My Marlin configs for Fabrikator Mini and CTC i3 Pro B
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

probe.cpp 29KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910
  1. /**
  2. * Marlin 3D Printer Firmware
  3. * Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
  4. *
  5. * Based on Sprinter and grbl.
  6. * Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
  7. *
  8. * This program is free software: you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation, either version 3 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program. If not, see <https://www.gnu.org/licenses/>.
  20. *
  21. */
  22. /**
  23. * module/probe.cpp
  24. */
  25. #include "../inc/MarlinConfig.h"
  26. #if HAS_BED_PROBE
  27. #include "probe.h"
  28. #include "../libs/buzzer.h"
  29. #include "motion.h"
  30. #include "temperature.h"
  31. #include "endstops.h"
  32. #include "../gcode/gcode.h"
  33. #include "../lcd/marlinui.h"
  34. #include "../MarlinCore.h" // for stop(), disable_e_steppers(), wait_for_user_response()
  35. #if HAS_LEVELING
  36. #include "../feature/bedlevel/bedlevel.h"
  37. #endif
  38. #if ENABLED(DELTA)
  39. #include "delta.h"
  40. #endif
  41. #if ENABLED(BABYSTEP_ZPROBE_OFFSET)
  42. #include "planner.h"
  43. #endif
  44. #if ENABLED(MEASURE_BACKLASH_WHEN_PROBING)
  45. #include "../feature/backlash.h"
  46. #endif
  47. #if ENABLED(BLTOUCH)
  48. #include "../feature/bltouch.h"
  49. #endif
  50. #if ENABLED(HOST_PROMPT_SUPPORT)
  51. #include "../feature/host_actions.h" // for PROMPT_USER_CONTINUE
  52. #endif
  53. #if HAS_Z_SERVO_PROBE
  54. #include "servo.h"
  55. #endif
  56. #if EITHER(SENSORLESS_PROBING, SENSORLESS_HOMING)
  57. #include "stepper.h"
  58. #include "../feature/tmc_util.h"
  59. #endif
  60. #if HAS_QUIET_PROBING
  61. #include "stepper/indirection.h"
  62. #endif
  63. #if ENABLED(EXTENSIBLE_UI)
  64. #include "../lcd/extui/ui_api.h"
  65. #endif
  66. #define DEBUG_OUT ENABLED(DEBUG_LEVELING_FEATURE)
  67. #include "../core/debug_out.h"
  68. Probe probe;
  69. xyz_pos_t Probe::offset; // Initialized by settings.load()
  70. #if HAS_PROBE_XY_OFFSET
  71. const xy_pos_t &Probe::offset_xy = Probe::offset;
  72. #endif
  73. #if ENABLED(SENSORLESS_PROBING)
  74. Probe::sense_bool_t Probe::test_sensitivity;
  75. #endif
  76. #if ENABLED(Z_PROBE_SLED)
  77. #ifndef SLED_DOCKING_OFFSET
  78. #define SLED_DOCKING_OFFSET 0
  79. #endif
  80. /**
  81. * Method to dock/undock a sled designed by Charles Bell.
  82. *
  83. * stow[in] If false, move to MAX_X and engage the solenoid
  84. * If true, move to MAX_X and release the solenoid
  85. */
  86. static void dock_sled(const bool stow) {
  87. if (DEBUGGING(LEVELING)) DEBUG_ECHOLNPAIR("dock_sled(", stow, ")");
  88. // Dock sled a bit closer to ensure proper capturing
  89. do_blocking_move_to_x(X_MAX_POS + SLED_DOCKING_OFFSET - ((stow) ? 1 : 0));
  90. #if HAS_SOLENOID_1 && DISABLED(EXT_SOLENOID)
  91. WRITE(SOL1_PIN, !stow); // switch solenoid
  92. #endif
  93. }
  94. #elif ENABLED(TOUCH_MI_PROBE)
  95. // Move to the magnet to unlock the probe
  96. inline void run_deploy_moves_script() {
  97. #ifndef TOUCH_MI_DEPLOY_XPOS
  98. #define TOUCH_MI_DEPLOY_XPOS X_MIN_POS
  99. #elif TOUCH_MI_DEPLOY_XPOS > X_MAX_BED
  100. TemporaryGlobalEndstopsState unlock_x(false);
  101. #endif
  102. #if TOUCH_MI_DEPLOY_YPOS > Y_MAX_BED
  103. TemporaryGlobalEndstopsState unlock_y(false);
  104. #endif
  105. #if ENABLED(TOUCH_MI_MANUAL_DEPLOY)
  106. const screenFunc_t prev_screen = ui.currentScreen;
  107. LCD_MESSAGEPGM(MSG_MANUAL_DEPLOY_TOUCHMI);
  108. ui.return_to_status();
  109. TERN_(HOST_PROMPT_SUPPORT, host_prompt_do(PROMPT_USER_CONTINUE, PSTR("Deploy TouchMI"), CONTINUE_STR));
  110. wait_for_user_response();
  111. ui.reset_status();
  112. ui.goto_screen(prev_screen);
