My Marlin configs for Fabrikator Mini and CTC i3 Pro B
Du kannst nicht mehr als 25 Themen auswählen Themen müssen mit entweder einem Buchstaben oder einer Ziffer beginnen. Sie können Bindestriche („-“) enthalten und bis zu 35 Zeichen lang sein.

planner.cpp 46KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269
  1. /**
  2. * Marlin 3D Printer Firmware
  3. * Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
  4. *
  5. * Based on Sprinter and grbl.
  6. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  7. *
  8. * This program is free software: you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation, either version 3 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  20. *
  21. */
  22. /**
  23. * planner.cpp
  24. *
  25. * Buffer movement commands and manage the acceleration profile plan
  26. *
  27. * Derived from Grbl
  28. * Copyright (c) 2009-2011 Simen Svale Skogsrud
  29. *
  30. * The ring buffer implementation gleaned from the wiring_serial library by David A. Mellis.
  31. *
  32. *
  33. * Reasoning behind the mathematics in this module (in the key of 'Mathematica'):
  34. *
  35. * s == speed, a == acceleration, t == time, d == distance
  36. *
  37. * Basic definitions:
  38. * Speed[s_, a_, t_] := s + (a*t)
  39. * Travel[s_, a_, t_] := Integrate[Speed[s, a, t], t]
  40. *
  41. * Distance to reach a specific speed with a constant acceleration:
  42. * Solve[{Speed[s, a, t] == m, Travel[s, a, t] == d}, d, t]
  43. * d -> (m^2 - s^2)/(2 a) --> estimate_acceleration_distance()
  44. *
  45. * Speed after a given distance of travel with constant acceleration:
  46. * Solve[{Speed[s, a, t] == m, Travel[s, a, t] == d}, m, t]
  47. * m -> Sqrt[2 a d + s^2]
  48. *
  49. * DestinationSpeed[s_, a_, d_] := Sqrt[2 a d + s^2]
  50. *
  51. * When to start braking (di) to reach a specified destination speed (s2) after accelerating
  52. * from initial speed s1 without ever stopping at a plateau:
  53. * Solve[{DestinationSpeed[s1, a, di] == DestinationSpeed[s2, a, d - di]}, di]
  54. * di -> (2 a d - s1^2 + s2^2)/(4 a) --> intersection_distance()
  55. *
  56. * IntersectionDistance[s1_, s2_, a_, d_] := (2 a d - s1^2 + s2^2)/(4 a)
  57. *
  58. */
  59. #include "planner.h"
  60. #include "stepper.h"
  61. #include "temperature.h"
  62. #include "ultralcd.h"
  63. #include "language.h"
  64. #include "Marlin.h"
  65. #if ENABLED(MESH_BED_LEVELING)
  66. #include "mesh_bed_leveling.h"
  67. #endif
  68. Planner planner;
  69. // public:
  70. /**
  71. * A ring buffer of moves described in steps
  72. */
  73. block_t Planner::block_buffer[BLOCK_BUFFER_SIZE];
  74. volatile uint8_t Planner::block_buffer_head = 0; // Index of the next block to be pushed
  75. volatile uint8_t Planner::block_buffer_tail = 0;
  76. float Planner::max_feedrate_mm_s[NUM_AXIS], // Max speeds in mm per second
  77. Planner::axis_steps_per_mm[NUM_AXIS],
  78. Planner::steps_to_mm[NUM_AXIS];
  79. unsigned long Planner::max_acceleration_steps_per_s2[NUM_AXIS],
  80. Planner::max_acceleration_mm_per_s2[NUM_AXIS]; // Use M201 to override by software
  81. millis_t Planner::min_segment_time;
  82. float Planner::min_feedrate_mm_s,
  83. Planner::acceleration, // Normal acceleration mm/s^2 DEFAULT ACCELERATION for all printing moves. M204 SXXXX
  84. Planner::retract_acceleration, // Retract acceleration mm/s^2 filament pull-back and push-forward while standing still in the other axes M204 TXXXX
  85. Planner::travel_acceleration, // Travel acceleration mm/s^2 DEFAULT ACCELERATION for all NON printing moves. M204 MXXXX
  86. Planner::max_xy_jerk, // The largest speed change requiring no acceleration
  87. Planner::max_z_jerk,
  88. Planner::max_e_jerk,
  89. Planner::min_travel_feedrate_mm_s;
  90. #if HAS_ABL
  91. bool Planner::abl_enabled = false; // Flag that auto bed leveling is enabled
  92. #endif
  93. #if ABL_PLANAR
  94. matrix_3x3 Planner::bed_level_matrix; // Transform to compensate for bed level
  95. #endif
  96. #if ENABLED(AUTOTEMP)
  97. float Planner::autotemp_max = 250,
  98. Planner::autotemp_min = 210,
  99. Planner::autotemp_factor = 0.1;
  100. bool Planner::autotemp_enabled = false;
  101. #endif
  102. // private:
  103. long Planner::position[NUM_AXIS] = { 0 };
  104. float Planner::previous_speed[NUM_AXIS],
  105. Planner::previous_nominal_speed;
  106. #if ENABLED(DISABLE_INACTIVE_EXTRUDER)
  107. uint8_t Planner::g_uc_extruder_last_move[EXTRUDERS] = { 0 };
  108. #endif // DISABLE_INACTIVE_EXTRUDER
  109. #ifdef XY_FREQUENCY_LIMIT
  110. // Old direction bits. Used for speed calculations
  111. unsigned char Planner::old_direction_bits = 0;
  112. // Segment times (in µs). Used for speed calculations
  113. long Planner::axis_segment_time[2][3] = { {MAX_FREQ_TIME + 1, 0, 0}, {MAX_FREQ_TIME + 1, 0, 0} };
  114. #endif
  115. /**
  116. * Class and Instance Methods
  117. */
  118. Planner::Planner() { init(); }
  119. void Planner::init() {
  120. block_buffer_head = block_buffer_tail = 0;
  121. memset(position, 0, sizeof(position));
  122. memset(previous_speed, 0, sizeof(previous_speed));
  123. previous_nominal_speed = 0.0;
  124. #if ABL_PLANAR
  125. bed_level_matrix.set_to_identity();
  126. #endif
  127. }
  128. /**
  129. * Calculate trapezoid parameters, multiplying the entry- and exit-speeds
  130. * by the provided factors.
  131. */
  132. void Planner::calculate_trapezoid_for_block(block_t* block, float entry_factor, float exit_factor) {
  133. unsigned long initial_rate = ceil(block->nominal_rate * entry_factor),
  134. final_rate = ceil(block->nominal_rate * exit_factor); // (steps per second)
  135. // Limit minimal step rate (Otherwise the timer will overflow.)
  136. NOLESS(initial_rate, 120);
  137. NOLESS(final_rate, 120);
  138. long accel = block->acceleration_steps_per_s2;
  139. int32_t accelerate_steps = ceil(estimate_acceleration_distance(initial_rate, block->nominal_rate, accel));
  140. int32_t decelerate_steps = floor(estimate_acceleration_distance(block->nominal_rate, final_rate, -accel));
  141. // Calculate the size of Plateau of Nominal Rate.
  142. int32_t plateau_steps = block->step_event_count - accelerate_steps - decelerate_steps;
  143. // Is the Plateau of Nominal Rate smaller than nothing? That means no cruising, and we will
  144. // have to use intersection_distance() to calculate when to abort accel and start braking
  145. // in order to reach the final_rate exactly at the end of this block.
