My Marlin configs for Fabrikator Mini and CTC i3 Pro B
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

Marlin_main.cpp 363KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997799879998000800180028003800480058006800780088009801080118012801380148015801680178018801980208021802280238024802580268027802880298030803180328033803480358036803780388039804080418042804380448045804680478048804980508051805280538054805580568057805880598060806180628063806480658066806780688069807080718072807380748075807680778078807980808081808280838084808580868087808880898090809180928093809480958096809780988099810081018102810381048105810681078108810981108111811281138114811581168117811881198120812181228123812481258126812781288129813081318132813381348135813681378138813981408141814281438144814581468147814881498150815181528153815481558156815781588159816081618162816381648165816681678168816981708171817281738174817581768177817881798180818181828183818481858186818781888189819081918192819381948195819681978198819982008201820282038204820582068207820882098210821182128213821482158216821782188219822082218222822382248225822682278228822982308231823282338234823582368237823882398240824182428243824482458246824782488249825082518252825382548255825682578258825982608261826282638264826582668267826882698270827182728273827482758276827782788279828082818282828382848285828682878288828982908291829282938294829582968297829882998300830183028303830483058306830783088309831083118312831383148315831683178318831983208321832283238324832583268327832883298330833183328333833483358336833783388339834083418342834383448345834683478348834983508351835283538354835583568357835883598360836183628363836483658366836783688369837083718372837383748375837683778378837983808381838283838384838583868387838883898390839183928393839483958396839783988399840084018402840384048405840684078408840984108411841284138414841584168417841884198420842184228423842484258426842784288429843084318432843384348435843684378438843984408441844284438444844584468447844884498450845184528453845484558456845784588459846084618462846384648465846684678468846984708471847284738474847584768477847884798480848184828483848484858486848784888489849084918492849384948495849684978498849985008501850285038504850585068507850885098510851185128513851485158516851785188519852085218522852385248525852685278528852985308531853285338534853585368537853885398540854185428543854485458546854785488549855085518552855385548555855685578558855985608561856285638564856585668567856885698570857185728573857485758576857785788579858085818582858385848585858685878588858985908591859285938594859585968597859885998600860186028603860486058606860786088609861086118612861386148615861686178618861986208621862286238624862586268627862886298630863186328633863486358636863786388639864086418642864386448645864686478648864986508651865286538654865586568657865886598660866186628663866486658666866786688669867086718672867386748675867686778678867986808681868286838684868586868687868886898690869186928693869486958696869786988699870087018702870387048705870687078708870987108711871287138714871587168717871887198720872187228723872487258726872787288729873087318732873387348735873687378738873987408741874287438744874587468747874887498750875187528753875487558756875787588759876087618762876387648765876687678768876987708771877287738774877587768777877887798780878187828783878487858786878787888789879087918792879387948795879687978798879988008801880288038804880588068807880888098810881188128813881488158816881788188819882088218822882388248825882688278828882988308831883288338834883588368837883888398840884188428843884488458846884788488849885088518852885388548855885688578858885988608861886288638864886588668867886888698870887188728873887488758876887788788879888088818882888388848885888688878888888988908891889288938894889588968897889888998900890189028903890489058906890789088909891089118912891389148915891689178918891989208921892289238924892589268927892889298930893189328933893489358936893789388939894089418942894389448945894689478948894989508951895289538954895589568957895889598960896189628963896489658966896789688969897089718972897389748975897689778978897989808981898289838984898589868987898889898990899189928993899489958996899789988999900090019002900390049005900690079008900990109011901290139014901590169017901890199020902190229023902490259026902790289029903090319032903390349035903690379038903990409041904290439044904590469047904890499050905190529053905490559056905790589059906090619062906390649065906690679068906990709071907290739074907590769077907890799080908190829083908490859086908790889089909090919092909390949095909690979098909991009101910291039104910591069107910891099110911191129113911491159116911791189119912091219122912391249125912691279128912991309131913291339134913591369137913891399140914191429143914491459146914791489149915091519152915391549155915691579158915991609161916291639164916591669167916891699170917191729173917491759176917791789179918091819182918391849185918691879188918991909191919291939194919591969197919891999200920192029203920492059206920792089209921092119212921392149215921692179218921992209221922292239224922592269227922892299230923192329233923492359236923792389239924092419242924392449245924692479248924992509251925292539254925592569257925892599260926192629263926492659266926792689269927092719272927392749275927692779278927992809281928292839284928592869287928892899290929192929293929492959296929792989299930093019302930393049305930693079308930993109311931293139314931593169317931893199320932193229323932493259326932793289329933093319332933393349335933693379338933993409341934293439344934593469347934893499350935193529353935493559356935793589359936093619362936393649365936693679368936993709371937293739374937593769377937893799380938193829383938493859386938793889389939093919392939393949395939693979398939994009401940294039404940594069407940894099410941194129413941494159416941794189419942094219422942394249425942694279428942994309431943294339434943594369437943894399440944194429443944494459446944794489449945094519452945394549455945694579458945994609461946294639464946594669467946894699470947194729473947494759476947794789479948094819482948394849485948694879488948994909491949294939494949594969497949894999500950195029503950495059506950795089509951095119512951395149515951695179518951995209521952295239524952595269527952895299530953195329533953495359536953795389539954095419542954395449545954695479548954995509551955295539554955595569557955895599560956195629563956495659566956795689569957095719572957395749575957695779578957995809581958295839584958595869587958895899590959195929593959495959596959795989599960096019602960396049605960696079608960996109611961296139614961596169617961896199620962196229623962496259626962796289629963096319632963396349635963696379638963996409641964296439644964596469647964896499650965196529653965496559656965796589659966096619662966396649665966696679668966996709671967296739674967596769677967896799680968196829683968496859686968796889689969096919692969396949695969696979698969997009701970297039704970597069707970897099710971197129713971497159716971797189719972097219722972397249725972697279728972997309731973297339734973597369737973897399740974197429743974497459746974797489749975097519752975397549755975697579758975997609761976297639764976597669767976897699770977197729773977497759776977797789779978097819782978397849785978697879788978997909791979297939794979597969797979897999800980198029803980498059806980798089809981098119812981398149815981698179818981998209821982298239824982598269827982898299830983198329833983498359836983798389839984098419842984398449845984698479848984998509851985298539854985598569857985898599860986198629863986498659866986798689869987098719872987398749875987698779878987998809881988298839884988598869887988898899890989198929893989498959896989798989899990099019902990399049905990699079908990999109911991299139914991599169917991899199920992199229923992499259926992799289929993099319932993399349935993699379938993999409941994299439944994599469947994899499950995199529953995499559956995799589959996099619962996399649965996699679968996999709971997299739974997599769977997899799980998199829983998499859986998799889989999099919992999399949995999699979998999910000100011000210003100041000510006100071000810009100101001110012100131001410015100161001710018100191002010021100221002310024100251002610027100281002910030100311003210033100341003510036100371003810039100401004110042100431004410045100461004710048100491005010051100521005310054100551005610057100581005910060100611006210063100641006510066100671006810069100701007110072100731007410075100761007710078100791008010081100821008310084100851008610087100881008910090100911009210093100941009510096100971009810099101001010110102101031010410105101061010710108101091011010111101121011310114101151011610117101181011910120101211012210123101241012510126101271012810129101301013110132101331013410135101361013710138101391014010141101421014310144101451014610147101481014910150101511015210153101541015510156101571015810159101601016110162101631016410165101661016710168101691017010171101721017310174101751017610177101781017910180101811018210183101841018510186101871018810189101901019110192101931019410195101961019710198101991020010201102021020310204102051020610207102081020910210102111021210213102141021510216102171021810219102201022110222102231022410225102261022710228102291023010231102321023310234102351023610237102381023910240102411024210243102441024510246102471024810249102501025110252102531025410255102561025710258102591026010261102621026310264102651026610267102681026910270102711027210273102741027510276102771027810279102801028110282102831028410285102861028710288102891029010291102921029310294102951029610297102981029910300103011030210303103041030510306103071030810309103101031110312103131031410315103161031710318103191032010321103221032310324103251032610327103281032910330103311033210333103341033510336103371033810339103401034110342103431034410345103461034710348103491035010351103521035310354103551035610357103581035910360103611036210363103641036510366103671036810369103701037110372103731037410375103761037710378103791038010381103821038310384103851038610387103881038910390103911039210393103941039510396103971039810399104001040110402104031040410405104061040710408104091041010411104121041310414104151041610417104181041910420104211042210423104241042510426104271042810429104301043110432104331043410435104361043710438104391044010441104421044310444104451044610447104481044910450104511045210453104541045510456104571045810459104601046110462104631046410465104661046710468104691047010471104721047310474104751047610477104781047910480104811048210483104841048510486104871048810489104901049110492104931049410495104961049710498104991050010501105021050310504105051050610507105081050910510105111051210513105141051510516105171051810519105201052110522105231052410525105261052710528105291053010531105321053310534105351053610537105381053910540105411054210543105441054510546105471054810549105501055110552105531055410555105561055710558105591056010561105621056310564105651056610567105681056910570105711057210573105741057510576105771057810579105801058110582105831058410585105861058710588105891059010591105921059310594105951059610597105981059910600106011060210603106041060510606106071060810609106101061110612106131061410615106161061710618106191062010621106221062310624106251062610627106281062910630106311063210633106341063510636106371063810639106401064110642106431064410645106461064710648106491065010651106521065310654106551065610657106581065910660106611066210663106641066510666106671066810669106701067110672106731067410675106761067710678106791068010681106821068310684106851068610687106881068910690106911069210693106941069510696106971069810699107001070110702107031070410705107061070710708107091071010711107121071310714107151071610717107181071910720107211072210723107241072510726107271072810729107301073110732107331073410735107361073710738107391074010741107421074310744107451074610747107481074910750107511075210753107541075510756107571075810759107601076110762107631076410765107661076710768107691077010771107721077310774107751077610777107781077910780107811078210783107841078510786107871078810789107901079110792107931079410795107961079710798107991080010801108021080310804108051080610807108081080910810108111081210813108141081510816108171081810819108201082110822108231082410825108261082710828108291083010831108321083310834108351083610837108381083910840108411084210843108441084510846108471084810849108501085110852108531085410855108561085710858108591086010861108621086310864108651086610867108681086910870108711087210873108741087510876108771087810879108801088110882108831088410885108861088710888108891089010891108921089310894108951089610897108981089910900109011090210903109041090510906109071090810909109101091110912109131091410915109161091710918109191092010921109221092310924109251092610927109281092910930109311093210933109341093510936109371093810939109401094110942109431094410945109461094710948109491095010951109521095310954109551095610957109581095910960109611096210963109641096510966109671096810969109701097110972109731097410975109761097710978109791098010981109821098310984109851098610987109881098910990109911099210993109941099510996109971099810999110001100111002110031100411005110061100711008110091101011011110121101311014110151101611017110181101911020110211102211023110241102511026110271102811029110301103111032110331103411035110361103711038110391104011041110421104311044110451104611047110481104911050110511105211053110541105511056110571105811059110601106111062110631106411065110661106711068110691107011071110721107311074110751107611077110781107911080110811108211083110841108511086110871108811089110901109111092110931109411095110961109711098110991110011101111021110311104111051110611107111081110911110111111111211113111141111511116111171111811119111201112111122111231112411125111261112711128111291113011131111321113311134111351113611137111381113911140111411114211143111441114511146111471114811149111501115111152111531115411155111561115711158111591116011161111621116311164111651116611167111681116911170111711117211173111741117511176111771117811179111801118111182111831118411185111861118711188111891119011191111921119311194111951119611197111981119911200112011120211203112041120511206112071120811209112101121111212112131121411215112161121711218112191122011221112221122311224112251122611227112281122911230112311123211233112341123511236112371123811239112401124111242112431124411245112461124711248112491125011251112521125311254112551125611257112581125911260112611126211263112641126511266112671126811269112701127111272112731127411275112761127711278112791128011281112821128311284112851128611287112881128911290112911129211293112941129511296112971129811299113001130111302113031130411305113061130711308113091131011311113121131311314113151131611317113181131911320113211132211323113241132511326113271132811329113301133111332113331133411335113361133711338113391134011341113421134311344113451134611347113481134911350113511135211353113541135511356113571135811359113601136111362113631136411365113661136711368113691137011371113721137311374113751137611377113781137911380113811138211383113841138511386113871138811389113901139111392113931139411395113961139711398113991140011401114021140311404114051140611407114081140911410114111141211413114141141511416114171141811419114201142111422114231142411425114261142711428114291143011431114321143311434114351143611437114381143911440114411144211443114441144511446114471144811449114501145111452114531145411455114561145711458114591146011461114621146311464114651146611467114681146911470114711147211473114741147511476114771147811479114801148111482114831148411485114861148711488114891149011491114921149311494114951149611497114981149911500115011150211503115041150511506115071150811509115101151111512115131151411515115161151711518115191152011521115221152311524115251152611527115281152911530115311153211533115341153511536115371153811539115401154111542115431154411545
  1. /**
  2. * Marlin 3D Printer Firmware
  3. * Copyright (C) 2016, 2017 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
  4. *
  5. * Based on Sprinter and grbl.
  6. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  7. *
  8. * This program is free software: you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation, either version 3 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  20. *
  21. */
  22. /**
  23. * About Marlin
  24. *
  25. * This firmware is a mashup between Sprinter and grbl.
  26. * - https://github.com/kliment/Sprinter
  27. * - https://github.com/simen/grbl/tree
  28. */
  29. /**
  30. * -----------------
  31. * G-Codes in Marlin
  32. * -----------------
  33. *
  34. * Helpful G-code references:
  35. * - http://linuxcnc.org/handbook/gcode/g-code.html
  36. * - http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  37. *
  38. * Help to document Marlin's G-codes online:
  39. * - http://reprap.org/wiki/G-code
  40. * - https://github.com/MarlinFirmware/MarlinDocumentation
  41. *
  42. * -----------------
  43. *
  44. * "G" Codes
  45. *
  46. * G0 -> G1
  47. * G1 - Coordinated Movement X Y Z E
  48. * G2 - CW ARC
  49. * G3 - CCW ARC
  50. * G4 - Dwell S<seconds> or P<milliseconds>
  51. * G5 - Cubic B-spline with XYZE destination and IJPQ offsets
  52. * G10 - Retract filament according to settings of M207
  53. * G11 - Retract recover filament according to settings of M208
  54. * G12 - Clean tool
  55. * G20 - Set input units to inches
  56. * G21 - Set input units to millimeters
  57. * G28 - Home one or more axes
  58. * G29 - Detailed Z probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  59. * G30 - Single Z probe, probes bed at X Y location (defaults to current XY location)
  60. * G31 - Dock sled (Z_PROBE_SLED only)
  61. * G32 - Undock sled (Z_PROBE_SLED only)
  62. * G38 - Probe target - similar to G28 except it uses the Z_MIN_PROBE for all three axes
  63. * G90 - Use Absolute Coordinates
  64. * G91 - Use Relative Coordinates
  65. * G92 - Set current position to coordinates given
  66. *
  67. * "M" Codes
  68. *
  69. * M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
  70. * M1 - Same as M0
  71. * M17 - Enable/Power all stepper motors
  72. * M18 - Disable all stepper motors; same as M84
  73. * M20 - List SD card. (Requires SDSUPPORT)
  74. * M21 - Init SD card. (Requires SDSUPPORT)
  75. * M22 - Release SD card. (Requires SDSUPPORT)
  76. * M23 - Select SD file: "M23 /path/file.gco". (Requires SDSUPPORT)
  77. * M24 - Start/resume SD print. (Requires SDSUPPORT)
  78. * M25 - Pause SD print. (Requires SDSUPPORT)
  79. * M26 - Set SD position in bytes: "M26 S12345". (Requires SDSUPPORT)
  80. * M27 - Report SD print status. (Requires SDSUPPORT)
  81. * M28 - Start SD write: "M28 /path/file.gco". (Requires SDSUPPORT)
  82. * M29 - Stop SD write. (Requires SDSUPPORT)
  83. * M30 - Delete file from SD: "M30 /path/file.gco"
  84. * M31 - Report time since last M109 or SD card start to serial.
  85. * M32 - Select file and start SD print: "M32 [S<bytepos>] !/path/file.gco#". (Requires SDSUPPORT)
  86. * Use P to run other files as sub-programs: "M32 P !filename#"
  87. * The '#' is necessary when calling from within sd files, as it stops buffer prereading
  88. * M33 - Get the longname version of a path. (Requires LONG_FILENAME_HOST_SUPPORT)
  89. * M34 - Set SD Card sorting options. (Requires SDCARD_SORT_ALPHA)
  90. * M42 - Change pin status via gcode: M42 P<pin> S<value>. LED pin assumed if P is omitted.
  91. * M43 - Display pin status, watch pins for changes, watch endstops & toggle LED, Z servo probe test, toggle pins
  92. * M48 - Measure Z Probe repeatability: M48 P<points> X<pos> Y<pos> V<level> E<engage> L<legs>. (Requires Z_MIN_PROBE_REPEATABILITY_TEST)
  93. * M75 - Start the print job timer.
  94. * M76 - Pause the print job timer.
  95. * M77 - Stop the print job timer.
  96. * M78 - Show statistical information about the print jobs. (Requires PRINTCOUNTER)
  97. * M80 - Turn on Power Supply. (Requires POWER_SUPPLY)
  98. * M81 - Turn off Power Supply. (Requires POWER_SUPPLY)
  99. * M82 - Set E codes absolute (default).
  100. * M83 - Set E codes relative while in Absolute (G90) mode.
  101. * M84 - Disable steppers until next move, or use S<seconds> to specify an idle
  102. * duration after which steppers should turn off. S0 disables the timeout.
  103. * M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  104. * M92 - Set planner.axis_steps_per_mm for one or more axes.
  105. * M104 - Set extruder target temp.
  106. * M105 - Report current temperatures.
  107. * M106 - Fan on.
  108. * M107 - Fan off.
  109. * M108 - Break out of heating loops (M109, M190, M303). With no controller, breaks out of M0/M1. (Requires EMERGENCY_PARSER)
  110. * M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  111. * Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  112. * If AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  113. * M110 - Set the current line number. (Used by host printing)
  114. * M111 - Set debug flags: "M111 S<flagbits>". See flag bits defined in enum.h.
  115. * M112 - Emergency stop.
  116. * M113 - Get or set the timeout interval for Host Keepalive "busy" messages. (Requires HOST_KEEPALIVE_FEATURE)
  117. * M114 - Report current position.
  118. * M115 - Report capabilities. (Extended capabilities requires EXTENDED_CAPABILITIES_REPORT)
  119. * M117 - Display a message on the controller screen. (Requires an LCD)
  120. * M119 - Report endstops status.
  121. * M120 - Enable endstops detection.
  122. * M121 - Disable endstops detection.
  123. * M125 - Save current position and move to filament change position. (Requires PARK_HEAD_ON_PAUSE)
  124. * M126 - Solenoid Air Valve Open. (Requires BARICUDA)
  125. * M127 - Solenoid Air Valve Closed. (Requires BARICUDA)
  126. * M128 - EtoP Open. (Requires BARICUDA)
  127. * M129 - EtoP Closed. (Requires BARICUDA)
  128. * M140 - Set bed target temp. S<temp>
  129. * M145 - Set heatup values for materials on the LCD. H<hotend> B<bed> F<fan speed> for S<material> (0=PLA, 1=ABS)
  130. * M149 - Set temperature units. (Requires TEMPERATURE_UNITS_SUPPORT)
  131. * M150 - Set Status LED Color as R<red> U<green> B<blue>. Values 0-255. (Requires BLINKM or RGB_LED)
  132. * M155 - Auto-report temperatures with interval of S<seconds>. (Requires AUTO_REPORT_TEMPERATURES)
  133. * M163 - Set a single proportion for a mixing extruder. (Requires MIXING_EXTRUDER)
  134. * M164 - Save the mix as a virtual extruder. (Requires MIXING_EXTRUDER and MIXING_VIRTUAL_TOOLS)
  135. * M165 - Set the proportions for a mixing extruder. Use parameters ABCDHI to set the mixing factors. (Requires MIXING_EXTRUDER)
  136. * M190 - Sxxx Wait for bed current temp to reach target temp. ** Waits only when heating! **
  137. * Rxxx Wait for bed current temp to reach target temp. ** Waits for heating or cooling. **
  138. * M200 - Set filament diameter, D<diameter>, setting E axis units to cubic. (Use S0 to revert to linear units.)
  139. * M201 - Set max acceleration in units/s^2 for print moves: "M201 X<accel> Y<accel> Z<accel> E<accel>"
  140. * M202 - Set max acceleration in units/s^2 for travel moves: "M202 X<accel> Y<accel> Z<accel> E<accel>" ** UNUSED IN MARLIN! **
  141. * M203 - Set maximum feedrate: "M203 X<fr> Y<fr> Z<fr> E<fr>" in units/sec.
  142. * M204 - Set default acceleration in units/sec^2: P<printing> R<extruder_only> T<travel>
  143. * M205 - Set advanced settings. Current units apply:
  144. S<print> T<travel> minimum speeds
  145. B<minimum segment time>
  146. X<max X jerk>, Y<max Y jerk>, Z<max Z jerk>, E<max E jerk>
  147. * M206 - Set additional homing offset.
  148. * M207 - Set Retract Length: S<length>, Feedrate: F<units/min>, and Z lift: Z<distance>. (Requires FWRETRACT)
  149. * M208 - Set Recover (unretract) Additional (!) Length: S<length> and Feedrate: F<units/min>. (Requires FWRETRACT)
  150. * M209 - Turn Automatic Retract Detection on/off: S<0|1> (For slicers that don't support G10/11). (Requires FWRETRACT)
  151. Every normal extrude-only move will be classified as retract depending on the direction.
  152. * M211 - Enable, Disable, and/or Report software endstops: S<0|1> (Requires MIN_SOFTWARE_ENDSTOPS or MAX_SOFTWARE_ENDSTOPS)
  153. * M218 - Set a tool offset: "M218 T<index> X<offset> Y<offset>". (Requires 2 or more extruders)
  154. * M220 - Set Feedrate Percentage: "M220 S<percent>" (i.e., "FR" on the LCD)
  155. * M221 - Set Flow Percentage: "M221 S<percent>"
  156. * M226 - Wait until a pin is in a given state: "M226 P<pin> S<state>"
  157. * M240 - Trigger a camera to take a photograph. (Requires CHDK or PHOTOGRAPH_PIN)
  158. * M250 - Set LCD contrast: "M250 C<contrast>" (0-63). (Requires LCD support)
  159. * M260 - i2c Send Data (Requires EXPERIMENTAL_I2CBUS)
  160. * M261 - i2c Request Data (Requires EXPERIMENTAL_I2CBUS)
  161. * M280 - Set servo position absolute: "M280 P<index> S<angle|µs>". (Requires servos)
  162. * M300 - Play beep sound S<frequency Hz> P<duration ms>
  163. * M301 - Set PID parameters P I and D. (Requires PIDTEMP)
  164. * M302 - Allow cold extrudes, or set the minimum extrude S<temperature>. (Requires PREVENT_COLD_EXTRUSION)
  165. * M303 - PID relay autotune S<temperature> sets the target temperature. Default 150C. (Requires PIDTEMP)
  166. * M304 - Set bed PID parameters P I and D. (Requires PIDTEMPBED)
  167. * M355 - Turn the Case Light on/off and set its brightness. (Requires CASE_LIGHT_PIN)
  168. * M380 - Activate solenoid on active extruder. (Requires EXT_SOLENOID)
  169. * M381 - Disable all solenoids. (Requires EXT_SOLENOID)
  170. * M400 - Finish all moves.
  171. * M401 - Lower Z probe. (Requires a probe)
  172. * M402 - Raise Z probe. (Requires a probe)
  173. * M404 - Display or set the Nominal Filament Width: "W<diameter>". (Requires FILAMENT_WIDTH_SENSOR)
  174. * M405 - Enable Filament Sensor flow control. "M405 D<delay_cm>". (Requires FILAMENT_WIDTH_SENSOR)
  175. * M406 - Disable Filament Sensor flow control. (Requires FILAMENT_WIDTH_SENSOR)
  176. * M407 - Display measured filament diameter in millimeters. (Requires FILAMENT_WIDTH_SENSOR)
  177. * M410 - Quickstop. Abort all planned moves.
  178. * M420 - Enable/Disable Leveling (with current values) S1=enable S0=disable (Requires MESH_BED_LEVELING or ABL)
  179. * M421 - Set a single Z coordinate in the Mesh Leveling grid. X<units> Y<units> Z<units> (Requires MESH_BED_LEVELING or AUTO_BED_LEVELING_UBL)
  180. * M428 - Set the home_offset based on the current_position. Nearest edge applies.
  181. * M500 - Store parameters in EEPROM. (Requires EEPROM_SETTINGS)
  182. * M501 - Restore parameters from EEPROM. (Requires EEPROM_SETTINGS)
  183. * M502 - Revert to the default "factory settings". ** Does not write them to EEPROM! **
  184. * M503 - Print the current settings (in memory): "M503 S<verbose>". S0 specifies compact output.
  185. * M540 - Enable/disable SD card abort on endstop hit: "M540 S<state>". (Requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  186. * M600 - Pause for filament change: "M600 X<pos> Y<pos> Z<raise> E<first_retract> L<later_retract>". (Requires FILAMENT_CHANGE_FEATURE)
  187. * M665 - Set delta configurations: "M665 L<diagonal rod> R<delta radius> S<segments/s> A<rod A trim mm> B<rod B trim mm> C<rod C trim mm> I<tower A trim angle> J<tower B trim angle> K<tower C trim angle>" (Requires DELTA)
  188. * M666 - Set delta endstop adjustment. (Requires DELTA)
  189. * M605 - Set dual x-carriage movement mode: "M605 S<mode> [X<x_offset>] [R<temp_offset>]". (Requires DUAL_X_CARRIAGE)
  190. * M851 - Set Z probe's Z offset in current units. (Negative = below the nozzle.)
  191. * M906 - Set or get motor current in milliamps using axis codes X, Y, Z, E. Report values if no axis codes given. (Requires HAVE_TMC2130)
  192. * M907 - Set digital trimpot motor current using axis codes. (Requires a board with digital trimpots)
  193. * M908 - Control digital trimpot directly. (Requires DAC_STEPPER_CURRENT or DIGIPOTSS_PIN)
  194. * M909 - Print digipot/DAC current value. (Requires DAC_STEPPER_CURRENT)
  195. * M910 - Commit digipot/DAC value to external EEPROM via I2C. (Requires DAC_STEPPER_CURRENT)
  196. * M911 - Report stepper driver overtemperature pre-warn condition. (Requires HAVE_TMC2130)
  197. * M912 - Clear stepper driver overtemperature pre-warn condition flag. (Requires HAVE_TMC2130)
  198. * M350 - Set microstepping mode. (Requires digital microstepping pins.)
  199. * M351 - Toggle MS1 MS2 pins directly. (Requires digital microstepping pins.)
  200. *
  201. * M360 - SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  202. * M361 - SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  203. * M362 - SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  204. * M363 - SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  205. * M364 - SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
  206. *
  207. * ************ Custom codes - This can change to suit future G-code regulations
  208. * M100 - Watch Free Memory (For Debugging). (Requires M100_FREE_MEMORY_WATCHER)
  209. * M928 - Start SD logging: "M928 filename.gco". Stop with M29. (Requires SDSUPPORT)
  210. * M999 - Restart after being stopped by error
  211. *
  212. * "T" Codes
  213. *
  214. * T0-T3 - Select an extruder (tool) by index: "T<n> F<units/min>"
  215. *
  216. */
  217. #include "Marlin.h"
  218. #include "ultralcd.h"
  219. #include "planner.h"
  220. #include "stepper.h"
  221. #include "endstops.h"
  222. #include "temperature.h"
  223. #include "cardreader.h"
  224. #include "configuration_store.h"
  225. #include "language.h"
  226. #include "pins_arduino.h"
  227. #include "math.h"
  228. #include "nozzle.h"
  229. #include "duration_t.h"
  230. #include "types.h"
  231. #if HAS_ABL
  232. #include "vector_3.h"
  233. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  234. #include "qr_solve.h"
  235. #endif
  236. #elif ENABLED(MESH_BED_LEVELING)
  237. #include "mesh_bed_leveling.h"
  238. #endif
  239. #if ENABLED(BEZIER_CURVE_SUPPORT)
  240. #include "planner_bezier.h"
  241. #endif
  242. #if HAS_BUZZER && DISABLED(LCD_USE_I2C_BUZZER)
  243. #include "buzzer.h"
  244. #endif
  245. #if ENABLED(USE_WATCHDOG)
  246. #include "watchdog.h"
  247. #endif
  248. #if ENABLED(BLINKM)
  249. #include "blinkm.h"
  250. #include "Wire.h"
  251. #endif
  252. #if HAS_SERVOS
  253. #include "servo.h"
  254. #endif
  255. #if HAS_DIGIPOTSS
  256. #include <SPI.h>
  257. #endif
  258. #if ENABLED(DAC_STEPPER_CURRENT)
  259. #include "stepper_dac.h"
  260. #endif
  261. #if ENABLED(EXPERIMENTAL_I2CBUS)
  262. #include "twibus.h"
  263. #endif
  264. #if ENABLED(ENDSTOP_INTERRUPTS_FEATURE)
  265. #include "endstop_interrupts.h"
  266. #endif
  267. #if ENABLED(M100_FREE_MEMORY_WATCHER)
  268. void gcode_M100();
  269. #endif
  270. #if ENABLED(SDSUPPORT)
  271. CardReader card;
  272. #endif
  273. #if ENABLED(EXPERIMENTAL_I2CBUS)
  274. TWIBus i2c;
  275. #endif
  276. #if ENABLED(G38_PROBE_TARGET)
  277. bool G38_move = false,
  278. G38_endstop_hit = false;
  279. #endif
  280. #if ENABLED(AUTO_BED_LEVELING_UBL)
  281. #include "ubl.h"
  282. unified_bed_leveling ubl;
  283. #define UBL_MESH_VALID !( ( ubl.z_values[0][0] == ubl.z_values[0][1] && ubl.z_values[0][1] == ubl.z_values[0][2] \
  284. && ubl.z_values[1][0] == ubl.z_values[1][1] && ubl.z_values[1][1] == ubl.z_values[1][2] \
  285. && ubl.z_values[2][0] == ubl.z_values[2][1] && ubl.z_values[2][1] == ubl.z_values[2][2] \
  286. && ubl.z_values[0][0] == 0 && ubl.z_values[1][0] == 0 && ubl.z_values[2][0] == 0 ) \
  287. || isnan(ubl.z_values[0][0]))
  288. #endif
  289. bool Running = true;
  290. uint8_t marlin_debug_flags = DEBUG_NONE;
  291. /**
  292. * Cartesian Current Position
  293. * Used to track the logical position as moves are queued.
  294. * Used by 'line_to_current_position' to do a move after changing it.
  295. * Used by 'SYNC_PLAN_POSITION_KINEMATIC' to update 'planner.position'.
  296. */
  297. float current_position[XYZE] = { 0.0 };
  298. /**
  299. * Cartesian Destination
  300. * A temporary position, usually applied to 'current_position'.
  301. * Set with 'gcode_get_destination' or 'set_destination_to_current'.
  302. * 'line_to_destination' sets 'current_position' to 'destination'.
  303. */
  304. float destination[XYZE] = { 0.0 };
  305. /**
  306. * axis_homed
  307. * Flags that each linear axis was homed.
  308. * XYZ on cartesian, ABC on delta, ABZ on SCARA.
  309. *
  310. * axis_known_position
  311. * Flags that the position is known in each linear axis. Set when homed.
  312. * Cleared whenever a stepper powers off, potentially losing its position.
  313. */
  314. bool axis_homed[XYZ] = { false }, axis_known_position[XYZ] = { false };
  315. /**
  316. * GCode line number handling. Hosts may opt to include line numbers when
  317. * sending commands to Marlin, and lines will be checked for sequentiality.
  318. * M110 N<int> sets the current line number.
  319. */
  320. static long gcode_N, gcode_LastN, Stopped_gcode_LastN = 0;
  321. /**
  322. * GCode Command Queue
  323. * A simple ring buffer of BUFSIZE command strings.
  324. *
  325. * Commands are copied into this buffer by the command injectors
  326. * (immediate, serial, sd card) and they are processed sequentially by
  327. * the main loop. The process_next_command function parses the next
  328. * command and hands off execution to individual handler functions.
  329. */
  330. uint8_t commands_in_queue = 0; // Count of commands in the queue
  331. static uint8_t cmd_queue_index_r = 0, // Ring buffer read position
  332. cmd_queue_index_w = 0; // Ring buffer write position
  333. static char command_queue[BUFSIZE][MAX_CMD_SIZE];
  334. /**
  335. * Current GCode Command
  336. * When a GCode handler is running, these will be set
  337. */
  338. static char *current_command, // The command currently being executed
  339. *current_command_args, // The address where arguments begin
  340. *seen_pointer; // Set by code_seen(), used by the code_value functions
  341. /**
  342. * Next Injected Command pointer. NULL if no commands are being injected.
  343. * Used by Marlin internally to ensure that commands initiated from within
  344. * are enqueued ahead of any pending serial or sd card commands.
  345. */
  346. static const char *injected_commands_P = NULL;
  347. #if ENABLED(INCH_MODE_SUPPORT)
  348. float linear_unit_factor = 1.0, volumetric_unit_factor = 1.0;
  349. #endif
  350. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  351. TempUnit input_temp_units = TEMPUNIT_C;
  352. #endif
  353. /**
  354. * Feed rates are often configured with mm/m
  355. * but the planner and stepper like mm/s units.
  356. */
  357. float constexpr homing_feedrate_mm_s[] = {
  358. #if ENABLED(DELTA)
  359. MMM_TO_MMS(HOMING_FEEDRATE_Z), MMM_TO_MMS(HOMING_FEEDRATE_Z),
  360. #else
  361. MMM_TO_MMS(HOMING_FEEDRATE_XY), MMM_TO_MMS(HOMING_FEEDRATE_XY),
  362. #endif
  363. MMM_TO_MMS(HOMING_FEEDRATE_Z), 0
  364. };
  365. static float feedrate_mm_s = MMM_TO_MMS(1500.0), saved_feedrate_mm_s;
  366. int feedrate_percentage = 100, saved_feedrate_percentage,
  367. flow_percentage[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(100);
  368. bool axis_relative_modes[] = AXIS_RELATIVE_MODES,
  369. volumetric_enabled =
  370. #if ENABLED(VOLUMETRIC_DEFAULT_ON)
  371. true
  372. #else
  373. false
  374. #endif
  375. ;
  376. float filament_size[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(DEFAULT_NOMINAL_FILAMENT_DIA),
  377. volumetric_multiplier[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(1.0);
  378. #if DISABLED(NO_WORKSPACE_OFFSETS)
  379. // The distance that XYZ has been offset by G92. Reset by G28.
  380. float position_shift[XYZ] = { 0 };
  381. // This offset is added to the configured home position.
  382. // Set by M206, M428, or menu item. Saved to EEPROM.
  383. float home_offset[XYZ] = { 0 };
  384. // The above two are combined to save on computes
  385. float workspace_offset[XYZ] = { 0 };
  386. #endif
  387. // Software Endstops are based on the configured limits.
  388. #if HAS_SOFTWARE_ENDSTOPS
  389. bool soft_endstops_enabled = true;
  390. #endif
  391. float soft_endstop_min[XYZ] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS },
  392. soft_endstop_max[XYZ] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  393. #if FAN_COUNT > 0
  394. int fanSpeeds[FAN_COUNT] = { 0 };
  395. #endif
  396. // The active extruder (tool). Set with T<extruder> command.
  397. uint8_t active_extruder = 0;
  398. // Relative Mode. Enable with G91, disable with G90.
  399. static bool relative_mode = false;
  400. // For M109 and M190, this flag may be cleared (by M108) to exit the wait loop
  401. volatile bool wait_for_heatup = true;
  402. // For M0/M1, this flag may be cleared (by M108) to exit the wait-for-user loop
  403. #if HAS_RESUME_CONTINUE
  404. volatile bool wait_for_user = false;
  405. #endif
  406. const char axis_codes[XYZE] = {'X', 'Y', 'Z', 'E'};
  407. // Number of characters read in the current line of serial input
  408. static int serial_count = 0;
  409. // Inactivity shutdown
  410. millis_t previous_cmd_ms = 0;
  411. static millis_t max_inactive_time = 0;
  412. static millis_t stepper_inactive_time = (DEFAULT_STEPPER_DEACTIVE_TIME) * 1000UL;
  413. // Print Job Timer
  414. #if ENABLED(PRINTCOUNTER)
  415. PrintCounter print_job_timer = PrintCounter();
  416. #else
  417. Stopwatch print_job_timer = Stopwatch();
  418. #endif
  419. // Buzzer - I2C on the LCD or a BEEPER_PIN
  420. #if ENABLED(LCD_USE_I2C_BUZZER)
  421. #define BUZZ(d,f) lcd_buzz(d, f)
  422. #elif PIN_EXISTS(BEEPER)
  423. Buzzer buzzer;
  424. #define BUZZ(d,f) buzzer.tone(d, f)
  425. #else
  426. #define BUZZ(d,f) NOOP
  427. #endif
  428. static uint8_t target_extruder;
  429. #if HAS_BED_PROBE
  430. float zprobe_zoffset = Z_PROBE_OFFSET_FROM_EXTRUDER;
  431. #endif
  432. #define PLANNER_XY_FEEDRATE() (min(planner.max_feedrate_mm_s[X_AXIS], planner.max_feedrate_mm_s[Y_AXIS]))
  433. #if HAS_ABL
  434. float xy_probe_feedrate_mm_s = MMM_TO_MMS(XY_PROBE_SPEED);
  435. #define XY_PROBE_FEEDRATE_MM_S xy_probe_feedrate_mm_s
  436. #elif defined(XY_PROBE_SPEED)
  437. #define XY_PROBE_FEEDRATE_MM_S MMM_TO_MMS(XY_PROBE_SPEED)
  438. #else
  439. #define XY_PROBE_FEEDRATE_MM_S PLANNER_XY_FEEDRATE()
  440. #endif
  441. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  442. #if ENABLED(DELTA)
  443. #define ADJUST_DELTA(V) \
  444. if (planner.abl_enabled) { \
  445. const float zadj = bilinear_z_offset(V); \
  446. delta[A_AXIS] += zadj; \
  447. delta[B_AXIS] += zadj; \
  448. delta[C_AXIS] += zadj; \
  449. }
  450. #else
  451. #define ADJUST_DELTA(V) if (planner.abl_enabled) { delta[Z_AXIS] += bilinear_z_offset(V); }
  452. #endif
  453. #elif IS_KINEMATIC
  454. #define ADJUST_DELTA(V) NOOP
  455. #endif
  456. #if ENABLED(Z_DUAL_ENDSTOPS)
  457. float z_endstop_adj =
  458. #ifdef Z_DUAL_ENDSTOPS_ADJUSTMENT
  459. Z_DUAL_ENDSTOPS_ADJUSTMENT
  460. #else
  461. 0
  462. #endif
  463. ;
  464. #endif
  465. // Extruder offsets
  466. #if HOTENDS > 1
  467. float hotend_offset[XYZ][HOTENDS];
  468. #endif
  469. #if HAS_Z_SERVO_ENDSTOP
  470. const int z_servo_angle[2] = Z_SERVO_ANGLES;
  471. #endif
  472. #if ENABLED(BARICUDA)
  473. int baricuda_valve_pressure = 0;
  474. int baricuda_e_to_p_pressure = 0;
  475. #endif
  476. #if ENABLED(FWRETRACT)
  477. bool autoretract_enabled = false;
  478. bool retracted[EXTRUDERS] = { false };
  479. bool retracted_swap[EXTRUDERS] = { false };
  480. float retract_length = RETRACT_LENGTH;
  481. float retract_length_swap = RETRACT_LENGTH_SWAP;
  482. float retract_feedrate_mm_s = RETRACT_FEEDRATE;
  483. float retract_zlift = RETRACT_ZLIFT;
  484. float retract_recover_length = RETRACT_RECOVER_LENGTH;
  485. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  486. float retract_recover_feedrate_mm_s = RETRACT_RECOVER_FEEDRATE;
  487. #endif // FWRETRACT
  488. #if ENABLED(ULTIPANEL) && HAS_POWER_SWITCH
  489. bool powersupply =
  490. #if ENABLED(PS_DEFAULT_OFF)
  491. false
  492. #else
  493. true
  494. #endif
  495. ;
  496. #endif
  497. #if HAS_CASE_LIGHT
  498. bool case_light_on =
  499. #if ENABLED(CASE_LIGHT_DEFAULT_ON)
  500. true
  501. #else
  502. false
  503. #endif
  504. ;
  505. #endif
  506. #if ENABLED(DELTA)
  507. float delta[ABC],
  508. endstop_adj[ABC] = { 0 };
  509. // These values are loaded or reset at boot time when setup() calls
  510. // settings.load(), which calls recalc_delta_settings().
  511. float delta_radius,
  512. delta_tower_angle_trim[ABC],
  513. delta_tower[ABC][2],
  514. delta_diagonal_rod,
  515. delta_diagonal_rod_trim[ABC],
  516. delta_diagonal_rod_2_tower[ABC],
  517. delta_segments_per_second,
  518. delta_clip_start_height = Z_MAX_POS;
  519. float delta_safe_distance_from_top();
  520. #endif
  521. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  522. int bilinear_grid_spacing[2], bilinear_start[2];
  523. float bed_level_grid[GRID_MAX_POINTS_X][GRID_MAX_POINTS_Y];
  524. #endif
  525. #if IS_SCARA
  526. // Float constants for SCARA calculations
  527. const float L1 = SCARA_LINKAGE_1, L2 = SCARA_LINKAGE_2,
  528. L1_2 = sq(float(L1)), L1_2_2 = 2.0 * L1_2,
  529. L2_2 = sq(float(L2));
  530. float delta_segments_per_second = SCARA_SEGMENTS_PER_SECOND,
  531. delta[ABC];
  532. #endif
  533. float cartes[XYZ] = { 0 };
  534. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  535. bool filament_sensor = false; //M405 turns on filament_sensor control, M406 turns it off
  536. float filament_width_nominal = DEFAULT_NOMINAL_FILAMENT_DIA, // Nominal filament width. Change with M404
  537. filament_width_meas = DEFAULT_MEASURED_FILAMENT_DIA; // Measured filament diameter
  538. int8_t measurement_delay[MAX_MEASUREMENT_DELAY + 1]; // Ring buffer to delayed measurement. Store extruder factor after subtracting 100
  539. int filwidth_delay_index[2] = { 0, -1 }; // Indexes into ring buffer
  540. int meas_delay_cm = MEASUREMENT_DELAY_CM; //distance delay setting
  541. #endif
  542. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  543. static bool filament_ran_out = false;
  544. #endif
  545. #if ENABLED(FILAMENT_CHANGE_FEATURE)
  546. FilamentChangeMenuResponse filament_change_menu_response;
  547. #endif
  548. #if ENABLED(MIXING_EXTRUDER)
  549. float mixing_factor[MIXING_STEPPERS]; // Reciprocal of mix proportion. 0.0 = off, otherwise >= 1.0.
  550. #if MIXING_VIRTUAL_TOOLS > 1
  551. float mixing_virtual_tool_mix[MIXING_VIRTUAL_TOOLS][MIXING_STEPPERS];
  552. #endif
  553. #endif
  554. static bool send_ok[BUFSIZE];
  555. #if HAS_SERVOS
  556. Servo servo[NUM_SERVOS];
  557. #define MOVE_SERVO(I, P) servo[I].move(P)
  558. #if HAS_Z_SERVO_ENDSTOP
  559. #define DEPLOY_Z_SERVO() MOVE_SERVO(Z_ENDSTOP_SERVO_NR, z_servo_angle[0])
  560. #define STOW_Z_SERVO() MOVE_SERVO(Z_ENDSTOP_SERVO_NR, z_servo_angle[1])
  561. #endif
  562. #endif
  563. #ifdef CHDK
  564. millis_t chdkHigh = 0;
  565. bool chdkActive = false;
  566. #endif
  567. #if ENABLED(PID_EXTRUSION_SCALING)
  568. int lpq_len = 20;
  569. #endif
  570. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  571. MarlinBusyState busy_state = NOT_BUSY;
  572. static millis_t next_busy_signal_ms = 0;
  573. uint8_t host_keepalive_interval = DEFAULT_KEEPALIVE_INTERVAL;
  574. #else
  575. #define host_keepalive() NOOP
  576. #endif
  577. static inline float pgm_read_any(const float *p) { return pgm_read_float_near(p); }
  578. static inline signed char pgm_read_any(const signed char *p) { return pgm_read_byte_near(p); }
  579. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  580. static const PROGMEM type array##_P[XYZ] = { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  581. static inline type array(AxisEnum axis) { return pgm_read_any(&array##_P[axis]); }
  582. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS)
  583. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS)
  584. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS)
  585. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH)
  586. XYZ_CONSTS_FROM_CONFIG(float, home_bump_mm, HOME_BUMP_MM)
  587. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR)
  588. /**
  589. * ***************************************************************************
  590. * ******************************** FUNCTIONS ********************************
  591. * ***************************************************************************
  592. */
  593. void stop();
  594. void get_available_commands();
  595. void process_next_command();
  596. void prepare_move_to_destination();
  597. void get_cartesian_from_steppers();
  598. void set_current_from_steppers_for_axis(const AxisEnum axis);
  599. #if ENABLED(ARC_SUPPORT)
  600. void plan_arc(float target[XYZE], float* offset, uint8_t clockwise);
  601. #endif
  602. #if ENABLED(BEZIER_CURVE_SUPPORT)
  603. void plan_cubic_move(const float offset[4]);
  604. #endif
  605. void tool_change(const uint8_t tmp_extruder, const float fr_mm_s=0.0, bool no_move=false);
  606. static void report_current_position();
  607. #if ENABLED(DEBUG_LEVELING_FEATURE)
  608. void print_xyz(const char* prefix, const char* suffix, const float x, const float y, const float z) {
  609. serialprintPGM(prefix);
  610. SERIAL_ECHOPAIR("(", x);
  611. SERIAL_ECHOPAIR(", ", y);
  612. SERIAL_ECHOPAIR(", ", z);
  613. SERIAL_CHAR(')');
  614. if (suffix) serialprintPGM(suffix);
  615. else SERIAL_EOL;
  616. }
  617. void print_xyz(const char* prefix, const char* suffix, const float xyz[]) {
  618. print_xyz(prefix, suffix, xyz[X_AXIS], xyz[Y_AXIS], xyz[Z_AXIS]);
  619. }
  620. #if HAS_ABL
  621. void print_xyz(const char* prefix, const char* suffix, const vector_3 &xyz) {
  622. print_xyz(prefix, suffix, xyz.x, xyz.y, xyz.z);
  623. }
  624. #endif
  625. #define DEBUG_POS(SUFFIX,VAR) do { \
  626. print_xyz(PSTR(" " STRINGIFY(VAR) "="), PSTR(" : " SUFFIX "\n"), VAR); } while(0)
  627. #endif
  628. /**
  629. * sync_plan_position
  630. *
  631. * Set the planner/stepper positions directly from current_position with
  632. * no kinematic translation. Used for homing axes and cartesian/core syncing.
  633. */
  634. inline void sync_plan_position() {
  635. #if ENABLED(DEBUG_LEVELING_FEATURE)
  636. if (DEBUGGING(LEVELING)) DEBUG_POS("sync_plan_position", current_position);
  637. #endif
  638. planner.set_position_mm(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  639. }
  640. inline void sync_plan_position_e() { planner.set_e_position_mm(current_position[E_AXIS]); }
  641. #if IS_KINEMATIC
  642. inline void sync_plan_position_kinematic() {
  643. #if ENABLED(DEBUG_LEVELING_FEATURE)
  644. if (DEBUGGING(LEVELING)) DEBUG_POS("sync_plan_position_kinematic", current_position);
  645. #endif
  646. planner.set_position_mm_kinematic(current_position);
  647. }
  648. #define SYNC_PLAN_POSITION_KINEMATIC() sync_plan_position_kinematic()
  649. #else
  650. #define SYNC_PLAN_POSITION_KINEMATIC() sync_plan_position()
  651. #endif
  652. #if ENABLED(SDSUPPORT)
  653. #include "SdFatUtil.h"
  654. int freeMemory() { return SdFatUtil::FreeRam(); }
  655. #else
  656. extern "C" {
  657. extern char __bss_end;
  658. extern char __heap_start;
  659. extern void* __brkval;
  660. int freeMemory() {
  661. int free_memory;
  662. if ((int)__brkval == 0)
  663. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  664. else
  665. free_memory = ((int)&free_memory) - ((int)__brkval);
  666. return free_memory;
  667. }
  668. }
  669. #endif //!SDSUPPORT
  670. #if ENABLED(DIGIPOT_I2C)
  671. extern void digipot_i2c_set_current(int channel, float current);
  672. extern void digipot_i2c_init();
  673. #endif
  674. /**
  675. * Inject the next "immediate" command, when possible, onto the front of the queue.
  676. * Return true if any immediate commands remain to inject.
  677. */
  678. static bool drain_injected_commands_P() {
  679. if (injected_commands_P != NULL) {
  680. size_t i = 0;
  681. char c, cmd[30];
  682. strncpy_P(cmd, injected_commands_P, sizeof(cmd) - 1);
  683. cmd[sizeof(cmd) - 1] = '\0';
  684. while ((c = cmd[i]) && c != '\n') i++; // find the end of this gcode command
  685. cmd[i] = '\0';
  686. if (enqueue_and_echo_command(cmd)) // success?
  687. injected_commands_P = c ? injected_commands_P + i + 1 : NULL; // next command or done
  688. }
  689. return (injected_commands_P != NULL); // return whether any more remain
  690. }
  691. /**
  692. * Record one or many commands to run from program memory.
  693. * Aborts the current queue, if any.
  694. * Note: drain_injected_commands_P() must be called repeatedly to drain the commands afterwards
  695. */
  696. void enqueue_and_echo_commands_P(const char* pgcode) {
  697. injected_commands_P = pgcode;
  698. drain_injected_commands_P(); // first command executed asap (when possible)
  699. }
  700. /**
  701. * Clear the Marlin command queue
  702. */
  703. void clear_command_queue() {
  704. cmd_queue_index_r = cmd_queue_index_w;
  705. commands_in_queue = 0;
  706. }
  707. /**
  708. * Once a new command is in the ring buffer, call this to commit it
  709. */
  710. inline void _commit_command(bool say_ok) {
  711. send_ok[cmd_queue_index_w] = say_ok;
  712. cmd_queue_index_w = (cmd_queue_index_w + 1) % BUFSIZE;
  713. commands_in_queue++;
  714. }
  715. /**
  716. * Copy a command from RAM into the main command buffer.
  717. * Return true if the command was successfully added.
  718. * Return false for a full buffer, or if the 'command' is a comment.
  719. */
  720. inline bool _enqueuecommand(const char* cmd, bool say_ok=false) {
  721. if (*cmd == ';' || commands_in_queue >= BUFSIZE) return false;
  722. strcpy(command_queue[cmd_queue_index_w], cmd);
  723. _commit_command(say_ok);
  724. return true;
  725. }
  726. /**
  727. * Enqueue with Serial Echo
  728. */
  729. bool enqueue_and_echo_command(const char* cmd, bool say_ok/*=false*/) {
  730. if (_enqueuecommand(cmd, say_ok)) {
  731. SERIAL_ECHO_START;
  732. SERIAL_ECHOPAIR(MSG_ENQUEUEING, cmd);
  733. SERIAL_CHAR('"');
  734. SERIAL_EOL;
  735. return true;
  736. }
  737. return false;
  738. }
  739. void setup_killpin() {
  740. #if HAS_KILL
  741. SET_INPUT_PULLUP(KILL_PIN);
  742. #endif
  743. }
  744. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  745. void setup_filrunoutpin() {
  746. #if ENABLED(ENDSTOPPULLUP_FIL_RUNOUT)
  747. SET_INPUT_PULLUP(FIL_RUNOUT_PIN);
  748. #else
  749. SET_INPUT(FIL_RUNOUT_PIN);
  750. #endif
  751. }
  752. #endif
  753. void setup_homepin(void) {
  754. #if HAS_HOME
  755. SET_INPUT_PULLUP(HOME_PIN);
  756. #endif
  757. }
  758. void setup_powerhold() {
  759. #if HAS_SUICIDE
  760. OUT_WRITE(SUICIDE_PIN, HIGH);
  761. #endif
  762. #if HAS_POWER_SWITCH
  763. #if ENABLED(PS_DEFAULT_OFF)
  764. OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  765. #else
  766. OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE);
  767. #endif
  768. #endif
  769. }
  770. void suicide() {
  771. #if HAS_SUICIDE
  772. OUT_WRITE(SUICIDE_PIN, LOW);
  773. #endif
  774. }
  775. void servo_init() {
  776. #if NUM_SERVOS >= 1 && HAS_SERVO_0
  777. servo[0].attach(SERVO0_PIN);
  778. servo[0].detach(); // Just set up the pin. We don't have a position yet. Don't move to a random position.
  779. #endif
  780. #if NUM_SERVOS >= 2 && HAS_SERVO_1
  781. servo[1].attach(SERVO1_PIN);
  782. servo[1].detach();
  783. #endif
  784. #if NUM_SERVOS >= 3 && HAS_SERVO_2
  785. servo[2].attach(SERVO2_PIN);
  786. servo[2].detach();
  787. #endif
  788. #if NUM_SERVOS >= 4 && HAS_SERVO_3
  789. servo[3].attach(SERVO3_PIN);
  790. servo[3].detach();
  791. #endif
  792. #if HAS_Z_SERVO_ENDSTOP
  793. /**
  794. * Set position of Z Servo Endstop
  795. *
  796. * The servo might be deployed and positioned too low to stow
  797. * when starting up the machine or rebooting the board.
  798. * There's no way to know where the nozzle is positioned until
  799. * homing has been done - no homing with z-probe without init!
  800. *
  801. */
  802. STOW_Z_SERVO();
  803. #endif
  804. }
  805. /**
  806. * Stepper Reset (RigidBoard, et.al.)
  807. */
  808. #if HAS_STEPPER_RESET
  809. void disableStepperDrivers() {
  810. OUT_WRITE(STEPPER_RESET_PIN, LOW); // drive it down to hold in reset motor driver chips
  811. }
  812. void enableStepperDrivers() { SET_INPUT(STEPPER_RESET_PIN); } // set to input, which allows it to be pulled high by pullups
  813. #endif
  814. #if ENABLED(EXPERIMENTAL_I2CBUS) && I2C_SLAVE_ADDRESS > 0
  815. void i2c_on_receive(int bytes) { // just echo all bytes received to serial
  816. i2c.receive(bytes);
  817. }
  818. void i2c_on_request() { // just send dummy data for now
  819. i2c.reply("Hello World!\n");
  820. }
  821. #endif
  822. #if HAS_COLOR_LEDS
  823. void set_led_color(const uint8_t r, const uint8_t g, const uint8_t b) {
  824. #if ENABLED(BLINKM)
  825. // This variant uses i2c to send the RGB components to the device.
  826. SendColors(r, g, b);
  827. #else
  828. // This variant uses 3 separate pins for the RGB components.
  829. // If the pins can do PWM then their intensity will be set.
  830. digitalWrite(RGB_LED_R_PIN, r ? HIGH : LOW);
  831. digitalWrite(RGB_LED_G_PIN, g ? HIGH : LOW);
  832. digitalWrite(RGB_LED_B_PIN, b ? HIGH : LOW);
  833. analogWrite(RGB_LED_R_PIN, r);
  834. analogWrite(RGB_LED_G_PIN, g);
  835. analogWrite(RGB_LED_B_PIN, b);
  836. #endif
  837. }
  838. #endif // HAS_COLOR_LEDS
  839. void gcode_line_error(const char* err, bool doFlush = true) {
  840. SERIAL_ERROR_START;
  841. serialprintPGM(err);
  842. SERIAL_ERRORLN(gcode_LastN);
  843. //Serial.println(gcode_N);
  844. if (doFlush) FlushSerialRequestResend();
  845. serial_count = 0;
  846. }
  847. /**
  848. * Get all commands waiting on the serial port and queue them.
  849. * Exit when the buffer is full or when no more characters are
  850. * left on the serial port.
  851. */
  852. inline void get_serial_commands() {
  853. static char serial_line_buffer[MAX_CMD_SIZE];
  854. static bool serial_comment_mode = false;
  855. // If the command buffer is empty for too long,
  856. // send "wait" to indicate Marlin is still waiting.
  857. #if defined(NO_TIMEOUTS) && NO_TIMEOUTS > 0
  858. static millis_t last_command_time = 0;
  859. const millis_t ms = millis();
  860. if (commands_in_queue == 0 && !MYSERIAL.available() && ELAPSED(ms, last_command_time + NO_TIMEOUTS)) {
  861. SERIAL_ECHOLNPGM(MSG_WAIT);
  862. last_command_time = ms;
  863. }
  864. #endif
  865. /**
  866. * Loop while serial characters are incoming and the queue is not full
  867. */
  868. while (commands_in_queue < BUFSIZE && MYSERIAL.available() > 0) {
  869. char serial_char = MYSERIAL.read();
  870. /**
  871. * If the character ends the line
  872. */
  873. if (serial_char == '\n' || serial_char == '\r') {
  874. serial_comment_mode = false; // end of line == end of comment
  875. if (!serial_count) continue; // skip empty lines
  876. serial_line_buffer[serial_count] = 0; // terminate string
  877. serial_count = 0; //reset buffer
  878. char* command = serial_line_buffer;
  879. while (*command == ' ') command++; // skip any leading spaces
  880. char* npos = (*command == 'N') ? command : NULL; // Require the N parameter to start the line
  881. char* apos = strchr(command, '*');
  882. if (npos) {
  883. bool M110 = strstr_P(command, PSTR("M110")) != NULL;
  884. if (M110) {
  885. char* n2pos = strchr(command + 4, 'N');
  886. if (n2pos) npos = n2pos;
  887. }
  888. gcode_N = strtol(npos + 1, NULL, 10);
  889. if (gcode_N != gcode_LastN + 1 && !M110) {
  890. gcode_line_error(PSTR(MSG_ERR_LINE_NO));
  891. return;
  892. }
  893. if (apos) {
  894. byte checksum = 0, count = 0;
  895. while (command[count] != '*') checksum ^= command[count++];
  896. if (strtol(apos + 1, NULL, 10) != checksum) {
  897. gcode_line_error(PSTR(MSG_ERR_CHECKSUM_MISMATCH));
  898. return;
  899. }
  900. // if no errors, continue parsing
  901. }
  902. else {
  903. gcode_line_error(PSTR(MSG_ERR_NO_CHECKSUM));
  904. return;
  905. }
  906. gcode_LastN = gcode_N;
  907. // if no errors, continue parsing
  908. }
  909. else if (apos) { // No '*' without 'N'
  910. gcode_line_error(PSTR(MSG_ERR_NO_LINENUMBER_WITH_CHECKSUM), false);
  911. return;
  912. }
  913. // Movement commands alert when stopped
  914. if (IsStopped()) {
  915. char* gpos = strchr(command, 'G');
  916. if (gpos) {
  917. int codenum = strtol(gpos + 1, NULL, 10);
  918. switch (codenum) {
  919. case 0:
  920. case 1:
  921. case 2:
  922. case 3:
  923. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  924. LCD_MESSAGEPGM(MSG_STOPPED);
  925. break;
  926. }
  927. }
  928. }
  929. #if DISABLED(EMERGENCY_PARSER)
  930. // If command was e-stop process now
  931. if (strcmp(command, "M108") == 0) {
  932. wait_for_heatup = false;
  933. #if ENABLED(ULTIPANEL)
  934. wait_for_user = false;
  935. #endif
  936. }
  937. if (strcmp(command, "M112") == 0) kill(PSTR(MSG_KILLED));
  938. if (strcmp(command, "M410") == 0) { quickstop_stepper(); }
  939. #endif
  940. #if defined(NO_TIMEOUTS) && NO_TIMEOUTS > 0
  941. last_command_time = ms;
  942. #endif
  943. // Add the command to the queue
  944. _enqueuecommand(serial_line_buffer, true);
  945. }
  946. else if (serial_count >= MAX_CMD_SIZE - 1) {
  947. // Keep fetching, but ignore normal characters beyond the max length
  948. // The command will be injected when EOL is reached
  949. }
  950. else if (serial_char == '\\') { // Handle escapes
  951. if (MYSERIAL.available() > 0) {
  952. // if we have one more character, copy it over
  953. serial_char = MYSERIAL.read();
  954. if (!serial_comment_mode) serial_line_buffer[serial_count++] = serial_char;
  955. }
  956. // otherwise do nothing
  957. }
  958. else { // it's not a newline, carriage return or escape char
  959. if (serial_char == ';') serial_comment_mode = true;
  960. if (!serial_comment_mode) serial_line_buffer[serial_count++] = serial_char;
  961. }
  962. } // queue has space, serial has data
  963. }
  964. #if ENABLED(SDSUPPORT)
  965. /**
  966. * Get commands from the SD Card until the command buffer is full
  967. * or until the end of the file is reached. The special character '#'
  968. * can also interrupt buffering.
  969. */
  970. inline void get_sdcard_commands() {
  971. static bool stop_buffering = false,
  972. sd_comment_mode = false;
  973. if (!card.sdprinting) return;
  974. /**
  975. * '#' stops reading from SD to the buffer prematurely, so procedural
  976. * macro calls are possible. If it occurs, stop_buffering is triggered
  977. * and the buffer is run dry; this character _can_ occur in serial com
  978. * due to checksums, however, no checksums are used in SD printing.
