1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657 |
- /**
- * Marlin 3D Printer Firmware
- * Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
- *
- * Based on Sprinter and grbl.
- * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
- *
- * This program is free software: you can redistribute it and/or modify
- * it under the terms of the GNU General Public License as published by
- * the Free Software Foundation, either version 3 of the License, or
- * (at your option) any later version.
- *
- * This program is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- * GNU General Public License for more details.
- *
- * You should have received a copy of the GNU General Public License
- * along with this program. If not, see <http://www.gnu.org/licenses/>.
- *
- */
-
- /**
- * temperature.cpp - temperature control
- */
-
- #include "Marlin.h"
- #include "ultralcd.h"
- #include "temperature.h"
- #include "language.h"
- #include "Sd2PinMap.h"
-
- #if ENABLED(USE_WATCHDOG)
- #include "watchdog.h"
- #endif
-
- #ifdef K1 // Defined in Configuration.h in the PID settings
- #define K2 (1.0-K1)
- #endif
-
- #if ENABLED(TEMP_SENSOR_1_AS_REDUNDANT)
- static void* heater_ttbl_map[2] = {(void*)HEATER_0_TEMPTABLE, (void*)HEATER_1_TEMPTABLE };
- static uint8_t heater_ttbllen_map[2] = { HEATER_0_TEMPTABLE_LEN, HEATER_1_TEMPTABLE_LEN };
- #else
- static void* heater_ttbl_map[EXTRUDERS] = ARRAY_BY_EXTRUDERS((void*)HEATER_0_TEMPTABLE, (void*)HEATER_1_TEMPTABLE, (void*)HEATER_2_TEMPTABLE, (void*)HEATER_3_TEMPTABLE);
- static uint8_t heater_ttbllen_map[EXTRUDERS] = ARRAY_BY_EXTRUDERS(HEATER_0_TEMPTABLE_LEN, HEATER_1_TEMPTABLE_LEN, HEATER_2_TEMPTABLE_LEN, HEATER_3_TEMPTABLE_LEN);
- #endif
-
- Temperature thermalManager;
-
- #if HAS_PID_HEATING
-
- void Temperature::PID_autotune(float temp, int extruder, int ncycles, bool set_result/*=false*/) {
- float input = 0.0;
- int cycles = 0;
- bool heating = true;
-
- millis_t temp_ms = millis(), t1 = temp_ms, t2 = temp_ms;
- long t_high = 0, t_low = 0;
-
- long bias, d;
- float Ku, Tu;
- float workKp = 0, workKi = 0, workKd = 0;
- float max = 0, min = 10000;
-
- #if HAS_AUTO_FAN
- next_auto_fan_check_ms = temp_ms + 2500UL;
- #endif
-
- if (false
- #if ENABLED(PIDTEMP)
- || extruder >= EXTRUDERS
- #else
- || extruder >= 0
- #endif
- #if DISABLED(PIDTEMPBED)
- || extruder < 0
- #endif
- ) {
- SERIAL_ECHOLN(MSG_PID_BAD_EXTRUDER_NUM);
- return;
- }
-
- SERIAL_ECHOLN(MSG_PID_AUTOTUNE_START);
-
- disable_all_heaters(); // switch off all heaters.
-
- #if HAS_PID_FOR_BOTH
- if (extruder < 0)
- soft_pwm_bed = bias = d = (MAX_BED_POWER) / 2;
- else
- soft_pwm[extruder] = bias = d = (PID_MAX) / 2;
- #elif ENABLED(PIDTEMP)
- soft_pwm[extruder] = bias = d = (PID_MAX) / 2;
- #else
- soft_pwm_bed = bias = d = (MAX_BED_POWER) / 2;
- #endif
-
- // PID Tuning loop
- for (;;) {
-
- millis_t ms = millis();
-
- if (temp_meas_ready) { // temp sample ready
- updateTemperaturesFromRawValues();
-
- input =
- #if HAS_PID_FOR_BOTH
- extruder < 0 ? current_temperature_bed : current_temperature[extruder]
- #elif ENABLED(PIDTEMP)
- current_temperature[extruder]
- #else
- current_temperature_bed
- #endif
- ;
-
- max = max(max, input);
- min = min(min, input);
-
- #if HAS_AUTO_FAN
- if (ELAPSED(ms, next_auto_fan_check_ms)) {
- checkExtruderAutoFans();
- next_auto_fan_check_ms = ms + 2500UL;
- }
- #endif
-
- if (heating && input > temp) {
- if (ELAPSED(ms, t2 + 5000UL)) {
- heating = false;
- #if HAS_PID_FOR_BOTH
- if (extruder < 0)
- soft_pwm_bed = (bias - d) >> 1;
- else
- soft_pwm[extruder] = (bias - d) >> 1;
- #elif ENABLED(PIDTEMP)
- soft_pwm[extruder] = (bias - d) >> 1;
- #elif ENABLED(PIDTEMPBED)
- soft_pwm_bed = (bias - d) >> 1;
- #endif
- t1 = ms;
- t_high = t1 - t2;
- max = temp;
- }
- }
-
- if (!heating && input < temp) {
- if (ELAPSED(ms, t1 + 5000UL)) {
- heating = true;
- t2 = ms;
- t_low = t2 - t1;
- if (cycles > 0) {
- long max_pow =
- #if HAS_PID_FOR_BOTH
- extruder < 0 ? MAX_BED_POWER : PID_MAX
- #elif ENABLED(PIDTEMP)
- PID_MAX
- #else
- MAX_BED_POWER
- #endif
- ;
- bias += (d * (t_high - t_low)) / (t_low + t_high);
- bias = constrain(bias, 20, max_pow - 20);
- d = (bias > max_pow / 2) ? max_pow - 1 - bias : bias;
-
- SERIAL_PROTOCOLPGM(MSG_BIAS); SERIAL_PROTOCOL(bias);
- SERIAL_PROTOCOLPGM(MSG_D); SERIAL_PROTOCOL(d);
- SERIAL_PROTOCOLPGM(MSG_T_MIN); SERIAL_PROTOCOL(min);
- SERIAL_PROTOCOLPGM(MSG_T_MAX); SERIAL_PROTOCOLLN(max);
- if (cycles > 2) {
- Ku = (4.0 * d) / (3.14159265 * (max - min) / 2.0);
- Tu = ((float)(t_low + t_high) / 1000.0);
- SERIAL_PROTOCOLPGM(MSG_KU); SERIAL_PROTOCOL(Ku);
- SERIAL_PROTOCOLPGM(MSG_TU); SERIAL_PROTOCOLLN(Tu);
- workKp = 0.6 * Ku;
- workKi = 2 * workKp / Tu;
- workKd = workKp * Tu / 8;
- SERIAL_PROTOCOLLNPGM(MSG_CLASSIC_PID);
- SERIAL_PROTOCOLPGM(MSG_KP); SERIAL_PROTOCOLLN(workKp);
- SERIAL_PROTOCOLPGM(MSG_KI); SERIAL_PROTOCOLLN(workKi);
- SERIAL_PROTOCOLPGM(MSG_KD); SERIAL_PROTOCOLLN(workKd);
- /**
- workKp = 0.33*Ku;
- workKi = workKp/Tu;
- workKd = workKp*Tu/3;
- SERIAL_PROTOCOLLNPGM(" Some overshoot ");
- SERIAL_PROTOCOLPGM(" Kp: "); SERIAL_PROTOCOLLN(workKp);
- SERIAL_PROTOCOLPGM(" Ki: "); SERIAL_PROTOCOLLN(workKi);
- SERIAL_PROTOCOLPGM(" Kd: "); SERIAL_PROTOCOLLN(workKd);
- workKp = 0.2*Ku;
- workKi = 2*workKp/Tu;
- workKd = workKp*Tu/3;
- SERIAL_PROTOCOLLNPGM(" No overshoot ");
- SERIAL_PROTOCOLPGM(" Kp: "); SERIAL_PROTOCOLLN(workKp);
- SERIAL_PROTOCOLPGM(" Ki: "); SERIAL_PROTOCOLLN(workKi);
- SERIAL_PROTOCOLPGM(" Kd: "); SERIAL_PROTOCOLLN(workKd);
- */
- }
- }
- #if HAS_PID_FOR_BOTH
- if (extruder < 0)
- soft_pwm_bed = (bias + d) >> 1;
- else
- soft_pwm[extruder] = (bias + d) >> 1;
- #elif ENABLED(PIDTEMP)
- soft_pwm[extruder] = (bias + d) >> 1;
- #else
- soft_pwm_bed = (bias + d) >> 1;
- #endif
- cycles++;
- min = temp;
- }
- }
- }
- #define MAX_OVERSHOOT_PID_AUTOTUNE 20
- if (input > temp + MAX_OVERSHOOT_PID_AUTOTUNE) {
- SERIAL_PROTOCOLLNPGM(MSG_PID_TEMP_TOO_HIGH);
- return;
- }
- // Every 2 seconds...