  146. if (plateau_steps < 0) {
  147. accelerate_steps = ceil(intersection_distance(initial_rate, final_rate, accel, block->step_event_count));
  148. accelerate_steps = max(accelerate_steps, 0); // Check limits due to numerical round-off
  149. accelerate_steps = min((uint32_t)accelerate_steps, block->step_event_count);//(We can cast here to unsigned, because the above line ensures that we are above zero)
  150. plateau_steps = 0;
  151. }
  152. #if ENABLED(ADVANCE)
  153. volatile long initial_advance = block->advance * sq(entry_factor);
  154. volatile long final_advance = block->advance * sq(exit_factor);
  155. #endif // ADVANCE
  156. // block->accelerate_until = accelerate_steps;
  157. // block->decelerate_after = accelerate_steps+plateau_steps;
  158. CRITICAL_SECTION_START; // Fill variables used by the stepper in a critical section
  159. if (!block->busy) { // Don't update variables if block is busy.
  160. block->accelerate_until = accelerate_steps;
  161. block->decelerate_after = accelerate_steps + plateau_steps;
  162. block->initial_rate = initial_rate;
  163. block->final_rate = final_rate;
  164. #if ENABLED(ADVANCE)
  165. block->initial_advance = initial_advance;
  166. block->final_advance = final_advance;
  167. #endif
  168. }
  169. CRITICAL_SECTION_END;
  170. }
  171. // "Junction jerk" in this context is the immediate change in speed at the junction of two blocks.
  172. // This method will calculate the junction jerk as the euclidean distance between the nominal
  173. // velocities of the respective blocks.
  174. //inline float junction_jerk(block_t *before, block_t *after) {
  175. // return sqrt(
  176. // pow((before->speed_x-after->speed_x), 2)+pow((before->speed_y-after->speed_y), 2));
  177. //}
  178. // The kernel called by recalculate() when scanning the plan from last to first entry.
  179. void Planner::reverse_pass_kernel(block_t* current, block_t* next) {
  180. if (!current) return;
  181. if (next) {
  182. // If entry speed is already at the maximum entry speed, no need to recheck. Block is cruising.
  183. // If not, block in state of acceleration or deceleration. Reset entry speed to maximum and
  184. // check for maximum allowable speed reductions to ensure maximum possible planned speed.
  185. float max_entry_speed = current->max_entry_speed;
  186. if (current->entry_speed != max_entry_speed) {
  187. // If nominal length true, max junction speed is guaranteed to be reached. Only compute
  188. // for max allowable speed if block is decelerating and nominal length is false.
  189. if (!current->nominal_length_flag && max_entry_speed > next->entry_speed) {
  190. current->entry_speed = min(max_entry_speed,
  191. max_allowable_speed(-current->acceleration, next->entry_speed, current->millimeters));
  192. }
  193. else {
  194. current->entry_speed = max_entry_speed;
  195. }
  196. current->recalculate_flag = true;
  197. }
  198. } // Skip last block. Already initialized and set for recalculation.
  199. }
  200. /**
  201. * recalculate() needs to go over the current plan twice.
  202. * Once in reverse and once forward. This implements the reverse pass.
  203. */
  204. void Planner::reverse_pass() {
  205. if (movesplanned() > 3) {
  206. block_t* block[3] = { NULL, NULL, NULL };
  207. // Make a local copy of block_buffer_tail, because the interrupt can alter it
  208. CRITICAL_SECTION_START;
  209. uint8_t tail = block_buffer_tail;
  210. CRITICAL_SECTION_END
  211. uint8_t b = BLOCK_MOD(block_buffer_head - 3);
  212. while (b != tail) {
  213. b = prev_block_index(b);
  214. block[2] = block[1];
  215. block[1] = block[0];
  216. block[0] = &block_buffer[b];
  217. reverse_pass_kernel(block[1], block[2]);
  218. }
  219. }
  220. }
  221. // The kernel called by recalculate() when scanning the plan from first to last entry.
  222. void Planner::forward_pass_kernel(block_t* previous, block_t* current) {
  223. if (!previous) return;
  224. // If the previous block is an acceleration block, but it is not long enough to complete the
  225. // full speed change within the block, we need to adjust the entry speed accordingly. Entry
  226. // speeds have already been reset, maximized, and reverse planned by reverse planner.
  227. // If nominal length is true, max junction speed is guaranteed to be reached. No need to recheck.
  228. if (!previous->nominal_length_flag) {
  229. if (previous->entry_speed < current->entry_speed) {
  230. double entry_speed = min(current->entry_speed,
  231. max_allowable_speed(-previous->acceleration, previous->entry_speed, previous->millimeters));
  232. // Check for junction speed change
  233. if (current->entry_speed != entry_speed) {
  234. current->entry_speed = entry_speed;
  235. current->recalculate_flag = true;
  236. }
  237. }
  238. }
  239. }
  240. /**
  241. * recalculate() needs to go over the current plan twice.
  242. * Once in reverse and once forward. This implements the forward pass.
  243. */
  244. void Planner::forward_pass() {
  245. block_t* block[3] = { NULL, NULL, NULL };
  246. for (uint8_t b = block_buffer_tail; b != block_buffer_head; b = next_block_index(b)) {
  247. block[0] = block[1];
  248. block[1] = block[2];
  249. block[2] = &block_buffer[b];
  250. forward_pass_kernel(block[0], block[1]);
  251. }
  252. forward_pass_kernel(block[1], block[2]);
  253. }
  254. /**
  255. * Recalculate the trapezoid speed profiles for all blocks in the plan
  256. * according to the entry_factor for each junction. Must be called by
  257. * recalculate() after updating the blocks.
  258. */
  259. void Planner::recalculate_trapezoids() {
  260. int8_t block_index = block_buffer_tail;
  261. block_t* current;
  262. block_t* next = NULL;
  263. while (block_index != block_buffer_head) {
  264. current = next;
  265. next = &block_buffer[block_index];
  266. if (current) {
  267. // Recalculate if current block entry or exit junction speed has changed.
  268. if (current->recalculate_flag || next->recalculate_flag) {
  269. // NOTE: Entry and exit factors always > 0 by all previous logic operations.
  270. float nom = current->nominal_speed;
  271. calculate_trapezoid_for_block(current, current->entry_speed / nom, next->entry_speed / nom);
  272. current->recalculate_flag = false; // Reset current only to ensure next trapezoid is computed
  273. }
  274. }
  275. block_index = next_block_index(block_index);
  276. }
  277. // Last/newest block in buffer. Exit speed is set with MINIMUM_PLANNER_SPEED. Always recalculated.
  278. if (next) {
  279. float nom = next->nominal_speed;
  280. calculate_trapezoid_for_block(next, next->entry_speed / nom, (MINIMUM_PLANNER_SPEED) / nom);
  281. next->recalculate_flag = false;
  282. }
  283. }
  284. /*
  285. * Recalculate the motion plan according to the following algorithm:
  286. *
  287. * 1. Go over every block in reverse order...
  288. *
  289. * Calculate a junction speed reduction (block_t.entry_factor) so:
  290. *
  291. * a. The junction jerk is within the set limit, and
  292. *
  293. * b. No speed reduction within one block requires faster
  294. * deceleration than the one, true constant acceleration.
  295. *
  296. * 2. Go over every block in chronological order...
  297. *
  298. * Dial down junction speed reduction values if:
  299. * a. The speed increase within one block would require faster
  300. * acceleration than the one, true constant acceleration.
  301. *
  302. * After that, all blocks will have an entry_factor allowing all speed changes to
  303. * be performed using only the one, true constant acceleration, and where no junction
  304. * jerk is jerkier than the set limit, Jerky. Finally it will:
  305. *
  306. * 3. Recalculate "trapezoids" for all blocks.
