My Marlin configs for Fabrikator Mini and CTC i3 Pro B
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

stepper.cpp 31KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042
  1. /*
  2. stepper.c - stepper motor driver: executes motion plans using stepper motors
  3. Part of Grbl
  4. Copyright (c) 2009-2011 Simen Svale Skogsrud
  5. Grbl is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. Grbl is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with Grbl. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. /* The timer calculations of this module informed by the 'RepRap cartesian firmware' by Zack Smith
  17. and Philipp Tiefenbacher. */
  18. #include "Marlin.h"
  19. #include "stepper.h"
  20. #include "planner.h"
  21. #include "temperature.h"
  22. #include "ultralcd.h"
  23. #include "language.h"
  24. #include "cardreader.h"
  25. #include "speed_lookuptable.h"
  26. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  27. #include <SPI.h>
  28. #endif
  29. //===========================================================================
  30. //=============================public variables ============================
  31. //===========================================================================
  32. block_t *current_block; // A pointer to the block currently being traced
  33. //===========================================================================
  34. //=============================private variables ============================
  35. //===========================================================================
  36. //static makes it inpossible to be called from outside of this file by extern.!
  37. // Variables used by The Stepper Driver Interrupt
  38. static unsigned char out_bits; // The next stepping-bits to be output
  39. static long counter_x, // Counter variables for the bresenham line tracer
  40. counter_y,
  41. counter_z,
  42. counter_e;
  43. volatile static unsigned long step_events_completed; // The number of step events executed in the current block
  44. #ifdef ADVANCE
  45. static long advance_rate, advance, final_advance = 0;
  46. static long old_advance = 0;
  47. static long e_steps[3];
  48. #endif
  49. static long acceleration_time, deceleration_time;
  50. //static unsigned long accelerate_until, decelerate_after, acceleration_rate, initial_rate, final_rate, nominal_rate;
  51. static unsigned short acc_step_rate; // needed for deccelaration start point
  52. static char step_loops;
  53. static unsigned short OCR1A_nominal;
  54. static unsigned short step_loops_nominal;
  55. volatile long endstops_trigsteps[3]={0,0,0};
  56. volatile long endstops_stepsTotal,endstops_stepsDone;
  57. static volatile bool endstop_x_hit=false;
  58. static volatile bool endstop_y_hit=false;
  59. static volatile bool endstop_z_hit=false;
  60. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  61. bool abort_on_endstop_hit = false;
  62. #endif
  63. static bool old_x_min_endstop=false;
  64. static bool old_x_max_endstop=false;
  65. static bool old_y_min_endstop=false;
  66. static bool old_y_max_endstop=false;
  67. static bool old_z_min_endstop=false;
  68. static bool old_z_max_endstop=false;
  69. static bool check_endstops = true;
  70. volatile long count_position[NUM_AXIS] = { 0, 0, 0, 0};
  71. volatile signed char count_direction[NUM_AXIS] = { 1, 1, 1, 1};
  72. //===========================================================================
  73. //=============================functions ============================
  74. //===========================================================================
  75. #define CHECK_ENDSTOPS if(check_endstops)
  76. // intRes = intIn1 * intIn2 >> 16
  77. // uses:
  78. // r26 to store 0
  79. // r27 to store the byte 1 of the 24 bit result