  113. #elif defined(TOUCH_MI_DEPLOY_XPOS) && defined(TOUCH_MI_DEPLOY_YPOS)
  114. do_blocking_move_to_xy(TOUCH_MI_DEPLOY_XPOS, TOUCH_MI_DEPLOY_YPOS);
  115. #elif defined(TOUCH_MI_DEPLOY_XPOS)
  116. do_blocking_move_to_x(TOUCH_MI_DEPLOY_XPOS);
  117. #elif defined(TOUCH_MI_DEPLOY_YPOS)
  118. do_blocking_move_to_y(TOUCH_MI_DEPLOY_YPOS);
  119. #endif
  120. }
  121. // Move down to the bed to stow the probe
  122. inline void run_stow_moves_script() {
  123. const xyz_pos_t oldpos = current_position;
  124. endstops.enable_z_probe(false);
  125. do_blocking_move_to_z(TOUCH_MI_RETRACT_Z, homing_feedrate(Z_AXIS));
  126. do_blocking_move_to(oldpos, homing_feedrate(Z_AXIS));
  127. }
  128. #elif ENABLED(Z_PROBE_ALLEN_KEY)
  129. inline void run_deploy_moves_script() {
  130. #ifdef Z_PROBE_ALLEN_KEY_DEPLOY_1
  131. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE
  132. #define Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE 0.0
  133. #endif
  134. constexpr xyz_pos_t deploy_1 = Z_PROBE_ALLEN_KEY_DEPLOY_1;
  135. do_blocking_move_to(deploy_1, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE));
  136. #endif
  137. #ifdef Z_PROBE_ALLEN_KEY_DEPLOY_2
  138. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE
  139. #define Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE 0.0
  140. #endif
  141. constexpr xyz_pos_t deploy_2 = Z_PROBE_ALLEN_KEY_DEPLOY_2;
  142. do_blocking_move_to(deploy_2, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE));
  143. #endif
  144. #ifdef Z_PROBE_ALLEN_KEY_DEPLOY_3
  145. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE
  146. #define Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE 0.0
  147. #endif
  148. constexpr xyz_pos_t deploy_3 = Z_PROBE_ALLEN_KEY_DEPLOY_3;
  149. do_blocking_move_to(deploy_3, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE));
  150. #endif
  151. #ifdef Z_PROBE_ALLEN_KEY_DEPLOY_4
  152. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_FEEDRATE
  153. #define Z_PROBE_ALLEN_KEY_DEPLOY_4_FEEDRATE 0.0
  154. #endif
  155. constexpr xyz_pos_t deploy_4 = Z_PROBE_ALLEN_KEY_DEPLOY_4;
  156. do_blocking_move_to(deploy_4, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_4_FEEDRATE));
  157. #endif
  158. #ifdef Z_PROBE_ALLEN_KEY_DEPLOY_5
  159. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_FEEDRATE
  160. #define Z_PROBE_ALLEN_KEY_DEPLOY_5_FEEDRATE 0.0
  161. #endif
  162. constexpr xyz_pos_t deploy_5 = Z_PROBE_ALLEN_KEY_DEPLOY_5;
  163. do_blocking_move_to(deploy_5, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_5_FEEDRATE));
  164. #endif
  165. }
  166. inline void run_stow_moves_script() {
  167. #ifdef Z_PROBE_ALLEN_KEY_STOW_1
  168. #ifndef Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE
  169. #define Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE 0.0
  170. #endif
  171. constexpr xyz_pos_t stow_1 = Z_PROBE_ALLEN_KEY_STOW_1;
  172. do_blocking_move_to(stow_1, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE));
  173. #endif
  174. #ifdef Z_PROBE_ALLEN_KEY_STOW_2
  175. #ifndef Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE
  176. #define Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE 0.0
  177. #endif
  178. constexpr xyz_pos_t stow_2 = Z_PROBE_ALLEN_KEY_STOW_2;
  179. do_blocking_move_to(stow_2, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE));
  180. #endif
  181. #ifdef Z_PROBE_ALLEN_KEY_STOW_3
  182. #ifndef Z_PROBE_ALLEN_KEY_STOW_3_FEEDRATE
  183. #define Z_PROBE_ALLEN_KEY_STOW_3_FEEDRATE 0.0
  184. #endif
  185. constexpr xyz_pos_t stow_3 = Z_PROBE_ALLEN_KEY_STOW_3;
  186. do_blocking_move_to(stow_3, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_3_FEEDRATE));
  187. #endif
  188. #ifdef Z_PROBE_ALLEN_KEY_STOW_4
  189. #ifndef Z_PROBE_ALLEN_KEY_STOW_4_FEEDRATE
  190. #define Z_PROBE_ALLEN_KEY_STOW_4_FEEDRATE 0.0
  191. #endif
  192. constexpr xyz_pos_t stow_4 = Z_PROBE_ALLEN_KEY_STOW_4;
