My Marlin configs for Fabrikator Mini and CTC i3 Pro B
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

Marlin_main.cpp 182KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863
  1. /* -*- c++ -*- */
  2. /*
  3. Reprap firmware based on Sprinter and grbl.
  4. Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  5. This program is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. This program is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with this program. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. /*
  17. This firmware is a mashup between Sprinter and grbl.
  18. (https://github.com/kliment/Sprinter)
  19. (https://github.com/simen/grbl/tree)
  20. It has preliminary support for Matthew Roberts advance algorithm
  21. http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  22. */
  23. #include "Marlin.h"
  24. #ifdef ENABLE_AUTO_BED_LEVELING
  25. #if Z_MIN_PIN == -1
  26. #error "You must have a Z_MIN endstop to enable Auto Bed Leveling feature. Z_MIN_PIN must point to a valid hardware pin."
  27. #endif
  28. #include "vector_3.h"
  29. #ifdef AUTO_BED_LEVELING_GRID
  30. #include "qr_solve.h"
  31. #endif
  32. #endif // ENABLE_AUTO_BED_LEVELING
  33. #define SERVO_LEVELING defined(ENABLE_AUTO_BED_LEVELING) && PROBE_SERVO_DEACTIVATION_DELAY > 0
  34. #include "ultralcd.h"
  35. #include "planner.h"
  36. #include "stepper.h"
  37. #include "temperature.h"
  38. #include "motion_control.h"
  39. #include "cardreader.h"
  40. #include "watchdog.h"
  41. #include "ConfigurationStore.h"
  42. #include "language.h"
  43. #include "pins_arduino.h"
  44. #include "math.h"
  45. #ifdef BLINKM
  46. #include "BlinkM.h"
  47. #include "Wire.h"
  48. #endif
  49. #if NUM_SERVOS > 0
  50. #include "Servo.h"
  51. #endif
  52. #if HAS_DIGIPOTSS
  53. #include <SPI.h>
  54. #endif
  55. // look here for descriptions of G-codes: http://linuxcnc.org/handbook/gcode/g-code.html
  56. // http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  57. //Implemented Codes
  58. //-------------------
  59. // G0 -> G1
  60. // G1 - Coordinated Movement X Y Z E
  61. // G2 - CW ARC
  62. // G3 - CCW ARC
  63. // G4 - Dwell S<seconds> or P<milliseconds>
  64. // G10 - retract filament according to settings of M207
  65. // G11 - retract recover filament according to settings of M208
  66. // G28 - Home all Axis
  67. // G29 - Detailed Z-Probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  68. // G30 - Single Z Probe, probes bed at current XY location.
  69. // G31 - Dock sled (Z_PROBE_SLED only)
  70. // G32 - Undock sled (Z_PROBE_SLED only)
  71. // G90 - Use Absolute Coordinates
  72. // G91 - Use Relative Coordinates
  73. // G92 - Set current position to coordinates given
  74. // M Codes
  75. // M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
  76. // M1 - Same as M0
  77. // M17 - Enable/Power all stepper motors
  78. // M18 - Disable all stepper motors; same as M84
  79. // M20 - List SD card
  80. // M21 - Init SD card
  81. // M22 - Release SD card
  82. // M23 - Select SD file (M23 filename.g)
  83. // M24 - Start/resume SD print
  84. // M25 - Pause SD print
  85. // M26 - Set SD position in bytes (M26 S12345)
  86. // M27 - Report SD print status
  87. // M28 - Start SD write (M28 filename.g)
  88. // M29 - Stop SD write
  89. // M30 - Delete file from SD (M30 filename.g)
  90. // M31 - Output time since last M109 or SD card start to serial
  91. // M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  92. // syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  93. // Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
  94. // The '#' is necessary when calling from within sd files, as it stops buffer prereading
  95. // M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  96. // M80 - Turn on Power Supply
  97. // M81 - Turn off Power Supply
  98. // M82 - Set E codes absolute (default)
  99. // M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  100. // M84 - Disable steppers until next move,
  101. // or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  102. // M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  103. // M92 - Set axis_steps_per_unit - same syntax as G92
  104. // M104 - Set extruder target temp
  105. // M105 - Read current temp
  106. // M106 - Fan on
  107. // M107 - Fan off
  108. // M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  109. // Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  110. // IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  111. // M112 - Emergency stop
  112. // M114 - Output current position to serial port
  113. // M115 - Capabilities string
  114. // M117 - display message
  115. // M119 - Output Endstop status to serial port
  116. // M120 - Enable endstop detection
  117. // M121 - Disable endstop detection
  118. // M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  119. // M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  120. // M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  121. // M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  122. // M140 - Set bed target temp
  123. // M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  124. // M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  125. // Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  126. // M200 D<millimeters>- set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  127. // M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  128. // M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  129. // M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  130. // M204 - Set default acceleration: S normal moves T filament only moves (M204 S3000 T7000) in mm/sec^2 also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  131. // M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
  132. // M206 - Set additional homing offset
  133. // M207 - Set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
  134. // M208 - Set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
  135. // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  136. // M218 - Set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  137. // M220 S<factor in percent>- set speed factor override percentage
  138. // M221 S<factor in percent>- set extrude factor override percentage
  139. // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  140. // M240 - Trigger a camera to take a photograph
  141. // M250 - Set LCD contrast C<contrast value> (value 0..63)
  142. // M280 - Set servo position absolute. P: servo index, S: angle or microseconds
  143. // M300 - Play beep sound S<frequency Hz> P<duration ms>
  144. // M301 - Set PID parameters P I and D
  145. // M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  146. // M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  147. // M304 - Set bed PID parameters P I and D
  148. // M380 - Activate solenoid on active extruder
  149. // M381 - Disable all solenoids
  150. // M400 - Finish all moves
  151. // M401 - Lower z-probe if present
  152. // M402 - Raise z-probe if present
  153. // M404 - N<dia in mm> Enter the nominal filament width (3mm, 1.75mm ) or will display nominal filament width without parameters
  154. // M405 - Turn on Filament Sensor extrusion control. Optional D<delay in cm> to set delay in centimeters between sensor and extruder
  155. // M406 - Turn off Filament Sensor extrusion control
  156. // M407 - Displays measured filament diameter
  157. // M500 - Store parameters in EEPROM
  158. // M501 - Read parameters from EEPROM (if you need reset them after you changed them temporarily).
  159. // M502 - Revert to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  160. // M503 - Print the current settings (from memory not from EEPROM). Use S0 to leave off headings.
  161. // M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  162. // M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  163. // M665 - Set delta configurations
  164. // M666 - Set delta endstop adjustment
  165. // M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  166. // M907 - Set digital trimpot motor current using axis codes.
  167. // M908 - Control digital trimpot directly.
  168. // M350 - Set microstepping mode.
  169. // M351 - Toggle MS1 MS2 pins directly.
  170. // ************ SCARA Specific - This can change to suit future G-code regulations
  171. // M360 - SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  172. // M361 - SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  173. // M362 - SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  174. // M363 - SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  175. // M364 - SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
  176. // M365 - SCARA calibration: Scaling factor, X, Y, Z axis
  177. //************* SCARA End ***************
  178. // M928 - Start SD logging (M928 filename.g) - ended by M29
  179. // M999 - Restart after being stopped by error
  180. #ifdef SDSUPPORT
  181. CardReader card;
  182. #endif
  183. float homing_feedrate[] = HOMING_FEEDRATE;
  184. #ifdef ENABLE_AUTO_BED_LEVELING
  185. int xy_travel_speed = XY_TRAVEL_SPEED;
  186. #endif
  187. int homing_bump_divisor[] = HOMING_BUMP_DIVISOR;
  188. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  189. int feedmultiply = 100; //100->1 200->2
  190. int saved_feedmultiply;
  191. int extrudemultiply = 100; //100->1 200->2
  192. int extruder_multiply[EXTRUDERS] = { 100
  193. #if EXTRUDERS > 1
  194. , 100
  195. #if EXTRUDERS > 2
  196. , 100
  197. #if EXTRUDERS > 3
  198. , 100
  199. #endif
  200. #endif
  201. #endif
  202. };
  203. bool volumetric_enabled = false;
  204. float filament_size[EXTRUDERS] = { DEFAULT_NOMINAL_FILAMENT_DIA
  205. #if EXTRUDERS > 1
  206. , DEFAULT_NOMINAL_FILAMENT_DIA
  207. #if EXTRUDERS > 2
  208. , DEFAULT_NOMINAL_FILAMENT_DIA
  209. #if EXTRUDERS > 3
  210. , DEFAULT_NOMINAL_FILAMENT_DIA
  211. #endif
  212. #endif
  213. #endif
  214. };
  215. float volumetric_multiplier[EXTRUDERS] = {1.0
  216. #if EXTRUDERS > 1
  217. , 1.0
  218. #if EXTRUDERS > 2
  219. , 1.0
  220. #if EXTRUDERS > 3
  221. , 1.0
  222. #endif
  223. #endif
  224. #endif
  225. };
  226. float current_position[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0 };
  227. float add_homing[3] = { 0, 0, 0 };
  228. #ifdef DELTA
  229. float endstop_adj[3] = { 0, 0, 0 };
  230. #endif
  231. float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  232. float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  233. bool axis_known_position[3] = { false, false, false };
  234. float zprobe_zoffset;
  235. // Extruder offset
  236. #if EXTRUDERS > 1
  237. #ifndef DUAL_X_CARRIAGE
  238. #define NUM_EXTRUDER_OFFSETS 2 // only in XY plane
  239. #else
  240. #define NUM_EXTRUDER_OFFSETS 3 // supports offsets in XYZ plane
  241. #endif
  242. float extruder_offset[NUM_EXTRUDER_OFFSETS][EXTRUDERS] = {
  243. #if defined(EXTRUDER_OFFSET_X)
  244. EXTRUDER_OFFSET_X
  245. #else
  246. 0
  247. #endif
  248. ,
  249. #if defined(EXTRUDER_OFFSET_Y)
  250. EXTRUDER_OFFSET_Y
  251. #else
  252. 0
  253. #endif
  254. };
  255. #endif
  256. uint8_t active_extruder = 0;
  257. int fanSpeed = 0;
  258. #ifdef SERVO_ENDSTOPS
  259. int servo_endstops[] = SERVO_ENDSTOPS;
  260. int servo_endstop_angles[] = SERVO_ENDSTOP_ANGLES;
  261. #endif
  262. #ifdef BARICUDA
  263. int ValvePressure = 0;
  264. int EtoPPressure = 0;
  265. #endif
  266. #ifdef FWRETRACT
  267. bool autoretract_enabled = false;
  268. bool retracted[EXTRUDERS] = { false
  269. #if EXTRUDERS > 1
  270. , false
  271. #if EXTRUDERS > 2
  272. , false
  273. #if EXTRUDERS > 3
  274. , false
  275. #endif
  276. #endif
  277. #endif
  278. };
  279. bool retracted_swap[EXTRUDERS] = { false
  280. #if EXTRUDERS > 1
  281. , false
  282. #if EXTRUDERS > 2
  283. , false
  284. #if EXTRUDERS > 3
  285. , false
  286. #endif
  287. #endif
  288. #endif
  289. };
  290. float retract_length = RETRACT_LENGTH;
  291. float retract_length_swap = RETRACT_LENGTH_SWAP;
  292. float retract_feedrate = RETRACT_FEEDRATE;
  293. float retract_zlift = RETRACT_ZLIFT;
  294. float retract_recover_length = RETRACT_RECOVER_LENGTH;
  295. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  296. float retract_recover_feedrate = RETRACT_RECOVER_FEEDRATE;
  297. #endif // FWRETRACT
  298. #ifdef ULTIPANEL
  299. bool powersupply =
  300. #ifdef PS_DEFAULT_OFF
  301. false
  302. #else
  303. true
  304. #endif
  305. ;
  306. #endif
  307. #ifdef DELTA
  308. float delta[3] = { 0, 0, 0 };
  309. #define SIN_60 0.8660254037844386
  310. #define COS_60 0.5
  311. // these are the default values, can be overriden with M665
  312. float delta_radius = DELTA_RADIUS;
  313. float delta_tower1_x = -SIN_60 * delta_radius; // front left tower
  314. float delta_tower1_y = -COS_60 * delta_radius;
  315. float delta_tower2_x = SIN_60 * delta_radius; // front right tower
  316. float delta_tower2_y = -COS_60 * delta_radius;
  317. float delta_tower3_x = 0; // back middle tower
  318. float delta_tower3_y = delta_radius;
  319. float delta_diagonal_rod = DELTA_DIAGONAL_ROD;
  320. float delta_diagonal_rod_2 = sq(delta_diagonal_rod);
  321. float delta_segments_per_second = DELTA_SEGMENTS_PER_SECOND;
  322. #ifdef ENABLE_AUTO_BED_LEVELING
  323. float bed_level[AUTO_BED_LEVELING_GRID_POINTS][AUTO_BED_LEVELING_GRID_POINTS];
  324. #endif
  325. #endif
  326. #ifdef SCARA
  327. float axis_scaling[3] = { 1, 1, 1 }; // Build size scaling, default to 1
  328. #endif
  329. bool cancel_heatup = false;
  330. #ifdef FILAMENT_SENSOR
  331. //Variables for Filament Sensor input
  332. float filament_width_nominal=DEFAULT_NOMINAL_FILAMENT_DIA; //Set nominal filament width, can be changed with M404
  333. bool filament_sensor=false; //M405 turns on filament_sensor control, M406 turns it off
  334. float filament_width_meas=DEFAULT_MEASURED_FILAMENT_DIA; //Stores the measured filament diameter
  335. signed char measurement_delay[MAX_MEASUREMENT_DELAY+1]; //ring buffer to delay measurement store extruder factor after subtracting 100
  336. int delay_index1=0; //index into ring buffer
  337. int delay_index2=-1; //index into ring buffer - set to -1 on startup to indicate ring buffer needs to be initialized
  338. float delay_dist=0; //delay distance counter
  339. int meas_delay_cm = MEASUREMENT_DELAY_CM; //distance delay setting
  340. #endif
  341. #ifdef FILAMENT_RUNOUT_SENSOR
  342. static bool filrunoutEnqued = false;
  343. #endif
  344. const char errormagic[] PROGMEM = "Error:";
  345. const char echomagic[] PROGMEM = "echo:";
  346. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  347. static float destination[NUM_AXIS] = { 0, 0, 0, 0 };
  348. static float offset[3] = { 0, 0, 0 };
  349. static bool home_all_axis = true;
  350. static float feedrate = 1500.0, next_feedrate, saved_feedrate;
  351. static long gcode_N, gcode_LastN, Stopped_gcode_LastN = 0;
  352. static bool relative_mode = false; //Determines Absolute or Relative Coordinates
  353. static char cmdbuffer[BUFSIZE][MAX_CMD_SIZE];
  354. static bool fromsd[BUFSIZE];
  355. static int bufindr = 0;
  356. static int bufindw = 0;
  357. static int buflen = 0;
  358. static char serial_char;
  359. static int serial_count = 0;
  360. static boolean comment_mode = false;
  361. static char *strchr_pointer; ///< A pointer to find chars in the command string (X, Y, Z, E, etc.)
  362. const char* queued_commands_P= NULL; /* pointer to the current line in the active sequence of commands, or NULL when none */
  363. const int sensitive_pins[] = SENSITIVE_PINS; ///< Sensitive pin list for M42
  364. // Inactivity shutdown
  365. static unsigned long previous_millis_cmd = 0;
  366. static unsigned long max_inactive_time = 0;
  367. static unsigned long stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME*1000l;
  368. unsigned long starttime = 0; ///< Print job start time
  369. unsigned long stoptime = 0; ///< Print job stop time
  370. static uint8_t tmp_extruder;
  371. bool Stopped = false;
  372. #if NUM_SERVOS > 0
  373. Servo servos[NUM_SERVOS];
  374. #endif
  375. bool CooldownNoWait = true;
  376. bool target_direction;
  377. #ifdef CHDK
  378. unsigned long chdkHigh = 0;
  379. boolean chdkActive = false;
  380. #endif
  381. //===========================================================================
  382. //=============================Routines======================================
  383. //===========================================================================
  384. void get_arc_coordinates();
  385. bool setTargetedHotend(int code);
  386. void serial_echopair_P(const char *s_P, float v)
  387. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  388. void serial_echopair_P(const char *s_P, double v)
  389. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  390. void serial_echopair_P(const char *s_P, unsigned long v)
  391. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  392. #ifdef SDSUPPORT
  393. #include "SdFatUtil.h"
  394. int freeMemory() { return SdFatUtil::FreeRam(); }
  395. #else
  396. extern "C" {
  397. extern unsigned int __bss_end;
  398. extern unsigned int __heap_start;
  399. extern void *__brkval;
  400. int freeMemory() {
  401. int free_memory;
  402. if ((int)__brkval == 0)
  403. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  404. else
  405. free_memory = ((int)&free_memory) - ((int)__brkval);
  406. return free_memory;
  407. }
  408. }
  409. #endif //!SDSUPPORT
  410. //Injects the next command from the pending sequence of commands, when possible
  411. //Return false if and only if no command was pending
  412. static bool drain_queued_commands_P()
  413. {
  414. char cmd[30];
  415. if(!queued_commands_P)
  416. return false;
  417. // Get the next 30 chars from the sequence of gcodes to run
  418. strncpy_P(cmd, queued_commands_P, sizeof(cmd)-1);
  419. cmd[sizeof(cmd)-1]= 0;
  420. // Look for the end of line, or the end of sequence
  421. size_t i= 0;
  422. char c;
  423. while( (c= cmd[i]) && c!='\n' )
  424. ++i; // look for the end of this gcode command
  425. cmd[i]= 0;
  426. if(enquecommand(cmd)) // buffer was not full (else we will retry later)
  427. {
  428. if(c)
  429. queued_commands_P+= i+1; // move to next command
  430. else
  431. queued_commands_P= NULL; // will have no more commands in the sequence
  432. }
  433. return true;
  434. }
  435. //Record one or many commands to run from program memory.
  436. //Aborts the current queue, if any.
  437. //Note: drain_queued_commands_P() must be called repeatedly to drain the commands afterwards
  438. void enquecommands_P(const char* pgcode)
  439. {
  440. queued_commands_P= pgcode;
  441. drain_queued_commands_P(); // first command exectuted asap (when possible)
  442. }
  443. //adds a single command to the main command buffer, from RAM
  444. //that is really done in a non-safe way.
  445. //needs overworking someday
  446. //Returns false if it failed to do so
  447. bool enquecommand(const char *cmd)
  448. {
  449. if(*cmd==';')
  450. return false;
  451. if(buflen >= BUFSIZE)
  452. return false;
  453. //this is dangerous if a mixing of serial and this happens
  454. strcpy(&(cmdbuffer[bufindw][0]),cmd);
  455. SERIAL_ECHO_START;
  456. SERIAL_ECHOPGM(MSG_Enqueing);
  457. SERIAL_ECHO(cmdbuffer[bufindw]);
  458. SERIAL_ECHOLNPGM("\"");
  459. bufindw= (bufindw + 1)%BUFSIZE;
  460. buflen += 1;
  461. return true;
  462. }
  463. void setup_killpin()
  464. {
  465. #if defined(KILL_PIN) && KILL_PIN > -1
  466. SET_INPUT(KILL_PIN);
  467. WRITE(KILL_PIN,HIGH);
  468. #endif
  469. }
  470. void setup_filrunoutpin()
  471. {
  472. #if defined(FILRUNOUT_PIN) && FILRUNOUT_PIN > -1
  473. pinMode(FILRUNOUT_PIN,INPUT);
  474. #if defined(ENDSTOPPULLUP_FIL_RUNOUT)
  475. WRITE(FILLRUNOUT_PIN,HIGH);
  476. #endif
  477. #endif
  478. }
  479. // Set home pin
  480. void setup_homepin(void)
  481. {
  482. #if defined(HOME_PIN) && HOME_PIN > -1
  483. SET_INPUT(HOME_PIN);
  484. WRITE(HOME_PIN,HIGH);
  485. #endif
  486. }
  487. void setup_photpin()
  488. {
  489. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  490. OUT_WRITE(PHOTOGRAPH_PIN, LOW);
  491. #endif
  492. }
  493. void setup_powerhold()
  494. {
  495. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  496. OUT_WRITE(SUICIDE_PIN, HIGH);
  497. #endif
  498. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  499. #if defined(PS_DEFAULT_OFF)
  500. OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  501. #else
  502. OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE);
  503. #endif
  504. #endif
  505. }
  506. void suicide()
  507. {
  508. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  509. OUT_WRITE(SUICIDE_PIN, LOW);
  510. #endif
  511. }
  512. void servo_init()
  513. {
  514. #if (NUM_SERVOS >= 1) && defined(SERVO0_PIN) && (SERVO0_PIN > -1)
  515. servos[0].attach(SERVO0_PIN);
  516. #endif
  517. #if (NUM_SERVOS >= 2) && defined(SERVO1_PIN) && (SERVO1_PIN > -1)
  518. servos[1].attach(SERVO1_PIN);
  519. #endif
  520. #if (NUM_SERVOS >= 3) && defined(SERVO2_PIN) && (SERVO2_PIN > -1)
  521. servos[2].attach(SERVO2_PIN);
  522. #endif
  523. #if (NUM_SERVOS >= 4) && defined(SERVO3_PIN) && (SERVO3_PIN > -1)
  524. servos[3].attach(SERVO3_PIN);
  525. #endif
  526. #if (NUM_SERVOS >= 5)
  527. #error "TODO: enter initalisation code for more servos"
  528. #endif
  529. // Set position of Servo Endstops that are defined
  530. #ifdef SERVO_ENDSTOPS
  531. for(int8_t i = 0; i < 3; i++)
  532. {
  533. if(servo_endstops[i] > -1) {
  534. servos[servo_endstops[i]].write(servo_endstop_angles[i * 2 + 1]);
  535. }
  536. }
  537. #endif
  538. #if SERVO_LEVELING
  539. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  540. servos[servo_endstops[Z_AXIS]].detach();
  541. #endif
  542. }
  543. void setup()
  544. {
  545. setup_killpin();
  546. setup_filrunoutpin();
  547. setup_powerhold();
  548. MYSERIAL.begin(BAUDRATE);
  549. SERIAL_PROTOCOLLNPGM("start");
  550. SERIAL_ECHO_START;
  551. // Check startup - does nothing if bootloader sets MCUSR to 0
  552. byte mcu = MCUSR;
  553. if(mcu & 1) SERIAL_ECHOLNPGM(MSG_POWERUP);
  554. if(mcu & 2) SERIAL_ECHOLNPGM(MSG_EXTERNAL_RESET);
  555. if(mcu & 4) SERIAL_ECHOLNPGM(MSG_BROWNOUT_RESET);
  556. if(mcu & 8) SERIAL_ECHOLNPGM(MSG_WATCHDOG_RESET);
  557. if(mcu & 32) SERIAL_ECHOLNPGM(MSG_SOFTWARE_RESET);
  558. MCUSR=0;
  559. SERIAL_ECHOPGM(MSG_MARLIN);
  560. SERIAL_ECHOLNPGM(STRING_VERSION);
  561. #ifdef STRING_VERSION_CONFIG_H
  562. #ifdef STRING_CONFIG_H_AUTHOR
  563. SERIAL_ECHO_START;
  564. SERIAL_ECHOPGM(MSG_CONFIGURATION_VER);
  565. SERIAL_ECHOPGM(STRING_VERSION_CONFIG_H);
  566. SERIAL_ECHOPGM(MSG_AUTHOR);
  567. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  568. SERIAL_ECHOPGM("Compiled: ");
  569. SERIAL_ECHOLNPGM(__DATE__);
  570. #endif // STRING_CONFIG_H_AUTHOR
  571. #endif // STRING_VERSION_CONFIG_H
  572. SERIAL_ECHO_START;
  573. SERIAL_ECHOPGM(MSG_FREE_MEMORY);
  574. SERIAL_ECHO(freeMemory());
  575. SERIAL_ECHOPGM(MSG_PLANNER_BUFFER_BYTES);
  576. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  577. for(int8_t i = 0; i < BUFSIZE; i++)
  578. {
  579. fromsd[i] = false;
  580. }
  581. // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  582. Config_RetrieveSettings();
  583. tp_init(); // Initialize temperature loop
  584. plan_init(); // Initialize planner;
  585. watchdog_init();
  586. st_init(); // Initialize stepper, this enables interrupts!
  587. setup_photpin();
  588. servo_init();
  589. lcd_init();
  590. _delay_ms(1000); // wait 1sec to display the splash screen
  591. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  592. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  593. #endif
  594. #ifdef DIGIPOT_I2C
  595. digipot_i2c_init();
  596. #endif
  597. #ifdef Z_PROBE_SLED
  598. pinMode(SERVO0_PIN, OUTPUT);
  599. digitalWrite(SERVO0_PIN, LOW); // turn it off
  600. #endif // Z_PROBE_SLED
  601. setup_homepin();
  602. #ifdef STAT_LED_RED
  603. pinMode(STAT_LED_RED, OUTPUT);
  604. digitalWrite(STAT_LED_RED, LOW); // turn it off
  605. #endif
  606. #ifdef STAT_LED_BLUE
  607. pinMode(STAT_LED_BLUE, OUTPUT);
  608. digitalWrite(STAT_LED_BLUE, LOW); // turn it off
  609. #endif
  610. }
  611. void loop()
  612. {
  613. if(buflen < (BUFSIZE-1))
  614. get_command();
  615. #ifdef SDSUPPORT
  616. card.checkautostart(false);
  617. #endif
  618. if(buflen)
  619. {
  620. #ifdef SDSUPPORT
  621. if(card.saving)
  622. {
  623. if(strstr_P(cmdbuffer[bufindr], PSTR("M29")) == NULL)
  624. {
  625. card.write_command(cmdbuffer[bufindr]);
  626. if(card.logging)
  627. {
  628. process_commands();
  629. }
  630. else
  631. {
  632. SERIAL_PROTOCOLLNPGM(MSG_OK);
  633. }
  634. }
  635. else
  636. {
  637. card.closefile();
  638. SERIAL_PROTOCOLLNPGM(MSG_FILE_SAVED);
  639. }
  640. }
  641. else
  642. {
  643. process_commands();
  644. }
  645. #else
  646. process_commands();
  647. #endif //SDSUPPORT
  648. buflen = (buflen-1);
  649. bufindr = (bufindr + 1)%BUFSIZE;
  650. }
  651. //check heater every n milliseconds
  652. manage_heater();
  653. manage_inactivity();
  654. checkHitEndstops();
  655. lcd_update();
  656. }
  657. void get_command()
  658. {
  659. if(drain_queued_commands_P()) // priority is given to non-serial commands
  660. return;
  661. while( MYSERIAL.available() > 0 && buflen < BUFSIZE) {
  662. serial_char = MYSERIAL.read();
  663. if(serial_char == '\n' ||
  664. serial_char == '\r' ||
  665. serial_count >= (MAX_CMD_SIZE - 1) )
  666. {
  667. // end of line == end of comment
  668. comment_mode = false;
  669. if(!serial_count) {
  670. // short cut for empty lines
  671. return;
  672. }
  673. cmdbuffer[bufindw][serial_count] = 0; //terminate string
  674. fromsd[bufindw] = false;
  675. if(strchr(cmdbuffer[bufindw], 'N') != NULL)
  676. {
  677. strchr_pointer = strchr(cmdbuffer[bufindw], 'N');
  678. gcode_N = (strtol(strchr_pointer + 1, NULL, 10));
  679. if(gcode_N != gcode_LastN+1 && (strstr_P(cmdbuffer[bufindw], PSTR("M110")) == NULL) ) {
  680. SERIAL_ERROR_START;
  681. SERIAL_ERRORPGM(MSG_ERR_LINE_NO);
  682. SERIAL_ERRORLN(gcode_LastN);
  683. //Serial.println(gcode_N);
  684. FlushSerialRequestResend();
  685. serial_count = 0;
  686. return;
  687. }
  688. if(strchr(cmdbuffer[bufindw], '*') != NULL)
  689. {
  690. byte checksum = 0;
  691. byte count = 0;
  692. while(cmdbuffer[bufindw][count] != '*') checksum = checksum^cmdbuffer[bufindw][count++];
  693. strchr_pointer = strchr(cmdbuffer[bufindw], '*');
  694. if(strtol(strchr_pointer + 1, NULL, 10) != checksum) {
  695. SERIAL_ERROR_START;
  696. SERIAL_ERRORPGM(MSG_ERR_CHECKSUM_MISMATCH);
  697. SERIAL_ERRORLN(gcode_LastN);
  698. FlushSerialRequestResend();
  699. serial_count = 0;
  700. return;
  701. }
  702. //if no errors, continue parsing
  703. }
  704. else
  705. {
  706. SERIAL_ERROR_START;
  707. SERIAL_ERRORPGM(MSG_ERR_NO_CHECKSUM);
  708. SERIAL_ERRORLN(gcode_LastN);
  709. FlushSerialRequestResend();
  710. serial_count = 0;
  711. return;
  712. }
  713. gcode_LastN = gcode_N;
  714. //if no errors, continue parsing
  715. }
  716. else // if we don't receive 'N' but still see '*'
  717. {
  718. if((strchr(cmdbuffer[bufindw], '*') != NULL))
  719. {
  720. SERIAL_ERROR_START;
  721. SERIAL_ERRORPGM(MSG_ERR_NO_LINENUMBER_WITH_CHECKSUM);
  722. SERIAL_ERRORLN(gcode_LastN);
  723. serial_count = 0;
  724. return;
  725. }
  726. }
  727. if((strchr(cmdbuffer[bufindw], 'G') != NULL)){
  728. strchr_pointer = strchr(cmdbuffer[bufindw], 'G');
  729. switch(strtol(strchr_pointer + 1, NULL, 10)){
  730. case 0:
  731. case 1:
  732. case 2:
  733. case 3:
  734. if (Stopped == true) {
  735. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  736. LCD_MESSAGEPGM(MSG_STOPPED);
  737. }
  738. break;
  739. default:
  740. break;
  741. }
  742. }
  743. //If command was e-stop process now
  744. if(strcmp(cmdbuffer[bufindw], "M112") == 0)
  745. kill();
  746. bufindw = (bufindw + 1)%BUFSIZE;
  747. buflen += 1;
  748. serial_count = 0; //clear buffer
  749. }
  750. else if(serial_char == '\\') { //Handle escapes
  751. if(MYSERIAL.available() > 0 && buflen < BUFSIZE) {
  752. // if we have one more character, copy it over
  753. serial_char = MYSERIAL.read();
  754. cmdbuffer[bufindw][serial_count++] = serial_char;
  755. }
  756. //otherwise do nothing
  757. }
  758. else { // its not a newline, carriage return or escape char
  759. if(serial_char == ';') comment_mode = true;
  760. if(!comment_mode) cmdbuffer[bufindw][serial_count++] = serial_char;
  761. }
  762. }
  763. #ifdef SDSUPPORT
  764. if(!card.sdprinting || serial_count!=0){
  765. return;
  766. }
  767. //'#' stops reading from SD to the buffer prematurely, so procedural macro calls are possible
  768. // if it occurs, stop_buffering is triggered and the buffer is ran dry.