  307. */
  308. void Planner::recalculate() {
  309. reverse_pass();
  310. forward_pass();
  311. recalculate_trapezoids();
  312. }
  313. #if ENABLED(AUTOTEMP)
  314. void Planner::getHighESpeed() {
  315. static float oldt = 0;
  316. if (!autotemp_enabled) return;
  317. if (thermalManager.degTargetHotend(0) + 2 < autotemp_min) return; // probably temperature set to zero.
  318. float high = 0.0;
  319. for (uint8_t b = block_buffer_tail; b != block_buffer_head; b = next_block_index(b)) {
  320. block_t* block = &block_buffer[b];
  321. if (block->steps[X_AXIS] || block->steps[Y_AXIS] || block->steps[Z_AXIS]) {
  322. float se = (float)block->steps[E_AXIS] / block->step_event_count * block->nominal_speed; // mm/sec;
  323. NOLESS(high, se);
  324. }
  325. }
  326. float t = autotemp_min + high * autotemp_factor;
  327. t = constrain(t, autotemp_min, autotemp_max);
  328. if (oldt > t) {
  329. t *= (1 - (AUTOTEMP_OLDWEIGHT));
  330. t += (AUTOTEMP_OLDWEIGHT) * oldt;
  331. }
  332. oldt = t;
  333. thermalManager.setTargetHotend(t, 0);
  334. }
  335. #endif //AUTOTEMP
  336. /**
  337. * Maintain fans, paste extruder pressure,
  338. */
  339. void Planner::check_axes_activity() {
  340. unsigned char axis_active[NUM_AXIS] = { 0 },
  341. tail_fan_speed[FAN_COUNT];
  342. #if FAN_COUNT > 0
  343. for (uint8_t i = 0; i < FAN_COUNT; i++) tail_fan_speed[i] = fanSpeeds[i];
  344. #endif
  345. #if ENABLED(BARICUDA)
  346. #if HAS_HEATER_1
  347. unsigned char tail_valve_pressure = baricuda_valve_pressure;
  348. #endif
  349. #if HAS_HEATER_2
  350. unsigned char tail_e_to_p_pressure = baricuda_e_to_p_pressure;
  351. #endif
  352. #endif
  353. if (blocks_queued()) {
  354. #if FAN_COUNT > 0
  355. for (uint8_t i = 0; i < FAN_COUNT; i++) tail_fan_speed[i] = block_buffer[block_buffer_tail].fan_speed[i];
  356. #endif
  357. block_t* block;
  358. #if ENABLED(BARICUDA)
  359. block = &block_buffer[block_buffer_tail];
  360. #if HAS_HEATER_1
  361. tail_valve_pressure = block->valve_pressure;
  362. #endif
  363. #if HAS_HEATER_2
  364. tail_e_to_p_pressure = block->e_to_p_pressure;
  365. #endif
  366. #endif
  367. for (uint8_t b = block_buffer_tail; b != block_buffer_head; b = next_block_index(b)) {
  368. block = &block_buffer[b];
  369. LOOP_XYZE(i) if (block->steps[i]) axis_active[i]++;
  370. }
  371. }
  372. #if ENABLED(DISABLE_X)
  373. if (!axis_active[X_AXIS]) disable_x();
  374. #endif
  375. #if ENABLED(DISABLE_Y)
  376. if (!axis_active[Y_AXIS]) disable_y();
  377. #endif
  378. #if ENABLED(DISABLE_Z)
  379. if (!axis_active[Z_AXIS]) disable_z();
  380. #endif
  381. #if ENABLED(DISABLE_E)
  382. if (!axis_active[E_AXIS]) {
  383. disable_e0();
  384. disable_e1();
  385. disable_e2();
  386. disable_e3();
  387. }
  388. #endif
  389. #if FAN_COUNT > 0
  390. #if defined(FAN_MIN_PWM)
  391. #define CALC_FAN_SPEED(f) (tail_fan_speed[f] ? ( FAN_MIN_PWM + (tail_fan_speed[f] * (255 - FAN_MIN_PWM)) / 255 ) : 0)
  392. #else
  393. #define CALC_FAN_SPEED(f) tail_fan_speed[f]
  394. #endif
  395. #ifdef FAN_KICKSTART_TIME
  396. static millis_t fan_kick_end[FAN_COUNT] = { 0 };
  397. #define KICKSTART_FAN(f) \
  398. if (tail_fan_speed[f]) { \
  399. millis_t ms = millis(); \
  400. if (fan_kick_end[f] == 0) { \
  401. fan_kick_end[f] = ms + FAN_KICKSTART_TIME; \
  402. tail_fan_speed[f] = 255; \
  403. } else { \
  404. if (PENDING(ms, fan_kick_end[f])) { \
  405. tail_fan_speed[f] = 255; \
  406. } \
  407. } \
  408. } else { \
  409. fan_kick_end[f] = 0; \
  410. }
  411. #if HAS_FAN0
  412. KICKSTART_FAN(0);
  413. #endif
  414. #if HAS_FAN1
  415. KICKSTART_FAN(1);
  416. #endif
  417. #if HAS_FAN2
  418. KICKSTART_FAN(2);
  419. #endif
  420. #endif //FAN_KICKSTART_TIME
  421. #if ENABLED(FAN_SOFT_PWM)
  422. #if HAS_FAN0
  423. thermalManager.fanSpeedSoftPwm[0] = CALC_FAN_SPEED(0);
  424. #endif
  425. #if HAS_FAN1
  426. thermalManager.fanSpeedSoftPwm[1] = CALC_FAN_SPEED(1);
  427. #endif
  428. #if HAS_FAN2
  429. thermalManager.fanSpeedSoftPwm[2] = CALC_FAN_SPEED(2);
  430. #endif
  431. #else
  432. #if HAS_FAN0
  433. analogWrite(FAN_PIN, CALC_FAN_SPEED(0));
  434. #endif
  435. #if HAS_FAN1
  436. analogWrite(FAN1_PIN, CALC_FAN_SPEED(1));
  437. #endif
  438. #if HAS_FAN2
  439. analogWrite(FAN2_PIN, CALC_FAN_SPEED(2));
  440. #endif
  441. #endif
  442. #endif // FAN_COUNT > 0
  443. #if ENABLED(AUTOTEMP)
  444. getHighESpeed();
  445. #endif
  446. #if ENABLED(BARICUDA)
  447. #if HAS_HEATER_1
  448. analogWrite(HEATER_1_PIN, tail_valve_pressure);
  449. #endif
  450. #if HAS_HEATER_2
  451. analogWrite(HEATER_2_PIN, tail_e_to_p_pressure);
  452. #endif
  453. #endif
  454. }
  455. #if PLANNER_LEVELING
  456. void Planner::apply_leveling(float &lx, float &ly, float &lz) {
  457. #if HAS_ABL
  458. if (!abl_enabled) return;
  459. #endif
  460. #if ENABLED(MESH_BED_LEVELING)
  461. if (mbl.active())
  462. lz += mbl.get_z(RAW_X_POSITION(lx), RAW_Y_POSITION(ly));
  463. #elif ABL_PLANAR
  464. float dx = RAW_X_POSITION(lx) - (X_TILT_FULCRUM),
  465. dy = RAW_Y_POSITION(ly) - (Y_TILT_FULCRUM),
  466. dz = RAW_Z_POSITION(lz);
  467. apply_rotation_xyz(bed_level_matrix, dx, dy, dz);
  468. lx = LOGICAL_X_POSITION(dx + X_TILT_FULCRUM);
  469. ly = LOGICAL_Y_POSITION(dy + Y_TILT_FULCRUM);
  470. lz = LOGICAL_Z_POSITION(dz);
  471. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  472. float tmp[XYZ] = { lx, ly, 0 };
  473. #if ENABLED(DELTA)
  474. float offset = bilinear_z_offset(tmp);
  475. lx += offset;
  476. ly += offset;
  477. lz += offset;
  478. #else
  479. lz += bilinear_z_offset(tmp);
  480. #endif
  481. #endif
  482. }
  483. void Planner::unapply_leveling(float logical[XYZ]) {
  484. #if HAS_ABL
  485. if (!abl_enabled) return;
  486. #endif
  487. #if ENABLED(MESH_BED_LEVELING)
  488. if (mbl.active())
  489. logical[Z_AXIS] -= mbl.get_z(RAW_X_POSITION(logical[X_AXIS]), RAW_Y_POSITION(logical[Y_AXIS]));
  490. #elif ABL_PLANAR
  491. matrix_3x3 inverse = matrix_3x3::transpose(bed_level_matrix);
  492. float dx = RAW_X_POSITION(logical[X_AXIS]) - (X_TILT_FULCRUM),
  493. dy = RAW_Y_POSITION(logical[Y_AXIS]) - (Y_TILT_FULCRUM),
  494. dz = RAW_Z_POSITION(logical[Z_AXIS]);
  495. apply_rotation_xyz(inverse, dx, dy, dz);
  496. logical[X_AXIS] = LOGICAL_X_POSITION(dx + X_TILT_FULCRUM);
  497. logical[Y_AXIS] = LOGICAL_Y_POSITION(dy + Y_TILT_FULCRUM);
  498. logical[Z_AXIS] = LOGICAL_Z_POSITION(dz);
  499. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  500. logical[Z_AXIS] -= bilinear_z_offset(logical);
  501. #endif
  502. }
  503. #endif // PLANNER_LEVELING
  504. /**
  505. * Planner::buffer_line
  506. *
  507. * Add a new linear movement to the buffer.
