe] [L # of legs of travel]
  137. * M75 - Start the print job timer
  138. * M76 - Pause the print job timer
  139. * M77 - Stop the print job timer
  140. * M78 - Show statistical information about the print jobs
  141. * M80 - Turn on Power Supply
  142. * M81 - Turn off Power Supply
  143. * M82 - Set E codes absolute (default)
  144. * M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  145. * M84 - Disable steppers until next move,
  146. * or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  147. * M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  148. * M92 - Set planner.axis_steps_per_mm - same syntax as G92
  149. * M104 - Set extruder target temp
  150. * M105 - Read current temp
  151. * M106 - Fan on
  152. * M107 - Fan off
  153. * M108 - Stop the waiting for heaters in M109, M190, M303. Does not affect the target temperature.
  154. * M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  155. * Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  156. * IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  157. * M110 - Set the current line number
  158. * M111 - Set debug flags with S<mask>. See flag bits defined in enum.h.
  159. * M112 - Emergency stop
  160. * M113 - Get or set the timeout interval for Host Keepalive "busy" messages
  161. * M114 - Output current position to serial port
  162. * M115 - Capabilities string
  163. * M117 - Display a message on the controller screen
  164. * M119 - Output Endstop status to serial port
  165. * M120 - Enable endstop detection
  166. * M121 - Disable endstop detection
  167. * M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  168. * M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  169. * M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  170. * M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  171. * M140 - Set bed target temp
  172. * M145 - Set the heatup state H<hotend> B<bed> F<fan speed> for S<material> (0=PLA, 1=ABS)
  173. * M149 - Set temperature units
  174. * M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  175. * M163 - Set a single proportion for a mixing extruder. Requires MIXING_EXTRUDER.
  176. * M164 - Save the mix as a virtual extruder. Requires MIXING_EXTRUDER and MIXING_VIRTUAL_TOOLS.
  177. * M165 - Set the proportions for a mixing extruder. Use parameters ABCDHI to set the mixing factors. Requires MIXING_EXTRUDER.
  178. * M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  179. * Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  180. * M200 - Set filament diameter, D<diameter>, setting E axis units to cubic. (Use S0 to revert to linear units.)
  181. * M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  182. * M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  183. * M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in units/sec
  184. * M204 - Set default acceleration: P for Printing moves, R for Retract only (no X, Y, Z) moves and T for Travel (non printing) moves (ex. M204 P800 T3000 R9000) in units/sec^2
  185. * M205 - Set advanced settings. Current units apply:
  186. S<print> T<travel> minimum speeds
  187. B<minimum segment time>
  188. X<max xy jerk>, Z<max Z jerk>, E<max E jerk>
  189. * M206 - Set additional homing offset
  190. * M207 - Set Retract Length: S<length>, Feedrate: F<units/min>, and Z lift: Z<distance>
  191. * M208 - Set Recover (unretract) Additional (!) Length: S<length> and Feedrate: F<units/min>
  192. * M209 - Turn Automatic Retract Detection on/off: S<bool> (For slicers that don't support G10/11).
  193. Every normal extrude-only move will be classified as retract depending on the direction.
  194. * M211 - Enable, Disable, and/or Report software endstops: [S<bool>]
  195. * M218 - Set a tool offset: T<index> X<offset> Y<offset>
  196. * M220 - Set Feedrate Percentage: S<percent> ("FR" on your LCD)
  197. * M221 - Set Flow Percentage: S<percent>
  198. * M226 - Wait until the specified pin reaches the state required: P<pin number> S<pin state>
  199. * M240 - Trigger a camera to take a photograph
  200. * M250 - Set LCD contrast C<contrast value> (value 0..63)
  201. * M280 - Set servo position absolute. P: servo index, S: angle or microseconds
  202. * M300 - Play beep sound S<frequency Hz> P<duration ms>
  203. * M301 - Set PID parameters P I and D
  204. * M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  205. * M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  206. * M304 - Set bed PID parameters P I and D
  207. * M380 - Activate solenoid on active extruder
  208. * M381 - Disable all solenoids
  209. * M400 - Finish all moves
  210. * M401 - Lower Z probe if present
  211. * M402 - Raise Z probe if present
  212. * M404 - Display or set the Nominal Filament Width: [ N<diameter> ]
  213. * M405 - Enable Filament Sensor extrusion control. Optional delay between sensor and extruder: D<cm>
  214. * M406 - Disable Filament Sensor extrusion control
  215. * M407 - Display measured filament diameter in millimeters
  216. * M410 - Quickstop. Abort all the planned moves
  217. * M420 - Enable/Disable Mesh Leveling (with current values) S1=enable S0=disable
  218. * M421 - Set a single Z coordinate in the Mesh Leveling grid. X<units> Y<units> Z<units>
  219. * M428 - Set the home_offset logically based on the current_position
  220. * M500 - Store parameters in EEPROM
  221. * M501 - Read parameters from EEPROM (if you need reset them after you changed them temporarily).
  222. * M502 - Revert to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  223. * M503 - Print the current settings (from memory not from EEPROM). Use S0 to leave off headings.
  224. * M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  225. * M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  226. * M665 - Set delta configurations: L<diagonal rod> R<delta radius> S<segments/s>
  227. * M666 - Set delta endstop adjustment
  228. * M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  229. * M851 - Set Z probe's Z offset in current units. (Negative values apply to probes that extend below the nozzle.)
  230. * M907 - Set digital trimpot motor current using axis codes.
  231. * M908 - Control digital trimpot directly.
  232. * M909 - DAC_STEPPER_CURRENT: Print digipot/DAC current value
  233. * M910 - DAC_STEPPER_CURRENT: Commit digipot/DAC value to external EEPROM via I2C
  234. * M350 - Set microstepping mode.
  235. * M351 - Toggle MS1 MS2 pins directly.
  236. *
  237. * ************ SCARA Specific - This can change to suit future G-code regulations
  238. * M360 - SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  239. * M361 - SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  240. * M362 - SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  241. * M363 - SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  242. * M364 - SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
  243. * ************* SCARA End ***************
  244. *
  245. * ************ Custom codes - This can change to suit future G-code regulations
  246. * M100 - Watch Free Memory (For Debugging Only)
  247. * M928 - Start SD logging (M928 filename.g) - ended by M29
  248. * M999 - Restart after being stopped by error
  249. *
  250. * "T" Codes
  251. *
  252. * T0-T3 - Select a tool by index (usually an extruder) [ F<units/min> ]
  253. *
  254. */
  255. #if ENABLED(M100_FREE_MEMORY_WATCHER)
  256. void gcode_M100();
  257. #endif
  258. #if ENABLED(SDSUPPORT)
  259. CardReader card;
  260. #endif
  261. #if ENABLED(EXPERIMENTAL_I2CBUS)
  262. TWIBus i2c;
  263. #endif
  264. bool Running = true;
  265. uint8_t marlin_debug_flags = DEBUG_NONE;
  266. float current_position[NUM_AXIS] = { 0.0 };
  267. static float destination[NUM_AXIS] = { 0.0 };
  268. bool axis_known_position[XYZ] = { false };
  269. bool axis_homed[XYZ] = { false };
  270. static long gcode_N, gcode_LastN, Stopped_gcode_LastN = 0;
  271. static char command_queue[BUFSIZE][MAX_CMD_SIZE];
  272. static char* current_command, *current_command_args;
  273. static uint8_t cmd_queue_index_r = 0,
  274. cmd_queue_index_w = 0,
  275. commands_in_queue = 0;
  276. #if ENABLED(INCH_MODE_SUPPORT)
  277. float linear_unit_factor = 1.0;
  278. float volumetric_unit_factor = 1.0;
  279. #endif
  280. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  281. TempUnit input_temp_units = TEMPUNIT_C;
  282. #endif
  283. /**
  284. * Feed rates are often configured with mm/m
  285. * but the planner and stepper like mm/s units.
  286. */
  287. float constexpr homing_feedrate_mm_s[] = {
  288. #if ENABLED(DELTA)
  289. MMM_TO_MMS(HOMING_FEEDRATE_Z), MMM_TO_MMS(HOMING_FEEDRATE_Z),
  290. #else
  291. MMM_TO_MMS(HOMING_FEEDRATE_XY), MMM_TO_MMS(HOMING_FEEDRATE_XY),
  292. #endif
  293. MMM_TO_MMS(HOMING_FEEDRATE_Z), 0
  294. };
  295. static float feedrate_mm_s = MMM_TO_MMS(1500.0), saved_feedrate_mm_s;
  296. int feedrate_percentage = 100, saved_feedrate_percentage;
  297. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  298. int flow_percentage[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(100);
  299. bool volumetric_enabled = false;
  300. float filament_size[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(DEFAULT_NOMINAL_FILAMENT_DIA);
  301. float volumetric_multiplier[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(1.0);
  302. // The distance that XYZ has been offset by G92. Reset by G28.
  303. float position_shift[XYZ] = { 0 };
  304. // This offset is added to the configured home position.
  305. // Set by M206, M428, or menu item. Saved to EEPROM.
  306. float home_offset[XYZ] = { 0 };
  307. // Software Endstops are based on the configured limits.
  308. #if ENABLED(min_software_endstops) || ENABLED(max_software_endstops)
  309. bool soft_endstops_enabled = true;
  310. #endif
  311. float soft_endstop_min[XYZ] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS },
  312. soft_endstop_max[XYZ] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  313. #if FAN_COUNT > 0
  314. int fanSpeeds[FAN_COUNT] = { 0 };
  315. #endif
  316. // The active extruder (tool). Set with T<extruder> command.
  317. uint8_t active_extruder = 0;
  318. // Relative Mode. Enable with G91, disable with G90.
  319. static bool relative_mode = false;
  320. volatile bool wait_for_heatup = true;
  321. #if ENABLED(EMERGENCY_PARSER) && DISABLED(ULTIPANEL)
  322. volatile bool wait_for_user = false;
  323. #endif
  324. const char errormagic[] PROGMEM = "Error:";
  325. const char echomagic[] PROGMEM = "echo:";
  326. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  327. static int serial_count = 0;
  328. // GCode parameter pointer used by code_seen(), code_value_float(), etc.
  329. static char* seen_pointer;
  330. // Next Immediate GCode Command pointer. NULL if none.
  331. const char* queued_commands_P = NULL;
  332. const int sensitive_pins[] = SENSITIVE_PINS; ///< Sensitive pin list for M42
  333. // Inactivity shutdown
  334. millis_t previous_cmd_ms = 0;
  335. static millis_t max_inactive_time = 0;
  336. static millis_t stepper_inactive_time = (DEFAULT_STEPPER_DEACTIVE_TIME) * 1000UL;
  337. // Print Job Timer
  338. #if ENABLED(PRINTCOUNTER)
  339. PrintCounter print_job_timer = PrintCounter();
  340. #else
  341. Stopwatch print_job_timer = Stopwatch();
  342. #endif
  343. // Buzzer - I2C on the LCD or a BEEPER_PIN
  344. #if ENABLED(LCD_USE_I2C_BUZZER)
  345. #define BUZZ(d,f) lcd_buzz(d, f)
  346. #elif HAS_BUZZER
  347. Buzzer buzzer;
  348. #define BUZZ(d,f) buzzer.tone(d, f)
  349. #else
  350. #define BUZZ(d,f) NOOP
  351. #endif
  352. static uint8_t target_extruder;
  353. #if HAS_BED_PROBE
  354. float zprobe_zoffset = Z_PROBE_OFFSET_FROM_EXTRUDER;
  355. #endif
  356. #define PLANNER_XY_FEEDRATE() (min(planner.max_feedrate_mm_s[X_AXIS], planner.max_feedrate_mm_s[Y_AXIS]))
  357. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  358. float xy_probe_feedrate_mm_s = MMM_TO_MMS(XY_PROBE_SPEED);
  359. #define XY_PROBE_FEEDRATE_MM_S xy_probe_feedrate_mm_s
  360. #elif defined(XY_PROBE_SPEED)
  361. #define XY_PROBE_FEEDRATE_MM_S MMM_TO_MMS(XY_PROBE_SPEED)
  362. #else
  363. #define XY_PROBE_FEEDRATE_MM_S PLANNER_XY_FEEDRATE()
  364. #endif
  365. #if ENABLED(Z_DUAL_ENDSTOPS)
  366. float z_endstop_adj = 0;
  367. #endif
  368. // Extruder offsets
  369. #if HOTENDS > 1
  370. float hotend_offset[][HOTENDS] = {
  371. HOTEND_OFFSET_X,
  372. HOTEND_OFFSET_Y
  373. #ifdef HOTEND_OFFSET_Z
  374. , HOTEND_OFFSET_Z
  375. #endif
  376. };
  377. #endif
  378. #if HAS_Z_SERVO_ENDSTOP
  379. const int z_servo_angle[2] = Z_SERVO_ANGLES;
  380. #endif
  381. #if ENABLED(BARICUDA)
  382. int baricuda_valve_pressure = 0;
  383. int baricuda_e_to_p_pressure = 0;
  384. #endif
  385. #if ENABLED(FWRETRACT)
  386. bool autoretract_enabled = false;
  387. bool retracted[EXTRUDERS] = { false };
  388. bool retracted_swap[EXTRUDERS] = { false };
  389. float retract_length = RETRACT_LENGTH;
  390. float retract_length_swap = RETRACT_LENGTH_SWAP;
  391. float retract_feedrate_mm_s = RETRACT_FEEDRATE;
  392. float retract_zlift = RETRACT_ZLIFT;
  393. float retract_recover_length = RETRACT_RECOVER_LENGTH;
  394. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  395. float retract_recover_feedrate_mm_s = RETRACT_RECOVER_FEEDRATE;
  396. #endif // FWRETRACT
  397. #if ENABLED(ULTIPANEL) && HAS_POWER_SWITCH
  398. bool powersupply =
  399. #if ENABLED(PS_DEFAULT_OFF)
  400. false
  401. #else
  402. true
  403. #endif
  404. ;
  405. #endif
  406. #if ENABLED(DELTA)
  407. #define SIN_60 0.8660254037844386
  408. #define COS_60 0.5
  409. float delta[ABC],
  410. endstop_adj[ABC] = { 0 };
  411. // these are the default values, can be overriden with M665
  412. float delta_radius = DELTA_RADIUS,
  413. delta_tower1_x = -SIN_60 * (delta_radius + DELTA_RADIUS_TRIM_TOWER_1), // front left tower
  414. delta_tower1_y = -COS_60 * (delta_radius + DELTA_RADIUS_TRIM_TOWER_1),
  415. delta_tower2_x = SIN_60 * (delta_radius + DELTA_RADIUS_TRIM_TOWER_2), // front right tower
  416. delta_tower2_y = -COS_60 * (delta_radius + DELTA_RADIUS_TRIM_TOWER_2),
  417. delta_tower3_x = 0, // back middle tower
  418. delta_tower3_y = (delta_radius + DELTA_RADIUS_TRIM_TOWER_3),
  419. delta_diagonal_rod = DELTA_DIAGONAL_ROD,
  420. delta_diagonal_rod_trim_tower_1 = DELTA_DIAGONAL_ROD_TRIM_TOWER_1,
  421. delta_diagonal_rod_trim_tower_2 = DELTA_DIAGONAL_ROD_TRIM_TOWER_2,
  422. delta_diagonal_rod_trim_tower_3 = DELTA_DIAGONAL_ROD_TRIM_TOWER_3,
  423. delta_diagonal_rod_2_tower_1 = sq(delta_diagonal_rod + delta_diagonal_rod_trim_tower_1),
  424. delta_diagonal_rod_2_tower_2 = sq(delta_diagonal_rod + delta_diagonal_rod_trim_tower_2),
  425. delta_diagonal_rod_2_tower_3 = sq(delta_diagonal_rod + delta_diagonal_rod_trim_tower_3),
  426. delta_segments_per_second = DELTA_SEGMENTS_PER_SECOND,
  427. delta_clip_start_height = Z_MAX_POS;
  428. float delta_safe_distance_from_top();
  429. #else
  430. static bool home_all_axis = true;
  431. #endif
  432. #if ENABLED(AUTO_BED_LEVELING_NONLINEAR)
  433. int nonlinear_grid_spacing[2] = { 0 };
  434. float bed_level_grid[ABL_GRID_POINTS_X][ABL_GRID_POINTS_Y];
  435. #endif
  436. #if IS_SCARA
  437. // Float constants for SCARA calculations
  438. const float L1 = SCARA_LINKAGE_1, L2 = SCARA_LINKAGE_2,
  439. L1_2 = sq(float(L1)), L1_2_2 = 2.0 * L1_2,
  440. L2_2 = sq(float(L2));
  441. float delta_segments_per_second = SCARA_SEGMENTS_PER_SECOND,
  442. delta[ABC];
  443. #endif
  444. float cartes[XYZ] = { 0 };
  445. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  446. bool filament_sensor = false; //M405 turns on filament_sensor control, M406 turns it off
  447. float filament_width_nominal = DEFAULT_NOMINAL_FILAMENT_DIA, // Nominal filament width. Change with M404
  448. filament_width_meas = DEFAULT_MEASURED_FILAMENT_DIA; // Measured filament diameter
  449. int8_t measurement_delay[MAX_MEASUREMENT_DELAY + 1]; // Ring buffer to delayed measurement. Store extruder factor after subtracting 100
  450. int filwidth_delay_index[2] = { 0, -1 }; // Indexes into ring buffer
  451. int meas_delay_cm = MEASUREMENT_DELAY_CM; //distance delay setting
  452. #endif
  453. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  454. static bool filament_ran_out = false;
  455. #endif
  456. #if ENABLED(FILAMENT_CHANGE_FEATURE)
  457. FilamentChangeMenuResponse filament_change_menu_response;
  458. #endif
  459. #if ENABLED(MIXING_EXTRUDER)
  460. float mixing_factor[MIXING_STEPPERS];
  461. #if MIXING_VIRTUAL_TOOLS > 1
  462. float mixing_virtual_tool_mix[MIXING_VIRTUAL_TOOLS][MIXING_STEPPERS];
  463. #endif
  464. #endif
  465. static bool send_ok[BUFSIZE];
  466. #if HAS_SERVOS
  467. Servo servo[NUM_SERVOS];
  468. #define MOVE_SERVO(I, P) servo[I].move(P)
  469. #if HAS_Z_SERVO_ENDSTOP
  470. #define DEPLOY_Z_SERVO() MOVE_SERVO(Z_ENDSTOP_SERVO_NR, z_servo_angle[0])
  471. #define STOW_Z_SERVO() MOVE_SERVO(Z_ENDSTOP_SERVO_NR, z_servo_angle[1])
  472. #endif
  473. #endif
  474. #ifdef CHDK
  475. millis_t chdkHigh = 0;
  476. boolean chdkActive = false;
  477. #endif
  478. #if ENABLED(PID_EXTRUSION_SCALING)
  479. int lpq_len = 20;
  480. #endif
  481. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  482. static MarlinBusyState busy_state = NOT_BUSY;
  483. static millis_t next_busy_signal_ms = 0;
  484. uint8_t host_keepalive_interval = DEFAULT_KEEPALIVE_INTERVAL;
  485. #define KEEPALIVE_STATE(n) do{ busy_state = n; }while(0)
  486. #else
  487. #define host_keepalive() ;
  488. #define KEEPALIVE_STATE(n) ;
  489. #endif // HOST_KEEPALIVE_FEATURE
  490. #define DEFINE_PGM_READ_ANY(type, reader) \
  491. static inline type pgm_read_any(const type *p) \
  492. { return pgm_read_##reader##_near(p); }
  493. DEFINE_PGM_READ_ANY(float, float);
  494. DEFINE_PGM_READ_ANY(signed char, byte);
  495. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  496. static const PROGMEM type array##_P[XYZ] = \
  497. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  498. static inline type array(int axis) \
  499. { return pgm_read_any(&array##_P[axis]); }
  500. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  501. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  502. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  503. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  504. XYZ_CONSTS_FROM_CONFIG(float, home_bump_mm, HOME_BUMP_MM);
  505. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  506. /**
  507. * ***************************************************************************
  508. * ******************************** FUNCTIONS ********************************
  509. * ***************************************************************************
  510. */
  511. void stop();
  512. void get_available_commands();
  513. void process_next_command();
  514. void prepare_move_to_destination();
  515. void get_cartesian_from_steppers();
  516. void set_current_from_steppers_for_axis(const AxisEnum axis);
  517. #if ENABLED(ARC_SUPPORT)
  518. void plan_arc(float target[NUM_AXIS], float* offset, uint8_t clockwise);
  519. #endif
  520. #if ENABLED(BEZIER_CURVE_SUPPORT)
  521. void plan_cubic_move(const float offset[4]);
  522. #endif
  523. void serial_echopair_P(const char* s_P, const char *v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  524. void serial_echopair_P(const char* s_P, char v) { serialprintPGM(s_P); SERIAL_CHAR(v); }
  525. void serial_echopair_P(const char* s_P, int v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  526. void serial_echopair_P(const char* s_P, long v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  527. void serial_echopair_P(const char* s_P, float v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  528. void serial_echopair_P(const char* s_P, double v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  529. void serial_echopair_P(const char* s_P, unsigned long v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  530. void tool_change(const uint8_t tmp_extruder, const float fr_mm_s=0.0, bool no_move=false);
  531. static void report_current_position();
  532. #if ENABLED(DEBUG_LEVELING_FEATURE)
  533. void print_xyz(const char* prefix, const char* suffix, const float x, const float y, const float z) {
  534. serialprintPGM(prefix);
  535. SERIAL_ECHOPAIR("(", x);
  536. SERIAL_ECHOPAIR(", ", y);
  537. SERIAL_ECHOPAIR(", ", z);
  538. SERIAL_ECHOPGM(")");
  539. if (suffix) serialprintPGM(suffix);
  540. else SERIAL_EOL;
  541. }
  542. void print_xyz(const char* prefix, const char* suffix, const float xyz[]) {
  543. print_xyz(prefix, suffix, xyz[X_AXIS], xyz[Y_AXIS], xyz[Z_AXIS]);
  544. }
  545. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  546. void print_xyz(const char* prefix, const char* suffix, const vector_3 &xyz) {
  547. print_xyz(prefix, suffix, xyz.x, xyz.y, xyz.z);
  548. }
  549. #endif
  550. #define DEBUG_POS(SUFFIX,VAR) do { \
  551. print_xyz(PSTR(STRINGIFY(VAR) "="), PSTR(" : " SUFFIX "\n"), VAR); } while(0)
  552. #endif
  553. /**
  554. * sync_plan_position
  555. *
  556. * Set the planner/stepper positions directly from current_position with
  557. * no kinematic translation. Used for homing axes and cartesian/core syncing.
  558. */
  559. inline void sync_plan_position() {
  560. #if ENABLED(DEBUG_LEVELING_FEATURE)
  561. if (DEBUGGING(LEVELING)) DEBUG_POS("sync_plan_position", current_position);
  562. #endif
  563. planner.set_position_mm(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  564. }
  565. inline void sync_plan_position_e() { planner.set_e_position_mm(current_position[E_AXIS]); }
  566. #if IS_KINEMATIC
  567. inline void sync_plan_position_kinematic() {
  568. #if ENABLED(DEBUG_LEVELING_FEATURE)
  569. if (DEBUGGING(LEVELING)) DEBUG_POS("sync_plan_position_kinematic", current_position);
  570. #endif
  571. inverse_kinematics(current_position);
  572. planner.set_position_mm(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], current_position[E_AXIS]);
  573. }
  574. #define SYNC_PLAN_POSITION_KINEMATIC() sync_plan_position_kinematic()
  575. #else
  576. #define SYNC_PLAN_POSITION_KINEMATIC() sync_plan_position()
  577. #endif
  578. #if ENABLED(SDSUPPORT)
  579. #include "SdFatUtil.h"
  580. int freeMemory() { return SdFatUtil::FreeRam(); }
  581. #else
  582. extern "C" {
  583. extern unsigned int __bss_end;
  584. extern unsigned int __heap_start;
  585. extern void* __brkval;
  586. int freeMemory() {
  587. int free_memory;
  588. if ((int)__brkval == 0)
  589. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  590. else
  591. free_memory = ((int)&free_memory) - ((int)__brkval);
  592. return free_memory;
  593. }
  594. }
  595. #endif //!SDSUPPORT
  596. #if ENABLED(DIGIPOT_I2C)
  597. extern void digipot_i2c_set_current(int channel, float current);
  598. extern void digipot_i2c_init();
  599. #endif
  600. /**
  601. * Inject the next "immediate" command, when possible.
  602. * Return true if any immediate commands remain to inject.
  603. */
  604. static bool drain_queued_commands_P() {
  605. if (queued_commands_P != NULL) {
  606. size_t i = 0;
  607. char c, cmd[30];
  608. strncpy_P(cmd, queued_commands_P, sizeof(cmd) - 1);
  609. cmd[sizeof(cmd) - 1] = '\0';
  610. while ((c = cmd[i]) && c != '\n') i++; // find the end of this gcode command
  611. cmd[i] = '\0';
  612. if (enqueue_and_echo_command(cmd)) { // success?
  613. if (c) // newline char?
  614. queued_commands_P += i + 1; // advance to the next command
  615. else
  616. queued_commands_P = NULL; // nul char? no more commands
  617. }
  618. }
  619. return (queued_commands_P != NULL); // return whether any more remain
  620. }
  621. /**
  622. * Record one or many commands to run from program memory.
  623. * Aborts the current queue, if any.
  624. * Note: drain_queued_commands_P() must be called repeatedly to drain the commands afterwards
  625. */
  626. void enqueue_and_echo_commands_P(const char* pgcode) {
  627. queued_commands_P = pgcode;
  628. drain_queued_commands_P(); // first command executed asap (when possible)
  629. }
  630. void clear_command_queue() {
  631. cmd_queue_index_r = cmd_queue_index_w;
  632. commands_in_queue = 0;
  633. }
  634. /**
  635. * Once a new command is in the ring buffer, call this to commit it
  636. */
  637. inline void _commit_command(bool say_ok) {
  638. send_ok[cmd_queue_index_w] = say_ok;
  639. cmd_queue_index_w = (cmd_queue_index_w + 1) % BUFSIZE;
  640. commands_in_queue++;
  641. }
  642. /**
  643. * Copy a command directly into the main command buffer, from RAM.
  644. * Returns true if successfully adds the command
  645. */
  646. inline bool _enqueuecommand(const char* cmd, bool say_ok=false) {
  647. if (*cmd == ';' || commands_in_queue >= BUFSIZE) return false;
  648. strcpy(command_queue[cmd_queue_index_w], cmd);
  649. _commit_command(say_ok);
  650. return true;
  651. }
  652. void enqueue_and_echo_command_now(const char* cmd) {
  653. while (!enqueue_and_echo_command(cmd)) idle();
  654. }
  655. /**
  656. * Enqueue with Serial Echo
  657. */
  658. bool enqueue_and_echo_command(const char* cmd, bool say_ok/*=false*/) {
  659. if (_enqueuecommand(cmd, say_ok)) {
  660. SERIAL_ECHO_START;
  661. SERIAL_ECHOPAIR(MSG_Enqueueing, cmd);
  662. SERIAL_ECHOLNPGM("\"");
  663. return true;
  664. }
  665. return false;
  666. }
  667. void setup_killpin() {
  668. #if HAS_KILL
  669. SET_INPUT(KILL_PIN);
  670. WRITE(KILL_PIN, HIGH);
  671. #endif
  672. }
  673. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  674. void setup_filrunoutpin() {
  675. pinMode(FIL_RUNOUT_PIN, INPUT);
  676. #if ENABLED(ENDSTOPPULLUP_FIL_RUNOUT)
  677. WRITE(FIL_RUNOUT_PIN, HIGH);
  678. #endif
  679. }
  680. #endif
  681. // Set home pin
  682. void setup_homepin(void) {
  683. #if HAS_HOME
  684. SET_INPUT(HOME_PIN);
  685. WRITE(HOME_PIN, HIGH);
  686. #endif
  687. }
  688. void setup_photpin() {
  689. #if HAS_PHOTOGRAPH
  690. OUT_WRITE(PHOTOGRAPH_PIN, LOW);
  691. #endif
  692. }
  693. void setup_powerhold() {
  694. #if HAS_SUICIDE
  695. OUT_WRITE(SUICIDE_PIN, HIGH);
  696. #endif
  697. #if HAS_POWER_SWITCH
  698. #if ENABLED(PS_DEFAULT_OFF)
  699. OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  700. #else
  701. OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE);
  702. #endif
  703. #endif
  704. }
  705. void suicide() {
  706. #if HAS_SUICIDE
  707. OUT_WRITE(SUICIDE_PIN, LOW);
  708. #endif
  709. }
  710. void servo_init() {
  711. #if NUM_SERVOS >= 1 && HAS_SERVO_0
  712. servo[0].attach(SERVO0_PIN);
  713. servo[0].detach(); // Just set up the pin. We don't have a position yet. Don't move to a random position.
  714. #endif
  715. #if NUM_SERVOS >= 2 && HAS_SERVO_1
  716. servo[1].attach(SERVO1_PIN);
  717. servo[1].detach();
  718. #endif
  719. #if NUM_SERVOS >= 3 && HAS_SERVO_2
  720. servo[2].attach(SERVO2_PIN);
  721. servo[2].detach();
  722. #endif
  723. #if NUM_SERVOS >= 4 && HAS_SERVO_3
  724. servo[3].attach(SERVO3_PIN);
  725. servo[3].detach();
  726. #endif
  727. #if HAS_Z_SERVO_ENDSTOP
  728. /**
  729. * Set position of Z Servo Endstop
  730. *
  731. * The servo might be deployed and positioned too low to stow
  732. * when starting up the machine or rebooting the board.
  733. * There's no way to know where the nozzle is positioned until
  734. * homing has been done - no homing with z-probe without init!
  735. *
  736. */
  737. STOW_Z_SERVO();
  738. #endif
  739. }
  740. /**
  741. * Stepper Reset (RigidBoard, et.al.)
  742. */
  743. #if HAS_STEPPER_RESET
  744. void disableStepperDrivers() {
  745. pinMode(STEPPER_RESET_PIN, OUTPUT);
  746. digitalWrite(STEPPER_RESET_PIN, LOW); // drive it down to hold in reset motor driver chips
  747. }
  748. void enableStepperDrivers() { pinMode(STEPPER_RESET_PIN, INPUT); } // set to input, which allows it to be pulled high by pullups
  749. #endif
  750. #if ENABLED(EXPERIMENTAL_I2CBUS) && I2C_SLAVE_ADDRESS > 0
  751. void i2c_on_receive(int bytes) { // just echo all bytes received to serial
  752. i2c.receive(bytes);
  753. }
  754. void i2c_on_request() { // just send dummy data for now
  755. i2c.reply("Hello World!\n");
  756. }
  757. #endif
  758. void gcode_line_error(const char* err, bool doFlush = true) {
  759. SERIAL_ERROR_START;
  760. serialprintPGM(err);
  761. SERIAL_ERRORLN(gcode_LastN);
  762. //Serial.println(gcode_N);
  763. if (doFlush) FlushSerialRequestResend();
  764. serial_count = 0;
  765. }
  766. inline void get_serial_commands() {
  767. static char serial_line_buffer[MAX_CMD_SIZE];
  768. static boolean serial_comment_mode = false;
  769. // If the command buffer is empty for too long,
  770. // send "wait" to indicate Marlin is still waiting.
  771. #if defined(NO_TIMEOUTS) && NO_TIMEOUTS > 0
  772. static millis_t last_command_time = 0;
  773. millis_t ms = millis();
  774. if (commands_in_queue == 0 && !MYSERIAL.available() && ELAPSED(ms, last_command_time + NO_TIMEOUTS)) {
  775. SERIAL_ECHOLNPGM(MSG_WAIT);
  776. last_command_time = ms;
  777. }
  778. #endif
  779. /**
  780. * Loop while serial characters are incoming and the queue is not full
  781. */
  782. while (commands_in_queue < BUFSIZE && MYSERIAL.available() > 0) {
  783. char serial_char = MYSERIAL.read();
  784. /**
  785. * If the character ends the line
  786. */
  787. if (serial_char == '\n' || serial_char == '\r') {
  788. serial_comment_mode = false; // end of line == end of comment
  789. if (!serial_count) continue; // skip empty lines
  790. serial_line_buffer[serial_count] = 0; // terminate string
  791. serial_count = 0; //reset buffer
  792. char* command = serial_line_buffer;
  793. while (*command == ' ') command++; // skip any leading spaces
  794. char* npos = (*command == 'N') ? command : NULL; // Require the N parameter to start the line
  795. char* apos = strchr(command, '*');
  796. if (npos) {
  797. boolean M110 = strstr_P(command, PSTR("M110")) != NULL;
  798. if (M110) {
  799. char* n2pos = strchr(command + 4, 'N');
  800. if (n2pos) npos = n2pos;
  801. }
  802. gcode_N = strtol(npos + 1, NULL, 10);
  803. if (gcode_N != gcode_LastN + 1 && !M110) {
  804. gcode_line_error(PSTR(MSG_ERR_LINE_NO));
  805. return;
  806. }
  807. if (apos) {
  808. byte checksum = 0, count = 0;
  809. while (command[count] != '*') checksum ^= command[count++];
  810. if (strtol(apos + 1, NULL, 10) != checksum) {
  811. gcode_line_error(PSTR(MSG_ERR_CHECKSUM_MISMATCH));
  812. return;
  813. }
  814. // if no errors, continue parsing
  815. }
  816. else {
  817. gcode_line_error(PSTR(MSG_ERR_NO_CHECKSUM));
  818. return;
  819. }
  820. gcode_LastN = gcode_N;
  821. // if no errors, continue parsing
  822. }
  823. else if (apos) { // No '*' without 'N'
  824. gcode_line_error(PSTR(MSG_ERR_NO_LINENUMBER_WITH_CHECKSUM), false);
  825. return;
  826. }
  827. // Movement commands alert when stopped
  828. if (IsStopped()) {
  829. char* gpos = strchr(command, 'G');
  830. if (gpos) {
  831. int codenum = strtol(gpos + 1, NULL, 10);
  832. switch (codenum) {
  833. case 0:
  834. case 1:
  835. case 2:
  836. case 3:
  837. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  838. LCD_MESSAGEPGM(MSG_STOPPED);
  839. break;
  840. }
  841. }
  842. }
  843. #if DISABLED(EMERGENCY_PARSER)
  844. // If command was e-stop process now
  845. if (strcmp(command, "M108") == 0) wait_for_heatup = false;
  846. if (strcmp(command, "M112") == 0) kill(PSTR(MSG_KILLED));
  847. if (strcmp(command, "M410") == 0) { quickstop_stepper(); }
  848. #endif
  849. #if defined(NO_TIMEOUTS) && NO_TIMEOUTS > 0
  850. last_command_time = ms;
  851. #endif
  852. // Add the command to the queue
  853. _enqueuecommand(serial_line_buffer, true);
  854. }
  855. else if (serial_count >= MAX_CMD_SIZE - 1) {
  856. // Keep fetching, but ignore normal characters beyond the max length
  857. // The command will be injected when EOL is reached
  858. }
  859. else if (serial_char == '\\') { // Handle escapes
  860. if (MYSERIAL.available() > 0) {
  861. // if we have one more character, copy it over
  862. serial_char = MYSERIAL.read();
  863. if (!serial_comment_mode) serial_line_buffer[serial_count++] = serial_char;
  864. }
  865. // otherwise do nothing
  866. }
  867. else { // it's not a newline, carriage return or escape char
  868. if (serial_char == ';') serial_comment_mode = true;
  869. if (!serial_comment_mode) serial_line_buffer[serial_count++] = serial_char;
  870. }
  871. } // queue has space, serial has data
  872. }
  873. #if ENABLED(SDSUPPORT)
  874. inline void get_sdcard_commands() {
  875. static bool stop_buffering = false,
  876. sd_comment_mode = false;
  877. if (!card.sdprinting) return;
  878. /**
  879. * '#' stops reading from SD to the buffer prematurely, so procedural
  880. * macro calls are possible. If it occurs, stop_buffering is triggered
  881. * and the buffer is run dry; this character _can_ occur in serial com
  882. * due to checksums, however, no checksums are used in SD printing.
  883. */
  884. if (commands_in_queue == 0) stop_buffering = false;
  885. uint16_t sd_count = 0;
  886. bool card_eof = card.eof();
  887. while (commands_in_queue < BUFSIZE && !card_eof && !stop_buffering) {
  888. int16_t n = card.get();
  889. char sd_char = (char)n;
  890. card_eof = card.eof();
  891. if (card_eof || n == -1
  892. || sd_char == '\n' || sd_char == '\r'
  893. || ((sd_char == '#' || sd_char == ':') && !sd_comment_mode)
  894. ) {
  895. if (card_eof) {
  896. SERIAL_PROTOCOLLNPGM(MSG_FILE_PRINTED);
  897. card.printingHasFinished();
  898. card.checkautostart(true);
  899. }
  900. else if (n == -1) {
  901. SERIAL_ERROR_START;
  902. SERIAL_ECHOLNPGM(MSG_SD_ERR_READ);
  903. }
  904. if (sd_char == '#') stop_buffering = true;
  905. sd_comment_mode = false; //for new command
  906. if (!sd_count) continue; //skip empty lines
  907. command_queue[cmd_queue_index_w][sd_count] = '\0'; //terminate string
  908. sd_count = 0; //clear buffer
  909. _commit_command(false);
  910. }
  911. else if (sd_count >= MAX_CMD_SIZE - 1) {
  912. /**
  913. * Keep fetching, but ignore normal characters beyond the max length
  914. * The command will be injected when EOL is reached
  915. */
  916. }
  917. else {
  918. if (sd_char == ';') sd_comment_mode = true;
  919. if (!sd_comment_mode) command_queue[cmd_queue_index_w][sd_count++] = sd_char;
  920. }
  921. }
  922. }
  923. #endif // SDSUPPORT
  924. /**
  925. * Add to the circular command queue the next command from:
  926. * - The command-injection queue (queued_commands_P)
  927. * - The active serial input (usually USB)
  928. * - The SD card file being actively printed
  929. */
  930. void get_available_commands() {
  931. // if any immediate commands remain, don't get other commands yet
  932. if (drain_queued_commands_P()) return;
  933. get_serial_commands();
  934. #if ENABLED(SDSUPPORT)
  935. get_sdcard_commands();
  936. #endif
  937. }
  938. inline bool code_has_value() {
  939. int i = 1;
  940. char c = seen_pointer[i];
  941. while (c == ' ') c = seen_pointer[++i];
  942. if (c == '-' || c == '+') c = seen_pointer[++i];
  943. if (c == '.') c = seen_pointer[++i];
  944. return NUMERIC(c);
  945. }
  946. inline float code_value_float() {
  947. float ret;
  948. char* e = strchr(seen_pointer, 'E');
  949. if (e) {
  950. *e = 0;
  951. ret = strtod(seen_pointer + 1, NULL);
  952. *e = 'E';
  953. }
  954. else
  955. ret = strtod(seen_pointer + 1, NULL);
  956. return ret;
  957. }
  958. inline unsigned long code_value_ulong() { return strtoul(seen_pointer + 1, NULL, 10); }
  959. inline long code_value_long() { return strtol(seen_pointer + 1, NULL, 10); }
  960. inline int code_value_int() { return (int)strtol(seen_pointer + 1, NULL, 10); }
  961. inline uint16_t code_value_ushort() { return (uint16_t)strtoul(seen_pointer + 1, NULL, 10); }
  962. inline uint8_t code_value_byte() { return (uint8_t)(constrain(strtol(seen_pointer + 1, NULL, 10), 0, 255)); }
  963. inline bool code_value_bool() { return !code_has_value() || code_value_byte() > 0; }
  964. #if ENABLED(INCH_MODE_SUPPORT)
  965. inline void set_input_linear_units(LinearUnit units) {
  966. switch (units) {
  967. case LINEARUNIT_INCH:
  968. linear_unit_factor = 25.4;
  969. break;
  970. case LINEARUNIT_MM:
  971. default:
  972. linear_unit_factor = 1.0;
  973. break;
  974. }
  975. volumetric_unit_factor = pow(linear_unit_factor, 3.0);
  976. }
  977. inline float axis_unit_factor(int axis) {
  978. return (axis == E_AXIS && volumetric_enabled ? volumetric_unit_factor : linear_unit_factor);
  979. }
  980. inline float code_value_linear_units() { return code_value_float() * linear_unit_factor; }
  981. inline float code_value_axis_units(int axis) { return code_value_float() * axis_unit_factor(axis); }
  982. inline float code_value_per_axis_unit(int axis) { return code_value_float() / axis_unit_factor(axis); }
  983. #else
  984. inline float code_value_linear_units() { return code_value_float(); }
  985. inline float code_value_axis_units(int axis) { UNUSED(axis); return code_value_float(); }
  986. inline float code_value_per_axis_unit(int axis) { UNUSED(axis); return code_value_float(); }
  987. #endif
  988. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  989. inline void set_input_temp_units(TempUnit units) { input_temp_units = units; }
  990. float code_value_temp_abs() {
  991. switch (input_temp_units) {
  992. case TEMPUNIT_C:
  993. return code_value_float();
  994. case TEMPUNIT_F:
  995. return (code_value_float() - 32) * 0.5555555556;
  996. case TEMPUNIT_K:
  997. return code_value_float() - 272.15;
  998. default:
  999. return code_value_float();
  1000. }
  1001. }
  1002. float code_value_temp_diff() {
  1003. switch (input_temp_units) {
  1004. case TEMPUNIT_C:
  1005. case TEMPUNIT_K:
  1006. return code_value_float();
  1007. case TEMPUNIT_F:
  1008. return code_value_float() * 0.5555555556;
  1009. default:
  1010. return code_value_float();
  1011. }
  1012. }
  1013. #else
  1014. float code_value_temp_abs() { return code_value_float(); }
  1015. float code_value_temp_diff() { return code_value_float(); }
  1016. #endif
  1017. FORCE_INLINE millis_t code_value_millis() { return code_value_ulong(); }
  1018. inline millis_t code_value_millis_from_seconds() { return code_value_float() * 1000; }
  1019. bool code_seen(char code) {
  1020. seen_pointer = strchr(current_command_args, code);
  1021. return (seen_pointer != NULL); // Return TRUE if the code-letter was found
  1022. }
  1023. /**
  1024. * Set target_extruder from the T parameter or the active_extruder
  1025. *
  1026. * Returns TRUE if the target is invalid
  1027. */
  1028. bool get_target_extruder_from_command(int code) {
  1029. if (code_seen('T')) {
  1030. if (code_value_byte() >= EXTRUDERS) {
  1031. SERIAL_ECHO_START;
  1032. SERIAL_CHAR('M');
  1033. SERIAL_ECHO(code);
  1034. SERIAL_ECHOLNPAIR(" " MSG_INVALID_EXTRUDER " ", code_value_byte());
  1035. return true;
  1036. }
  1037. target_extruder = code_value_byte();
  1038. }
  1039. else
  1040. target_extruder = active_extruder;
  1041. return false;
  1042. }
  1043. #if ENABLED(DUAL_X_CARRIAGE) || ENABLED(DUAL_NOZZLE_DUPLICATION_MODE)
  1044. bool extruder_duplication_enabled = false; // Used in Dual X mode 2
  1045. #endif
  1046. #if ENABLED(DUAL_X_CARRIAGE)
  1047. #define DXC_FULL_CONTROL_MODE 0
  1048. #define DXC_AUTO_PARK_MODE 1
  1049. #define DXC_DUPLICATION_MODE 2
  1050. static int dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  1051. static float x_home_pos(int extruder) {
  1052. if (extruder == 0)
  1053. return LOGICAL_X_POSITION(base_home_pos(X_AXIS));
  1054. else
  1055. /**
  1056. * In dual carriage mode the extruder offset provides an override of the
  1057. * second X-carriage offset when homed - otherwise X2_HOME_POS is used.
  1058. * This allow soft recalibration of the second extruder offset position
  1059. * without firmware reflash (through the M218 command).
  1060. */
  1061. return (hotend_offset[X_AXIS][1] > 0) ? hotend_offset[X_AXIS][1] : X2_HOME_POS;
  1062. }
  1063. static int x_home_dir(int extruder) {
  1064. return (extruder == 0) ? X_HOME_DIR : X2_HOME_DIR;
  1065. }
  1066. static float inactive_extruder_x_pos = X2_MAX_POS; // used in mode 0 & 1
  1067. static bool active_extruder_parked = false; // used in mode 1 & 2
  1068. static float raised_parked_position[NUM_AXIS]; // used in mode 1
  1069. static millis_t delayed_move_time = 0; // used in mode 1
  1070. static float duplicate_extruder_x_offset = DEFAULT_DUPLICATION_X_OFFSET; // used in mode 2
  1071. static float duplicate_extruder_temp_offset = 0; // used in mode 2
  1072. #endif //DUAL_X_CARRIAGE
  1073. /**
  1074. * Software endstops can be used to monitor the open end of
  1075. * an axis that has a hardware endstop on the other end. Or
  1076. * they can prevent axes from moving past endstops and grinding.
  1077. *
  1078. * To keep doing their job as the coordinate system changes,
  1079. * the software endstop positions must be refreshed to remain
  1080. * at the same positions relative to the machine.
  1081. */
  1082. void update_software_endstops(AxisEnum axis) {
  1083. float offs = LOGICAL_POSITION(0, axis);
  1084. #if ENABLED(DUAL_X_CARRIAGE)
  1085. if (axis == X_AXIS) {
  1086. float dual_max_x = max(hotend_offset[X_AXIS][1], X2_MAX_POS);
  1087. if (active_extruder != 0) {
  1088. soft_endstop_min[X_AXIS] = X2_MIN_POS + offs;
  1089. soft_endstop_max[X_AXIS] = dual_max_x + offs;
  1090. return;
  1091. }
  1092. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE) {
  1093. soft_endstop_min[X_AXIS] = base_min_pos(X_AXIS) + offs;
  1094. soft_endstop_max[X_AXIS] = min(base_max_pos(X_AXIS), dual_max_x - duplicate_extruder_x_offset) + offs;
  1095. return;
  1096. }
  1097. }
  1098. else
  1099. #endif
  1100. {
  1101. soft_endstop_min[axis] = base_min_pos(axis) + offs;
  1102. soft_endstop_max[axis] = base_max_pos(axis) + offs;
  1103. }
  1104. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1105. if (DEBUGGING(LEVELING)) {
  1106. SERIAL_ECHOPAIR("For ", axis_codes[axis]);
  1107. SERIAL_ECHOPAIR(" axis:\n home_offset = ", home_offset[axis]);
  1108. SERIAL_ECHOPAIR("\n position_shift = ", position_shift[axis]);
  1109. SERIAL_ECHOPAIR("\n soft_endstop_min = ", soft_endstop_min[axis]);
  1110. SERIAL_ECHOLNPAIR("\n soft_endstop_max = ", soft_endstop_max[axis]);
  1111. }
  1112. #endif
  1113. #if ENABLED(DELTA)
  1114. if (axis == Z_AXIS)
  1115. delta_clip_start_height = soft_endstop_max[axis] - delta_safe_distance_from_top();
  1116. #endif
  1117. }
  1118. /**
  1119. * Change the home offset for an axis, update the current
  1120. * position and the software endstops to retain the same
  1121. * relative distance to the new home.