  769. // this character _can_ occur in serial com, due to checksums. however, no checksums are used in SD printing
  770. static bool stop_buffering=false;
  771. if(buflen==0) stop_buffering=false;
  772. while( !card.eof() && buflen < BUFSIZE && !stop_buffering) {
  773. int16_t n=card.get();
  774. serial_char = (char)n;
  775. if(serial_char == '\n' ||
  776. serial_char == '\r' ||
  777. (serial_char == '#' && comment_mode == false) ||
  778. (serial_char == ':' && comment_mode == false) ||
  779. serial_count >= (MAX_CMD_SIZE - 1)||n==-1)
  780. {
  781. if(card.eof()){
  782. SERIAL_PROTOCOLLNPGM(MSG_FILE_PRINTED);
  783. stoptime=millis();
  784. char time[30];
  785. unsigned long t=(stoptime-starttime)/1000;
  786. int hours, minutes;
  787. minutes=(t/60)%60;
  788. hours=t/60/60;
  789. sprintf_P(time, PSTR("%i hours %i minutes"),hours, minutes);
  790. SERIAL_ECHO_START;
  791. SERIAL_ECHOLN(time);
  792. lcd_setstatus(time);
  793. card.printingHasFinished();
  794. card.checkautostart(true);
  795. }
  796. if(serial_char=='#')
  797. stop_buffering=true;
  798. if(!serial_count)
  799. {
  800. comment_mode = false; //for new command
  801. return; //if empty line
  802. }
  803. cmdbuffer[bufindw][serial_count] = 0; //terminate string
  804. // if(!comment_mode){
  805. fromsd[bufindw] = true;
  806. buflen += 1;
  807. bufindw = (bufindw + 1)%BUFSIZE;
  808. // }
  809. comment_mode = false; //for new command
  810. serial_count = 0; //clear buffer
  811. }
  812. else
  813. {
  814. if(serial_char == ';') comment_mode = true;
  815. if(!comment_mode) cmdbuffer[bufindw][serial_count++] = serial_char;
  816. }
  817. }
  818. #endif //SDSUPPORT
  819. }
  820. float code_value()
  821. {
  822. return (strtod(strchr_pointer + 1, NULL));
  823. }
  824. long code_value_long()
  825. {
  826. return (strtol(strchr_pointer + 1, NULL, 10));
  827. }
  828. bool code_seen(char code)
  829. {
  830. strchr_pointer = strchr(cmdbuffer[bufindr], code);
  831. return (strchr_pointer != NULL); //Return True if a character was found
  832. }
  833. #define DEFINE_PGM_READ_ANY(type, reader) \
  834. static inline type pgm_read_any(const type *p) \
  835. { return pgm_read_##reader##_near(p); }
  836. DEFINE_PGM_READ_ANY(float, float);
  837. DEFINE_PGM_READ_ANY(signed char, byte);
  838. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  839. static const PROGMEM type array##_P[3] = \
  840. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  841. static inline type array(int axis) \
  842. { return pgm_read_any(&array##_P[axis]); }
  843. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  844. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  845. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  846. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  847. XYZ_CONSTS_FROM_CONFIG(float, home_retract_mm, HOME_RETRACT_MM);
  848. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  849. #ifdef DUAL_X_CARRIAGE
  850. #if EXTRUDERS == 1 || defined(COREXY) \
  851. || !defined(X2_ENABLE_PIN) || !defined(X2_STEP_PIN) || !defined(X2_DIR_PIN) \
  852. || !defined(X2_HOME_POS) || !defined(X2_MIN_POS) || !defined(X2_MAX_POS) \
  853. || !defined(X_MAX_PIN) || X_MAX_PIN < 0
  854. #error "Missing or invalid definitions for DUAL_X_CARRIAGE mode."
  855. #endif
  856. #if X_HOME_DIR != -1 || X2_HOME_DIR != 1
  857. #error "Please use canonical x-carriage assignment" // the x-carriages are defined by their homing directions
  858. #endif
  859. #define DXC_FULL_CONTROL_MODE 0
  860. #define DXC_AUTO_PARK_MODE 1
  861. #define DXC_DUPLICATION_MODE 2
  862. static int dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  863. static float x_home_pos(int extruder) {
  864. if (extruder == 0)
  865. return base_home_pos(X_AXIS) + add_homing[X_AXIS];
  866. else
  867. // In dual carriage mode the extruder offset provides an override of the
  868. // second X-carriage offset when homed - otherwise X2_HOME_POS is used.
  869. // This allow soft recalibration of the second extruder offset position without firmware reflash
  870. // (through the M218 command).
  871. return (extruder_offset[X_AXIS][1] > 0) ? extruder_offset[X_AXIS][1] : X2_HOME_POS;
  872. }
  873. static int x_home_dir(int extruder) {
  874. return (extruder == 0) ? X_HOME_DIR : X2_HOME_DIR;
  875. }
  876. static float inactive_extruder_x_pos = X2_MAX_POS; // used in mode 0 & 1
  877. static bool active_extruder_parked = false; // used in mode 1 & 2
  878. static float raised_parked_position[NUM_AXIS]; // used in mode 1
  879. static unsigned long delayed_move_time = 0; // used in mode 1
  880. static float duplicate_extruder_x_offset = DEFAULT_DUPLICATION_X_OFFSET; // used in mode 2
  881. static float duplicate_extruder_temp_offset = 0; // used in mode 2
  882. bool extruder_duplication_enabled = false; // used in mode 2
  883. #endif //DUAL_X_CARRIAGE
  884. static void axis_is_at_home(int axis) {
  885. #ifdef DUAL_X_CARRIAGE
  886. if (axis == X_AXIS) {
  887. if (active_extruder != 0) {
  888. current_position[X_AXIS] = x_home_pos(active_extruder);
  889. min_pos[X_AXIS] = X2_MIN_POS;
  890. max_pos[X_AXIS] = max(extruder_offset[X_AXIS][1], X2_MAX_POS);
  891. return;
  892. }
  893. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && active_extruder == 0) {
  894. current_position[X_AXIS] = base_home_pos(X_AXIS) + add_homing[X_AXIS];
  895. min_pos[X_AXIS] = base_min_pos(X_AXIS) + add_homing[X_AXIS];
  896. max_pos[X_AXIS] = min(base_max_pos(X_AXIS) + add_homing[X_AXIS],
  897. max(extruder_offset[X_AXIS][1], X2_MAX_POS) - duplicate_extruder_x_offset);
  898. return;
  899. }
  900. }
  901. #endif
  902. #ifdef SCARA
  903. float homeposition[3];
  904. char i;
  905. if (axis < 2)
  906. {
  907. for (i=0; i<3; i++)
  908. {
  909. homeposition[i] = base_home_pos(i);
  910. }
  911. // SERIAL_ECHOPGM("homeposition[x]= "); SERIAL_ECHO(homeposition[0]);
  912. // SERIAL_ECHOPGM("homeposition[y]= "); SERIAL_ECHOLN(homeposition[1]);
  913. // Works out real Homeposition angles using inverse kinematics,
  914. // and calculates homing offset using forward kinematics
  915. calculate_delta(homeposition);
  916. // SERIAL_ECHOPGM("base Theta= "); SERIAL_ECHO(delta[X_AXIS]);
  917. // SERIAL_ECHOPGM(" base Psi+Theta="); SERIAL_ECHOLN(delta[Y_AXIS]);
  918. for (i=0; i<2; i++)
  919. {
  920. delta[i] -= add_homing[i];
  921. }
  922. // SERIAL_ECHOPGM("addhome X="); SERIAL_ECHO(add_homing[X_AXIS]);
  923. // SERIAL_ECHOPGM(" addhome Y="); SERIAL_ECHO(add_homing[Y_AXIS]);
  924. // SERIAL_ECHOPGM(" addhome Theta="); SERIAL_ECHO(delta[X_AXIS]);
  925. // SERIAL_ECHOPGM(" addhome Psi+Theta="); SERIAL_ECHOLN(delta[Y_AXIS]);
  926. calculate_SCARA_forward_Transform(delta);
  927. // SERIAL_ECHOPGM("Delta X="); SERIAL_ECHO(delta[X_AXIS]);
  928. // SERIAL_ECHOPGM(" Delta Y="); SERIAL_ECHOLN(delta[Y_AXIS]);
  929. current_position[axis] = delta[axis];
  930. // SCARA home positions are based on configuration since the actual limits are determined by the
  931. // inverse kinematic transform.
  932. min_pos[axis] = base_min_pos(axis); // + (delta[axis] - base_home_pos(axis));
  933. max_pos[axis] = base_max_pos(axis); // + (delta[axis] - base_home_pos(axis));
  934. }
  935. else
  936. {
  937. current_position[axis] = base_home_pos(axis) + add_homing[axis];
  938. min_pos[axis] = base_min_pos(axis) + add_homing[axis];
  939. max_pos[axis] = base_max_pos(axis) + add_homing[axis];
  940. }
  941. #else
  942. current_position[axis] = base_home_pos(axis) + add_homing[axis];
  943. min_pos[axis] = base_min_pos(axis) + add_homing[axis];
  944. max_pos[axis] = base_max_pos(axis) + add_homing[axis];
  945. #endif
  946. }
  947. #ifdef ENABLE_AUTO_BED_LEVELING
  948. #ifdef AUTO_BED_LEVELING_GRID
  949. #ifndef DELTA
  950. static void set_bed_level_equation_lsq(double *plane_equation_coefficients)
  951. {
  952. vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
  953. planeNormal.debug("planeNormal");
  954. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  955. //bedLevel.debug("bedLevel");
  956. //plan_bed_level_matrix.debug("bed level before");
  957. //vector_3 uncorrected_position = plan_get_position_mm();
  958. //uncorrected_position.debug("position before");
  959. vector_3 corrected_position = plan_get_position();
  960. // corrected_position.debug("position after");
  961. current_position[X_AXIS] = corrected_position.x;
  962. current_position[Y_AXIS] = corrected_position.y;
  963. current_position[Z_AXIS] = corrected_position.z;
  964. // put the bed at 0 so we don't go below it.
  965. current_position[Z_AXIS] = zprobe_zoffset; // in the lsq we reach here after raising the extruder due to the loop structure
  966. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  967. }
  968. #endif
  969. #else // not AUTO_BED_LEVELING_GRID
  970. static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
  971. plan_bed_level_matrix.set_to_identity();
  972. vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
  973. vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
  974. vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
  975. vector_3 from_2_to_1 = (pt1 - pt2).get_normal();
  976. vector_3 from_2_to_3 = (pt3 - pt2).get_normal();
  977. vector_3 planeNormal = vector_3::cross(from_2_to_1, from_2_to_3).get_normal();
  978. planeNormal = vector_3(planeNormal.x, planeNormal.y, abs(planeNormal.z));
  979. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  980. vector_3 corrected_position = plan_get_position();
  981. current_position[X_AXIS] = corrected_position.x;
  982. current_position[Y_AXIS] = corrected_position.y;
  983. current_position[Z_AXIS] = corrected_position.z;
  984. // put the bed at 0 so we don't go below it.
  985. current_position[Z_AXIS] = zprobe_zoffset;
  986. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  987. }
  988. #endif // AUTO_BED_LEVELING_GRID
  989. static void run_z_probe() {
  990. #ifdef DELTA
  991. float start_z = current_position[Z_AXIS];
  992. long start_steps = st_get_position(Z_AXIS);
  993. // move down slowly until you find the bed
  994. feedrate = homing_feedrate[Z_AXIS] / 4;
  995. destination[Z_AXIS] = -10;
  996. prepare_move_raw();
  997. st_synchronize();
  998. endstops_hit_on_purpose();
  999. // we have to let the planner know where we are right now as it is not where we said to go.
  1000. long stop_steps = st_get_position(Z_AXIS);
  1001. float mm = start_z - float(start_steps - stop_steps) / axis_steps_per_unit[Z_AXIS];
  1002. current_position[Z_AXIS] = mm;
  1003. calculate_delta(current_position);
  1004. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
  1005. #else
  1006. plan_bed_level_matrix.set_to_identity();
  1007. feedrate = homing_feedrate[Z_AXIS];
  1008. // move down until you find the bed
  1009. float zPosition = -10;
  1010. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1011. st_synchronize();
  1012. // we have to let the planner know where we are right now as it is not where we said to go.
  1013. zPosition = st_get_position_mm(Z_AXIS);
  1014. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]);
  1015. // move up the retract distance
  1016. zPosition += home_retract_mm(Z_AXIS);
  1017. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1018. st_synchronize();
  1019. // move back down slowly to find bed
  1020. if (homing_bump_divisor[Z_AXIS] >= 1)
  1021. {
  1022. feedrate = homing_feedrate[Z_AXIS]/homing_bump_divisor[Z_AXIS];
  1023. }
  1024. else
  1025. {
  1026. feedrate = homing_feedrate[Z_AXIS]/10;
  1027. SERIAL_ECHOLN("Warning: The Homing Bump Feedrate Divisor cannot be less then 1");
  1028. }
  1029. zPosition -= home_retract_mm(Z_AXIS) * 2;
  1030. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1031. st_synchronize();
  1032. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  1033. // make sure the planner knows where we are as it may be a bit different than we last said to move to
  1034. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1035. #endif
  1036. }
  1037. static void do_blocking_move_to(float x, float y, float z) {
  1038. float oldFeedRate = feedrate;
  1039. #ifdef DELTA
  1040. feedrate = XY_TRAVEL_SPEED;
  1041. destination[X_AXIS] = x;
  1042. destination[Y_AXIS] = y;
  1043. destination[Z_AXIS] = z;
  1044. prepare_move_raw();
  1045. st_synchronize();
  1046. #else
  1047. feedrate = homing_feedrate[Z_AXIS];
  1048. current_position[Z_AXIS] = z;
  1049. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1050. st_synchronize();
  1051. feedrate = xy_travel_speed;
  1052. current_position[X_AXIS] = x;
  1053. current_position[Y_AXIS] = y;
  1054. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1055. st_synchronize();
  1056. #endif
  1057. feedrate = oldFeedRate;
  1058. }
  1059. static void do_blocking_move_relative(float offset_x, float offset_y, float offset_z) {
  1060. do_blocking_move_to(current_position[X_AXIS] + offset_x, current_position[Y_AXIS] + offset_y, current_position[Z_AXIS] + offset_z);
  1061. }
  1062. static void setup_for_endstop_move() {
  1063. saved_feedrate = feedrate;
  1064. saved_feedmultiply = feedmultiply;
  1065. feedmultiply = 100;
  1066. previous_millis_cmd = millis();
  1067. enable_endstops(true);
  1068. }
  1069. static void clean_up_after_endstop_move() {
  1070. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1071. enable_endstops(false);
  1072. #endif
  1073. feedrate = saved_feedrate;
  1074. feedmultiply = saved_feedmultiply;
  1075. previous_millis_cmd = millis();
  1076. }
  1077. static void engage_z_probe() {
  1078. // Engage Z Servo endstop if enabled
  1079. #ifdef SERVO_ENDSTOPS
  1080. if (servo_endstops[Z_AXIS] > -1) {
  1081. #if SERVO_LEVELING
  1082. servos[servo_endstops[Z_AXIS]].attach(0);
  1083. #endif
  1084. servos[servo_endstops[Z_AXIS]].write(servo_endstop_angles[Z_AXIS * 2]);
  1085. #if SERVO_LEVELING
  1086. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  1087. servos[servo_endstops[Z_AXIS]].detach();
  1088. #endif
  1089. }
  1090. #elif defined(Z_PROBE_ALLEN_KEY)
  1091. feedrate = homing_feedrate[X_AXIS];
  1092. // Move to the start position to initiate deployment
  1093. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_X;
  1094. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_Y;
  1095. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_Z;
  1096. prepare_move_raw();
  1097. // Home X to touch the belt
  1098. feedrate = homing_feedrate[X_AXIS]/10;
  1099. destination[X_AXIS] = 0;
  1100. prepare_move_raw();
  1101. // Home Y for safety
  1102. feedrate = homing_feedrate[X_AXIS]/2;
  1103. destination[Y_AXIS] = 0;
  1104. prepare_move_raw();
  1105. st_synchronize();
  1106. bool z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
  1107. if (z_min_endstop)
  1108. {
  1109. if (!Stopped)
  1110. {
  1111. SERIAL_ERROR_START;
  1112. SERIAL_ERRORLNPGM("Z-Probe failed to engage!");
  1113. LCD_ALERTMESSAGEPGM("Err: ZPROBE");
  1114. }
  1115. Stop();
  1116. }
  1117. #endif
  1118. }
  1119. static void retract_z_probe() {
  1120. // Retract Z Servo endstop if enabled
  1121. #ifdef SERVO_ENDSTOPS
  1122. if (servo_endstops[Z_AXIS] > -1) {
  1123. #if SERVO_LEVELING
  1124. servos[servo_endstops[Z_AXIS]].attach(0);
  1125. #endif
  1126. servos[servo_endstops[Z_AXIS]].write(servo_endstop_angles[Z_AXIS * 2 + 1]);
  1127. #if SERVO_LEVELING
  1128. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  1129. servos[servo_endstops[Z_AXIS]].detach();
  1130. #endif
  1131. }
  1132. #elif defined(Z_PROBE_ALLEN_KEY)
  1133. // Move up for safety
  1134. feedrate = homing_feedrate[X_AXIS];
  1135. destination[Z_AXIS] = current_position[Z_AXIS] + 20;
  1136. prepare_move_raw();
  1137. // Move to the start position to initiate retraction
  1138. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_RETRACT_X;
  1139. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_RETRACT_Y;
  1140. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_RETRACT_Z;
  1141. prepare_move_raw();
  1142. // Move the nozzle down to push the probe into retracted position
  1143. feedrate = homing_feedrate[Z_AXIS]/10;
  1144. destination[Z_AXIS] = current_position[Z_AXIS] - Z_PROBE_ALLEN_KEY_RETRACT_DEPTH;
  1145. prepare_move_raw();
  1146. // Move up for safety
  1147. feedrate = homing_feedrate[Z_AXIS]/2;
  1148. destination[Z_AXIS] = current_position[Z_AXIS] + Z_PROBE_ALLEN_KEY_RETRACT_DEPTH * 2;
  1149. prepare_move_raw();
  1150. // Home XY for safety
  1151. feedrate = homing_feedrate[X_AXIS]/2;
  1152. destination[X_AXIS] = 0;
  1153. destination[Y_AXIS] = 0;
  1154. prepare_move_raw();
  1155. st_synchronize();
  1156. bool z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
  1157. if (!z_min_endstop)
  1158. {
  1159. if (!Stopped)
  1160. {
  1161. SERIAL_ERROR_START;
  1162. SERIAL_ERRORLNPGM("Z-Probe failed to retract!");
  1163. LCD_ALERTMESSAGEPGM("Err: ZPROBE");
  1164. }
  1165. Stop();
  1166. }
  1167. #endif
  1168. }
  1169. enum ProbeAction { ProbeStay, ProbeEngage, ProbeRetract, ProbeEngageRetract };
  1170. /// Probe bed height at position (x,y), returns the measured z value
  1171. static float probe_pt(float x, float y, float z_before, ProbeAction retract_action=ProbeEngageRetract, int verbose_level=1) {
  1172. // move to right place
  1173. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_before);
  1174. do_blocking_move_to(x - X_PROBE_OFFSET_FROM_EXTRUDER, y - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
  1175. #if !defined(Z_PROBE_SLED) && !defined(Z_PROBE_ALLEN_KEY)
  1176. if (retract_action & ProbeEngage) engage_z_probe();
  1177. #endif
  1178. run_z_probe();
  1179. float measured_z = current_position[Z_AXIS];
  1180. #if !defined(Z_PROBE_SLED) && !defined(Z_PROBE_ALLEN_KEY)
  1181. if (retract_action & ProbeRetract) retract_z_probe();
  1182. #endif
  1183. if (verbose_level > 2) {
  1184. SERIAL_PROTOCOLPGM(MSG_BED);
  1185. SERIAL_PROTOCOLPGM(" X: ");
  1186. SERIAL_PROTOCOL(x + 0.0001);
  1187. SERIAL_PROTOCOLPGM(" Y: ");
  1188. SERIAL_PROTOCOL(y + 0.0001);
  1189. SERIAL_PROTOCOLPGM(" Z: ");
  1190. SERIAL_PROTOCOL(measured_z + 0.0001);
  1191. SERIAL_EOL;
  1192. }
  1193. return measured_z;
  1194. }
  1195. #ifdef DELTA
  1196. static void extrapolate_one_point(int x, int y, int xdir, int ydir) {
  1197. if (bed_level[x][y] != 0.0) {
  1198. return; // Don't overwrite good values.
  1199. }
  1200. float a = 2*bed_level[x+xdir][y] - bed_level[x+xdir*2][y]; // Left to right.
  1201. float b = 2*bed_level[x][y+ydir] - bed_level[x][y+ydir*2]; // Front to back.
  1202. float c = 2*bed_level[x+xdir][y+ydir] - bed_level[x+xdir*2][y+ydir*2]; // Diagonal.
  1203. float median = c; // Median is robust (ignores outliers).
  1204. if (a < b) {
  1205. if (b < c) median = b;
  1206. if (c < a) median = a;
  1207. } else { // b <= a
  1208. if (c < b) median = b;
  1209. if (a < c) median = a;
  1210. }
  1211. bed_level[x][y] = median;
  1212. }
  1213. // Fill in the unprobed points (corners of circular print surface)
  1214. // using linear extrapolation, away from the center.
  1215. static void extrapolate_unprobed_bed_level() {
  1216. int half = (AUTO_BED_LEVELING_GRID_POINTS-1)/2;
  1217. for (int y = 0; y <= half; y++) {
  1218. for (int x = 0; x <= half; x++) {
  1219. if (x + y < 3) continue;
  1220. extrapolate_one_point(half-x, half-y, x>1?+1:0, y>1?+1:0);
  1221. extrapolate_one_point(half+x, half-y, x>1?-1:0, y>1?+1:0);
  1222. extrapolate_one_point(half-x, half+y, x>1?+1:0, y>1?-1:0);
  1223. extrapolate_one_point(half+x, half+y, x>1?-1:0, y>1?-1:0);
  1224. }
  1225. }
  1226. }
  1227. // Print calibration results for plotting or manual frame adjustment.
  1228. static void print_bed_level() {
  1229. for (int y = 0; y < AUTO_BED_LEVELING_GRID_POINTS; y++) {
  1230. for (int x = 0; x < AUTO_BED_LEVELING_GRID_POINTS; x++) {
  1231. SERIAL_PROTOCOL_F(bed_level[x][y], 2);
  1232. SERIAL_PROTOCOLPGM(" ");
  1233. }
  1234. SERIAL_ECHOLN("");
  1235. }
  1236. }
  1237. // Reset calibration results to zero.
