My Marlin configs for Fabrikator Mini and CTC i3 Pro B
您最多选择25个主题 主题必须以字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符

stepper.cpp 50KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659
  1. /**
  2. * Marlin 3D Printer Firmware
  3. * Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
  4. *
  5. * Based on Sprinter and grbl.
  6. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  7. *
  8. * This program is free software: you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation, either version 3 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  20. *
  21. */
  22. /**
  23. * stepper.cpp - A singleton object to execute motion plans using stepper motors
  24. * Marlin Firmware
  25. *
  26. * Derived from Grbl
  27. * Copyright (c) 2009-2011 Simen Svale Skogsrud
  28. *
  29. * Grbl is free software: you can redistribute it and/or modify
  30. * it under the terms of the GNU General Public License as published by
  31. * the Free Software Foundation, either version 3 of the License, or
  32. * (at your option) any later version.
  33. *
  34. * Grbl is distributed in the hope that it will be useful,
  35. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  36. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  37. * GNU General Public License for more details.
  38. *
  39. * You should have received a copy of the GNU General Public License
  40. * along with Grbl. If not, see <http://www.gnu.org/licenses/>.
  41. */
  42. /* The timer calculations of this module informed by the 'RepRap cartesian firmware' by Zack Smith
  43. and Philipp Tiefenbacher. */
  44. #include "Marlin.h"
  45. #include "stepper.h"
  46. #include "endstops.h"
  47. #include "planner.h"
  48. #include "temperature.h"
  49. #include "ultralcd.h"
  50. #include "language.h"
  51. #include "cardreader.h"
  52. #include "speed_lookuptable.h"
  53. #if ENABLED(AUTO_BED_LEVELING_UBL) && ENABLED(ULTIPANEL)
  54. #include "ubl.h"
  55. #endif
  56. #if HAS_DIGIPOTSS
  57. #include <SPI.h>
  58. #endif
  59. Stepper stepper; // Singleton
  60. // public:
  61. block_t* Stepper::current_block = NULL; // A pointer to the block currently being traced
  62. #if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  63. bool Stepper::abort_on_endstop_hit = false;
  64. #endif
  65. #if ENABLED(X_DUAL_ENDSTOPS) || ENABLED(Y_DUAL_ENDSTOPS) || ENABLED(Z_DUAL_ENDSTOPS)
  66. bool Stepper::performing_homing = false;
  67. #endif
  68. #if HAS_MOTOR_CURRENT_PWM
  69. uint32_t Stepper::motor_current_setting[3]; // Initialized by settings.load()
  70. #endif
  71. // private:
  72. uint8_t Stepper::last_direction_bits = 0; // The next stepping-bits to be output
  73. int16_t Stepper::cleaning_buffer_counter = 0;
  74. #if ENABLED(X_DUAL_ENDSTOPS)
  75. bool Stepper::locked_x_motor = false, Stepper::locked_x2_motor = false;
  76. #endif
  77. #if ENABLED(Y_DUAL_ENDSTOPS)
  78. bool Stepper::locked_y_motor = false, Stepper::locked_y2_motor = false;
  79. #endif
  80. #if ENABLED(Z_DUAL_ENDSTOPS)
  81. bool Stepper::locked_z_motor = false, Stepper::locked_z2_motor = false;
  82. #endif
  83. long Stepper::counter_X = 0,
  84. Stepper::counter_Y = 0,
  85. Stepper::counter_Z = 0,
  86. Stepper::counter_E = 0;
  87. volatile uint32_t Stepper::step_events_completed = 0; // The number of step events executed in the current block
  88. #if ENABLED(LIN_ADVANCE)
  89. constexpr uint16_t ADV_NEVER = 65535;
  90. uint16_t Stepper::nextMainISR = 0,
  91. Stepper::nextAdvanceISR = ADV_NEVER,
  92. Stepper::eISR_Rate = ADV_NEVER;
  93. volatile int Stepper::e_steps[E_STEPPERS];
  94. int Stepper::final_estep_rate,
  95. Stepper::current_estep_rate[E_STEPPERS],
  96. Stepper::current_adv_steps[E_STEPPERS];
  97. /**
  98. * See https://github.com/MarlinFirmware/Marlin/issues/5699#issuecomment-309264382
  99. *
  100. * This fix isn't perfect and may lose steps - but better than locking up completely
  101. * in future the planner should slow down if advance stepping rate would be too high
  102. */
  103. FORCE_INLINE uint16_t adv_rate(const int steps, const uint16_t timer, const uint8_t loops) {
  104. if (steps) {
  105. const uint16_t rate = (timer * loops) / abs(steps);
  106. //return constrain(rate, 1, ADV_NEVER - 1)
  107. return rate ? rate : 1;
  108. }
  109. return ADV_NEVER;
  110. }
  111. #endif // LIN_ADVANCE
  112. long Stepper::acceleration_time, Stepper::deceleration_time;
  113. volatile long Stepper::count_position[NUM_AXIS] = { 0 };
  114. volatile signed char Stepper::count_direction[NUM_AXIS] = { 1, 1, 1, 1 };
  115. #if ENABLED(MIXING_EXTRUDER)
  116. long Stepper::counter_m[MIXING_STEPPERS];
  117. #endif
  118. uint8_t Stepper::step_loops, Stepper::step_loops_nominal;
  119. uint16_t Stepper::OCR1A_nominal,
  120. Stepper::acc_step_rate; // needed for deceleration start point
  121. volatile long Stepper::endstops_trigsteps[XYZ];
  122. #if ENABLED(X_DUAL_ENDSTOPS) || ENABLED(Y_DUAL_ENDSTOPS) || ENABLED(Z_DUAL_ENDSTOPS)
  123. #define LOCKED_X_MOTOR locked_x_motor
  124. #define LOCKED_Y_MOTOR locked_y_motor
  125. #define LOCKED_Z_MOTOR locked_z_motor
  126. #define LOCKED_X2_MOTOR locked_x2_motor
  127. #define LOCKED_Y2_MOTOR locked_y2_motor
  128. #define LOCKED_Z2_MOTOR locked_z2_motor
  129. #define DUAL_ENDSTOP_APPLY_STEP(AXIS,v) \
  130. if (performing_homing) { \
  131. if (AXIS##_HOME_DIR < 0) { \
  132. if (!(TEST(endstops.old_endstop_bits, AXIS##_MIN) && (count_direction[AXIS##_AXIS] < 0)) && !LOCKED_##AXIS##_MOTOR) AXIS##_STEP_WRITE(v); \
  133. if (!(TEST(endstops.old_endstop_bits, AXIS##2_MIN) && (count_direction[AXIS##_AXIS] < 0)) && !LOCKED_##AXIS##2_MOTOR) AXIS##2_STEP_WRITE(v); \
  134. } \
  135. else { \
  136. if (!(TEST(endstops.old_endstop_bits, AXIS##_MAX) && (count_direction[AXIS##_AXIS] > 0)) && !LOCKED_##AXIS##_MOTOR) AXIS##_STEP_WRITE(v); \
  137. if (!(TEST(endstops.old_endstop_bits, AXIS##2_MAX) && (count_direction[AXIS##_AXIS] > 0)) && !LOCKED_##AXIS##2_MOTOR) AXIS##2_STEP_WRITE(v); \
  138. } \
  139. } \
  140. else { \
  141. AXIS##_STEP_WRITE(v); \
  142. AXIS##2_STEP_WRITE(v); \
  143. }
  144. #endif
  145. #if ENABLED(X_DUAL_STEPPER_DRIVERS)
  146. #define X_APPLY_DIR(v,Q) do{ X_DIR_WRITE(v); X2_DIR_WRITE((v) != INVERT_X2_VS_X_DIR); }while(0)
  147. #if ENABLED(DUAL_X_CARRIAGE)
  148. #define X_APPLY_DIR(v,ALWAYS) \
  149. if (extruder_duplication_enabled || ALWAYS) { \
  150. X_DIR_WRITE(v); \
  151. X2_DIR_WRITE(v); \
  152. } \
  153. else { \
  154. if (current_block->active_extruder) X2_DIR_WRITE(v); else X_DIR_WRITE(v); \
  155. }
  156. #define X_APPLY_STEP(v,ALWAYS) \
  157. if (extruder_duplication_enabled || ALWAYS) { \
  158. X_STEP_WRITE(v); \
  159. X2_STEP_WRITE(v); \
  160. } \
  161. else { \
  162. if (current_block->active_extruder) X2_STEP_WRITE(v); else X_STEP_WRITE(v); \
  163. }
  164. #elif ENABLED(X_DUAL_ENDSTOPS)
  165. #define X_APPLY_STEP(v,Q) DUAL_ENDSTOP_APPLY_STEP(X,v)
  166. #else
  167. #define X_APPLY_STEP(v,Q) do{ X_STEP_WRITE(v); X2_STEP_WRITE(v); }while(0)
  168. #endif
  169. #else
  170. #define X_APPLY_DIR(v,Q) X_DIR_WRITE(v)
  171. #define X_APPLY_STEP(v,Q) X_STEP_WRITE(v)
  172. #endif
  173. #if ENABLED(Y_DUAL_STEPPER_DRIVERS)
  174. #define Y_APPLY_DIR(v,Q) do{ Y_DIR_WRITE(v); Y2_DIR_WRITE((v) != INVERT_Y2_VS_Y_DIR); }while(0)
  175. #if ENABLED(Y_DUAL_ENDSTOPS)
  176. #define Y_APPLY_STEP(v,Q) DUAL_ENDSTOP_APPLY_STEP(Y,v)
  177. #else
  178. #define Y_APPLY_STEP(v,Q) do{ Y_STEP_WRITE(v); Y2_STEP_WRITE(v); }while(0)
  179. #endif
  180. #else
  181. #define Y_APPLY_DIR(v,Q) Y_DIR_WRITE(v)
  182. #define Y_APPLY_STEP(v,Q) Y_STEP_WRITE(v)
  183. #endif
  184. #if ENABLED(Z_DUAL_STEPPER_DRIVERS)
  185. #define Z_APPLY_DIR(v,Q) do{ Z_DIR_WRITE(v); Z2_DIR_WRITE(v); }while(0)
  186. #if ENABLED(Z_DUAL_ENDSTOPS)
  187. #define Z_APPLY_STEP(v,Q) DUAL_ENDSTOP_APPLY_STEP(Z,v)
  188. #else
  189. #define Z_APPLY_STEP(v,Q) do{ Z_STEP_WRITE(v); Z2_STEP_WRITE(v); }while(0)
  190. #endif
  191. #else
  192. #define Z_APPLY_DIR(v,Q) Z_DIR_WRITE(v)
  193. #define Z_APPLY_STEP(v,Q) Z_STEP_WRITE(v)
  194. #endif
  195. #if DISABLED(MIXING_EXTRUDER)
  196. #define E_APPLY_STEP(v,Q) E_STEP_WRITE(v)
  197. #endif
  198. // intRes = longIn1 * longIn2 >> 24
  199. // uses:
  200. // r26 to store 0
  201. // r27 to store bits 16-23 of the 48bit result. The top bit is used to round the two byte result.