  979. */
  980. if (commands_in_queue == 0) stop_buffering = false;
  981. uint16_t sd_count = 0;
  982. bool card_eof = card.eof();
  983. while (commands_in_queue < BUFSIZE && !card_eof && !stop_buffering) {
  984. const int16_t n = card.get();
  985. char sd_char = (char)n;
  986. card_eof = card.eof();
  987. if (card_eof || n == -1
  988. || sd_char == '\n' || sd_char == '\r'
  989. || ((sd_char == '#' || sd_char == ':') && !sd_comment_mode)
  990. ) {
  991. if (card_eof) {
  992. SERIAL_PROTOCOLLNPGM(MSG_FILE_PRINTED);
  993. card.printingHasFinished();
  994. #if ENABLED(PRINTER_EVENT_LEDS)
  995. LCD_MESSAGEPGM(MSG_INFO_COMPLETED_PRINTS);
  996. set_led_color(0, 255, 0);
  997. #if HAS_RESUME_CONTINUE
  998. KEEPALIVE_STATE(PAUSED_FOR_USER);
  999. wait_for_user = true;
  1000. while (wait_for_user) idle();
  1001. KEEPALIVE_STATE(IN_HANDLER);
  1002. #else
  1003. safe_delay(1000);
  1004. #endif
  1005. set_led_color(0, 0, 0);
  1006. #endif
  1007. card.checkautostart(true);
  1008. }
  1009. else if (n == -1) {
  1010. SERIAL_ERROR_START;
  1011. SERIAL_ECHOLNPGM(MSG_SD_ERR_READ);
  1012. }
  1013. if (sd_char == '#') stop_buffering = true;
  1014. sd_comment_mode = false; // for new command
  1015. if (!sd_count) continue; // skip empty lines (and comment lines)
  1016. command_queue[cmd_queue_index_w][sd_count] = '\0'; // terminate string
  1017. sd_count = 0; // clear sd line buffer
  1018. _commit_command(false);
  1019. }
  1020. else if (sd_count >= MAX_CMD_SIZE - 1) {
  1021. /**
  1022. * Keep fetching, but ignore normal characters beyond the max length
  1023. * The command will be injected when EOL is reached
  1024. */
  1025. }
  1026. else {
  1027. if (sd_char == ';') sd_comment_mode = true;
  1028. if (!sd_comment_mode) command_queue[cmd_queue_index_w][sd_count++] = sd_char;
  1029. }
  1030. }
  1031. }
  1032. #endif // SDSUPPORT
  1033. /**
  1034. * Add to the circular command queue the next command from:
  1035. * - The command-injection queue (injected_commands_P)
  1036. * - The active serial input (usually USB)
  1037. * - The SD card file being actively printed
  1038. */
  1039. void get_available_commands() {
  1040. // if any immediate commands remain, don't get other commands yet
  1041. if (drain_injected_commands_P()) return;
  1042. get_serial_commands();
  1043. #if ENABLED(SDSUPPORT)
  1044. get_sdcard_commands();
  1045. #endif
  1046. }
  1047. inline bool code_has_value() {
  1048. int i = 1;
  1049. char c = seen_pointer[i];
  1050. while (c == ' ') c = seen_pointer[++i];
  1051. if (c == '-' || c == '+') c = seen_pointer[++i];
  1052. if (c == '.') c = seen_pointer[++i];
  1053. return NUMERIC(c);
  1054. }
  1055. inline float code_value_float() {
  1056. char* e = strchr(seen_pointer, 'E');
  1057. if (!e) return strtod(seen_pointer + 1, NULL);
  1058. *e = 0;
  1059. float ret = strtod(seen_pointer + 1, NULL);
  1060. *e = 'E';
  1061. return ret;
  1062. }
  1063. inline unsigned long code_value_ulong() { return strtoul(seen_pointer + 1, NULL, 10); }
  1064. inline long code_value_long() { return strtol(seen_pointer + 1, NULL, 10); }
  1065. inline int code_value_int() { return (int)strtol(seen_pointer + 1, NULL, 10); }
  1066. inline uint16_t code_value_ushort() { return (uint16_t)strtoul(seen_pointer + 1, NULL, 10); }
  1067. inline uint8_t code_value_byte() { return (uint8_t)(constrain(strtol(seen_pointer + 1, NULL, 10), 0, 255)); }
  1068. inline bool code_value_bool() { return !code_has_value() || code_value_byte() > 0; }
  1069. #if ENABLED(INCH_MODE_SUPPORT)
  1070. inline void set_input_linear_units(LinearUnit units) {
  1071. switch (units) {
  1072. case LINEARUNIT_INCH:
  1073. linear_unit_factor = 25.4;
  1074. break;
  1075. case LINEARUNIT_MM:
  1076. default:
  1077. linear_unit_factor = 1.0;
  1078. break;
  1079. }
  1080. volumetric_unit_factor = pow(linear_unit_factor, 3.0);
  1081. }
  1082. inline float axis_unit_factor(int axis) {
  1083. return (axis >= E_AXIS && volumetric_enabled ? volumetric_unit_factor : linear_unit_factor);
  1084. }
  1085. inline float code_value_linear_units() { return code_value_float() * linear_unit_factor; }
  1086. inline float code_value_axis_units(int axis) { return code_value_float() * axis_unit_factor(axis); }
  1087. inline float code_value_per_axis_unit(int axis) { return code_value_float() / axis_unit_factor(axis); }
  1088. #else
  1089. inline float code_value_linear_units() { return code_value_float(); }
  1090. inline float code_value_axis_units(int axis) { UNUSED(axis); return code_value_float(); }
  1091. inline float code_value_per_axis_unit(int axis) { UNUSED(axis); return code_value_float(); }
  1092. #endif
  1093. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  1094. inline void set_input_temp_units(TempUnit units) { input_temp_units = units; }
  1095. float code_value_temp_abs() {
  1096. switch (input_temp_units) {
  1097. case TEMPUNIT_C:
  1098. return code_value_float();
  1099. case TEMPUNIT_F:
  1100. return (code_value_float() - 32) * 0.5555555556;
  1101. case TEMPUNIT_K:
  1102. return code_value_float() - 273.15;
  1103. default:
  1104. return code_value_float();
  1105. }
  1106. }
  1107. float code_value_temp_diff() {
  1108. switch (input_temp_units) {
  1109. case TEMPUNIT_C:
  1110. case TEMPUNIT_K:
  1111. return code_value_float();
  1112. case TEMPUNIT_F:
  1113. return code_value_float() * 0.5555555556;
  1114. default:
  1115. return code_value_float();
  1116. }
  1117. }
  1118. #else
  1119. float code_value_temp_abs() { return code_value_float(); }
  1120. float code_value_temp_diff() { return code_value_float(); }
  1121. #endif
  1122. FORCE_INLINE millis_t code_value_millis() { return code_value_ulong(); }
  1123. inline millis_t code_value_millis_from_seconds() { return code_value_float() * 1000; }
  1124. bool code_seen(char code) {
  1125. seen_pointer = strchr(current_command_args, code);
  1126. return (seen_pointer != NULL); // Return TRUE if the code-letter was found
  1127. }
  1128. /**
  1129. * Set target_extruder from the T parameter or the active_extruder
  1130. *
  1131. * Returns TRUE if the target is invalid
  1132. */
  1133. bool get_target_extruder_from_command(int code) {
  1134. if (code_seen('T')) {
  1135. if (code_value_byte() >= EXTRUDERS) {
  1136. SERIAL_ECHO_START;
  1137. SERIAL_CHAR('M');
  1138. SERIAL_ECHO(code);
  1139. SERIAL_ECHOLNPAIR(" " MSG_INVALID_EXTRUDER " ", code_value_byte());
  1140. return true;
  1141. }
  1142. target_extruder = code_value_byte();
  1143. }
  1144. else
  1145. target_extruder = active_extruder;
  1146. return false;
  1147. }
  1148. #if ENABLED(DUAL_X_CARRIAGE) || ENABLED(DUAL_NOZZLE_DUPLICATION_MODE)
  1149. bool extruder_duplication_enabled = false; // Used in Dual X mode 2
  1150. #endif
  1151. #if ENABLED(DUAL_X_CARRIAGE)
  1152. static DualXMode dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  1153. static float x_home_pos(const int extruder) {
  1154. if (extruder == 0)
  1155. return LOGICAL_X_POSITION(base_home_pos(X_AXIS));
  1156. else
  1157. /**
  1158. * In dual carriage mode the extruder offset provides an override of the
  1159. * second X-carriage position when homed - otherwise X2_HOME_POS is used.
  1160. * This allows soft recalibration of the second extruder home position
  1161. * without firmware reflash (through the M218 command).
  1162. */
  1163. return LOGICAL_X_POSITION(hotend_offset[X_AXIS][1] > 0 ? hotend_offset[X_AXIS][1] : X2_HOME_POS);
  1164. }
  1165. static int x_home_dir(const int extruder) { return extruder ? X2_HOME_DIR : X_HOME_DIR; }
  1166. static float inactive_extruder_x_pos = X2_MAX_POS; // used in mode 0 & 1
  1167. static bool active_extruder_parked = false; // used in mode 1 & 2
  1168. static float raised_parked_position[XYZE]; // used in mode 1
  1169. static millis_t delayed_move_time = 0; // used in mode 1
  1170. static float duplicate_extruder_x_offset = DEFAULT_DUPLICATION_X_OFFSET; // used in mode 2
  1171. static float duplicate_extruder_temp_offset = 0; // used in mode 2
  1172. #endif // DUAL_X_CARRIAGE
  1173. #if DISABLED(NO_WORKSPACE_OFFSETS) || ENABLED(DUAL_X_CARRIAGE) || ENABLED(DELTA)
  1174. /**
  1175. * Software endstops can be used to monitor the open end of
  1176. * an axis that has a hardware endstop on the other end. Or
  1177. * they can prevent axes from moving past endstops and grinding.
  1178. *
  1179. * To keep doing their job as the coordinate system changes,
  1180. * the software endstop positions must be refreshed to remain
  1181. * at the same positions relative to the machine.
  1182. */
  1183. void update_software_endstops(const AxisEnum axis) {
  1184. const float offs = workspace_offset[axis] = home_offset[axis] + position_shift[axis];
  1185. #if ENABLED(DUAL_X_CARRIAGE)
  1186. if (axis == X_AXIS) {
  1187. // In Dual X mode hotend_offset[X] is T1's home position
  1188. float dual_max_x = max(hotend_offset[X_AXIS][1], X2_MAX_POS);
  1189. if (active_extruder != 0) {
  1190. // T1 can move from X2_MIN_POS to X2_MAX_POS or X2 home position (whichever is larger)
  1191. soft_endstop_min[X_AXIS] = X2_MIN_POS + offs;
  1192. soft_endstop_max[X_AXIS] = dual_max_x + offs;
  1193. }
  1194. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE) {
  1195. // In Duplication Mode, T0 can move as far left as X_MIN_POS
  1196. // but not so far to the right that T1 would move past the end
  1197. soft_endstop_min[X_AXIS] = base_min_pos(X_AXIS) + offs;
  1198. soft_endstop_max[X_AXIS] = min(base_max_pos(X_AXIS), dual_max_x - duplicate_extruder_x_offset) + offs;
  1199. }
  1200. else {
  1201. // In other modes, T0 can move from X_MIN_POS to X_MAX_POS
  1202. soft_endstop_min[axis] = base_min_pos(axis) + offs;
  1203. soft_endstop_max[axis] = base_max_pos(axis) + offs;
  1204. }
  1205. }
  1206. #else
  1207. soft_endstop_min[axis] = base_min_pos(axis) + offs;
  1208. soft_endstop_max[axis] = base_max_pos(axis) + offs;
  1209. #endif
  1210. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1211. if (DEBUGGING(LEVELING)) {
  1212. SERIAL_ECHOPAIR("For ", axis_codes[axis]);
  1213. #if DISABLED(NO_WORKSPACE_OFFSETS)
  1214. SERIAL_ECHOPAIR(" axis:\n home_offset = ", home_offset[axis]);
  1215. SERIAL_ECHOPAIR("\n position_shift = ", position_shift[axis]);
  1216. #endif
  1217. SERIAL_ECHOPAIR("\n soft_endstop_min = ", soft_endstop_min[axis]);
  1218. SERIAL_ECHOLNPAIR("\n soft_endstop_max = ", soft_endstop_max[axis]);
  1219. }
  1220. #endif
  1221. #if ENABLED(DELTA)
  1222. if (axis == Z_AXIS)
  1223. delta_clip_start_height = soft_endstop_max[axis] - delta_safe_distance_from_top();
  1224. #endif
  1225. }
  1226. #endif // NO_WORKSPACE_OFFSETS
  1227. #if DISABLED(NO_WORKSPACE_OFFSETS)
  1228. /**
  1229. * Change the home offset for an axis, update the current
  1230. * position and the software endstops to retain the same
  1231. * relative distance to the new home.
  1232. *
  1233. * Since this changes the current_position, code should
  1234. * call sync_plan_position soon after this.
  1235. */
  1236. static void set_home_offset(const AxisEnum axis, const float v) {
  1237. current_position[axis] += v - home_offset[axis];
  1238. home_offset[axis] = v;
  1239. update_software_endstops(axis);
  1240. }
  1241. #endif // NO_WORKSPACE_OFFSETS
  1242. /**
  1243. * Set an axis' current position to its home position (after homing).
  1244. *
  1245. * For Core and Cartesian robots this applies one-to-one when an
  1246. * individual axis has been homed.
  1247. *
  1248. * DELTA should wait until all homing is done before setting the XYZ
  1249. * current_position to home, because homing is a single operation.
  1250. * In the case where the axis positions are already known and previously
  1251. * homed, DELTA could home to X or Y individually by moving either one
  1252. * to the center. However, homing Z always homes XY and Z.
  1253. *
  1254. * SCARA should wait until all XY homing is done before setting the XY
  1255. * current_position to home, because neither X nor Y is at home until
  1256. * both are at home. Z can however be homed individually.
  1257. *
  1258. * Callers must sync the planner position after calling this!
  1259. */
  1260. static void set_axis_is_at_home(AxisEnum axis) {
  1261. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1262. if (DEBUGGING(LEVELING)) {
  1263. SERIAL_ECHOPAIR(">>> set_axis_is_at_home(", axis_codes[axis]);
  1264. SERIAL_CHAR(')');
  1265. SERIAL_EOL;
  1266. }
  1267. #endif
  1268. axis_known_position[axis] = axis_homed[axis] = true;
  1269. #if DISABLED(NO_WORKSPACE_OFFSETS)
  1270. position_shift[axis] = 0;
  1271. update_software_endstops(axis);
  1272. #endif
  1273. #if ENABLED(DUAL_X_CARRIAGE)
  1274. if (axis == X_AXIS && (active_extruder == 1 || dual_x_carriage_mode == DXC_DUPLICATION_MODE)) {
  1275. current_position[X_AXIS] = x_home_pos(active_extruder);
  1276. return;
  1277. }
  1278. #endif
  1279. #if ENABLED(MORGAN_SCARA)
  1280. /**
  1281. * Morgan SCARA homes XY at the same time
  1282. */
  1283. if (axis == X_AXIS || axis == Y_AXIS) {
  1284. float homeposition[XYZ];
  1285. LOOP_XYZ(i) homeposition[i] = LOGICAL_POSITION(base_home_pos((AxisEnum)i), i);
  1286. // SERIAL_ECHOPAIR("homeposition X:", homeposition[X_AXIS]);
  1287. // SERIAL_ECHOLNPAIR(" Y:", homeposition[Y_AXIS]);
  1288. /**
  1289. * Get Home position SCARA arm angles using inverse kinematics,
  1290. * and calculate homing offset using forward kinematics
  1291. */
  1292. inverse_kinematics(homeposition);
  1293. forward_kinematics_SCARA(delta[A_AXIS], delta[B_AXIS]);
  1294. // SERIAL_ECHOPAIR("Cartesian X:", cartes[X_AXIS]);
  1295. // SERIAL_ECHOLNPAIR(" Y:", cartes[Y_AXIS]);
  1296. current_position[axis] = LOGICAL_POSITION(cartes[axis], axis);
  1297. /**
  1298. * SCARA home positions are based on configuration since the actual
  1299. * limits are determined by the inverse kinematic transform.
  1300. */
  1301. soft_endstop_min[axis] = base_min_pos(axis); // + (cartes[axis] - base_home_pos(axis));
  1302. soft_endstop_max[axis] = base_max_pos(axis); // + (cartes[axis] - base_home_pos(axis));
  1303. }
  1304. else
  1305. #endif
  1306. {
  1307. current_position[axis] = LOGICAL_POSITION(base_home_pos(axis), axis);
  1308. }
  1309. /**
  1310. * Z Probe Z Homing? Account for the probe's Z offset.
  1311. */
  1312. #if HAS_BED_PROBE && Z_HOME_DIR < 0
  1313. if (axis == Z_AXIS) {
  1314. #if HOMING_Z_WITH_PROBE
  1315. current_position[Z_AXIS] -= zprobe_zoffset;
  1316. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1317. if (DEBUGGING(LEVELING)) {
  1318. SERIAL_ECHOLNPGM("*** Z HOMED WITH PROBE (Z_MIN_PROBE_USES_Z_MIN_ENDSTOP_PIN) ***");
  1319. SERIAL_ECHOLNPAIR("> zprobe_zoffset = ", zprobe_zoffset);
  1320. }
  1321. #endif
  1322. #elif ENABLED(DEBUG_LEVELING_FEATURE)
  1323. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("*** Z HOMED TO ENDSTOP (Z_MIN_PROBE_ENDSTOP) ***");
  1324. #endif
  1325. }
  1326. #endif
  1327. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1328. if (DEBUGGING(LEVELING)) {
  1329. #if DISABLED(NO_WORKSPACE_OFFSETS)
  1330. SERIAL_ECHOPAIR("> home_offset[", axis_codes[axis]);
  1331. SERIAL_ECHOLNPAIR("] = ", home_offset[axis]);
  1332. #endif
  1333. DEBUG_POS("", current_position);
  1334. SERIAL_ECHOPAIR("<<< set_axis_is_at_home(", axis_codes[axis]);
  1335. SERIAL_CHAR(')');
  1336. SERIAL_EOL;
  1337. }
  1338. #endif
  1339. }
  1340. /**
  1341. * Some planner shorthand inline functions
  1342. */
  1343. inline float get_homing_bump_feedrate(AxisEnum axis) {
  1344. int constexpr homing_bump_divisor[] = HOMING_BUMP_DIVISOR;
  1345. int hbd = homing_bump_divisor[axis];
  1346. if (hbd < 1) {
  1347. hbd = 10;
  1348. SERIAL_ECHO_START;
  1349. SERIAL_ECHOLNPGM("Warning: Homing Bump Divisor < 1");
  1350. }
  1351. return homing_feedrate_mm_s[axis] / hbd;
  1352. }
  1353. //
  1354. // line_to_current_position
  1355. // Move the planner to the current position from wherever it last moved
  1356. // (or from wherever it has been told it is located).
  1357. //
  1358. inline void line_to_current_position() {
  1359. planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate_mm_s, active_extruder);
  1360. }
  1361. //
  1362. // line_to_destination
  1363. // Move the planner, not necessarily synced with current_position
  1364. //
  1365. inline void line_to_destination(float fr_mm_s) {
  1366. planner.buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], fr_mm_s, active_extruder);
  1367. }
  1368. inline void line_to_destination() { line_to_destination(feedrate_mm_s); }
  1369. inline void set_current_to_destination() { COPY(current_position, destination); }
  1370. inline void set_destination_to_current() { COPY(destination, current_position); }
  1371. #if IS_KINEMATIC
  1372. /**
  1373. * Calculate delta, start a line, and set current_position to destination
  1374. */
  1375. void prepare_uninterpolated_move_to_destination(const float fr_mm_s=0.0) {
  1376. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1377. if (DEBUGGING(LEVELING)) DEBUG_POS("prepare_uninterpolated_move_to_destination", destination);
  1378. #endif
  1379. if ( current_position[X_AXIS] == destination[X_AXIS]
  1380. && current_position[Y_AXIS] == destination[Y_AXIS]
  1381. && current_position[Z_AXIS] == destination[Z_AXIS]
  1382. && current_position[E_AXIS] == destination[E_AXIS]
  1383. ) return;
  1384. refresh_cmd_timeout();
  1385. planner.buffer_line_kinematic(destination, MMS_SCALED(fr_mm_s ? fr_mm_s : feedrate_mm_s), active_extruder);
  1386. set_current_to_destination();
  1387. }
  1388. #endif // IS_KINEMATIC
  1389. /**
  1390. * Plan a move to (X, Y, Z) and set the current_position
  1391. * The final current_position may not be the one that was requested
  1392. */
  1393. void do_blocking_move_to(const float &x, const float &y, const float &z, const float &fr_mm_s /*=0.0*/) {
  1394. const float old_feedrate_mm_s = feedrate_mm_s;
  1395. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1396. if (DEBUGGING(LEVELING)) print_xyz(PSTR(">>> do_blocking_move_to"), NULL, x, y, z);
  1397. #endif
  1398. #if ENABLED(DELTA)
  1399. feedrate_mm_s = fr_mm_s ? fr_mm_s : XY_PROBE_FEEDRATE_MM_S;
  1400. set_destination_to_current(); // sync destination at the start
  1401. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1402. if (DEBUGGING(LEVELING)) DEBUG_POS("set_destination_to_current", destination);
  1403. #endif
  1404. // when in the danger zone
  1405. if (current_position[Z_AXIS] > delta_clip_start_height) {
  1406. if (z > delta_clip_start_height) { // staying in the danger zone
  1407. destination[X_AXIS] = x; // move directly (uninterpolated)
  1408. destination[Y_AXIS] = y;
  1409. destination[Z_AXIS] = z;
  1410. prepare_uninterpolated_move_to_destination(); // set_current_to_destination
  1411. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1412. if (DEBUGGING(LEVELING)) DEBUG_POS("danger zone move", current_position);
  1413. #endif
  1414. return;
  1415. }
  1416. else {
  1417. destination[Z_AXIS] = delta_clip_start_height;
  1418. prepare_uninterpolated_move_to_destination(); // set_current_to_destination
  1419. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1420. if (DEBUGGING(LEVELING)) DEBUG_POS("zone border move", current_position);
  1421. #endif
  1422. }
  1423. }
  1424. if (z > current_position[Z_AXIS]) { // raising?
  1425. destination[Z_AXIS] = z;
  1426. prepare_uninterpolated_move_to_destination(); // set_current_to_destination
  1427. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1428. if (DEBUGGING(LEVELING)) DEBUG_POS("z raise move", current_position);
  1429. #endif
  1430. }
  1431. destination[X_AXIS] = x;
  1432. destination[Y_AXIS] = y;
  1433. prepare_move_to_destination(); // set_current_to_destination
  1434. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1435. if (DEBUGGING(LEVELING)) DEBUG_POS("xy move", current_position);
  1436. #endif
  1437. if (z < current_position[Z_AXIS]) { // lowering?
  1438. destination[Z_AXIS] = z;
  1439. prepare_uninterpolated_move_to_destination(); // set_current_to_destination
  1440. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1441. if (DEBUGGING(LEVELING)) DEBUG_POS("z lower move", current_position);
  1442. #endif
  1443. }
  1444. #elif IS_SCARA
  1445. set_destination_to_current();
  1446. // If Z needs to raise, do it before moving XY
  1447. if (destination[Z_AXIS] < z) {
  1448. destination[Z_AXIS] = z;
  1449. prepare_uninterpolated_move_to_destination(fr_mm_s ? fr_mm_s : homing_feedrate_mm_s[Z_AXIS]);
  1450. }
  1451. destination[X_AXIS] = x;
  1452. destination[Y_AXIS] = y;
  1453. prepare_uninterpolated_move_to_destination(fr_mm_s ? fr_mm_s : XY_PROBE_FEEDRATE_MM_S);
  1454. // If Z needs to lower, do it after moving XY
  1455. if (destination[Z_AXIS] > z) {
  1456. destination[Z_AXIS] = z;
  1457. prepare_uninterpolated_move_to_destination(fr_mm_s ? fr_mm_s : homing_feedrate_mm_s[Z_AXIS]);
  1458. }
  1459. #else
  1460. // If Z needs to raise, do it before moving XY
  1461. if (current_position[Z_AXIS] < z) {
  1462. feedrate_mm_s = fr_mm_s ? fr_mm_s : homing_feedrate_mm_s[Z_AXIS];
  1463. current_position[Z_AXIS] = z;
  1464. line_to_current_position();
  1465. }
  1466. feedrate_mm_s = fr_mm_s ? fr_mm_s : XY_PROBE_FEEDRATE_MM_S;
  1467. current_position[X_AXIS] = x;
  1468. current_position[Y_AXIS] = y;
  1469. line_to_current_position();
  1470. // If Z needs to lower, do it after moving XY
  1471. if (current_position[Z_AXIS] > z) {
  1472. feedrate_mm_s = fr_mm_s ? fr_mm_s : homing_feedrate_mm_s[Z_AXIS];
  1473. current_position[Z_AXIS] = z;
  1474. line_to_current_position();
  1475. }
  1476. #endif
  1477. stepper.synchronize();
  1478. feedrate_mm_s = old_feedrate_mm_s;
  1479. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1480. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< do_blocking_move_to");
  1481. #endif
  1482. }
  1483. void do_blocking_move_to_x(const float &x, const float &fr_mm_s/*=0.0*/) {
  1484. do_blocking_move_to(x, current_position[Y_AXIS], current_position[Z_AXIS], fr_mm_s);
  1485. }
  1486. void do_blocking_move_to_z(const float &z, const float &fr_mm_s/*=0.0*/) {
  1487. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z, fr_mm_s);
  1488. }
  1489. void do_blocking_move_to_xy(const float &x, const float &y, const float &fr_mm_s/*=0.0*/) {
  1490. do_blocking_move_to(x, y, current_position[Z_AXIS], fr_mm_s);
  1491. }
  1492. //
  1493. // Prepare to do endstop or probe moves
  1494. // with custom feedrates.
  1495. //
  1496. // - Save current feedrates
  1497. // - Reset the rate multiplier
  1498. // - Reset the command timeout
  1499. // - Enable the endstops (for endstop moves)
  1500. //
  1501. static void setup_for_endstop_or_probe_move() {
  1502. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1503. if (DEBUGGING(LEVELING)) DEBUG_POS("setup_for_endstop_or_probe_move", current_position);
  1504. #endif
  1505. saved_feedrate_mm_s = feedrate_mm_s;
  1506. saved_feedrate_percentage = feedrate_percentage;
  1507. feedrate_percentage = 100;
  1508. refresh_cmd_timeout();
  1509. }
  1510. static void clean_up_after_endstop_or_probe_move() {
  1511. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1512. if (DEBUGGING(LEVELING)) DEBUG_POS("clean_up_after_endstop_or_probe_move", current_position);
  1513. #endif
  1514. feedrate_mm_s = saved_feedrate_mm_s;
  1515. feedrate_percentage = saved_feedrate_percentage;
  1516. refresh_cmd_timeout();
  1517. }
  1518. #if HAS_BED_PROBE
  1519. /**
  1520. * Raise Z to a minimum height to make room for a probe to move
  1521. */
  1522. inline void do_probe_raise(float z_raise) {
  1523. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1524. if (DEBUGGING(LEVELING)) {
  1525. SERIAL_ECHOPAIR("do_probe_raise(", z_raise);
  1526. SERIAL_CHAR(')');
  1527. SERIAL_EOL;
  1528. }
  1529. #endif
  1530. float z_dest = LOGICAL_Z_POSITION(z_raise);
  1531. if (zprobe_zoffset < 0) z_dest -= zprobe_zoffset;
  1532. if (z_dest > current_position[Z_AXIS])
  1533. do_blocking_move_to_z(z_dest);
  1534. }
  1535. #endif //HAS_BED_PROBE
  1536. #if ENABLED(Z_PROBE_ALLEN_KEY) || ENABLED(Z_PROBE_SLED) || HAS_PROBING_PROCEDURE || HOTENDS > 1 || ENABLED(NOZZLE_CLEAN_FEATURE) || ENABLED(NOZZLE_PARK_FEATURE)
  1537. bool axis_unhomed_error(const bool x, const bool y, const bool z) {
  1538. const bool xx = x && !axis_homed[X_AXIS],
  1539. yy = y && !axis_homed[Y_AXIS],
  1540. zz = z && !axis_homed[Z_AXIS];
  1541. if (xx || yy || zz) {
  1542. SERIAL_ECHO_START;
  1543. SERIAL_ECHOPGM(MSG_HOME " ");
  1544. if (xx) SERIAL_ECHOPGM(MSG_X);
  1545. if (yy) SERIAL_ECHOPGM(MSG_Y);
  1546. if (zz) SERIAL_ECHOPGM(MSG_Z);
  1547. SERIAL_ECHOLNPGM(" " MSG_FIRST);
  1548. #if ENABLED(ULTRA_LCD)
  1549. lcd_status_printf_P(0, PSTR(MSG_HOME " %s%s%s " MSG_FIRST), xx ? MSG_X : "", yy ? MSG_Y : "", zz ? MSG_Z : "");
  1550. #endif
  1551. return true;
  1552. }
  1553. return false;
  1554. }
  1555. #endif
  1556. #if ENABLED(Z_PROBE_SLED)
  1557. #ifndef SLED_DOCKING_OFFSET
  1558. #define SLED_DOCKING_OFFSET 0
  1559. #endif
  1560. /**
  1561. * Method to dock/undock a sled designed by Charles Bell.
  1562. *
  1563. * stow[in] If false, move to MAX_X and engage the solenoid
  1564. * If true, move to MAX_X and release the solenoid
  1565. */
  1566. static void dock_sled(bool stow) {
  1567. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1568. if (DEBUGGING(LEVELING)) {
  1569. SERIAL_ECHOPAIR("dock_sled(", stow);
  1570. SERIAL_CHAR(')');
  1571. SERIAL_EOL;
  1572. }
  1573. #endif
  1574. // Dock sled a bit closer to ensure proper capturing
  1575. do_blocking_move_to_x(X_MAX_POS + SLED_DOCKING_OFFSET - ((stow) ? 1 : 0));
  1576. #if PIN_EXISTS(SLED)
  1577. digitalWrite(SLED_PIN, !stow); // switch solenoid
  1578. #endif
  1579. }
  1580. #elif ENABLED(Z_PROBE_ALLEN_KEY)
  1581. void run_deploy_moves_script() {
  1582. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_1_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_1_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_1_Z)
  1583. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_X
  1584. #define Z_PROBE_ALLEN_KEY_DEPLOY_1_X current_position[X_AXIS]
  1585. #endif
  1586. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_Y
  1587. #define Z_PROBE_ALLEN_KEY_DEPLOY_1_Y current_position[Y_AXIS]
  1588. #endif
  1589. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_Z
  1590. #define Z_PROBE_ALLEN_KEY_DEPLOY_1_Z current_position[Z_AXIS]
  1591. #endif
  1592. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE
  1593. #define Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE 0.0
  1594. #endif
  1595. do_blocking_move_to(Z_PROBE_ALLEN_KEY_DEPLOY_1_X, Z_PROBE_ALLEN_KEY_DEPLOY_1_Y, Z_PROBE_ALLEN_KEY_DEPLOY_1_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE));
  1596. #endif
  1597. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_2_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_2_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_2_Z)
  1598. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_X
  1599. #define Z_PROBE_ALLEN_KEY_DEPLOY_2_X current_position[X_AXIS]
  1600. #endif
  1601. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_Y
  1602. #define Z_PROBE_ALLEN_KEY_DEPLOY_2_Y current_position[Y_AXIS]
  1603. #endif
  1604. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_Z
  1605. #define Z_PROBE_ALLEN_KEY_DEPLOY_2_Z current_position[Z_AXIS]
  1606. #endif
  1607. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE
  1608. #define Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE 0.0
  1609. #endif
  1610. do_blocking_move_to(Z_PROBE_ALLEN_KEY_DEPLOY_2_X, Z_PROBE_ALLEN_KEY_DEPLOY_2_Y, Z_PROBE_ALLEN_KEY_DEPLOY_2_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE));
  1611. #endif
  1612. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_3_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_3_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_3_Z)
  1613. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_X
  1614. #define Z_PROBE_ALLEN_KEY_DEPLOY_3_X current_position[X_AXIS]
  1615. #endif
  1616. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_Y
  1617. #define Z_PROBE_ALLEN_KEY_DEPLOY_3_Y current_position[Y_AXIS]
  1618. #endif
  1619. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_Z
  1620. #define Z_PROBE_ALLEN_KEY_DEPLOY_3_Z current_position[Z_AXIS]
  1621. #endif
  1622. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE
  1623. #define Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE 0.0
  1624. #endif
  1625. do_blocking_move_to(Z_PROBE_ALLEN_KEY_DEPLOY_3_X, Z_PROBE_ALLEN_KEY_DEPLOY_3_Y, Z_PROBE_ALLEN_KEY_DEPLOY_3_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE));
  1626. #endif
  1627. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_4_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_4_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_4_Z)
  1628. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_X
  1629. #define Z_PROBE_ALLEN_KEY_DEPLOY_4_X current_position[X_AXIS]
  1630. #endif
  1631. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_Y
  1632. #define Z_PROBE_ALLEN_KEY_DEPLOY_4_Y current_position[Y_AXIS]
  1633. #endif
  1634. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_Z
  1635. #define Z_PROBE_ALLEN_KEY_DEPLOY_4_Z current_position[Z_AXIS]
  1636. #endif
  1637. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_FEEDRATE
  1638. #define Z_PROBE_ALLEN_KEY_DEPLOY_4_FEEDRATE 0.0
  1639. #endif
  1640. do_blocking_move_to(Z_PROBE_ALLEN_KEY_DEPLOY_4_X, Z_PROBE_ALLEN_KEY_DEPLOY_4_Y, Z_PROBE_ALLEN_KEY_DEPLOY_4_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_4_FEEDRATE));
  1641. #endif
  1642. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_5_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_5_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_5_Z)
  1643. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_X
  1644. #define Z_PROBE_ALLEN_KEY_DEPLOY_5_X current_position[X_AXIS]
  1645. #endif
  1646. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_Y
  1647. #define Z_PROBE_ALLEN_KEY_DEPLOY_5_Y current_position[Y_AXIS]
  1648. #endif
  1649. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_Z
  1650. #define Z_PROBE_ALLEN_KEY_DEPLOY_5_Z current_position[Z_AXIS]
  1651. #endif
  1652. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_FEEDRATE
  1653. #define Z_PROBE_ALLEN_KEY_DEPLOY_5_FEEDRATE 0.0
  1654. #endif
  1655. do_blocking_move_to(Z_PROBE_ALLEN_KEY_DEPLOY_5_X, Z_PROBE_ALLEN_KEY_DEPLOY_5_Y, Z_PROBE_ALLEN_KEY_DEPLOY_5_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_5_FEEDRATE));
  1656. #endif
  1657. }
  1658. void run_stow_moves_script() {
  1659. #if defined(Z_PROBE_ALLEN_KEY_STOW_1_X) || defined(Z_PROBE_ALLEN_KEY_STOW_1_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_1_Z)
  1660. #ifndef Z_PROBE_ALLEN_KEY_STOW_1_X
  1661. #define Z_PROBE_ALLEN_KEY_STOW_1_X current_position[X_AXIS]
  1662. #endif
  1663. #ifndef Z_PROBE_ALLEN_KEY_STOW_1_Y
  1664. #define Z_PROBE_ALLEN_KEY_STOW_1_Y current_position[Y_AXIS]
  1665. #endif
  1666. #ifndef Z_PROBE_ALLEN_KEY_STOW_1_Z
  1667. #define Z_PROBE_ALLEN_KEY_STOW_1_Z current_position[Z_AXIS]
  1668. #endif
  1669. #ifndef Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE
  1670. #define Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE 0.0
  1671. #endif
  1672. do_blocking_move_to(Z_PROBE_ALLEN_KEY_STOW_1_X, Z_PROBE_ALLEN_KEY_STOW_1_Y, Z_PROBE_ALLEN_KEY_STOW_1_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE));
  1673. #endif
  1674. #if defined(Z_PROBE_ALLEN_KEY_STOW_2_X) || defined(Z_PROBE_ALLEN_KEY_STOW_2_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_2_Z)
  1675. #ifndef Z_PROBE_ALLEN_KEY_STOW_2_X
  1676. #define Z_PROBE_ALLEN_KEY_STOW_2_X current_position[X_AXIS]
  1677. #endif
  1678. #ifndef Z_PROBE_ALLEN_KEY_STOW_2_Y
  1679. #define Z_PROBE_ALLEN_KEY_STOW_2_Y current_position[Y_AXIS]
  1680. #endif
  1681. #ifndef Z_PROBE_ALLEN_KEY_STOW_2_Z
  1682. #define Z_PROBE_ALLEN_KEY_STOW_2_Z current_position[Z_AXIS]
  1683. #endif
  1684. #ifndef Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE
  1685. #define Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE 0.0
  1686. #endif
  1687. do_blocking_move_to(Z_PROBE_ALLEN_KEY_STOW_2_X, Z_PROBE_ALLEN_KEY_STOW_2_Y, Z_PROBE_ALLEN_KEY_STOW_2_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE));
  1688. #endif
  1689. #if defined(Z_PROBE_ALLEN_KEY_STOW_3_X) || defined(Z_PROBE_ALLEN_KEY_STOW_3_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_3_Z)
  1690. #ifndef Z_PROBE_ALLEN_KEY_STOW_3_X
  1691. #define Z_PROBE_ALLEN_KEY_STOW_3_X current_position[X_AXIS]
  1692. #endif
  1693. #ifndef Z_PROBE_ALLEN_KEY_STOW_3_Y
  1694. #define Z_PROBE_ALLEN_KEY_STOW_3_Y current_position[Y_AXIS]
  1695. #endif
  1696. #ifndef Z_PROBE_ALLEN_KEY_STOW_3_Z
  1697. #define Z_PROBE_ALLEN_KEY_STOW_3_Z current_position[Z_AXIS]
  1698. #endif
  1699. #ifndef Z_PROBE_ALLEN_KEY_STOW_3_FEEDRATE
  1700. #define Z_PROBE_ALLEN_KEY_STOW_3_FEEDRATE 0.0
  1701. #endif
  1702. do_blocking_move_to(Z_PROBE_ALLEN_KEY_STOW_3_X, Z_PROBE_ALLEN_KEY_STOW_3_Y, Z_PROBE_ALLEN_KEY_STOW_3_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_3_FEEDRATE));
  1703. #endif
  1704. #if defined(Z_PROBE_ALLEN_KEY_STOW_4_X) || defined(Z_PROBE_ALLEN_KEY_STOW_4_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_4_Z)
  1705. #ifndef Z_PROBE_ALLEN_KEY_STOW_4_X
  1706. #define Z_PROBE_ALLEN_KEY_STOW_4_X current_position[X_AXIS]
  1707. #endif
  1708. #ifndef Z_PROBE_ALLEN_KEY_STOW_4_Y
  1709. #define Z_PROBE_ALLEN_KEY_STOW_4_Y current_position[Y_AXIS]
  1710. #endif
  1711. #ifndef Z_PROBE_ALLEN_KEY_STOW_4_Z
  1712. #define Z_PROBE_ALLEN_KEY_STOW_4_Z current_position[Z_AXIS]
  1713. #endif
  1714. #ifndef Z_PROBE_ALLEN_KEY_STOW_4_FEEDRATE
  1715. #define Z_PROBE_ALLEN_KEY_STOW_4_FEEDRATE 0.0
  1716. #endif
  1717. do_blocking_move_to(Z_PROBE_ALLEN_KEY_STOW_4_X, Z_PROBE_ALLEN_KEY_STOW_4_Y, Z_PROBE_ALLEN_KEY_STOW_4_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_4_FEEDRATE));
  1718. #endif
  1719. #if defined(Z_PROBE_ALLEN_KEY_STOW_5_X) || defined(Z_PROBE_ALLEN_KEY_STOW_5_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_5_Z)
  1720. #ifndef Z_PROBE_ALLEN_KEY_STOW_5_X
  1721. #define Z_PROBE_ALLEN_KEY_STOW_5_X current_position[X_AXIS]
  1722. #endif
  1723. #ifndef Z_PROBE_ALLEN_KEY_STOW_5_Y
  1724. #define Z_PROBE_ALLEN_KEY_STOW_5_Y current_position[Y_AXIS]
  1725. #endif
  1726. #ifndef Z_PROBE_ALLEN_KEY_STOW_5_Z
  1727. #define Z_PROBE_ALLEN_KEY_STOW_5_Z current_position[Z_AXIS]
  1728. #endif
  1729. #ifndef Z_PROBE_ALLEN_KEY_STOW_5_FEEDRATE
  1730. #define Z_PROBE_ALLEN_KEY_STOW_5_FEEDRATE 0.0
  1731. #endif
  1732. do_blocking_move_to(Z_PROBE_ALLEN_KEY_STOW_5_X, Z_PROBE_ALLEN_KEY_STOW_5_Y, Z_PROBE_ALLEN_KEY_STOW_5_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_5_FEEDRATE));
  1733. #endif
  1734. }
  1735. #endif
  1736. #if HAS_BED_PROBE
  1737. // TRIGGERED_WHEN_STOWED_TEST can easily be extended to servo probes, ... if needed.
  1738. #if ENABLED(PROBE_IS_TRIGGERED_WHEN_STOWED_TEST)
  1739. #if ENABLED(Z_MIN_PROBE_ENDSTOP)
  1740. #define _TRIGGERED_WHEN_STOWED_TEST (READ(Z_MIN_PROBE_PIN) != Z_MIN_PROBE_ENDSTOP_INVERTING)
  1741. #else
  1742. #define _TRIGGERED_WHEN_STOWED_TEST (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING)
  1743. #endif
  1744. #endif
  1745. #if ENABLED(BLTOUCH)
  1746. void bltouch_command(int angle) {
  1747. servo[Z_ENDSTOP_SERVO_NR].move(angle); // Give the BL-Touch the command and wait
  1748. safe_delay(BLTOUCH_DELAY);
  1749. }
  1750. void set_bltouch_deployed(const bool deploy) {
  1751. if (deploy && TEST_BLTOUCH()) { // If BL-Touch says it's triggered
  1752. bltouch_command(BLTOUCH_RESET); // try to reset it.
  1753. bltouch_command(BLTOUCH_DEPLOY); // Also needs to deploy and stow to
  1754. bltouch_command(BLTOUCH_STOW); // clear the triggered condition.
  1755. safe_delay(1500); // wait for internal self test to complete
  1756. // measured completion time was 0.65 seconds
  1757. // after reset, deploy & stow sequence
  1758. if (TEST_BLTOUCH()) { // If it still claims to be triggered...
  1759. SERIAL_ERROR_START;
  1760. SERIAL_ERRORLNPGM(MSG_STOP_BLTOUCH);
  1761. stop(); // punt!
  1762. }
  1763. }
  1764. bltouch_command(deploy ? BLTOUCH_DEPLOY : BLTOUCH_STOW);
  1765. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1766. if (DEBUGGING(LEVELING)) {
  1767. SERIAL_ECHOPAIR("set_bltouch_deployed(", deploy);
  1768. SERIAL_CHAR(')');
  1769. SERIAL_EOL;
  1770. }
  1771. #endif
  1772. }
  1773. #endif
  1774. // returns false for ok and true for failure
  1775. bool set_probe_deployed(bool deploy) {
  1776. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1777. if (DEBUGGING(LEVELING)) {
  1778. DEBUG_POS("set_probe_deployed", current_position);
  1779. SERIAL_ECHOLNPAIR("deploy: ", deploy);
  1780. }
  1781. #endif
  1782. if (endstops.z_probe_enabled == deploy) return false;
  1783. // Make room for probe
  1784. do_probe_raise(_Z_CLEARANCE_DEPLOY_PROBE);
  1785. // When deploying make sure BLTOUCH is not already triggered
  1786. #if ENABLED(BLTOUCH)
  1787. if (deploy && TEST_BLTOUCH()) { // If BL-Touch says it's triggered
  1788. bltouch_command(BLTOUCH_RESET); // try to reset it.
  1789. bltouch_command(BLTOUCH_DEPLOY); // Also needs to deploy and stow to
  1790. bltouch_command(BLTOUCH_STOW); // clear the triggered condition.
  1791. safe_delay(1500); // wait for internal self test to complete
  1792. // measured completion time was 0.65 seconds
  1793. // after reset, deploy & stow sequence
  1794. if (TEST_BLTOUCH()) { // If it still claims to be triggered...
  1795. SERIAL_ERROR_START;
  1796. SERIAL_ERRORLNPGM(MSG_STOP_BLTOUCH);
  1797. stop(); // punt!
  1798. return true;
  1799. }
  1800. }
  1801. #elif ENABLED(Z_PROBE_SLED)
  1802. if (axis_unhomed_error(true, false, false)) {
  1803. SERIAL_ERROR_START;
  1804. SERIAL_ERRORLNPGM(MSG_STOP_UNHOMED);
  1805. stop();
  1806. return true;
  1807. }
  1808. #elif ENABLED(Z_PROBE_ALLEN_KEY)
  1809. if (axis_unhomed_error(true, true, true )) {
  1810. SERIAL_ERROR_START;
  1811. SERIAL_ERRORLNPGM(MSG_STOP_UNHOMED);
  1812. stop();
  1813. return true;
  1814. }
  1815. #endif
  1816. const float oldXpos = current_position[X_AXIS],
  1817. oldYpos = current_position[Y_AXIS];
  1818. #ifdef _TRIGGERED_WHEN_STOWED_TEST
  1819. // If endstop is already false, the Z probe is deployed
  1820. if (_TRIGGERED_WHEN_STOWED_TEST == deploy) { // closed after the probe specific actions.
  1821. // Would a goto be less ugly?
  1822. //while (!_TRIGGERED_WHEN_STOWED_TEST) idle(); // would offer the opportunity
  1823. // for a triggered when stowed manual probe.
  1824. if (!deploy) endstops.enable_z_probe(false); // Switch off triggered when stowed probes early
  1825. // otherwise an Allen-Key probe can't be stowed.
  1826. #endif
  1827. #if ENABLED(Z_PROBE_SLED)
  1828. dock_sled(!deploy);
  1829. #elif HAS_Z_SERVO_ENDSTOP && DISABLED(BLTOUCH)
  1830. servo[Z_ENDSTOP_SERVO_NR].move(z_servo_angle[deploy ? 0 : 1]);
  1831. #elif ENABLED(Z_PROBE_ALLEN_KEY)
  1832. deploy ? run_deploy_moves_script() : run_stow_moves_script();
  1833. #endif
  1834. #ifdef _TRIGGERED_WHEN_STOWED_TEST
  1835. } // _TRIGGERED_WHEN_STOWED_TEST == deploy
  1836. if (_TRIGGERED_WHEN_STOWED_TEST == deploy) { // State hasn't changed?
  1837. if (IsRunning()) {
  1838. SERIAL_ERROR_START;
  1839. SERIAL_ERRORLNPGM("Z-Probe failed");
  1840. LCD_ALERTMESSAGEPGM("Err: ZPROBE");
  1841. }
  1842. stop();
  1843. return true;
  1844. } // _TRIGGERED_WHEN_STOWED_TEST == deploy
  1845. #endif
  1846. do_blocking_move_to(oldXpos, oldYpos, current_position[Z_AXIS]); // return to position before deploy
  1847. endstops.enable_z_probe(deploy);
  1848. return false;
  1849. }
  1850. static void do_probe_move(float z, float fr_mm_m) {
  1851. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1852. if (DEBUGGING(LEVELING)) DEBUG_POS(">>> do_probe_move", current_position);
  1853. #endif
  1854. // Deploy BLTouch at the start of any probe
  1855. #if ENABLED(BLTOUCH)
  1856. set_bltouch_deployed(true);
  1857. #endif
  1858. // Move down until probe triggered
  1859. do_blocking_move_to_z(LOGICAL_Z_POSITION(z), MMM_TO_MMS(fr_mm_m));
  1860. // Retract BLTouch immediately after a probe
  1861. #if ENABLED(BLTOUCH)
  1862. set_bltouch_deployed(false);
  1863. #endif
  1864. // Clear endstop flags
  1865. endstops.hit_on_purpose();
  1866. // Get Z where the steppers were interrupted
  1867. set_current_from_steppers_for_axis(Z_AXIS);
  1868. // Tell the planner where we actually are
  1869. SYNC_PLAN_POSITION_KINEMATIC();
  1870. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1871. if (DEBUGGING(LEVELING)) DEBUG_POS("<<< do_probe_move", current_position);
  1872. #endif
  1873. }
  1874. // Do a single Z probe and return with current_position[Z_AXIS]
  1875. // at the height where the probe triggered.
  1876. static float run_z_probe() {
  1877. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1878. if (DEBUGGING(LEVELING)) DEBUG_POS(">>> run_z_probe", current_position);
  1879. #endif
  1880. // Prevent stepper_inactive_time from running out and EXTRUDER_RUNOUT_PREVENT from extruding
  1881. refresh_cmd_timeout();
  1882. #if ENABLED(PROBE_DOUBLE_TOUCH)
  1883. // Do a first probe at the fast speed
  1884. do_probe_move(-(Z_MAX_LENGTH) - 10, Z_PROBE_SPEED_FAST);
  1885. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1886. float first_probe_z = current_position[Z_AXIS];
  1887. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPAIR("1st Probe Z:", first_probe_z);
  1888. #endif
  1889. // move up by the bump distance
  1890. do_blocking_move_to_z(current_position[Z_AXIS] + home_bump_mm(Z_AXIS), MMM_TO_MMS(Z_PROBE_SPEED_FAST));
  1891. #else
  1892. // If the nozzle is above the travel height then
  1893. // move down quickly before doing the slow probe
  1894. float z = LOGICAL_Z_POSITION(Z_CLEARANCE_BETWEEN_PROBES);
  1895. if (zprobe_zoffset < 0) z -= zprobe_zoffset;
  1896. if (z < current_position[Z_AXIS])
  1897. do_blocking_move_to_z(z, MMM_TO_MMS(Z_PROBE_SPEED_FAST));
  1898. #endif
  1899. // move down slowly to find bed
  1900. do_probe_move(-(Z_MAX_LENGTH) - 10, Z_PROBE_SPEED_SLOW);
  1901. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1902. if (DEBUGGING(LEVELING)) DEBUG_POS("<<< run_z_probe", current_position);
  1903. #endif
  1904. // Debug: compare probe heights
  1905. #if ENABLED(PROBE_DOUBLE_TOUCH) && ENABLED(DEBUG_LEVELING_FEATURE)
  1906. if (DEBUGGING(LEVELING)) {
  1907. SERIAL_ECHOPAIR("2nd Probe Z:", current_position[Z_AXIS]);
  1908. SERIAL_ECHOLNPAIR(" Discrepancy:", first_probe_z - current_position[Z_AXIS]);
  1909. }
  1910. #endif
  1911. return current_position[Z_AXIS] + zprobe_zoffset;
  1912. }
  1913. //
  1914. // - Move to the given XY
  1915. // - Deploy the probe, if not already deployed
  1916. // - Probe the bed, get the Z position
  1917. // - Depending on the 'stow' flag
  1918. // - Stow the probe, or
  1919. // - Raise to the BETWEEN height
  1920. // - Return the probed Z position
  1921. //
  1922. float probe_pt(const float x, const float y, const bool stow/*=true*/, const int verbose_level/*=1*/) {
  1923. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1924. if (DEBUGGING(LEVELING)) {
  1925. SERIAL_ECHOPAIR(">>> probe_pt(", x);
  1926. SERIAL_ECHOPAIR(", ", y);
  1927. SERIAL_ECHOPAIR(", ", stow ? "" : "no ");
  1928. SERIAL_ECHOLNPGM("stow)");
  1929. DEBUG_POS("", current_position);
  1930. }
  1931. #endif
  1932. const float old_feedrate_mm_s = feedrate_mm_s;
  1933. #if ENABLED(DELTA)
  1934. if (current_position[Z_AXIS] > delta_clip_start_height)
  1935. do_blocking_move_to_z(delta_clip_start_height);
  1936. #endif
  1937. // Ensure a minimum height before moving the probe
  1938. do_probe_raise(Z_CLEARANCE_BETWEEN_PROBES);
  1939. feedrate_mm_s = XY_PROBE_FEEDRATE_MM_S;
  1940. // Move the probe to the given XY
  1941. do_blocking_move_to_xy(x - (X_PROBE_OFFSET_FROM_EXTRUDER), y - (Y_PROBE_OFFSET_FROM_EXTRUDER));
  1942. if (DEPLOY_PROBE()) return NAN;
  1943. const float measured_z = run_z_probe();
  1944. if (!stow)
  1945. do_probe_raise(Z_CLEARANCE_BETWEEN_PROBES);
  1946. else
  1947. if (STOW_PROBE()) return NAN;
  1948. if (verbose_level > 2) {
  1949. SERIAL_PROTOCOLPGM("Bed X: ");
  1950. SERIAL_PROTOCOL_F(x, 3);
  1951. SERIAL_PROTOCOLPGM(" Y: ");
  1952. SERIAL_PROTOCOL_F(y, 3);
  1953. SERIAL_PROTOCOLPGM(" Z: ");
  1954. SERIAL_PROTOCOL_F(FIXFLOAT(measured_z), 3);
  1955. SERIAL_EOL;
  1956. }
  1957. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1958. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< probe_pt");
  1959. #endif
  1960. feedrate_mm_s = old_feedrate_mm_s;
  1961. return measured_z;
  1962. }
  1963. #endif // HAS_BED_PROBE
  1964. #if PLANNER_LEVELING
  1965. /**
  1966. * Turn bed leveling on or off, fixing the current
  1967. * position as-needed.
  1968. *
  1969. * Disable: Current position = physical position
  1970. * Enable: Current position = "unleveled" physical position
  1971. */
  1972. void set_bed_leveling_enabled(bool enable/*=true*/) {
  1973. #if ENABLED(MESH_BED_LEVELING)
  1974. if (enable != mbl.active()) {
  1975. if (!enable)
  1976. planner.apply_leveling(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS]);
  1977. mbl.set_active(enable && mbl.has_mesh());
  1978. if (enable && mbl.has_mesh()) planner.unapply_leveling(current_position);
  1979. }
  1980. #elif HAS_ABL && !ENABLED(AUTO_BED_LEVELING_UBL)
  1981. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  1982. const bool can_change = (!enable || (bilinear_grid_spacing[0] && bilinear_grid_spacing[1]));
  1983. #else
  1984. constexpr bool can_change = true;
  1985. #endif
  1986. if (can_change && enable != planner.abl_enabled) {
  1987. planner.abl_enabled = enable;
  1988. if (!enable)
  1989. set_current_from_steppers_for_axis(
  1990. #if ABL_PLANAR
  1991. ALL_AXES
  1992. #else
  1993. Z_AXIS
  1994. #endif
  1995. );
  1996. else
  1997. planner.unapply_leveling(current_position);
  1998. }
  1999. #elif ENABLED(AUTO_BED_LEVELING_UBL)
  2000. ubl.state.active = enable;
  2001. //set_current_from_steppers_for_axis(Z_AXIS);
  2002. #endif
  2003. }
  2004. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  2005. void set_z_fade_height(const float zfh) {
  2006. planner.z_fade_height = zfh;
  2007. planner.inverse_z_fade_height = RECIPROCAL(zfh);
  2008. if (
  2009. #if ENABLED(MESH_BED_LEVELING)
  2010. mbl.active()
  2011. #else
  2012. planner.abl_enabled
  2013. #endif
  2014. ) {
  2015. set_current_from_steppers_for_axis(
  2016. #if ABL_PLANAR
  2017. ALL_AXES
  2018. #else
  2019. Z_AXIS
  2020. #endif
  2021. );
  2022. }
  2023. }
  2024. #endif // LEVELING_FADE_HEIGHT
  2025. /**
  2026. * Reset calibration results to zero.
  2027. */
  2028. void reset_bed_level() {
  2029. set_bed_leveling_enabled(false);
  2030. #if ENABLED(MESH_BED_LEVELING)
  2031. if (mbl.has_mesh()) {
  2032. mbl.reset();
  2033. mbl.set_has_mesh(false);
  2034. }
  2035. #else
  2036. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2037. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("reset_bed_level");
  2038. #endif
  2039. #if ABL_PLANAR
  2040. planner.bed_level_matrix.set_to_identity();
  2041. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  2042. bilinear_start[X_AXIS] = bilinear_start[Y_AXIS] =
  2043. bilinear_grid_spacing[X_AXIS] = bilinear_grid_spacing[Y_AXIS] = 0;
  2044. for (uint8_t x = 0; x < GRID_MAX_POINTS_X; x++)
  2045. for (uint8_t y = 0; y < GRID_MAX_POINTS_Y; y++)
  2046. bed_level_grid[x][y] = NAN;
  2047. #elif ENABLED(AUTO_BED_LEVELING_UBL)
  2048. ubl.reset();
  2049. #endif
  2050. #endif
  2051. }
  2052. #endif // PLANNER_LEVELING
  2053. #if ENABLED(AUTO_BED_LEVELING_BILINEAR) || ENABLED(MESH_BED_LEVELING)
  2054. //
  2055. // Enable if you prefer your output in JSON format
  2056. // suitable for SCAD or JavaScript mesh visualizers.
  2057. //
  2058. // Visualize meshes in OpenSCAD using the included script.
  2059. //
  2060. // buildroot/shared/scripts/MarlinMesh.scad
  2061. //
  2062. //#define SCAD_MESH_OUTPUT
  2063. /**
  2064. * Print calibration results for plotting or manual frame adjustment.
  2065. */
  2066. static void print_2d_array(const uint8_t sx, const uint8_t sy, const uint8_t precision, float (*fn)(const uint8_t, const uint8_t)) {
  2067. #ifndef SCAD_MESH_OUTPUT
  2068. for (uint8_t x = 0; x < sx; x++) {
  2069. for (uint8_t i = 0; i < precision + 2 + (x < 10 ? 1 : 0); i++)
  2070. SERIAL_PROTOCOLCHAR(' ');
  2071. SERIAL_PROTOCOL((int)x);
  2072. }
  2073. SERIAL_EOL;
  2074. #endif
  2075. #ifdef SCAD_MESH_OUTPUT
  2076. SERIAL_PROTOCOLLNPGM("measured_z = ["); // open 2D array
  2077. #endif
  2078. for (uint8_t y = 0; y < sy; y++) {
  2079. #ifdef SCAD_MESH_OUTPUT
  2080. SERIAL_PROTOCOLLNPGM(" ["); // open sub-array
  2081. #else
  2082. if (y < 10) SERIAL_PROTOCOLCHAR(' ');
  2083. SERIAL_PROTOCOL((int)y);
  2084. #endif
  2085. for (uint8_t x = 0; x < sx; x++) {
  2086. SERIAL_PROTOCOLCHAR(' ');
  2087. const float offset = fn(x, y);
  2088. if (!isnan(offset)) {
  2089. if (offset >= 0) SERIAL_PROTOCOLCHAR('+');
  2090. SERIAL_PROTOCOL_F(offset, precision);
  2091. }
  2092. else {
  2093. #ifdef SCAD_MESH_OUTPUT
  2094. for (uint8_t i = 3; i < precision + 3; i++)
  2095. SERIAL_PROTOCOLCHAR(' ');
  2096. SERIAL_PROTOCOLPGM("NAN");
  2097. #else
  2098. for (uint8_t i = 0; i < precision + 3; i++)
  2099. SERIAL_PROTOCOLCHAR(i ? '=' : ' ');
  2100. #endif
  2101. }
  2102. #ifdef SCAD_MESH_OUTPUT
  2103. if (x < sx - 1) SERIAL_PROTOCOLCHAR(',');
  2104. #endif
  2105. }
  2106. #ifdef SCAD_MESH_OUTPUT
  2107. SERIAL_PROTOCOLCHAR(' ');
  2108. SERIAL_PROTOCOLCHAR(']'); // close sub-array
  2109. if (y < sy - 1) SERIAL_PROTOCOLCHAR(',');
  2110. #endif
  2111. SERIAL_EOL;
  2112. }
  2113. #ifdef SCAD_MESH_OUTPUT
  2114. SERIAL_PROTOCOLPGM("\n];"); // close 2D array
  2115. #endif
  2116. SERIAL_EOL;
  2117. }
  2118. #endif
  2119. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  2120. /**
  2121. * Extrapolate a single point from its neighbors
  2122. */
  2123. static void extrapolate_one_point(uint8_t x, uint8_t y, int8_t xdir, int8_t ydir) {
  2124. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2125. if (DEBUGGING(LEVELING)) {
  2126. SERIAL_ECHOPGM("Extrapolate [");
  2127. if (x < 10) SERIAL_CHAR(' ');
  2128. SERIAL_ECHO((int)x);
  2129. SERIAL_CHAR(xdir ? (xdir > 0 ? '+' : '-') : ' ');
  2130. SERIAL_CHAR(' ');
  2131. if (y < 10) SERIAL_CHAR(' ');
  2132. SERIAL_ECHO((int)y);
  2133. SERIAL_CHAR(ydir ? (ydir > 0 ? '+' : '-') : ' ');
  2134. SERIAL_CHAR(']');
  2135. }
  2136. #endif
  2137. if (!isnan(bed_level_grid[x][y])) {
  2138. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2139. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM(" (done)");
  2140. #endif
  2141. return; // Don't overwrite good values.
  2142. }
  2143. SERIAL_EOL;
  2144. // Get X neighbors, Y neighbors, and XY neighbors
  2145. float a1 = bed_level_grid[x + xdir][y], a2 = bed_level_grid[x + xdir * 2][y],
  2146. b1 = bed_level_grid[x][y + ydir], b2 = bed_level_grid[x][y + ydir * 2],
  2147. c1 = bed_level_grid[x + xdir][y + ydir], c2 = bed_level_grid[x + xdir * 2][y + ydir * 2];
  2148. // Treat far unprobed points as zero, near as equal to far
  2149. if (isnan(a2)) a2 = 0.0; if (isnan(a1)) a1 = a2;
  2150. if (isnan(b2)) b2 = 0.0; if (isnan(b1)) b1 = b2;
  2151. if (isnan(c2)) c2 = 0.0; if (isnan(c1)) c1 = c2;
  2152. const float a = 2 * a1 - a2, b = 2 * b1 - b2, c = 2 * c1 - c2;
  2153. // Take the average instead of the median
  2154. bed_level_grid[x][y] = (a + b + c) / 3.0;
  2155. // Median is robust (ignores outliers).
  2156. // bed_level_grid[x][y] = (a < b) ? ((b < c) ? b : (c < a) ? a : c)
  2157. // : ((c < b) ? b : (a < c) ? a : c);
  2158. }
  2159. //Enable this if your SCARA uses 180° of total area
  2160. //#define EXTRAPOLATE_FROM_EDGE
  2161. #if ENABLED(EXTRAPOLATE_FROM_EDGE)
  2162. #if GRID_MAX_POINTS_X < GRID_MAX_POINTS_Y
  2163. #define HALF_IN_X
  2164. #elif GRID_MAX_POINTS_Y < GRID_MAX_POINTS_X
  2165. #define HALF_IN_Y
  2166. #endif
  2167. #endif
  2168. /**
  2169. * Fill in the unprobed points (corners of circular print surface)
  2170. * using linear extrapolation, away from the center.