  1238. void reset_bed_level() {
  1239. for (int y = 0; y < AUTO_BED_LEVELING_GRID_POINTS; y++) {
  1240. for (int x = 0; x < AUTO_BED_LEVELING_GRID_POINTS; x++) {
  1241. bed_level[x][y] = 0.0;
  1242. }
  1243. }
  1244. }
  1245. #endif // DELTA
  1246. #endif // ENABLE_AUTO_BED_LEVELING
  1247. static void homeaxis(int axis) {
  1248. #define HOMEAXIS_DO(LETTER) \
  1249. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  1250. if (axis==X_AXIS ? HOMEAXIS_DO(X) :
  1251. axis==Y_AXIS ? HOMEAXIS_DO(Y) :
  1252. axis==Z_AXIS ? HOMEAXIS_DO(Z) :
  1253. 0) {
  1254. int axis_home_dir = home_dir(axis);
  1255. #ifdef DUAL_X_CARRIAGE
  1256. if (axis == X_AXIS)
  1257. axis_home_dir = x_home_dir(active_extruder);
  1258. #endif
  1259. current_position[axis] = 0;
  1260. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1261. #ifndef Z_PROBE_SLED
  1262. // Engage Servo endstop if enabled
  1263. #ifdef SERVO_ENDSTOPS
  1264. #if SERVO_LEVELING
  1265. if (axis==Z_AXIS) {
  1266. engage_z_probe();
  1267. }
  1268. else
  1269. #endif
  1270. if (servo_endstops[axis] > -1) {
  1271. servos[servo_endstops[axis]].write(servo_endstop_angles[axis * 2]);
  1272. }
  1273. #endif
  1274. #endif // Z_PROBE_SLED
  1275. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  1276. feedrate = homing_feedrate[axis];
  1277. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1278. st_synchronize();
  1279. current_position[axis] = 0;
  1280. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1281. destination[axis] = -home_retract_mm(axis) * axis_home_dir;
  1282. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1283. st_synchronize();
  1284. destination[axis] = 2*home_retract_mm(axis) * axis_home_dir;
  1285. if (homing_bump_divisor[axis] >= 1)
  1286. {
  1287. feedrate = homing_feedrate[axis]/homing_bump_divisor[axis];
  1288. }
  1289. else
  1290. {
  1291. feedrate = homing_feedrate[axis]/10;
  1292. SERIAL_ECHOLN("Warning: The Homing Bump Feedrate Divisor cannot be less then 1");
  1293. }
  1294. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1295. st_synchronize();
  1296. #ifdef DELTA
  1297. // retrace by the amount specified in endstop_adj
  1298. if (endstop_adj[axis] * axis_home_dir < 0) {
  1299. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1300. destination[axis] = endstop_adj[axis];
  1301. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1302. st_synchronize();
  1303. }
  1304. #endif
  1305. axis_is_at_home(axis);
  1306. destination[axis] = current_position[axis];
  1307. feedrate = 0.0;
  1308. endstops_hit_on_purpose();
  1309. axis_known_position[axis] = true;
  1310. // Retract Servo endstop if enabled
  1311. #ifdef SERVO_ENDSTOPS
  1312. if (servo_endstops[axis] > -1) {
  1313. servos[servo_endstops[axis]].write(servo_endstop_angles[axis * 2 + 1]);
  1314. }
  1315. #endif
  1316. #if SERVO_LEVELING
  1317. #ifndef Z_PROBE_SLED
  1318. if (axis==Z_AXIS) retract_z_probe();
  1319. #endif
  1320. #endif
  1321. }
  1322. }
  1323. #define HOMEAXIS(LETTER) homeaxis(LETTER##_AXIS)
  1324. void refresh_cmd_timeout(void)
  1325. {
  1326. previous_millis_cmd = millis();
  1327. }
  1328. #ifdef FWRETRACT
  1329. void retract(bool retracting, bool swapretract = false) {
  1330. if(retracting && !retracted[active_extruder]) {
  1331. destination[X_AXIS]=current_position[X_AXIS];
  1332. destination[Y_AXIS]=current_position[Y_AXIS];
  1333. destination[Z_AXIS]=current_position[Z_AXIS];
  1334. destination[E_AXIS]=current_position[E_AXIS];
  1335. if (swapretract) {
  1336. current_position[E_AXIS]+=retract_length_swap/volumetric_multiplier[active_extruder];
  1337. } else {
  1338. current_position[E_AXIS]+=retract_length/volumetric_multiplier[active_extruder];
  1339. }
  1340. plan_set_e_position(current_position[E_AXIS]);
  1341. float oldFeedrate = feedrate;
  1342. feedrate=retract_feedrate*60;
  1343. retracted[active_extruder]=true;
  1344. prepare_move();
  1345. if(retract_zlift > 0.01) {
  1346. current_position[Z_AXIS]-=retract_zlift;
  1347. #ifdef DELTA
  1348. calculate_delta(current_position); // change cartesian kinematic to delta kinematic;
  1349. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
  1350. #else
  1351. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1352. #endif
  1353. prepare_move();
  1354. }
  1355. feedrate = oldFeedrate;
  1356. } else if(!retracting && retracted[active_extruder]) {
  1357. destination[X_AXIS]=current_position[X_AXIS];
  1358. destination[Y_AXIS]=current_position[Y_AXIS];
  1359. destination[Z_AXIS]=current_position[Z_AXIS];
  1360. destination[E_AXIS]=current_position[E_AXIS];
  1361. if(retract_zlift > 0.01) {
  1362. current_position[Z_AXIS]+=retract_zlift;
  1363. #ifdef DELTA
  1364. calculate_delta(current_position); // change cartesian kinematic to delta kinematic;
  1365. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
  1366. #else
  1367. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1368. #endif
  1369. //prepare_move();
  1370. }
  1371. if (swapretract) {
  1372. current_position[E_AXIS]-=(retract_length_swap+retract_recover_length_swap)/volumetric_multiplier[active_extruder];
  1373. } else {
  1374. current_position[E_AXIS]-=(retract_length+retract_recover_length)/volumetric_multiplier[active_extruder];
  1375. }
  1376. plan_set_e_position(current_position[E_AXIS]);
  1377. float oldFeedrate = feedrate;
  1378. feedrate=retract_recover_feedrate*60;
  1379. retracted[active_extruder]=false;
  1380. prepare_move();
  1381. feedrate = oldFeedrate;
  1382. }
  1383. } //retract
  1384. #endif //FWRETRACT
  1385. #ifdef Z_PROBE_SLED
  1386. #ifndef SLED_DOCKING_OFFSET
  1387. #define SLED_DOCKING_OFFSET 0
  1388. #endif
  1389. //
  1390. // Method to dock/undock a sled designed by Charles Bell.
  1391. //
  1392. // dock[in] If true, move to MAX_X and engage the electromagnet
  1393. // offset[in] The additional distance to move to adjust docking location
  1394. //
  1395. static void dock_sled(bool dock, int offset=0) {
  1396. int z_loc;
  1397. if (!((axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]))) {
  1398. LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN);
  1399. SERIAL_ECHO_START;
  1400. SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN);
  1401. return;
  1402. }
  1403. if (dock) {
  1404. do_blocking_move_to(X_MAX_POS + SLED_DOCKING_OFFSET + offset,
  1405. current_position[Y_AXIS],
  1406. current_position[Z_AXIS]);
  1407. // turn off magnet
  1408. digitalWrite(SERVO0_PIN, LOW);
  1409. } else {
  1410. if (current_position[Z_AXIS] < (Z_RAISE_BEFORE_PROBING + 5))
  1411. z_loc = Z_RAISE_BEFORE_PROBING;
  1412. else
  1413. z_loc = current_position[Z_AXIS];
  1414. do_blocking_move_to(X_MAX_POS + SLED_DOCKING_OFFSET + offset,
  1415. Y_PROBE_OFFSET_FROM_EXTRUDER, z_loc);
  1416. // turn on magnet
  1417. digitalWrite(SERVO0_PIN, HIGH);
  1418. }
  1419. }
  1420. #endif
  1421. /**
  1422. *
  1423. * G-Code Handler functions
  1424. *
  1425. */
  1426. /**
  1427. * G0, G1: Coordinated movement of X Y Z E axes
  1428. */
  1429. inline void gcode_G0_G1() {
  1430. if (!Stopped) {
  1431. get_coordinates(); // For X Y Z E F
  1432. #ifdef FWRETRACT
  1433. if (autoretract_enabled)
  1434. if (!(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  1435. float echange = destination[E_AXIS] - current_position[E_AXIS];
  1436. // Is this move an attempt to retract or recover?
  1437. if ((echange < -MIN_RETRACT && !retracted[active_extruder]) || (echange > MIN_RETRACT && retracted[active_extruder])) {
  1438. current_position[E_AXIS] = destination[E_AXIS]; // hide the slicer-generated retract/recover from calculations
  1439. plan_set_e_position(current_position[E_AXIS]); // AND from the planner
  1440. retract(!retracted[active_extruder]);
  1441. return;
  1442. }
  1443. }
  1444. #endif //FWRETRACT
  1445. prepare_move();
  1446. //ClearToSend();
  1447. }
  1448. }
  1449. /**
  1450. * G2: Clockwise Arc
  1451. * G3: Counterclockwise Arc
  1452. */
  1453. inline void gcode_G2_G3(bool clockwise) {
  1454. if (!Stopped) {
  1455. get_arc_coordinates();
  1456. prepare_arc_move(clockwise);
  1457. }
  1458. }
  1459. /**
  1460. * G4: Dwell S<seconds> or P<milliseconds>
  1461. */
  1462. inline void gcode_G4() {
  1463. unsigned long codenum;
  1464. LCD_MESSAGEPGM(MSG_DWELL);
  1465. if (code_seen('P')) codenum = code_value_long(); // milliseconds to wait
  1466. if (code_seen('S')) codenum = code_value_long() * 1000; // seconds to wait
  1467. st_synchronize();
  1468. previous_millis_cmd = millis();
  1469. codenum += previous_millis_cmd; // keep track of when we started waiting
  1470. while(millis() < codenum) {
  1471. manage_heater();
  1472. manage_inactivity();
  1473. lcd_update();
  1474. }
  1475. }
  1476. #ifdef FWRETRACT
  1477. /**
  1478. * G10 - Retract filament according to settings of M207
  1479. * G11 - Recover filament according to settings of M208
  1480. */
  1481. inline void gcode_G10_G11(bool doRetract=false) {
  1482. #if EXTRUDERS > 1
  1483. if (doRetract) {
  1484. retracted_swap[active_extruder] = (code_seen('S') && code_value_long() == 1); // checks for swap retract argument
  1485. }
  1486. #endif
  1487. retract(doRetract
  1488. #if EXTRUDERS > 1
  1489. , retracted_swap[active_extruder]
  1490. #endif
  1491. );
  1492. }
  1493. #endif //FWRETRACT
  1494. /**
  1495. * G28: Home all axes, one at a time
  1496. */
  1497. inline void gcode_G28() {
  1498. #ifdef ENABLE_AUTO_BED_LEVELING
  1499. #ifdef DELTA
  1500. reset_bed_level();
  1501. #else
  1502. plan_bed_level_matrix.set_to_identity(); //Reset the plane ("erase" all leveling data)
  1503. #endif
  1504. #endif
  1505. saved_feedrate = feedrate;
  1506. saved_feedmultiply = feedmultiply;
  1507. feedmultiply = 100;
  1508. previous_millis_cmd = millis();
  1509. enable_endstops(true);
  1510. for (int i = X_AXIS; i <= Z_AXIS; i++) destination[i] = current_position[i];
  1511. feedrate = 0.0;
  1512. #ifdef DELTA
  1513. // A delta can only safely home all axis at the same time
  1514. // all axis have to home at the same time
  1515. // Move all carriages up together until the first endstop is hit.
  1516. for (int i = X_AXIS; i <= Z_AXIS; i++) current_position[i] = 0;
  1517. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1518. for (int i = X_AXIS; i <= Z_AXIS; i++) destination[i] = 3 * Z_MAX_LENGTH;
  1519. feedrate = 1.732 * homing_feedrate[X_AXIS];
  1520. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1521. st_synchronize();
  1522. endstops_hit_on_purpose();
  1523. // Destination reached
  1524. for (int i = X_AXIS; i <= Z_AXIS; i++) current_position[i] = destination[i];
  1525. // take care of back off and rehome now we are all at the top
  1526. HOMEAXIS(X);
  1527. HOMEAXIS(Y);
  1528. HOMEAXIS(Z);
  1529. calculate_delta(current_position);
  1530. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
  1531. #else // NOT DELTA
  1532. home_all_axis = !(code_seen(axis_codes[X_AXIS]) || code_seen(axis_codes[Y_AXIS]) || code_seen(axis_codes[Z_AXIS]));
  1533. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  1534. if (home_all_axis || code_seen(axis_codes[Z_AXIS])) {
  1535. HOMEAXIS(Z);
  1536. }
  1537. #endif
  1538. #ifdef QUICK_HOME
  1539. if (home_all_axis || code_seen(axis_codes[X_AXIS] && code_seen(axis_codes[Y_AXIS]))) { //first diagonal move
  1540. current_position[X_AXIS] = current_position[Y_AXIS] = 0;
  1541. #ifndef DUAL_X_CARRIAGE
  1542. int x_axis_home_dir = home_dir(X_AXIS);
  1543. #else
  1544. int x_axis_home_dir = x_home_dir(active_extruder);
  1545. extruder_duplication_enabled = false;
  1546. #endif
  1547. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1548. destination[X_AXIS] = 1.5 * max_length(X_AXIS) * x_axis_home_dir;
  1549. destination[Y_AXIS] = 1.5 * max_length(Y_AXIS) * home_dir(Y_AXIS);
  1550. feedrate = homing_feedrate[X_AXIS];
  1551. if (homing_feedrate[Y_AXIS] < feedrate) feedrate = homing_feedrate[Y_AXIS];
  1552. if (max_length(X_AXIS) > max_length(Y_AXIS)) {
  1553. feedrate *= sqrt(pow(max_length(Y_AXIS) / max_length(X_AXIS), 2) + 1);
  1554. } else {
  1555. feedrate *= sqrt(pow(max_length(X_AXIS) / max_length(Y_AXIS), 2) + 1);
  1556. }
  1557. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1558. st_synchronize();
  1559. axis_is_at_home(X_AXIS);
  1560. axis_is_at_home(Y_AXIS);
  1561. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1562. destination[X_AXIS] = current_position[X_AXIS];
  1563. destination[Y_AXIS] = current_position[Y_AXIS];
  1564. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1565. feedrate = 0.0;
  1566. st_synchronize();
  1567. endstops_hit_on_purpose();
  1568. current_position[X_AXIS] = destination[X_AXIS];
  1569. current_position[Y_AXIS] = destination[Y_AXIS];
  1570. #ifndef SCARA
  1571. current_position[Z_AXIS] = destination[Z_AXIS];
  1572. #endif
  1573. }
  1574. #endif //QUICK_HOME
  1575. if ((home_all_axis) || (code_seen(axis_codes[X_AXIS]))) {
  1576. #ifdef DUAL_X_CARRIAGE
  1577. int tmp_extruder = active_extruder;
  1578. extruder_duplication_enabled = false;
  1579. active_extruder = !active_extruder;
  1580. HOMEAXIS(X);
  1581. inactive_extruder_x_pos = current_position[X_AXIS];
  1582. active_extruder = tmp_extruder;
  1583. HOMEAXIS(X);
  1584. // reset state used by the different modes
  1585. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  1586. delayed_move_time = 0;
  1587. active_extruder_parked = true;
  1588. #else
  1589. HOMEAXIS(X);
  1590. #endif
  1591. }
  1592. if (home_all_axis || code_seen(axis_codes[Y_AXIS])) HOMEAXIS(Y);
  1593. if (code_seen(axis_codes[X_AXIS])) {
  1594. if (code_value_long() != 0) {
  1595. current_position[X_AXIS] = code_value()
  1596. #ifndef SCARA
  1597. + add_homing[X_AXIS]
  1598. #endif
  1599. ;
  1600. }
  1601. }
  1602. if (code_seen(axis_codes[Y_AXIS]) && code_value_long() != 0) {
  1603. current_position[Y_AXIS] = code_value()
  1604. #ifndef SCARA
  1605. + add_homing[Y_AXIS]
  1606. #endif
  1607. ;
  1608. }
  1609. #if Z_HOME_DIR < 0 // If homing towards BED do Z last
  1610. #ifndef Z_SAFE_HOMING
  1611. if (home_all_axis || code_seen(axis_codes[Z_AXIS])) {
  1612. #if defined(Z_RAISE_BEFORE_HOMING) && Z_RAISE_BEFORE_HOMING > 0
  1613. destination[Z_AXIS] = -Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS); // Set destination away from bed
  1614. feedrate = max_feedrate[Z_AXIS];
  1615. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  1616. st_synchronize();
  1617. #endif
  1618. HOMEAXIS(Z);
  1619. }
  1620. #else // Z_SAFE_HOMING
  1621. if (home_all_axis) {
  1622. destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - X_PROBE_OFFSET_FROM_EXTRUDER);
  1623. destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - Y_PROBE_OFFSET_FROM_EXTRUDER);
  1624. destination[Z_AXIS] = -Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS); // Set destination away from bed
  1625. feedrate = XY_TRAVEL_SPEED / 60;
  1626. current_position[Z_AXIS] = 0;
  1627. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1628. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  1629. st_synchronize();
  1630. current_position[X_AXIS] = destination[X_AXIS];
  1631. current_position[Y_AXIS] = destination[Y_AXIS];
  1632. HOMEAXIS(Z);
  1633. }
  1634. // Let's see if X and Y are homed and probe is inside bed area.
  1635. if (code_seen(axis_codes[Z_AXIS])) {
  1636. if (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS]) {
  1637. float cpx = current_position[X_AXIS], cpy = current_position[Y_AXIS];
  1638. if ( cpx >= X_MIN_POS - X_PROBE_OFFSET_FROM_EXTRUDER
  1639. && cpx <= X_MAX_POS - X_PROBE_OFFSET_FROM_EXTRUDER
  1640. && cpy >= Y_MIN_POS - Y_PROBE_OFFSET_FROM_EXTRUDER
  1641. && cpy <= Y_MAX_POS - Y_PROBE_OFFSET_FROM_EXTRUDER) {
  1642. current_position[Z_AXIS] = 0;
  1643. plan_set_position(cpx, cpy, current_position[Z_AXIS], current_position[E_AXIS]);
  1644. destination[Z_AXIS] = -Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS); // Set destination away from bed
  1645. feedrate = max_feedrate[Z_AXIS];
  1646. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  1647. st_synchronize();
  1648. HOMEAXIS(Z);
  1649. }
  1650. else {
  1651. LCD_MESSAGEPGM(MSG_ZPROBE_OUT);
  1652. SERIAL_ECHO_START;
  1653. SERIAL_ECHOLNPGM(MSG_ZPROBE_OUT);
  1654. }
  1655. }
  1656. else {
  1657. LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN);
  1658. SERIAL_ECHO_START;
  1659. SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN);
  1660. }
  1661. }
  1662. #endif // Z_SAFE_HOMING
  1663. #endif // Z_HOME_DIR < 0
  1664. if (code_seen(axis_codes[Z_AXIS]) && code_value_long() != 0)
  1665. current_position[Z_AXIS] = code_value() + add_homing[Z_AXIS];
  1666. #ifdef ENABLE_AUTO_BED_LEVELING
  1667. if (home_all_axis || code_seen(axis_codes[Z_AXIS]))
  1668. current_position[Z_AXIS] += zprobe_zoffset; //Add Z_Probe offset (the distance is negative)
  1669. #endif
  1670. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1671. #endif // else DELTA
  1672. #ifdef SCARA
  1673. calculate_delta(current_position);
  1674. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
  1675. #endif
  1676. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1677. enable_endstops(false);
  1678. #endif
  1679. feedrate = saved_feedrate;
  1680. feedmultiply = saved_feedmultiply;
  1681. previous_millis_cmd = millis();
  1682. endstops_hit_on_purpose();
  1683. }
  1684. #ifdef ENABLE_AUTO_BED_LEVELING
  1685. // Define the possible boundaries for probing based on set limits
  1686. #define MIN_PROBE_X (max(X_MIN_POS, X_MIN_POS + X_PROBE_OFFSET_FROM_EXTRUDER))
  1687. #define MAX_PROBE_X (min(X_MAX_POS, X_MAX_POS + X_PROBE_OFFSET_FROM_EXTRUDER))
  1688. #define MIN_PROBE_Y (max(Y_MIN_POS, Y_MIN_POS + Y_PROBE_OFFSET_FROM_EXTRUDER))
  1689. #define MAX_PROBE_Y (min(Y_MAX_POS, Y_MAX_POS + Y_PROBE_OFFSET_FROM_EXTRUDER))
  1690. #ifdef AUTO_BED_LEVELING_GRID
  1691. // Make sure probing points are reachable
  1692. #if LEFT_PROBE_BED_POSITION < MIN_PROBE_X
  1693. #error "The given LEFT_PROBE_BED_POSITION can't be reached by the probe."
  1694. #elif RIGHT_PROBE_BED_POSITION > MAX_PROBE_X
  1695. #error "The given RIGHT_PROBE_BED_POSITION can't be reached by the probe."
  1696. #elif FRONT_PROBE_BED_POSITION < MIN_PROBE_Y
  1697. #error "The given FRONT_PROBE_BED_POSITION can't be reached by the probe."
  1698. #elif BACK_PROBE_BED_POSITION > MAX_PROBE_Y
  1699. #error "The given BACK_PROBE_BED_POSITION can't be reached by the probe."
  1700. #endif
  1701. #else // !AUTO_BED_LEVELING_GRID
  1702. #if ABL_PROBE_PT_1_X < MIN_PROBE_X || ABL_PROBE_PT_1_X > MAX_PROBE_X
  1703. #error "The given ABL_PROBE_PT_1_X can't be reached by the probe."
  1704. #elif ABL_PROBE_PT_2_X < MIN_PROBE_X || ABL_PROBE_PT_2_X > MAX_PROBE_X
  1705. #error "The given ABL_PROBE_PT_2_X can't be reached by the probe."
  1706. #elif ABL_PROBE_PT_3_X < MIN_PROBE_X || ABL_PROBE_PT_3_X > MAX_PROBE_X
  1707. #error "The given ABL_PROBE_PT_3_X can't be reached by the probe."
  1708. #elif ABL_PROBE_PT_1_Y < MIN_PROBE_Y || ABL_PROBE_PT_1_Y > MAX_PROBE_Y
  1709. #error "The given ABL_PROBE_PT_1_Y can't be reached by the probe."
  1710. #elif ABL_PROBE_PT_2_Y < MIN_PROBE_Y || ABL_PROBE_PT_2_Y > MAX_PROBE_Y
  1711. #error "The given ABL_PROBE_PT_2_Y can't be reached by the probe."
  1712. #elif ABL_PROBE_PT_3_Y < MIN_PROBE_Y || ABL_PROBE_PT_3_Y > MAX_PROBE_Y
  1713. #error "The given ABL_PROBE_PT_3_Y can't be reached by the probe."
  1714. #endif
  1715. #endif // !AUTO_BED_LEVELING_GRID
  1716. /**
  1717. * G29: Detailed Z-Probe, probes the bed at 3 or more points.
  1718. * Will fail if the printer has not been homed with G28.
  1719. *
  1720. * Enhanced G29 Auto Bed Leveling Probe Routine
  1721. *
  1722. * Parameters With AUTO_BED_LEVELING_GRID:
  1723. *
  1724. * P Set the size of the grid that will be probed (P x P points).
  1725. * Not supported by non-linear delta printer bed leveling.
  1726. * Example: "G29 P4"
  1727. *
  1728. * S Set the XY travel speed between probe points (in mm/min)
  1729. *
  1730. * V Set the verbose level (0-4). Example: "G29 V3"
  1731. *
  1732. * T Generate a Bed Topology Report. Example: "G29 P5 T" for a detailed report.
  1733. * This is useful for manual bed leveling and finding flaws in the bed (to
  1734. * assist with part placement).
  1735. * Not supported by non-linear delta printer bed leveling.
  1736. *
  1737. * F Set the Front limit of the probing grid
  1738. * B Set the Back limit of the probing grid
  1739. * L Set the Left limit of the probing grid
  1740. * R Set the Right limit of the probing grid
  1741. *
  1742. * Global Parameters:
  1743. *
  1744. * E/e By default G29 engages / disengages the probe for each point.
  1745. * Include "E" to engage and disengage the probe just once.
  1746. * There's no extra effect if you have a fixed probe.
  1747. * Usage: "G29 E" or "G29 e"
  1748. *
  1749. */
  1750. inline void gcode_G29() {
  1751. // Prevent user from running a G29 without first homing in X and Y
  1752. if (!axis_known_position[X_AXIS] || !axis_known_position[Y_AXIS]) {
  1753. LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN);
  1754. SERIAL_ECHO_START;
  1755. SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN);
  1756. return;
  1757. }
  1758. int verbose_level = 1;
  1759. float x_tmp, y_tmp, z_tmp, real_z;
  1760. if (code_seen('V') || code_seen('v')) {
  1761. verbose_level = code_value_long();
  1762. if (verbose_level < 0 || verbose_level > 4) {
  1763. SERIAL_PROTOCOLPGM("?(V)erbose Level is implausible (0-4).\n");
  1764. return;
  1765. }
  1766. }
  1767. bool enhanced_g29 = code_seen('E') || code_seen('e');
  1768. #ifdef AUTO_BED_LEVELING_GRID
  1769. #ifndef DELTA
  1770. bool topo_flag = verbose_level > 2 || code_seen('T') || code_seen('t');
  1771. #endif
  1772. if (verbose_level > 0)
  1773. SERIAL_PROTOCOLPGM("G29 Auto Bed Leveling\n");
  1774. int auto_bed_leveling_grid_points = AUTO_BED_LEVELING_GRID_POINTS;
  1775. #ifndef DELTA
  1776. if (code_seen('P')) auto_bed_leveling_grid_points = code_value_long();
  1777. if (auto_bed_leveling_grid_points < 2) {
  1778. SERIAL_PROTOCOLPGM("?Number of probed (P)oints is implausible (2 minimum).\n");
  1779. return;
  1780. }
  1781. #endif
  1782. xy_travel_speed = code_seen('S') ? code_value_long() : XY_TRAVEL_SPEED;
  1783. int left_probe_bed_position = code_seen('L') ? code_value_long() : LEFT_PROBE_BED_POSITION,
  1784. right_probe_bed_position = code_seen('R') ? code_value_long() : RIGHT_PROBE_BED_POSITION,
  1785. front_probe_bed_position = code_seen('F') ? code_value_long() : FRONT_PROBE_BED_POSITION,
  1786. back_probe_bed_position = code_seen('B') ? code_value_long() : BACK_PROBE_BED_POSITION;
  1787. bool left_out_l = left_probe_bed_position < MIN_PROBE_X,
  1788. left_out = left_out_l || left_probe_bed_position > right_probe_bed_position - MIN_PROBE_EDGE,
  1789. right_out_r = right_probe_bed_position > MAX_PROBE_X,
  1790. right_out = right_out_r || right_probe_bed_position < left_probe_bed_position + MIN_PROBE_EDGE,
  1791. front_out_f = front_probe_bed_position < MIN_PROBE_Y,
  1792. front_out = front_out_f || front_probe_bed_position > back_probe_bed_position - MIN_PROBE_EDGE,
  1793. back_out_b = back_probe_bed_position > MAX_PROBE_Y,
  1794. back_out = back_out_b || back_probe_bed_position < front_probe_bed_position + MIN_PROBE_EDGE;
  1795. if (left_out || right_out || front_out || back_out) {
  1796. if (left_out) {
  1797. SERIAL_PROTOCOLPGM("?Probe (L)eft position out of range.\n");
  1798. left_probe_bed_position = left_out_l ? MIN_PROBE_X : right_probe_bed_position - MIN_PROBE_EDGE;
  1799. }
  1800. if (right_out) {
  1801. SERIAL_PROTOCOLPGM("?Probe (R)ight position out of range.\n");
  1802. right_probe_bed_position = right_out_r ? MAX_PROBE_X : left_probe_bed_position + MIN_PROBE_EDGE;
  1803. }
  1804. if (front_out) {
  1805. SERIAL_PROTOCOLPGM("?Probe (F)ront position out of range.\n");
  1806. front_probe_bed_position = front_out_f ? MIN_PROBE_Y : back_probe_bed_position - MIN_PROBE_EDGE;
  1807. }
  1808. if (back_out) {
  1809. SERIAL_PROTOCOLPGM("?Probe (B)ack position out of range.\n");
  1810. back_probe_bed_position = back_out_b ? MAX_PROBE_Y : front_probe_bed_position + MIN_PROBE_EDGE;
  1811. }
  1812. return;
  1813. }
  1814. #endif // AUTO_BED_LEVELING_GRID
  1815. #ifdef Z_PROBE_SLED
  1816. dock_sled(false); // engage (un-dock) the probe
  1817. #elif not defined(SERVO_ENDSTOPS)
  1818. engage_z_probe();
  1819. #endif
  1820. st_synchronize();
  1821. #ifdef DELTA
  1822. reset_bed_level();
  1823. #else
  1824. // make sure the bed_level_rotation_matrix is identity or the planner will get it incorectly
  1825. //vector_3 corrected_position = plan_get_position_mm();
  1826. //corrected_position.debug("position before G29");
  1827. plan_bed_level_matrix.set_to_identity();
  1828. vector_3 uncorrected_position = plan_get_position();
  1829. //uncorrected_position.debug("position during G29");
  1830. current_position[X_AXIS] = uncorrected_position.x;
  1831. current_position[Y_AXIS] = uncorrected_position.y;
  1832. current_position[Z_AXIS] = uncorrected_position.z;
  1833. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1834. #endif
  1835. setup_for_endstop_move();
  1836. feedrate = homing_feedrate[Z_AXIS];
  1837. #ifdef AUTO_BED_LEVELING_GRID
  1838. // probe at the points of a lattice grid
  1839. const int xGridSpacing = (right_probe_bed_position - left_probe_bed_position) / (auto_bed_leveling_grid_points-1);
  1840. const int yGridSpacing = (back_probe_bed_position - front_probe_bed_position) / (auto_bed_leveling_grid_points-1);
  1841. #ifndef DELTA
  1842. // solve the plane equation ax + by + d = z
  1843. // A is the matrix with rows [x y 1] for all the probed points
  1844. // B is the vector of the Z positions
  1845. // the normal vector to the plane is formed by the coefficients of the plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  1846. // so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  1847. int abl2 = auto_bed_leveling_grid_points * auto_bed_leveling_grid_points;
  1848. double eqnAMatrix[abl2 * 3], // "A" matrix of the linear system of equations
  1849. eqnBVector[abl2], // "B" vector of Z points
  1850. mean = 0.0;
  1851. #else
  1852. delta_grid_spacing[0] = xGridSpacing;
  1853. delta_grid_spacing[1] = yGridSpacing;
  1854. float z_offset = Z_PROBE_OFFSET_FROM_EXTRUDER;
  1855. if (code_seen(axis_codes[Z_AXIS])) {
  1856. z_offset += code_value();
  1857. }
  1858. #endif
  1859. int probePointCounter = 0;
  1860. bool zig = true;
  1861. for (int yCount=0; yCount < auto_bed_leveling_grid_points; yCount++)
  1862. {
  1863. double yProbe = front_probe_bed_position + yGridSpacing * yCount;
  1864. int xStart, xStop, xInc;
  1865. if (zig)
  1866. {
  1867. xStart = 0;
  1868. xStop = auto_bed_leveling_grid_points;
  1869. xInc = 1;
  1870. zig = false;
  1871. }
  1872. else
  1873. {
  1874. xStart = auto_bed_leveling_grid_points - 1;
  1875. xStop = -1;
  1876. xInc = -1;
  1877. zig = true;
  1878. }
  1879. #ifndef DELTA
  1880. // If topo_flag is set then don't zig-zag. Just scan in one direction.