- if (ELAPSED(ms, temp_ms + 2000UL)) {
- #if HAS_TEMP_HOTEND || HAS_TEMP_BED
- print_heaterstates();
- SERIAL_EOL;
- #endif
-
- temp_ms = ms;
- } // every 2 seconds
- // Over 2 minutes?
- if (((ms - t1) + (ms - t2)) > (10L * 60L * 1000L * 2L)) {
- SERIAL_PROTOCOLLNPGM(MSG_PID_TIMEOUT);
- return;
- }
- if (cycles > ncycles) {
- SERIAL_PROTOCOLLNPGM(MSG_PID_AUTOTUNE_FINISHED);
-
- #if HAS_PID_FOR_BOTH
- const char* estring = extruder < 0 ? "bed" : "";
- SERIAL_PROTOCOLPGM("#define DEFAULT_"); SERIAL_PROTOCOL(estring); SERIAL_PROTOCOLPGM("Kp "); SERIAL_PROTOCOLLN(workKp);
- SERIAL_PROTOCOLPGM("#define DEFAULT_"); SERIAL_PROTOCOL(estring); SERIAL_PROTOCOLPGM("Ki "); SERIAL_PROTOCOLLN(workKi);
- SERIAL_PROTOCOLPGM("#define DEFAULT_"); SERIAL_PROTOCOL(estring); SERIAL_PROTOCOLPGM("Kd "); SERIAL_PROTOCOLLN(workKd);
- #elif ENABLED(PIDTEMP)
- SERIAL_PROTOCOLPGM("#define DEFAULT_Kp "); SERIAL_PROTOCOLLN(workKp);
- SERIAL_PROTOCOLPGM("#define DEFAULT_Ki "); SERIAL_PROTOCOLLN(workKi);
- SERIAL_PROTOCOLPGM("#define DEFAULT_Kd "); SERIAL_PROTOCOLLN(workKd);
- #else
- SERIAL_PROTOCOLPGM("#define DEFAULT_bedKp "); SERIAL_PROTOCOLLN(workKp);
- SERIAL_PROTOCOLPGM("#define DEFAULT_bedKi "); SERIAL_PROTOCOLLN(workKi);
- SERIAL_PROTOCOLPGM("#define DEFAULT_bedKd "); SERIAL_PROTOCOLLN(workKd);
- #endif
-
- #define _SET_BED_PID() \
- bedKp = workKp; \
- bedKi = scalePID_i(workKi); \
- bedKd = scalePID_d(workKd); \
- updatePID()
-
- #define _SET_EXTRUDER_PID() \
- PID_PARAM(Kp, extruder) = workKp; \
- PID_PARAM(Ki, extruder) = scalePID_i(workKi); \
- PID_PARAM(Kd, extruder) = scalePID_d(workKd); \
- updatePID()
-
- // Use the result? (As with "M303 U1")
- if (set_result) {
- #if HAS_PID_FOR_BOTH
- if (extruder < 0) {
- _SET_BED_PID();
- }
- else {
- _SET_EXTRUDER_PID();
- }
- #elif ENABLED(PIDTEMP)
- _SET_EXTRUDER_PID();
- #else
- _SET_BED_PID();
- #endif
- }
- return;
- }
- lcd_update();
- }
- }
-
- #endif // HAS_PID_HEATING
-
- #if ENABLED(PIDTEMP)
-
- #if ENABLED(PID_PARAMS_PER_EXTRUDER)
-
- float Temperature::Kp[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(DEFAULT_Kp),
- Temperature::Ki[EXTRUDERS] = ARRAY_BY_EXTRUDERS1((DEFAULT_Ki) * (PID_dT)),
- Temperature::Kd[EXTRUDERS] = ARRAY_BY_EXTRUDERS1((DEFAULT_Kd) / (PID_dT));
-
- #if ENABLED(PID_ADD_EXTRUSION_RATE)
- float Temperature::Kc[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(DEFAULT_Kc);
- #endif
-
- #else
-
- float Temperature::Kp = DEFAULT_Kp,
- Temperature::Ki = (DEFAULT_Ki) * (PID_dT),
- Temperature::Kd = (DEFAULT_Kd) / (PID_dT);
-
- #if ENABLED(PID_ADD_EXTRUSION_RATE)
- float Temperature::Kc = DEFAULT_Kc;
- #endif
-
- #endif
-
- #endif
-
- Temperature::Temperature() { }
-
- void Temperature::updatePID() {
- #if ENABLED(PIDTEMP)
- for (int e = 0; e < EXTRUDERS; e++) {
- temp_iState_max[e] = (PID_INTEGRAL_DRIVE_MAX) / PID_PARAM(Ki, e);
- #if ENABLED(PID_ADD_EXTRUSION_RATE)
- last_position[e] = 0;
- #endif
- }
- #endif
- #if ENABLED(PIDTEMPBED)
- temp_iState_max_bed = (PID_BED_INTEGRAL_DRIVE_MAX) / bedKi;
- #endif
- }
-
- int Temperature::getHeaterPower(int heater) {
- return heater < 0 ? soft_pwm_bed : soft_pwm[heater];
- }
-
- #if HAS_AUTO_FAN
-
- void Temperature::checkExtruderAutoFans() {
- const uint8_t fanPin[] = { EXTRUDER_0_AUTO_FAN_PIN, EXTRUDER_1_AUTO_FAN_PIN, EXTRUDER_2_AUTO_FAN_PIN, EXTRUDER_3_AUTO_FAN_PIN };
- const int fanBit[] = { 0,
- EXTRUDER_1_AUTO_FAN_PIN == EXTRUDER_0_AUTO_FAN_PIN ? 0 : 1,
- EXTRUDER_2_AUTO_FAN_PIN == EXTRUDER_0_AUTO_FAN_PIN ? 0 :
- EXTRUDER_2_AUTO_FAN_PIN == EXTRUDER_1_AUTO_FAN_PIN ? 1 : 2,
- EXTRUDER_3_AUTO_FAN_PIN == EXTRUDER_0_AUTO_FAN_PIN ? 0 :
- EXTRUDER_3_AUTO_FAN_PIN == EXTRUDER_1_AUTO_FAN_PIN ? 1 :
- EXTRUDER_3_AUTO_FAN_PIN == EXTRUDER_2_AUTO_FAN_PIN ? 2 : 3
- };
- uint8_t fanState = 0;
- for (int f = 0; f <= 3; f++) {
- if (current_temperature[f] > EXTRUDER_AUTO_FAN_TEMPERATURE)
- SBI(fanState, fanBit[f]);
- }
- for (int f = 0; f <= 3; f++) {
- unsigned char newFanSpeed = TEST(fanState, f) ? EXTRUDER_AUTO_FAN_SPEED : 0;
- // this idiom allows both digital and PWM fan outputs (see M42 handling).