  508. *
  509. * x,y,z,e - target position in mm
  510. * fr_mm_s - (target) speed of the move
  511. * extruder - target extruder
  512. */
  513. void Planner::buffer_line(ARG_X, ARG_Y, ARG_Z, const float &e, float fr_mm_s, const uint8_t extruder) {
  514. // Calculate the buffer head after we push this byte
  515. int next_buffer_head = next_block_index(block_buffer_head);
  516. // If the buffer is full: good! That means we are well ahead of the robot.
  517. // Rest here until there is room in the buffer.
  518. while (block_buffer_tail == next_buffer_head) idle();
  519. #if PLANNER_LEVELING
  520. apply_leveling(lx, ly, lz);
  521. #endif
  522. // The target position of the tool in absolute steps
  523. // Calculate target position in absolute steps
  524. //this should be done after the wait, because otherwise a M92 code within the gcode disrupts this calculation somehow
  525. long target[NUM_AXIS] = {
  526. lround(lx * axis_steps_per_mm[X_AXIS]),
  527. lround(ly * axis_steps_per_mm[Y_AXIS]),
  528. lround(lz * axis_steps_per_mm[Z_AXIS]),
  529. lround(e * axis_steps_per_mm[E_AXIS])
  530. };
  531. long dx = target[X_AXIS] - position[X_AXIS],
  532. dy = target[Y_AXIS] - position[Y_AXIS],
  533. dz = target[Z_AXIS] - position[Z_AXIS];
  534. /*
  535. SERIAL_ECHOPAIR(" Planner FR:", fr_mm_s);
  536. SERIAL_CHAR(' ');
  537. #if IS_KINEMATIC
  538. SERIAL_ECHOPAIR("A:", lx);
  539. SERIAL_ECHOPAIR(" (", dx);
  540. SERIAL_ECHOPAIR(") B:", ly);
  541. #else
  542. SERIAL_ECHOPAIR("X:", lx);
  543. SERIAL_ECHOPAIR(" (", dx);
  544. SERIAL_ECHOPAIR(") Y:", ly);
  545. #endif
  546. SERIAL_ECHOPAIR(" (", dy);
  547. #if ENABLED(DELTA)
  548. SERIAL_ECHOPAIR(") C:", lz);
  549. #else
  550. SERIAL_ECHOPAIR(") Z:", lz);
  551. #endif
  552. SERIAL_ECHOPAIR(" (", dz);
  553. SERIAL_CHAR(')');
  554. SERIAL_EOL;
  555. //*/
  556. // DRYRUN ignores all temperature constraints and assures that the extruder is instantly satisfied
  557. if (DEBUGGING(DRYRUN)) position[E_AXIS] = target[E_AXIS];
  558. long de = target[E_AXIS] - position[E_AXIS];
  559. #if ENABLED(PREVENT_COLD_EXTRUSION)
  560. if (de) {
  561. if (thermalManager.tooColdToExtrude(extruder)) {
  562. position[E_AXIS] = target[E_AXIS]; // Behave as if the move really took place, but ignore E part
  563. de = 0; // no difference
  564. SERIAL_ECHO_START;
  565. SERIAL_ECHOLNPGM(MSG_ERR_COLD_EXTRUDE_STOP);
  566. }
  567. #if ENABLED(PREVENT_LENGTHY_EXTRUDE)
  568. if (labs(de) > axis_steps_per_mm[E_AXIS] * (EXTRUDE_MAXLENGTH)) {
  569. position[E_AXIS] = target[E_AXIS]; // Behave as if the move really took place, but ignore E part
  570. de = 0; // no difference
  571. SERIAL_ECHO_START;
  572. SERIAL_ECHOLNPGM(MSG_ERR_LONG_EXTRUDE_STOP);
  573. }
  574. #endif
  575. }
  576. #endif
  577. // Prepare to set up new block
  578. block_t* block = &block_buffer[block_buffer_head];
  579. // Mark block as not busy (Not executed by the stepper interrupt)
  580. block->busy = false;
  581. // Number of steps for each axis
  582. #if ENABLED(COREXY)
  583. // corexy planning
  584. // these equations follow the form of the dA and dB equations on http://www.corexy.com/theory.html
  585. block->steps[A_AXIS] = labs(dx + dy);
  586. block->steps[B_AXIS] = labs(dx - dy);
  587. block->steps[Z_AXIS] = labs(dz);
  588. #elif ENABLED(COREXZ)
  589. // corexz planning
  590. block->steps[A_AXIS] = labs(dx + dz);
  591. block->steps[Y_AXIS] = labs(dy);
  592. block->steps[C_AXIS] = labs(dx - dz);
  593. #elif ENABLED(COREYZ)
  594. // coreyz planning
  595. block->steps[X_AXIS] = labs(dx);
  596. block->steps[B_AXIS] = labs(dy + dz);
  597. block->steps[C_AXIS] = labs(dy - dz);
  598. #else
  599. // default non-h-bot planning
  600. block->steps[X_AXIS] = labs(dx);
  601. block->steps[Y_AXIS] = labs(dy);
  602. block->steps[Z_AXIS] = labs(dz);
  603. #endif
  604. block->steps[E_AXIS] = labs(de) * volumetric_multiplier[extruder] * flow_percentage[extruder] * 0.01 + 0.5;
  605. block->step_event_count = MAX4(block->steps[X_AXIS], block->steps[Y_AXIS], block->steps[Z_AXIS], block->steps[E_AXIS]);
  606. // Bail if this is a zero-length block
  607. if (block->step_event_count < MIN_STEPS_PER_SEGMENT) return;
  608. // For a mixing extruder, get a magnified step_event_count for each
  609. #if ENABLED(MIXING_EXTRUDER)
  610. for (uint8_t i = 0; i < MIXING_STEPPERS; i++)
  611. block->mix_event_count[i] = UNEAR_ZERO(mixing_factor[i]) ? 0 : block->step_event_count / mixing_factor[i];
  612. #endif
  613. #if FAN_COUNT > 0
  614. for (uint8_t i = 0; i < FAN_COUNT; i++) block->fan_speed[i] = fanSpeeds[i];
  615. #endif
  616. #if ENABLED(BARICUDA)
  617. block->valve_pressure = baricuda_valve_pressure;
  618. block->e_to_p_pressure = baricuda_e_to_p_pressure;
  619. #endif