  80. #define MultiU16X8toH16(intRes, charIn1, intIn2) \
  81. asm volatile ( \
  82. "clr r26 \n\t" \
  83. "mul %A1, %B2 \n\t" \
  84. "movw %A0, r0 \n\t" \
  85. "mul %A1, %A2 \n\t" \
  86. "add %A0, r1 \n\t" \
  87. "adc %B0, r26 \n\t" \
  88. "lsr r0 \n\t" \
  89. "adc %A0, r26 \n\t" \
  90. "adc %B0, r26 \n\t" \
  91. "clr r1 \n\t" \
  92. : \
  93. "=&r" (intRes) \
  94. : \
  95. "d" (charIn1), \
  96. "d" (intIn2) \
  97. : \
  98. "r26" \
  99. )
  100. // intRes = longIn1 * longIn2 >> 24
  101. // uses:
  102. // r26 to store 0
  103. // r27 to store the byte 1 of the 48bit result
  104. #define MultiU24X24toH16(intRes, longIn1, longIn2) \
  105. asm volatile ( \
  106. "clr r26 \n\t" \
  107. "mul %A1, %B2 \n\t" \
  108. "mov r27, r1 \n\t" \
  109. "mul %B1, %C2 \n\t" \
  110. "movw %A0, r0 \n\t" \
  111. "mul %C1, %C2 \n\t" \
  112. "add %B0, r0 \n\t" \
  113. "mul %C1, %B2 \n\t" \
  114. "add %A0, r0 \n\t" \
  115. "adc %B0, r1 \n\t" \
  116. "mul %A1, %C2 \n\t" \
  117. "add r27, r0 \n\t" \
  118. "adc %A0, r1 \n\t" \
  119. "adc %B0, r26 \n\t" \
  120. "mul %B1, %B2 \n\t" \
  121. "add r27, r0 \n\t" \
  122. "adc %A0, r1 \n\t" \
  123. "adc %B0, r26 \n\t" \
  124. "mul %C1, %A2 \n\t" \
  125. "add r27, r0 \n\t" \
  126. "adc %A0, r1 \n\t" \
  127. "adc %B0, r26 \n\t" \
  128. "mul %B1, %A2 \n\t" \
  129. "add r27, r1 \n\t" \
  130. "adc %A0, r26 \n\t" \
  131. "adc %B0, r26 \n\t" \
  132. "lsr r27 \n\t" \
  133. "adc %A0, r26 \n\t" \
  134. "adc %B0, r26 \n\t" \
  135. "clr r1 \n\t" \
  136. : \
  137. "=&r" (intRes) \
  138. : \
  139. "d" (longIn1), \
  140. "d" (longIn2) \
  141. : \
  142. "r26" , "r27" \
  143. )
  144. // Some useful constants
  145. #define ENABLE_STEPPER_DRIVER_INTERRUPT() TIMSK1 |= (1<<OCIE1A)
  146. #define DISABLE_STEPPER_DRIVER_INTERRUPT() TIMSK1 &= ~(1<<OCIE1A)
  147. void checkHitEndstops()
  148. {
  149. if( endstop_x_hit || endstop_y_hit || endstop_z_hit) {
  150. SERIAL_ECHO_START;
  151. SERIAL_ECHOPGM(MSG_ENDSTOPS_HIT);
  152. if(endstop_x_hit) {
  153. SERIAL_ECHOPAIR(" X:",(float)endstops_trigsteps[X_AXIS]/axis_steps_per_unit[X_AXIS]);
  154. LCD_MESSAGEPGM(MSG_ENDSTOPS_HIT "X");
  155. }
  156. if(endstop_y_hit) {
  157. SERIAL_ECHOPAIR(" Y:",(float)endstops_trigsteps[Y_AXIS]/axis_steps_per_unit[Y_AXIS]);
  158. LCD_MESSAGEPGM(MSG_ENDSTOPS_HIT "Y");
  159. }
  160. if(endstop_z_hit) {
  161. SERIAL_ECHOPAIR(" Z:",(float)endstops_trigsteps[Z_AXIS]/axis_steps_per_unit[Z_AXIS]);
  162. LCD_MESSAGEPGM(MSG_ENDSTOPS_HIT "Z");
  163. }
  164. SERIAL_ECHOLN("");
  165. endstop_x_hit=false;
  166. endstop_y_hit=false;
  167. endstop_z_hit=false;
  168. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  169. if (abort_on_endstop_hit)
  170. {
  171. card.sdprinting = false;
  172. card.closefile();
  173. quickStop();
  174. setTargetHotend0(0);
  175. setTargetHotend1(0);
  176. setTargetHotend2(0);
  177. }
  178. #endif
  179. }
  180. }
  181. void endstops_hit_on_purpose()
  182. {
  183. endstop_x_hit=false;
  184. endstop_y_hit=false;
  185. endstop_z_hit=false;
  186. }
  187. void enable_endstops(bool check)
  188. {
  189. check_endstops = check;
  190. }
  191. // __________________________
  192. // /| |\ _________________ ^
  193. // / | | \ /| |\ |
  194. // / | | \ / | | \ s
  195. // / | | | | | \ p
  196. // / | | | | | \ e
  197. // +-----+------------------------+---+--+---------------+----+ e
  198. // | BLOCK 1 | BLOCK 2 | d
  199. //
  200. // time ----->
  201. //
  202. // The trapezoid is the shape the speed curve over time. It starts at block->initial_rate, accelerates
  203. // first block->accelerate_until step_events_completed, then keeps going at constant speed until
  204. // step_events_completed reaches block->decelerate_after after which it decelerates until the trapezoid generator is reset.