  1881. // This gets the probe points in more readable order.
  1882. if (!topo_flag) zig = !zig;
  1883. #endif
  1884. for (int xCount=xStart; xCount != xStop; xCount += xInc)
  1885. {
  1886. double xProbe = left_probe_bed_position + xGridSpacing * xCount;
  1887. // raise extruder
  1888. float measured_z,
  1889. z_before = probePointCounter == 0 ? Z_RAISE_BEFORE_PROBING : current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS;
  1890. #ifdef DELTA
  1891. // Avoid probing the corners (outside the round or hexagon print surface) on a delta printer.
  1892. float distance_from_center = sqrt(xProbe*xProbe + yProbe*yProbe);
  1893. if (distance_from_center > DELTA_PROBABLE_RADIUS)
  1894. continue;
  1895. #endif //DELTA
  1896. // Enhanced G29 - Do not retract servo between probes
  1897. ProbeAction act;
  1898. if (enhanced_g29) {
  1899. if (yProbe == front_probe_bed_position && xCount == 0)
  1900. act = ProbeEngage;
  1901. else if (yProbe == front_probe_bed_position + (yGridSpacing * (auto_bed_leveling_grid_points - 1)) && xCount == auto_bed_leveling_grid_points - 1)
  1902. act = ProbeRetract;
  1903. else
  1904. act = ProbeStay;
  1905. }
  1906. else
  1907. act = ProbeEngageRetract;
  1908. measured_z = probe_pt(xProbe, yProbe, z_before, act, verbose_level);
  1909. #ifndef DELTA
  1910. mean += measured_z;
  1911. eqnBVector[probePointCounter] = measured_z;
  1912. eqnAMatrix[probePointCounter + 0 * abl2] = xProbe;
  1913. eqnAMatrix[probePointCounter + 1 * abl2] = yProbe;
  1914. eqnAMatrix[probePointCounter + 2 * abl2] = 1;
  1915. #else
  1916. bed_level[xCount][yCount] = measured_z + z_offset;
  1917. #endif
  1918. probePointCounter++;
  1919. } //xProbe
  1920. } //yProbe
  1921. clean_up_after_endstop_move();
  1922. #ifndef DELTA
  1923. // solve lsq problem
  1924. double *plane_equation_coefficients = qr_solve(abl2, 3, eqnAMatrix, eqnBVector);
  1925. mean /= abl2;
  1926. if (verbose_level) {
  1927. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  1928. SERIAL_PROTOCOL_F(plane_equation_coefficients[0], 8);
  1929. SERIAL_PROTOCOLPGM(" b: ");
  1930. SERIAL_PROTOCOL_F(plane_equation_coefficients[1], 8);
  1931. SERIAL_PROTOCOLPGM(" d: ");
  1932. SERIAL_PROTOCOL_F(plane_equation_coefficients[2], 8);
  1933. SERIAL_EOL;
  1934. if (verbose_level > 2) {
  1935. SERIAL_PROTOCOLPGM("Mean of sampled points: ");
  1936. SERIAL_PROTOCOL_F(mean, 8);
  1937. SERIAL_EOL;
  1938. }
  1939. }
  1940. if (topo_flag) {
  1941. int xx, yy;
  1942. SERIAL_PROTOCOLPGM(" \nBed Height Topography: \n");
  1943. #if TOPO_ORIGIN == OriginFrontLeft
  1944. SERIAL_PROTOCOLPGM("+-----------+\n");
  1945. SERIAL_PROTOCOLPGM("|...Back....|\n");
  1946. SERIAL_PROTOCOLPGM("|Left..Right|\n");
  1947. SERIAL_PROTOCOLPGM("|...Front...|\n");
  1948. SERIAL_PROTOCOLPGM("+-----------+\n");
  1949. for (yy = auto_bed_leveling_grid_points - 1; yy >= 0; yy--)
  1950. #else
  1951. for (yy = 0; yy < auto_bed_leveling_grid_points; yy++)
  1952. #endif
  1953. {
  1954. #if TOPO_ORIGIN == OriginBackRight
  1955. for (xx = 0; xx < auto_bed_leveling_grid_points; xx++)
  1956. #else
  1957. for (xx = auto_bed_leveling_grid_points - 1; xx >= 0; xx--)
  1958. #endif
  1959. {
  1960. int ind =
  1961. #if TOPO_ORIGIN == OriginBackRight || TOPO_ORIGIN == OriginFrontLeft
  1962. yy * auto_bed_leveling_grid_points + xx
  1963. #elif TOPO_ORIGIN == OriginBackLeft
  1964. xx * auto_bed_leveling_grid_points + yy
  1965. #elif TOPO_ORIGIN == OriginFrontRight
  1966. abl2 - xx * auto_bed_leveling_grid_points - yy - 1
  1967. #endif
  1968. ;
  1969. float diff = eqnBVector[ind] - mean;
  1970. if (diff >= 0.0)
  1971. SERIAL_PROTOCOLPGM(" +"); // Include + for column alignment
  1972. else
  1973. SERIAL_PROTOCOLPGM(" ");
  1974. SERIAL_PROTOCOL_F(diff, 5);
  1975. } // xx
  1976. SERIAL_EOL;
  1977. } // yy
  1978. SERIAL_EOL;
  1979. } //topo_flag
  1980. set_bed_level_equation_lsq(plane_equation_coefficients);
  1981. free(plane_equation_coefficients);
  1982. #else
  1983. extrapolate_unprobed_bed_level();
  1984. print_bed_level();
  1985. #endif
  1986. #else // !AUTO_BED_LEVELING_GRID
  1987. // Probe at 3 arbitrary points
  1988. float z_at_pt_1, z_at_pt_2, z_at_pt_3;
  1989. if (enhanced_g29) {
  1990. // Basic Enhanced G29
  1991. z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING, ProbeEngage, verbose_level);
  1992. z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS, ProbeStay, verbose_level);
  1993. z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS, ProbeRetract, verbose_level);
  1994. }
  1995. else {
  1996. z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING, verbose_level);
  1997. z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS, verbose_level);
  1998. z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS, verbose_level);
  1999. }
  2000. clean_up_after_endstop_move();
  2001. set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
  2002. #endif // !AUTO_BED_LEVELING_GRID
  2003. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], Z_RAISE_AFTER_PROBING);
  2004. st_synchronize();
  2005. #ifndef DELTA
  2006. if (verbose_level > 0)
  2007. plan_bed_level_matrix.debug(" \n\nBed Level Correction Matrix:");
  2008. // Correct the Z height difference from z-probe position and hotend tip position.
  2009. // The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
  2010. // When the bed is uneven, this height must be corrected.
  2011. real_z = float(st_get_position(Z_AXIS)) / axis_steps_per_unit[Z_AXIS]; //get the real Z (since the auto bed leveling is already correcting the plane)
  2012. x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER;
  2013. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER;
  2014. z_tmp = current_position[Z_AXIS];
  2015. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); //Apply the correction sending the probe offset
  2016. current_position[Z_AXIS] = z_tmp - real_z + current_position[Z_AXIS]; //The difference is added to current position and sent to planner.
  2017. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2018. #endif
  2019. #ifdef Z_PROBE_SLED
  2020. dock_sled(true, -SLED_DOCKING_OFFSET); // dock the probe, correcting for over-travel
  2021. #elif not defined(SERVO_ENDSTOPS)
  2022. retract_z_probe();
  2023. #endif
  2024. #ifdef Z_PROBE_END_SCRIPT
  2025. enquecommands_P(PSTR(Z_PROBE_END_SCRIPT));
  2026. st_synchronize();
  2027. #endif
  2028. }
  2029. #ifndef Z_PROBE_SLED
  2030. inline void gcode_G30() {
  2031. engage_z_probe(); // Engage Z Servo endstop if available
  2032. st_synchronize();
  2033. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  2034. setup_for_endstop_move();
  2035. feedrate = homing_feedrate[Z_AXIS];
  2036. run_z_probe();
  2037. SERIAL_PROTOCOLPGM(MSG_BED);
  2038. SERIAL_PROTOCOLPGM(" X: ");
  2039. SERIAL_PROTOCOL(current_position[X_AXIS] + 0.0001);
  2040. SERIAL_PROTOCOLPGM(" Y: ");
  2041. SERIAL_PROTOCOL(current_position[Y_AXIS] + 0.0001);
  2042. SERIAL_PROTOCOLPGM(" Z: ");
  2043. SERIAL_PROTOCOL(current_position[Z_AXIS] + 0.0001);
  2044. SERIAL_EOL;
  2045. clean_up_after_endstop_move();
  2046. retract_z_probe(); // Retract Z Servo endstop if available
  2047. }
  2048. #endif //!Z_PROBE_SLED
  2049. #endif //ENABLE_AUTO_BED_LEVELING
  2050. /**
  2051. * G92: Set current position to given X Y Z E
  2052. */
  2053. inline void gcode_G92() {
  2054. if (!code_seen(axis_codes[E_AXIS]))
  2055. st_synchronize();
  2056. for (int i=0;i<NUM_AXIS;i++) {
  2057. if (code_seen(axis_codes[i])) {
  2058. if (i == E_AXIS) {
  2059. current_position[i] = code_value();
  2060. plan_set_e_position(current_position[E_AXIS]);
  2061. }
  2062. else {
  2063. current_position[i] = code_value() +
  2064. #ifdef SCARA
  2065. ((i != X_AXIS && i != Y_AXIS) ? add_homing[i] : 0)
  2066. #else
  2067. add_homing[i]
  2068. #endif
  2069. ;
  2070. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2071. }
  2072. }
  2073. }
  2074. }
  2075. #ifdef ULTIPANEL
  2076. /**
  2077. * M0: // M0 - Unconditional stop - Wait for user button press on LCD
  2078. * M1: // M1 - Conditional stop - Wait for user button press on LCD
  2079. */
  2080. inline void gcode_M0_M1() {
  2081. char *src = strchr_pointer + 2;
  2082. unsigned long codenum = 0;
  2083. bool hasP = false, hasS = false;
  2084. if (code_seen('P')) {
  2085. codenum = code_value(); // milliseconds to wait
  2086. hasP = codenum > 0;
  2087. }
  2088. if (code_seen('S')) {
  2089. codenum = code_value() * 1000; // seconds to wait
  2090. hasS = codenum > 0;
  2091. }
  2092. char* starpos = strchr(src, '*');
  2093. if (starpos != NULL) *(starpos) = '\0';
  2094. while (*src == ' ') ++src;
  2095. if (!hasP && !hasS && *src != '\0')
  2096. lcd_setstatus(src);
  2097. else
  2098. LCD_MESSAGEPGM(MSG_USERWAIT);
  2099. lcd_ignore_click();
  2100. st_synchronize();
  2101. previous_millis_cmd = millis();
  2102. if (codenum > 0) {
  2103. codenum += previous_millis_cmd; // keep track of when we started waiting
  2104. while(millis() < codenum && !lcd_clicked()) {
  2105. manage_heater();
  2106. manage_inactivity();
  2107. lcd_update();
  2108. }
  2109. lcd_ignore_click(false);
  2110. }
  2111. else {
  2112. if (!lcd_detected()) return;
  2113. while (!lcd_clicked()) {
  2114. manage_heater();
  2115. manage_inactivity();
  2116. lcd_update();
  2117. }
  2118. }
  2119. if (IS_SD_PRINTING)
  2120. LCD_MESSAGEPGM(MSG_RESUMING);
  2121. else
  2122. LCD_MESSAGEPGM(WELCOME_MSG);
  2123. }
  2124. #endif // ULTIPANEL
  2125. /**
  2126. * M17: Enable power on all stepper motors
  2127. */
  2128. inline void gcode_M17() {
  2129. LCD_MESSAGEPGM(MSG_NO_MOVE);
  2130. enable_x();
  2131. enable_y();
  2132. enable_z();
  2133. enable_e0();
  2134. enable_e1();
  2135. enable_e2();
  2136. enable_e3();
  2137. }
  2138. #ifdef SDSUPPORT
  2139. /**
  2140. * M20: List SD card to serial output
  2141. */
  2142. inline void gcode_M20() {
  2143. SERIAL_PROTOCOLLNPGM(MSG_BEGIN_FILE_LIST);
  2144. card.ls();
  2145. SERIAL_PROTOCOLLNPGM(MSG_END_FILE_LIST);
  2146. }
  2147. /**
  2148. * M21: Init SD Card
  2149. */
  2150. inline void gcode_M21() {
  2151. card.initsd();
  2152. }
  2153. /**
  2154. * M22: Release SD Card
  2155. */
  2156. inline void gcode_M22() {
  2157. card.release();
  2158. }
  2159. /**
  2160. * M23: Select a file
  2161. */
  2162. inline void gcode_M23() {
  2163. char* codepos = strchr_pointer + 4;
  2164. char* starpos = strchr(codepos, '*');
  2165. if (starpos) *starpos = '\0';
  2166. card.openFile(codepos, true);
  2167. }
  2168. /**
  2169. * M24: Start SD Print
  2170. */
  2171. inline void gcode_M24() {
  2172. card.startFileprint();
  2173. starttime = millis();
  2174. }
  2175. /**
  2176. * M25: Pause SD Print
  2177. */
  2178. inline void gcode_M25() {
  2179. card.pauseSDPrint();
  2180. }
  2181. /**
  2182. * M26: Set SD Card file index
  2183. */
  2184. inline void gcode_M26() {
  2185. if (card.cardOK && code_seen('S'))
  2186. card.setIndex(code_value_long());
  2187. }
  2188. /**
  2189. * M27: Get SD Card status
  2190. */
  2191. inline void gcode_M27() {
  2192. card.getStatus();
  2193. }
  2194. /**
  2195. * M28: Start SD Write
  2196. */
  2197. inline void gcode_M28() {
  2198. char* codepos = strchr_pointer + 4;
  2199. char* starpos = strchr(strchr_pointer + 4, '*');
  2200. if (starpos) {
  2201. char* npos = strchr(cmdbuffer[bufindr], 'N');
  2202. strchr_pointer = strchr(npos, ' ') + 1;
  2203. *(starpos) = '\0';
  2204. }
  2205. card.openFile(strchr_pointer + 4, false);
  2206. }
  2207. /**
  2208. * M29: Stop SD Write
  2209. * Processed in write to file routine above
  2210. */
  2211. inline void gcode_M29() {
  2212. // card.saving = false;
  2213. }
  2214. /**
  2215. * M30 <filename>: Delete SD Card file
  2216. */
  2217. inline void gcode_M30() {
  2218. if (card.cardOK) {
  2219. card.closefile();
  2220. char* starpos = strchr(strchr_pointer + 4, '*');
  2221. if (starpos) {
  2222. char* npos = strchr(cmdbuffer[bufindr], 'N');
  2223. strchr_pointer = strchr(npos, ' ') + 1;
  2224. *(starpos) = '\0';
  2225. }
  2226. card.removeFile(strchr_pointer + 4);
  2227. }
  2228. }
  2229. #endif
  2230. /**
  2231. * M31: Get the time since the start of SD Print (or last M109)
  2232. */
  2233. inline void gcode_M31() {
  2234. stoptime = millis();
  2235. unsigned long t = (stoptime - starttime) / 1000;
  2236. int min = t / 60, sec = t % 60;
  2237. char time[30];
  2238. sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
  2239. SERIAL_ECHO_START;
  2240. SERIAL_ECHOLN(time);
  2241. lcd_setstatus(time);
  2242. autotempShutdown();
  2243. }
  2244. #ifdef SDSUPPORT
  2245. /**
  2246. * M32: Select file and start SD Print
  2247. */
  2248. inline void gcode_M32() {
  2249. if (card.sdprinting)
  2250. st_synchronize();
  2251. char* codepos = strchr_pointer + 4;
  2252. char* namestartpos = strchr(codepos, '!'); //find ! to indicate filename string start.
  2253. if (! namestartpos)
  2254. namestartpos = codepos; //default name position, 4 letters after the M
  2255. else
  2256. namestartpos++; //to skip the '!'
  2257. char* starpos = strchr(codepos, '*');
  2258. if (starpos) *(starpos) = '\0';
  2259. bool call_procedure = code_seen('P') && (strchr_pointer < namestartpos);
  2260. if (card.cardOK) {
  2261. card.openFile(namestartpos, true, !call_procedure);
  2262. if (code_seen('S') && strchr_pointer < namestartpos) // "S" (must occur _before_ the filename!)
  2263. card.setIndex(code_value_long());
  2264. card.startFileprint();
  2265. if (!call_procedure)
  2266. starttime = millis(); //procedure calls count as normal print time.
  2267. }
  2268. }
  2269. /**
  2270. * M928: Start SD Write
  2271. */
  2272. inline void gcode_M928() {
  2273. char* starpos = strchr(strchr_pointer + 5, '*');
  2274. if (starpos) {
  2275. char* npos = strchr(cmdbuffer[bufindr], 'N');
  2276. strchr_pointer = strchr(npos, ' ') + 1;
  2277. *(starpos) = '\0';
  2278. }
  2279. card.openLogFile(strchr_pointer + 5);
  2280. }
  2281. #endif // SDSUPPORT
  2282. /**
  2283. * M42: Change pin status via GCode
  2284. */
  2285. inline void gcode_M42() {
  2286. if (code_seen('S')) {
  2287. int pin_status = code_value(),
  2288. pin_number = LED_PIN;
  2289. if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
  2290. pin_number = code_value();
  2291. for (int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins) / sizeof(*sensitive_pins)); i++) {
  2292. if (sensitive_pins[i] == pin_number) {
  2293. pin_number = -1;
  2294. break;
  2295. }
  2296. }
  2297. #if defined(FAN_PIN) && FAN_PIN > -1
  2298. if (pin_number == FAN_PIN) fanSpeed = pin_status;
  2299. #endif
  2300. if (pin_number > -1) {
  2301. pinMode(pin_number, OUTPUT);
  2302. digitalWrite(pin_number, pin_status);
  2303. analogWrite(pin_number, pin_status);
  2304. }
  2305. } // code_seen('S')
  2306. }
  2307. #if defined(ENABLE_AUTO_BED_LEVELING) && defined(Z_PROBE_REPEATABILITY_TEST)
  2308. #if Z_MIN_PIN == -1
  2309. #error "You must have a Z_MIN endstop in order to enable calculation of Z-Probe repeatability."
  2310. #endif
  2311. /**
  2312. * M48: Z-Probe repeatability measurement function.
  2313. *
  2314. * Usage:
  2315. * M48 <n#> <X#> <Y#> <V#> <E> <L#>
  2316. * n = Number of samples (4-50, default 10)
  2317. * X = Sample X position
  2318. * Y = Sample Y position
  2319. * V = Verbose level (0-4, default=1)
  2320. * E = Engage probe for each reading
  2321. * L = Number of legs of movement before probe
  2322. *
  2323. * This function assumes the bed has been homed. Specificaly, that a G28 command
  2324. * as been issued prior to invoking the M48 Z-Probe repeatability measurement function.
  2325. * Any information generated by a prior G29 Bed leveling command will be lost and need to be
  2326. * regenerated.
  2327. *
  2328. * The number of samples will default to 10 if not specified. You can use upper or lower case
  2329. * letters for any of the options EXCEPT n. n must be in lower case because Marlin uses a capital
  2330. * N for its communication protocol and will get horribly confused if you send it a capital N.
  2331. */
  2332. inline void gcode_M48() {
  2333. double sum = 0.0, mean = 0.0, sigma = 0.0, sample_set[50];
  2334. int verbose_level = 1, n = 0, j, n_samples = 10, n_legs = 0, engage_probe_for_each_reading = 0;
  2335. double X_current, Y_current, Z_current;
  2336. double X_probe_location, Y_probe_location, Z_start_location, ext_position;
  2337. if (code_seen('V') || code_seen('v')) {
  2338. verbose_level = code_value();
  2339. if (verbose_level < 0 || verbose_level > 4 ) {
  2340. SERIAL_PROTOCOLPGM("?Verbose Level not plausible (0-4).\n");
  2341. return;
  2342. }
  2343. }
  2344. if (verbose_level > 0)
  2345. SERIAL_PROTOCOLPGM("M48 Z-Probe Repeatability test\n");
  2346. if (code_seen('n')) {
  2347. n_samples = code_value();
  2348. if (n_samples < 4 || n_samples > 50) {
  2349. SERIAL_PROTOCOLPGM("?Specified sample size not plausible (4-50).\n");
  2350. return;
  2351. }
  2352. }
  2353. X_current = X_probe_location = st_get_position_mm(X_AXIS);
  2354. Y_current = Y_probe_location = st_get_position_mm(Y_AXIS);
  2355. Z_current = st_get_position_mm(Z_AXIS);
  2356. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  2357. ext_position = st_get_position_mm(E_AXIS);
  2358. if (code_seen('E') || code_seen('e'))
  2359. engage_probe_for_each_reading++;
  2360. if (code_seen('X') || code_seen('x')) {
  2361. X_probe_location = code_value() - X_PROBE_OFFSET_FROM_EXTRUDER;
  2362. if (X_probe_location < X_MIN_POS || X_probe_location > X_MAX_POS) {
  2363. SERIAL_PROTOCOLPGM("?Specified X position out of range.\n");
  2364. return;
  2365. }
  2366. }
  2367. if (code_seen('Y') || code_seen('y')) {
  2368. Y_probe_location = code_value() - Y_PROBE_OFFSET_FROM_EXTRUDER;
  2369. if (Y_probe_location < Y_MIN_POS || Y_probe_location > Y_MAX_POS) {
  2370. SERIAL_PROTOCOLPGM("?Specified Y position out of range.\n");
  2371. return;
  2372. }
  2373. }
  2374. if (code_seen('L') || code_seen('l')) {
  2375. n_legs = code_value();
  2376. if (n_legs == 1) n_legs = 2;
  2377. if (n_legs < 0 || n_legs > 15) {
  2378. SERIAL_PROTOCOLPGM("?Specified number of legs in movement not plausible (0-15).\n");
  2379. return;
  2380. }
  2381. }
  2382. //
  2383. // Do all the preliminary setup work. First raise the probe.
  2384. //
  2385. st_synchronize();
  2386. plan_bed_level_matrix.set_to_identity();
  2387. plan_buffer_line(X_current, Y_current, Z_start_location,
  2388. ext_position,
  2389. homing_feedrate[Z_AXIS] / 60,
  2390. active_extruder);
  2391. st_synchronize();
  2392. //
  2393. // Now get everything to the specified probe point So we can safely do a probe to
  2394. // get us close to the bed. If the Z-Axis is far from the bed, we don't want to
  2395. // use that as a starting point for each probe.
  2396. //
  2397. if (verbose_level > 2)
  2398. SERIAL_PROTOCOL("Positioning probe for the test.\n");
  2399. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  2400. ext_position,
  2401. homing_feedrate[X_AXIS]/60,
  2402. active_extruder);
  2403. st_synchronize();
  2404. current_position[X_AXIS] = X_current = st_get_position_mm(X_AXIS);
  2405. current_position[Y_AXIS] = Y_current = st_get_position_mm(Y_AXIS);
  2406. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  2407. current_position[E_AXIS] = ext_position = st_get_position_mm(E_AXIS);
  2408. //
  2409. // OK, do the inital probe to get us close to the bed.