  202. // note that the lower two bytes and the upper byte of the 48bit result are not calculated.
  203. // this can cause the result to be out by one as the lower bytes may cause carries into the upper ones.
  204. // B0 A0 are bits 24-39 and are the returned value
  205. // C1 B1 A1 is longIn1
  206. // D2 C2 B2 A2 is longIn2
  207. //
  208. #define MultiU24X32toH16(intRes, longIn1, longIn2) \
  209. asm volatile ( \
  210. "clr r26 \n\t" \
  211. "mul %A1, %B2 \n\t" \
  212. "mov r27, r1 \n\t" \
  213. "mul %B1, %C2 \n\t" \
  214. "movw %A0, r0 \n\t" \
  215. "mul %C1, %C2 \n\t" \
  216. "add %B0, r0 \n\t" \
  217. "mul %C1, %B2 \n\t" \
  218. "add %A0, r0 \n\t" \
  219. "adc %B0, r1 \n\t" \
  220. "mul %A1, %C2 \n\t" \
  221. "add r27, r0 \n\t" \
  222. "adc %A0, r1 \n\t" \
  223. "adc %B0, r26 \n\t" \
  224. "mul %B1, %B2 \n\t" \
  225. "add r27, r0 \n\t" \
  226. "adc %A0, r1 \n\t" \
  227. "adc %B0, r26 \n\t" \
  228. "mul %C1, %A2 \n\t" \
  229. "add r27, r0 \n\t" \
  230. "adc %A0, r1 \n\t" \
  231. "adc %B0, r26 \n\t" \
  232. "mul %B1, %A2 \n\t" \
  233. "add r27, r1 \n\t" \
  234. "adc %A0, r26 \n\t" \
  235. "adc %B0, r26 \n\t" \
  236. "lsr r27 \n\t" \
  237. "adc %A0, r26 \n\t" \
  238. "adc %B0, r26 \n\t" \
  239. "mul %D2, %A1 \n\t" \
  240. "add %A0, r0 \n\t" \
  241. "adc %B0, r1 \n\t" \
  242. "mul %D2, %B1 \n\t" \
  243. "add %B0, r0 \n\t" \
  244. "clr r1 \n\t" \
  245. : \
  246. "=&r" (intRes) \
  247. : \
  248. "d" (longIn1), \
  249. "d" (longIn2) \
  250. : \
  251. "r26" , "r27" \
  252. )
  253. // Some useful constants
  254. /**
  255. * __________________________
  256. * /| |\ _________________ ^
  257. * / | | \ /| |\ |
  258. * / | | \ / | | \ s
  259. * / | | | | | \ p
  260. * / | | | | | \ e
  261. * +-----+------------------------+---+--+---------------+----+ e
  262. * | BLOCK 1 | BLOCK 2 | d
  263. *
  264. * time ----->
  265. *
  266. * The trapezoid is the shape the speed curve over time. It starts at block->initial_rate, accelerates
  267. * first block->accelerate_until step_events_completed, then keeps going at constant speed until
  268. * step_events_completed reaches block->decelerate_after after which it decelerates until the trapezoid generator is reset.
  269. * The slope of acceleration is calculated using v = u + at where t is the accumulated timer values of the steps so far.
  270. */
  271. void Stepper::wake_up() {
  272. // TCNT1 = 0;
  273. ENABLE_STEPPER_DRIVER_INTERRUPT();
  274. }
  275. /**
  276. * Set the stepper direction of each axis
  277. *
  278. * COREXY: X_AXIS=A_AXIS and Y_AXIS=B_AXIS
  279. * COREXZ: X_AXIS=A_AXIS and Z_AXIS=C_AXIS
  280. * COREYZ: Y_AXIS=B_AXIS and Z_AXIS=C_AXIS
  281. */
  282. void Stepper::set_directions() {
  283. #define SET_STEP_DIR(AXIS) \
  284. if (motor_direction(AXIS ##_AXIS)) { \
  285. AXIS ##_APPLY_DIR(INVERT_## AXIS ##_DIR, false); \
  286. count_direction[AXIS ##_AXIS] = -1; \
  287. } \
  288. else { \
  289. AXIS ##_APPLY_DIR(!INVERT_## AXIS ##_DIR, false); \
  290. count_direction[AXIS ##_AXIS] = 1; \
  291. }
  292. #if HAS_X_DIR
  293. SET_STEP_DIR(X); // A
  294. #endif
  295. #if HAS_Y_DIR
  296. SET_STEP_DIR(Y); // B
  297. #endif
  298. #if HAS_Z_DIR
  299. SET_STEP_DIR(Z); // C
  300. #endif
  301. #if DISABLED(LIN_ADVANCE)
  302. if (motor_direction(E_AXIS)) {
  303. REV_E_DIR();
  304. count_direction[E_AXIS] = -1;
  305. }
  306. else {
  307. NORM_E_DIR();
  308. count_direction[E_AXIS] = 1;
  309. }
  310. #endif // !LIN_ADVANCE
  311. }
  312. #if ENABLED(ENDSTOP_INTERRUPTS_FEATURE)
  313. extern volatile uint8_t e_hit;
  314. #endif
  315. /**
  316. * Stepper Driver Interrupt
  317. *
  318. * Directly pulses the stepper motors at high frequency.
  319. * Timer 1 runs at a base frequency of 2MHz, with this ISR using OCR1A compare mode.