  193. do_blocking_move_to(stow_4, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_4_FEEDRATE));
  194. #endif
  195. #ifdef Z_PROBE_ALLEN_KEY_STOW_5
  196. #ifndef Z_PROBE_ALLEN_KEY_STOW_5_FEEDRATE
  197. #define Z_PROBE_ALLEN_KEY_STOW_5_FEEDRATE 0.0
  198. #endif
  199. constexpr xyz_pos_t stow_5 = Z_PROBE_ALLEN_KEY_STOW_5;
  200. do_blocking_move_to(stow_5, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_5_FEEDRATE));
  201. #endif
  202. }
  203. #endif // Z_PROBE_ALLEN_KEY
  204. #if HAS_QUIET_PROBING
  205. #ifndef DELAY_BEFORE_PROBING
  206. #define DELAY_BEFORE_PROBING 25
  207. #endif
  208. void Probe::set_probing_paused(const bool dopause) {
  209. TERN_(PROBING_HEATERS_OFF, thermalManager.pause_heaters(dopause));
  210. TERN_(PROBING_FANS_OFF, thermalManager.set_fans_paused(dopause));
  211. TERN_(PROBING_ESTEPPERS_OFF, if (dopause) disable_e_steppers());
  212. #if ENABLED(PROBING_STEPPERS_OFF) && DISABLED(DELTA)
  213. static uint8_t old_trusted;
  214. if (dopause) {
  215. old_trusted = axis_trusted;
  216. DISABLE_AXIS_X();
  217. DISABLE_AXIS_Y();
  218. }
  219. else {
  220. if (TEST(old_trusted, X_AXIS)) ENABLE_AXIS_X();
  221. if (TEST(old_trusted, Y_AXIS)) ENABLE_AXIS_Y();
  222. axis_trusted = old_trusted;
  223. }
  224. #endif
  225. if (dopause) safe_delay(_MAX(DELAY_BEFORE_PROBING, 25));
  226. }
  227. #endif // HAS_QUIET_PROBING
  228. /**
  229. * Raise Z to a minimum height to make room for a probe to move
  230. */
  231. void Probe::do_z_raise(const float z_raise) {
  232. if (DEBUGGING(LEVELING)) DEBUG_ECHOLNPAIR("Probe::do_z_raise(", z_raise, ")");
  233. float z_dest = z_raise;
  234. if (offset.z < 0) z_dest -= offset.z;
  235. do_z_clearance(z_dest);
  236. }
  237. FORCE_INLINE void probe_specific_action(const bool deploy) {
  238. #if ENABLED(PAUSE_BEFORE_DEPLOY_STOW)
  239. do {
  240. #if ENABLED(PAUSE_PROBE_DEPLOY_WHEN_TRIGGERED)
  241. if (deploy != PROBE_TRIGGERED()) break;
  242. #endif
  243. BUZZ(100, 659);
  244. BUZZ(100, 698);
  245. PGM_P const ds_str = deploy ? GET_TEXT(MSG_MANUAL_DEPLOY) : GET_TEXT(MSG_MANUAL_STOW);
  246. ui.return_to_status(); // To display the new status message
  247. ui.set_status_P(ds_str, 99);
  248. SERIAL_ECHOLNPGM_P(ds_str);
  249. TERN_(HOST_PROMPT_SUPPORT, host_prompt_do(PROMPT_USER_CONTINUE, PSTR("Stow Probe"), CONTINUE_STR));
  250. TERN_(EXTENSIBLE_UI, ExtUI::onUserConfirmRequired_P(PSTR("Stow Probe")));
  251. wait_for_user_response();
  252. ui.reset_status();
  253. } while (ENABLED(PAUSE_PROBE_DEPLOY_WHEN_TRIGGERED));
  254. #endif // PAUSE_BEFORE_DEPLOY_STOW
  255. #if ENABLED(SOLENOID_PROBE)
  256. #if HAS_SOLENOID_1
  257. WRITE(SOL1_PIN, deploy);
  258. #endif
  259. #elif ENABLED(Z_PROBE_SLED)
  260. dock_sled(!deploy);
  261. #elif ENABLED(BLTOUCH)
  262. deploy ? bltouch.deploy() : bltouch.stow();
  263. #elif HAS_Z_SERVO_PROBE
  264. MOVE_SERVO(Z_PROBE_SERVO_NR, servo_angles[Z_PROBE_SERVO_NR][deploy ? 0 : 1]);
  265. #elif EITHER(TOUCH_MI_PROBE, Z_PROBE_ALLEN_KEY)
  266. deploy ? run_deploy_moves_script() : run_stow_moves_script();
  267. #elif ENABLED(RACK_AND_PINION_PROBE)
  268. do_blocking_move_to_x(deploy ? Z_PROBE_DEPLOY_X : Z_PROBE_RETRACT_X);
  269. #elif DISABLED(PAUSE_BEFORE_DEPLOY_STOW)
  270. UNUSED(deploy);
  271. #endif
  272. }
  273. #if EITHER(PREHEAT_BEFORE_PROBING, PREHEAT_BEFORE_LEVELING)
  274. #if ENABLED(PREHEAT_BEFORE_PROBING)
  275. #ifndef PROBING_NOZZLE_TEMP
  276. #define PROBING_NOZZLE_TEMP 0
  277. #endif
  278. #ifndef PROBING_BED_TEMP
  279. #define PROBING_BED_TEMP 0
  280. #endif
  281. #endif
  282. /**
  283. * Do preheating as required before leveling or probing.
  284. * - If a preheat input is higher than the current target, raise the target temperature.
  285. * - If a preheat input is higher than the current temperature, wait for stabilization.