  2171. */
  2172. static void extrapolate_unprobed_bed_level() {
  2173. #ifdef HALF_IN_X
  2174. const uint8_t ctrx2 = 0, xlen = GRID_MAX_POINTS_X - 1;
  2175. #else
  2176. const uint8_t ctrx1 = (GRID_MAX_POINTS_X - 1) / 2, // left-of-center
  2177. ctrx2 = GRID_MAX_POINTS_X / 2, // right-of-center
  2178. xlen = ctrx1;
  2179. #endif
  2180. #ifdef HALF_IN_Y
  2181. const uint8_t ctry2 = 0, ylen = GRID_MAX_POINTS_Y - 1;
  2182. #else
  2183. const uint8_t ctry1 = (GRID_MAX_POINTS_Y - 1) / 2, // top-of-center
  2184. ctry2 = GRID_MAX_POINTS_Y / 2, // bottom-of-center
  2185. ylen = ctry1;
  2186. #endif
  2187. for (uint8_t xo = 0; xo <= xlen; xo++)
  2188. for (uint8_t yo = 0; yo <= ylen; yo++) {
  2189. uint8_t x2 = ctrx2 + xo, y2 = ctry2 + yo;
  2190. #ifndef HALF_IN_X
  2191. const uint8_t x1 = ctrx1 - xo;
  2192. #endif
  2193. #ifndef HALF_IN_Y
  2194. const uint8_t y1 = ctry1 - yo;
  2195. #ifndef HALF_IN_X
  2196. extrapolate_one_point(x1, y1, +1, +1); // left-below + +
  2197. #endif
  2198. extrapolate_one_point(x2, y1, -1, +1); // right-below - +
  2199. #endif
  2200. #ifndef HALF_IN_X
  2201. extrapolate_one_point(x1, y2, +1, -1); // left-above + -
  2202. #endif
  2203. extrapolate_one_point(x2, y2, -1, -1); // right-above - -
  2204. }
  2205. }
  2206. static void print_bilinear_leveling_grid() {
  2207. SERIAL_ECHOLNPGM("Bilinear Leveling Grid:");
  2208. print_2d_array(GRID_MAX_POINTS_X, GRID_MAX_POINTS_Y, 3,
  2209. [](const uint8_t ix, const uint8_t iy) { return bed_level_grid[ix][iy]; }
  2210. );
  2211. }
  2212. #if ENABLED(ABL_BILINEAR_SUBDIVISION)
  2213. #define ABL_GRID_POINTS_VIRT_X (GRID_MAX_POINTS_X - 1) * (BILINEAR_SUBDIVISIONS) + 1
  2214. #define ABL_GRID_POINTS_VIRT_Y (GRID_MAX_POINTS_Y - 1) * (BILINEAR_SUBDIVISIONS) + 1
  2215. #define ABL_TEMP_POINTS_X (GRID_MAX_POINTS_X + 2)
  2216. #define ABL_TEMP_POINTS_Y (GRID_MAX_POINTS_Y + 2)
  2217. float bed_level_grid_virt[ABL_GRID_POINTS_VIRT_X][ABL_GRID_POINTS_VIRT_Y];
  2218. int bilinear_grid_spacing_virt[2] = { 0 };
  2219. static void bed_level_virt_print() {
  2220. SERIAL_ECHOLNPGM("Subdivided with CATMULL ROM Leveling Grid:");
  2221. print_2d_array(ABL_GRID_POINTS_VIRT_X, ABL_GRID_POINTS_VIRT_Y, 5,
  2222. [](const uint8_t ix, const uint8_t iy) { return bed_level_grid_virt[ix][iy]; }
  2223. );
  2224. }
  2225. #define LINEAR_EXTRAPOLATION(E, I) ((E) * 2 - (I))
  2226. float bed_level_virt_coord(const uint8_t x, const uint8_t y) {
  2227. uint8_t ep = 0, ip = 1;
  2228. if (!x || x == ABL_TEMP_POINTS_X - 1) {
  2229. if (x) {
  2230. ep = GRID_MAX_POINTS_X - 1;
  2231. ip = GRID_MAX_POINTS_X - 2;
  2232. }
  2233. if (WITHIN(y, 1, ABL_TEMP_POINTS_Y - 2))
  2234. return LINEAR_EXTRAPOLATION(
  2235. bed_level_grid[ep][y - 1],
  2236. bed_level_grid[ip][y - 1]
  2237. );
  2238. else
  2239. return LINEAR_EXTRAPOLATION(
  2240. bed_level_virt_coord(ep + 1, y),
  2241. bed_level_virt_coord(ip + 1, y)
  2242. );
  2243. }
  2244. if (!y || y == ABL_TEMP_POINTS_Y - 1) {
  2245. if (y) {
  2246. ep = GRID_MAX_POINTS_Y - 1;
  2247. ip = GRID_MAX_POINTS_Y - 2;
  2248. }
  2249. if (WITHIN(x, 1, ABL_TEMP_POINTS_X - 2))
  2250. return LINEAR_EXTRAPOLATION(
  2251. bed_level_grid[x - 1][ep],
  2252. bed_level_grid[x - 1][ip]
  2253. );
  2254. else
  2255. return LINEAR_EXTRAPOLATION(
  2256. bed_level_virt_coord(x, ep + 1),
  2257. bed_level_virt_coord(x, ip + 1)
  2258. );
  2259. }
  2260. return bed_level_grid[x - 1][y - 1];
  2261. }
  2262. static float bed_level_virt_cmr(const float p[4], const uint8_t i, const float t) {
  2263. return (
  2264. p[i-1] * -t * sq(1 - t)
  2265. + p[i] * (2 - 5 * sq(t) + 3 * t * sq(t))
  2266. + p[i+1] * t * (1 + 4 * t - 3 * sq(t))
  2267. - p[i+2] * sq(t) * (1 - t)
  2268. ) * 0.5;
  2269. }
  2270. static float bed_level_virt_2cmr(const uint8_t x, const uint8_t y, const float &tx, const float &ty) {
  2271. float row[4], column[4];
  2272. for (uint8_t i = 0; i < 4; i++) {
  2273. for (uint8_t j = 0; j < 4; j++) {
  2274. column[j] = bed_level_virt_coord(i + x - 1, j + y - 1);
  2275. }
  2276. row[i] = bed_level_virt_cmr(column, 1, ty);
  2277. }
  2278. return bed_level_virt_cmr(row, 1, tx);
  2279. }
  2280. void bed_level_virt_interpolate() {
  2281. bilinear_grid_spacing_virt[X_AXIS] = bilinear_grid_spacing[X_AXIS] / (BILINEAR_SUBDIVISIONS);
  2282. bilinear_grid_spacing_virt[Y_AXIS] = bilinear_grid_spacing[Y_AXIS] / (BILINEAR_SUBDIVISIONS);
  2283. for (uint8_t y = 0; y < GRID_MAX_POINTS_Y; y++)
  2284. for (uint8_t x = 0; x < GRID_MAX_POINTS_X; x++)
  2285. for (uint8_t ty = 0; ty < BILINEAR_SUBDIVISIONS; ty++)
  2286. for (uint8_t tx = 0; tx < BILINEAR_SUBDIVISIONS; tx++) {
  2287. if ((ty && y == GRID_MAX_POINTS_Y - 1) || (tx && x == GRID_MAX_POINTS_X - 1))
  2288. continue;
  2289. bed_level_grid_virt[x * (BILINEAR_SUBDIVISIONS) + tx][y * (BILINEAR_SUBDIVISIONS) + ty] =
  2290. bed_level_virt_2cmr(
  2291. x + 1,
  2292. y + 1,
  2293. (float)tx / (BILINEAR_SUBDIVISIONS),
  2294. (float)ty / (BILINEAR_SUBDIVISIONS)
  2295. );
  2296. }
  2297. }
  2298. #endif // ABL_BILINEAR_SUBDIVISION
  2299. #endif // AUTO_BED_LEVELING_BILINEAR
  2300. /**
  2301. * Home an individual linear axis
  2302. */
  2303. static void do_homing_move(const AxisEnum axis, float distance, float fr_mm_s=0.0) {
  2304. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2305. if (DEBUGGING(LEVELING)) {
  2306. SERIAL_ECHOPAIR(">>> do_homing_move(", axis_codes[axis]);
  2307. SERIAL_ECHOPAIR(", ", distance);
  2308. SERIAL_ECHOPAIR(", ", fr_mm_s);
  2309. SERIAL_CHAR(')');
  2310. SERIAL_EOL;
  2311. }
  2312. #endif
  2313. #if HOMING_Z_WITH_PROBE && ENABLED(BLTOUCH)
  2314. const bool deploy_bltouch = (axis == Z_AXIS && distance < 0);
  2315. if (deploy_bltouch) set_bltouch_deployed(true);
  2316. #endif
  2317. // Tell the planner we're at Z=0
  2318. current_position[axis] = 0;
  2319. #if IS_SCARA
  2320. SYNC_PLAN_POSITION_KINEMATIC();
  2321. current_position[axis] = distance;
  2322. inverse_kinematics(current_position);
  2323. planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], current_position[E_AXIS], fr_mm_s ? fr_mm_s : homing_feedrate_mm_s[axis], active_extruder);
  2324. #else
  2325. sync_plan_position();
  2326. current_position[axis] = distance;
  2327. planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], fr_mm_s ? fr_mm_s : homing_feedrate_mm_s[axis], active_extruder);
  2328. #endif
  2329. stepper.synchronize();
  2330. #if HOMING_Z_WITH_PROBE && ENABLED(BLTOUCH)
  2331. if (deploy_bltouch) set_bltouch_deployed(false);
  2332. #endif
  2333. endstops.hit_on_purpose();
  2334. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2335. if (DEBUGGING(LEVELING)) {
  2336. SERIAL_ECHOPAIR("<<< do_homing_move(", axis_codes[axis]);
  2337. SERIAL_CHAR(')');
  2338. SERIAL_EOL;
  2339. }
  2340. #endif
  2341. }
  2342. /**
  2343. * Home an individual "raw axis" to its endstop.
  2344. * This applies to XYZ on Cartesian and Core robots, and
  2345. * to the individual ABC steppers on DELTA and SCARA.
  2346. *
  2347. * At the end of the procedure the axis is marked as
  2348. * homed and the current position of that axis is updated.
  2349. * Kinematic robots should wait till all axes are homed
  2350. * before updating the current position.
  2351. */
  2352. #define HOMEAXIS(LETTER) homeaxis(LETTER##_AXIS)
  2353. static void homeaxis(const AxisEnum axis) {
  2354. #if IS_SCARA
  2355. // Only Z homing (with probe) is permitted
  2356. if (axis != Z_AXIS) { BUZZ(100, 880); return; }
  2357. #else
  2358. #define CAN_HOME(A) \
  2359. (axis == A##_AXIS && ((A##_MIN_PIN > -1 && A##_HOME_DIR < 0) || (A##_MAX_PIN > -1 && A##_HOME_DIR > 0)))
  2360. if (!CAN_HOME(X) && !CAN_HOME(Y) && !CAN_HOME(Z)) return;
  2361. #endif
  2362. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2363. if (DEBUGGING(LEVELING)) {
  2364. SERIAL_ECHOPAIR(">>> homeaxis(", axis_codes[axis]);
  2365. SERIAL_CHAR(')');
  2366. SERIAL_EOL;
  2367. }
  2368. #endif
  2369. const int axis_home_dir =
  2370. #if ENABLED(DUAL_X_CARRIAGE)
  2371. (axis == X_AXIS) ? x_home_dir(active_extruder) :
  2372. #endif
  2373. home_dir(axis);
  2374. // Homing Z towards the bed? Deploy the Z probe or endstop.
  2375. #if HOMING_Z_WITH_PROBE
  2376. if (axis == Z_AXIS && DEPLOY_PROBE()) return;
  2377. #endif
  2378. // Set a flag for Z motor locking
  2379. #if ENABLED(Z_DUAL_ENDSTOPS)
  2380. if (axis == Z_AXIS) stepper.set_homing_flag(true);
  2381. #endif
  2382. // Fast move towards endstop until triggered
  2383. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2384. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("Home 1 Fast:");
  2385. #endif
  2386. do_homing_move(axis, 1.5 * max_length(axis) * axis_home_dir);
  2387. // When homing Z with probe respect probe clearance
  2388. const float bump = axis_home_dir * (
  2389. #if HOMING_Z_WITH_PROBE
  2390. (axis == Z_AXIS) ? max(Z_CLEARANCE_BETWEEN_PROBES, home_bump_mm(Z_AXIS)) :
  2391. #endif
  2392. home_bump_mm(axis)
  2393. );
  2394. // If a second homing move is configured...
  2395. if (bump) {
  2396. // Move away from the endstop by the axis HOME_BUMP_MM
  2397. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2398. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("Move Away:");
  2399. #endif
  2400. do_homing_move(axis, -bump);
  2401. // Slow move towards endstop until triggered
  2402. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2403. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("Home 2 Slow:");
  2404. #endif
  2405. do_homing_move(axis, 2 * bump, get_homing_bump_feedrate(axis));
  2406. }
  2407. #if ENABLED(Z_DUAL_ENDSTOPS)
  2408. if (axis == Z_AXIS) {
  2409. float adj = fabs(z_endstop_adj);
  2410. bool lockZ1;
  2411. if (axis_home_dir > 0) {
  2412. adj = -adj;
  2413. lockZ1 = (z_endstop_adj > 0);
  2414. }
  2415. else
  2416. lockZ1 = (z_endstop_adj < 0);
  2417. if (lockZ1) stepper.set_z_lock(true); else stepper.set_z2_lock(true);
  2418. // Move to the adjusted endstop height
  2419. do_homing_move(axis, adj);
  2420. if (lockZ1) stepper.set_z_lock(false); else stepper.set_z2_lock(false);
  2421. stepper.set_homing_flag(false);
  2422. } // Z_AXIS
  2423. #endif
  2424. #if IS_SCARA
  2425. set_axis_is_at_home(axis);
  2426. SYNC_PLAN_POSITION_KINEMATIC();
  2427. #elif ENABLED(DELTA)
  2428. // Delta has already moved all three towers up in G28
  2429. // so here it re-homes each tower in turn.
  2430. // Delta homing treats the axes as normal linear axes.
  2431. // retrace by the amount specified in endstop_adj
  2432. if (endstop_adj[axis] * Z_HOME_DIR < 0) {
  2433. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2434. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("endstop_adj:");
  2435. #endif
  2436. do_homing_move(axis, endstop_adj[axis]);
  2437. }
  2438. #else
  2439. // For cartesian/core machines,
  2440. // set the axis to its home position
  2441. set_axis_is_at_home(axis);
  2442. sync_plan_position();
  2443. destination[axis] = current_position[axis];
  2444. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2445. if (DEBUGGING(LEVELING)) DEBUG_POS("> AFTER set_axis_is_at_home", current_position);
  2446. #endif
  2447. #endif
  2448. // Put away the Z probe
  2449. #if HOMING_Z_WITH_PROBE
  2450. if (axis == Z_AXIS && STOW_PROBE()) return;
  2451. #endif
  2452. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2453. if (DEBUGGING(LEVELING)) {
  2454. SERIAL_ECHOPAIR("<<< homeaxis(", axis_codes[axis]);
  2455. SERIAL_CHAR(')');
  2456. SERIAL_EOL;
  2457. }
  2458. #endif
  2459. } // homeaxis()
  2460. #if ENABLED(FWRETRACT)
  2461. void retract(const bool retracting, const bool swapping = false) {
  2462. static float hop_height;
  2463. if (retracting == retracted[active_extruder]) return;
  2464. const float old_feedrate_mm_s = feedrate_mm_s;
  2465. set_destination_to_current();
  2466. if (retracting) {
  2467. feedrate_mm_s = retract_feedrate_mm_s;
  2468. current_position[E_AXIS] += (swapping ? retract_length_swap : retract_length) / volumetric_multiplier[active_extruder];
  2469. sync_plan_position_e();
  2470. prepare_move_to_destination();
  2471. if (retract_zlift > 0.01) {
  2472. hop_height = current_position[Z_AXIS];
  2473. // Pretend current position is lower
  2474. current_position[Z_AXIS] -= retract_zlift;
  2475. SYNC_PLAN_POSITION_KINEMATIC();
  2476. // Raise up to the old current_position
  2477. prepare_move_to_destination();
  2478. }
  2479. }
  2480. else {
  2481. // If the height hasn't been altered, undo the Z hop
  2482. if (retract_zlift > 0.01 && hop_height == current_position[Z_AXIS]) {
  2483. // Pretend current position is higher. Z will lower on the next move
  2484. current_position[Z_AXIS] += retract_zlift;
  2485. SYNC_PLAN_POSITION_KINEMATIC();
  2486. }
  2487. feedrate_mm_s = retract_recover_feedrate_mm_s;
  2488. const float move_e = swapping ? retract_length_swap + retract_recover_length_swap : retract_length + retract_recover_length;
  2489. current_position[E_AXIS] -= move_e / volumetric_multiplier[active_extruder];
  2490. sync_plan_position_e();
  2491. // Lower Z and recover E
  2492. prepare_move_to_destination();
  2493. }
  2494. feedrate_mm_s = old_feedrate_mm_s;
  2495. retracted[active_extruder] = retracting;
  2496. } // retract()
  2497. #endif // FWRETRACT
  2498. #if ENABLED(MIXING_EXTRUDER)
  2499. void normalize_mix() {
  2500. float mix_total = 0.0;
  2501. for (uint8_t i = 0; i < MIXING_STEPPERS; i++) mix_total += RECIPROCAL(mixing_factor[i]);
  2502. // Scale all values if they don't add up to ~1.0
  2503. if (!NEAR(mix_total, 1.0)) {
  2504. SERIAL_PROTOCOLLNPGM("Warning: Mix factors must add up to 1.0. Scaling.");
  2505. for (uint8_t i = 0; i < MIXING_STEPPERS; i++) mixing_factor[i] *= mix_total;
  2506. }
  2507. }
  2508. #if ENABLED(DIRECT_MIXING_IN_G1)
  2509. // Get mixing parameters from the GCode
  2510. // The total "must" be 1.0 (but it will be normalized)
  2511. // If no mix factors are given, the old mix is preserved
  2512. void gcode_get_mix() {
  2513. const char* mixing_codes = "ABCDHI";
  2514. byte mix_bits = 0;
  2515. for (uint8_t i = 0; i < MIXING_STEPPERS; i++) {
  2516. if (code_seen(mixing_codes[i])) {
  2517. SBI(mix_bits, i);
  2518. float v = code_value_float();
  2519. NOLESS(v, 0.0);
  2520. mixing_factor[i] = RECIPROCAL(v);
  2521. }
  2522. }
  2523. // If any mixing factors were included, clear the rest
  2524. // If none were included, preserve the last mix
  2525. if (mix_bits) {
  2526. for (uint8_t i = 0; i < MIXING_STEPPERS; i++)
  2527. if (!TEST(mix_bits, i)) mixing_factor[i] = 0.0;
  2528. normalize_mix();
  2529. }
  2530. }
  2531. #endif
  2532. #endif
  2533. /**
  2534. * ***************************************************************************
  2535. * ***************************** G-CODE HANDLING *****************************
  2536. * ***************************************************************************
  2537. */
  2538. /**
  2539. * Set XYZE destination and feedrate from the current GCode command
  2540. *
  2541. * - Set destination from included axis codes
  2542. * - Set to current for missing axis codes
  2543. * - Set the feedrate, if included
  2544. */
  2545. void gcode_get_destination() {
  2546. LOOP_XYZE(i) {
  2547. if (code_seen(axis_codes[i]))
  2548. destination[i] = code_value_axis_units(i) + (axis_relative_modes[i] || relative_mode ? current_position[i] : 0);
  2549. else
  2550. destination[i] = current_position[i];
  2551. }
  2552. if (code_seen('F') && code_value_linear_units() > 0.0)
  2553. feedrate_mm_s = MMM_TO_MMS(code_value_linear_units());
  2554. #if ENABLED(PRINTCOUNTER)
  2555. if (!DEBUGGING(DRYRUN))
  2556. print_job_timer.incFilamentUsed(destination[E_AXIS] - current_position[E_AXIS]);
  2557. #endif
  2558. // Get ABCDHI mixing factors
  2559. #if ENABLED(MIXING_EXTRUDER) && ENABLED(DIRECT_MIXING_IN_G1)
  2560. gcode_get_mix();
  2561. #endif
  2562. }
  2563. void unknown_command_error() {
  2564. SERIAL_ECHO_START;
  2565. SERIAL_ECHOPAIR(MSG_UNKNOWN_COMMAND, current_command);
  2566. SERIAL_CHAR('"');
  2567. SERIAL_EOL;
  2568. }
  2569. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  2570. /**
  2571. * Output a "busy" message at regular intervals
  2572. * while the machine is not accepting commands.
  2573. */
  2574. void host_keepalive() {
  2575. const millis_t ms = millis();
  2576. if (host_keepalive_interval && busy_state != NOT_BUSY) {
  2577. if (PENDING(ms, next_busy_signal_ms)) return;
  2578. switch (busy_state) {
  2579. case IN_HANDLER:
  2580. case IN_PROCESS:
  2581. SERIAL_ECHO_START;
  2582. SERIAL_ECHOLNPGM(MSG_BUSY_PROCESSING);
  2583. break;
  2584. case PAUSED_FOR_USER:
  2585. SERIAL_ECHO_START;
  2586. SERIAL_ECHOLNPGM(MSG_BUSY_PAUSED_FOR_USER);
  2587. break;
  2588. case PAUSED_FOR_INPUT:
  2589. SERIAL_ECHO_START;
  2590. SERIAL_ECHOLNPGM(MSG_BUSY_PAUSED_FOR_INPUT);
  2591. break;
  2592. default:
  2593. break;
  2594. }
  2595. }
  2596. next_busy_signal_ms = ms + host_keepalive_interval * 1000UL;
  2597. }
  2598. #endif //HOST_KEEPALIVE_FEATURE
  2599. bool position_is_reachable(float target[XYZ]
  2600. #if HAS_BED_PROBE
  2601. , bool by_probe=false
  2602. #endif
  2603. ) {
  2604. float dx = RAW_X_POSITION(target[X_AXIS]),
  2605. dy = RAW_Y_POSITION(target[Y_AXIS]);
  2606. #if HAS_BED_PROBE
  2607. if (by_probe) {
  2608. dx -= X_PROBE_OFFSET_FROM_EXTRUDER;
  2609. dy -= Y_PROBE_OFFSET_FROM_EXTRUDER;
  2610. }
  2611. #endif
  2612. #if IS_SCARA
  2613. #if MIDDLE_DEAD_ZONE_R > 0
  2614. const float R2 = HYPOT2(dx - SCARA_OFFSET_X, dy - SCARA_OFFSET_Y);
  2615. return R2 >= sq(float(MIDDLE_DEAD_ZONE_R)) && R2 <= sq(L1 + L2);
  2616. #else
  2617. return HYPOT2(dx - SCARA_OFFSET_X, dy - SCARA_OFFSET_Y) <= sq(L1 + L2);
  2618. #endif
  2619. #elif ENABLED(DELTA)
  2620. return HYPOT2(dx, dy) <= sq((float)(DELTA_PRINTABLE_RADIUS));
  2621. #else
  2622. const float dz = RAW_Z_POSITION(target[Z_AXIS]);
  2623. return WITHIN(dx, X_MIN_POS - 0.0001, X_MAX_POS + 0.0001)
  2624. && WITHIN(dy, Y_MIN_POS - 0.0001, Y_MAX_POS + 0.0001)
  2625. && WITHIN(dz, Z_MIN_POS - 0.0001, Z_MAX_POS + 0.0001);
  2626. #endif
  2627. }
  2628. /**************************************************
  2629. ***************** GCode Handlers *****************
  2630. **************************************************/
  2631. /**
  2632. * G0, G1: Coordinated movement of X Y Z E axes
  2633. */
  2634. inline void gcode_G0_G1(
  2635. #if IS_SCARA
  2636. bool fast_move=false
  2637. #endif
  2638. ) {
  2639. if (IsRunning()) {
  2640. gcode_get_destination(); // For X Y Z E F
  2641. #if ENABLED(FWRETRACT)
  2642. if (autoretract_enabled && !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  2643. const float echange = destination[E_AXIS] - current_position[E_AXIS];
  2644. // Is this move an attempt to retract or recover?
  2645. if ((echange < -MIN_RETRACT && !retracted[active_extruder]) || (echange > MIN_RETRACT && retracted[active_extruder])) {
  2646. current_position[E_AXIS] = destination[E_AXIS]; // hide the slicer-generated retract/recover from calculations
  2647. sync_plan_position_e(); // AND from the planner
  2648. retract(!retracted[active_extruder]);
  2649. return;
  2650. }
  2651. }
  2652. #endif //FWRETRACT
  2653. #if IS_SCARA
  2654. fast_move ? prepare_uninterpolated_move_to_destination() : prepare_move_to_destination();
  2655. #else
  2656. prepare_move_to_destination();
  2657. #endif
  2658. }
  2659. }
  2660. /**
  2661. * G2: Clockwise Arc
  2662. * G3: Counterclockwise Arc
  2663. *
  2664. * This command has two forms: IJ-form and R-form.
  2665. *
  2666. * - I specifies an X offset. J specifies a Y offset.
  2667. * At least one of the IJ parameters is required.
  2668. * X and Y can be omitted to do a complete circle.
  2669. * The given XY is not error-checked. The arc ends
  2670. * based on the angle of the destination.
  2671. * Mixing I or J with R will throw an error.
  2672. *
  2673. * - R specifies the radius. X or Y is required.
  2674. * Omitting both X and Y will throw an error.
  2675. * X or Y must differ from the current XY.
  2676. * Mixing R with I or J will throw an error.
  2677. *
  2678. * Examples:
  2679. *
  2680. * G2 I10 ; CW circle centered at X+10
  2681. * G3 X20 Y12 R14 ; CCW circle with r=14 ending at X20 Y12
  2682. */
  2683. #if ENABLED(ARC_SUPPORT)
  2684. inline void gcode_G2_G3(bool clockwise) {
  2685. if (IsRunning()) {
  2686. #if ENABLED(SF_ARC_FIX)
  2687. const bool relative_mode_backup = relative_mode;
  2688. relative_mode = true;
  2689. #endif
  2690. gcode_get_destination();
  2691. #if ENABLED(SF_ARC_FIX)
  2692. relative_mode = relative_mode_backup;
  2693. #endif
  2694. float arc_offset[2] = { 0.0, 0.0 };
  2695. if (code_seen('R')) {
  2696. const float r = code_value_axis_units(X_AXIS),
  2697. x1 = current_position[X_AXIS], y1 = current_position[Y_AXIS],
  2698. x2 = destination[X_AXIS], y2 = destination[Y_AXIS];
  2699. if (r && (x2 != x1 || y2 != y1)) {
  2700. const float e = clockwise ^ (r < 0) ? -1 : 1, // clockwise -1/1, counterclockwise 1/-1
  2701. dx = x2 - x1, dy = y2 - y1, // X and Y differences
  2702. d = HYPOT(dx, dy), // Linear distance between the points
  2703. h = sqrt(sq(r) - sq(d * 0.5)), // Distance to the arc pivot-point
  2704. mx = (x1 + x2) * 0.5, my = (y1 + y2) * 0.5, // Point between the two points
  2705. sx = -dy / d, sy = dx / d, // Slope of the perpendicular bisector
  2706. cx = mx + e * h * sx, cy = my + e * h * sy; // Pivot-point of the arc
  2707. arc_offset[X_AXIS] = cx - x1;
  2708. arc_offset[Y_AXIS] = cy - y1;
  2709. }
  2710. }
  2711. else {
  2712. if (code_seen('I')) arc_offset[X_AXIS] = code_value_axis_units(X_AXIS);
  2713. if (code_seen('J')) arc_offset[Y_AXIS] = code_value_axis_units(Y_AXIS);
  2714. }
  2715. if (arc_offset[0] || arc_offset[1]) {
  2716. // Send an arc to the planner
  2717. plan_arc(destination, arc_offset, clockwise);
  2718. refresh_cmd_timeout();
  2719. }
  2720. else {
  2721. // Bad arguments
  2722. SERIAL_ERROR_START;
  2723. SERIAL_ERRORLNPGM(MSG_ERR_ARC_ARGS);
  2724. }
  2725. }
  2726. }
  2727. #endif
  2728. /**
  2729. * G4: Dwell S<seconds> or P<milliseconds>
  2730. */
  2731. inline void gcode_G4() {
  2732. millis_t dwell_ms = 0;
  2733. if (code_seen('P')) dwell_ms = code_value_millis(); // milliseconds to wait
  2734. if (code_seen('S')) dwell_ms = code_value_millis_from_seconds(); // seconds to wait
  2735. stepper.synchronize();
  2736. refresh_cmd_timeout();
  2737. dwell_ms += previous_cmd_ms; // keep track of when we started waiting
  2738. if (!lcd_hasstatus()) LCD_MESSAGEPGM(MSG_DWELL);
  2739. while (PENDING(millis(), dwell_ms)) idle();
  2740. }
  2741. #if ENABLED(BEZIER_CURVE_SUPPORT)
  2742. /**
  2743. * Parameters interpreted according to:
  2744. * http://linuxcnc.org/docs/2.6/html/gcode/gcode.html#sec:G5-Cubic-Spline
  2745. * However I, J omission is not supported at this point; all
  2746. * parameters can be omitted and default to zero.
  2747. */
  2748. /**
  2749. * G5: Cubic B-spline
  2750. */
  2751. inline void gcode_G5() {
  2752. if (IsRunning()) {
  2753. gcode_get_destination();
  2754. const float offset[] = {
  2755. code_seen('I') ? code_value_axis_units(X_AXIS) : 0.0,
  2756. code_seen('J') ? code_value_axis_units(Y_AXIS) : 0.0,
  2757. code_seen('P') ? code_value_axis_units(X_AXIS) : 0.0,
  2758. code_seen('Q') ? code_value_axis_units(Y_AXIS) : 0.0
  2759. };
  2760. plan_cubic_move(offset);
  2761. }
  2762. }
  2763. #endif // BEZIER_CURVE_SUPPORT
  2764. #if ENABLED(FWRETRACT)
  2765. /**
  2766. * G10 - Retract filament according to settings of M207
  2767. * G11 - Recover filament according to settings of M208
  2768. */
  2769. inline void gcode_G10_G11(bool doRetract=false) {
  2770. #if EXTRUDERS > 1
  2771. if (doRetract) {
  2772. retracted_swap[active_extruder] = (code_seen('S') && code_value_bool()); // checks for swap retract argument
  2773. }
  2774. #endif
  2775. retract(doRetract
  2776. #if EXTRUDERS > 1
  2777. , retracted_swap[active_extruder]
  2778. #endif
  2779. );
  2780. }
  2781. #endif //FWRETRACT
  2782. #if ENABLED(NOZZLE_CLEAN_FEATURE)
  2783. /**
  2784. * G12: Clean the nozzle
  2785. */
  2786. inline void gcode_G12() {
  2787. // Don't allow nozzle cleaning without homing first
  2788. if (axis_unhomed_error(true, true, true)) return;
  2789. const uint8_t pattern = code_seen('P') ? code_value_ushort() : 0,
  2790. strokes = code_seen('S') ? code_value_ushort() : NOZZLE_CLEAN_STROKES,
  2791. objects = code_seen('T') ? code_value_ushort() : NOZZLE_CLEAN_TRIANGLES;
  2792. const float radius = code_seen('R') ? code_value_float() : NOZZLE_CLEAN_CIRCLE_RADIUS;
  2793. Nozzle::clean(pattern, strokes, radius, objects);
  2794. }
  2795. #endif
  2796. #if ENABLED(INCH_MODE_SUPPORT)
  2797. /**
  2798. * G20: Set input mode to inches
  2799. */
  2800. inline void gcode_G20() { set_input_linear_units(LINEARUNIT_INCH); }
  2801. /**
  2802. * G21: Set input mode to millimeters
  2803. */
  2804. inline void gcode_G21() { set_input_linear_units(LINEARUNIT_MM); }
  2805. #endif
  2806. #if ENABLED(NOZZLE_PARK_FEATURE)
  2807. /**
  2808. * G27: Park the nozzle
  2809. */
  2810. inline void gcode_G27() {
  2811. // Don't allow nozzle parking without homing first
  2812. if (axis_unhomed_error(true, true, true)) return;
  2813. Nozzle::park(code_seen('P') ? code_value_ushort() : 0);
  2814. }
  2815. #endif // NOZZLE_PARK_FEATURE
  2816. #if ENABLED(QUICK_HOME)
  2817. static void quick_home_xy() {
  2818. // Pretend the current position is 0,0
  2819. current_position[X_AXIS] = current_position[Y_AXIS] = 0.0;
  2820. sync_plan_position();
  2821. const int x_axis_home_dir =
  2822. #if ENABLED(DUAL_X_CARRIAGE)
  2823. x_home_dir(active_extruder)
  2824. #else
  2825. home_dir(X_AXIS)
  2826. #endif
  2827. ;
  2828. const float mlx = max_length(X_AXIS),
  2829. mly = max_length(Y_AXIS),
  2830. mlratio = mlx > mly ? mly / mlx : mlx / mly,
  2831. fr_mm_s = min(homing_feedrate_mm_s[X_AXIS], homing_feedrate_mm_s[Y_AXIS]) * sqrt(sq(mlratio) + 1.0);
  2832. do_blocking_move_to_xy(1.5 * mlx * x_axis_home_dir, 1.5 * mly * home_dir(Y_AXIS), fr_mm_s);
  2833. endstops.hit_on_purpose(); // clear endstop hit flags
  2834. current_position[X_AXIS] = current_position[Y_AXIS] = 0.0;
  2835. }
  2836. #endif // QUICK_HOME
  2837. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2838. void log_machine_info() {
  2839. SERIAL_ECHOPGM("Machine Type: ");
  2840. #if ENABLED(DELTA)
  2841. SERIAL_ECHOLNPGM("Delta");
  2842. #elif IS_SCARA
  2843. SERIAL_ECHOLNPGM("SCARA");
  2844. #elif IS_CORE
  2845. SERIAL_ECHOLNPGM("Core");
  2846. #else
  2847. SERIAL_ECHOLNPGM("Cartesian");
  2848. #endif
  2849. SERIAL_ECHOPGM("Probe: ");
  2850. #if ENABLED(PROBE_MANUALLY)
  2851. SERIAL_ECHOLNPGM("PROBE_MANUALLY");
  2852. #elif ENABLED(FIX_MOUNTED_PROBE)
  2853. SERIAL_ECHOLNPGM("FIX_MOUNTED_PROBE");
  2854. #elif ENABLED(BLTOUCH)
  2855. SERIAL_ECHOLNPGM("BLTOUCH");
  2856. #elif HAS_Z_SERVO_ENDSTOP
  2857. SERIAL_ECHOLNPGM("SERVO PROBE");
  2858. #elif ENABLED(Z_PROBE_SLED)
  2859. SERIAL_ECHOLNPGM("Z_PROBE_SLED");
  2860. #elif ENABLED(Z_PROBE_ALLEN_KEY)
  2861. SERIAL_ECHOLNPGM("Z_PROBE_ALLEN_KEY");
  2862. #else
  2863. SERIAL_ECHOLNPGM("NONE");
  2864. #endif
  2865. #if HAS_BED_PROBE
  2866. SERIAL_ECHOPAIR("Probe Offset X:", X_PROBE_OFFSET_FROM_EXTRUDER);
  2867. SERIAL_ECHOPAIR(" Y:", Y_PROBE_OFFSET_FROM_EXTRUDER);
  2868. SERIAL_ECHOPAIR(" Z:", zprobe_zoffset);
  2869. #if (X_PROBE_OFFSET_FROM_EXTRUDER > 0)
  2870. SERIAL_ECHOPGM(" (Right");
  2871. #elif (X_PROBE_OFFSET_FROM_EXTRUDER < 0)
  2872. SERIAL_ECHOPGM(" (Left");
  2873. #elif (Y_PROBE_OFFSET_FROM_EXTRUDER != 0)
  2874. SERIAL_ECHOPGM(" (Middle");
  2875. #else
  2876. SERIAL_ECHOPGM(" (Aligned With");
  2877. #endif
  2878. #if (Y_PROBE_OFFSET_FROM_EXTRUDER > 0)
  2879. SERIAL_ECHOPGM("-Back");
  2880. #elif (Y_PROBE_OFFSET_FROM_EXTRUDER < 0)
  2881. SERIAL_ECHOPGM("-Front");
  2882. #elif (X_PROBE_OFFSET_FROM_EXTRUDER != 0)
  2883. SERIAL_ECHOPGM("-Center");
  2884. #endif
  2885. if (zprobe_zoffset < 0)
  2886. SERIAL_ECHOPGM(" & Below");
  2887. else if (zprobe_zoffset > 0)
  2888. SERIAL_ECHOPGM(" & Above");
  2889. else
  2890. SERIAL_ECHOPGM(" & Same Z as");
  2891. SERIAL_ECHOLNPGM(" Nozzle)");
  2892. #endif
  2893. #if HAS_ABL
  2894. SERIAL_ECHOPGM("Auto Bed Leveling: ");
  2895. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  2896. SERIAL_ECHOPGM("LINEAR");
  2897. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  2898. SERIAL_ECHOPGM("BILINEAR");
  2899. #elif ENABLED(AUTO_BED_LEVELING_3POINT)
  2900. SERIAL_ECHOPGM("3POINT");
  2901. #elif ENABLED(AUTO_BED_LEVELING_UBL)
  2902. SERIAL_ECHOPGM("UBL");
  2903. #endif
  2904. if (planner.abl_enabled) {
  2905. SERIAL_ECHOLNPGM(" (enabled)");
  2906. #if ABL_PLANAR
  2907. float diff[XYZ] = {
  2908. stepper.get_axis_position_mm(X_AXIS) - current_position[X_AXIS],
  2909. stepper.get_axis_position_mm(Y_AXIS) - current_position[Y_AXIS],
  2910. stepper.get_axis_position_mm(Z_AXIS) - current_position[Z_AXIS]
  2911. };
  2912. SERIAL_ECHOPGM("ABL Adjustment X");
  2913. if (diff[X_AXIS] > 0) SERIAL_CHAR('+');
  2914. SERIAL_ECHO(diff[X_AXIS]);
  2915. SERIAL_ECHOPGM(" Y");
  2916. if (diff[Y_AXIS] > 0) SERIAL_CHAR('+');
  2917. SERIAL_ECHO(diff[Y_AXIS]);
  2918. SERIAL_ECHOPGM(" Z");
  2919. if (diff[Z_AXIS] > 0) SERIAL_CHAR('+');
  2920. SERIAL_ECHO(diff[Z_AXIS]);
  2921. #elif ENABLED(AUTO_BED_LEVELING_UBL)
  2922. SERIAL_ECHOPAIR("UBL Adjustment Z", stepper.get_axis_position_mm(Z_AXIS) - current_position[Z_AXIS]);
  2923. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  2924. SERIAL_ECHOPAIR("ABL Adjustment Z", bilinear_z_offset(current_position));
  2925. #endif
  2926. }
  2927. else
  2928. SERIAL_ECHOLNPGM(" (disabled)");
  2929. SERIAL_EOL;
  2930. #elif ENABLED(MESH_BED_LEVELING)
  2931. SERIAL_ECHOPGM("Mesh Bed Leveling");
  2932. if (mbl.active()) {
  2933. float lz = current_position[Z_AXIS];
  2934. planner.apply_leveling(current_position[X_AXIS], current_position[Y_AXIS], lz);
  2935. SERIAL_ECHOLNPGM(" (enabled)");
  2936. SERIAL_ECHOPAIR("MBL Adjustment Z", lz);
  2937. }
  2938. else
  2939. SERIAL_ECHOPGM(" (disabled)");
  2940. SERIAL_EOL;
  2941. #endif // MESH_BED_LEVELING
  2942. }
  2943. #endif // DEBUG_LEVELING_FEATURE
  2944. #if ENABLED(DELTA)
  2945. /**
  2946. * A delta can only safely home all axes at the same time
  2947. * This is like quick_home_xy() but for 3 towers.
  2948. */
  2949. inline void home_delta() {
  2950. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2951. if (DEBUGGING(LEVELING)) DEBUG_POS(">>> home_delta", current_position);
  2952. #endif
  2953. // Init the current position of all carriages to 0,0,0
  2954. ZERO(current_position);
  2955. sync_plan_position();
  2956. // Move all carriages together linearly until an endstop is hit.
  2957. current_position[X_AXIS] = current_position[Y_AXIS] = current_position[Z_AXIS] = (Z_MAX_LENGTH + 10);
  2958. feedrate_mm_s = homing_feedrate_mm_s[X_AXIS];
  2959. line_to_current_position();
  2960. stepper.synchronize();
  2961. endstops.hit_on_purpose(); // clear endstop hit flags
  2962. // At least one carriage has reached the top.
  2963. // Now re-home each carriage separately.
  2964. HOMEAXIS(A);
  2965. HOMEAXIS(B);
  2966. HOMEAXIS(C);
  2967. // Set all carriages to their home positions
  2968. // Do this here all at once for Delta, because
  2969. // XYZ isn't ABC. Applying this per-tower would
  2970. // give the impression that they are the same.
  2971. LOOP_XYZ(i) set_axis_is_at_home((AxisEnum)i);
  2972. SYNC_PLAN_POSITION_KINEMATIC();
  2973. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2974. if (DEBUGGING(LEVELING)) DEBUG_POS("<<< home_delta", current_position);
  2975. #endif
  2976. }
  2977. #endif // DELTA
  2978. #if ENABLED(Z_SAFE_HOMING)
  2979. inline void home_z_safely() {
  2980. // Disallow Z homing if X or Y are unknown
  2981. if (!axis_known_position[X_AXIS] || !axis_known_position[Y_AXIS]) {
  2982. LCD_MESSAGEPGM(MSG_ERR_Z_HOMING);
  2983. SERIAL_ECHO_START;
  2984. SERIAL_ECHOLNPGM(MSG_ERR_Z_HOMING);
  2985. return;
  2986. }
  2987. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2988. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("Z_SAFE_HOMING >>>");
  2989. #endif
  2990. SYNC_PLAN_POSITION_KINEMATIC();
  2991. /**
  2992. * Move the Z probe (or just the nozzle) to the safe homing point
  2993. */
  2994. destination[X_AXIS] = LOGICAL_X_POSITION(Z_SAFE_HOMING_X_POINT);
  2995. destination[Y_AXIS] = LOGICAL_Y_POSITION(Z_SAFE_HOMING_Y_POINT);
  2996. destination[Z_AXIS] = current_position[Z_AXIS]; // Z is already at the right height
  2997. if (position_is_reachable(
  2998. destination
  2999. #if HOMING_Z_WITH_PROBE
  3000. , true
  3001. #endif
  3002. )
  3003. ) {
  3004. #if HOMING_Z_WITH_PROBE
  3005. destination[X_AXIS] -= X_PROBE_OFFSET_FROM_EXTRUDER;
  3006. destination[Y_AXIS] -= Y_PROBE_OFFSET_FROM_EXTRUDER;
  3007. #endif
  3008. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3009. if (DEBUGGING(LEVELING)) DEBUG_POS("Z_SAFE_HOMING", destination);
  3010. #endif
  3011. // This causes the carriage on Dual X to unpark
  3012. #if ENABLED(DUAL_X_CARRIAGE)
  3013. active_extruder_parked = false;
  3014. #endif
  3015. do_blocking_move_to_xy(destination[X_AXIS], destination[Y_AXIS]);
  3016. HOMEAXIS(Z);
  3017. }
  3018. else {
  3019. LCD_MESSAGEPGM(MSG_ZPROBE_OUT);
  3020. SERIAL_ECHO_START;
  3021. SERIAL_ECHOLNPGM(MSG_ZPROBE_OUT);
  3022. }
  3023. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3024. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< Z_SAFE_HOMING");
  3025. #endif
  3026. }
  3027. #endif // Z_SAFE_HOMING
  3028. #if ENABLED(PROBE_MANUALLY)
  3029. bool g29_in_progress = false;
  3030. #else
  3031. constexpr bool g29_in_progress = false;
  3032. #endif
  3033. /**
  3034. * G28: Home all axes according to settings
  3035. *
  3036. * Parameters
  3037. *
  3038. * None Home to all axes with no parameters.
  3039. * With QUICK_HOME enabled XY will home together, then Z.
  3040. *
  3041. * Cartesian parameters
  3042. *
  3043. * X Home to the X endstop
  3044. * Y Home to the Y endstop
  3045. * Z Home to the Z endstop
  3046. *
  3047. */
  3048. inline void gcode_G28() {
  3049. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3050. if (DEBUGGING(LEVELING)) {
  3051. SERIAL_ECHOLNPGM(">>> gcode_G28");
  3052. log_machine_info();
  3053. }
  3054. #endif
  3055. // Wait for planner moves to finish!
  3056. stepper.synchronize();
  3057. // Cancel the active G29 session
  3058. #if ENABLED(PROBE_MANUALLY)
  3059. g29_in_progress = false;
  3060. #endif
  3061. // Disable the leveling matrix before homing
  3062. #if PLANNER_LEVELING
  3063. #if ENABLED(AUTO_BED_LEVELING_UBL)
  3064. const bool bed_leveling_state_at_entry = ubl.state.active;
  3065. #endif
  3066. set_bed_leveling_enabled(false);
  3067. #endif
  3068. // Always home with tool 0 active
  3069. #if HOTENDS > 1
  3070. const uint8_t old_tool_index = active_extruder;
  3071. tool_change(0, 0, true);
  3072. #endif
  3073. #if ENABLED(DUAL_X_CARRIAGE) || ENABLED(DUAL_NOZZLE_DUPLICATION_MODE)
  3074. extruder_duplication_enabled = false;
  3075. #endif
  3076. setup_for_endstop_or_probe_move();
  3077. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3078. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> endstops.enable(true)");
  3079. #endif
  3080. endstops.enable(true); // Enable endstops for next homing move
  3081. #if ENABLED(DELTA)
  3082. home_delta();
  3083. #else // NOT DELTA
  3084. const bool homeX = code_seen('X'), homeY = code_seen('Y'), homeZ = code_seen('Z'),
  3085. home_all_axis = (!homeX && !homeY && !homeZ) || (homeX && homeY && homeZ);
  3086. set_destination_to_current();
  3087. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  3088. if (home_all_axis || homeZ) {
  3089. HOMEAXIS(Z);
  3090. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3091. if (DEBUGGING(LEVELING)) DEBUG_POS("> HOMEAXIS(Z)", current_position);
  3092. #endif
  3093. }
  3094. #else
  3095. if (home_all_axis || homeX || homeY) {
  3096. // Raise Z before homing any other axes and z is not already high enough (never lower z)
  3097. destination[Z_AXIS] = LOGICAL_Z_POSITION(Z_HOMING_HEIGHT);
  3098. if (destination[Z_AXIS] > current_position[Z_AXIS]) {
  3099. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3100. if (DEBUGGING(LEVELING))
  3101. SERIAL_ECHOLNPAIR("Raise Z (before homing) to ", destination[Z_AXIS]);
  3102. #endif
  3103. do_blocking_move_to_z(destination[Z_AXIS]);
  3104. }
  3105. }
  3106. #endif
  3107. #if ENABLED(QUICK_HOME)
  3108. if (home_all_axis || (homeX && homeY)) quick_home_xy();
  3109. #endif
  3110. #if ENABLED(HOME_Y_BEFORE_X)
  3111. // Home Y
  3112. if (home_all_axis || homeY) {
  3113. HOMEAXIS(Y);
  3114. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3115. if (DEBUGGING(LEVELING)) DEBUG_POS("> homeY", current_position);
  3116. #endif
  3117. }
  3118. #endif
  3119. // Home X
  3120. if (home_all_axis || homeX) {
  3121. #if ENABLED(DUAL_X_CARRIAGE)
  3122. // Always home the 2nd (right) extruder first
  3123. active_extruder = 1;
  3124. HOMEAXIS(X);
  3125. // Remember this extruder's position for later tool change
  3126. inactive_extruder_x_pos = RAW_X_POSITION(current_position[X_AXIS]);
  3127. // Home the 1st (left) extruder
  3128. active_extruder = 0;
  3129. HOMEAXIS(X);
  3130. // Consider the active extruder to be parked
  3131. COPY(raised_parked_position, current_position);
  3132. delayed_move_time = 0;
  3133. active_extruder_parked = true;
  3134. #else
  3135. HOMEAXIS(X);
  3136. #endif
  3137. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3138. if (DEBUGGING(LEVELING)) DEBUG_POS("> homeX", current_position);
  3139. #endif
  3140. }
  3141. #if DISABLED(HOME_Y_BEFORE_X)
  3142. // Home Y
  3143. if (home_all_axis || homeY) {
  3144. HOMEAXIS(Y);
  3145. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3146. if (DEBUGGING(LEVELING)) DEBUG_POS("> homeY", current_position);
  3147. #endif
  3148. }
  3149. #endif
  3150. // Home Z last if homing towards the bed
  3151. #if Z_HOME_DIR < 0
  3152. if (home_all_axis || homeZ) {
  3153. #if ENABLED(Z_SAFE_HOMING)
  3154. home_z_safely();
  3155. #else
  3156. HOMEAXIS(Z);
  3157. #endif
  3158. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3159. if (DEBUGGING(LEVELING)) DEBUG_POS("> (home_all_axis || homeZ) > final", current_position);
  3160. #endif
  3161. } // home_all_axis || homeZ
  3162. #endif // Z_HOME_DIR < 0
  3163. SYNC_PLAN_POSITION_KINEMATIC();
  3164. #endif // !DELTA (gcode_G28)
  3165. endstops.not_homing();
  3166. #if ENABLED(DELTA) && ENABLED(DELTA_HOME_TO_SAFE_ZONE)
  3167. // move to a height where we can use the full xy-area
  3168. do_blocking_move_to_z(delta_clip_start_height);
  3169. #endif
  3170. #if ENABLED(AUTO_BED_LEVELING_UBL)
  3171. set_bed_leveling_enabled(bed_leveling_state_at_entry);
  3172. #endif
  3173. // Enable mesh leveling again
  3174. #if ENABLED(MESH_BED_LEVELING)
  3175. if (mbl.reactivate()) {
  3176. set_bed_leveling_enabled(true);
  3177. if (home_all_axis || (axis_homed[X_AXIS] && axis_homed[Y_AXIS] && homeZ)) {
  3178. #if ENABLED(MESH_G28_REST_ORIGIN)
  3179. current_position[Z_AXIS] = LOGICAL_Z_POSITION(Z_MIN_POS);
  3180. set_destination_to_current();
  3181. line_to_destination(homing_feedrate_mm_s[Z_AXIS]);
  3182. stepper.synchronize();
  3183. #endif
  3184. }
  3185. }
  3186. #endif
  3187. clean_up_after_endstop_or_probe_move();
  3188. // Restore the active tool after homing
  3189. #if HOTENDS > 1
  3190. tool_change(old_tool_index, 0, true);
  3191. #endif
  3192. report_current_position();
  3193. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3194. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< gcode_G28");
  3195. #endif
  3196. }
  3197. #if HAS_PROBING_PROCEDURE
  3198. void out_of_range_error(const char* p_edge) {
  3199. SERIAL_PROTOCOLPGM("?Probe ");
  3200. serialprintPGM(p_edge);
  3201. SERIAL_PROTOCOLLNPGM(" position out of range.");
  3202. }
  3203. #endif
  3204. #if ENABLED(MESH_BED_LEVELING) || ENABLED(PROBE_MANUALLY)
  3205. inline void _manual_goto_xy(const float &x, const float &y) {
  3206. const float old_feedrate_mm_s = feedrate_mm_s;
  3207. #if MANUAL_PROBE_HEIGHT > 0
  3208. feedrate_mm_s = homing_feedrate_mm_s[Z_AXIS];
  3209. current_position[Z_AXIS] = LOGICAL_Z_POSITION(Z_MIN_POS) + MANUAL_PROBE_HEIGHT;
  3210. line_to_current_position();
  3211. #endif
  3212. feedrate_mm_s = MMM_TO_MMS(XY_PROBE_SPEED);
  3213. current_position[X_AXIS] = LOGICAL_X_POSITION(x);
  3214. current_position[Y_AXIS] = LOGICAL_Y_POSITION(y);
  3215. line_to_current_position();
  3216. #if MANUAL_PROBE_HEIGHT > 0
  3217. feedrate_mm_s = homing_feedrate_mm_s[Z_AXIS];
  3218. current_position[Z_AXIS] = LOGICAL_Z_POSITION(Z_MIN_POS) + 0.2; // just slightly over the bed
  3219. line_to_current_position();
  3220. #endif
  3221. feedrate_mm_s = old_feedrate_mm_s;
  3222. stepper.synchronize();
  3223. }
  3224. #endif
  3225. #if ENABLED(MESH_BED_LEVELING)
  3226. // Save 130 bytes with non-duplication of PSTR
  3227. void say_not_entered() { SERIAL_PROTOCOLLNPGM(" not entered."); }
  3228. void mbl_mesh_report() {
  3229. SERIAL_PROTOCOLLNPGM("Num X,Y: " STRINGIFY(GRID_MAX_POINTS_X) "," STRINGIFY(GRID_MAX_POINTS_Y));
  3230. SERIAL_PROTOCOLPGM("Z offset: "); SERIAL_PROTOCOL_F(mbl.z_offset, 5);
  3231. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  3232. print_2d_array(GRID_MAX_POINTS_X, GRID_MAX_POINTS_Y, 5,
  3233. [](const uint8_t ix, const uint8_t iy) { return mbl.z_values[iy][ix]; }
  3234. );
  3235. }
  3236. /**
  3237. * G29: Mesh-based Z probe, probes a grid and produces a
  3238. * mesh to compensate for variable bed height
  3239. *
  3240. * Parameters With MESH_BED_LEVELING:
  3241. *
  3242. * S0 Produce a mesh report
  3243. * S1 Start probing mesh points
  3244. * S2 Probe the next mesh point
  3245. * S3 Xn Yn Zn.nn Manually modify a single point
  3246. * S4 Zn.nn Set z offset. Positive away from bed, negative closer to bed.
  3247. * S5 Reset and disable mesh
  3248. *
  3249. * The S0 report the points as below
  3250. *
  3251. * +----> X-axis 1-n
  3252. * |
  3253. * |
  3254. * v Y-axis 1-n
  3255. *
  3256. */
  3257. inline void gcode_G29() {
  3258. static int mbl_probe_index = -1;
  3259. #if HAS_SOFTWARE_ENDSTOPS
  3260. static bool enable_soft_endstops;
  3261. #endif
  3262. const MeshLevelingState state = code_seen('S') ? (MeshLevelingState)code_value_byte() : MeshReport;
  3263. if (!WITHIN(state, 0, 5)) {
  3264. SERIAL_PROTOCOLLNPGM("S out of range (0-5).");
  3265. return;
  3266. }
  3267. int8_t px, py;
  3268. switch (state) {
  3269. case MeshReport:
  3270. if (mbl.has_mesh()) {
  3271. SERIAL_PROTOCOLLNPAIR("State: ", mbl.active() ? MSG_ON : MSG_OFF);
  3272. mbl_mesh_report();
  3273. }
  3274. else
  3275. SERIAL_PROTOCOLLNPGM("Mesh bed leveling has no data.");
  3276. break;
  3277. case MeshStart:
  3278. mbl.reset();
  3279. mbl_probe_index = 0;
  3280. enqueue_and_echo_commands_P(PSTR("G28\nG29 S2"));
  3281. break;
  3282. case MeshNext:
  3283. if (mbl_probe_index < 0) {
  3284. SERIAL_PROTOCOLLNPGM("Start mesh probing with \"G29 S1\" first.");
  3285. return;
  3286. }
  3287. // For each G29 S2...
  3288. if (mbl_probe_index == 0) {
  3289. #if HAS_SOFTWARE_ENDSTOPS
  3290. // For the initial G29 S2 save software endstop state
  3291. enable_soft_endstops = soft_endstops_enabled;
  3292. #endif
  3293. }
  3294. else {
  3295. // For G29 S2 after adjusting Z.
  3296. mbl.set_zigzag_z(mbl_probe_index - 1, current_position[Z_AXIS]);
  3297. #if HAS_SOFTWARE_ENDSTOPS
  3298. soft_endstops_enabled = enable_soft_endstops;
  3299. #endif
  3300. }
  3301. // If there's another point to sample, move there with optional lift.
  3302. if (mbl_probe_index < (GRID_MAX_POINTS_X) * (GRID_MAX_POINTS_Y)) {
  3303. mbl.zigzag(mbl_probe_index, px, py);
  3304. _manual_goto_xy(mbl.index_to_xpos[px], mbl.index_to_ypos[py]);
  3305. #if HAS_SOFTWARE_ENDSTOPS
  3306. // Disable software endstops to allow manual adjustment
  3307. // If G29 is not completed, they will not be re-enabled
  3308. soft_endstops_enabled = false;
  3309. #endif
  3310. mbl_probe_index++;
  3311. }
  3312. else {
  3313. // One last "return to the bed" (as originally coded) at completion
  3314. current_position[Z_AXIS] = LOGICAL_Z_POSITION(Z_MIN_POS) + MANUAL_PROBE_HEIGHT;
  3315. line_to_current_position();
  3316. stepper.synchronize();
  3317. // After recording the last point, activate the mbl and home
  3318. SERIAL_PROTOCOLLNPGM("Mesh probing done.");
  3319. mbl_probe_index = -1;
  3320. mbl.set_has_mesh(true);
  3321. mbl.set_reactivate(true);
  3322. enqueue_and_echo_commands_P(PSTR("G28"));
  3323. BUZZ(100, 659);
  3324. BUZZ(100, 698);
  3325. }
  3326. break;
  3327. case MeshSet:
  3328. if (code_seen('X')) {
  3329. px = code_value_int() - 1;
  3330. if (!WITHIN(px, 0, GRID_MAX_POINTS_X - 1)) {
  3331. SERIAL_PROTOCOLLNPGM("X out of range (1-" STRINGIFY(GRID_MAX_POINTS_X) ").");
  3332. return;
  3333. }
  3334. }
  3335. else {
  3336. SERIAL_CHAR('X'); say_not_entered();
  3337. return;
  3338. }
  3339. if (code_seen('Y')) {
  3340. py = code_value_int() - 1;
  3341. if (!WITHIN(py, 0, GRID_MAX_POINTS_Y - 1)) {
  3342. SERIAL_PROTOCOLLNPGM("Y out of range (1-" STRINGIFY(GRID_MAX_POINTS_Y) ").");
  3343. return;
  3344. }
  3345. }
  3346. else {
  3347. SERIAL_CHAR('Y'); say_not_entered();
  3348. return;
  3349. }
  3350. if (code_seen('Z')) {
  3351. mbl.z_values[py][px] = code_value_axis_units(Z_AXIS);
  3352. }
  3353. else {
  3354. SERIAL_CHAR('Z'); say_not_entered();
  3355. return;
  3356. }
  3357. break;
  3358. case MeshSetZOffset:
  3359. if (code_seen('Z')) {
  3360. mbl.z_offset = code_value_axis_units(Z_AXIS);
  3361. }
  3362. else {
  3363. SERIAL_CHAR('Z'); say_not_entered();
  3364. return;
  3365. }
  3366. break;
  3367. case MeshReset:
  3368. reset_bed_level();
  3369. break;
  3370. } // switch(state)
  3371. report_current_position();
  3372. }
  3373. #elif HAS_ABL && DISABLED(AUTO_BED_LEVELING_UBL)
  3374. #if ABL_GRID
  3375. #if ENABLED(PROBE_Y_FIRST)
  3376. #define PR_OUTER_VAR xCount
  3377. #define PR_OUTER_END abl_grid_points_x
  3378. #define PR_INNER_VAR yCount
  3379. #define PR_INNER_END abl_grid_points_y
  3380. #else
  3381. #define PR_OUTER_VAR yCount
  3382. #define PR_OUTER_END abl_grid_points_y
  3383. #define PR_INNER_VAR xCount
  3384. #define PR_INNER_END abl_grid_points_x
  3385. #endif
  3386. #endif
  3387. /**
  3388. * G29: Detailed Z probe, probes the bed at 3 or more points.
  3389. * Will fail if the printer has not been homed with G28.
  3390. *
  3391. * Enhanced G29 Auto Bed Leveling Probe Routine
  3392. *
  3393. * D Dry-Run mode. Just evaluate the bed Topology - Don't apply
  3394. * or alter the bed level data. Useful to check the topology
  3395. * after a first run of G29.
  3396. *
  3397. * J Jettison current bed leveling data
  3398. *
  3399. * V Set the verbose level (0-4). Example: "G29 V3"
  3400. *
  3401. * Parameters With LINEAR leveling only:
  3402. *
  3403. * P Set the size of the grid that will be probed (P x P points).
  3404. * Example: "G29 P4"
  3405. *
  3406. * X Set the X size of the grid that will be probed (X x Y points).
  3407. * Example: "G29 X7 Y5"
  3408. *
  3409. * Y Set the Y size of the grid that will be probed (X x Y points).
  3410. *
  3411. * T Generate a Bed Topology Report. Example: "G29 P5 T" for a detailed report.
  3412. * This is useful for manual bed leveling and finding flaws in the bed (to
  3413. * assist with part placement).
  3414. * Not supported by non-linear delta printer bed leveling.
  3415. *
  3416. * Parameters With LINEAR and BILINEAR leveling only:
  3417. *
  3418. * S Set the XY travel speed between probe points (in units/min)
  3419. *
  3420. * F Set the Front limit of the probing grid
  3421. * B Set the Back limit of the probing grid
  3422. * L Set the Left limit of the probing grid
  3423. * R Set the Right limit of the probing grid
  3424. *
  3425. * Parameters with BILINEAR leveling only:
  3426. *
  3427. * Z Supply an additional Z probe offset
  3428. *
  3429. * Extra parameters with PROBE_MANUALLY:
  3430. *
  3431. * To do manual probing simply repeat G29 until the procedure is complete.
  3432. * The first G29 accepts parameters. 'G29 Q' for status, 'G29 A' to abort.
  3433. *
  3434. * Q Query leveling and G29 state
  3435. *
  3436. * A Abort current leveling procedure
  3437. *
  3438. * W Write a mesh point. (Ignored during leveling.)
  3439. * X Required X for mesh point
  3440. * Y Required Y for mesh point
  3441. * Z Required Z for mesh point
  3442. *
  3443. * Without PROBE_MANUALLY:
  3444. *
  3445. * E By default G29 will engage the Z probe, test the bed, then disengage.