- digitalWrite(fanPin[f], newFanSpeed);
- analogWrite(fanPin[f], newFanSpeed);
- }
- }
-
- #endif // HAS_AUTO_FAN
-
- //
- // Temperature Error Handlers
- //
- void Temperature::_temp_error(int e, const char* serial_msg, const char* lcd_msg) {
- static bool killed = false;
- if (IsRunning()) {
- SERIAL_ERROR_START;
- serialprintPGM(serial_msg);
- SERIAL_ERRORPGM(MSG_STOPPED_HEATER);
- if (e >= 0) SERIAL_ERRORLN((int)e); else SERIAL_ERRORLNPGM(MSG_HEATER_BED);
- }
- #if DISABLED(BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE)
- if (!killed) {
- Running = false;
- killed = true;
- kill(lcd_msg);
- }
- else
- disable_all_heaters(); // paranoia
- #endif
- }
-
- void Temperature::max_temp_error(uint8_t e) {
- _temp_error(e, PSTR(MSG_T_MAXTEMP), PSTR(MSG_ERR_MAXTEMP));
- }
- void Temperature::min_temp_error(uint8_t e) {
- _temp_error(e, PSTR(MSG_T_MINTEMP), PSTR(MSG_ERR_MINTEMP));
- }
-
- float Temperature::get_pid_output(int e) {
- float pid_output;
- #if ENABLED(PIDTEMP)
- #if DISABLED(PID_OPENLOOP)
- pid_error[e] = target_temperature[e] - current_temperature[e];
- dTerm[e] = K2 * PID_PARAM(Kd, e) * (current_temperature[e] - temp_dState[e]) + K1 * dTerm[e];
- temp_dState[e] = current_temperature[e];
- if (pid_error[e] > PID_FUNCTIONAL_RANGE) {
- pid_output = BANG_MAX;
- pid_reset[e] = true;
- }
- else if (pid_error[e] < -(PID_FUNCTIONAL_RANGE) || target_temperature[e] == 0) {
- pid_output = 0;
- pid_reset[e] = true;
- }
- else {
- if (pid_reset[e]) {
- temp_iState[e] = 0.0;
- pid_reset[e] = false;
- }
- pTerm[e] = PID_PARAM(Kp, e) * pid_error[e];
- temp_iState[e] += pid_error[e];
- temp_iState[e] = constrain(temp_iState[e], temp_iState_min[e], temp_iState_max[e]);
- iTerm[e] = PID_PARAM(Ki, e) * temp_iState[e];
-
- pid_output = pTerm[e] + iTerm[e] - dTerm[e];
-
- #if ENABLED(PID_ADD_EXTRUSION_RATE)
- cTerm[e] = 0;
- if (e == active_extruder) {
- long e_position = stepper.position(E_AXIS);
- if (e_position > last_position[e]) {
- lpq[lpq_ptr++] = e_position - last_position[e];
- last_position[e] = e_position;
- }
- else {
- lpq[lpq_ptr++] = 0;
- }
- if (lpq_ptr >= lpq_len) lpq_ptr = 0;
- cTerm[e] = (lpq[lpq_ptr] / planner.axis_steps_per_unit[E_AXIS]) * PID_PARAM(Kc, e);
- pid_output += cTerm[e];
- }
- #endif //PID_ADD_EXTRUSION_RATE
-
- if (pid_output > PID_MAX) {
- if (pid_error[e] > 0) temp_iState[e] -= pid_error[e]; // conditional un-integration
- pid_output = PID_MAX;
- }
- else if (pid_output < 0) {
- if (pid_error[e] < 0) temp_iState[e] -= pid_error[e]; // conditional un-integration
- pid_output = 0;
- }
- }
- #else
- pid_output = constrain(target_temperature[e], 0, PID_MAX);
- #endif //PID_OPENLOOP
-
- #if ENABLED(PID_DEBUG)
- SERIAL_ECHO_START;
- SERIAL_ECHOPAIR(MSG_PID_DEBUG, e);
- SERIAL_ECHOPAIR(MSG_PID_DEBUG_INPUT, current_temperature[e]);
- SERIAL_ECHOPAIR(MSG_PID_DEBUG_OUTPUT, pid_output);
- SERIAL_ECHOPAIR(MSG_PID_DEBUG_PTERM, pTerm[e]);
- SERIAL_ECHOPAIR(MSG_PID_DEBUG_ITERM, iTerm[e]);
- SERIAL_ECHOPAIR(MSG_PID_DEBUG_DTERM, dTerm[e]);
- #if ENABLED(PID_ADD_EXTRUSION_RATE)
- SERIAL_ECHOPAIR(MSG_PID_DEBUG_CTERM, cTerm[e]);
- #endif
- SERIAL_EOL;
- #endif //PID_DEBUG
-
- #else /* PID off */
- pid_output = (current_temperature[e] < target_temperature[e]) ? PID_MAX : 0;
- #endif
-
- return pid_output;
- }
-
- #if ENABLED(PIDTEMPBED)
- float Temperature::get_pid_output_bed() {
- float pid_output;
- #if DISABLED(PID_OPENLOOP)
- pid_error_bed = target_temperature_bed - current_temperature_bed;
- pTerm_bed = bedKp * pid_error_bed;
- temp_iState_bed += pid_error_bed;
- temp_iState_bed = constrain(temp_iState_bed, temp_iState_min_bed, temp_iState_max_bed);
- iTerm_bed = bedKi * temp_iState_bed;
-
- dTerm_bed = K2 * bedKd * (current_temperature_bed - temp_dState_bed) + K1 * dTerm_bed;
- temp_dState_bed = current_temperature_bed;
-
- pid_output = pTerm_bed + iTerm_bed - dTerm_bed;
- if (pid_output > MAX_BED_POWER) {
- if (pid_error_bed > 0) temp_iState_bed -= pid_error_bed; // conditional un-integration
- pid_output = MAX_BED_POWER;
- }
- else if (pid_output < 0) {
- if (pid_error_bed < 0) temp_iState_bed -= pid_error_bed; // conditional un-integration
- pid_output = 0;
- }
- #else
- pid_output = constrain(target_temperature_bed, 0, MAX_BED_POWER);
- #endif // PID_OPENLOOP
-
- #if ENABLED(PID_BED_DEBUG)
- SERIAL_ECHO_START;
- SERIAL_ECHO(" PID_BED_DEBUG ");
- SERIAL_ECHO(": Input ");
- SERIAL_ECHO(current_temperature_bed);
- SERIAL_ECHO(" Output ");
- SERIAL_ECHO(pid_output);
- SERIAL_ECHO(" pTerm ");
- SERIAL_ECHO(pTerm_bed);
- SERIAL_ECHO(" iTerm ");
- SERIAL_ECHO(iTerm_bed);
- SERIAL_ECHO(" dTerm ");
- SERIAL_ECHOLN(dTerm_bed);
- #endif //PID_BED_DEBUG
-
- return pid_output;
- }
- #endif //PIDTEMPBED
-
- /**
- * Manage heating activities for extruder hot-ends and a heated bed
- * - Acquire updated temperature readings
- * - Invoke thermal runaway protection
- * - Manage extruder auto-fan
- * - Apply filament width to the extrusion rate (may move)
- * - Update the heated bed PID output value
- */
- void Temperature::manage_heater() {
-
- if (!temp_meas_ready) return;
-
- updateTemperaturesFromRawValues();
-
- #if ENABLED(HEATER_0_USES_MAX6675)
- float ct = current_temperature[0];
- if (ct > min(HEATER_0_MAXTEMP, 1023)) max_temp_error(0);
- if (ct < max(HEATER_0_MINTEMP, 0.01)) min_temp_error(0);
- #endif
-
- #if (ENABLED(THERMAL_PROTECTION_HOTENDS) && WATCH_TEMP_PERIOD > 0) || (ENABLED(THERMAL_PROTECTION_BED) && WATCH_BED_TEMP_PERIOD > 0) || DISABLED(PIDTEMPBED) || HAS_AUTO_FAN
- millis_t ms = millis();
- #endif
-
- // Loop through all extruders
- for (int e = 0; e < EXTRUDERS; e++) {
-
- #if ENABLED(THERMAL_PROTECTION_HOTENDS)
- thermal_runaway_protection(&thermal_runaway_state_machine[e], &thermal_runaway_timer[e], current_temperature[e], target_temperature[e], e, THERMAL_PROTECTION_PERIOD, THERMAL_PROTECTION_HYSTERESIS);
- #endif
-
- float pid_output = get_pid_output(e);
-
- // Check if temperature is within the correct range
- soft_pwm[e] = current_temperature[e] > minttemp[e] && current_temperature[e] < maxttemp[e] ? (int)pid_output >> 1 : 0;
-
- // Check if the temperature is failing to increase
- #if ENABLED(THERMAL_PROTECTION_HOTENDS) && WATCH_TEMP_PERIOD > 0
-
- // Is it time to check this extruder's heater?
- if (watch_heater_next_ms[e] && ELAPSED(ms, watch_heater_next_ms[e])) {
- // Has it failed to increase enough?
- if (degHotend(e) < watch_target_temp[e]) {
- // Stop!
- _temp_error(e, PSTR(MSG_T_HEATING_FAILED), PSTR(MSG_HEATING_FAILED_LCD));
- }
- else {
- // Start again if the target is still far off
- start_watching_heater(e);
- }
- }
-
- #endif // THERMAL_PROTECTION_HOTENDS
-
- // Check if the temperature is failing to increase
- #if ENABLED(THERMAL_PROTECTION_BED) && WATCH_BED_TEMP_PERIOD > 0
-
- // Is it time to check the bed?
- if (watch_bed_next_ms && ELAPSED(ms, watch_bed_next_ms)) {
- // Has it failed to increase enough?
- if (degBed() < watch_target_bed_temp) {
- // Stop!