  2410. // Then retrace the right amount and use that in subsequent probes
  2411. //
  2412. engage_z_probe();
  2413. setup_for_endstop_move();
  2414. run_z_probe();
  2415. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  2416. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  2417. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  2418. ext_position,
  2419. homing_feedrate[X_AXIS]/60,
  2420. active_extruder);
  2421. st_synchronize();
  2422. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  2423. if (engage_probe_for_each_reading) retract_z_probe();
  2424. for (n=0; n < n_samples; n++) {
  2425. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Make sure we are at the probe location
  2426. if (n_legs) {
  2427. double radius=0.0, theta=0.0, x_sweep, y_sweep;
  2428. int l;
  2429. int rotational_direction = (unsigned long) millis() & 0x0001; // clockwise or counter clockwise
  2430. radius = (unsigned long)millis() % (long)(X_MAX_LENGTH / 4); // limit how far out to go
  2431. theta = (float)((unsigned long)millis() % 360L) / (360. / (2 * 3.1415926)); // turn into radians
  2432. //SERIAL_ECHOPAIR("starting radius: ",radius);
  2433. //SERIAL_ECHOPAIR(" theta: ",theta);
  2434. //SERIAL_ECHOPAIR(" direction: ",rotational_direction);
  2435. //SERIAL_PROTOCOLLNPGM("");
  2436. float dir = rotational_direction ? 1 : -1;
  2437. for (l = 0; l < n_legs - 1; l++) {
  2438. theta += dir * (float)((unsigned long)millis() % 20L) / (360.0/(2*3.1415926)); // turn into radians
  2439. radius += (float)(((long)((unsigned long) millis() % 10L)) - 5L);
  2440. if (radius < 0.0) radius = -radius;
  2441. X_current = X_probe_location + cos(theta) * radius;
  2442. Y_current = Y_probe_location + sin(theta) * radius;
  2443. // Make sure our X & Y are sane
  2444. X_current = constrain(X_current, X_MIN_POS, X_MAX_POS);
  2445. Y_current = constrain(Y_current, Y_MIN_POS, Y_MAX_POS);
  2446. if (verbose_level > 3) {
  2447. SERIAL_ECHOPAIR("x: ", X_current);
  2448. SERIAL_ECHOPAIR("y: ", Y_current);
  2449. SERIAL_PROTOCOLLNPGM("");
  2450. }
  2451. do_blocking_move_to( X_current, Y_current, Z_current );
  2452. }
  2453. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Go back to the probe location
  2454. }
  2455. if (engage_probe_for_each_reading) {
  2456. engage_z_probe();
  2457. delay(1000);
  2458. }
  2459. setup_for_endstop_move();
  2460. run_z_probe();
  2461. sample_set[n] = current_position[Z_AXIS];
  2462. //
  2463. // Get the current mean for the data points we have so far
  2464. //
  2465. sum = 0.0;
  2466. for (j=0; j<=n; j++) sum += sample_set[j];
  2467. mean = sum / (double (n+1));
  2468. //
  2469. // Now, use that mean to calculate the standard deviation for the
  2470. // data points we have so far
  2471. //
  2472. sum = 0.0;
  2473. for (j=0; j<=n; j++) sum += (sample_set[j]-mean) * (sample_set[j]-mean);
  2474. sigma = sqrt( sum / (double (n+1)) );
  2475. if (verbose_level > 1) {
  2476. SERIAL_PROTOCOL(n+1);
  2477. SERIAL_PROTOCOL(" of ");
  2478. SERIAL_PROTOCOL(n_samples);
  2479. SERIAL_PROTOCOLPGM(" z: ");
  2480. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
  2481. }
  2482. if (verbose_level > 2) {
  2483. SERIAL_PROTOCOL(" mean: ");
  2484. SERIAL_PROTOCOL_F(mean,6);
  2485. SERIAL_PROTOCOL(" sigma: ");
  2486. SERIAL_PROTOCOL_F(sigma,6);
  2487. }
  2488. if (verbose_level > 0) SERIAL_EOL;
  2489. plan_buffer_line(X_probe_location, Y_probe_location, Z_start_location,
  2490. current_position[E_AXIS], homing_feedrate[Z_AXIS]/60, active_extruder);
  2491. st_synchronize();
  2492. if (engage_probe_for_each_reading) {
  2493. retract_z_probe();
  2494. delay(1000);
  2495. }
  2496. }
  2497. retract_z_probe();
  2498. delay(1000);
  2499. clean_up_after_endstop_move();
  2500. // enable_endstops(true);
  2501. if (verbose_level > 0) {
  2502. SERIAL_PROTOCOLPGM("Mean: ");
  2503. SERIAL_PROTOCOL_F(mean, 6);
  2504. SERIAL_EOL;
  2505. }
  2506. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  2507. SERIAL_PROTOCOL_F(sigma, 6);
  2508. SERIAL_EOL; SERIAL_EOL;
  2509. }
  2510. #endif // ENABLE_AUTO_BED_LEVELING && Z_PROBE_REPEATABILITY_TEST
  2511. /**
  2512. * M104: Set hot end temperature
  2513. */
  2514. inline void gcode_M104() {
  2515. if (setTargetedHotend(104)) return;
  2516. if (code_seen('S')) setTargetHotend(code_value(), tmp_extruder);
  2517. #ifdef DUAL_X_CARRIAGE
  2518. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && tmp_extruder == 0)
  2519. setTargetHotend1(code_value() == 0.0 ? 0.0 : code_value() + duplicate_extruder_temp_offset);
  2520. #endif
  2521. setWatch();
  2522. }
  2523. /**
  2524. * M105: Read hot end and bed temperature
  2525. */
  2526. inline void gcode_M105() {
  2527. if (setTargetedHotend(105)) return;
  2528. #if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
  2529. SERIAL_PROTOCOLPGM("ok T:");
  2530. SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
  2531. SERIAL_PROTOCOLPGM(" /");
  2532. SERIAL_PROTOCOL_F(degTargetHotend(tmp_extruder),1);
  2533. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  2534. SERIAL_PROTOCOLPGM(" B:");
  2535. SERIAL_PROTOCOL_F(degBed(),1);
  2536. SERIAL_PROTOCOLPGM(" /");
  2537. SERIAL_PROTOCOL_F(degTargetBed(),1);
  2538. #endif //TEMP_BED_PIN
  2539. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  2540. SERIAL_PROTOCOLPGM(" T");
  2541. SERIAL_PROTOCOL(cur_extruder);
  2542. SERIAL_PROTOCOLPGM(":");
  2543. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  2544. SERIAL_PROTOCOLPGM(" /");
  2545. SERIAL_PROTOCOL_F(degTargetHotend(cur_extruder),1);
  2546. }
  2547. #else
  2548. SERIAL_ERROR_START;
  2549. SERIAL_ERRORLNPGM(MSG_ERR_NO_THERMISTORS);
  2550. #endif
  2551. SERIAL_PROTOCOLPGM(" @:");
  2552. #ifdef EXTRUDER_WATTS
  2553. SERIAL_PROTOCOL((EXTRUDER_WATTS * getHeaterPower(tmp_extruder))/127);
  2554. SERIAL_PROTOCOLPGM("W");
  2555. #else
  2556. SERIAL_PROTOCOL(getHeaterPower(tmp_extruder));
  2557. #endif
  2558. SERIAL_PROTOCOLPGM(" B@:");
  2559. #ifdef BED_WATTS
  2560. SERIAL_PROTOCOL((BED_WATTS * getHeaterPower(-1))/127);
  2561. SERIAL_PROTOCOLPGM("W");
  2562. #else
  2563. SERIAL_PROTOCOL(getHeaterPower(-1));
  2564. #endif
  2565. #ifdef SHOW_TEMP_ADC_VALUES
  2566. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  2567. SERIAL_PROTOCOLPGM(" ADC B:");
  2568. SERIAL_PROTOCOL_F(degBed(),1);
  2569. SERIAL_PROTOCOLPGM("C->");
  2570. SERIAL_PROTOCOL_F(rawBedTemp()/OVERSAMPLENR,0);
  2571. #endif
  2572. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  2573. SERIAL_PROTOCOLPGM(" T");
  2574. SERIAL_PROTOCOL(cur_extruder);
  2575. SERIAL_PROTOCOLPGM(":");
  2576. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  2577. SERIAL_PROTOCOLPGM("C->");
  2578. SERIAL_PROTOCOL_F(rawHotendTemp(cur_extruder)/OVERSAMPLENR,0);
  2579. }
  2580. #endif
  2581. SERIAL_PROTOCOLLN("");
  2582. }
  2583. #if defined(FAN_PIN) && FAN_PIN > -1
  2584. /**
  2585. * M106: Set Fan Speed
  2586. */
  2587. inline void gcode_M106() { fanSpeed = code_seen('S') ? constrain(code_value(), 0, 255) : 255; }
  2588. /**
  2589. * M107: Fan Off
  2590. */
  2591. inline void gcode_M107() { fanSpeed = 0; }
  2592. #endif //FAN_PIN
  2593. /**
  2594. * M109: Wait for extruder(s) to reach temperature
  2595. */
  2596. inline void gcode_M109() {
  2597. if (setTargetedHotend(109)) return;
  2598. LCD_MESSAGEPGM(MSG_HEATING);
  2599. CooldownNoWait = code_seen('S');
  2600. if (CooldownNoWait || code_seen('R')) {
  2601. setTargetHotend(code_value(), tmp_extruder);
  2602. #ifdef DUAL_X_CARRIAGE
  2603. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && tmp_extruder == 0)
  2604. setTargetHotend1(code_value() == 0.0 ? 0.0 : code_value() + duplicate_extruder_temp_offset);
  2605. #endif
  2606. }
  2607. #ifdef AUTOTEMP
  2608. autotemp_enabled = code_seen('F');
  2609. if (autotemp_enabled) autotemp_factor = code_value();
  2610. if (code_seen('S')) autotemp_min = code_value();
  2611. if (code_seen('B')) autotemp_max = code_value();
  2612. #endif
  2613. setWatch();
  2614. unsigned long timetemp = millis();
  2615. /* See if we are heating up or cooling down */
  2616. target_direction = isHeatingHotend(tmp_extruder); // true if heating, false if cooling
  2617. cancel_heatup = false;
  2618. #ifdef TEMP_RESIDENCY_TIME
  2619. long residencyStart = -1;
  2620. /* continue to loop until we have reached the target temp
  2621. _and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
  2622. while((!cancel_heatup)&&((residencyStart == -1) ||
  2623. (residencyStart >= 0 && (((unsigned int) (millis() - residencyStart)) < (TEMP_RESIDENCY_TIME * 1000UL)))) )
  2624. #else
  2625. while ( target_direction ? (isHeatingHotend(tmp_extruder)) : (isCoolingHotend(tmp_extruder)&&(CooldownNoWait==false)) )
  2626. #endif //TEMP_RESIDENCY_TIME
  2627. { // while loop
  2628. if (millis() > timetemp + 1000UL) { //Print temp & remaining time every 1s while waiting
  2629. SERIAL_PROTOCOLPGM("T:");
  2630. SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
  2631. SERIAL_PROTOCOLPGM(" E:");
  2632. SERIAL_PROTOCOL((int)tmp_extruder);
  2633. #ifdef TEMP_RESIDENCY_TIME
  2634. SERIAL_PROTOCOLPGM(" W:");
  2635. if (residencyStart > -1) {
  2636. timetemp = ((TEMP_RESIDENCY_TIME * 1000UL) - (millis() - residencyStart)) / 1000UL;
  2637. SERIAL_PROTOCOLLN( timetemp );
  2638. }
  2639. else {
  2640. SERIAL_PROTOCOLLN( "?" );
  2641. }
  2642. #else
  2643. SERIAL_PROTOCOLLN("");
  2644. #endif
  2645. timetemp = millis();
  2646. }
  2647. manage_heater();
  2648. manage_inactivity();
  2649. lcd_update();
  2650. #ifdef TEMP_RESIDENCY_TIME
  2651. // start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
  2652. // or when current temp falls outside the hysteresis after target temp was reached
  2653. if ((residencyStart == -1 && target_direction && (degHotend(tmp_extruder) >= (degTargetHotend(tmp_extruder)-TEMP_WINDOW))) ||
  2654. (residencyStart == -1 && !target_direction && (degHotend(tmp_extruder) <= (degTargetHotend(tmp_extruder)+TEMP_WINDOW))) ||
  2655. (residencyStart > -1 && labs(degHotend(tmp_extruder) - degTargetHotend(tmp_extruder)) > TEMP_HYSTERESIS) )
  2656. {
  2657. residencyStart = millis();
  2658. }
  2659. #endif //TEMP_RESIDENCY_TIME
  2660. }
  2661. LCD_MESSAGEPGM(MSG_HEATING_COMPLETE);
  2662. starttime = previous_millis_cmd = millis();
  2663. }
  2664. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  2665. /**
  2666. * M190: Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  2667. * Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  2668. */
  2669. inline void gcode_M190() {
  2670. LCD_MESSAGEPGM(MSG_BED_HEATING);
  2671. CooldownNoWait = code_seen('S');
  2672. if (CooldownNoWait || code_seen('R'))
  2673. setTargetBed(code_value());
  2674. unsigned long timetemp = millis();
  2675. cancel_heatup = false;
  2676. target_direction = isHeatingBed(); // true if heating, false if cooling
  2677. while ( (target_direction)&&(!cancel_heatup) ? (isHeatingBed()) : (isCoolingBed()&&(CooldownNoWait==false)) ) {
  2678. unsigned long ms = millis();
  2679. if (ms > timetemp + 1000UL) { //Print Temp Reading every 1 second while heating up.
  2680. timetemp = ms;
  2681. float tt = degHotend(active_extruder);
  2682. SERIAL_PROTOCOLPGM("T:");
  2683. SERIAL_PROTOCOL(tt);
  2684. SERIAL_PROTOCOLPGM(" E:");
  2685. SERIAL_PROTOCOL((int)active_extruder);
  2686. SERIAL_PROTOCOLPGM(" B:");
  2687. SERIAL_PROTOCOL_F(degBed(), 1);
  2688. SERIAL_PROTOCOLLN("");
  2689. }
  2690. manage_heater();
  2691. manage_inactivity();
  2692. lcd_update();
  2693. }
  2694. LCD_MESSAGEPGM(MSG_BED_DONE);
  2695. previous_millis_cmd = millis();
  2696. }
  2697. #endif // TEMP_BED_PIN > -1
  2698. /**
  2699. * M112: Emergency Stop
  2700. */
  2701. inline void gcode_M112() {
  2702. kill();
  2703. }
  2704. #ifdef BARICUDA
  2705. #if defined(HEATER_1_PIN) && HEATER_1_PIN > -1
  2706. /**
  2707. * M126: Heater 1 valve open
  2708. */
  2709. inline void gcode_M126() { ValvePressure = code_seen('S') ? constrain(code_value(), 0, 255) : 255; }
  2710. /**
  2711. * M127: Heater 1 valve close
  2712. */
  2713. inline void gcode_M127() { ValvePressure = 0; }
  2714. #endif
  2715. #if defined(HEATER_2_PIN) && HEATER_2_PIN > -1
  2716. /**
  2717. * M128: Heater 2 valve open
  2718. */
  2719. inline void gcode_M128() { EtoPPressure = code_seen('S') ? constrain(code_value(), 0, 255) : 255; }
  2720. /**
  2721. * M129: Heater 2 valve close
  2722. */
  2723. inline void gcode_M129() { EtoPPressure = 0; }
  2724. #endif
  2725. #endif //BARICUDA
  2726. /**
  2727. * M140: Set bed temperature
  2728. */
  2729. inline void gcode_M140() {
  2730. if (code_seen('S')) setTargetBed(code_value());
  2731. }
  2732. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  2733. /**
  2734. * M80: Turn on Power Supply
  2735. */
  2736. inline void gcode_M80() {
  2737. OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE); //GND
  2738. // If you have a switch on suicide pin, this is useful
  2739. // if you want to start another print with suicide feature after
  2740. // a print without suicide...
  2741. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  2742. OUT_WRITE(SUICIDE_PIN, HIGH);
  2743. #endif
  2744. #ifdef ULTIPANEL
  2745. powersupply = true;
  2746. LCD_MESSAGEPGM(WELCOME_MSG);
  2747. lcd_update();
  2748. #endif
  2749. }
  2750. #endif // PS_ON_PIN
  2751. /**
  2752. * M81: Turn off Power Supply
  2753. */
  2754. inline void gcode_M81() {
  2755. disable_heater();
  2756. st_synchronize();
  2757. disable_e0();
  2758. disable_e1();
  2759. disable_e2();
  2760. disable_e3();
  2761. finishAndDisableSteppers();
  2762. fanSpeed = 0;
  2763. delay(1000); // Wait 1 second before switching off
  2764. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  2765. st_synchronize();
  2766. suicide();
  2767. #elif defined(PS_ON_PIN) && PS_ON_PIN > -1
  2768. OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  2769. #endif
  2770. #ifdef ULTIPANEL
  2771. powersupply = false;
  2772. LCD_MESSAGEPGM(MACHINE_NAME " " MSG_OFF ".");
  2773. lcd_update();
  2774. #endif
  2775. }
  2776. /**
  2777. * M82: Set E codes absolute (default)
  2778. */
  2779. inline void gcode_M82() { axis_relative_modes[E_AXIS] = false; }
  2780. /**
  2781. * M82: Set E codes relative while in Absolute Coordinates (G90) mode
  2782. */
  2783. inline void gcode_M83() { axis_relative_modes[E_AXIS] = true; }
  2784. /**
  2785. * M18, M84: Disable all stepper motors
  2786. */
  2787. inline void gcode_M18_M84() {
  2788. if (code_seen('S')) {
  2789. stepper_inactive_time = code_value() * 1000;
  2790. }
  2791. else {
  2792. bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS]))|| (code_seen(axis_codes[E_AXIS])));
  2793. if (all_axis) {
  2794. st_synchronize();
  2795. disable_e0();
  2796. disable_e1();
  2797. disable_e2();
  2798. disable_e3();
  2799. finishAndDisableSteppers();
  2800. }
  2801. else {
  2802. st_synchronize();
  2803. if (code_seen('X')) disable_x();
  2804. if (code_seen('Y')) disable_y();
  2805. if (code_seen('Z')) disable_z();
  2806. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  2807. if (code_seen('E')) {
  2808. disable_e0();
  2809. disable_e1();
  2810. disable_e2();
  2811. disable_e3();
  2812. }
  2813. #endif
  2814. }
  2815. }
  2816. }
  2817. /**
  2818. * M85: Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  2819. */
  2820. inline void gcode_M85() {
  2821. if (code_seen('S')) max_inactive_time = code_value() * 1000;
  2822. }
  2823. /**
  2824. * M92: Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  2825. */
  2826. inline void gcode_M92() {
  2827. for(int8_t i=0; i < NUM_AXIS; i++) {
  2828. if (code_seen(axis_codes[i])) {
  2829. if (i == E_AXIS) {
  2830. float value = code_value();
  2831. if (value < 20.0) {
  2832. float factor = axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
  2833. max_e_jerk *= factor;
  2834. max_feedrate[i] *= factor;
  2835. axis_steps_per_sqr_second[i] *= factor;
  2836. }
  2837. axis_steps_per_unit[i] = value;
  2838. }
  2839. else {
  2840. axis_steps_per_unit[i] = code_value();
  2841. }
  2842. }
  2843. }
  2844. }
  2845. /**
  2846. * M114: Output current position to serial port
  2847. */
  2848. inline void gcode_M114() {
  2849. SERIAL_PROTOCOLPGM("X:");
  2850. SERIAL_PROTOCOL(current_position[X_AXIS]);
  2851. SERIAL_PROTOCOLPGM(" Y:");
  2852. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  2853. SERIAL_PROTOCOLPGM(" Z:");
  2854. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  2855. SERIAL_PROTOCOLPGM(" E:");
  2856. SERIAL_PROTOCOL(current_position[E_AXIS]);
  2857. SERIAL_PROTOCOLPGM(MSG_COUNT_X);
  2858. SERIAL_PROTOCOL(float(st_get_position(X_AXIS))/axis_steps_per_unit[X_AXIS]);
  2859. SERIAL_PROTOCOLPGM(" Y:");
  2860. SERIAL_PROTOCOL(float(st_get_position(Y_AXIS))/axis_steps_per_unit[Y_AXIS]);
  2861. SERIAL_PROTOCOLPGM(" Z:");
  2862. SERIAL_PROTOCOL(float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]);
  2863. SERIAL_PROTOCOLLN("");
  2864. #ifdef SCARA
  2865. SERIAL_PROTOCOLPGM("SCARA Theta:");
  2866. SERIAL_PROTOCOL(delta[X_AXIS]);
  2867. SERIAL_PROTOCOLPGM(" Psi+Theta:");
  2868. SERIAL_PROTOCOL(delta[Y_AXIS]);
  2869. SERIAL_PROTOCOLLN("");
  2870. SERIAL_PROTOCOLPGM("SCARA Cal - Theta:");
  2871. SERIAL_PROTOCOL(delta[X_AXIS]+add_homing[X_AXIS]);
  2872. SERIAL_PROTOCOLPGM(" Psi+Theta (90):");
  2873. SERIAL_PROTOCOL(delta[Y_AXIS]-delta[X_AXIS]-90+add_homing[Y_AXIS]);
  2874. SERIAL_PROTOCOLLN("");
  2875. SERIAL_PROTOCOLPGM("SCARA step Cal - Theta:");
  2876. SERIAL_PROTOCOL(delta[X_AXIS]/90*axis_steps_per_unit[X_AXIS]);
  2877. SERIAL_PROTOCOLPGM(" Psi+Theta:");
  2878. SERIAL_PROTOCOL((delta[Y_AXIS]-delta[X_AXIS])/90*axis_steps_per_unit[Y_AXIS]);
  2879. SERIAL_PROTOCOLLN("");
  2880. SERIAL_PROTOCOLLN("");
  2881. #endif
  2882. }
  2883. /**
  2884. * M115: Capabilities string
  2885. */
  2886. inline void gcode_M115() {
  2887. SERIAL_PROTOCOLPGM(MSG_M115_REPORT);
  2888. }
  2889. /**
  2890. * M117: Set LCD Status Message
  2891. */
  2892. inline void gcode_M117() {
  2893. char* codepos = strchr_pointer + 5;
  2894. char* starpos = strchr(codepos, '*');
  2895. if (starpos) *starpos = '\0';
  2896. lcd_setstatus(codepos);
  2897. }
  2898. /**
  2899. * M119: Output endstop states to serial output
  2900. */
  2901. inline void gcode_M119() {
  2902. SERIAL_PROTOCOLLN(MSG_M119_REPORT);
  2903. #if defined(X_MIN_PIN) && X_MIN_PIN > -1
  2904. SERIAL_PROTOCOLPGM(MSG_X_MIN);
  2905. SERIAL_PROTOCOLLN(((READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  2906. #endif
  2907. #if defined(X_MAX_PIN) && X_MAX_PIN > -1
  2908. SERIAL_PROTOCOLPGM(MSG_X_MAX);
  2909. SERIAL_PROTOCOLLN(((READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  2910. #endif
  2911. #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
  2912. SERIAL_PROTOCOLPGM(MSG_Y_MIN);
  2913. SERIAL_PROTOCOLLN(((READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  2914. #endif
  2915. #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
  2916. SERIAL_PROTOCOLPGM(MSG_Y_MAX);
  2917. SERIAL_PROTOCOLLN(((READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  2918. #endif
  2919. #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
  2920. SERIAL_PROTOCOLPGM(MSG_Z_MIN);
  2921. SERIAL_PROTOCOLLN(((READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  2922. #endif
  2923. #if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
  2924. SERIAL_PROTOCOLPGM(MSG_Z_MAX);
  2925. SERIAL_PROTOCOLLN(((READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  2926. #endif
  2927. }
  2928. /**
  2929. * M120: Enable endstops
  2930. */
  2931. inline void gcode_M120() { enable_endstops(false); }
  2932. /**
  2933. * M121: Disable endstops
  2934. */
  2935. inline void gcode_M121() { enable_endstops(true); }
  2936. #ifdef BLINKM
  2937. /**
  2938. * M150: Set Status LED Color - Use R-U-B for R-G-B
  2939. */
  2940. inline void gcode_M150() {
  2941. SendColors(
  2942. code_seen('R') ? (byte)code_value() : 0,
  2943. code_seen('U') ? (byte)code_value() : 0,
  2944. code_seen('B') ? (byte)code_value() : 0
  2945. );
  2946. }
  2947. #endif // BLINKM
  2948. /**
  2949. * M200: Set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  2950. * T<extruder>
  2951. * D<millimeters>
  2952. */
  2953. inline void gcode_M200() {
  2954. tmp_extruder = active_extruder;
  2955. if (code_seen('T')) {
  2956. tmp_extruder = code_value();
  2957. if (tmp_extruder >= EXTRUDERS) {
  2958. SERIAL_ECHO_START;
  2959. SERIAL_ECHO(MSG_M200_INVALID_EXTRUDER);
  2960. return;
  2961. }
  2962. }
  2963. float area = .0;
  2964. if (code_seen('D')) {
  2965. float diameter = code_value();
  2966. // setting any extruder filament size disables volumetric on the assumption that
  2967. // slicers either generate in extruder values as cubic mm or as as filament feeds
  2968. // for all extruders
  2969. volumetric_enabled = (diameter != 0.0);
  2970. if (volumetric_enabled) {
  2971. filament_size[tmp_extruder] = diameter;
  2972. // make sure all extruders have some sane value for the filament size
  2973. for (int i=0; i<EXTRUDERS; i++)
  2974. if (! filament_size[i]) filament_size[i] = DEFAULT_NOMINAL_FILAMENT_DIA;
  2975. }
  2976. }
  2977. else {
  2978. //reserved for setting filament diameter via UFID or filament measuring device
  2979. return;
  2980. }
  2981. calculate_volumetric_multipliers();
  2982. }
  2983. /**
  2984. * M201: Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  2985. */
  2986. inline void gcode_M201() {
  2987. for (int8_t i=0; i < NUM_AXIS; i++) {
  2988. if (code_seen(axis_codes[i])) {
  2989. max_acceleration_units_per_sq_second[i] = code_value();
  2990. }
  2991. }
  2992. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  2993. reset_acceleration_rates();
  2994. }
  2995. #if 0 // Not used for Sprinter/grbl gen6
  2996. inline void gcode_M202() {
  2997. for(int8_t i=0; i < NUM_AXIS; i++) {
  2998. if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
  2999. }
  3000. }
  3001. #endif
  3002. /**
  3003. * M203: Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  3004. */
  3005. inline void gcode_M203() {
  3006. for (int8_t i=0; i < NUM_AXIS; i++) {
  3007. if (code_seen(axis_codes[i])) {
  3008. max_feedrate[i] = code_value();
  3009. }
  3010. }
  3011. }
  3012. /**
  3013. * M204: Set Accelerations in mm/sec^2 (M204 P1200 R3000 T3000)
  3014. *
  3015. * P = Printing moves
  3016. * R = Retract only (no X, Y, Z) moves
  3017. * T = Travel (non printing) moves
  3018. *
  3019. * Also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  3020. */
  3021. inline void gcode_M204() {
  3022. if (code_seen('P'))
  3023. {
  3024. acceleration = code_value();
  3025. SERIAL_ECHOPAIR("Setting Printing Acceleration: ", acceleration );
  3026. SERIAL_EOL;
  3027. }
  3028. if (code_seen('R'))
  3029. {
  3030. retract_acceleration = code_value();
  3031. SERIAL_ECHOPAIR("Setting Retract Acceleration: ", retract_acceleration );
  3032. SERIAL_EOL;
  3033. }
  3034. if (code_seen('T'))
  3035. {
  3036. travel_acceleration = code_value();
  3037. SERIAL_ECHOPAIR("Setting Travel Acceleration: ", travel_acceleration );
  3038. SERIAL_EOL;
  3039. }
  3040. }
  3041. /**
  3042. * M205: Set Advanced Settings
  3043. *
  3044. * S = Min Feed Rate (mm/s)
  3045. * T = Min Travel Feed Rate (mm/s)
  3046. * B = Min Segment Time (µs)
  3047. * X = Max XY Jerk (mm/s/s)
  3048. * Z = Max Z Jerk (mm/s/s)
  3049. * E = Max E Jerk (mm/s/s)
  3050. */
  3051. inline void gcode_M205() {
  3052. if (code_seen('S')) minimumfeedrate = code_value();
  3053. if (code_seen('T')) mintravelfeedrate = code_value();
  3054. if (code_seen('B')) minsegmenttime = code_value();
  3055. if (code_seen('X')) max_xy_jerk = code_value();
  3056. if (code_seen('Z')) max_z_jerk = code_value();
  3057. if (code_seen('E')) max_e_jerk = code_value();
  3058. }
  3059. /**
  3060. * M206: Set Additional Homing Offset (X Y Z). SCARA aliases T=X, P=Y
  3061. */
  3062. inline void gcode_M206() {
  3063. for (int8_t i=X_AXIS; i <= Z_AXIS; i++) {
  3064. if (code_seen(axis_codes[i])) {
  3065. add_homing[i] = code_value();
  3066. }
  3067. }
  3068. #ifdef SCARA
  3069. if (code_seen('T')) add_homing[X_AXIS] = code_value(); // Theta
  3070. if (code_seen('P')) add_homing[Y_AXIS] = code_value(); // Psi
  3071. #endif
  3072. }
  3073. #ifdef DELTA
  3074. /**
  3075. * M665: Set delta configurations
  3076. *
  3077. * L = diagonal rod
  3078. * R = delta radius
  3079. * S = segments per second
  3080. */
  3081. inline void gcode_M665() {