  286. */
  287. void Probe::preheat_for_probing(const celsius_t hotend_temp, const celsius_t bed_temp) {
  288. #if HAS_HOTEND && (PROBING_NOZZLE_TEMP || LEVELING_NOZZLE_TEMP)
  289. #define WAIT_FOR_NOZZLE_HEAT
  290. #endif
  291. #if HAS_HEATED_BED && (PROBING_BED_TEMP || LEVELING_BED_TEMP)
  292. #define WAIT_FOR_BED_HEAT
  293. #endif
  294. DEBUG_ECHOPGM("Preheating ");
  295. #if ENABLED(WAIT_FOR_NOZZLE_HEAT)
  296. const celsius_t hotendPreheat = hotend_temp > thermalManager.degTargetHotend(0) ? hotend_temp : 0;
  297. if (hotendPreheat) {
  298. DEBUG_ECHOPAIR("hotend (", hotendPreheat, ")");
  299. thermalManager.setTargetHotend(hotendPreheat, 0);
  300. }
  301. #elif ENABLED(WAIT_FOR_BED_HEAT)
  302. constexpr celsius_t hotendPreheat = 0;
  303. #endif
  304. #if ENABLED(WAIT_FOR_BED_HEAT)
  305. const celsius_t bedPreheat = bed_temp > thermalManager.degTargetBed() ? bed_temp : 0;
  306. if (bedPreheat) {
  307. if (hotendPreheat) DEBUG_ECHOPGM(" and ");
  308. DEBUG_ECHOPAIR("bed (", bedPreheat, ")");
  309. thermalManager.setTargetBed(bedPreheat);
  310. }
  311. #endif
  312. DEBUG_EOL();
  313. TERN_(WAIT_FOR_NOZZLE_HEAT, if (hotend_temp > thermalManager.wholeDegHotend(0) + (TEMP_WINDOW)) thermalManager.wait_for_hotend(0));
  314. TERN_(WAIT_FOR_BED_HEAT, if (bed_temp > thermalManager.wholeDegBed() + (TEMP_BED_WINDOW)) thermalManager.wait_for_bed_heating());
  315. }
  316. #endif
  317. /**
  318. * Attempt to deploy or stow the probe
  319. *
  320. * Return TRUE if the probe could not be deployed/stowed
  321. */
  322. bool Probe::set_deployed(const bool deploy) {
  323. if (DEBUGGING(LEVELING)) {
  324. DEBUG_POS("Probe::set_deployed", current_position);
  325. DEBUG_ECHOLNPAIR("deploy: ", deploy);
  326. }
  327. if (endstops.z_probe_enabled == deploy) return false;
  328. // Make room for probe to deploy (or stow)
  329. // Fix-mounted probe should only raise for deploy
  330. // unless PAUSE_BEFORE_DEPLOY_STOW is enabled
  331. #if EITHER(FIX_MOUNTED_PROBE, NOZZLE_AS_PROBE) && DISABLED(PAUSE_BEFORE_DEPLOY_STOW)
  332. const bool z_raise_wanted = deploy;
  333. #else
  334. constexpr bool z_raise_wanted = true;
  335. #endif
  336. if (z_raise_wanted)
  337. do_z_raise(_MAX(Z_CLEARANCE_BETWEEN_PROBES, Z_CLEARANCE_DEPLOY_PROBE));
  338. #if EITHER(Z_PROBE_SLED, Z_PROBE_ALLEN_KEY)
  339. if (homing_needed_error(TERN_(Z_PROBE_SLED, _BV(X_AXIS)))) {
  340. SERIAL_ERROR_MSG(STR_STOP_UNHOMED);
  341. stop();
  342. return true;
  343. }
  344. #endif
  345. const xy_pos_t old_xy = current_position;
  346. #if ENABLED(PROBE_TRIGGERED_WHEN_STOWED_TEST)
  347. // Only deploy/stow if needed
  348. if (PROBE_TRIGGERED() == deploy) {
  349. if (!deploy) endstops.enable_z_probe(false); // Switch off triggered when stowed probes early
  350. // otherwise an Allen-Key probe can't be stowed.
  351. probe_specific_action(deploy);
  352. }
  353. if (PROBE_TRIGGERED() == deploy) { // Unchanged after deploy/stow action?
  354. if (IsRunning()) {
  355. SERIAL_ERROR_MSG("Z-Probe failed");
  356. LCD_ALERTMESSAGEPGM_P(PSTR("Err: ZPROBE"));
  357. }
  358. stop();
  359. return true;
  360. }
  361. #else
  362. probe_specific_action(deploy);
  363. #endif
  364. // If preheating is required before any probing...
  365. TERN_(PREHEAT_BEFORE_PROBING, if (deploy) preheat_for_probing(PROBING_NOZZLE_TEMP, PROBING_BED_TEMP));
  366. do_blocking_move_to(old_xy);
  367. endstops.enable_z_probe(deploy);
  368. return false;
  369. }
  370. /**
  371. * @brief Used by run_z_probe to do a single Z probe move.
  372. *
  373. * @param z Z destination
  374. * @param fr_mm_s Feedrate in mm/s
  375. * @return true to indicate an error
  376. */
  377. /**
  378. * @brief Move down until the probe triggers or the low limit is reached
  379. *
  380. * @details Used by run_z_probe to get each bed Z height measurement.