  3446. * Include "E" to engage/disengage the Z probe for each sample.
  3447. * There's no extra effect if you have a fixed Z probe.
  3448. *
  3449. */
  3450. inline void gcode_G29() {
  3451. // G29 Q is also available if debugging
  3452. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3453. const bool query = code_seen('Q');
  3454. const uint8_t old_debug_flags = marlin_debug_flags;
  3455. if (query) marlin_debug_flags |= DEBUG_LEVELING;
  3456. if (DEBUGGING(LEVELING)) {
  3457. DEBUG_POS(">>> gcode_G29", current_position);
  3458. log_machine_info();
  3459. }
  3460. marlin_debug_flags = old_debug_flags;
  3461. #if DISABLED(PROBE_MANUALLY)
  3462. if (query) return;
  3463. #endif
  3464. #endif
  3465. // Don't allow auto-leveling without homing first
  3466. if (axis_unhomed_error(true, true, true)) return;
  3467. // Define local vars 'static' for manual probing, 'auto' otherwise
  3468. #if ENABLED(PROBE_MANUALLY)
  3469. #define ABL_VAR static
  3470. #else
  3471. #define ABL_VAR
  3472. #endif
  3473. ABL_VAR int verbose_level, abl_probe_index;
  3474. ABL_VAR float xProbe, yProbe, measured_z;
  3475. ABL_VAR bool dryrun, abl_should_enable;
  3476. #if HAS_SOFTWARE_ENDSTOPS
  3477. ABL_VAR bool enable_soft_endstops = true;
  3478. #endif
  3479. #if ABL_GRID
  3480. ABL_VAR uint8_t PR_OUTER_VAR;
  3481. ABL_VAR int8_t PR_INNER_VAR;
  3482. ABL_VAR int left_probe_bed_position, right_probe_bed_position, front_probe_bed_position, back_probe_bed_position;
  3483. ABL_VAR float xGridSpacing, yGridSpacing;
  3484. #define ABL_GRID_MAX (GRID_MAX_POINTS_X) * (GRID_MAX_POINTS_Y)
  3485. #if ABL_PLANAR
  3486. ABL_VAR uint8_t abl_grid_points_x = GRID_MAX_POINTS_X,
  3487. abl_grid_points_y = GRID_MAX_POINTS_Y;
  3488. ABL_VAR int abl2;
  3489. ABL_VAR bool do_topography_map;
  3490. #else // 3-point
  3491. uint8_t constexpr abl_grid_points_x = GRID_MAX_POINTS_X,
  3492. abl_grid_points_y = GRID_MAX_POINTS_Y;
  3493. int constexpr abl2 = ABL_GRID_MAX;
  3494. #endif
  3495. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  3496. ABL_VAR float zoffset;
  3497. #elif ENABLED(AUTO_BED_LEVELING_LINEAR)
  3498. ABL_VAR int indexIntoAB[GRID_MAX_POINTS_X][GRID_MAX_POINTS_Y];
  3499. ABL_VAR float eqnAMatrix[ABL_GRID_MAX * 3], // "A" matrix of the linear system of equations
  3500. eqnBVector[ABL_GRID_MAX], // "B" vector of Z points
  3501. mean;
  3502. #endif
  3503. #elif ENABLED(AUTO_BED_LEVELING_3POINT)
  3504. // Probe at 3 arbitrary points
  3505. ABL_VAR vector_3 points[3] = {
  3506. vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, 0),
  3507. vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, 0),
  3508. vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, 0)
  3509. };
  3510. #endif // AUTO_BED_LEVELING_3POINT
  3511. /**
  3512. * On the initial G29 fetch command parameters.
  3513. */
  3514. if (!g29_in_progress) {
  3515. abl_probe_index = 0;
  3516. abl_should_enable = planner.abl_enabled;
  3517. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  3518. if (code_seen('W')) {
  3519. if (!bilinear_grid_spacing[X_AXIS]) {
  3520. SERIAL_ERROR_START;
  3521. SERIAL_ERRORLNPGM("No bilinear grid");
  3522. return;
  3523. }
  3524. const float z = code_seen('Z') && code_has_value() ? code_value_float() : 99999;
  3525. if (!WITHIN(z, -10, 10)) {
  3526. SERIAL_ERROR_START;
  3527. SERIAL_ERRORLNPGM("Bad Z value");
  3528. return;
  3529. }
  3530. const float x = code_seen('X') && code_has_value() ? code_value_float() : 99999,
  3531. y = code_seen('Y') && code_has_value() ? code_value_float() : 99999;
  3532. int8_t i = code_seen('I') && code_has_value() ? code_value_byte() : -1,
  3533. j = code_seen('J') && code_has_value() ? code_value_byte() : -1;
  3534. if (x < 99998 && y < 99998) {
  3535. // Get nearest i / j from x / y
  3536. i = (x - LOGICAL_X_POSITION(bilinear_start[X_AXIS]) + 0.5 * xGridSpacing) / xGridSpacing;
  3537. j = (y - LOGICAL_Y_POSITION(bilinear_start[Y_AXIS]) + 0.5 * yGridSpacing) / yGridSpacing;
  3538. i = constrain(i, 0, GRID_MAX_POINTS_X - 1);
  3539. j = constrain(j, 0, GRID_MAX_POINTS_Y - 1);
  3540. }
  3541. if (WITHIN(i, 0, GRID_MAX_POINTS_X - 1) && WITHIN(j, 0, GRID_MAX_POINTS_Y)) {
  3542. set_bed_leveling_enabled(false);
  3543. bed_level_grid[i][j] = z;
  3544. #if ENABLED(ABL_BILINEAR_SUBDIVISION)
  3545. bed_level_virt_interpolate();
  3546. #endif
  3547. set_bed_leveling_enabled(abl_should_enable);
  3548. }
  3549. return;
  3550. } // code_seen('W')
  3551. #endif
  3552. #if PLANNER_LEVELING
  3553. // Jettison bed leveling data
  3554. if (code_seen('J')) {
  3555. reset_bed_level();
  3556. return;
  3557. }
  3558. #endif
  3559. verbose_level = code_seen('V') && code_has_value() ? code_value_int() : 0;
  3560. if (!WITHIN(verbose_level, 0, 4)) {
  3561. SERIAL_PROTOCOLLNPGM("?(V)erbose Level is implausible (0-4).");
  3562. return;
  3563. }
  3564. dryrun = code_seen('D') ? code_value_bool() : false;
  3565. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  3566. do_topography_map = verbose_level > 2 || code_seen('T');
  3567. // X and Y specify points in each direction, overriding the default
  3568. // These values may be saved with the completed mesh
  3569. abl_grid_points_x = code_seen('X') ? code_value_int() : GRID_MAX_POINTS_X;
  3570. abl_grid_points_y = code_seen('Y') ? code_value_int() : GRID_MAX_POINTS_Y;
  3571. if (code_seen('P')) abl_grid_points_x = abl_grid_points_y = code_value_int();
  3572. if (abl_grid_points_x < 2 || abl_grid_points_y < 2) {
  3573. SERIAL_PROTOCOLLNPGM("?Number of probe points is implausible (2 minimum).");
  3574. return;
  3575. }
  3576. abl2 = abl_grid_points_x * abl_grid_points_y;
  3577. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  3578. zoffset = code_seen('Z') ? code_value_axis_units(Z_AXIS) : 0;
  3579. #endif
  3580. #if ABL_GRID
  3581. xy_probe_feedrate_mm_s = MMM_TO_MMS(code_seen('S') ? code_value_linear_units() : XY_PROBE_SPEED);
  3582. left_probe_bed_position = code_seen('L') ? (int)code_value_axis_units(X_AXIS) : LOGICAL_X_POSITION(LEFT_PROBE_BED_POSITION);
  3583. right_probe_bed_position = code_seen('R') ? (int)code_value_axis_units(X_AXIS) : LOGICAL_X_POSITION(RIGHT_PROBE_BED_POSITION);
  3584. front_probe_bed_position = code_seen('F') ? (int)code_value_axis_units(Y_AXIS) : LOGICAL_Y_POSITION(FRONT_PROBE_BED_POSITION);
  3585. back_probe_bed_position = code_seen('B') ? (int)code_value_axis_units(Y_AXIS) : LOGICAL_Y_POSITION(BACK_PROBE_BED_POSITION);
  3586. const bool left_out_l = left_probe_bed_position < LOGICAL_X_POSITION(MIN_PROBE_X),
  3587. left_out = left_out_l || left_probe_bed_position > right_probe_bed_position - (MIN_PROBE_EDGE),
  3588. right_out_r = right_probe_bed_position > LOGICAL_X_POSITION(MAX_PROBE_X),
  3589. right_out = right_out_r || right_probe_bed_position < left_probe_bed_position + MIN_PROBE_EDGE,
  3590. front_out_f = front_probe_bed_position < LOGICAL_Y_POSITION(MIN_PROBE_Y),
  3591. front_out = front_out_f || front_probe_bed_position > back_probe_bed_position - (MIN_PROBE_EDGE),
  3592. back_out_b = back_probe_bed_position > LOGICAL_Y_POSITION(MAX_PROBE_Y),
  3593. back_out = back_out_b || back_probe_bed_position < front_probe_bed_position + MIN_PROBE_EDGE;
  3594. if (left_out || right_out || front_out || back_out) {
  3595. if (left_out) {
  3596. out_of_range_error(PSTR("(L)eft"));
  3597. left_probe_bed_position = left_out_l ? LOGICAL_X_POSITION(MIN_PROBE_X) : right_probe_bed_position - (MIN_PROBE_EDGE);
  3598. }
  3599. if (right_out) {
  3600. out_of_range_error(PSTR("(R)ight"));
  3601. right_probe_bed_position = right_out_r ? LOGICAL_Y_POSITION(MAX_PROBE_X) : left_probe_bed_position + MIN_PROBE_EDGE;
  3602. }
  3603. if (front_out) {
  3604. out_of_range_error(PSTR("(F)ront"));
  3605. front_probe_bed_position = front_out_f ? LOGICAL_Y_POSITION(MIN_PROBE_Y) : back_probe_bed_position - (MIN_PROBE_EDGE);
  3606. }
  3607. if (back_out) {
  3608. out_of_range_error(PSTR("(B)ack"));
  3609. back_probe_bed_position = back_out_b ? LOGICAL_Y_POSITION(MAX_PROBE_Y) : front_probe_bed_position + MIN_PROBE_EDGE;
  3610. }
  3611. return;
  3612. }
  3613. // probe at the points of a lattice grid
  3614. xGridSpacing = (right_probe_bed_position - left_probe_bed_position) / (abl_grid_points_x - 1);
  3615. yGridSpacing = (back_probe_bed_position - front_probe_bed_position) / (abl_grid_points_y - 1);
  3616. #endif // ABL_GRID
  3617. if (verbose_level > 0) {
  3618. SERIAL_PROTOCOLLNPGM("G29 Auto Bed Leveling");
  3619. if (dryrun) SERIAL_PROTOCOLLNPGM("Running in DRY-RUN mode");
  3620. }
  3621. stepper.synchronize();
  3622. // Disable auto bed leveling during G29
  3623. planner.abl_enabled = false;
  3624. if (!dryrun) {
  3625. // Re-orient the current position without leveling
  3626. // based on where the steppers are positioned.
  3627. set_current_from_steppers_for_axis(ALL_AXES);
  3628. // Sync the planner to where the steppers stopped
  3629. SYNC_PLAN_POSITION_KINEMATIC();
  3630. }
  3631. setup_for_endstop_or_probe_move();
  3632. //xProbe = yProbe = measured_z = 0;
  3633. #if HAS_BED_PROBE
  3634. // Deploy the probe. Probe will raise if needed.
  3635. if (DEPLOY_PROBE()) {
  3636. planner.abl_enabled = abl_should_enable;
  3637. return;
  3638. }
  3639. #endif
  3640. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  3641. if ( xGridSpacing != bilinear_grid_spacing[X_AXIS]
  3642. || yGridSpacing != bilinear_grid_spacing[Y_AXIS]
  3643. || left_probe_bed_position != LOGICAL_X_POSITION(bilinear_start[X_AXIS])
  3644. || front_probe_bed_position != LOGICAL_Y_POSITION(bilinear_start[Y_AXIS])
  3645. ) {
  3646. if (dryrun) {
  3647. // Before reset bed level, re-enable to correct the position
  3648. planner.abl_enabled = abl_should_enable;
  3649. }
  3650. // Reset grid to 0.0 or "not probed". (Also disables ABL)
  3651. reset_bed_level();
  3652. // Initialize a grid with the given dimensions
  3653. bilinear_grid_spacing[X_AXIS] = xGridSpacing;
  3654. bilinear_grid_spacing[Y_AXIS] = yGridSpacing;
  3655. bilinear_start[X_AXIS] = RAW_X_POSITION(left_probe_bed_position);
  3656. bilinear_start[Y_AXIS] = RAW_Y_POSITION(front_probe_bed_position);
  3657. // Can't re-enable (on error) until the new grid is written
  3658. abl_should_enable = false;
  3659. }
  3660. #elif ENABLED(AUTO_BED_LEVELING_LINEAR)
  3661. mean = 0.0;
  3662. #endif // AUTO_BED_LEVELING_LINEAR
  3663. #if ENABLED(AUTO_BED_LEVELING_3POINT)
  3664. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3665. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> 3-point Leveling");
  3666. #endif
  3667. // Probe at 3 arbitrary points
  3668. points[0].z = points[1].z = points[2].z = 0;
  3669. #endif // AUTO_BED_LEVELING_3POINT
  3670. } // !g29_in_progress
  3671. #if ENABLED(PROBE_MANUALLY)
  3672. // Abort current G29 procedure, go back to ABLStart
  3673. if (code_seen('A') && g29_in_progress) {
  3674. SERIAL_PROTOCOLLNPGM("Manual G29 aborted");
  3675. #if HAS_SOFTWARE_ENDSTOPS
  3676. soft_endstops_enabled = enable_soft_endstops;
  3677. #endif
  3678. planner.abl_enabled = abl_should_enable;
  3679. g29_in_progress = false;
  3680. }
  3681. // Query G29 status
  3682. if (code_seen('Q')) {
  3683. if (!g29_in_progress)
  3684. SERIAL_PROTOCOLLNPGM("Manual G29 idle");
  3685. else {
  3686. SERIAL_PROTOCOLPAIR("Manual G29 point ", abl_probe_index + 1);
  3687. SERIAL_PROTOCOLLNPAIR(" of ", abl2);
  3688. }
  3689. }
  3690. if (code_seen('A') || code_seen('Q')) return;
  3691. // Fall through to probe the first point
  3692. g29_in_progress = true;
  3693. if (abl_probe_index == 0) {
  3694. // For the initial G29 S2 save software endstop state
  3695. #if HAS_SOFTWARE_ENDSTOPS
  3696. enable_soft_endstops = soft_endstops_enabled;
  3697. #endif
  3698. }
  3699. else {
  3700. // For G29 after adjusting Z.
  3701. // Save the previous Z before going to the next point
  3702. measured_z = current_position[Z_AXIS];
  3703. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  3704. mean += measured_z;
  3705. eqnBVector[abl_probe_index] = measured_z;
  3706. eqnAMatrix[abl_probe_index + 0 * abl2] = xProbe;
  3707. eqnAMatrix[abl_probe_index + 1 * abl2] = yProbe;
  3708. eqnAMatrix[abl_probe_index + 2 * abl2] = 1;
  3709. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  3710. bed_level_grid[xCount][yCount] = measured_z + zoffset;
  3711. #elif ENABLED(AUTO_BED_LEVELING_3POINT)
  3712. points[i].z = measured_z;
  3713. #endif
  3714. }
  3715. //
  3716. // If there's another point to sample, move there with optional lift.
  3717. //
  3718. #if ABL_GRID
  3719. // Find a next point to probe
  3720. // On the first G29 this will be the first probe point
  3721. while (abl_probe_index < abl2) {
  3722. // Set xCount, yCount based on abl_probe_index, with zig-zag
  3723. PR_OUTER_VAR = abl_probe_index / PR_INNER_END;
  3724. PR_INNER_VAR = abl_probe_index - (PR_OUTER_VAR * PR_INNER_END);
  3725. bool zig = (PR_OUTER_VAR & 1) != ((PR_OUTER_END) & 1);
  3726. if (zig) PR_INNER_VAR = (PR_INNER_END - 1) - PR_INNER_VAR;
  3727. const float xBase = left_probe_bed_position + xGridSpacing * xCount,
  3728. yBase = front_probe_bed_position + yGridSpacing * yCount;
  3729. xProbe = floor(xBase + (xBase < 0 ? 0 : 0.5));
  3730. yProbe = floor(yBase + (yBase < 0 ? 0 : 0.5));
  3731. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  3732. indexIntoAB[xCount][yCount] = abl_probe_index;
  3733. #endif
  3734. float pos[XYZ] = { xProbe, yProbe, 0 };
  3735. if (position_is_reachable(pos)) break;
  3736. ++abl_probe_index;
  3737. }
  3738. // Is there a next point to move to?
  3739. if (abl_probe_index < abl2) {
  3740. _manual_goto_xy(xProbe, yProbe); // Can be used here too!
  3741. ++abl_probe_index;
  3742. #if HAS_SOFTWARE_ENDSTOPS
  3743. // Disable software endstops to allow manual adjustment
  3744. // If G29 is not completed, they will not be re-enabled
  3745. soft_endstops_enabled = false;
  3746. #endif
  3747. return;
  3748. }
  3749. else {
  3750. // Then leveling is done!
  3751. // G29 finishing code goes here
  3752. // After recording the last point, activate abl
  3753. SERIAL_PROTOCOLLNPGM("Grid probing done.");
  3754. g29_in_progress = false;
  3755. // Re-enable software endstops, if needed
  3756. #if HAS_SOFTWARE_ENDSTOPS
  3757. soft_endstops_enabled = enable_soft_endstops;
  3758. #endif
  3759. }
  3760. #elif ENABLED(AUTO_BED_LEVELING_3POINT)
  3761. // Probe at 3 arbitrary points
  3762. if (abl_probe_index < 3) {
  3763. xProbe = LOGICAL_X_POSITION(points[i].x);
  3764. yProbe = LOGICAL_Y_POSITION(points[i].y);
  3765. ++abl_probe_index;
  3766. #if HAS_SOFTWARE_ENDSTOPS
  3767. // Disable software endstops to allow manual adjustment
  3768. // If G29 is not completed, they will not be re-enabled
  3769. soft_endstops_enabled = false;
  3770. #endif
  3771. return;
  3772. }
  3773. else {
  3774. SERIAL_PROTOCOLLNPGM("3-point probing done.");
  3775. g29_in_progress = false;
  3776. // Re-enable software endstops, if needed
  3777. #if HAS_SOFTWARE_ENDSTOPS
  3778. soft_endstops_enabled = enable_soft_endstops;
  3779. #endif
  3780. if (!dryrun) {
  3781. vector_3 planeNormal = vector_3::cross(points[0] - points[1], points[2] - points[1]).get_normal();
  3782. if (planeNormal.z < 0) {
  3783. planeNormal.x *= -1;
  3784. planeNormal.y *= -1;
  3785. planeNormal.z *= -1;
  3786. }
  3787. planner.bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  3788. // Can't re-enable (on error) until the new grid is written
  3789. abl_should_enable = false;
  3790. }
  3791. }
  3792. #endif // AUTO_BED_LEVELING_3POINT
  3793. #else // !PROBE_MANUALLY
  3794. bool stow_probe_after_each = code_seen('E');
  3795. #if ABL_GRID
  3796. bool zig = PR_OUTER_END & 1; // Always end at RIGHT and BACK_PROBE_BED_POSITION
  3797. // Outer loop is Y with PROBE_Y_FIRST disabled
  3798. for (uint8_t PR_OUTER_VAR = 0; PR_OUTER_VAR < PR_OUTER_END; PR_OUTER_VAR++) {
  3799. int8_t inStart, inStop, inInc;
  3800. if (zig) { // away from origin
  3801. inStart = 0;
  3802. inStop = PR_INNER_END;
  3803. inInc = 1;
  3804. }
  3805. else { // towards origin
  3806. inStart = PR_INNER_END - 1;
  3807. inStop = -1;
  3808. inInc = -1;
  3809. }
  3810. zig ^= true; // zag
  3811. // Inner loop is Y with PROBE_Y_FIRST enabled
  3812. for (int8_t PR_INNER_VAR = inStart; PR_INNER_VAR != inStop; PR_INNER_VAR += inInc) {
  3813. float xBase = left_probe_bed_position + xGridSpacing * xCount,
  3814. yBase = front_probe_bed_position + yGridSpacing * yCount;
  3815. xProbe = floor(xBase + (xBase < 0 ? 0 : 0.5));
  3816. yProbe = floor(yBase + (yBase < 0 ? 0 : 0.5));
  3817. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  3818. indexIntoAB[xCount][yCount] = ++abl_probe_index;
  3819. #endif
  3820. #if IS_KINEMATIC
  3821. // Avoid probing outside the round or hexagonal area
  3822. float pos[XYZ] = { xProbe, yProbe, 0 };
  3823. if (!position_is_reachable(pos, true)) continue;
  3824. #endif
  3825. measured_z = probe_pt(xProbe, yProbe, stow_probe_after_each, verbose_level);
  3826. if (isnan(measured_z)) {
  3827. planner.abl_enabled = abl_should_enable;
  3828. return;
  3829. }
  3830. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  3831. mean += measured_z;
  3832. eqnBVector[abl_probe_index] = measured_z;
  3833. eqnAMatrix[abl_probe_index + 0 * abl2] = xProbe;
  3834. eqnAMatrix[abl_probe_index + 1 * abl2] = yProbe;
  3835. eqnAMatrix[abl_probe_index + 2 * abl2] = 1;
  3836. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  3837. bed_level_grid[xCount][yCount] = measured_z + zoffset;
  3838. #endif
  3839. abl_should_enable = false;
  3840. idle();
  3841. } // inner
  3842. } // outer
  3843. #elif ENABLED(AUTO_BED_LEVELING_3POINT)
  3844. // Probe at 3 arbitrary points
  3845. for (uint8_t i = 0; i < 3; ++i) {
  3846. // Retain the last probe position
  3847. xProbe = LOGICAL_X_POSITION(points[i].x);
  3848. yProbe = LOGICAL_Y_POSITION(points[i].y);
  3849. measured_z = points[i].z = probe_pt(xProbe, yProbe, stow_probe_after_each, verbose_level);
  3850. }
  3851. if (isnan(measured_z)) {
  3852. planner.abl_enabled = abl_should_enable;
  3853. return;
  3854. }
  3855. if (!dryrun) {
  3856. vector_3 planeNormal = vector_3::cross(points[0] - points[1], points[2] - points[1]).get_normal();
  3857. if (planeNormal.z < 0) {
  3858. planeNormal.x *= -1;
  3859. planeNormal.y *= -1;
  3860. planeNormal.z *= -1;
  3861. }
  3862. planner.bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  3863. // Can't re-enable (on error) until the new grid is written
  3864. abl_should_enable = false;
  3865. }
  3866. #endif // AUTO_BED_LEVELING_3POINT
  3867. // Raise to _Z_CLEARANCE_DEPLOY_PROBE. Stow the probe.
  3868. if (STOW_PROBE()) {
  3869. planner.abl_enabled = abl_should_enable;
  3870. return;
  3871. }
  3872. #endif // !PROBE_MANUALLY
  3873. //
  3874. // G29 Finishing Code
  3875. //
  3876. // Unless this is a dry run, auto bed leveling will
  3877. // definitely be enabled after this point
  3878. //
  3879. // Restore state after probing
  3880. clean_up_after_endstop_or_probe_move();
  3881. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3882. if (DEBUGGING(LEVELING)) DEBUG_POS("> probing complete", current_position);
  3883. #endif
  3884. // Calculate leveling, print reports, correct the position
  3885. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  3886. if (!dryrun) extrapolate_unprobed_bed_level();
  3887. print_bilinear_leveling_grid();
  3888. #if ENABLED(ABL_BILINEAR_SUBDIVISION)
  3889. bed_level_virt_interpolate();
  3890. bed_level_virt_print();
  3891. #endif
  3892. #elif ENABLED(AUTO_BED_LEVELING_LINEAR)
  3893. // For LINEAR leveling calculate matrix, print reports, correct the position
  3894. /**
  3895. * solve the plane equation ax + by + d = z
  3896. * A is the matrix with rows [x y 1] for all the probed points
  3897. * B is the vector of the Z positions
  3898. * the normal vector to the plane is formed by the coefficients of the
  3899. * plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  3900. * so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  3901. */
  3902. float plane_equation_coefficients[3];
  3903. qr_solve(plane_equation_coefficients, abl2, 3, eqnAMatrix, eqnBVector);
  3904. mean /= abl2;
  3905. if (verbose_level) {
  3906. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  3907. SERIAL_PROTOCOL_F(plane_equation_coefficients[0], 8);
  3908. SERIAL_PROTOCOLPGM(" b: ");
  3909. SERIAL_PROTOCOL_F(plane_equation_coefficients[1], 8);
  3910. SERIAL_PROTOCOLPGM(" d: ");
  3911. SERIAL_PROTOCOL_F(plane_equation_coefficients[2], 8);
  3912. SERIAL_EOL;
  3913. if (verbose_level > 2) {
  3914. SERIAL_PROTOCOLPGM("Mean of sampled points: ");
  3915. SERIAL_PROTOCOL_F(mean, 8);
  3916. SERIAL_EOL;
  3917. }
  3918. }
  3919. // Create the matrix but don't correct the position yet
  3920. if (!dryrun) {
  3921. planner.bed_level_matrix = matrix_3x3::create_look_at(
  3922. vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1)
  3923. );
  3924. }
  3925. // Show the Topography map if enabled
  3926. if (do_topography_map) {
  3927. SERIAL_PROTOCOLLNPGM("\nBed Height Topography:\n"
  3928. " +--- BACK --+\n"
  3929. " | |\n"
  3930. " L | (+) | R\n"
  3931. " E | | I\n"
  3932. " F | (-) N (+) | G\n"
  3933. " T | | H\n"
  3934. " | (-) | T\n"
  3935. " | |\n"
  3936. " O-- FRONT --+\n"
  3937. " (0,0)");
  3938. float min_diff = 999;
  3939. for (int8_t yy = abl_grid_points_y - 1; yy >= 0; yy--) {
  3940. for (uint8_t xx = 0; xx < abl_grid_points_x; xx++) {
  3941. int ind = indexIntoAB[xx][yy];
  3942. float diff = eqnBVector[ind] - mean,
  3943. x_tmp = eqnAMatrix[ind + 0 * abl2],
  3944. y_tmp = eqnAMatrix[ind + 1 * abl2],
  3945. z_tmp = 0;
  3946. apply_rotation_xyz(planner.bed_level_matrix, x_tmp, y_tmp, z_tmp);
  3947. NOMORE(min_diff, eqnBVector[ind] - z_tmp);
  3948. if (diff >= 0.0)
  3949. SERIAL_PROTOCOLPGM(" +"); // Include + for column alignment
  3950. else
  3951. SERIAL_PROTOCOLCHAR(' ');
  3952. SERIAL_PROTOCOL_F(diff, 5);
  3953. } // xx
  3954. SERIAL_EOL;
  3955. } // yy
  3956. SERIAL_EOL;
  3957. if (verbose_level > 3) {
  3958. SERIAL_PROTOCOLLNPGM("\nCorrected Bed Height vs. Bed Topology:");
  3959. for (int8_t yy = abl_grid_points_y - 1; yy >= 0; yy--) {
  3960. for (uint8_t xx = 0; xx < abl_grid_points_x; xx++) {
  3961. int ind = indexIntoAB[xx][yy];
  3962. float x_tmp = eqnAMatrix[ind + 0 * abl2],
  3963. y_tmp = eqnAMatrix[ind + 1 * abl2],
  3964. z_tmp = 0;
  3965. apply_rotation_xyz(planner.bed_level_matrix, x_tmp, y_tmp, z_tmp);
  3966. float diff = eqnBVector[ind] - z_tmp - min_diff;
  3967. if (diff >= 0.0)
  3968. SERIAL_PROTOCOLPGM(" +");
  3969. // Include + for column alignment
  3970. else
  3971. SERIAL_PROTOCOLCHAR(' ');
  3972. SERIAL_PROTOCOL_F(diff, 5);
  3973. } // xx
  3974. SERIAL_EOL;
  3975. } // yy
  3976. SERIAL_EOL;
  3977. }
  3978. } //do_topography_map
  3979. #endif // AUTO_BED_LEVELING_LINEAR
  3980. #if ABL_PLANAR
  3981. // For LINEAR and 3POINT leveling correct the current position
  3982. if (verbose_level > 0)
  3983. planner.bed_level_matrix.debug("\n\nBed Level Correction Matrix:");
  3984. if (!dryrun) {
  3985. //
  3986. // Correct the current XYZ position based on the tilted plane.
  3987. //
  3988. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3989. if (DEBUGGING(LEVELING)) DEBUG_POS("G29 uncorrected XYZ", current_position);
  3990. #endif
  3991. float converted[XYZ];
  3992. COPY(converted, current_position);
  3993. planner.abl_enabled = true;
  3994. planner.unapply_leveling(converted); // use conversion machinery
  3995. planner.abl_enabled = false;
  3996. // Use the last measured distance to the bed, if possible
  3997. if ( NEAR(current_position[X_AXIS], xProbe - (X_PROBE_OFFSET_FROM_EXTRUDER))
  3998. && NEAR(current_position[Y_AXIS], yProbe - (Y_PROBE_OFFSET_FROM_EXTRUDER))
  3999. ) {
  4000. float simple_z = current_position[Z_AXIS] - measured_z;
  4001. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4002. if (DEBUGGING(LEVELING)) {
  4003. SERIAL_ECHOPAIR("Z from Probe:", simple_z);
  4004. SERIAL_ECHOPAIR(" Matrix:", converted[Z_AXIS]);
  4005. SERIAL_ECHOLNPAIR(" Discrepancy:", simple_z - converted[Z_AXIS]);
  4006. }
  4007. #endif
  4008. converted[Z_AXIS] = simple_z;
  4009. }
  4010. // The rotated XY and corrected Z are now current_position
  4011. COPY(current_position, converted);
  4012. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4013. if (DEBUGGING(LEVELING)) DEBUG_POS("G29 corrected XYZ", current_position);
  4014. #endif
  4015. }
  4016. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  4017. if (!dryrun) {
  4018. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4019. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPAIR("G29 uncorrected Z:", current_position[Z_AXIS]);
  4020. #endif
  4021. // Unapply the offset because it is going to be immediately applied
  4022. // and cause compensation movement in Z
  4023. current_position[Z_AXIS] -= bilinear_z_offset(current_position);
  4024. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4025. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPAIR(" corrected Z:", current_position[Z_AXIS]);
  4026. #endif
  4027. }
  4028. #endif // ABL_PLANAR
  4029. #ifdef Z_PROBE_END_SCRIPT
  4030. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4031. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPAIR("Z Probe End Script: ", Z_PROBE_END_SCRIPT);
  4032. #endif
  4033. enqueue_and_echo_commands_P(PSTR(Z_PROBE_END_SCRIPT));
  4034. stepper.synchronize();
  4035. #endif
  4036. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4037. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< gcode_G29");
  4038. #endif
  4039. report_current_position();
  4040. KEEPALIVE_STATE(IN_HANDLER);
  4041. // Auto Bed Leveling is complete! Enable if possible.
  4042. planner.abl_enabled = dryrun ? abl_should_enable : true;
  4043. if (planner.abl_enabled)
  4044. SYNC_PLAN_POSITION_KINEMATIC();
  4045. }
  4046. #endif // HAS_ABL && DISABLED(AUTO_BED_LEVELING_UBL)
  4047. #if HAS_BED_PROBE
  4048. /**
  4049. * G30: Do a single Z probe at the current XY
  4050. * Usage:
  4051. * G30 <X#> <Y#> <S#>
  4052. * X = Probe X position (default=current probe position)
  4053. * Y = Probe Y position (default=current probe position)
  4054. * S = Stows the probe if 1 (default=1)
  4055. */
  4056. inline void gcode_G30() {
  4057. float X_probe_location = code_seen('X') ? code_value_axis_units(X_AXIS) : current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER,
  4058. Y_probe_location = code_seen('Y') ? code_value_axis_units(Y_AXIS) : current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER;
  4059. float pos[XYZ] = { X_probe_location, Y_probe_location, LOGICAL_Z_POSITION(0) };
  4060. if (!position_is_reachable(pos, true)) return;
  4061. bool stow = code_seen('S') ? code_value_bool() : true;
  4062. // Disable leveling so the planner won't mess with us
  4063. #if PLANNER_LEVELING
  4064. set_bed_leveling_enabled(false);
  4065. #endif
  4066. setup_for_endstop_or_probe_move();
  4067. float measured_z = probe_pt(X_probe_location, Y_probe_location, stow, 1);
  4068. SERIAL_PROTOCOLPGM("Bed X: ");
  4069. SERIAL_PROTOCOL(FIXFLOAT(X_probe_location));
  4070. SERIAL_PROTOCOLPGM(" Y: ");
  4071. SERIAL_PROTOCOL(FIXFLOAT(Y_probe_location));
  4072. SERIAL_PROTOCOLPGM(" Z: ");
  4073. SERIAL_PROTOCOLLN(FIXFLOAT(measured_z));
  4074. clean_up_after_endstop_or_probe_move();
  4075. report_current_position();
  4076. }
  4077. #if ENABLED(Z_PROBE_SLED)
  4078. /**
  4079. * G31: Deploy the Z probe
  4080. */
  4081. inline void gcode_G31() { DEPLOY_PROBE(); }
  4082. /**
  4083. * G32: Stow the Z probe
  4084. */
  4085. inline void gcode_G32() { STOW_PROBE(); }
  4086. #endif // Z_PROBE_SLED
  4087. #endif // HAS_BED_PROBE
  4088. #if ENABLED(G38_PROBE_TARGET)
  4089. static bool G38_run_probe() {
  4090. bool G38_pass_fail = false;
  4091. // Get direction of move and retract
  4092. float retract_mm[XYZ];
  4093. LOOP_XYZ(i) {
  4094. float dist = destination[i] - current_position[i];
  4095. retract_mm[i] = fabs(dist) < G38_MINIMUM_MOVE ? 0 : home_bump_mm((AxisEnum)i) * (dist > 0 ? -1 : 1);
  4096. }
  4097. stepper.synchronize(); // wait until the machine is idle
  4098. // Move until destination reached or target hit
  4099. endstops.enable(true);
  4100. G38_move = true;
  4101. G38_endstop_hit = false;
  4102. prepare_move_to_destination();
  4103. stepper.synchronize();
  4104. G38_move = false;
  4105. endstops.hit_on_purpose();
  4106. set_current_from_steppers_for_axis(ALL_AXES);
  4107. SYNC_PLAN_POSITION_KINEMATIC();
  4108. if (G38_endstop_hit) {
  4109. G38_pass_fail = true;
  4110. #if ENABLED(PROBE_DOUBLE_TOUCH)
  4111. // Move away by the retract distance
  4112. set_destination_to_current();
  4113. LOOP_XYZ(i) destination[i] += retract_mm[i];
  4114. endstops.enable(false);
  4115. prepare_move_to_destination();
  4116. stepper.synchronize();
  4117. feedrate_mm_s /= 4;
  4118. // Bump the target more slowly
  4119. LOOP_XYZ(i) destination[i] -= retract_mm[i] * 2;
  4120. endstops.enable(true);
  4121. G38_move = true;
  4122. prepare_move_to_destination();
  4123. stepper.synchronize();
  4124. G38_move = false;
  4125. set_current_from_steppers_for_axis(ALL_AXES);
  4126. SYNC_PLAN_POSITION_KINEMATIC();
  4127. #endif
  4128. }
  4129. endstops.hit_on_purpose();
  4130. endstops.not_homing();
  4131. return G38_pass_fail;
  4132. }
  4133. /**
  4134. * G38.2 - probe toward workpiece, stop on contact, signal error if failure
  4135. * G38.3 - probe toward workpiece, stop on contact
  4136. *
  4137. * Like G28 except uses Z min probe for all axes
  4138. */
  4139. inline void gcode_G38(bool is_38_2) {
  4140. // Get X Y Z E F
  4141. gcode_get_destination();
  4142. setup_for_endstop_or_probe_move();
  4143. // If any axis has enough movement, do the move
  4144. LOOP_XYZ(i)
  4145. if (fabs(destination[i] - current_position[i]) >= G38_MINIMUM_MOVE) {
  4146. if (!code_seen('F')) feedrate_mm_s = homing_feedrate_mm_s[i];
  4147. // If G38.2 fails throw an error
  4148. if (!G38_run_probe() && is_38_2) {
  4149. SERIAL_ERROR_START;
  4150. SERIAL_ERRORLNPGM("Failed to reach target");
  4151. }
  4152. break;
  4153. }
  4154. clean_up_after_endstop_or_probe_move();
  4155. }
  4156. #endif // G38_PROBE_TARGET
  4157. /**
  4158. * G92: Set current position to given X Y Z E
  4159. */
  4160. inline void gcode_G92() {
  4161. bool didXYZ = false,
  4162. didE = code_seen('E');
  4163. if (!didE) stepper.synchronize();
  4164. LOOP_XYZE(i) {
  4165. if (code_seen(axis_codes[i])) {
  4166. #if IS_SCARA
  4167. current_position[i] = code_value_axis_units(i);
  4168. if (i != E_AXIS) didXYZ = true;
  4169. #else
  4170. #if DISABLED(NO_WORKSPACE_OFFSETS)
  4171. float p = current_position[i];
  4172. #endif
  4173. float v = code_value_axis_units(i);
  4174. current_position[i] = v;
  4175. if (i != E_AXIS) {
  4176. didXYZ = true;
  4177. #if DISABLED(NO_WORKSPACE_OFFSETS)
  4178. position_shift[i] += v - p; // Offset the coordinate space
  4179. update_software_endstops((AxisEnum)i);
  4180. #endif
  4181. }
  4182. #endif
  4183. }
  4184. }
  4185. if (didXYZ)
  4186. SYNC_PLAN_POSITION_KINEMATIC();
  4187. else if (didE)
  4188. sync_plan_position_e();
  4189. report_current_position();
  4190. }
  4191. #if HAS_RESUME_CONTINUE
  4192. /**
  4193. * M0: Unconditional stop - Wait for user button press on LCD
  4194. * M1: Conditional stop - Wait for user button press on LCD
  4195. */
  4196. inline void gcode_M0_M1() {
  4197. char* args = current_command_args;
  4198. millis_t codenum = 0;
  4199. bool hasP = false, hasS = false;
  4200. if (code_seen('P')) {
  4201. codenum = code_value_millis(); // milliseconds to wait
  4202. hasP = codenum > 0;
  4203. }
  4204. if (code_seen('S')) {
  4205. codenum = code_value_millis_from_seconds(); // seconds to wait
  4206. hasS = codenum > 0;
  4207. }
  4208. #if ENABLED(ULTIPANEL)
  4209. if (!hasP && !hasS && *args != '\0')
  4210. lcd_setstatus(args, true);
  4211. else {
  4212. LCD_MESSAGEPGM(MSG_USERWAIT);
  4213. #if ENABLED(LCD_PROGRESS_BAR) && PROGRESS_MSG_EXPIRE > 0
  4214. dontExpireStatus();
  4215. #endif
  4216. }
  4217. #else
  4218. if (!hasP && !hasS && *args != '\0') {
  4219. SERIAL_ECHO_START;
  4220. SERIAL_ECHOLN(args);
  4221. }
  4222. #endif
  4223. KEEPALIVE_STATE(PAUSED_FOR_USER);
  4224. wait_for_user = true;
  4225. stepper.synchronize();
  4226. refresh_cmd_timeout();
  4227. if (codenum > 0) {
  4228. codenum += previous_cmd_ms; // wait until this time for a click
  4229. while (PENDING(millis(), codenum) && wait_for_user) idle();
  4230. }
  4231. else {
  4232. #if ENABLED(ULTIPANEL)
  4233. if (lcd_detected()) {
  4234. while (wait_for_user) idle();
  4235. IS_SD_PRINTING ? LCD_MESSAGEPGM(MSG_RESUMING) : LCD_MESSAGEPGM(WELCOME_MSG);
  4236. }
  4237. #else
  4238. while (wait_for_user) idle();
  4239. #endif
  4240. }
  4241. wait_for_user = false;
  4242. KEEPALIVE_STATE(IN_HANDLER);
  4243. }
  4244. #endif // EMERGENCY_PARSER || ULTIPANEL
  4245. /**
  4246. * M17: Enable power on all stepper motors
  4247. */
  4248. inline void gcode_M17() {
  4249. LCD_MESSAGEPGM(MSG_NO_MOVE);
  4250. enable_all_steppers();
  4251. }
  4252. #if IS_KINEMATIC
  4253. #define RUNPLAN(RATE_MM_S) planner.buffer_line_kinematic(destination, RATE_MM_S, active_extruder)
  4254. #else
  4255. #define RUNPLAN(RATE_MM_S) line_to_destination(RATE_MM_S)
  4256. #endif
  4257. #if ENABLED(PARK_HEAD_ON_PAUSE)
  4258. float resume_position[XYZE];
  4259. bool move_away_flag = false;
  4260. inline void move_back_on_resume() {
  4261. if (!move_away_flag) return;
  4262. move_away_flag = false;
  4263. // Set extruder to saved position
  4264. destination[E_AXIS] = current_position[E_AXIS] = resume_position[E_AXIS];
  4265. planner.set_e_position_mm(current_position[E_AXIS]);
  4266. #if IS_KINEMATIC
  4267. // Move XYZ to starting position
  4268. planner.buffer_line_kinematic(lastpos, FILAMENT_CHANGE_XY_FEEDRATE, active_extruder);
  4269. #else
  4270. // Move XY to starting position, then Z
  4271. destination[X_AXIS] = resume_position[X_AXIS];
  4272. destination[Y_AXIS] = resume_position[Y_AXIS];
  4273. RUNPLAN(FILAMENT_CHANGE_XY_FEEDRATE);
  4274. destination[Z_AXIS] = resume_position[Z_AXIS];
  4275. RUNPLAN(FILAMENT_CHANGE_Z_FEEDRATE);
  4276. #endif
  4277. stepper.synchronize();
  4278. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  4279. filament_ran_out = false;
  4280. #endif
  4281. set_current_to_destination();
  4282. }
  4283. #endif // PARK_HEAD_ON_PAUSE
  4284. #if ENABLED(SDSUPPORT)
  4285. /**
  4286. * M20: List SD card to serial output
  4287. */
  4288. inline void gcode_M20() {
  4289. SERIAL_PROTOCOLLNPGM(MSG_BEGIN_FILE_LIST);
  4290. card.ls();
  4291. SERIAL_PROTOCOLLNPGM(MSG_END_FILE_LIST);
  4292. }
  4293. /**
  4294. * M21: Init SD Card
  4295. */
  4296. inline void gcode_M21() { card.initsd(); }
  4297. /**
  4298. * M22: Release SD Card
  4299. */
  4300. inline void gcode_M22() { card.release(); }
  4301. /**
  4302. * M23: Open a file
  4303. */
  4304. inline void gcode_M23() { card.openFile(current_command_args, true); }
  4305. /**
  4306. * M24: Start or Resume SD Print
  4307. */
  4308. inline void gcode_M24() {
  4309. #if ENABLED(PARK_HEAD_ON_PAUSE)
  4310. move_back_on_resume();
  4311. #endif
  4312. card.startFileprint();
  4313. print_job_timer.start();
  4314. }
  4315. /**
  4316. * M25: Pause SD Print
  4317. */
  4318. inline void gcode_M25() {
  4319. card.pauseSDPrint();
  4320. print_job_timer.pause();
  4321. #if ENABLED(PARK_HEAD_ON_PAUSE)
  4322. enqueue_and_echo_commands_P(PSTR("M125")); // Must be enqueued with pauseSDPrint set to be last in the buffer
  4323. #endif
  4324. }
  4325. /**
  4326. * M26: Set SD Card file index
  4327. */
  4328. inline void gcode_M26() {
  4329. if (card.cardOK && code_seen('S'))
  4330. card.setIndex(code_value_long());
  4331. }
  4332. /**
  4333. * M27: Get SD Card status
  4334. */
  4335. inline void gcode_M27() { card.getStatus(); }
  4336. /**
  4337. * M28: Start SD Write
  4338. */
  4339. inline void gcode_M28() { card.openFile(current_command_args, false); }
  4340. /**
  4341. * M29: Stop SD Write
  4342. * Processed in write to file routine above
  4343. */
  4344. inline void gcode_M29() {
  4345. // card.saving = false;
  4346. }
  4347. /**
  4348. * M30 <filename>: Delete SD Card file
  4349. */
  4350. inline void gcode_M30() {
  4351. if (card.cardOK) {
  4352. card.closefile();
  4353. card.removeFile(current_command_args);
  4354. }
  4355. }
  4356. #endif // SDSUPPORT
  4357. /**
  4358. * M31: Get the time since the start of SD Print (or last M109)
  4359. */
  4360. inline void gcode_M31() {
  4361. char buffer[21];
  4362. duration_t elapsed = print_job_timer.duration();
  4363. elapsed.toString(buffer);
  4364. lcd_setstatus(buffer);
  4365. SERIAL_ECHO_START;
  4366. SERIAL_ECHOLNPAIR("Print time: ", buffer);
  4367. #if ENABLED(AUTOTEMP)
  4368. thermalManager.autotempShutdown();
  4369. #endif
  4370. }
  4371. #if ENABLED(SDSUPPORT)
  4372. /**
  4373. * M32: Select file and start SD Print
  4374. */
  4375. inline void gcode_M32() {
  4376. if (card.sdprinting)
  4377. stepper.synchronize();
  4378. char* namestartpos = strchr(current_command_args, '!'); // Find ! to indicate filename string start.
  4379. if (!namestartpos)
  4380. namestartpos = current_command_args; // Default name position, 4 letters after the M
  4381. else
  4382. namestartpos++; //to skip the '!'
  4383. bool call_procedure = code_seen('P') && (seen_pointer < namestartpos);
  4384. if (card.cardOK) {
  4385. card.openFile(namestartpos, true, call_procedure);
  4386. if (code_seen('S') && seen_pointer < namestartpos) // "S" (must occur _before_ the filename!)
  4387. card.setIndex(code_value_long());
  4388. card.startFileprint();
  4389. // Procedure calls count as normal print time.
  4390. if (!call_procedure) print_job_timer.start();
  4391. }
  4392. }
  4393. #if ENABLED(LONG_FILENAME_HOST_SUPPORT)
  4394. /**
  4395. * M33: Get the long full path of a file or folder
  4396. *
  4397. * Parameters:
  4398. * <dospath> Case-insensitive DOS-style path to a file or folder
  4399. *
  4400. * Example:
  4401. * M33 miscel~1/armchair/armcha~1.gco
  4402. *
  4403. * Output:
  4404. * /Miscellaneous/Armchair/Armchair.gcode
  4405. */
  4406. inline void gcode_M33() {
  4407. card.printLongPath(current_command_args);
  4408. }
  4409. #endif
  4410. #if ENABLED(SDCARD_SORT_ALPHA) && ENABLED(SDSORT_GCODE)
  4411. /**
  4412. * M34: Set SD Card Sorting Options
  4413. */
  4414. inline void gcode_M34() {
  4415. if (code_seen('S')) card.setSortOn(code_value_bool());
  4416. if (code_seen('F')) {
  4417. int v = code_value_long();
  4418. card.setSortFolders(v < 0 ? -1 : v > 0 ? 1 : 0);
  4419. }
  4420. //if (code_seen('R')) card.setSortReverse(code_value_bool());
  4421. }
  4422. #endif // SDCARD_SORT_ALPHA && SDSORT_GCODE
  4423. /**
  4424. * M928: Start SD Write
  4425. */
  4426. inline void gcode_M928() {
  4427. card.openLogFile(current_command_args);
  4428. }
  4429. #endif // SDSUPPORT
  4430. /**
  4431. * Sensitive pin test for M42, M226
  4432. */
  4433. static bool pin_is_protected(uint8_t pin) {
  4434. static const int sensitive_pins[] = SENSITIVE_PINS;
  4435. for (uint8_t i = 0; i < COUNT(sensitive_pins); i++)
  4436. if (sensitive_pins[i] == pin) return true;
  4437. return false;
  4438. }
  4439. /**
  4440. * M42: Change pin status via GCode
  4441. *
  4442. * P<pin> Pin number (LED if omitted)
  4443. * S<byte> Pin status from 0 - 255
  4444. */
  4445. inline void gcode_M42() {
  4446. if (!code_seen('S')) return;
  4447. int pin_status = code_value_int();
  4448. if (!WITHIN(pin_status, 0, 255)) return;
  4449. int pin_number = code_seen('P') ? code_value_int() : LED_PIN;
  4450. if (pin_number < 0) return;
  4451. if (pin_is_protected(pin_number)) {
  4452. SERIAL_ERROR_START;
  4453. SERIAL_ERRORLNPGM(MSG_ERR_PROTECTED_PIN);
  4454. return;
  4455. }
  4456. pinMode(pin_number, OUTPUT);
  4457. digitalWrite(pin_number, pin_status);
  4458. analogWrite(pin_number, pin_status);
  4459. #if FAN_COUNT > 0
  4460. switch (pin_number) {
  4461. #if HAS_FAN0
  4462. case FAN_PIN: fanSpeeds[0] = pin_status; break;
  4463. #endif
  4464. #if HAS_FAN1
  4465. case FAN1_PIN: fanSpeeds[1] = pin_status; break;
  4466. #endif
  4467. #if HAS_FAN2
  4468. case FAN2_PIN: fanSpeeds[2] = pin_status; break;
  4469. #endif
  4470. }
  4471. #endif
  4472. }
  4473. #if ENABLED(PINS_DEBUGGING)
  4474. #include "pinsDebug.h"
  4475. inline void toggle_pins() {
  4476. int pin, j;
  4477. bool I_flag = code_seen('I') ? code_value_bool() : false;
  4478. int repeat = code_seen('R') ? code_value_int() : 1,
  4479. start = code_seen('S') ? code_value_int() : 0,
  4480. end = code_seen('E') ? code_value_int() : NUM_DIGITAL_PINS - 1,
  4481. wait = code_seen('W') ? code_value_int() : 500;
  4482. for (pin = start; pin <= end; pin++) {
  4483. if (!I_flag && pin_is_protected(pin)) {
  4484. SERIAL_ECHOPAIR("Sensitive Pin: ", pin);
  4485. SERIAL_ECHOPGM(" untouched.\n");
  4486. }
  4487. else {
  4488. SERIAL_ECHOPAIR("Pulsing Pin: ", pin);
  4489. pinMode(pin, OUTPUT);
  4490. for(j = 0; j < repeat; j++) {
  4491. digitalWrite(pin, 0);
  4492. safe_delay(wait);
  4493. digitalWrite(pin, 1);
  4494. safe_delay(wait);
  4495. digitalWrite(pin, 0);
  4496. safe_delay(wait);
  4497. }
  4498. }
  4499. SERIAL_ECHOPGM("\n");
  4500. }
  4501. SERIAL_ECHOPGM("Done\n");
  4502. } // toggle_pins
  4503. inline void servo_probe_test(){
  4504. #if !(NUM_SERVOS >= 1 && HAS_SERVO_0)
  4505. SERIAL_ERROR_START;
  4506. SERIAL_ERRORLNPGM("SERVO not setup");
  4507. #else
  4508. #if !defined(z_servo_angle)
  4509. const int z_servo_angle[2] = Z_SERVO_ANGLES;
  4510. #endif
  4511. uint8_t probe_index = code_seen('P') ? code_value_byte() : 0;
  4512. SERIAL_PROTOCOLLNPGM("Servo probe test");
  4513. SERIAL_PROTOCOLLNPAIR(". using index: ", probe_index);
  4514. SERIAL_PROTOCOLLNPAIR(". deploy angle: ", z_servo_angle[0]);
  4515. SERIAL_PROTOCOLLNPAIR(". stow angle: ", z_servo_angle[1]);
  4516. bool probe_inverting;
  4517. #if ENABLED(Z_MIN_PROBE_USES_Z_MIN_ENDSTOP_PIN)
  4518. #define PROBE_TEST_PIN Z_MIN_PIN
  4519. SERIAL_PROTOCOLLNPAIR(". probe uses Z_MIN pin: ", PROBE_TEST_PIN);
  4520. SERIAL_PROTOCOLLNPGM(". uses Z_MIN_ENDSTOP_INVERTING (ignores Z_MIN_PROBE_ENDSTOP_INVERTING)");
  4521. SERIAL_PROTOCOLPGM(". Z_MIN_ENDSTOP_INVERTING: ");
  4522. if (Z_MIN_ENDSTOP_INVERTING) SERIAL_PROTOCOLLNPGM("true");
  4523. else SERIAL_PROTOCOLLNPGM("false");
  4524. probe_inverting = Z_MIN_ENDSTOP_INVERTING;
  4525. #elif ENABLED(Z_MIN_PROBE_ENDSTOP)
  4526. #define PROBE_TEST_PIN Z_MIN_PROBE_PIN
  4527. SERIAL_PROTOCOLLNPAIR(". probe uses Z_MIN_PROBE_PIN: ", PROBE_TEST_PIN);
  4528. SERIAL_PROTOCOLLNPGM(". uses Z_MIN_PROBE_ENDSTOP_INVERTING (ignores Z_MIN_ENDSTOP_INVERTING)");
  4529. SERIAL_PROTOCOLPGM(". Z_MIN_PROBE_ENDSTOP_INVERTING: ");
  4530. if (Z_MIN_PROBE_ENDSTOP_INVERTING) SERIAL_PROTOCOLLNPGM("true");
  4531. else SERIAL_PROTOCOLLNPGM("false");
  4532. probe_inverting = Z_MIN_PROBE_ENDSTOP_INVERTING;
  4533. #else
  4534. #error "ERROR - probe pin not defined - strange, SANITY_CHECK should have caught this"
  4535. #endif
  4536. SERIAL_PROTOCOLLNPGM(". deploy & stow 4 times");
  4537. pinMode(PROBE_TEST_PIN, INPUT_PULLUP);
  4538. bool deploy_state;
  4539. bool stow_state;
  4540. for (uint8_t i = 0; i < 4; i++) {
  4541. servo[probe_index].move(z_servo_angle[0]); //deploy
  4542. safe_delay(500);
  4543. deploy_state = digitalRead(PROBE_TEST_PIN);
  4544. servo[probe_index].move(z_servo_angle[1]); //stow
  4545. safe_delay(500);
  4546. stow_state = digitalRead(PROBE_TEST_PIN);
  4547. }
  4548. if (probe_inverting != deploy_state) SERIAL_PROTOCOLLNPGM("WARNING - INVERTING setting probably backwards");
  4549. refresh_cmd_timeout();
  4550. if (deploy_state != stow_state) {
  4551. SERIAL_PROTOCOLLNPGM("TLTouch detected"); // BLTouch clone?
  4552. if (deploy_state) {
  4553. SERIAL_PROTOCOLLNPGM(". DEPLOYED state: HIGH (logic 1)");
  4554. SERIAL_PROTOCOLLNPGM(". STOWED (triggered) state: LOW (logic 0)");
  4555. }
  4556. else {
  4557. SERIAL_PROTOCOLLNPGM(". DEPLOYED state: LOW (logic 0)");
  4558. SERIAL_PROTOCOLLNPGM(". STOWED (triggered) state: HIGH (logic 1)");
  4559. }
  4560. }
  4561. else { // measure active signal length
  4562. servo[probe_index].move(z_servo_angle[0]); //deploy
  4563. safe_delay(500);
  4564. SERIAL_PROTOCOLLNPGM("please trigger probe");
  4565. uint16_t probe_counter = 0;
  4566. for (uint16_t j = 0; j < 500*30 && probe_counter == 0 ; j++) { // allow 30 seconds max for operator to trigger probe
  4567. safe_delay(2);
  4568. if ( 0 == j%(500*1)) {refresh_cmd_timeout(); watchdog_reset();} // beat the dog every 45 seconds
  4569. if (deploy_state != digitalRead(PROBE_TEST_PIN)) { // probe triggered
  4570. for (probe_counter = 1; probe_counter < 50 && (deploy_state != digitalRead(PROBE_TEST_PIN)); probe_counter ++) {
  4571. safe_delay(2);
  4572. }
  4573. if (probe_counter == 50) {
  4574. SERIAL_PROTOCOLLNPGM("Z Servo Probe detected"); // >= 100mS active time
  4575. }
  4576. else if (probe_counter >= 2 ) {
  4577. SERIAL_PROTOCOLLNPAIR("BLTouch compatible probe detected - pulse width (+/- 4mS): ", probe_counter * 2 ); // allow 4 - 100mS pulse
  4578. }
  4579. else {
  4580. SERIAL_PROTOCOLLNPGM("noise detected - please re-run test"); // less than 2mS pulse
  4581. }
  4582. servo[probe_index].move(z_servo_angle[1]); //stow
  4583. } // pulse detected
  4584. } // for loop waiting for trigger
  4585. if (probe_counter == 0) SERIAL_PROTOCOLLNPGM("trigger not detected");
  4586. } // measure active signal length
  4587. #endif
  4588. } // servo_probe_test
  4589. /**
  4590. * M43: Pin debug - report pin state, watch pins, toggle pins and servo probe test/report
  4591. *
  4592. * M43 - report name and state of pin(s)
  4593. * P<pin> Pin to read or watch. If omitted, reads all pins.
  4594. * I Flag to ignore Marlin's pin protection.
  4595. *
  4596. * M43 W - Watch pins -reporting changes- until reset, click, or M108.
  4597. * P<pin> Pin to read or watch. If omitted, read/watch all pins.
  4598. * I Flag to ignore Marlin's pin protection.
  4599. *
  4600. * M43 E<bool> - Enable / disable background endstop monitoring
  4601. * - Machine continues to operate
  4602. * - Reports changes to endstops
  4603. * - Toggles LED when an endstop changes
  4604. * - Can not reliably catch the 5mS pulse from BLTouch type probes
  4605. *
  4606. * M43 T - Toggle pin(s) and report which pin is being toggled
  4607. * S<pin> - Start Pin number. If not given, will default to 0
  4608. * L<pin> - End Pin number. If not given, will default to last pin defined for this board
  4609. * I - Flag to ignore Marlin's pin protection. Use with caution!!!!
  4610. * R - Repeat pulses on each pin this number of times before continueing to next pin
  4611. * W - Wait time (in miliseconds) between pulses. If not given will default to 500
  4612. *
  4613. * M43 S - Servo probe test
  4614. * P<index> - Probe index (optional - defaults to 0
  4615. */
  4616. inline void gcode_M43() {
  4617. if (code_seen('T')) { // must be first ot else it's "S" and "E" parameters will execute endstop or servo test
  4618. toggle_pins();
  4619. return;
  4620. }
  4621. // Enable or disable endstop monitoring
  4622. if (code_seen('E')) {
  4623. endstop_monitor_flag = code_value_bool();
  4624. SERIAL_PROTOCOLPGM("endstop monitor ");
  4625. SERIAL_PROTOCOL(endstop_monitor_flag ? "en" : "dis");
  4626. SERIAL_PROTOCOLLNPGM("abled");
  4627. return;
  4628. }
  4629. if (code_seen('S')) {
  4630. servo_probe_test();
  4631. return;
  4632. }
  4633. // Get the range of pins to test or watch
  4634. int first_pin = 0, last_pin = NUM_DIGITAL_PINS - 1;
  4635. if (code_seen('P')) {
  4636. first_pin = last_pin = code_value_byte();
  4637. if (first_pin > NUM_DIGITAL_PINS - 1) return;
  4638. }
  4639. bool ignore_protection = code_seen('I') ? code_value_bool() : false;
  4640. // Watch until click, M108, or reset
  4641. if (code_seen('W') && code_value_bool()) { // watch digital pins
  4642. SERIAL_PROTOCOLLNPGM("Watching pins");
  4643. byte pin_state[last_pin - first_pin + 1];
  4644. for (int8_t pin = first_pin; pin <= last_pin; pin++) {
  4645. if (pin_is_protected(pin) && !ignore_protection) continue;
  4646. pinMode(pin, INPUT_PULLUP);
  4647. // if (IS_ANALOG(pin))
  4648. // pin_state[pin - first_pin] = analogRead(pin - analogInputToDigitalPin(0)); // int16_t pin_state[...]
  4649. // else
  4650. pin_state[pin - first_pin] = digitalRead(pin);
  4651. }
  4652. #if HAS_RESUME_CONTINUE
  4653. wait_for_user = true;
  4654. #endif
  4655. for(;;) {
  4656. for (int8_t pin = first_pin; pin <= last_pin; pin++) {
  4657. if (pin_is_protected(pin)) continue;
  4658. byte val;
  4659. // if (IS_ANALOG(pin))
  4660. // val = analogRead(pin - analogInputToDigitalPin(0)); // int16_t val
  4661. // else
  4662. val = digitalRead(pin);
  4663. if (val != pin_state[pin - first_pin]) {
  4664. report_pin_state(pin);
  4665. pin_state[pin - first_pin] = val;
  4666. }
  4667. }
  4668. #if HAS_RESUME_CONTINUE
  4669. if (!wait_for_user) break;
  4670. #endif
  4671. safe_delay(500);
  4672. }
  4673. return;
  4674. }
  4675. // Report current state of selected pin(s)
  4676. for (uint8_t pin = first_pin; pin <= last_pin; pin++)
  4677. report_pin_state_extended(pin, ignore_protection);
  4678. }
  4679. #endif // PINS_DEBUGGING
  4680. #if ENABLED(Z_MIN_PROBE_REPEATABILITY_TEST)
  4681. /**
  4682. * M48: Z probe repeatability measurement function.
  4683. *
  4684. * Usage:
  4685. * M48 <P#> <X#> <Y#> <V#> <E> <L#>
  4686. * P = Number of sampled points (4-50, default 10)
  4687. * X = Sample X position
  4688. * Y = Sample Y position
  4689. * V = Verbose level (0-4, default=1)
  4690. * E = Engage Z probe for each reading
  4691. * L = Number of legs of movement before probe
  4692. * S = Schizoid (Or Star if you prefer)
  4693. *
  4694. * This function assumes the bed has been homed. Specifically, that a G28 command
  4695. * as been issued prior to invoking the M48 Z probe repeatability measurement function.
  4696. * Any information generated by a prior G29 Bed leveling command will be lost and need to be
  4697. * regenerated.