  3082. if (code_seen('L')) delta_diagonal_rod = code_value();
  3083. if (code_seen('R')) delta_radius = code_value();
  3084. if (code_seen('S')) delta_segments_per_second = code_value();
  3085. recalc_delta_settings(delta_radius, delta_diagonal_rod);
  3086. }
  3087. /**
  3088. * M666: Set delta endstop adjustment
  3089. */
  3090. inline void gcode_M666() {
  3091. for (int8_t i = 0; i < 3; i++) {
  3092. if (code_seen(axis_codes[i])) {
  3093. endstop_adj[i] = code_value();
  3094. }
  3095. }
  3096. }
  3097. #endif // DELTA
  3098. #ifdef FWRETRACT
  3099. /**
  3100. * M207: Set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
  3101. */
  3102. inline void gcode_M207() {
  3103. if (code_seen('S')) retract_length = code_value();
  3104. if (code_seen('F')) retract_feedrate = code_value() / 60;
  3105. if (code_seen('Z')) retract_zlift = code_value();
  3106. }
  3107. /**
  3108. * M208: Set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  3109. */
  3110. inline void gcode_M208() {
  3111. if (code_seen('S')) retract_recover_length = code_value();
  3112. if (code_seen('F')) retract_recover_feedrate = code_value() / 60;
  3113. }
  3114. /**
  3115. * M209: Enable automatic retract (M209 S1)
  3116. * detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  3117. */
  3118. inline void gcode_M209() {
  3119. if (code_seen('S')) {
  3120. int t = code_value();
  3121. switch(t) {
  3122. case 0:
  3123. autoretract_enabled = false;
  3124. break;
  3125. case 1:
  3126. autoretract_enabled = true;
  3127. break;
  3128. default:
  3129. SERIAL_ECHO_START;
  3130. SERIAL_ECHOPGM(MSG_UNKNOWN_COMMAND);
  3131. SERIAL_ECHO(cmdbuffer[bufindr]);
  3132. SERIAL_ECHOLNPGM("\"");
  3133. return;
  3134. }
  3135. for (int i=0; i<EXTRUDERS; i++) retracted[i] = false;
  3136. }
  3137. }
  3138. #endif // FWRETRACT
  3139. #if EXTRUDERS > 1
  3140. /**
  3141. * M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  3142. */
  3143. inline void gcode_M218() {
  3144. if (setTargetedHotend(218)) return;
  3145. if (code_seen('X')) extruder_offset[X_AXIS][tmp_extruder] = code_value();
  3146. if (code_seen('Y')) extruder_offset[Y_AXIS][tmp_extruder] = code_value();
  3147. #ifdef DUAL_X_CARRIAGE
  3148. if (code_seen('Z')) extruder_offset[Z_AXIS][tmp_extruder] = code_value();
  3149. #endif
  3150. SERIAL_ECHO_START;
  3151. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  3152. for (tmp_extruder = 0; tmp_extruder < EXTRUDERS; tmp_extruder++) {
  3153. SERIAL_ECHO(" ");
  3154. SERIAL_ECHO(extruder_offset[X_AXIS][tmp_extruder]);
  3155. SERIAL_ECHO(",");
  3156. SERIAL_ECHO(extruder_offset[Y_AXIS][tmp_extruder]);
  3157. #ifdef DUAL_X_CARRIAGE
  3158. SERIAL_ECHO(",");
  3159. SERIAL_ECHO(extruder_offset[Z_AXIS][tmp_extruder]);
  3160. #endif
  3161. }
  3162. SERIAL_EOL;
  3163. }
  3164. #endif // EXTRUDERS > 1
  3165. /**
  3166. * M220: Set speed percentage factor, aka "Feed Rate" (M220 S95)
  3167. */
  3168. inline void gcode_M220() {
  3169. if (code_seen('S')) feedmultiply = code_value();
  3170. }
  3171. /**
  3172. * M221: Set extrusion percentage (M221 T0 S95)
  3173. */
  3174. inline void gcode_M221() {
  3175. if (code_seen('S')) {
  3176. int sval = code_value();
  3177. if (code_seen('T')) {
  3178. if (setTargetedHotend(221)) return;
  3179. extruder_multiply[tmp_extruder] = sval;
  3180. }
  3181. else {
  3182. extrudemultiply = sval;
  3183. }
  3184. }
  3185. }
  3186. /**
  3187. * M226: Wait until the specified pin reaches the state required (M226 P<pin> S<state>)
  3188. */
  3189. inline void gcode_M226() {
  3190. if (code_seen('P')) {
  3191. int pin_number = code_value();
  3192. int pin_state = code_seen('S') ? code_value() : -1; // required pin state - default is inverted
  3193. if (pin_state >= -1 && pin_state <= 1) {
  3194. for (int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(*sensitive_pins)); i++) {
  3195. if (sensitive_pins[i] == pin_number) {
  3196. pin_number = -1;
  3197. break;
  3198. }
  3199. }
  3200. if (pin_number > -1) {
  3201. int target = LOW;
  3202. st_synchronize();
  3203. pinMode(pin_number, INPUT);
  3204. switch(pin_state){
  3205. case 1:
  3206. target = HIGH;
  3207. break;
  3208. case 0:
  3209. target = LOW;
  3210. break;
  3211. case -1:
  3212. target = !digitalRead(pin_number);
  3213. break;
  3214. }
  3215. while(digitalRead(pin_number) != target) {
  3216. manage_heater();
  3217. manage_inactivity();
  3218. lcd_update();
  3219. }
  3220. } // pin_number > -1
  3221. } // pin_state -1 0 1
  3222. } // code_seen('P')
  3223. }
  3224. #if NUM_SERVOS > 0
  3225. /**
  3226. * M280: Set servo position absolute. P: servo index, S: angle or microseconds
  3227. */
  3228. inline void gcode_M280() {
  3229. int servo_index = code_seen('P') ? code_value() : -1;
  3230. int servo_position = 0;
  3231. if (code_seen('S')) {
  3232. servo_position = code_value();
  3233. if ((servo_index >= 0) && (servo_index < NUM_SERVOS)) {
  3234. #if SERVO_LEVELING
  3235. servos[servo_index].attach(0);
  3236. #endif
  3237. servos[servo_index].write(servo_position);
  3238. #if SERVO_LEVELING
  3239. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  3240. servos[servo_index].detach();
  3241. #endif
  3242. }
  3243. else {
  3244. SERIAL_ECHO_START;
  3245. SERIAL_ECHO("Servo ");
  3246. SERIAL_ECHO(servo_index);
  3247. SERIAL_ECHOLN(" out of range");
  3248. }
  3249. }
  3250. else if (servo_index >= 0) {
  3251. SERIAL_PROTOCOL(MSG_OK);
  3252. SERIAL_PROTOCOL(" Servo ");
  3253. SERIAL_PROTOCOL(servo_index);
  3254. SERIAL_PROTOCOL(": ");
  3255. SERIAL_PROTOCOL(servos[servo_index].read());
  3256. SERIAL_PROTOCOLLN("");
  3257. }
  3258. }
  3259. #endif // NUM_SERVOS > 0
  3260. #if defined(LARGE_FLASH) && (BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER))
  3261. /**
  3262. * M300: Play beep sound S<frequency Hz> P<duration ms>
  3263. */
  3264. inline void gcode_M300() {
  3265. int beepS = code_seen('S') ? code_value() : 110;
  3266. int beepP = code_seen('P') ? code_value() : 1000;
  3267. if (beepS > 0) {
  3268. #if BEEPER > 0
  3269. tone(BEEPER, beepS);
  3270. delay(beepP);
  3271. noTone(BEEPER);
  3272. #elif defined(ULTRALCD)
  3273. lcd_buzz(beepS, beepP);
  3274. #elif defined(LCD_USE_I2C_BUZZER)
  3275. lcd_buzz(beepP, beepS);
  3276. #endif
  3277. }
  3278. else {
  3279. delay(beepP);
  3280. }
  3281. }
  3282. #endif // LARGE_FLASH && (BEEPER>0 || ULTRALCD || LCD_USE_I2C_BUZZER)
  3283. #ifdef PIDTEMP
  3284. /**
  3285. * M301: Set PID parameters P I D (and optionally C)
  3286. */
  3287. inline void gcode_M301() {
  3288. // multi-extruder PID patch: M301 updates or prints a single extruder's PID values
  3289. // default behaviour (omitting E parameter) is to update for extruder 0 only
  3290. int e = code_seen('E') ? code_value() : 0; // extruder being updated
  3291. if (e < EXTRUDERS) { // catch bad input value
  3292. if (code_seen('P')) PID_PARAM(Kp, e) = code_value();
  3293. if (code_seen('I')) PID_PARAM(Ki, e) = scalePID_i(code_value());
  3294. if (code_seen('D')) PID_PARAM(Kd, e) = scalePID_d(code_value());
  3295. #ifdef PID_ADD_EXTRUSION_RATE
  3296. if (code_seen('C')) PID_PARAM(Kc, e) = code_value();
  3297. #endif
  3298. updatePID();
  3299. SERIAL_PROTOCOL(MSG_OK);
  3300. #ifdef PID_PARAMS_PER_EXTRUDER
  3301. SERIAL_PROTOCOL(" e:"); // specify extruder in serial output
  3302. SERIAL_PROTOCOL(e);
  3303. #endif // PID_PARAMS_PER_EXTRUDER
  3304. SERIAL_PROTOCOL(" p:");
  3305. SERIAL_PROTOCOL(PID_PARAM(Kp, e));
  3306. SERIAL_PROTOCOL(" i:");
  3307. SERIAL_PROTOCOL(unscalePID_i(PID_PARAM(Ki, e)));
  3308. SERIAL_PROTOCOL(" d:");
  3309. SERIAL_PROTOCOL(unscalePID_d(PID_PARAM(Kd, e)));
  3310. #ifdef PID_ADD_EXTRUSION_RATE
  3311. SERIAL_PROTOCOL(" c:");
  3312. //Kc does not have scaling applied above, or in resetting defaults
  3313. SERIAL_PROTOCOL(PID_PARAM(Kc, e));
  3314. #endif
  3315. SERIAL_PROTOCOLLN("");
  3316. }
  3317. else {
  3318. SERIAL_ECHO_START;
  3319. SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
  3320. }
  3321. }
  3322. #endif // PIDTEMP
  3323. #ifdef PIDTEMPBED
  3324. inline void gcode_M304() {
  3325. if (code_seen('P')) bedKp = code_value();
  3326. if (code_seen('I')) bedKi = scalePID_i(code_value());
  3327. if (code_seen('D')) bedKd = scalePID_d(code_value());
  3328. updatePID();
  3329. SERIAL_PROTOCOL(MSG_OK);
  3330. SERIAL_PROTOCOL(" p:");
  3331. SERIAL_PROTOCOL(bedKp);
  3332. SERIAL_PROTOCOL(" i:");
  3333. SERIAL_PROTOCOL(unscalePID_i(bedKi));
  3334. SERIAL_PROTOCOL(" d:");
  3335. SERIAL_PROTOCOL(unscalePID_d(bedKd));
  3336. SERIAL_PROTOCOLLN("");
  3337. }
  3338. #endif // PIDTEMPBED
  3339. #if defined(CHDK) || (defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1)
  3340. /**
  3341. * M240: Trigger a camera by emulating a Canon RC-1
  3342. * See http://www.doc-diy.net/photo/rc-1_hacked/
  3343. */
  3344. inline void gcode_M240() {
  3345. #ifdef CHDK
  3346. OUT_WRITE(CHDK, HIGH);
  3347. chdkHigh = millis();
  3348. chdkActive = true;
  3349. #elif defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  3350. const uint8_t NUM_PULSES = 16;
  3351. const float PULSE_LENGTH = 0.01524;
  3352. for (int i = 0; i < NUM_PULSES; i++) {
  3353. WRITE(PHOTOGRAPH_PIN, HIGH);
  3354. _delay_ms(PULSE_LENGTH);
  3355. WRITE(PHOTOGRAPH_PIN, LOW);
  3356. _delay_ms(PULSE_LENGTH);
  3357. }
  3358. delay(7.33);
  3359. for (int i = 0; i < NUM_PULSES; i++) {
  3360. WRITE(PHOTOGRAPH_PIN, HIGH);
  3361. _delay_ms(PULSE_LENGTH);
  3362. WRITE(PHOTOGRAPH_PIN, LOW);
  3363. _delay_ms(PULSE_LENGTH);
  3364. }
  3365. #endif // !CHDK && PHOTOGRAPH_PIN > -1
  3366. }
  3367. #endif // CHDK || PHOTOGRAPH_PIN
  3368. #ifdef DOGLCD
  3369. /**
  3370. * M250: Read and optionally set the LCD contrast
  3371. */
  3372. inline void gcode_M250() {
  3373. if (code_seen('C')) lcd_setcontrast(code_value_long() & 0x3F);
  3374. SERIAL_PROTOCOLPGM("lcd contrast value: ");
  3375. SERIAL_PROTOCOL(lcd_contrast);
  3376. SERIAL_PROTOCOLLN("");
  3377. }
  3378. #endif // DOGLCD
  3379. #ifdef PREVENT_DANGEROUS_EXTRUDE
  3380. /**
  3381. * M302: Allow cold extrudes, or set the minimum extrude S<temperature>.
  3382. */
  3383. inline void gcode_M302() {
  3384. set_extrude_min_temp(code_seen('S') ? code_value() : 0);
  3385. }
  3386. #endif // PREVENT_DANGEROUS_EXTRUDE
  3387. /**
  3388. * M303: PID relay autotune
  3389. * S<temperature> sets the target temperature. (default target temperature = 150C)
  3390. * E<extruder> (-1 for the bed)
  3391. * C<cycles>
  3392. */
  3393. inline void gcode_M303() {
  3394. int e = code_seen('E') ? code_value_long() : 0;
  3395. int c = code_seen('C') ? code_value_long() : 5;
  3396. float temp = code_seen('S') ? code_value() : (e < 0 ? 70.0 : 150.0);
  3397. PID_autotune(temp, e, c);
  3398. }
  3399. #ifdef SCARA
  3400. /**
  3401. * M360: SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  3402. */
  3403. inline bool gcode_M360() {
  3404. SERIAL_ECHOLN(" Cal: Theta 0 ");
  3405. //SoftEndsEnabled = false; // Ignore soft endstops during calibration
  3406. //SERIAL_ECHOLN(" Soft endstops disabled ");
  3407. if (! Stopped) {
  3408. //get_coordinates(); // For X Y Z E F
  3409. delta[X_AXIS] = 0;
  3410. delta[Y_AXIS] = 120;
  3411. calculate_SCARA_forward_Transform(delta);
  3412. destination[X_AXIS] = delta[X_AXIS]/axis_scaling[X_AXIS];
  3413. destination[Y_AXIS] = delta[Y_AXIS]/axis_scaling[Y_AXIS];
  3414. prepare_move();
  3415. //ClearToSend();
  3416. return true;
  3417. }
  3418. return false;
  3419. }
  3420. /**
  3421. * M361: SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  3422. */
  3423. inline bool gcode_M361() {
  3424. SERIAL_ECHOLN(" Cal: Theta 90 ");
  3425. //SoftEndsEnabled = false; // Ignore soft endstops during calibration
  3426. //SERIAL_ECHOLN(" Soft endstops disabled ");
  3427. if (! Stopped) {
  3428. //get_coordinates(); // For X Y Z E F
  3429. delta[X_AXIS] = 90;
  3430. delta[Y_AXIS] = 130;
  3431. calculate_SCARA_forward_Transform(delta);
  3432. destination[X_AXIS] = delta[X_AXIS]/axis_scaling[X_AXIS];
  3433. destination[Y_AXIS] = delta[Y_AXIS]/axis_scaling[Y_AXIS];
  3434. prepare_move();
  3435. //ClearToSend();
  3436. return true;
  3437. }
  3438. return false;
  3439. }
  3440. /**
  3441. * M362: SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  3442. */
  3443. inline bool gcode_M362() {
  3444. SERIAL_ECHOLN(" Cal: Psi 0 ");
  3445. //SoftEndsEnabled = false; // Ignore soft endstops during calibration
  3446. //SERIAL_ECHOLN(" Soft endstops disabled ");
  3447. if (! Stopped) {
  3448. //get_coordinates(); // For X Y Z E F
  3449. delta[X_AXIS] = 60;
  3450. delta[Y_AXIS] = 180;
  3451. calculate_SCARA_forward_Transform(delta);
  3452. destination[X_AXIS] = delta[X_AXIS]/axis_scaling[X_AXIS];
  3453. destination[Y_AXIS] = delta[Y_AXIS]/axis_scaling[Y_AXIS];
  3454. prepare_move();
  3455. //ClearToSend();
  3456. return true;
  3457. }
  3458. return false;
  3459. }
  3460. /**
  3461. * M363: SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  3462. */
  3463. inline bool gcode_M363() {
  3464. SERIAL_ECHOLN(" Cal: Psi 90 ");
  3465. //SoftEndsEnabled = false; // Ignore soft endstops during calibration
  3466. //SERIAL_ECHOLN(" Soft endstops disabled ");
  3467. if (! Stopped) {
  3468. //get_coordinates(); // For X Y Z E F
  3469. delta[X_AXIS] = 50;
  3470. delta[Y_AXIS] = 90;
  3471. calculate_SCARA_forward_Transform(delta);
  3472. destination[X_AXIS] = delta[X_AXIS]/axis_scaling[X_AXIS];
  3473. destination[Y_AXIS] = delta[Y_AXIS]/axis_scaling[Y_AXIS];
  3474. prepare_move();
  3475. //ClearToSend();
  3476. return true;
  3477. }
  3478. return false;
  3479. }
  3480. /**
  3481. * M364: SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
  3482. */
  3483. inline bool gcode_M364() {
  3484. SERIAL_ECHOLN(" Cal: Theta-Psi 90 ");
  3485. // SoftEndsEnabled = false; // Ignore soft endstops during calibration
  3486. //SERIAL_ECHOLN(" Soft endstops disabled ");
  3487. if (! Stopped) {
  3488. //get_coordinates(); // For X Y Z E F
  3489. delta[X_AXIS] = 45;
  3490. delta[Y_AXIS] = 135;
  3491. calculate_SCARA_forward_Transform(delta);
  3492. destination[X_AXIS] = delta[X_AXIS] / axis_scaling[X_AXIS];
  3493. destination[Y_AXIS] = delta[Y_AXIS] / axis_scaling[Y_AXIS];
  3494. prepare_move();
  3495. //ClearToSend();
  3496. return true;
  3497. }
  3498. return false;
  3499. }
  3500. /**
  3501. * M365: SCARA calibration: Scaling factor, X, Y, Z axis
  3502. */
  3503. inline void gcode_M365() {
  3504. for (int8_t i = X_AXIS; i <= Z_AXIS; i++) {
  3505. if (code_seen(axis_codes[i])) {
  3506. axis_scaling[i] = code_value();
  3507. }
  3508. }
  3509. }
  3510. #endif // SCARA
  3511. #ifdef EXT_SOLENOID
  3512. void enable_solenoid(uint8_t num) {
  3513. switch(num) {
  3514. case 0:
  3515. OUT_WRITE(SOL0_PIN, HIGH);
  3516. break;
  3517. #if defined(SOL1_PIN) && SOL1_PIN > -1
  3518. case 1:
  3519. OUT_WRITE(SOL1_PIN, HIGH);
  3520. break;
  3521. #endif
  3522. #if defined(SOL2_PIN) && SOL2_PIN > -1
  3523. case 2:
  3524. OUT_WRITE(SOL2_PIN, HIGH);
  3525. break;
  3526. #endif
  3527. #if defined(SOL3_PIN) && SOL3_PIN > -1
  3528. case 3:
  3529. OUT_WRITE(SOL3_PIN, HIGH);
  3530. break;
  3531. #endif
  3532. default:
  3533. SERIAL_ECHO_START;
  3534. SERIAL_ECHOLNPGM(MSG_INVALID_SOLENOID);
  3535. break;
  3536. }
  3537. }
  3538. void enable_solenoid_on_active_extruder() { enable_solenoid(active_extruder); }
  3539. void disable_all_solenoids() {
  3540. OUT_WRITE(SOL0_PIN, LOW);
  3541. OUT_WRITE(SOL1_PIN, LOW);
  3542. OUT_WRITE(SOL2_PIN, LOW);
  3543. OUT_WRITE(SOL3_PIN, LOW);
  3544. }
  3545. /**
  3546. * M380: Enable solenoid on the active extruder
  3547. */
  3548. inline void gcode_M380() { enable_solenoid_on_active_extruder(); }
  3549. /**
  3550. * M381: Disable all solenoids
  3551. */
  3552. inline void gcode_M381() { disable_all_solenoids(); }
  3553. #endif // EXT_SOLENOID
  3554. /**
  3555. * M400: Finish all moves
  3556. */
  3557. inline void gcode_M400() { st_synchronize(); }
  3558. #if defined(ENABLE_AUTO_BED_LEVELING) && (defined(SERVO_ENDSTOPS) || defined(Z_PROBE_ALLEN_KEY)) && not defined(Z_PROBE_SLED)
  3559. /**
  3560. * M401: Engage Z Servo endstop if available
  3561. */
  3562. inline void gcode_M401() { engage_z_probe(); }
  3563. /**
  3564. * M402: Retract Z Servo endstop if enabled
  3565. */
  3566. inline void gcode_M402() { retract_z_probe(); }
  3567. #endif
  3568. #ifdef FILAMENT_SENSOR
  3569. /**
  3570. * M404: Display or set the nominal filament width (3mm, 1.75mm ) W<3.0>
  3571. */
  3572. inline void gcode_M404() {
  3573. #if FILWIDTH_PIN > -1
  3574. if (code_seen('W')) {
  3575. filament_width_nominal = code_value();
  3576. }
  3577. else {
  3578. SERIAL_PROTOCOLPGM("Filament dia (nominal mm):");
  3579. SERIAL_PROTOCOLLN(filament_width_nominal);
  3580. }
  3581. #endif
  3582. }
  3583. /**
  3584. * M405: Turn on filament sensor for control
  3585. */
  3586. inline void gcode_M405() {
  3587. if (code_seen('D')) meas_delay_cm = code_value();
  3588. if (meas_delay_cm > MAX_MEASUREMENT_DELAY) meas_delay_cm = MAX_MEASUREMENT_DELAY;
  3589. if (delay_index2 == -1) { //initialize the ring buffer if it has not been done since startup
  3590. int temp_ratio = widthFil_to_size_ratio();
  3591. for (delay_index1 = 0; delay_index1 < MAX_MEASUREMENT_DELAY + 1; ++delay_index1)
  3592. measurement_delay[delay_index1] = temp_ratio - 100; //subtract 100 to scale within a signed byte
  3593. delay_index1 = delay_index2 = 0;
  3594. }
  3595. filament_sensor = true;
  3596. //SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  3597. //SERIAL_PROTOCOL(filament_width_meas);
  3598. //SERIAL_PROTOCOLPGM("Extrusion ratio(%):");
  3599. //SERIAL_PROTOCOL(extrudemultiply);
  3600. }
  3601. /**
  3602. * M406: Turn off filament sensor for control
  3603. */
  3604. inline void gcode_M406() { filament_sensor = false; }
  3605. /**
  3606. * M407: Get measured filament diameter on serial output
  3607. */
  3608. inline void gcode_M407() {
  3609. SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  3610. SERIAL_PROTOCOLLN(filament_width_meas);
  3611. }
  3612. #endif // FILAMENT_SENSOR
  3613. /**
  3614. * M500: Store settings in EEPROM
  3615. */
  3616. inline void gcode_M500() {
  3617. Config_StoreSettings();
  3618. }
  3619. /**
  3620. * M501: Read settings from EEPROM
  3621. */
  3622. inline void gcode_M501() {
  3623. Config_RetrieveSettings();
  3624. }
  3625. /**
  3626. * M502: Revert to default settings
  3627. */
  3628. inline void gcode_M502() {
  3629. Config_ResetDefault();
  3630. }
  3631. /**
  3632. * M503: print settings currently in memory
  3633. */
  3634. inline void gcode_M503() {
  3635. Config_PrintSettings(code_seen('S') && code_value == 0);
  3636. }
  3637. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  3638. /**
  3639. * M540: Set whether SD card print should abort on endstop hit (M540 S<0|1>)
  3640. */
  3641. inline void gcode_M540() {
  3642. if (code_seen('S')) abort_on_endstop_hit = (code_value() > 0);
  3643. }
  3644. #endif // ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  3645. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  3646. inline void gcode_SET_Z_PROBE_OFFSET() {
  3647. float value;
  3648. if (code_seen('Z')) {
  3649. value = code_value();
  3650. if (Z_PROBE_OFFSET_RANGE_MIN <= value && value <= Z_PROBE_OFFSET_RANGE_MAX) {
  3651. zprobe_zoffset = -value; // compare w/ line 278 of ConfigurationStore.cpp
  3652. SERIAL_ECHO_START;
  3653. SERIAL_ECHOLNPGM(MSG_ZPROBE_ZOFFSET " " MSG_OK);
  3654. SERIAL_PROTOCOLLN("");
  3655. }
  3656. else {
  3657. SERIAL_ECHO_START;
  3658. SERIAL_ECHOPGM(MSG_ZPROBE_ZOFFSET);
  3659. SERIAL_ECHOPGM(MSG_Z_MIN);
  3660. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
  3661. SERIAL_ECHOPGM(MSG_Z_MAX);
  3662. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
  3663. SERIAL_PROTOCOLLN("");
  3664. }
  3665. }
  3666. else {
  3667. SERIAL_ECHO_START;
  3668. SERIAL_ECHOLNPGM(MSG_ZPROBE_ZOFFSET " : ");
  3669. SERIAL_ECHO(-zprobe_zoffset);
  3670. SERIAL_PROTOCOLLN("");
  3671. }
  3672. }
  3673. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  3674. #ifdef FILAMENTCHANGEENABLE
  3675. /**
  3676. * M600: Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  3677. */
  3678. inline void gcode_M600() {
  3679. float target[NUM_AXIS], lastpos[NUM_AXIS], fr60 = feedrate / 60;
  3680. for (int i=0; i<NUM_AXIS; i++)
  3681. target[i] = lastpos[i] = current_position[i];
  3682. #define BASICPLAN plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], fr60, active_extruder);
  3683. #ifdef DELTA
  3684. #define RUNPLAN calculate_delta(target); BASICPLAN
  3685. #else
  3686. #define RUNPLAN BASICPLAN
  3687. #endif
  3688. //retract by E
  3689. if (code_seen('E')) target[E_AXIS] += code_value();
  3690. #ifdef FILAMENTCHANGE_FIRSTRETRACT
  3691. else target[E_AXIS] += FILAMENTCHANGE_FIRSTRETRACT;
  3692. #endif
  3693. RUNPLAN;
  3694. //lift Z
  3695. if (code_seen('Z')) target[Z_AXIS] += code_value();
  3696. #ifdef FILAMENTCHANGE_ZADD
  3697. else target[Z_AXIS] += FILAMENTCHANGE_ZADD;
  3698. #endif
  3699. RUNPLAN;
  3700. //move xy
  3701. if (code_seen('X')) target[X_AXIS] = code_value();
  3702. #ifdef FILAMENTCHANGE_XPOS
  3703. else target[X_AXIS] = FILAMENTCHANGE_XPOS;
  3704. #endif
  3705. if (code_seen('Y')) target[Y_AXIS] = code_value();
  3706. #ifdef FILAMENTCHANGE_YPOS
  3707. else target[Y_AXIS] = FILAMENTCHANGE_YPOS;
  3708. #endif
  3709. RUNPLAN;
  3710. if (code_seen('L')) target[E_AXIS] += code_value();
  3711. #ifdef FILAMENTCHANGE_FINALRETRACT
  3712. else target[E_AXIS] += FILAMENTCHANGE_FINALRETRACT;
  3713. #endif
  3714. RUNPLAN;
  3715. //finish moves
  3716. st_synchronize();
  3717. //disable extruder steppers so filament can be removed
  3718. disable_e0();
  3719. disable_e1();
  3720. disable_e2();
  3721. disable_e3();
  3722. delay(100);
  3723. LCD_ALERTMESSAGEPGM(MSG_FILAMENTCHANGE);
  3724. uint8_t cnt = 0;
  3725. while (!lcd_clicked()) {
  3726. cnt++;
  3727. manage_heater();
  3728. manage_inactivity(true);
  3729. lcd_update();
  3730. if (cnt == 0) {
  3731. #if BEEPER > 0
  3732. OUT_WRITE(BEEPER,HIGH);
  3733. delay(3);
  3734. WRITE(BEEPER,LOW);
  3735. delay(3);
  3736. #else
  3737. #if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)
  3738. lcd_buzz(1000/6, 100);
  3739. #else
  3740. lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS, LCD_FEEDBACK_FREQUENCY_HZ);
  3741. #endif
  3742. #endif
  3743. }
  3744. } // while(!lcd_clicked)
  3745. //return to normal
  3746. if (code_seen('L')) target[E_AXIS] -= code_value();
  3747. #ifdef FILAMENTCHANGE_FINALRETRACT
  3748. else target[E_AXIS] -= FILAMENTCHANGE_FINALRETRACT;
  3749. #endif
  3750. current_position[E_AXIS] = target[E_AXIS]; //the long retract of L is compensated by manual filament feeding
  3751. plan_set_e_position(current_position[E_AXIS]);
  3752. RUNPLAN; //should do nothing
  3753. lcd_reset_alert_level();
  3754. #ifdef DELTA
  3755. calculate_delta(lastpos);
  3756. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], target[E_AXIS], fr60, active_extruder); //move xyz back
  3757. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], lastpos[E_AXIS], fr60, active_extruder); //final untretract
  3758. #else
  3759. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], fr60, active_extruder); //move xy back
  3760. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], fr60, active_extruder); //move z back
  3761. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], lastpos[E_AXIS], fr60, active_extruder); //final untretract
  3762. #endif
  3763. #ifdef FILAMENT_RUNOUT_SENSOR
  3764. filrunoutEnqued = false;
  3765. #endif
  3766. }
  3767. #endif // FILAMENTCHANGEENABLE
  3768. #ifdef DUAL_X_CARRIAGE
  3769. /**
  3770. * M605: Set dual x-carriage movement mode
  3771. *
  3772. * M605 S0: Full control mode. The slicer has full control over x-carriage movement
  3773. * M605 S1: Auto-park mode. The inactive head will auto park/unpark without slicer involvement
  3774. * M605 S2 [Xnnn] [Rmmm]: Duplication mode. The second extruder will duplicate the first with nnn
  3775. * millimeters x-offset and an optional differential hotend temperature of
  3776. * mmm degrees. E.g., with "M605 S2 X100 R2" the second extruder will duplicate
  3777. * the first with a spacing of 100mm in the x direction and 2 degrees hotter.
  3778. *
  3779. * Note: the X axis should be homed after changing dual x-carriage mode.