  320. *
  321. * OCR1A Frequency
  322. * 1 2 MHz
  323. * 50 40 KHz
  324. * 100 20 KHz - capped max rate
  325. * 200 10 KHz - nominal max rate
  326. * 2000 1 KHz - sleep rate
  327. * 4000 500 Hz - init rate
  328. */
  329. ISR(TIMER1_COMPA_vect) {
  330. #if ENABLED(LIN_ADVANCE)
  331. Stepper::advance_isr_scheduler();
  332. #else
  333. Stepper::isr();
  334. #endif
  335. }
  336. #define _ENABLE_ISRs() do { cli(); if (thermalManager.in_temp_isr) CBI(TIMSK0, OCIE0B); else SBI(TIMSK0, OCIE0B); ENABLE_STEPPER_DRIVER_INTERRUPT(); } while(0)
  337. void Stepper::isr() {
  338. uint16_t ocr_val;
  339. #define ENDSTOP_NOMINAL_OCR_VAL 3000 // Check endstops every 1.5ms to guarantee two stepper ISRs within 5ms for BLTouch
  340. #define OCR_VAL_TOLERANCE 1000 // First max delay is 2.0ms, last min delay is 0.5ms, all others 1.5ms
  341. #if DISABLED(LIN_ADVANCE)
  342. // Disable Timer0 ISRs and enable global ISR again to capture UART events (incoming chars)
  343. CBI(TIMSK0, OCIE0B); // Temperature ISR
  344. DISABLE_STEPPER_DRIVER_INTERRUPT();
  345. sei();
  346. #endif
  347. #define _SPLIT(L) (ocr_val = (uint16_t)L)
  348. #if ENABLED(ENDSTOP_INTERRUPTS_FEATURE)
  349. #define SPLIT(L) _SPLIT(L)
  350. #else // !ENDSTOP_INTERRUPTS_FEATURE : Sample endstops between stepping ISRs
  351. static uint32_t step_remaining = 0;
  352. #define SPLIT(L) do { \
  353. _SPLIT(L); \
  354. if (ENDSTOPS_ENABLED && L > ENDSTOP_NOMINAL_OCR_VAL) { \
  355. const uint16_t remainder = (uint16_t)L % (ENDSTOP_NOMINAL_OCR_VAL); \
  356. ocr_val = (remainder < OCR_VAL_TOLERANCE) ? ENDSTOP_NOMINAL_OCR_VAL + remainder : ENDSTOP_NOMINAL_OCR_VAL; \
  357. step_remaining = (uint16_t)L - ocr_val; \
  358. } \
  359. }while(0)
  360. if (step_remaining && ENDSTOPS_ENABLED) { // Just check endstops - not yet time for a step
  361. endstops.update();
  362. // Next ISR either for endstops or stepping
  363. ocr_val = step_remaining <= ENDSTOP_NOMINAL_OCR_VAL ? step_remaining : ENDSTOP_NOMINAL_OCR_VAL;
  364. step_remaining -= ocr_val;
  365. _NEXT_ISR(ocr_val);
  366. NOLESS(OCR1A, TCNT1 + 16);
  367. _ENABLE_ISRs(); // re-enable ISRs
  368. return;
  369. }
  370. #endif // !ENDSTOP_INTERRUPTS_FEATURE
  371. //
  372. // When cleaning, discard the current block and run fast
  373. //
  374. if (cleaning_buffer_counter) {
  375. if (cleaning_buffer_counter < 0) { // Count up for endstop hit
  376. if (current_block) planner.discard_current_block(); // Discard the active block that led to the trigger
  377. if (!planner.discard_continued_block()) // Discard next CONTINUED block
  378. cleaning_buffer_counter = 0; // Keep discarding until non-CONTINUED
  379. }
  380. else {
  381. planner.discard_current_block();
  382. --cleaning_buffer_counter; // Count down for abort print
  383. #ifdef SD_FINISHED_RELEASECOMMAND
  384. if (!cleaning_buffer_counter && (SD_FINISHED_STEPPERRELEASE)) enqueue_and_echo_commands_P(PSTR(SD_FINISHED_RELEASECOMMAND));
  385. #endif
  386. }
  387. current_block = NULL; // Prep to get a new block after cleaning
  388. _NEXT_ISR(200); // Run at max speed - 10 KHz
  389. _ENABLE_ISRs();
  390. return;
  391. }
  392. // If there is no current block, attempt to pop one from the buffer
  393. bool first_step = false;
  394. if (!current_block) {
  395. // Anything in the buffer?
  396. if ((current_block = planner.get_current_block())) {
  397. trapezoid_generator_reset();
  398. TCNT1 = 0; // make sure first pulse is not truncated
  399. first_step = true;
  400. // Initialize Bresenham counters to 1/2 the ceiling
  401. counter_X = counter_Y = counter_Z = counter_E = -(current_block->step_event_count >> 1);
  402. #if ENABLED(MIXING_EXTRUDER)
  403. MIXING_STEPPERS_LOOP(i)
  404. counter_m[i] = -(current_block->mix_event_count[i] >> 1);
  405. #endif
  406. step_events_completed = 0;
  407. #if ENABLED(ENDSTOP_INTERRUPTS_FEATURE)
  408. e_hit = 2; // Needed for the case an endstop is already triggered before the new move begins.
  409. // No 'change' can be detected.
  410. #endif
  411. #if ENABLED(Z_LATE_ENABLE)
  412. if (current_block->steps[Z_AXIS] > 0) {
  413. enable_Z();
  414. _NEXT_ISR(2000); // Run at slow speed - 1 KHz
  415. _ENABLE_ISRs(); // re-enable ISRs
  416. return;
  417. }
  418. #endif
  419. }
  420. else {
  421. _NEXT_ISR(2000); // Run at slow speed - 1 KHz
  422. _ENABLE_ISRs(); // re-enable ISRs
  423. return;
  424. }
  425. }
  426. // Update endstops state, if enabled
  427. #if ENABLED(ENDSTOP_INTERRUPTS_FEATURE)
  428. if (e_hit && ENDSTOPS_ENABLED) {
  429. endstops.update();
  430. e_hit--;
  431. }
  432. #else
  433. if (ENDSTOPS_ENABLED) endstops.update();
  434. #endif
  435. // Take multiple steps per interrupt (For high speed moves)
  436. bool all_steps_done = false;
  437. for (uint8_t i = step_loops; i--;) {
  438. #if ENABLED(LIN_ADVANCE)
  439. counter_E += current_block->steps[E_AXIS];
  440. if (counter_E > 0) {
  441. counter_E -= current_block->step_event_count;
  442. #if DISABLED(MIXING_EXTRUDER)
  443. // Don't step E here for mixing extruder
  444. count_position[E_AXIS] += count_direction[E_AXIS];
  445. motor_direction(E_AXIS) ? --e_steps[TOOL_E_INDEX] : ++e_steps[TOOL_E_INDEX];
  446. #endif
  447. }
  448. #if ENABLED(MIXING_EXTRUDER)
  449. // Step mixing steppers proportionally
  450. const bool dir = motor_direction(E_AXIS);
  451. MIXING_STEPPERS_LOOP(j) {
  452. counter_m[j] += current_block->steps[E_AXIS];
  453. if (counter_m[j] > 0) {
  454. counter_m[j] -= current_block->mix_event_count[j];
  455. dir ? --e_steps[j] : ++e_steps[j];
  456. }
  457. }
  458. #endif
  459. #endif // LIN_ADVANCE
  460. #define _COUNTER(AXIS) counter_## AXIS
  461. #define _APPLY_STEP(AXIS) AXIS ##_APPLY_STEP
  462. #define _INVERT_STEP_PIN(AXIS) INVERT_## AXIS ##_STEP_PIN
  463. // Advance the Bresenham counter; start a pulse if the axis needs a step
  464. #define PULSE_START(AXIS) \
  465. _COUNTER(AXIS) += current_block->steps[_AXIS(AXIS)]; \
  466. if (_COUNTER(AXIS) > 0) { _APPLY_STEP(AXIS)(!_INVERT_STEP_PIN(AXIS),0); }
  467. // Stop an active pulse, reset the Bresenham counter, update the position
  468. #define PULSE_STOP(AXIS) \
  469. if (_COUNTER(AXIS) > 0) { \
  470. _COUNTER(AXIS) -= current_block->step_event_count; \
  471. count_position[_AXIS(AXIS)] += count_direction[_AXIS(AXIS)]; \
  472. _APPLY_STEP(AXIS)(_INVERT_STEP_PIN(AXIS),0); \
  473. }
  474. /**
  475. * Estimate the number of cycles that the stepper logic already takes
  476. * up between the start and stop of the X stepper pulse.
  477. *
  478. * Currently this uses very modest estimates of around 5 cycles.
  479. * True values may be derived by careful testing.
  480. *
  481. * Once any delay is added, the cost of the delay code itself
  482. * may be subtracted from this value to get a more accurate delay.
  483. * Delays under 20 cycles (1.25µs) will be very accurate, using NOPs.
  484. * Longer delays use a loop. The resolution is 8 cycles.
  485. */
  486. #if HAS_X_STEP
  487. #define _CYCLE_APPROX_1 5
  488. #else
  489. #define _CYCLE_APPROX_1 0
  490. #endif
  491. #if ENABLED(X_DUAL_STEPPER_DRIVERS)
  492. #define _CYCLE_APPROX_2 _CYCLE_APPROX_1 + 4
  493. #else
  494. #define _CYCLE_APPROX_2 _CYCLE_APPROX_1
  495. #endif
  496. #if HAS_Y_STEP
  497. #define _CYCLE_APPROX_3 _CYCLE_APPROX_2 + 5
  498. #else
  499. #define _CYCLE_APPROX_3 _CYCLE_APPROX_2
  500. #endif
  501. #if ENABLED(Y_DUAL_STEPPER_DRIVERS)
  502. #define _CYCLE_APPROX_4 _CYCLE_APPROX_3 + 4
  503. #else
  504. #define _CYCLE_APPROX_4 _CYCLE_APPROX_3
  505. #endif
  506. #if HAS_Z_STEP
  507. #define _CYCLE_APPROX_5 _CYCLE_APPROX_4 + 5
  508. #else
  509. #define _CYCLE_APPROX_5 _CYCLE_APPROX_4
  510. #endif
  511. #if ENABLED(Z_DUAL_STEPPER_DRIVERS)
  512. #define _CYCLE_APPROX_6 _CYCLE_APPROX_5 + 4
  513. #else
  514. #define _CYCLE_APPROX_6 _CYCLE_APPROX_5
  515. #endif
  516. #if DISABLED(LIN_ADVANCE)
  517. #if ENABLED(MIXING_EXTRUDER)
  518. #define _CYCLE_APPROX_7 _CYCLE_APPROX_6 + (MIXING_STEPPERS) * 6
  519. #else
  520. #define _CYCLE_APPROX_7 _CYCLE_APPROX_6 + 5
  521. #endif
  522. #else
  523. #define _CYCLE_APPROX_7 _CYCLE_APPROX_6
  524. #endif
  525. #define CYCLES_EATEN_XYZE _CYCLE_APPROX_7
  526. #define EXTRA_CYCLES_XYZE (STEP_PULSE_CYCLES - (CYCLES_EATEN_XYZE))
  527. /**
  528. * If a minimum pulse time was specified get the timer 0 value.