  4698. */
  4699. inline void gcode_M48() {
  4700. #if ENABLED(AUTO_BED_LEVELING_UBL)
  4701. bool bed_leveling_state_at_entry=0;
  4702. bed_leveling_state_at_entry = ubl.state.active;
  4703. #endif
  4704. if (axis_unhomed_error(true, true, true)) return;
  4705. int8_t verbose_level = code_seen('V') ? code_value_byte() : 1;
  4706. if (!WITHIN(verbose_level, 0, 4)) {
  4707. SERIAL_PROTOCOLLNPGM("?Verbose Level not plausible (0-4).");
  4708. return;
  4709. }
  4710. if (verbose_level > 0)
  4711. SERIAL_PROTOCOLLNPGM("M48 Z-Probe Repeatability Test");
  4712. int8_t n_samples = code_seen('P') ? code_value_byte() : 10;
  4713. if (!WITHIN(n_samples, 4, 50)) {
  4714. SERIAL_PROTOCOLLNPGM("?Sample size not plausible (4-50).");
  4715. return;
  4716. }
  4717. float X_current = current_position[X_AXIS],
  4718. Y_current = current_position[Y_AXIS];
  4719. bool stow_probe_after_each = code_seen('E');
  4720. float X_probe_location = code_seen('X') ? code_value_axis_units(X_AXIS) : X_current + X_PROBE_OFFSET_FROM_EXTRUDER;
  4721. #if DISABLED(DELTA)
  4722. if (!WITHIN(X_probe_location, LOGICAL_X_POSITION(MIN_PROBE_X), LOGICAL_X_POSITION(MAX_PROBE_X))) {
  4723. out_of_range_error(PSTR("X"));
  4724. return;
  4725. }
  4726. #endif
  4727. float Y_probe_location = code_seen('Y') ? code_value_axis_units(Y_AXIS) : Y_current + Y_PROBE_OFFSET_FROM_EXTRUDER;
  4728. #if DISABLED(DELTA)
  4729. if (!WITHIN(Y_probe_location, LOGICAL_Y_POSITION(MIN_PROBE_Y), LOGICAL_Y_POSITION(MAX_PROBE_Y))) {
  4730. out_of_range_error(PSTR("Y"));
  4731. return;
  4732. }
  4733. #else
  4734. float pos[XYZ] = { X_probe_location, Y_probe_location, 0 };
  4735. if (!position_is_reachable(pos, true)) {
  4736. SERIAL_PROTOCOLLNPGM("? (X,Y) location outside of probeable radius.");
  4737. return;
  4738. }
  4739. #endif
  4740. bool seen_L = code_seen('L');
  4741. uint8_t n_legs = seen_L ? code_value_byte() : 0;
  4742. if (n_legs > 15) {
  4743. SERIAL_PROTOCOLLNPGM("?Number of legs in movement not plausible (0-15).");
  4744. return;
  4745. }
  4746. if (n_legs == 1) n_legs = 2;
  4747. bool schizoid_flag = code_seen('S');
  4748. if (schizoid_flag && !seen_L) n_legs = 7;
  4749. /**
  4750. * Now get everything to the specified probe point So we can safely do a
  4751. * probe to get us close to the bed. If the Z-Axis is far from the bed,
  4752. * we don't want to use that as a starting point for each probe.
  4753. */
  4754. if (verbose_level > 2)
  4755. SERIAL_PROTOCOLLNPGM("Positioning the probe...");
  4756. // Disable bed level correction in M48 because we want the raw data when we probe
  4757. #if HAS_ABL
  4758. const bool abl_was_enabled = planner.abl_enabled;
  4759. set_bed_leveling_enabled(false);
  4760. #endif
  4761. setup_for_endstop_or_probe_move();
  4762. // Move to the first point, deploy, and probe
  4763. probe_pt(X_probe_location, Y_probe_location, stow_probe_after_each, verbose_level);
  4764. randomSeed(millis());
  4765. double mean = 0.0, sigma = 0.0, min = 99999.9, max = -99999.9, sample_set[n_samples];
  4766. for (uint8_t n = 0; n < n_samples; n++) {
  4767. if (n_legs) {
  4768. int dir = (random(0, 10) > 5.0) ? -1 : 1; // clockwise or counter clockwise
  4769. float angle = random(0.0, 360.0),
  4770. radius = random(
  4771. #if ENABLED(DELTA)
  4772. DELTA_PROBEABLE_RADIUS / 8, DELTA_PROBEABLE_RADIUS / 3
  4773. #else
  4774. 5, X_MAX_LENGTH / 8
  4775. #endif
  4776. );
  4777. if (verbose_level > 3) {
  4778. SERIAL_ECHOPAIR("Starting radius: ", radius);
  4779. SERIAL_ECHOPAIR(" angle: ", angle);
  4780. SERIAL_ECHOPGM(" Direction: ");
  4781. if (dir > 0) SERIAL_ECHOPGM("Counter-");
  4782. SERIAL_ECHOLNPGM("Clockwise");
  4783. }
  4784. for (uint8_t l = 0; l < n_legs - 1; l++) {
  4785. double delta_angle;
  4786. if (schizoid_flag)
  4787. // The points of a 5 point star are 72 degrees apart. We need to
  4788. // skip a point and go to the next one on the star.
  4789. delta_angle = dir * 2.0 * 72.0;
  4790. else
  4791. // If we do this line, we are just trying to move further
  4792. // around the circle.
  4793. delta_angle = dir * (float) random(25, 45);
  4794. angle += delta_angle;
  4795. while (angle > 360.0) // We probably do not need to keep the angle between 0 and 2*PI, but the
  4796. angle -= 360.0; // Arduino documentation says the trig functions should not be given values
  4797. while (angle < 0.0) // outside of this range. It looks like they behave correctly with
  4798. angle += 360.0; // numbers outside of the range, but just to be safe we clamp them.
  4799. X_current = X_probe_location - (X_PROBE_OFFSET_FROM_EXTRUDER) + cos(RADIANS(angle)) * radius;
  4800. Y_current = Y_probe_location - (Y_PROBE_OFFSET_FROM_EXTRUDER) + sin(RADIANS(angle)) * radius;
  4801. #if DISABLED(DELTA)
  4802. X_current = constrain(X_current, X_MIN_POS, X_MAX_POS);
  4803. Y_current = constrain(Y_current, Y_MIN_POS, Y_MAX_POS);
  4804. #else
  4805. // If we have gone out too far, we can do a simple fix and scale the numbers
  4806. // back in closer to the origin.
  4807. while (HYPOT(X_current, Y_current) > DELTA_PROBEABLE_RADIUS) {
  4808. X_current *= 0.8;
  4809. Y_current *= 0.8;
  4810. if (verbose_level > 3) {
  4811. SERIAL_ECHOPAIR("Pulling point towards center:", X_current);
  4812. SERIAL_ECHOLNPAIR(", ", Y_current);
  4813. }
  4814. }
  4815. #endif
  4816. if (verbose_level > 3) {
  4817. SERIAL_PROTOCOLPGM("Going to:");
  4818. SERIAL_ECHOPAIR(" X", X_current);
  4819. SERIAL_ECHOPAIR(" Y", Y_current);
  4820. SERIAL_ECHOLNPAIR(" Z", current_position[Z_AXIS]);
  4821. }
  4822. do_blocking_move_to_xy(X_current, Y_current);
  4823. } // n_legs loop
  4824. } // n_legs
  4825. // Probe a single point
  4826. sample_set[n] = probe_pt(X_probe_location, Y_probe_location, stow_probe_after_each, 0);
  4827. /**
  4828. * Get the current mean for the data points we have so far
  4829. */
  4830. double sum = 0.0;
  4831. for (uint8_t j = 0; j <= n; j++) sum += sample_set[j];
  4832. mean = sum / (n + 1);
  4833. NOMORE(min, sample_set[n]);
  4834. NOLESS(max, sample_set[n]);
  4835. /**
  4836. * Now, use that mean to calculate the standard deviation for the
  4837. * data points we have so far
  4838. */
  4839. sum = 0.0;
  4840. for (uint8_t j = 0; j <= n; j++)
  4841. sum += sq(sample_set[j] - mean);
  4842. sigma = sqrt(sum / (n + 1));
  4843. if (verbose_level > 0) {
  4844. if (verbose_level > 1) {
  4845. SERIAL_PROTOCOL(n + 1);
  4846. SERIAL_PROTOCOLPGM(" of ");
  4847. SERIAL_PROTOCOL((int)n_samples);
  4848. SERIAL_PROTOCOLPGM(": z: ");
  4849. SERIAL_PROTOCOL_F(sample_set[n], 3);
  4850. if (verbose_level > 2) {
  4851. SERIAL_PROTOCOLPGM(" mean: ");
  4852. SERIAL_PROTOCOL_F(mean, 4);
  4853. SERIAL_PROTOCOLPGM(" sigma: ");
  4854. SERIAL_PROTOCOL_F(sigma, 6);
  4855. SERIAL_PROTOCOLPGM(" min: ");
  4856. SERIAL_PROTOCOL_F(min, 3);
  4857. SERIAL_PROTOCOLPGM(" max: ");
  4858. SERIAL_PROTOCOL_F(max, 3);
  4859. SERIAL_PROTOCOLPGM(" range: ");
  4860. SERIAL_PROTOCOL_F(max-min, 3);
  4861. }
  4862. SERIAL_EOL;
  4863. }
  4864. }
  4865. } // End of probe loop
  4866. if (STOW_PROBE()) return;
  4867. SERIAL_PROTOCOLPGM("Finished!");
  4868. SERIAL_EOL;
  4869. if (verbose_level > 0) {
  4870. SERIAL_PROTOCOLPGM("Mean: ");
  4871. SERIAL_PROTOCOL_F(mean, 6);
  4872. SERIAL_PROTOCOLPGM(" Min: ");
  4873. SERIAL_PROTOCOL_F(min, 3);
  4874. SERIAL_PROTOCOLPGM(" Max: ");
  4875. SERIAL_PROTOCOL_F(max, 3);
  4876. SERIAL_PROTOCOLPGM(" Range: ");
  4877. SERIAL_PROTOCOL_F(max-min, 3);
  4878. SERIAL_EOL;
  4879. }
  4880. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  4881. SERIAL_PROTOCOL_F(sigma, 6);
  4882. SERIAL_EOL;
  4883. SERIAL_EOL;
  4884. clean_up_after_endstop_or_probe_move();
  4885. // Re-enable bed level correction if it has been on
  4886. #if HAS_ABL
  4887. set_bed_leveling_enabled(abl_was_enabled);
  4888. #endif
  4889. #if ENABLED(AUTO_BED_LEVELING_UBL)
  4890. set_bed_leveling_enabled(bed_leveling_state_at_entry);
  4891. ubl.state.active = bed_leveling_state_at_entry;
  4892. #endif
  4893. report_current_position();
  4894. }
  4895. #endif // Z_MIN_PROBE_REPEATABILITY_TEST
  4896. #if ENABLED(AUTO_BED_LEVELING_UBL) && ENABLED(UBL_G26_MESH_EDITING)
  4897. inline void gcode_M49() {
  4898. ubl.g26_debug_flag ^= true;
  4899. SERIAL_PROTOCOLPGM("UBL Debug Flag turned ");
  4900. serialprintPGM(ubl.g26_debug_flag ? PSTR("on.") : PSTR("off."));
  4901. }
  4902. #endif // AUTO_BED_LEVELING_UBL && UBL_G26_MESH_EDITING
  4903. /**
  4904. * M75: Start print timer
  4905. */
  4906. inline void gcode_M75() { print_job_timer.start(); }
  4907. /**
  4908. * M76: Pause print timer
  4909. */
  4910. inline void gcode_M76() { print_job_timer.pause(); }
  4911. /**
  4912. * M77: Stop print timer
  4913. */
  4914. inline void gcode_M77() { print_job_timer.stop(); }
  4915. #if ENABLED(PRINTCOUNTER)
  4916. /**
  4917. * M78: Show print statistics
  4918. */
  4919. inline void gcode_M78() {
  4920. // "M78 S78" will reset the statistics
  4921. if (code_seen('S') && code_value_int() == 78)
  4922. print_job_timer.initStats();
  4923. else
  4924. print_job_timer.showStats();
  4925. }
  4926. #endif
  4927. /**
  4928. * M104: Set hot end temperature
  4929. */
  4930. inline void gcode_M104() {
  4931. if (get_target_extruder_from_command(104)) return;
  4932. if (DEBUGGING(DRYRUN)) return;
  4933. #if ENABLED(SINGLENOZZLE)
  4934. if (target_extruder != active_extruder) return;
  4935. #endif
  4936. if (code_seen('S')) {
  4937. thermalManager.setTargetHotend(code_value_temp_abs(), target_extruder);
  4938. #if ENABLED(DUAL_X_CARRIAGE)
  4939. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && target_extruder == 0)
  4940. thermalManager.setTargetHotend(code_value_temp_abs() == 0.0 ? 0.0 : code_value_temp_abs() + duplicate_extruder_temp_offset, 1);
  4941. #endif
  4942. #if ENABLED(PRINTJOB_TIMER_AUTOSTART)
  4943. /**
  4944. * Stop the timer at the end of print. Start is managed by 'heat and wait' M109.
  4945. * We use half EXTRUDE_MINTEMP here to allow nozzles to be put into hot
  4946. * standby mode, for instance in a dual extruder setup, without affecting
  4947. * the running print timer.
  4948. */
  4949. if (code_value_temp_abs() <= (EXTRUDE_MINTEMP)/2) {
  4950. print_job_timer.stop();
  4951. LCD_MESSAGEPGM(WELCOME_MSG);
  4952. }
  4953. #endif
  4954. if (code_value_temp_abs() > thermalManager.degHotend(target_extruder)) lcd_status_printf_P(0, PSTR("E%i %s"), target_extruder + 1, MSG_HEATING);
  4955. }
  4956. #if ENABLED(AUTOTEMP)
  4957. planner.autotemp_M104_M109();
  4958. #endif
  4959. }
  4960. #if HAS_TEMP_HOTEND || HAS_TEMP_BED
  4961. void print_heaterstates() {
  4962. #if HAS_TEMP_HOTEND
  4963. SERIAL_PROTOCOLPGM(" T:");
  4964. SERIAL_PROTOCOL_F(thermalManager.degHotend(target_extruder), 1);
  4965. SERIAL_PROTOCOLPGM(" /");
  4966. SERIAL_PROTOCOL_F(thermalManager.degTargetHotend(target_extruder), 1);
  4967. #if ENABLED(SHOW_TEMP_ADC_VALUES)
  4968. SERIAL_PROTOCOLPAIR(" (", thermalManager.current_temperature_raw[target_extruder] / OVERSAMPLENR);
  4969. SERIAL_PROTOCOLCHAR(')');
  4970. #endif
  4971. #endif
  4972. #if HAS_TEMP_BED
  4973. SERIAL_PROTOCOLPGM(" B:");
  4974. SERIAL_PROTOCOL_F(thermalManager.degBed(), 1);
  4975. SERIAL_PROTOCOLPGM(" /");
  4976. SERIAL_PROTOCOL_F(thermalManager.degTargetBed(), 1);
  4977. #if ENABLED(SHOW_TEMP_ADC_VALUES)
  4978. SERIAL_PROTOCOLPAIR(" (", thermalManager.current_temperature_bed_raw / OVERSAMPLENR);
  4979. SERIAL_PROTOCOLCHAR(')');
  4980. #endif
  4981. #endif
  4982. #if HOTENDS > 1
  4983. HOTEND_LOOP() {
  4984. SERIAL_PROTOCOLPAIR(" T", e);
  4985. SERIAL_PROTOCOLCHAR(':');
  4986. SERIAL_PROTOCOL_F(thermalManager.degHotend(e), 1);
  4987. SERIAL_PROTOCOLPGM(" /");
  4988. SERIAL_PROTOCOL_F(thermalManager.degTargetHotend(e), 1);
  4989. #if ENABLED(SHOW_TEMP_ADC_VALUES)
  4990. SERIAL_PROTOCOLPAIR(" (", thermalManager.current_temperature_raw[e] / OVERSAMPLENR);
  4991. SERIAL_PROTOCOLCHAR(')');
  4992. #endif
  4993. }
  4994. #endif
  4995. SERIAL_PROTOCOLPGM(" @:");
  4996. SERIAL_PROTOCOL(thermalManager.getHeaterPower(target_extruder));
  4997. #if HAS_TEMP_BED
  4998. SERIAL_PROTOCOLPGM(" B@:");
  4999. SERIAL_PROTOCOL(thermalManager.getHeaterPower(-1));
  5000. #endif
  5001. #if HOTENDS > 1
  5002. HOTEND_LOOP() {
  5003. SERIAL_PROTOCOLPAIR(" @", e);
  5004. SERIAL_PROTOCOLCHAR(':');
  5005. SERIAL_PROTOCOL(thermalManager.getHeaterPower(e));
  5006. }
  5007. #endif
  5008. }
  5009. #endif
  5010. /**
  5011. * M105: Read hot end and bed temperature
  5012. */
  5013. inline void gcode_M105() {
  5014. if (get_target_extruder_from_command(105)) return;
  5015. #if HAS_TEMP_HOTEND || HAS_TEMP_BED
  5016. SERIAL_PROTOCOLPGM(MSG_OK);
  5017. print_heaterstates();
  5018. #else // !HAS_TEMP_HOTEND && !HAS_TEMP_BED
  5019. SERIAL_ERROR_START;
  5020. SERIAL_ERRORLNPGM(MSG_ERR_NO_THERMISTORS);
  5021. #endif
  5022. SERIAL_EOL;
  5023. }
  5024. #if ENABLED(AUTO_REPORT_TEMPERATURES) && (HAS_TEMP_HOTEND || HAS_TEMP_BED)
  5025. static uint8_t auto_report_temp_interval;
  5026. static millis_t next_temp_report_ms;
  5027. /**
  5028. * M155: Set temperature auto-report interval. M155 S<seconds>
  5029. */
  5030. inline void gcode_M155() {
  5031. if (code_seen('S')) {
  5032. auto_report_temp_interval = code_value_byte();
  5033. NOMORE(auto_report_temp_interval, 60);
  5034. next_temp_report_ms = millis() + 1000UL * auto_report_temp_interval;
  5035. }
  5036. }
  5037. inline void auto_report_temperatures() {
  5038. if (auto_report_temp_interval && ELAPSED(millis(), next_temp_report_ms)) {
  5039. next_temp_report_ms = millis() + 1000UL * auto_report_temp_interval;
  5040. print_heaterstates();
  5041. SERIAL_EOL;
  5042. }
  5043. }
  5044. #endif // AUTO_REPORT_TEMPERATURES
  5045. #if FAN_COUNT > 0
  5046. /**
  5047. * M106: Set Fan Speed
  5048. *
  5049. * S<int> Speed between 0-255
  5050. * P<index> Fan index, if more than one fan
  5051. */
  5052. inline void gcode_M106() {
  5053. uint16_t s = code_seen('S') ? code_value_ushort() : 255,
  5054. p = code_seen('P') ? code_value_ushort() : 0;
  5055. NOMORE(s, 255);
  5056. if (p < FAN_COUNT) fanSpeeds[p] = s;
  5057. }
  5058. /**
  5059. * M107: Fan Off
  5060. */
  5061. inline void gcode_M107() {
  5062. uint16_t p = code_seen('P') ? code_value_ushort() : 0;
  5063. if (p < FAN_COUNT) fanSpeeds[p] = 0;
  5064. }
  5065. #endif // FAN_COUNT > 0
  5066. #if DISABLED(EMERGENCY_PARSER)
  5067. /**
  5068. * M108: Stop the waiting for heaters in M109, M190, M303. Does not affect the target temperature.
  5069. */
  5070. inline void gcode_M108() { wait_for_heatup = false; }
  5071. /**
  5072. * M112: Emergency Stop
  5073. */
  5074. inline void gcode_M112() { kill(PSTR(MSG_KILLED)); }
  5075. /**
  5076. * M410: Quickstop - Abort all planned moves
  5077. *
  5078. * This will stop the carriages mid-move, so most likely they
  5079. * will be out of sync with the stepper position after this.
  5080. */
  5081. inline void gcode_M410() { quickstop_stepper(); }
  5082. #endif
  5083. /**
  5084. * M109: Sxxx Wait for extruder(s) to reach temperature. Waits only when heating.
  5085. * Rxxx Wait for extruder(s) to reach temperature. Waits when heating and cooling.
  5086. */
  5087. #ifndef MIN_COOLING_SLOPE_DEG
  5088. #define MIN_COOLING_SLOPE_DEG 1.50
  5089. #endif
  5090. #ifndef MIN_COOLING_SLOPE_TIME
  5091. #define MIN_COOLING_SLOPE_TIME 60
  5092. #endif
  5093. inline void gcode_M109() {
  5094. if (get_target_extruder_from_command(109)) return;
  5095. if (DEBUGGING(DRYRUN)) return;
  5096. #if ENABLED(SINGLENOZZLE)
  5097. if (target_extruder != active_extruder) return;
  5098. #endif
  5099. const bool no_wait_for_cooling = code_seen('S');
  5100. if (no_wait_for_cooling || code_seen('R')) {
  5101. thermalManager.setTargetHotend(code_value_temp_abs(), target_extruder);
  5102. #if ENABLED(DUAL_X_CARRIAGE)
  5103. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && target_extruder == 0)
  5104. thermalManager.setTargetHotend(code_value_temp_abs() == 0.0 ? 0.0 : code_value_temp_abs() + duplicate_extruder_temp_offset, 1);
  5105. #endif
  5106. #if ENABLED(PRINTJOB_TIMER_AUTOSTART)
  5107. /**
  5108. * Use half EXTRUDE_MINTEMP to allow nozzles to be put into hot
  5109. * standby mode, (e.g., in a dual extruder setup) without affecting
  5110. * the running print timer.
  5111. */
  5112. if (code_value_temp_abs() <= (EXTRUDE_MINTEMP) / 2) {
  5113. print_job_timer.stop();
  5114. LCD_MESSAGEPGM(WELCOME_MSG);
  5115. }
  5116. else
  5117. print_job_timer.start();
  5118. #endif
  5119. if (thermalManager.isHeatingHotend(target_extruder)) lcd_status_printf_P(0, PSTR("E%i %s"), target_extruder + 1, MSG_HEATING);
  5120. }
  5121. else return;
  5122. #if ENABLED(AUTOTEMP)
  5123. planner.autotemp_M104_M109();
  5124. #endif
  5125. #if TEMP_RESIDENCY_TIME > 0
  5126. millis_t residency_start_ms = 0;
  5127. // Loop until the temperature has stabilized
  5128. #define TEMP_CONDITIONS (!residency_start_ms || PENDING(now, residency_start_ms + (TEMP_RESIDENCY_TIME) * 1000UL))
  5129. #else
  5130. // Loop until the temperature is very close target
  5131. #define TEMP_CONDITIONS (wants_to_cool ? thermalManager.isCoolingHotend(target_extruder) : thermalManager.isHeatingHotend(target_extruder))
  5132. #endif
  5133. float target_temp = -1.0, old_temp = 9999.0;
  5134. bool wants_to_cool = false;
  5135. wait_for_heatup = true;
  5136. millis_t now, next_temp_ms = 0, next_cool_check_ms = 0;
  5137. KEEPALIVE_STATE(NOT_BUSY);
  5138. #if ENABLED(PRINTER_EVENT_LEDS)
  5139. const float start_temp = thermalManager.degHotend(target_extruder);
  5140. uint8_t old_blue = 0;
  5141. #endif
  5142. do {
  5143. // Target temperature might be changed during the loop
  5144. if (target_temp != thermalManager.degTargetHotend(target_extruder)) {
  5145. wants_to_cool = thermalManager.isCoolingHotend(target_extruder);
  5146. target_temp = thermalManager.degTargetHotend(target_extruder);
  5147. // Exit if S<lower>, continue if S<higher>, R<lower>, or R<higher>
  5148. if (no_wait_for_cooling && wants_to_cool) break;
  5149. }
  5150. now = millis();
  5151. if (ELAPSED(now, next_temp_ms)) { //Print temp & remaining time every 1s while waiting
  5152. next_temp_ms = now + 1000UL;
  5153. print_heaterstates();
  5154. #if TEMP_RESIDENCY_TIME > 0
  5155. SERIAL_PROTOCOLPGM(" W:");
  5156. if (residency_start_ms) {
  5157. long rem = (((TEMP_RESIDENCY_TIME) * 1000UL) - (now - residency_start_ms)) / 1000UL;
  5158. SERIAL_PROTOCOLLN(rem);
  5159. }
  5160. else {
  5161. SERIAL_PROTOCOLLNPGM("?");
  5162. }
  5163. #else
  5164. SERIAL_EOL;
  5165. #endif
  5166. }
  5167. idle();
  5168. refresh_cmd_timeout(); // to prevent stepper_inactive_time from running out
  5169. const float temp = thermalManager.degHotend(target_extruder);
  5170. #if ENABLED(PRINTER_EVENT_LEDS)
  5171. // Gradually change LED strip from violet to red as nozzle heats up
  5172. if (!wants_to_cool) {
  5173. const uint8_t blue = map(constrain(temp, start_temp, target_temp), start_temp, target_temp, 255, 0);
  5174. if (blue != old_blue) set_led_color(255, 0, (old_blue = blue));
  5175. }
  5176. #endif
  5177. #if TEMP_RESIDENCY_TIME > 0
  5178. const float temp_diff = fabs(target_temp - temp);
  5179. if (!residency_start_ms) {
  5180. // Start the TEMP_RESIDENCY_TIME timer when we reach target temp for the first time.
  5181. if (temp_diff < TEMP_WINDOW) residency_start_ms = now;
  5182. }
  5183. else if (temp_diff > TEMP_HYSTERESIS) {
  5184. // Restart the timer whenever the temperature falls outside the hysteresis.
  5185. residency_start_ms = now;
  5186. }
  5187. #endif
  5188. // Prevent a wait-forever situation if R is misused i.e. M109 R0
  5189. if (wants_to_cool) {
  5190. // break after MIN_COOLING_SLOPE_TIME seconds
  5191. // if the temperature did not drop at least MIN_COOLING_SLOPE_DEG
  5192. if (!next_cool_check_ms || ELAPSED(now, next_cool_check_ms)) {
  5193. if (old_temp - temp < MIN_COOLING_SLOPE_DEG) break;
  5194. next_cool_check_ms = now + 1000UL * MIN_COOLING_SLOPE_TIME;
  5195. old_temp = temp;
  5196. }
  5197. }
  5198. } while (wait_for_heatup && TEMP_CONDITIONS);
  5199. if (wait_for_heatup) {
  5200. LCD_MESSAGEPGM(MSG_HEATING_COMPLETE);
  5201. #if ENABLED(PRINTER_EVENT_LEDS)
  5202. set_led_color(255, 255, 255); // Set LEDs ALL WHITE
  5203. #endif
  5204. }
  5205. KEEPALIVE_STATE(IN_HANDLER);
  5206. }
  5207. #if HAS_TEMP_BED
  5208. #ifndef MIN_COOLING_SLOPE_DEG_BED
  5209. #define MIN_COOLING_SLOPE_DEG_BED 1.50
  5210. #endif
  5211. #ifndef MIN_COOLING_SLOPE_TIME_BED
  5212. #define MIN_COOLING_SLOPE_TIME_BED 60
  5213. #endif
  5214. /**
  5215. * M190: Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  5216. * Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  5217. */
  5218. inline void gcode_M190() {
  5219. if (DEBUGGING(DRYRUN)) return;
  5220. LCD_MESSAGEPGM(MSG_BED_HEATING);
  5221. const bool no_wait_for_cooling = code_seen('S');
  5222. if (no_wait_for_cooling || code_seen('R')) {
  5223. thermalManager.setTargetBed(code_value_temp_abs());
  5224. #if ENABLED(PRINTJOB_TIMER_AUTOSTART)
  5225. if (code_value_temp_abs() > BED_MINTEMP)
  5226. print_job_timer.start();
  5227. #endif
  5228. }
  5229. else return;
  5230. #if TEMP_BED_RESIDENCY_TIME > 0
  5231. millis_t residency_start_ms = 0;
  5232. // Loop until the temperature has stabilized
  5233. #define TEMP_BED_CONDITIONS (!residency_start_ms || PENDING(now, residency_start_ms + (TEMP_BED_RESIDENCY_TIME) * 1000UL))
  5234. #else
  5235. // Loop until the temperature is very close target
  5236. #define TEMP_BED_CONDITIONS (wants_to_cool ? thermalManager.isCoolingBed() : thermalManager.isHeatingBed())
  5237. #endif
  5238. float target_temp = -1.0, old_temp = 9999.0;
  5239. bool wants_to_cool = false;
  5240. wait_for_heatup = true;
  5241. millis_t now, next_temp_ms = 0, next_cool_check_ms = 0;
  5242. KEEPALIVE_STATE(NOT_BUSY);
  5243. target_extruder = active_extruder; // for print_heaterstates
  5244. #if ENABLED(PRINTER_EVENT_LEDS)
  5245. const float start_temp = thermalManager.degBed();
  5246. uint8_t old_red = 255;
  5247. #endif
  5248. do {
  5249. // Target temperature might be changed during the loop
  5250. if (target_temp != thermalManager.degTargetBed()) {
  5251. wants_to_cool = thermalManager.isCoolingBed();
  5252. target_temp = thermalManager.degTargetBed();
  5253. // Exit if S<lower>, continue if S<higher>, R<lower>, or R<higher>
  5254. if (no_wait_for_cooling && wants_to_cool) break;
  5255. }
  5256. now = millis();
  5257. if (ELAPSED(now, next_temp_ms)) { //Print Temp Reading every 1 second while heating up.
  5258. next_temp_ms = now + 1000UL;
  5259. print_heaterstates();
  5260. #if TEMP_BED_RESIDENCY_TIME > 0
  5261. SERIAL_PROTOCOLPGM(" W:");
  5262. if (residency_start_ms) {
  5263. long rem = (((TEMP_BED_RESIDENCY_TIME) * 1000UL) - (now - residency_start_ms)) / 1000UL;
  5264. SERIAL_PROTOCOLLN(rem);
  5265. }
  5266. else {
  5267. SERIAL_PROTOCOLLNPGM("?");
  5268. }
  5269. #else
  5270. SERIAL_EOL;
  5271. #endif
  5272. }
  5273. idle();
  5274. refresh_cmd_timeout(); // to prevent stepper_inactive_time from running out
  5275. const float temp = thermalManager.degBed();
  5276. #if ENABLED(PRINTER_EVENT_LEDS)
  5277. // Gradually change LED strip from blue to violet as bed heats up
  5278. if (!wants_to_cool) {
  5279. const uint8_t red = map(constrain(temp, start_temp, target_temp), start_temp, target_temp, 0, 255);
  5280. if (red != old_red) set_led_color((old_red = red), 0, 255);
  5281. }
  5282. }
  5283. #endif
  5284. #if TEMP_BED_RESIDENCY_TIME > 0
  5285. const float temp_diff = fabs(target_temp - temp);
  5286. if (!residency_start_ms) {
  5287. // Start the TEMP_BED_RESIDENCY_TIME timer when we reach target temp for the first time.
  5288. if (temp_diff < TEMP_BED_WINDOW) residency_start_ms = now;
  5289. }
  5290. else if (temp_diff > TEMP_BED_HYSTERESIS) {
  5291. // Restart the timer whenever the temperature falls outside the hysteresis.
  5292. residency_start_ms = now;
  5293. }
  5294. #endif // TEMP_BED_RESIDENCY_TIME > 0
  5295. // Prevent a wait-forever situation if R is misused i.e. M190 R0
  5296. if (wants_to_cool) {
  5297. // Break after MIN_COOLING_SLOPE_TIME_BED seconds
  5298. // if the temperature did not drop at least MIN_COOLING_SLOPE_DEG_BED
  5299. if (!next_cool_check_ms || ELAPSED(now, next_cool_check_ms)) {
  5300. if (old_temp - temp < MIN_COOLING_SLOPE_DEG_BED) break;
  5301. next_cool_check_ms = now + 1000UL * MIN_COOLING_SLOPE_TIME_BED;
  5302. old_temp = temp;
  5303. }
  5304. }
  5305. } while (wait_for_heatup && TEMP_BED_CONDITIONS);
  5306. if (wait_for_heatup) LCD_MESSAGEPGM(MSG_BED_DONE);
  5307. KEEPALIVE_STATE(IN_HANDLER);
  5308. }
  5309. #endif // HAS_TEMP_BED
  5310. /**
  5311. * M110: Set Current Line Number
  5312. */
  5313. inline void gcode_M110() {
  5314. if (code_seen('N')) gcode_LastN = code_value_long();
  5315. }
  5316. /**
  5317. * M111: Set the debug level
  5318. */
  5319. inline void gcode_M111() {
  5320. marlin_debug_flags = code_seen('S') ? code_value_byte() : (uint8_t)DEBUG_NONE;
  5321. const static char str_debug_1[] PROGMEM = MSG_DEBUG_ECHO;
  5322. const static char str_debug_2[] PROGMEM = MSG_DEBUG_INFO;
  5323. const static char str_debug_4[] PROGMEM = MSG_DEBUG_ERRORS;
  5324. const static char str_debug_8[] PROGMEM = MSG_DEBUG_DRYRUN;
  5325. const static char str_debug_16[] PROGMEM = MSG_DEBUG_COMMUNICATION;
  5326. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5327. const static char str_debug_32[] PROGMEM = MSG_DEBUG_LEVELING;
  5328. #endif
  5329. const static char* const debug_strings[] PROGMEM = {
  5330. str_debug_1, str_debug_2, str_debug_4, str_debug_8, str_debug_16,
  5331. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5332. str_debug_32
  5333. #endif
  5334. };
  5335. SERIAL_ECHO_START;
  5336. SERIAL_ECHOPGM(MSG_DEBUG_PREFIX);
  5337. if (marlin_debug_flags) {
  5338. uint8_t comma = 0;
  5339. for (uint8_t i = 0; i < COUNT(debug_strings); i++) {
  5340. if (TEST(marlin_debug_flags, i)) {
  5341. if (comma++) SERIAL_CHAR(',');
  5342. serialprintPGM((char*)pgm_read_word(&(debug_strings[i])));
  5343. }
  5344. }
  5345. }
  5346. else {
  5347. SERIAL_ECHOPGM(MSG_DEBUG_OFF);
  5348. }
  5349. SERIAL_EOL;
  5350. }
  5351. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  5352. /**
  5353. * M113: Get or set Host Keepalive interval (0 to disable)
  5354. *
  5355. * S<seconds> Optional. Set the keepalive interval.
  5356. */
  5357. inline void gcode_M113() {
  5358. if (code_seen('S')) {
  5359. host_keepalive_interval = code_value_byte();
  5360. NOMORE(host_keepalive_interval, 60);
  5361. }
  5362. else {
  5363. SERIAL_ECHO_START;
  5364. SERIAL_ECHOLNPAIR("M113 S", (unsigned long)host_keepalive_interval);
  5365. }
  5366. }
  5367. #endif
  5368. #if ENABLED(BARICUDA)
  5369. #if HAS_HEATER_1
  5370. /**
  5371. * M126: Heater 1 valve open
  5372. */
  5373. inline void gcode_M126() { baricuda_valve_pressure = code_seen('S') ? code_value_byte() : 255; }
  5374. /**
  5375. * M127: Heater 1 valve close
  5376. */
  5377. inline void gcode_M127() { baricuda_valve_pressure = 0; }
  5378. #endif
  5379. #if HAS_HEATER_2
  5380. /**
  5381. * M128: Heater 2 valve open
  5382. */
  5383. inline void gcode_M128() { baricuda_e_to_p_pressure = code_seen('S') ? code_value_byte() : 255; }
  5384. /**
  5385. * M129: Heater 2 valve close
  5386. */
  5387. inline void gcode_M129() { baricuda_e_to_p_pressure = 0; }
  5388. #endif
  5389. #endif //BARICUDA
  5390. /**
  5391. * M140: Set bed temperature
  5392. */
  5393. inline void gcode_M140() {
  5394. if (DEBUGGING(DRYRUN)) return;
  5395. if (code_seen('S')) thermalManager.setTargetBed(code_value_temp_abs());
  5396. }
  5397. #if ENABLED(ULTIPANEL)
  5398. /**
  5399. * M145: Set the heatup state for a material in the LCD menu
  5400. *
  5401. * S<material> (0=PLA, 1=ABS)
  5402. * H<hotend temp>
  5403. * B<bed temp>
  5404. * F<fan speed>
  5405. */
  5406. inline void gcode_M145() {
  5407. uint8_t material = code_seen('S') ? (uint8_t)code_value_int() : 0;
  5408. if (material >= COUNT(lcd_preheat_hotend_temp)) {
  5409. SERIAL_ERROR_START;
  5410. SERIAL_ERRORLNPGM(MSG_ERR_MATERIAL_INDEX);
  5411. }
  5412. else {
  5413. int v;
  5414. if (code_seen('H')) {
  5415. v = code_value_int();
  5416. lcd_preheat_hotend_temp[material] = constrain(v, EXTRUDE_MINTEMP, HEATER_0_MAXTEMP - 15);
  5417. }
  5418. if (code_seen('F')) {
  5419. v = code_value_int();
  5420. lcd_preheat_fan_speed[material] = constrain(v, 0, 255);
  5421. }
  5422. #if TEMP_SENSOR_BED != 0
  5423. if (code_seen('B')) {
  5424. v = code_value_int();
  5425. lcd_preheat_bed_temp[material] = constrain(v, BED_MINTEMP, BED_MAXTEMP - 15);
  5426. }
  5427. #endif
  5428. }
  5429. }
  5430. #endif // ULTIPANEL
  5431. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  5432. /**
  5433. * M149: Set temperature units
  5434. */
  5435. inline void gcode_M149() {
  5436. if (code_seen('C')) set_input_temp_units(TEMPUNIT_C);
  5437. else if (code_seen('K')) set_input_temp_units(TEMPUNIT_K);
  5438. else if (code_seen('F')) set_input_temp_units(TEMPUNIT_F);
  5439. }
  5440. #endif
  5441. #if HAS_POWER_SWITCH
  5442. /**
  5443. * M80: Turn on Power Supply
  5444. */
  5445. inline void gcode_M80() {
  5446. OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE); //GND
  5447. /**
  5448. * If you have a switch on suicide pin, this is useful
  5449. * if you want to start another print with suicide feature after
  5450. * a print without suicide...
  5451. */
  5452. #if HAS_SUICIDE
  5453. OUT_WRITE(SUICIDE_PIN, HIGH);
  5454. #endif
  5455. #if ENABLED(ULTIPANEL)
  5456. powersupply = true;
  5457. LCD_MESSAGEPGM(WELCOME_MSG);
  5458. #endif
  5459. }
  5460. #endif // HAS_POWER_SWITCH
  5461. /**
  5462. * M81: Turn off Power, including Power Supply, if there is one.
  5463. *
  5464. * This code should ALWAYS be available for EMERGENCY SHUTDOWN!
  5465. */
  5466. inline void gcode_M81() {
  5467. thermalManager.disable_all_heaters();
  5468. stepper.finish_and_disable();
  5469. #if FAN_COUNT > 0
  5470. #if FAN_COUNT > 1
  5471. for (uint8_t i = 0; i < FAN_COUNT; i++) fanSpeeds[i] = 0;
  5472. #else
  5473. fanSpeeds[0] = 0;
  5474. #endif
  5475. #endif
  5476. safe_delay(1000); // Wait 1 second before switching off
  5477. #if HAS_SUICIDE
  5478. stepper.synchronize();
  5479. suicide();
  5480. #elif HAS_POWER_SWITCH
  5481. OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  5482. #endif
  5483. #if ENABLED(ULTIPANEL)
  5484. #if HAS_POWER_SWITCH
  5485. powersupply = false;
  5486. #endif
  5487. LCD_MESSAGEPGM(MACHINE_NAME " " MSG_OFF ".");
  5488. #endif
  5489. }
  5490. /**
  5491. * M82: Set E codes absolute (default)
  5492. */
  5493. inline void gcode_M82() { axis_relative_modes[E_AXIS] = false; }
  5494. /**
  5495. * M83: Set E codes relative while in Absolute Coordinates (G90) mode
  5496. */
  5497. inline void gcode_M83() { axis_relative_modes[E_AXIS] = true; }
  5498. /**
  5499. * M18, M84: Disable all stepper motors
  5500. */
  5501. inline void gcode_M18_M84() {
  5502. if (code_seen('S')) {
  5503. stepper_inactive_time = code_value_millis_from_seconds();
  5504. }
  5505. else {
  5506. bool all_axis = !((code_seen('X')) || (code_seen('Y')) || (code_seen('Z')) || (code_seen('E')));
  5507. if (all_axis) {
  5508. stepper.finish_and_disable();
  5509. }
  5510. else {
  5511. stepper.synchronize();
  5512. if (code_seen('X')) disable_x();
  5513. if (code_seen('Y')) disable_y();
  5514. if (code_seen('Z')) disable_z();
  5515. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  5516. if (code_seen('E')) disable_e_steppers();
  5517. #endif
  5518. }
  5519. }
  5520. }
  5521. /**
  5522. * M85: Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  5523. */
  5524. inline void gcode_M85() {
  5525. if (code_seen('S')) max_inactive_time = code_value_millis_from_seconds();
  5526. }
  5527. /**
  5528. * Multi-stepper support for M92, M201, M203
  5529. */
  5530. #if ENABLED(DISTINCT_E_FACTORS)
  5531. #define GET_TARGET_EXTRUDER(CMD) if (get_target_extruder_from_command(CMD)) return
  5532. #define TARGET_EXTRUDER target_extruder
  5533. #else
  5534. #define GET_TARGET_EXTRUDER(CMD) NOOP
  5535. #define TARGET_EXTRUDER 0
  5536. #endif
  5537. /**
  5538. * M92: Set axis steps-per-unit for one or more axes, X, Y, Z, and E.
  5539. * (Follows the same syntax as G92)
  5540. *
  5541. * With multiple extruders use T to specify which one.
  5542. */
  5543. inline void gcode_M92() {
  5544. GET_TARGET_EXTRUDER(92);
  5545. LOOP_XYZE(i) {
  5546. if (code_seen(axis_codes[i])) {
  5547. if (i == E_AXIS) {
  5548. float value = code_value_per_axis_unit(E_AXIS + TARGET_EXTRUDER);
  5549. if (value < 20.0) {
  5550. float factor = planner.axis_steps_per_mm[E_AXIS + TARGET_EXTRUDER] / value; // increase e constants if M92 E14 is given for netfab.
  5551. planner.max_jerk[E_AXIS] *= factor;
  5552. planner.max_feedrate_mm_s[E_AXIS + TARGET_EXTRUDER] *= factor;
  5553. planner.max_acceleration_steps_per_s2[E_AXIS + TARGET_EXTRUDER] *= factor;
  5554. }
  5555. planner.axis_steps_per_mm[E_AXIS + TARGET_EXTRUDER] = value;
  5556. }
  5557. else {
  5558. planner.axis_steps_per_mm[i] = code_value_per_axis_unit(i);
  5559. }
  5560. }
  5561. }
  5562. planner.refresh_positioning();
  5563. }
  5564. /**
  5565. * Output the current position to serial
  5566. */
  5567. static void report_current_position() {
  5568. SERIAL_PROTOCOLPGM("X:");
  5569. SERIAL_PROTOCOL(current_position[X_AXIS]);
  5570. SERIAL_PROTOCOLPGM(" Y:");
  5571. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  5572. SERIAL_PROTOCOLPGM(" Z:");
  5573. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  5574. SERIAL_PROTOCOLPGM(" E:");
  5575. SERIAL_PROTOCOL(current_position[E_AXIS]);
  5576. stepper.report_positions();
  5577. #if IS_SCARA
  5578. SERIAL_PROTOCOLPAIR("SCARA Theta:", stepper.get_axis_position_degrees(A_AXIS));
  5579. SERIAL_PROTOCOLLNPAIR(" Psi+Theta:", stepper.get_axis_position_degrees(B_AXIS));
  5580. SERIAL_EOL;
  5581. #endif
  5582. }
  5583. /**
  5584. * M114: Output current position to serial port
  5585. */
  5586. inline void gcode_M114() { stepper.synchronize(); report_current_position(); }
  5587. /**
  5588. * M115: Capabilities string
  5589. */
  5590. inline void gcode_M115() {
  5591. SERIAL_PROTOCOLLNPGM(MSG_M115_REPORT);
  5592. #if ENABLED(EXTENDED_CAPABILITIES_REPORT)
  5593. // EEPROM (M500, M501)
  5594. #if ENABLED(EEPROM_SETTINGS)
  5595. SERIAL_PROTOCOLLNPGM("Cap:EEPROM:1");
  5596. #else
  5597. SERIAL_PROTOCOLLNPGM("Cap:EEPROM:0");
  5598. #endif
  5599. // AUTOREPORT_TEMP (M155)
  5600. #if ENABLED(AUTO_REPORT_TEMPERATURES)
  5601. SERIAL_PROTOCOLLNPGM("Cap:AUTOREPORT_TEMP:1");
  5602. #else
  5603. SERIAL_PROTOCOLLNPGM("Cap:AUTOREPORT_TEMP:0");
  5604. #endif
  5605. // PROGRESS (M530 S L, M531 <file>, M532 X L)
  5606. SERIAL_PROTOCOLLNPGM("Cap:PROGRESS:0");
  5607. // AUTOLEVEL (G29)
  5608. #if HAS_ABL
  5609. SERIAL_PROTOCOLLNPGM("Cap:AUTOLEVEL:1");
  5610. #else
  5611. SERIAL_PROTOCOLLNPGM("Cap:AUTOLEVEL:0");
  5612. #endif
  5613. // Z_PROBE (G30)
  5614. #if HAS_BED_PROBE
  5615. SERIAL_PROTOCOLLNPGM("Cap:Z_PROBE:1");
  5616. #else
  5617. SERIAL_PROTOCOLLNPGM("Cap:Z_PROBE:0");
  5618. #endif
  5619. // MESH_REPORT (M420 V)
  5620. #if PLANNER_LEVELING
  5621. SERIAL_PROTOCOLLNPGM("Cap:LEVELING_DATA:1");
  5622. #else
  5623. SERIAL_PROTOCOLLNPGM("Cap:LEVELING_DATA:0");
  5624. #endif
  5625. // SOFTWARE_POWER (G30)
  5626. #if HAS_POWER_SWITCH
  5627. SERIAL_PROTOCOLLNPGM("Cap:SOFTWARE_POWER:1");
  5628. #else
  5629. SERIAL_PROTOCOLLNPGM("Cap:SOFTWARE_POWER:0");
  5630. #endif
  5631. // TOGGLE_LIGHTS (M355)
  5632. #if HAS_CASE_LIGHT
  5633. SERIAL_PROTOCOLLNPGM("Cap:TOGGLE_LIGHTS:1");
  5634. #else
  5635. SERIAL_PROTOCOLLNPGM("Cap:TOGGLE_LIGHTS:0");
  5636. #endif
  5637. // EMERGENCY_PARSER (M108, M112, M410)
  5638. #if ENABLED(EMERGENCY_PARSER)
  5639. SERIAL_PROTOCOLLNPGM("Cap:EMERGENCY_PARSER:1");
  5640. #else
  5641. SERIAL_PROTOCOLLNPGM("Cap:EMERGENCY_PARSER:0");
  5642. #endif
  5643. #endif // EXTENDED_CAPABILITIES_REPORT
  5644. }
  5645. /**
  5646. * M117: Set LCD Status Message
  5647. */
  5648. inline void gcode_M117() {
  5649. lcd_setstatus(current_command_args);
  5650. }
  5651. /**
  5652. * M119: Output endstop states to serial output
  5653. */
  5654. inline void gcode_M119() { endstops.M119(); }
  5655. /**
  5656. * M120: Enable endstops and set non-homing endstop state to "enabled"
  5657. */
  5658. inline void gcode_M120() { endstops.enable_globally(true); }
  5659. /**
  5660. * M121: Disable endstops and set non-homing endstop state to "disabled"
  5661. */
  5662. inline void gcode_M121() { endstops.enable_globally(false); }
  5663. #if ENABLED(PARK_HEAD_ON_PAUSE)
  5664. /**
  5665. * M125: Store current position and move to filament change position.
  5666. * Called on pause (by M25) to prevent material leaking onto the
  5667. * object. On resume (M24) the head will be moved back and the
  5668. * print will resume.
  5669. *
  5670. * If Marlin is compiled without SD Card support, M125 can be
  5671. * used directly to pause the print and move to park position,
  5672. * resuming with a button click or M108.
  5673. *
  5674. * L = override retract length
  5675. * X = override X
  5676. * Y = override Y
  5677. * Z = override Z raise
  5678. */
  5679. inline void gcode_M125() {
  5680. if (move_away_flag) return; // already paused
  5681. const bool job_running = print_job_timer.isRunning();
  5682. // there are blocks after this one, or sd printing
  5683. move_away_flag = job_running || planner.blocks_queued()
  5684. #if ENABLED(SDSUPPORT)
  5685. || card.sdprinting
  5686. #endif
  5687. ;
  5688. if (!move_away_flag) return; // nothing to pause
  5689. // M125 can be used to pause a print too
  5690. #if ENABLED(SDSUPPORT)
  5691. card.pauseSDPrint();
  5692. #endif
  5693. print_job_timer.pause();
  5694. // Save current position
  5695. COPY(resume_position, current_position);
  5696. set_destination_to_current();
  5697. // Initial retract before move to filament change position
  5698. destination[E_AXIS] += code_seen('L') ? code_value_axis_units(E_AXIS) : 0
  5699. #if defined(FILAMENT_CHANGE_RETRACT_LENGTH) && FILAMENT_CHANGE_RETRACT_LENGTH > 0
  5700. - (FILAMENT_CHANGE_RETRACT_LENGTH)
  5701. #endif
  5702. ;
  5703. RUNPLAN(FILAMENT_CHANGE_RETRACT_FEEDRATE);
  5704. // Lift Z axis
  5705. const float z_lift = code_seen('Z') ? code_value_axis_units(Z_AXIS) :
  5706. #if defined(FILAMENT_CHANGE_Z_ADD) && FILAMENT_CHANGE_Z_ADD > 0
  5707. FILAMENT_CHANGE_Z_ADD
  5708. #else
  5709. 0
  5710. #endif
  5711. ;
  5712. if (z_lift > 0) {
  5713. destination[Z_AXIS] += z_lift;
  5714. NOMORE(destination[Z_AXIS], Z_MAX_POS);
  5715. RUNPLAN(FILAMENT_CHANGE_Z_FEEDRATE);
  5716. }
  5717. // Move XY axes to filament change position or given position
  5718. destination[X_AXIS] = code_seen('X') ? code_value_axis_units(X_AXIS) : 0
  5719. #ifdef FILAMENT_CHANGE_X_POS
  5720. + FILAMENT_CHANGE_X_POS
  5721. #endif
  5722. ;
  5723. destination[Y_AXIS] = code_seen('Y') ? code_value_axis_units(Y_AXIS) : 0
  5724. #ifdef FILAMENT_CHANGE_Y_POS
  5725. + FILAMENT_CHANGE_Y_POS
  5726. #endif
  5727. ;
  5728. #if HOTENDS > 1 && DISABLED(DUAL_X_CARRIAGE)
  5729. if (active_extruder > 0) {
  5730. if (!code_seen('X')) destination[X_AXIS] += hotend_offset[X_AXIS][active_extruder];
  5731. if (!code_seen('Y')) destination[Y_AXIS] += hotend_offset[Y_AXIS][active_extruder];
  5732. }
  5733. #endif
  5734. clamp_to_software_endstops(destination);
  5735. RUNPLAN(FILAMENT_CHANGE_XY_FEEDRATE);
  5736. set_current_to_destination();
  5737. stepper.synchronize();
  5738. disable_e_steppers();
  5739. #if DISABLED(SDSUPPORT)
  5740. // Wait for lcd click or M108
  5741. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5742. wait_for_user = true;
  5743. while (wait_for_user) idle();
  5744. KEEPALIVE_STATE(IN_HANDLER);
  5745. // Return to print position and continue
  5746. move_back_on_resume();
  5747. if (job_running) print_job_timer.start();
  5748. move_away_flag = false;
  5749. #endif
  5750. }
  5751. #endif // PARK_HEAD_ON_PAUSE
  5752. #if HAS_COLOR_LEDS
  5753. /**
  5754. * M150: Set Status LED Color - Use R-U-B for R-G-B
  5755. *
  5756. * Always sets all 3 components. If a component is left out, set to 0.
  5757. *
  5758. * Examples:
  5759. *
  5760. * M150 R255 ; Turn LED red
  5761. * M150 R255 U127 ; Turn LED orange (PWM only)
  5762. * M150 ; Turn LED off
  5763. * M150 R U B ; Turn LED white
  5764. *
  5765. */
  5766. inline void gcode_M150() {
  5767. set_led_color(
  5768. code_seen('R') ? (code_has_value() ? code_value_byte() : 255) : 0,
  5769. code_seen('U') ? (code_has_value() ? code_value_byte() : 255) : 0,
  5770. code_seen('B') ? (code_has_value() ? code_value_byte() : 255) : 0
  5771. );
  5772. }
  5773. #endif // BLINKM || RGB_LED
  5774. /**
  5775. * M200: Set filament diameter and set E axis units to cubic units
  5776. *
  5777. * T<extruder> - Optional extruder number. Current extruder if omitted.
  5778. * D<linear> - Diameter of the filament. Use "D0" to switch back to linear units on the E axis.
  5779. */
  5780. inline void gcode_M200() {
  5781. if (get_target_extruder_from_command(200)) return;
  5782. if (code_seen('D')) {
  5783. // setting any extruder filament size disables volumetric on the assumption that
  5784. // slicers either generate in extruder values as cubic mm or as as filament feeds
  5785. // for all extruders
  5786. volumetric_enabled = (code_value_linear_units() != 0.0);
  5787. if (volumetric_enabled) {
  5788. filament_size[target_extruder] = code_value_linear_units();
  5789. // make sure all extruders have some sane value for the filament size
  5790. for (uint8_t i = 0; i < COUNT(filament_size); i++)
  5791. if (! filament_size[i]) filament_size[i] = DEFAULT_NOMINAL_FILAMENT_DIA;
  5792. }
  5793. }
  5794. else {
  5795. //reserved for setting filament diameter via UFID or filament measuring device
  5796. return;
  5797. }
  5798. calculate_volumetric_multipliers();
  5799. }
  5800. /**
  5801. * M201: Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  5802. *
  5803. * With multiple extruders use T to specify which one.
  5804. */
  5805. inline void gcode_M201() {
  5806. GET_TARGET_EXTRUDER(201);
  5807. LOOP_XYZE(i) {
  5808. if (code_seen(axis_codes[i])) {
  5809. const uint8_t a = i + (i == E_AXIS ? TARGET_EXTRUDER : 0);
  5810. planner.max_acceleration_mm_per_s2[a] = code_value_axis_units(a);
  5811. }
  5812. }
  5813. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  5814. planner.reset_acceleration_rates();
  5815. }
  5816. #if 0 // Not used for Sprinter/grbl gen6
  5817. inline void gcode_M202() {
  5818. LOOP_XYZE(i) {
  5819. if (code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value_axis_units(i) * planner.axis_steps_per_mm[i];
  5820. }
  5821. }
  5822. #endif
  5823. /**
  5824. * M203: Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in units/sec
  5825. *
  5826. * With multiple extruders use T to specify which one.
  5827. */
  5828. inline void gcode_M203() {
  5829. GET_TARGET_EXTRUDER(203);
  5830. LOOP_XYZE(i)
  5831. if (code_seen(axis_codes[i])) {
  5832. const uint8_t a = i + (i == E_AXIS ? TARGET_EXTRUDER : 0);
  5833. planner.max_feedrate_mm_s[a] = code_value_axis_units(a);
  5834. }
  5835. }
  5836. /**
  5837. * M204: Set Accelerations in units/sec^2 (M204 P1200 R3000 T3000)
  5838. *
  5839. * P = Printing moves
  5840. * R = Retract only (no X, Y, Z) moves
  5841. * T = Travel (non printing) moves
  5842. *
  5843. * Also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  5844. */
  5845. inline void gcode_M204() {
  5846. if (code_seen('S')) { // Kept for legacy compatibility. Should NOT BE USED for new developments.
  5847. planner.travel_acceleration = planner.acceleration = code_value_linear_units();
  5848. SERIAL_ECHOLNPAIR("Setting Print and Travel Acceleration: ", planner.acceleration);
  5849. }
  5850. if (code_seen('P')) {
  5851. planner.acceleration = code_value_linear_units();
  5852. SERIAL_ECHOLNPAIR("Setting Print Acceleration: ", planner.acceleration);
  5853. }
  5854. if (code_seen('R')) {
  5855. planner.retract_acceleration = code_value_linear_units();
  5856. SERIAL_ECHOLNPAIR("Setting Retract Acceleration: ", planner.retract_acceleration);
  5857. }
  5858. if (code_seen('T')) {
  5859. planner.travel_acceleration = code_value_linear_units();
  5860. SERIAL_ECHOLNPAIR("Setting Travel Acceleration: ", planner.travel_acceleration);
  5861. }
  5862. }
  5863. /**
  5864. * M205: Set Advanced Settings
  5865. *
  5866. * S = Min Feed Rate (units/s)
  5867. * T = Min Travel Feed Rate (units/s)
  5868. * B = Min Segment Time (µs)
  5869. * X = Max X Jerk (units/sec^2)
  5870. * Y = Max Y Jerk (units/sec^2)
  5871. * Z = Max Z Jerk (units/sec^2)
  5872. * E = Max E Jerk (units/sec^2)
  5873. */
  5874. inline void gcode_M205() {
  5875. if (code_seen('S')) planner.min_feedrate_mm_s = code_value_linear_units();
  5876. if (code_seen('T')) planner.min_travel_feedrate_mm_s = code_value_linear_units();
  5877. if (code_seen('B')) planner.min_segment_time = code_value_millis();
  5878. if (code_seen('X')) planner.max_jerk[X_AXIS] = code_value_axis_units(X_AXIS);
  5879. if (code_seen('Y')) planner.max_jerk[Y_AXIS] = code_value_axis_units(Y_AXIS);
  5880. if (code_seen('Z')) planner.max_jerk[Z_AXIS] = code_value_axis_units(Z_AXIS);
  5881. if (code_seen('E')) planner.max_jerk[E_AXIS] = code_value_axis_units(E_AXIS);
  5882. }
  5883. #if DISABLED(NO_WORKSPACE_OFFSETS)
  5884. /**
  5885. * M206: Set Additional Homing Offset (X Y Z). SCARA aliases T=X, P=Y
  5886. */
  5887. inline void gcode_M206() {
  5888. LOOP_XYZ(i)
  5889. if (code_seen(axis_codes[i]))
  5890. set_home_offset((AxisEnum)i, code_value_axis_units(i));
  5891. #if ENABLED(MORGAN_SCARA)
  5892. if (code_seen('T')) set_home_offset(A_AXIS, code_value_axis_units(A_AXIS)); // Theta
  5893. if (code_seen('P')) set_home_offset(B_AXIS, code_value_axis_units(B_AXIS)); // Psi
  5894. #endif
  5895. SYNC_PLAN_POSITION_KINEMATIC();
  5896. report_current_position();
  5897. }
  5898. #endif // NO_WORKSPACE_OFFSETS
  5899. #if ENABLED(DELTA)
  5900. /**
  5901. * M665: Set delta configurations
  5902. *
  5903. * L = diagonal rod
  5904. * R = delta radius
  5905. * S = segments per second
  5906. * A = Alpha (Tower 1) diagonal rod trim
  5907. * B = Beta (Tower 2) diagonal rod trim
  5908. * C = Gamma (Tower 3) diagonal rod trim
  5909. */
  5910. inline void gcode_M665() {
  5911. if (code_seen('L')) delta_diagonal_rod = code_value_linear_units();
  5912. if (code_seen('R')) delta_radius = code_value_linear_units();
  5913. if (code_seen('S')) delta_segments_per_second = code_value_float();
  5914. if (code_seen('A')) delta_diagonal_rod_trim[A_AXIS] = code_value_linear_units();
  5915. if (code_seen('B')) delta_diagonal_rod_trim[B_AXIS] = code_value_linear_units();
  5916. if (code_seen('C')) delta_diagonal_rod_trim[C_AXIS] = code_value_linear_units();
  5917. if (code_seen('I')) delta_tower_angle_trim[A_AXIS] = code_value_linear_units();
  5918. if (code_seen('J')) delta_tower_angle_trim[B_AXIS] = code_value_linear_units();
  5919. if (code_seen('K')) delta_tower_angle_trim[C_AXIS] = code_value_linear_units();
  5920. recalc_delta_settings(delta_radius, delta_diagonal_rod);
  5921. }
  5922. /**
  5923. * M666: Set delta endstop adjustment
  5924. */
  5925. inline void gcode_M666() {
  5926. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5927. if (DEBUGGING(LEVELING)) {
  5928. SERIAL_ECHOLNPGM(">>> gcode_M666");
  5929. }
  5930. #endif
  5931. LOOP_XYZ(i) {
  5932. if (code_seen(axis_codes[i])) {
  5933. endstop_adj[i] = code_value_axis_units(i);
  5934. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5935. if (DEBUGGING(LEVELING)) {
  5936. SERIAL_ECHOPAIR("endstop_adj[", axis_codes[i]);
  5937. SERIAL_ECHOLNPAIR("] = ", endstop_adj[i]);
  5938. }
  5939. #endif
  5940. }
  5941. }
  5942. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5943. if (DEBUGGING(LEVELING)) {
  5944. SERIAL_ECHOLNPGM("<<< gcode_M666");
  5945. }
  5946. #endif
  5947. }
  5948. #elif ENABLED(Z_DUAL_ENDSTOPS) // !DELTA && ENABLED(Z_DUAL_ENDSTOPS)
  5949. /**
  5950. * M666: For Z Dual Endstop setup, set z axis offset to the z2 axis.