  3780. */
  3781. inline void gcode_M605() {
  3782. st_synchronize();
  3783. if (code_seen('S')) dual_x_carriage_mode = code_value();
  3784. switch(dual_x_carriage_mode) {
  3785. case DXC_DUPLICATION_MODE:
  3786. if (code_seen('X')) duplicate_extruder_x_offset = max(code_value(), X2_MIN_POS - x_home_pos(0));
  3787. if (code_seen('R')) duplicate_extruder_temp_offset = code_value();
  3788. SERIAL_ECHO_START;
  3789. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  3790. SERIAL_ECHO(" ");
  3791. SERIAL_ECHO(extruder_offset[X_AXIS][0]);
  3792. SERIAL_ECHO(",");
  3793. SERIAL_ECHO(extruder_offset[Y_AXIS][0]);
  3794. SERIAL_ECHO(" ");
  3795. SERIAL_ECHO(duplicate_extruder_x_offset);
  3796. SERIAL_ECHO(",");
  3797. SERIAL_ECHOLN(extruder_offset[Y_AXIS][1]);
  3798. break;
  3799. case DXC_FULL_CONTROL_MODE:
  3800. case DXC_AUTO_PARK_MODE:
  3801. break;
  3802. default:
  3803. dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  3804. break;
  3805. }
  3806. active_extruder_parked = false;
  3807. extruder_duplication_enabled = false;
  3808. delayed_move_time = 0;
  3809. }
  3810. #endif // DUAL_X_CARRIAGE
  3811. /**
  3812. * M907: Set digital trimpot motor current using axis codes X, Y, Z, E, B, S
  3813. */
  3814. inline void gcode_M907() {
  3815. #if HAS_DIGIPOTSS
  3816. for (int i=0;i<NUM_AXIS;i++)
  3817. if (code_seen(axis_codes[i])) digipot_current(i, code_value());
  3818. if (code_seen('B')) digipot_current(4, code_value());
  3819. if (code_seen('S')) for (int i=0; i<=4; i++) digipot_current(i, code_value());
  3820. #endif
  3821. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  3822. if (code_seen('X')) digipot_current(0, code_value());
  3823. #endif
  3824. #ifdef MOTOR_CURRENT_PWM_Z_PIN
  3825. if (code_seen('Z')) digipot_current(1, code_value());
  3826. #endif
  3827. #ifdef MOTOR_CURRENT_PWM_E_PIN
  3828. if (code_seen('E')) digipot_current(2, code_value());
  3829. #endif
  3830. #ifdef DIGIPOT_I2C
  3831. // this one uses actual amps in floating point
  3832. for (int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_i2c_set_current(i, code_value());
  3833. // for each additional extruder (named B,C,D,E..., channels 4,5,6,7...)
  3834. for (int i=NUM_AXIS;i<DIGIPOT_I2C_NUM_CHANNELS;i++) if(code_seen('B'+i-NUM_AXIS)) digipot_i2c_set_current(i, code_value());
  3835. #endif
  3836. }
  3837. #if HAS_DIGIPOTSS
  3838. /**
  3839. * M908: Control digital trimpot directly (M908 P<pin> S<current>)
  3840. */
  3841. inline void gcode_M908() {
  3842. digitalPotWrite(
  3843. code_seen('P') ? code_value() : 0,
  3844. code_seen('S') ? code_value() : 0
  3845. );
  3846. }
  3847. #endif // HAS_DIGIPOTSS
  3848. // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  3849. inline void gcode_M350() {
  3850. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  3851. if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value());
  3852. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_mode(i,(uint8_t)code_value());
  3853. if(code_seen('B')) microstep_mode(4,code_value());
  3854. microstep_readings();
  3855. #endif
  3856. }
  3857. /**
  3858. * M351: Toggle MS1 MS2 pins directly with axis codes X Y Z E B
  3859. * S# determines MS1 or MS2, X# sets the pin high/low.
  3860. */
  3861. inline void gcode_M351() {
  3862. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  3863. if (code_seen('S')) switch(code_value_long()) {
  3864. case 1:
  3865. for(int i=0;i<NUM_AXIS;i++) if (code_seen(axis_codes[i])) microstep_ms(i, code_value(), -1);
  3866. if (code_seen('B')) microstep_ms(4, code_value(), -1);
  3867. break;
  3868. case 2:
  3869. for(int i=0;i<NUM_AXIS;i++) if (code_seen(axis_codes[i])) microstep_ms(i, -1, code_value());
  3870. if (code_seen('B')) microstep_ms(4, -1, code_value());
  3871. break;
  3872. }
  3873. microstep_readings();
  3874. #endif
  3875. }
  3876. /**
  3877. * M999: Restart after being stopped
  3878. */
  3879. inline void gcode_M999() {
  3880. Stopped = false;
  3881. lcd_reset_alert_level();
  3882. gcode_LastN = Stopped_gcode_LastN;
  3883. FlushSerialRequestResend();
  3884. }
  3885. inline void gcode_T() {
  3886. tmp_extruder = code_value();
  3887. if (tmp_extruder >= EXTRUDERS) {
  3888. SERIAL_ECHO_START;
  3889. SERIAL_ECHO("T");
  3890. SERIAL_ECHO(tmp_extruder);
  3891. SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
  3892. }
  3893. else {
  3894. boolean make_move = false;
  3895. if (code_seen('F')) {
  3896. make_move = true;
  3897. next_feedrate = code_value();
  3898. if (next_feedrate > 0.0) feedrate = next_feedrate;
  3899. }
  3900. #if EXTRUDERS > 1
  3901. if (tmp_extruder != active_extruder) {
  3902. // Save current position to return to after applying extruder offset
  3903. memcpy(destination, current_position, sizeof(destination));
  3904. #ifdef DUAL_X_CARRIAGE
  3905. if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE && Stopped == false &&
  3906. (delayed_move_time != 0 || current_position[X_AXIS] != x_home_pos(active_extruder))) {
  3907. // Park old head: 1) raise 2) move to park position 3) lower
  3908. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
  3909. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  3910. plan_buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
  3911. current_position[E_AXIS], max_feedrate[X_AXIS], active_extruder);
  3912. plan_buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS],
  3913. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  3914. st_synchronize();
  3915. }
  3916. // apply Y & Z extruder offset (x offset is already used in determining home pos)
  3917. current_position[Y_AXIS] = current_position[Y_AXIS] -
  3918. extruder_offset[Y_AXIS][active_extruder] +
  3919. extruder_offset[Y_AXIS][tmp_extruder];
  3920. current_position[Z_AXIS] = current_position[Z_AXIS] -
  3921. extruder_offset[Z_AXIS][active_extruder] +
  3922. extruder_offset[Z_AXIS][tmp_extruder];
  3923. active_extruder = tmp_extruder;
  3924. // This function resets the max/min values - the current position may be overwritten below.
  3925. axis_is_at_home(X_AXIS);
  3926. if (dual_x_carriage_mode == DXC_FULL_CONTROL_MODE) {
  3927. current_position[X_AXIS] = inactive_extruder_x_pos;
  3928. inactive_extruder_x_pos = destination[X_AXIS];
  3929. }
  3930. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE) {
  3931. active_extruder_parked = (active_extruder == 0); // this triggers the second extruder to move into the duplication position
  3932. if (active_extruder == 0 || active_extruder_parked)
  3933. current_position[X_AXIS] = inactive_extruder_x_pos;
  3934. else
  3935. current_position[X_AXIS] = destination[X_AXIS] + duplicate_extruder_x_offset;
  3936. inactive_extruder_x_pos = destination[X_AXIS];
  3937. extruder_duplication_enabled = false;
  3938. }
  3939. else {
  3940. // record raised toolhead position for use by unpark
  3941. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  3942. raised_parked_position[Z_AXIS] += TOOLCHANGE_UNPARK_ZLIFT;
  3943. active_extruder_parked = true;
  3944. delayed_move_time = 0;
  3945. }
  3946. #else // !DUAL_X_CARRIAGE
  3947. // Offset extruder (only by XY)
  3948. for (int i=X_AXIS; i<=Y_AXIS; i++)
  3949. current_position[i] += extruder_offset[i][tmp_extruder] - extruder_offset[i][active_extruder];
  3950. // Set the new active extruder and position
  3951. active_extruder = tmp_extruder;
  3952. #endif // !DUAL_X_CARRIAGE
  3953. #ifdef DELTA
  3954. calculate_delta(current_position); // change cartesian kinematic to delta kinematic;
  3955. //sent position to plan_set_position();
  3956. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS],current_position[E_AXIS]);
  3957. #else
  3958. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  3959. #endif
  3960. // Move to the old position if 'F' was in the parameters
  3961. if (make_move && !Stopped) prepare_move();
  3962. }
  3963. #ifdef EXT_SOLENOID
  3964. st_synchronize();
  3965. disable_all_solenoids();
  3966. enable_solenoid_on_active_extruder();
  3967. #endif // EXT_SOLENOID
  3968. #endif // EXTRUDERS > 1
  3969. SERIAL_ECHO_START;
  3970. SERIAL_ECHO(MSG_ACTIVE_EXTRUDER);
  3971. SERIAL_PROTOCOLLN((int)active_extruder);
  3972. }
  3973. }
  3974. /**
  3975. * Process Commands and dispatch them to handlers
  3976. */
  3977. void process_commands() {
  3978. if (code_seen('G')) {
  3979. int gCode = code_value_long();
  3980. switch(gCode) {
  3981. // G0, G1
  3982. case 0:
  3983. case 1:
  3984. gcode_G0_G1();
  3985. break;
  3986. // G2, G3
  3987. #ifndef SCARA
  3988. case 2: // G2 - CW ARC
  3989. case 3: // G3 - CCW ARC
  3990. gcode_G2_G3(gCode == 2);
  3991. break;
  3992. #endif
  3993. // G4 Dwell
  3994. case 4:
  3995. gcode_G4();
  3996. break;
  3997. #ifdef FWRETRACT
  3998. case 10: // G10: retract
  3999. case 11: // G11: retract_recover
  4000. gcode_G10_G11(gCode == 10);
  4001. break;
  4002. #endif //FWRETRACT
  4003. case 28: // G28: Home all axes, one at a time
  4004. gcode_G28();
  4005. break;
  4006. #ifdef ENABLE_AUTO_BED_LEVELING
  4007. case 29: // G29 Detailed Z-Probe, probes the bed at 3 or more points.
  4008. gcode_G29();
  4009. break;
  4010. #ifndef Z_PROBE_SLED
  4011. case 30: // G30 Single Z Probe
  4012. gcode_G30();
  4013. break;
  4014. #else // Z_PROBE_SLED
  4015. case 31: // G31: dock the sled
  4016. case 32: // G32: undock the sled
  4017. dock_sled(gCode == 31);
  4018. break;
  4019. #endif // Z_PROBE_SLED
  4020. #endif // ENABLE_AUTO_BED_LEVELING
  4021. case 90: // G90
  4022. relative_mode = false;
  4023. break;
  4024. case 91: // G91
  4025. relative_mode = true;
  4026. break;
  4027. case 92: // G92
  4028. gcode_G92();
  4029. break;
  4030. }
  4031. }
  4032. else if (code_seen('M')) {
  4033. switch( code_value_long() ) {
  4034. #ifdef ULTIPANEL
  4035. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  4036. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  4037. gcode_M0_M1();
  4038. break;
  4039. #endif // ULTIPANEL
  4040. case 17:
  4041. gcode_M17();
  4042. break;
  4043. #ifdef SDSUPPORT
  4044. case 20: // M20 - list SD card
  4045. gcode_M20(); break;
  4046. case 21: // M21 - init SD card
  4047. gcode_M21(); break;
  4048. case 22: //M22 - release SD card
  4049. gcode_M22(); break;
  4050. case 23: //M23 - Select file
  4051. gcode_M23(); break;
  4052. case 24: //M24 - Start SD print
  4053. gcode_M24(); break;
  4054. case 25: //M25 - Pause SD print
  4055. gcode_M25(); break;
  4056. case 26: //M26 - Set SD index
  4057. gcode_M26(); break;
  4058. case 27: //M27 - Get SD status
  4059. gcode_M27(); break;
  4060. case 28: //M28 - Start SD write
  4061. gcode_M28(); break;
  4062. case 29: //M29 - Stop SD write
  4063. gcode_M29(); break;
  4064. case 30: //M30 <filename> Delete File
  4065. gcode_M30(); break;
  4066. case 32: //M32 - Select file and start SD print
  4067. gcode_M32(); break;
  4068. case 928: //M928 - Start SD write
  4069. gcode_M928(); break;
  4070. #endif //SDSUPPORT
  4071. case 31: //M31 take time since the start of the SD print or an M109 command
  4072. gcode_M31();
  4073. break;
  4074. case 42: //M42 -Change pin status via gcode
  4075. gcode_M42();
  4076. break;
  4077. #if defined(ENABLE_AUTO_BED_LEVELING) && defined(Z_PROBE_REPEATABILITY_TEST)
  4078. case 48: // M48 Z-Probe repeatability
  4079. gcode_M48();
  4080. break;
  4081. #endif // ENABLE_AUTO_BED_LEVELING && Z_PROBE_REPEATABILITY_TEST
  4082. case 104: // M104
  4083. gcode_M104();
  4084. break;
  4085. case 112: // M112 Emergency Stop
  4086. gcode_M112();
  4087. break;
  4088. case 140: // M140 Set bed temp
  4089. gcode_M140();
  4090. break;
  4091. case 105: // M105 Read current temperature
  4092. gcode_M105();
  4093. return;
  4094. break;
  4095. case 109: // M109 Wait for temperature
  4096. gcode_M109();
  4097. break;
  4098. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  4099. case 190: // M190 - Wait for bed heater to reach target.
  4100. gcode_M190();
  4101. break;
  4102. #endif //TEMP_BED_PIN
  4103. #if defined(FAN_PIN) && FAN_PIN > -1
  4104. case 106: //M106 Fan On
  4105. gcode_M106();
  4106. break;
  4107. case 107: //M107 Fan Off
  4108. gcode_M107();
  4109. break;
  4110. #endif //FAN_PIN
  4111. #ifdef BARICUDA
  4112. // PWM for HEATER_1_PIN
  4113. #if defined(HEATER_1_PIN) && HEATER_1_PIN > -1
  4114. case 126: // M126 valve open
  4115. gcode_M126();
  4116. break;
  4117. case 127: // M127 valve closed
  4118. gcode_M127();
  4119. break;
  4120. #endif //HEATER_1_PIN
  4121. // PWM for HEATER_2_PIN
  4122. #if defined(HEATER_2_PIN) && HEATER_2_PIN > -1
  4123. case 128: // M128 valve open
  4124. gcode_M128();
  4125. break;
  4126. case 129: // M129 valve closed
  4127. gcode_M129();
  4128. break;
  4129. #endif //HEATER_2_PIN
  4130. #endif //BARICUDA
  4131. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  4132. case 80: // M80 - Turn on Power Supply
  4133. gcode_M80();
  4134. break;
  4135. #endif // PS_ON_PIN
  4136. case 81: // M81 - Turn off Power Supply
  4137. gcode_M81();
  4138. break;
  4139. case 82:
  4140. gcode_M82();
  4141. break;
  4142. case 83:
  4143. gcode_M83();
  4144. break;
  4145. case 18: //compatibility
  4146. case 84: // M84
  4147. gcode_M18_M84();
  4148. break;
  4149. case 85: // M85
  4150. gcode_M85();
  4151. break;
  4152. case 92: // M92
  4153. gcode_M92();
  4154. break;
  4155. case 115: // M115
  4156. gcode_M115();
  4157. break;
  4158. case 117: // M117 display message
  4159. gcode_M117();
  4160. break;
  4161. case 114: // M114
  4162. gcode_M114();
  4163. break;
  4164. case 120: // M120
  4165. gcode_M120();
  4166. break;
  4167. case 121: // M121
  4168. gcode_M121();
  4169. break;
  4170. case 119: // M119
  4171. gcode_M119();
  4172. break;
  4173. //TODO: update for all axis, use for loop
  4174. #ifdef BLINKM
  4175. case 150: // M150
  4176. gcode_M150();
  4177. break;
  4178. #endif //BLINKM
  4179. case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  4180. gcode_M200();
  4181. break;
  4182. case 201: // M201
  4183. gcode_M201();
  4184. break;
  4185. #if 0 // Not used for Sprinter/grbl gen6
  4186. case 202: // M202
  4187. gcode_M202();
  4188. break;
  4189. #endif
  4190. case 203: // M203 max feedrate mm/sec
  4191. gcode_M203();
  4192. break;
  4193. case 204: // M204 acclereration S normal moves T filmanent only moves
  4194. gcode_M204();
  4195. break;
  4196. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  4197. gcode_M205();
  4198. break;
  4199. case 206: // M206 additional homing offset
  4200. gcode_M206();
  4201. break;
  4202. #ifdef DELTA
  4203. case 665: // M665 set delta configurations L<diagonal_rod> R<delta_radius> S<segments_per_sec>
  4204. gcode_M665();
  4205. break;
  4206. case 666: // M666 set delta endstop adjustment
  4207. gcode_M666();
  4208. break;
  4209. #endif // DELTA
  4210. #ifdef FWRETRACT
  4211. case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
  4212. gcode_M207();
  4213. break;
  4214. case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  4215. gcode_M208();
  4216. break;
  4217. case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  4218. gcode_M209();
  4219. break;
  4220. #endif // FWRETRACT
  4221. #if EXTRUDERS > 1
  4222. case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  4223. gcode_M218();
  4224. break;
  4225. #endif
  4226. case 220: // M220 S<factor in percent>- set speed factor override percentage
  4227. gcode_M220();
  4228. break;
  4229. case 221: // M221 S<factor in percent>- set extrude factor override percentage
  4230. gcode_M221();
  4231. break;
  4232. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  4233. gcode_M226();
  4234. break;
  4235. #if NUM_SERVOS > 0
  4236. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  4237. gcode_M280();
  4238. break;
  4239. #endif // NUM_SERVOS > 0
  4240. #if defined(LARGE_FLASH) && (BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER))
  4241. case 300: // M300 - Play beep tone
  4242. gcode_M300();
  4243. break;
  4244. #endif // LARGE_FLASH && (BEEPER>0 || ULTRALCD || LCD_USE_I2C_BUZZER)
  4245. #ifdef PIDTEMP
  4246. case 301: // M301
  4247. gcode_M301();
  4248. break;
  4249. #endif // PIDTEMP
  4250. #ifdef PIDTEMPBED
  4251. case 304: // M304
  4252. gcode_M304();
  4253. break;
  4254. #endif // PIDTEMPBED
  4255. #if defined(CHDK) || (defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1)
  4256. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  4257. gcode_M240();
  4258. break;
  4259. #endif // CHDK || PHOTOGRAPH_PIN
  4260. #ifdef DOGLCD
  4261. case 250: // M250 Set LCD contrast value: C<value> (value 0..63)
  4262. gcode_M250();
  4263. break;
  4264. #endif // DOGLCD
  4265. #ifdef PREVENT_DANGEROUS_EXTRUDE
  4266. case 302: // allow cold extrudes, or set the minimum extrude temperature
  4267. gcode_M302();
  4268. break;
  4269. #endif // PREVENT_DANGEROUS_EXTRUDE
  4270. case 303: // M303 PID autotune
  4271. gcode_M303();
  4272. break;
  4273. #ifdef SCARA
  4274. case 360: // M360 SCARA Theta pos1
  4275. if (gcode_M360()) return;
  4276. break;
  4277. case 361: // M361 SCARA Theta pos2
  4278. if (gcode_M361()) return;
  4279. break;
  4280. case 362: // M362 SCARA Psi pos1
  4281. if (gcode_M362()) return;
  4282. break;
  4283. case 363: // M363 SCARA Psi pos2
  4284. if (gcode_M363()) return;
  4285. break;
  4286. case 364: // M364 SCARA Psi pos3 (90 deg to Theta)
  4287. if (gcode_M364()) return;
  4288. break;
  4289. case 365: // M365 Set SCARA scaling for X Y Z
  4290. gcode_M365();
  4291. break;
  4292. #endif // SCARA
  4293. case 400: // M400 finish all moves
  4294. gcode_M400();
  4295. break;
  4296. #if defined(ENABLE_AUTO_BED_LEVELING) && (defined(SERVO_ENDSTOPS) || defined(Z_PROBE_ALLEN_KEY)) && not defined(Z_PROBE_SLED)
  4297. case 401:
  4298. gcode_M401();
  4299. break;
  4300. case 402:
  4301. gcode_M402();
  4302. break;
  4303. #endif
  4304. #ifdef FILAMENT_SENSOR
  4305. case 404: //M404 Enter the nominal filament width (3mm, 1.75mm ) N<3.0> or display nominal filament width
  4306. gcode_M404();
  4307. break;
  4308. case 405: //M405 Turn on filament sensor for control
  4309. gcode_M405();
  4310. break;
  4311. case 406: //M406 Turn off filament sensor for control
  4312. gcode_M406();
  4313. break;
  4314. case 407: //M407 Display measured filament diameter
  4315. gcode_M407();
  4316. break;
  4317. #endif // FILAMENT_SENSOR
  4318. case 500: // M500 Store settings in EEPROM
  4319. gcode_M500();
  4320. break;
  4321. case 501: // M501 Read settings from EEPROM
  4322. gcode_M501();
  4323. break;
  4324. case 502: // M502 Revert to default settings
  4325. gcode_M502();
  4326. break;
  4327. case 503: // M503 print settings currently in memory
  4328. gcode_M503();
  4329. break;
  4330. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  4331. case 540:
  4332. gcode_M540();
  4333. break;
  4334. #endif
  4335. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  4336. case CUSTOM_M_CODE_SET_Z_PROBE_OFFSET:
  4337. gcode_SET_Z_PROBE_OFFSET();
  4338. break;
  4339. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  4340. #ifdef FILAMENTCHANGEENABLE
  4341. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  4342. gcode_M600();
  4343. break;
  4344. #endif // FILAMENTCHANGEENABLE
  4345. #ifdef DUAL_X_CARRIAGE
  4346. case 605:
  4347. gcode_M605();
  4348. break;
  4349. #endif // DUAL_X_CARRIAGE
  4350. case 907: // M907 Set digital trimpot motor current using axis codes.
  4351. gcode_M907();
  4352. break;
  4353. #if HAS_DIGIPOTSS
  4354. case 908: // M908 Control digital trimpot directly.
  4355. gcode_M908();
  4356. break;
  4357. #endif // HAS_DIGIPOTSS
  4358. case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  4359. gcode_M350();
  4360. break;
  4361. case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  4362. gcode_M351();
  4363. break;
  4364. case 999: // M999: Restart after being Stopped
  4365. gcode_M999();
  4366. break;
  4367. }
  4368. }
  4369. else if (code_seen('T')) {
  4370. gcode_T();
  4371. }
  4372. else {
  4373. SERIAL_ECHO_START;
  4374. SERIAL_ECHOPGM(MSG_UNKNOWN_COMMAND);
  4375. SERIAL_ECHO(cmdbuffer[bufindr]);
  4376. SERIAL_ECHOLNPGM("\"");
  4377. }
  4378. ClearToSend();
  4379. }
  4380. void FlushSerialRequestResend()
  4381. {
  4382. //char cmdbuffer[bufindr][100]="Resend:";
  4383. MYSERIAL.flush();
  4384. SERIAL_PROTOCOLPGM(MSG_RESEND);
  4385. SERIAL_PROTOCOLLN(gcode_LastN + 1);
  4386. ClearToSend();
  4387. }
  4388. void ClearToSend()
  4389. {
  4390. previous_millis_cmd = millis();
  4391. #ifdef SDSUPPORT
  4392. if(fromsd[bufindr])
  4393. return;
  4394. #endif //SDSUPPORT
  4395. SERIAL_PROTOCOLLNPGM(MSG_OK);
  4396. }
  4397. void get_coordinates()
  4398. {
  4399. bool seen[4]={false,false,false,false};
  4400. for(int8_t i=0; i < NUM_AXIS; i++) {
  4401. if(code_seen(axis_codes[i]))
  4402. {
  4403. destination[i] = (float)code_value() + (axis_relative_modes[i] || relative_mode)*current_position[i];
  4404. seen[i]=true;
  4405. }
  4406. else destination[i] = current_position[i]; //Are these else lines really needed?
  4407. }
  4408. if(code_seen('F')) {
  4409. next_feedrate = code_value();
  4410. if(next_feedrate > 0.0) feedrate = next_feedrate;
  4411. }
  4412. }
  4413. void get_arc_coordinates()
  4414. {
  4415. #ifdef SF_ARC_FIX
  4416. bool relative_mode_backup = relative_mode;
  4417. relative_mode = true;
  4418. #endif
  4419. get_coordinates();
  4420. #ifdef SF_ARC_FIX
  4421. relative_mode=relative_mode_backup;
  4422. #endif
  4423. if(code_seen('I')) {
  4424. offset[0] = code_value();
  4425. }
  4426. else {
  4427. offset[0] = 0.0;
  4428. }
  4429. if(code_seen('J')) {
  4430. offset[1] = code_value();
  4431. }
  4432. else {
  4433. offset[1] = 0.0;
  4434. }
  4435. }
  4436. void clamp_to_software_endstops(float target[3])
  4437. {
  4438. if (min_software_endstops) {
  4439. if (target[X_AXIS] < min_pos[X_AXIS]) target[X_AXIS] = min_pos[X_AXIS];
  4440. if (target[Y_AXIS] < min_pos[Y_AXIS]) target[Y_AXIS] = min_pos[Y_AXIS];
  4441. float negative_z_offset = 0;
  4442. #ifdef ENABLE_AUTO_BED_LEVELING
  4443. if (Z_PROBE_OFFSET_FROM_EXTRUDER < 0) negative_z_offset = negative_z_offset + Z_PROBE_OFFSET_FROM_EXTRUDER;
  4444. if (add_homing[Z_AXIS] < 0) negative_z_offset = negative_z_offset + add_homing[Z_AXIS];
  4445. #endif
  4446. if (target[Z_AXIS] < min_pos[Z_AXIS]+negative_z_offset) target[Z_AXIS] = min_pos[Z_AXIS]+negative_z_offset;
  4447. }
  4448. if (max_software_endstops) {
  4449. if (target[X_AXIS] > max_pos[X_AXIS]) target[X_AXIS] = max_pos[X_AXIS];
  4450. if (target[Y_AXIS] > max_pos[Y_AXIS]) target[Y_AXIS] = max_pos[Y_AXIS];
  4451. if (target[Z_AXIS] > max_pos[Z_AXIS]) target[Z_AXIS] = max_pos[Z_AXIS];
  4452. }
  4453. }
  4454. #ifdef DELTA
  4455. void recalc_delta_settings(float radius, float diagonal_rod)
  4456. {
  4457. delta_tower1_x= -SIN_60*radius; // front left tower
  4458. delta_tower1_y= -COS_60*radius;
  4459. delta_tower2_x= SIN_60*radius; // front right tower
  4460. delta_tower2_y= -COS_60*radius;
  4461. delta_tower3_x= 0.0; // back middle tower
  4462. delta_tower3_y= radius;
  4463. delta_diagonal_rod_2= sq(diagonal_rod);
  4464. }
  4465. void calculate_delta(float cartesian[3])
  4466. {
  4467. delta[X_AXIS] = sqrt(delta_diagonal_rod_2
  4468. - sq(delta_tower1_x-cartesian[X_AXIS])
  4469. - sq(delta_tower1_y-cartesian[Y_AXIS])
  4470. ) + cartesian[Z_AXIS];
  4471. delta[Y_AXIS] = sqrt(delta_diagonal_rod_2
  4472. - sq(delta_tower2_x-cartesian[X_AXIS])
  4473. - sq(delta_tower2_y-cartesian[Y_AXIS])
  4474. ) + cartesian[Z_AXIS];
  4475. delta[Z_AXIS] = sqrt(delta_diagonal_rod_2
  4476. - sq(delta_tower3_x-cartesian[X_AXIS])
  4477. - sq(delta_tower3_y-cartesian[Y_AXIS])
  4478. ) + cartesian[Z_AXIS];
  4479. /*
  4480. SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);
  4481. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]);
  4482. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]);
  4483. SERIAL_ECHOPGM("delta x="); SERIAL_ECHO(delta[X_AXIS]);
  4484. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(delta[Y_AXIS]);
  4485. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(delta[Z_AXIS]);
  4486. */
  4487. }
  4488. #ifdef ENABLE_AUTO_BED_LEVELING
  4489. // Adjust print surface height by linear interpolation over the bed_level array.