  1122. *
  1123. * Since this changes the current_position, code should
  1124. * call sync_plan_position soon after this.
  1125. */
  1126. static void set_home_offset(AxisEnum axis, float v) {
  1127. current_position[axis] += v - home_offset[axis];
  1128. home_offset[axis] = v;
  1129. update_software_endstops(axis);
  1130. }
  1131. /**
  1132. * Set an axis' current position to its home position (after homing).
  1133. *
  1134. * For Core and Cartesian robots this applies one-to-one when an
  1135. * individual axis has been homed.
  1136. *
  1137. * DELTA should wait until all homing is done before setting the XYZ
  1138. * current_position to home, because homing is a single operation.
  1139. * In the case where the axis positions are already known and previously
  1140. * homed, DELTA could home to X or Y individually by moving either one
  1141. * to the center. However, homing Z always homes XY and Z.
  1142. *
  1143. * SCARA should wait until all XY homing is done before setting the XY
  1144. * current_position to home, because neither X nor Y is at home until
  1145. * both are at home. Z can however be homed individually.
  1146. *
  1147. */
  1148. static void set_axis_is_at_home(AxisEnum axis) {
  1149. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1150. if (DEBUGGING(LEVELING)) {
  1151. SERIAL_ECHOPAIR(">>> set_axis_is_at_home(", axis_codes[axis]);
  1152. SERIAL_ECHOLNPGM(")");
  1153. }
  1154. #endif
  1155. axis_known_position[axis] = axis_homed[axis] = true;
  1156. position_shift[axis] = 0;
  1157. update_software_endstops(axis);
  1158. #if ENABLED(DUAL_X_CARRIAGE)
  1159. if (axis == X_AXIS && (active_extruder != 0 || dual_x_carriage_mode == DXC_DUPLICATION_MODE)) {
  1160. if (active_extruder != 0)
  1161. current_position[X_AXIS] = x_home_pos(active_extruder);
  1162. else
  1163. current_position[X_AXIS] = LOGICAL_X_POSITION(base_home_pos(X_AXIS));
  1164. update_software_endstops(X_AXIS);
  1165. return;
  1166. }
  1167. #endif
  1168. #if ENABLED(MORGAN_SCARA)
  1169. /**
  1170. * Morgan SCARA homes XY at the same time
  1171. */
  1172. if (axis == X_AXIS || axis == Y_AXIS) {
  1173. float homeposition[XYZ];
  1174. LOOP_XYZ(i) homeposition[i] = LOGICAL_POSITION(base_home_pos(i), i);
  1175. // SERIAL_ECHOPAIR("homeposition X:", homeposition[X_AXIS]);
  1176. // SERIAL_ECHOLNPAIR(" Y:", homeposition[Y_AXIS]);
  1177. /**
  1178. * Get Home position SCARA arm angles using inverse kinematics,
  1179. * and calculate homing offset using forward kinematics
  1180. */
  1181. inverse_kinematics(homeposition);
  1182. forward_kinematics_SCARA(delta[A_AXIS], delta[B_AXIS]);
  1183. // SERIAL_ECHOPAIR("Cartesian X:", cartes[X_AXIS]);
  1184. // SERIAL_ECHOLNPAIR(" Y:", cartes[Y_AXIS]);
  1185. current_position[axis] = LOGICAL_POSITION(cartes[axis], axis);
  1186. /**
  1187. * SCARA home positions are based on configuration since the actual
  1188. * limits are determined by the inverse kinematic transform.
  1189. */
  1190. soft_endstop_min[axis] = base_min_pos(axis); // + (cartes[axis] - base_home_pos(axis));
  1191. soft_endstop_max[axis] = base_max_pos(axis); // + (cartes[axis] - base_home_pos(axis));
  1192. }
  1193. else
  1194. #endif
  1195. {
  1196. current_position[axis] = LOGICAL_POSITION(base_home_pos(axis), axis);
  1197. }
  1198. /**
  1199. * Z Probe Z Homing? Account for the probe's Z offset.
  1200. */
  1201. #if HAS_BED_PROBE && Z_HOME_DIR < 0
  1202. if (axis == Z_AXIS) {
  1203. #if HOMING_Z_WITH_PROBE
  1204. current_position[Z_AXIS] -= zprobe_zoffset;
  1205. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1206. if (DEBUGGING(LEVELING)) {
  1207. SERIAL_ECHOLNPGM("*** Z HOMED WITH PROBE (Z_MIN_PROBE_USES_Z_MIN_ENDSTOP_PIN) ***");
  1208. SERIAL_ECHOLNPAIR("> zprobe_zoffset = ", zprobe_zoffset);
  1209. }
  1210. #endif
  1211. #elif ENABLED(DEBUG_LEVELING_FEATURE)
  1212. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("*** Z HOMED TO ENDSTOP (Z_MIN_PROBE_ENDSTOP) ***");
  1213. #endif
  1214. }
  1215. #endif
  1216. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1217. if (DEBUGGING(LEVELING)) {
  1218. SERIAL_ECHOPAIR("> home_offset[", axis_codes[axis]);
  1219. SERIAL_ECHOLNPAIR("] = ", home_offset[axis]);
  1220. DEBUG_POS("", current_position);
  1221. SERIAL_ECHOPAIR("<<< set_axis_is_at_home(", axis_codes[axis]);
  1222. SERIAL_ECHOLNPGM(")");
  1223. }
  1224. #endif
  1225. }
  1226. /**
  1227. * Some planner shorthand inline functions
  1228. */
  1229. inline float get_homing_bump_feedrate(AxisEnum axis) {
  1230. int constexpr homing_bump_divisor[] = HOMING_BUMP_DIVISOR;
  1231. int hbd = homing_bump_divisor[axis];
  1232. if (hbd < 1) {
  1233. hbd = 10;
  1234. SERIAL_ECHO_START;
  1235. SERIAL_ECHOLNPGM("Warning: Homing Bump Divisor < 1");
  1236. }
  1237. return homing_feedrate_mm_s[axis] / hbd;
  1238. }
  1239. #if !IS_KINEMATIC
  1240. //
  1241. // line_to_current_position
  1242. // Move the planner to the current position from wherever it last moved
  1243. // (or from wherever it has been told it is located).
  1244. //
  1245. inline void line_to_current_position() {
  1246. planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate_mm_s, active_extruder);
  1247. }
  1248. //
  1249. // line_to_destination
  1250. // Move the planner, not necessarily synced with current_position
  1251. //
  1252. inline void line_to_destination(float fr_mm_s) {
  1253. planner.buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], fr_mm_s, active_extruder);
  1254. }
  1255. inline void line_to_destination() { line_to_destination(feedrate_mm_s); }
  1256. #endif // !IS_KINEMATIC
  1257. inline void set_current_to_destination() { memcpy(current_position, destination, sizeof(current_position)); }
  1258. inline void set_destination_to_current() { memcpy(destination, current_position, sizeof(destination)); }
  1259. #if IS_KINEMATIC
  1260. /**
  1261. * Calculate delta, start a line, and set current_position to destination
  1262. */
  1263. void prepare_uninterpolated_move_to_destination(const float fr_mm_s=0.0) {
  1264. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1265. if (DEBUGGING(LEVELING)) DEBUG_POS("prepare_uninterpolated_move_to_destination", destination);
  1266. #endif
  1267. refresh_cmd_timeout();
  1268. inverse_kinematics(destination);
  1269. planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], destination[E_AXIS], MMS_SCALED(fr_mm_s ? fr_mm_s : feedrate_mm_s), active_extruder);
  1270. set_current_to_destination();
  1271. }
  1272. #endif
  1273. /**
  1274. * Plan a move to (X, Y, Z) and set the current_position
  1275. * The final current_position may not be the one that was requested
  1276. */
  1277. void do_blocking_move_to(const float &x, const float &y, const float &z, const float &fr_mm_s /*=0.0*/) {
  1278. float old_feedrate_mm_s = feedrate_mm_s;
  1279. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1280. if (DEBUGGING(LEVELING)) print_xyz(PSTR(">>> do_blocking_move_to"), NULL, x, y, z);
  1281. #endif
  1282. #if ENABLED(DELTA)
  1283. feedrate_mm_s = fr_mm_s ? fr_mm_s : XY_PROBE_FEEDRATE_MM_S;
  1284. set_destination_to_current(); // sync destination at the start
  1285. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1286. if (DEBUGGING(LEVELING)) DEBUG_POS("set_destination_to_current", destination);
  1287. #endif
  1288. // when in the danger zone
  1289. if (current_position[Z_AXIS] > delta_clip_start_height) {
  1290. if (z > delta_clip_start_height) { // staying in the danger zone
  1291. destination[X_AXIS] = x; // move directly (uninterpolated)
  1292. destination[Y_AXIS] = y;
  1293. destination[Z_AXIS] = z;
  1294. prepare_uninterpolated_move_to_destination(); // set_current_to_destination
  1295. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1296. if (DEBUGGING(LEVELING)) DEBUG_POS("danger zone move", current_position);
  1297. #endif
  1298. return;
  1299. }
  1300. else {
  1301. destination[Z_AXIS] = delta_clip_start_height;
  1302. prepare_uninterpolated_move_to_destination(); // set_current_to_destination
  1303. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1304. if (DEBUGGING(LEVELING)) DEBUG_POS("zone border move", current_position);
  1305. #endif
  1306. }
  1307. }
  1308. if (z > current_position[Z_AXIS]) { // raising?
  1309. destination[Z_AXIS] = z;
  1310. prepare_uninterpolated_move_to_destination(); // set_current_to_destination
  1311. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1312. if (DEBUGGING(LEVELING)) DEBUG_POS("z raise move", current_position);
  1313. #endif
  1314. }
  1315. destination[X_AXIS] = x;
  1316. destination[Y_AXIS] = y;
  1317. prepare_move_to_destination(); // set_current_to_destination
  1318. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1319. if (DEBUGGING(LEVELING)) DEBUG_POS("xy move", current_position);
  1320. #endif
  1321. if (z < current_position[Z_AXIS]) { // lowering?
  1322. destination[Z_AXIS] = z;
  1323. prepare_uninterpolated_move_to_destination(); // set_current_to_destination
  1324. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1325. if (DEBUGGING(LEVELING)) DEBUG_POS("z lower move", current_position);
  1326. #endif
  1327. }
  1328. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1329. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< do_blocking_move_to");
  1330. #endif
  1331. #elif IS_SCARA
  1332. set_destination_to_current();
  1333. // If Z needs to raise, do it before moving XY
  1334. if (current_position[Z_AXIS] < z) {
  1335. destination[Z_AXIS] = z;
  1336. prepare_uninterpolated_move_to_destination(fr_mm_s ? fr_mm_s : homing_feedrate_mm_s[Z_AXIS]);
  1337. }
  1338. destination[X_AXIS] = x;
  1339. destination[Y_AXIS] = y;
  1340. prepare_uninterpolated_move_to_destination(fr_mm_s ? fr_mm_s : XY_PROBE_FEEDRATE_MM_S);
  1341. // If Z needs to lower, do it after moving XY
  1342. if (current_position[Z_AXIS] > z) {
  1343. destination[Z_AXIS] = z;
  1344. prepare_uninterpolated_move_to_destination(fr_mm_s ? fr_mm_s : homing_feedrate_mm_s[Z_AXIS]);
  1345. }
  1346. #else
  1347. // If Z needs to raise, do it before moving XY
  1348. if (current_position[Z_AXIS] < z) {
  1349. feedrate_mm_s = fr_mm_s ? fr_mm_s : homing_feedrate_mm_s[Z_AXIS];
  1350. current_position[Z_AXIS] = z;
  1351. line_to_current_position();
  1352. }
  1353. feedrate_mm_s = fr_mm_s ? fr_mm_s : XY_PROBE_FEEDRATE_MM_S;
  1354. current_position[X_AXIS] = x;
  1355. current_position[Y_AXIS] = y;
  1356. line_to_current_position();
  1357. // If Z needs to lower, do it after moving XY
  1358. if (current_position[Z_AXIS] > z) {
  1359. feedrate_mm_s = fr_mm_s ? fr_mm_s : homing_feedrate_mm_s[Z_AXIS];
  1360. current_position[Z_AXIS] = z;
  1361. line_to_current_position();
  1362. }
  1363. #endif
  1364. stepper.synchronize();
  1365. feedrate_mm_s = old_feedrate_mm_s;
  1366. }
  1367. void do_blocking_move_to_x(const float &x, const float &fr_mm_s/*=0.0*/) {
  1368. do_blocking_move_to(x, current_position[Y_AXIS], current_position[Z_AXIS], fr_mm_s);
  1369. }
  1370. void do_blocking_move_to_z(const float &z, const float &fr_mm_s/*=0.0*/) {
  1371. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z, fr_mm_s);
  1372. }
  1373. void do_blocking_move_to_xy(const float &x, const float &y, const float &fr_mm_s/*=0.0*/) {
  1374. do_blocking_move_to(x, y, current_position[Z_AXIS], fr_mm_s);
  1375. }
  1376. //
  1377. // Prepare to do endstop or probe moves
  1378. // with custom feedrates.
  1379. //
  1380. // - Save current feedrates
  1381. // - Reset the rate multiplier
  1382. // - Reset the command timeout
  1383. // - Enable the endstops (for endstop moves)
  1384. //
  1385. static void setup_for_endstop_or_probe_move() {
  1386. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1387. if (DEBUGGING(LEVELING)) DEBUG_POS("setup_for_endstop_or_probe_move", current_position);
  1388. #endif
  1389. saved_feedrate_mm_s = feedrate_mm_s;
  1390. saved_feedrate_percentage = feedrate_percentage;
  1391. feedrate_percentage = 100;
  1392. refresh_cmd_timeout();
  1393. }
  1394. static void clean_up_after_endstop_or_probe_move() {
  1395. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1396. if (DEBUGGING(LEVELING)) DEBUG_POS("clean_up_after_endstop_or_probe_move", current_position);
  1397. #endif
  1398. feedrate_mm_s = saved_feedrate_mm_s;
  1399. feedrate_percentage = saved_feedrate_percentage;
  1400. refresh_cmd_timeout();
  1401. }
  1402. #if HAS_BED_PROBE
  1403. /**
  1404. * Raise Z to a minimum height to make room for a probe to move
  1405. */
  1406. inline void do_probe_raise(float z_raise) {
  1407. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1408. if (DEBUGGING(LEVELING)) {
  1409. SERIAL_ECHOPAIR("do_probe_raise(", z_raise);
  1410. SERIAL_ECHOLNPGM(")");
  1411. }
  1412. #endif
  1413. float z_dest = LOGICAL_Z_POSITION(z_raise);
  1414. if (z_dest > current_position[Z_AXIS])
  1415. do_blocking_move_to_z(z_dest);
  1416. }
  1417. #endif //HAS_BED_PROBE
  1418. #if ENABLED(Z_PROBE_ALLEN_KEY) || ENABLED(Z_PROBE_SLED) || ENABLED(Z_SAFE_HOMING) || HAS_PROBING_PROCEDURE || HOTENDS > 1 || ENABLED(NOZZLE_CLEAN_FEATURE) || ENABLED(NOZZLE_PARK_FEATURE)
  1419. static bool axis_unhomed_error(const bool x, const bool y, const bool z) {
  1420. const bool xx = x && !axis_homed[X_AXIS],
  1421. yy = y && !axis_homed[Y_AXIS],
  1422. zz = z && !axis_homed[Z_AXIS];
  1423. if (xx || yy || zz) {
  1424. SERIAL_ECHO_START;
  1425. SERIAL_ECHOPGM(MSG_HOME " ");
  1426. if (xx) SERIAL_ECHOPGM(MSG_X);
  1427. if (yy) SERIAL_ECHOPGM(MSG_Y);
  1428. if (zz) SERIAL_ECHOPGM(MSG_Z);
  1429. SERIAL_ECHOLNPGM(" " MSG_FIRST);
  1430. #if ENABLED(ULTRA_LCD)
  1431. char message[3 * (LCD_WIDTH) + 1] = ""; // worst case is kana.utf with up to 3*LCD_WIDTH+1
  1432. strcat_P(message, PSTR(MSG_HOME " "));
  1433. if (xx) strcat_P(message, PSTR(MSG_X));
  1434. if (yy) strcat_P(message, PSTR(MSG_Y));
  1435. if (zz) strcat_P(message, PSTR(MSG_Z));
  1436. strcat_P(message, PSTR(" " MSG_FIRST));
  1437. lcd_setstatus(message);
  1438. #endif
  1439. return true;
  1440. }
  1441. return false;
  1442. }
  1443. #endif
  1444. #if ENABLED(Z_PROBE_SLED)
  1445. #ifndef SLED_DOCKING_OFFSET
  1446. #define SLED_DOCKING_OFFSET 0
  1447. #endif
  1448. /**
  1449. * Method to dock/undock a sled designed by Charles Bell.
  1450. *
  1451. * stow[in] If false, move to MAX_X and engage the solenoid
  1452. * If true, move to MAX_X and release the solenoid
  1453. */
  1454. static void dock_sled(bool stow) {
  1455. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1456. if (DEBUGGING(LEVELING)) {
  1457. SERIAL_ECHOPAIR("dock_sled(", stow);
  1458. SERIAL_ECHOLNPGM(")");
  1459. }
  1460. #endif
  1461. // Dock sled a bit closer to ensure proper capturing
  1462. do_blocking_move_to_x(X_MAX_POS + SLED_DOCKING_OFFSET - ((stow) ? 1 : 0));
  1463. #if PIN_EXISTS(SLED)
  1464. digitalWrite(SLED_PIN, !stow); // switch solenoid
  1465. #endif
  1466. }
  1467. #endif // Z_PROBE_SLED
  1468. #if ENABLED(Z_PROBE_ALLEN_KEY)
  1469. void run_deploy_moves_script() {
  1470. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_1_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_1_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_1_Z)
  1471. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_X
  1472. #define Z_PROBE_ALLEN_KEY_DEPLOY_1_X current_position[X_AXIS]
  1473. #endif
  1474. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_Y
  1475. #define Z_PROBE_ALLEN_KEY_DEPLOY_1_Y current_position[Y_AXIS]
  1476. #endif
  1477. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_Z
  1478. #define Z_PROBE_ALLEN_KEY_DEPLOY_1_Z current_position[Z_AXIS]
  1479. #endif
  1480. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE
  1481. #define Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE 0.0
  1482. #endif
  1483. do_blocking_move_to(Z_PROBE_ALLEN_KEY_DEPLOY_1_X, Z_PROBE_ALLEN_KEY_DEPLOY_1_Y, Z_PROBE_ALLEN_KEY_DEPLOY_1_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE));
  1484. #endif
  1485. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_2_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_2_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_2_Z)
  1486. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_X
  1487. #define Z_PROBE_ALLEN_KEY_DEPLOY_2_X current_position[X_AXIS]
  1488. #endif
  1489. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_Y
  1490. #define Z_PROBE_ALLEN_KEY_DEPLOY_2_Y current_position[Y_AXIS]
  1491. #endif
  1492. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_Z
  1493. #define Z_PROBE_ALLEN_KEY_DEPLOY_2_Z current_position[Z_AXIS]
  1494. #endif
  1495. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE
  1496. #define Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE 0.0
  1497. #endif
  1498. do_blocking_move_to(Z_PROBE_ALLEN_KEY_DEPLOY_2_X, Z_PROBE_ALLEN_KEY_DEPLOY_2_Y, Z_PROBE_ALLEN_KEY_DEPLOY_2_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE));
  1499. #endif
  1500. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_3_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_3_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_3_Z)
  1501. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_X
  1502. #define Z_PROBE_ALLEN_KEY_DEPLOY_3_X current_position[X_AXIS]
  1503. #endif
  1504. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_Y
  1505. #define Z_PROBE_ALLEN_KEY_DEPLOY_3_Y current_position[Y_AXIS]
  1506. #endif
  1507. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_Z
  1508. #define Z_PROBE_ALLEN_KEY_DEPLOY_3_Z current_position[Z_AXIS]
  1509. #endif
  1510. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE
  1511. #define Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE 0.0
  1512. #endif
  1513. do_blocking_move_to(Z_PROBE_ALLEN_KEY_DEPLOY_3_X, Z_PROBE_ALLEN_KEY_DEPLOY_3_Y, Z_PROBE_ALLEN_KEY_DEPLOY_3_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE));
  1514. #endif
  1515. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_4_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_4_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_4_Z)
  1516. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_X
  1517. #define Z_PROBE_ALLEN_KEY_DEPLOY_4_X current_position[X_AXIS]
  1518. #endif
  1519. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_Y
  1520. #define Z_PROBE_ALLEN_KEY_DEPLOY_4_Y current_position[Y_AXIS]
  1521. #endif
  1522. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_Z
  1523. #define Z_PROBE_ALLEN_KEY_DEPLOY_4_Z current_position[Z_AXIS]
  1524. #endif
  1525. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_FEEDRATE
  1526. #define Z_PROBE_ALLEN_KEY_DEPLOY_4_FEEDRATE 0.0
  1527. #endif
  1528. do_blocking_move_to(Z_PROBE_ALLEN_KEY_DEPLOY_4_X, Z_PROBE_ALLEN_KEY_DEPLOY_4_Y, Z_PROBE_ALLEN_KEY_DEPLOY_4_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_4_FEEDRATE));
  1529. #endif
  1530. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_5_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_5_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_5_Z)
  1531. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_X
  1532. #define Z_PROBE_ALLEN_KEY_DEPLOY_5_X current_position[X_AXIS]
  1533. #endif
  1534. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_Y
  1535. #define Z_PROBE_ALLEN_KEY_DEPLOY_5_Y current_position[Y_AXIS]
  1536. #endif
  1537. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_Z
  1538. #define Z_PROBE_ALLEN_KEY_DEPLOY_5_Z current_position[Z_AXIS]
  1539. #endif
  1540. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_FEEDRATE
  1541. #define Z_PROBE_ALLEN_KEY_DEPLOY_5_FEEDRATE 0.0
  1542. #endif
  1543. do_blocking_move_to(Z_PROBE_ALLEN_KEY_DEPLOY_5_X, Z_PROBE_ALLEN_KEY_DEPLOY_5_Y, Z_PROBE_ALLEN_KEY_DEPLOY_5_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_5_FEEDRATE));
  1544. #endif
  1545. }
  1546. void run_stow_moves_script() {
  1547. #if defined(Z_PROBE_ALLEN_KEY_STOW_1_X) || defined(Z_PROBE_ALLEN_KEY_STOW_1_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_1_Z)
  1548. #ifndef Z_PROBE_ALLEN_KEY_STOW_1_X
  1549. #define Z_PROBE_ALLEN_KEY_STOW_1_X current_position[X_AXIS]
  1550. #endif
  1551. #ifndef Z_PROBE_ALLEN_KEY_STOW_1_Y
  1552. #define Z_PROBE_ALLEN_KEY_STOW_1_Y current_position[Y_AXIS]
  1553. #endif
  1554. #ifndef Z_PROBE_ALLEN_KEY_STOW_1_Z
  1555. #define Z_PROBE_ALLEN_KEY_STOW_1_Z current_position[Z_AXIS]
  1556. #endif
  1557. #ifndef Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE
  1558. #define Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE 0.0
  1559. #endif
  1560. do_blocking_move_to(Z_PROBE_ALLEN_KEY_STOW_1_X, Z_PROBE_ALLEN_KEY_STOW_1_Y, Z_PROBE_ALLEN_KEY_STOW_1_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE));
  1561. #endif
  1562. #if defined(Z_PROBE_ALLEN_KEY_STOW_2_X) || defined(Z_PROBE_ALLEN_KEY_STOW_2_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_2_Z)
  1563. #ifndef Z_PROBE_ALLEN_KEY_STOW_2_X
  1564. #define Z_PROBE_ALLEN_KEY_STOW_2_X current_position[X_AXIS]
  1565. #endif
  1566. #ifndef Z_PROBE_ALLEN_KEY_STOW_2_Y
  1567. #define Z_PROBE_ALLEN_KEY_STOW_2_Y current_position[Y_AXIS]
  1568. #endif
  1569. #ifndef Z_PROBE_ALLEN_KEY_STOW_2_Z
  1570. #define Z_PROBE_ALLEN_KEY_STOW_2_Z current_position[Z_AXIS]
  1571. #endif
  1572. #ifndef Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE
  1573. #define Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE 0.0
  1574. #endif
  1575. do_blocking_move_to(Z_PROBE_ALLEN_KEY_STOW_2_X, Z_PROBE_ALLEN_KEY_STOW_2_Y, Z_PROBE_ALLEN_KEY_STOW_2_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE));
  1576. #endif
  1577. #if defined(Z_PROBE_ALLEN_KEY_STOW_3_X) || defined(Z_PROBE_ALLEN_KEY_STOW_3_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_3_Z)
  1578. #ifndef Z_PROBE_ALLEN_KEY_STOW_3_X
  1579. #define Z_PROBE_ALLEN_KEY_STOW_3_X current_position[X_AXIS]
  1580. #endif
  1581. #ifndef Z_PROBE_ALLEN_KEY_STOW_3_Y
  1582. #define Z_PROBE_ALLEN_KEY_STOW_3_Y current_position[Y_AXIS]
  1583. #endif
  1584. #ifndef Z_PROBE_ALLEN_KEY_STOW_3_Z
  1585. #define Z_PROBE_ALLEN_KEY_STOW_3_Z current_position[Z_AXIS]
  1586. #endif
  1587. #ifndef Z_PROBE_ALLEN_KEY_STOW_3_FEEDRATE
  1588. #define Z_PROBE_ALLEN_KEY_STOW_3_FEEDRATE 0.0
  1589. #endif
  1590. do_blocking_move_to(Z_PROBE_ALLEN_KEY_STOW_3_X, Z_PROBE_ALLEN_KEY_STOW_3_Y, Z_PROBE_ALLEN_KEY_STOW_3_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_3_FEEDRATE));
  1591. #endif
  1592. #if defined(Z_PROBE_ALLEN_KEY_STOW_4_X) || defined(Z_PROBE_ALLEN_KEY_STOW_4_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_4_Z)
  1593. #ifndef Z_PROBE_ALLEN_KEY_STOW_4_X
  1594. #define Z_PROBE_ALLEN_KEY_STOW_4_X current_position[X_AXIS]
  1595. #endif
  1596. #ifndef Z_PROBE_ALLEN_KEY_STOW_4_Y
  1597. #define Z_PROBE_ALLEN_KEY_STOW_4_Y current_position[Y_AXIS]
  1598. #endif
  1599. #ifndef Z_PROBE_ALLEN_KEY_STOW_4_Z
  1600. #define Z_PROBE_ALLEN_KEY_STOW_4_Z current_position[Z_AXIS]
  1601. #endif
  1602. #ifndef Z_PROBE_ALLEN_KEY_STOW_4_FEEDRATE
  1603. #define Z_PROBE_ALLEN_KEY_STOW_4_FEEDRATE 0.0
  1604. #endif
  1605. do_blocking_move_to(Z_PROBE_ALLEN_KEY_STOW_4_X, Z_PROBE_ALLEN_KEY_STOW_4_Y, Z_PROBE_ALLEN_KEY_STOW_4_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_4_FEEDRATE));
  1606. #endif
  1607. #if defined(Z_PROBE_ALLEN_KEY_STOW_5_X) || defined(Z_PROBE_ALLEN_KEY_STOW_5_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_5_Z)
  1608. #ifndef Z_PROBE_ALLEN_KEY_STOW_5_X
  1609. #define Z_PROBE_ALLEN_KEY_STOW_5_X current_position[X_AXIS]
  1610. #endif
  1611. #ifndef Z_PROBE_ALLEN_KEY_STOW_5_Y
  1612. #define Z_PROBE_ALLEN_KEY_STOW_5_Y current_position[Y_AXIS]
  1613. #endif
  1614. #ifndef Z_PROBE_ALLEN_KEY_STOW_5_Z
  1615. #define Z_PROBE_ALLEN_KEY_STOW_5_Z current_position[Z_AXIS]
  1616. #endif
  1617. #ifndef Z_PROBE_ALLEN_KEY_STOW_5_FEEDRATE
  1618. #define Z_PROBE_ALLEN_KEY_STOW_5_FEEDRATE 0.0
  1619. #endif
  1620. do_blocking_move_to(Z_PROBE_ALLEN_KEY_STOW_5_X, Z_PROBE_ALLEN_KEY_STOW_5_Y, Z_PROBE_ALLEN_KEY_STOW_5_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_5_FEEDRATE));
  1621. #endif
  1622. }
  1623. #endif
  1624. #if HAS_BED_PROBE
  1625. // TRIGGERED_WHEN_STOWED_TEST can easily be extended to servo probes, ... if needed.
  1626. #if ENABLED(PROBE_IS_TRIGGERED_WHEN_STOWED_TEST)
  1627. #if ENABLED(Z_MIN_PROBE_ENDSTOP)
  1628. #define _TRIGGERED_WHEN_STOWED_TEST (READ(Z_MIN_PROBE_PIN) != Z_MIN_PROBE_ENDSTOP_INVERTING)
  1629. #else
  1630. #define _TRIGGERED_WHEN_STOWED_TEST (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING)
  1631. #endif
  1632. #endif
  1633. #define DEPLOY_PROBE() set_probe_deployed(true)
  1634. #define STOW_PROBE() set_probe_deployed(false)
  1635. #if ENABLED(BLTOUCH)
  1636. FORCE_INLINE void set_bltouch_deployed(const bool &deploy) {
  1637. servo[Z_ENDSTOP_SERVO_NR].move(deploy ? BLTOUCH_DEPLOY : BLTOUCH_STOW);
  1638. }
  1639. #endif
  1640. // returns false for ok and true for failure
  1641. static bool set_probe_deployed(bool deploy) {
  1642. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1643. if (DEBUGGING(LEVELING)) {
  1644. DEBUG_POS("set_probe_deployed", current_position);
  1645. SERIAL_ECHOLNPAIR("deploy: ", deploy);
  1646. }
  1647. #endif
  1648. if (endstops.z_probe_enabled == deploy) return false;
  1649. // Make room for probe
  1650. do_probe_raise(_Z_PROBE_DEPLOY_HEIGHT);
  1651. // When deploying make sure BLTOUCH is not already triggered
  1652. #if ENABLED(BLTOUCH)
  1653. if (deploy && TEST_BLTOUCH()) { stop(); return true; }
  1654. #endif
  1655. #if ENABLED(Z_PROBE_SLED)
  1656. if (axis_unhomed_error(true, false, false)) { stop(); return true; }
  1657. #elif ENABLED(Z_PROBE_ALLEN_KEY)
  1658. if (axis_unhomed_error(true, true, true )) { stop(); return true; }
  1659. #endif
  1660. float oldXpos = current_position[X_AXIS],
  1661. oldYpos = current_position[Y_AXIS];
  1662. #ifdef _TRIGGERED_WHEN_STOWED_TEST
  1663. // If endstop is already false, the Z probe is deployed
  1664. if (_TRIGGERED_WHEN_STOWED_TEST == deploy) { // closed after the probe specific actions.
  1665. // Would a goto be less ugly?
  1666. //while (!_TRIGGERED_WHEN_STOWED_TEST) idle(); // would offer the opportunity
  1667. // for a triggered when stowed manual probe.
  1668. if (!deploy) endstops.enable_z_probe(false); // Switch off triggered when stowed probes early
  1669. // otherwise an Allen-Key probe can't be stowed.
  1670. #endif
  1671. #if ENABLED(Z_PROBE_SLED)
  1672. dock_sled(!deploy);
  1673. #elif HAS_Z_SERVO_ENDSTOP && DISABLED(BLTOUCH)
  1674. servo[Z_ENDSTOP_SERVO_NR].move(z_servo_angle[deploy ? 0 : 1]);
  1675. #elif ENABLED(Z_PROBE_ALLEN_KEY)
  1676. deploy ? run_deploy_moves_script() : run_stow_moves_script();
  1677. #endif
  1678. #ifdef _TRIGGERED_WHEN_STOWED_TEST
  1679. } // _TRIGGERED_WHEN_STOWED_TEST == deploy
  1680. if (_TRIGGERED_WHEN_STOWED_TEST == deploy) { // State hasn't changed?
  1681. if (IsRunning()) {
  1682. SERIAL_ERROR_START;
  1683. SERIAL_ERRORLNPGM("Z-Probe failed");
  1684. LCD_ALERTMESSAGEPGM("Err: ZPROBE");
  1685. }
  1686. stop();
  1687. return true;
  1688. } // _TRIGGERED_WHEN_STOWED_TEST == deploy
  1689. #endif
  1690. do_blocking_move_to(oldXpos, oldYpos, current_position[Z_AXIS]); // return to position before deploy
  1691. endstops.enable_z_probe(deploy);
  1692. return false;
  1693. }
  1694. static void do_probe_move(float z, float fr_mm_m) {
  1695. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1696. if (DEBUGGING(LEVELING)) DEBUG_POS(">>> do_probe_move", current_position);
  1697. #endif
  1698. // Deploy BLTouch at the start of any probe
  1699. #if ENABLED(BLTOUCH)
  1700. set_bltouch_deployed(true);
  1701. #endif
  1702. // Move down until probe triggered
  1703. do_blocking_move_to_z(LOGICAL_Z_POSITION(z), MMM_TO_MMS(fr_mm_m));
  1704. // Retract BLTouch immediately after a probe
  1705. #if ENABLED(BLTOUCH)
  1706. set_bltouch_deployed(false);
  1707. #endif
  1708. // Clear endstop flags
  1709. endstops.hit_on_purpose();
  1710. // Get Z where the steppers were interrupted
  1711. set_current_from_steppers_for_axis(Z_AXIS);
  1712. // Tell the planner where we actually are
  1713. SYNC_PLAN_POSITION_KINEMATIC();
  1714. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1715. if (DEBUGGING(LEVELING)) DEBUG_POS("<<< do_probe_move", current_position);
  1716. #endif
  1717. }
  1718. // Do a single Z probe and return with current_position[Z_AXIS]
  1719. // at the height where the probe triggered.
  1720. static float run_z_probe() {
  1721. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1722. if (DEBUGGING(LEVELING)) DEBUG_POS(">>> run_z_probe", current_position);
  1723. #endif
  1724. // Prevent stepper_inactive_time from running out and EXTRUDER_RUNOUT_PREVENT from extruding
  1725. refresh_cmd_timeout();
  1726. #if ENABLED(PROBE_DOUBLE_TOUCH)
  1727. // Do a first probe at the fast speed
  1728. do_probe_move(-(Z_MAX_LENGTH) - 10, Z_PROBE_SPEED_FAST);
  1729. // move up by the bump distance
  1730. do_blocking_move_to_z(current_position[Z_AXIS] + home_bump_mm(Z_AXIS), MMM_TO_MMS(Z_PROBE_SPEED_FAST));
  1731. #else
  1732. // If the nozzle is above the travel height then
  1733. // move down quickly before doing the slow probe
  1734. float z = LOGICAL_Z_POSITION(Z_PROBE_TRAVEL_HEIGHT);
  1735. if (z < current_position[Z_AXIS])
  1736. do_blocking_move_to_z(z, MMM_TO_MMS(Z_PROBE_SPEED_FAST));
  1737. #endif
  1738. // move down slowly to find bed
  1739. do_probe_move(-(Z_MAX_LENGTH) - 10, Z_PROBE_SPEED_SLOW);
  1740. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1741. if (DEBUGGING(LEVELING)) DEBUG_POS("<<< run_z_probe", current_position);
  1742. #endif
  1743. return current_position[Z_AXIS];
  1744. }
  1745. //
  1746. // - Move to the given XY
  1747. // - Deploy the probe, if not already deployed
  1748. // - Probe the bed, get the Z position
  1749. // - Depending on the 'stow' flag
  1750. // - Stow the probe, or
  1751. // - Raise to the BETWEEN height
  1752. // - Return the probed Z position
  1753. //
  1754. static float probe_pt(const float &x, const float &y, bool stow = true, int verbose_level = 1) {
  1755. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1756. if (DEBUGGING(LEVELING)) {
  1757. SERIAL_ECHOPAIR(">>> probe_pt(", x);
  1758. SERIAL_ECHOPAIR(", ", y);
  1759. SERIAL_ECHOPAIR(", ", stow ? "stow" : "no stow");
  1760. SERIAL_ECHOLNPGM(")");
  1761. DEBUG_POS("", current_position);
  1762. }
  1763. #endif
  1764. float old_feedrate_mm_s = feedrate_mm_s;
  1765. // Ensure a minimum height before moving the probe
  1766. do_probe_raise(Z_PROBE_TRAVEL_HEIGHT);
  1767. // Move to the XY where we shall probe
  1768. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1769. if (DEBUGGING(LEVELING)) {
  1770. SERIAL_ECHOPAIR("> do_blocking_move_to_xy(", x - (X_PROBE_OFFSET_FROM_EXTRUDER));
  1771. SERIAL_ECHOPAIR(", ", y - (Y_PROBE_OFFSET_FROM_EXTRUDER));
  1772. SERIAL_ECHOLNPGM(")");
  1773. }
  1774. #endif
  1775. feedrate_mm_s = XY_PROBE_FEEDRATE_MM_S;
  1776. // Move the probe to the given XY
  1777. do_blocking_move_to_xy(x - (X_PROBE_OFFSET_FROM_EXTRUDER), y - (Y_PROBE_OFFSET_FROM_EXTRUDER));
  1778. if (DEPLOY_PROBE()) return NAN;
  1779. float measured_z = run_z_probe();
  1780. if (stow) {
  1781. if (STOW_PROBE()) return NAN;
  1782. }
  1783. else {
  1784. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1785. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> do_probe_raise");
  1786. #endif
  1787. do_probe_raise(Z_PROBE_TRAVEL_HEIGHT);
  1788. }
  1789. if (verbose_level > 2) {
  1790. SERIAL_PROTOCOLPGM("Bed X: ");
  1791. SERIAL_PROTOCOL_F(x, 3);
  1792. SERIAL_PROTOCOLPGM(" Y: ");
  1793. SERIAL_PROTOCOL_F(y, 3);
  1794. SERIAL_PROTOCOLPGM(" Z: ");
  1795. SERIAL_PROTOCOL_F(measured_z, 3);
  1796. SERIAL_EOL;
  1797. }
  1798. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1799. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< probe_pt");
  1800. #endif
  1801. feedrate_mm_s = old_feedrate_mm_s;
  1802. return measured_z;
  1803. }
  1804. #endif // HAS_BED_PROBE
  1805. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  1806. /**
  1807. * Reset calibration results to zero.
  1808. */
  1809. void reset_bed_level() {
  1810. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1811. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("reset_bed_level");
  1812. #endif
  1813. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  1814. planner.bed_level_matrix.set_to_identity();
  1815. #elif ENABLED(AUTO_BED_LEVELING_NONLINEAR)
  1816. memset(bed_level_grid, 0, sizeof(bed_level_grid));
  1817. nonlinear_grid_spacing[X_AXIS] = nonlinear_grid_spacing[Y_AXIS] = 0;
  1818. #endif
  1819. }
  1820. #endif // AUTO_BED_LEVELING_FEATURE
  1821. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  1822. /**
  1823. * Get the stepper positions, apply the rotation matrix
  1824. * using the home XY and Z0 position as the fulcrum.
  1825. */
  1826. vector_3 untilted_stepper_position() {
  1827. get_cartesian_from_steppers();
  1828. vector_3 pos = vector_3(
  1829. cartes[X_AXIS] - X_TILT_FULCRUM,
  1830. cartes[Y_AXIS] - Y_TILT_FULCRUM,
  1831. cartes[Z_AXIS]
  1832. );
  1833. matrix_3x3 inverse = matrix_3x3::transpose(planner.bed_level_matrix);
  1834. //pos.debug("untilted_stepper_position offset");
  1835. //bed_level_matrix.debug("untilted_stepper_position");
  1836. //inverse.debug("in untilted_stepper_position");
  1837. pos.apply_rotation(inverse);
  1838. pos.x = LOGICAL_X_POSITION(pos.x + X_TILT_FULCRUM);
  1839. pos.y = LOGICAL_Y_POSITION(pos.y + Y_TILT_FULCRUM);
  1840. pos.z = LOGICAL_Z_POSITION(pos.z);
  1841. //pos.debug("after rotation and reorientation");
  1842. return pos;
  1843. }
  1844. #elif ENABLED(AUTO_BED_LEVELING_NONLINEAR)
  1845. /**
  1846. * Extrapolate a single point from its neighbors
  1847. */
  1848. static void extrapolate_one_point(uint8_t x, uint8_t y, int8_t xdir, int8_t ydir) {
  1849. if (bed_level_grid[x][y]) return; // Don't overwrite good values.
  1850. float a = 2 * bed_level_grid[x + xdir][y] - bed_level_grid[x + xdir * 2][y], // Left to right.
  1851. b = 2 * bed_level_grid[x][y + ydir] - bed_level_grid[x][y + ydir * 2], // Front to back.
  1852. c = 2 * bed_level_grid[x + xdir][y + ydir] - bed_level_grid[x + xdir * 2][y + ydir * 2]; // Diagonal.
  1853. // Median is robust (ignores outliers).
  1854. bed_level_grid[x][y] = (a < b) ? ((b < c) ? b : (c < a) ? a : c)
  1855. : ((c < b) ? b : (a < c) ? a : c);
  1856. }
  1857. /**
  1858. * Fill in the unprobed points (corners of circular print surface)
  1859. * using linear extrapolation, away from the center.
  1860. */
  1861. static void extrapolate_unprobed_bed_level() {
  1862. int half_x = (ABL_GRID_POINTS_X - 1) / 2,
  1863. half_y = (ABL_GRID_POINTS_Y - 1) / 2;
  1864. for (uint8_t y = 0; y <= half_y; y++) {
  1865. for (uint8_t x = 0; x <= half_x; x++) {
  1866. if (x + y < 3) continue;
  1867. extrapolate_one_point(half_x - x, half_y - y, x > 1 ? +1 : 0, y > 1 ? +1 : 0);
  1868. extrapolate_one_point(half_x + x, half_y - y, x > 1 ? -1 : 0, y > 1 ? +1 : 0);
  1869. extrapolate_one_point(half_x - x, half_y + y, x > 1 ? +1 : 0, y > 1 ? -1 : 0);
  1870. extrapolate_one_point(half_x + x, half_y + y, x > 1 ? -1 : 0, y > 1 ? -1 : 0);
  1871. }
  1872. }
  1873. }
  1874. /**
  1875. * Print calibration results for plotting or manual frame adjustment.
  1876. */
  1877. static void print_bed_level() {
  1878. for (uint8_t y = 0; y < ABL_GRID_POINTS_Y; y++) {
  1879. for (uint8_t x = 0; x < ABL_GRID_POINTS_X; x++) {
  1880. SERIAL_PROTOCOL_F(bed_level_grid[x][y], 2);
  1881. SERIAL_PROTOCOLCHAR(' ');
  1882. }
  1883. SERIAL_EOL;
  1884. }
  1885. }
  1886. #endif // AUTO_BED_LEVELING_NONLINEAR
  1887. /**
  1888. * Home an individual linear axis
  1889. */
  1890. static void do_homing_move(AxisEnum axis, float where, float fr_mm_s=0.0) {
  1891. #if HOMING_Z_WITH_PROBE && ENABLED(BLTOUCH)
  1892. if (axis == Z_AXIS) set_bltouch_deployed(true);
  1893. #endif
  1894. current_position[axis] = 0;
  1895. sync_plan_position();
  1896. current_position[axis] = where;
  1897. planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], fr_mm_s ? fr_mm_s : homing_feedrate_mm_s[axis], active_extruder);
  1898. stepper.synchronize();
  1899. #if HOMING_Z_WITH_PROBE && ENABLED(BLTOUCH)
  1900. if (axis == Z_AXIS) set_bltouch_deployed(false);
  1901. #endif
  1902. endstops.hit_on_purpose();
  1903. }
  1904. /**
  1905. * Home an individual "raw axis" to its endstop.
  1906. * This applies to XYZ on Cartesian and Core robots, and
  1907. * to the individual ABC steppers on DELTA and SCARA.
  1908. *
  1909. * At the end of the procedure the axis is marked as
  1910. * homed and the current position of that axis is updated.
  1911. * Kinematic robots should wait till all axes are homed
  1912. * before updating the current position.
  1913. */
  1914. #define HOMEAXIS(LETTER) homeaxis(LETTER##_AXIS)
  1915. static void homeaxis(AxisEnum axis) {
  1916. #if IS_SCARA
  1917. // Only Z homing (with probe) is permitted
  1918. if (axis != Z_AXIS) { BUZZ(100, 880); return; }
  1919. #else
  1920. #define CAN_HOME(A) \
  1921. (axis == A##_AXIS && ((A##_MIN_PIN > -1 && A##_HOME_DIR < 0) || (A##_MAX_PIN > -1 && A##_HOME_DIR > 0)))
  1922. if (!CAN_HOME(X) && !CAN_HOME(Y) && !CAN_HOME(Z)) return;
  1923. #endif
  1924. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1925. if (DEBUGGING(LEVELING)) {
  1926. SERIAL_ECHOPAIR(">>> homeaxis(", axis_codes[axis]);
  1927. SERIAL_ECHOLNPGM(")");
  1928. }
  1929. #endif
  1930. int axis_home_dir =
  1931. #if ENABLED(DUAL_X_CARRIAGE)
  1932. (axis == X_AXIS) ? x_home_dir(active_extruder) :
  1933. #endif
  1934. home_dir(axis);
  1935. // Homing Z towards the bed? Deploy the Z probe or endstop.