- _temp_error(-1, PSTR(MSG_T_HEATING_FAILED), PSTR(MSG_HEATING_FAILED_LCD));
- }
- else {
- // Start again if the target is still far off
- start_watching_bed();
- }
- }
-
- #endif // THERMAL_PROTECTION_HOTENDS
-
- #if ENABLED(TEMP_SENSOR_1_AS_REDUNDANT)
- if (fabs(current_temperature[0] - redundant_temperature) > MAX_REDUNDANT_TEMP_SENSOR_DIFF) {
- _temp_error(0, PSTR(MSG_REDUNDANCY), PSTR(MSG_ERR_REDUNDANT_TEMP));
- }
- #endif
-
- } // Extruders Loop
-
- #if HAS_AUTO_FAN
- if (ELAPSED(ms, next_auto_fan_check_ms)) { // only need to check fan state very infrequently
- checkExtruderAutoFans();
- next_auto_fan_check_ms = ms + 2500UL;
- }
- #endif
-
- // Control the extruder rate based on the width sensor
- #if ENABLED(FILAMENT_WIDTH_SENSOR)
- if (filament_sensor) {
- meas_shift_index = filwidth_delay_index1 - meas_delay_cm;
- if (meas_shift_index < 0) meas_shift_index += MAX_MEASUREMENT_DELAY + 1; //loop around buffer if needed
-
- // Get the delayed info and add 100 to reconstitute to a percent of
- // the nominal filament diameter then square it to get an area
- meas_shift_index = constrain(meas_shift_index, 0, MAX_MEASUREMENT_DELAY);
- float vm = pow((measurement_delay[meas_shift_index] + 100.0) / 100.0, 2);
- NOLESS(vm, 0.01);
- volumetric_multiplier[FILAMENT_SENSOR_EXTRUDER_NUM] = vm;
- }
- #endif //FILAMENT_WIDTH_SENSOR
-
- #if DISABLED(PIDTEMPBED)
- if (PENDING(ms, next_bed_check_ms)) return;
- next_bed_check_ms = ms + BED_CHECK_INTERVAL;
- #endif
-
- #if TEMP_SENSOR_BED != 0
-
- #if HAS_THERMALLY_PROTECTED_BED
- thermal_runaway_protection(&thermal_runaway_bed_state_machine, &thermal_runaway_bed_timer, current_temperature_bed, target_temperature_bed, -1, THERMAL_PROTECTION_BED_PERIOD, THERMAL_PROTECTION_BED_HYSTERESIS);
- #endif
-
- #if ENABLED(PIDTEMPBED)
- float pid_output = get_pid_output_bed();
-
- soft_pwm_bed = current_temperature_bed > BED_MINTEMP && current_temperature_bed < BED_MAXTEMP ? (int)pid_output >> 1 : 0;
-
- #elif ENABLED(BED_LIMIT_SWITCHING)
- // Check if temperature is within the correct band
- if (current_temperature_bed > BED_MINTEMP && current_temperature_bed < BED_MAXTEMP) {
- if (current_temperature_bed >= target_temperature_bed + BED_HYSTERESIS)
- soft_pwm_bed = 0;
- else if (current_temperature_bed <= target_temperature_bed - (BED_HYSTERESIS))
- soft_pwm_bed = MAX_BED_POWER >> 1;
- }
- else {
- soft_pwm_bed = 0;
- WRITE_HEATER_BED(LOW);
- }
- #else // !PIDTEMPBED && !BED_LIMIT_SWITCHING
- // Check if temperature is within the correct range
- if (current_temperature_bed > BED_MINTEMP && current_temperature_bed < BED_MAXTEMP) {
- soft_pwm_bed = current_temperature_bed < target_temperature_bed ? MAX_BED_POWER >> 1 : 0;
- }
- else {
- soft_pwm_bed = 0;
- WRITE_HEATER_BED(LOW);
- }
- #endif
- #endif //TEMP_SENSOR_BED != 0
- }
-
- #define PGM_RD_W(x) (short)pgm_read_word(&x)
-
- // Derived from RepRap FiveD extruder::getTemperature()
- // For hot end temperature measurement.
- float Temperature::analog2temp(int raw, uint8_t e) {
- #if ENABLED(TEMP_SENSOR_1_AS_REDUNDANT)
- if (e > EXTRUDERS)
- #else
- if (e >= EXTRUDERS)
- #endif
- {
- SERIAL_ERROR_START;
- SERIAL_ERROR((int)e);
- SERIAL_ERRORLNPGM(MSG_INVALID_EXTRUDER_NUM);
- kill(PSTR(MSG_KILLED));
- return 0.0;
- }
-
- #if ENABLED(HEATER_0_USES_MAX6675)
- if (e == 0) return 0.25 * raw;
- #endif
-
- if (heater_ttbl_map[e] != NULL) {
- float celsius = 0;
- uint8_t i;
- short(*tt)[][2] = (short(*)[][2])(heater_ttbl_map[e]);
-
- for (i = 1; i < heater_ttbllen_map[e]; i++) {
- if (PGM_RD_W((*tt)[i][0]) > raw) {
- celsius = PGM_RD_W((*tt)[i - 1][1]) +
- (raw - PGM_RD_W((*tt)[i - 1][0])) *
- (float)(PGM_RD_W((*tt)[i][1]) - PGM_RD_W((*tt)[i - 1][1])) /
- (float)(PGM_RD_W((*tt)[i][0]) - PGM_RD_W((*tt)[i - 1][0]));
- break;
- }
- }
-
- // Overflow: Set to last value in the table
- if (i == heater_ttbllen_map[e]) celsius = PGM_RD_W((*tt)[i - 1][1]);
-
- return celsius;
- }
- return ((raw * ((5.0 * 100.0) / 1024.0) / OVERSAMPLENR) * (TEMP_SENSOR_AD595_GAIN)) + TEMP_SENSOR_AD595_OFFSET;
- }
-
- // Derived from RepRap FiveD extruder::getTemperature()
- // For bed temperature measurement.
- float Temperature::analog2tempBed(int raw) {
- #if ENABLED(BED_USES_THERMISTOR)
- float celsius = 0;
- byte i;
-
- for (i = 1; i < BEDTEMPTABLE_LEN; i++) {
- if (PGM_RD_W(BEDTEMPTABLE[i][0]) > raw) {
- celsius = PGM_RD_W(BEDTEMPTABLE[i - 1][1]) +
- (raw - PGM_RD_W(BEDTEMPTABLE[i - 1][0])) *
- (float)(PGM_RD_W(BEDTEMPTABLE[i][1]) - PGM_RD_W(BEDTEMPTABLE[i - 1][1])) /
- (float)(PGM_RD_W(BEDTEMPTABLE[i][0]) - PGM_RD_W(BEDTEMPTABLE[i - 1][0]));
- break;
- }
- }
-
- // Overflow: Set to last value in the table
- if (i == BEDTEMPTABLE_LEN) celsius = PGM_RD_W(BEDTEMPTABLE[i - 1][1]);
-
- return celsius;
-
- #elif defined(BED_USES_AD595)
-
- return ((raw * ((5.0 * 100.0) / 1024.0) / OVERSAMPLENR) * (TEMP_SENSOR_AD595_GAIN)) + TEMP_SENSOR_AD595_OFFSET;
-
- #else
-
- UNUSED(raw);
- return 0;
-
- #endif
- }
-
- /**
- * Get the raw values into the actual temperatures.
- * The raw values are created in interrupt context,
- * and this function is called from normal context
- * as it would block the stepper routine.
- */
- void Temperature::updateTemperaturesFromRawValues() {
- #if ENABLED(HEATER_0_USES_MAX6675)
- current_temperature_raw[0] = read_max6675();
- #endif
- for (uint8_t e = 0; e < EXTRUDERS; e++) {
- current_temperature[e] = Temperature::analog2temp(current_temperature_raw[e], e);
- }
- current_temperature_bed = Temperature::analog2tempBed(current_temperature_bed_raw);
- #if ENABLED(TEMP_SENSOR_1_AS_REDUNDANT)
- redundant_temperature = Temperature::analog2temp(redundant_temperature_raw, 1);
- #endif
- #if ENABLED(FILAMENT_WIDTH_SENSOR)
- filament_width_meas = analog2widthFil();
- #endif
-
- #if ENABLED(USE_WATCHDOG)
- // Reset the watchdog after we know we have a temperature measurement.