  529. *
  530. * TCNT0 has an 8x prescaler, so it increments every 8 cycles.
  531. * That's every 0.5µs on 16MHz and every 0.4µs on 20MHz.
  532. * 20 counts of TCNT0 -by itself- is a good pulse delay.
  533. * 10µs = 160 or 200 cycles.
  534. */
  535. #if EXTRA_CYCLES_XYZE > 20
  536. uint32_t pulse_start = TCNT0;
  537. #endif
  538. #if HAS_X_STEP
  539. PULSE_START(X);
  540. #endif
  541. #if HAS_Y_STEP
  542. PULSE_START(Y);
  543. #endif
  544. #if HAS_Z_STEP
  545. PULSE_START(Z);
  546. #endif
  547. // For non-advance use linear interpolation for E also
  548. #if DISABLED(LIN_ADVANCE)
  549. #if ENABLED(MIXING_EXTRUDER)
  550. // Keep updating the single E axis
  551. counter_E += current_block->steps[E_AXIS];
  552. // Tick the counters used for this mix
  553. MIXING_STEPPERS_LOOP(j) {
  554. // Step mixing steppers (proportionally)
  555. counter_m[j] += current_block->steps[E_AXIS];
  556. // Step when the counter goes over zero
  557. if (counter_m[j] > 0) En_STEP_WRITE(j, !INVERT_E_STEP_PIN);
  558. }
  559. #else // !MIXING_EXTRUDER
  560. PULSE_START(E);
  561. #endif
  562. #endif // !LIN_ADVANCE
  563. // For minimum pulse time wait before stopping pulses
  564. #if EXTRA_CYCLES_XYZE > 20
  565. while (EXTRA_CYCLES_XYZE > (uint32_t)(TCNT0 - pulse_start) * (INT0_PRESCALER)) { /* nada */ }
  566. pulse_start = TCNT0;
  567. #elif EXTRA_CYCLES_XYZE > 0
  568. DELAY_NOPS(EXTRA_CYCLES_XYZE);
  569. #endif
  570. #if HAS_X_STEP
  571. PULSE_STOP(X);
  572. #endif
  573. #if HAS_Y_STEP
  574. PULSE_STOP(Y);
  575. #endif
  576. #if HAS_Z_STEP
  577. PULSE_STOP(Z);
  578. #endif
  579. #if DISABLED(LIN_ADVANCE)
  580. #if ENABLED(MIXING_EXTRUDER)
  581. // Always step the single E axis
  582. if (counter_E > 0) {
  583. counter_E -= current_block->step_event_count;
  584. count_position[E_AXIS] += count_direction[E_AXIS];
  585. }
  586. MIXING_STEPPERS_LOOP(j) {
  587. if (counter_m[j] > 0) {
  588. counter_m[j] -= current_block->mix_event_count[j];
  589. En_STEP_WRITE(j, INVERT_E_STEP_PIN);
  590. }
  591. }
  592. #else // !MIXING_EXTRUDER
  593. PULSE_STOP(E);
  594. #endif
  595. #endif // !LIN_ADVANCE
  596. if (++step_events_completed >= current_block->step_event_count) {
  597. all_steps_done = true;
  598. break;
  599. }
  600. // For minimum pulse time wait after stopping pulses also
  601. #if EXTRA_CYCLES_XYZE > 20
  602. if (i) while (EXTRA_CYCLES_XYZE > (uint32_t)(TCNT0 - pulse_start) * (INT0_PRESCALER)) { /* nada */ }
  603. #elif EXTRA_CYCLES_XYZE > 0
  604. if (i) DELAY_NOPS(EXTRA_CYCLES_XYZE);
  605. #endif
  606. } // steps_loop
  607. #if ENABLED(LIN_ADVANCE)
  608. if (current_block->use_advance_lead) {
  609. const int delta_adv_steps = current_estep_rate[TOOL_E_INDEX] - current_adv_steps[TOOL_E_INDEX];
  610. current_adv_steps[TOOL_E_INDEX] += delta_adv_steps;
  611. #if ENABLED(MIXING_EXTRUDER)
  612. // Mixing extruders apply advance lead proportionally
  613. MIXING_STEPPERS_LOOP(j)
  614. e_steps[j] += delta_adv_steps * current_block->step_event_count / current_block->mix_event_count[j];
  615. #else
  616. // For most extruders, advance the single E stepper
  617. e_steps[TOOL_E_INDEX] += delta_adv_steps;
  618. #endif
  619. }
  620. // If we have esteps to execute, fire the next advance_isr "now"
  621. if (e_steps[TOOL_E_INDEX]) nextAdvanceISR = 0;
  622. #endif // LIN_ADVANCE
  623. // Calculate new timer value
  624. if (step_events_completed <= (uint32_t)current_block->accelerate_until) {
  625. if (first_step) {
  626. acc_step_rate = current_block->initial_rate;
  627. acceleration_time = 0;
  628. }
  629. else {
  630. MultiU24X32toH16(acc_step_rate, acceleration_time, current_block->acceleration_rate);
  631. acc_step_rate += current_block->initial_rate;
  632. }
  633. // upper limit
  634. NOMORE(acc_step_rate, current_block->nominal_rate);
  635. // step_rate to timer interval
  636. const uint16_t interval = calc_timer_interval(acc_step_rate);
  637. SPLIT(interval); // split step into multiple ISRs if larger than ENDSTOP_NOMINAL_OCR_VAL
  638. _NEXT_ISR(ocr_val);
  639. acceleration_time += interval;
  640. #if ENABLED(LIN_ADVANCE)
  641. if (current_block->use_advance_lead) {
  642. #if ENABLED(MIXING_EXTRUDER)
  643. MIXING_STEPPERS_LOOP(j)
  644. current_estep_rate[j] = ((uint32_t)acc_step_rate * current_block->abs_adv_steps_multiplier8 * current_block->step_event_count / current_block->mix_event_count[j]) >> 17;
  645. #else
  646. current_estep_rate[TOOL_E_INDEX] = ((uint32_t)acc_step_rate * current_block->abs_adv_steps_multiplier8) >> 17;
  647. #endif
  648. }
  649. eISR_Rate = adv_rate(e_steps[TOOL_E_INDEX], interval, step_loops);
  650. #endif // LIN_ADVANCE
  651. }
  652. else if (step_events_completed > (uint32_t)current_block->decelerate_after) {
  653. uint16_t step_rate;
  654. MultiU24X32toH16(step_rate, deceleration_time, current_block->acceleration_rate);
  655. if (step_rate < acc_step_rate) { // Still decelerating?