  1936. #if HOMING_Z_WITH_PROBE
  1937. if (axis == Z_AXIS && DEPLOY_PROBE()) return;
  1938. #endif
  1939. // Set a flag for Z motor locking
  1940. #if ENABLED(Z_DUAL_ENDSTOPS)
  1941. if (axis == Z_AXIS) stepper.set_homing_flag(true);
  1942. #endif
  1943. // 1. Fast move towards endstop until triggered
  1944. // 2. Move away from the endstop by the axis HOME_BUMP_MM
  1945. // 3. Slow move towards endstop until triggered
  1946. do_homing_move(axis, 1.5 * max_length(axis) * axis_home_dir);
  1947. do_homing_move(axis, -home_bump_mm(axis) * axis_home_dir);
  1948. do_homing_move(axis, 2 * home_bump_mm(axis) * axis_home_dir, get_homing_bump_feedrate(axis));
  1949. #if ENABLED(Z_DUAL_ENDSTOPS)
  1950. if (axis == Z_AXIS) {
  1951. float adj = fabs(z_endstop_adj);
  1952. bool lockZ1;
  1953. if (axis_home_dir > 0) {
  1954. adj = -adj;
  1955. lockZ1 = (z_endstop_adj > 0);
  1956. }
  1957. else
  1958. lockZ1 = (z_endstop_adj < 0);
  1959. if (lockZ1) stepper.set_z_lock(true); else stepper.set_z2_lock(true);
  1960. // Move to the adjusted endstop height
  1961. do_homing_move(axis, adj);
  1962. if (lockZ1) stepper.set_z_lock(false); else stepper.set_z2_lock(false);
  1963. stepper.set_homing_flag(false);
  1964. } // Z_AXIS
  1965. #endif
  1966. #if IS_SCARA
  1967. set_axis_is_at_home(axis);
  1968. SYNC_PLAN_POSITION_KINEMATIC();
  1969. #elif ENABLED(DELTA)
  1970. // Delta has already moved all three towers up in G28
  1971. // so here it re-homes each tower in turn.
  1972. // Delta homing treats the axes as normal linear axes.
  1973. // retrace by the amount specified in endstop_adj
  1974. if (endstop_adj[axis] * Z_HOME_DIR < 0) {
  1975. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1976. if (DEBUGGING(LEVELING)) {
  1977. SERIAL_ECHOPAIR("> endstop_adj = ", endstop_adj[axis] * Z_HOME_DIR);
  1978. DEBUG_POS("", current_position);
  1979. }
  1980. #endif
  1981. do_homing_move(axis, endstop_adj[axis]);
  1982. }
  1983. #else
  1984. // For cartesian/core machines,
  1985. // set the axis to its home position
  1986. set_axis_is_at_home(axis);
  1987. sync_plan_position();
  1988. destination[axis] = current_position[axis];
  1989. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1990. if (DEBUGGING(LEVELING)) DEBUG_POS("> AFTER set_axis_is_at_home", current_position);
  1991. #endif
  1992. #endif
  1993. // Put away the Z probe
  1994. #if HOMING_Z_WITH_PROBE
  1995. if (axis == Z_AXIS && STOW_PROBE()) return;
  1996. #endif
  1997. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1998. if (DEBUGGING(LEVELING)) {
  1999. SERIAL_ECHOPAIR("<<< homeaxis(", axis_codes[axis]);
  2000. SERIAL_ECHOLNPGM(")");
  2001. }
  2002. #endif
  2003. } // homeaxis()
  2004. #if ENABLED(FWRETRACT)
  2005. void retract(bool retracting, bool swapping = false) {
  2006. if (retracting == retracted[active_extruder]) return;
  2007. float old_feedrate_mm_s = feedrate_mm_s;
  2008. set_destination_to_current();
  2009. if (retracting) {
  2010. feedrate_mm_s = retract_feedrate_mm_s;
  2011. current_position[E_AXIS] += (swapping ? retract_length_swap : retract_length) / volumetric_multiplier[active_extruder];
  2012. sync_plan_position_e();
  2013. prepare_move_to_destination();
  2014. if (retract_zlift > 0.01) {
  2015. current_position[Z_AXIS] -= retract_zlift;
  2016. SYNC_PLAN_POSITION_KINEMATIC();
  2017. prepare_move_to_destination();
  2018. }
  2019. }
  2020. else {
  2021. if (retract_zlift > 0.01) {
  2022. current_position[Z_AXIS] += retract_zlift;
  2023. SYNC_PLAN_POSITION_KINEMATIC();
  2024. }
  2025. feedrate_mm_s = retract_recover_feedrate_mm_s;
  2026. float move_e = swapping ? retract_length_swap + retract_recover_length_swap : retract_length + retract_recover_length;
  2027. current_position[E_AXIS] -= move_e / volumetric_multiplier[active_extruder];
  2028. sync_plan_position_e();
  2029. prepare_move_to_destination();
  2030. }
  2031. feedrate_mm_s = old_feedrate_mm_s;
  2032. retracted[active_extruder] = retracting;
  2033. } // retract()
  2034. #endif // FWRETRACT
  2035. #if ENABLED(MIXING_EXTRUDER)
  2036. void normalize_mix() {
  2037. float mix_total = 0.0;
  2038. for (int i = 0; i < MIXING_STEPPERS; i++) {
  2039. float v = mixing_factor[i];
  2040. if (v < 0) v = mixing_factor[i] = 0;
  2041. mix_total += v;
  2042. }
  2043. // Scale all values if they don't add up to ~1.0
  2044. if (mix_total < 0.9999 || mix_total > 1.0001) {
  2045. SERIAL_PROTOCOLLNPGM("Warning: Mix factors must add up to 1.0. Scaling.");
  2046. float mix_scale = 1.0 / mix_total;
  2047. for (int i = 0; i < MIXING_STEPPERS; i++)
  2048. mixing_factor[i] *= mix_scale;
  2049. }
  2050. }
  2051. #if ENABLED(DIRECT_MIXING_IN_G1)
  2052. // Get mixing parameters from the GCode
  2053. // Factors that are left out are set to 0
  2054. // The total "must" be 1.0 (but it will be normalized)
  2055. void gcode_get_mix() {
  2056. const char* mixing_codes = "ABCDHI";
  2057. for (int i = 0; i < MIXING_STEPPERS; i++)
  2058. mixing_factor[i] = code_seen(mixing_codes[i]) ? code_value_float() : 0;
  2059. normalize_mix();
  2060. }
  2061. #endif
  2062. #endif
  2063. /**
  2064. * ***************************************************************************
  2065. * ***************************** G-CODE HANDLING *****************************
  2066. * ***************************************************************************
  2067. */
  2068. /**
  2069. * Set XYZE destination and feedrate from the current GCode command
  2070. *
  2071. * - Set destination from included axis codes
  2072. * - Set to current for missing axis codes
  2073. * - Set the feedrate, if included
  2074. */
  2075. void gcode_get_destination() {
  2076. LOOP_XYZE(i) {
  2077. if (code_seen(axis_codes[i]))
  2078. destination[i] = code_value_axis_units(i) + (axis_relative_modes[i] || relative_mode ? current_position[i] : 0);
  2079. else
  2080. destination[i] = current_position[i];
  2081. }
  2082. if (code_seen('F') && code_value_linear_units() > 0.0)
  2083. feedrate_mm_s = MMM_TO_MMS(code_value_linear_units());
  2084. #if ENABLED(PRINTCOUNTER)
  2085. if (!DEBUGGING(DRYRUN))
  2086. print_job_timer.incFilamentUsed(destination[E_AXIS] - current_position[E_AXIS]);
  2087. #endif
  2088. // Get ABCDHI mixing factors
  2089. #if ENABLED(MIXING_EXTRUDER) && ENABLED(DIRECT_MIXING_IN_G1)
  2090. gcode_get_mix();
  2091. #endif
  2092. }
  2093. void unknown_command_error() {
  2094. SERIAL_ECHO_START;
  2095. SERIAL_ECHOPAIR(MSG_UNKNOWN_COMMAND, current_command);
  2096. SERIAL_ECHOLNPGM("\"");
  2097. }
  2098. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  2099. /**
  2100. * Output a "busy" message at regular intervals
  2101. * while the machine is not accepting commands.
  2102. */
  2103. void host_keepalive() {
  2104. millis_t ms = millis();
  2105. if (host_keepalive_interval && busy_state != NOT_BUSY) {
  2106. if (PENDING(ms, next_busy_signal_ms)) return;
  2107. switch (busy_state) {
  2108. case IN_HANDLER:
  2109. case IN_PROCESS:
  2110. SERIAL_ECHO_START;
  2111. SERIAL_ECHOLNPGM(MSG_BUSY_PROCESSING);
  2112. break;
  2113. case PAUSED_FOR_USER:
  2114. SERIAL_ECHO_START;
  2115. SERIAL_ECHOLNPGM(MSG_BUSY_PAUSED_FOR_USER);
  2116. break;
  2117. case PAUSED_FOR_INPUT:
  2118. SERIAL_ECHO_START;
  2119. SERIAL_ECHOLNPGM(MSG_BUSY_PAUSED_FOR_INPUT);
  2120. break;
  2121. default:
  2122. break;
  2123. }
  2124. }
  2125. next_busy_signal_ms = ms + host_keepalive_interval * 1000UL;
  2126. }
  2127. #endif //HOST_KEEPALIVE_FEATURE
  2128. bool position_is_reachable(float target[XYZ]) {
  2129. float dx = RAW_X_POSITION(target[X_AXIS]),
  2130. dy = RAW_Y_POSITION(target[Y_AXIS]),
  2131. dz = RAW_Z_POSITION(target[Z_AXIS]);
  2132. bool good;
  2133. #if IS_SCARA
  2134. #if MIDDLE_DEAD_ZONE_R > 0
  2135. const float R2 = HYPOT2(dx - SCARA_OFFSET_X, dy - SCARA_OFFSET_Y);
  2136. good = (R2 >= sq(float(MIDDLE_DEAD_ZONE_R))) && (R2 <= sq(L1 + L2));
  2137. #else
  2138. good = HYPOT2(dx - SCARA_OFFSET_X, dy - SCARA_OFFSET_Y) <= sq(L1 + L2);
  2139. #endif
  2140. #elif ENABLED(DELTA)
  2141. good = HYPOT2(dx, dy) <= sq(DELTA_PRINTABLE_RADIUS);
  2142. #else
  2143. good = true;
  2144. #endif
  2145. return good && dx >= X_MIN_POS - 0.0001 && dx <= X_MAX_POS + 0.0001
  2146. && dy >= Y_MIN_POS - 0.0001 && dy <= Y_MAX_POS + 0.0001
  2147. && dz >= Z_MIN_POS - 0.0001 && dz <= Z_MAX_POS + 0.0001;
  2148. }
  2149. /**************************************************
  2150. ***************** GCode Handlers *****************
  2151. **************************************************/
  2152. /**
  2153. * G0, G1: Coordinated movement of X Y Z E axes
  2154. */
  2155. inline void gcode_G0_G1(
  2156. #if IS_SCARA
  2157. bool fast_move=false
  2158. #endif
  2159. ) {
  2160. if (IsRunning()) {
  2161. gcode_get_destination(); // For X Y Z E F
  2162. #if ENABLED(FWRETRACT)
  2163. if (autoretract_enabled && !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  2164. float echange = destination[E_AXIS] - current_position[E_AXIS];
  2165. // Is this move an attempt to retract or recover?
  2166. if ((echange < -MIN_RETRACT && !retracted[active_extruder]) || (echange > MIN_RETRACT && retracted[active_extruder])) {
  2167. current_position[E_AXIS] = destination[E_AXIS]; // hide the slicer-generated retract/recover from calculations
  2168. sync_plan_position_e(); // AND from the planner
  2169. retract(!retracted[active_extruder]);
  2170. return;
  2171. }
  2172. }
  2173. #endif //FWRETRACT
  2174. #if IS_SCARA
  2175. fast_move ? prepare_uninterpolated_move_to_destination() : prepare_move_to_destination();
  2176. #else
  2177. prepare_move_to_destination();
  2178. #endif
  2179. }
  2180. }
  2181. /**
  2182. * G2: Clockwise Arc
  2183. * G3: Counterclockwise Arc
  2184. *
  2185. * This command has two forms: IJ-form and R-form.
  2186. *
  2187. * - I specifies an X offset. J specifies a Y offset.
  2188. * At least one of the IJ parameters is required.
  2189. * X and Y can be omitted to do a complete circle.
  2190. * The given XY is not error-checked. The arc ends
  2191. * based on the angle of the destination.
  2192. * Mixing I or J with R will throw an error.
  2193. *
  2194. * - R specifies the radius. X or Y is required.
  2195. * Omitting both X and Y will throw an error.
  2196. * X or Y must differ from the current XY.
  2197. * Mixing R with I or J will throw an error.
  2198. *
  2199. * Examples:
  2200. *
  2201. * G2 I10 ; CW circle centered at X+10
  2202. * G3 X20 Y12 R14 ; CCW circle with r=14 ending at X20 Y12
  2203. */
  2204. #if ENABLED(ARC_SUPPORT)
  2205. inline void gcode_G2_G3(bool clockwise) {
  2206. if (IsRunning()) {
  2207. #if ENABLED(SF_ARC_FIX)
  2208. bool relative_mode_backup = relative_mode;
  2209. relative_mode = true;
  2210. #endif
  2211. gcode_get_destination();
  2212. #if ENABLED(SF_ARC_FIX)
  2213. relative_mode = relative_mode_backup;
  2214. #endif
  2215. float arc_offset[2] = { 0.0, 0.0 };
  2216. if (code_seen('R')) {
  2217. const float r = code_value_axis_units(X_AXIS),
  2218. x1 = current_position[X_AXIS], y1 = current_position[Y_AXIS],
  2219. x2 = destination[X_AXIS], y2 = destination[Y_AXIS];
  2220. if (r && (x2 != x1 || y2 != y1)) {
  2221. const float e = clockwise ? -1 : 1, // clockwise -1, counterclockwise 1
  2222. dx = x2 - x1, dy = y2 - y1, // X and Y differences
  2223. d = HYPOT(dx, dy), // Linear distance between the points
  2224. h = sqrt(sq(r) - sq(d * 0.5)), // Distance to the arc pivot-point
  2225. mx = (x1 + x2) * 0.5, my = (y1 + y2) * 0.5, // Point between the two points
  2226. sx = -dy / d, sy = dx / d, // Slope of the perpendicular bisector
  2227. cx = mx + e * h * sx, cy = my + e * h * sy; // Pivot-point of the arc
  2228. arc_offset[X_AXIS] = cx - x1;
  2229. arc_offset[Y_AXIS] = cy - y1;
  2230. }
  2231. }
  2232. else {
  2233. if (code_seen('I')) arc_offset[X_AXIS] = code_value_axis_units(X_AXIS);
  2234. if (code_seen('J')) arc_offset[Y_AXIS] = code_value_axis_units(Y_AXIS);
  2235. }
  2236. if (arc_offset[0] || arc_offset[1]) {
  2237. // Send an arc to the planner
  2238. plan_arc(destination, arc_offset, clockwise);
  2239. refresh_cmd_timeout();
  2240. }
  2241. else {
  2242. // Bad arguments
  2243. SERIAL_ERROR_START;
  2244. SERIAL_ERRORLNPGM(MSG_ERR_ARC_ARGS);
  2245. }
  2246. }
  2247. }
  2248. #endif
  2249. /**
  2250. * G4: Dwell S<seconds> or P<milliseconds>
  2251. */
  2252. inline void gcode_G4() {
  2253. millis_t dwell_ms = 0;
  2254. if (code_seen('P')) dwell_ms = code_value_millis(); // milliseconds to wait
  2255. if (code_seen('S')) dwell_ms = code_value_millis_from_seconds(); // seconds to wait
  2256. stepper.synchronize();
  2257. refresh_cmd_timeout();
  2258. dwell_ms += previous_cmd_ms; // keep track of when we started waiting
  2259. if (!lcd_hasstatus()) LCD_MESSAGEPGM(MSG_DWELL);
  2260. while (PENDING(millis(), dwell_ms)) idle();
  2261. }
  2262. #if ENABLED(BEZIER_CURVE_SUPPORT)
  2263. /**
  2264. * Parameters interpreted according to:
  2265. * http://linuxcnc.org/docs/2.6/html/gcode/gcode.html#sec:G5-Cubic-Spline
  2266. * However I, J omission is not supported at this point; all
  2267. * parameters can be omitted and default to zero.
  2268. */
  2269. /**
  2270. * G5: Cubic B-spline
  2271. */
  2272. inline void gcode_G5() {
  2273. if (IsRunning()) {
  2274. gcode_get_destination();
  2275. float offset[] = {
  2276. code_seen('I') ? code_value_axis_units(X_AXIS) : 0.0,
  2277. code_seen('J') ? code_value_axis_units(Y_AXIS) : 0.0,
  2278. code_seen('P') ? code_value_axis_units(X_AXIS) : 0.0,
  2279. code_seen('Q') ? code_value_axis_units(Y_AXIS) : 0.0
  2280. };
  2281. plan_cubic_move(offset);
  2282. }
  2283. }
  2284. #endif // BEZIER_CURVE_SUPPORT
  2285. #if ENABLED(FWRETRACT)
  2286. /**
  2287. * G10 - Retract filament according to settings of M207
  2288. * G11 - Recover filament according to settings of M208
  2289. */
  2290. inline void gcode_G10_G11(bool doRetract=false) {
  2291. #if EXTRUDERS > 1
  2292. if (doRetract) {
  2293. retracted_swap[active_extruder] = (code_seen('S') && code_value_bool()); // checks for swap retract argument
  2294. }
  2295. #endif
  2296. retract(doRetract
  2297. #if EXTRUDERS > 1
  2298. , retracted_swap[active_extruder]
  2299. #endif
  2300. );
  2301. }
  2302. #endif //FWRETRACT
  2303. #if ENABLED(NOZZLE_CLEAN_FEATURE)
  2304. /**
  2305. * G12: Clean the nozzle
  2306. */
  2307. inline void gcode_G12() {
  2308. // Don't allow nozzle cleaning without homing first
  2309. if (axis_unhomed_error(true, true, true)) { return; }
  2310. uint8_t const pattern = code_seen('P') ? code_value_ushort() : 0;
  2311. uint8_t const strokes = code_seen('S') ? code_value_ushort() : NOZZLE_CLEAN_STROKES;
  2312. uint8_t const objects = code_seen('T') ? code_value_ushort() : 3;
  2313. Nozzle::clean(pattern, strokes, objects);
  2314. }
  2315. #endif
  2316. #if ENABLED(INCH_MODE_SUPPORT)
  2317. /**
  2318. * G20: Set input mode to inches
  2319. */
  2320. inline void gcode_G20() { set_input_linear_units(LINEARUNIT_INCH); }
  2321. /**
  2322. * G21: Set input mode to millimeters
  2323. */
  2324. inline void gcode_G21() { set_input_linear_units(LINEARUNIT_MM); }
  2325. #endif
  2326. #if ENABLED(NOZZLE_PARK_FEATURE)
  2327. /**
  2328. * G27: Park the nozzle
  2329. */
  2330. inline void gcode_G27() {
  2331. // Don't allow nozzle parking without homing first
  2332. if (axis_unhomed_error(true, true, true)) { return; }
  2333. uint8_t const z_action = code_seen('P') ? code_value_ushort() : 0;
  2334. Nozzle::park(z_action);
  2335. }
  2336. #endif // NOZZLE_PARK_FEATURE
  2337. #if ENABLED(QUICK_HOME)
  2338. static void quick_home_xy() {
  2339. // Pretend the current position is 0,0
  2340. current_position[X_AXIS] = current_position[Y_AXIS] = 0.0;
  2341. sync_plan_position();
  2342. int x_axis_home_dir =
  2343. #if ENABLED(DUAL_X_CARRIAGE)
  2344. x_home_dir(active_extruder)
  2345. #else
  2346. home_dir(X_AXIS)
  2347. #endif
  2348. ;
  2349. float mlx = max_length(X_AXIS),
  2350. mly = max_length(Y_AXIS),
  2351. mlratio = mlx > mly ? mly / mlx : mlx / mly,
  2352. fr_mm_s = min(homing_feedrate_mm_s[X_AXIS], homing_feedrate_mm_s[Y_AXIS]) * sqrt(sq(mlratio) + 1.0);
  2353. do_blocking_move_to_xy(1.5 * mlx * x_axis_home_dir, 1.5 * mly * home_dir(Y_AXIS), fr_mm_s);
  2354. endstops.hit_on_purpose(); // clear endstop hit flags
  2355. current_position[X_AXIS] = current_position[Y_AXIS] = 0.0;
  2356. }
  2357. #endif // QUICK_HOME
  2358. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2359. void log_machine_info() {
  2360. SERIAL_ECHOPGM("Machine Type: ");
  2361. #if ENABLED(DELTA)
  2362. SERIAL_ECHOLNPGM("Delta");
  2363. #elif IS_SCARA
  2364. SERIAL_ECHOLNPGM("SCARA");
  2365. #elif ENABLED(COREXY) || ENABLED(COREXZ) || ENABLED(COREYZ)
  2366. SERIAL_ECHOLNPGM("Core");
  2367. #else
  2368. SERIAL_ECHOLNPGM("Cartesian");
  2369. #endif
  2370. SERIAL_ECHOPGM("Probe: ");
  2371. #if ENABLED(FIX_MOUNTED_PROBE)
  2372. SERIAL_ECHOLNPGM("FIX_MOUNTED_PROBE");
  2373. #elif HAS_Z_SERVO_ENDSTOP
  2374. SERIAL_ECHOLNPGM("SERVO PROBE");
  2375. #elif ENABLED(BLTOUCH)
  2376. SERIAL_ECHOLNPGM("BLTOUCH");
  2377. #elif ENABLED(Z_PROBE_SLED)
  2378. SERIAL_ECHOLNPGM("Z_PROBE_SLED");
  2379. #elif ENABLED(Z_PROBE_ALLEN_KEY)
  2380. SERIAL_ECHOLNPGM("Z_PROBE_ALLEN_KEY");
  2381. #else
  2382. SERIAL_ECHOLNPGM("NONE");
  2383. #endif
  2384. #if HAS_BED_PROBE
  2385. SERIAL_ECHOPAIR("Probe Offset X:", X_PROBE_OFFSET_FROM_EXTRUDER);
  2386. SERIAL_ECHOPAIR(" Y:", Y_PROBE_OFFSET_FROM_EXTRUDER);
  2387. SERIAL_ECHOPAIR(" Z:", zprobe_zoffset);
  2388. #if (X_PROBE_OFFSET_FROM_EXTRUDER > 0)
  2389. SERIAL_ECHOPGM(" (Right");
  2390. #elif (X_PROBE_OFFSET_FROM_EXTRUDER < 0)
  2391. SERIAL_ECHOPGM(" (Left");
  2392. #elif (Y_PROBE_OFFSET_FROM_EXTRUDER != 0)
  2393. SERIAL_ECHOPGM(" (Middle");
  2394. #else
  2395. SERIAL_ECHOPGM(" (Aligned With");
  2396. #endif
  2397. #if (Y_PROBE_OFFSET_FROM_EXTRUDER > 0)
  2398. SERIAL_ECHOPGM("-Back");
  2399. #elif (Y_PROBE_OFFSET_FROM_EXTRUDER < 0)
  2400. SERIAL_ECHOPGM("-Front");
  2401. #elif (X_PROBE_OFFSET_FROM_EXTRUDER != 0)
  2402. SERIAL_ECHOPGM("-Center");
  2403. #endif
  2404. if (zprobe_zoffset < 0)
  2405. SERIAL_ECHOPGM(" & Below");
  2406. else if (zprobe_zoffset > 0)
  2407. SERIAL_ECHOPGM(" & Above");
  2408. else
  2409. SERIAL_ECHOPGM(" & Same Z as");
  2410. SERIAL_ECHOLNPGM(" Nozzle)");
  2411. #endif
  2412. }
  2413. #endif // DEBUG_LEVELING_FEATURE
  2414. #if ENABLED(DELTA)
  2415. /**
  2416. * A delta can only safely home all axes at the same time
  2417. * This is like quick_home_xy() but for 3 towers.
  2418. */
  2419. inline void home_delta() {
  2420. // Init the current position of all carriages to 0,0,0
  2421. memset(current_position, 0, sizeof(current_position));
  2422. sync_plan_position();
  2423. // Move all carriages together linearly until an endstop is hit.
  2424. current_position[X_AXIS] = current_position[Y_AXIS] = current_position[Z_AXIS] = (Z_MAX_LENGTH + 10);
  2425. planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate_mm_s[X_AXIS], active_extruder);
  2426. stepper.synchronize();
  2427. endstops.hit_on_purpose(); // clear endstop hit flags
  2428. // Probably not needed. Double-check this line:
  2429. memset(current_position, 0, sizeof(current_position));
  2430. // At least one carriage has reached the top.
  2431. // Now back off and re-home each carriage separately.
  2432. HOMEAXIS(A);
  2433. HOMEAXIS(B);
  2434. HOMEAXIS(C);
  2435. // Set all carriages to their home positions
  2436. // Do this here all at once for Delta, because
  2437. // XYZ isn't ABC. Applying this per-tower would
  2438. // give the impression that they are the same.
  2439. LOOP_XYZ(i) set_axis_is_at_home((AxisEnum)i);
  2440. SYNC_PLAN_POSITION_KINEMATIC();
  2441. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2442. if (DEBUGGING(LEVELING)) DEBUG_POS("(DELTA)", current_position);
  2443. #endif
  2444. }
  2445. #endif // DELTA
  2446. #if ENABLED(Z_SAFE_HOMING)
  2447. inline void home_z_safely() {
  2448. // Disallow Z homing if X or Y are unknown
  2449. if (!axis_known_position[X_AXIS] || !axis_known_position[Y_AXIS]) {
  2450. LCD_MESSAGEPGM(MSG_ERR_Z_HOMING);
  2451. SERIAL_ECHO_START;
  2452. SERIAL_ECHOLNPGM(MSG_ERR_Z_HOMING);
  2453. return;
  2454. }
  2455. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2456. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("Z_SAFE_HOMING >>>");
  2457. #endif
  2458. SYNC_PLAN_POSITION_KINEMATIC();
  2459. /**
  2460. * Move the Z probe (or just the nozzle) to the safe homing point
  2461. */
  2462. destination[X_AXIS] = LOGICAL_X_POSITION(Z_SAFE_HOMING_X_POINT);
  2463. destination[Y_AXIS] = LOGICAL_Y_POSITION(Z_SAFE_HOMING_Y_POINT);
  2464. destination[Z_AXIS] = current_position[Z_AXIS]; // Z is already at the right height
  2465. #if HAS_BED_PROBE
  2466. destination[X_AXIS] -= X_PROBE_OFFSET_FROM_EXTRUDER;
  2467. destination[Y_AXIS] -= Y_PROBE_OFFSET_FROM_EXTRUDER;
  2468. #endif
  2469. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2470. if (DEBUGGING(LEVELING)) DEBUG_POS("Z_SAFE_HOMING", destination);
  2471. #endif
  2472. if (position_is_reachable(destination)) {
  2473. do_blocking_move_to_xy(destination[X_AXIS], destination[Y_AXIS]);
  2474. HOMEAXIS(Z);
  2475. }
  2476. else {
  2477. LCD_MESSAGEPGM(MSG_ZPROBE_OUT);
  2478. SERIAL_ECHO_START;
  2479. SERIAL_ECHOLNPGM(MSG_ZPROBE_OUT);
  2480. }
  2481. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2482. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< Z_SAFE_HOMING");
  2483. #endif
  2484. }
  2485. #endif // Z_SAFE_HOMING
  2486. /**
  2487. * G28: Home all axes according to settings
  2488. *
  2489. * Parameters
  2490. *
  2491. * None Home to all axes with no parameters.
  2492. * With QUICK_HOME enabled XY will home together, then Z.
  2493. *
  2494. * Cartesian parameters
  2495. *
  2496. * X Home to the X endstop
  2497. * Y Home to the Y endstop
  2498. * Z Home to the Z endstop
  2499. *
  2500. */
  2501. inline void gcode_G28() {
  2502. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2503. if (DEBUGGING(LEVELING)) {
  2504. SERIAL_ECHOLNPGM(">>> gcode_G28");
  2505. log_machine_info();
  2506. }
  2507. #endif
  2508. // Wait for planner moves to finish!
  2509. stepper.synchronize();
  2510. // For auto bed leveling, clear the level matrix
  2511. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  2512. reset_bed_level();
  2513. #endif
  2514. // Always home with tool 0 active
  2515. #if HOTENDS > 1
  2516. uint8_t old_tool_index = active_extruder;
  2517. tool_change(0, 0, true);
  2518. #endif
  2519. #if ENABLED(DUAL_X_CARRIAGE) || ENABLED(DUAL_NOZZLE_DUPLICATION_MODE)
  2520. extruder_duplication_enabled = false;
  2521. #endif
  2522. /**
  2523. * For mesh bed leveling deactivate the mesh calculations, will be turned
  2524. * on again when homing all axis
  2525. */
  2526. #if ENABLED(MESH_BED_LEVELING)
  2527. float pre_home_z = MESH_HOME_SEARCH_Z;
  2528. if (mbl.active()) {
  2529. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2530. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("MBL was active");
  2531. #endif
  2532. // Save known Z position if already homed
  2533. if (axis_homed[X_AXIS] && axis_homed[Y_AXIS] && axis_homed[Z_AXIS]) {
  2534. pre_home_z = current_position[Z_AXIS];
  2535. pre_home_z += mbl.get_z(RAW_CURRENT_POSITION(X_AXIS), RAW_CURRENT_POSITION(Y_AXIS));
  2536. }
  2537. mbl.set_active(false);
  2538. current_position[Z_AXIS] = pre_home_z;
  2539. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2540. if (DEBUGGING(LEVELING)) DEBUG_POS("Set Z to pre_home_z", current_position);
  2541. #endif
  2542. }
  2543. #endif
  2544. setup_for_endstop_or_probe_move();
  2545. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2546. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> endstops.enable(true)");
  2547. #endif
  2548. endstops.enable(true); // Enable endstops for next homing move
  2549. #if ENABLED(DELTA)
  2550. home_delta();
  2551. #else // NOT DELTA
  2552. bool homeX = code_seen('X'), homeY = code_seen('Y'), homeZ = code_seen('Z');
  2553. home_all_axis = (!homeX && !homeY && !homeZ) || (homeX && homeY && homeZ);
  2554. set_destination_to_current();
  2555. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  2556. if (home_all_axis || homeZ) {
  2557. HOMEAXIS(Z);
  2558. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2559. if (DEBUGGING(LEVELING)) DEBUG_POS("> HOMEAXIS(Z)", current_position);
  2560. #endif
  2561. }
  2562. #else
  2563. if (home_all_axis || homeX || homeY) {
  2564. // Raise Z before homing any other axes and z is not already high enough (never lower z)
  2565. destination[Z_AXIS] = LOGICAL_Z_POSITION(Z_HOMING_HEIGHT);
  2566. if (destination[Z_AXIS] > current_position[Z_AXIS]) {
  2567. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2568. if (DEBUGGING(LEVELING))
  2569. SERIAL_ECHOLNPAIR("Raise Z (before homing) to ", destination[Z_AXIS]);
  2570. #endif
  2571. do_blocking_move_to_z(destination[Z_AXIS]);
  2572. }
  2573. }
  2574. #endif
  2575. #if ENABLED(QUICK_HOME)
  2576. if (home_all_axis || (homeX && homeY)) quick_home_xy();
  2577. #endif
  2578. #if ENABLED(HOME_Y_BEFORE_X)
  2579. // Home Y
  2580. if (home_all_axis || homeY) {
  2581. HOMEAXIS(Y);
  2582. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2583. if (DEBUGGING(LEVELING)) DEBUG_POS("> homeY", current_position);
  2584. #endif
  2585. }
  2586. #endif
  2587. // Home X
  2588. if (home_all_axis || homeX) {
  2589. #if ENABLED(DUAL_X_CARRIAGE)
  2590. int tmp_extruder = active_extruder;
  2591. active_extruder = !active_extruder;
  2592. HOMEAXIS(X);
  2593. inactive_extruder_x_pos = RAW_X_POSITION(current_position[X_AXIS]);
  2594. active_extruder = tmp_extruder;
  2595. HOMEAXIS(X);
  2596. // reset state used by the different modes
  2597. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  2598. delayed_move_time = 0;
  2599. active_extruder_parked = true;
  2600. #else
  2601. HOMEAXIS(X);
  2602. #endif
  2603. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2604. if (DEBUGGING(LEVELING)) DEBUG_POS("> homeX", current_position);
  2605. #endif
  2606. }
  2607. #if DISABLED(HOME_Y_BEFORE_X)
  2608. // Home Y
  2609. if (home_all_axis || homeY) {
  2610. HOMEAXIS(Y);
  2611. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2612. if (DEBUGGING(LEVELING)) DEBUG_POS("> homeY", current_position);
  2613. #endif
  2614. }
  2615. #endif
  2616. // Home Z last if homing towards the bed
  2617. #if Z_HOME_DIR < 0
  2618. if (home_all_axis || homeZ) {
  2619. #if ENABLED(Z_SAFE_HOMING)
  2620. home_z_safely();
  2621. #else
  2622. HOMEAXIS(Z);
  2623. #endif
  2624. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2625. if (DEBUGGING(LEVELING)) DEBUG_POS("> (home_all_axis || homeZ) > final", current_position);
  2626. #endif
  2627. } // home_all_axis || homeZ
  2628. #endif // Z_HOME_DIR < 0
  2629. SYNC_PLAN_POSITION_KINEMATIC();
  2630. #endif // !DELTA (gcode_G28)
  2631. endstops.not_homing();
  2632. // Enable mesh leveling again
  2633. #if ENABLED(MESH_BED_LEVELING)
  2634. if (mbl.has_mesh()) {
  2635. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2636. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("MBL has mesh");
  2637. #endif
  2638. if (home_all_axis || (axis_homed[X_AXIS] && axis_homed[Y_AXIS] && homeZ)) {
  2639. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2640. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("MBL Z homing");
  2641. #endif
  2642. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z
  2643. #if Z_HOME_DIR > 0
  2644. + Z_MAX_POS
  2645. #endif
  2646. ;
  2647. SYNC_PLAN_POSITION_KINEMATIC();
  2648. mbl.set_active(true);
  2649. #if ENABLED(MESH_G28_REST_ORIGIN)
  2650. current_position[Z_AXIS] = 0.0;
  2651. set_destination_to_current();
  2652. feedrate_mm_s = homing_feedrate_mm_s[Z_AXIS];
  2653. line_to_destination();
  2654. stepper.synchronize();
  2655. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2656. if (DEBUGGING(LEVELING)) DEBUG_POS("MBL Rest Origin", current_position);
  2657. #endif
  2658. #else
  2659. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z -
  2660. mbl.get_z(RAW_CURRENT_POSITION(X_AXIS), RAW_CURRENT_POSITION(Y_AXIS))
  2661. #if Z_HOME_DIR > 0
  2662. + Z_MAX_POS
  2663. #endif
  2664. ;
  2665. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2666. if (DEBUGGING(LEVELING)) DEBUG_POS("MBL adjusted MESH_HOME_SEARCH_Z", current_position);
  2667. #endif
  2668. #endif
  2669. }
  2670. else if ((axis_homed[X_AXIS] && axis_homed[Y_AXIS] && axis_homed[Z_AXIS]) && (homeX || homeY)) {
  2671. current_position[Z_AXIS] = pre_home_z;
  2672. SYNC_PLAN_POSITION_KINEMATIC();
  2673. mbl.set_active(true);
  2674. current_position[Z_AXIS] = pre_home_z -
  2675. mbl.get_z(RAW_CURRENT_POSITION(X_AXIS), RAW_CURRENT_POSITION(Y_AXIS));
  2676. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2677. if (DEBUGGING(LEVELING)) DEBUG_POS("MBL Home X or Y", current_position);
  2678. #endif
  2679. }
  2680. }
  2681. #endif
  2682. #if ENABLED(DELTA)
  2683. // move to a height where we can use the full xy-area
  2684. do_blocking_move_to_z(delta_clip_start_height);
  2685. #endif
  2686. clean_up_after_endstop_or_probe_move();
  2687. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2688. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< gcode_G28");
  2689. #endif
  2690. // Restore the active tool after homing
  2691. #if HOTENDS > 1
  2692. tool_change(old_tool_index, 0, true);
  2693. #endif
  2694. report_current_position();
  2695. }
  2696. #if HAS_PROBING_PROCEDURE
  2697. void out_of_range_error(const char* p_edge) {
  2698. SERIAL_PROTOCOLPGM("?Probe ");
  2699. serialprintPGM(p_edge);
  2700. SERIAL_PROTOCOLLNPGM(" position out of range.");
  2701. }
  2702. #endif
  2703. #if ENABLED(MESH_BED_LEVELING)
  2704. inline void _mbl_goto_xy(float x, float y) {
  2705. float old_feedrate_mm_s = feedrate_mm_s;
  2706. feedrate_mm_s = homing_feedrate_mm_s[X_AXIS];
  2707. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z
  2708. #if Z_PROBE_TRAVEL_HEIGHT > Z_HOMING_HEIGHT
  2709. + Z_PROBE_TRAVEL_HEIGHT
  2710. #elif Z_HOMING_HEIGHT > 0
  2711. + Z_HOMING_HEIGHT
  2712. #endif
  2713. ;
  2714. line_to_current_position();
  2715. current_position[X_AXIS] = LOGICAL_X_POSITION(x);
  2716. current_position[Y_AXIS] = LOGICAL_Y_POSITION(y);
  2717. line_to_current_position();
  2718. #if Z_PROBE_TRAVEL_HEIGHT > 0 || Z_HOMING_HEIGHT > 0
  2719. current_position[Z_AXIS] = LOGICAL_Z_POSITION(MESH_HOME_SEARCH_Z);
  2720. line_to_current_position();
  2721. #endif
  2722. feedrate_mm_s = old_feedrate_mm_s;
  2723. stepper.synchronize();
  2724. }
  2725. /**
  2726. * G29: Mesh-based Z probe, probes a grid and produces a
  2727. * mesh to compensate for variable bed height
  2728. *
  2729. * Parameters With MESH_BED_LEVELING:
  2730. *
  2731. * S0 Produce a mesh report
  2732. * S1 Start probing mesh points
  2733. * S2 Probe the next mesh point
  2734. * S3 Xn Yn Zn.nn Manually modify a single point
  2735. * S4 Zn.nn Set z offset. Positive away from bed, negative closer to bed.
  2736. * S5 Reset and disable mesh
  2737. *
  2738. * The S0 report the points as below
  2739. *
  2740. * +----> X-axis 1-n
  2741. * |
  2742. * |
  2743. * v Y-axis 1-n
  2744. *
  2745. */
  2746. inline void gcode_G29() {
  2747. static int probe_point = -1;
  2748. MeshLevelingState state = code_seen('S') ? (MeshLevelingState)code_value_byte() : MeshReport;
  2749. if (state < 0 || state > 5) {
  2750. SERIAL_PROTOCOLLNPGM("S out of range (0-5).");
  2751. return;
  2752. }
  2753. int8_t px, py;
  2754. switch (state) {
  2755. case MeshReport:
  2756. if (mbl.has_mesh()) {
  2757. SERIAL_PROTOCOLPAIR("State: ", mbl.active() ? MSG_ON : MSG_OFF);
  2758. SERIAL_PROTOCOLLNPGM("\nNum X,Y: " STRINGIFY(MESH_NUM_X_POINTS) "," STRINGIFY(MESH_NUM_Y_POINTS));
  2759. SERIAL_PROTOCOLLNPGM("Z search height: " STRINGIFY(MESH_HOME_SEARCH_Z));
  2760. SERIAL_PROTOCOLPGM("Z offset: "); SERIAL_PROTOCOL_F(mbl.z_offset, 5);
  2761. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  2762. for (py = 0; py < MESH_NUM_Y_POINTS; py++) {
  2763. for (px = 0; px < MESH_NUM_X_POINTS; px++) {
  2764. SERIAL_PROTOCOLPGM(" ");
  2765. SERIAL_PROTOCOL_F(mbl.z_values[py][px], 5);
  2766. }
  2767. SERIAL_EOL;
  2768. }
  2769. }
  2770. else
  2771. SERIAL_PROTOCOLLNPGM("Mesh bed leveling not active.");
  2772. break;
  2773. case MeshStart:
  2774. mbl.reset();
  2775. probe_point = 0;
  2776. enqueue_and_echo_commands_P(PSTR("G28\nG29 S2"));
  2777. break;
  2778. case MeshNext:
  2779. if (probe_point < 0) {
  2780. SERIAL_PROTOCOLLNPGM("Start mesh probing with \"G29 S1\" first.");
  2781. return;
  2782. }
  2783. // For each G29 S2...
  2784. if (probe_point == 0) {
  2785. // For the initial G29 S2 make Z a positive value (e.g., 4.0)
  2786. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z
  2787. #if Z_HOME_DIR > 0
  2788. + Z_MAX_POS
  2789. #endif
  2790. ;
  2791. SYNC_PLAN_POSITION_KINEMATIC();
  2792. }
  2793. else {
  2794. // For G29 S2 after adjusting Z.
  2795. mbl.set_zigzag_z(probe_point - 1, current_position[Z_AXIS]);
  2796. }
  2797. // If there's another point to sample, move there with optional lift.
  2798. if (probe_point < (MESH_NUM_X_POINTS) * (MESH_NUM_Y_POINTS)) {
  2799. mbl.zigzag(probe_point, px, py);
  2800. _mbl_goto_xy(mbl.get_probe_x(px), mbl.get_probe_y(py));
  2801. probe_point++;
  2802. }
  2803. else {
  2804. // One last "return to the bed" (as originally coded) at completion
  2805. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z
  2806. #if Z_PROBE_TRAVEL_HEIGHT > Z_HOMING_HEIGHT
  2807. + Z_PROBE_TRAVEL_HEIGHT
  2808. #elif Z_HOMING_HEIGHT > 0
  2809. + Z_HOMING_HEIGHT
  2810. #endif
  2811. ;
  2812. line_to_current_position();
  2813. stepper.synchronize();
  2814. // After recording the last point, activate the mbl and home
  2815. SERIAL_PROTOCOLLNPGM("Mesh probing done.");
  2816. probe_point = -1;
  2817. mbl.set_has_mesh(true);
  2818. enqueue_and_echo_commands_P(PSTR("G28"));
  2819. }
  2820. break;
  2821. case MeshSet:
  2822. if (code_seen('X')) {
  2823. px = code_value_int() - 1;
  2824. if (px < 0 || px >= MESH_NUM_X_POINTS) {
  2825. SERIAL_PROTOCOLLNPGM("X out of range (1-" STRINGIFY(MESH_NUM_X_POINTS) ").");
  2826. return;
  2827. }
  2828. }
  2829. else {
  2830. SERIAL_PROTOCOLLNPGM("X not entered.");
  2831. return;
  2832. }
  2833. if (code_seen('Y')) {
  2834. py = code_value_int() - 1;
  2835. if (py < 0 || py >= MESH_NUM_Y_POINTS) {
  2836. SERIAL_PROTOCOLLNPGM("Y out of range (1-" STRINGIFY(MESH_NUM_Y_POINTS) ").");
  2837. return;
  2838. }
  2839. }
  2840. else {
  2841. SERIAL_PROTOCOLLNPGM("Y not entered.");
  2842. return;
  2843. }
  2844. if (code_seen('Z')) {
  2845. mbl.z_values[py][px] = code_value_axis_units(Z_AXIS);
  2846. }
  2847. else {
  2848. SERIAL_PROTOCOLLNPGM("Z not entered.");
  2849. return;
  2850. }
  2851. break;
  2852. case MeshSetZOffset:
  2853. if (code_seen('Z')) {
  2854. mbl.z_offset = code_value_axis_units(Z_AXIS);
  2855. }
  2856. else {
  2857. SERIAL_PROTOCOLLNPGM("Z not entered.");
  2858. return;
  2859. }
  2860. break;
  2861. case MeshReset:
  2862. if (mbl.active()) {
  2863. current_position[Z_AXIS] +=
  2864. mbl.get_z(RAW_CURRENT_POSITION(X_AXIS), RAW_CURRENT_POSITION(Y_AXIS)) - MESH_HOME_SEARCH_Z;
  2865. mbl.reset();
  2866. SYNC_PLAN_POSITION_KINEMATIC();
  2867. }
  2868. else
  2869. mbl.reset();
  2870. } // switch(state)
  2871. report_current_position();
  2872. }
  2873. #elif ENABLED(AUTO_BED_LEVELING_FEATURE)
  2874. /**
  2875. * G29: Detailed Z probe, probes the bed at 3 or more points.
  2876. * Will fail if the printer has not been homed with G28.
  2877. *
  2878. * Enhanced G29 Auto Bed Leveling Probe Routine
  2879. *
  2880. * Parameters With AUTO_BED_LEVELING_GRID:
  2881. *
  2882. * P Set the size of the grid that will be probed (P x P points).
  2883. * Not supported by non-linear delta printer bed leveling.
  2884. * Example: "G29 P4"
  2885. *
  2886. * S Set the XY travel speed between probe points (in units/min)
  2887. *
  2888. * D Dry-Run mode. Just evaluate the bed Topology - Don't apply
  2889. * or clean the rotation Matrix. Useful to check the topology
  2890. * after a first run of G29.
  2891. *
  2892. * V Set the verbose level (0-4). Example: "G29 V3"
  2893. *
  2894. * T Generate a Bed Topology Report. Example: "G29 P5 T" for a detailed report.
  2895. * This is useful for manual bed leveling and finding flaws in the bed (to
  2896. * assist with part placement).
  2897. * Not supported by non-linear delta printer bed leveling.
  2898. *
  2899. * F Set the Front limit of the probing grid
  2900. * B Set the Back limit of the probing grid
  2901. * L Set the Left limit of the probing grid
  2902. * R Set the Right limit of the probing grid
  2903. *
  2904. * Global Parameters:
  2905. *
  2906. * E/e By default G29 will engage the Z probe, test the bed, then disengage.
  2907. * Include "E" to engage/disengage the Z probe for each sample.
  2908. * There's no extra effect if you have a fixed Z probe.