  205. // The slope of acceleration is calculated with the leib ramp alghorithm.
  206. void st_wake_up() {
  207. // TCNT1 = 0;
  208. ENABLE_STEPPER_DRIVER_INTERRUPT();
  209. }
  210. void step_wait(){
  211. for(int8_t i=0; i < 6; i++){
  212. }
  213. }
  214. FORCE_INLINE unsigned short calc_timer(unsigned short step_rate) {
  215. unsigned short timer;
  216. if(step_rate > MAX_STEP_FREQUENCY) step_rate = MAX_STEP_FREQUENCY;
  217. if(step_rate > 20000) { // If steprate > 20kHz >> step 4 times
  218. step_rate = (step_rate >> 2)&0x3fff;
  219. step_loops = 4;
  220. }
  221. else if(step_rate > 10000) { // If steprate > 10kHz >> step 2 times
  222. step_rate = (step_rate >> 1)&0x7fff;
  223. step_loops = 2;
  224. }
  225. else {
  226. step_loops = 1;
  227. }
  228. if(step_rate < (F_CPU/500000)) step_rate = (F_CPU/500000);
  229. step_rate -= (F_CPU/500000); // Correct for minimal speed
  230. if(step_rate >= (8*256)){ // higher step rate
  231. unsigned short table_address = (unsigned short)&speed_lookuptable_fast[(unsigned char)(step_rate>>8)][0];
  232. unsigned char tmp_step_rate = (step_rate & 0x00ff);
  233. unsigned short gain = (unsigned short)pgm_read_word_near(table_address+2);
  234. MultiU16X8toH16(timer, tmp_step_rate, gain);
  235. timer = (unsigned short)pgm_read_word_near(table_address) - timer;
  236. }
  237. else { // lower step rates
  238. unsigned short table_address = (unsigned short)&speed_lookuptable_slow[0][0];
  239. table_address += ((step_rate)>>1) & 0xfffc;
  240. timer = (unsigned short)pgm_read_word_near(table_address);
  241. timer -= (((unsigned short)pgm_read_word_near(table_address+2) * (unsigned char)(step_rate & 0x0007))>>3);
  242. }
  243. if(timer < 100) { timer = 100; MYSERIAL.print(MSG_STEPPER_TOO_HIGH); MYSERIAL.println(step_rate); }//(20kHz this should never happen)
  244. return timer;
  245. }
  246. // Initializes the trapezoid generator from the current block. Called whenever a new
  247. // block begins.
  248. FORCE_INLINE void trapezoid_generator_reset() {
  249. #ifdef ADVANCE
  250. advance = current_block->initial_advance;
  251. final_advance = current_block->final_advance;
  252. // Do E steps + advance steps
  253. e_steps[current_block->active_extruder] += ((advance >>8) - old_advance);
  254. old_advance = advance >>8;
  255. #endif
  256. deceleration_time = 0;
  257. // step_rate to timer interval
  258. OCR1A_nominal = calc_timer(current_block->nominal_rate);
  259. // make a note of the number of step loops required at nominal speed
  260. step_loops_nominal = step_loops;
  261. acc_step_rate = current_block->initial_rate;
  262. acceleration_time = calc_timer(acc_step_rate);
  263. OCR1A = acceleration_time;
  264. // SERIAL_ECHO_START;
  265. // SERIAL_ECHOPGM("advance :");
  266. // SERIAL_ECHO(current_block->advance/256.0);
  267. // SERIAL_ECHOPGM("advance rate :");
  268. // SERIAL_ECHO(current_block->advance_rate/256.0);
  269. // SERIAL_ECHOPGM("initial advance :");
  270. // SERIAL_ECHO(current_block->initial_advance/256.0);
  271. // SERIAL_ECHOPGM("final advance :");
  272. // SERIAL_ECHOLN(current_block->final_advance/256.0);
  273. }
  274. // "The Stepper Driver Interrupt" - This timer interrupt is the workhorse.
  275. // It pops blocks from the block_buffer and executes them by pulsing the stepper pins appropriately.
  276. ISR(TIMER1_COMPA_vect)
  277. {
  278. // If there is no current block, attempt to pop one from the buffer
  279. if (current_block == NULL) {
  280. // Anything in the buffer?