  5951. */
  5952. inline void gcode_M666() {
  5953. if (code_seen('Z')) z_endstop_adj = code_value_axis_units(Z_AXIS);
  5954. SERIAL_ECHOLNPAIR("Z Endstop Adjustment set to (mm):", z_endstop_adj);
  5955. }
  5956. #endif // !DELTA && Z_DUAL_ENDSTOPS
  5957. #if ENABLED(FWRETRACT)
  5958. /**
  5959. * M207: Set firmware retraction values
  5960. *
  5961. * S[+units] retract_length
  5962. * W[+units] retract_length_swap (multi-extruder)
  5963. * F[units/min] retract_feedrate_mm_s
  5964. * Z[units] retract_zlift
  5965. */
  5966. inline void gcode_M207() {
  5967. if (code_seen('S')) retract_length = code_value_axis_units(E_AXIS);
  5968. if (code_seen('F')) retract_feedrate_mm_s = MMM_TO_MMS(code_value_axis_units(E_AXIS));
  5969. if (code_seen('Z')) retract_zlift = code_value_axis_units(Z_AXIS);
  5970. #if EXTRUDERS > 1
  5971. if (code_seen('W')) retract_length_swap = code_value_axis_units(E_AXIS);
  5972. #endif
  5973. }
  5974. /**
  5975. * M208: Set firmware un-retraction values
  5976. *
  5977. * S[+units] retract_recover_length (in addition to M207 S*)
  5978. * W[+units] retract_recover_length_swap (multi-extruder)
  5979. * F[units/min] retract_recover_feedrate_mm_s
  5980. */
  5981. inline void gcode_M208() {
  5982. if (code_seen('S')) retract_recover_length = code_value_axis_units(E_AXIS);
  5983. if (code_seen('F')) retract_recover_feedrate_mm_s = MMM_TO_MMS(code_value_axis_units(E_AXIS));
  5984. #if EXTRUDERS > 1
  5985. if (code_seen('W')) retract_recover_length_swap = code_value_axis_units(E_AXIS);
  5986. #endif
  5987. }
  5988. /**
  5989. * M209: Enable automatic retract (M209 S1)
  5990. * For slicers that don't support G10/11, reversed extrude-only
  5991. * moves will be classified as retraction.
  5992. */
  5993. inline void gcode_M209() {
  5994. if (code_seen('S')) {
  5995. autoretract_enabled = code_value_bool();
  5996. for (int i = 0; i < EXTRUDERS; i++) retracted[i] = false;
  5997. }
  5998. }
  5999. #endif // FWRETRACT
  6000. /**
  6001. * M211: Enable, Disable, and/or Report software endstops
  6002. *
  6003. * Usage: M211 S1 to enable, M211 S0 to disable, M211 alone for report
  6004. */
  6005. inline void gcode_M211() {
  6006. SERIAL_ECHO_START;
  6007. #if HAS_SOFTWARE_ENDSTOPS
  6008. if (code_seen('S')) soft_endstops_enabled = code_value_bool();
  6009. SERIAL_ECHOPGM(MSG_SOFT_ENDSTOPS);
  6010. serialprintPGM(soft_endstops_enabled ? PSTR(MSG_ON) : PSTR(MSG_OFF));
  6011. #else
  6012. SERIAL_ECHOPGM(MSG_SOFT_ENDSTOPS);
  6013. SERIAL_ECHOPGM(MSG_OFF);
  6014. #endif
  6015. SERIAL_ECHOPGM(MSG_SOFT_MIN);
  6016. SERIAL_ECHOPAIR( MSG_X, soft_endstop_min[X_AXIS]);
  6017. SERIAL_ECHOPAIR(" " MSG_Y, soft_endstop_min[Y_AXIS]);
  6018. SERIAL_ECHOPAIR(" " MSG_Z, soft_endstop_min[Z_AXIS]);
  6019. SERIAL_ECHOPGM(MSG_SOFT_MAX);
  6020. SERIAL_ECHOPAIR( MSG_X, soft_endstop_max[X_AXIS]);
  6021. SERIAL_ECHOPAIR(" " MSG_Y, soft_endstop_max[Y_AXIS]);
  6022. SERIAL_ECHOLNPAIR(" " MSG_Z, soft_endstop_max[Z_AXIS]);
  6023. }
  6024. #if HOTENDS > 1
  6025. /**
  6026. * M218 - set hotend offset (in linear units)
  6027. *
  6028. * T<tool>
  6029. * X<xoffset>
  6030. * Y<yoffset>
  6031. * Z<zoffset> - Available with DUAL_X_CARRIAGE and SWITCHING_EXTRUDER
  6032. */
  6033. inline void gcode_M218() {
  6034. if (get_target_extruder_from_command(218) || target_extruder == 0) return;
  6035. if (code_seen('X')) hotend_offset[X_AXIS][target_extruder] = code_value_axis_units(X_AXIS);
  6036. if (code_seen('Y')) hotend_offset[Y_AXIS][target_extruder] = code_value_axis_units(Y_AXIS);
  6037. #if ENABLED(DUAL_X_CARRIAGE) || ENABLED(SWITCHING_EXTRUDER)
  6038. if (code_seen('Z')) hotend_offset[Z_AXIS][target_extruder] = code_value_axis_units(Z_AXIS);
  6039. #endif
  6040. SERIAL_ECHO_START;
  6041. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  6042. HOTEND_LOOP() {
  6043. SERIAL_CHAR(' ');
  6044. SERIAL_ECHO(hotend_offset[X_AXIS][e]);
  6045. SERIAL_CHAR(',');
  6046. SERIAL_ECHO(hotend_offset[Y_AXIS][e]);
  6047. #if ENABLED(DUAL_X_CARRIAGE) || ENABLED(SWITCHING_EXTRUDER)
  6048. SERIAL_CHAR(',');
  6049. SERIAL_ECHO(hotend_offset[Z_AXIS][e]);
  6050. #endif
  6051. }
  6052. SERIAL_EOL;
  6053. }
  6054. #endif // HOTENDS > 1
  6055. /**
  6056. * M220: Set speed percentage factor, aka "Feed Rate" (M220 S95)
  6057. */
  6058. inline void gcode_M220() {
  6059. if (code_seen('S')) feedrate_percentage = code_value_int();
  6060. }
  6061. /**
  6062. * M221: Set extrusion percentage (M221 T0 S95)
  6063. */
  6064. inline void gcode_M221() {
  6065. if (get_target_extruder_from_command(221)) return;
  6066. if (code_seen('S'))
  6067. flow_percentage[target_extruder] = code_value_int();
  6068. }
  6069. /**
  6070. * M226: Wait until the specified pin reaches the state required (M226 P<pin> S<state>)
  6071. */
  6072. inline void gcode_M226() {
  6073. if (code_seen('P')) {
  6074. int pin_number = code_value_int(),
  6075. pin_state = code_seen('S') ? code_value_int() : -1; // required pin state - default is inverted
  6076. if (pin_state >= -1 && pin_state <= 1 && pin_number > -1 && !pin_is_protected(pin_number)) {
  6077. int target = LOW;
  6078. stepper.synchronize();
  6079. pinMode(pin_number, INPUT);
  6080. switch (pin_state) {
  6081. case 1:
  6082. target = HIGH;
  6083. break;
  6084. case 0:
  6085. target = LOW;
  6086. break;
  6087. case -1:
  6088. target = !digitalRead(pin_number);
  6089. break;
  6090. }
  6091. while (digitalRead(pin_number) != target) idle();
  6092. } // pin_state -1 0 1 && pin_number > -1
  6093. } // code_seen('P')
  6094. }
  6095. #if ENABLED(EXPERIMENTAL_I2CBUS)
  6096. /**
  6097. * M260: Send data to a I2C slave device
  6098. *
  6099. * This is a PoC, the formating and arguments for the GCODE will
  6100. * change to be more compatible, the current proposal is:
  6101. *
  6102. * M260 A<slave device address base 10> ; Sets the I2C slave address the data will be sent to
  6103. *
  6104. * M260 B<byte-1 value in base 10>
  6105. * M260 B<byte-2 value in base 10>
  6106. * M260 B<byte-3 value in base 10>
  6107. *
  6108. * M260 S1 ; Send the buffered data and reset the buffer
  6109. * M260 R1 ; Reset the buffer without sending data
  6110. *
  6111. */
  6112. inline void gcode_M260() {
  6113. // Set the target address
  6114. if (code_seen('A')) i2c.address(code_value_byte());
  6115. // Add a new byte to the buffer
  6116. if (code_seen('B')) i2c.addbyte(code_value_byte());
  6117. // Flush the buffer to the bus
  6118. if (code_seen('S')) i2c.send();
  6119. // Reset and rewind the buffer
  6120. else if (code_seen('R')) i2c.reset();
  6121. }
  6122. /**
  6123. * M261: Request X bytes from I2C slave device
  6124. *
  6125. * Usage: M261 A<slave device address base 10> B<number of bytes>
  6126. */
  6127. inline void gcode_M261() {
  6128. if (code_seen('A')) i2c.address(code_value_byte());
  6129. uint8_t bytes = code_seen('B') ? code_value_byte() : 1;
  6130. if (i2c.addr && bytes && bytes <= TWIBUS_BUFFER_SIZE) {
  6131. i2c.relay(bytes);
  6132. }
  6133. else {
  6134. SERIAL_ERROR_START;
  6135. SERIAL_ERRORLN("Bad i2c request");
  6136. }
  6137. }
  6138. #endif // EXPERIMENTAL_I2CBUS
  6139. #if HAS_SERVOS
  6140. /**
  6141. * M280: Get or set servo position. P<index> [S<angle>]
  6142. */
  6143. inline void gcode_M280() {
  6144. if (!code_seen('P')) return;
  6145. int servo_index = code_value_int();
  6146. if (WITHIN(servo_index, 0, NUM_SERVOS - 1)) {
  6147. if (code_seen('S'))
  6148. MOVE_SERVO(servo_index, code_value_int());
  6149. else {
  6150. SERIAL_ECHO_START;
  6151. SERIAL_ECHOPAIR(" Servo ", servo_index);
  6152. SERIAL_ECHOLNPAIR(": ", servo[servo_index].read());
  6153. }
  6154. }
  6155. else {
  6156. SERIAL_ERROR_START;
  6157. SERIAL_ECHOPAIR("Servo ", servo_index);
  6158. SERIAL_ECHOLNPGM(" out of range");
  6159. }
  6160. }
  6161. #endif // HAS_SERVOS
  6162. #if HAS_BUZZER
  6163. /**
  6164. * M300: Play beep sound S<frequency Hz> P<duration ms>
  6165. */
  6166. inline void gcode_M300() {
  6167. uint16_t const frequency = code_seen('S') ? code_value_ushort() : 260;
  6168. uint16_t duration = code_seen('P') ? code_value_ushort() : 1000;
  6169. // Limits the tone duration to 0-5 seconds.
  6170. NOMORE(duration, 5000);
  6171. BUZZ(duration, frequency);
  6172. }
  6173. #endif // HAS_BUZZER
  6174. #if ENABLED(PIDTEMP)
  6175. /**
  6176. * M301: Set PID parameters P I D (and optionally C, L)
  6177. *
  6178. * P[float] Kp term
  6179. * I[float] Ki term (unscaled)
  6180. * D[float] Kd term (unscaled)
  6181. *
  6182. * With PID_EXTRUSION_SCALING:
  6183. *
  6184. * C[float] Kc term
  6185. * L[float] LPQ length
  6186. */
  6187. inline void gcode_M301() {
  6188. // multi-extruder PID patch: M301 updates or prints a single extruder's PID values
  6189. // default behaviour (omitting E parameter) is to update for extruder 0 only
  6190. int e = code_seen('E') ? code_value_int() : 0; // extruder being updated
  6191. if (e < HOTENDS) { // catch bad input value
  6192. if (code_seen('P')) PID_PARAM(Kp, e) = code_value_float();
  6193. if (code_seen('I')) PID_PARAM(Ki, e) = scalePID_i(code_value_float());
  6194. if (code_seen('D')) PID_PARAM(Kd, e) = scalePID_d(code_value_float());
  6195. #if ENABLED(PID_EXTRUSION_SCALING)
  6196. if (code_seen('C')) PID_PARAM(Kc, e) = code_value_float();
  6197. if (code_seen('L')) lpq_len = code_value_float();
  6198. NOMORE(lpq_len, LPQ_MAX_LEN);
  6199. #endif
  6200. thermalManager.updatePID();
  6201. SERIAL_ECHO_START;
  6202. #if ENABLED(PID_PARAMS_PER_HOTEND)
  6203. SERIAL_ECHOPAIR(" e:", e); // specify extruder in serial output
  6204. #endif // PID_PARAMS_PER_HOTEND
  6205. SERIAL_ECHOPAIR(" p:", PID_PARAM(Kp, e));
  6206. SERIAL_ECHOPAIR(" i:", unscalePID_i(PID_PARAM(Ki, e)));
  6207. SERIAL_ECHOPAIR(" d:", unscalePID_d(PID_PARAM(Kd, e)));
  6208. #if ENABLED(PID_EXTRUSION_SCALING)
  6209. //Kc does not have scaling applied above, or in resetting defaults
  6210. SERIAL_ECHOPAIR(" c:", PID_PARAM(Kc, e));
  6211. #endif
  6212. SERIAL_EOL;
  6213. }
  6214. else {
  6215. SERIAL_ERROR_START;
  6216. SERIAL_ERRORLN(MSG_INVALID_EXTRUDER);
  6217. }
  6218. }
  6219. #endif // PIDTEMP
  6220. #if ENABLED(PIDTEMPBED)
  6221. inline void gcode_M304() {
  6222. if (code_seen('P')) thermalManager.bedKp = code_value_float();
  6223. if (code_seen('I')) thermalManager.bedKi = scalePID_i(code_value_float());
  6224. if (code_seen('D')) thermalManager.bedKd = scalePID_d(code_value_float());
  6225. thermalManager.updatePID();
  6226. SERIAL_ECHO_START;
  6227. SERIAL_ECHOPAIR(" p:", thermalManager.bedKp);
  6228. SERIAL_ECHOPAIR(" i:", unscalePID_i(thermalManager.bedKi));
  6229. SERIAL_ECHOLNPAIR(" d:", unscalePID_d(thermalManager.bedKd));
  6230. }
  6231. #endif // PIDTEMPBED
  6232. #if defined(CHDK) || HAS_PHOTOGRAPH
  6233. /**
  6234. * M240: Trigger a camera by emulating a Canon RC-1
  6235. * See http://www.doc-diy.net/photo/rc-1_hacked/
  6236. */
  6237. inline void gcode_M240() {
  6238. #ifdef CHDK
  6239. OUT_WRITE(CHDK, HIGH);
  6240. chdkHigh = millis();
  6241. chdkActive = true;
  6242. #elif HAS_PHOTOGRAPH
  6243. const uint8_t NUM_PULSES = 16;
  6244. const float PULSE_LENGTH = 0.01524;
  6245. for (int i = 0; i < NUM_PULSES; i++) {
  6246. WRITE(PHOTOGRAPH_PIN, HIGH);
  6247. _delay_ms(PULSE_LENGTH);
  6248. WRITE(PHOTOGRAPH_PIN, LOW);
  6249. _delay_ms(PULSE_LENGTH);
  6250. }
  6251. delay(7.33);
  6252. for (int i = 0; i < NUM_PULSES; i++) {
  6253. WRITE(PHOTOGRAPH_PIN, HIGH);
  6254. _delay_ms(PULSE_LENGTH);
  6255. WRITE(PHOTOGRAPH_PIN, LOW);
  6256. _delay_ms(PULSE_LENGTH);
  6257. }
  6258. #endif // !CHDK && HAS_PHOTOGRAPH
  6259. }
  6260. #endif // CHDK || PHOTOGRAPH_PIN
  6261. #if HAS_LCD_CONTRAST
  6262. /**
  6263. * M250: Read and optionally set the LCD contrast
  6264. */
  6265. inline void gcode_M250() {
  6266. if (code_seen('C')) set_lcd_contrast(code_value_int());
  6267. SERIAL_PROTOCOLPGM("lcd contrast value: ");
  6268. SERIAL_PROTOCOL(lcd_contrast);
  6269. SERIAL_EOL;
  6270. }
  6271. #endif // HAS_LCD_CONTRAST
  6272. #if ENABLED(PREVENT_COLD_EXTRUSION)
  6273. /**
  6274. * M302: Allow cold extrudes, or set the minimum extrude temperature
  6275. *
  6276. * S<temperature> sets the minimum extrude temperature
  6277. * P<bool> enables (1) or disables (0) cold extrusion
  6278. *
  6279. * Examples:
  6280. *
  6281. * M302 ; report current cold extrusion state
  6282. * M302 P0 ; enable cold extrusion checking
  6283. * M302 P1 ; disables cold extrusion checking
  6284. * M302 S0 ; always allow extrusion (disables checking)
  6285. * M302 S170 ; only allow extrusion above 170
  6286. * M302 S170 P1 ; set min extrude temp to 170 but leave disabled
  6287. */
  6288. inline void gcode_M302() {
  6289. bool seen_S = code_seen('S');
  6290. if (seen_S) {
  6291. thermalManager.extrude_min_temp = code_value_temp_abs();
  6292. thermalManager.allow_cold_extrude = (thermalManager.extrude_min_temp == 0);
  6293. }
  6294. if (code_seen('P'))
  6295. thermalManager.allow_cold_extrude = (thermalManager.extrude_min_temp == 0) || code_value_bool();
  6296. else if (!seen_S) {
  6297. // Report current state
  6298. SERIAL_ECHO_START;
  6299. SERIAL_ECHOPAIR("Cold extrudes are ", (thermalManager.allow_cold_extrude ? "en" : "dis"));
  6300. SERIAL_ECHOPAIR("abled (min temp ", int(thermalManager.extrude_min_temp + 0.5));
  6301. SERIAL_ECHOLNPGM("C)");
  6302. }
  6303. }
  6304. #endif // PREVENT_COLD_EXTRUSION
  6305. /**
  6306. * M303: PID relay autotune
  6307. *
  6308. * S<temperature> sets the target temperature. (default 150C)
  6309. * E<extruder> (-1 for the bed) (default 0)
  6310. * C<cycles>
  6311. * U<bool> with a non-zero value will apply the result to current settings
  6312. */
  6313. inline void gcode_M303() {
  6314. #if HAS_PID_HEATING
  6315. int e = code_seen('E') ? code_value_int() : 0;
  6316. int c = code_seen('C') ? code_value_int() : 5;
  6317. bool u = code_seen('U') && code_value_bool();
  6318. float temp = code_seen('S') ? code_value_temp_abs() : (e < 0 ? 70.0 : 150.0);
  6319. if (WITHIN(e, 0, HOTENDS - 1))
  6320. target_extruder = e;
  6321. KEEPALIVE_STATE(NOT_BUSY); // don't send "busy: processing" messages during autotune output
  6322. thermalManager.PID_autotune(temp, e, c, u);
  6323. KEEPALIVE_STATE(IN_HANDLER);
  6324. #else
  6325. SERIAL_ERROR_START;
  6326. SERIAL_ERRORLNPGM(MSG_ERR_M303_DISABLED);
  6327. #endif
  6328. }
  6329. #if ENABLED(MORGAN_SCARA)
  6330. bool SCARA_move_to_cal(uint8_t delta_a, uint8_t delta_b) {
  6331. if (IsRunning()) {
  6332. forward_kinematics_SCARA(delta_a, delta_b);
  6333. destination[X_AXIS] = LOGICAL_X_POSITION(cartes[X_AXIS]);
  6334. destination[Y_AXIS] = LOGICAL_Y_POSITION(cartes[Y_AXIS]);
  6335. destination[Z_AXIS] = current_position[Z_AXIS];
  6336. prepare_move_to_destination();
  6337. return true;
  6338. }
  6339. return false;
  6340. }
  6341. /**
  6342. * M360: SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  6343. */
  6344. inline bool gcode_M360() {
  6345. SERIAL_ECHOLNPGM(" Cal: Theta 0");
  6346. return SCARA_move_to_cal(0, 120);
  6347. }
  6348. /**
  6349. * M361: SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  6350. */
  6351. inline bool gcode_M361() {
  6352. SERIAL_ECHOLNPGM(" Cal: Theta 90");
  6353. return SCARA_move_to_cal(90, 130);
  6354. }
  6355. /**
  6356. * M362: SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  6357. */
  6358. inline bool gcode_M362() {
  6359. SERIAL_ECHOLNPGM(" Cal: Psi 0");
  6360. return SCARA_move_to_cal(60, 180);
  6361. }
  6362. /**
  6363. * M363: SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  6364. */
  6365. inline bool gcode_M363() {
  6366. SERIAL_ECHOLNPGM(" Cal: Psi 90");
  6367. return SCARA_move_to_cal(50, 90);
  6368. }
  6369. /**
  6370. * M364: SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
  6371. */
  6372. inline bool gcode_M364() {
  6373. SERIAL_ECHOLNPGM(" Cal: Theta-Psi 90");
  6374. return SCARA_move_to_cal(45, 135);
  6375. }
  6376. #endif // SCARA
  6377. #if ENABLED(EXT_SOLENOID)
  6378. void enable_solenoid(uint8_t num) {
  6379. switch (num) {
  6380. case 0:
  6381. OUT_WRITE(SOL0_PIN, HIGH);
  6382. break;
  6383. #if HAS_SOLENOID_1
  6384. case 1:
  6385. OUT_WRITE(SOL1_PIN, HIGH);
  6386. break;
  6387. #endif
  6388. #if HAS_SOLENOID_2
  6389. case 2:
  6390. OUT_WRITE(SOL2_PIN, HIGH);
  6391. break;
  6392. #endif
  6393. #if HAS_SOLENOID_3
  6394. case 3:
  6395. OUT_WRITE(SOL3_PIN, HIGH);
  6396. break;
  6397. #endif
  6398. default:
  6399. SERIAL_ECHO_START;
  6400. SERIAL_ECHOLNPGM(MSG_INVALID_SOLENOID);
  6401. break;
  6402. }
  6403. }
  6404. void enable_solenoid_on_active_extruder() { enable_solenoid(active_extruder); }
  6405. void disable_all_solenoids() {
  6406. OUT_WRITE(SOL0_PIN, LOW);
  6407. OUT_WRITE(SOL1_PIN, LOW);
  6408. OUT_WRITE(SOL2_PIN, LOW);
  6409. OUT_WRITE(SOL3_PIN, LOW);
  6410. }
  6411. /**
  6412. * M380: Enable solenoid on the active extruder
  6413. */
  6414. inline void gcode_M380() { enable_solenoid_on_active_extruder(); }
  6415. /**
  6416. * M381: Disable all solenoids
  6417. */
  6418. inline void gcode_M381() { disable_all_solenoids(); }
  6419. #endif // EXT_SOLENOID
  6420. /**
  6421. * M400: Finish all moves
  6422. */
  6423. inline void gcode_M400() { stepper.synchronize(); }
  6424. #if HAS_BED_PROBE
  6425. /**
  6426. * M401: Engage Z Servo endstop if available
  6427. */
  6428. inline void gcode_M401() { DEPLOY_PROBE(); }
  6429. /**
  6430. * M402: Retract Z Servo endstop if enabled
  6431. */
  6432. inline void gcode_M402() { STOW_PROBE(); }
  6433. #endif // HAS_BED_PROBE
  6434. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  6435. /**
  6436. * M404: Display or set (in current units) the nominal filament width (3mm, 1.75mm ) W<3.0>
  6437. */
  6438. inline void gcode_M404() {
  6439. if (code_seen('W')) {
  6440. filament_width_nominal = code_value_linear_units();
  6441. }
  6442. else {
  6443. SERIAL_PROTOCOLPGM("Filament dia (nominal mm):");
  6444. SERIAL_PROTOCOLLN(filament_width_nominal);
  6445. }
  6446. }
  6447. /**
  6448. * M405: Turn on filament sensor for control
  6449. */
  6450. inline void gcode_M405() {
  6451. // This is technically a linear measurement, but since it's quantized to centimeters and is a different unit than
  6452. // everything else, it uses code_value_int() instead of code_value_linear_units().
  6453. if (code_seen('D')) meas_delay_cm = code_value_int();
  6454. NOMORE(meas_delay_cm, MAX_MEASUREMENT_DELAY);
  6455. if (filwidth_delay_index[1] == -1) { // Initialize the ring buffer if not done since startup
  6456. int temp_ratio = thermalManager.widthFil_to_size_ratio();
  6457. for (uint8_t i = 0; i < COUNT(measurement_delay); ++i)
  6458. measurement_delay[i] = temp_ratio - 100; // Subtract 100 to scale within a signed byte
  6459. filwidth_delay_index[0] = filwidth_delay_index[1] = 0;
  6460. }
  6461. filament_sensor = true;
  6462. //SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  6463. //SERIAL_PROTOCOL(filament_width_meas);
  6464. //SERIAL_PROTOCOLPGM("Extrusion ratio(%):");
  6465. //SERIAL_PROTOCOL(flow_percentage[active_extruder]);
  6466. }
  6467. /**
  6468. * M406: Turn off filament sensor for control
  6469. */
  6470. inline void gcode_M406() { filament_sensor = false; }
  6471. /**
  6472. * M407: Get measured filament diameter on serial output
  6473. */
  6474. inline void gcode_M407() {
  6475. SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  6476. SERIAL_PROTOCOLLN(filament_width_meas);
  6477. }
  6478. #endif // FILAMENT_WIDTH_SENSOR
  6479. void quickstop_stepper() {
  6480. stepper.quick_stop();
  6481. stepper.synchronize();
  6482. set_current_from_steppers_for_axis(ALL_AXES);
  6483. SYNC_PLAN_POSITION_KINEMATIC();
  6484. }
  6485. #if PLANNER_LEVELING
  6486. /**
  6487. * M420: Enable/Disable Bed Leveling and/or set the Z fade height.
  6488. *
  6489. * S[bool] Turns leveling on or off
  6490. * Z[height] Sets the Z fade height (0 or none to disable)
  6491. * V[bool] Verbose - Print the leveling grid
  6492. *
  6493. * With AUTO_BED_LEVELING_UBL only:
  6494. *
  6495. * L[index] Load UBL mesh from index (0 is default)
  6496. */
  6497. inline void gcode_M420() {
  6498. #if ENABLED(AUTO_BED_LEVELING_UBL)
  6499. // L to load a mesh from the EEPROM
  6500. if (code_seen('L')) {
  6501. const int8_t storage_slot = code_has_value() ? code_value_int() : ubl.state.eeprom_storage_slot;
  6502. const int16_t j = (UBL_LAST_EEPROM_INDEX - ubl.eeprom_start) / sizeof(ubl.z_values);
  6503. if (!WITHIN(storage_slot, 0, j - 1) || ubl.eeprom_start <= 0) {
  6504. SERIAL_PROTOCOLLNPGM("?EEPROM storage not available for use.\n");
  6505. return;
  6506. }
  6507. ubl.load_mesh(storage_slot);
  6508. if (storage_slot != ubl.state.eeprom_storage_slot) ubl.store_state();
  6509. ubl.state.eeprom_storage_slot = storage_slot;
  6510. }
  6511. #endif // AUTO_BED_LEVELING_UBL
  6512. // V to print the matrix or mesh
  6513. if (code_seen('V')) {
  6514. #if ABL_PLANAR
  6515. planner.bed_level_matrix.debug("Bed Level Correction Matrix:");
  6516. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  6517. if (bilinear_grid_spacing[X_AXIS]) {
  6518. print_bilinear_leveling_grid();
  6519. #if ENABLED(ABL_BILINEAR_SUBDIVISION)
  6520. bed_level_virt_print();
  6521. #endif
  6522. }
  6523. #elif ENABLED(MESH_BED_LEVELING)
  6524. if (mbl.has_mesh()) {
  6525. SERIAL_ECHOLNPGM("Mesh Bed Level data:");
  6526. mbl_mesh_report();
  6527. }
  6528. #endif
  6529. }
  6530. #if ENABLED(AUTO_BED_LEVELING_UBL)
  6531. // L to load a mesh from the EEPROM
  6532. if (code_seen('L') || code_seen('V')) {
  6533. ubl.display_map(0); // Currently only supports one map type
  6534. SERIAL_ECHOLNPAIR("UBL_MESH_VALID = ", UBL_MESH_VALID);
  6535. SERIAL_ECHOLNPAIR("eeprom_storage_slot = ", ubl.state.eeprom_storage_slot);
  6536. }
  6537. #endif
  6538. bool to_enable = false;
  6539. if (code_seen('S')) {
  6540. to_enable = code_value_bool();
  6541. set_bed_leveling_enabled(to_enable);
  6542. }
  6543. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  6544. if (code_seen('Z')) set_z_fade_height(code_value_linear_units());
  6545. #endif
  6546. const bool new_status =
  6547. #if ENABLED(MESH_BED_LEVELING)
  6548. mbl.active()
  6549. #elif ENABLED(AUTO_BED_LEVELING_UBL)
  6550. ubl.state.active
  6551. #else
  6552. planner.abl_enabled
  6553. #endif
  6554. ;
  6555. if (to_enable && !new_status) {
  6556. SERIAL_ERROR_START;
  6557. SERIAL_ERRORLNPGM(MSG_ERR_M420_FAILED);
  6558. }
  6559. SERIAL_ECHO_START;
  6560. SERIAL_ECHOLNPAIR("Bed Leveling ", new_status ? MSG_ON : MSG_OFF);
  6561. }
  6562. #endif
  6563. #if ENABLED(MESH_BED_LEVELING)
  6564. /**
  6565. * M421: Set a single Mesh Bed Leveling Z coordinate
  6566. * Use either 'M421 X<linear> Y<linear> Z<linear>' or 'M421 I<xindex> J<yindex> Z<linear>'
  6567. */
  6568. inline void gcode_M421() {
  6569. int8_t px = 0, py = 0;
  6570. float z = 0;
  6571. bool hasX, hasY, hasZ, hasI, hasJ;
  6572. if ((hasX = code_seen('X'))) px = mbl.probe_index_x(code_value_axis_units(X_AXIS));
  6573. if ((hasY = code_seen('Y'))) py = mbl.probe_index_y(code_value_axis_units(Y_AXIS));
  6574. if ((hasI = code_seen('I'))) px = code_value_axis_units(X_AXIS);
  6575. if ((hasJ = code_seen('J'))) py = code_value_axis_units(Y_AXIS);
  6576. if ((hasZ = code_seen('Z'))) z = code_value_axis_units(Z_AXIS);
  6577. if (hasX && hasY && hasZ) {
  6578. if (px >= 0 && py >= 0)
  6579. mbl.set_z(px, py, z);
  6580. else {
  6581. SERIAL_ERROR_START;
  6582. SERIAL_ERRORLNPGM(MSG_ERR_MESH_XY);
  6583. }
  6584. }
  6585. else if (hasI && hasJ && hasZ) {
  6586. if (WITHIN(px, 0, GRID_MAX_POINTS_X - 1) && WITHIN(py, 0, GRID_MAX_POINTS_Y - 1))
  6587. mbl.set_z(px, py, z);
  6588. else {
  6589. SERIAL_ERROR_START;
  6590. SERIAL_ERRORLNPGM(MSG_ERR_MESH_XY);
  6591. }
  6592. }
  6593. else {
  6594. SERIAL_ERROR_START;
  6595. SERIAL_ERRORLNPGM(MSG_ERR_M421_PARAMETERS);
  6596. }
  6597. }
  6598. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  6599. /**
  6600. * M421: Set a single Mesh Bed Leveling Z coordinate
  6601. *
  6602. * M421 I<xindex> J<yindex> Z<linear>
  6603. */
  6604. inline void gcode_M421() {
  6605. int8_t px = 0, py = 0;
  6606. float z = 0;
  6607. bool hasI, hasJ, hasZ;
  6608. if ((hasI = code_seen('I'))) px = code_value_axis_units(X_AXIS);
  6609. if ((hasJ = code_seen('J'))) py = code_value_axis_units(Y_AXIS);
  6610. if ((hasZ = code_seen('Z'))) z = code_value_axis_units(Z_AXIS);
  6611. if (hasI && hasJ && hasZ) {
  6612. if (WITHIN(px, 0, GRID_MAX_POINTS_X - 1) && WITHIN(py, 0, GRID_MAX_POINTS_X - 1)) {
  6613. bed_level_grid[px][py] = z;
  6614. #if ENABLED(ABL_BILINEAR_SUBDIVISION)
  6615. bed_level_virt_interpolate();
  6616. #endif
  6617. }
  6618. else {
  6619. SERIAL_ERROR_START;
  6620. SERIAL_ERRORLNPGM(MSG_ERR_MESH_XY);
  6621. }
  6622. }
  6623. else {
  6624. SERIAL_ERROR_START;
  6625. SERIAL_ERRORLNPGM(MSG_ERR_M421_PARAMETERS);
  6626. }
  6627. }
  6628. #elif ENABLED(AUTO_BED_LEVELING_UBL)
  6629. /**
  6630. * M421: Set a single Mesh Bed Leveling Z coordinate
  6631. *
  6632. * M421 I<xindex> J<yindex> Z<linear>
  6633. */
  6634. inline void gcode_M421() {
  6635. int8_t px = 0, py = 0;
  6636. float z = 0;
  6637. bool hasI, hasJ, hasZ;
  6638. if ((hasI = code_seen('I'))) px = code_value_axis_units(X_AXIS);
  6639. if ((hasJ = code_seen('J'))) py = code_value_axis_units(Y_AXIS);
  6640. if ((hasZ = code_seen('Z'))) z = code_value_axis_units(Z_AXIS);
  6641. if (hasI && hasJ && hasZ) {
  6642. if (WITHIN(px, 0, GRID_MAX_POINTS_Y - 1) && WITHIN(py, 0, GRID_MAX_POINTS_Y - 1)) {
  6643. ubl.z_values[px][py] = z;
  6644. }
  6645. else {
  6646. SERIAL_ERROR_START;
  6647. SERIAL_ERRORLNPGM(MSG_ERR_MESH_XY);
  6648. }
  6649. }
  6650. else {
  6651. SERIAL_ERROR_START;
  6652. SERIAL_ERRORLNPGM(MSG_ERR_M421_PARAMETERS);
  6653. }
  6654. }
  6655. #endif
  6656. #if DISABLED(NO_WORKSPACE_OFFSETS)
  6657. /**
  6658. * M428: Set home_offset based on the distance between the
  6659. * current_position and the nearest "reference point."
  6660. * If an axis is past center its endstop position
  6661. * is the reference-point. Otherwise it uses 0. This allows
  6662. * the Z offset to be set near the bed when using a max endstop.
  6663. *
  6664. * M428 can't be used more than 2cm away from 0 or an endstop.
  6665. *
  6666. * Use M206 to set these values directly.
  6667. */
  6668. inline void gcode_M428() {
  6669. bool err = false;
  6670. LOOP_XYZ(i) {
  6671. if (axis_homed[i]) {
  6672. float base = (current_position[i] > (soft_endstop_min[i] + soft_endstop_max[i]) * 0.5) ? base_home_pos((AxisEnum)i) : 0,
  6673. diff = current_position[i] - LOGICAL_POSITION(base, i);
  6674. if (WITHIN(diff, -20, 20)) {
  6675. set_home_offset((AxisEnum)i, home_offset[i] - diff);
  6676. }
  6677. else {
  6678. SERIAL_ERROR_START;
  6679. SERIAL_ERRORLNPGM(MSG_ERR_M428_TOO_FAR);
  6680. LCD_ALERTMESSAGEPGM("Err: Too far!");
  6681. BUZZ(200, 40);
  6682. err = true;
  6683. break;
  6684. }
  6685. }
  6686. }
  6687. if (!err) {
  6688. SYNC_PLAN_POSITION_KINEMATIC();
  6689. report_current_position();
  6690. LCD_MESSAGEPGM(MSG_HOME_OFFSETS_APPLIED);
  6691. BUZZ(100, 659);
  6692. BUZZ(100, 698);
  6693. }
  6694. }
  6695. #endif // NO_WORKSPACE_OFFSETS
  6696. /**
  6697. * M500: Store settings in EEPROM
  6698. */
  6699. inline void gcode_M500() {
  6700. (void)settings.save();
  6701. }
  6702. /**
  6703. * M501: Read settings from EEPROM
  6704. */
  6705. inline void gcode_M501() {
  6706. (void)settings.load();
  6707. }
  6708. /**
  6709. * M502: Revert to default settings
  6710. */
  6711. inline void gcode_M502() {
  6712. (void)settings.reset();
  6713. }
  6714. /**
  6715. * M503: print settings currently in memory
  6716. */
  6717. inline void gcode_M503() {
  6718. (void)settings.report(code_seen('S') && !code_value_bool());
  6719. }
  6720. #if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  6721. /**
  6722. * M540: Set whether SD card print should abort on endstop hit (M540 S<0|1>)
  6723. */
  6724. inline void gcode_M540() {
  6725. if (code_seen('S')) stepper.abort_on_endstop_hit = code_value_bool();
  6726. }
  6727. #endif // ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  6728. #if HAS_BED_PROBE
  6729. inline void gcode_M851() {
  6730. SERIAL_ECHO_START;
  6731. SERIAL_ECHOPGM(MSG_ZPROBE_ZOFFSET);
  6732. SERIAL_CHAR(' ');
  6733. if (code_seen('Z')) {
  6734. float value = code_value_axis_units(Z_AXIS);
  6735. if (WITHIN(value, Z_PROBE_OFFSET_RANGE_MIN, Z_PROBE_OFFSET_RANGE_MAX)) {
  6736. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  6737. // Correct bilinear grid for new probe offset
  6738. const float diff = value - zprobe_zoffset;
  6739. if (diff) {
  6740. for (uint8_t x = 0; x < GRID_MAX_POINTS_X; x++)
  6741. for (uint8_t y = 0; y < GRID_MAX_POINTS_Y; y++)
  6742. bed_level_grid[x][y] += diff;
  6743. }
  6744. #if ENABLED(ABL_BILINEAR_SUBDIVISION)
  6745. bed_level_virt_interpolate();
  6746. #endif
  6747. #endif
  6748. zprobe_zoffset = value;
  6749. SERIAL_ECHO(zprobe_zoffset);
  6750. }
  6751. else {
  6752. SERIAL_ECHOPAIR(MSG_Z_MIN, Z_PROBE_OFFSET_RANGE_MIN);
  6753. SERIAL_CHAR(' ');
  6754. SERIAL_ECHOPAIR(MSG_Z_MAX, Z_PROBE_OFFSET_RANGE_MAX);
  6755. }
  6756. }
  6757. else {
  6758. SERIAL_ECHOPAIR(": ", zprobe_zoffset);
  6759. }
  6760. SERIAL_EOL;
  6761. }
  6762. #endif // HAS_BED_PROBE
  6763. #if ENABLED(FILAMENT_CHANGE_FEATURE)
  6764. void filament_change_beep(const bool init=false) {
  6765. static millis_t next_buzz = 0;
  6766. static uint16_t runout_beep = 0;
  6767. if (init) next_buzz = runout_beep = 0;
  6768. const millis_t ms = millis();
  6769. if (ELAPSED(ms, next_buzz)) {
  6770. if (runout_beep <= FILAMENT_CHANGE_NUMBER_OF_ALERT_BEEPS + 5) { // Only beep as long as we're supposed to
  6771. next_buzz = ms + (runout_beep <= FILAMENT_CHANGE_NUMBER_OF_ALERT_BEEPS ? 2500 : 400);
  6772. BUZZ(300, 2000);
  6773. runout_beep++;
  6774. }
  6775. }
  6776. }
  6777. static bool busy_doing_M600 = false;
  6778. /**
  6779. * M600: Pause for filament change
  6780. *
  6781. * E[distance] - Retract the filament this far (negative value)
  6782. * Z[distance] - Move the Z axis by this distance
  6783. * X[position] - Move to this X position, with Y
  6784. * Y[position] - Move to this Y position, with X
  6785. * L[distance] - Retract distance for removal (manual reload)
  6786. *
  6787. * Default values are used for omitted arguments.
  6788. *
  6789. */
  6790. inline void gcode_M600() {
  6791. if (!DEBUGGING(DRYRUN) && thermalManager.tooColdToExtrude(active_extruder)) {
  6792. SERIAL_ERROR_START;
  6793. SERIAL_ERRORLNPGM(MSG_TOO_COLD_FOR_M600);
  6794. return;
  6795. }
  6796. busy_doing_M600 = true; // Stepper Motors can't timeout when this is set
  6797. // Pause the print job timer
  6798. const bool job_running = print_job_timer.isRunning();
  6799. print_job_timer.pause();
  6800. // Show initial message and wait for synchronize steppers
  6801. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_INIT);
  6802. stepper.synchronize();
  6803. // Save current position of all axes
  6804. float lastpos[XYZE];
  6805. COPY(lastpos, current_position);
  6806. set_destination_to_current();
  6807. // Initial retract before move to filament change position
  6808. destination[E_AXIS] += code_seen('E') ? code_value_axis_units(E_AXIS) : 0
  6809. #if defined(FILAMENT_CHANGE_RETRACT_LENGTH) && FILAMENT_CHANGE_RETRACT_LENGTH > 0
  6810. - (FILAMENT_CHANGE_RETRACT_LENGTH)
  6811. #endif
  6812. ;
  6813. RUNPLAN(FILAMENT_CHANGE_RETRACT_FEEDRATE);
  6814. // Lift Z axis
  6815. float z_lift = code_seen('Z') ? code_value_axis_units(Z_AXIS) :
  6816. #if defined(FILAMENT_CHANGE_Z_ADD) && FILAMENT_CHANGE_Z_ADD > 0
  6817. FILAMENT_CHANGE_Z_ADD
  6818. #else
  6819. 0
  6820. #endif
  6821. ;
  6822. if (z_lift > 0) {
  6823. destination[Z_AXIS] += z_lift;
  6824. NOMORE(destination[Z_AXIS], Z_MAX_POS);
  6825. RUNPLAN(FILAMENT_CHANGE_Z_FEEDRATE);
  6826. }
  6827. // Move XY axes to filament exchange position
  6828. if (code_seen('X')) destination[X_AXIS] = code_value_axis_units(X_AXIS);
  6829. #ifdef FILAMENT_CHANGE_X_POS
  6830. else destination[X_AXIS] = FILAMENT_CHANGE_X_POS;
  6831. #endif
  6832. if (code_seen('Y')) destination[Y_AXIS] = code_value_axis_units(Y_AXIS);
  6833. #ifdef FILAMENT_CHANGE_Y_POS
  6834. else destination[Y_AXIS] = FILAMENT_CHANGE_Y_POS;
  6835. #endif
  6836. RUNPLAN(FILAMENT_CHANGE_XY_FEEDRATE);
  6837. stepper.synchronize();
  6838. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_UNLOAD);
  6839. idle();
  6840. // Unload filament
  6841. destination[E_AXIS] += code_seen('L') ? code_value_axis_units(E_AXIS) : 0
  6842. #if FILAMENT_CHANGE_UNLOAD_LENGTH > 0
  6843. - (FILAMENT_CHANGE_UNLOAD_LENGTH)
  6844. #endif
  6845. ;
  6846. RUNPLAN(FILAMENT_CHANGE_UNLOAD_FEEDRATE);
  6847. // Synchronize steppers and then disable extruders steppers for manual filament changing
  6848. stepper.synchronize();
  6849. disable_e_steppers();
  6850. safe_delay(100);
  6851. const millis_t nozzle_timeout = millis() + (millis_t)(FILAMENT_CHANGE_NOZZLE_TIMEOUT) * 1000UL;
  6852. bool nozzle_timed_out = false;
  6853. float temps[4];
  6854. // Wait for filament insert by user and press button
  6855. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_INSERT);
  6856. #if HAS_BUZZER
  6857. filament_change_beep(true);
  6858. #endif
  6859. idle();
  6860. HOTEND_LOOP() temps[e] = thermalManager.target_temperature[e]; // Save nozzle temps
  6861. KEEPALIVE_STATE(PAUSED_FOR_USER);
  6862. wait_for_user = true; // LCD click or M108 will clear this
  6863. while (wait_for_user) {
  6864. if (nozzle_timed_out)
  6865. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_CLICK_TO_HEAT_NOZZLE);
  6866. #if HAS_BUZZER
  6867. filament_change_beep();
  6868. #endif
  6869. if (!nozzle_timed_out && ELAPSED(millis(), nozzle_timeout)) {
  6870. nozzle_timed_out = true; // on nozzle timeout remember the nozzles need to be reheated
  6871. HOTEND_LOOP() thermalManager.setTargetHotend(0, e); // Turn off all the nozzles
  6872. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_CLICK_TO_HEAT_NOZZLE);
  6873. }
  6874. idle(true);
  6875. }
  6876. KEEPALIVE_STATE(IN_HANDLER);
  6877. if (nozzle_timed_out) // Turn nozzles back on if they were turned off
  6878. HOTEND_LOOP() thermalManager.setTargetHotend(temps[e], e);
  6879. // Show "wait for heating"
  6880. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_WAIT_FOR_NOZZLES_TO_HEAT);
  6881. wait_for_heatup = true;
  6882. while (wait_for_heatup) {
  6883. idle();
  6884. wait_for_heatup = false;
  6885. HOTEND_LOOP() {
  6886. if (abs(thermalManager.degHotend(e) - temps[e]) > 3) {
  6887. wait_for_heatup = true;
  6888. break;
  6889. }
  6890. }
  6891. }
  6892. // Show "insert filament"
  6893. if (nozzle_timed_out)
  6894. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_INSERT);
  6895. #if HAS_BUZZER
  6896. filament_change_beep(true);
  6897. #endif
  6898. KEEPALIVE_STATE(PAUSED_FOR_USER);
  6899. wait_for_user = true; // LCD click or M108 will clear this
  6900. while (wait_for_user && nozzle_timed_out) {
  6901. #if HAS_BUZZER
  6902. filament_change_beep();
  6903. #endif
  6904. idle(true);
  6905. }
  6906. KEEPALIVE_STATE(IN_HANDLER);
  6907. // Show "load" message
  6908. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_LOAD);
  6909. // Load filament
  6910. destination[E_AXIS] += code_seen('L') ? -code_value_axis_units(E_AXIS) : 0
  6911. #if FILAMENT_CHANGE_LOAD_LENGTH > 0
  6912. + FILAMENT_CHANGE_LOAD_LENGTH
  6913. #endif
  6914. ;
  6915. RUNPLAN(FILAMENT_CHANGE_LOAD_FEEDRATE);
  6916. stepper.synchronize();
  6917. #if defined(FILAMENT_CHANGE_EXTRUDE_LENGTH) && FILAMENT_CHANGE_EXTRUDE_LENGTH > 0
  6918. do {
  6919. // "Wait for filament extrude"
  6920. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_EXTRUDE);
  6921. // Extrude filament to get into hotend
  6922. destination[E_AXIS] += FILAMENT_CHANGE_EXTRUDE_LENGTH;
  6923. RUNPLAN(FILAMENT_CHANGE_EXTRUDE_FEEDRATE);
  6924. stepper.synchronize();
  6925. // Show "Extrude More" / "Resume" menu and wait for reply
  6926. KEEPALIVE_STATE(PAUSED_FOR_USER);
  6927. wait_for_user = false;
  6928. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_OPTION);
  6929. while (filament_change_menu_response == FILAMENT_CHANGE_RESPONSE_WAIT_FOR) idle(true);
  6930. KEEPALIVE_STATE(IN_HANDLER);
  6931. // Keep looping if "Extrude More" was selected
  6932. } while (filament_change_menu_response == FILAMENT_CHANGE_RESPONSE_EXTRUDE_MORE);
  6933. #endif
  6934. // "Wait for print to resume"
  6935. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_RESUME);
  6936. // Set extruder to saved position
  6937. destination[E_AXIS] = current_position[E_AXIS] = lastpos[E_AXIS];
  6938. planner.set_e_position_mm(current_position[E_AXIS]);
  6939. #if IS_KINEMATIC
  6940. // Move XYZ to starting position
  6941. planner.buffer_line_kinematic(lastpos, FILAMENT_CHANGE_XY_FEEDRATE, active_extruder);
  6942. #else
  6943. // Move XY to starting position, then Z
  6944. destination[X_AXIS] = lastpos[X_AXIS];
  6945. destination[Y_AXIS] = lastpos[Y_AXIS];
  6946. RUNPLAN(FILAMENT_CHANGE_XY_FEEDRATE);
  6947. destination[Z_AXIS] = lastpos[Z_AXIS];
  6948. RUNPLAN(FILAMENT_CHANGE_Z_FEEDRATE);
  6949. #endif
  6950. stepper.synchronize();
  6951. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  6952. filament_ran_out = false;
  6953. #endif
  6954. // Show status screen
  6955. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_STATUS);
  6956. // Resume the print job timer if it was running
  6957. if (job_running) print_job_timer.start();
  6958. busy_doing_M600 = false; // Allow Stepper Motors to be turned off during inactivity
  6959. }
  6960. #endif // FILAMENT_CHANGE_FEATURE
  6961. #if ENABLED(DUAL_X_CARRIAGE)
  6962. /**
  6963. * M605: Set dual x-carriage movement mode
  6964. *
  6965. * M605 S0: Full control mode. The slicer has full control over x-carriage movement
  6966. * M605 S1: Auto-park mode. The inactive head will auto park/unpark without slicer involvement
  6967. * M605 S2 [Xnnn] [Rmmm]: Duplication mode. The second extruder will duplicate the first with nnn
  6968. * units x-offset and an optional differential hotend temperature of
  6969. * mmm degrees. E.g., with "M605 S2 X100 R2" the second extruder will duplicate
  6970. * the first with a spacing of 100mm in the x direction and 2 degrees hotter.
  6971. *
  6972. * Note: the X axis should be homed after changing dual x-carriage mode.
  6973. */
  6974. inline void gcode_M605() {
  6975. stepper.synchronize();
  6976. if (code_seen('S')) dual_x_carriage_mode = (DualXMode)code_value_byte();
  6977. switch (dual_x_carriage_mode) {
  6978. case DXC_FULL_CONTROL_MODE:
  6979. case DXC_AUTO_PARK_MODE:
  6980. break;
  6981. case DXC_DUPLICATION_MODE:
  6982. if (code_seen('X')) duplicate_extruder_x_offset = max(code_value_axis_units(X_AXIS), X2_MIN_POS - x_home_pos(0));
  6983. if (code_seen('R')) duplicate_extruder_temp_offset = code_value_temp_diff();
  6984. SERIAL_ECHO_START;
  6985. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  6986. SERIAL_CHAR(' ');
  6987. SERIAL_ECHO(hotend_offset[X_AXIS][0]);
  6988. SERIAL_CHAR(',');
  6989. SERIAL_ECHO(hotend_offset[Y_AXIS][0]);
  6990. SERIAL_CHAR(' ');
  6991. SERIAL_ECHO(duplicate_extruder_x_offset);
  6992. SERIAL_CHAR(',');
  6993. SERIAL_ECHOLN(hotend_offset[Y_AXIS][1]);
  6994. break;
  6995. default:
  6996. dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  6997. break;
  6998. }
  6999. active_extruder_parked = false;
  7000. extruder_duplication_enabled = false;
  7001. delayed_move_time = 0;
  7002. }
  7003. #elif ENABLED(DUAL_NOZZLE_DUPLICATION_MODE)
  7004. inline void gcode_M605() {
  7005. stepper.synchronize();
  7006. extruder_duplication_enabled = code_seen('S') && code_value_int() == (int)DXC_DUPLICATION_MODE;
  7007. SERIAL_ECHO_START;
  7008. SERIAL_ECHOLNPAIR(MSG_DUPLICATION_MODE, extruder_duplication_enabled ? MSG_ON : MSG_OFF);
  7009. }
  7010. #endif // DUAL_NOZZLE_DUPLICATION_MODE
  7011. #if ENABLED(LIN_ADVANCE)
  7012. /**
  7013. * M905: Set advance factor
  7014. */
  7015. inline void gcode_M905() {
  7016. stepper.synchronize();
  7017. const float newK = code_seen('K') ? code_value_float() : -1,
  7018. newD = code_seen('D') ? code_value_float() : -1,
  7019. newW = code_seen('W') ? code_value_float() : -1,
  7020. newH = code_seen('H') ? code_value_float() : -1;
  7021. if (newK >= 0.0) planner.set_extruder_advance_k(newK);
  7022. SERIAL_ECHO_START;
  7023. SERIAL_ECHOLNPAIR("Advance factor: ", planner.get_extruder_advance_k());
  7024. if (newD >= 0 || newW >= 0 || newH >= 0) {
  7025. const float ratio = (!newD || !newW || !newH) ? 0 : (newW * newH) / (sq(newD * 0.5) * M_PI);
  7026. planner.set_advance_ed_ratio(ratio);
  7027. SERIAL_ECHO_START;
  7028. SERIAL_ECHOPGM("E/D ratio: ");
  7029. if (ratio) SERIAL_ECHOLN(ratio); else SERIAL_ECHOLNPGM("Automatic");
  7030. }
  7031. }
  7032. #endif // LIN_ADVANCE
  7033. #if ENABLED(HAVE_TMC2130)
  7034. static void tmc2130_print_current(const int mA, const char name) {
  7035. SERIAL_CHAR(name);
  7036. SERIAL_ECHOPGM(" axis driver current: ");
  7037. SERIAL_ECHOLN(mA);
  7038. }
  7039. static void tmc2130_set_current(const int mA, TMC2130Stepper &st, const char name) {
  7040. tmc2130_print_current(mA, name);
  7041. st.setCurrent(mA, 0.11, 0.5);
  7042. }
  7043. static void tmc2130_get_current(TMC2130Stepper &st, const char name) {
  7044. tmc2130_print_current(st.getCurrent(), name);
  7045. }
  7046. static void tmc2130_report_otpw(TMC2130Stepper &st, const char name) {
  7047. SERIAL_CHAR(name);
  7048. SERIAL_ECHOPGM(" axis temperature prewarn triggered: ");
  7049. serialprintPGM(st.getOTPW() ? PSTR("true") : PSTR("false"));
  7050. }
  7051. static void tmc2130_clear_otpw(TMC2130Stepper &st, const char name) {
  7052. st.clear_otpw();
  7053. SERIAL_CHAR(name);
  7054. SERIAL_ECHOLNPGM(" prewarn flag cleared");
  7055. }
  7056. /**
  7057. * M906: Set motor current in milliamps using axis codes X, Y, Z, E
  7058. *
  7059. * Report driver currents when no axis specified
  7060. */
  7061. inline void gcode_M906() {
  7062. uint16_t values[XYZE];
  7063. LOOP_XYZE(i)
  7064. values[i] = code_seen(axis_codes[i]) ? code_value_int() : 0;
  7065. #if ENABLED(X_IS_TMC2130)
  7066. if (values[X_AXIS]) tmc2130_set_current(values[X_AXIS], stepperX, 'X');
  7067. else tmc2130_get_current(stepperX, 'X');
  7068. #endif
  7069. #if ENABLED(Y_IS_TMC2130)
  7070. if (values[Y_AXIS]) tmc2130_set_current(values[Y_AXIS], stepperY, 'Y');
  7071. else tmc2130_get_current(stepperY, 'Y');
  7072. #endif
  7073. #if ENABLED(Z_IS_TMC2130)
  7074. if (values[Z_AXIS]) tmc2130_set_current(values[Z_AXIS], stepperZ, 'Z');
  7075. else tmc2130_get_current(stepperZ, 'Z');
  7076. #endif
  7077. #if ENABLED(E0_IS_TMC2130)
  7078. if (values[E_AXIS]) tmc2130_set_current(values[E_AXIS], stepperE0, 'E');
  7079. else tmc2130_get_current(stepperE0, 'E');
  7080. #endif
  7081. }
  7082. /**
  7083. * M911: Report TMC2130 stepper driver overtemperature pre-warn flag
  7084. * The flag is held by the library and persist until manually cleared by M912
  7085. */
  7086. inline void gcode_M911() {
  7087. #if ENABLED(X_IS_TMC2130)
  7088. tmc2130_report_otpw(stepperX, 'X');
  7089. #endif
  7090. #if ENABLED(Y_IS_TMC2130)
  7091. tmc2130_report_otpw(stepperY, 'Y');
  7092. #endif
  7093. #if ENABLED(Z_IS_TMC2130)
  7094. tmc2130_report_otpw(stepperZ, 'Z');
  7095. #endif
  7096. #if ENABLED(E0_IS_TMC2130)
  7097. tmc2130_report_otpw(stepperE0, 'E');
  7098. #endif
  7099. }
  7100. /**
  7101. * M912: Clear TMC2130 stepper driver overtemperature pre-warn flag held by the library
  7102. */
  7103. inline void gcode_M912() {
  7104. #if ENABLED(X_IS_TMC2130)
  7105. if (code_seen('X')) tmc2130_clear_otpw(stepperX, 'X');
  7106. #endif
  7107. #if ENABLED(Y_IS_TMC2130)
  7108. if (code_seen('Y')) tmc2130_clear_otpw(stepperY, 'Y');
  7109. #endif
  7110. #if ENABLED(Z_IS_TMC2130)
  7111. if (code_seen('Z')) tmc2130_clear_otpw(stepperZ, 'Z');
  7112. #endif
  7113. #if ENABLED(E0_IS_TMC2130)
  7114. if (code_seen('E')) tmc2130_clear_otpw(stepperE0, 'E');
  7115. #endif
  7116. }
  7117. #endif // HAVE_TMC2130
  7118. /**
  7119. * M907: Set digital trimpot motor current using axis codes X, Y, Z, E, B, S
  7120. */
  7121. inline void gcode_M907() {
  7122. #if HAS_DIGIPOTSS
  7123. LOOP_XYZE(i)
  7124. if (code_seen(axis_codes[i])) stepper.digipot_current(i, code_value_int());
  7125. if (code_seen('B')) stepper.digipot_current(4, code_value_int());
  7126. if (code_seen('S')) for (int i = 0; i <= 4; i++) stepper.digipot_current(i, code_value_int());
  7127. #elif HAS_MOTOR_CURRENT_PWM
  7128. #if PIN_EXISTS(MOTOR_CURRENT_PWM_XY)
  7129. if (code_seen('X')) stepper.digipot_current(0, code_value_int());
  7130. #endif
  7131. #if PIN_EXISTS(MOTOR_CURRENT_PWM_Z)
  7132. if (code_seen('Z')) stepper.digipot_current(1, code_value_int());
  7133. #endif
  7134. #if PIN_EXISTS(MOTOR_CURRENT_PWM_E)
  7135. if (code_seen('E')) stepper.digipot_current(2, code_value_int());
  7136. #endif
  7137. #endif
  7138. #if ENABLED(DIGIPOT_I2C)
  7139. // this one uses actual amps in floating point
  7140. LOOP_XYZE(i) if (code_seen(axis_codes[i])) digipot_i2c_set_current(i, code_value_float());
  7141. // for each additional extruder (named B,C,D,E..., channels 4,5,6,7...)
  7142. for (int i = NUM_AXIS; i < DIGIPOT_I2C_NUM_CHANNELS; i++) if (code_seen('B' + i - (NUM_AXIS))) digipot_i2c_set_current(i, code_value_float());
  7143. #endif
  7144. #if ENABLED(DAC_STEPPER_CURRENT)
  7145. if (code_seen('S')) {
  7146. float dac_percent = code_value_float();
  7147. for (uint8_t i = 0; i <= 4; i++) dac_current_percent(i, dac_percent);
  7148. }
  7149. LOOP_XYZE(i) if (code_seen(axis_codes[i])) dac_current_percent(i, code_value_float());
  7150. #endif
  7151. }
  7152. #if HAS_DIGIPOTSS || ENABLED(DAC_STEPPER_CURRENT)
  7153. /**
  7154. * M908: Control digital trimpot directly (M908 P<pin> S<current>)
  7155. */
  7156. inline void gcode_M908() {
  7157. #if HAS_DIGIPOTSS
  7158. stepper.digitalPotWrite(
  7159. code_seen('P') ? code_value_int() : 0,
  7160. code_seen('S') ? code_value_int() : 0
  7161. );
  7162. #endif
  7163. #ifdef DAC_STEPPER_CURRENT
  7164. dac_current_raw(
  7165. code_seen('P') ? code_value_byte() : -1,
  7166. code_seen('S') ? code_value_ushort() : 0
  7167. );
  7168. #endif
  7169. }
  7170. #if ENABLED(DAC_STEPPER_CURRENT) // As with Printrbot RevF
  7171. inline void gcode_M909() { dac_print_values(); }
  7172. inline void gcode_M910() { dac_commit_eeprom(); }
  7173. #endif
  7174. #endif // HAS_DIGIPOTSS || DAC_STEPPER_CURRENT
  7175. #if HAS_MICROSTEPS
  7176. // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  7177. inline void gcode_M350() {
  7178. if (code_seen('S')) for (int i = 0; i <= 4; i++) stepper.microstep_mode(i, code_value_byte());
  7179. LOOP_XYZE(i) if (code_seen(axis_codes[i])) stepper.microstep_mode(i, code_value_byte());
  7180. if (code_seen('B')) stepper.microstep_mode(4, code_value_byte());
  7181. stepper.microstep_readings();
  7182. }
  7183. /**
  7184. * M351: Toggle MS1 MS2 pins directly with axis codes X Y Z E B
  7185. * S# determines MS1 or MS2, X# sets the pin high/low.
  7186. */
  7187. inline void gcode_M351() {
  7188. if (code_seen('S')) switch (code_value_byte()) {
  7189. case 1:
  7190. LOOP_XYZE(i) if (code_seen(axis_codes[i])) stepper.microstep_ms(i, code_value_byte(), -1);
  7191. if (code_seen('B')) stepper.microstep_ms(4, code_value_byte(), -1);
  7192. break;
  7193. case 2:
  7194. LOOP_XYZE(i) if (code_seen(axis_codes[i])) stepper.microstep_ms(i, -1, code_value_byte());
  7195. if (code_seen('B')) stepper.microstep_ms(4, -1, code_value_byte());
  7196. break;
  7197. }
  7198. stepper.microstep_readings();
  7199. }
  7200. #endif // HAS_MICROSTEPS
  7201. #if HAS_CASE_LIGHT
  7202. uint8_t case_light_brightness = 255;
  7203. void update_case_light() {
  7204. digitalWrite(CASE_LIGHT_PIN, case_light_on != INVERT_CASE_LIGHT ? HIGH : LOW);
  7205. analogWrite(CASE_LIGHT_PIN, case_light_on != INVERT_CASE_LIGHT ? case_light_brightness : 0);
  7206. }
  7207. #endif // HAS_CASE_LIGHT
  7208. /**
  7209. * M355: Turn case lights on/off and set brightness
  7210. *
  7211. * S<bool> Turn case light on or off
  7212. * P<byte> Set case light brightness (PWM pin required)
  7213. */
  7214. inline void gcode_M355() {
  7215. #if HAS_CASE_LIGHT
  7216. if (code_seen('P')) case_light_brightness = code_value_byte();
  7217. if (code_seen('S')) case_light_on = code_value_bool();
  7218. update_case_light();
  7219. SERIAL_ECHO_START;
  7220. SERIAL_ECHOPGM("Case lights ");
  7221. case_light_on ? SERIAL_ECHOLNPGM("on") : SERIAL_ECHOLNPGM("off");
  7222. #else
  7223. SERIAL_ERROR_START;
  7224. SERIAL_ERRORLNPGM(MSG_ERR_M355_NONE);
  7225. #endif // HAS_CASE_LIGHT
  7226. }
  7227. #if ENABLED(MIXING_EXTRUDER)
  7228. /**
  7229. * M163: Set a single mix factor for a mixing extruder
  7230. * This is called "weight" by some systems.