  2909. * Usage: "G29 E" or "G29 e"
  2910. *
  2911. */
  2912. inline void gcode_G29() {
  2913. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2914. if (DEBUGGING(LEVELING)) {
  2915. SERIAL_ECHOLNPGM(">>> gcode_G29");
  2916. DEBUG_POS("", current_position);
  2917. log_machine_info();
  2918. }
  2919. #endif
  2920. // Don't allow auto-leveling without homing first
  2921. if (axis_unhomed_error(true, true, true)) return;
  2922. int verbose_level = code_seen('V') ? code_value_int() : 1;
  2923. if (verbose_level < 0 || verbose_level > 4) {
  2924. SERIAL_PROTOCOLLNPGM("?(V)erbose Level is implausible (0-4).");
  2925. return;
  2926. }
  2927. bool dryrun = code_seen('D'),
  2928. stow_probe_after_each = code_seen('E');
  2929. #if ENABLED(AUTO_BED_LEVELING_GRID)
  2930. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  2931. bool do_topography_map = verbose_level > 2 || code_seen('T');
  2932. #endif
  2933. if (verbose_level > 0) {
  2934. SERIAL_PROTOCOLLNPGM("G29 Auto Bed Leveling");
  2935. if (dryrun) SERIAL_PROTOCOLLNPGM("Running in DRY-RUN mode");
  2936. }
  2937. int abl_grid_points_x = ABL_GRID_POINTS_X,
  2938. abl_grid_points_y = ABL_GRID_POINTS_Y;
  2939. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  2940. if (code_seen('P')) abl_grid_points_x = abl_grid_points_y = code_value_int();
  2941. if (abl_grid_points_x < 2) {
  2942. SERIAL_PROTOCOLLNPGM("?Number of probed (P)oints is implausible (2 minimum).");
  2943. return;
  2944. }
  2945. #endif
  2946. xy_probe_feedrate_mm_s = MMM_TO_MMS(code_seen('S') ? code_value_linear_units() : XY_PROBE_SPEED);
  2947. int left_probe_bed_position = code_seen('L') ? (int)code_value_axis_units(X_AXIS) : LOGICAL_X_POSITION(LEFT_PROBE_BED_POSITION),
  2948. right_probe_bed_position = code_seen('R') ? (int)code_value_axis_units(X_AXIS) : LOGICAL_X_POSITION(RIGHT_PROBE_BED_POSITION),
  2949. front_probe_bed_position = code_seen('F') ? (int)code_value_axis_units(Y_AXIS) : LOGICAL_Y_POSITION(FRONT_PROBE_BED_POSITION),
  2950. back_probe_bed_position = code_seen('B') ? (int)code_value_axis_units(Y_AXIS) : LOGICAL_Y_POSITION(BACK_PROBE_BED_POSITION);
  2951. bool left_out_l = left_probe_bed_position < LOGICAL_X_POSITION(MIN_PROBE_X),
  2952. left_out = left_out_l || left_probe_bed_position > right_probe_bed_position - (MIN_PROBE_EDGE),
  2953. right_out_r = right_probe_bed_position > LOGICAL_X_POSITION(MAX_PROBE_X),
  2954. right_out = right_out_r || right_probe_bed_position < left_probe_bed_position + MIN_PROBE_EDGE,
  2955. front_out_f = front_probe_bed_position < LOGICAL_Y_POSITION(MIN_PROBE_Y),
  2956. front_out = front_out_f || front_probe_bed_position > back_probe_bed_position - (MIN_PROBE_EDGE),
  2957. back_out_b = back_probe_bed_position > LOGICAL_Y_POSITION(MAX_PROBE_Y),
  2958. back_out = back_out_b || back_probe_bed_position < front_probe_bed_position + MIN_PROBE_EDGE;
  2959. if (left_out || right_out || front_out || back_out) {
  2960. if (left_out) {
  2961. out_of_range_error(PSTR("(L)eft"));
  2962. left_probe_bed_position = left_out_l ? LOGICAL_X_POSITION(MIN_PROBE_X) : right_probe_bed_position - (MIN_PROBE_EDGE);
  2963. }
  2964. if (right_out) {
  2965. out_of_range_error(PSTR("(R)ight"));
  2966. right_probe_bed_position = right_out_r ? LOGICAL_Y_POSITION(MAX_PROBE_X) : left_probe_bed_position + MIN_PROBE_EDGE;
  2967. }
  2968. if (front_out) {
  2969. out_of_range_error(PSTR("(F)ront"));
  2970. front_probe_bed_position = front_out_f ? LOGICAL_Y_POSITION(MIN_PROBE_Y) : back_probe_bed_position - (MIN_PROBE_EDGE);
  2971. }
  2972. if (back_out) {
  2973. out_of_range_error(PSTR("(B)ack"));
  2974. back_probe_bed_position = back_out_b ? LOGICAL_Y_POSITION(MAX_PROBE_Y) : front_probe_bed_position + MIN_PROBE_EDGE;
  2975. }
  2976. return;
  2977. }
  2978. #endif // AUTO_BED_LEVELING_GRID
  2979. stepper.synchronize();
  2980. if (!dryrun) {
  2981. // Reset the bed_level_matrix because leveling
  2982. // needs to be done without leveling enabled.
  2983. reset_bed_level();
  2984. //
  2985. // Re-orient the current position without leveling
  2986. // based on where the steppers are positioned.
  2987. //
  2988. get_cartesian_from_steppers();
  2989. memcpy(current_position, cartes, sizeof(cartes));
  2990. // Inform the planner about the new coordinates
  2991. SYNC_PLAN_POSITION_KINEMATIC();
  2992. }
  2993. setup_for_endstop_or_probe_move();
  2994. // Deploy the probe. Probe will raise if needed.
  2995. if (DEPLOY_PROBE()) return;
  2996. float xProbe, yProbe, measured_z = 0;
  2997. #if ENABLED(AUTO_BED_LEVELING_GRID)
  2998. // probe at the points of a lattice grid
  2999. const float xGridSpacing = (right_probe_bed_position - left_probe_bed_position) / (abl_grid_points_x - 1),
  3000. yGridSpacing = (back_probe_bed_position - front_probe_bed_position) / (abl_grid_points_y - 1);
  3001. #if ENABLED(AUTO_BED_LEVELING_NONLINEAR)
  3002. nonlinear_grid_spacing[X_AXIS] = xGridSpacing;
  3003. nonlinear_grid_spacing[Y_AXIS] = yGridSpacing;
  3004. float zoffset = zprobe_zoffset;
  3005. if (code_seen('Z')) zoffset += code_value_axis_units(Z_AXIS);
  3006. #elif ENABLED(AUTO_BED_LEVELING_LINEAR_GRID)
  3007. /**
  3008. * solve the plane equation ax + by + d = z
  3009. * A is the matrix with rows [x y 1] for all the probed points
  3010. * B is the vector of the Z positions
  3011. * the normal vector to the plane is formed by the coefficients of the
  3012. * plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  3013. * so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  3014. */
  3015. int abl2 = abl_grid_points_x * abl_grid_points_y;
  3016. double eqnAMatrix[abl2 * 3], // "A" matrix of the linear system of equations
  3017. eqnBVector[abl2], // "B" vector of Z points
  3018. mean = 0.0;
  3019. int indexIntoAB[abl_grid_points_x][abl_grid_points_y];
  3020. #endif // AUTO_BED_LEVELING_LINEAR_GRID
  3021. int probePointCounter = 0;
  3022. bool zig = abl_grid_points_y & 1; //always end at [RIGHT_PROBE_BED_POSITION, BACK_PROBE_BED_POSITION]
  3023. for (uint8_t yCount = 0; yCount < abl_grid_points_y; yCount++) {
  3024. float yBase = front_probe_bed_position + yGridSpacing * yCount;
  3025. yProbe = floor(yBase + (yBase < 0 ? 0 : 0.5));
  3026. int8_t xStart, xStop, xInc;
  3027. if (zig) {
  3028. xStart = 0;
  3029. xStop = abl_grid_points_x;
  3030. xInc = 1;
  3031. }
  3032. else {
  3033. xStart = abl_grid_points_x - 1;
  3034. xStop = -1;
  3035. xInc = -1;
  3036. }
  3037. zig = !zig;
  3038. for (int8_t xCount = xStart; xCount != xStop; xCount += xInc) {
  3039. float xBase = left_probe_bed_position + xGridSpacing * xCount;
  3040. xProbe = floor(xBase + (xBase < 0 ? 0 : 0.5));
  3041. #if ENABLED(DELTA)
  3042. // Avoid probing outside the round or hexagonal area of a delta printer
  3043. float pos[XYZ] = { xProbe + X_PROBE_OFFSET_FROM_EXTRUDER, yProbe + Y_PROBE_OFFSET_FROM_EXTRUDER, 0 };
  3044. if (!position_is_reachable(pos)) continue;
  3045. #endif
  3046. measured_z = probe_pt(xProbe, yProbe, stow_probe_after_each, verbose_level);
  3047. #if ENABLED(AUTO_BED_LEVELING_LINEAR_GRID)
  3048. mean += measured_z;
  3049. eqnBVector[probePointCounter] = measured_z;
  3050. eqnAMatrix[probePointCounter + 0 * abl2] = xProbe;
  3051. eqnAMatrix[probePointCounter + 1 * abl2] = yProbe;
  3052. eqnAMatrix[probePointCounter + 2 * abl2] = 1;
  3053. indexIntoAB[xCount][yCount] = probePointCounter;
  3054. #elif ENABLED(AUTO_BED_LEVELING_NONLINEAR)
  3055. bed_level_grid[xCount][yCount] = measured_z + zoffset;
  3056. #endif
  3057. probePointCounter++;
  3058. idle();
  3059. } //xProbe
  3060. } //yProbe
  3061. #elif ENABLED(AUTO_BED_LEVELING_3POINT)
  3062. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3063. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> 3-point Leveling");
  3064. #endif
  3065. // Probe at 3 arbitrary points
  3066. vector_3 points[3] = {
  3067. vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, 0),
  3068. vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, 0),
  3069. vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, 0)
  3070. };
  3071. for (uint8_t i = 0; i < 3; ++i) {
  3072. // Retain the last probe position
  3073. xProbe = LOGICAL_X_POSITION(points[i].x);
  3074. yProbe = LOGICAL_Y_POSITION(points[i].y);
  3075. measured_z = points[i].z = probe_pt(xProbe, yProbe, stow_probe_after_each, verbose_level);
  3076. }
  3077. if (!dryrun) {
  3078. vector_3 planeNormal = vector_3::cross(points[0] - points[1], points[2] - points[1]).get_normal();
  3079. if (planeNormal.z < 0) {
  3080. planeNormal.x *= -1;
  3081. planeNormal.y *= -1;
  3082. planeNormal.z *= -1;
  3083. }
  3084. planner.bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  3085. }
  3086. #endif // AUTO_BED_LEVELING_3POINT
  3087. // Raise to _Z_PROBE_DEPLOY_HEIGHT. Stow the probe.
  3088. if (STOW_PROBE()) return;
  3089. // Restore state after probing
  3090. clean_up_after_endstop_or_probe_move();
  3091. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3092. if (DEBUGGING(LEVELING)) DEBUG_POS("> probing complete", current_position);
  3093. #endif
  3094. // Calculate leveling, print reports, correct the position
  3095. #if ENABLED(AUTO_BED_LEVELING_NONLINEAR)
  3096. if (!dryrun) extrapolate_unprobed_bed_level();
  3097. print_bed_level();
  3098. #elif ENABLED(AUTO_BED_LEVELING_LINEAR_GRID)
  3099. // For LINEAR leveling calculate matrix, print reports, correct the position
  3100. // solve lsq problem
  3101. double plane_equation_coefficients[3];
  3102. qr_solve(plane_equation_coefficients, abl2, 3, eqnAMatrix, eqnBVector);
  3103. mean /= abl2;
  3104. if (verbose_level) {
  3105. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  3106. SERIAL_PROTOCOL_F(plane_equation_coefficients[0], 8);
  3107. SERIAL_PROTOCOLPGM(" b: ");
  3108. SERIAL_PROTOCOL_F(plane_equation_coefficients[1], 8);
  3109. SERIAL_PROTOCOLPGM(" d: ");
  3110. SERIAL_PROTOCOL_F(plane_equation_coefficients[2], 8);
  3111. SERIAL_EOL;
  3112. if (verbose_level > 2) {
  3113. SERIAL_PROTOCOLPGM("Mean of sampled points: ");
  3114. SERIAL_PROTOCOL_F(mean, 8);
  3115. SERIAL_EOL;
  3116. }
  3117. }
  3118. // Create the matrix but don't correct the position yet
  3119. if (!dryrun) {
  3120. planner.bed_level_matrix = matrix_3x3::create_look_at(
  3121. vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1)
  3122. );
  3123. }
  3124. // Show the Topography map if enabled
  3125. if (do_topography_map) {
  3126. SERIAL_PROTOCOLLNPGM("\nBed Height Topography:\n"
  3127. " +--- BACK --+\n"
  3128. " | |\n"
  3129. " L | (+) | R\n"
  3130. " E | | I\n"
  3131. " F | (-) N (+) | G\n"
  3132. " T | | H\n"
  3133. " | (-) | T\n"
  3134. " | |\n"
  3135. " O-- FRONT --+\n"
  3136. " (0,0)");
  3137. float min_diff = 999;
  3138. for (int8_t yy = abl_grid_points_y - 1; yy >= 0; yy--) {
  3139. for (uint8_t xx = 0; xx < abl_grid_points_x; xx++) {
  3140. int ind = indexIntoAB[xx][yy];
  3141. float diff = eqnBVector[ind] - mean,
  3142. x_tmp = eqnAMatrix[ind + 0 * abl2],
  3143. y_tmp = eqnAMatrix[ind + 1 * abl2],
  3144. z_tmp = 0;
  3145. apply_rotation_xyz(planner.bed_level_matrix, x_tmp, y_tmp, z_tmp);
  3146. NOMORE(min_diff, eqnBVector[ind] - z_tmp);
  3147. if (diff >= 0.0)
  3148. SERIAL_PROTOCOLPGM(" +"); // Include + for column alignment
  3149. else
  3150. SERIAL_PROTOCOLCHAR(' ');
  3151. SERIAL_PROTOCOL_F(diff, 5);
  3152. } // xx
  3153. SERIAL_EOL;
  3154. } // yy
  3155. SERIAL_EOL;
  3156. if (verbose_level > 3) {
  3157. SERIAL_PROTOCOLLNPGM("\nCorrected Bed Height vs. Bed Topology:");
  3158. for (int8_t yy = abl_grid_points_y - 1; yy >= 0; yy--) {
  3159. for (uint8_t xx = 0; xx < abl_grid_points_x; xx++) {
  3160. int ind = indexIntoAB[xx][yy];
  3161. float x_tmp = eqnAMatrix[ind + 0 * abl2],
  3162. y_tmp = eqnAMatrix[ind + 1 * abl2],
  3163. z_tmp = 0;
  3164. apply_rotation_xyz(planner.bed_level_matrix, x_tmp, y_tmp, z_tmp);
  3165. float diff = eqnBVector[ind] - z_tmp - min_diff;
  3166. if (diff >= 0.0)
  3167. SERIAL_PROTOCOLPGM(" +");
  3168. // Include + for column alignment
  3169. else
  3170. SERIAL_PROTOCOLCHAR(' ');
  3171. SERIAL_PROTOCOL_F(diff, 5);
  3172. } // xx
  3173. SERIAL_EOL;
  3174. } // yy
  3175. SERIAL_EOL;
  3176. }
  3177. } //do_topography_map
  3178. #endif // AUTO_BED_LEVELING_LINEAR_GRID
  3179. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  3180. // For LINEAR and 3POINT leveling correct the current position
  3181. if (verbose_level > 0)
  3182. planner.bed_level_matrix.debug("\n\nBed Level Correction Matrix:");
  3183. if (!dryrun) {
  3184. //
  3185. // Correct the current XYZ position based on the tilted plane.
  3186. //
  3187. // 1. Get the distance from the current position to the reference point.
  3188. float x_dist = RAW_CURRENT_POSITION(X_AXIS) - X_TILT_FULCRUM,
  3189. y_dist = RAW_CURRENT_POSITION(Y_AXIS) - Y_TILT_FULCRUM,
  3190. z_real = RAW_CURRENT_POSITION(Z_AXIS),
  3191. z_zero = 0;
  3192. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3193. if (DEBUGGING(LEVELING)) DEBUG_POS("G29 uncorrected XYZ", current_position);
  3194. #endif
  3195. matrix_3x3 inverse = matrix_3x3::transpose(planner.bed_level_matrix);
  3196. // 2. Apply the inverse matrix to the distance
  3197. // from the reference point to X, Y, and zero.
  3198. apply_rotation_xyz(inverse, x_dist, y_dist, z_zero);
  3199. // 3. Get the matrix-based corrected Z.
  3200. // (Even if not used, get it for comparison.)
  3201. float new_z = z_real + z_zero;
  3202. // 4. Use the last measured distance to the bed, if possible
  3203. if ( NEAR(current_position[X_AXIS], xProbe - (X_PROBE_OFFSET_FROM_EXTRUDER))
  3204. && NEAR(current_position[Y_AXIS], yProbe - (Y_PROBE_OFFSET_FROM_EXTRUDER))
  3205. ) {
  3206. float simple_z = z_real - (measured_z - (-zprobe_zoffset));
  3207. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3208. if (DEBUGGING(LEVELING)) {
  3209. SERIAL_ECHOPAIR("Z from Probe:", simple_z);
  3210. SERIAL_ECHOPAIR(" Matrix:", new_z);
  3211. SERIAL_ECHOLNPAIR(" Discrepancy:", simple_z - new_z);
  3212. }
  3213. #endif
  3214. new_z = simple_z;
  3215. }
  3216. // 5. The rotated XY and corrected Z are now current_position
  3217. current_position[X_AXIS] = LOGICAL_X_POSITION(x_dist) + X_TILT_FULCRUM;
  3218. current_position[Y_AXIS] = LOGICAL_Y_POSITION(y_dist) + Y_TILT_FULCRUM;
  3219. current_position[Z_AXIS] = LOGICAL_Z_POSITION(new_z);
  3220. SYNC_PLAN_POSITION_KINEMATIC();
  3221. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3222. if (DEBUGGING(LEVELING)) DEBUG_POS("G29 corrected XYZ", current_position);
  3223. #endif
  3224. }
  3225. #endif // AUTO_BED_LEVELING_LINEAR
  3226. #ifdef Z_PROBE_END_SCRIPT
  3227. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3228. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPAIR("Z Probe End Script: ", Z_PROBE_END_SCRIPT);
  3229. #endif
  3230. enqueue_and_echo_commands_P(PSTR(Z_PROBE_END_SCRIPT));
  3231. stepper.synchronize();
  3232. #endif
  3233. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3234. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< gcode_G29");
  3235. #endif
  3236. report_current_position();
  3237. KEEPALIVE_STATE(IN_HANDLER);
  3238. }
  3239. #endif // AUTO_BED_LEVELING_FEATURE
  3240. #if HAS_BED_PROBE
  3241. /**
  3242. * G30: Do a single Z probe at the current XY
  3243. */
  3244. inline void gcode_G30() {
  3245. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  3246. reset_bed_level();
  3247. #endif
  3248. setup_for_endstop_or_probe_move();
  3249. // TODO: clear the leveling matrix or the planner will be set incorrectly
  3250. float measured_z = probe_pt(current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER,
  3251. current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER,
  3252. true, 1);
  3253. SERIAL_PROTOCOLPGM("Bed X: ");
  3254. SERIAL_PROTOCOL(current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER + 0.0001);
  3255. SERIAL_PROTOCOLPGM(" Y: ");
  3256. SERIAL_PROTOCOL(current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER + 0.0001);
  3257. SERIAL_PROTOCOLPGM(" Z: ");
  3258. SERIAL_PROTOCOL(measured_z + 0.0001);
  3259. SERIAL_EOL;
  3260. clean_up_after_endstop_or_probe_move();
  3261. report_current_position();
  3262. }
  3263. #if ENABLED(Z_PROBE_SLED)
  3264. /**
  3265. * G31: Deploy the Z probe
  3266. */
  3267. inline void gcode_G31() { DEPLOY_PROBE(); }
  3268. /**
  3269. * G32: Stow the Z probe
  3270. */
  3271. inline void gcode_G32() { STOW_PROBE(); }
  3272. #endif // Z_PROBE_SLED
  3273. #endif // HAS_BED_PROBE
  3274. /**
  3275. * G92: Set current position to given X Y Z E
  3276. */
  3277. inline void gcode_G92() {
  3278. bool didXYZ = false,
  3279. didE = code_seen('E');
  3280. if (!didE) stepper.synchronize();
  3281. LOOP_XYZE(i) {
  3282. if (code_seen(axis_codes[i])) {
  3283. #if IS_SCARA
  3284. current_position[i] = code_value_axis_units(i);
  3285. if (i != E_AXIS) didXYZ = true;
  3286. #else
  3287. float p = current_position[i],
  3288. v = code_value_axis_units(i);
  3289. current_position[i] = v;
  3290. if (i != E_AXIS) {
  3291. didXYZ = true;
  3292. position_shift[i] += v - p; // Offset the coordinate space
  3293. update_software_endstops((AxisEnum)i);
  3294. }
  3295. #endif
  3296. }
  3297. }
  3298. if (didXYZ)
  3299. SYNC_PLAN_POSITION_KINEMATIC();
  3300. else if (didE)
  3301. sync_plan_position_e();
  3302. }
  3303. #if ENABLED(ULTIPANEL) || ENABLED(EMERGENCY_PARSER)
  3304. /**
  3305. * M0: Unconditional stop - Wait for user button press on LCD
  3306. * M1: Conditional stop - Wait for user button press on LCD
  3307. */
  3308. inline void gcode_M0_M1() {
  3309. char* args = current_command_args;
  3310. millis_t codenum = 0;
  3311. bool hasP = false, hasS = false;
  3312. if (code_seen('P')) {
  3313. codenum = code_value_millis(); // milliseconds to wait
  3314. hasP = codenum > 0;
  3315. }
  3316. if (code_seen('S')) {
  3317. codenum = code_value_millis_from_seconds(); // seconds to wait
  3318. hasS = codenum > 0;
  3319. }
  3320. #if ENABLED(ULTIPANEL)
  3321. if (!hasP && !hasS && *args != '\0')
  3322. lcd_setstatus(args, true);
  3323. else {
  3324. LCD_MESSAGEPGM(MSG_USERWAIT);
  3325. #if ENABLED(LCD_PROGRESS_BAR) && PROGRESS_MSG_EXPIRE > 0
  3326. dontExpireStatus();
  3327. #endif
  3328. }
  3329. lcd_ignore_click();
  3330. #else
  3331. if (!hasP && !hasS && *args != '\0') {
  3332. SERIAL_ECHO_START;
  3333. SERIAL_ECHOLN(args);
  3334. }
  3335. #endif
  3336. stepper.synchronize();
  3337. refresh_cmd_timeout();
  3338. #if ENABLED(ULTIPANEL)
  3339. if (codenum > 0) {
  3340. codenum += previous_cmd_ms; // wait until this time for a click
  3341. KEEPALIVE_STATE(PAUSED_FOR_USER);
  3342. while (PENDING(millis(), codenum) && !lcd_clicked()) idle();
  3343. lcd_ignore_click(false);
  3344. }
  3345. else if (lcd_detected()) {
  3346. KEEPALIVE_STATE(PAUSED_FOR_USER);
  3347. while (!lcd_clicked()) idle();
  3348. }
  3349. else return;
  3350. if (IS_SD_PRINTING)
  3351. LCD_MESSAGEPGM(MSG_RESUMING);
  3352. else
  3353. LCD_MESSAGEPGM(WELCOME_MSG);
  3354. #else
  3355. KEEPALIVE_STATE(PAUSED_FOR_USER);
  3356. wait_for_user = true;
  3357. if (codenum > 0) {
  3358. codenum += previous_cmd_ms; // wait until this time for an M108
  3359. while (PENDING(millis(), codenum) && wait_for_user) idle();
  3360. }
  3361. else while (wait_for_user) idle();
  3362. wait_for_user = false;
  3363. #endif
  3364. KEEPALIVE_STATE(IN_HANDLER);
  3365. }
  3366. #endif // ULTIPANEL || EMERGENCY_PARSER
  3367. /**
  3368. * M17: Enable power on all stepper motors
  3369. */
  3370. inline void gcode_M17() {
  3371. LCD_MESSAGEPGM(MSG_NO_MOVE);
  3372. enable_all_steppers();
  3373. }
  3374. #if ENABLED(SDSUPPORT)
  3375. /**
  3376. * M20: List SD card to serial output
  3377. */
  3378. inline void gcode_M20() {
  3379. SERIAL_PROTOCOLLNPGM(MSG_BEGIN_FILE_LIST);
  3380. card.ls();
  3381. SERIAL_PROTOCOLLNPGM(MSG_END_FILE_LIST);
  3382. }
  3383. /**
  3384. * M21: Init SD Card
  3385. */
  3386. inline void gcode_M21() { card.initsd(); }
  3387. /**
  3388. * M22: Release SD Card
  3389. */
  3390. inline void gcode_M22() { card.release(); }
  3391. /**
  3392. * M23: Open a file
  3393. */
  3394. inline void gcode_M23() { card.openFile(current_command_args, true); }
  3395. /**
  3396. * M24: Start SD Print
  3397. */
  3398. inline void gcode_M24() {
  3399. card.startFileprint();
  3400. print_job_timer.start();
  3401. }
  3402. /**
  3403. * M25: Pause SD Print
  3404. */
  3405. inline void gcode_M25() { card.pauseSDPrint(); }
  3406. /**
  3407. * M26: Set SD Card file index
  3408. */
  3409. inline void gcode_M26() {
  3410. if (card.cardOK && code_seen('S'))
  3411. card.setIndex(code_value_long());
  3412. }
  3413. /**
  3414. * M27: Get SD Card status
  3415. */
  3416. inline void gcode_M27() { card.getStatus(); }
  3417. /**
  3418. * M28: Start SD Write
  3419. */
  3420. inline void gcode_M28() { card.openFile(current_command_args, false); }
  3421. /**
  3422. * M29: Stop SD Write
  3423. * Processed in write to file routine above
  3424. */
  3425. inline void gcode_M29() {
  3426. // card.saving = false;
  3427. }
  3428. /**
  3429. * M30 <filename>: Delete SD Card file
  3430. */
  3431. inline void gcode_M30() {
  3432. if (card.cardOK) {
  3433. card.closefile();
  3434. card.removeFile(current_command_args);
  3435. }
  3436. }
  3437. #endif // SDSUPPORT
  3438. /**
  3439. * M31: Get the time since the start of SD Print (or last M109)
  3440. */
  3441. inline void gcode_M31() {
  3442. char buffer[21];
  3443. duration_t elapsed = print_job_timer.duration();
  3444. elapsed.toString(buffer);
  3445. lcd_setstatus(buffer);
  3446. SERIAL_ECHO_START;
  3447. SERIAL_ECHOLNPAIR("Print time: ", buffer);
  3448. thermalManager.autotempShutdown();
  3449. }
  3450. #if ENABLED(SDSUPPORT)
  3451. /**
  3452. * M32: Select file and start SD Print
  3453. */
  3454. inline void gcode_M32() {
  3455. if (card.sdprinting)
  3456. stepper.synchronize();
  3457. char* namestartpos = strchr(current_command_args, '!'); // Find ! to indicate filename string start.
  3458. if (!namestartpos)
  3459. namestartpos = current_command_args; // Default name position, 4 letters after the M
  3460. else
  3461. namestartpos++; //to skip the '!'
  3462. bool call_procedure = code_seen('P') && (seen_pointer < namestartpos);
  3463. if (card.cardOK) {
  3464. card.openFile(namestartpos, true, call_procedure);
  3465. if (code_seen('S') && seen_pointer < namestartpos) // "S" (must occur _before_ the filename!)
  3466. card.setIndex(code_value_long());
  3467. card.startFileprint();
  3468. // Procedure calls count as normal print time.
  3469. if (!call_procedure) print_job_timer.start();
  3470. }
  3471. }
  3472. #if ENABLED(LONG_FILENAME_HOST_SUPPORT)
  3473. /**
  3474. * M33: Get the long full path of a file or folder
  3475. *
  3476. * Parameters:
  3477. * <dospath> Case-insensitive DOS-style path to a file or folder
  3478. *
  3479. * Example:
  3480. * M33 miscel~1/armchair/armcha~1.gco
  3481. *
  3482. * Output:
  3483. * /Miscellaneous/Armchair/Armchair.gcode
  3484. */
  3485. inline void gcode_M33() {
  3486. card.printLongPath(current_command_args);
  3487. }
  3488. #endif
  3489. /**
  3490. * M928: Start SD Write
  3491. */
  3492. inline void gcode_M928() {
  3493. card.openLogFile(current_command_args);
  3494. }
  3495. #endif // SDSUPPORT
  3496. /**
  3497. * M42: Change pin status via GCode
  3498. *
  3499. * P<pin> Pin number (LED if omitted)
  3500. * S<byte> Pin status from 0 - 255
  3501. */
  3502. inline void gcode_M42() {
  3503. if (!code_seen('S')) return;
  3504. int pin_status = code_value_int();
  3505. if (pin_status < 0 || pin_status > 255) return;
  3506. int pin_number = code_seen('P') ? code_value_int() : LED_PIN;
  3507. if (pin_number < 0) return;
  3508. for (uint8_t i = 0; i < COUNT(sensitive_pins); i++)
  3509. if (pin_number == sensitive_pins[i]) return;
  3510. pinMode(pin_number, OUTPUT);
  3511. digitalWrite(pin_number, pin_status);
  3512. analogWrite(pin_number, pin_status);
  3513. #if FAN_COUNT > 0
  3514. switch (pin_number) {
  3515. #if HAS_FAN0
  3516. case FAN_PIN: fanSpeeds[0] = pin_status; break;
  3517. #endif
  3518. #if HAS_FAN1
  3519. case FAN1_PIN: fanSpeeds[1] = pin_status; break;
  3520. #endif
  3521. #if HAS_FAN2
  3522. case FAN2_PIN: fanSpeeds[2] = pin_status; break;
  3523. #endif
  3524. }
  3525. #endif
  3526. }
  3527. #if ENABLED(Z_MIN_PROBE_REPEATABILITY_TEST)
  3528. /**
  3529. * M48: Z probe repeatability measurement function.
  3530. *
  3531. * Usage:
  3532. * M48 <P#> <X#> <Y#> <V#> <E> <L#>
  3533. * P = Number of sampled points (4-50, default 10)
  3534. * X = Sample X position
  3535. * Y = Sample Y position
  3536. * V = Verbose level (0-4, default=1)
  3537. * E = Engage Z probe for each reading
  3538. * L = Number of legs of movement before probe
  3539. * S = Schizoid (Or Star if you prefer)
  3540. *
  3541. * This function assumes the bed has been homed. Specifically, that a G28 command
  3542. * as been issued prior to invoking the M48 Z probe repeatability measurement function.
  3543. * Any information generated by a prior G29 Bed leveling command will be lost and need to be
  3544. * regenerated.
  3545. */
  3546. inline void gcode_M48() {
  3547. if (axis_unhomed_error(true, true, true)) return;
  3548. int8_t verbose_level = code_seen('V') ? code_value_byte() : 1;
  3549. if (verbose_level < 0 || verbose_level > 4) {
  3550. SERIAL_PROTOCOLLNPGM("?Verbose Level not plausible (0-4).");
  3551. return;
  3552. }
  3553. if (verbose_level > 0)
  3554. SERIAL_PROTOCOLLNPGM("M48 Z-Probe Repeatability test");
  3555. int8_t n_samples = code_seen('P') ? code_value_byte() : 10;
  3556. if (n_samples < 4 || n_samples > 50) {
  3557. SERIAL_PROTOCOLLNPGM("?Sample size not plausible (4-50).");
  3558. return;
  3559. }
  3560. float X_current = current_position[X_AXIS],
  3561. Y_current = current_position[Y_AXIS];
  3562. bool stow_probe_after_each = code_seen('E');
  3563. float X_probe_location = code_seen('X') ? code_value_axis_units(X_AXIS) : X_current + X_PROBE_OFFSET_FROM_EXTRUDER;
  3564. #if DISABLED(DELTA)
  3565. if (X_probe_location < LOGICAL_X_POSITION(MIN_PROBE_X) || X_probe_location > LOGICAL_X_POSITION(MAX_PROBE_X)) {
  3566. out_of_range_error(PSTR("X"));
  3567. return;
  3568. }
  3569. #endif
  3570. float Y_probe_location = code_seen('Y') ? code_value_axis_units(Y_AXIS) : Y_current + Y_PROBE_OFFSET_FROM_EXTRUDER;
  3571. #if DISABLED(DELTA)
  3572. if (Y_probe_location < LOGICAL_Y_POSITION(MIN_PROBE_Y) || Y_probe_location > LOGICAL_Y_POSITION(MAX_PROBE_Y)) {
  3573. out_of_range_error(PSTR("Y"));
  3574. return;
  3575. }
  3576. #else
  3577. float pos[XYZ] = { X_probe_location, Y_probe_location, 0 };
  3578. if (!position_is_reachable(pos)) {
  3579. SERIAL_PROTOCOLLNPGM("? (X,Y) location outside of probeable radius.");
  3580. return;
  3581. }
  3582. #endif
  3583. bool seen_L = code_seen('L');
  3584. uint8_t n_legs = seen_L ? code_value_byte() : 0;
  3585. if (n_legs > 15) {
  3586. SERIAL_PROTOCOLLNPGM("?Number of legs in movement not plausible (0-15).");
  3587. return;
  3588. }
  3589. if (n_legs == 1) n_legs = 2;
  3590. bool schizoid_flag = code_seen('S');
  3591. if (schizoid_flag && !seen_L) n_legs = 7;
  3592. /**
  3593. * Now get everything to the specified probe point So we can safely do a
  3594. * probe to get us close to the bed. If the Z-Axis is far from the bed,
  3595. * we don't want to use that as a starting point for each probe.
  3596. */
  3597. if (verbose_level > 2)
  3598. SERIAL_PROTOCOLLNPGM("Positioning the probe...");
  3599. // Disable bed level correction in M48 because we want the raw data when we probe
  3600. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  3601. reset_bed_level();
  3602. #endif
  3603. setup_for_endstop_or_probe_move();
  3604. // Move to the first point, deploy, and probe
  3605. probe_pt(X_probe_location, Y_probe_location, stow_probe_after_each, verbose_level);
  3606. randomSeed(millis());
  3607. double mean = 0, sigma = 0, sample_set[n_samples];
  3608. for (uint8_t n = 0; n < n_samples; n++) {
  3609. if (n_legs) {
  3610. int dir = (random(0, 10) > 5.0) ? -1 : 1; // clockwise or counter clockwise
  3611. float angle = random(0.0, 360.0),
  3612. radius = random(
  3613. #if ENABLED(DELTA)
  3614. DELTA_PROBEABLE_RADIUS / 8, DELTA_PROBEABLE_RADIUS / 3
  3615. #else
  3616. 5, X_MAX_LENGTH / 8
  3617. #endif
  3618. );
  3619. if (verbose_level > 3) {
  3620. SERIAL_ECHOPAIR("Starting radius: ", radius);
  3621. SERIAL_ECHOPAIR(" angle: ", angle);
  3622. SERIAL_ECHOPGM(" Direction: ");
  3623. if (dir > 0) SERIAL_ECHOPGM("Counter-");
  3624. SERIAL_ECHOLNPGM("Clockwise");
  3625. }
  3626. for (uint8_t l = 0; l < n_legs - 1; l++) {
  3627. double delta_angle;
  3628. if (schizoid_flag)
  3629. // The points of a 5 point star are 72 degrees apart. We need to
  3630. // skip a point and go to the next one on the star.
  3631. delta_angle = dir * 2.0 * 72.0;
  3632. else
  3633. // If we do this line, we are just trying to move further
  3634. // around the circle.
  3635. delta_angle = dir * (float) random(25, 45);
  3636. angle += delta_angle;
  3637. while (angle > 360.0) // We probably do not need to keep the angle between 0 and 2*PI, but the
  3638. angle -= 360.0; // Arduino documentation says the trig functions should not be given values
  3639. while (angle < 0.0) // outside of this range. It looks like they behave correctly with
  3640. angle += 360.0; // numbers outside of the range, but just to be safe we clamp them.
  3641. X_current = X_probe_location - (X_PROBE_OFFSET_FROM_EXTRUDER) + cos(RADIANS(angle)) * radius;
  3642. Y_current = Y_probe_location - (Y_PROBE_OFFSET_FROM_EXTRUDER) + sin(RADIANS(angle)) * radius;
  3643. #if DISABLED(DELTA)
  3644. X_current = constrain(X_current, X_MIN_POS, X_MAX_POS);
  3645. Y_current = constrain(Y_current, Y_MIN_POS, Y_MAX_POS);
  3646. #else
  3647. // If we have gone out too far, we can do a simple fix and scale the numbers
  3648. // back in closer to the origin.
  3649. while (HYPOT(X_current, Y_current) > DELTA_PROBEABLE_RADIUS) {
  3650. X_current /= 1.25;
  3651. Y_current /= 1.25;
  3652. if (verbose_level > 3) {
  3653. SERIAL_ECHOPAIR("Pulling point towards center:", X_current);
  3654. SERIAL_ECHOLNPAIR(", ", Y_current);
  3655. }
  3656. }
  3657. #endif
  3658. if (verbose_level > 3) {
  3659. SERIAL_PROTOCOLPGM("Going to:");
  3660. SERIAL_ECHOPAIR(" X", X_current);
  3661. SERIAL_ECHOPAIR(" Y", Y_current);
  3662. SERIAL_ECHOLNPAIR(" Z", current_position[Z_AXIS]);
  3663. }
  3664. do_blocking_move_to_xy(X_current, Y_current);
  3665. } // n_legs loop
  3666. } // n_legs
  3667. // Probe a single point
  3668. sample_set[n] = probe_pt(X_probe_location, Y_probe_location, stow_probe_after_each, verbose_level);
  3669. /**
  3670. * Get the current mean for the data points we have so far
  3671. */
  3672. double sum = 0.0;
  3673. for (uint8_t j = 0; j <= n; j++) sum += sample_set[j];
  3674. mean = sum / (n + 1);
  3675. /**
  3676. * Now, use that mean to calculate the standard deviation for the
  3677. * data points we have so far
  3678. */
  3679. sum = 0.0;
  3680. for (uint8_t j = 0; j <= n; j++)
  3681. sum += sq(sample_set[j] - mean);
  3682. sigma = sqrt(sum / (n + 1));
  3683. if (verbose_level > 0) {
  3684. if (verbose_level > 1) {
  3685. SERIAL_PROTOCOL(n + 1);
  3686. SERIAL_PROTOCOLPGM(" of ");
  3687. SERIAL_PROTOCOL((int)n_samples);
  3688. SERIAL_PROTOCOLPGM(" z: ");
  3689. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
  3690. if (verbose_level > 2) {
  3691. SERIAL_PROTOCOLPGM(" mean: ");
  3692. SERIAL_PROTOCOL_F(mean, 6);
  3693. SERIAL_PROTOCOLPGM(" sigma: ");
  3694. SERIAL_PROTOCOL_F(sigma, 6);
  3695. }
  3696. }
  3697. SERIAL_EOL;
  3698. }
  3699. } // End of probe loop
  3700. if (STOW_PROBE()) return;
  3701. if (verbose_level > 0) {
  3702. SERIAL_PROTOCOLPGM("Mean: ");
  3703. SERIAL_PROTOCOL_F(mean, 6);
  3704. SERIAL_EOL;
  3705. }
  3706. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  3707. SERIAL_PROTOCOL_F(sigma, 6);
  3708. SERIAL_EOL; SERIAL_EOL;
  3709. clean_up_after_endstop_or_probe_move();
  3710. report_current_position();
  3711. }
  3712. #endif // Z_MIN_PROBE_REPEATABILITY_TEST
  3713. /**
  3714. * M75: Start print timer
  3715. */
  3716. inline void gcode_M75() { print_job_timer.start(); }
  3717. /**
  3718. * M76: Pause print timer
  3719. */
  3720. inline void gcode_M76() { print_job_timer.pause(); }
  3721. /**
  3722. * M77: Stop print timer
  3723. */
  3724. inline void gcode_M77() { print_job_timer.stop(); }
  3725. #if ENABLED(PRINTCOUNTER)
  3726. /**
  3727. * M78: Show print statistics
  3728. */
  3729. inline void gcode_M78() {
  3730. // "M78 S78" will reset the statistics
  3731. if (code_seen('S') && code_value_int() == 78)
  3732. print_job_timer.initStats();
  3733. else
  3734. print_job_timer.showStats();
  3735. }
  3736. #endif
  3737. /**
  3738. * M104: Set hot end temperature
  3739. */
  3740. inline void gcode_M104() {
  3741. if (get_target_extruder_from_command(104)) return;
  3742. if (DEBUGGING(DRYRUN)) return;
  3743. #if ENABLED(SINGLENOZZLE)
  3744. if (target_extruder != active_extruder) return;
  3745. #endif
  3746. if (code_seen('S')) {
  3747. thermalManager.setTargetHotend(code_value_temp_abs(), target_extruder);
  3748. #if ENABLED(DUAL_X_CARRIAGE)
  3749. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && target_extruder == 0)
  3750. thermalManager.setTargetHotend(code_value_temp_abs() == 0.0 ? 0.0 : code_value_temp_abs() + duplicate_extruder_temp_offset, 1);
  3751. #endif
  3752. #if ENABLED(PRINTJOB_TIMER_AUTOSTART)
  3753. /**
  3754. * Stop the timer at the end of print, starting is managed by
  3755. * 'heat and wait' M109.
  3756. * We use half EXTRUDE_MINTEMP here to allow nozzles to be put into hot
  3757. * stand by mode, for instance in a dual extruder setup, without affecting
  3758. * the running print timer.
  3759. */
  3760. if (code_value_temp_abs() <= (EXTRUDE_MINTEMP)/2) {
  3761. print_job_timer.stop();
  3762. LCD_MESSAGEPGM(WELCOME_MSG);
  3763. }
  3764. #endif
  3765. if (code_value_temp_abs() > thermalManager.degHotend(target_extruder)) LCD_MESSAGEPGM(MSG_HEATING);
  3766. }
  3767. }
  3768. #if HAS_TEMP_HOTEND || HAS_TEMP_BED
  3769. void print_heaterstates() {
  3770. #if HAS_TEMP_HOTEND
  3771. SERIAL_PROTOCOLPGM(" T:");
  3772. SERIAL_PROTOCOL_F(thermalManager.degHotend(target_extruder), 1);
  3773. SERIAL_PROTOCOLPGM(" /");
  3774. SERIAL_PROTOCOL_F(thermalManager.degTargetHotend(target_extruder), 1);
  3775. #if ENABLED(SHOW_TEMP_ADC_VALUES)
  3776. SERIAL_PROTOCOLPAIR(" (", thermalManager.current_temperature_raw[target_extruder] / OVERSAMPLENR);
  3777. SERIAL_CHAR(')');
  3778. #endif
  3779. #endif
  3780. #if HAS_TEMP_BED
  3781. SERIAL_PROTOCOLPGM(" B:");
  3782. SERIAL_PROTOCOL_F(thermalManager.degBed(), 1);
  3783. SERIAL_PROTOCOLPGM(" /");
  3784. SERIAL_PROTOCOL_F(thermalManager.degTargetBed(), 1);
  3785. #if ENABLED(SHOW_TEMP_ADC_VALUES)
  3786. SERIAL_PROTOCOLPAIR(" (", thermalManager.current_temperature_bed_raw / OVERSAMPLENR);
  3787. SERIAL_CHAR(')');
  3788. #endif
  3789. #endif
  3790. #if HOTENDS > 1
  3791. HOTEND_LOOP() {
  3792. SERIAL_PROTOCOLPAIR(" T", e);
  3793. SERIAL_PROTOCOLCHAR(':');
  3794. SERIAL_PROTOCOL_F(thermalManager.degHotend(e), 1);
  3795. SERIAL_PROTOCOLPGM(" /");
  3796. SERIAL_PROTOCOL_F(thermalManager.degTargetHotend(e), 1);
  3797. #if ENABLED(SHOW_TEMP_ADC_VALUES)
  3798. SERIAL_PROTOCOLPAIR(" (", thermalManager.current_temperature_raw[e] / OVERSAMPLENR);
  3799. SERIAL_CHAR(')');
  3800. #endif
  3801. }
  3802. #endif
  3803. SERIAL_PROTOCOLPGM(" @:");
  3804. SERIAL_PROTOCOL(thermalManager.getHeaterPower(target_extruder));
  3805. #if HAS_TEMP_BED
  3806. SERIAL_PROTOCOLPGM(" B@:");
  3807. SERIAL_PROTOCOL(thermalManager.getHeaterPower(-1));
  3808. #endif
  3809. #if HOTENDS > 1
  3810. HOTEND_LOOP() {
  3811. SERIAL_PROTOCOLPAIR(" @", e);
  3812. SERIAL_PROTOCOLCHAR(':');
  3813. SERIAL_PROTOCOL(thermalManager.getHeaterPower(e));
  3814. }
  3815. #endif
  3816. }
  3817. #endif
  3818. /**
  3819. * M105: Read hot end and bed temperature
  3820. */
  3821. inline void gcode_M105() {
  3822. if (get_target_extruder_from_command(105)) return;
  3823. #if HAS_TEMP_HOTEND || HAS_TEMP_BED
  3824. SERIAL_PROTOCOLPGM(MSG_OK);
  3825. print_heaterstates();
  3826. #else // !HAS_TEMP_HOTEND && !HAS_TEMP_BED
  3827. SERIAL_ERROR_START;
  3828. SERIAL_ERRORLNPGM(MSG_ERR_NO_THERMISTORS);
  3829. #endif
  3830. SERIAL_EOL;
  3831. }
  3832. #if FAN_COUNT > 0
  3833. /**
  3834. * M106: Set Fan Speed
  3835. *
  3836. * S<int> Speed between 0-255
  3837. * P<index> Fan index, if more than one fan
  3838. */
  3839. inline void gcode_M106() {
  3840. uint16_t s = code_seen('S') ? code_value_ushort() : 255,
  3841. p = code_seen('P') ? code_value_ushort() : 0;
  3842. NOMORE(s, 255);
  3843. if (p < FAN_COUNT) fanSpeeds[p] = s;
  3844. }
  3845. /**
  3846. * M107: Fan Off
  3847. */
  3848. inline void gcode_M107() {
  3849. uint16_t p = code_seen('P') ? code_value_ushort() : 0;
  3850. if (p < FAN_COUNT) fanSpeeds[p] = 0;
  3851. }
  3852. #endif // FAN_COUNT > 0
  3853. #if DISABLED(EMERGENCY_PARSER)
  3854. /**
  3855. * M108: Stop the waiting for heaters in M109, M190, M303. Does not affect the target temperature.
  3856. */
  3857. inline void gcode_M108() { wait_for_heatup = false; }
  3858. /**
  3859. * M112: Emergency Stop
  3860. */
  3861. inline void gcode_M112() { kill(PSTR(MSG_KILLED)); }
  3862. /**
  3863. * M410: Quickstop - Abort all planned moves
  3864. *
  3865. * This will stop the carriages mid-move, so most likely they
  3866. * will be out of sync with the stepper position after this.
  3867. */
  3868. inline void gcode_M410() { quickstop_stepper(); }
  3869. #endif
  3870. #ifndef MIN_COOLING_SLOPE_DEG
  3871. #define MIN_COOLING_SLOPE_DEG 1.50
  3872. #endif
  3873. #ifndef MIN_COOLING_SLOPE_TIME
  3874. #define MIN_COOLING_SLOPE_TIME 60
  3875. #endif
  3876. /**
  3877. * M109: Sxxx Wait for extruder(s) to reach temperature. Waits only when heating.