- watchdog_reset();
- #endif
-
- CRITICAL_SECTION_START;
- temp_meas_ready = false;
- CRITICAL_SECTION_END;
- }
-
-
- #if ENABLED(FILAMENT_WIDTH_SENSOR)
-
- // Convert raw Filament Width to millimeters
- float Temperature::analog2widthFil() {
- return current_raw_filwidth / 16383.0 * 5.0;
- //return current_raw_filwidth;
- }
-
- // Convert raw Filament Width to a ratio
- int Temperature::widthFil_to_size_ratio() {
- float temp = filament_width_meas;
- if (temp < MEASURED_LOWER_LIMIT) temp = filament_width_nominal; //assume sensor cut out
- else NOMORE(temp, MEASURED_UPPER_LIMIT);
- return filament_width_nominal / temp * 100;
- }
-
- #endif
-
-
- /**
- * Initialize the temperature manager
- * The manager is implemented by periodic calls to manage_heater()
- */
- void Temperature::init() {
-
- #if MB(RUMBA) && ((TEMP_SENSOR_0==-1)||(TEMP_SENSOR_1==-1)||(TEMP_SENSOR_2==-1)||(TEMP_SENSOR_BED==-1))
- //disable RUMBA JTAG in case the thermocouple extension is plugged on top of JTAG connector
- MCUCR = _BV(JTD);
- MCUCR = _BV(JTD);
- #endif
-
- // Finish init of mult extruder arrays
- for (int e = 0; e < EXTRUDERS; e++) {
- // populate with the first value
- maxttemp[e] = maxttemp[0];
- #if ENABLED(PIDTEMP)
- temp_iState_min[e] = 0.0;
- temp_iState_max[e] = (PID_INTEGRAL_DRIVE_MAX) / PID_PARAM(Ki, e);
- #if ENABLED(PID_ADD_EXTRUSION_RATE)
- last_position[e] = 0;
- #endif
- #endif //PIDTEMP
- #if ENABLED(PIDTEMPBED)
- temp_iState_min_bed = 0.0;
- temp_iState_max_bed = (PID_BED_INTEGRAL_DRIVE_MAX) / bedKi;
- #endif //PIDTEMPBED
- }
-
- #if HAS_HEATER_0
- SET_OUTPUT(HEATER_0_PIN);
- #endif
- #if HAS_HEATER_1
- SET_OUTPUT(HEATER_1_PIN);
- #endif
- #if HAS_HEATER_2
- SET_OUTPUT(HEATER_2_PIN);
- #endif
- #if HAS_HEATER_3
- SET_OUTPUT(HEATER_3_PIN);
- #endif
- #if HAS_HEATER_BED
- SET_OUTPUT(HEATER_BED_PIN);
- #endif
-
- #if ENABLED(FAST_PWM_FAN) || ENABLED(FAN_SOFT_PWM)
-
- #if HAS_FAN0
- SET_OUTPUT(FAN_PIN);
- #if ENABLED(FAST_PWM_FAN)
- setPwmFrequency(FAN_PIN, 1); // No prescaling. Pwm frequency = F_CPU/256/8
- #endif
- #if ENABLED(FAN_SOFT_PWM)
- soft_pwm_fan[0] = fanSpeedSoftPwm[0] / 2;
- #endif
- #endif
-
- #if HAS_FAN1
- SET_OUTPUT(FAN1_PIN);
- #if ENABLED(FAST_PWM_FAN)
- setPwmFrequency(FAN1_PIN, 1); // No prescaling. Pwm frequency = F_CPU/256/8
- #endif
- #if ENABLED(FAN_SOFT_PWM)
- soft_pwm_fan[1] = fanSpeedSoftPwm[1] / 2;
- #endif
- #endif
-
- #if HAS_FAN2
- SET_OUTPUT(FAN2_PIN);
- #if ENABLED(FAST_PWM_FAN)
- setPwmFrequency(FAN2_PIN, 1); // No prescaling. Pwm frequency = F_CPU/256/8
- #endif
- #if ENABLED(FAN_SOFT_PWM)
- soft_pwm_fan[2] = fanSpeedSoftPwm[2] / 2;
- #endif
- #endif
-
- #endif // FAST_PWM_FAN || FAN_SOFT_PWM
-
- #if ENABLED(HEATER_0_USES_MAX6675)
-
- #if DISABLED(SDSUPPORT)
- OUT_WRITE(SCK_PIN, LOW);
- OUT_WRITE(MOSI_PIN, HIGH);
- OUT_WRITE(MISO_PIN, HIGH);
- #else
- pinMode(SS_PIN, OUTPUT);
- digitalWrite(SS_PIN, HIGH);
- #endif
-
- OUT_WRITE(MAX6675_SS, HIGH);
-
- #endif //HEATER_0_USES_MAX6675
-
- #ifdef DIDR2
- #define ANALOG_SELECT(pin) do{ if (pin < 8) SBI(DIDR0, pin); else SBI(DIDR2, pin - 8); }while(0)
- #else
- #define ANALOG_SELECT(pin) do{ SBI(DIDR0, pin); }while(0)
- #endif
-
- // Set analog inputs
- ADCSRA = _BV(ADEN) | _BV(ADSC) | _BV(ADIF) | 0x07;
- DIDR0 = 0;
- #ifdef DIDR2
- DIDR2 = 0;
- #endif
- #if HAS_TEMP_0
- ANALOG_SELECT(TEMP_0_PIN);
- #endif
- #if HAS_TEMP_1
- ANALOG_SELECT(TEMP_1_PIN);
- #endif
- #if HAS_TEMP_2
- ANALOG_SELECT(TEMP_2_PIN);
- #endif
- #if HAS_TEMP_3
- ANALOG_SELECT(TEMP_3_PIN);
- #endif
- #if HAS_TEMP_BED
- ANALOG_SELECT(TEMP_BED_PIN);
- #endif
- #if ENABLED(FILAMENT_WIDTH_SENSOR)
- ANALOG_SELECT(FILWIDTH_PIN);
- #endif
-
- #if HAS_AUTO_FAN_0
- pinMode(EXTRUDER_0_AUTO_FAN_PIN, OUTPUT);
- #endif
- #if HAS_AUTO_FAN_1 && (EXTRUDER_1_AUTO_FAN_PIN != EXTRUDER_0_AUTO_FAN_PIN)
- pinMode(EXTRUDER_1_AUTO_FAN_PIN, OUTPUT);
- #endif
- #if HAS_AUTO_FAN_2 && (EXTRUDER_2_AUTO_FAN_PIN != EXTRUDER_0_AUTO_FAN_PIN) && (EXTRUDER_2_AUTO_FAN_PIN != EXTRUDER_1_AUTO_FAN_PIN)
- pinMode(EXTRUDER_2_AUTO_FAN_PIN, OUTPUT);
- #endif
- #if HAS_AUTO_FAN_3 && (EXTRUDER_3_AUTO_FAN_PIN != EXTRUDER_0_AUTO_FAN_PIN) && (EXTRUDER_3_AUTO_FAN_PIN != EXTRUDER_1_AUTO_FAN_PIN) && (EXTRUDER_3_AUTO_FAN_PIN != EXTRUDER_2_AUTO_FAN_PIN)
- pinMode(EXTRUDER_3_AUTO_FAN_PIN, OUTPUT);
- #endif
-
- // Use timer0 for temperature measurement
- // Interleave temperature interrupt with millies interrupt
- OCR0B = 128;
- SBI(TIMSK0, OCIE0B);
-
- // Wait for temperature measurement to settle
- delay(250);
-
- #define TEMP_MIN_ROUTINE(NR) \
- minttemp[NR] = HEATER_ ## NR ## _MINTEMP; \
- while(analog2temp(minttemp_raw[NR], NR) < HEATER_ ## NR ## _MINTEMP) { \
- if (HEATER_ ## NR ## _RAW_LO_TEMP < HEATER_ ## NR ## _RAW_HI_TEMP) \
- minttemp_raw[NR] += OVERSAMPLENR; \
- else \
- minttemp_raw[NR] -= OVERSAMPLENR; \
- }
- #define TEMP_MAX_ROUTINE(NR) \
- maxttemp[NR] = HEATER_ ## NR ## _MAXTEMP; \
- while(analog2temp(maxttemp_raw[NR], NR) > HEATER_ ## NR ## _MAXTEMP) { \
- if (HEATER_ ## NR ## _RAW_LO_TEMP < HEATER_ ## NR ## _RAW_HI_TEMP) \
- maxttemp_raw[NR] -= OVERSAMPLENR; \
- else \
- maxttemp_raw[NR] += OVERSAMPLENR; \
- }
-
- #ifdef HEATER_0_MINTEMP
- TEMP_MIN_ROUTINE(0);
- #endif
- #ifdef HEATER_0_MAXTEMP
- TEMP_MAX_ROUTINE(0);
- #endif
- #if EXTRUDERS > 1
- #ifdef HEATER_1_MINTEMP
- TEMP_MIN_ROUTINE(1);
- #endif
- #ifdef HEATER_1_MAXTEMP
- TEMP_MAX_ROUTINE(1);
- #endif
- #if EXTRUDERS > 2
- #ifdef HEATER_2_MINTEMP
- TEMP_MIN_ROUTINE(2);
- #endif
- #ifdef HEATER_2_MAXTEMP
- TEMP_MAX_ROUTINE(2);
- #endif
- #if EXTRUDERS > 3
- #ifdef HEATER_3_MINTEMP
- TEMP_MIN_ROUTINE(3);
- #endif
- #ifdef HEATER_3_MAXTEMP
- TEMP_MAX_ROUTINE(3);
- #endif
- #endif // EXTRUDERS > 3
- #endif // EXTRUDERS > 2
- #endif // EXTRUDERS > 1
-
- #ifdef BED_MINTEMP
- while(analog2tempBed(bed_minttemp_raw) < BED_MINTEMP) {
- #if HEATER_BED_RAW_LO_TEMP < HEATER_BED_RAW_HI_TEMP
- bed_minttemp_raw += OVERSAMPLENR;
- #else
- bed_minttemp_raw -= OVERSAMPLENR;
- #endif
- }
- #endif //BED_MINTEMP
- #ifdef BED_MAXTEMP
- while (analog2tempBed(bed_maxttemp_raw) > BED_MAXTEMP) {
- #if HEATER_BED_RAW_LO_TEMP < HEATER_BED_RAW_HI_TEMP
- bed_maxttemp_raw -= OVERSAMPLENR;
- #else
- bed_maxttemp_raw += OVERSAMPLENR;
- #endif
- }
- #endif //BED_MAXTEMP
- }
-
- #if ENABLED(THERMAL_PROTECTION_HOTENDS) && WATCH_TEMP_PERIOD > 0
- /**
- * Start Heating Sanity Check for hotends that are below
- * their target temperature by a configurable margin.