  656. step_rate = acc_step_rate - step_rate;
  657. NOLESS(step_rate, current_block->final_rate);
  658. }
  659. else
  660. step_rate = current_block->final_rate;
  661. // step_rate to timer interval
  662. const uint16_t interval = calc_timer_interval(step_rate);
  663. SPLIT(interval); // split step into multiple ISRs if larger than ENDSTOP_NOMINAL_OCR_VAL
  664. _NEXT_ISR(ocr_val);
  665. deceleration_time += interval;
  666. #if ENABLED(LIN_ADVANCE)
  667. if (current_block->use_advance_lead) {
  668. #if ENABLED(MIXING_EXTRUDER)
  669. MIXING_STEPPERS_LOOP(j)
  670. current_estep_rate[j] = ((uint32_t)step_rate * current_block->abs_adv_steps_multiplier8 * current_block->step_event_count / current_block->mix_event_count[j]) >> 17;
  671. #else
  672. current_estep_rate[TOOL_E_INDEX] = ((uint32_t)step_rate * current_block->abs_adv_steps_multiplier8) >> 17;
  673. #endif
  674. }
  675. eISR_Rate = adv_rate(e_steps[TOOL_E_INDEX], interval, step_loops);
  676. #endif // LIN_ADVANCE
  677. }
  678. else {
  679. #if ENABLED(LIN_ADVANCE)
  680. if (current_block->use_advance_lead)
  681. current_estep_rate[TOOL_E_INDEX] = final_estep_rate;
  682. eISR_Rate = adv_rate(e_steps[TOOL_E_INDEX], OCR1A_nominal, step_loops_nominal);
  683. #endif
  684. SPLIT(OCR1A_nominal); // split step into multiple ISRs if larger than ENDSTOP_NOMINAL_OCR_VAL
  685. _NEXT_ISR(ocr_val);
  686. // ensure we're running at the correct step rate, even if we just came off an acceleration
  687. step_loops = step_loops_nominal;
  688. }
  689. #if DISABLED(LIN_ADVANCE)
  690. NOLESS(OCR1A, TCNT1 + 16);
  691. #endif
  692. // If current block is finished, reset pointer
  693. if (all_steps_done) {
  694. current_block = NULL;
  695. planner.discard_current_block();
  696. }
  697. #if DISABLED(LIN_ADVANCE)
  698. _ENABLE_ISRs(); // re-enable ISRs
  699. #endif
  700. }
  701. #if ENABLED(LIN_ADVANCE)
  702. #define CYCLES_EATEN_E (E_STEPPERS * 5)
  703. #define EXTRA_CYCLES_E (STEP_PULSE_CYCLES - (CYCLES_EATEN_E))
  704. // Timer interrupt for E. e_steps is set in the main routine;
  705. void Stepper::advance_isr() {
  706. nextAdvanceISR = eISR_Rate;
  707. #if ENABLED(MK2_MULTIPLEXER)
  708. // Even-numbered steppers are reversed
  709. #define SET_E_STEP_DIR(INDEX) \
  710. if (e_steps[INDEX]) E## INDEX ##_DIR_WRITE(e_steps[INDEX] < 0 ? !INVERT_E## INDEX ##_DIR ^ TEST(INDEX, 0) : INVERT_E## INDEX ##_DIR ^ TEST(INDEX, 0))
  711. #else
  712. #define SET_E_STEP_DIR(INDEX) \
  713. if (e_steps[INDEX]) E## INDEX ##_DIR_WRITE(e_steps[INDEX] < 0 ? INVERT_E## INDEX ##_DIR : !INVERT_E## INDEX ##_DIR)
  714. #endif
  715. #define START_E_PULSE(INDEX) \
  716. if (e_steps[INDEX]) E## INDEX ##_STEP_WRITE(!INVERT_E_STEP_PIN)
  717. #define STOP_E_PULSE(INDEX) \
  718. if (e_steps[INDEX]) { \
  719. e_steps[INDEX] < 0 ? ++e_steps[INDEX] : --e_steps[INDEX]; \
  720. E## INDEX ##_STEP_WRITE(INVERT_E_STEP_PIN); \
  721. }
  722. SET_E_STEP_DIR(0);
  723. #if E_STEPPERS > 1
  724. SET_E_STEP_DIR(1);
  725. #if E_STEPPERS > 2
  726. SET_E_STEP_DIR(2);
  727. #if E_STEPPERS > 3
  728. SET_E_STEP_DIR(3);
  729. #if E_STEPPERS > 4
  730. SET_E_STEP_DIR(4);
  731. #endif
  732. #endif
  733. #endif
  734. #endif
  735. // Step all E steppers that have steps
  736. for (uint8_t i = step_loops; i--;) {
  737. #if EXTRA_CYCLES_E > 20
  738. uint32_t pulse_start = TCNT0;
  739. #endif
  740. START_E_PULSE(0);
  741. #if E_STEPPERS > 1
  742. START_E_PULSE(1);
  743. #if E_STEPPERS > 2
  744. START_E_PULSE(2);
  745. #if E_STEPPERS > 3
  746. START_E_PULSE(3);
  747. #if E_STEPPERS > 4
  748. START_E_PULSE(4);
  749. #endif
  750. #endif
  751. #endif
  752. #endif
  753. // For minimum pulse time wait before stopping pulses
  754. #if EXTRA_CYCLES_E > 20
  755. while (EXTRA_CYCLES_E > (uint32_t)(TCNT0 - pulse_start) * (INT0_PRESCALER)) { /* nada */ }
  756. pulse_start = TCNT0;
  757. #elif EXTRA_CYCLES_E > 0
  758. DELAY_NOPS(EXTRA_CYCLES_E);
  759. #endif
  760. STOP_E_PULSE(0);
  761. #if E_STEPPERS > 1
  762. STOP_E_PULSE(1);
  763. #if E_STEPPERS > 2
  764. STOP_E_PULSE(2);
  765. #if E_STEPPERS > 3
  766. STOP_E_PULSE(3);
  767. #if E_STEPPERS > 4
  768. STOP_E_PULSE(4);
  769. #endif
  770. #endif
  771. #endif
  772. #endif
  773. // For minimum pulse time wait before looping
  774. #if EXTRA_CYCLES_E > 20
  775. if (i) while (EXTRA_CYCLES_E > (uint32_t)(TCNT0 - pulse_start) * (INT0_PRESCALER)) { /* nada */ }
  776. #elif EXTRA_CYCLES_E > 0
  777. if (i) DELAY_NOPS(EXTRA_CYCLES_E);
  778. #endif
  779. } // steps_loop
  780. }
  781. void Stepper::advance_isr_scheduler() {
  782. // Disable Timer0 ISRs and enable global ISR again to capture UART events (incoming chars)
  783. CBI(TIMSK0, OCIE0B); // Temperature ISR
  784. DISABLE_STEPPER_DRIVER_INTERRUPT();
  785. sei();
  786. // Run main stepping ISR if flagged
  787. if (!nextMainISR) isr();
  788. // Run Advance stepping ISR if flagged
  789. if (!nextAdvanceISR) advance_isr();
  790. // Is the next advance ISR scheduled before the next main ISR?
  791. if (nextAdvanceISR <= nextMainISR) {
  792. // Set up the next interrupt
  793. OCR1A = nextAdvanceISR;
  794. // New interval for the next main ISR
  795. if (nextMainISR) nextMainISR -= nextAdvanceISR;
  796. // Will call Stepper::advance_isr on the next interrupt
  797. nextAdvanceISR = 0;
  798. }
  799. else {
  800. // The next main ISR comes first
  801. OCR1A = nextMainISR;
  802. // New interval for the next advance ISR, if any
  803. if (nextAdvanceISR && nextAdvanceISR != ADV_NEVER)
  804. nextAdvanceISR -= nextMainISR;
  805. // Will call Stepper::isr on the next interrupt
  806. nextMainISR = 0;
  807. }
  808. // Don't run the ISR faster than possible
  809. NOLESS(OCR1A, TCNT1 + 16);
  810. // Restore original ISR settings
  811. _ENABLE_ISRs();
  812. }
  813. #endif // LIN_ADVANCE
  814. void Stepper::init() {
  815. // Init Digipot Motor Current
  816. #if HAS_DIGIPOTSS || HAS_MOTOR_CURRENT_PWM
  817. digipot_init();
  818. #endif
  819. // Init Microstepping Pins
  820. #if HAS_MICROSTEPS
  821. microstep_init();
  822. #endif
  823. // Init TMC Steppers
  824. #if ENABLED(HAVE_TMCDRIVER)
  825. tmc_init();
  826. #endif
  827. // Init TMC2130 Steppers
  828. #if ENABLED(HAVE_TMC2130)
  829. tmc2130_init();
  830. #endif
  831. // Init L6470 Steppers
  832. #if ENABLED(HAVE_L6470DRIVER)
  833. L6470_init();
  834. #endif
  835. // Init Dir Pins
  836. #if HAS_X_DIR
  837. X_DIR_INIT;
  838. #endif
  839. #if HAS_X2_DIR
  840. X2_DIR_INIT;
  841. #endif
  842. #if HAS_Y_DIR
  843. Y_DIR_INIT;
  844. #if ENABLED(Y_DUAL_STEPPER_DRIVERS) && HAS_Y2_DIR
  845. Y2_DIR_INIT;
  846. #endif
  847. #endif
  848. #if HAS_Z_DIR
  849. Z_DIR_INIT;
  850. #if ENABLED(Z_DUAL_STEPPER_DRIVERS) && HAS_Z2_DIR
  851. Z2_DIR_INIT;
  852. #endif
  853. #endif
  854. #if HAS_E0_DIR
  855. E0_DIR_INIT;
  856. #endif
  857. #if HAS_E1_DIR
  858. E1_DIR_INIT;
  859. #endif
  860. #if HAS_E2_DIR
  861. E2_DIR_INIT;
  862. #endif
  863. #if HAS_E3_DIR
  864. E3_DIR_INIT;
  865. #endif
  866. #if HAS_E4_DIR
  867. E4_DIR_INIT;
  868. #endif
  869. // Init Enable Pins - steppers default to disabled.