  3878. * Rxxx Wait for extruder(s) to reach temperature. Waits when heating and cooling.
  3879. */
  3880. inline void gcode_M109() {
  3881. if (get_target_extruder_from_command(109)) return;
  3882. if (DEBUGGING(DRYRUN)) return;
  3883. #if ENABLED(SINGLENOZZLE)
  3884. if (target_extruder != active_extruder) return;
  3885. #endif
  3886. bool no_wait_for_cooling = code_seen('S');
  3887. if (no_wait_for_cooling || code_seen('R')) {
  3888. thermalManager.setTargetHotend(code_value_temp_abs(), target_extruder);
  3889. #if ENABLED(DUAL_X_CARRIAGE)
  3890. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && target_extruder == 0)
  3891. thermalManager.setTargetHotend(code_value_temp_abs() == 0.0 ? 0.0 : code_value_temp_abs() + duplicate_extruder_temp_offset, 1);
  3892. #endif
  3893. #if ENABLED(PRINTJOB_TIMER_AUTOSTART)
  3894. /**
  3895. * We use half EXTRUDE_MINTEMP here to allow nozzles to be put into hot
  3896. * stand by mode, for instance in a dual extruder setup, without affecting
  3897. * the running print timer.
  3898. */
  3899. if (code_value_temp_abs() <= (EXTRUDE_MINTEMP)/2) {
  3900. print_job_timer.stop();
  3901. LCD_MESSAGEPGM(WELCOME_MSG);
  3902. }
  3903. /**
  3904. * We do not check if the timer is already running because this check will
  3905. * be done for us inside the Stopwatch::start() method thus a running timer
  3906. * will not restart.
  3907. */
  3908. else print_job_timer.start();
  3909. #endif
  3910. if (thermalManager.isHeatingHotend(target_extruder)) LCD_MESSAGEPGM(MSG_HEATING);
  3911. }
  3912. #if ENABLED(AUTOTEMP)
  3913. planner.autotemp_M109();
  3914. #endif
  3915. #if TEMP_RESIDENCY_TIME > 0
  3916. millis_t residency_start_ms = 0;
  3917. // Loop until the temperature has stabilized
  3918. #define TEMP_CONDITIONS (!residency_start_ms || PENDING(now, residency_start_ms + (TEMP_RESIDENCY_TIME) * 1000UL))
  3919. #else
  3920. // Loop until the temperature is very close target
  3921. #define TEMP_CONDITIONS (wants_to_cool ? thermalManager.isCoolingHotend(target_extruder) : thermalManager.isHeatingHotend(target_extruder))
  3922. #endif //TEMP_RESIDENCY_TIME > 0
  3923. float theTarget = -1.0, old_temp = 9999.0;
  3924. bool wants_to_cool = false;
  3925. wait_for_heatup = true;
  3926. millis_t now, next_temp_ms = 0, next_cool_check_ms = 0;
  3927. KEEPALIVE_STATE(NOT_BUSY);
  3928. do {
  3929. // Target temperature might be changed during the loop
  3930. if (theTarget != thermalManager.degTargetHotend(target_extruder)) {
  3931. wants_to_cool = thermalManager.isCoolingHotend(target_extruder);
  3932. theTarget = thermalManager.degTargetHotend(target_extruder);
  3933. // Exit if S<lower>, continue if S<higher>, R<lower>, or R<higher>
  3934. if (no_wait_for_cooling && wants_to_cool) break;
  3935. }
  3936. now = millis();
  3937. if (ELAPSED(now, next_temp_ms)) { //Print temp & remaining time every 1s while waiting
  3938. next_temp_ms = now + 1000UL;
  3939. print_heaterstates();
  3940. #if TEMP_RESIDENCY_TIME > 0
  3941. SERIAL_PROTOCOLPGM(" W:");
  3942. if (residency_start_ms) {
  3943. long rem = (((TEMP_RESIDENCY_TIME) * 1000UL) - (now - residency_start_ms)) / 1000UL;
  3944. SERIAL_PROTOCOLLN(rem);
  3945. }
  3946. else {
  3947. SERIAL_PROTOCOLLNPGM("?");
  3948. }
  3949. #else
  3950. SERIAL_EOL;
  3951. #endif
  3952. }
  3953. idle();
  3954. refresh_cmd_timeout(); // to prevent stepper_inactive_time from running out
  3955. float temp = thermalManager.degHotend(target_extruder);
  3956. #if TEMP_RESIDENCY_TIME > 0
  3957. float temp_diff = fabs(theTarget - temp);
  3958. if (!residency_start_ms) {
  3959. // Start the TEMP_RESIDENCY_TIME timer when we reach target temp for the first time.
  3960. if (temp_diff < TEMP_WINDOW) residency_start_ms = now;
  3961. }
  3962. else if (temp_diff > TEMP_HYSTERESIS) {
  3963. // Restart the timer whenever the temperature falls outside the hysteresis.
  3964. residency_start_ms = now;
  3965. }
  3966. #endif //TEMP_RESIDENCY_TIME > 0
  3967. // Prevent a wait-forever situation if R is misused i.e. M109 R0
  3968. if (wants_to_cool) {
  3969. // break after MIN_COOLING_SLOPE_TIME seconds
  3970. // if the temperature did not drop at least MIN_COOLING_SLOPE_DEG
  3971. if (!next_cool_check_ms || ELAPSED(now, next_cool_check_ms)) {
  3972. if (old_temp - temp < MIN_COOLING_SLOPE_DEG) break;
  3973. next_cool_check_ms = now + 1000UL * MIN_COOLING_SLOPE_TIME;
  3974. old_temp = temp;
  3975. }
  3976. }
  3977. } while (wait_for_heatup && TEMP_CONDITIONS);
  3978. if (wait_for_heatup) LCD_MESSAGEPGM(MSG_HEATING_COMPLETE);
  3979. KEEPALIVE_STATE(IN_HANDLER);
  3980. }
  3981. #if HAS_TEMP_BED
  3982. #ifndef MIN_COOLING_SLOPE_DEG_BED
  3983. #define MIN_COOLING_SLOPE_DEG_BED 1.50
  3984. #endif
  3985. #ifndef MIN_COOLING_SLOPE_TIME_BED
  3986. #define MIN_COOLING_SLOPE_TIME_BED 60
  3987. #endif
  3988. /**
  3989. * M190: Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  3990. * Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  3991. */
  3992. inline void gcode_M190() {
  3993. if (DEBUGGING(DRYRUN)) return;
  3994. LCD_MESSAGEPGM(MSG_BED_HEATING);
  3995. bool no_wait_for_cooling = code_seen('S');
  3996. if (no_wait_for_cooling || code_seen('R')) {
  3997. thermalManager.setTargetBed(code_value_temp_abs());
  3998. #if ENABLED(PRINTJOB_TIMER_AUTOSTART)
  3999. if (code_value_temp_abs() > BED_MINTEMP) {
  4000. /**
  4001. * We start the timer when 'heating and waiting' command arrives, LCD
  4002. * functions never wait. Cooling down managed by extruders.
  4003. *
  4004. * We do not check if the timer is already running because this check will
  4005. * be done for us inside the Stopwatch::start() method thus a running timer
  4006. * will not restart.
  4007. */
  4008. print_job_timer.start();
  4009. }
  4010. #endif
  4011. }
  4012. #if TEMP_BED_RESIDENCY_TIME > 0
  4013. millis_t residency_start_ms = 0;
  4014. // Loop until the temperature has stabilized
  4015. #define TEMP_BED_CONDITIONS (!residency_start_ms || PENDING(now, residency_start_ms + (TEMP_BED_RESIDENCY_TIME) * 1000UL))
  4016. #else
  4017. // Loop until the temperature is very close target
  4018. #define TEMP_BED_CONDITIONS (wants_to_cool ? thermalManager.isCoolingBed() : thermalManager.isHeatingBed())
  4019. #endif //TEMP_BED_RESIDENCY_TIME > 0
  4020. float theTarget = -1.0, old_temp = 9999.0;
  4021. bool wants_to_cool = false;
  4022. wait_for_heatup = true;
  4023. millis_t now, next_temp_ms = 0, next_cool_check_ms = 0;
  4024. KEEPALIVE_STATE(NOT_BUSY);
  4025. target_extruder = active_extruder; // for print_heaterstates
  4026. do {
  4027. // Target temperature might be changed during the loop
  4028. if (theTarget != thermalManager.degTargetBed()) {
  4029. wants_to_cool = thermalManager.isCoolingBed();
  4030. theTarget = thermalManager.degTargetBed();
  4031. // Exit if S<lower>, continue if S<higher>, R<lower>, or R<higher>
  4032. if (no_wait_for_cooling && wants_to_cool) break;
  4033. }
  4034. now = millis();
  4035. if (ELAPSED(now, next_temp_ms)) { //Print Temp Reading every 1 second while heating up.
  4036. next_temp_ms = now + 1000UL;
  4037. print_heaterstates();
  4038. #if TEMP_BED_RESIDENCY_TIME > 0
  4039. SERIAL_PROTOCOLPGM(" W:");
  4040. if (residency_start_ms) {
  4041. long rem = (((TEMP_BED_RESIDENCY_TIME) * 1000UL) - (now - residency_start_ms)) / 1000UL;
  4042. SERIAL_PROTOCOLLN(rem);
  4043. }
  4044. else {
  4045. SERIAL_PROTOCOLLNPGM("?");
  4046. }
  4047. #else
  4048. SERIAL_EOL;
  4049. #endif
  4050. }
  4051. idle();
  4052. refresh_cmd_timeout(); // to prevent stepper_inactive_time from running out
  4053. float temp = thermalManager.degBed();
  4054. #if TEMP_BED_RESIDENCY_TIME > 0
  4055. float temp_diff = fabs(theTarget - temp);
  4056. if (!residency_start_ms) {
  4057. // Start the TEMP_BED_RESIDENCY_TIME timer when we reach target temp for the first time.
  4058. if (temp_diff < TEMP_BED_WINDOW) residency_start_ms = now;
  4059. }
  4060. else if (temp_diff > TEMP_BED_HYSTERESIS) {
  4061. // Restart the timer whenever the temperature falls outside the hysteresis.
  4062. residency_start_ms = now;
  4063. }
  4064. #endif //TEMP_BED_RESIDENCY_TIME > 0
  4065. // Prevent a wait-forever situation if R is misused i.e. M190 R0
  4066. if (wants_to_cool) {
  4067. // break after MIN_COOLING_SLOPE_TIME_BED seconds
  4068. // if the temperature did not drop at least MIN_COOLING_SLOPE_DEG_BED
  4069. if (!next_cool_check_ms || ELAPSED(now, next_cool_check_ms)) {
  4070. if (old_temp - temp < MIN_COOLING_SLOPE_DEG_BED) break;
  4071. next_cool_check_ms = now + 1000UL * MIN_COOLING_SLOPE_TIME_BED;
  4072. old_temp = temp;
  4073. }
  4074. }
  4075. } while (wait_for_heatup && TEMP_BED_CONDITIONS);
  4076. if (wait_for_heatup) LCD_MESSAGEPGM(MSG_BED_DONE);
  4077. KEEPALIVE_STATE(IN_HANDLER);
  4078. }
  4079. #endif // HAS_TEMP_BED
  4080. /**
  4081. * M110: Set Current Line Number
  4082. */
  4083. inline void gcode_M110() {
  4084. if (code_seen('N')) gcode_N = code_value_long();
  4085. }
  4086. /**
  4087. * M111: Set the debug level
  4088. */
  4089. inline void gcode_M111() {
  4090. marlin_debug_flags = code_seen('S') ? code_value_byte() : (uint8_t) DEBUG_NONE;
  4091. const static char str_debug_1[] PROGMEM = MSG_DEBUG_ECHO;
  4092. const static char str_debug_2[] PROGMEM = MSG_DEBUG_INFO;
  4093. const static char str_debug_4[] PROGMEM = MSG_DEBUG_ERRORS;
  4094. const static char str_debug_8[] PROGMEM = MSG_DEBUG_DRYRUN;
  4095. const static char str_debug_16[] PROGMEM = MSG_DEBUG_COMMUNICATION;
  4096. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4097. const static char str_debug_32[] PROGMEM = MSG_DEBUG_LEVELING;
  4098. #endif
  4099. const static char* const debug_strings[] PROGMEM = {
  4100. str_debug_1, str_debug_2, str_debug_4, str_debug_8, str_debug_16,
  4101. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4102. str_debug_32
  4103. #endif
  4104. };
  4105. SERIAL_ECHO_START;
  4106. SERIAL_ECHOPGM(MSG_DEBUG_PREFIX);
  4107. if (marlin_debug_flags) {
  4108. uint8_t comma = 0;
  4109. for (uint8_t i = 0; i < COUNT(debug_strings); i++) {
  4110. if (TEST(marlin_debug_flags, i)) {
  4111. if (comma++) SERIAL_CHAR(',');
  4112. serialprintPGM((char*)pgm_read_word(&(debug_strings[i])));
  4113. }
  4114. }
  4115. }
  4116. else {
  4117. SERIAL_ECHOPGM(MSG_DEBUG_OFF);
  4118. }
  4119. SERIAL_EOL;
  4120. }
  4121. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  4122. /**
  4123. * M113: Get or set Host Keepalive interval (0 to disable)
  4124. *
  4125. * S<seconds> Optional. Set the keepalive interval.
  4126. */
  4127. inline void gcode_M113() {
  4128. if (code_seen('S')) {
  4129. host_keepalive_interval = code_value_byte();
  4130. NOMORE(host_keepalive_interval, 60);
  4131. }
  4132. else {
  4133. SERIAL_ECHO_START;
  4134. SERIAL_ECHOLNPAIR("M113 S", (unsigned long)host_keepalive_interval);
  4135. }
  4136. }
  4137. #endif
  4138. #if ENABLED(BARICUDA)
  4139. #if HAS_HEATER_1
  4140. /**
  4141. * M126: Heater 1 valve open
  4142. */
  4143. inline void gcode_M126() { baricuda_valve_pressure = code_seen('S') ? code_value_byte() : 255; }
  4144. /**
  4145. * M127: Heater 1 valve close
  4146. */
  4147. inline void gcode_M127() { baricuda_valve_pressure = 0; }
  4148. #endif
  4149. #if HAS_HEATER_2
  4150. /**
  4151. * M128: Heater 2 valve open
  4152. */
  4153. inline void gcode_M128() { baricuda_e_to_p_pressure = code_seen('S') ? code_value_byte() : 255; }
  4154. /**
  4155. * M129: Heater 2 valve close
  4156. */
  4157. inline void gcode_M129() { baricuda_e_to_p_pressure = 0; }
  4158. #endif
  4159. #endif //BARICUDA
  4160. /**
  4161. * M140: Set bed temperature
  4162. */
  4163. inline void gcode_M140() {
  4164. if (DEBUGGING(DRYRUN)) return;
  4165. if (code_seen('S')) thermalManager.setTargetBed(code_value_temp_abs());
  4166. }
  4167. #if ENABLED(ULTIPANEL)
  4168. /**
  4169. * M145: Set the heatup state for a material in the LCD menu
  4170. * S<material> (0=PLA, 1=ABS)
  4171. * H<hotend temp>
  4172. * B<bed temp>
  4173. * F<fan speed>
  4174. */
  4175. inline void gcode_M145() {
  4176. int8_t material = code_seen('S') ? (int8_t)code_value_int() : 0;
  4177. if (material < 0 || material > 1) {
  4178. SERIAL_ERROR_START;
  4179. SERIAL_ERRORLNPGM(MSG_ERR_MATERIAL_INDEX);
  4180. }
  4181. else {
  4182. int v;
  4183. switch (material) {
  4184. case 0:
  4185. if (code_seen('H')) {
  4186. v = code_value_int();
  4187. preheatHotendTemp1 = constrain(v, EXTRUDE_MINTEMP, HEATER_0_MAXTEMP - 15);
  4188. }
  4189. if (code_seen('F')) {
  4190. v = code_value_int();
  4191. preheatFanSpeed1 = constrain(v, 0, 255);
  4192. }
  4193. #if TEMP_SENSOR_BED != 0
  4194. if (code_seen('B')) {
  4195. v = code_value_int();
  4196. preheatBedTemp1 = constrain(v, BED_MINTEMP, BED_MAXTEMP - 15);
  4197. }
  4198. #endif
  4199. break;
  4200. case 1:
  4201. if (code_seen('H')) {
  4202. v = code_value_int();
  4203. preheatHotendTemp2 = constrain(v, EXTRUDE_MINTEMP, HEATER_0_MAXTEMP - 15);
  4204. }
  4205. if (code_seen('F')) {
  4206. v = code_value_int();
  4207. preheatFanSpeed2 = constrain(v, 0, 255);
  4208. }
  4209. #if TEMP_SENSOR_BED != 0
  4210. if (code_seen('B')) {
  4211. v = code_value_int();
  4212. preheatBedTemp2 = constrain(v, BED_MINTEMP, BED_MAXTEMP - 15);
  4213. }
  4214. #endif
  4215. break;
  4216. }
  4217. }
  4218. }
  4219. #endif // ULTIPANEL
  4220. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  4221. /**
  4222. * M149: Set temperature units
  4223. */
  4224. inline void gcode_M149() {
  4225. if (code_seen('C')) {
  4226. set_input_temp_units(TEMPUNIT_C);
  4227. } else if (code_seen('K')) {
  4228. set_input_temp_units(TEMPUNIT_K);
  4229. } else if (code_seen('F')) {
  4230. set_input_temp_units(TEMPUNIT_F);
  4231. }
  4232. }
  4233. #endif
  4234. #if HAS_POWER_SWITCH
  4235. /**
  4236. * M80: Turn on Power Supply
  4237. */
  4238. inline void gcode_M80() {
  4239. OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE); //GND
  4240. /**
  4241. * If you have a switch on suicide pin, this is useful
  4242. * if you want to start another print with suicide feature after
  4243. * a print without suicide...
  4244. */
  4245. #if HAS_SUICIDE
  4246. OUT_WRITE(SUICIDE_PIN, HIGH);
  4247. #endif
  4248. #if ENABLED(ULTIPANEL)
  4249. powersupply = true;
  4250. LCD_MESSAGEPGM(WELCOME_MSG);
  4251. lcd_update();
  4252. #endif
  4253. }
  4254. #endif // HAS_POWER_SWITCH
  4255. /**
  4256. * M81: Turn off Power, including Power Supply, if there is one.
  4257. *
  4258. * This code should ALWAYS be available for EMERGENCY SHUTDOWN!
  4259. */
  4260. inline void gcode_M81() {
  4261. thermalManager.disable_all_heaters();
  4262. stepper.finish_and_disable();
  4263. #if FAN_COUNT > 0
  4264. #if FAN_COUNT > 1
  4265. for (uint8_t i = 0; i < FAN_COUNT; i++) fanSpeeds[i] = 0;
  4266. #else
  4267. fanSpeeds[0] = 0;
  4268. #endif
  4269. #endif
  4270. delay(1000); // Wait 1 second before switching off
  4271. #if HAS_SUICIDE
  4272. stepper.synchronize();
  4273. suicide();
  4274. #elif HAS_POWER_SWITCH
  4275. OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  4276. #endif
  4277. #if ENABLED(ULTIPANEL)
  4278. #if HAS_POWER_SWITCH
  4279. powersupply = false;
  4280. #endif
  4281. LCD_MESSAGEPGM(MACHINE_NAME " " MSG_OFF ".");
  4282. lcd_update();
  4283. #endif
  4284. }
  4285. /**
  4286. * M82: Set E codes absolute (default)
  4287. */
  4288. inline void gcode_M82() { axis_relative_modes[E_AXIS] = false; }
  4289. /**
  4290. * M83: Set E codes relative while in Absolute Coordinates (G90) mode
  4291. */
  4292. inline void gcode_M83() { axis_relative_modes[E_AXIS] = true; }
  4293. /**
  4294. * M18, M84: Disable all stepper motors
  4295. */
  4296. inline void gcode_M18_M84() {
  4297. if (code_seen('S')) {
  4298. stepper_inactive_time = code_value_millis_from_seconds();
  4299. }
  4300. else {
  4301. bool all_axis = !((code_seen('X')) || (code_seen('Y')) || (code_seen('Z')) || (code_seen('E')));
  4302. if (all_axis) {
  4303. stepper.finish_and_disable();
  4304. }
  4305. else {
  4306. stepper.synchronize();
  4307. if (code_seen('X')) disable_x();
  4308. if (code_seen('Y')) disable_y();
  4309. if (code_seen('Z')) disable_z();
  4310. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  4311. if (code_seen('E')) {
  4312. disable_e0();
  4313. disable_e1();
  4314. disable_e2();
  4315. disable_e3();
  4316. }
  4317. #endif
  4318. }
  4319. }
  4320. }
  4321. /**
  4322. * M85: Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  4323. */
  4324. inline void gcode_M85() {
  4325. if (code_seen('S')) max_inactive_time = code_value_millis_from_seconds();
  4326. }
  4327. /**
  4328. * M92: Set axis steps-per-unit for one or more axes, X, Y, Z, and E.
  4329. * (Follows the same syntax as G92)
  4330. */
  4331. inline void gcode_M92() {
  4332. LOOP_XYZE(i) {
  4333. if (code_seen(axis_codes[i])) {
  4334. if (i == E_AXIS) {
  4335. float value = code_value_per_axis_unit(i);
  4336. if (value < 20.0) {
  4337. float factor = planner.axis_steps_per_mm[i] / value; // increase e constants if M92 E14 is given for netfab.
  4338. planner.max_e_jerk *= factor;
  4339. planner.max_feedrate_mm_s[i] *= factor;
  4340. planner.max_acceleration_steps_per_s2[i] *= factor;
  4341. }
  4342. planner.axis_steps_per_mm[i] = value;
  4343. }
  4344. else {
  4345. planner.axis_steps_per_mm[i] = code_value_per_axis_unit(i);
  4346. }
  4347. }
  4348. }
  4349. planner.refresh_positioning();
  4350. }
  4351. /**
  4352. * Output the current position to serial
  4353. */
  4354. static void report_current_position() {
  4355. SERIAL_PROTOCOLPGM("X:");
  4356. SERIAL_PROTOCOL(current_position[X_AXIS]);
  4357. SERIAL_PROTOCOLPGM(" Y:");
  4358. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  4359. SERIAL_PROTOCOLPGM(" Z:");
  4360. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  4361. SERIAL_PROTOCOLPGM(" E:");
  4362. SERIAL_PROTOCOL(current_position[E_AXIS]);
  4363. stepper.report_positions();
  4364. #if IS_SCARA
  4365. SERIAL_PROTOCOLPAIR("SCARA Theta:", stepper.get_axis_position_mm(A_AXIS));
  4366. SERIAL_PROTOCOLLNPAIR(" Psi+Theta:", stepper.get_axis_position_mm(B_AXIS));
  4367. SERIAL_EOL;
  4368. #endif
  4369. }
  4370. /**
  4371. * M114: Output current position to serial port
  4372. */
  4373. inline void gcode_M114() { report_current_position(); }
  4374. /**
  4375. * M115: Capabilities string
  4376. */
  4377. inline void gcode_M115() {
  4378. SERIAL_PROTOCOLPGM(MSG_M115_REPORT);
  4379. }
  4380. /**
  4381. * M117: Set LCD Status Message
  4382. */
  4383. inline void gcode_M117() {
  4384. lcd_setstatus(current_command_args);
  4385. }
  4386. /**
  4387. * M119: Output endstop states to serial output
  4388. */
  4389. inline void gcode_M119() { endstops.M119(); }
  4390. /**
  4391. * M120: Enable endstops and set non-homing endstop state to "enabled"
  4392. */
  4393. inline void gcode_M120() { endstops.enable_globally(true); }
  4394. /**
  4395. * M121: Disable endstops and set non-homing endstop state to "disabled"
  4396. */
  4397. inline void gcode_M121() { endstops.enable_globally(false); }
  4398. #if ENABLED(BLINKM)
  4399. /**
  4400. * M150: Set Status LED Color - Use R-U-B for R-G-B
  4401. */
  4402. inline void gcode_M150() {
  4403. SendColors(
  4404. code_seen('R') ? code_value_byte() : 0,
  4405. code_seen('U') ? code_value_byte() : 0,
  4406. code_seen('B') ? code_value_byte() : 0
  4407. );
  4408. }
  4409. #endif // BLINKM
  4410. #if ENABLED(EXPERIMENTAL_I2CBUS)
  4411. /**
  4412. * M155: Send data to a I2C slave device
  4413. *
  4414. * This is a PoC, the formating and arguments for the GCODE will
  4415. * change to be more compatible, the current proposal is:
  4416. *
  4417. * M155 A<slave device address base 10> ; Sets the I2C slave address the data will be sent to
  4418. *
  4419. * M155 B<byte-1 value in base 10>
  4420. * M155 B<byte-2 value in base 10>
  4421. * M155 B<byte-3 value in base 10>
  4422. *
  4423. * M155 S1 ; Send the buffered data and reset the buffer
  4424. * M155 R1 ; Reset the buffer without sending data
  4425. *
  4426. */
  4427. inline void gcode_M155() {
  4428. // Set the target address
  4429. if (code_seen('A')) i2c.address(code_value_byte());
  4430. // Add a new byte to the buffer
  4431. if (code_seen('B')) i2c.addbyte(code_value_byte());
  4432. // Flush the buffer to the bus
  4433. if (code_seen('S')) i2c.send();
  4434. // Reset and rewind the buffer
  4435. else if (code_seen('R')) i2c.reset();
  4436. }
  4437. /**
  4438. * M156: Request X bytes from I2C slave device
  4439. *
  4440. * Usage: M156 A<slave device address base 10> B<number of bytes>
  4441. */
  4442. inline void gcode_M156() {
  4443. if (code_seen('A')) i2c.address(code_value_byte());
  4444. uint8_t bytes = code_seen('B') ? code_value_byte() : 1;
  4445. if (i2c.addr && bytes && bytes <= TWIBUS_BUFFER_SIZE) {
  4446. i2c.relay(bytes);
  4447. }
  4448. else {
  4449. SERIAL_ERROR_START;
  4450. SERIAL_ERRORLN("Bad i2c request");
  4451. }
  4452. }
  4453. #endif // EXPERIMENTAL_I2CBUS
  4454. /**
  4455. * M200: Set filament diameter and set E axis units to cubic units
  4456. *
  4457. * T<extruder> - Optional extruder number. Current extruder if omitted.
  4458. * D<linear> - Diameter of the filament. Use "D0" to switch back to linear units on the E axis.
  4459. */
  4460. inline void gcode_M200() {
  4461. if (get_target_extruder_from_command(200)) return;
  4462. if (code_seen('D')) {
  4463. // setting any extruder filament size disables volumetric on the assumption that
  4464. // slicers either generate in extruder values as cubic mm or as as filament feeds
  4465. // for all extruders
  4466. volumetric_enabled = (code_value_linear_units() != 0.0);
  4467. if (volumetric_enabled) {
  4468. filament_size[target_extruder] = code_value_linear_units();
  4469. // make sure all extruders have some sane value for the filament size
  4470. for (uint8_t i = 0; i < COUNT(filament_size); i++)
  4471. if (! filament_size[i]) filament_size[i] = DEFAULT_NOMINAL_FILAMENT_DIA;
  4472. }
  4473. }
  4474. else {
  4475. //reserved for setting filament diameter via UFID or filament measuring device
  4476. return;
  4477. }
  4478. calculate_volumetric_multipliers();
  4479. }
  4480. /**
  4481. * M201: Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  4482. */
  4483. inline void gcode_M201() {
  4484. LOOP_XYZE(i) {
  4485. if (code_seen(axis_codes[i])) {
  4486. planner.max_acceleration_mm_per_s2[i] = code_value_axis_units(i);
  4487. }
  4488. }
  4489. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  4490. planner.reset_acceleration_rates();
  4491. }
  4492. #if 0 // Not used for Sprinter/grbl gen6
  4493. inline void gcode_M202() {
  4494. LOOP_XYZE(i) {
  4495. if (code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value_axis_units(i) * planner.axis_steps_per_mm[i];
  4496. }
  4497. }
  4498. #endif
  4499. /**
  4500. * M203: Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in units/sec
  4501. */
  4502. inline void gcode_M203() {
  4503. LOOP_XYZE(i)
  4504. if (code_seen(axis_codes[i]))
  4505. planner.max_feedrate_mm_s[i] = code_value_axis_units(i);
  4506. }
  4507. /**
  4508. * M204: Set Accelerations in units/sec^2 (M204 P1200 R3000 T3000)
  4509. *
  4510. * P = Printing moves
  4511. * R = Retract only (no X, Y, Z) moves
  4512. * T = Travel (non printing) moves
  4513. *
  4514. * Also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  4515. */
  4516. inline void gcode_M204() {
  4517. if (code_seen('S')) { // Kept for legacy compatibility. Should NOT BE USED for new developments.
  4518. planner.travel_acceleration = planner.acceleration = code_value_linear_units();
  4519. SERIAL_ECHOLNPAIR("Setting Print and Travel Acceleration: ", planner.acceleration);
  4520. }
  4521. if (code_seen('P')) {
  4522. planner.acceleration = code_value_linear_units();
  4523. SERIAL_ECHOLNPAIR("Setting Print Acceleration: ", planner.acceleration);
  4524. }
  4525. if (code_seen('R')) {
  4526. planner.retract_acceleration = code_value_linear_units();
  4527. SERIAL_ECHOLNPAIR("Setting Retract Acceleration: ", planner.retract_acceleration);
  4528. }
  4529. if (code_seen('T')) {
  4530. planner.travel_acceleration = code_value_linear_units();
  4531. SERIAL_ECHOLNPAIR("Setting Travel Acceleration: ", planner.travel_acceleration);
  4532. }
  4533. }
  4534. /**
  4535. * M205: Set Advanced Settings
  4536. *
  4537. * S = Min Feed Rate (units/s)
  4538. * T = Min Travel Feed Rate (units/s)
  4539. * B = Min Segment Time (µs)
  4540. * X = Max XY Jerk (units/sec^2)
  4541. * Z = Max Z Jerk (units/sec^2)
  4542. * E = Max E Jerk (units/sec^2)
  4543. */
  4544. inline void gcode_M205() {
  4545. if (code_seen('S')) planner.min_feedrate_mm_s = code_value_linear_units();
  4546. if (code_seen('T')) planner.min_travel_feedrate_mm_s = code_value_linear_units();
  4547. if (code_seen('B')) planner.min_segment_time = code_value_millis();
  4548. if (code_seen('X')) planner.max_xy_jerk = code_value_linear_units();
  4549. if (code_seen('Z')) planner.max_z_jerk = code_value_axis_units(Z_AXIS);
  4550. if (code_seen('E')) planner.max_e_jerk = code_value_axis_units(E_AXIS);
  4551. }
  4552. /**
  4553. * M206: Set Additional Homing Offset (X Y Z). SCARA aliases T=X, P=Y
  4554. */
  4555. inline void gcode_M206() {
  4556. LOOP_XYZ(i)
  4557. if (code_seen(axis_codes[i]))
  4558. set_home_offset((AxisEnum)i, code_value_axis_units(i));
  4559. #if ENABLED(MORGAN_SCARA)
  4560. if (code_seen('T')) set_home_offset(A_AXIS, code_value_axis_units(A_AXIS)); // Theta
  4561. if (code_seen('P')) set_home_offset(B_AXIS, code_value_axis_units(B_AXIS)); // Psi
  4562. #endif
  4563. SYNC_PLAN_POSITION_KINEMATIC();
  4564. report_current_position();
  4565. }
  4566. #if ENABLED(DELTA)
  4567. /**
  4568. * M665: Set delta configurations
  4569. *
  4570. * L = diagonal rod
  4571. * R = delta radius
  4572. * S = segments per second
  4573. * A = Alpha (Tower 1) diagonal rod trim
  4574. * B = Beta (Tower 2) diagonal rod trim
  4575. * C = Gamma (Tower 3) diagonal rod trim
  4576. */
  4577. inline void gcode_M665() {
  4578. if (code_seen('L')) delta_diagonal_rod = code_value_linear_units();
  4579. if (code_seen('R')) delta_radius = code_value_linear_units();
  4580. if (code_seen('S')) delta_segments_per_second = code_value_float();
  4581. if (code_seen('A')) delta_diagonal_rod_trim_tower_1 = code_value_linear_units();
  4582. if (code_seen('B')) delta_diagonal_rod_trim_tower_2 = code_value_linear_units();
  4583. if (code_seen('C')) delta_diagonal_rod_trim_tower_3 = code_value_linear_units();
  4584. recalc_delta_settings(delta_radius, delta_diagonal_rod);
  4585. }
  4586. /**
  4587. * M666: Set delta endstop adjustment
  4588. */
  4589. inline void gcode_M666() {
  4590. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4591. if (DEBUGGING(LEVELING)) {
  4592. SERIAL_ECHOLNPGM(">>> gcode_M666");
  4593. }
  4594. #endif
  4595. LOOP_XYZ(i) {
  4596. if (code_seen(axis_codes[i])) {
  4597. endstop_adj[i] = code_value_axis_units(i);
  4598. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4599. if (DEBUGGING(LEVELING)) {
  4600. SERIAL_ECHOPAIR("endstop_adj[", axis_codes[i]);
  4601. SERIAL_ECHOLNPAIR("] = ", endstop_adj[i]);
  4602. }
  4603. #endif
  4604. }
  4605. }
  4606. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4607. if (DEBUGGING(LEVELING)) {
  4608. SERIAL_ECHOLNPGM("<<< gcode_M666");
  4609. }
  4610. #endif
  4611. }
  4612. #elif ENABLED(Z_DUAL_ENDSTOPS) // !DELTA && ENABLED(Z_DUAL_ENDSTOPS)
  4613. /**
  4614. * M666: For Z Dual Endstop setup, set z axis offset to the z2 axis.
  4615. */
  4616. inline void gcode_M666() {
  4617. if (code_seen('Z')) z_endstop_adj = code_value_axis_units(Z_AXIS);
  4618. SERIAL_ECHOLNPAIR("Z Endstop Adjustment set to (mm):", z_endstop_adj);
  4619. }
  4620. #endif // !DELTA && Z_DUAL_ENDSTOPS
  4621. #if ENABLED(FWRETRACT)
  4622. /**
  4623. * M207: Set firmware retraction values
  4624. *
  4625. * S[+units] retract_length
  4626. * W[+units] retract_length_swap (multi-extruder)
  4627. * F[units/min] retract_feedrate_mm_s
  4628. * Z[units] retract_zlift
  4629. */
  4630. inline void gcode_M207() {
  4631. if (code_seen('S')) retract_length = code_value_axis_units(E_AXIS);
  4632. if (code_seen('F')) retract_feedrate_mm_s = MMM_TO_MMS(code_value_axis_units(E_AXIS));
  4633. if (code_seen('Z')) retract_zlift = code_value_axis_units(Z_AXIS);
  4634. #if EXTRUDERS > 1
  4635. if (code_seen('W')) retract_length_swap = code_value_axis_units(E_AXIS);
  4636. #endif
  4637. }
  4638. /**
  4639. * M208: Set firmware un-retraction values
  4640. *
  4641. * S[+units] retract_recover_length (in addition to M207 S*)
  4642. * W[+units] retract_recover_length_swap (multi-extruder)
  4643. * F[units/min] retract_recover_feedrate_mm_s
  4644. */
  4645. inline void gcode_M208() {
  4646. if (code_seen('S')) retract_recover_length = code_value_axis_units(E_AXIS);
  4647. if (code_seen('F')) retract_recover_feedrate_mm_s = MMM_TO_MMS(code_value_axis_units(E_AXIS));
  4648. #if EXTRUDERS > 1
  4649. if (code_seen('W')) retract_recover_length_swap = code_value_axis_units(E_AXIS);
  4650. #endif
  4651. }
  4652. /**
  4653. * M209: Enable automatic retract (M209 S1)
  4654. * detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  4655. */
  4656. inline void gcode_M209() {
  4657. if (code_seen('S')) {
  4658. autoretract_enabled = code_value_bool();
  4659. for (int i = 0; i < EXTRUDERS; i++) retracted[i] = false;
  4660. }
  4661. }
  4662. #endif // FWRETRACT
  4663. /**
  4664. * M211: Enable, Disable, and/or Report software endstops
  4665. *
  4666. * Usage: M211 S1 to enable, M211 S0 to disable, M211 alone for report
  4667. */
  4668. inline void gcode_M211() {
  4669. SERIAL_ECHO_START;
  4670. #if ENABLED(min_software_endstops) || ENABLED(max_software_endstops)
  4671. if (code_seen('S')) soft_endstops_enabled = code_value_bool();
  4672. #endif
  4673. #if ENABLED(min_software_endstops) || ENABLED(max_software_endstops)
  4674. SERIAL_ECHOPGM(MSG_SOFT_ENDSTOPS);
  4675. serialprintPGM(soft_endstops_enabled ? PSTR(MSG_ON) : PSTR(MSG_OFF));
  4676. #else
  4677. SERIAL_ECHOPGM(MSG_SOFT_ENDSTOPS);
  4678. SERIAL_ECHOPGM(MSG_OFF);
  4679. #endif
  4680. SERIAL_ECHOPGM(MSG_SOFT_MIN);
  4681. SERIAL_ECHOPAIR( MSG_X, soft_endstop_min[X_AXIS]);
  4682. SERIAL_ECHOPAIR(" " MSG_Y, soft_endstop_min[Y_AXIS]);
  4683. SERIAL_ECHOPAIR(" " MSG_Z, soft_endstop_min[Z_AXIS]);
  4684. SERIAL_ECHOPGM(MSG_SOFT_MAX);
  4685. SERIAL_ECHOPAIR( MSG_X, soft_endstop_max[X_AXIS]);
  4686. SERIAL_ECHOPAIR(" " MSG_Y, soft_endstop_max[Y_AXIS]);
  4687. SERIAL_ECHOLNPAIR(" " MSG_Z, soft_endstop_max[Z_AXIS]);
  4688. }
  4689. #if HOTENDS > 1
  4690. /**
  4691. * M218 - set hotend offset (in linear units)
  4692. *
  4693. * T<tool>
  4694. * X<xoffset>
  4695. * Y<yoffset>
  4696. * Z<zoffset> - Available with DUAL_X_CARRIAGE and SWITCHING_EXTRUDER
  4697. */
  4698. inline void gcode_M218() {
  4699. if (get_target_extruder_from_command(218)) return;
  4700. if (code_seen('X')) hotend_offset[X_AXIS][target_extruder] = code_value_axis_units(X_AXIS);
  4701. if (code_seen('Y')) hotend_offset[Y_AXIS][target_extruder] = code_value_axis_units(Y_AXIS);
  4702. #if ENABLED(DUAL_X_CARRIAGE) || ENABLED(SWITCHING_EXTRUDER)
  4703. if (code_seen('Z')) hotend_offset[Z_AXIS][target_extruder] = code_value_axis_units(Z_AXIS);
  4704. #endif
  4705. SERIAL_ECHO_START;
  4706. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  4707. HOTEND_LOOP() {
  4708. SERIAL_CHAR(' ');
  4709. SERIAL_ECHO(hotend_offset[X_AXIS][e]);
  4710. SERIAL_CHAR(',');
  4711. SERIAL_ECHO(hotend_offset[Y_AXIS][e]);
  4712. #if ENABLED(DUAL_X_CARRIAGE) || ENABLED(SWITCHING_EXTRUDER)
  4713. SERIAL_CHAR(',');
  4714. SERIAL_ECHO(hotend_offset[Z_AXIS][e]);
  4715. #endif
  4716. }
  4717. SERIAL_EOL;
  4718. }
  4719. #endif // HOTENDS > 1
  4720. /**
  4721. * M220: Set speed percentage factor, aka "Feed Rate" (M220 S95)
  4722. */
  4723. inline void gcode_M220() {
  4724. if (code_seen('S')) feedrate_percentage = code_value_int();
  4725. }
  4726. /**
  4727. * M221: Set extrusion percentage (M221 T0 S95)
  4728. */
  4729. inline void gcode_M221() {
  4730. if (get_target_extruder_from_command(221)) return;
  4731. if (code_seen('S'))
  4732. flow_percentage[target_extruder] = code_value_int();
  4733. }
  4734. /**
  4735. * M226: Wait until the specified pin reaches the state required (M226 P<pin> S<state>)
  4736. */
  4737. inline void gcode_M226() {
  4738. if (code_seen('P')) {
  4739. int pin_number = code_value_int();
  4740. int pin_state = code_seen('S') ? code_value_int() : -1; // required pin state - default is inverted
  4741. if (pin_state >= -1 && pin_state <= 1) {
  4742. for (uint8_t i = 0; i < COUNT(sensitive_pins); i++) {
  4743. if (sensitive_pins[i] == pin_number) {
  4744. pin_number = -1;
  4745. break;
  4746. }
  4747. }
  4748. if (pin_number > -1) {
  4749. int target = LOW;
  4750. stepper.synchronize();
  4751. pinMode(pin_number, INPUT);
  4752. switch (pin_state) {
  4753. case 1:
  4754. target = HIGH;
  4755. break;
  4756. case 0:
  4757. target = LOW;
  4758. break;
  4759. case -1:
  4760. target = !digitalRead(pin_number);
  4761. break;
  4762. }
  4763. while (digitalRead(pin_number) != target) idle();
  4764. } // pin_number > -1
  4765. } // pin_state -1 0 1
  4766. } // code_seen('P')
  4767. }
  4768. #if HAS_SERVOS
  4769. /**
  4770. * M280: Get or set servo position. P<index> [S<angle>]
  4771. */
  4772. inline void gcode_M280() {
  4773. if (!code_seen('P')) return;
  4774. int servo_index = code_value_int();
  4775. if (servo_index >= 0 && servo_index < NUM_SERVOS) {
  4776. if (code_seen('S'))
  4777. MOVE_SERVO(servo_index, code_value_int());
  4778. else {
  4779. SERIAL_ECHO_START;
  4780. SERIAL_ECHOPAIR(" Servo ", servo_index);
  4781. SERIAL_ECHOLNPAIR(": ", servo[servo_index].read());
  4782. }
  4783. }
  4784. else {
  4785. SERIAL_ERROR_START;
  4786. SERIAL_ECHOPAIR("Servo ", servo_index);
  4787. SERIAL_ECHOLNPGM(" out of range");
  4788. }
  4789. }
  4790. #endif // HAS_SERVOS
  4791. #if HAS_BUZZER
  4792. /**
  4793. * M300: Play beep sound S<frequency Hz> P<duration ms>
  4794. */
  4795. inline void gcode_M300() {
  4796. uint16_t const frequency = code_seen('S') ? code_value_ushort() : 260;
  4797. uint16_t duration = code_seen('P') ? code_value_ushort() : 1000;
  4798. // Limits the tone duration to 0-5 seconds.