  4490. int delta_grid_spacing[2] = { 0, 0 };
  4491. void adjust_delta(float cartesian[3])
  4492. {
  4493. if (delta_grid_spacing[0] == 0 || delta_grid_spacing[1] == 0)
  4494. return; // G29 not done
  4495. int half = (AUTO_BED_LEVELING_GRID_POINTS - 1) / 2;
  4496. float grid_x = max(0.001-half, min(half-0.001, cartesian[X_AXIS] / delta_grid_spacing[0]));
  4497. float grid_y = max(0.001-half, min(half-0.001, cartesian[Y_AXIS] / delta_grid_spacing[1]));
  4498. int floor_x = floor(grid_x);
  4499. int floor_y = floor(grid_y);
  4500. float ratio_x = grid_x - floor_x;
  4501. float ratio_y = grid_y - floor_y;
  4502. float z1 = bed_level[floor_x+half][floor_y+half];
  4503. float z2 = bed_level[floor_x+half][floor_y+half+1];
  4504. float z3 = bed_level[floor_x+half+1][floor_y+half];
  4505. float z4 = bed_level[floor_x+half+1][floor_y+half+1];
  4506. float left = (1-ratio_y)*z1 + ratio_y*z2;
  4507. float right = (1-ratio_y)*z3 + ratio_y*z4;
  4508. float offset = (1-ratio_x)*left + ratio_x*right;
  4509. delta[X_AXIS] += offset;
  4510. delta[Y_AXIS] += offset;
  4511. delta[Z_AXIS] += offset;
  4512. /*
  4513. SERIAL_ECHOPGM("grid_x="); SERIAL_ECHO(grid_x);
  4514. SERIAL_ECHOPGM(" grid_y="); SERIAL_ECHO(grid_y);
  4515. SERIAL_ECHOPGM(" floor_x="); SERIAL_ECHO(floor_x);
  4516. SERIAL_ECHOPGM(" floor_y="); SERIAL_ECHO(floor_y);
  4517. SERIAL_ECHOPGM(" ratio_x="); SERIAL_ECHO(ratio_x);
  4518. SERIAL_ECHOPGM(" ratio_y="); SERIAL_ECHO(ratio_y);
  4519. SERIAL_ECHOPGM(" z1="); SERIAL_ECHO(z1);
  4520. SERIAL_ECHOPGM(" z2="); SERIAL_ECHO(z2);
  4521. SERIAL_ECHOPGM(" z3="); SERIAL_ECHO(z3);
  4522. SERIAL_ECHOPGM(" z4="); SERIAL_ECHO(z4);
  4523. SERIAL_ECHOPGM(" left="); SERIAL_ECHO(left);
  4524. SERIAL_ECHOPGM(" right="); SERIAL_ECHO(right);
  4525. SERIAL_ECHOPGM(" offset="); SERIAL_ECHOLN(offset);
  4526. */
  4527. }
  4528. #endif //ENABLE_AUTO_BED_LEVELING
  4529. void prepare_move_raw()
  4530. {
  4531. previous_millis_cmd = millis();
  4532. calculate_delta(destination);
  4533. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS],
  4534. destination[E_AXIS], feedrate*feedmultiply/60/100.0,
  4535. active_extruder);
  4536. for(int8_t i=0; i < NUM_AXIS; i++) {
  4537. current_position[i] = destination[i];
  4538. }
  4539. }
  4540. #endif //DELTA
  4541. void prepare_move()
  4542. {
  4543. clamp_to_software_endstops(destination);
  4544. previous_millis_cmd = millis();
  4545. #ifdef SCARA //for now same as delta-code
  4546. float difference[NUM_AXIS];
  4547. for (int8_t i=0; i < NUM_AXIS; i++) {
  4548. difference[i] = destination[i] - current_position[i];
  4549. }
  4550. float cartesian_mm = sqrt( sq(difference[X_AXIS]) +
  4551. sq(difference[Y_AXIS]) +
  4552. sq(difference[Z_AXIS]));
  4553. if (cartesian_mm < 0.000001) { cartesian_mm = abs(difference[E_AXIS]); }
  4554. if (cartesian_mm < 0.000001) { return; }
  4555. float seconds = 6000 * cartesian_mm / feedrate / feedmultiply;
  4556. int steps = max(1, int(scara_segments_per_second * seconds));
  4557. //SERIAL_ECHOPGM("mm="); SERIAL_ECHO(cartesian_mm);
  4558. //SERIAL_ECHOPGM(" seconds="); SERIAL_ECHO(seconds);
  4559. //SERIAL_ECHOPGM(" steps="); SERIAL_ECHOLN(steps);
  4560. for (int s = 1; s <= steps; s++) {
  4561. float fraction = float(s) / float(steps);
  4562. for(int8_t i=0; i < NUM_AXIS; i++) {
  4563. destination[i] = current_position[i] + difference[i] * fraction;
  4564. }
  4565. calculate_delta(destination);
  4566. //SERIAL_ECHOPGM("destination[X_AXIS]="); SERIAL_ECHOLN(destination[X_AXIS]);
  4567. //SERIAL_ECHOPGM("destination[Y_AXIS]="); SERIAL_ECHOLN(destination[Y_AXIS]);
  4568. //SERIAL_ECHOPGM("destination[Z_AXIS]="); SERIAL_ECHOLN(destination[Z_AXIS]);
  4569. //SERIAL_ECHOPGM("delta[X_AXIS]="); SERIAL_ECHOLN(delta[X_AXIS]);
  4570. //SERIAL_ECHOPGM("delta[Y_AXIS]="); SERIAL_ECHOLN(delta[Y_AXIS]);
  4571. //SERIAL_ECHOPGM("delta[Z_AXIS]="); SERIAL_ECHOLN(delta[Z_AXIS]);
  4572. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS],
  4573. destination[E_AXIS], feedrate*feedmultiply/60/100.0,
  4574. active_extruder);
  4575. }
  4576. #endif // SCARA
  4577. #ifdef DELTA
  4578. float difference[NUM_AXIS];
  4579. for (int8_t i=0; i < NUM_AXIS; i++) {
  4580. difference[i] = destination[i] - current_position[i];
  4581. }
  4582. float cartesian_mm = sqrt(sq(difference[X_AXIS]) +
  4583. sq(difference[Y_AXIS]) +
  4584. sq(difference[Z_AXIS]));
  4585. if (cartesian_mm < 0.000001) { cartesian_mm = abs(difference[E_AXIS]); }
  4586. if (cartesian_mm < 0.000001) { return; }
  4587. float seconds = 6000 * cartesian_mm / feedrate / feedmultiply;
  4588. int steps = max(1, int(delta_segments_per_second * seconds));
  4589. // SERIAL_ECHOPGM("mm="); SERIAL_ECHO(cartesian_mm);
  4590. // SERIAL_ECHOPGM(" seconds="); SERIAL_ECHO(seconds);
  4591. // SERIAL_ECHOPGM(" steps="); SERIAL_ECHOLN(steps);
  4592. for (int s = 1; s <= steps; s++) {
  4593. float fraction = float(s) / float(steps);
  4594. for(int8_t i=0; i < NUM_AXIS; i++) {
  4595. destination[i] = current_position[i] + difference[i] * fraction;
  4596. }
  4597. calculate_delta(destination);
  4598. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS],
  4599. destination[E_AXIS], feedrate*feedmultiply/60/100.0,
  4600. active_extruder);
  4601. }
  4602. #endif // DELTA
  4603. #ifdef DUAL_X_CARRIAGE
  4604. if (active_extruder_parked)
  4605. {
  4606. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && active_extruder == 0)
  4607. {
  4608. // move duplicate extruder into correct duplication position.
  4609. plan_set_position(inactive_extruder_x_pos, current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  4610. plan_buffer_line(current_position[X_AXIS] + duplicate_extruder_x_offset, current_position[Y_AXIS], current_position[Z_AXIS],
  4611. current_position[E_AXIS], max_feedrate[X_AXIS], 1);
  4612. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  4613. st_synchronize();
  4614. extruder_duplication_enabled = true;
  4615. active_extruder_parked = false;
  4616. }
  4617. else if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE) // handle unparking of head
  4618. {
  4619. if (current_position[E_AXIS] == destination[E_AXIS])
  4620. {
  4621. // this is a travel move - skit it but keep track of current position (so that it can later
  4622. // be used as start of first non-travel move)
  4623. if (delayed_move_time != 0xFFFFFFFFUL)
  4624. {
  4625. memcpy(current_position, destination, sizeof(current_position));
  4626. if (destination[Z_AXIS] > raised_parked_position[Z_AXIS])
  4627. raised_parked_position[Z_AXIS] = destination[Z_AXIS];
  4628. delayed_move_time = millis();
  4629. return;
  4630. }
  4631. }
  4632. delayed_move_time = 0;
  4633. // unpark extruder: 1) raise, 2) move into starting XY position, 3) lower
  4634. plan_buffer_line(raised_parked_position[X_AXIS], raised_parked_position[Y_AXIS], raised_parked_position[Z_AXIS], current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  4635. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], raised_parked_position[Z_AXIS],
  4636. current_position[E_AXIS], min(max_feedrate[X_AXIS],max_feedrate[Y_AXIS]), active_extruder);
  4637. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS],
  4638. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  4639. active_extruder_parked = false;
  4640. }
  4641. }
  4642. #endif //DUAL_X_CARRIAGE
  4643. #if ! (defined DELTA || defined SCARA)
  4644. // Do not use feedmultiply for E or Z only moves
  4645. if( (current_position[X_AXIS] == destination [X_AXIS]) && (current_position[Y_AXIS] == destination [Y_AXIS])) {
  4646. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  4647. }
  4648. else {
  4649. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply/60/100.0, active_extruder);
  4650. }
  4651. #endif // !(DELTA || SCARA)
  4652. for(int8_t i=0; i < NUM_AXIS; i++) {
  4653. current_position[i] = destination[i];
  4654. }
  4655. }
  4656. void prepare_arc_move(char isclockwise) {
  4657. float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
  4658. // Trace the arc
  4659. mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedmultiply/60/100.0, r, isclockwise, active_extruder);
  4660. // As far as the parser is concerned, the position is now == target. In reality the
  4661. // motion control system might still be processing the action and the real tool position
  4662. // in any intermediate location.
  4663. for(int8_t i=0; i < NUM_AXIS; i++) {
  4664. current_position[i] = destination[i];
  4665. }
  4666. previous_millis_cmd = millis();
  4667. }
  4668. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  4669. #if defined(FAN_PIN)
  4670. #if CONTROLLERFAN_PIN == FAN_PIN
  4671. #error "You cannot set CONTROLLERFAN_PIN equal to FAN_PIN"
  4672. #endif
  4673. #endif
  4674. unsigned long lastMotor = 0; // Last time a motor was turned on
  4675. unsigned long lastMotorCheck = 0; // Last time the state was checked
  4676. void controllerFan() {
  4677. uint32_t ms = millis();
  4678. if (ms >= lastMotorCheck + 2500) { // Not a time critical function, so we only check every 2500ms
  4679. lastMotorCheck = ms;
  4680. if (X_ENABLE_READ == X_ENABLE_ON || Y_ENABLE_READ == Y_ENABLE_ON || Z_ENABLE_READ == Z_ENABLE_ON || soft_pwm_bed > 0
  4681. || E0_ENABLE_READ == E_ENABLE_ON // If any of the drivers are enabled...
  4682. #if EXTRUDERS > 1
  4683. || E1_ENABLE_READ == E_ENABLE_ON
  4684. #if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1
  4685. || X2_ENABLE_READ == X_ENABLE_ON
  4686. #endif
  4687. #if EXTRUDERS > 2
  4688. || E2_ENABLE_READ == E_ENABLE_ON
  4689. #if EXTRUDERS > 3
  4690. || E3_ENABLE_READ == E_ENABLE_ON
  4691. #endif
  4692. #endif
  4693. #endif
  4694. ) {
  4695. lastMotor = ms; //... set time to NOW so the fan will turn on
  4696. }
  4697. uint8_t speed = (lastMotor == 0 || ms >= lastMotor + (CONTROLLERFAN_SECS * 1000UL)) ? 0 : CONTROLLERFAN_SPEED;
  4698. // allows digital or PWM fan output to be used (see M42 handling)
  4699. digitalWrite(CONTROLLERFAN_PIN, speed);
  4700. analogWrite(CONTROLLERFAN_PIN, speed);
  4701. }
  4702. }
  4703. #endif
  4704. #ifdef SCARA
  4705. void calculate_SCARA_forward_Transform(float f_scara[3])
  4706. {
  4707. // Perform forward kinematics, and place results in delta[3]
  4708. // The maths and first version has been done by QHARLEY . Integrated into masterbranch 06/2014 and slightly restructured by Joachim Cerny in June 2014
  4709. float x_sin, x_cos, y_sin, y_cos;
  4710. //SERIAL_ECHOPGM("f_delta x="); SERIAL_ECHO(f_scara[X_AXIS]);
  4711. //SERIAL_ECHOPGM(" y="); SERIAL_ECHO(f_scara[Y_AXIS]);
  4712. x_sin = sin(f_scara[X_AXIS]/SCARA_RAD2DEG) * Linkage_1;
  4713. x_cos = cos(f_scara[X_AXIS]/SCARA_RAD2DEG) * Linkage_1;
  4714. y_sin = sin(f_scara[Y_AXIS]/SCARA_RAD2DEG) * Linkage_2;
  4715. y_cos = cos(f_scara[Y_AXIS]/SCARA_RAD2DEG) * Linkage_2;
  4716. // SERIAL_ECHOPGM(" x_sin="); SERIAL_ECHO(x_sin);
  4717. // SERIAL_ECHOPGM(" x_cos="); SERIAL_ECHO(x_cos);
  4718. // SERIAL_ECHOPGM(" y_sin="); SERIAL_ECHO(y_sin);
  4719. // SERIAL_ECHOPGM(" y_cos="); SERIAL_ECHOLN(y_cos);
  4720. delta[X_AXIS] = x_cos + y_cos + SCARA_offset_x; //theta
  4721. delta[Y_AXIS] = x_sin + y_sin + SCARA_offset_y; //theta+phi
  4722. //SERIAL_ECHOPGM(" delta[X_AXIS]="); SERIAL_ECHO(delta[X_AXIS]);
  4723. //SERIAL_ECHOPGM(" delta[Y_AXIS]="); SERIAL_ECHOLN(delta[Y_AXIS]);
  4724. }
  4725. void calculate_delta(float cartesian[3]){
  4726. //reverse kinematics.
  4727. // Perform reversed kinematics, and place results in delta[3]
  4728. // The maths and first version has been done by QHARLEY . Integrated into masterbranch 06/2014 and slightly restructured by Joachim Cerny in June 2014
  4729. float SCARA_pos[2];
  4730. static float SCARA_C2, SCARA_S2, SCARA_K1, SCARA_K2, SCARA_theta, SCARA_psi;
  4731. SCARA_pos[X_AXIS] = cartesian[X_AXIS] * axis_scaling[X_AXIS] - SCARA_offset_x; //Translate SCARA to standard X Y
  4732. SCARA_pos[Y_AXIS] = cartesian[Y_AXIS] * axis_scaling[Y_AXIS] - SCARA_offset_y; // With scaling factor.
  4733. #if (Linkage_1 == Linkage_2)
  4734. SCARA_C2 = ( ( sq(SCARA_pos[X_AXIS]) + sq(SCARA_pos[Y_AXIS]) ) / (2 * (float)L1_2) ) - 1;
  4735. #else
  4736. SCARA_C2 = ( sq(SCARA_pos[X_AXIS]) + sq(SCARA_pos[Y_AXIS]) - (float)L1_2 - (float)L2_2 ) / 45000;
  4737. #endif
  4738. SCARA_S2 = sqrt( 1 - sq(SCARA_C2) );
  4739. SCARA_K1 = Linkage_1 + Linkage_2 * SCARA_C2;
  4740. SCARA_K2 = Linkage_2 * SCARA_S2;
  4741. SCARA_theta = ( atan2(SCARA_pos[X_AXIS],SCARA_pos[Y_AXIS])-atan2(SCARA_K1, SCARA_K2) ) * -1;
  4742. SCARA_psi = atan2(SCARA_S2,SCARA_C2);
  4743. delta[X_AXIS] = SCARA_theta * SCARA_RAD2DEG; // Multiply by 180/Pi - theta is support arm angle
  4744. delta[Y_AXIS] = (SCARA_theta + SCARA_psi) * SCARA_RAD2DEG; // - equal to sub arm angle (inverted motor)
  4745. delta[Z_AXIS] = cartesian[Z_AXIS];
  4746. /*
  4747. SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);
  4748. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]);
  4749. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]);
  4750. SERIAL_ECHOPGM("scara x="); SERIAL_ECHO(SCARA_pos[X_AXIS]);
  4751. SERIAL_ECHOPGM(" y="); SERIAL_ECHOLN(SCARA_pos[Y_AXIS]);
  4752. SERIAL_ECHOPGM("delta x="); SERIAL_ECHO(delta[X_AXIS]);
  4753. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(delta[Y_AXIS]);
  4754. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(delta[Z_AXIS]);
  4755. SERIAL_ECHOPGM("C2="); SERIAL_ECHO(SCARA_C2);
  4756. SERIAL_ECHOPGM(" S2="); SERIAL_ECHO(SCARA_S2);
  4757. SERIAL_ECHOPGM(" Theta="); SERIAL_ECHO(SCARA_theta);
  4758. SERIAL_ECHOPGM(" Psi="); SERIAL_ECHOLN(SCARA_psi);
  4759. SERIAL_ECHOLN(" ");*/
  4760. }
  4761. #endif
  4762. #ifdef TEMP_STAT_LEDS
  4763. static bool blue_led = false;
  4764. static bool red_led = false;
  4765. static uint32_t stat_update = 0;
  4766. void handle_status_leds(void) {
  4767. float max_temp = 0.0;
  4768. if(millis() > stat_update) {
  4769. stat_update += 500; // Update every 0.5s
  4770. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  4771. max_temp = max(max_temp, degHotend(cur_extruder));
  4772. max_temp = max(max_temp, degTargetHotend(cur_extruder));
  4773. }
  4774. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  4775. max_temp = max(max_temp, degTargetBed());
  4776. max_temp = max(max_temp, degBed());
  4777. #endif
  4778. if((max_temp > 55.0) && (red_led == false)) {
  4779. digitalWrite(STAT_LED_RED, 1);
  4780. digitalWrite(STAT_LED_BLUE, 0);
  4781. red_led = true;
  4782. blue_led = false;
  4783. }
  4784. if((max_temp < 54.0) && (blue_led == false)) {
  4785. digitalWrite(STAT_LED_RED, 0);
  4786. digitalWrite(STAT_LED_BLUE, 1);
  4787. red_led = false;
  4788. blue_led = true;
  4789. }
  4790. }
  4791. }
  4792. #endif
  4793. void manage_inactivity(bool ignore_stepper_queue/*=false*/) //default argument set in Marlin.h
  4794. {
  4795. #if defined(KILL_PIN) && KILL_PIN > -1
  4796. static int killCount = 0; // make the inactivity button a bit less responsive
  4797. const int KILL_DELAY = 10000;
  4798. #endif
  4799. #if defined(FILRUNOUT_PIN) && FILRUNOUT_PIN > -1
  4800. if(card.sdprinting) {
  4801. if(!(READ(FILRUNOUT_PIN))^FIL_RUNOUT_INVERTING)
  4802. filrunout(); }
  4803. #endif
  4804. #if defined(HOME_PIN) && HOME_PIN > -1
  4805. static int homeDebounceCount = 0; // poor man's debouncing count
  4806. const int HOME_DEBOUNCE_DELAY = 10000;
  4807. #endif
  4808. if(buflen < (BUFSIZE-1))
  4809. get_command();
  4810. if( (millis() - previous_millis_cmd) > max_inactive_time )
  4811. if(max_inactive_time)
  4812. kill();
  4813. if(stepper_inactive_time) {
  4814. if( (millis() - previous_millis_cmd) > stepper_inactive_time )
  4815. {
  4816. if(blocks_queued() == false && ignore_stepper_queue == false) {
  4817. disable_x();
  4818. disable_y();
  4819. disable_z();
  4820. disable_e0();
  4821. disable_e1();
  4822. disable_e2();
  4823. disable_e3();
  4824. }
  4825. }
  4826. }
  4827. #ifdef CHDK //Check if pin should be set to LOW after M240 set it to HIGH
  4828. if (chdkActive && (millis() - chdkHigh > CHDK_DELAY))
  4829. {
  4830. chdkActive = false;
  4831. WRITE(CHDK, LOW);
  4832. }
  4833. #endif
  4834. #if defined(KILL_PIN) && KILL_PIN > -1
  4835. // Check if the kill button was pressed and wait just in case it was an accidental
  4836. // key kill key press
  4837. // -------------------------------------------------------------------------------
  4838. if( 0 == READ(KILL_PIN) )
  4839. {
  4840. killCount++;
  4841. }
  4842. else if (killCount > 0)
  4843. {
  4844. killCount--;
  4845. }
  4846. // Exceeded threshold and we can confirm that it was not accidental
  4847. // KILL the machine
  4848. // ----------------------------------------------------------------
  4849. if ( killCount >= KILL_DELAY)
  4850. {
  4851. kill();
  4852. }
  4853. #endif
  4854. #if defined(HOME_PIN) && HOME_PIN > -1
  4855. // Check to see if we have to home, use poor man's debouncer
  4856. // ---------------------------------------------------------
  4857. if ( 0 == READ(HOME_PIN) )
  4858. {
  4859. if (homeDebounceCount == 0)
  4860. {
  4861. enquecommands_P((PSTR("G28")));
  4862. homeDebounceCount++;
  4863. LCD_ALERTMESSAGEPGM(MSG_AUTO_HOME);
  4864. }
  4865. else if (homeDebounceCount < HOME_DEBOUNCE_DELAY)
  4866. {
  4867. homeDebounceCount++;
  4868. }
  4869. else
  4870. {
  4871. homeDebounceCount = 0;
  4872. }
  4873. }
  4874. #endif
  4875. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  4876. controllerFan(); //Check if fan should be turned on to cool stepper drivers down
  4877. #endif
  4878. #ifdef EXTRUDER_RUNOUT_PREVENT
  4879. if( (millis() - previous_millis_cmd) > EXTRUDER_RUNOUT_SECONDS*1000 )
  4880. if(degHotend(active_extruder)>EXTRUDER_RUNOUT_MINTEMP)
  4881. {
  4882. bool oldstatus=E0_ENABLE_READ;
  4883. enable_e0();
  4884. float oldepos=current_position[E_AXIS];
  4885. float oldedes=destination[E_AXIS];
  4886. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
  4887. destination[E_AXIS]+EXTRUDER_RUNOUT_EXTRUDE*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS],
  4888. EXTRUDER_RUNOUT_SPEED/60.*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS], active_extruder);
  4889. current_position[E_AXIS]=oldepos;
  4890. destination[E_AXIS]=oldedes;
  4891. plan_set_e_position(oldepos);
  4892. previous_millis_cmd=millis();
  4893. st_synchronize();
  4894. E0_ENABLE_WRITE(oldstatus);
  4895. }
  4896. #endif
  4897. #if defined(DUAL_X_CARRIAGE)
  4898. // handle delayed move timeout
  4899. if (delayed_move_time != 0 && (millis() - delayed_move_time) > 1000 && Stopped == false)
  4900. {
  4901. // travel moves have been received so enact them
  4902. delayed_move_time = 0xFFFFFFFFUL; // force moves to be done
  4903. memcpy(destination,current_position,sizeof(destination));
  4904. prepare_move();
  4905. }
  4906. #endif
  4907. #ifdef TEMP_STAT_LEDS
  4908. handle_status_leds();
  4909. #endif
  4910. check_axes_activity();
  4911. }
  4912. void kill()
  4913. {
  4914. cli(); // Stop interrupts
  4915. disable_heater();
  4916. disable_x();
  4917. disable_y();
  4918. disable_z();
  4919. disable_e0();
  4920. disable_e1();
  4921. disable_e2();
  4922. disable_e3();
  4923. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  4924. pinMode(PS_ON_PIN,INPUT);
  4925. #endif
  4926. SERIAL_ERROR_START;
  4927. SERIAL_ERRORLNPGM(MSG_ERR_KILLED);
  4928. LCD_ALERTMESSAGEPGM(MSG_KILLED);
  4929. // FMC small patch to update the LCD before ending
  4930. sei(); // enable interrupts
  4931. for ( int i=5; i--; lcd_update())
  4932. {
  4933. delay(200);
  4934. }
  4935. cli(); // disable interrupts
  4936. suicide();
  4937. while(1) { /* Intentionally left empty */ } // Wait for reset
  4938. }
  4939. #ifdef FILAMENT_RUNOUT_SENSOR
  4940. void filrunout()
  4941. {
  4942. if filrunoutEnqued == false {
  4943. filrunoutEnqued = true;
  4944. enquecommand("M600");
  4945. }
  4946. }
  4947. #endif
  4948. void Stop()
  4949. {
  4950. disable_heater();
  4951. if(Stopped == false) {
  4952. Stopped = true;
  4953. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  4954. SERIAL_ERROR_START;
  4955. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  4956. LCD_MESSAGEPGM(MSG_STOPPED);
  4957. }
  4958. }
  4959. bool IsStopped() { return Stopped; };
  4960. #ifdef FAST_PWM_FAN
  4961. void setPwmFrequency(uint8_t pin, int val)
  4962. {
  4963. val &= 0x07;
  4964. switch(digitalPinToTimer(pin))
  4965. {
  4966. #if defined(TCCR0A)
  4967. case TIMER0A:
  4968. case TIMER0B:
  4969. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  4970. // TCCR0B |= val;
  4971. break;
  4972. #endif
  4973. #if defined(TCCR1A)
  4974. case TIMER1A:
  4975. case TIMER1B:
  4976. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  4977. // TCCR1B |= val;
  4978. break;
  4979. #endif
  4980. #if defined(TCCR2)
  4981. case TIMER2:
  4982. case TIMER2:
  4983. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  4984. TCCR2 |= val;
  4985. break;
  4986. #endif
  4987. #if defined(TCCR2A)
  4988. case TIMER2A:
  4989. case TIMER2B:
  4990. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  4991. TCCR2B |= val;
  4992. break;
  4993. #endif
  4994. #if defined(TCCR3A)
  4995. case TIMER3A:
  4996. case TIMER3B:
  4997. case TIMER3C:
  4998. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  4999. TCCR3B |= val;
  5000. break;
  5001. #endif
  5002. #if defined(TCCR4A)
  5003. case TIMER4A:
  5004. case TIMER4B:
  5005. case TIMER4C:
  5006. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  5007. TCCR4B |= val;
  5008. break;
  5009. #endif
  5010. #if defined(TCCR5A)
  5011. case TIMER5A:
  5012. case TIMER5B:
  5013. case TIMER5C:
  5014. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  5015. TCCR5B |= val;
  5016. break;
  5017. #endif
  5018. }
  5019. }
  5020. #endif //FAST_PWM_FAN
  5021. bool setTargetedHotend(int code){
  5022. tmp_extruder = active_extruder;
  5023. if(code_seen('T')) {
  5024. tmp_extruder = code_value();
  5025. if(tmp_extruder >= EXTRUDERS) {
  5026. SERIAL_ECHO_START;
  5027. switch(code){
  5028. case 104:
  5029. SERIAL_ECHO(MSG_M104_INVALID_EXTRUDER);
  5030. break;
  5031. case 105:
  5032. SERIAL_ECHO(MSG_M105_INVALID_EXTRUDER);
  5033. break;
  5034. case 109:
  5035. SERIAL_ECHO(MSG_M109_INVALID_EXTRUDER);
  5036. break;
  5037. case 218:
  5038. SERIAL_ECHO(MSG_M218_INVALID_EXTRUDER);
  5039. break;
  5040. case 221:
  5041. SERIAL_ECHO(MSG_M221_INVALID_EXTRUDER);
  5042. break;
  5043. }
  5044. SERIAL_ECHOLN(tmp_extruder);
  5045. return true;
  5046. }
  5047. }
  5048. return false;
  5049. }
  5050. float calculate_volumetric_multiplier(float diameter) {
  5051. if (!volumetric_enabled || diameter == 0) return 1.0;
  5052. float d2 = diameter * 0.5;
  5053. return 1.0 / (M_PI * d2 * d2);
  5054. }
  5055. void calculate_volumetric_multipliers() {
  5056. for (int i=0; i<EXTRUDERS; i++)
  5057. volumetric_multiplier[i] = calculate_volumetric_multiplier(filament_size[i]);
  5058. }