  870. #if HAS_X_ENABLE
  871. X_ENABLE_INIT;
  872. if (!X_ENABLE_ON) X_ENABLE_WRITE(HIGH);
  873. #if ENABLED(DUAL_X_CARRIAGE) && HAS_X2_ENABLE
  874. X2_ENABLE_INIT;
  875. if (!X_ENABLE_ON) X2_ENABLE_WRITE(HIGH);
  876. #endif
  877. #endif
  878. #if HAS_Y_ENABLE
  879. Y_ENABLE_INIT;
  880. if (!Y_ENABLE_ON) Y_ENABLE_WRITE(HIGH);
  881. #if ENABLED(Y_DUAL_STEPPER_DRIVERS) && HAS_Y2_ENABLE
  882. Y2_ENABLE_INIT;
  883. if (!Y_ENABLE_ON) Y2_ENABLE_WRITE(HIGH);
  884. #endif
  885. #endif
  886. #if HAS_Z_ENABLE
  887. Z_ENABLE_INIT;
  888. if (!Z_ENABLE_ON) Z_ENABLE_WRITE(HIGH);
  889. #if ENABLED(Z_DUAL_STEPPER_DRIVERS) && HAS_Z2_ENABLE
  890. Z2_ENABLE_INIT;
  891. if (!Z_ENABLE_ON) Z2_ENABLE_WRITE(HIGH);
  892. #endif
  893. #endif
  894. #if HAS_E0_ENABLE
  895. E0_ENABLE_INIT;
  896. if (!E_ENABLE_ON) E0_ENABLE_WRITE(HIGH);
  897. #endif
  898. #if HAS_E1_ENABLE
  899. E1_ENABLE_INIT;
  900. if (!E_ENABLE_ON) E1_ENABLE_WRITE(HIGH);
  901. #endif
  902. #if HAS_E2_ENABLE
  903. E2_ENABLE_INIT;
  904. if (!E_ENABLE_ON) E2_ENABLE_WRITE(HIGH);
  905. #endif
  906. #if HAS_E3_ENABLE
  907. E3_ENABLE_INIT;
  908. if (!E_ENABLE_ON) E3_ENABLE_WRITE(HIGH);
  909. #endif
  910. #if HAS_E4_ENABLE
  911. E4_ENABLE_INIT;
  912. if (!E_ENABLE_ON) E4_ENABLE_WRITE(HIGH);
  913. #endif
  914. // Init endstops and pullups
  915. endstops.init();
  916. #define _STEP_INIT(AXIS) AXIS ##_STEP_INIT
  917. #define _WRITE_STEP(AXIS, HIGHLOW) AXIS ##_STEP_WRITE(HIGHLOW)
  918. #define _DISABLE(AXIS) disable_## AXIS()
  919. #define AXIS_INIT(AXIS, PIN) \
  920. _STEP_INIT(AXIS); \
  921. _WRITE_STEP(AXIS, _INVERT_STEP_PIN(PIN)); \
  922. _DISABLE(AXIS)
  923. #define E_AXIS_INIT(NUM) AXIS_INIT(E## NUM, E)
  924. // Init Step Pins
  925. #if HAS_X_STEP
  926. #if ENABLED(X_DUAL_STEPPER_DRIVERS) || ENABLED(DUAL_X_CARRIAGE)
  927. X2_STEP_INIT;
  928. X2_STEP_WRITE(INVERT_X_STEP_PIN);
  929. #endif
  930. AXIS_INIT(X, X);
  931. #endif
  932. #if HAS_Y_STEP
  933. #if ENABLED(Y_DUAL_STEPPER_DRIVERS)
  934. Y2_STEP_INIT;
  935. Y2_STEP_WRITE(INVERT_Y_STEP_PIN);
  936. #endif
  937. AXIS_INIT(Y, Y);
  938. #endif
  939. #if HAS_Z_STEP
  940. #if ENABLED(Z_DUAL_STEPPER_DRIVERS)
  941. Z2_STEP_INIT;
  942. Z2_STEP_WRITE(INVERT_Z_STEP_PIN);
  943. #endif
  944. AXIS_INIT(Z, Z);
  945. #endif
  946. #if HAS_E0_STEP
  947. E_AXIS_INIT(0);
  948. #endif
  949. #if HAS_E1_STEP
  950. E_AXIS_INIT(1);
  951. #endif
  952. #if HAS_E2_STEP
  953. E_AXIS_INIT(2);
  954. #endif
  955. #if HAS_E3_STEP
  956. E_AXIS_INIT(3);
  957. #endif
  958. #if HAS_E4_STEP
  959. E_AXIS_INIT(4);
  960. #endif
  961. // waveform generation = 0100 = CTC
  962. SET_WGM(1, CTC_OCRnA);
  963. // output mode = 00 (disconnected)
  964. SET_COMA(1, NORMAL);
  965. // Set the timer pre-scaler
  966. // Generally we use a divider of 8, resulting in a 2MHz timer
  967. // frequency on a 16MHz MCU. If you are going to change this, be
  968. // sure to regenerate speed_lookuptable.h with
  969. // create_speed_lookuptable.py
  970. SET_CS(1, PRESCALER_8); // CS 2 = 1/8 prescaler
  971. // Init Stepper ISR to 122 Hz for quick starting
  972. OCR1A = 0x4000;
  973. TCNT1 = 0;
  974. ENABLE_STEPPER_DRIVER_INTERRUPT();
  975. #if ENABLED(LIN_ADVANCE)
  976. for (uint8_t i = 0; i < COUNT(e_steps); i++) e_steps[i] = 0;
  977. ZERO(current_adv_steps);
  978. #endif
  979. endstops.enable(true); // Start with endstops active. After homing they can be disabled
  980. sei();
  981. set_directions(); // Init directions to last_direction_bits = 0
  982. }
  983. /**
  984. * Block until all buffered steps are executed / cleaned
  985. */
  986. void Stepper::synchronize() { while (planner.blocks_queued() || cleaning_buffer_counter) idle(); }
  987. /**
  988. * Set the stepper positions directly in steps
  989. *
  990. * The input is based on the typical per-axis XYZ steps.
  991. * For CORE machines XYZ needs to be translated to ABC.
  992. *
  993. * This allows get_axis_position_mm to correctly
  994. * derive the current XYZ position later on.
  995. */
  996. void Stepper::set_position(const long &a, const long &b, const long &c, const long &e) {
  997. synchronize(); // Bad to set stepper counts in the middle of a move
  998. CRITICAL_SECTION_START;
  999. #if CORE_IS_XY
  1000. // corexy positioning
  1001. // these equations follow the form of the dA and dB equations on http://www.corexy.com/theory.html
  1002. count_position[A_AXIS] = a + b;
  1003. count_position[B_AXIS] = CORESIGN(a - b);
  1004. count_position[Z_AXIS] = c;
  1005. #elif CORE_IS_XZ
  1006. // corexz planning
  1007. count_position[A_AXIS] = a + c;
  1008. count_position[Y_AXIS] = b;
  1009. count_position[C_AXIS] = CORESIGN(a - c);
  1010. #elif CORE_IS_YZ
  1011. // coreyz planning
  1012. count_position[X_AXIS] = a;
  1013. count_position[B_AXIS] = b + c;
  1014. count_position[C_AXIS] = CORESIGN(b - c);
  1015. #else
  1016. // default non-h-bot planning
  1017. count_position[X_AXIS] = a;
  1018. count_position[Y_AXIS] = b;
  1019. count_position[Z_AXIS] = c;
  1020. #endif
  1021. count_position[E_AXIS] = e;
  1022. CRITICAL_SECTION_END;
  1023. }
  1024. void Stepper::set_position(const AxisEnum &axis, const long &v) {
  1025. CRITICAL_SECTION_START;
  1026. count_position[axis] = v;
  1027. CRITICAL_SECTION_END;
  1028. }
  1029. void Stepper::set_e_position(const long &e) {
  1030. CRITICAL_SECTION_START;
  1031. count_position[E_AXIS] = e;
  1032. CRITICAL_SECTION_END;
  1033. }
  1034. /**
  1035. * Get a stepper's position in steps.
  1036. */
  1037. long Stepper::position(AxisEnum axis) {
  1038. CRITICAL_SECTION_START;
  1039. const long count_pos = count_position[axis];
  1040. CRITICAL_SECTION_END;
  1041. return count_pos;
  1042. }
  1043. /**
  1044. * Get an axis position according to stepper position(s)
  1045. * For CORE machines apply translation from ABC to XYZ.
  1046. */
  1047. float Stepper::get_axis_position_mm(AxisEnum axis) {
  1048. float axis_steps;
  1049. #if IS_CORE
  1050. // Requesting one of the "core" axes?