  4799. NOMORE(duration, 5000);
  4800. BUZZ(duration, frequency);
  4801. }
  4802. #endif // HAS_BUZZER
  4803. #if ENABLED(PIDTEMP)
  4804. /**
  4805. * M301: Set PID parameters P I D (and optionally C, L)
  4806. *
  4807. * P[float] Kp term
  4808. * I[float] Ki term (unscaled)
  4809. * D[float] Kd term (unscaled)
  4810. *
  4811. * With PID_EXTRUSION_SCALING:
  4812. *
  4813. * C[float] Kc term
  4814. * L[float] LPQ length
  4815. */
  4816. inline void gcode_M301() {
  4817. // multi-extruder PID patch: M301 updates or prints a single extruder's PID values
  4818. // default behaviour (omitting E parameter) is to update for extruder 0 only
  4819. int e = code_seen('E') ? code_value_int() : 0; // extruder being updated
  4820. if (e < HOTENDS) { // catch bad input value
  4821. if (code_seen('P')) PID_PARAM(Kp, e) = code_value_float();
  4822. if (code_seen('I')) PID_PARAM(Ki, e) = scalePID_i(code_value_float());
  4823. if (code_seen('D')) PID_PARAM(Kd, e) = scalePID_d(code_value_float());
  4824. #if ENABLED(PID_EXTRUSION_SCALING)
  4825. if (code_seen('C')) PID_PARAM(Kc, e) = code_value_float();
  4826. if (code_seen('L')) lpq_len = code_value_float();
  4827. NOMORE(lpq_len, LPQ_MAX_LEN);
  4828. #endif
  4829. thermalManager.updatePID();
  4830. SERIAL_ECHO_START;
  4831. #if ENABLED(PID_PARAMS_PER_HOTEND)
  4832. SERIAL_ECHOPAIR(" e:", e); // specify extruder in serial output
  4833. #endif // PID_PARAMS_PER_HOTEND
  4834. SERIAL_ECHOPAIR(" p:", PID_PARAM(Kp, e));
  4835. SERIAL_ECHOPAIR(" i:", unscalePID_i(PID_PARAM(Ki, e)));
  4836. SERIAL_ECHOPAIR(" d:", unscalePID_d(PID_PARAM(Kd, e)));
  4837. #if ENABLED(PID_EXTRUSION_SCALING)
  4838. //Kc does not have scaling applied above, or in resetting defaults
  4839. SERIAL_ECHOPAIR(" c:", PID_PARAM(Kc, e));
  4840. #endif
  4841. SERIAL_EOL;
  4842. }
  4843. else {
  4844. SERIAL_ERROR_START;
  4845. SERIAL_ERRORLN(MSG_INVALID_EXTRUDER);
  4846. }
  4847. }
  4848. #endif // PIDTEMP
  4849. #if ENABLED(PIDTEMPBED)
  4850. inline void gcode_M304() {
  4851. if (code_seen('P')) thermalManager.bedKp = code_value_float();
  4852. if (code_seen('I')) thermalManager.bedKi = scalePID_i(code_value_float());
  4853. if (code_seen('D')) thermalManager.bedKd = scalePID_d(code_value_float());
  4854. thermalManager.updatePID();
  4855. SERIAL_ECHO_START;
  4856. SERIAL_ECHOPAIR(" p:", thermalManager.bedKp);
  4857. SERIAL_ECHOPAIR(" i:", unscalePID_i(thermalManager.bedKi));
  4858. SERIAL_ECHOLNPAIR(" d:", unscalePID_d(thermalManager.bedKd));
  4859. }
  4860. #endif // PIDTEMPBED
  4861. #if defined(CHDK) || HAS_PHOTOGRAPH
  4862. /**
  4863. * M240: Trigger a camera by emulating a Canon RC-1
  4864. * See http://www.doc-diy.net/photo/rc-1_hacked/
  4865. */
  4866. inline void gcode_M240() {
  4867. #ifdef CHDK
  4868. OUT_WRITE(CHDK, HIGH);
  4869. chdkHigh = millis();
  4870. chdkActive = true;
  4871. #elif HAS_PHOTOGRAPH
  4872. const uint8_t NUM_PULSES = 16;
  4873. const float PULSE_LENGTH = 0.01524;
  4874. for (int i = 0; i < NUM_PULSES; i++) {
  4875. WRITE(PHOTOGRAPH_PIN, HIGH);
  4876. _delay_ms(PULSE_LENGTH);
  4877. WRITE(PHOTOGRAPH_PIN, LOW);
  4878. _delay_ms(PULSE_LENGTH);
  4879. }
  4880. delay(7.33);
  4881. for (int i = 0; i < NUM_PULSES; i++) {
  4882. WRITE(PHOTOGRAPH_PIN, HIGH);
  4883. _delay_ms(PULSE_LENGTH);
  4884. WRITE(PHOTOGRAPH_PIN, LOW);
  4885. _delay_ms(PULSE_LENGTH);
  4886. }
  4887. #endif // !CHDK && HAS_PHOTOGRAPH
  4888. }
  4889. #endif // CHDK || PHOTOGRAPH_PIN
  4890. #if HAS_LCD_CONTRAST
  4891. /**
  4892. * M250: Read and optionally set the LCD contrast
  4893. */
  4894. inline void gcode_M250() {
  4895. if (code_seen('C')) set_lcd_contrast(code_value_int());
  4896. SERIAL_PROTOCOLPGM("lcd contrast value: ");
  4897. SERIAL_PROTOCOL(lcd_contrast);
  4898. SERIAL_EOL;
  4899. }
  4900. #endif // HAS_LCD_CONTRAST
  4901. #if ENABLED(PREVENT_COLD_EXTRUSION)
  4902. /**
  4903. * M302: Allow cold extrudes, or set the minimum extrude temperature
  4904. *
  4905. * S<temperature> sets the minimum extrude temperature
  4906. * P<bool> enables (1) or disables (0) cold extrusion
  4907. *
  4908. * Examples:
  4909. *
  4910. * M302 ; report current cold extrusion state
  4911. * M302 P0 ; enable cold extrusion checking
  4912. * M302 P1 ; disables cold extrusion checking
  4913. * M302 S0 ; always allow extrusion (disables checking)
  4914. * M302 S170 ; only allow extrusion above 170
  4915. * M302 S170 P1 ; set min extrude temp to 170 but leave disabled
  4916. */
  4917. inline void gcode_M302() {
  4918. bool seen_S = code_seen('S');
  4919. if (seen_S) {
  4920. thermalManager.extrude_min_temp = code_value_temp_abs();
  4921. thermalManager.allow_cold_extrude = (thermalManager.extrude_min_temp == 0);
  4922. }
  4923. if (code_seen('P'))
  4924. thermalManager.allow_cold_extrude = (thermalManager.extrude_min_temp == 0) || code_value_bool();
  4925. else if (!seen_S) {
  4926. // Report current state
  4927. SERIAL_ECHO_START;
  4928. SERIAL_ECHOPAIR("Cold extrudes are ", (thermalManager.allow_cold_extrude ? "en" : "dis"));
  4929. SERIAL_ECHOPAIR("abled (min temp ", int(thermalManager.extrude_min_temp + 0.5));
  4930. SERIAL_ECHOLNPGM("C)");
  4931. }
  4932. }
  4933. #endif // PREVENT_COLD_EXTRUSION
  4934. /**
  4935. * M303: PID relay autotune
  4936. *
  4937. * S<temperature> sets the target temperature. (default 150C)
  4938. * E<extruder> (-1 for the bed) (default 0)
  4939. * C<cycles>
  4940. * U<bool> with a non-zero value will apply the result to current settings
  4941. */
  4942. inline void gcode_M303() {
  4943. #if HAS_PID_HEATING
  4944. int e = code_seen('E') ? code_value_int() : 0;
  4945. int c = code_seen('C') ? code_value_int() : 5;
  4946. bool u = code_seen('U') && code_value_bool();
  4947. float temp = code_seen('S') ? code_value_temp_abs() : (e < 0 ? 70.0 : 150.0);
  4948. if (e >= 0 && e < HOTENDS)
  4949. target_extruder = e;
  4950. KEEPALIVE_STATE(NOT_BUSY); // don't send "busy: processing" messages during autotune output
  4951. thermalManager.PID_autotune(temp, e, c, u);
  4952. KEEPALIVE_STATE(IN_HANDLER);
  4953. #else
  4954. SERIAL_ERROR_START;
  4955. SERIAL_ERRORLNPGM(MSG_ERR_M303_DISABLED);
  4956. #endif
  4957. }
  4958. #if ENABLED(MORGAN_SCARA)
  4959. bool SCARA_move_to_cal(uint8_t delta_a, uint8_t delta_b) {
  4960. if (IsRunning()) {
  4961. forward_kinematics_SCARA(delta_a, delta_b);
  4962. destination[X_AXIS] = LOGICAL_X_POSITION(cartes[X_AXIS]);
  4963. destination[Y_AXIS] = LOGICAL_Y_POSITION(cartes[Y_AXIS]);
  4964. destination[Z_AXIS] = current_position[Z_AXIS];
  4965. prepare_move_to_destination();
  4966. return true;
  4967. }
  4968. return false;
  4969. }
  4970. /**
  4971. * M360: SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  4972. */
  4973. inline bool gcode_M360() {
  4974. SERIAL_ECHOLNPGM(" Cal: Theta 0");
  4975. return SCARA_move_to_cal(0, 120);
  4976. }
  4977. /**
  4978. * M361: SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  4979. */
  4980. inline bool gcode_M361() {
  4981. SERIAL_ECHOLNPGM(" Cal: Theta 90");
  4982. return SCARA_move_to_cal(90, 130);
  4983. }
  4984. /**
  4985. * M362: SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  4986. */
  4987. inline bool gcode_M362() {
  4988. SERIAL_ECHOLNPGM(" Cal: Psi 0");
  4989. return SCARA_move_to_cal(60, 180);
  4990. }
  4991. /**
  4992. * M363: SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  4993. */
  4994. inline bool gcode_M363() {
  4995. SERIAL_ECHOLNPGM(" Cal: Psi 90");
  4996. return SCARA_move_to_cal(50, 90);
  4997. }
  4998. /**
  4999. * M364: SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
  5000. */
  5001. inline bool gcode_M364() {
  5002. SERIAL_ECHOLNPGM(" Cal: Theta-Psi 90");
  5003. return SCARA_move_to_cal(45, 135);
  5004. }
  5005. #endif // SCARA
  5006. #if ENABLED(EXT_SOLENOID)
  5007. void enable_solenoid(uint8_t num) {
  5008. switch (num) {
  5009. case 0:
  5010. OUT_WRITE(SOL0_PIN, HIGH);
  5011. break;
  5012. #if HAS_SOLENOID_1
  5013. case 1:
  5014. OUT_WRITE(SOL1_PIN, HIGH);
  5015. break;
  5016. #endif
  5017. #if HAS_SOLENOID_2
  5018. case 2:
  5019. OUT_WRITE(SOL2_PIN, HIGH);
  5020. break;
  5021. #endif
  5022. #if HAS_SOLENOID_3
  5023. case 3:
  5024. OUT_WRITE(SOL3_PIN, HIGH);
  5025. break;
  5026. #endif
  5027. default:
  5028. SERIAL_ECHO_START;
  5029. SERIAL_ECHOLNPGM(MSG_INVALID_SOLENOID);
  5030. break;
  5031. }
  5032. }
  5033. void enable_solenoid_on_active_extruder() { enable_solenoid(active_extruder); }
  5034. void disable_all_solenoids() {
  5035. OUT_WRITE(SOL0_PIN, LOW);
  5036. OUT_WRITE(SOL1_PIN, LOW);
  5037. OUT_WRITE(SOL2_PIN, LOW);
  5038. OUT_WRITE(SOL3_PIN, LOW);
  5039. }
  5040. /**
  5041. * M380: Enable solenoid on the active extruder
  5042. */
  5043. inline void gcode_M380() { enable_solenoid_on_active_extruder(); }
  5044. /**
  5045. * M381: Disable all solenoids
  5046. */
  5047. inline void gcode_M381() { disable_all_solenoids(); }
  5048. #endif // EXT_SOLENOID
  5049. /**
  5050. * M400: Finish all moves
  5051. */
  5052. inline void gcode_M400() { stepper.synchronize(); }
  5053. #if HAS_BED_PROBE
  5054. /**
  5055. * M401: Engage Z Servo endstop if available
  5056. */
  5057. inline void gcode_M401() { DEPLOY_PROBE(); }
  5058. /**
  5059. * M402: Retract Z Servo endstop if enabled
  5060. */
  5061. inline void gcode_M402() { STOW_PROBE(); }
  5062. #endif // HAS_BED_PROBE
  5063. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  5064. /**
  5065. * M404: Display or set (in current units) the nominal filament width (3mm, 1.75mm ) W<3.0>
  5066. */
  5067. inline void gcode_M404() {
  5068. if (code_seen('W')) {
  5069. filament_width_nominal = code_value_linear_units();
  5070. }
  5071. else {
  5072. SERIAL_PROTOCOLPGM("Filament dia (nominal mm):");
  5073. SERIAL_PROTOCOLLN(filament_width_nominal);
  5074. }
  5075. }
  5076. /**
  5077. * M405: Turn on filament sensor for control
  5078. */
  5079. inline void gcode_M405() {
  5080. // This is technically a linear measurement, but since it's quantized to centimeters and is a different unit than
  5081. // everything else, it uses code_value_int() instead of code_value_linear_units().
  5082. if (code_seen('D')) meas_delay_cm = code_value_int();
  5083. NOMORE(meas_delay_cm, MAX_MEASUREMENT_DELAY);
  5084. if (filwidth_delay_index[1] == -1) { // Initialize the ring buffer if not done since startup
  5085. int temp_ratio = thermalManager.widthFil_to_size_ratio();
  5086. for (uint8_t i = 0; i < COUNT(measurement_delay); ++i)
  5087. measurement_delay[i] = temp_ratio - 100; // Subtract 100 to scale within a signed byte
  5088. filwidth_delay_index[0] = filwidth_delay_index[1] = 0;
  5089. }
  5090. filament_sensor = true;
  5091. //SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  5092. //SERIAL_PROTOCOL(filament_width_meas);
  5093. //SERIAL_PROTOCOLPGM("Extrusion ratio(%):");
  5094. //SERIAL_PROTOCOL(flow_percentage[active_extruder]);
  5095. }
  5096. /**
  5097. * M406: Turn off filament sensor for control
  5098. */
  5099. inline void gcode_M406() { filament_sensor = false; }
  5100. /**
  5101. * M407: Get measured filament diameter on serial output
  5102. */
  5103. inline void gcode_M407() {
  5104. SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  5105. SERIAL_PROTOCOLLN(filament_width_meas);
  5106. }
  5107. #endif // FILAMENT_WIDTH_SENSOR
  5108. void quickstop_stepper() {
  5109. stepper.quick_stop();
  5110. #if DISABLED(SCARA)
  5111. stepper.synchronize();
  5112. LOOP_XYZ(i) set_current_from_steppers_for_axis((AxisEnum)i);
  5113. SYNC_PLAN_POSITION_KINEMATIC();
  5114. #endif
  5115. }
  5116. #if ENABLED(MESH_BED_LEVELING)
  5117. /**
  5118. * M420: Enable/Disable Mesh Bed Leveling
  5119. */
  5120. inline void gcode_M420() { if (code_seen('S')) mbl.set_has_mesh(code_value_bool()); }
  5121. /**
  5122. * M421: Set a single Mesh Bed Leveling Z coordinate
  5123. * Use either 'M421 X<linear> Y<linear> Z<linear>' or 'M421 I<xindex> J<yindex> Z<linear>'
  5124. */
  5125. inline void gcode_M421() {
  5126. int8_t px = 0, py = 0;
  5127. float z = 0;
  5128. bool hasX, hasY, hasZ, hasI, hasJ;
  5129. if ((hasX = code_seen('X'))) px = mbl.probe_index_x(code_value_axis_units(X_AXIS));
  5130. if ((hasY = code_seen('Y'))) py = mbl.probe_index_y(code_value_axis_units(Y_AXIS));
  5131. if ((hasI = code_seen('I'))) px = code_value_axis_units(X_AXIS);
  5132. if ((hasJ = code_seen('J'))) py = code_value_axis_units(Y_AXIS);
  5133. if ((hasZ = code_seen('Z'))) z = code_value_axis_units(Z_AXIS);
  5134. if (hasX && hasY && hasZ) {
  5135. if (px >= 0 && py >= 0)
  5136. mbl.set_z(px, py, z);
  5137. else {
  5138. SERIAL_ERROR_START;
  5139. SERIAL_ERRORLNPGM(MSG_ERR_MESH_XY);
  5140. }
  5141. }
  5142. else if (hasI && hasJ && hasZ) {
  5143. if (px >= 0 && px < MESH_NUM_X_POINTS && py >= 0 && py < MESH_NUM_Y_POINTS)
  5144. mbl.set_z(px, py, z);
  5145. else {
  5146. SERIAL_ERROR_START;
  5147. SERIAL_ERRORLNPGM(MSG_ERR_MESH_XY);
  5148. }
  5149. }
  5150. else {
  5151. SERIAL_ERROR_START;
  5152. SERIAL_ERRORLNPGM(MSG_ERR_M421_PARAMETERS);
  5153. }
  5154. }
  5155. #endif
  5156. /**
  5157. * M428: Set home_offset based on the distance between the
  5158. * current_position and the nearest "reference point."
  5159. * If an axis is past center its endstop position
  5160. * is the reference-point. Otherwise it uses 0. This allows
  5161. * the Z offset to be set near the bed when using a max endstop.
  5162. *
  5163. * M428 can't be used more than 2cm away from 0 or an endstop.
  5164. *
  5165. * Use M206 to set these values directly.
  5166. */
  5167. inline void gcode_M428() {
  5168. bool err = false;
  5169. LOOP_XYZ(i) {
  5170. if (axis_homed[i]) {
  5171. float base = (current_position[i] > (soft_endstop_min[i] + soft_endstop_max[i]) * 0.5) ? base_home_pos(i) : 0,
  5172. diff = current_position[i] - LOGICAL_POSITION(base, i);
  5173. if (diff > -20 && diff < 20) {
  5174. set_home_offset((AxisEnum)i, home_offset[i] - diff);
  5175. }
  5176. else {
  5177. SERIAL_ERROR_START;
  5178. SERIAL_ERRORLNPGM(MSG_ERR_M428_TOO_FAR);
  5179. LCD_ALERTMESSAGEPGM("Err: Too far!");
  5180. BUZZ(200, 40);
  5181. err = true;
  5182. break;
  5183. }
  5184. }
  5185. }
  5186. if (!err) {
  5187. SYNC_PLAN_POSITION_KINEMATIC();
  5188. report_current_position();
  5189. LCD_MESSAGEPGM(MSG_HOME_OFFSETS_APPLIED);
  5190. BUZZ(200, 659);
  5191. BUZZ(200, 698);
  5192. }
  5193. }
  5194. /**
  5195. * M500: Store settings in EEPROM
  5196. */
  5197. inline void gcode_M500() {
  5198. Config_StoreSettings();
  5199. }
  5200. /**
  5201. * M501: Read settings from EEPROM
  5202. */
  5203. inline void gcode_M501() {
  5204. Config_RetrieveSettings();
  5205. }
  5206. /**
  5207. * M502: Revert to default settings
  5208. */
  5209. inline void gcode_M502() {
  5210. Config_ResetDefault();
  5211. }
  5212. /**
  5213. * M503: print settings currently in memory
  5214. */
  5215. inline void gcode_M503() {
  5216. Config_PrintSettings(code_seen('S') && !code_value_bool());
  5217. }
  5218. #if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  5219. /**
  5220. * M540: Set whether SD card print should abort on endstop hit (M540 S<0|1>)
  5221. */
  5222. inline void gcode_M540() {
  5223. if (code_seen('S')) stepper.abort_on_endstop_hit = code_value_bool();
  5224. }
  5225. #endif // ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  5226. #if HAS_BED_PROBE
  5227. inline void gcode_M851() {
  5228. SERIAL_ECHO_START;
  5229. SERIAL_ECHOPGM(MSG_ZPROBE_ZOFFSET);
  5230. SERIAL_CHAR(' ');
  5231. if (code_seen('Z')) {
  5232. float value = code_value_axis_units(Z_AXIS);
  5233. if (Z_PROBE_OFFSET_RANGE_MIN <= value && value <= Z_PROBE_OFFSET_RANGE_MAX) {
  5234. zprobe_zoffset = value;
  5235. SERIAL_ECHO(zprobe_zoffset);
  5236. }
  5237. else {
  5238. SERIAL_ECHOPAIR(MSG_Z_MIN, Z_PROBE_OFFSET_RANGE_MIN);
  5239. SERIAL_CHAR(' ');
  5240. SERIAL_ECHOPAIR(MSG_Z_MAX, Z_PROBE_OFFSET_RANGE_MAX);
  5241. }
  5242. }
  5243. else {
  5244. SERIAL_ECHOPAIR(": ", zprobe_zoffset);
  5245. }
  5246. SERIAL_EOL;
  5247. }
  5248. #endif // HAS_BED_PROBE
  5249. #if ENABLED(FILAMENT_CHANGE_FEATURE)
  5250. /**
  5251. * M600: Pause for filament change
  5252. *
  5253. * E[distance] - Retract the filament this far (negative value)
  5254. * Z[distance] - Move the Z axis by this distance
  5255. * X[position] - Move to this X position, with Y
  5256. * Y[position] - Move to this Y position, with X
  5257. * L[distance] - Retract distance for removal (manual reload)
  5258. *
  5259. * Default values are used for omitted arguments.
  5260. *
  5261. */
  5262. inline void gcode_M600() {
  5263. if (thermalManager.tooColdToExtrude(active_extruder)) {
  5264. SERIAL_ERROR_START;
  5265. SERIAL_ERRORLNPGM(MSG_TOO_COLD_FOR_M600);
  5266. return;
  5267. }
  5268. // Show initial message and wait for synchronize steppers
  5269. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_INIT);
  5270. stepper.synchronize();
  5271. float lastpos[NUM_AXIS];
  5272. // Save current position of all axes
  5273. LOOP_XYZE(i)
  5274. lastpos[i] = destination[i] = current_position[i];
  5275. // Define runplan for move axes
  5276. #if IS_KINEMATIC
  5277. #define RUNPLAN(RATE_MM_S) inverse_kinematics(destination); \
  5278. planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], destination[E_AXIS], RATE_MM_S, active_extruder);
  5279. #else
  5280. #define RUNPLAN(RATE_MM_S) line_to_destination(RATE_MM_S);
  5281. #endif
  5282. KEEPALIVE_STATE(IN_HANDLER);
  5283. // Initial retract before move to filament change position
  5284. if (code_seen('E')) destination[E_AXIS] += code_value_axis_units(E_AXIS);
  5285. #if defined(FILAMENT_CHANGE_RETRACT_LENGTH) && FILAMENT_CHANGE_RETRACT_LENGTH > 0
  5286. else destination[E_AXIS] -= FILAMENT_CHANGE_RETRACT_LENGTH;
  5287. #endif
  5288. RUNPLAN(FILAMENT_CHANGE_RETRACT_FEEDRATE);
  5289. // Lift Z axis
  5290. float z_lift = code_seen('Z') ? code_value_axis_units(Z_AXIS) :
  5291. #if defined(FILAMENT_CHANGE_Z_ADD) && FILAMENT_CHANGE_Z_ADD > 0
  5292. FILAMENT_CHANGE_Z_ADD
  5293. #else
  5294. 0
  5295. #endif
  5296. ;
  5297. if (z_lift > 0) {
  5298. destination[Z_AXIS] += z_lift;
  5299. NOMORE(destination[Z_AXIS], Z_MAX_POS);
  5300. RUNPLAN(FILAMENT_CHANGE_Z_FEEDRATE);
  5301. }
  5302. // Move XY axes to filament exchange position
  5303. if (code_seen('X')) destination[X_AXIS] = code_value_axis_units(X_AXIS);
  5304. #ifdef FILAMENT_CHANGE_X_POS
  5305. else destination[X_AXIS] = FILAMENT_CHANGE_X_POS;
  5306. #endif
  5307. if (code_seen('Y')) destination[Y_AXIS] = code_value_axis_units(Y_AXIS);
  5308. #ifdef FILAMENT_CHANGE_Y_POS
  5309. else destination[Y_AXIS] = FILAMENT_CHANGE_Y_POS;
  5310. #endif
  5311. RUNPLAN(FILAMENT_CHANGE_XY_FEEDRATE);
  5312. stepper.synchronize();
  5313. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_UNLOAD);
  5314. // Unload filament
  5315. if (code_seen('L')) destination[E_AXIS] += code_value_axis_units(E_AXIS);
  5316. #if defined(FILAMENT_CHANGE_UNLOAD_LENGTH) && FILAMENT_CHANGE_UNLOAD_LENGTH > 0
  5317. else destination[E_AXIS] -= FILAMENT_CHANGE_UNLOAD_LENGTH;
  5318. #endif
  5319. RUNPLAN(FILAMENT_CHANGE_UNLOAD_FEEDRATE);
  5320. // Synchronize steppers and then disable extruders steppers for manual filament changing
  5321. stepper.synchronize();
  5322. disable_e0();
  5323. disable_e1();
  5324. disable_e2();
  5325. disable_e3();
  5326. delay(100);
  5327. #if HAS_BUZZER
  5328. millis_t next_tick = 0;
  5329. #endif
  5330. // Wait for filament insert by user and press button
  5331. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_INSERT);
  5332. while (!lcd_clicked()) {
  5333. #if HAS_BUZZER
  5334. millis_t ms = millis();
  5335. if (ms >= next_tick) {
  5336. BUZZ(300, 2000);
  5337. next_tick = ms + 2500; // Beep every 2.5s while waiting
  5338. }
  5339. #endif
  5340. idle(true);
  5341. }
  5342. delay(100);
  5343. while (lcd_clicked()) idle(true);
  5344. delay(100);
  5345. // Show load message
  5346. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_LOAD);
  5347. // Load filament
  5348. if (code_seen('L')) destination[E_AXIS] -= code_value_axis_units(E_AXIS);
  5349. #if defined(FILAMENT_CHANGE_LOAD_LENGTH) && FILAMENT_CHANGE_LOAD_LENGTH > 0
  5350. else destination[E_AXIS] += FILAMENT_CHANGE_LOAD_LENGTH;
  5351. #endif
  5352. RUNPLAN(FILAMENT_CHANGE_LOAD_FEEDRATE);
  5353. stepper.synchronize();
  5354. #if defined(FILAMENT_CHANGE_EXTRUDE_LENGTH) && FILAMENT_CHANGE_EXTRUDE_LENGTH > 0
  5355. do {
  5356. // Extrude filament to get into hotend
  5357. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_EXTRUDE);
  5358. destination[E_AXIS] += FILAMENT_CHANGE_EXTRUDE_LENGTH;
  5359. RUNPLAN(FILAMENT_CHANGE_EXTRUDE_FEEDRATE);
  5360. stepper.synchronize();
  5361. // Ask user if more filament should be extruded
  5362. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5363. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_OPTION);
  5364. while (filament_change_menu_response == FILAMENT_CHANGE_RESPONSE_WAIT_FOR) idle(true);
  5365. KEEPALIVE_STATE(IN_HANDLER);
  5366. } while (filament_change_menu_response != FILAMENT_CHANGE_RESPONSE_RESUME_PRINT);
  5367. #endif
  5368. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_RESUME);
  5369. KEEPALIVE_STATE(IN_HANDLER);
  5370. // Set extruder to saved position
  5371. current_position[E_AXIS] = lastpos[E_AXIS];
  5372. destination[E_AXIS] = lastpos[E_AXIS];
  5373. planner.set_e_position_mm(current_position[E_AXIS]);
  5374. #if IS_KINEMATIC
  5375. // Move XYZ to starting position, then E
  5376. inverse_kinematics(lastpos);
  5377. planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], destination[E_AXIS], FILAMENT_CHANGE_XY_FEEDRATE, active_extruder);
  5378. planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], lastpos[E_AXIS], FILAMENT_CHANGE_XY_FEEDRATE, active_extruder);
  5379. #else
  5380. // Move XY to starting position, then Z, then E
  5381. destination[X_AXIS] = lastpos[X_AXIS];
  5382. destination[Y_AXIS] = lastpos[Y_AXIS];
  5383. RUNPLAN(FILAMENT_CHANGE_XY_FEEDRATE);
  5384. destination[Z_AXIS] = lastpos[Z_AXIS];
  5385. RUNPLAN(FILAMENT_CHANGE_Z_FEEDRATE);
  5386. #endif
  5387. stepper.synchronize();
  5388. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  5389. filament_ran_out = false;
  5390. #endif
  5391. // Show status screen
  5392. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_STATUS);
  5393. }
  5394. #endif // FILAMENT_CHANGE_FEATURE
  5395. #if ENABLED(DUAL_X_CARRIAGE)
  5396. /**
  5397. * M605: Set dual x-carriage movement mode
  5398. *
  5399. * M605 S0: Full control mode. The slicer has full control over x-carriage movement
  5400. * M605 S1: Auto-park mode. The inactive head will auto park/unpark without slicer involvement
  5401. * M605 S2 [Xnnn] [Rmmm]: Duplication mode. The second extruder will duplicate the first with nnn
  5402. * units x-offset and an optional differential hotend temperature of
  5403. * mmm degrees. E.g., with "M605 S2 X100 R2" the second extruder will duplicate
  5404. * the first with a spacing of 100mm in the x direction and 2 degrees hotter.
  5405. *
  5406. * Note: the X axis should be homed after changing dual x-carriage mode.
  5407. */
  5408. inline void gcode_M605() {
  5409. stepper.synchronize();
  5410. if (code_seen('S')) dual_x_carriage_mode = code_value_byte();
  5411. switch (dual_x_carriage_mode) {
  5412. case DXC_DUPLICATION_MODE:
  5413. if (code_seen('X')) duplicate_extruder_x_offset = max(code_value_axis_units(X_AXIS), X2_MIN_POS - x_home_pos(0));
  5414. if (code_seen('R')) duplicate_extruder_temp_offset = code_value_temp_diff();
  5415. SERIAL_ECHO_START;
  5416. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  5417. SERIAL_CHAR(' ');
  5418. SERIAL_ECHO(hotend_offset[X_AXIS][0]);
  5419. SERIAL_CHAR(',');
  5420. SERIAL_ECHO(hotend_offset[Y_AXIS][0]);
  5421. SERIAL_CHAR(' ');
  5422. SERIAL_ECHO(duplicate_extruder_x_offset);
  5423. SERIAL_CHAR(',');
  5424. SERIAL_ECHOLN(hotend_offset[Y_AXIS][1]);
  5425. break;
  5426. case DXC_FULL_CONTROL_MODE:
  5427. case DXC_AUTO_PARK_MODE:
  5428. break;
  5429. default:
  5430. dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  5431. break;
  5432. }
  5433. active_extruder_parked = false;
  5434. extruder_duplication_enabled = false;
  5435. delayed_move_time = 0;
  5436. }
  5437. #elif ENABLED(DUAL_NOZZLE_DUPLICATION_MODE)
  5438. inline void gcode_M605() {
  5439. stepper.synchronize();
  5440. extruder_duplication_enabled = code_seen('S') && code_value_int() == 2;
  5441. SERIAL_ECHO_START;
  5442. SERIAL_ECHOLNPAIR(MSG_DUPLICATION_MODE, extruder_duplication_enabled ? MSG_ON : MSG_OFF);
  5443. }
  5444. #endif // M605
  5445. #if ENABLED(LIN_ADVANCE)
  5446. /**
  5447. * M905: Set advance factor
  5448. */
  5449. inline void gcode_M905() {
  5450. stepper.synchronize();
  5451. stepper.advance_M905(code_seen('K') ? code_value_float() : -1.0);
  5452. }
  5453. #endif
  5454. /**
  5455. * M907: Set digital trimpot motor current using axis codes X, Y, Z, E, B, S
  5456. */
  5457. inline void gcode_M907() {
  5458. #if HAS_DIGIPOTSS
  5459. LOOP_XYZE(i)
  5460. if (code_seen(axis_codes[i])) stepper.digipot_current(i, code_value_int());
  5461. if (code_seen('B')) stepper.digipot_current(4, code_value_int());
  5462. if (code_seen('S')) for (int i = 0; i <= 4; i++) stepper.digipot_current(i, code_value_int());
  5463. #endif
  5464. #if PIN_EXISTS(MOTOR_CURRENT_PWM_XY)
  5465. if (code_seen('X')) stepper.digipot_current(0, code_value_int());
  5466. #endif
  5467. #if PIN_EXISTS(MOTOR_CURRENT_PWM_Z)
  5468. if (code_seen('Z')) stepper.digipot_current(1, code_value_int());
  5469. #endif
  5470. #if PIN_EXISTS(MOTOR_CURRENT_PWM_E)
  5471. if (code_seen('E')) stepper.digipot_current(2, code_value_int());
  5472. #endif
  5473. #if ENABLED(DIGIPOT_I2C)
  5474. // this one uses actual amps in floating point
  5475. LOOP_XYZE(i) if (code_seen(axis_codes[i])) digipot_i2c_set_current(i, code_value_float());
  5476. // for each additional extruder (named B,C,D,E..., channels 4,5,6,7...)
  5477. for (int i = NUM_AXIS; i < DIGIPOT_I2C_NUM_CHANNELS; i++) if (code_seen('B' + i - (NUM_AXIS))) digipot_i2c_set_current(i, code_value_float());
  5478. #endif
  5479. #if ENABLED(DAC_STEPPER_CURRENT)
  5480. if (code_seen('S')) {
  5481. float dac_percent = code_value_float();
  5482. for (uint8_t i = 0; i <= 4; i++) dac_current_percent(i, dac_percent);
  5483. }
  5484. LOOP_XYZE(i) if (code_seen(axis_codes[i])) dac_current_percent(i, code_value_float());
  5485. #endif
  5486. }
  5487. #if HAS_DIGIPOTSS || ENABLED(DAC_STEPPER_CURRENT)
  5488. /**
  5489. * M908: Control digital trimpot directly (M908 P<pin> S<current>)
  5490. */
  5491. inline void gcode_M908() {
  5492. #if HAS_DIGIPOTSS
  5493. stepper.digitalPotWrite(
  5494. code_seen('P') ? code_value_int() : 0,
  5495. code_seen('S') ? code_value_int() : 0
  5496. );
  5497. #endif
  5498. #ifdef DAC_STEPPER_CURRENT
  5499. dac_current_raw(
  5500. code_seen('P') ? code_value_byte() : -1,
  5501. code_seen('S') ? code_value_ushort() : 0
  5502. );
  5503. #endif
  5504. }
  5505. #if ENABLED(DAC_STEPPER_CURRENT) // As with Printrbot RevF
  5506. inline void gcode_M909() { dac_print_values(); }
  5507. inline void gcode_M910() { dac_commit_eeprom(); }
  5508. #endif
  5509. #endif // HAS_DIGIPOTSS || DAC_STEPPER_CURRENT
  5510. #if HAS_MICROSTEPS
  5511. // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  5512. inline void gcode_M350() {
  5513. if (code_seen('S')) for (int i = 0; i <= 4; i++) stepper.microstep_mode(i, code_value_byte());
  5514. LOOP_XYZE(i) if (code_seen(axis_codes[i])) stepper.microstep_mode(i, code_value_byte());
  5515. if (code_seen('B')) stepper.microstep_mode(4, code_value_byte());
  5516. stepper.microstep_readings();
  5517. }
  5518. /**
  5519. * M351: Toggle MS1 MS2 pins directly with axis codes X Y Z E B
  5520. * S# determines MS1 or MS2, X# sets the pin high/low.
  5521. */
  5522. inline void gcode_M351() {
  5523. if (code_seen('S')) switch (code_value_byte()) {
  5524. case 1:
  5525. LOOP_XYZE(i) if (code_seen(axis_codes[i])) stepper.microstep_ms(i, code_value_byte(), -1);
  5526. if (code_seen('B')) stepper.microstep_ms(4, code_value_byte(), -1);
  5527. break;
  5528. case 2:
  5529. LOOP_XYZE(i) if (code_seen(axis_codes[i])) stepper.microstep_ms(i, -1, code_value_byte());
  5530. if (code_seen('B')) stepper.microstep_ms(4, -1, code_value_byte());
  5531. break;
  5532. }
  5533. stepper.microstep_readings();
  5534. }
  5535. #endif // HAS_MICROSTEPS
  5536. #if ENABLED(MIXING_EXTRUDER)
  5537. /**
  5538. * M163: Set a single mix factor for a mixing extruder
  5539. * This is called "weight" by some systems.
  5540. *
  5541. * S[index] The channel index to set
  5542. * P[float] The mix value
  5543. *
  5544. */
  5545. inline void gcode_M163() {
  5546. int mix_index = code_seen('S') ? code_value_int() : 0;
  5547. float mix_value = code_seen('P') ? code_value_float() : 0.0;
  5548. if (mix_index < MIXING_STEPPERS) mixing_factor[mix_index] = mix_value;
  5549. }
  5550. #if MIXING_VIRTUAL_TOOLS > 1
  5551. /**
  5552. * M164: Store the current mix factors as a virtual tool.
  5553. *
  5554. * S[index] The virtual tool to store
  5555. *
  5556. */
  5557. inline void gcode_M164() {
  5558. int tool_index = code_seen('S') ? code_value_int() : 0;
  5559. if (tool_index < MIXING_VIRTUAL_TOOLS) {
  5560. normalize_mix();
  5561. for (uint8_t i = 0; i < MIXING_STEPPERS; i++)
  5562. mixing_virtual_tool_mix[tool_index][i] = mixing_factor[i];
  5563. }
  5564. }
  5565. #endif
  5566. #if ENABLED(DIRECT_MIXING_IN_G1)
  5567. /**
  5568. * M165: Set multiple mix factors for a mixing extruder.
  5569. * Factors that are left out will be set to 0.
  5570. * All factors together must add up to 1.0.
  5571. *
  5572. * A[factor] Mix factor for extruder stepper 1
  5573. * B[factor] Mix factor for extruder stepper 2
  5574. * C[factor] Mix factor for extruder stepper 3
  5575. * D[factor] Mix factor for extruder stepper 4
  5576. * H[factor] Mix factor for extruder stepper 5
  5577. * I[factor] Mix factor for extruder stepper 6
  5578. *
  5579. */
  5580. inline void gcode_M165() { gcode_get_mix(); }
  5581. #endif
  5582. #endif // MIXING_EXTRUDER
  5583. /**
  5584. * M999: Restart after being stopped
  5585. *
  5586. * Default behaviour is to flush the serial buffer and request
  5587. * a resend to the host starting on the last N line received.
  5588. *
  5589. * Sending "M999 S1" will resume printing without flushing the
  5590. * existing command buffer.
  5591. *
  5592. */
  5593. inline void gcode_M999() {
  5594. Running = true;
  5595. lcd_reset_alert_level();
  5596. if (code_seen('S') && code_value_bool()) return;
  5597. // gcode_LastN = Stopped_gcode_LastN;
  5598. FlushSerialRequestResend();
  5599. }
  5600. #if ENABLED(SWITCHING_EXTRUDER)
  5601. inline void move_extruder_servo(uint8_t e) {
  5602. const int angles[2] = SWITCHING_EXTRUDER_SERVO_ANGLES;
  5603. MOVE_SERVO(SWITCHING_EXTRUDER_SERVO_NR, angles[e]);
  5604. }
  5605. #endif
  5606. inline void invalid_extruder_error(const uint8_t &e) {
  5607. SERIAL_ECHO_START;
  5608. SERIAL_CHAR('T');
  5609. SERIAL_PROTOCOL_F(e, DEC);
  5610. SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
  5611. }
  5612. /**
  5613. * Perform a tool-change, which may result in moving the
  5614. * previous tool out of the way and the new tool into place.
  5615. */
  5616. void tool_change(const uint8_t tmp_extruder, const float fr_mm_s/*=0.0*/, bool no_move/*=false*/) {
  5617. #if ENABLED(MIXING_EXTRUDER) && MIXING_VIRTUAL_TOOLS > 1
  5618. if (tmp_extruder >= MIXING_VIRTUAL_TOOLS) {
  5619. invalid_extruder_error(tmp_extruder);
  5620. return;
  5621. }
  5622. // T0-Tnnn: Switch virtual tool by changing the mix
  5623. for (uint8_t j = 0; j < MIXING_STEPPERS; j++)
  5624. mixing_factor[j] = mixing_virtual_tool_mix[tmp_extruder][j];
  5625. #else //!MIXING_EXTRUDER || MIXING_VIRTUAL_TOOLS <= 1
  5626. #if HOTENDS > 1
  5627. if (tmp_extruder >= EXTRUDERS) {
  5628. invalid_extruder_error(tmp_extruder);
  5629. return;
  5630. }
  5631. float old_feedrate_mm_s = feedrate_mm_s;
  5632. feedrate_mm_s = fr_mm_s > 0.0 ? (old_feedrate_mm_s = fr_mm_s) : XY_PROBE_FEEDRATE_MM_S;
  5633. if (tmp_extruder != active_extruder) {
  5634. if (!no_move && axis_unhomed_error(true, true, true)) {
  5635. SERIAL_ECHOLNPGM("No move on toolchange");
  5636. no_move = true;
  5637. }
  5638. // Save current position to destination, for use later
  5639. set_destination_to_current();
  5640. #if ENABLED(DUAL_X_CARRIAGE)
  5641. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5642. if (DEBUGGING(LEVELING)) {
  5643. SERIAL_ECHOPGM("Dual X Carriage Mode ");
  5644. switch (dual_x_carriage_mode) {
  5645. case DXC_DUPLICATION_MODE: SERIAL_ECHOLNPGM("DXC_DUPLICATION_MODE"); break;
  5646. case DXC_AUTO_PARK_MODE: SERIAL_ECHOLNPGM("DXC_AUTO_PARK_MODE"); break;
  5647. case DXC_FULL_CONTROL_MODE: SERIAL_ECHOLNPGM("DXC_FULL_CONTROL_MODE"); break;
  5648. }
  5649. }
  5650. #endif
  5651. if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE && IsRunning() &&
  5652. (delayed_move_time || current_position[X_AXIS] != x_home_pos(active_extruder))
  5653. ) {
  5654. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5655. if (DEBUGGING(LEVELING)) {
  5656. SERIAL_ECHOPAIR("Raise to ", current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT); SERIAL_EOL;
  5657. SERIAL_ECHOPAIR("MoveX to ", x_home_pos(active_extruder)); SERIAL_EOL;
  5658. SERIAL_ECHOPAIR("Lower to ", current_position[Z_AXIS]); SERIAL_EOL;
  5659. }
  5660. #endif
  5661. // Park old head: 1) raise 2) move to park position 3) lower
  5662. for (uint8_t i = 0; i < 3; i++)
  5663. planner.buffer_line(
  5664. i == 0 ? current_position[X_AXIS] : x_home_pos(active_extruder),
  5665. current_position[Y_AXIS],
  5666. current_position[Z_AXIS] + (i == 2 ? 0 : TOOLCHANGE_PARK_ZLIFT),
  5667. current_position[E_AXIS],
  5668. planner.max_feedrate_mm_s[i == 1 ? X_AXIS : Z_AXIS],
  5669. active_extruder
  5670. );
  5671. stepper.synchronize();
  5672. }
  5673. // apply Y & Z extruder offset (x offset is already used in determining home pos)
  5674. current_position[Y_AXIS] -= hotend_offset[Y_AXIS][active_extruder] - hotend_offset[Y_AXIS][tmp_extruder];
  5675. current_position[Z_AXIS] -= hotend_offset[Z_AXIS][active_extruder] - hotend_offset[Z_AXIS][tmp_extruder];
  5676. active_extruder = tmp_extruder;
  5677. // This function resets the max/min values - the current position may be overwritten below.
  5678. set_axis_is_at_home(X_AXIS);
  5679. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5680. if (DEBUGGING(LEVELING)) DEBUG_POS("New Extruder", current_position);
  5681. #endif
  5682. switch (dual_x_carriage_mode) {
  5683. case DXC_FULL_CONTROL_MODE:
  5684. current_position[X_AXIS] = LOGICAL_X_POSITION(inactive_extruder_x_pos);
  5685. inactive_extruder_x_pos = RAW_X_POSITION(destination[X_AXIS]);
  5686. break;
  5687. case DXC_DUPLICATION_MODE:
  5688. active_extruder_parked = (active_extruder == 0); // this triggers the second extruder to move into the duplication position
  5689. if (active_extruder_parked)
  5690. current_position[X_AXIS] = LOGICAL_X_POSITION(inactive_extruder_x_pos);
  5691. else
  5692. current_position[X_AXIS] = destination[X_AXIS] + duplicate_extruder_x_offset;
  5693. inactive_extruder_x_pos = RAW_X_POSITION(destination[X_AXIS]);
  5694. extruder_duplication_enabled = false;
  5695. break;
  5696. default:
  5697. // record raised toolhead position for use by unpark
  5698. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  5699. raised_parked_position[Z_AXIS] += TOOLCHANGE_UNPARK_ZLIFT;
  5700. active_extruder_parked = true;
  5701. delayed_move_time = 0;
  5702. break;
  5703. }
  5704. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5705. if (DEBUGGING(LEVELING)) {
  5706. SERIAL_ECHOLNPAIR("Active extruder parked: ", active_extruder_parked ? "yes" : "no");
  5707. DEBUG_POS("New extruder (parked)", current_position);
  5708. }
  5709. #endif
  5710. // No extra case for AUTO_BED_LEVELING_FEATURE in DUAL_X_CARRIAGE. Does that mean they don't work together?
  5711. #else // !DUAL_X_CARRIAGE
  5712. #if ENABLED(SWITCHING_EXTRUDER)
  5713. // <0 if the new nozzle is higher, >0 if lower. A bigger raise when lower.
  5714. float z_diff = hotend_offset[Z_AXIS][active_extruder] - hotend_offset[Z_AXIS][tmp_extruder],
  5715. z_raise = 0.3 + (z_diff > 0.0 ? z_diff : 0.0);
  5716. // Always raise by some amount
  5717. planner.buffer_line(
  5718. current_position[X_AXIS],
  5719. current_position[Y_AXIS],
  5720. current_position[Z_AXIS] + z_raise,
  5721. current_position[E_AXIS],
  5722. planner.max_feedrate_mm_s[Z_AXIS],
  5723. active_extruder
  5724. );
  5725. stepper.synchronize();
  5726. move_extruder_servo(active_extruder);
  5727. delay(500);
  5728. // Move back down, if needed
  5729. if (z_raise != z_diff) {
  5730. planner.buffer_line(
  5731. current_position[X_AXIS],
  5732. current_position[Y_AXIS],
  5733. current_position[Z_AXIS] + z_diff,
  5734. current_position[E_AXIS],
  5735. planner.max_feedrate_mm_s[Z_AXIS],
  5736. active_extruder
  5737. );
  5738. stepper.synchronize();
  5739. }
  5740. #endif
  5741. /**
  5742. * Set current_position to the position of the new nozzle.
  5743. * Offsets are based on linear distance, so we need to get
  5744. * the resulting position in coordinate space.
  5745. *
  5746. * - With grid or 3-point leveling, offset XYZ by a tilted vector
  5747. * - With mesh leveling, update Z for the new position
  5748. * - Otherwise, just use the raw linear distance
  5749. *
  5750. * Software endstops are altered here too. Consider a case where:
  5751. * E0 at X=0 ... E1 at X=10
  5752. * When we switch to E1 now X=10, but E1 can't move left.
  5753. * To express this we apply the change in XY to the software endstops.
  5754. * E1 can move farther right than E0, so the right limit is extended.
  5755. *
  5756. * Note that we don't adjust the Z software endstops. Why not?
  5757. * Consider a case where Z=0 (here) and switching to E1 makes Z=1
  5758. * because the bed is 1mm lower at the new position. As long as
  5759. * the first nozzle is out of the way, the carriage should be
  5760. * allowed to move 1mm lower. This technically "breaks" the
  5761. * Z software endstop. But this is technically correct (and
  5762. * there is no viable alternative).
  5763. */
  5764. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  5765. // Offset extruder, make sure to apply the bed level rotation matrix
  5766. vector_3 tmp_offset_vec = vector_3(hotend_offset[X_AXIS][tmp_extruder],
  5767. hotend_offset[Y_AXIS][tmp_extruder],
  5768. 0),
  5769. act_offset_vec = vector_3(hotend_offset[X_AXIS][active_extruder],
  5770. hotend_offset[Y_AXIS][active_extruder],
  5771. 0),
  5772. offset_vec = tmp_offset_vec - act_offset_vec;
  5773. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5774. if (DEBUGGING(LEVELING)) {
  5775. tmp_offset_vec.debug("tmp_offset_vec");
  5776. act_offset_vec.debug("act_offset_vec");
  5777. offset_vec.debug("offset_vec (BEFORE)");
  5778. }
  5779. #endif
  5780. offset_vec.apply_rotation(planner.bed_level_matrix.transpose(planner.bed_level_matrix));
  5781. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5782. if (DEBUGGING(LEVELING)) offset_vec.debug("offset_vec (AFTER)");
  5783. #endif
  5784. // Adjustments to the current position
  5785. float xydiff[2] = { offset_vec.x, offset_vec.y };
  5786. current_position[Z_AXIS] += offset_vec.z;
  5787. #else // !AUTO_BED_LEVELING_LINEAR
  5788. float xydiff[2] = {
  5789. hotend_offset[X_AXIS][tmp_extruder] - hotend_offset[X_AXIS][active_extruder],
  5790. hotend_offset[Y_AXIS][tmp_extruder] - hotend_offset[Y_AXIS][active_extruder]
  5791. };
  5792. #if ENABLED(MESH_BED_LEVELING)
  5793. if (mbl.active()) {
  5794. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5795. if (DEBUGGING(LEVELING)) SERIAL_ECHOPAIR("Z before MBL: ", current_position[Z_AXIS]);
  5796. #endif
  5797. float xpos = RAW_CURRENT_POSITION(X_AXIS),
  5798. ypos = RAW_CURRENT_POSITION(Y_AXIS);
  5799. current_position[Z_AXIS] += mbl.get_z(xpos + xydiff[X_AXIS], ypos + xydiff[Y_AXIS]) - mbl.get_z(xpos, ypos);
  5800. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5801. if (DEBUGGING(LEVELING))
  5802. SERIAL_ECHOLNPAIR(" after: ", current_position[Z_AXIS]);
  5803. #endif
  5804. }
  5805. #endif // MESH_BED_LEVELING
  5806. #endif // !AUTO_BED_LEVELING_FEATURE
  5807. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5808. if (DEBUGGING(LEVELING)) {
  5809. SERIAL_ECHOPAIR("Offset Tool XY by { ", xydiff[X_AXIS]);
  5810. SERIAL_ECHOPAIR(", ", xydiff[Y_AXIS]);
  5811. SERIAL_ECHOLNPGM(" }");
  5812. }
  5813. #endif
  5814. // The newly-selected extruder XY is actually at...