  381. * Sets current_position.z to the height where the probe triggered
  382. * (according to the Z stepper count). The float Z is propagated
  383. * back to the planner.position to preempt any rounding error.
  384. *
  385. * @return TRUE if the probe failed to trigger.
  386. */
  387. bool Probe::probe_down_to_z(const_float_t z, const_feedRate_t fr_mm_s) {
  388. DEBUG_SECTION(log_probe, "Probe::probe_down_to_z", DEBUGGING(LEVELING));
  389. #if BOTH(HAS_HEATED_BED, WAIT_FOR_BED_HEATER)
  390. thermalManager.wait_for_bed_heating();
  391. #endif
  392. #if BOTH(HAS_TEMP_HOTEND, WAIT_FOR_HOTEND)
  393. thermalManager.wait_for_hotend_heating(active_extruder);
  394. #endif
  395. if (TERN0(BLTOUCH_SLOW_MODE, bltouch.deploy())) return true; // Deploy in LOW SPEED MODE on every probe action
  396. // Disable stealthChop if used. Enable diag1 pin on driver.
  397. #if ENABLED(SENSORLESS_PROBING)
  398. sensorless_t stealth_states { false };
  399. #if ENABLED(DELTA)
  400. if (probe.test_sensitivity.x) stealth_states.x = tmc_enable_stallguard(stepperX); // Delta watches all DIAG pins for a stall
  401. if (probe.test_sensitivity.y) stealth_states.y = tmc_enable_stallguard(stepperY);
  402. #endif
  403. if (probe.test_sensitivity.z) stealth_states.z = tmc_enable_stallguard(stepperZ); // All machines will check Z-DIAG for stall
  404. endstops.enable(true);
  405. set_homing_current(true); // The "homing" current also applies to probing
  406. #endif
  407. TERN_(HAS_QUIET_PROBING, set_probing_paused(true));
  408. // Move down until the probe is triggered
  409. do_blocking_move_to_z(z, fr_mm_s);
  410. // Check to see if the probe was triggered
  411. const bool probe_triggered =
  412. #if BOTH(DELTA, SENSORLESS_PROBING)
  413. endstops.trigger_state() & (_BV(X_MAX) | _BV(Y_MAX) | _BV(Z_MAX))
  414. #else
  415. TEST(endstops.trigger_state(), Z_MIN_PROBE)
  416. #endif
  417. ;
  418. TERN_(HAS_QUIET_PROBING, set_probing_paused(false));
  419. // Re-enable stealthChop if used. Disable diag1 pin on driver.
  420. #if ENABLED(SENSORLESS_PROBING)
  421. endstops.not_homing();
  422. #if ENABLED(DELTA)
  423. if (probe.test_sensitivity.x) tmc_disable_stallguard(stepperX, stealth_states.x);
  424. if (probe.test_sensitivity.y) tmc_disable_stallguard(stepperY, stealth_states.y);
  425. #endif
  426. if (probe.test_sensitivity.z) tmc_disable_stallguard(stepperZ, stealth_states.z);
  427. set_homing_current(false);
  428. #endif
  429. if (probe_triggered && TERN0(BLTOUCH_SLOW_MODE, bltouch.stow())) // Stow in LOW SPEED MODE on every trigger
  430. return true;
  431. // Clear endstop flags
  432. endstops.hit_on_purpose();
  433. // Get Z where the steppers were interrupted
  434. set_current_from_steppers_for_axis(Z_AXIS);
  435. // Tell the planner where we actually are
  436. sync_plan_position();
  437. return !probe_triggered;
  438. }
  439. #if ENABLED(PROBE_TARE)
  440. /**
  441. * @brief Init the tare pin
  442. *
  443. * @details Init tare pin to ON state for a strain gauge, otherwise OFF
  444. */
  445. void Probe::tare_init() {
  446. OUT_WRITE(PROBE_TARE_PIN, !PROBE_TARE_STATE);
  447. }
  448. /**
  449. * @brief Tare the Z probe
  450. *
  451. * @details Signal to the probe to tare itself
  452. *
  453. * @return TRUE if the tare cold not be completed
  454. */
  455. bool Probe::tare() {
  456. #if BOTH(PROBE_ACTIVATION_SWITCH, PROBE_TARE_ONLY_WHILE_INACTIVE)
  457. if (endstops.probe_switch_activated()) {
  458. SERIAL_ECHOLNPGM("Cannot tare an active probe");
  459. return true;
  460. }
  461. #endif
  462. SERIAL_ECHOLNPGM("Taring probe");
  463. WRITE(PROBE_TARE_PIN, PROBE_TARE_STATE);
  464. delay(PROBE_TARE_TIME);
  465. WRITE(PROBE_TARE_PIN, !PROBE_TARE_STATE);
  466. delay(PROBE_TARE_DELAY);
  467. endstops.hit_on_purpose();
  468. return false;
  469. }
  470. #endif
  471. /**
  472. * @brief Probe at the current XY (possibly more than once) to find the bed Z.
  473. *
  474. * @details Used by probe_at_point to get the bed Z height at the current XY.
  475. * Leaves current_position.z at the height where the probe triggered.
  476. *
  477. * @return The Z position of the bed at the current XY or NAN on error.