  1051. if (axis == CORE_AXIS_1 || axis == CORE_AXIS_2) {
  1052. CRITICAL_SECTION_START;
  1053. // ((a1+a2)+(a1-a2))/2 -> (a1+a2+a1-a2)/2 -> (a1+a1)/2 -> a1
  1054. // ((a1+a2)-(a1-a2))/2 -> (a1+a2-a1+a2)/2 -> (a2+a2)/2 -> a2
  1055. axis_steps = 0.5f * (
  1056. axis == CORE_AXIS_2 ? CORESIGN(count_position[CORE_AXIS_1] - count_position[CORE_AXIS_2])
  1057. : count_position[CORE_AXIS_1] + count_position[CORE_AXIS_2]
  1058. );
  1059. CRITICAL_SECTION_END;
  1060. }
  1061. else
  1062. axis_steps = position(axis);
  1063. #else
  1064. axis_steps = position(axis);
  1065. #endif
  1066. return axis_steps * planner.steps_to_mm[axis];
  1067. }
  1068. void Stepper::finish_and_disable() {
  1069. synchronize();
  1070. disable_all_steppers();
  1071. }
  1072. void Stepper::quick_stop() {
  1073. cleaning_buffer_counter = 5000;
  1074. DISABLE_STEPPER_DRIVER_INTERRUPT();
  1075. while (planner.blocks_queued()) planner.discard_current_block();
  1076. current_block = NULL;
  1077. ENABLE_STEPPER_DRIVER_INTERRUPT();
  1078. #if ENABLED(ULTRA_LCD)
  1079. planner.clear_block_buffer_runtime();
  1080. #endif
  1081. }
  1082. void Stepper::endstop_triggered(AxisEnum axis) {
  1083. #if IS_CORE
  1084. endstops_trigsteps[axis] = 0.5f * (
  1085. axis == CORE_AXIS_2 ? CORESIGN(count_position[CORE_AXIS_1] - count_position[CORE_AXIS_2])
  1086. : count_position[CORE_AXIS_1] + count_position[CORE_AXIS_2]
  1087. );
  1088. #else // !COREXY && !COREXZ && !COREYZ
  1089. endstops_trigsteps[axis] = count_position[axis];
  1090. #endif // !COREXY && !COREXZ && !COREYZ
  1091. kill_current_block();
  1092. cleaning_buffer_counter = -1; // Discard the rest of the move
  1093. }
  1094. void Stepper::report_positions() {
  1095. CRITICAL_SECTION_START;
  1096. const long xpos = count_position[X_AXIS],
  1097. ypos = count_position[Y_AXIS],
  1098. zpos = count_position[Z_AXIS];
  1099. CRITICAL_SECTION_END;
  1100. #if CORE_IS_XY || CORE_IS_XZ || IS_SCARA
  1101. SERIAL_PROTOCOLPGM(MSG_COUNT_A);
  1102. #else
  1103. SERIAL_PROTOCOLPGM(MSG_COUNT_X);
  1104. #endif
  1105. SERIAL_PROTOCOL(xpos);
  1106. #if CORE_IS_XY || CORE_IS_YZ || IS_SCARA
  1107. SERIAL_PROTOCOLPGM(" B:");
  1108. #else
  1109. SERIAL_PROTOCOLPGM(" Y:");
  1110. #endif
  1111. SERIAL_PROTOCOL(ypos);
  1112. #if CORE_IS_XZ || CORE_IS_YZ
  1113. SERIAL_PROTOCOLPGM(" C:");
  1114. #else
  1115. SERIAL_PROTOCOLPGM(" Z:");
  1116. #endif
  1117. SERIAL_PROTOCOL(zpos);
  1118. SERIAL_EOL();
  1119. }
  1120. #if ENABLED(BABYSTEPPING)
  1121. #if ENABLED(DELTA)
  1122. #define CYCLES_EATEN_BABYSTEP (2 * 15)
  1123. #else
  1124. #define CYCLES_EATEN_BABYSTEP 0
  1125. #endif
  1126. #define EXTRA_CYCLES_BABYSTEP (STEP_PULSE_CYCLES - (CYCLES_EATEN_BABYSTEP))
  1127. #define _ENABLE(AXIS) enable_## AXIS()
  1128. #define _READ_DIR(AXIS) AXIS ##_DIR_READ
  1129. #define _INVERT_DIR(AXIS) INVERT_## AXIS ##_DIR
  1130. #define _APPLY_DIR(AXIS, INVERT) AXIS ##_APPLY_DIR(INVERT, true)
  1131. #if EXTRA_CYCLES_BABYSTEP > 20
  1132. #define _SAVE_START const uint32_t pulse_start = TCNT0
  1133. #define _PULSE_WAIT while (EXTRA_CYCLES_BABYSTEP > (uint32_t)(TCNT0 - pulse_start) * (INT0_PRESCALER)) { /* nada */ }
  1134. #else
  1135. #define _SAVE_START NOOP
  1136. #if EXTRA_CYCLES_BABYSTEP > 0
  1137. #define _PULSE_WAIT DELAY_NOPS(EXTRA_CYCLES_BABYSTEP)
  1138. #elif STEP_PULSE_CYCLES > 0
  1139. #define _PULSE_WAIT NOOP
  1140. #elif ENABLED(DELTA)
  1141. #define _PULSE_WAIT delayMicroseconds(2);
  1142. #else
  1143. #define _PULSE_WAIT delayMicroseconds(4);
  1144. #endif
  1145. #endif
  1146. #define BABYSTEP_AXIS(AXIS, INVERT) { \
  1147. const uint8_t old_dir = _READ_DIR(AXIS); \
  1148. _ENABLE(AXIS); \
  1149. _SAVE_START; \
  1150. _APPLY_DIR(AXIS, _INVERT_DIR(AXIS)^direction^INVERT); \
  1151. _APPLY_STEP(AXIS)(!_INVERT_STEP_PIN(AXIS), true); \
  1152. _PULSE_WAIT; \
  1153. _APPLY_STEP(AXIS)(_INVERT_STEP_PIN(AXIS), true); \
  1154. _APPLY_DIR(AXIS, old_dir); \
  1155. }
  1156. // MUST ONLY BE CALLED BY AN ISR,
  1157. // No other ISR should ever interrupt this!
  1158. void Stepper::babystep(const AxisEnum axis, const bool direction) {
  1159. cli();
  1160. switch (axis) {
  1161. #if ENABLED(BABYSTEP_XY)
  1162. case X_AXIS:
  1163. BABYSTEP_AXIS(X, false);
  1164. break;
  1165. case Y_AXIS:
  1166. BABYSTEP_AXIS(Y, false);
  1167. break;
  1168. #endif
  1169. case Z_AXIS: {
  1170. #if DISABLED(DELTA)
  1171. BABYSTEP_AXIS(Z, BABYSTEP_INVERT_Z);
  1172. #else // DELTA
  1173. const bool z_direction = direction ^ BABYSTEP_INVERT_Z;
  1174. enable_X();
  1175. enable_Y();
  1176. enable_Z();
  1177. const uint8_t old_x_dir_pin = X_DIR_READ,
  1178. old_y_dir_pin = Y_DIR_READ,
  1179. old_z_dir_pin = Z_DIR_READ;
  1180. X_DIR_WRITE(INVERT_X_DIR ^ z_direction);
  1181. Y_DIR_WRITE(INVERT_Y_DIR ^ z_direction);
  1182. Z_DIR_WRITE(INVERT_Z_DIR ^ z_direction);
  1183. _SAVE_START;
  1184. X_STEP_WRITE(!INVERT_X_STEP_PIN);
  1185. Y_STEP_WRITE(!INVERT_Y_STEP_PIN);
  1186. Z_STEP_WRITE(!INVERT_Z_STEP_PIN);
  1187. _PULSE_WAIT;
  1188. X_STEP_WRITE(INVERT_X_STEP_PIN);
  1189. Y_STEP_WRITE(INVERT_Y_STEP_PIN);
  1190. Z_STEP_WRITE(INVERT_Z_STEP_PIN);
  1191. // Restore direction bits
  1192. X_DIR_WRITE(old_x_dir_pin);
  1193. Y_DIR_WRITE(old_y_dir_pin);
  1194. Z_DIR_WRITE(old_z_dir_pin);
  1195. #endif
  1196. } break;
  1197. default: break;
  1198. }
  1199. sei();
  1200. }
  1201. #endif // BABYSTEPPING
  1202. /**
  1203. * Software-controlled Stepper Motor Current
  1204. */
  1205. #if HAS_DIGIPOTSS
  1206. // From Arduino DigitalPotControl example
  1207. void Stepper::digitalPotWrite(const int16_t address, const int16_t value) {
  1208. WRITE(DIGIPOTSS_PIN, LOW); // Take the SS pin low to select the chip
  1209. SPI.transfer(address); // Send the address and value via SPI
  1210. SPI.transfer(value);
  1211. WRITE(DIGIPOTSS_PIN, HIGH); // Take the SS pin high to de-select the chip
  1212. //delay(10);
  1213. }
  1214. #endif // HAS_DIGIPOTSS
  1215. #if HAS_MOTOR_CURRENT_PWM
  1216. void Stepper::refresh_motor_power() {
  1217. for (uint8_t i = 0; i < COUNT(motor_current_setting); ++i) {
  1218. switch (i) {
  1219. #if PIN_EXISTS(MOTOR_CURRENT_PWM_XY)
  1220. case 0:
  1221. #endif
  1222. #if PIN_EXISTS(MOTOR_CURRENT_PWM_Z)
  1223. case 1:
  1224. #endif
  1225. #if PIN_EXISTS(MOTOR_CURRENT_PWM_E)
  1226. case 2:
  1227. #endif
  1228. digipot_current(i, motor_current_setting[i]);
  1229. default: break;
  1230. }
  1231. }