  7231. *
  7232. * S[index] The channel index to set
  7233. * P[float] The mix value
  7234. *
  7235. */
  7236. inline void gcode_M163() {
  7237. int mix_index = code_seen('S') ? code_value_int() : 0;
  7238. if (mix_index < MIXING_STEPPERS) {
  7239. float mix_value = code_seen('P') ? code_value_float() : 0.0;
  7240. NOLESS(mix_value, 0.0);
  7241. mixing_factor[mix_index] = RECIPROCAL(mix_value);
  7242. }
  7243. }
  7244. #if MIXING_VIRTUAL_TOOLS > 1
  7245. /**
  7246. * M164: Store the current mix factors as a virtual tool.
  7247. *
  7248. * S[index] The virtual tool to store
  7249. *
  7250. */
  7251. inline void gcode_M164() {
  7252. int tool_index = code_seen('S') ? code_value_int() : 0;
  7253. if (tool_index < MIXING_VIRTUAL_TOOLS) {
  7254. normalize_mix();
  7255. for (uint8_t i = 0; i < MIXING_STEPPERS; i++)
  7256. mixing_virtual_tool_mix[tool_index][i] = mixing_factor[i];
  7257. }
  7258. }
  7259. #endif
  7260. #if ENABLED(DIRECT_MIXING_IN_G1)
  7261. /**
  7262. * M165: Set multiple mix factors for a mixing extruder.
  7263. * Factors that are left out will be set to 0.
  7264. * All factors together must add up to 1.0.
  7265. *
  7266. * A[factor] Mix factor for extruder stepper 1
  7267. * B[factor] Mix factor for extruder stepper 2
  7268. * C[factor] Mix factor for extruder stepper 3
  7269. * D[factor] Mix factor for extruder stepper 4
  7270. * H[factor] Mix factor for extruder stepper 5
  7271. * I[factor] Mix factor for extruder stepper 6
  7272. *
  7273. */
  7274. inline void gcode_M165() { gcode_get_mix(); }
  7275. #endif
  7276. #endif // MIXING_EXTRUDER
  7277. /**
  7278. * M999: Restart after being stopped
  7279. *
  7280. * Default behaviour is to flush the serial buffer and request
  7281. * a resend to the host starting on the last N line received.
  7282. *
  7283. * Sending "M999 S1" will resume printing without flushing the
  7284. * existing command buffer.
  7285. *
  7286. */
  7287. inline void gcode_M999() {
  7288. Running = true;
  7289. lcd_reset_alert_level();
  7290. if (code_seen('S') && code_value_bool()) return;
  7291. // gcode_LastN = Stopped_gcode_LastN;
  7292. FlushSerialRequestResend();
  7293. }
  7294. #if ENABLED(SWITCHING_EXTRUDER)
  7295. inline void move_extruder_servo(uint8_t e) {
  7296. const int angles[2] = SWITCHING_EXTRUDER_SERVO_ANGLES;
  7297. MOVE_SERVO(SWITCHING_EXTRUDER_SERVO_NR, angles[e]);
  7298. safe_delay(500);
  7299. }
  7300. #endif
  7301. inline void invalid_extruder_error(const uint8_t &e) {
  7302. SERIAL_ECHO_START;
  7303. SERIAL_CHAR('T');
  7304. SERIAL_ECHO_F(e, DEC);
  7305. SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
  7306. }
  7307. /**
  7308. * Perform a tool-change, which may result in moving the
  7309. * previous tool out of the way and the new tool into place.
  7310. */
  7311. void tool_change(const uint8_t tmp_extruder, const float fr_mm_s/*=0.0*/, bool no_move/*=false*/) {
  7312. #if ENABLED(MIXING_EXTRUDER) && MIXING_VIRTUAL_TOOLS > 1
  7313. if (tmp_extruder >= MIXING_VIRTUAL_TOOLS)
  7314. return invalid_extruder_error(tmp_extruder);
  7315. // T0-Tnnn: Switch virtual tool by changing the mix
  7316. for (uint8_t j = 0; j < MIXING_STEPPERS; j++)
  7317. mixing_factor[j] = mixing_virtual_tool_mix[tmp_extruder][j];
  7318. #else //!MIXING_EXTRUDER || MIXING_VIRTUAL_TOOLS <= 1
  7319. #if HOTENDS > 1
  7320. if (tmp_extruder >= EXTRUDERS)
  7321. return invalid_extruder_error(tmp_extruder);
  7322. const float old_feedrate_mm_s = fr_mm_s > 0.0 ? fr_mm_s : feedrate_mm_s;
  7323. feedrate_mm_s = fr_mm_s > 0.0 ? fr_mm_s : XY_PROBE_FEEDRATE_MM_S;
  7324. if (tmp_extruder != active_extruder) {
  7325. if (!no_move && axis_unhomed_error(true, true, true)) {
  7326. SERIAL_ECHOLNPGM("No move on toolchange");
  7327. no_move = true;
  7328. }
  7329. // Save current position to destination, for use later
  7330. set_destination_to_current();
  7331. #if ENABLED(DUAL_X_CARRIAGE)
  7332. #if ENABLED(DEBUG_LEVELING_FEATURE)
  7333. if (DEBUGGING(LEVELING)) {
  7334. SERIAL_ECHOPGM("Dual X Carriage Mode ");
  7335. switch (dual_x_carriage_mode) {
  7336. case DXC_FULL_CONTROL_MODE: SERIAL_ECHOLNPGM("DXC_FULL_CONTROL_MODE"); break;
  7337. case DXC_AUTO_PARK_MODE: SERIAL_ECHOLNPGM("DXC_AUTO_PARK_MODE"); break;
  7338. case DXC_DUPLICATION_MODE: SERIAL_ECHOLNPGM("DXC_DUPLICATION_MODE"); break;
  7339. }
  7340. }
  7341. #endif
  7342. const float xhome = x_home_pos(active_extruder);
  7343. if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE
  7344. && IsRunning()
  7345. && (delayed_move_time || current_position[X_AXIS] != xhome)
  7346. ) {
  7347. float raised_z = current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT;
  7348. #if ENABLED(MAX_SOFTWARE_ENDSTOPS)
  7349. NOMORE(raised_z, soft_endstop_max[Z_AXIS]);
  7350. #endif
  7351. #if ENABLED(DEBUG_LEVELING_FEATURE)
  7352. if (DEBUGGING(LEVELING)) {
  7353. SERIAL_ECHOLNPAIR("Raise to ", raised_z);
  7354. SERIAL_ECHOLNPAIR("MoveX to ", xhome);
  7355. SERIAL_ECHOLNPAIR("Lower to ", current_position[Z_AXIS]);
  7356. }
  7357. #endif
  7358. // Park old head: 1) raise 2) move to park position 3) lower
  7359. for (uint8_t i = 0; i < 3; i++)
  7360. planner.buffer_line(
  7361. i == 0 ? current_position[X_AXIS] : xhome,
  7362. current_position[Y_AXIS],
  7363. i == 2 ? current_position[Z_AXIS] : raised_z,
  7364. current_position[E_AXIS],
  7365. planner.max_feedrate_mm_s[i == 1 ? X_AXIS : Z_AXIS],
  7366. active_extruder
  7367. );
  7368. stepper.synchronize();
  7369. }
  7370. // Apply Y & Z extruder offset (X offset is used as home pos with Dual X)
  7371. current_position[Y_AXIS] -= hotend_offset[Y_AXIS][active_extruder] - hotend_offset[Y_AXIS][tmp_extruder];
  7372. current_position[Z_AXIS] -= hotend_offset[Z_AXIS][active_extruder] - hotend_offset[Z_AXIS][tmp_extruder];
  7373. // Activate the new extruder
  7374. active_extruder = tmp_extruder;
  7375. // This function resets the max/min values - the current position may be overwritten below.
  7376. set_axis_is_at_home(X_AXIS);
  7377. #if ENABLED(DEBUG_LEVELING_FEATURE)
  7378. if (DEBUGGING(LEVELING)) DEBUG_POS("New Extruder", current_position);
  7379. #endif
  7380. // Only when auto-parking are carriages safe to move
  7381. if (dual_x_carriage_mode != DXC_AUTO_PARK_MODE) no_move = true;
  7382. switch (dual_x_carriage_mode) {
  7383. case DXC_FULL_CONTROL_MODE:
  7384. // New current position is the position of the activated extruder
  7385. current_position[X_AXIS] = LOGICAL_X_POSITION(inactive_extruder_x_pos);
  7386. // Save the inactive extruder's position (from the old current_position)
  7387. inactive_extruder_x_pos = RAW_X_POSITION(destination[X_AXIS]);
  7388. break;
  7389. case DXC_AUTO_PARK_MODE:
  7390. // record raised toolhead position for use by unpark
  7391. COPY(raised_parked_position, current_position);
  7392. raised_parked_position[Z_AXIS] += TOOLCHANGE_UNPARK_ZLIFT;
  7393. #if ENABLED(MAX_SOFTWARE_ENDSTOPS)
  7394. NOMORE(raised_parked_position[Z_AXIS], soft_endstop_max[Z_AXIS]);
  7395. #endif
  7396. active_extruder_parked = true;
  7397. delayed_move_time = 0;
  7398. break;
  7399. case DXC_DUPLICATION_MODE:
  7400. // If the new extruder is the left one, set it "parked"
  7401. // This triggers the second extruder to move into the duplication position
  7402. active_extruder_parked = (active_extruder == 0);
  7403. if (active_extruder_parked)
  7404. current_position[X_AXIS] = LOGICAL_X_POSITION(inactive_extruder_x_pos);
  7405. else
  7406. current_position[X_AXIS] = destination[X_AXIS] + duplicate_extruder_x_offset;
  7407. inactive_extruder_x_pos = RAW_X_POSITION(destination[X_AXIS]);
  7408. extruder_duplication_enabled = false;
  7409. break;
  7410. }
  7411. #if ENABLED(DEBUG_LEVELING_FEATURE)
  7412. if (DEBUGGING(LEVELING)) {
  7413. SERIAL_ECHOLNPAIR("Active extruder parked: ", active_extruder_parked ? "yes" : "no");
  7414. DEBUG_POS("New extruder (parked)", current_position);
  7415. }
  7416. #endif
  7417. // No extra case for HAS_ABL in DUAL_X_CARRIAGE. Does that mean they don't work together?
  7418. #else // !DUAL_X_CARRIAGE
  7419. #if ENABLED(SWITCHING_EXTRUDER)
  7420. // <0 if the new nozzle is higher, >0 if lower. A bigger raise when lower.
  7421. const float z_diff = hotend_offset[Z_AXIS][active_extruder] - hotend_offset[Z_AXIS][tmp_extruder],
  7422. z_raise = 0.3 + (z_diff > 0.0 ? z_diff : 0.0);
  7423. // Always raise by some amount (destination copied from current_position earlier)
  7424. current_position[Z_AXIS] += z_raise;
  7425. planner.buffer_line_kinematic(current_position, planner.max_feedrate_mm_s[Z_AXIS], active_extruder);
  7426. stepper.synchronize();
  7427. move_extruder_servo(active_extruder);
  7428. #endif
  7429. /**
  7430. * Set current_position to the position of the new nozzle.
  7431. * Offsets are based on linear distance, so we need to get
  7432. * the resulting position in coordinate space.
  7433. *
  7434. * - With grid or 3-point leveling, offset XYZ by a tilted vector
  7435. * - With mesh leveling, update Z for the new position
  7436. * - Otherwise, just use the raw linear distance
  7437. *
  7438. * Software endstops are altered here too. Consider a case where:
  7439. * E0 at X=0 ... E1 at X=10
  7440. * When we switch to E1 now X=10, but E1 can't move left.
  7441. * To express this we apply the change in XY to the software endstops.
  7442. * E1 can move farther right than E0, so the right limit is extended.
  7443. *
  7444. * Note that we don't adjust the Z software endstops. Why not?
  7445. * Consider a case where Z=0 (here) and switching to E1 makes Z=1
  7446. * because the bed is 1mm lower at the new position. As long as
  7447. * the first nozzle is out of the way, the carriage should be
  7448. * allowed to move 1mm lower. This technically "breaks" the
  7449. * Z software endstop. But this is technically correct (and
  7450. * there is no viable alternative).
  7451. */
  7452. #if ABL_PLANAR
  7453. // Offset extruder, make sure to apply the bed level rotation matrix
  7454. vector_3 tmp_offset_vec = vector_3(hotend_offset[X_AXIS][tmp_extruder],
  7455. hotend_offset[Y_AXIS][tmp_extruder],
  7456. 0),
  7457. act_offset_vec = vector_3(hotend_offset[X_AXIS][active_extruder],
  7458. hotend_offset[Y_AXIS][active_extruder],
  7459. 0),
  7460. offset_vec = tmp_offset_vec - act_offset_vec;
  7461. #if ENABLED(DEBUG_LEVELING_FEATURE)
  7462. if (DEBUGGING(LEVELING)) {
  7463. tmp_offset_vec.debug("tmp_offset_vec");
  7464. act_offset_vec.debug("act_offset_vec");
  7465. offset_vec.debug("offset_vec (BEFORE)");
  7466. }
  7467. #endif
  7468. offset_vec.apply_rotation(planner.bed_level_matrix.transpose(planner.bed_level_matrix));
  7469. #if ENABLED(DEBUG_LEVELING_FEATURE)
  7470. if (DEBUGGING(LEVELING)) offset_vec.debug("offset_vec (AFTER)");
  7471. #endif
  7472. // Adjustments to the current position
  7473. const float xydiff[2] = { offset_vec.x, offset_vec.y };
  7474. current_position[Z_AXIS] += offset_vec.z;
  7475. #else // !ABL_PLANAR
  7476. const float xydiff[2] = {
  7477. hotend_offset[X_AXIS][tmp_extruder] - hotend_offset[X_AXIS][active_extruder],
  7478. hotend_offset[Y_AXIS][tmp_extruder] - hotend_offset[Y_AXIS][active_extruder]
  7479. };
  7480. #if ENABLED(MESH_BED_LEVELING)
  7481. if (mbl.active()) {
  7482. #if ENABLED(DEBUG_LEVELING_FEATURE)
  7483. if (DEBUGGING(LEVELING)) SERIAL_ECHOPAIR("Z before MBL: ", current_position[Z_AXIS]);
  7484. #endif
  7485. float x2 = current_position[X_AXIS] + xydiff[X_AXIS],
  7486. y2 = current_position[Y_AXIS] + xydiff[Y_AXIS],
  7487. z1 = current_position[Z_AXIS], z2 = z1;
  7488. planner.apply_leveling(current_position[X_AXIS], current_position[Y_AXIS], z1);
  7489. planner.apply_leveling(x2, y2, z2);
  7490. current_position[Z_AXIS] += z2 - z1;
  7491. #if ENABLED(DEBUG_LEVELING_FEATURE)
  7492. if (DEBUGGING(LEVELING))
  7493. SERIAL_ECHOLNPAIR(" after: ", current_position[Z_AXIS]);
  7494. #endif
  7495. }
  7496. #endif // MESH_BED_LEVELING
  7497. #endif // !HAS_ABL
  7498. #if ENABLED(DEBUG_LEVELING_FEATURE)
  7499. if (DEBUGGING(LEVELING)) {
  7500. SERIAL_ECHOPAIR("Offset Tool XY by { ", xydiff[X_AXIS]);
  7501. SERIAL_ECHOPAIR(", ", xydiff[Y_AXIS]);
  7502. SERIAL_ECHOLNPGM(" }");
  7503. }
  7504. #endif
  7505. // The newly-selected extruder XY is actually at...
  7506. current_position[X_AXIS] += xydiff[X_AXIS];
  7507. current_position[Y_AXIS] += xydiff[Y_AXIS];
  7508. #if DISABLED(NO_WORKSPACE_OFFSETS) || ENABLED(DUAL_X_CARRIAGE)
  7509. for (uint8_t i = X_AXIS; i <= Y_AXIS; i++) {
  7510. #if DISABLED(NO_WORKSPACE_OFFSETS)
  7511. position_shift[i] += xydiff[i];
  7512. #endif
  7513. update_software_endstops((AxisEnum)i);
  7514. }
  7515. #endif
  7516. // Set the new active extruder
  7517. active_extruder = tmp_extruder;
  7518. #endif // !DUAL_X_CARRIAGE
  7519. #if ENABLED(DEBUG_LEVELING_FEATURE)
  7520. if (DEBUGGING(LEVELING)) DEBUG_POS("Sync After Toolchange", current_position);
  7521. #endif
  7522. // Tell the planner the new "current position"
  7523. SYNC_PLAN_POSITION_KINEMATIC();
  7524. // Move to the "old position" (move the extruder into place)
  7525. if (!no_move && IsRunning()) {
  7526. #if ENABLED(DEBUG_LEVELING_FEATURE)
  7527. if (DEBUGGING(LEVELING)) DEBUG_POS("Move back", destination);
  7528. #endif
  7529. prepare_move_to_destination();
  7530. }
  7531. #if ENABLED(SWITCHING_EXTRUDER)
  7532. // Move back down, if needed. (Including when the new tool is higher.)
  7533. if (z_raise != z_diff) {
  7534. destination[Z_AXIS] += z_diff;
  7535. feedrate_mm_s = planner.max_feedrate_mm_s[Z_AXIS];
  7536. prepare_move_to_destination();
  7537. }
  7538. #endif
  7539. } // (tmp_extruder != active_extruder)
  7540. stepper.synchronize();
  7541. #if ENABLED(EXT_SOLENOID)
  7542. disable_all_solenoids();
  7543. enable_solenoid_on_active_extruder();
  7544. #endif // EXT_SOLENOID
  7545. feedrate_mm_s = old_feedrate_mm_s;
  7546. #else // HOTENDS <= 1
  7547. // Set the new active extruder
  7548. active_extruder = tmp_extruder;
  7549. UNUSED(fr_mm_s);
  7550. UNUSED(no_move);
  7551. #endif // HOTENDS <= 1
  7552. SERIAL_ECHO_START;
  7553. SERIAL_ECHOLNPAIR(MSG_ACTIVE_EXTRUDER, (int)active_extruder);
  7554. #endif //!MIXING_EXTRUDER || MIXING_VIRTUAL_TOOLS <= 1
  7555. }
  7556. /**
  7557. * T0-T3: Switch tool, usually switching extruders
  7558. *
  7559. * F[units/min] Set the movement feedrate
  7560. * S1 Don't move the tool in XY after change
  7561. */
  7562. inline void gcode_T(uint8_t tmp_extruder) {
  7563. #if ENABLED(DEBUG_LEVELING_FEATURE)
  7564. if (DEBUGGING(LEVELING)) {
  7565. SERIAL_ECHOPAIR(">>> gcode_T(", tmp_extruder);
  7566. SERIAL_CHAR(')');
  7567. SERIAL_EOL;
  7568. DEBUG_POS("BEFORE", current_position);
  7569. }
  7570. #endif
  7571. #if HOTENDS == 1 || (ENABLED(MIXING_EXTRUDER) && MIXING_VIRTUAL_TOOLS > 1)
  7572. tool_change(tmp_extruder);
  7573. #elif HOTENDS > 1
  7574. tool_change(
  7575. tmp_extruder,
  7576. code_seen('F') ? MMM_TO_MMS(code_value_axis_units(X_AXIS)) : 0.0,
  7577. (tmp_extruder == active_extruder) || (code_seen('S') && code_value_bool())
  7578. );
  7579. #endif
  7580. #if ENABLED(DEBUG_LEVELING_FEATURE)
  7581. if (DEBUGGING(LEVELING)) {
  7582. DEBUG_POS("AFTER", current_position);
  7583. SERIAL_ECHOLNPGM("<<< gcode_T");
  7584. }
  7585. #endif
  7586. }
  7587. /**
  7588. * Process a single command and dispatch it to its handler
  7589. * This is called from the main loop()
  7590. */
  7591. void process_next_command() {
  7592. current_command = command_queue[cmd_queue_index_r];
  7593. if (DEBUGGING(ECHO)) {
  7594. SERIAL_ECHO_START;
  7595. SERIAL_ECHOLN(current_command);
  7596. }
  7597. // Sanitize the current command:
  7598. // - Skip leading spaces
  7599. // - Bypass N[-0-9][0-9]*[ ]*
  7600. // - Overwrite * with nul to mark the end
  7601. while (*current_command == ' ') ++current_command;
  7602. if (*current_command == 'N' && NUMERIC_SIGNED(current_command[1])) {
  7603. current_command += 2; // skip N[-0-9]
  7604. while (NUMERIC(*current_command)) ++current_command; // skip [0-9]*
  7605. while (*current_command == ' ') ++current_command; // skip [ ]*
  7606. }
  7607. char* starpos = strchr(current_command, '*'); // * should always be the last parameter
  7608. if (starpos) while (*starpos == ' ' || *starpos == '*') *starpos-- = '\0'; // nullify '*' and ' '
  7609. char *cmd_ptr = current_command;
  7610. // Get the command code, which must be G, M, or T
  7611. char command_code = *cmd_ptr++;
  7612. // Skip spaces to get the numeric part
  7613. while (*cmd_ptr == ' ') cmd_ptr++;
  7614. // Allow for decimal point in command
  7615. #if ENABLED(G38_PROBE_TARGET)
  7616. uint8_t subcode = 0;
  7617. #endif
  7618. uint16_t codenum = 0; // define ahead of goto
  7619. // Bail early if there's no code
  7620. bool code_is_good = NUMERIC(*cmd_ptr);
  7621. if (!code_is_good) goto ExitUnknownCommand;
  7622. // Get and skip the code number
  7623. do {
  7624. codenum = (codenum * 10) + (*cmd_ptr - '0');
  7625. cmd_ptr++;
  7626. } while (NUMERIC(*cmd_ptr));
  7627. // Allow for decimal point in command
  7628. #if ENABLED(G38_PROBE_TARGET)
  7629. if (*cmd_ptr == '.') {
  7630. cmd_ptr++;
  7631. while (NUMERIC(*cmd_ptr))
  7632. subcode = (subcode * 10) + (*cmd_ptr++ - '0');
  7633. }
  7634. #endif
  7635. // Skip all spaces to get to the first argument, or nul
  7636. while (*cmd_ptr == ' ') cmd_ptr++;
  7637. // The command's arguments (if any) start here, for sure!
  7638. current_command_args = cmd_ptr;
  7639. KEEPALIVE_STATE(IN_HANDLER);
  7640. // Handle a known G, M, or T
  7641. switch (command_code) {
  7642. case 'G': switch (codenum) {
  7643. // G0, G1
  7644. case 0:
  7645. case 1:
  7646. #if IS_SCARA
  7647. gcode_G0_G1(codenum == 0);
  7648. #else
  7649. gcode_G0_G1();
  7650. #endif
  7651. break;
  7652. // G2, G3
  7653. #if ENABLED(ARC_SUPPORT) && DISABLED(SCARA)
  7654. case 2: // G2 - CW ARC
  7655. case 3: // G3 - CCW ARC
  7656. gcode_G2_G3(codenum == 2);
  7657. break;
  7658. #endif
  7659. // G4 Dwell
  7660. case 4:
  7661. gcode_G4();
  7662. break;
  7663. #if ENABLED(BEZIER_CURVE_SUPPORT)
  7664. // G5
  7665. case 5: // G5 - Cubic B_spline
  7666. gcode_G5();
  7667. break;
  7668. #endif // BEZIER_CURVE_SUPPORT
  7669. #if ENABLED(FWRETRACT)
  7670. case 10: // G10: retract
  7671. case 11: // G11: retract_recover
  7672. gcode_G10_G11(codenum == 10);
  7673. break;
  7674. #endif // FWRETRACT
  7675. #if ENABLED(NOZZLE_CLEAN_FEATURE)
  7676. case 12:
  7677. gcode_G12(); // G12: Nozzle Clean
  7678. break;
  7679. #endif // NOZZLE_CLEAN_FEATURE
  7680. #if ENABLED(INCH_MODE_SUPPORT)
  7681. case 20: //G20: Inch Mode
  7682. gcode_G20();
  7683. break;
  7684. case 21: //G21: MM Mode
  7685. gcode_G21();
  7686. break;
  7687. #endif // INCH_MODE_SUPPORT
  7688. #if ENABLED(AUTO_BED_LEVELING_UBL) && ENABLED(UBL_G26_MESH_EDITING)
  7689. case 26: // G26: Mesh Validation Pattern generation
  7690. gcode_G26();
  7691. break;
  7692. #endif // AUTO_BED_LEVELING_UBL
  7693. #if ENABLED(NOZZLE_PARK_FEATURE)
  7694. case 27: // G27: Nozzle Park
  7695. gcode_G27();
  7696. break;
  7697. #endif // NOZZLE_PARK_FEATURE
  7698. case 28: // G28: Home all axes, one at a time
  7699. gcode_G28();
  7700. break;
  7701. #if PLANNER_LEVELING || ENABLED(AUTO_BED_LEVELING_UBL)
  7702. case 29: // G29 Detailed Z probe, probes the bed at 3 or more points,
  7703. // or provides access to the UBL System if enabled.
  7704. gcode_G29();
  7705. break;
  7706. #endif // PLANNER_LEVELING
  7707. #if HAS_BED_PROBE
  7708. case 30: // G30 Single Z probe
  7709. gcode_G30();
  7710. break;
  7711. #if ENABLED(Z_PROBE_SLED)
  7712. case 31: // G31: dock the sled
  7713. gcode_G31();
  7714. break;
  7715. case 32: // G32: undock the sled
  7716. gcode_G32();
  7717. break;
  7718. #endif // Z_PROBE_SLED
  7719. #endif // HAS_BED_PROBE
  7720. #if ENABLED(G38_PROBE_TARGET)
  7721. case 38: // G38.2 & G38.3
  7722. if (subcode == 2 || subcode == 3)
  7723. gcode_G38(subcode == 2);
  7724. break;
  7725. #endif
  7726. case 90: // G90
  7727. relative_mode = false;
  7728. break;
  7729. case 91: // G91
  7730. relative_mode = true;
  7731. break;
  7732. case 92: // G92
  7733. gcode_G92();
  7734. break;
  7735. }
  7736. break;
  7737. case 'M': switch (codenum) {
  7738. #if HAS_RESUME_CONTINUE
  7739. case 0: // M0: Unconditional stop - Wait for user button press on LCD
  7740. case 1: // M1: Conditional stop - Wait for user button press on LCD
  7741. gcode_M0_M1();
  7742. break;
  7743. #endif // ULTIPANEL
  7744. case 17: // M17: Enable all stepper motors
  7745. gcode_M17();
  7746. break;
  7747. #if ENABLED(SDSUPPORT)
  7748. case 20: // M20: list SD card
  7749. gcode_M20(); break;
  7750. case 21: // M21: init SD card
  7751. gcode_M21(); break;
  7752. case 22: // M22: release SD card
  7753. gcode_M22(); break;
  7754. case 23: // M23: Select file
  7755. gcode_M23(); break;
  7756. case 24: // M24: Start SD print
  7757. gcode_M24(); break;
  7758. case 25: // M25: Pause SD print
  7759. gcode_M25(); break;
  7760. case 26: // M26: Set SD index
  7761. gcode_M26(); break;
  7762. case 27: // M27: Get SD status
  7763. gcode_M27(); break;
  7764. case 28: // M28: Start SD write
  7765. gcode_M28(); break;
  7766. case 29: // M29: Stop SD write
  7767. gcode_M29(); break;
  7768. case 30: // M30 <filename> Delete File
  7769. gcode_M30(); break;
  7770. case 32: // M32: Select file and start SD print
  7771. gcode_M32(); break;
  7772. #if ENABLED(LONG_FILENAME_HOST_SUPPORT)
  7773. case 33: // M33: Get the long full path to a file or folder
  7774. gcode_M33(); break;
  7775. #endif
  7776. #if ENABLED(SDCARD_SORT_ALPHA) && ENABLED(SDSORT_GCODE)
  7777. case 34: //M34 - Set SD card sorting options
  7778. gcode_M34(); break;
  7779. #endif // SDCARD_SORT_ALPHA && SDSORT_GCODE
  7780. case 928: // M928: Start SD write
  7781. gcode_M928(); break;
  7782. #endif //SDSUPPORT
  7783. case 31: // M31: Report time since the start of SD print or last M109
  7784. gcode_M31(); break;
  7785. case 42: // M42: Change pin state
  7786. gcode_M42(); break;
  7787. #if ENABLED(PINS_DEBUGGING)
  7788. case 43: // M43: Read pin state
  7789. gcode_M43(); break;
  7790. #endif
  7791. #if ENABLED(Z_MIN_PROBE_REPEATABILITY_TEST)
  7792. case 48: // M48: Z probe repeatability test
  7793. gcode_M48();
  7794. break;
  7795. #endif // Z_MIN_PROBE_REPEATABILITY_TEST
  7796. #if ENABLED(AUTO_BED_LEVELING_UBL) && ENABLED(UBL_G26_MESH_EDITING)
  7797. case 49: // M49: Turn on or off G26 debug flag for verbose output
  7798. gcode_M49();
  7799. break;
  7800. #endif // AUTO_BED_LEVELING_UBL && UBL_G26_MESH_EDITING
  7801. case 75: // M75: Start print timer
  7802. gcode_M75(); break;
  7803. case 76: // M76: Pause print timer
  7804. gcode_M76(); break;
  7805. case 77: // M77: Stop print timer
  7806. gcode_M77(); break;
  7807. #if ENABLED(PRINTCOUNTER)
  7808. case 78: // M78: Show print statistics
  7809. gcode_M78(); break;
  7810. #endif
  7811. #if ENABLED(M100_FREE_MEMORY_WATCHER)
  7812. case 100: // M100: Free Memory Report
  7813. gcode_M100();
  7814. break;
  7815. #endif
  7816. case 104: // M104: Set hot end temperature
  7817. gcode_M104();
  7818. break;
  7819. case 110: // M110: Set Current Line Number
  7820. gcode_M110();
  7821. break;
  7822. case 111: // M111: Set debug level
  7823. gcode_M111();
  7824. break;
  7825. #if DISABLED(EMERGENCY_PARSER)
  7826. case 108: // M108: Cancel Waiting
  7827. gcode_M108();
  7828. break;
  7829. case 112: // M112: Emergency Stop
  7830. gcode_M112();
  7831. break;
  7832. case 410: // M410 quickstop - Abort all the planned moves.
  7833. gcode_M410();
  7834. break;
  7835. #endif
  7836. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  7837. case 113: // M113: Set Host Keepalive interval
  7838. gcode_M113();
  7839. break;
  7840. #endif
  7841. case 140: // M140: Set bed temperature
  7842. gcode_M140();
  7843. break;
  7844. case 105: // M105: Report current temperature
  7845. gcode_M105();
  7846. KEEPALIVE_STATE(NOT_BUSY);
  7847. return; // "ok" already printed
  7848. #if ENABLED(AUTO_REPORT_TEMPERATURES) && (HAS_TEMP_HOTEND || HAS_TEMP_BED)
  7849. case 155: // M155: Set temperature auto-report interval
  7850. gcode_M155();
  7851. break;
  7852. #endif
  7853. case 109: // M109: Wait for hotend temperature to reach target
  7854. gcode_M109();
  7855. break;
  7856. #if HAS_TEMP_BED
  7857. case 190: // M190: Wait for bed temperature to reach target
  7858. gcode_M190();
  7859. break;
  7860. #endif // HAS_TEMP_BED
  7861. #if FAN_COUNT > 0
  7862. case 106: // M106: Fan On
  7863. gcode_M106();
  7864. break;
  7865. case 107: // M107: Fan Off
  7866. gcode_M107();
  7867. break;
  7868. #endif // FAN_COUNT > 0
  7869. #if ENABLED(PARK_HEAD_ON_PAUSE)
  7870. case 125: // M125: Store current position and move to filament change position
  7871. gcode_M125(); break;
  7872. #endif
  7873. #if ENABLED(BARICUDA)
  7874. // PWM for HEATER_1_PIN
  7875. #if HAS_HEATER_1
  7876. case 126: // M126: valve open
  7877. gcode_M126();
  7878. break;
  7879. case 127: // M127: valve closed
  7880. gcode_M127();
  7881. break;
  7882. #endif // HAS_HEATER_1
  7883. // PWM for HEATER_2_PIN
  7884. #if HAS_HEATER_2
  7885. case 128: // M128: valve open
  7886. gcode_M128();
  7887. break;
  7888. case 129: // M129: valve closed
  7889. gcode_M129();
  7890. break;
  7891. #endif // HAS_HEATER_2
  7892. #endif // BARICUDA
  7893. #if HAS_POWER_SWITCH
  7894. case 80: // M80: Turn on Power Supply
  7895. gcode_M80();
  7896. break;
  7897. #endif // HAS_POWER_SWITCH
  7898. case 81: // M81: Turn off Power, including Power Supply, if possible
  7899. gcode_M81();
  7900. break;
  7901. case 82: // M83: Set E axis normal mode (same as other axes)
  7902. gcode_M82();
  7903. break;
  7904. case 83: // M83: Set E axis relative mode
  7905. gcode_M83();
  7906. break;
  7907. case 18: // M18 => M84
  7908. case 84: // M84: Disable all steppers or set timeout
  7909. gcode_M18_M84();
  7910. break;
  7911. case 85: // M85: Set inactivity stepper shutdown timeout
  7912. gcode_M85();
  7913. break;
  7914. case 92: // M92: Set the steps-per-unit for one or more axes
  7915. gcode_M92();
  7916. break;
  7917. case 114: // M114: Report current position
  7918. gcode_M114();
  7919. break;
  7920. case 115: // M115: Report capabilities
  7921. gcode_M115();
  7922. break;
  7923. case 117: // M117: Set LCD message text, if possible
  7924. gcode_M117();
  7925. break;
  7926. case 119: // M119: Report endstop states
  7927. gcode_M119();
  7928. break;
  7929. case 120: // M120: Enable endstops
  7930. gcode_M120();
  7931. break;
  7932. case 121: // M121: Disable endstops
  7933. gcode_M121();
  7934. break;
  7935. #if ENABLED(ULTIPANEL)
  7936. case 145: // M145: Set material heatup parameters
  7937. gcode_M145();
  7938. break;
  7939. #endif
  7940. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  7941. case 149: // M149: Set temperature units
  7942. gcode_M149();
  7943. break;
  7944. #endif
  7945. #if HAS_COLOR_LEDS
  7946. case 150: // M150: Set Status LED Color
  7947. gcode_M150();
  7948. break;
  7949. #endif // BLINKM
  7950. #if ENABLED(MIXING_EXTRUDER)
  7951. case 163: // M163: Set a component weight for mixing extruder
  7952. gcode_M163();
  7953. break;
  7954. #if MIXING_VIRTUAL_TOOLS > 1
  7955. case 164: // M164: Save current mix as a virtual extruder
  7956. gcode_M164();
  7957. break;
  7958. #endif
  7959. #if ENABLED(DIRECT_MIXING_IN_G1)
  7960. case 165: // M165: Set multiple mix weights
  7961. gcode_M165();
  7962. break;
  7963. #endif
  7964. #endif
  7965. case 200: // M200: Set filament diameter, E to cubic units
  7966. gcode_M200();
  7967. break;
  7968. case 201: // M201: Set max acceleration for print moves (units/s^2)
  7969. gcode_M201();
  7970. break;
  7971. #if 0 // Not used for Sprinter/grbl gen6
  7972. case 202: // M202
  7973. gcode_M202();
  7974. break;
  7975. #endif
  7976. case 203: // M203: Set max feedrate (units/sec)
  7977. gcode_M203();
  7978. break;
  7979. case 204: // M204: Set acceleration
  7980. gcode_M204();
  7981. break;
  7982. case 205: //M205: Set advanced settings
  7983. gcode_M205();
  7984. break;
  7985. #if DISABLED(NO_WORKSPACE_OFFSETS)
  7986. case 206: // M206: Set home offsets
  7987. gcode_M206();
  7988. break;
  7989. #endif
  7990. #if ENABLED(DELTA)
  7991. case 665: // M665: Set delta configurations
  7992. gcode_M665();
  7993. break;
  7994. #endif
  7995. #if ENABLED(DELTA) || ENABLED(Z_DUAL_ENDSTOPS)
  7996. case 666: // M666: Set delta or dual endstop adjustment
  7997. gcode_M666();
  7998. break;
  7999. #endif
  8000. #if ENABLED(FWRETRACT)
  8001. case 207: // M207: Set Retract Length, Feedrate, and Z lift
  8002. gcode_M207();
  8003. break;
  8004. case 208: // M208: Set Recover (unretract) Additional Length and Feedrate
  8005. gcode_M208();
  8006. break;
  8007. case 209: // M209: Turn Automatic Retract Detection on/off
  8008. gcode_M209();
  8009. break;
  8010. #endif // FWRETRACT
  8011. case 211: // M211: Enable, Disable, and/or Report software endstops
  8012. gcode_M211();
  8013. break;
  8014. #if HOTENDS > 1
  8015. case 218: // M218: Set a tool offset
  8016. gcode_M218();
  8017. break;
  8018. #endif
  8019. case 220: // M220: Set Feedrate Percentage: S<percent> ("FR" on your LCD)
  8020. gcode_M220();
  8021. break;
  8022. case 221: // M221: Set Flow Percentage
  8023. gcode_M221();
  8024. break;
  8025. case 226: // M226: Wait until a pin reaches a state
  8026. gcode_M226();
  8027. break;
  8028. #if HAS_SERVOS
  8029. case 280: // M280: Set servo position absolute
  8030. gcode_M280();
  8031. break;
  8032. #endif // HAS_SERVOS
  8033. #if HAS_BUZZER
  8034. case 300: // M300: Play beep tone
  8035. gcode_M300();
  8036. break;
  8037. #endif // HAS_BUZZER
  8038. #if ENABLED(PIDTEMP)
  8039. case 301: // M301: Set hotend PID parameters
  8040. gcode_M301();
  8041. break;
  8042. #endif // PIDTEMP
  8043. #if ENABLED(PIDTEMPBED)
  8044. case 304: // M304: Set bed PID parameters
  8045. gcode_M304();
  8046. break;
  8047. #endif // PIDTEMPBED
  8048. #if defined(CHDK) || HAS_PHOTOGRAPH
  8049. case 240: // M240: Trigger a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  8050. gcode_M240();
  8051. break;
  8052. #endif // CHDK || PHOTOGRAPH_PIN
  8053. #if HAS_LCD_CONTRAST
  8054. case 250: // M250: Set LCD contrast
  8055. gcode_M250();
  8056. break;
  8057. #endif // HAS_LCD_CONTRAST
  8058. #if ENABLED(EXPERIMENTAL_I2CBUS)
  8059. case 260: // M260: Send data to an i2c slave
  8060. gcode_M260();
  8061. break;
  8062. case 261: // M261: Request data from an i2c slave
  8063. gcode_M261();
  8064. break;
  8065. #endif // EXPERIMENTAL_I2CBUS
  8066. #if ENABLED(PREVENT_COLD_EXTRUSION)
  8067. case 302: // M302: Allow cold extrudes (set the minimum extrude temperature)
  8068. gcode_M302();
  8069. break;
  8070. #endif // PREVENT_COLD_EXTRUSION
  8071. case 303: // M303: PID autotune
  8072. gcode_M303();
  8073. break;
  8074. #if ENABLED(MORGAN_SCARA)
  8075. case 360: // M360: SCARA Theta pos1
  8076. if (gcode_M360()) return;
  8077. break;
  8078. case 361: // M361: SCARA Theta pos2
  8079. if (gcode_M361()) return;
  8080. break;
  8081. case 362: // M362: SCARA Psi pos1
  8082. if (gcode_M362()) return;
  8083. break;
  8084. case 363: // M363: SCARA Psi pos2
  8085. if (gcode_M363()) return;
  8086. break;
  8087. case 364: // M364: SCARA Psi pos3 (90 deg to Theta)
  8088. if (gcode_M364()) return;
  8089. break;
  8090. #endif // SCARA
  8091. case 400: // M400: Finish all moves
  8092. gcode_M400();
  8093. break;
  8094. #if HAS_BED_PROBE
  8095. case 401: // M401: Deploy probe
  8096. gcode_M401();
  8097. break;
  8098. case 402: // M402: Stow probe
  8099. gcode_M402();
  8100. break;
  8101. #endif // HAS_BED_PROBE
  8102. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  8103. case 404: // M404: Enter the nominal filament width (3mm, 1.75mm ) N<3.0> or display nominal filament width
  8104. gcode_M404();
  8105. break;
  8106. case 405: // M405: Turn on filament sensor for control
  8107. gcode_M405();
  8108. break;
  8109. case 406: // M406: Turn off filament sensor for control
  8110. gcode_M406();
  8111. break;
  8112. case 407: // M407: Display measured filament diameter
  8113. gcode_M407();
  8114. break;
  8115. #endif // ENABLED(FILAMENT_WIDTH_SENSOR)
  8116. #if PLANNER_LEVELING
  8117. case 420: // M420: Enable/Disable Bed Leveling
  8118. gcode_M420();
  8119. break;
  8120. #endif
  8121. #if ENABLED(MESH_BED_LEVELING) || ENABLED(AUTO_BED_LEVELING_UBL) || ENABLED(AUTO_BED_LEVELING_BILINEAR)
  8122. case 421: // M421: Set a Mesh Bed Leveling Z coordinate
  8123. gcode_M421();
  8124. break;
  8125. #endif
  8126. #if DISABLED(NO_WORKSPACE_OFFSETS)
  8127. case 428: // M428: Apply current_position to home_offset
  8128. gcode_M428();
  8129. break;
  8130. #endif
  8131. case 500: // M500: Store settings in EEPROM
  8132. gcode_M500();
  8133. break;
  8134. case 501: // M501: Read settings from EEPROM
  8135. gcode_M501();
  8136. break;
  8137. case 502: // M502: Revert to default settings
  8138. gcode_M502();
  8139. break;
  8140. case 503: // M503: print settings currently in memory
  8141. gcode_M503();
  8142. break;
  8143. #if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  8144. case 540: // M540: Set abort on endstop hit for SD printing
  8145. gcode_M540();
  8146. break;
  8147. #endif
  8148. #if HAS_BED_PROBE
  8149. case 851: // M851: Set Z Probe Z Offset
  8150. gcode_M851();
  8151. break;
  8152. #endif // HAS_BED_PROBE
  8153. #if ENABLED(FILAMENT_CHANGE_FEATURE)
  8154. case 600: // M600: Pause for filament change
  8155. gcode_M600();
  8156. break;
  8157. #endif // FILAMENT_CHANGE_FEATURE
  8158. #if ENABLED(DUAL_X_CARRIAGE)
  8159. case 605: // M605: Set Dual X Carriage movement mode
  8160. gcode_M605();
  8161. break;
  8162. #endif // DUAL_X_CARRIAGE
  8163. #if ENABLED(LIN_ADVANCE)
  8164. case 905: // M905: Set advance K factor.
  8165. gcode_M905();
  8166. break;
  8167. #endif
  8168. #if ENABLED(HAVE_TMC2130)
  8169. case 906: // M906: Set motor current in milliamps using axis codes X, Y, Z, E
  8170. gcode_M906();
  8171. break;
  8172. #endif
  8173. case 907: // M907: Set digital trimpot motor current using axis codes.
  8174. gcode_M907();
  8175. break;
  8176. #if HAS_DIGIPOTSS || ENABLED(DAC_STEPPER_CURRENT)
  8177. case 908: // M908: Control digital trimpot directly.
  8178. gcode_M908();
  8179. break;
  8180. #if ENABLED(DAC_STEPPER_CURRENT) // As with Printrbot RevF
  8181. case 909: // M909: Print digipot/DAC current value
  8182. gcode_M909();
  8183. break;
  8184. case 910: // M910: Commit digipot/DAC value to external EEPROM
  8185. gcode_M910();
  8186. break;
  8187. #endif
  8188. #endif // HAS_DIGIPOTSS || DAC_STEPPER_CURRENT
  8189. #if ENABLED(HAVE_TMC2130)
  8190. case 911: // M911: Report TMC2130 prewarn triggered flags
  8191. gcode_M911();
  8192. break;
  8193. case 912: // M911: Clear TMC2130 prewarn triggered flags
  8194. gcode_M912();
  8195. break;
  8196. #endif
  8197. #if HAS_MICROSTEPS
  8198. case 350: // M350: Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  8199. gcode_M350();
  8200. break;
  8201. case 351: // M351: Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  8202. gcode_M351();
  8203. break;
  8204. #endif // HAS_MICROSTEPS
  8205. case 355: // M355 Turn case lights on/off
  8206. gcode_M355();
  8207. break;
  8208. case 999: // M999: Restart after being Stopped
  8209. gcode_M999();
  8210. break;
  8211. }
  8212. break;
  8213. case 'T':
  8214. gcode_T(codenum);
  8215. break;
  8216. default: code_is_good = false;
  8217. }
  8218. KEEPALIVE_STATE(NOT_BUSY);
  8219. ExitUnknownCommand:
  8220. // Still unknown command? Throw an error
  8221. if (!code_is_good) unknown_command_error();
  8222. ok_to_send();
  8223. }
  8224. /**
  8225. * Send a "Resend: nnn" message to the host to
  8226. * indicate that a command needs to be re-sent.
  8227. */
  8228. void FlushSerialRequestResend() {
  8229. //char command_queue[cmd_queue_index_r][100]="Resend:";
  8230. MYSERIAL.flush();
  8231. SERIAL_PROTOCOLPGM(MSG_RESEND);
  8232. SERIAL_PROTOCOLLN(gcode_LastN + 1);
  8233. ok_to_send();
  8234. }
  8235. /**
  8236. * Send an "ok" message to the host, indicating
  8237. * that a command was successfully processed.
  8238. *
  8239. * If ADVANCED_OK is enabled also include:
  8240. * N<int> Line number of the command, if any
  8241. * P<int> Planner space remaining
  8242. * B<int> Block queue space remaining
  8243. */
  8244. void ok_to_send() {
  8245. refresh_cmd_timeout();
  8246. if (!send_ok[cmd_queue_index_r]) return;
  8247. SERIAL_PROTOCOLPGM(MSG_OK);
  8248. #if ENABLED(ADVANCED_OK)
  8249. char* p = command_queue[cmd_queue_index_r];
  8250. if (*p == 'N') {
  8251. SERIAL_PROTOCOL(' ');
  8252. SERIAL_ECHO(*p++);
  8253. while (NUMERIC_SIGNED(*p))
  8254. SERIAL_ECHO(*p++);
  8255. }
  8256. SERIAL_PROTOCOLPGM(" P"); SERIAL_PROTOCOL(int(BLOCK_BUFFER_SIZE - planner.movesplanned() - 1));
  8257. SERIAL_PROTOCOLPGM(" B"); SERIAL_PROTOCOL(BUFSIZE - commands_in_queue);
  8258. #endif
  8259. SERIAL_EOL;
  8260. }
  8261. #if HAS_SOFTWARE_ENDSTOPS
  8262. /**
  8263. * Constrain the given coordinates to the software endstops.
  8264. */
  8265. void clamp_to_software_endstops(float target[XYZ]) {
  8266. if (!soft_endstops_enabled) return;
  8267. #if ENABLED(MIN_SOFTWARE_ENDSTOPS)
  8268. NOLESS(target[X_AXIS], soft_endstop_min[X_AXIS]);
  8269. NOLESS(target[Y_AXIS], soft_endstop_min[Y_AXIS]);
  8270. NOLESS(target[Z_AXIS], soft_endstop_min[Z_AXIS]);
  8271. #endif
  8272. #if ENABLED(MAX_SOFTWARE_ENDSTOPS)
  8273. NOMORE(target[X_AXIS], soft_endstop_max[X_AXIS]);
  8274. NOMORE(target[Y_AXIS], soft_endstop_max[Y_AXIS]);
  8275. NOMORE(target[Z_AXIS], soft_endstop_max[Z_AXIS]);
  8276. #endif
  8277. }
  8278. #endif
  8279. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  8280. #if ENABLED(ABL_BILINEAR_SUBDIVISION)
  8281. #define ABL_BG_SPACING(A) bilinear_grid_spacing_virt[A]
  8282. #define ABL_BG_POINTS_X ABL_GRID_POINTS_VIRT_X
  8283. #define ABL_BG_POINTS_Y ABL_GRID_POINTS_VIRT_Y
  8284. #define ABL_BG_GRID(X,Y) bed_level_grid_virt[X][Y]
  8285. #else
  8286. #define ABL_BG_SPACING(A) bilinear_grid_spacing[A]
  8287. #define ABL_BG_POINTS_X GRID_MAX_POINTS_X
  8288. #define ABL_BG_POINTS_Y GRID_MAX_POINTS_Y
  8289. #define ABL_BG_GRID(X,Y) bed_level_grid[X][Y]
  8290. #endif
  8291. // Get the Z adjustment for non-linear bed leveling
  8292. float bilinear_z_offset(float cartesian[XYZ]) {
  8293. // XY relative to the probed area
  8294. const float x = RAW_X_POSITION(cartesian[X_AXIS]) - bilinear_start[X_AXIS],
  8295. y = RAW_Y_POSITION(cartesian[Y_AXIS]) - bilinear_start[Y_AXIS];
  8296. // Convert to grid box units
  8297. float ratio_x = x / ABL_BG_SPACING(X_AXIS),
  8298. ratio_y = y / ABL_BG_SPACING(Y_AXIS);
  8299. // Whole units for the grid line indices. Constrained within bounds.
  8300. const int gridx = constrain(floor(ratio_x), 0, ABL_BG_POINTS_X - 1),
  8301. gridy = constrain(floor(ratio_y), 0, ABL_BG_POINTS_Y - 1),
  8302. nextx = min(gridx + 1, ABL_BG_POINTS_X - 1),
  8303. nexty = min(gridy + 1, ABL_BG_POINTS_Y - 1);
  8304. // Subtract whole to get the ratio within the grid box
  8305. ratio_x -= gridx; ratio_y -= gridy;
  8306. // Never less than 0.0. (Over 1.0 is fine due to previous contraints.)
  8307. NOLESS(ratio_x, 0); NOLESS(ratio_y, 0);
  8308. // Z at the box corners
  8309. const float z1 = ABL_BG_GRID(gridx, gridy), // left-front
  8310. z2 = ABL_BG_GRID(gridx, nexty), // left-back
  8311. z3 = ABL_BG_GRID(nextx, gridy), // right-front
  8312. z4 = ABL_BG_GRID(nextx, nexty), // right-back
  8313. // Bilinear interpolate
  8314. L = z1 + (z2 - z1) * ratio_y, // Linear interp. LF -> LB
  8315. R = z3 + (z4 - z3) * ratio_y, // Linear interp. RF -> RB
  8316. offset = L + ratio_x * (R - L);
  8317. /*
  8318. static float last_offset = 0;
  8319. if (fabs(last_offset - offset) > 0.2) {
  8320. SERIAL_ECHOPGM("Sudden Shift at ");
  8321. SERIAL_ECHOPAIR("x=", x);
  8322. SERIAL_ECHOPAIR(" / ", bilinear_grid_spacing[X_AXIS]);
  8323. SERIAL_ECHOLNPAIR(" -> gridx=", gridx);
  8324. SERIAL_ECHOPAIR(" y=", y);
  8325. SERIAL_ECHOPAIR(" / ", bilinear_grid_spacing[Y_AXIS]);
  8326. SERIAL_ECHOLNPAIR(" -> gridy=", gridy);
  8327. SERIAL_ECHOPAIR(" ratio_x=", ratio_x);
  8328. SERIAL_ECHOLNPAIR(" ratio_y=", ratio_y);
  8329. SERIAL_ECHOPAIR(" z1=", z1);
  8330. SERIAL_ECHOPAIR(" z2=", z2);
  8331. SERIAL_ECHOPAIR(" z3=", z3);
  8332. SERIAL_ECHOLNPAIR(" z4=", z4);
  8333. SERIAL_ECHOPAIR(" L=", L);
  8334. SERIAL_ECHOPAIR(" R=", R);
  8335. SERIAL_ECHOLNPAIR(" offset=", offset);
  8336. }
  8337. last_offset = offset;
  8338. */
  8339. return offset;
  8340. }
  8341. #endif // AUTO_BED_LEVELING_BILINEAR
  8342. #if ENABLED(DELTA)
  8343. /**
  8344. * Recalculate factors used for delta kinematics whenever
  8345. * settings have been changed (e.g., by M665).
  8346. */
  8347. void recalc_delta_settings(float radius, float diagonal_rod) {
  8348. delta_tower[A_AXIS][X_AXIS] = -sin(RADIANS(60 - delta_tower_angle_trim[A_AXIS])) * (radius + DELTA_RADIUS_TRIM_TOWER_1); // front left tower
  8349. delta_tower[A_AXIS][Y_AXIS] = -cos(RADIANS(60 - delta_tower_angle_trim[A_AXIS])) * (radius + DELTA_RADIUS_TRIM_TOWER_1);
  8350. delta_tower[B_AXIS][X_AXIS] = sin(RADIANS(60 + delta_tower_angle_trim[B_AXIS])) * (radius + DELTA_RADIUS_TRIM_TOWER_2); // front right tower
  8351. delta_tower[B_AXIS][Y_AXIS] = -cos(RADIANS(60 + delta_tower_angle_trim[B_AXIS])) * (radius + DELTA_RADIUS_TRIM_TOWER_2);
  8352. delta_tower[C_AXIS][X_AXIS] = -sin(RADIANS( delta_tower_angle_trim[C_AXIS])) * (radius + DELTA_RADIUS_TRIM_TOWER_3); // back middle tower
  8353. delta_tower[C_AXIS][Y_AXIS] = cos(RADIANS( delta_tower_angle_trim[C_AXIS])) * (radius + DELTA_RADIUS_TRIM_TOWER_3);
  8354. delta_diagonal_rod_2_tower[A_AXIS] = sq(diagonal_rod + delta_diagonal_rod_trim[A_AXIS]);
  8355. delta_diagonal_rod_2_tower[B_AXIS] = sq(diagonal_rod + delta_diagonal_rod_trim[B_AXIS]);
  8356. delta_diagonal_rod_2_tower[C_AXIS] = sq(diagonal_rod + delta_diagonal_rod_trim[C_AXIS]);
  8357. }
  8358. #if ENABLED(DELTA_FAST_SQRT)
  8359. /**
  8360. * Fast inverse sqrt from Quake III Arena
  8361. * See: https://en.wikipedia.org/wiki/Fast_inverse_square_root
  8362. */
  8363. float Q_rsqrt(float number) {
  8364. long i;
  8365. float x2, y;
  8366. const float threehalfs = 1.5f;
  8367. x2 = number * 0.5f;
  8368. y = number;
  8369. i = * ( long * ) &y; // evil floating point bit level hacking
  8370. i = 0x5f3759df - ( i >> 1 ); // what the f***?
  8371. y = * ( float * ) &i;
  8372. y = y * ( threehalfs - ( x2 * y * y ) ); // 1st iteration
  8373. // y = y * ( threehalfs - ( x2 * y * y ) ); // 2nd iteration, this can be removed
  8374. return y;
  8375. }
  8376. #define _SQRT(n) (1.0f / Q_rsqrt(n))
  8377. #else
  8378. #define _SQRT(n) sqrt(n)
  8379. #endif
  8380. /**
  8381. * Delta Inverse Kinematics
  8382. *
  8383. * Calculate the tower positions for a given logical
  8384. * position, storing the result in the delta[] array.
  8385. *
  8386. * This is an expensive calculation, requiring 3 square
  8387. * roots per segmented linear move, and strains the limits
  8388. * of a Mega2560 with a Graphical Display.
  8389. *
  8390. * Suggested optimizations include:
  8391. *
  8392. * - Disable the home_offset (M206) and/or position_shift (G92)
  8393. * features to remove up to 12 float additions.
  8394. *
  8395. * - Use a fast-inverse-sqrt function and add the reciprocal.
  8396. * (see above)
  8397. */
  8398. // Macro to obtain the Z position of an individual tower
  8399. #define DELTA_Z(T) raw[Z_AXIS] + _SQRT( \
  8400. delta_diagonal_rod_2_tower[T] - HYPOT2( \
  8401. delta_tower[T][X_AXIS] - raw[X_AXIS], \
  8402. delta_tower[T][Y_AXIS] - raw[Y_AXIS] \
  8403. ) \
  8404. )
  8405. #define DELTA_RAW_IK() do { \
  8406. delta[A_AXIS] = DELTA_Z(A_AXIS); \
  8407. delta[B_AXIS] = DELTA_Z(B_AXIS); \
  8408. delta[C_AXIS] = DELTA_Z(C_AXIS); \
  8409. } while(0)
  8410. #define DELTA_LOGICAL_IK() do { \
  8411. const float raw[XYZ] = { \
  8412. RAW_X_POSITION(logical[X_AXIS]), \
  8413. RAW_Y_POSITION(logical[Y_AXIS]), \
  8414. RAW_Z_POSITION(logical[Z_AXIS]) \
  8415. }; \
  8416. DELTA_RAW_IK(); \
  8417. } while(0)
  8418. #define DELTA_DEBUG() do { \
  8419. SERIAL_ECHOPAIR("cartesian X:", raw[X_AXIS]); \
  8420. SERIAL_ECHOPAIR(" Y:", raw[Y_AXIS]); \
  8421. SERIAL_ECHOLNPAIR(" Z:", raw[Z_AXIS]); \
  8422. SERIAL_ECHOPAIR("delta A:", delta[A_AXIS]); \
  8423. SERIAL_ECHOPAIR(" B:", delta[B_AXIS]); \
  8424. SERIAL_ECHOLNPAIR(" C:", delta[C_AXIS]); \
  8425. } while(0)
  8426. void inverse_kinematics(const float logical[XYZ]) {
  8427. DELTA_LOGICAL_IK();
  8428. // DELTA_DEBUG();
  8429. }
  8430. /**
  8431. * Calculate the highest Z position where the
  8432. * effector has the full range of XY motion.
  8433. */
  8434. float delta_safe_distance_from_top() {
  8435. float cartesian[XYZ] = {
  8436. LOGICAL_X_POSITION(0),
  8437. LOGICAL_Y_POSITION(0),
  8438. LOGICAL_Z_POSITION(0)
  8439. };
  8440. inverse_kinematics(cartesian);
  8441. float distance = delta[A_AXIS];
  8442. cartesian[Y_AXIS] = LOGICAL_Y_POSITION(DELTA_PRINTABLE_RADIUS);
  8443. inverse_kinematics(cartesian);
  8444. return abs(distance - delta[A_AXIS]);
  8445. }
  8446. /**
  8447. * Delta Forward Kinematics
  8448. *
  8449. * See the Wikipedia article "Trilateration"
  8450. * https://en.wikipedia.org/wiki/Trilateration
  8451. *
  8452. * Establish a new coordinate system in the plane of the
  8453. * three carriage points. This system has its origin at
  8454. * tower1, with tower2 on the X axis. Tower3 is in the X-Y
  8455. * plane with a Z component of zero.
  8456. * We will define unit vectors in this coordinate system
  8457. * in our original coordinate system. Then when we calculate
  8458. * the Xnew, Ynew and Znew values, we can translate back into
  8459. * the original system by moving along those unit vectors
  8460. * by the corresponding values.
  8461. *
  8462. * Variable names matched to Marlin, c-version, and avoid the
  8463. * use of any vector library.
  8464. *
  8465. * by Andreas Hardtung 2016-06-07
  8466. * based on a Java function from "Delta Robot Kinematics V3"
  8467. * by Steve Graves
  8468. *
  8469. * The result is stored in the cartes[] array.
  8470. */
  8471. void forward_kinematics_DELTA(float z1, float z2, float z3) {
  8472. // Create a vector in old coordinates along x axis of new coordinate
  8473. float p12[3] = { delta_tower[B_AXIS][X_AXIS] - delta_tower[A_AXIS][X_AXIS], delta_tower[B_AXIS][Y_AXIS] - delta_tower[A_AXIS][Y_AXIS], z2 - z1 };
  8474. // Get the Magnitude of vector.
  8475. float d = sqrt( sq(p12[0]) + sq(p12[1]) + sq(p12[2]) );
  8476. // Create unit vector by dividing by magnitude.
  8477. float ex[3] = { p12[0] / d, p12[1] / d, p12[2] / d };
  8478. // Get the vector from the origin of the new system to the third point.
  8479. float p13[3] = { delta_tower[C_AXIS][X_AXIS] - delta_tower[A_AXIS][X_AXIS], delta_tower[C_AXIS][Y_AXIS] - delta_tower[A_AXIS][Y_AXIS], z3 - z1 };
  8480. // Use the dot product to find the component of this vector on the X axis.
  8481. float i = ex[0] * p13[0] + ex[1] * p13[1] + ex[2] * p13[2];
  8482. // Create a vector along the x axis that represents the x component of p13.
  8483. float iex[3] = { ex[0] * i, ex[1] * i, ex[2] * i };
  8484. // Subtract the X component from the original vector leaving only Y. We use the
  8485. // variable that will be the unit vector after we scale it.
  8486. float ey[3] = { p13[0] - iex[0], p13[1] - iex[1], p13[2] - iex[2] };
  8487. // The magnitude of Y component
  8488. float j = sqrt( sq(ey[0]) + sq(ey[1]) + sq(ey[2]) );
  8489. // Convert to a unit vector
  8490. ey[0] /= j; ey[1] /= j; ey[2] /= j;
  8491. // The cross product of the unit x and y is the unit z
  8492. // float[] ez = vectorCrossProd(ex, ey);
  8493. float ez[3] = {
  8494. ex[1] * ey[2] - ex[2] * ey[1],
  8495. ex[2] * ey[0] - ex[0] * ey[2],
  8496. ex[0] * ey[1] - ex[1] * ey[0]
  8497. };
  8498. // We now have the d, i and j values defined in Wikipedia.
  8499. // Plug them into the equations defined in Wikipedia for Xnew, Ynew and Znew
  8500. float Xnew = (delta_diagonal_rod_2_tower[A_AXIS] - delta_diagonal_rod_2_tower[B_AXIS] + sq(d)) / (d * 2),
  8501. Ynew = ((delta_diagonal_rod_2_tower[A_AXIS] - delta_diagonal_rod_2_tower[C_AXIS] + HYPOT2(i, j)) / 2 - i * Xnew) / j,
  8502. Znew = sqrt(delta_diagonal_rod_2_tower[A_AXIS] - HYPOT2(Xnew, Ynew));
  8503. // Start from the origin of the old coordinates and add vectors in the
  8504. // old coords that represent the Xnew, Ynew and Znew to find the point
  8505. // in the old system.