  620. // Compute direction bits for this block
  621. uint8_t db = 0;
  622. #if ENABLED(COREXY)
  623. if (dx < 0) SBI(db, X_HEAD); // Save the real Extruder (head) direction in X Axis
  624. if (dy < 0) SBI(db, Y_HEAD); // ...and Y
  625. if (dz < 0) SBI(db, Z_AXIS);
  626. if (dx + dy < 0) SBI(db, A_AXIS); // Motor A direction
  627. if (dx - dy < 0) SBI(db, B_AXIS); // Motor B direction
  628. #elif ENABLED(COREXZ)
  629. if (dx < 0) SBI(db, X_HEAD); // Save the real Extruder (head) direction in X Axis
  630. if (dy < 0) SBI(db, Y_AXIS);
  631. if (dz < 0) SBI(db, Z_HEAD); // ...and Z
  632. if (dx + dz < 0) SBI(db, A_AXIS); // Motor A direction
  633. if (dx - dz < 0) SBI(db, C_AXIS); // Motor C direction
  634. #elif ENABLED(COREYZ)
  635. if (dx < 0) SBI(db, X_AXIS);
  636. if (dy < 0) SBI(db, Y_HEAD); // Save the real Extruder (head) direction in Y Axis
  637. if (dz < 0) SBI(db, Z_HEAD); // ...and Z
  638. if (dy + dz < 0) SBI(db, B_AXIS); // Motor B direction
  639. if (dy - dz < 0) SBI(db, C_AXIS); // Motor C direction
  640. #else
  641. if (dx < 0) SBI(db, X_AXIS);
  642. if (dy < 0) SBI(db, Y_AXIS);
  643. if (dz < 0) SBI(db, Z_AXIS);
  644. #endif
  645. if (de < 0) SBI(db, E_AXIS);
  646. block->direction_bits = db;
  647. block->active_extruder = extruder;
  648. //enable active axes
  649. #if ENABLED(COREXY)
  650. if (block->steps[A_AXIS] || block->steps[B_AXIS]) {
  651. enable_x();
  652. enable_y();
  653. }
  654. #if DISABLED(Z_LATE_ENABLE)
  655. if (block->steps[Z_AXIS]) enable_z();
  656. #endif
  657. #elif ENABLED(COREXZ)
  658. if (block->steps[A_AXIS] || block->steps[C_AXIS]) {
  659. enable_x();
  660. enable_z();
  661. }
  662. if (block->steps[Y_AXIS]) enable_y();
  663. #else
  664. if (block->steps[X_AXIS]) enable_x();
  665. if (block->steps[Y_AXIS]) enable_y();
  666. #if DISABLED(Z_LATE_ENABLE)
  667. if (block->steps[Z_AXIS]) enable_z();
  668. #endif
  669. #endif
  670. // Enable extruder(s)
  671. if (block->steps[E_AXIS]) {
  672. #if ENABLED(DISABLE_INACTIVE_EXTRUDER) // Enable only the selected extruder
  673. for (int i = 0; i < EXTRUDERS; i++)
  674. if (g_uc_extruder_last_move[i] > 0) g_uc_extruder_last_move[i]--;
  675. switch(extruder) {
  676. case 0:
  677. enable_e0();
  678. #if ENABLED(DUAL_X_CARRIAGE)
  679. if (extruder_duplication_enabled) {
  680. enable_e1();
  681. g_uc_extruder_last_move[1] = (BLOCK_BUFFER_SIZE) * 2;
  682. }
  683. #endif
  684. g_uc_extruder_last_move[0] = (BLOCK_BUFFER_SIZE) * 2;
  685. #if EXTRUDERS > 1
  686. if (g_uc_extruder_last_move[1] == 0) disable_e1();
  687. #if EXTRUDERS > 2
  688. if (g_uc_extruder_last_move[2] == 0) disable_e2();
  689. #if EXTRUDERS > 3
  690. if (g_uc_extruder_last_move[3] == 0) disable_e3();
  691. #endif
  692. #endif
  693. #endif
  694. break;
  695. #if EXTRUDERS > 1
  696. case 1:
  697. enable_e1();
  698. g_uc_extruder_last_move[1] = (BLOCK_BUFFER_SIZE) * 2;
  699. if (g_uc_extruder_last_move[0] == 0) disable_e0();
  700. #if EXTRUDERS > 2
  701. if (g_uc_extruder_last_move[2] == 0) disable_e2();
  702. #if EXTRUDERS > 3
  703. if (g_uc_extruder_last_move[3] == 0) disable_e3();
  704. #endif
  705. #endif
  706. break;
  707. #if EXTRUDERS > 2
  708. case 2:
  709. enable_e2();
  710. g_uc_extruder_last_move[2] = (BLOCK_BUFFER_SIZE) * 2;
  711. if (g_uc_extruder_last_move[0] == 0) disable_e0();
  712. if (g_uc_extruder_last_move[1] == 0) disable_e1();
  713. #if EXTRUDERS > 3
  714. if (g_uc_extruder_last_move[3] == 0) disable_e3();
  715. #endif
  716. break;
  717. #if EXTRUDERS > 3
  718. case 3:
  719. enable_e3();
  720. g_uc_extruder_last_move[3] = (BLOCK_BUFFER_SIZE) * 2;
  721. if (g_uc_extruder_last_move[0] == 0) disable_e0();
  722. if (g_uc_extruder_last_move[1] == 0) disable_e1();
  723. if (g_uc_extruder_last_move[2] == 0) disable_e2();
  724. break;
  725. #endif // EXTRUDERS > 3
  726. #endif // EXTRUDERS > 2
  727. #endif // EXTRUDERS > 1
  728. }
  729. #else
  730. enable_e0();
  731. enable_e1();
  732. enable_e2();
  733. enable_e3();
  734. #endif
  735. }
  736. if (block->steps[E_AXIS])
  737. NOLESS(fr_mm_s, min_feedrate_mm_s);
  738. else
  739. NOLESS(fr_mm_s, min_travel_feedrate_mm_s);
  740. /**
  741. * This part of the code calculates the total length of the movement.
  742. * For cartesian bots, the X_AXIS is the real X movement and same for Y_AXIS.
  743. * But for corexy bots, that is not true. The "X_AXIS" and "Y_AXIS" motors (that should be named to A_AXIS
  744. * and B_AXIS) cannot be used for X and Y length, because A=X+Y and B=X-Y.
  745. * So we need to create other 2 "AXIS", named X_HEAD and Y_HEAD, meaning the real displacement of the Head.
  746. * Having the real displacement of the head, we can calculate the total movement length and apply the desired speed.