- * This is called when the temperature is set. (M104, M109)
- */
- void Temperature::start_watching_heater(int e) {
- if (degHotend(e) < degTargetHotend(e) - (WATCH_TEMP_INCREASE + TEMP_HYSTERESIS + 1)) {
- watch_target_temp[e] = degHotend(e) + WATCH_TEMP_INCREASE;
- watch_heater_next_ms[e] = millis() + (WATCH_TEMP_PERIOD) * 1000UL;
- }
- else
- watch_heater_next_ms[e] = 0;
- }
- #endif
-
- #if ENABLED(THERMAL_PROTECTION_BED) && WATCH_BED_TEMP_PERIOD > 0
- /**
- * Start Heating Sanity Check for hotends that are below
- * their target temperature by a configurable margin.
- * This is called when the temperature is set. (M140, M190)
- */
- void Temperature::start_watching_bed() {
- if (degBed() < degTargetBed() - (WATCH_BED_TEMP_INCREASE + TEMP_BED_HYSTERESIS + 1)) {
- watch_target_bed_temp = degBed() + WATCH_BED_TEMP_INCREASE;
- watch_bed_next_ms = millis() + (WATCH_BED_TEMP_PERIOD) * 1000UL;
- }
- else
- watch_bed_next_ms = 0;
- }
- #endif
-
- #if ENABLED(THERMAL_PROTECTION_HOTENDS) || HAS_THERMALLY_PROTECTED_BED
-
- void Temperature::thermal_runaway_protection(TRState* state, millis_t* timer, float temperature, float target_temperature, int heater_id, int period_seconds, int hysteresis_degc) {
-
- static float tr_target_temperature[EXTRUDERS + 1] = { 0.0 };
-
- /**
- SERIAL_ECHO_START;
- SERIAL_ECHOPGM("Thermal Thermal Runaway Running. Heater ID: ");
- if (heater_id < 0) SERIAL_ECHOPGM("bed"); else SERIAL_ECHO(heater_id);
- SERIAL_ECHOPAIR(" ; State:", *state);
- SERIAL_ECHOPAIR(" ; Timer:", *timer);
- SERIAL_ECHOPAIR(" ; Temperature:", temperature);
- SERIAL_ECHOPAIR(" ; Target Temp:", target_temperature);
- SERIAL_EOL;
- */
-
- int heater_index = heater_id >= 0 ? heater_id : EXTRUDERS;
-
- // If the target temperature changes, restart
- if (tr_target_temperature[heater_index] != target_temperature)
- *state = TRReset;
-
- switch (*state) {
- case TRReset:
- *timer = 0;
- *state = TRInactive;
- // Inactive state waits for a target temperature to be set
- case TRInactive:
- if (target_temperature > 0) {
- tr_target_temperature[heater_index] = target_temperature;
- *state = TRFirstHeating;
- }
- break;
- // When first heating, wait for the temperature to be reached then go to Stable state
- case TRFirstHeating:
- if (temperature >= tr_target_temperature[heater_index]) *state = TRStable;
- break;
- // While the temperature is stable watch for a bad temperature
- case TRStable:
- // If the temperature is over the target (-hysteresis) restart the timer
- if (temperature >= tr_target_temperature[heater_index] - hysteresis_degc)
- *timer = millis();
- // If the timer goes too long without a reset, trigger shutdown
- else if (ELAPSED(millis(), *timer + period_seconds * 1000UL))
- *state = TRRunaway;
- break;
- case TRRunaway:
- _temp_error(heater_id, PSTR(MSG_T_THERMAL_RUNAWAY), PSTR(MSG_THERMAL_RUNAWAY));
- }
- }
-
- #endif // THERMAL_PROTECTION_HOTENDS || THERMAL_PROTECTION_BED
-
- void Temperature::disable_all_heaters() {
- for (int i = 0; i < EXTRUDERS; i++) setTargetHotend(0, i);
- setTargetBed(0);
-
- // If all heaters go down then for sure our print job has stopped
- print_job_timer.stop();
-
- #define DISABLE_HEATER(NR) { \
- setTargetHotend(NR, 0); \
- soft_pwm[NR] = 0; \
- WRITE_HEATER_ ## NR (LOW); \
- }
-
- #if HAS_TEMP_HOTEND
- setTargetHotend(0, 0);
- soft_pwm[0] = 0;
- WRITE_HEATER_0P(LOW); // Should HEATERS_PARALLEL apply here? Then change to DISABLE_HEATER(0)
- #endif
-
- #if EXTRUDERS > 1 && HAS_TEMP_1
- DISABLE_HEATER(1);
- #endif
-
- #if EXTRUDERS > 2 && HAS_TEMP_2
- DISABLE_HEATER(2);
- #endif
-
- #if EXTRUDERS > 3 && HAS_TEMP_3
- DISABLE_HEATER(3);
- #endif
-
- #if HAS_TEMP_BED
- target_temperature_bed = 0;
- soft_pwm_bed = 0;
- #if HAS_HEATER_BED
- WRITE_HEATER_BED(LOW);
- #endif
- #endif
- }
-
- #if ENABLED(HEATER_0_USES_MAX6675)
-
- #define MAX6675_HEAT_INTERVAL 250u
-
- #if ENABLED(MAX6675_IS_MAX31855)
- uint32_t max6675_temp = 2000;
- #define MAX6675_ERROR_MASK 7
- #define MAX6675_DISCARD_BITS 18
- #else
- uint16_t max6675_temp = 2000;
- #define MAX6675_ERROR_MASK 4
- #define MAX6675_DISCARD_BITS 3
- #endif
-
- int Temperature::read_max6675() {
-
- static millis_t next_max6675_ms = 0;
-
- millis_t ms = millis();
-
- if (PENDING(ms, next_max6675_ms)) return (int)max6675_temp;
-
- next_max6675_ms = ms + MAX6675_HEAT_INTERVAL;
-
- CBI(
- #ifdef PRR
- PRR
- #elif defined(PRR0)
- PRR0
- #endif
- , PRSPI);
- SPCR = _BV(MSTR) | _BV(SPE) | _BV(SPR0);
-
- WRITE(MAX6675_SS, 0); // enable TT_MAX6675
-
- // ensure 100ns delay - a bit extra is fine
- asm("nop");//50ns on 20Mhz, 62.5ns on 16Mhz
- asm("nop");//50ns on 20Mhz, 62.5ns on 16Mhz
-
- // Read a big-endian temperature value
- max6675_temp = 0;
- for (uint8_t i = sizeof(max6675_temp); i--;) {
- SPDR = 0;
- for (;!TEST(SPSR, SPIF););
- max6675_temp |= SPDR;
- if (i > 0) max6675_temp <<= 8; // shift left if not the last byte
- }
-
- WRITE(MAX6675_SS, 1); // disable TT_MAX6675
-
- if (max6675_temp & MAX6675_ERROR_MASK)
- max6675_temp = 4000; // thermocouple open
- else
- max6675_temp >>= MAX6675_DISCARD_BITS;
-
- return (int)max6675_temp;
- }
-
- #endif //HEATER_0_USES_MAX6675
-
- /**
- * Stages in the ISR loop
- */
- enum TempState {
- PrepareTemp_0,
- MeasureTemp_0,
- PrepareTemp_BED,
- MeasureTemp_BED,
- PrepareTemp_1,
- MeasureTemp_1,
- PrepareTemp_2,
- MeasureTemp_2,
- PrepareTemp_3,
- MeasureTemp_3,
- Prepare_FILWIDTH,
- Measure_FILWIDTH,
- StartupDelay // Startup, delay initial temp reading a tiny bit so the hardware can settle
- };
-
- /**
- * Get raw temperatures
- */
- void Temperature::set_current_temp_raw() {
- #if HAS_TEMP_0 && DISABLED(HEATER_0_USES_MAX6675)
- current_temperature_raw[0] = raw_temp_value[0];
- #endif
- #if HAS_TEMP_1
- #if ENABLED(TEMP_SENSOR_1_AS_REDUNDANT)