  1232. }
  1233. #endif // HAS_MOTOR_CURRENT_PWM
  1234. #if HAS_DIGIPOTSS || HAS_MOTOR_CURRENT_PWM
  1235. void Stepper::digipot_current(const uint8_t driver, const int current) {
  1236. #if HAS_DIGIPOTSS
  1237. const uint8_t digipot_ch[] = DIGIPOT_CHANNELS;
  1238. digitalPotWrite(digipot_ch[driver], current);
  1239. #elif HAS_MOTOR_CURRENT_PWM
  1240. if (WITHIN(driver, 0, 2))
  1241. motor_current_setting[driver] = current; // update motor_current_setting
  1242. #define _WRITE_CURRENT_PWM(P) analogWrite(MOTOR_CURRENT_PWM_## P ##_PIN, 255L * current / (MOTOR_CURRENT_PWM_RANGE))
  1243. switch (driver) {
  1244. #if PIN_EXISTS(MOTOR_CURRENT_PWM_XY)
  1245. case 0: _WRITE_CURRENT_PWM(XY); break;
  1246. #endif
  1247. #if PIN_EXISTS(MOTOR_CURRENT_PWM_Z)
  1248. case 1: _WRITE_CURRENT_PWM(Z); break;
  1249. #endif
  1250. #if PIN_EXISTS(MOTOR_CURRENT_PWM_E)
  1251. case 2: _WRITE_CURRENT_PWM(E); break;
  1252. #endif
  1253. }
  1254. #endif
  1255. }
  1256. void Stepper::digipot_init() {
  1257. #if HAS_DIGIPOTSS
  1258. static const uint8_t digipot_motor_current[] = DIGIPOT_MOTOR_CURRENT;
  1259. SPI.begin();
  1260. SET_OUTPUT(DIGIPOTSS_PIN);
  1261. for (uint8_t i = 0; i < COUNT(digipot_motor_current); i++) {
  1262. //digitalPotWrite(digipot_ch[i], digipot_motor_current[i]);
  1263. digipot_current(i, digipot_motor_current[i]);
  1264. }
  1265. #elif HAS_MOTOR_CURRENT_PWM
  1266. #if PIN_EXISTS(MOTOR_CURRENT_PWM_XY)
  1267. SET_OUTPUT(MOTOR_CURRENT_PWM_XY_PIN);
  1268. #endif
  1269. #if PIN_EXISTS(MOTOR_CURRENT_PWM_Z)
  1270. SET_OUTPUT(MOTOR_CURRENT_PWM_Z_PIN);
  1271. #endif
  1272. #if PIN_EXISTS(MOTOR_CURRENT_PWM_E)
  1273. SET_OUTPUT(MOTOR_CURRENT_PWM_E_PIN);
  1274. #endif
  1275. refresh_motor_power();
  1276. // Set Timer5 to 31khz so the PWM of the motor power is as constant as possible. (removes a buzzing noise)
  1277. SET_CS5(PRESCALER_1);
  1278. #endif
  1279. }
  1280. #endif
  1281. #if HAS_MICROSTEPS
  1282. /**
  1283. * Software-controlled Microstepping
  1284. */
  1285. void Stepper::microstep_init() {
  1286. SET_OUTPUT(X_MS1_PIN);
  1287. SET_OUTPUT(X_MS2_PIN);
  1288. #if HAS_Y_MICROSTEPS
  1289. SET_OUTPUT(Y_MS1_PIN);
  1290. SET_OUTPUT(Y_MS2_PIN);
  1291. #endif
  1292. #if HAS_Z_MICROSTEPS
  1293. SET_OUTPUT(Z_MS1_PIN);
  1294. SET_OUTPUT(Z_MS2_PIN);
  1295. #endif
  1296. #if HAS_E0_MICROSTEPS
  1297. SET_OUTPUT(E0_MS1_PIN);
  1298. SET_OUTPUT(E0_MS2_PIN);
  1299. #endif
  1300. #if HAS_E1_MICROSTEPS
  1301. SET_OUTPUT(E1_MS1_PIN);
  1302. SET_OUTPUT(E1_MS2_PIN);
  1303. #endif
  1304. #if HAS_E2_MICROSTEPS
  1305. SET_OUTPUT(E2_MS1_PIN);
  1306. SET_OUTPUT(E2_MS2_PIN);
  1307. #endif
  1308. #if HAS_E3_MICROSTEPS
  1309. SET_OUTPUT(E3_MS1_PIN);
  1310. SET_OUTPUT(E3_MS2_PIN);
  1311. #endif
  1312. #if HAS_E4_MICROSTEPS
  1313. SET_OUTPUT(E4_MS1_PIN);
  1314. SET_OUTPUT(E4_MS2_PIN);
  1315. #endif
  1316. static const uint8_t microstep_modes[] = MICROSTEP_MODES;
  1317. for (uint16_t i = 0; i < COUNT(microstep_modes); i++)
  1318. microstep_mode(i, microstep_modes[i]);
  1319. }
  1320. void Stepper::microstep_ms(const uint8_t driver, const int8_t ms1, const int8_t ms2) {
  1321. if (ms1 >= 0) switch (driver) {
  1322. case 0: WRITE(X_MS1_PIN, ms1); break;
  1323. #if HAS_Y_MICROSTEPS
  1324. case 1: WRITE(Y_MS1_PIN, ms1); break;
  1325. #endif
  1326. #if HAS_Z_MICROSTEPS
  1327. case 2: WRITE(Z_MS1_PIN, ms1); break;
  1328. #endif
  1329. #if HAS_E0_MICROSTEPS
  1330. case 3: WRITE(E0_MS1_PIN, ms1); break;
  1331. #endif
  1332. #if HAS_E1_MICROSTEPS
  1333. case 4: WRITE(E1_MS1_PIN, ms1); break;
  1334. #endif
  1335. #if HAS_E2_MICROSTEPS
  1336. case 5: WRITE(E2_MS1_PIN, ms1); break;
  1337. #endif
  1338. #if HAS_E3_MICROSTEPS
  1339. case 6: WRITE(E3_MS1_PIN, ms1); break;
  1340. #endif
  1341. #if HAS_E4_MICROSTEPS
  1342. case 7: WRITE(E4_MS1_PIN, ms1); break;
  1343. #endif
  1344. }
  1345. if (ms2 >= 0) switch (driver) {
  1346. case 0: WRITE(X_MS2_PIN, ms2); break;
  1347. #if HAS_Y_MICROSTEPS
  1348. case 1: WRITE(Y_MS2_PIN, ms2); break;
  1349. #endif
  1350. #if HAS_Z_MICROSTEPS
  1351. case 2: WRITE(Z_MS2_PIN, ms2); break;
  1352. #endif
  1353. #if HAS_E0_MICROSTEPS
  1354. case 3: WRITE(E0_MS2_PIN, ms2); break;
  1355. #endif
  1356. #if HAS_E1_MICROSTEPS
  1357. case 4: WRITE(E1_MS2_PIN, ms2); break;
  1358. #endif
  1359. #if HAS_E2_MICROSTEPS
  1360. case 5: WRITE(E2_MS2_PIN, ms2); break;
  1361. #endif
  1362. #if HAS_E3_MICROSTEPS
  1363. case 6: WRITE(E3_MS2_PIN, ms2); break;
  1364. #endif
  1365. #if HAS_E4_MICROSTEPS
  1366. case 7: WRITE(E4_MS2_PIN, ms2); break;
  1367. #endif
  1368. }
  1369. }
  1370. void Stepper::microstep_mode(const uint8_t driver, const uint8_t stepping_mode) {
  1371. switch (stepping_mode) {
  1372. case 1: microstep_ms(driver, MICROSTEP1); break;
  1373. case 2: microstep_ms(driver, MICROSTEP2); break;
  1374. case 4: microstep_ms(driver, MICROSTEP4); break;
  1375. case 8: microstep_ms(driver, MICROSTEP8); break;
  1376. case 16: microstep_ms(driver, MICROSTEP16); break;
  1377. }
  1378. }
  1379. void Stepper::microstep_readings() {
  1380. SERIAL_PROTOCOLLNPGM("MS1,MS2 Pins");
  1381. SERIAL_PROTOCOLPGM("X: ");
  1382. SERIAL_PROTOCOL(READ(X_MS1_PIN));
  1383. SERIAL_PROTOCOLLN(READ(X_MS2_PIN));
  1384. #if HAS_Y_MICROSTEPS
  1385. SERIAL_PROTOCOLPGM("Y: ");
  1386. SERIAL_PROTOCOL(READ(Y_MS1_PIN));
  1387. SERIAL_PROTOCOLLN(READ(Y_MS2_PIN));
  1388. #endif
  1389. #if HAS_Z_MICROSTEPS
  1390. SERIAL_PROTOCOLPGM("Z: ");
  1391. SERIAL_PROTOCOL(READ(Z_MS1_PIN));
  1392. SERIAL_PROTOCOLLN(READ(Z_MS2_PIN));
  1393. #endif
  1394. #if HAS_E0_MICROSTEPS
  1395. SERIAL_PROTOCOLPGM("E0: ");
  1396. SERIAL_PROTOCOL(READ(E0_MS1_PIN));
  1397. SERIAL_PROTOCOLLN(READ(E0_MS2_PIN));
  1398. #endif
  1399. #if HAS_E1_MICROSTEPS
  1400. SERIAL_PROTOCOLPGM("E1: ");
  1401. SERIAL_PROTOCOL(READ(E1_MS1_PIN));
  1402. SERIAL_PROTOCOLLN(READ(E1_MS2_PIN));
  1403. #endif
  1404. #if HAS_E2_MICROSTEPS
  1405. SERIAL_PROTOCOLPGM("E2: ");
  1406. SERIAL_PROTOCOL(READ(E2_MS1_PIN));
  1407. SERIAL_PROTOCOLLN(READ(E2_MS2_PIN));
  1408. #endif
  1409. #if HAS_E3_MICROSTEPS
  1410. SERIAL_PROTOCOLPGM("E3: ");
  1411. SERIAL_PROTOCOL(READ(E3_MS1_PIN));
  1412. SERIAL_PROTOCOLLN(READ(E3_MS2_PIN));
  1413. #endif
  1414. #if HAS_E4_MICROSTEPS
  1415. SERIAL_PROTOCOLPGM("E4: ");
  1416. SERIAL_PROTOCOL(READ(E4_MS1_PIN));
  1417. SERIAL_PROTOCOLLN(READ(E4_MS2_PIN));
  1418. #endif
  1419. }
  1420. #endif // HAS_MICROSTEPS