  478. */
  479. float Probe::run_z_probe(const bool sanity_check/*=true*/) {
  480. DEBUG_SECTION(log_probe, "Probe::run_z_probe", DEBUGGING(LEVELING));
  481. auto try_to_probe = [&](PGM_P const plbl, const_float_t z_probe_low_point, const feedRate_t fr_mm_s, const bool scheck, const float clearance) -> bool {
  482. // Tare the probe, if supported
  483. if (TERN0(PROBE_TARE, tare())) return true;
  484. // Do a first probe at the fast speed
  485. const bool probe_fail = probe_down_to_z(z_probe_low_point, fr_mm_s), // No probe trigger?
  486. early_fail = (scheck && current_position.z > -offset.z + clearance); // Probe triggered too high?
  487. #if ENABLED(DEBUG_LEVELING_FEATURE)
  488. if (DEBUGGING(LEVELING) && (probe_fail || early_fail)) {
  489. DEBUG_ECHOPGM_P(plbl);
  490. DEBUG_ECHOPGM(" Probe fail! -");
  491. if (probe_fail) DEBUG_ECHOPGM(" No trigger.");
  492. if (early_fail) DEBUG_ECHOPGM(" Triggered early.");
  493. DEBUG_EOL();
  494. }
  495. #else
  496. UNUSED(plbl);
  497. #endif
  498. return probe_fail || early_fail;
  499. };
  500. // Stop the probe before it goes too low to prevent damage.
  501. // If Z isn't known then probe to -10mm.
  502. const float z_probe_low_point = axis_is_trusted(Z_AXIS) ? -offset.z + Z_PROBE_LOW_POINT : -10.0;
  503. // Double-probing does a fast probe followed by a slow probe
  504. #if TOTAL_PROBING == 2
  505. // Attempt to tare the probe
  506. if (TERN0(PROBE_TARE, tare())) return NAN;
  507. // Do a first probe at the fast speed
  508. if (try_to_probe(PSTR("FAST"), z_probe_low_point, z_probe_fast_mm_s,
  509. sanity_check, Z_CLEARANCE_BETWEEN_PROBES) ) return NAN;
  510. const float first_probe_z = current_position.z;
  511. if (DEBUGGING(LEVELING)) DEBUG_ECHOLNPAIR("1st Probe Z:", first_probe_z);
  512. // Raise to give the probe clearance
  513. do_blocking_move_to_z(current_position.z + Z_CLEARANCE_MULTI_PROBE, z_probe_fast_mm_s);
  514. #elif Z_PROBE_FEEDRATE_FAST != Z_PROBE_FEEDRATE_SLOW
  515. // If the nozzle is well over the travel height then
  516. // move down quickly before doing the slow probe
  517. const float z = Z_CLEARANCE_DEPLOY_PROBE + 5.0 + (offset.z < 0 ? -offset.z : 0);
  518. if (current_position.z > z) {
  519. // Probe down fast. If the probe never triggered, raise for probe clearance
  520. if (!probe_down_to_z(z, z_probe_fast_mm_s))
  521. do_blocking_move_to_z(current_position.z + Z_CLEARANCE_BETWEEN_PROBES, z_probe_fast_mm_s);
  522. }
  523. #endif
  524. #if EXTRA_PROBING > 0
  525. float probes[TOTAL_PROBING];
  526. #endif
  527. #if TOTAL_PROBING > 2
  528. float probes_z_sum = 0;
  529. for (
  530. #if EXTRA_PROBING > 0
  531. uint8_t p = 0; p < TOTAL_PROBING; p++
  532. #else
  533. uint8_t p = TOTAL_PROBING; p--;
  534. #endif
  535. )
  536. #endif
  537. {
  538. // If the probe won't tare, return
  539. if (TERN0(PROBE_TARE, tare())) return true;
  540. // Probe downward slowly to find the bed
  541. if (try_to_probe(PSTR("SLOW"), z_probe_low_point, MMM_TO_MMS(Z_PROBE_FEEDRATE_SLOW),
  542. sanity_check, Z_CLEARANCE_MULTI_PROBE) ) return NAN;
  543. TERN_(MEASURE_BACKLASH_WHEN_PROBING, backlash.measure_with_probe());
  544. const float z = current_position.z;
  545. #if EXTRA_PROBING > 0
  546. // Insert Z measurement into probes[]. Keep it sorted ascending.
  547. LOOP_LE_N(i, p) { // Iterate the saved Zs to insert the new Z
  548. if (i == p || probes[i] > z) { // Last index or new Z is smaller than this Z
  549. for (int8_t m = p; --m >= i;) probes[m + 1] = probes[m]; // Shift items down after the insertion point
  550. probes[i] = z; // Insert the new Z measurement
  551. break; // Only one to insert. Done!