  8506. cartes[X_AXIS] = delta_tower[A_AXIS][X_AXIS] + ex[0] * Xnew + ey[0] * Ynew - ez[0] * Znew;
  8507. cartes[Y_AXIS] = delta_tower[A_AXIS][Y_AXIS] + ex[1] * Xnew + ey[1] * Ynew - ez[1] * Znew;
  8508. cartes[Z_AXIS] = z1 + ex[2] * Xnew + ey[2] * Ynew - ez[2] * Znew;
  8509. }
  8510. void forward_kinematics_DELTA(float point[ABC]) {
  8511. forward_kinematics_DELTA(point[A_AXIS], point[B_AXIS], point[C_AXIS]);
  8512. }
  8513. #endif // DELTA
  8514. /**
  8515. * Get the stepper positions in the cartes[] array.
  8516. * Forward kinematics are applied for DELTA and SCARA.
  8517. *
  8518. * The result is in the current coordinate space with
  8519. * leveling applied. The coordinates need to be run through
  8520. * unapply_leveling to obtain the "ideal" coordinates
  8521. * suitable for current_position, etc.
  8522. */
  8523. void get_cartesian_from_steppers() {
  8524. #if ENABLED(DELTA)
  8525. forward_kinematics_DELTA(
  8526. stepper.get_axis_position_mm(A_AXIS),
  8527. stepper.get_axis_position_mm(B_AXIS),
  8528. stepper.get_axis_position_mm(C_AXIS)
  8529. );
  8530. cartes[X_AXIS] += LOGICAL_X_POSITION(0);
  8531. cartes[Y_AXIS] += LOGICAL_Y_POSITION(0);
  8532. cartes[Z_AXIS] += LOGICAL_Z_POSITION(0);
  8533. #elif IS_SCARA
  8534. forward_kinematics_SCARA(
  8535. stepper.get_axis_position_degrees(A_AXIS),
  8536. stepper.get_axis_position_degrees(B_AXIS)
  8537. );
  8538. cartes[X_AXIS] += LOGICAL_X_POSITION(0);
  8539. cartes[Y_AXIS] += LOGICAL_Y_POSITION(0);
  8540. cartes[Z_AXIS] = stepper.get_axis_position_mm(Z_AXIS);
  8541. #else
  8542. cartes[X_AXIS] = stepper.get_axis_position_mm(X_AXIS);
  8543. cartes[Y_AXIS] = stepper.get_axis_position_mm(Y_AXIS);
  8544. cartes[Z_AXIS] = stepper.get_axis_position_mm(Z_AXIS);
  8545. #endif
  8546. }
  8547. /**
  8548. * Set the current_position for an axis based on
  8549. * the stepper positions, removing any leveling that
  8550. * may have been applied.
  8551. */
  8552. void set_current_from_steppers_for_axis(const AxisEnum axis) {
  8553. get_cartesian_from_steppers();
  8554. #if PLANNER_LEVELING && DISABLED(AUTO_BED_LEVELING_UBL)
  8555. planner.unapply_leveling(cartes);
  8556. #endif
  8557. if (axis == ALL_AXES)
  8558. COPY(current_position, cartes);
  8559. else
  8560. current_position[axis] = cartes[axis];
  8561. }
  8562. #if ENABLED(MESH_BED_LEVELING)
  8563. /**
  8564. * Prepare a mesh-leveled linear move in a Cartesian setup,
  8565. * splitting the move where it crosses mesh borders.
  8566. */
  8567. void mesh_line_to_destination(float fr_mm_s, uint8_t x_splits = 0xff, uint8_t y_splits = 0xff) {
  8568. int cx1 = mbl.cell_index_x(RAW_CURRENT_POSITION(X_AXIS)),
  8569. cy1 = mbl.cell_index_y(RAW_CURRENT_POSITION(Y_AXIS)),
  8570. cx2 = mbl.cell_index_x(RAW_X_POSITION(destination[X_AXIS])),
  8571. cy2 = mbl.cell_index_y(RAW_Y_POSITION(destination[Y_AXIS]));
  8572. NOMORE(cx1, GRID_MAX_POINTS_X - 2);
  8573. NOMORE(cy1, GRID_MAX_POINTS_Y - 2);
  8574. NOMORE(cx2, GRID_MAX_POINTS_X - 2);
  8575. NOMORE(cy2, GRID_MAX_POINTS_Y - 2);
  8576. if (cx1 == cx2 && cy1 == cy2) {
  8577. // Start and end on same mesh square
  8578. line_to_destination(fr_mm_s);
  8579. set_current_to_destination();
  8580. return;
  8581. }
  8582. #define MBL_SEGMENT_END(A) (current_position[A ##_AXIS] + (destination[A ##_AXIS] - current_position[A ##_AXIS]) * normalized_dist)
  8583. float normalized_dist, end[XYZE];
  8584. // Split at the left/front border of the right/top square
  8585. const int8_t gcx = max(cx1, cx2), gcy = max(cy1, cy2);
  8586. if (cx2 != cx1 && TEST(x_splits, gcx)) {
  8587. COPY(end, destination);
  8588. destination[X_AXIS] = LOGICAL_X_POSITION(mbl.index_to_xpos[gcx]);
  8589. normalized_dist = (destination[X_AXIS] - current_position[X_AXIS]) / (end[X_AXIS] - current_position[X_AXIS]);
  8590. destination[Y_AXIS] = MBL_SEGMENT_END(Y);
  8591. CBI(x_splits, gcx);
  8592. }
  8593. else if (cy2 != cy1 && TEST(y_splits, gcy)) {
  8594. COPY(end, destination);
  8595. destination[Y_AXIS] = LOGICAL_Y_POSITION(mbl.index_to_ypos[gcy]);
  8596. normalized_dist = (destination[Y_AXIS] - current_position[Y_AXIS]) / (end[Y_AXIS] - current_position[Y_AXIS]);
  8597. destination[X_AXIS] = MBL_SEGMENT_END(X);
  8598. CBI(y_splits, gcy);
  8599. }
  8600. else {
  8601. // Already split on a border
  8602. line_to_destination(fr_mm_s);
  8603. set_current_to_destination();
  8604. return;
  8605. }
  8606. destination[Z_AXIS] = MBL_SEGMENT_END(Z);
  8607. destination[E_AXIS] = MBL_SEGMENT_END(E);
  8608. // Do the split and look for more borders
  8609. mesh_line_to_destination(fr_mm_s, x_splits, y_splits);
  8610. // Restore destination from stack
  8611. COPY(destination, end);
  8612. mesh_line_to_destination(fr_mm_s, x_splits, y_splits);
  8613. }
  8614. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR) && !IS_KINEMATIC
  8615. #define CELL_INDEX(A,V) ((RAW_##A##_POSITION(V) - bilinear_start[A##_AXIS]) / ABL_BG_SPACING(A##_AXIS))
  8616. /**
  8617. * Prepare a bilinear-leveled linear move on Cartesian,
  8618. * splitting the move where it crosses grid borders.
  8619. */
  8620. void bilinear_line_to_destination(float fr_mm_s, uint16_t x_splits = 0xFFFF, uint16_t y_splits = 0xFFFF) {
  8621. int cx1 = CELL_INDEX(X, current_position[X_AXIS]),
  8622. cy1 = CELL_INDEX(Y, current_position[Y_AXIS]),
  8623. cx2 = CELL_INDEX(X, destination[X_AXIS]),
  8624. cy2 = CELL_INDEX(Y, destination[Y_AXIS]);
  8625. cx1 = constrain(cx1, 0, ABL_BG_POINTS_X - 2);
  8626. cy1 = constrain(cy1, 0, ABL_BG_POINTS_Y - 2);
  8627. cx2 = constrain(cx2, 0, ABL_BG_POINTS_X - 2);
  8628. cy2 = constrain(cy2, 0, ABL_BG_POINTS_Y - 2);
  8629. if (cx1 == cx2 && cy1 == cy2) {
  8630. // Start and end on same mesh square
  8631. line_to_destination(fr_mm_s);
  8632. set_current_to_destination();
  8633. return;
  8634. }
  8635. #define LINE_SEGMENT_END(A) (current_position[A ##_AXIS] + (destination[A ##_AXIS] - current_position[A ##_AXIS]) * normalized_dist)
  8636. float normalized_dist, end[XYZE];
  8637. // Split at the left/front border of the right/top square
  8638. const int8_t gcx = max(cx1, cx2), gcy = max(cy1, cy2);
  8639. if (cx2 != cx1 && TEST(x_splits, gcx)) {
  8640. COPY(end, destination);
  8641. destination[X_AXIS] = LOGICAL_X_POSITION(bilinear_start[X_AXIS] + ABL_BG_SPACING(X_AXIS) * gcx);
  8642. normalized_dist = (destination[X_AXIS] - current_position[X_AXIS]) / (end[X_AXIS] - current_position[X_AXIS]);
  8643. destination[Y_AXIS] = LINE_SEGMENT_END(Y);
  8644. CBI(x_splits, gcx);
  8645. }
  8646. else if (cy2 != cy1 && TEST(y_splits, gcy)) {
  8647. COPY(end, destination);
  8648. destination[Y_AXIS] = LOGICAL_Y_POSITION(bilinear_start[Y_AXIS] + ABL_BG_SPACING(Y_AXIS) * gcy);
  8649. normalized_dist = (destination[Y_AXIS] - current_position[Y_AXIS]) / (end[Y_AXIS] - current_position[Y_AXIS]);
  8650. destination[X_AXIS] = LINE_SEGMENT_END(X);
  8651. CBI(y_splits, gcy);
  8652. }
  8653. else {
  8654. // Already split on a border
  8655. line_to_destination(fr_mm_s);
  8656. set_current_to_destination();
  8657. return;
  8658. }
  8659. destination[Z_AXIS] = LINE_SEGMENT_END(Z);
  8660. destination[E_AXIS] = LINE_SEGMENT_END(E);
  8661. // Do the split and look for more borders
  8662. bilinear_line_to_destination(fr_mm_s, x_splits, y_splits);
  8663. // Restore destination from stack
  8664. COPY(destination, end);
  8665. bilinear_line_to_destination(fr_mm_s, x_splits, y_splits);
  8666. }
  8667. #endif // AUTO_BED_LEVELING_BILINEAR
  8668. #if IS_KINEMATIC
  8669. /**
  8670. * Prepare a linear move in a DELTA or SCARA setup.
  8671. *
  8672. * This calls planner.buffer_line several times, adding
  8673. * small incremental moves for DELTA or SCARA.
  8674. */
  8675. inline bool prepare_kinematic_move_to(float ltarget[XYZE]) {
  8676. // Get the top feedrate of the move in the XY plane
  8677. float _feedrate_mm_s = MMS_SCALED(feedrate_mm_s);
  8678. // If the move is only in Z/E don't split up the move
  8679. if (ltarget[X_AXIS] == current_position[X_AXIS] && ltarget[Y_AXIS] == current_position[Y_AXIS]) {
  8680. planner.buffer_line_kinematic(ltarget, _feedrate_mm_s, active_extruder);
  8681. return true;
  8682. }
  8683. // Get the cartesian distances moved in XYZE
  8684. float difference[XYZE];
  8685. LOOP_XYZE(i) difference[i] = ltarget[i] - current_position[i];
  8686. // Get the linear distance in XYZ
  8687. float cartesian_mm = sqrt(sq(difference[X_AXIS]) + sq(difference[Y_AXIS]) + sq(difference[Z_AXIS]));
  8688. // If the move is very short, check the E move distance
  8689. if (UNEAR_ZERO(cartesian_mm)) cartesian_mm = abs(difference[E_AXIS]);
  8690. // No E move either? Game over.
  8691. if (UNEAR_ZERO(cartesian_mm)) return false;
  8692. // Minimum number of seconds to move the given distance
  8693. float seconds = cartesian_mm / _feedrate_mm_s;
  8694. // The number of segments-per-second times the duration
  8695. // gives the number of segments
  8696. uint16_t segments = delta_segments_per_second * seconds;
  8697. // For SCARA minimum segment size is 0.25mm
  8698. #if IS_SCARA
  8699. NOMORE(segments, cartesian_mm * 4);
  8700. #endif
  8701. // At least one segment is required
  8702. NOLESS(segments, 1);
  8703. // The approximate length of each segment
  8704. const float inv_segments = 1.0 / float(segments),
  8705. segment_distance[XYZE] = {
  8706. difference[X_AXIS] * inv_segments,
  8707. difference[Y_AXIS] * inv_segments,
  8708. difference[Z_AXIS] * inv_segments,
  8709. difference[E_AXIS] * inv_segments
  8710. };
  8711. // SERIAL_ECHOPAIR("mm=", cartesian_mm);
  8712. // SERIAL_ECHOPAIR(" seconds=", seconds);
  8713. // SERIAL_ECHOLNPAIR(" segments=", segments);
  8714. #if IS_SCARA
  8715. // SCARA needs to scale the feed rate from mm/s to degrees/s
  8716. const float inv_segment_length = min(10.0, float(segments) / cartesian_mm), // 1/mm/segs
  8717. feed_factor = inv_segment_length * _feedrate_mm_s;
  8718. float oldA = stepper.get_axis_position_degrees(A_AXIS),
  8719. oldB = stepper.get_axis_position_degrees(B_AXIS);
  8720. #endif
  8721. // Get the logical current position as starting point
  8722. float logical[XYZE];
  8723. COPY(logical, current_position);
  8724. // Drop one segment so the last move is to the exact target.
  8725. // If there's only 1 segment, loops will be skipped entirely.
  8726. --segments;
  8727. // Calculate and execute the segments
  8728. for (uint16_t s = segments + 1; --s;) {
  8729. LOOP_XYZE(i) logical[i] += segment_distance[i];
  8730. #if ENABLED(DELTA)
  8731. DELTA_LOGICAL_IK(); // Delta can inline its kinematics
  8732. #else
  8733. inverse_kinematics(logical);
  8734. #endif
  8735. ADJUST_DELTA(logical); // Adjust Z if bed leveling is enabled
  8736. #if IS_SCARA
  8737. // For SCARA scale the feed rate from mm/s to degrees/s
  8738. // Use ratio between the length of the move and the larger angle change
  8739. const float adiff = abs(delta[A_AXIS] - oldA),
  8740. bdiff = abs(delta[B_AXIS] - oldB);
  8741. planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], logical[E_AXIS], max(adiff, bdiff) * feed_factor, active_extruder);
  8742. oldA = delta[A_AXIS];
  8743. oldB = delta[B_AXIS];
  8744. #else
  8745. planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], logical[E_AXIS], _feedrate_mm_s, active_extruder);
  8746. #endif
  8747. }
  8748. // Since segment_distance is only approximate,
  8749. // the final move must be to the exact destination.
  8750. #if IS_SCARA
  8751. // For SCARA scale the feed rate from mm/s to degrees/s
  8752. // With segments > 1 length is 1 segment, otherwise total length
  8753. inverse_kinematics(ltarget);
  8754. ADJUST_DELTA(logical);
  8755. const float adiff = abs(delta[A_AXIS] - oldA),
  8756. bdiff = abs(delta[B_AXIS] - oldB);
  8757. planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], logical[E_AXIS], max(adiff, bdiff) * feed_factor, active_extruder);
  8758. #else
  8759. planner.buffer_line_kinematic(ltarget, _feedrate_mm_s, active_extruder);
  8760. #endif
  8761. return true;
  8762. }
  8763. #else // !IS_KINEMATIC
  8764. /**
  8765. * Prepare a linear move in a Cartesian setup.
  8766. * If Mesh Bed Leveling is enabled, perform a mesh move.
  8767. *
  8768. * Returns true if the caller didn't update current_position.
  8769. */
  8770. inline bool prepare_move_to_destination_cartesian() {
  8771. // Do not use feedrate_percentage for E or Z only moves
  8772. if (current_position[X_AXIS] == destination[X_AXIS] && current_position[Y_AXIS] == destination[Y_AXIS]) {
  8773. line_to_destination();
  8774. }
  8775. else {
  8776. #if ENABLED(MESH_BED_LEVELING)
  8777. if (mbl.active()) {
  8778. mesh_line_to_destination(MMS_SCALED(feedrate_mm_s));
  8779. return false;
  8780. }
  8781. else
  8782. #elif ENABLED(AUTO_BED_LEVELING_UBL)
  8783. if (ubl.state.active) {
  8784. ubl_line_to_destination(MMS_SCALED(feedrate_mm_s), active_extruder);
  8785. return false;
  8786. }
  8787. else
  8788. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  8789. if (planner.abl_enabled) {
  8790. bilinear_line_to_destination(MMS_SCALED(feedrate_mm_s));
  8791. return false;
  8792. }
  8793. else
  8794. #endif
  8795. line_to_destination(MMS_SCALED(feedrate_mm_s));
  8796. }
  8797. return true;
  8798. }
  8799. #endif // !IS_KINEMATIC
  8800. #if ENABLED(DUAL_X_CARRIAGE)
  8801. /**
  8802. * Prepare a linear move in a dual X axis setup
  8803. */
  8804. inline bool prepare_move_to_destination_dualx() {
  8805. if (active_extruder_parked) {
  8806. switch (dual_x_carriage_mode) {
  8807. case DXC_FULL_CONTROL_MODE:
  8808. break;
  8809. case DXC_AUTO_PARK_MODE:
  8810. if (current_position[E_AXIS] == destination[E_AXIS]) {
  8811. // This is a travel move (with no extrusion)
  8812. // Skip it, but keep track of the current position
  8813. // (so it can be used as the start of the next non-travel move)
  8814. if (delayed_move_time != 0xFFFFFFFFUL) {
  8815. set_current_to_destination();
  8816. NOLESS(raised_parked_position[Z_AXIS], destination[Z_AXIS]);
  8817. delayed_move_time = millis();
  8818. return false;
  8819. }
  8820. }
  8821. // unpark extruder: 1) raise, 2) move into starting XY position, 3) lower
  8822. for (uint8_t i = 0; i < 3; i++)
  8823. planner.buffer_line(
  8824. i == 0 ? raised_parked_position[X_AXIS] : current_position[X_AXIS],
  8825. i == 0 ? raised_parked_position[Y_AXIS] : current_position[Y_AXIS],
  8826. i == 2 ? current_position[Z_AXIS] : raised_parked_position[Z_AXIS],
  8827. current_position[E_AXIS],
  8828. i == 1 ? PLANNER_XY_FEEDRATE() : planner.max_feedrate_mm_s[Z_AXIS],
  8829. active_extruder
  8830. );
  8831. delayed_move_time = 0;
  8832. active_extruder_parked = false;
  8833. break;
  8834. case DXC_DUPLICATION_MODE:
  8835. if (active_extruder == 0) {
  8836. // move duplicate extruder into correct duplication position.
  8837. planner.set_position_mm(
  8838. LOGICAL_X_POSITION(inactive_extruder_x_pos),
  8839. current_position[Y_AXIS],
  8840. current_position[Z_AXIS],
  8841. current_position[E_AXIS]
  8842. );
  8843. planner.buffer_line(
  8844. current_position[X_AXIS] + duplicate_extruder_x_offset,
  8845. current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS],
  8846. planner.max_feedrate_mm_s[X_AXIS], 1
  8847. );
  8848. SYNC_PLAN_POSITION_KINEMATIC();
  8849. stepper.synchronize();
  8850. extruder_duplication_enabled = true;
  8851. active_extruder_parked = false;
  8852. }
  8853. break;
  8854. }
  8855. }
  8856. return true;
  8857. }
  8858. #endif // DUAL_X_CARRIAGE
  8859. /**
  8860. * Prepare a single move and get ready for the next one
  8861. *
  8862. * This may result in several calls to planner.buffer_line to
  8863. * do smaller moves for DELTA, SCARA, mesh moves, etc.
  8864. */
  8865. void prepare_move_to_destination() {
  8866. clamp_to_software_endstops(destination);
  8867. refresh_cmd_timeout();
  8868. #if ENABLED(PREVENT_COLD_EXTRUSION)
  8869. if (!DEBUGGING(DRYRUN)) {
  8870. if (destination[E_AXIS] != current_position[E_AXIS]) {
  8871. if (thermalManager.tooColdToExtrude(active_extruder)) {
  8872. current_position[E_AXIS] = destination[E_AXIS]; // Behave as if the move really took place, but ignore E part
  8873. SERIAL_ECHO_START;
  8874. SERIAL_ECHOLNPGM(MSG_ERR_COLD_EXTRUDE_STOP);
  8875. }
  8876. #if ENABLED(PREVENT_LENGTHY_EXTRUDE)
  8877. if (labs(destination[E_AXIS] - current_position[E_AXIS]) > EXTRUDE_MAXLENGTH) {
  8878. current_position[E_AXIS] = destination[E_AXIS]; // Behave as if the move really took place, but ignore E part
  8879. SERIAL_ECHO_START;
  8880. SERIAL_ECHOLNPGM(MSG_ERR_LONG_EXTRUDE_STOP);
  8881. }
  8882. #endif
  8883. }
  8884. }
  8885. #endif
  8886. #if IS_KINEMATIC
  8887. if (!prepare_kinematic_move_to(destination)) return;
  8888. #else
  8889. #if ENABLED(DUAL_X_CARRIAGE)
  8890. if (!prepare_move_to_destination_dualx()) return;
  8891. #endif
  8892. if (!prepare_move_to_destination_cartesian()) return;
  8893. #endif
  8894. set_current_to_destination();
  8895. }
  8896. #if ENABLED(ARC_SUPPORT)
  8897. /**
  8898. * Plan an arc in 2 dimensions
  8899. *
  8900. * The arc is approximated by generating many small linear segments.
  8901. * The length of each segment is configured in MM_PER_ARC_SEGMENT (Default 1mm)
  8902. * Arcs should only be made relatively large (over 5mm), as larger arcs with
  8903. * larger segments will tend to be more efficient. Your slicer should have
  8904. * options for G2/G3 arc generation. In future these options may be GCode tunable.
  8905. */
  8906. void plan_arc(
  8907. float logical[XYZE], // Destination position
  8908. float* offset, // Center of rotation relative to current_position
  8909. uint8_t clockwise // Clockwise?
  8910. ) {
  8911. float radius = HYPOT(offset[X_AXIS], offset[Y_AXIS]),
  8912. center_X = current_position[X_AXIS] + offset[X_AXIS],
  8913. center_Y = current_position[Y_AXIS] + offset[Y_AXIS],
  8914. linear_travel = logical[Z_AXIS] - current_position[Z_AXIS],
  8915. extruder_travel = logical[E_AXIS] - current_position[E_AXIS],
  8916. r_X = -offset[X_AXIS], // Radius vector from center to current location
  8917. r_Y = -offset[Y_AXIS],
  8918. rt_X = logical[X_AXIS] - center_X,
  8919. rt_Y = logical[Y_AXIS] - center_Y;
  8920. // CCW angle of rotation between position and target from the circle center. Only one atan2() trig computation required.
  8921. float angular_travel = atan2(r_X * rt_Y - r_Y * rt_X, r_X * rt_X + r_Y * rt_Y);
  8922. if (angular_travel < 0) angular_travel += RADIANS(360);
  8923. if (clockwise) angular_travel -= RADIANS(360);
  8924. // Make a circle if the angular rotation is 0
  8925. if (angular_travel == 0 && current_position[X_AXIS] == logical[X_AXIS] && current_position[Y_AXIS] == logical[Y_AXIS])
  8926. angular_travel += RADIANS(360);
  8927. float mm_of_travel = HYPOT(angular_travel * radius, fabs(linear_travel));
  8928. if (mm_of_travel < 0.001) return;
  8929. uint16_t segments = floor(mm_of_travel / (MM_PER_ARC_SEGMENT));
  8930. if (segments == 0) segments = 1;
  8931. /**
  8932. * Vector rotation by transformation matrix: r is the original vector, r_T is the rotated vector,
  8933. * and phi is the angle of rotation. Based on the solution approach by Jens Geisler.
  8934. * r_T = [cos(phi) -sin(phi);
  8935. * sin(phi) cos(phi)] * r ;
  8936. *
  8937. * For arc generation, the center of the circle is the axis of rotation and the radius vector is
  8938. * defined from the circle center to the initial position. Each line segment is formed by successive
  8939. * vector rotations. This requires only two cos() and sin() computations to form the rotation
  8940. * matrix for the duration of the entire arc. Error may accumulate from numerical round-off, since
  8941. * all double numbers are single precision on the Arduino. (True double precision will not have
  8942. * round off issues for CNC applications.) Single precision error can accumulate to be greater than
  8943. * tool precision in some cases. Therefore, arc path correction is implemented.
  8944. *
  8945. * Small angle approximation may be used to reduce computation overhead further. This approximation
  8946. * holds for everything, but very small circles and large MM_PER_ARC_SEGMENT values. In other words,
  8947. * theta_per_segment would need to be greater than 0.1 rad and N_ARC_CORRECTION would need to be large
  8948. * to cause an appreciable drift error. N_ARC_CORRECTION~=25 is more than small enough to correct for
  8949. * numerical drift error. N_ARC_CORRECTION may be on the order a hundred(s) before error becomes an
  8950. * issue for CNC machines with the single precision Arduino calculations.
  8951. *
  8952. * This approximation also allows plan_arc to immediately insert a line segment into the planner
  8953. * without the initial overhead of computing cos() or sin(). By the time the arc needs to be applied
  8954. * a correction, the planner should have caught up to the lag caused by the initial plan_arc overhead.
  8955. * This is important when there are successive arc motions.
  8956. */
  8957. // Vector rotation matrix values
  8958. float arc_target[XYZE],
  8959. theta_per_segment = angular_travel / segments,
  8960. linear_per_segment = linear_travel / segments,
  8961. extruder_per_segment = extruder_travel / segments,
  8962. sin_T = theta_per_segment,
  8963. cos_T = 1 - 0.5 * sq(theta_per_segment); // Small angle approximation
  8964. // Initialize the linear axis
  8965. arc_target[Z_AXIS] = current_position[Z_AXIS];
  8966. // Initialize the extruder axis
  8967. arc_target[E_AXIS] = current_position[E_AXIS];
  8968. float fr_mm_s = MMS_SCALED(feedrate_mm_s);
  8969. millis_t next_idle_ms = millis() + 200UL;
  8970. int8_t count = 0;
  8971. for (uint16_t i = 1; i < segments; i++) { // Iterate (segments-1) times
  8972. thermalManager.manage_heater();
  8973. if (ELAPSED(millis(), next_idle_ms)) {
  8974. next_idle_ms = millis() + 200UL;
  8975. idle();
  8976. }
  8977. if (++count < N_ARC_CORRECTION) {
  8978. // Apply vector rotation matrix to previous r_X / 1
  8979. float r_new_Y = r_X * sin_T + r_Y * cos_T;
  8980. r_X = r_X * cos_T - r_Y * sin_T;
  8981. r_Y = r_new_Y;
  8982. }
  8983. else {
  8984. // Arc correction to radius vector. Computed only every N_ARC_CORRECTION increments.
  8985. // Compute exact location by applying transformation matrix from initial radius vector(=-offset).
  8986. // To reduce stuttering, the sin and cos could be computed at different times.
  8987. // For now, compute both at the same time.
  8988. float cos_Ti = cos(i * theta_per_segment),
  8989. sin_Ti = sin(i * theta_per_segment);
  8990. r_X = -offset[X_AXIS] * cos_Ti + offset[Y_AXIS] * sin_Ti;
  8991. r_Y = -offset[X_AXIS] * sin_Ti - offset[Y_AXIS] * cos_Ti;
  8992. count = 0;
  8993. }
  8994. // Update arc_target location
  8995. arc_target[X_AXIS] = center_X + r_X;
  8996. arc_target[Y_AXIS] = center_Y + r_Y;
  8997. arc_target[Z_AXIS] += linear_per_segment;
  8998. arc_target[E_AXIS] += extruder_per_segment;
  8999. clamp_to_software_endstops(arc_target);
  9000. planner.buffer_line_kinematic(arc_target, fr_mm_s, active_extruder);
  9001. }
  9002. // Ensure last segment arrives at target location.
  9003. planner.buffer_line_kinematic(logical, fr_mm_s, active_extruder);
  9004. // As far as the parser is concerned, the position is now == target. In reality the
  9005. // motion control system might still be processing the action and the real tool position
  9006. // in any intermediate location.
  9007. set_current_to_destination();
  9008. }
  9009. #endif
  9010. #if ENABLED(BEZIER_CURVE_SUPPORT)
  9011. void plan_cubic_move(const float offset[4]) {
  9012. cubic_b_spline(current_position, destination, offset, MMS_SCALED(feedrate_mm_s), active_extruder);
  9013. // As far as the parser is concerned, the position is now == destination. In reality the
  9014. // motion control system might still be processing the action and the real tool position
  9015. // in any intermediate location.
  9016. set_current_to_destination();
  9017. }
  9018. #endif // BEZIER_CURVE_SUPPORT
  9019. #if HAS_CONTROLLERFAN
  9020. void controllerFan() {
  9021. static millis_t lastMotorOn = 0, // Last time a motor was turned on
  9022. nextMotorCheck = 0; // Last time the state was checked
  9023. const millis_t ms = millis();
  9024. if (ELAPSED(ms, nextMotorCheck)) {
  9025. nextMotorCheck = ms + 2500UL; // Not a time critical function, so only check every 2.5s
  9026. if (X_ENABLE_READ == X_ENABLE_ON || Y_ENABLE_READ == Y_ENABLE_ON || Z_ENABLE_READ == Z_ENABLE_ON || thermalManager.soft_pwm_bed > 0
  9027. || E0_ENABLE_READ == E_ENABLE_ON // If any of the drivers are enabled...
  9028. #if E_STEPPERS > 1
  9029. || E1_ENABLE_READ == E_ENABLE_ON
  9030. #if HAS_X2_ENABLE
  9031. || X2_ENABLE_READ == X_ENABLE_ON
  9032. #endif
  9033. #if E_STEPPERS > 2
  9034. || E2_ENABLE_READ == E_ENABLE_ON
  9035. #if E_STEPPERS > 3
  9036. || E3_ENABLE_READ == E_ENABLE_ON
  9037. #if E_STEPPERS > 4
  9038. || E4_ENABLE_READ == E_ENABLE_ON
  9039. #endif // E_STEPPERS > 4
  9040. #endif // E_STEPPERS > 3
  9041. #endif // E_STEPPERS > 2
  9042. #endif // E_STEPPERS > 1
  9043. ) {
  9044. lastMotorOn = ms; //... set time to NOW so the fan will turn on
  9045. }
  9046. // Fan off if no steppers have been enabled for CONTROLLERFAN_SECS seconds
  9047. uint8_t speed = (!lastMotorOn || ELAPSED(ms, lastMotorOn + (CONTROLLERFAN_SECS) * 1000UL)) ? 0 : CONTROLLERFAN_SPEED;
  9048. // allows digital or PWM fan output to be used (see M42 handling)
  9049. digitalWrite(CONTROLLERFAN_PIN, speed);
  9050. analogWrite(CONTROLLERFAN_PIN, speed);
  9051. }
  9052. }
  9053. #endif // HAS_CONTROLLERFAN
  9054. #if ENABLED(MORGAN_SCARA)
  9055. /**
  9056. * Morgan SCARA Forward Kinematics. Results in cartes[].
  9057. * Maths and first version by QHARLEY.
  9058. * Integrated into Marlin and slightly restructured by Joachim Cerny.
  9059. */
  9060. void forward_kinematics_SCARA(const float &a, const float &b) {
  9061. float a_sin = sin(RADIANS(a)) * L1,
  9062. a_cos = cos(RADIANS(a)) * L1,
  9063. b_sin = sin(RADIANS(b)) * L2,
  9064. b_cos = cos(RADIANS(b)) * L2;
  9065. cartes[X_AXIS] = a_cos + b_cos + SCARA_OFFSET_X; //theta
  9066. cartes[Y_AXIS] = a_sin + b_sin + SCARA_OFFSET_Y; //theta+phi
  9067. /*
  9068. SERIAL_ECHOPAIR("SCARA FK Angle a=", a);
  9069. SERIAL_ECHOPAIR(" b=", b);
  9070. SERIAL_ECHOPAIR(" a_sin=", a_sin);
  9071. SERIAL_ECHOPAIR(" a_cos=", a_cos);
  9072. SERIAL_ECHOPAIR(" b_sin=", b_sin);
  9073. SERIAL_ECHOLNPAIR(" b_cos=", b_cos);
  9074. SERIAL_ECHOPAIR(" cartes[X_AXIS]=", cartes[X_AXIS]);
  9075. SERIAL_ECHOLNPAIR(" cartes[Y_AXIS]=", cartes[Y_AXIS]);
  9076. //*/
  9077. }
  9078. /**
  9079. * Morgan SCARA Inverse Kinematics. Results in delta[].
  9080. *
  9081. * See http://forums.reprap.org/read.php?185,283327
  9082. *
  9083. * Maths and first version by QHARLEY.
  9084. * Integrated into Marlin and slightly restructured by Joachim Cerny.
  9085. */
  9086. void inverse_kinematics(const float logical[XYZ]) {
  9087. static float C2, S2, SK1, SK2, THETA, PSI;
  9088. float sx = RAW_X_POSITION(logical[X_AXIS]) - SCARA_OFFSET_X, // Translate SCARA to standard X Y
  9089. sy = RAW_Y_POSITION(logical[Y_AXIS]) - SCARA_OFFSET_Y; // With scaling factor.
  9090. if (L1 == L2)
  9091. C2 = HYPOT2(sx, sy) / L1_2_2 - 1;
  9092. else
  9093. C2 = (HYPOT2(sx, sy) - (L1_2 + L2_2)) / (2.0 * L1 * L2);
  9094. S2 = sqrt(sq(C2) - 1);
  9095. // Unrotated Arm1 plus rotated Arm2 gives the distance from Center to End
  9096. SK1 = L1 + L2 * C2;
  9097. // Rotated Arm2 gives the distance from Arm1 to Arm2
  9098. SK2 = L2 * S2;
  9099. // Angle of Arm1 is the difference between Center-to-End angle and the Center-to-Elbow
  9100. THETA = atan2(SK1, SK2) - atan2(sx, sy);
  9101. // Angle of Arm2
  9102. PSI = atan2(S2, C2);
  9103. delta[A_AXIS] = DEGREES(THETA); // theta is support arm angle
  9104. delta[B_AXIS] = DEGREES(THETA + PSI); // equal to sub arm angle (inverted motor)
  9105. delta[C_AXIS] = logical[Z_AXIS];
  9106. /*
  9107. DEBUG_POS("SCARA IK", logical);
  9108. DEBUG_POS("SCARA IK", delta);
  9109. SERIAL_ECHOPAIR(" SCARA (x,y) ", sx);
  9110. SERIAL_ECHOPAIR(",", sy);
  9111. SERIAL_ECHOPAIR(" C2=", C2);
  9112. SERIAL_ECHOPAIR(" S2=", S2);
  9113. SERIAL_ECHOPAIR(" Theta=", THETA);
  9114. SERIAL_ECHOLNPAIR(" Phi=", PHI);
  9115. //*/
  9116. }
  9117. #endif // MORGAN_SCARA
  9118. #if ENABLED(TEMP_STAT_LEDS)
  9119. static bool red_led = false;
  9120. static millis_t next_status_led_update_ms = 0;
  9121. void handle_status_leds(void) {
  9122. if (ELAPSED(millis(), next_status_led_update_ms)) {
  9123. next_status_led_update_ms += 500; // Update every 0.5s
  9124. float max_temp = 0.0;
  9125. #if HAS_TEMP_BED
  9126. max_temp = MAX3(max_temp, thermalManager.degTargetBed(), thermalManager.degBed());
  9127. #endif
  9128. HOTEND_LOOP() {
  9129. max_temp = MAX3(max_temp, thermalManager.degHotend(e), thermalManager.degTargetHotend(e));
  9130. }
  9131. bool new_led = (max_temp > 55.0) ? true : (max_temp < 54.0) ? false : red_led;
  9132. if (new_led != red_led) {
  9133. red_led = new_led;
  9134. #if PIN_EXISTS(STAT_LED_RED)
  9135. WRITE(STAT_LED_RED_PIN, new_led ? HIGH : LOW);
  9136. #if PIN_EXISTS(STAT_LED_BLUE)
  9137. WRITE(STAT_LED_BLUE_PIN, new_led ? LOW : HIGH);
  9138. #endif
  9139. #else
  9140. WRITE(STAT_LED_BLUE_PIN, new_led ? HIGH : LOW);
  9141. #endif
  9142. }
  9143. }
  9144. }
  9145. #endif
  9146. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  9147. void handle_filament_runout() {
  9148. if (!filament_ran_out) {
  9149. filament_ran_out = true;
  9150. enqueue_and_echo_commands_P(PSTR(FILAMENT_RUNOUT_SCRIPT));
  9151. stepper.synchronize();
  9152. }
  9153. }
  9154. #endif // FILAMENT_RUNOUT_SENSOR
  9155. #if ENABLED(FAST_PWM_FAN)
  9156. void setPwmFrequency(uint8_t pin, int val) {
  9157. val &= 0x07;
  9158. switch (digitalPinToTimer(pin)) {
  9159. #ifdef TCCR0A
  9160. case TIMER0A:
  9161. case TIMER0B:
  9162. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  9163. // TCCR0B |= val;
  9164. break;
  9165. #endif
  9166. #ifdef TCCR1A
  9167. case TIMER1A:
  9168. case TIMER1B:
  9169. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  9170. // TCCR1B |= val;
  9171. break;
  9172. #endif
  9173. #ifdef TCCR2
  9174. case TIMER2:
  9175. case TIMER2:
  9176. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  9177. TCCR2 |= val;
  9178. break;
  9179. #endif
  9180. #ifdef TCCR2A
  9181. case TIMER2A:
  9182. case TIMER2B:
  9183. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  9184. TCCR2B |= val;
  9185. break;
  9186. #endif
  9187. #ifdef TCCR3A
  9188. case TIMER3A:
  9189. case TIMER3B:
  9190. case TIMER3C:
  9191. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  9192. TCCR3B |= val;
  9193. break;
  9194. #endif
  9195. #ifdef TCCR4A
  9196. case TIMER4A:
  9197. case TIMER4B:
  9198. case TIMER4C:
  9199. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  9200. TCCR4B |= val;
  9201. break;
  9202. #endif
  9203. #ifdef TCCR5A
  9204. case TIMER5A:
  9205. case TIMER5B:
  9206. case TIMER5C:
  9207. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  9208. TCCR5B |= val;
  9209. break;
  9210. #endif
  9211. }
  9212. }
  9213. #endif // FAST_PWM_FAN
  9214. float calculate_volumetric_multiplier(float diameter) {
  9215. if (!volumetric_enabled || diameter == 0) return 1.0;
  9216. return 1.0 / (M_PI * sq(diameter * 0.5));
  9217. }
  9218. void calculate_volumetric_multipliers() {
  9219. for (uint8_t i = 0; i < COUNT(filament_size); i++)
  9220. volumetric_multiplier[i] = calculate_volumetric_multiplier(filament_size[i]);
  9221. }
  9222. void enable_all_steppers() {
  9223. enable_x();
  9224. enable_y();
  9225. enable_z();
  9226. enable_e0();
  9227. enable_e1();
  9228. enable_e2();
  9229. enable_e3();
  9230. enable_e4();
  9231. }
  9232. void disable_e_steppers() {
  9233. disable_e0();
  9234. disable_e1();
  9235. disable_e2();
  9236. disable_e3();
  9237. disable_e4();
  9238. }
  9239. void disable_all_steppers() {
  9240. disable_x();
  9241. disable_y();
  9242. disable_z();
  9243. disable_e_steppers();
  9244. }
  9245. #if ENABLED(AUTOMATIC_CURRENT_CONTROL)
  9246. void automatic_current_control(const TMC2130Stepper &st) {
  9247. #if CURRENT_STEP > 0
  9248. const bool is_otpw = st.checkOT(), // Check otpw even if we don't adjust. Allows for flag inspection.
  9249. is_otpw_triggered = st.getOTPW();
  9250. if (!is_otpw && !is_otpw_triggered) {
  9251. // OTPW bit not triggered yet -> Increase current
  9252. const uint16_t current = st.getCurrent() + CURRENT_STEP;
  9253. if (current <= AUTO_ADJUST_MAX) st.SilentStepStick2130(current);
  9254. }
  9255. else if (is_otpw && is_otpw_triggered) {
  9256. // OTPW bit triggered, triggered flag raised -> Decrease current
  9257. st.SilentStepStick2130((float)st.getCurrent() - CURRENT_STEP);
  9258. }
  9259. // OTPW bit cleared (we've cooled down), triggered flag still raised until manually cleared -> Do nothing, we're good
  9260. #endif
  9261. }
  9262. void checkOverTemp() {
  9263. static millis_t next_cOT = 0;
  9264. if (ELAPSED(millis(), next_cOT)) {
  9265. next_cOT = millis() + 5000;
  9266. #if ENABLED(X_IS_TMC2130)
  9267. automatic_current_control(stepperX);
  9268. #endif
  9269. #if ENABLED(Y_IS_TMC2130)
  9270. automatic_current_control(stepperY);
  9271. #endif
  9272. #if ENABLED(Z_IS_TMC2130)
  9273. automatic_current_control(stepperZ);
  9274. #endif
  9275. #if ENABLED(X2_IS_TMC2130)
  9276. automatic_current_control(stepperX2);
  9277. #endif
  9278. #if ENABLED(Y2_IS_TMC2130)
  9279. automatic_current_control(stepperY2);
  9280. #endif
  9281. #if ENABLED(Z2_IS_TMC2130)
  9282. automatic_current_control(stepperZ2);
  9283. #endif
  9284. #if ENABLED(E0_IS_TMC2130)
  9285. automatic_current_control(stepperE0);
  9286. #endif
  9287. #if ENABLED(E1_IS_TMC2130)
  9288. automatic_current_control(stepperE1);
  9289. #endif
  9290. #if ENABLED(E2_IS_TMC2130)
  9291. automatic_current_control(stepperE2);
  9292. #endif
  9293. #if ENABLED(E3_IS_TMC2130)
  9294. automatic_current_control(stepperE3);
  9295. #endif
  9296. }
  9297. }
  9298. #endif // AUTOMATIC_CURRENT_CONTROL
  9299. /**
  9300. * Manage several activities:
  9301. * - Check for Filament Runout
  9302. * - Keep the command buffer full
  9303. * - Check for maximum inactive time between commands
  9304. * - Check for maximum inactive time between stepper commands
  9305. * - Check if pin CHDK needs to go LOW
  9306. * - Check for KILL button held down
  9307. * - Check for HOME button held down
  9308. * - Check if cooling fan needs to be switched on
  9309. * - Check if an idle but hot extruder needs filament extruded (EXTRUDER_RUNOUT_PREVENT)
  9310. */
  9311. void manage_inactivity(bool ignore_stepper_queue/*=false*/) {
  9312. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  9313. if ((IS_SD_PRINTING || print_job_timer.isRunning()) && (READ(FIL_RUNOUT_PIN) == FIL_RUNOUT_INVERTING))
  9314. handle_filament_runout();
  9315. #endif
  9316. if (commands_in_queue < BUFSIZE) get_available_commands();
  9317. const millis_t ms = millis();
  9318. if (max_inactive_time && ELAPSED(ms, previous_cmd_ms + max_inactive_time)) {
  9319. SERIAL_ERROR_START;
  9320. SERIAL_ECHOLNPAIR(MSG_KILL_INACTIVE_TIME, current_command);
  9321. kill(PSTR(MSG_KILLED));
  9322. }
  9323. // Prevent steppers timing-out in the middle of M600
  9324. #if ENABLED(FILAMENT_CHANGE_FEATURE) && ENABLED(FILAMENT_CHANGE_NO_STEPPER_TIMEOUT)
  9325. #define M600_TEST !busy_doing_M600
  9326. #else
  9327. #define M600_TEST true
  9328. #endif
  9329. if (M600_TEST && stepper_inactive_time && ELAPSED(ms, previous_cmd_ms + stepper_inactive_time)
  9330. && !ignore_stepper_queue && !planner.blocks_queued()) {
  9331. #if ENABLED(DISABLE_INACTIVE_X)
  9332. disable_x();
  9333. #endif
  9334. #if ENABLED(DISABLE_INACTIVE_Y)
  9335. disable_y();
  9336. #endif
  9337. #if ENABLED(DISABLE_INACTIVE_Z)
  9338. disable_z();
  9339. #endif
  9340. #if ENABLED(DISABLE_INACTIVE_E)
  9341. disable_e_steppers();
  9342. #endif
  9343. }
  9344. #ifdef CHDK // Check if pin should be set to LOW after M240 set it to HIGH
  9345. if (chdkActive && ELAPSED(ms, chdkHigh + CHDK_DELAY)) {
  9346. chdkActive = false;
  9347. WRITE(CHDK, LOW);
  9348. }
  9349. #endif
  9350. #if HAS_KILL
  9351. // Check if the kill button was pressed and wait just in case it was an accidental
  9352. // key kill key press
  9353. // -------------------------------------------------------------------------------
  9354. static int killCount = 0; // make the inactivity button a bit less responsive
  9355. const int KILL_DELAY = 750;
  9356. if (!READ(KILL_PIN))
  9357. killCount++;
  9358. else if (killCount > 0)
  9359. killCount--;
  9360. // Exceeded threshold and we can confirm that it was not accidental
  9361. // KILL the machine
  9362. // ----------------------------------------------------------------
  9363. if (killCount >= KILL_DELAY) {
  9364. SERIAL_ERROR_START;
  9365. SERIAL_ERRORLNPGM(MSG_KILL_BUTTON);
  9366. kill(PSTR(MSG_KILLED));
  9367. }
  9368. #endif
  9369. #if HAS_HOME
  9370. // Check to see if we have to home, use poor man's debouncer
  9371. // ---------------------------------------------------------
  9372. static int homeDebounceCount = 0; // poor man's debouncing count
  9373. const int HOME_DEBOUNCE_DELAY = 2500;
  9374. if (!IS_SD_PRINTING && !READ(HOME_PIN)) {
  9375. if (!homeDebounceCount) {
  9376. enqueue_and_echo_commands_P(PSTR("G28"));
  9377. LCD_MESSAGEPGM(MSG_AUTO_HOME);
  9378. }
  9379. if (homeDebounceCount < HOME_DEBOUNCE_DELAY)
  9380. homeDebounceCount++;
  9381. else
  9382. homeDebounceCount = 0;
  9383. }
  9384. #endif
  9385. #if HAS_CONTROLLERFAN
  9386. controllerFan(); // Check if fan should be turned on to cool stepper drivers down
  9387. #endif
  9388. #if ENABLED(EXTRUDER_RUNOUT_PREVENT)
  9389. if (ELAPSED(ms, previous_cmd_ms + (EXTRUDER_RUNOUT_SECONDS) * 1000UL)
  9390. && thermalManager.degHotend(active_extruder) > EXTRUDER_RUNOUT_MINTEMP) {
  9391. bool oldstatus;
  9392. #if ENABLED(SWITCHING_EXTRUDER)
  9393. oldstatus = E0_ENABLE_READ;
  9394. enable_e0();
  9395. #else // !SWITCHING_EXTRUDER
  9396. switch (active_extruder) {
  9397. case 0:
  9398. oldstatus = E0_ENABLE_READ;
  9399. enable_e0();
  9400. break;
  9401. #if E_STEPPERS > 1
  9402. case 1:
  9403. oldstatus = E1_ENABLE_READ;
  9404. enable_e1();
  9405. break;
  9406. #if E_STEPPERS > 2
  9407. case 2:
  9408. oldstatus = E2_ENABLE_READ;
  9409. enable_e2();
  9410. break;
  9411. #if E_STEPPERS > 3
  9412. case 3:
  9413. oldstatus = E3_ENABLE_READ;
  9414. enable_e3();
  9415. break;
  9416. #if E_STEPPERS > 4
  9417. case 4:
  9418. oldstatus = E4_ENABLE_READ;
  9419. enable_e4();
  9420. break;
  9421. #endif // E_STEPPERS > 4
  9422. #endif // E_STEPPERS > 3
  9423. #endif // E_STEPPERS > 2
  9424. #endif // E_STEPPERS > 1
  9425. }
  9426. #endif // !SWITCHING_EXTRUDER
  9427. previous_cmd_ms = ms; // refresh_cmd_timeout()
  9428. const float olde = current_position[E_AXIS];
  9429. current_position[E_AXIS] += EXTRUDER_RUNOUT_EXTRUDE;
  9430. planner.buffer_line_kinematic(current_position, MMM_TO_MMS(EXTRUDER_RUNOUT_SPEED), active_extruder);
  9431. current_position[E_AXIS] = olde;
  9432. planner.set_e_position_mm(olde);
  9433. stepper.synchronize();
  9434. #if ENABLED(SWITCHING_EXTRUDER)
  9435. E0_ENABLE_WRITE(oldstatus);
  9436. #else
  9437. switch (active_extruder) {
  9438. case 0:
  9439. E0_ENABLE_WRITE(oldstatus);
  9440. break;
  9441. #if E_STEPPERS > 1
  9442. case 1:
  9443. E1_ENABLE_WRITE(oldstatus);
  9444. break;
  9445. #if E_STEPPERS > 2
  9446. case 2:
  9447. E2_ENABLE_WRITE(oldstatus);
  9448. break;
  9449. #if E_STEPPERS > 3
  9450. case 3:
  9451. E3_ENABLE_WRITE(oldstatus);
  9452. break;
  9453. #if E_STEPPERS > 4
  9454. case 4:
  9455. E4_ENABLE_WRITE(oldstatus);
  9456. break;
  9457. #endif // E_STEPPERS > 4
  9458. #endif // E_STEPPERS > 3
  9459. #endif // E_STEPPERS > 2
  9460. #endif // E_STEPPERS > 1
  9461. }
  9462. #endif // !SWITCHING_EXTRUDER
  9463. }
  9464. #endif // EXTRUDER_RUNOUT_PREVENT
  9465. #if ENABLED(DUAL_X_CARRIAGE)
  9466. // handle delayed move timeout
  9467. if (delayed_move_time && ELAPSED(ms, delayed_move_time + 1000UL) && IsRunning()) {
  9468. // travel moves have been received so enact them
  9469. delayed_move_time = 0xFFFFFFFFUL; // force moves to be done
  9470. set_destination_to_current();
  9471. prepare_move_to_destination();
  9472. }
  9473. #endif
  9474. #if ENABLED(TEMP_STAT_LEDS)
  9475. handle_status_leds();
  9476. #endif
  9477. #if ENABLED(AUTOMATIC_CURRENT_CONTROL)
  9478. checkOverTemp();
  9479. #endif
  9480. planner.check_axes_activity();
  9481. }
  9482. /**
  9483. * Standard idle routine keeps the machine alive
  9484. */
  9485. void idle(
  9486. #if ENABLED(FILAMENT_CHANGE_FEATURE)
  9487. bool no_stepper_sleep/*=false*/
  9488. #endif
  9489. ) {
  9490. lcd_update();
  9491. host_keepalive();
  9492. #if ENABLED(AUTO_REPORT_TEMPERATURES) && (HAS_TEMP_HOTEND || HAS_TEMP_BED)
  9493. auto_report_temperatures();
  9494. #endif
  9495. manage_inactivity(
  9496. #if ENABLED(FILAMENT_CHANGE_FEATURE)
  9497. no_stepper_sleep
  9498. #endif
  9499. );
  9500. thermalManager.manage_heater();
  9501. #if ENABLED(PRINTCOUNTER)
  9502. print_job_timer.tick();
  9503. #endif
  9504. #if HAS_BUZZER && DISABLED(LCD_USE_I2C_BUZZER)
  9505. buzzer.tick();
  9506. #endif
  9507. }
  9508. /**
  9509. * Kill all activity and lock the machine.
  9510. * After this the machine will need to be reset.
  9511. */
  9512. void kill(const char* lcd_msg) {
  9513. SERIAL_ERROR_START;
  9514. SERIAL_ERRORLNPGM(MSG_ERR_KILLED);
  9515. thermalManager.disable_all_heaters();
  9516. disable_all_steppers();
  9517. #if ENABLED(ULTRA_LCD)
  9518. kill_screen(lcd_msg);
  9519. #else
  9520. UNUSED(lcd_msg);
  9521. #endif
  9522. _delay_ms(600); // Wait a short time (allows messages to get out before shutting down.
  9523. cli(); // Stop interrupts
  9524. _delay_ms(250); //Wait to ensure all interrupts routines stopped
  9525. thermalManager.disable_all_heaters(); //turn off heaters again
  9526. #if HAS_POWER_SWITCH
  9527. SET_INPUT(PS_ON_PIN);
  9528. #endif
  9529. suicide();
  9530. while (1) {
  9531. #if ENABLED(USE_WATCHDOG)
  9532. watchdog_reset();
  9533. #endif
  9534. } // Wait for reset
  9535. }
  9536. /**
  9537. * Turn off heaters and stop the print in progress
  9538. * After a stop the machine may be resumed with M999
  9539. */
  9540. void stop() {
  9541. thermalManager.disable_all_heaters();
  9542. if (IsRunning()) {
  9543. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  9544. SERIAL_ERROR_START;
  9545. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  9546. LCD_MESSAGEPGM(MSG_STOPPED);
  9547. safe_delay(350); // allow enough time for messages to get out before stopping
  9548. Running = false;
  9549. }
  9550. }
  9551. /**
  9552. * Marlin entry-point: Set up before the program loop
  9553. * - Set up the kill pin, filament runout, power hold
  9554. * - Start the serial port
  9555. * - Print startup messages and diagnostics
  9556. * - Get EEPROM or default settings
  9557. * - Initialize managers for:
  9558. * • temperature
  9559. * • planner
  9560. * • watchdog
  9561. * • stepper
  9562. * • photo pin
  9563. * • servos
  9564. * • LCD controller
  9565. * • Digipot I2C
  9566. * • Z probe sled
  9567. * • status LEDs
  9568. */
  9569. void setup() {
  9570. #ifdef DISABLE_JTAG
  9571. // Disable JTAG on AT90USB chips to free up pins for IO
  9572. MCUCR = 0x80;
  9573. MCUCR = 0x80;
  9574. #endif
  9575. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  9576. setup_filrunoutpin();
  9577. #endif
  9578. setup_killpin();
  9579. setup_powerhold();
  9580. #if HAS_STEPPER_RESET
  9581. disableStepperDrivers();
  9582. #endif
  9583. MYSERIAL.begin(BAUDRATE);
  9584. SERIAL_PROTOCOLLNPGM("start");
  9585. SERIAL_ECHO_START;
  9586. // Check startup - does nothing if bootloader sets MCUSR to 0
  9587. byte mcu = MCUSR;
  9588. if (mcu & 1) SERIAL_ECHOLNPGM(MSG_POWERUP);
  9589. if (mcu & 2) SERIAL_ECHOLNPGM(MSG_EXTERNAL_RESET);
  9590. if (mcu & 4) SERIAL_ECHOLNPGM(MSG_BROWNOUT_RESET);
  9591. if (mcu & 8) SERIAL_ECHOLNPGM(MSG_WATCHDOG_RESET);
  9592. if (mcu & 32) SERIAL_ECHOLNPGM(MSG_SOFTWARE_RESET);
  9593. MCUSR = 0;
  9594. SERIAL_ECHOPGM(MSG_MARLIN);
  9595. SERIAL_CHAR(' ');
  9596. SERIAL_ECHOLNPGM(SHORT_BUILD_VERSION);
  9597. SERIAL_EOL;
  9598. #if defined(STRING_DISTRIBUTION_DATE) && defined(STRING_CONFIG_H_AUTHOR)
  9599. SERIAL_ECHO_START;
  9600. SERIAL_ECHOPGM(MSG_CONFIGURATION_VER);
  9601. SERIAL_ECHOPGM(STRING_DISTRIBUTION_DATE);
  9602. SERIAL_ECHOLNPGM(MSG_AUTHOR STRING_CONFIG_H_AUTHOR);
  9603. SERIAL_ECHOLNPGM("Compiled: " __DATE__);
  9604. #endif
  9605. SERIAL_ECHO_START;
  9606. SERIAL_ECHOPAIR(MSG_FREE_MEMORY, freeMemory());
  9607. SERIAL_ECHOLNPAIR(MSG_PLANNER_BUFFER_BYTES, (int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  9608. // Send "ok" after commands by default
  9609. for (int8_t i = 0; i < BUFSIZE; i++) send_ok[i] = true;
  9610. // Load data from EEPROM if available (or use defaults)
  9611. // This also updates variables in the planner, elsewhere
  9612. (void)settings.load();
  9613. #if DISABLED(NO_WORKSPACE_OFFSETS)
  9614. // Initialize current position based on home_offset
  9615. COPY(current_position, home_offset);
  9616. #else
  9617. ZERO(current_position);
  9618. #endif
  9619. // Vital to init stepper/planner equivalent for current_position
  9620. SYNC_PLAN_POSITION_KINEMATIC();
  9621. thermalManager.init(); // Initialize temperature loop
  9622. #if ENABLED(USE_WATCHDOG)
  9623. watchdog_init();
  9624. #endif
  9625. stepper.init(); // Initialize stepper, this enables interrupts!
  9626. servo_init();
  9627. #if HAS_PHOTOGRAPH
  9628. OUT_WRITE(PHOTOGRAPH_PIN, LOW);
  9629. #endif
  9630. #if HAS_CASE_LIGHT
  9631. update_case_light();
  9632. #endif
  9633. #if HAS_BED_PROBE
  9634. endstops.enable_z_probe(false);
  9635. #endif
  9636. #if HAS_CONTROLLERFAN
  9637. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  9638. #endif
  9639. #if HAS_STEPPER_RESET
  9640. enableStepperDrivers();
  9641. #endif
  9642. #if ENABLED(DIGIPOT_I2C)
  9643. digipot_i2c_init();
  9644. #endif
  9645. #if ENABLED(DAC_STEPPER_CURRENT)
  9646. dac_init();
  9647. #endif
  9648. #if ENABLED(Z_PROBE_SLED) && PIN_EXISTS(SLED)
  9649. OUT_WRITE(SLED_PIN, LOW); // turn it off
  9650. #endif // Z_PROBE_SLED
  9651. setup_homepin();
  9652. #if PIN_EXISTS(STAT_LED_RED)
  9653. OUT_WRITE(STAT_LED_RED_PIN, LOW); // turn it off
  9654. #endif
  9655. #if PIN_EXISTS(STAT_LED_BLUE)
  9656. OUT_WRITE(STAT_LED_BLUE_PIN, LOW); // turn it off
  9657. #endif
  9658. #if ENABLED(RGB_LED)
  9659. SET_OUTPUT(RGB_LED_R_PIN);
  9660. SET_OUTPUT(RGB_LED_G_PIN);
  9661. SET_OUTPUT(RGB_LED_B_PIN);
  9662. #endif
  9663. lcd_init();
  9664. #if ENABLED(SHOW_BOOTSCREEN)
  9665. #if ENABLED(DOGLCD)
  9666. safe_delay(BOOTSCREEN_TIMEOUT);
  9667. #elif ENABLED(ULTRA_LCD)
  9668. bootscreen();
  9669. #if DISABLED(SDSUPPORT)
  9670. lcd_init();
  9671. #endif
  9672. #endif
  9673. #endif
  9674. #if ENABLED(MIXING_EXTRUDER) && MIXING_VIRTUAL_TOOLS > 1
  9675. // Initialize mixing to 100% color 1
  9676. for (uint8_t i = 0; i < MIXING_STEPPERS; i++)
  9677. mixing_factor[i] = (i == 0) ? 1.0 : 0.0;
  9678. for (uint8_t t = 0; t < MIXING_VIRTUAL_TOOLS; t++)
  9679. for (uint8_t i = 0; i < MIXING_STEPPERS; i++)
  9680. mixing_virtual_tool_mix[t][i] = mixing_factor[i];
  9681. #endif
  9682. #if ENABLED(BLTOUCH)
  9683. bltouch_command(BLTOUCH_RESET); // Just in case the BLTouch is in the error state, try to
  9684. set_bltouch_deployed(true); // reset it. Also needs to deploy and stow to clear the
  9685. set_bltouch_deployed(false); // error condition.
  9686. #endif
  9687. #if ENABLED(EXPERIMENTAL_I2CBUS) && I2C_SLAVE_ADDRESS > 0
  9688. i2c.onReceive(i2c_on_receive);
  9689. i2c.onRequest(i2c_on_request);
  9690. #endif
  9691. #if ENABLED(ENDSTOP_INTERRUPTS_FEATURE)
  9692. setup_endstop_interrupts();
  9693. #endif
  9694. }
  9695. /**
  9696. * The main Marlin program loop
  9697. *
  9698. * - Save or log commands to SD
  9699. * - Process available commands (if not saving)
  9700. * - Call heater manager
  9701. * - Call inactivity manager
  9702. * - Call endstop manager
  9703. * - Call LCD update
  9704. */
  9705. void loop() {
  9706. if (commands_in_queue < BUFSIZE) get_available_commands();
  9707. #if ENABLED(SDSUPPORT)
  9708. card.checkautostart(false);
  9709. #endif
  9710. if (commands_in_queue) {
  9711. #if ENABLED(SDSUPPORT)
  9712. if (card.saving) {
  9713. char* command = command_queue[cmd_queue_index_r];
  9714. if (strstr_P(command, PSTR("M29"))) {
  9715. // M29 closes the file
  9716. card.closefile();
  9717. SERIAL_PROTOCOLLNPGM(MSG_FILE_SAVED);
  9718. ok_to_send();
  9719. }
  9720. else {
  9721. // Write the string from the read buffer to SD
  9722. card.write_command(command);
  9723. if (card.logging)
  9724. process_next_command(); // The card is saving because it's logging
  9725. else
  9726. ok_to_send();
  9727. }
  9728. }
  9729. else
  9730. process_next_command();
  9731. #else
  9732. process_next_command();
  9733. #endif // SDSUPPORT
  9734. // The queue may be reset by a command handler or by code invoked by idle() within a handler
  9735. if (commands_in_queue) {
  9736. --commands_in_queue;
  9737. cmd_queue_index_r = (cmd_queue_index_r + 1) % BUFSIZE;
  9738. }
  9739. }
  9740. endstops.report_state();
  9741. idle();
  9742. }