  747. */
  748. #if ENABLED(COREXY) || ENABLED(COREXZ) || ENABLED(COREYZ)
  749. float delta_mm[7];
  750. #if ENABLED(COREXY)
  751. delta_mm[X_HEAD] = dx * steps_to_mm[A_AXIS];
  752. delta_mm[Y_HEAD] = dy * steps_to_mm[B_AXIS];
  753. delta_mm[Z_AXIS] = dz * steps_to_mm[Z_AXIS];
  754. delta_mm[A_AXIS] = (dx + dy) * steps_to_mm[A_AXIS];
  755. delta_mm[B_AXIS] = (dx - dy) * steps_to_mm[B_AXIS];
  756. #elif ENABLED(COREXZ)
  757. delta_mm[X_HEAD] = dx * steps_to_mm[A_AXIS];
  758. delta_mm[Y_AXIS] = dy * steps_to_mm[Y_AXIS];
  759. delta_mm[Z_HEAD] = dz * steps_to_mm[C_AXIS];
  760. delta_mm[A_AXIS] = (dx + dz) * steps_to_mm[A_AXIS];
  761. delta_mm[C_AXIS] = (dx - dz) * steps_to_mm[C_AXIS];
  762. #elif ENABLED(COREYZ)
  763. delta_mm[X_AXIS] = dx * steps_to_mm[X_AXIS];
  764. delta_mm[Y_HEAD] = dy * steps_to_mm[B_AXIS];
  765. delta_mm[Z_HEAD] = dz * steps_to_mm[C_AXIS];
  766. delta_mm[B_AXIS] = (dy + dz) * steps_to_mm[B_AXIS];
  767. delta_mm[C_AXIS] = (dy - dz) * steps_to_mm[C_AXIS];
  768. #endif
  769. #else
  770. float delta_mm[4];
  771. delta_mm[X_AXIS] = dx * steps_to_mm[X_AXIS];
  772. delta_mm[Y_AXIS] = dy * steps_to_mm[Y_AXIS];
  773. delta_mm[Z_AXIS] = dz * steps_to_mm[Z_AXIS];
  774. #endif
  775. delta_mm[E_AXIS] = 0.01 * (de * steps_to_mm[E_AXIS]) * volumetric_multiplier[extruder] * flow_percentage[extruder];
  776. if (block->steps[X_AXIS] < MIN_STEPS_PER_SEGMENT && block->steps[Y_AXIS] < MIN_STEPS_PER_SEGMENT && block->steps[Z_AXIS] < MIN_STEPS_PER_SEGMENT) {
  777. block->millimeters = fabs(delta_mm[E_AXIS]);
  778. }
  779. else {
  780. block->millimeters = sqrt(
  781. #if ENABLED(COREXY)
  782. sq(delta_mm[X_HEAD]) + sq(delta_mm[Y_HEAD]) + sq(delta_mm[Z_AXIS])
  783. #elif ENABLED(COREXZ)
  784. sq(delta_mm[X_HEAD]) + sq(delta_mm[Y_AXIS]) + sq(delta_mm[Z_HEAD])
  785. #elif ENABLED(COREYZ)
  786. sq(delta_mm[X_AXIS]) + sq(delta_mm[Y_HEAD]) + sq(delta_mm[Z_HEAD])
  787. #else
  788. sq(delta_mm[X_AXIS]) + sq(delta_mm[Y_AXIS]) + sq(delta_mm[Z_AXIS])
  789. #endif
  790. );
  791. }
  792. float inverse_millimeters = 1.0 / block->millimeters; // Inverse millimeters to remove multiple divides
  793. // Calculate moves/second for this move. No divide by zero due to previous checks.
  794. float inverse_mm_s = fr_mm_s * inverse_millimeters;
  795. int moves_queued = movesplanned();
  796. // Slow down when the buffer starts to empty, rather than wait at the corner for a buffer refill
  797. #if ENABLED(OLD_SLOWDOWN) || ENABLED(SLOWDOWN)
  798. bool mq = moves_queued > 1 && moves_queued < (BLOCK_BUFFER_SIZE) / 2;
  799. #if ENABLED(OLD_SLOWDOWN)
  800. if (mq) fr_mm_s *= 2.0 * moves_queued / (BLOCK_BUFFER_SIZE);
  801. #endif
  802. #if ENABLED(SLOWDOWN)
  803. // segment time im micro seconds
  804. unsigned long segment_time = lround(1000000.0/inverse_mm_s);
  805. if (mq) {
  806. if (segment_time < min_segment_time) {
  807. // buffer is draining, add extra time. The amount of time added increases if the buffer is still emptied more.
  808. inverse_mm_s = 1000000.0 / (segment_time + lround(2 * (min_segment_time - segment_time) / moves_queued));
  809. #ifdef XY_FREQUENCY_LIMIT
  810. segment_time = lround(1000000.0 / inverse_mm_s);
  811. #endif
  812. }
  813. }
  814. #endif
  815. #endif
  816. block->nominal_speed = block->millimeters * inverse_mm_s; // (mm/sec) Always > 0
  817. block->nominal_rate = ceil(block->step_event_count * inverse_mm_s); // (step/sec) Always > 0
  818. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  819. static float filwidth_e_count = 0, filwidth_delay_dist = 0;
  820. //FMM update ring buffer used for delay with filament measurements
  821. if (extruder == FILAMENT_SENSOR_EXTRUDER_NUM && filwidth_delay_index[1] >= 0) { //only for extruder with filament sensor and if ring buffer is initialized
  822. const int MMD_CM = MAX_MEASUREMENT_DELAY + 1, MMD_MM = MMD_CM * 10;
  823. // increment counters with next move in e axis
  824. filwidth_e_count += delta_mm[E_AXIS];
  825. filwidth_delay_dist += delta_mm[E_AXIS];
  826. // Only get new measurements on forward E movement
  827. if (filwidth_e_count > 0.0001) {
  828. // Loop the delay distance counter (modulus by the mm length)
  829. while (filwidth_delay_dist >= MMD_MM) filwidth_delay_dist -= MMD_MM;
  830. // Convert into an index into the measurement array
  831. filwidth_delay_index[0] = (int)(filwidth_delay_dist * 0.1 + 0.0001);
  832. // If the index has changed (must have gone forward)...
  833. if (filwidth_delay_index[0] != filwidth_delay_index[1]) {
  834. filwidth_e_count = 0; // Reset the E movement counter
  835. int8_t meas_sample = thermalManager.widthFil_to_size_ratio() - 100; // Subtract 100 to reduce magnitude - to store in a signed char
  836. do {
  837. filwidth_delay_index[1] = (filwidth_delay_index[1] + 1) % MMD_CM; // The next unused slot
  838. measurement_delay[filwidth_delay_index[1]] = meas_sample; // Store the measurement
  839. } while (filwidth_delay_index[0] != filwidth_delay_index[1]); // More slots to fill?
  840. }
  841. }
  842. }
  843. #endif
  844. // Calculate and limit speed in mm/sec for each axis
  845. float current_speed[NUM_AXIS];
  846. float speed_factor = 1.0; //factor <=1 do decrease speed
  847. LOOP_XYZE(i) {
  848. current_speed[i] = delta_mm[i] * inverse_mm_s;
  849. float cs = fabs(current_speed[i]), mf = max_feedrate_mm_s[i];
  850. if (cs > mf) speed_factor = min(speed_factor, mf / cs);
  851. }
  852. // Max segement time in us.