  552. }
  553. }
  554. #elif TOTAL_PROBING > 2
  555. probes_z_sum += z;
  556. #else
  557. UNUSED(z);
  558. #endif
  559. #if TOTAL_PROBING > 2
  560. // Small Z raise after all but the last probe
  561. if (p
  562. #if EXTRA_PROBING > 0
  563. < TOTAL_PROBING - 1
  564. #endif
  565. ) do_blocking_move_to_z(z + Z_CLEARANCE_MULTI_PROBE, z_probe_fast_mm_s);
  566. #endif
  567. }
  568. #if TOTAL_PROBING > 2
  569. #if EXTRA_PROBING > 0
  570. // Take the center value (or average the two middle values) as the median
  571. static constexpr int PHALF = (TOTAL_PROBING - 1) / 2;
  572. const float middle = probes[PHALF],
  573. median = ((TOTAL_PROBING) & 1) ? middle : (middle + probes[PHALF + 1]) * 0.5f;
  574. // Remove values farthest from the median
  575. uint8_t min_avg_idx = 0, max_avg_idx = TOTAL_PROBING - 1;
  576. for (uint8_t i = EXTRA_PROBING; i--;)
  577. if (ABS(probes[max_avg_idx] - median) > ABS(probes[min_avg_idx] - median))
  578. max_avg_idx--; else min_avg_idx++;
  579. // Return the average value of all remaining probes.
  580. LOOP_S_LE_N(i, min_avg_idx, max_avg_idx)
  581. probes_z_sum += probes[i];
  582. #endif
  583. const float measured_z = probes_z_sum * RECIPROCAL(MULTIPLE_PROBING);
  584. #elif TOTAL_PROBING == 2
  585. const float z2 = current_position.z;
  586. if (DEBUGGING(LEVELING)) DEBUG_ECHOLNPAIR("2nd Probe Z:", z2, " Discrepancy:", first_probe_z - z2);
  587. // Return a weighted average of the fast and slow probes
  588. const float measured_z = (z2 * 3.0 + first_probe_z * 2.0) * 0.2;
  589. #else
  590. // Return the single probe result
  591. const float measured_z = current_position.z;
  592. #endif
  593. return measured_z;
  594. }
  595. /**
  596. * - Move to the given XY
  597. * - Deploy the probe, if not already deployed
  598. * - Probe the bed, get the Z position
  599. * - Depending on the 'stow' flag
  600. * - Stow the probe, or
  601. * - Raise to the BETWEEN height
  602. * - Return the probed Z position
  603. */
  604. float Probe::probe_at_point(const_float_t rx, const_float_t ry, const ProbePtRaise raise_after/*=PROBE_PT_NONE*/, const uint8_t verbose_level/*=0*/, const bool probe_relative/*=true*/, const bool sanity_check/*=true*/) {
  605. DEBUG_SECTION(log_probe, "Probe::probe_at_point", DEBUGGING(LEVELING));
  606. if (DEBUGGING(LEVELING)) {
  607. DEBUG_ECHOLNPAIR(
  608. "...(", LOGICAL_X_POSITION(rx), ", ", LOGICAL_Y_POSITION(ry),
  609. ", ", raise_after == PROBE_PT_RAISE ? "raise" : raise_after == PROBE_PT_LAST_STOW ? "stow (last)" : raise_after == PROBE_PT_STOW ? "stow" : "none",
  610. ", ", verbose_level,
  611. ", ", probe_relative ? "probe" : "nozzle", "_relative)"
  612. );
  613. DEBUG_POS("", current_position);
  614. }
  615. #if BOTH(BLTOUCH, BLTOUCH_HS_MODE)
  616. if (bltouch.triggered()) bltouch._reset();
  617. #endif
  618. // On delta keep Z below clip height or do_blocking_move_to will abort
  619. xyz_pos_t npos = { rx, ry, _MIN(TERN(DELTA, delta_clip_start_height, current_position.z), current_position.z) };
  620. if (probe_relative) { // The given position is in terms of the probe
  621. if (!can_reach(npos)) {
  622. if (DEBUGGING(LEVELING)) DEBUG_ECHOLNPGM("Position Not Reachable");
  623. return NAN;
  624. }
  625. npos -= offset_xy; // Get the nozzle position
  626. }
  627. else if (!position_is_reachable(npos)) return NAN; // The given position is in terms of the nozzle
  628. // Move the probe to the starting XYZ
  629. do_blocking_move_to(npos, feedRate_t(XY_PROBE_FEEDRATE_MM_S));
  630. float measured_z = NAN;
  631. if (!deploy()) measured_z = run_z_probe(sanity_check) + offset.z;
  632. if (!isnan(measured_z)) {
  633. const bool big_raise = raise_after == PROBE_PT_BIG_RAISE;
  634. if (big_raise || raise_after == PROBE_PT_RAISE)
  635. do_blocking_move_to_z(current_position.z + (big_raise ? 25 : Z_CLEARANCE_BETWEEN_PROBES), z_probe_fast_mm_s);
  636. else if (raise_after == PROBE_PT_STOW || raise_after == PROBE_PT_LAST_STOW)
  637. if (stow()) measured_z = NAN; // Error on stow?
  638. if (verbose_level > 2)
  639. SERIAL_ECHOLNPAIR("Bed X: ", LOGICAL_X_POSITION(rx), " Y: ", LOGICAL_Y_POSITION(ry), " Z: ", measured_z);
  640. }
  641. if (isnan(measured_z)) {
  642. stow();
  643. LCD_MESSAGEPGM(MSG_LCD_PROBING_FAILED);
  644. #if DISABLED(G29_RETRY_AND_RECOVER)
  645. SERIAL_ERROR_MSG(STR_ERR_PROBING_FAILED);
  646. #endif
  647. }
  648. return measured_z;
  649. }
  650. #if HAS_Z_SERVO_PROBE
  651. void Probe::servo_probe_init() {
  652. /**
  653. * Set position of Z Servo Endstop
  654. *
  655. * The servo might be deployed and positioned too low to stow
  656. * when starting up the machine or rebooting the board.