- redundant_temperature_raw = raw_temp_value[1];
- #else
- current_temperature_raw[1] = raw_temp_value[1];
- #endif
- #if HAS_TEMP_2
- current_temperature_raw[2] = raw_temp_value[2];
- #if HAS_TEMP_3
- current_temperature_raw[3] = raw_temp_value[3];
- #endif
- #endif
- #endif
- current_temperature_bed_raw = raw_temp_bed_value;
- temp_meas_ready = true;
- }
-
- /**
- * Timer 0 is shared with millies
- * - Manage PWM to all the heaters and fan
- * - Update the raw temperature values
- * - Check new temperature values for MIN/MAX errors
- * - Step the babysteps value for each axis towards 0
- */
- ISR(TIMER0_COMPB_vect) { thermalManager.isr(); }
-
- void Temperature::isr() {
-
- static unsigned char temp_count = 0;
- static TempState temp_state = StartupDelay;
- static unsigned char pwm_count = _BV(SOFT_PWM_SCALE);
-
- // Static members for each heater
- #if ENABLED(SLOW_PWM_HEATERS)
- static unsigned char slow_pwm_count = 0;
- #define ISR_STATICS(n) \
- static unsigned char soft_pwm_ ## n; \
- static unsigned char state_heater_ ## n = 0; \
- static unsigned char state_timer_heater_ ## n = 0
- #else
- #define ISR_STATICS(n) static unsigned char soft_pwm_ ## n
- #endif
-
- // Statics per heater
- ISR_STATICS(0);
- #if (EXTRUDERS > 1) || ENABLED(HEATERS_PARALLEL)
- ISR_STATICS(1);
- #if EXTRUDERS > 2
- ISR_STATICS(2);
- #if EXTRUDERS > 3
- ISR_STATICS(3);
- #endif
- #endif
- #endif
- #if HAS_HEATER_BED
- ISR_STATICS(BED);
- #endif
-
- #if ENABLED(FILAMENT_WIDTH_SENSOR)
- static unsigned long raw_filwidth_value = 0;
- #endif
-
- #if DISABLED(SLOW_PWM_HEATERS)
- /**
- * standard PWM modulation
- */
- if (pwm_count == 0) {
- soft_pwm_0 = soft_pwm[0];
- if (soft_pwm_0 > 0) {
- WRITE_HEATER_0(1);
- }
- else WRITE_HEATER_0P(0); // If HEATERS_PARALLEL should apply, change to WRITE_HEATER_0
-
- #if EXTRUDERS > 1
- soft_pwm_1 = soft_pwm[1];
- WRITE_HEATER_1(soft_pwm_1 > 0 ? 1 : 0);
- #if EXTRUDERS > 2
- soft_pwm_2 = soft_pwm[2];
- WRITE_HEATER_2(soft_pwm_2 > 0 ? 1 : 0);
- #if EXTRUDERS > 3
- soft_pwm_3 = soft_pwm[3];
- WRITE_HEATER_3(soft_pwm_3 > 0 ? 1 : 0);
- #endif
- #endif
- #endif
-
- #if HAS_HEATER_BED
- soft_pwm_BED = soft_pwm_bed;
- WRITE_HEATER_BED(soft_pwm_BED > 0 ? 1 : 0);
- #endif
-
- #if ENABLED(FAN_SOFT_PWM)
- #if HAS_FAN0
- soft_pwm_fan[0] = fanSpeedSoftPwm[0] / 2;
- WRITE_FAN(soft_pwm_fan[0] > 0 ? 1 : 0);
- #endif
- #if HAS_FAN1
- soft_pwm_fan[1] = fanSpeedSoftPwm[1] / 2;
- WRITE_FAN1(soft_pwm_fan[1] > 0 ? 1 : 0);
- #endif
- #if HAS_FAN2
- soft_pwm_fan[2] = fanSpeedSoftPwm[2] / 2;
- WRITE_FAN2(soft_pwm_fan[2] > 0 ? 1 : 0);
- #endif
- #endif
- }
-
- if (soft_pwm_0 < pwm_count) WRITE_HEATER_0(0);
- #if EXTRUDERS > 1
- if (soft_pwm_1 < pwm_count) WRITE_HEATER_1(0);
- #if EXTRUDERS > 2
- if (soft_pwm_2 < pwm_count) WRITE_HEATER_2(0);
- #if EXTRUDERS > 3
- if (soft_pwm_3 < pwm_count) WRITE_HEATER_3(0);
- #endif
- #endif
- #endif
-
- #if HAS_HEATER_BED
- if (soft_pwm_BED < pwm_count) WRITE_HEATER_BED(0);
- #endif
-
- #if ENABLED(FAN_SOFT_PWM)
- #if HAS_FAN0
- if (soft_pwm_fan[0] < pwm_count) WRITE_FAN(0);
- #endif
- #if HAS_FAN1
- if (soft_pwm_fan[1] < pwm_count) WRITE_FAN1(0);
- #endif
- #if HAS_FAN2
- if (soft_pwm_fan[2] < pwm_count) WRITE_FAN2(0);
- #endif
- #endif
-
- pwm_count += _BV(SOFT_PWM_SCALE);
- pwm_count &= 0x7f;
-
- #else // SLOW_PWM_HEATERS
-
- /**
- * SLOW PWM HEATERS
- *
- * for heaters drived by relay
- */
- #ifndef MIN_STATE_TIME
- #define MIN_STATE_TIME 16 // MIN_STATE_TIME * 65.5 = time in milliseconds
- #endif
-
- // Macros for Slow PWM timer logic - HEATERS_PARALLEL applies
- #define _SLOW_PWM_ROUTINE(NR, src) \
- soft_pwm_ ## NR = src; \
- if (soft_pwm_ ## NR > 0) { \
- if (state_timer_heater_ ## NR == 0) { \
- if (state_heater_ ## NR == 0) state_timer_heater_ ## NR = MIN_STATE_TIME; \
- state_heater_ ## NR = 1; \
- WRITE_HEATER_ ## NR(1); \
- } \
- } \
- else { \
- if (state_timer_heater_ ## NR == 0) { \
- if (state_heater_ ## NR == 1) state_timer_heater_ ## NR = MIN_STATE_TIME; \
- state_heater_ ## NR = 0; \
- WRITE_HEATER_ ## NR(0); \
- } \
- }
- #define SLOW_PWM_ROUTINE(n) _SLOW_PWM_ROUTINE(n, soft_pwm[n])
-
- #define PWM_OFF_ROUTINE(NR) \
- if (soft_pwm_ ## NR < slow_pwm_count) { \
- if (state_timer_heater_ ## NR == 0) { \
- if (state_heater_ ## NR == 1) state_timer_heater_ ## NR = MIN_STATE_TIME; \
- state_heater_ ## NR = 0; \
- WRITE_HEATER_ ## NR (0); \
- } \
- }
-
- if (slow_pwm_count == 0) {
-
- SLOW_PWM_ROUTINE(0); // EXTRUDER 0
- #if EXTRUDERS > 1
- SLOW_PWM_ROUTINE(1); // EXTRUDER 1
- #if EXTRUDERS > 2
- SLOW_PWM_ROUTINE(2); // EXTRUDER 2
- #if EXTRUDERS > 3
- SLOW_PWM_ROUTINE(3); // EXTRUDER 3
- #endif
- #endif
- #endif
- #if HAS_HEATER_BED
- _SLOW_PWM_ROUTINE(BED, soft_pwm_bed); // BED
- #endif
-
- } // slow_pwm_count == 0
-
- PWM_OFF_ROUTINE(0); // EXTRUDER 0
- #if EXTRUDERS > 1
- PWM_OFF_ROUTINE(1); // EXTRUDER 1
- #if EXTRUDERS > 2
- PWM_OFF_ROUTINE(2); // EXTRUDER 2
- #if EXTRUDERS > 3
- PWM_OFF_ROUTINE(3); // EXTRUDER 3
- #endif
- #endif
- #endif
- #if HAS_HEATER_BED
- PWM_OFF_ROUTINE(BED); // BED
- #endif
-
- #if ENABLED(FAN_SOFT_PWM)
- if (pwm_count == 0) {
- #if HAS_FAN0
- soft_pwm_fan[0] = fanSpeedSoftPwm[0] / 2;
- WRITE_FAN(soft_pwm_fan[0] > 0 ? 1 : 0);
- #endif
- #if HAS_FAN1
- soft_pwm_fan[1] = fanSpeedSoftPwm[1] / 2;
- WRITE_FAN1(soft_pwm_fan[1] > 0 ? 1 : 0);
- #endif
- #if HAS_FAN2
- soft_pwm_fan[2] = fanSpeedSoftPwm[2] / 2;
- WRITE_FAN2(soft_pwm_fan[2] > 0 ? 1 : 0);
- #endif
- }
- #if HAS_FAN0
- if (soft_pwm_fan[0] < pwm_count) WRITE_FAN(0);
- #endif
- #if HAS_FAN1
- if (soft_pwm_fan[1] < pwm_count) WRITE_FAN1(0);
- #endif
- #if HAS_FAN2
- if (soft_pwm_fan[2] < pwm_count) WRITE_FAN2(0);
- #endif
- #endif //FAN_SOFT_PWM
-
- pwm_count += _BV(SOFT_PWM_SCALE);
- pwm_count &= 0x7f;
-