  5815. current_position[X_AXIS] += xydiff[X_AXIS];
  5816. current_position[Y_AXIS] += xydiff[Y_AXIS];
  5817. for (uint8_t i = X_AXIS; i <= Y_AXIS; i++) {
  5818. position_shift[i] += xydiff[i];
  5819. update_software_endstops((AxisEnum)i);
  5820. }
  5821. // Set the new active extruder
  5822. active_extruder = tmp_extruder;
  5823. #endif // !DUAL_X_CARRIAGE
  5824. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5825. if (DEBUGGING(LEVELING)) DEBUG_POS("Sync After Toolchange", current_position);
  5826. #endif
  5827. // Tell the planner the new "current position"
  5828. SYNC_PLAN_POSITION_KINEMATIC();
  5829. // Move to the "old position" (move the extruder into place)
  5830. if (!no_move && IsRunning()) {
  5831. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5832. if (DEBUGGING(LEVELING)) DEBUG_POS("Move back", destination);
  5833. #endif
  5834. prepare_move_to_destination();
  5835. }
  5836. } // (tmp_extruder != active_extruder)
  5837. stepper.synchronize();
  5838. #if ENABLED(EXT_SOLENOID)
  5839. disable_all_solenoids();
  5840. enable_solenoid_on_active_extruder();
  5841. #endif // EXT_SOLENOID
  5842. feedrate_mm_s = old_feedrate_mm_s;
  5843. #else // HOTENDS <= 1
  5844. // Set the new active extruder
  5845. active_extruder = tmp_extruder;
  5846. UNUSED(fr_mm_s);
  5847. UNUSED(no_move);
  5848. #endif // HOTENDS <= 1
  5849. SERIAL_ECHO_START;
  5850. SERIAL_ECHOLNPAIR(MSG_ACTIVE_EXTRUDER, (int)active_extruder);
  5851. #endif //!MIXING_EXTRUDER || MIXING_VIRTUAL_TOOLS <= 1
  5852. }
  5853. /**
  5854. * T0-T3: Switch tool, usually switching extruders
  5855. *
  5856. * F[units/min] Set the movement feedrate
  5857. * S1 Don't move the tool in XY after change
  5858. */
  5859. inline void gcode_T(uint8_t tmp_extruder) {
  5860. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5861. if (DEBUGGING(LEVELING)) {
  5862. SERIAL_ECHOPAIR(">>> gcode_T(", tmp_extruder);
  5863. SERIAL_ECHOLNPGM(")");
  5864. DEBUG_POS("BEFORE", current_position);
  5865. }
  5866. #endif
  5867. #if HOTENDS == 1 || (ENABLED(MIXING_EXTRUDER) && MIXING_VIRTUAL_TOOLS > 1)
  5868. tool_change(tmp_extruder);
  5869. #elif HOTENDS > 1
  5870. tool_change(
  5871. tmp_extruder,
  5872. code_seen('F') ? MMM_TO_MMS(code_value_axis_units(X_AXIS)) : 0.0,
  5873. (tmp_extruder == active_extruder) || (code_seen('S') && code_value_bool())
  5874. );
  5875. #endif
  5876. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5877. if (DEBUGGING(LEVELING)) {
  5878. DEBUG_POS("AFTER", current_position);
  5879. SERIAL_ECHOLNPGM("<<< gcode_T");
  5880. }
  5881. #endif
  5882. }
  5883. /**
  5884. * Process a single command and dispatch it to its handler
  5885. * This is called from the main loop()
  5886. */
  5887. void process_next_command() {
  5888. current_command = command_queue[cmd_queue_index_r];
  5889. if (DEBUGGING(ECHO)) {
  5890. SERIAL_ECHO_START;
  5891. SERIAL_ECHOLN(current_command);
  5892. }
  5893. // Sanitize the current command:
  5894. // - Skip leading spaces
  5895. // - Bypass N[-0-9][0-9]*[ ]*
  5896. // - Overwrite * with nul to mark the end
  5897. while (*current_command == ' ') ++current_command;
  5898. if (*current_command == 'N' && NUMERIC_SIGNED(current_command[1])) {
  5899. current_command += 2; // skip N[-0-9]
  5900. while (NUMERIC(*current_command)) ++current_command; // skip [0-9]*
  5901. while (*current_command == ' ') ++current_command; // skip [ ]*
  5902. }
  5903. char* starpos = strchr(current_command, '*'); // * should always be the last parameter
  5904. if (starpos) while (*starpos == ' ' || *starpos == '*') *starpos-- = '\0'; // nullify '*' and ' '
  5905. char *cmd_ptr = current_command;
  5906. // Get the command code, which must be G, M, or T
  5907. char command_code = *cmd_ptr++;
  5908. // Skip spaces to get the numeric part
  5909. while (*cmd_ptr == ' ') cmd_ptr++;
  5910. uint16_t codenum = 0; // define ahead of goto
  5911. // Bail early if there's no code
  5912. bool code_is_good = NUMERIC(*cmd_ptr);
  5913. if (!code_is_good) goto ExitUnknownCommand;
  5914. // Get and skip the code number
  5915. do {
  5916. codenum = (codenum * 10) + (*cmd_ptr - '0');
  5917. cmd_ptr++;
  5918. } while (NUMERIC(*cmd_ptr));
  5919. // Skip all spaces to get to the first argument, or nul
  5920. while (*cmd_ptr == ' ') cmd_ptr++;
  5921. // The command's arguments (if any) start here, for sure!
  5922. current_command_args = cmd_ptr;
  5923. KEEPALIVE_STATE(IN_HANDLER);
  5924. // Handle a known G, M, or T
  5925. switch (command_code) {
  5926. case 'G': switch (codenum) {
  5927. // G0, G1
  5928. case 0:
  5929. case 1:
  5930. #if IS_SCARA
  5931. gcode_G0_G1(codenum == 0);
  5932. #else
  5933. gcode_G0_G1();
  5934. #endif
  5935. break;
  5936. // G2, G3
  5937. #if ENABLED(ARC_SUPPORT) && DISABLED(SCARA)
  5938. case 2: // G2 - CW ARC
  5939. case 3: // G3 - CCW ARC
  5940. gcode_G2_G3(codenum == 2);
  5941. break;
  5942. #endif
  5943. // G4 Dwell
  5944. case 4:
  5945. gcode_G4();
  5946. break;
  5947. #if ENABLED(BEZIER_CURVE_SUPPORT)
  5948. // G5
  5949. case 5: // G5 - Cubic B_spline
  5950. gcode_G5();
  5951. break;
  5952. #endif // BEZIER_CURVE_SUPPORT
  5953. #if ENABLED(FWRETRACT)
  5954. case 10: // G10: retract
  5955. case 11: // G11: retract_recover
  5956. gcode_G10_G11(codenum == 10);
  5957. break;
  5958. #endif // FWRETRACT
  5959. #if ENABLED(NOZZLE_CLEAN_FEATURE)
  5960. case 12:
  5961. gcode_G12(); // G12: Nozzle Clean
  5962. break;
  5963. #endif // NOZZLE_CLEAN_FEATURE
  5964. #if ENABLED(INCH_MODE_SUPPORT)
  5965. case 20: //G20: Inch Mode
  5966. gcode_G20();
  5967. break;
  5968. case 21: //G21: MM Mode
  5969. gcode_G21();
  5970. break;
  5971. #endif // INCH_MODE_SUPPORT
  5972. #if ENABLED(NOZZLE_PARK_FEATURE)
  5973. case 27: // G27: Nozzle Park
  5974. gcode_G27();
  5975. break;
  5976. #endif // NOZZLE_PARK_FEATURE
  5977. case 28: // G28: Home all axes, one at a time
  5978. gcode_G28();
  5979. break;
  5980. #if ENABLED(AUTO_BED_LEVELING_FEATURE) || ENABLED(MESH_BED_LEVELING)
  5981. case 29: // G29 Detailed Z probe, probes the bed at 3 or more points.
  5982. gcode_G29();
  5983. break;
  5984. #endif // AUTO_BED_LEVELING_FEATURE
  5985. #if HAS_BED_PROBE
  5986. case 30: // G30 Single Z probe
  5987. gcode_G30();
  5988. break;
  5989. #if ENABLED(Z_PROBE_SLED)
  5990. case 31: // G31: dock the sled
  5991. gcode_G31();
  5992. break;
  5993. case 32: // G32: undock the sled
  5994. gcode_G32();
  5995. break;
  5996. #endif // Z_PROBE_SLED
  5997. #endif // HAS_BED_PROBE
  5998. case 90: // G90
  5999. relative_mode = false;
  6000. break;
  6001. case 91: // G91
  6002. relative_mode = true;
  6003. break;
  6004. case 92: // G92
  6005. gcode_G92();
  6006. break;
  6007. }
  6008. break;
  6009. case 'M': switch (codenum) {
  6010. #if ENABLED(ULTIPANEL) || ENABLED(EMERGENCY_PARSER)
  6011. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  6012. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  6013. gcode_M0_M1();
  6014. break;
  6015. #endif // ULTIPANEL
  6016. case 17:
  6017. gcode_M17();
  6018. break;
  6019. #if ENABLED(SDSUPPORT)
  6020. case 20: // M20 - list SD card
  6021. gcode_M20(); break;
  6022. case 21: // M21 - init SD card
  6023. gcode_M21(); break;
  6024. case 22: //M22 - release SD card
  6025. gcode_M22(); break;
  6026. case 23: //M23 - Select file
  6027. gcode_M23(); break;
  6028. case 24: //M24 - Start SD print
  6029. gcode_M24(); break;
  6030. case 25: //M25 - Pause SD print
  6031. gcode_M25(); break;
  6032. case 26: //M26 - Set SD index
  6033. gcode_M26(); break;
  6034. case 27: //M27 - Get SD status
  6035. gcode_M27(); break;
  6036. case 28: //M28 - Start SD write
  6037. gcode_M28(); break;
  6038. case 29: //M29 - Stop SD write
  6039. gcode_M29(); break;
  6040. case 30: //M30 <filename> Delete File
  6041. gcode_M30(); break;
  6042. case 32: //M32 - Select file and start SD print
  6043. gcode_M32(); break;
  6044. #if ENABLED(LONG_FILENAME_HOST_SUPPORT)
  6045. case 33: //M33 - Get the long full path to a file or folder
  6046. gcode_M33(); break;
  6047. #endif // LONG_FILENAME_HOST_SUPPORT
  6048. case 928: //M928 - Start SD write
  6049. gcode_M928(); break;
  6050. #endif //SDSUPPORT
  6051. case 31: //M31 take time since the start of the SD print or an M109 command
  6052. gcode_M31();
  6053. break;
  6054. case 42: //M42 -Change pin status via gcode
  6055. gcode_M42();
  6056. break;
  6057. #if ENABLED(Z_MIN_PROBE_REPEATABILITY_TEST)
  6058. case 48: // M48 Z probe repeatability
  6059. gcode_M48();
  6060. break;
  6061. #endif // Z_MIN_PROBE_REPEATABILITY_TEST
  6062. case 75: // Start print timer
  6063. gcode_M75();
  6064. break;
  6065. case 76: // Pause print timer
  6066. gcode_M76();
  6067. break;
  6068. case 77: // Stop print timer
  6069. gcode_M77();
  6070. break;
  6071. #if ENABLED(PRINTCOUNTER)
  6072. case 78: // Show print statistics
  6073. gcode_M78();
  6074. break;
  6075. #endif
  6076. #if ENABLED(M100_FREE_MEMORY_WATCHER)
  6077. case 100:
  6078. gcode_M100();
  6079. break;
  6080. #endif
  6081. case 104: // M104
  6082. gcode_M104();
  6083. break;
  6084. case 110: // M110: Set Current Line Number
  6085. gcode_M110();
  6086. break;
  6087. case 111: // M111: Set debug level
  6088. gcode_M111();
  6089. break;
  6090. #if DISABLED(EMERGENCY_PARSER)
  6091. case 108: // M108: Cancel Waiting
  6092. gcode_M108();
  6093. break;
  6094. case 112: // M112: Emergency Stop
  6095. gcode_M112();
  6096. break;
  6097. case 410: // M410 quickstop - Abort all the planned moves.
  6098. gcode_M410();
  6099. break;
  6100. #endif
  6101. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  6102. case 113: // M113: Set Host Keepalive interval
  6103. gcode_M113();
  6104. break;
  6105. #endif
  6106. case 140: // M140: Set bed temp
  6107. gcode_M140();
  6108. break;
  6109. case 105: // M105: Read current temperature
  6110. gcode_M105();
  6111. KEEPALIVE_STATE(NOT_BUSY);
  6112. return; // "ok" already printed
  6113. case 109: // M109: Wait for temperature
  6114. gcode_M109();
  6115. break;
  6116. #if HAS_TEMP_BED
  6117. case 190: // M190: Wait for bed heater to reach target
  6118. gcode_M190();
  6119. break;
  6120. #endif // HAS_TEMP_BED
  6121. #if FAN_COUNT > 0
  6122. case 106: // M106: Fan On
  6123. gcode_M106();
  6124. break;
  6125. case 107: // M107: Fan Off
  6126. gcode_M107();
  6127. break;
  6128. #endif // FAN_COUNT > 0
  6129. #if ENABLED(BARICUDA)
  6130. // PWM for HEATER_1_PIN
  6131. #if HAS_HEATER_1
  6132. case 126: // M126: valve open
  6133. gcode_M126();
  6134. break;
  6135. case 127: // M127: valve closed
  6136. gcode_M127();
  6137. break;
  6138. #endif // HAS_HEATER_1
  6139. // PWM for HEATER_2_PIN
  6140. #if HAS_HEATER_2
  6141. case 128: // M128: valve open
  6142. gcode_M128();
  6143. break;
  6144. case 129: // M129: valve closed
  6145. gcode_M129();
  6146. break;
  6147. #endif // HAS_HEATER_2
  6148. #endif // BARICUDA
  6149. #if HAS_POWER_SWITCH
  6150. case 80: // M80: Turn on Power Supply
  6151. gcode_M80();
  6152. break;
  6153. #endif // HAS_POWER_SWITCH
  6154. case 81: // M81: Turn off Power, including Power Supply, if possible
  6155. gcode_M81();
  6156. break;
  6157. case 82:
  6158. gcode_M82();
  6159. break;
  6160. case 83:
  6161. gcode_M83();
  6162. break;
  6163. case 18: // (for compatibility)
  6164. case 84: // M84
  6165. gcode_M18_M84();
  6166. break;
  6167. case 85: // M85
  6168. gcode_M85();
  6169. break;
  6170. case 92: // M92: Set the steps-per-unit for one or more axes
  6171. gcode_M92();
  6172. break;
  6173. case 115: // M115: Report capabilities
  6174. gcode_M115();
  6175. break;
  6176. case 117: // M117: Set LCD message text, if possible
  6177. gcode_M117();
  6178. break;
  6179. case 114: // M114: Report current position
  6180. gcode_M114();
  6181. break;
  6182. case 120: // M120: Enable endstops
  6183. gcode_M120();
  6184. break;
  6185. case 121: // M121: Disable endstops
  6186. gcode_M121();
  6187. break;
  6188. case 119: // M119: Report endstop states
  6189. gcode_M119();
  6190. break;
  6191. #if ENABLED(ULTIPANEL)
  6192. case 145: // M145: Set material heatup parameters
  6193. gcode_M145();
  6194. break;
  6195. #endif
  6196. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  6197. case 149:
  6198. gcode_M149();
  6199. break;
  6200. #endif
  6201. #if ENABLED(BLINKM)
  6202. case 150: // M150
  6203. gcode_M150();
  6204. break;
  6205. #endif //BLINKM
  6206. #if ENABLED(EXPERIMENTAL_I2CBUS)
  6207. case 155:
  6208. gcode_M155();
  6209. break;
  6210. case 156:
  6211. gcode_M156();
  6212. break;
  6213. #endif //EXPERIMENTAL_I2CBUS
  6214. #if ENABLED(MIXING_EXTRUDER)
  6215. case 163: // M163 S<int> P<float> set weight for a mixing extruder
  6216. gcode_M163();
  6217. break;
  6218. #if MIXING_VIRTUAL_TOOLS > 1
  6219. case 164: // M164 S<int> save current mix as a virtual extruder
  6220. gcode_M164();
  6221. break;
  6222. #endif
  6223. #if ENABLED(DIRECT_MIXING_IN_G1)
  6224. case 165: // M165 [ABCDHI]<float> set multiple mix weights
  6225. gcode_M165();
  6226. break;
  6227. #endif
  6228. #endif
  6229. case 200: // M200 D<diameter> Set filament diameter and set E axis units to cubic. (Use S0 to revert to linear units.)
  6230. gcode_M200();
  6231. break;
  6232. case 201: // M201
  6233. gcode_M201();
  6234. break;
  6235. #if 0 // Not used for Sprinter/grbl gen6
  6236. case 202: // M202
  6237. gcode_M202();
  6238. break;
  6239. #endif
  6240. case 203: // M203 max feedrate units/sec
  6241. gcode_M203();
  6242. break;
  6243. case 204: // M204 acclereration S normal moves T filmanent only moves
  6244. gcode_M204();
  6245. break;
  6246. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  6247. gcode_M205();
  6248. break;
  6249. case 206: // M206 additional homing offset
  6250. gcode_M206();
  6251. break;
  6252. #if ENABLED(DELTA)
  6253. case 665: // M665 set delta configurations L<diagonal_rod> R<delta_radius> S<segments_per_sec>
  6254. gcode_M665();
  6255. break;
  6256. #endif
  6257. #if ENABLED(DELTA) || ENABLED(Z_DUAL_ENDSTOPS)
  6258. case 666: // M666 set delta / dual endstop adjustment
  6259. gcode_M666();
  6260. break;
  6261. #endif
  6262. #if ENABLED(FWRETRACT)
  6263. case 207: // M207 - Set Retract Length: S<length>, Feedrate: F<units/min>, and Z lift: Z<distance>
  6264. gcode_M207();
  6265. break;
  6266. case 208: // M208 - Set Recover (unretract) Additional (!) Length: S<length> and Feedrate: F<units/min>
  6267. gcode_M208();
  6268. break;
  6269. case 209: // M209 - Turn Automatic Retract Detection on/off: S<bool> (For slicers that don't support G10/11). Every normal extrude-only move will be classified as retract depending on the direction.
  6270. gcode_M209();
  6271. break;
  6272. #endif // FWRETRACT
  6273. case 211: // M211 - Enable, Disable, and/or Report software endstops
  6274. gcode_M211();
  6275. break;
  6276. #if HOTENDS > 1
  6277. case 218: // M218 - Set a tool offset: T<index> X<offset> Y<offset>
  6278. gcode_M218();
  6279. break;
  6280. #endif
  6281. case 220: // M220 - Set Feedrate Percentage: S<percent> ("FR" on your LCD)
  6282. gcode_M220();
  6283. break;
  6284. case 221: // M221 - Set Flow Percentage: S<percent>
  6285. gcode_M221();
  6286. break;
  6287. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  6288. gcode_M226();
  6289. break;
  6290. #if HAS_SERVOS
  6291. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  6292. gcode_M280();
  6293. break;
  6294. #endif // HAS_SERVOS
  6295. #if HAS_BUZZER
  6296. case 300: // M300 - Play beep tone
  6297. gcode_M300();
  6298. break;
  6299. #endif // HAS_BUZZER
  6300. #if ENABLED(PIDTEMP)
  6301. case 301: // M301
  6302. gcode_M301();
  6303. break;
  6304. #endif // PIDTEMP
  6305. #if ENABLED(PIDTEMPBED)
  6306. case 304: // M304
  6307. gcode_M304();
  6308. break;
  6309. #endif // PIDTEMPBED
  6310. #if defined(CHDK) || HAS_PHOTOGRAPH
  6311. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  6312. gcode_M240();
  6313. break;
  6314. #endif // CHDK || PHOTOGRAPH_PIN
  6315. #if HAS_LCD_CONTRAST
  6316. case 250: // M250 Set LCD contrast value: C<value> (value 0..63)
  6317. gcode_M250();
  6318. break;
  6319. #endif // HAS_LCD_CONTRAST
  6320. #if ENABLED(PREVENT_COLD_EXTRUSION)
  6321. case 302: // allow cold extrudes, or set the minimum extrude temperature
  6322. gcode_M302();
  6323. break;
  6324. #endif // PREVENT_COLD_EXTRUSION
  6325. case 303: // M303 PID autotune
  6326. gcode_M303();
  6327. break;
  6328. #if ENABLED(MORGAN_SCARA)
  6329. case 360: // M360 SCARA Theta pos1
  6330. if (gcode_M360()) return;
  6331. break;
  6332. case 361: // M361 SCARA Theta pos2
  6333. if (gcode_M361()) return;
  6334. break;
  6335. case 362: // M362 SCARA Psi pos1
  6336. if (gcode_M362()) return;
  6337. break;
  6338. case 363: // M363 SCARA Psi pos2
  6339. if (gcode_M363()) return;
  6340. break;
  6341. case 364: // M364 SCARA Psi pos3 (90 deg to Theta)
  6342. if (gcode_M364()) return;
  6343. break;
  6344. #endif // SCARA
  6345. case 400: // M400 finish all moves
  6346. gcode_M400();
  6347. break;
  6348. #if HAS_BED_PROBE
  6349. case 401:
  6350. gcode_M401();
  6351. break;
  6352. case 402:
  6353. gcode_M402();
  6354. break;
  6355. #endif // HAS_BED_PROBE
  6356. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  6357. case 404: //M404 Enter the nominal filament width (3mm, 1.75mm ) N<3.0> or display nominal filament width
  6358. gcode_M404();
  6359. break;
  6360. case 405: //M405 Turn on filament sensor for control
  6361. gcode_M405();
  6362. break;
  6363. case 406: //M406 Turn off filament sensor for control
  6364. gcode_M406();
  6365. break;
  6366. case 407: //M407 Display measured filament diameter
  6367. gcode_M407();
  6368. break;
  6369. #endif // ENABLED(FILAMENT_WIDTH_SENSOR)
  6370. #if ENABLED(MESH_BED_LEVELING)
  6371. case 420: // M420 Enable/Disable Mesh Bed Leveling
  6372. gcode_M420();
  6373. break;
  6374. case 421: // M421 Set a Mesh Bed Leveling Z coordinate
  6375. gcode_M421();
  6376. break;
  6377. #endif
  6378. case 428: // M428 Apply current_position to home_offset
  6379. gcode_M428();
  6380. break;
  6381. case 500: // M500 Store settings in EEPROM
  6382. gcode_M500();
  6383. break;
  6384. case 501: // M501 Read settings from EEPROM
  6385. gcode_M501();
  6386. break;
  6387. case 502: // M502 Revert to default settings
  6388. gcode_M502();
  6389. break;
  6390. case 503: // M503 print settings currently in memory
  6391. gcode_M503();
  6392. break;
  6393. #if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  6394. case 540:
  6395. gcode_M540();
  6396. break;
  6397. #endif
  6398. #if HAS_BED_PROBE
  6399. case 851:
  6400. gcode_M851();
  6401. break;
  6402. #endif // HAS_BED_PROBE
  6403. #if ENABLED(FILAMENT_CHANGE_FEATURE)
  6404. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  6405. gcode_M600();
  6406. break;
  6407. #endif // FILAMENT_CHANGE_FEATURE
  6408. #if ENABLED(DUAL_X_CARRIAGE)
  6409. case 605:
  6410. gcode_M605();
  6411. break;
  6412. #endif // DUAL_X_CARRIAGE
  6413. #if ENABLED(LIN_ADVANCE)
  6414. case 905: // M905 Set advance factor.
  6415. gcode_M905();
  6416. break;
  6417. #endif
  6418. case 907: // M907 Set digital trimpot motor current using axis codes.
  6419. gcode_M907();
  6420. break;
  6421. #if HAS_DIGIPOTSS || ENABLED(DAC_STEPPER_CURRENT)
  6422. case 908: // M908 Control digital trimpot directly.
  6423. gcode_M908();
  6424. break;
  6425. #if ENABLED(DAC_STEPPER_CURRENT) // As with Printrbot RevF
  6426. case 909: // M909 Print digipot/DAC current value
  6427. gcode_M909();
  6428. break;
  6429. case 910: // M910 Commit digipot/DAC value to external EEPROM
  6430. gcode_M910();
  6431. break;
  6432. #endif
  6433. #endif // HAS_DIGIPOTSS || DAC_STEPPER_CURRENT
  6434. #if HAS_MICROSTEPS
  6435. case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  6436. gcode_M350();
  6437. break;
  6438. case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  6439. gcode_M351();
  6440. break;
  6441. #endif // HAS_MICROSTEPS
  6442. case 999: // M999: Restart after being Stopped
  6443. gcode_M999();
  6444. break;
  6445. }
  6446. break;
  6447. case 'T':
  6448. gcode_T(codenum);
  6449. break;
  6450. default: code_is_good = false;
  6451. }
  6452. KEEPALIVE_STATE(NOT_BUSY);
  6453. ExitUnknownCommand:
  6454. // Still unknown command? Throw an error
  6455. if (!code_is_good) unknown_command_error();
  6456. ok_to_send();
  6457. }
  6458. /**
  6459. * Send a "Resend: nnn" message to the host to
  6460. * indicate that a command needs to be re-sent.
  6461. */
  6462. void FlushSerialRequestResend() {
  6463. //char command_queue[cmd_queue_index_r][100]="Resend:";
  6464. MYSERIAL.flush();
  6465. SERIAL_PROTOCOLPGM(MSG_RESEND);
  6466. SERIAL_PROTOCOLLN(gcode_LastN + 1);
  6467. ok_to_send();
  6468. }
  6469. /**
  6470. * Send an "ok" message to the host, indicating
  6471. * that a command was successfully processed.
  6472. *
  6473. * If ADVANCED_OK is enabled also include:
  6474. * N<int> Line number of the command, if any
  6475. * P<int> Planner space remaining
  6476. * B<int> Block queue space remaining
  6477. */
  6478. void ok_to_send() {
  6479. refresh_cmd_timeout();
  6480. if (!send_ok[cmd_queue_index_r]) return;
  6481. SERIAL_PROTOCOLPGM(MSG_OK);
  6482. #if ENABLED(ADVANCED_OK)
  6483. char* p = command_queue[cmd_queue_index_r];
  6484. if (*p == 'N') {
  6485. SERIAL_PROTOCOL(' ');
  6486. SERIAL_ECHO(*p++);
  6487. while (NUMERIC_SIGNED(*p))
  6488. SERIAL_ECHO(*p++);
  6489. }
  6490. SERIAL_PROTOCOLPGM(" P"); SERIAL_PROTOCOL(int(BLOCK_BUFFER_SIZE - planner.movesplanned() - 1));
  6491. SERIAL_PROTOCOLPGM(" B"); SERIAL_PROTOCOL(BUFSIZE - commands_in_queue);
  6492. #endif
  6493. SERIAL_EOL;
  6494. }
  6495. #if ENABLED(min_software_endstops) || ENABLED(max_software_endstops)
  6496. /**
  6497. * Constrain the given coordinates to the software endstops.
  6498. */
  6499. void clamp_to_software_endstops(float target[XYZ]) {
  6500. #if ENABLED(min_software_endstops)
  6501. NOLESS(target[X_AXIS], soft_endstop_min[X_AXIS]);
  6502. NOLESS(target[Y_AXIS], soft_endstop_min[Y_AXIS]);
  6503. NOLESS(target[Z_AXIS], soft_endstop_min[Z_AXIS]);
  6504. #endif
  6505. #if ENABLED(max_software_endstops)
  6506. NOMORE(target[X_AXIS], soft_endstop_max[X_AXIS]);
  6507. NOMORE(target[Y_AXIS], soft_endstop_max[Y_AXIS]);
  6508. NOMORE(target[Z_AXIS], soft_endstop_max[Z_AXIS]);
  6509. #endif
  6510. }
  6511. #endif
  6512. #if ENABLED(AUTO_BED_LEVELING_NONLINEAR)
  6513. // Get the Z adjustment for non-linear bed leveling
  6514. float nonlinear_z_offset(float cartesian[XYZ]) {
  6515. if (nonlinear_grid_spacing[X_AXIS] == 0 || nonlinear_grid_spacing[Y_AXIS] == 0) return 0; // G29 not done!
  6516. int half_x = (ABL_GRID_POINTS_X - 1) / 2,
  6517. half_y = (ABL_GRID_POINTS_Y - 1) / 2;
  6518. float hx2 = half_x - 0.001, hx1 = -hx2,
  6519. hy2 = half_y - 0.001, hy1 = -hy2,
  6520. grid_x = max(hx1, min(hx2, RAW_X_POSITION(cartesian[X_AXIS]) / nonlinear_grid_spacing[X_AXIS])),
  6521. grid_y = max(hy1, min(hy2, RAW_Y_POSITION(cartesian[Y_AXIS]) / nonlinear_grid_spacing[Y_AXIS]));
  6522. int floor_x = floor(grid_x), floor_y = floor(grid_y);
  6523. float ratio_x = grid_x - floor_x, ratio_y = grid_y - floor_y,
  6524. z1 = bed_level_grid[floor_x + half_x][floor_y + half_y],
  6525. z2 = bed_level_grid[floor_x + half_x][floor_y + half_y + 1],
  6526. z3 = bed_level_grid[floor_x + half_x + 1][floor_y + half_y],
  6527. z4 = bed_level_grid[floor_x + half_x + 1][floor_y + half_y + 1],
  6528. left = (1 - ratio_y) * z1 + ratio_y * z2,
  6529. right = (1 - ratio_y) * z3 + ratio_y * z4;
  6530. /*
  6531. SERIAL_ECHOPAIR("grid_x=", grid_x);
  6532. SERIAL_ECHOPAIR(" grid_y=", grid_y);
  6533. SERIAL_ECHOPAIR(" floor_x=", floor_x);
  6534. SERIAL_ECHOPAIR(" floor_y=", floor_y);
  6535. SERIAL_ECHOPAIR(" ratio_x=", ratio_x);
  6536. SERIAL_ECHOPAIR(" ratio_y=", ratio_y);
  6537. SERIAL_ECHOPAIR(" z1=", z1);
  6538. SERIAL_ECHOPAIR(" z2=", z2);
  6539. SERIAL_ECHOPAIR(" z3=", z3);
  6540. SERIAL_ECHOPAIR(" z4=", z4);
  6541. SERIAL_ECHOPAIR(" left=", left);
  6542. SERIAL_ECHOPAIR(" right=", right);
  6543. SERIAL_ECHOPAIR(" offset=", (1 - ratio_x) * left + ratio_x * right);
  6544. //*/
  6545. return (1 - ratio_x) * left + ratio_x * right;
  6546. }
  6547. #endif // AUTO_BED_LEVELING_NONLINEAR
  6548. #if ENABLED(DELTA)
  6549. /**
  6550. * Recalculate factors used for delta kinematics whenever
  6551. * settings have been changed (e.g., by M665).
  6552. */
  6553. void recalc_delta_settings(float radius, float diagonal_rod) {
  6554. delta_tower1_x = -SIN_60 * (radius + DELTA_RADIUS_TRIM_TOWER_1); // front left tower
  6555. delta_tower1_y = -COS_60 * (radius + DELTA_RADIUS_TRIM_TOWER_1);
  6556. delta_tower2_x = SIN_60 * (radius + DELTA_RADIUS_TRIM_TOWER_2); // front right tower
  6557. delta_tower2_y = -COS_60 * (radius + DELTA_RADIUS_TRIM_TOWER_2);
  6558. delta_tower3_x = 0.0; // back middle tower
  6559. delta_tower3_y = (radius + DELTA_RADIUS_TRIM_TOWER_3);
  6560. delta_diagonal_rod_2_tower_1 = sq(diagonal_rod + delta_diagonal_rod_trim_tower_1);
  6561. delta_diagonal_rod_2_tower_2 = sq(diagonal_rod + delta_diagonal_rod_trim_tower_2);
  6562. delta_diagonal_rod_2_tower_3 = sq(diagonal_rod + delta_diagonal_rod_trim_tower_3);
  6563. }
  6564. #if ENABLED(DELTA_FAST_SQRT)
  6565. /**
  6566. * Fast inverse sqrt from Quake III Arena
  6567. * See: https://en.wikipedia.org/wiki/Fast_inverse_square_root
  6568. */
  6569. float Q_rsqrt(float number) {
  6570. long i;
  6571. float x2, y;
  6572. const float threehalfs = 1.5f;
  6573. x2 = number * 0.5f;
  6574. y = number;
  6575. i = * ( long * ) &y; // evil floating point bit level hacking
  6576. i = 0x5f3759df - ( i >> 1 ); // what the f***?
  6577. y = * ( float * ) &i;
  6578. y = y * ( threehalfs - ( x2 * y * y ) ); // 1st iteration
  6579. // y = y * ( threehalfs - ( x2 * y * y ) ); // 2nd iteration, this can be removed
  6580. return y;
  6581. }
  6582. #define _SQRT(n) (1.0f / Q_rsqrt(n))
  6583. #else
  6584. #define _SQRT(n) sqrt(n)
  6585. #endif
  6586. /**
  6587. * Delta Inverse Kinematics
  6588. *
  6589. * Calculate the tower positions for a given logical
  6590. * position, storing the result in the delta[] array.
  6591. *
  6592. * This is an expensive calculation, requiring 3 square
  6593. * roots per segmented linear move, and strains the limits
  6594. * of a Mega2560 with a Graphical Display.
  6595. *
  6596. * Suggested optimizations include:
  6597. *
  6598. * - Disable the home_offset (M206) and/or position_shift (G92)
  6599. * features to remove up to 12 float additions.
  6600. *
  6601. * - Use a fast-inverse-sqrt function and add the reciprocal.
  6602. * (see above)
  6603. */
  6604. // Macro to obtain the Z position of an individual tower
  6605. #define DELTA_Z(T) raw[Z_AXIS] + _SQRT( \
  6606. delta_diagonal_rod_2_tower_##T - HYPOT2( \
  6607. delta_tower##T##_x - raw[X_AXIS], \
  6608. delta_tower##T##_y - raw[Y_AXIS] \
  6609. ) \
  6610. )
  6611. #define DELTA_LOGICAL_IK() do { \
  6612. const float raw[XYZ] = { \
  6613. RAW_X_POSITION(logical[X_AXIS]), \
  6614. RAW_Y_POSITION(logical[Y_AXIS]), \
  6615. RAW_Z_POSITION(logical[Z_AXIS]) \
  6616. }; \
  6617. delta[A_AXIS] = DELTA_Z(1); \
  6618. delta[B_AXIS] = DELTA_Z(2); \
  6619. delta[C_AXIS] = DELTA_Z(3); \
  6620. } while(0)
  6621. #define DELTA_DEBUG() do { \
  6622. SERIAL_ECHOPAIR("cartesian X:", raw[X_AXIS]); \
  6623. SERIAL_ECHOPAIR(" Y:", raw[Y_AXIS]); \
  6624. SERIAL_ECHOLNPAIR(" Z:", raw[Z_AXIS]); \
  6625. SERIAL_ECHOPAIR("delta A:", delta[A_AXIS]); \
  6626. SERIAL_ECHOPAIR(" B:", delta[B_AXIS]); \
  6627. SERIAL_ECHOLNPAIR(" C:", delta[C_AXIS]); \
  6628. } while(0)
  6629. void inverse_kinematics(const float logical[XYZ]) {
  6630. DELTA_LOGICAL_IK();
  6631. // DELTA_DEBUG();
  6632. }
  6633. /**
  6634. * Calculate the highest Z position where the
  6635. * effector has the full range of XY motion.
  6636. */
  6637. float delta_safe_distance_from_top() {
  6638. float cartesian[XYZ] = {
  6639. LOGICAL_X_POSITION(0),
  6640. LOGICAL_Y_POSITION(0),
  6641. LOGICAL_Z_POSITION(0)
  6642. };
  6643. inverse_kinematics(cartesian);
  6644. float distance = delta[A_AXIS];
  6645. cartesian[Y_AXIS] = LOGICAL_Y_POSITION(DELTA_PRINTABLE_RADIUS);
  6646. inverse_kinematics(cartesian);
  6647. return abs(distance - delta[A_AXIS]);
  6648. }
  6649. /**
  6650. * Delta Forward Kinematics
  6651. *
  6652. * See the Wikipedia article "Trilateration"
  6653. * https://en.wikipedia.org/wiki/Trilateration
  6654. *
  6655. * Establish a new coordinate system in the plane of the
  6656. * three carriage points. This system has its origin at
  6657. * tower1, with tower2 on the X axis. Tower3 is in the X-Y
  6658. * plane with a Z component of zero.
  6659. * We will define unit vectors in this coordinate system
  6660. * in our original coordinate system. Then when we calculate
  6661. * the Xnew, Ynew and Znew values, we can translate back into
  6662. * the original system by moving along those unit vectors
  6663. * by the corresponding values.
  6664. *
  6665. * Variable names matched to Marlin, c-version, and avoid the
  6666. * use of any vector library.
  6667. *
  6668. * by Andreas Hardtung 2016-06-07
  6669. * based on a Java function from "Delta Robot Kinematics V3"
  6670. * by Steve Graves
  6671. *
  6672. * The result is stored in the cartes[] array.
  6673. */
  6674. void forward_kinematics_DELTA(float z1, float z2, float z3) {
  6675. // Create a vector in old coordinates along x axis of new coordinate
  6676. float p12[3] = { delta_tower2_x - delta_tower1_x, delta_tower2_y - delta_tower1_y, z2 - z1 };
  6677. // Get the Magnitude of vector.
  6678. float d = sqrt( sq(p12[0]) + sq(p12[1]) + sq(p12[2]) );
  6679. // Create unit vector by dividing by magnitude.
  6680. float ex[3] = { p12[0] / d, p12[1] / d, p12[2] / d };
  6681. // Get the vector from the origin of the new system to the third point.
  6682. float p13[3] = { delta_tower3_x - delta_tower1_x, delta_tower3_y - delta_tower1_y, z3 - z1 };
  6683. // Use the dot product to find the component of this vector on the X axis.
  6684. float i = ex[0] * p13[0] + ex[1] * p13[1] + ex[2] * p13[2];
  6685. // Create a vector along the x axis that represents the x component of p13.
  6686. float iex[3] = { ex[0] * i, ex[1] * i, ex[2] * i };
  6687. // Subtract the X component from the original vector leaving only Y. We use the
  6688. // variable that will be the unit vector after we scale it.
  6689. float ey[3] = { p13[0] - iex[0], p13[1] - iex[1], p13[2] - iex[2] };
  6690. // The magnitude of Y component
  6691. float j = sqrt( sq(ey[0]) + sq(ey[1]) + sq(ey[2]) );
  6692. // Convert to a unit vector
  6693. ey[0] /= j; ey[1] /= j; ey[2] /= j;
  6694. // The cross product of the unit x and y is the unit z
  6695. // float[] ez = vectorCrossProd(ex, ey);
  6696. float ez[3] = {
  6697. ex[1] * ey[2] - ex[2] * ey[1],
  6698. ex[2] * ey[0] - ex[0] * ey[2],
  6699. ex[0] * ey[1] - ex[1] * ey[0]
  6700. };
  6701. // We now have the d, i and j values defined in Wikipedia.
  6702. // Plug them into the equations defined in Wikipedia for Xnew, Ynew and Znew
  6703. float Xnew = (delta_diagonal_rod_2_tower_1 - delta_diagonal_rod_2_tower_2 + sq(d)) / (d * 2),
  6704. Ynew = ((delta_diagonal_rod_2_tower_1 - delta_diagonal_rod_2_tower_3 + HYPOT2(i, j)) / 2 - i * Xnew) / j,
  6705. Znew = sqrt(delta_diagonal_rod_2_tower_1 - HYPOT2(Xnew, Ynew));
  6706. // Start from the origin of the old coordinates and add vectors in the
  6707. // old coords that represent the Xnew, Ynew and Znew to find the point
  6708. // in the old system.
  6709. cartes[X_AXIS] = delta_tower1_x + ex[0] * Xnew + ey[0] * Ynew - ez[0] * Znew;
  6710. cartes[Y_AXIS] = delta_tower1_y + ex[1] * Xnew + ey[1] * Ynew - ez[1] * Znew;
  6711. cartes[Z_AXIS] = z1 + ex[2] * Xnew + ey[2] * Ynew - ez[2] * Znew;
  6712. };
  6713. void forward_kinematics_DELTA(float point[ABC]) {
  6714. forward_kinematics_DELTA(point[A_AXIS], point[B_AXIS], point[C_AXIS]);
  6715. }
  6716. #endif // DELTA
  6717. /**
  6718. * Get the stepper positions in the cartes[] array.
  6719. * Forward kinematics are applied for DELTA and SCARA.
  6720. *
  6721. * The result is in the current coordinate space with
  6722. * leveling applied. The coordinates need to be run through
  6723. * unapply_leveling to obtain the "ideal" coordinates
  6724. * suitable for current_position, etc.
  6725. */
  6726. void get_cartesian_from_steppers() {
  6727. #if ENABLED(DELTA)
  6728. forward_kinematics_DELTA(
  6729. stepper.get_axis_position_mm(A_AXIS),
  6730. stepper.get_axis_position_mm(B_AXIS),
  6731. stepper.get_axis_position_mm(C_AXIS)
  6732. );
  6733. cartes[X_AXIS] += LOGICAL_X_POSITION(0);
  6734. cartes[Y_AXIS] += LOGICAL_Y_POSITION(0);
  6735. cartes[Z_AXIS] += LOGICAL_Z_POSITION(0);
  6736. #elif IS_SCARA
  6737. forward_kinematics_SCARA(
  6738. stepper.get_axis_position_degrees(A_AXIS),
  6739. stepper.get_axis_position_degrees(B_AXIS)
  6740. );
  6741. cartes[X_AXIS] += LOGICAL_X_POSITION(0);
  6742. cartes[Y_AXIS] += LOGICAL_Y_POSITION(0);
  6743. cartes[Z_AXIS] = stepper.get_axis_position_mm(Z_AXIS);
  6744. #else
  6745. cartes[X_AXIS] = stepper.get_axis_position_mm(X_AXIS);
  6746. cartes[Y_AXIS] = stepper.get_axis_position_mm(Y_AXIS);
  6747. cartes[Z_AXIS] = stepper.get_axis_position_mm(Z_AXIS);
  6748. #endif
  6749. }
  6750. /**
  6751. * Set the current_position for an axis based on
  6752. * the stepper positions, removing any leveling that
  6753. * may have been applied.
  6754. *
  6755. * << INCOMPLETE! Still needs to unapply leveling! >>
  6756. */
  6757. void set_current_from_steppers_for_axis(const AxisEnum axis) {
  6758. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  6759. vector_3 pos = untilted_stepper_position();
  6760. current_position[axis] = axis == X_AXIS ? pos.x : axis == Y_AXIS ? pos.y : pos.z;
  6761. #elif IS_KINEMATIC
  6762. get_cartesian_from_steppers();
  6763. current_position[axis] = LOGICAL_POSITION(cartes[axis], axis);
  6764. #else
  6765. current_position[axis] = stepper.get_axis_position_mm(axis); // CORE handled transparently
  6766. #endif
  6767. }
  6768. #if ENABLED(MESH_BED_LEVELING)
  6769. /**
  6770. * Prepare a mesh-leveled linear move in a Cartesian setup,
  6771. * splitting the move where it crosses mesh borders.
  6772. */
  6773. void mesh_line_to_destination(float fr_mm_s, uint8_t x_splits = 0xff, uint8_t y_splits = 0xff) {
  6774. int cx1 = mbl.cell_index_x(RAW_CURRENT_POSITION(X_AXIS)),
  6775. cy1 = mbl.cell_index_y(RAW_CURRENT_POSITION(Y_AXIS)),
  6776. cx2 = mbl.cell_index_x(RAW_X_POSITION(destination[X_AXIS])),
  6777. cy2 = mbl.cell_index_y(RAW_Y_POSITION(destination[Y_AXIS]));
  6778. NOMORE(cx1, MESH_NUM_X_POINTS - 2);
  6779. NOMORE(cy1, MESH_NUM_Y_POINTS - 2);
  6780. NOMORE(cx2, MESH_NUM_X_POINTS - 2);
  6781. NOMORE(cy2, MESH_NUM_Y_POINTS - 2);
  6782. if (cx1 == cx2 && cy1 == cy2) {
  6783. // Start and end on same mesh square
  6784. line_to_destination(fr_mm_s);
  6785. set_current_to_destination();
  6786. return;
  6787. }
  6788. #define MBL_SEGMENT_END(A) (current_position[A ##_AXIS] + (destination[A ##_AXIS] - current_position[A ##_AXIS]) * normalized_dist)
  6789. float normalized_dist, end[NUM_AXIS];
  6790. // Split at the left/front border of the right/top square
  6791. int8_t gcx = max(cx1, cx2), gcy = max(cy1, cy2);
  6792. if (cx2 != cx1 && TEST(x_splits, gcx)) {
  6793. memcpy(end, destination, sizeof(end));
  6794. destination[X_AXIS] = LOGICAL_X_POSITION(mbl.get_probe_x(gcx));
  6795. normalized_dist = (destination[X_AXIS] - current_position[X_AXIS]) / (end[X_AXIS] - current_position[X_AXIS]);
  6796. destination[Y_AXIS] = MBL_SEGMENT_END(Y);
  6797. CBI(x_splits, gcx);
  6798. }
  6799. else if (cy2 != cy1 && TEST(y_splits, gcy)) {
  6800. memcpy(end, destination, sizeof(end));
  6801. destination[Y_AXIS] = LOGICAL_Y_POSITION(mbl.get_probe_y(gcy));
  6802. normalized_dist = (destination[Y_AXIS] - current_position[Y_AXIS]) / (end[Y_AXIS] - current_position[Y_AXIS]);
  6803. destination[X_AXIS] = MBL_SEGMENT_END(X);
  6804. CBI(y_splits, gcy);
  6805. }
  6806. else {
  6807. // Already split on a border
  6808. line_to_destination(fr_mm_s);
  6809. set_current_to_destination();
  6810. return;
  6811. }
  6812. destination[Z_AXIS] = MBL_SEGMENT_END(Z);
  6813. destination[E_AXIS] = MBL_SEGMENT_END(E);
  6814. // Do the split and look for more borders
  6815. mesh_line_to_destination(fr_mm_s, x_splits, y_splits);
  6816. // Restore destination from stack
  6817. memcpy(destination, end, sizeof(end));
  6818. mesh_line_to_destination(fr_mm_s, x_splits, y_splits);
  6819. }
  6820. #endif // MESH_BED_LEVELING
  6821. #if IS_KINEMATIC
  6822. /**
  6823. * Prepare a linear move in a DELTA or SCARA setup.