  657. * There's no way to know where the nozzle is positioned until
  658. * homing has been done - no homing with z-probe without init!
  659. */
  660. STOW_Z_SERVO();
  661. }
  662. #endif // HAS_Z_SERVO_PROBE
  663. #if EITHER(SENSORLESS_PROBING, SENSORLESS_HOMING)
  664. sensorless_t stealth_states { false };
  665. /**
  666. * Disable stealthChop if used. Enable diag1 pin on driver.
  667. */
  668. void Probe::enable_stallguard_diag1() {
  669. #if ENABLED(SENSORLESS_PROBING)
  670. #if ENABLED(DELTA)
  671. stealth_states.x = tmc_enable_stallguard(stepperX);
  672. stealth_states.y = tmc_enable_stallguard(stepperY);
  673. #endif
  674. stealth_states.z = tmc_enable_stallguard(stepperZ);
  675. endstops.enable(true);
  676. #endif
  677. }
  678. /**
  679. * Re-enable stealthChop if used. Disable diag1 pin on driver.
  680. */
  681. void Probe::disable_stallguard_diag1() {
  682. #if ENABLED(SENSORLESS_PROBING)
  683. endstops.not_homing();
  684. #if ENABLED(DELTA)
  685. tmc_disable_stallguard(stepperX, stealth_states.x);
  686. tmc_disable_stallguard(stepperY, stealth_states.y);
  687. #endif
  688. tmc_disable_stallguard(stepperZ, stealth_states.z);
  689. #endif
  690. }
  691. /**
  692. * Change the current in the TMC drivers to N##_CURRENT_HOME. And we save the current configuration of each TMC driver.
  693. */
  694. void Probe::set_homing_current(const bool onoff) {
  695. #define HAS_CURRENT_HOME(N) (defined(N##_CURRENT_HOME) && N##_CURRENT_HOME != N##_CURRENT)
  696. #if HAS_CURRENT_HOME(X) || HAS_CURRENT_HOME(Y) || HAS_CURRENT_HOME(Z)
  697. #if ENABLED(DELTA)
  698. static int16_t saved_current_X, saved_current_Y;
  699. #endif
  700. #if HAS_CURRENT_HOME(Z)
  701. static int16_t saved_current_Z;
  702. #endif
  703. #if ((ENABLED(DELTA) && (HAS_CURRENT_HOME(X) || HAS_CURRENT_HOME(Y))) || HAS_CURRENT_HOME(Z))
  704. auto debug_current_on = [](PGM_P const s, const int16_t a, const int16_t b) {
  705. if (DEBUGGING(LEVELING)) { DEBUG_ECHOPGM_P(s); DEBUG_ECHOLNPAIR(" current: ", a, " -> ", b); }
  706. };
  707. #endif
  708. if (onoff) {
  709. #if ENABLED(DELTA)
  710. #if HAS_CURRENT_HOME(X)
  711. saved_current_X = stepperX.getMilliamps();
  712. stepperX.rms_current(X_CURRENT_HOME);
  713. debug_current_on(PSTR("X"), saved_current_X, X_CURRENT_HOME);
  714. #endif
  715. #if HAS_CURRENT_HOME(Y)
  716. saved_current_Y = stepperY.getMilliamps();
  717. stepperY.rms_current(Y_CURRENT_HOME);
  718. debug_current_on(PSTR("Y"), saved_current_Y, Y_CURRENT_HOME);
  719. #endif
  720. #endif
  721. #if HAS_CURRENT_HOME(Z)
  722. saved_current_Z = stepperZ.getMilliamps();
  723. stepperZ.rms_current(Z_CURRENT_HOME);
  724. debug_current_on(PSTR("Z"), saved_current_Z, Z_CURRENT_HOME);
  725. #endif
  726. TERN_(IMPROVE_HOMING_RELIABILITY, planner.enable_stall_prevention(true));
  727. }
  728. else {
  729. #if ENABLED(DELTA)
  730. #if HAS_CURRENT_HOME(X)
  731. stepperX.rms_current(saved_current_X);
  732. debug_current_on(PSTR("X"), X_CURRENT_HOME, saved_current_X);
  733. #endif
  734. #if HAS_CURRENT_HOME(Y)
  735. stepperY.rms_current(saved_current_Y);
  736. debug_current_on(PSTR("Y"), Y_CURRENT_HOME, saved_current_Y);
  737. #endif
  738. #endif
  739. #if HAS_CURRENT_HOME(Z)
  740. stepperZ.rms_current(saved_current_Z);
  741. debug_current_on(PSTR("Z"), Z_CURRENT_HOME, saved_current_Z);
  742. #endif
  743. TERN_(IMPROVE_HOMING_RELIABILITY, planner.enable_stall_prevention(false));
  744. }
  745. #endif
  746. }
  747. #endif // SENSORLESS_PROBING
  748. #endif // HAS_BED_PROBE