- // increment slow_pwm_count only every 64 pwm_count circa 65.5ms
- if ((pwm_count % 64) == 0) {
- slow_pwm_count++;
- slow_pwm_count &= 0x7f;
-
- // EXTRUDER 0
- if (state_timer_heater_0 > 0) state_timer_heater_0--;
- #if EXTRUDERS > 1 // EXTRUDER 1
- if (state_timer_heater_1 > 0) state_timer_heater_1--;
- #if EXTRUDERS > 2 // EXTRUDER 2
- if (state_timer_heater_2 > 0) state_timer_heater_2--;
- #if EXTRUDERS > 3 // EXTRUDER 3
- if (state_timer_heater_3 > 0) state_timer_heater_3--;
- #endif
- #endif
- #endif
- #if HAS_HEATER_BED
- if (state_timer_heater_BED > 0) state_timer_heater_BED--;
- #endif
- } // (pwm_count % 64) == 0
-
- #endif // SLOW_PWM_HEATERS
-
- #define SET_ADMUX_ADCSRA(pin) ADMUX = _BV(REFS0) | (pin & 0x07); SBI(ADCSRA, ADSC)
- #ifdef MUX5
- #define START_ADC(pin) if (pin > 7) ADCSRB = _BV(MUX5); else ADCSRB = 0; SET_ADMUX_ADCSRA(pin)
- #else
- #define START_ADC(pin) ADCSRB = 0; SET_ADMUX_ADCSRA(pin)
- #endif
-
- // Prepare or measure a sensor, each one every 12th frame
- switch (temp_state) {
- case PrepareTemp_0:
- #if HAS_TEMP_0
- START_ADC(TEMP_0_PIN);
- #endif
- lcd_buttons_update();
- temp_state = MeasureTemp_0;
- break;
- case MeasureTemp_0:
- #if HAS_TEMP_0
- raw_temp_value[0] += ADC;
- #endif
- temp_state = PrepareTemp_BED;
- break;
-
- case PrepareTemp_BED:
- #if HAS_TEMP_BED
- START_ADC(TEMP_BED_PIN);
- #endif
- lcd_buttons_update();
- temp_state = MeasureTemp_BED;
- break;
- case MeasureTemp_BED:
- #if HAS_TEMP_BED
- raw_temp_bed_value += ADC;
- #endif
- temp_state = PrepareTemp_1;
- break;
-
- case PrepareTemp_1:
- #if HAS_TEMP_1
- START_ADC(TEMP_1_PIN);
- #endif
- lcd_buttons_update();
- temp_state = MeasureTemp_1;
- break;
- case MeasureTemp_1:
- #if HAS_TEMP_1
- raw_temp_value[1] += ADC;
- #endif
- temp_state = PrepareTemp_2;
- break;
-
- case PrepareTemp_2:
- #if HAS_TEMP_2
- START_ADC(TEMP_2_PIN);
- #endif
- lcd_buttons_update();
- temp_state = MeasureTemp_2;
- break;
- case MeasureTemp_2:
- #if HAS_TEMP_2
- raw_temp_value[2] += ADC;
- #endif
- temp_state = PrepareTemp_3;
- break;
-
- case PrepareTemp_3:
- #if HAS_TEMP_3
- START_ADC(TEMP_3_PIN);
- #endif
- lcd_buttons_update();
- temp_state = MeasureTemp_3;
- break;
- case MeasureTemp_3:
- #if HAS_TEMP_3
- raw_temp_value[3] += ADC;
- #endif
- temp_state = Prepare_FILWIDTH;
- break;
-
- case Prepare_FILWIDTH:
- #if ENABLED(FILAMENT_WIDTH_SENSOR)
- START_ADC(FILWIDTH_PIN);
- #endif
- lcd_buttons_update();
- temp_state = Measure_FILWIDTH;
- break;
- case Measure_FILWIDTH:
- #if ENABLED(FILAMENT_WIDTH_SENSOR)
- // raw_filwidth_value += ADC; //remove to use an IIR filter approach
- if (ADC > 102) { //check that ADC is reading a voltage > 0.5 volts, otherwise don't take in the data.
- raw_filwidth_value -= (raw_filwidth_value >> 7); //multiply raw_filwidth_value by 127/128
- raw_filwidth_value += ((unsigned long)ADC << 7); //add new ADC reading
- }
- #endif
- temp_state = PrepareTemp_0;
- temp_count++;
- break;
-
- case StartupDelay:
- temp_state = PrepareTemp_0;
- break;
-
- // default:
- // SERIAL_ERROR_START;
- // SERIAL_ERRORLNPGM("Temp measurement error!");
- // break;
- } // switch(temp_state)
-
- if (temp_count >= OVERSAMPLENR) { // 10 * 16 * 1/(16000000/64/256) = 164ms.
- // Update the raw values if they've been read. Else we could be updating them during reading.
- if (!temp_meas_ready) set_current_temp_raw();
-
- // Filament Sensor - can be read any time since IIR filtering is used
- #if ENABLED(FILAMENT_WIDTH_SENSOR)
- current_raw_filwidth = raw_filwidth_value >> 10; // Divide to get to 0-16384 range since we used 1/128 IIR filter approach
- #endif
-
- temp_count = 0;
- for (int i = 0; i < 4; i++) raw_temp_value[i] = 0;
- raw_temp_bed_value = 0;
-
- #if HAS_TEMP_0 && DISABLED(HEATER_0_USES_MAX6675)
- #if HEATER_0_RAW_LO_TEMP > HEATER_0_RAW_HI_TEMP
- #define GE0 <=
- #else
- #define GE0 >=
- #endif
- if (current_temperature_raw[0] GE0 maxttemp_raw[0]) max_temp_error(0);
- if (minttemp_raw[0] GE0 current_temperature_raw[0]) min_temp_error(0);
- #endif
-
- #if HAS_TEMP_1 && EXTRUDERS > 1
- #if HEATER_1_RAW_LO_TEMP > HEATER_1_RAW_HI_TEMP
- #define GE1 <=
- #else
- #define GE1 >=
- #endif
- if (current_temperature_raw[1] GE1 maxttemp_raw[1]) max_temp_error(1);
- if (minttemp_raw[1] GE1 current_temperature_raw[1]) min_temp_error(1);
- #endif // TEMP_SENSOR_1
-
- #if HAS_TEMP_2 && EXTRUDERS > 2
- #if HEATER_2_RAW_LO_TEMP > HEATER_2_RAW_HI_TEMP
- #define GE2 <=
- #else
- #define GE2 >=
- #endif
- if (current_temperature_raw[2] GE2 maxttemp_raw[2]) max_temp_error(2);
- if (minttemp_raw[2] GE2 current_temperature_raw[2]) min_temp_error(2);
- #endif // TEMP_SENSOR_2
-
- #if HAS_TEMP_3 && EXTRUDERS > 3
- #if HEATER_3_RAW_LO_TEMP > HEATER_3_RAW_HI_TEMP
- #define GE3 <=
- #else
- #define GE3 >=
- #endif
- if (current_temperature_raw[3] GE3 maxttemp_raw[3]) max_temp_error(3);
- if (minttemp_raw[3] GE3 current_temperature_raw[3]) min_temp_error(3);
- #endif // TEMP_SENSOR_3
-
- #if HAS_TEMP_BED
- #if HEATER_BED_RAW_LO_TEMP > HEATER_BED_RAW_HI_TEMP
- #define GEBED <=
- #else
- #define GEBED >=
- #endif
- if (current_temperature_bed_raw GEBED bed_maxttemp_raw) _temp_error(-1, PSTR(MSG_T_MAXTEMP), PSTR(MSG_ERR_MAXTEMP_BED));
- if (bed_minttemp_raw GEBED current_temperature_bed_raw) _temp_error(-1, PSTR(MSG_T_MINTEMP), PSTR(MSG_ERR_MINTEMP_BED));
- #endif
-
- } // temp_count >= OVERSAMPLENR
-
- #if ENABLED(BABYSTEPPING)
- for (uint8_t axis = X_AXIS; axis <= Z_AXIS; axis++) {
- int curTodo = babystepsTodo[axis]; //get rid of volatile for performance
-
- if (curTodo > 0) {
- stepper.babystep(axis,/*fwd*/true);
- babystepsTodo[axis]--; //fewer to do next time
- }
- else if (curTodo < 0) {
- stepper.babystep(axis,/*fwd*/false);
- babystepsTodo[axis]++; //fewer to do next time
- }
- }
- #endif //BABYSTEPPING
- }
|