  853. #ifdef XY_FREQUENCY_LIMIT
  854. // Check and limit the xy direction change frequency
  855. unsigned char direction_change = block->direction_bits ^ old_direction_bits;
  856. old_direction_bits = block->direction_bits;
  857. segment_time = lround((float)segment_time / speed_factor);
  858. long xs0 = axis_segment_time[X_AXIS][0],
  859. xs1 = axis_segment_time[X_AXIS][1],
  860. xs2 = axis_segment_time[X_AXIS][2],
  861. ys0 = axis_segment_time[Y_AXIS][0],
  862. ys1 = axis_segment_time[Y_AXIS][1],
  863. ys2 = axis_segment_time[Y_AXIS][2];
  864. if (TEST(direction_change, X_AXIS)) {
  865. xs2 = axis_segment_time[X_AXIS][2] = xs1;
  866. xs1 = axis_segment_time[X_AXIS][1] = xs0;
  867. xs0 = 0;
  868. }
  869. xs0 = axis_segment_time[X_AXIS][0] = xs0 + segment_time;
  870. if (TEST(direction_change, Y_AXIS)) {
  871. ys2 = axis_segment_time[Y_AXIS][2] = axis_segment_time[Y_AXIS][1];
  872. ys1 = axis_segment_time[Y_AXIS][1] = axis_segment_time[Y_AXIS][0];
  873. ys0 = 0;
  874. }
  875. ys0 = axis_segment_time[Y_AXIS][0] = ys0 + segment_time;
  876. long max_x_segment_time = MAX3(xs0, xs1, xs2),
  877. max_y_segment_time = MAX3(ys0, ys1, ys2),
  878. min_xy_segment_time = min(max_x_segment_time, max_y_segment_time);
  879. if (min_xy_segment_time < MAX_FREQ_TIME) {
  880. float low_sf = speed_factor * min_xy_segment_time / (MAX_FREQ_TIME);
  881. speed_factor = min(speed_factor, low_sf);
  882. }
  883. #endif // XY_FREQUENCY_LIMIT
  884. // Correct the speed
  885. if (speed_factor < 1.0) {
  886. LOOP_XYZE(i) current_speed[i] *= speed_factor;
  887. block->nominal_speed *= speed_factor;
  888. block->nominal_rate *= speed_factor;
  889. }
  890. // Compute and limit the acceleration rate for the trapezoid generator.
  891. float steps_per_mm = block->step_event_count / block->millimeters;
  892. if (!block->steps[X_AXIS] && !block->steps[Y_AXIS] && !block->steps[Z_AXIS]) {
  893. block->acceleration_steps_per_s2 = ceil(retract_acceleration * steps_per_mm); // convert to: acceleration steps/sec^2
  894. }
  895. else {
  896. // Limit acceleration per axis
  897. block->acceleration_steps_per_s2 = ceil((block->steps[E_AXIS] ? acceleration : travel_acceleration) * steps_per_mm);
  898. if (max_acceleration_steps_per_s2[X_AXIS] < (block->acceleration_steps_per_s2 * block->steps[X_AXIS]) / block->step_event_count)
  899. block->acceleration_steps_per_s2 = (max_acceleration_steps_per_s2[X_AXIS] * block->step_event_count) / block->steps[X_AXIS];
  900. if (max_acceleration_steps_per_s2[Y_AXIS] < (block->acceleration_steps_per_s2 * block->steps[Y_AXIS]) / block->step_event_count)
  901. block->acceleration_steps_per_s2 = (max_acceleration_steps_per_s2[Y_AXIS] * block->step_event_count) / block->steps[Y_AXIS];
  902. if (max_acceleration_steps_per_s2[Z_AXIS] < (block->acceleration_steps_per_s2 * block->steps[Z_AXIS]) / block->step_event_count)
  903. block->acceleration_steps_per_s2 = (max_acceleration_steps_per_s2[Z_AXIS] * block->step_event_count) / block->steps[Z_AXIS];
  904. if (max_acceleration_steps_per_s2[E_AXIS] < (block->acceleration_steps_per_s2 * block->steps[E_AXIS]) / block->step_event_count)
  905. block->acceleration_steps_per_s2 = (max_acceleration_steps_per_s2[E_AXIS] * block->step_event_count) / block->steps[E_AXIS];
  906. }
  907. block->acceleration = block->acceleration_steps_per_s2 / steps_per_mm;
  908. block->acceleration_rate = (long)(block->acceleration_steps_per_s2 * 16777216.0 / ((F_CPU) * 0.125));
  909. #if 0 // Use old jerk for now
  910. float junction_deviation = 0.1;
  911. // Compute path unit vector
  912. double unit_vec[XYZ];
  913. unit_vec[X_AXIS] = delta_mm[X_AXIS] * inverse_millimeters;
  914. unit_vec[Y_AXIS] = delta_mm[Y_AXIS] * inverse_millimeters;
  915. unit_vec[Z_AXIS] = delta_mm[Z_AXIS] * inverse_millimeters;
  916. // Compute maximum allowable entry speed at junction by centripetal acceleration approximation.
  917. // Let a circle be tangent to both previous and current path line segments, where the junction
  918. // deviation is defined as the distance from the junction to the closest edge of the circle,
  919. // collinear with the circle center. The circular segment joining the two paths represents the
  920. // path of centripetal acceleration. Solve for max velocity based on max acceleration about the
  921. // radius of the circle, defined indirectly by junction deviation. This may be also viewed as
  922. // path width or max_jerk in the previous grbl version. This approach does not actually deviate
  923. // from path, but used as a robust way to compute cornering speeds, as it takes into account the
  924. // nonlinearities of both the junction angle and junction velocity.
  925. double vmax_junction = MINIMUM_PLANNER_SPEED; // Set default max junction speed
  926. // Skip first block or when previous_nominal_speed is used as a flag for homing and offset cycles.
  927. if ((block_buffer_head != block_buffer_tail) && (previous_nominal_speed > 0.0)) {
  928. // Compute cosine of angle between previous and current path. (prev_unit_vec is negative)
  929. // NOTE: Max junction velocity is computed without sin() or acos() by trig half angle identity.
  930. double cos_theta = - previous_unit_vec[X_AXIS] * unit_vec[X_AXIS]
  931. - previous_unit_vec[Y_AXIS] * unit_vec[Y_AXIS]
  932. - previous_unit_vec[Z_AXIS] * unit_vec[Z_AXIS] ;
  933. // Skip and use default max junction speed for 0 degree acute junction.
  934. if (cos_theta < 0.95) {
  935. vmax_junction = min(previous_nominal_speed, block->nominal_speed);
  936. // Skip and avoid divide by zero for straight junctions at 180 degrees. Limit to min() of nominal speeds.
  937. if (cos_theta > -0.95) {
  938. // Compute maximum junction velocity based on maximum acceleration and junction deviation
  939. double sin_theta_d2 = sqrt(0.5 * (1.0 - cos_theta)); // Trig half angle identity. Always positive.
  940. vmax_junction = min(vmax_junction,
  941. sqrt(block->acceleration * junction_deviation * sin_theta_d2 / (1.0 - sin_theta_d2)));
  942. }
  943. }
  944. }
  945. #endif
  946. // Start with a safe speed
  947. float vmax_junction = max_xy_jerk * 0.5,
  948. vmax_junction_factor = 1.0,
  949. mz2 = max_z_jerk * 0.5,
  950. me2 = max_e_jerk * 0.5,
  951. csz = current_speed[Z_AXIS],
  952. cse = current_speed[E_AXIS];
  953. if (fabs(csz) > mz2) vmax_junction = min(vmax_junction, mz2);
  954. if (fabs(cse) > me2) vmax_junction = min(vmax_junction, me2);
  955. vmax_junction = min(vmax_junction, block->nominal_speed);
  956. float safe_speed = vmax_junction;
  957. if ((moves_queued > 1) && (previous_nominal_speed > 0.0001)) {
  958. float dsx = current_speed[X_AXIS] - previous_speed[X_AXIS],
  959. dsy = current_speed[Y_AXIS] - previous_speed[Y_AXIS],
  960. dsz = fabs(csz - previous_speed[Z_AXIS]),
  961. dse = fabs(cse - previous_speed[E_AXIS]),
  962. jerk = HYPOT(dsx, dsy);
  963. // if ((fabs(previous_speed[X_AXIS]) > 0.0001) || (fabs(previous_speed[Y_AXIS]) > 0.0001)) {
  964. vmax_junction = block->nominal_speed;
  965. // }
  966. if (jerk > max_xy_jerk) vmax_junction_factor = max_xy_jerk / jerk;
  967. if (dsz > max_z_jerk) vmax_junction_factor = min(vmax_junction_factor, max_z_jerk / dsz);
  968. if (dse > max_e_jerk) vmax_junction_factor = min(vmax_junction_factor, max_e_jerk / dse);
  969. vmax_junction = min(previous_nominal_speed, vmax_junction * vmax_junction_factor); // Limit speed to max previous speed
  970. }
  971. block->max_entry_speed = vmax_junction;
  972. // Initialize block entry speed. Compute based on deceleration to user-defined MINIMUM_PLANNER_SPEED.