  6824. *
  6825. * This calls planner.buffer_line several times, adding
  6826. * small incremental moves for DELTA or SCARA.
  6827. */
  6828. inline bool prepare_kinematic_move_to(float logical[NUM_AXIS]) {
  6829. // Get the top feedrate of the move in the XY plane
  6830. float _feedrate_mm_s = MMS_SCALED(feedrate_mm_s);
  6831. // If the move is only in Z don't split up the move.
  6832. // This shortcut cannot be used if planar bed leveling
  6833. // is in use, but is fine with mesh-based bed leveling
  6834. if (logical[X_AXIS] == current_position[X_AXIS] && logical[Y_AXIS] == current_position[Y_AXIS]) {
  6835. inverse_kinematics(logical);
  6836. planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], logical[E_AXIS], _feedrate_mm_s, active_extruder);
  6837. return true;
  6838. }
  6839. // Get the distance moved in XYZ
  6840. float difference[NUM_AXIS];
  6841. LOOP_XYZE(i) difference[i] = logical[i] - current_position[i];
  6842. float cartesian_mm = sqrt(sq(difference[X_AXIS]) + sq(difference[Y_AXIS]) + sq(difference[Z_AXIS]));
  6843. if (UNEAR_ZERO(cartesian_mm)) cartesian_mm = abs(difference[E_AXIS]);
  6844. if (UNEAR_ZERO(cartesian_mm)) return false;
  6845. // Minimum number of seconds to move the given distance
  6846. float seconds = cartesian_mm / _feedrate_mm_s;
  6847. // The number of segments-per-second times the duration
  6848. // gives the number of segments we should produce
  6849. uint16_t segments = delta_segments_per_second * seconds;
  6850. #if IS_SCARA
  6851. NOMORE(segments, cartesian_mm * 2);
  6852. #endif
  6853. NOLESS(segments, 1);
  6854. // Each segment produces this much of the move
  6855. float inv_segments = 1.0 / segments,
  6856. segment_distance[XYZE] = {
  6857. difference[X_AXIS] * inv_segments,
  6858. difference[Y_AXIS] * inv_segments,
  6859. difference[Z_AXIS] * inv_segments,
  6860. difference[E_AXIS] * inv_segments
  6861. };
  6862. // SERIAL_ECHOPAIR("mm=", cartesian_mm);
  6863. // SERIAL_ECHOPAIR(" seconds=", seconds);
  6864. // SERIAL_ECHOLNPAIR(" segments=", segments);
  6865. // Send all the segments to the planner
  6866. #if ENABLED(DELTA) && ENABLED(USE_RAW_KINEMATICS)
  6867. #define DELTA_E raw[E_AXIS]
  6868. #define DELTA_NEXT(ADDEND) LOOP_XYZE(i) raw[i] += ADDEND;
  6869. #define DELTA_IK() do { \
  6870. delta[A_AXIS] = DELTA_Z(1); \
  6871. delta[B_AXIS] = DELTA_Z(2); \
  6872. delta[C_AXIS] = DELTA_Z(3); \
  6873. } while(0)
  6874. // Get the raw current position as starting point
  6875. float raw[ABC] = {
  6876. RAW_CURRENT_POSITION(X_AXIS),
  6877. RAW_CURRENT_POSITION(Y_AXIS),
  6878. RAW_CURRENT_POSITION(Z_AXIS)
  6879. };
  6880. #else
  6881. #define DELTA_E logical[E_AXIS]
  6882. #define DELTA_NEXT(ADDEND) LOOP_XYZE(i) logical[i] += ADDEND;
  6883. #if ENABLED(DELTA)
  6884. #define DELTA_IK() DELTA_LOGICAL_IK()
  6885. #else
  6886. #define DELTA_IK() inverse_kinematics(logical)
  6887. #endif
  6888. // Get the logical current position as starting point
  6889. LOOP_XYZE(i) logical[i] = current_position[i];
  6890. #endif
  6891. #if ENABLED(USE_DELTA_IK_INTERPOLATION)
  6892. // Get the starting delta for interpolation
  6893. if (segments >= 2) inverse_kinematics(logical);
  6894. for (uint16_t s = segments + 1; --s;) {
  6895. if (s > 1) {
  6896. // Save the previous delta for interpolation
  6897. float prev_delta[ABC] = { delta[A_AXIS], delta[B_AXIS], delta[C_AXIS] };
  6898. // Get the delta 2 segments ahead (rather than the next)
  6899. DELTA_NEXT(segment_distance[i] + segment_distance[i]);
  6900. DELTA_IK();
  6901. // Move to the interpolated delta position first
  6902. planner.buffer_line(
  6903. (prev_delta[A_AXIS] + delta[A_AXIS]) * 0.5,
  6904. (prev_delta[B_AXIS] + delta[B_AXIS]) * 0.5,
  6905. (prev_delta[C_AXIS] + delta[C_AXIS]) * 0.5,
  6906. logical[E_AXIS], _feedrate_mm_s, active_extruder
  6907. );
  6908. // Do an extra decrement of the loop
  6909. --s;
  6910. }
  6911. else {
  6912. // Get the last segment delta (only when segments is odd)
  6913. DELTA_NEXT(segment_distance[i])
  6914. DELTA_IK();
  6915. }
  6916. // Move to the non-interpolated position
  6917. planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], DELTA_E, _feedrate_mm_s, active_extruder);
  6918. }
  6919. #else
  6920. // For non-interpolated delta calculate every segment
  6921. for (uint16_t s = segments + 1; --s;) {
  6922. DELTA_NEXT(segment_distance[i])
  6923. DELTA_IK();
  6924. planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], logical[E_AXIS], _feedrate_mm_s, active_extruder);
  6925. }
  6926. #endif
  6927. return true;
  6928. }
  6929. #else
  6930. /**
  6931. * Prepare a linear move in a Cartesian setup.
  6932. * If Mesh Bed Leveling is enabled, perform a mesh move.
  6933. */
  6934. inline bool prepare_move_to_destination_cartesian() {
  6935. // Do not use feedrate_percentage for E or Z only moves
  6936. if (current_position[X_AXIS] == destination[X_AXIS] && current_position[Y_AXIS] == destination[Y_AXIS]) {
  6937. line_to_destination();
  6938. }
  6939. else {
  6940. #if ENABLED(MESH_BED_LEVELING)
  6941. if (mbl.active()) {
  6942. mesh_line_to_destination(MMS_SCALED(feedrate_mm_s));
  6943. return false;
  6944. }
  6945. else
  6946. #endif
  6947. line_to_destination(MMS_SCALED(feedrate_mm_s));
  6948. }
  6949. return true;
  6950. }
  6951. #endif // !IS_KINEMATIC
  6952. #if ENABLED(DUAL_X_CARRIAGE)
  6953. /**
  6954. * Prepare a linear move in a dual X axis setup
  6955. */
  6956. inline bool prepare_move_to_destination_dualx() {
  6957. if (active_extruder_parked) {
  6958. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && active_extruder == 0) {
  6959. // move duplicate extruder into correct duplication position.
  6960. planner.set_position_mm(
  6961. LOGICAL_X_POSITION(inactive_extruder_x_pos),
  6962. current_position[Y_AXIS],
  6963. current_position[Z_AXIS],
  6964. current_position[E_AXIS]
  6965. );
  6966. planner.buffer_line(current_position[X_AXIS] + duplicate_extruder_x_offset,
  6967. current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], planner.max_feedrate_mm_s[X_AXIS], 1);
  6968. SYNC_PLAN_POSITION_KINEMATIC();
  6969. stepper.synchronize();
  6970. extruder_duplication_enabled = true;
  6971. active_extruder_parked = false;
  6972. }
  6973. else if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE) { // handle unparking of head
  6974. if (current_position[E_AXIS] == destination[E_AXIS]) {
  6975. // This is a travel move (with no extrusion)
  6976. // Skip it, but keep track of the current position
  6977. // (so it can be used as the start of the next non-travel move)
  6978. if (delayed_move_time != 0xFFFFFFFFUL) {
  6979. set_current_to_destination();
  6980. NOLESS(raised_parked_position[Z_AXIS], destination[Z_AXIS]);
  6981. delayed_move_time = millis();
  6982. return false;
  6983. }
  6984. }
  6985. delayed_move_time = 0;
  6986. // unpark extruder: 1) raise, 2) move into starting XY position, 3) lower
  6987. planner.buffer_line(raised_parked_position[X_AXIS], raised_parked_position[Y_AXIS], raised_parked_position[Z_AXIS], current_position[E_AXIS], planner.max_feedrate_mm_s[Z_AXIS], active_extruder);
  6988. planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], raised_parked_position[Z_AXIS], current_position[E_AXIS], PLANNER_XY_FEEDRATE(), active_extruder);
  6989. planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], planner.max_feedrate_mm_s[Z_AXIS], active_extruder);
  6990. active_extruder_parked = false;
  6991. }
  6992. }
  6993. return true;
  6994. }
  6995. #endif // DUAL_X_CARRIAGE
  6996. /**
  6997. * Prepare a single move and get ready for the next one
  6998. *
  6999. * This may result in several calls to planner.buffer_line to
  7000. * do smaller moves for DELTA, SCARA, mesh moves, etc.
  7001. */
  7002. void prepare_move_to_destination() {
  7003. clamp_to_software_endstops(destination);
  7004. refresh_cmd_timeout();
  7005. #if ENABLED(PREVENT_COLD_EXTRUSION)
  7006. if (!DEBUGGING(DRYRUN)) {
  7007. if (destination[E_AXIS] != current_position[E_AXIS]) {
  7008. if (thermalManager.tooColdToExtrude(active_extruder)) {
  7009. current_position[E_AXIS] = destination[E_AXIS]; // Behave as if the move really took place, but ignore E part
  7010. SERIAL_ECHO_START;
  7011. SERIAL_ECHOLNPGM(MSG_ERR_COLD_EXTRUDE_STOP);
  7012. }
  7013. #if ENABLED(PREVENT_LENGTHY_EXTRUDE)
  7014. if (labs(destination[E_AXIS] - current_position[E_AXIS]) > EXTRUDE_MAXLENGTH) {
  7015. current_position[E_AXIS] = destination[E_AXIS]; // Behave as if the move really took place, but ignore E part
  7016. SERIAL_ECHO_START;
  7017. SERIAL_ECHOLNPGM(MSG_ERR_LONG_EXTRUDE_STOP);
  7018. }
  7019. #endif
  7020. }
  7021. }
  7022. #endif
  7023. #if IS_KINEMATIC
  7024. if (!prepare_kinematic_move_to(destination)) return;
  7025. #else
  7026. #if ENABLED(DUAL_X_CARRIAGE)
  7027. if (!prepare_move_to_destination_dualx()) return;
  7028. #endif
  7029. if (!prepare_move_to_destination_cartesian()) return;
  7030. #endif
  7031. set_current_to_destination();
  7032. }
  7033. #if ENABLED(ARC_SUPPORT)
  7034. /**
  7035. * Plan an arc in 2 dimensions
  7036. *
  7037. * The arc is approximated by generating many small linear segments.
  7038. * The length of each segment is configured in MM_PER_ARC_SEGMENT (Default 1mm)
  7039. * Arcs should only be made relatively large (over 5mm), as larger arcs with
  7040. * larger segments will tend to be more efficient. Your slicer should have
  7041. * options for G2/G3 arc generation. In future these options may be GCode tunable.
  7042. */
  7043. void plan_arc(
  7044. float logical[NUM_AXIS], // Destination position
  7045. float* offset, // Center of rotation relative to current_position
  7046. uint8_t clockwise // Clockwise?
  7047. ) {
  7048. float radius = HYPOT(offset[X_AXIS], offset[Y_AXIS]),
  7049. center_X = current_position[X_AXIS] + offset[X_AXIS],
  7050. center_Y = current_position[Y_AXIS] + offset[Y_AXIS],
  7051. linear_travel = logical[Z_AXIS] - current_position[Z_AXIS],
  7052. extruder_travel = logical[E_AXIS] - current_position[E_AXIS],
  7053. r_X = -offset[X_AXIS], // Radius vector from center to current location
  7054. r_Y = -offset[Y_AXIS],
  7055. rt_X = logical[X_AXIS] - center_X,
  7056. rt_Y = logical[Y_AXIS] - center_Y;
  7057. // CCW angle of rotation between position and target from the circle center. Only one atan2() trig computation required.
  7058. float angular_travel = atan2(r_X * rt_Y - r_Y * rt_X, r_X * rt_X + r_Y * rt_Y);
  7059. if (angular_travel < 0) angular_travel += RADIANS(360);
  7060. if (clockwise) angular_travel -= RADIANS(360);
  7061. // Make a circle if the angular rotation is 0
  7062. if (angular_travel == 0 && current_position[X_AXIS] == logical[X_AXIS] && current_position[Y_AXIS] == logical[Y_AXIS])
  7063. angular_travel += RADIANS(360);
  7064. float mm_of_travel = HYPOT(angular_travel * radius, fabs(linear_travel));
  7065. if (mm_of_travel < 0.001) return;
  7066. uint16_t segments = floor(mm_of_travel / (MM_PER_ARC_SEGMENT));
  7067. if (segments == 0) segments = 1;
  7068. float theta_per_segment = angular_travel / segments;
  7069. float linear_per_segment = linear_travel / segments;
  7070. float extruder_per_segment = extruder_travel / segments;
  7071. /**
  7072. * Vector rotation by transformation matrix: r is the original vector, r_T is the rotated vector,
  7073. * and phi is the angle of rotation. Based on the solution approach by Jens Geisler.
  7074. * r_T = [cos(phi) -sin(phi);
  7075. * sin(phi) cos(phi] * r ;
  7076. *
  7077. * For arc generation, the center of the circle is the axis of rotation and the radius vector is
  7078. * defined from the circle center to the initial position. Each line segment is formed by successive
  7079. * vector rotations. This requires only two cos() and sin() computations to form the rotation
  7080. * matrix for the duration of the entire arc. Error may accumulate from numerical round-off, since
  7081. * all double numbers are single precision on the Arduino. (True double precision will not have
  7082. * round off issues for CNC applications.) Single precision error can accumulate to be greater than
  7083. * tool precision in some cases. Therefore, arc path correction is implemented.
  7084. *
  7085. * Small angle approximation may be used to reduce computation overhead further. This approximation
  7086. * holds for everything, but very small circles and large MM_PER_ARC_SEGMENT values. In other words,
  7087. * theta_per_segment would need to be greater than 0.1 rad and N_ARC_CORRECTION would need to be large
  7088. * to cause an appreciable drift error. N_ARC_CORRECTION~=25 is more than small enough to correct for
  7089. * numerical drift error. N_ARC_CORRECTION may be on the order a hundred(s) before error becomes an
  7090. * issue for CNC machines with the single precision Arduino calculations.
  7091. *
  7092. * This approximation also allows plan_arc to immediately insert a line segment into the planner
  7093. * without the initial overhead of computing cos() or sin(). By the time the arc needs to be applied
  7094. * a correction, the planner should have caught up to the lag caused by the initial plan_arc overhead.
  7095. * This is important when there are successive arc motions.
  7096. */
  7097. // Vector rotation matrix values
  7098. float cos_T = 1 - 0.5 * sq(theta_per_segment); // Small angle approximation
  7099. float sin_T = theta_per_segment;
  7100. float arc_target[NUM_AXIS];
  7101. float sin_Ti, cos_Ti, r_new_Y;
  7102. uint16_t i;
  7103. int8_t count = 0;
  7104. // Initialize the linear axis
  7105. arc_target[Z_AXIS] = current_position[Z_AXIS];
  7106. // Initialize the extruder axis
  7107. arc_target[E_AXIS] = current_position[E_AXIS];
  7108. float fr_mm_s = MMS_SCALED(feedrate_mm_s);
  7109. millis_t next_idle_ms = millis() + 200UL;
  7110. for (i = 1; i < segments; i++) { // Iterate (segments-1) times
  7111. thermalManager.manage_heater();
  7112. millis_t now = millis();
  7113. if (ELAPSED(now, next_idle_ms)) {
  7114. next_idle_ms = now + 200UL;
  7115. idle();
  7116. }
  7117. if (++count < N_ARC_CORRECTION) {
  7118. // Apply vector rotation matrix to previous r_X / 1
  7119. r_new_Y = r_X * sin_T + r_Y * cos_T;
  7120. r_X = r_X * cos_T - r_Y * sin_T;
  7121. r_Y = r_new_Y;
  7122. }
  7123. else {
  7124. // Arc correction to radius vector. Computed only every N_ARC_CORRECTION increments.
  7125. // Compute exact location by applying transformation matrix from initial radius vector(=-offset).
  7126. // To reduce stuttering, the sin and cos could be computed at different times.
  7127. // For now, compute both at the same time.
  7128. cos_Ti = cos(i * theta_per_segment);
  7129. sin_Ti = sin(i * theta_per_segment);
  7130. r_X = -offset[X_AXIS] * cos_Ti + offset[Y_AXIS] * sin_Ti;
  7131. r_Y = -offset[X_AXIS] * sin_Ti - offset[Y_AXIS] * cos_Ti;
  7132. count = 0;
  7133. }
  7134. // Update arc_target location
  7135. arc_target[X_AXIS] = center_X + r_X;
  7136. arc_target[Y_AXIS] = center_Y + r_Y;
  7137. arc_target[Z_AXIS] += linear_per_segment;
  7138. arc_target[E_AXIS] += extruder_per_segment;
  7139. clamp_to_software_endstops(arc_target);
  7140. #if IS_KINEMATIC
  7141. inverse_kinematics(arc_target);
  7142. planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], arc_target[E_AXIS], fr_mm_s, active_extruder);
  7143. #else
  7144. planner.buffer_line(arc_target[X_AXIS], arc_target[Y_AXIS], arc_target[Z_AXIS], arc_target[E_AXIS], fr_mm_s, active_extruder);
  7145. #endif
  7146. }
  7147. // Ensure last segment arrives at target location.
  7148. #if IS_KINEMATIC
  7149. inverse_kinematics(logical);
  7150. planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], logical[E_AXIS], fr_mm_s, active_extruder);
  7151. #else
  7152. planner.buffer_line(logical[X_AXIS], logical[Y_AXIS], logical[Z_AXIS], logical[E_AXIS], fr_mm_s, active_extruder);
  7153. #endif
  7154. // As far as the parser is concerned, the position is now == target. In reality the
  7155. // motion control system might still be processing the action and the real tool position
  7156. // in any intermediate location.
  7157. set_current_to_destination();
  7158. }
  7159. #endif
  7160. #if ENABLED(BEZIER_CURVE_SUPPORT)
  7161. void plan_cubic_move(const float offset[4]) {
  7162. cubic_b_spline(current_position, destination, offset, MMS_SCALED(feedrate_mm_s), active_extruder);
  7163. // As far as the parser is concerned, the position is now == destination. In reality the
  7164. // motion control system might still be processing the action and the real tool position
  7165. // in any intermediate location.
  7166. set_current_to_destination();
  7167. }
  7168. #endif // BEZIER_CURVE_SUPPORT
  7169. #if HAS_CONTROLLERFAN
  7170. void controllerFan() {
  7171. static millis_t lastMotorOn = 0; // Last time a motor was turned on
  7172. static millis_t nextMotorCheck = 0; // Last time the state was checked
  7173. millis_t ms = millis();
  7174. if (ELAPSED(ms, nextMotorCheck)) {
  7175. nextMotorCheck = ms + 2500UL; // Not a time critical function, so only check every 2.5s
  7176. if (X_ENABLE_READ == X_ENABLE_ON || Y_ENABLE_READ == Y_ENABLE_ON || Z_ENABLE_READ == Z_ENABLE_ON || thermalManager.soft_pwm_bed > 0
  7177. || E0_ENABLE_READ == E_ENABLE_ON // If any of the drivers are enabled...
  7178. #if E_STEPPERS > 1
  7179. || E1_ENABLE_READ == E_ENABLE_ON
  7180. #if HAS_X2_ENABLE
  7181. || X2_ENABLE_READ == X_ENABLE_ON
  7182. #endif
  7183. #if E_STEPPERS > 2
  7184. || E2_ENABLE_READ == E_ENABLE_ON
  7185. #if E_STEPPERS > 3
  7186. || E3_ENABLE_READ == E_ENABLE_ON
  7187. #endif
  7188. #endif
  7189. #endif
  7190. ) {
  7191. lastMotorOn = ms; //... set time to NOW so the fan will turn on
  7192. }
  7193. // Fan off if no steppers have been enabled for CONTROLLERFAN_SECS seconds
  7194. uint8_t speed = (!lastMotorOn || ELAPSED(ms, lastMotorOn + (CONTROLLERFAN_SECS) * 1000UL)) ? 0 : CONTROLLERFAN_SPEED;
  7195. // allows digital or PWM fan output to be used (see M42 handling)
  7196. digitalWrite(CONTROLLERFAN_PIN, speed);
  7197. analogWrite(CONTROLLERFAN_PIN, speed);
  7198. }
  7199. }
  7200. #endif // HAS_CONTROLLERFAN
  7201. #if ENABLED(MORGAN_SCARA)
  7202. /**
  7203. * Morgan SCARA Forward Kinematics. Results in cartes[].
  7204. * Maths and first version by QHARLEY.
  7205. * Integrated into Marlin and slightly restructured by Joachim Cerny.
  7206. */
  7207. void forward_kinematics_SCARA(const float &a, const float &b) {
  7208. float a_sin = sin(RADIANS(a)) * L1,
  7209. a_cos = cos(RADIANS(a)) * L1,
  7210. b_sin = sin(RADIANS(b)) * L2,
  7211. b_cos = cos(RADIANS(b)) * L2;
  7212. cartes[X_AXIS] = a_cos + b_cos + SCARA_OFFSET_X; //theta
  7213. cartes[Y_AXIS] = a_sin + b_sin + SCARA_OFFSET_Y; //theta+phi
  7214. /*
  7215. SERIAL_ECHOPAIR("Angle a=", a);
  7216. SERIAL_ECHOPAIR(" b=", b);
  7217. SERIAL_ECHOPAIR(" a_sin=", a_sin);
  7218. SERIAL_ECHOPAIR(" a_cos=", a_cos);
  7219. SERIAL_ECHOPAIR(" b_sin=", b_sin);
  7220. SERIAL_ECHOLNPAIR(" b_cos=", b_cos);
  7221. SERIAL_ECHOPAIR(" cartes[X_AXIS]=", cartes[X_AXIS]);
  7222. SERIAL_ECHOLNPAIR(" cartes[Y_AXIS]=", cartes[Y_AXIS]);
  7223. //*/
  7224. }
  7225. /**
  7226. * Morgan SCARA Inverse Kinematics. Results in delta[].
  7227. *
  7228. * See http://forums.reprap.org/read.php?185,283327
  7229. *
  7230. * Maths and first version by QHARLEY.
  7231. * Integrated into Marlin and slightly restructured by Joachim Cerny.
  7232. */
  7233. void inverse_kinematics(const float logical[XYZ]) {
  7234. static float C2, S2, SK1, SK2, THETA, PSI;
  7235. float sx = RAW_X_POSITION(logical[X_AXIS]) - SCARA_OFFSET_X, // Translate SCARA to standard X Y
  7236. sy = RAW_Y_POSITION(logical[Y_AXIS]) - SCARA_OFFSET_Y; // With scaling factor.
  7237. if (L1 == L2)
  7238. C2 = HYPOT2(sx, sy) / L1_2_2 - 1;
  7239. else
  7240. C2 = (HYPOT2(sx, sy) - (L1_2 + L2_2)) / (2.0 * L1 * L2);
  7241. S2 = sqrt(sq(C2) - 1);
  7242. // Unrotated Arm1 plus rotated Arm2 gives the distance from Center to End
  7243. SK1 = L1 + L2 * C2;
  7244. // Rotated Arm2 gives the distance from Arm1 to Arm2
  7245. SK2 = L2 * S2;
  7246. // Angle of Arm1 is the difference between Center-to-End angle and the Center-to-Elbow
  7247. THETA = atan2(SK1, SK2) - atan2(sx, sy);
  7248. // Angle of Arm2
  7249. PSI = atan2(S2, C2);
  7250. delta[A_AXIS] = DEGREES(THETA); // theta is support arm angle
  7251. delta[B_AXIS] = DEGREES(THETA + PSI); // equal to sub arm angle (inverted motor)
  7252. delta[C_AXIS] = logical[Z_AXIS];
  7253. /*
  7254. DEBUG_POS("SCARA IK", logical);
  7255. DEBUG_POS("SCARA IK", delta);
  7256. SERIAL_ECHOPAIR(" SCARA (x,y) ", sx);
  7257. SERIAL_ECHOPAIR(",", sy);
  7258. SERIAL_ECHOPAIR(" C2=", C2);
  7259. SERIAL_ECHOPAIR(" S2=", S2);
  7260. SERIAL_ECHOPAIR(" Theta=", THETA);
  7261. SERIAL_ECHOLNPAIR(" Phi=", PHI);
  7262. //*/
  7263. }
  7264. #endif // MORGAN_SCARA
  7265. #if ENABLED(TEMP_STAT_LEDS)
  7266. static bool red_led = false;
  7267. static millis_t next_status_led_update_ms = 0;
  7268. void handle_status_leds(void) {
  7269. if (ELAPSED(millis(), next_status_led_update_ms)) {
  7270. next_status_led_update_ms += 500; // Update every 0.5s
  7271. float max_temp = 0.0;
  7272. #if HAS_TEMP_BED
  7273. max_temp = MAX3(max_temp, thermalManager.degTargetBed(), thermalManager.degBed());
  7274. #endif
  7275. HOTEND_LOOP() {
  7276. max_temp = MAX3(max_temp, thermalManager.degHotend(e), thermalManager.degTargetHotend(e));
  7277. }
  7278. bool new_led = (max_temp > 55.0) ? true : (max_temp < 54.0) ? false : red_led;
  7279. if (new_led != red_led) {
  7280. red_led = new_led;
  7281. digitalWrite(STAT_LED_RED, new_led ? HIGH : LOW);
  7282. digitalWrite(STAT_LED_BLUE, new_led ? LOW : HIGH);
  7283. }
  7284. }
  7285. }
  7286. #endif
  7287. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  7288. void handle_filament_runout() {
  7289. if (!filament_ran_out) {
  7290. filament_ran_out = true;
  7291. enqueue_and_echo_commands_P(PSTR(FILAMENT_RUNOUT_SCRIPT));
  7292. stepper.synchronize();
  7293. }
  7294. }
  7295. #endif // FILAMENT_RUNOUT_SENSOR
  7296. #if ENABLED(FAST_PWM_FAN)
  7297. void setPwmFrequency(uint8_t pin, int val) {
  7298. val &= 0x07;
  7299. switch (digitalPinToTimer(pin)) {
  7300. #if defined(TCCR0A)
  7301. case TIMER0A:
  7302. case TIMER0B:
  7303. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  7304. // TCCR0B |= val;
  7305. break;
  7306. #endif
  7307. #if defined(TCCR1A)
  7308. case TIMER1A:
  7309. case TIMER1B:
  7310. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  7311. // TCCR1B |= val;
  7312. break;
  7313. #endif
  7314. #if defined(TCCR2)
  7315. case TIMER2:
  7316. case TIMER2:
  7317. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  7318. TCCR2 |= val;
  7319. break;
  7320. #endif
  7321. #if defined(TCCR2A)
  7322. case TIMER2A:
  7323. case TIMER2B:
  7324. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  7325. TCCR2B |= val;
  7326. break;
  7327. #endif
  7328. #if defined(TCCR3A)
  7329. case TIMER3A:
  7330. case TIMER3B:
  7331. case TIMER3C:
  7332. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  7333. TCCR3B |= val;
  7334. break;
  7335. #endif
  7336. #if defined(TCCR4A)
  7337. case TIMER4A:
  7338. case TIMER4B:
  7339. case TIMER4C:
  7340. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  7341. TCCR4B |= val;
  7342. break;
  7343. #endif
  7344. #if defined(TCCR5A)
  7345. case TIMER5A:
  7346. case TIMER5B:
  7347. case TIMER5C:
  7348. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  7349. TCCR5B |= val;
  7350. break;
  7351. #endif
  7352. }
  7353. }
  7354. #endif // FAST_PWM_FAN
  7355. float calculate_volumetric_multiplier(float diameter) {
  7356. if (!volumetric_enabled || diameter == 0) return 1.0;
  7357. float d2 = diameter * 0.5;
  7358. return 1.0 / (M_PI * d2 * d2);
  7359. }
  7360. void calculate_volumetric_multipliers() {
  7361. for (uint8_t i = 0; i < COUNT(filament_size); i++)
  7362. volumetric_multiplier[i] = calculate_volumetric_multiplier(filament_size[i]);
  7363. }
  7364. void enable_all_steppers() {
  7365. enable_x();
  7366. enable_y();
  7367. enable_z();
  7368. enable_e0();
  7369. enable_e1();
  7370. enable_e2();
  7371. enable_e3();
  7372. }
  7373. void disable_all_steppers() {
  7374. disable_x();
  7375. disable_y();
  7376. disable_z();
  7377. disable_e0();
  7378. disable_e1();
  7379. disable_e2();
  7380. disable_e3();
  7381. }
  7382. /**
  7383. * Manage several activities:
  7384. * - Check for Filament Runout
  7385. * - Keep the command buffer full
  7386. * - Check for maximum inactive time between commands
  7387. * - Check for maximum inactive time between stepper commands
  7388. * - Check if pin CHDK needs to go LOW
  7389. * - Check for KILL button held down
  7390. * - Check for HOME button held down
  7391. * - Check if cooling fan needs to be switched on
  7392. * - Check if an idle but hot extruder needs filament extruded (EXTRUDER_RUNOUT_PREVENT)
  7393. */
  7394. void manage_inactivity(bool ignore_stepper_queue/*=false*/) {
  7395. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  7396. if ((IS_SD_PRINTING || print_job_timer.isRunning()) && !(READ(FIL_RUNOUT_PIN) ^ FIL_RUNOUT_INVERTING))
  7397. handle_filament_runout();
  7398. #endif
  7399. if (commands_in_queue < BUFSIZE) get_available_commands();
  7400. millis_t ms = millis();
  7401. if (max_inactive_time && ELAPSED(ms, previous_cmd_ms + max_inactive_time)) kill(PSTR(MSG_KILLED));
  7402. if (stepper_inactive_time && ELAPSED(ms, previous_cmd_ms + stepper_inactive_time)
  7403. && !ignore_stepper_queue && !planner.blocks_queued()) {
  7404. #if ENABLED(DISABLE_INACTIVE_X)
  7405. disable_x();
  7406. #endif
  7407. #if ENABLED(DISABLE_INACTIVE_Y)
  7408. disable_y();
  7409. #endif
  7410. #if ENABLED(DISABLE_INACTIVE_Z)
  7411. disable_z();
  7412. #endif
  7413. #if ENABLED(DISABLE_INACTIVE_E)
  7414. disable_e0();
  7415. disable_e1();
  7416. disable_e2();
  7417. disable_e3();
  7418. #endif
  7419. }
  7420. #ifdef CHDK // Check if pin should be set to LOW after M240 set it to HIGH
  7421. if (chdkActive && PENDING(ms, chdkHigh + CHDK_DELAY)) {
  7422. chdkActive = false;
  7423. WRITE(CHDK, LOW);
  7424. }
  7425. #endif
  7426. #if HAS_KILL
  7427. // Check if the kill button was pressed and wait just in case it was an accidental
  7428. // key kill key press
  7429. // -------------------------------------------------------------------------------
  7430. static int killCount = 0; // make the inactivity button a bit less responsive
  7431. const int KILL_DELAY = 750;
  7432. if (!READ(KILL_PIN))
  7433. killCount++;
  7434. else if (killCount > 0)
  7435. killCount--;
  7436. // Exceeded threshold and we can confirm that it was not accidental
  7437. // KILL the machine
  7438. // ----------------------------------------------------------------
  7439. if (killCount >= KILL_DELAY) kill(PSTR(MSG_KILLED));
  7440. #endif
  7441. #if HAS_HOME
  7442. // Check to see if we have to home, use poor man's debouncer
  7443. // ---------------------------------------------------------
  7444. static int homeDebounceCount = 0; // poor man's debouncing count
  7445. const int HOME_DEBOUNCE_DELAY = 2500;
  7446. if (!READ(HOME_PIN)) {
  7447. if (!homeDebounceCount) {
  7448. enqueue_and_echo_commands_P(PSTR("G28"));
  7449. LCD_MESSAGEPGM(MSG_AUTO_HOME);
  7450. }
  7451. if (homeDebounceCount < HOME_DEBOUNCE_DELAY)
  7452. homeDebounceCount++;
  7453. else
  7454. homeDebounceCount = 0;
  7455. }
  7456. #endif
  7457. #if HAS_CONTROLLERFAN
  7458. controllerFan(); // Check if fan should be turned on to cool stepper drivers down
  7459. #endif
  7460. #if ENABLED(EXTRUDER_RUNOUT_PREVENT)
  7461. if (ELAPSED(ms, previous_cmd_ms + (EXTRUDER_RUNOUT_SECONDS) * 1000UL)
  7462. && thermalManager.degHotend(active_extruder) > EXTRUDER_RUNOUT_MINTEMP) {
  7463. bool oldstatus;
  7464. #if ENABLED(SWITCHING_EXTRUDER)
  7465. oldstatus = E0_ENABLE_READ;
  7466. enable_e0();
  7467. #else // !SWITCHING_EXTRUDER
  7468. switch (active_extruder) {
  7469. case 0:
  7470. oldstatus = E0_ENABLE_READ;
  7471. enable_e0();
  7472. break;
  7473. #if E_STEPPERS > 1
  7474. case 1:
  7475. oldstatus = E1_ENABLE_READ;
  7476. enable_e1();
  7477. break;
  7478. #if E_STEPPERS > 2
  7479. case 2:
  7480. oldstatus = E2_ENABLE_READ;
  7481. enable_e2();
  7482. break;
  7483. #if E_STEPPERS > 3
  7484. case 3:
  7485. oldstatus = E3_ENABLE_READ;
  7486. enable_e3();
  7487. break;
  7488. #endif
  7489. #endif
  7490. #endif
  7491. }
  7492. #endif // !SWITCHING_EXTRUDER
  7493. previous_cmd_ms = ms; // refresh_cmd_timeout()
  7494. planner.buffer_line(
  7495. current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS],
  7496. current_position[E_AXIS] + EXTRUDER_RUNOUT_EXTRUDE,
  7497. MMM_TO_MMS(EXTRUDER_RUNOUT_SPEED), active_extruder
  7498. );
  7499. stepper.synchronize();
  7500. planner.set_e_position_mm(current_position[E_AXIS]);
  7501. #if ENABLED(SWITCHING_EXTRUDER)
  7502. E0_ENABLE_WRITE(oldstatus);
  7503. #else
  7504. switch (active_extruder) {
  7505. case 0:
  7506. E0_ENABLE_WRITE(oldstatus);
  7507. break;
  7508. #if E_STEPPERS > 1
  7509. case 1:
  7510. E1_ENABLE_WRITE(oldstatus);
  7511. break;
  7512. #if E_STEPPERS > 2
  7513. case 2:
  7514. E2_ENABLE_WRITE(oldstatus);
  7515. break;
  7516. #if E_STEPPERS > 3
  7517. case 3:
  7518. E3_ENABLE_WRITE(oldstatus);
  7519. break;
  7520. #endif
  7521. #endif
  7522. #endif
  7523. }
  7524. #endif // !SWITCHING_EXTRUDER
  7525. }
  7526. #endif // EXTRUDER_RUNOUT_PREVENT
  7527. #if ENABLED(DUAL_X_CARRIAGE)
  7528. // handle delayed move timeout
  7529. if (delayed_move_time && ELAPSED(ms, delayed_move_time + 1000UL) && IsRunning()) {
  7530. // travel moves have been received so enact them
  7531. delayed_move_time = 0xFFFFFFFFUL; // force moves to be done
  7532. set_destination_to_current();
  7533. prepare_move_to_destination();
  7534. }
  7535. #endif
  7536. #if ENABLED(TEMP_STAT_LEDS)
  7537. handle_status_leds();
  7538. #endif
  7539. planner.check_axes_activity();
  7540. }
  7541. /**
  7542. * Standard idle routine keeps the machine alive
  7543. */
  7544. void idle(
  7545. #if ENABLED(FILAMENT_CHANGE_FEATURE)
  7546. bool no_stepper_sleep/*=false*/
  7547. #endif
  7548. ) {
  7549. lcd_update();
  7550. host_keepalive();
  7551. manage_inactivity(
  7552. #if ENABLED(FILAMENT_CHANGE_FEATURE)
  7553. no_stepper_sleep
  7554. #endif
  7555. );
  7556. thermalManager.manage_heater();
  7557. #if ENABLED(PRINTCOUNTER)
  7558. print_job_timer.tick();
  7559. #endif
  7560. #if HAS_BUZZER && PIN_EXISTS(BEEPER)
  7561. buzzer.tick();
  7562. #endif
  7563. }
  7564. /**
  7565. * Kill all activity and lock the machine.
  7566. * After this the machine will need to be reset.
  7567. */
  7568. void kill(const char* lcd_msg) {
  7569. SERIAL_ERROR_START;
  7570. SERIAL_ERRORLNPGM(MSG_ERR_KILLED);
  7571. #if ENABLED(ULTRA_LCD)
  7572. kill_screen(lcd_msg);
  7573. #else
  7574. UNUSED(lcd_msg);
  7575. #endif
  7576. delay(500); // Wait a short time
  7577. cli(); // Stop interrupts
  7578. thermalManager.disable_all_heaters();
  7579. disable_all_steppers();
  7580. #if HAS_POWER_SWITCH
  7581. pinMode(PS_ON_PIN, INPUT);
  7582. #endif
  7583. suicide();
  7584. while (1) {
  7585. #if ENABLED(USE_WATCHDOG)
  7586. watchdog_reset();
  7587. #endif
  7588. } // Wait for reset
  7589. }
  7590. /**
  7591. * Turn off heaters and stop the print in progress
  7592. * After a stop the machine may be resumed with M999
  7593. */
  7594. void stop() {
  7595. thermalManager.disable_all_heaters();
  7596. if (IsRunning()) {
  7597. Running = false;
  7598. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  7599. SERIAL_ERROR_START;
  7600. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  7601. LCD_MESSAGEPGM(MSG_STOPPED);
  7602. }
  7603. }
  7604. /**
  7605. * Marlin entry-point: Set up before the program loop
  7606. * - Set up the kill pin, filament runout, power hold
  7607. * - Start the serial port
  7608. * - Print startup messages and diagnostics
  7609. * - Get EEPROM or default settings
  7610. * - Initialize managers for:
  7611. * • temperature
  7612. * • planner
  7613. * • watchdog
  7614. * • stepper
  7615. * • photo pin
  7616. * • servos
  7617. * • LCD controller
  7618. * • Digipot I2C
  7619. * • Z probe sled
  7620. * • status LEDs
  7621. */
  7622. void setup() {
  7623. #ifdef DISABLE_JTAG
  7624. // Disable JTAG on AT90USB chips to free up pins for IO
  7625. MCUCR = 0x80;
  7626. MCUCR = 0x80;
  7627. #endif
  7628. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  7629. setup_filrunoutpin();
  7630. #endif
  7631. setup_killpin();
  7632. setup_powerhold();
  7633. #if HAS_STEPPER_RESET
  7634. disableStepperDrivers();
  7635. #endif
  7636. MYSERIAL.begin(BAUDRATE);
  7637. SERIAL_PROTOCOLLNPGM("start");
  7638. SERIAL_ECHO_START;
  7639. // Check startup - does nothing if bootloader sets MCUSR to 0
  7640. byte mcu = MCUSR;
  7641. if (mcu & 1) SERIAL_ECHOLNPGM(MSG_POWERUP);
  7642. if (mcu & 2) SERIAL_ECHOLNPGM(MSG_EXTERNAL_RESET);
  7643. if (mcu & 4) SERIAL_ECHOLNPGM(MSG_BROWNOUT_RESET);
  7644. if (mcu & 8) SERIAL_ECHOLNPGM(MSG_WATCHDOG_RESET);
  7645. if (mcu & 32) SERIAL_ECHOLNPGM(MSG_SOFTWARE_RESET);
  7646. MCUSR = 0;
  7647. SERIAL_ECHOPGM(MSG_MARLIN);
  7648. SERIAL_CHAR(' ');
  7649. SERIAL_ECHOLNPGM(SHORT_BUILD_VERSION);
  7650. SERIAL_EOL;
  7651. #if defined(STRING_DISTRIBUTION_DATE) && defined(STRING_CONFIG_H_AUTHOR)
  7652. SERIAL_ECHO_START;
  7653. SERIAL_ECHOPGM(MSG_CONFIGURATION_VER);
  7654. SERIAL_ECHOPGM(STRING_DISTRIBUTION_DATE);
  7655. SERIAL_ECHOLNPGM(MSG_AUTHOR STRING_CONFIG_H_AUTHOR);
  7656. SERIAL_ECHOLNPGM("Compiled: " __DATE__);
  7657. #endif
  7658. SERIAL_ECHO_START;
  7659. SERIAL_ECHOPAIR(MSG_FREE_MEMORY, freeMemory());
  7660. SERIAL_ECHOLNPAIR(MSG_PLANNER_BUFFER_BYTES, (int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  7661. // Send "ok" after commands by default
  7662. for (int8_t i = 0; i < BUFSIZE; i++) send_ok[i] = true;
  7663. // Load data from EEPROM if available (or use defaults)
  7664. // This also updates variables in the planner, elsewhere
  7665. Config_RetrieveSettings();
  7666. // Initialize current position based on home_offset
  7667. memcpy(current_position, home_offset, sizeof(home_offset));
  7668. // Vital to init stepper/planner equivalent for current_position
  7669. SYNC_PLAN_POSITION_KINEMATIC();
  7670. thermalManager.init(); // Initialize temperature loop
  7671. #if ENABLED(USE_WATCHDOG)
  7672. watchdog_init();
  7673. #endif
  7674. stepper.init(); // Initialize stepper, this enables interrupts!
  7675. setup_photpin();
  7676. servo_init();
  7677. #if HAS_BED_PROBE
  7678. endstops.enable_z_probe(false);
  7679. #endif
  7680. #if HAS_CONTROLLERFAN
  7681. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  7682. #endif
  7683. #if HAS_STEPPER_RESET
  7684. enableStepperDrivers();
  7685. #endif
  7686. #if ENABLED(DIGIPOT_I2C)
  7687. digipot_i2c_init();
  7688. #endif
  7689. #if ENABLED(DAC_STEPPER_CURRENT)
  7690. dac_init();
  7691. #endif
  7692. #if ENABLED(Z_PROBE_SLED) && PIN_EXISTS(SLED)
  7693. pinMode(SLED_PIN, OUTPUT);
  7694. digitalWrite(SLED_PIN, LOW); // turn it off
  7695. #endif // Z_PROBE_SLED
  7696. setup_homepin();
  7697. #ifdef STAT_LED_RED
  7698. pinMode(STAT_LED_RED, OUTPUT);
  7699. digitalWrite(STAT_LED_RED, LOW); // turn it off
  7700. #endif
  7701. #ifdef STAT_LED_BLUE
  7702. pinMode(STAT_LED_BLUE, OUTPUT);
  7703. digitalWrite(STAT_LED_BLUE, LOW); // turn it off
  7704. #endif
  7705. lcd_init();
  7706. #if ENABLED(SHOW_BOOTSCREEN)
  7707. #if ENABLED(DOGLCD)
  7708. safe_delay(BOOTSCREEN_TIMEOUT);
  7709. #elif ENABLED(ULTRA_LCD)
  7710. bootscreen();
  7711. lcd_init();
  7712. #endif
  7713. #endif
  7714. #if ENABLED(MIXING_EXTRUDER) && MIXING_VIRTUAL_TOOLS > 1
  7715. // Initialize mixing to 100% color 1
  7716. for (uint8_t i = 0; i < MIXING_STEPPERS; i++)
  7717. mixing_factor[i] = (i == 0) ? 1 : 0;
  7718. for (uint8_t t = 0; t < MIXING_VIRTUAL_TOOLS; t++)
  7719. for (uint8_t i = 0; i < MIXING_STEPPERS; i++)
  7720. mixing_virtual_tool_mix[t][i] = mixing_factor[i];
  7721. #endif
  7722. #if ENABLED(EXPERIMENTAL_I2CBUS) && I2C_SLAVE_ADDRESS > 0
  7723. i2c.onReceive(i2c_on_receive);
  7724. i2c.onRequest(i2c_on_request);
  7725. #endif
  7726. }
  7727. /**
  7728. * The main Marlin program loop
  7729. *
  7730. * - Save or log commands to SD
  7731. * - Process available commands (if not saving)
  7732. * - Call heater manager
  7733. * - Call inactivity manager
  7734. * - Call endstop manager
  7735. * - Call LCD update
  7736. */
  7737. void loop() {
  7738. if (commands_in_queue < BUFSIZE) get_available_commands();
  7739. #if ENABLED(SDSUPPORT)
  7740. card.checkautostart(false);
  7741. #endif
  7742. if (commands_in_queue) {
  7743. #if ENABLED(SDSUPPORT)
  7744. if (card.saving) {
  7745. char* command = command_queue[cmd_queue_index_r];
  7746. if (strstr_P(command, PSTR("M29"))) {
  7747. // M29 closes the file
  7748. card.closefile();
  7749. SERIAL_PROTOCOLLNPGM(MSG_FILE_SAVED);
  7750. ok_to_send();
  7751. }
  7752. else {
  7753. // Write the string from the read buffer to SD
  7754. card.write_command(command);
  7755. if (card.logging)
  7756. process_next_command(); // The card is saving because it's logging
  7757. else
  7758. ok_to_send();
  7759. }
  7760. }
  7761. else
  7762. process_next_command();
  7763. #else
  7764. process_next_command();
  7765. #endif // SDSUPPORT
  7766. // The queue may be reset by a command handler or by code invoked by idle() within a handler
  7767. if (commands_in_queue) {
  7768. --commands_in_queue;
  7769. cmd_queue_index_r = (cmd_queue_index_r + 1) % BUFSIZE;
  7770. }
  7771. }
  7772. endstops.report_state();
  7773. idle();
  7774. }