  973. double v_allowable = max_allowable_speed(-block->acceleration, MINIMUM_PLANNER_SPEED, block->millimeters);
  974. block->entry_speed = min(vmax_junction, v_allowable);
  975. // Initialize planner efficiency flags
  976. // Set flag if block will always reach maximum junction speed regardless of entry/exit speeds.
  977. // If a block can de/ac-celerate from nominal speed to zero within the length of the block, then
  978. // the current block and next block junction speeds are guaranteed to always be at their maximum
  979. // junction speeds in deceleration and acceleration, respectively. This is due to how the current
  980. // block nominal speed limits both the current and next maximum junction speeds. Hence, in both
  981. // the reverse and forward planners, the corresponding block junction speed will always be at the
  982. // the maximum junction speed and may always be ignored for any speed reduction checks.
  983. block->nominal_length_flag = (block->nominal_speed <= v_allowable);
  984. block->recalculate_flag = true; // Always calculate trapezoid for new block
  985. // Update previous path unit_vector and nominal speed
  986. memcpy(previous_speed, current_speed, sizeof(previous_speed));
  987. previous_nominal_speed = block->nominal_speed;
  988. #if ENABLED(LIN_ADVANCE)
  989. // block->steps[E_AXIS] == block->step_event_count: A problem occurs when there's a very tiny move before a retract.
  990. // In this case, the retract and the move will be executed together.
  991. // This leads to an enormous number of advance steps due to a huge e_acceleration.
  992. // The math is correct, but you don't want a retract move done with advance!
  993. // So this situation is filtered out here.
  994. if (!block->steps[E_AXIS] || (!block->steps[X_AXIS] && !block->steps[Y_AXIS] && !block->steps[Z_AXIS]) || stepper.get_advance_k() == 0 || (uint32_t) block->steps[E_AXIS] == block->step_event_count) {
  995. block->use_advance_lead = false;
  996. }
  997. else {
  998. block->use_advance_lead = true;
  999. block->e_speed_multiplier8 = (block->steps[E_AXIS] << 8) / block->step_event_count;
  1000. }
  1001. #elif ENABLED(ADVANCE)
  1002. // Calculate advance rate
  1003. if (!block->steps[E_AXIS] || (!block->steps[X_AXIS] && !block->steps[Y_AXIS] && !block->steps[Z_AXIS])) {
  1004. block->advance_rate = 0;
  1005. block->advance = 0;
  1006. }
  1007. else {
  1008. long acc_dist = estimate_acceleration_distance(0, block->nominal_rate, block->acceleration_steps_per_s2);
  1009. float advance = ((STEPS_PER_CUBIC_MM_E) * (EXTRUDER_ADVANCE_K)) * HYPOT(cse, EXTRUSION_AREA) * 256;
  1010. block->advance = advance;
  1011. block->advance_rate = acc_dist ? advance / (float)acc_dist : 0;
  1012. }
  1013. /**
  1014. SERIAL_ECHO_START;
  1015. SERIAL_ECHOPGM("advance :");
  1016. SERIAL_ECHO(block->advance/256.0);
  1017. SERIAL_ECHOPGM("advance rate :");
  1018. SERIAL_ECHOLN(block->advance_rate/256.0);
  1019. */
  1020. #endif // ADVANCE or LIN_ADVANCE
  1021. calculate_trapezoid_for_block(block, block->entry_speed / block->nominal_speed, safe_speed / block->nominal_speed);
  1022. // Move buffer head
  1023. block_buffer_head = next_buffer_head;
  1024. // Update the position (only when a move was queued)
  1025. memcpy(position, target, sizeof(position));
  1026. recalculate();
  1027. stepper.wake_up();
  1028. } // buffer_line()
  1029. /**
  1030. * Directly set the planner XYZ position (and stepper positions)
  1031. * converting mm (or angles for SCARA) into steps.
  1032. *
  1033. * On CORE machines stepper ABC will be translated from the given XYZ.
  1034. */
  1035. void Planner::set_position_mm(ARG_X, ARG_Y, ARG_Z, const float &e) {
  1036. #if PLANNER_LEVELING
  1037. apply_leveling(lx, ly, lz);
  1038. #endif
  1039. long nx = position[X_AXIS] = lround(lx * axis_steps_per_mm[X_AXIS]),
  1040. ny = position[Y_AXIS] = lround(ly * axis_steps_per_mm[Y_AXIS]),
  1041. nz = position[Z_AXIS] = lround(lz * axis_steps_per_mm[Z_AXIS]),
  1042. ne = position[E_AXIS] = lround(e * axis_steps_per_mm[E_AXIS]);
  1043. stepper.set_position(nx, ny, nz, ne);
  1044. previous_nominal_speed = 0.0; // Resets planner junction speeds. Assumes start from rest.
  1045. memset(previous_speed, 0, sizeof(previous_speed));
  1046. }
  1047. /**
  1048. * Sync from the stepper positions. (e.g., after an interrupted move)
  1049. */
  1050. void Planner::sync_from_steppers() {
  1051. LOOP_XYZE(i) position[i] = stepper.position((AxisEnum)i);
  1052. }
  1053. /**
  1054. * Setters for planner position (also setting stepper position).
  1055. */
  1056. void Planner::set_position_mm(const AxisEnum axis, const float& v) {
  1057. position[axis] = lround(v * axis_steps_per_mm[axis]);
  1058. stepper.set_position(axis, v);
  1059. previous_speed[axis] = 0.0;
  1060. }
  1061. // Recalculate the steps/s^2 acceleration rates, based on the mm/s^2
  1062. void Planner::reset_acceleration_rates() {
  1063. LOOP_XYZE(i)
  1064. max_acceleration_steps_per_s2[i] = max_acceleration_mm_per_s2[i] * axis_steps_per_mm[i];
  1065. }
  1066. // Recalculate position, steps_to_mm if axis_steps_per_mm changes!
  1067. void Planner::refresh_positioning() {
  1068. LOOP_XYZE(i) steps_to_mm[i] = 1.0 / axis_steps_per_mm[i];
  1069. #if IS_KINEMATIC
  1070. inverse_kinematics(current_position);
  1071. set_position_mm(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], current_position[E_AXIS]);
  1072. #else
  1073. set_position_mm(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1074. #endif
  1075. reset_acceleration_rates();
  1076. }
  1077. #if ENABLED(AUTOTEMP)
  1078. void Planner::autotemp_M109() {
  1079. autotemp_enabled = code_seen('F');
  1080. if (autotemp_enabled) autotemp_factor = code_value_temp_diff();
  1081. if (code_seen('S')) autotemp_min = code_value_temp_abs();
  1082. if (code_seen('B')) autotemp_max = code_value_temp_abs();
  1083. }
  1084. #endif