  281. current_block = plan_get_current_block();
  282. if (current_block != NULL) {
  283. current_block->busy = true;
  284. trapezoid_generator_reset();
  285. counter_x = -(current_block->step_event_count >> 1);
  286. counter_y = counter_x;
  287. counter_z = counter_x;
  288. counter_e = counter_x;
  289. step_events_completed = 0;
  290. #ifdef Z_LATE_ENABLE
  291. if(current_block->steps_z > 0) {
  292. enable_z();
  293. OCR1A = 2000; //1ms wait
  294. return;
  295. }
  296. #endif
  297. // #ifdef ADVANCE
  298. // e_steps[current_block->active_extruder] = 0;
  299. // #endif
  300. }
  301. else {
  302. OCR1A=2000; // 1kHz.
  303. }
  304. }
  305. if (current_block != NULL) {
  306. // Set directions TO DO This should be done once during init of trapezoid. Endstops -> interrupt
  307. out_bits = current_block->direction_bits;
  308. // Set the direction bits (X_AXIS=A_AXIS and Y_AXIS=B_AXIS for COREXY)
  309. if((out_bits & (1<<X_AXIS))!=0){
  310. WRITE(X_DIR_PIN, INVERT_X_DIR);
  311. count_direction[X_AXIS]=-1;
  312. }
  313. else{
  314. WRITE(X_DIR_PIN, !INVERT_X_DIR);
  315. count_direction[X_AXIS]=1;
  316. }
  317. if((out_bits & (1<<Y_AXIS))!=0){
  318. WRITE(Y_DIR_PIN, INVERT_Y_DIR);
  319. #ifdef Y_DUAL_STEPPER_DRIVERS
  320. WRITE(Y2_DIR_PIN, !(INVERT_Y_DIR == INVERT_Y2_VS_Y_DIR));
  321. #endif
  322. count_direction[Y_AXIS]=-1;
  323. }
  324. else{
  325. WRITE(Y_DIR_PIN, !INVERT_Y_DIR);
  326. #ifdef Y_DUAL_STEPPER_DRIVERS
  327. WRITE(Y2_DIR_PIN, (INVERT_Y_DIR == INVERT_Y2_VS_Y_DIR));
  328. #endif
  329. count_direction[Y_AXIS]=1;
  330. }
  331. // Set direction en check limit switches
  332. #ifndef COREXY
  333. if ((out_bits & (1<<X_AXIS)) != 0) { // stepping along -X axis
  334. #else
  335. if ((((out_bits & (1<<X_AXIS)) != 0)&&(out_bits & (1<<Y_AXIS)) != 0)) { //-X occurs for -A and -B
  336. #endif
  337. CHECK_ENDSTOPS
  338. {
  339. #if defined(X_MIN_PIN) && X_MIN_PIN > -1
  340. bool x_min_endstop=(READ(X_MIN_PIN) != X_ENDSTOPS_INVERTING);
  341. if(x_min_endstop && old_x_min_endstop && (current_block->steps_x > 0)) {
  342. endstops_trigsteps[X_AXIS] = count_position[X_AXIS];
  343. endstop_x_hit=true;
  344. step_events_completed = current_block->step_event_count;
  345. }
  346. old_x_min_endstop = x_min_endstop;
  347. #endif
  348. }
  349. }
  350. else { // +direction
  351. CHECK_ENDSTOPS
  352. {
  353. #if defined(X_MAX_PIN) && X_MAX_PIN > -1
  354. bool x_max_endstop=(READ(X_MAX_PIN) != X_ENDSTOPS_INVERTING);
  355. if(x_max_endstop && old_x_max_endstop && (current_block->steps_x > 0)){
  356. endstops_trigsteps[X_AXIS] = count_position[X_AXIS];
  357. endstop_x_hit=true;
  358. step_events_completed = current_block->step_event_count;
  359. }
  360. old_x_max_endstop = x_max_endstop;
  361. #endif
  362. }
  363. }
  364. #ifndef COREXY
  365. if ((out_bits & (1<<Y_AXIS)) != 0) { // -direction
  366. #else
  367. if ((((out_bits & (1<<X_AXIS)) != 0)&&(out_bits & (1<<Y_AXIS)) == 0)) { // -Y occurs for -A and +B
  368. #endif
  369. CHECK_ENDSTOPS
  370. {
  371. #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
  372. bool y_min_endstop=(READ(Y_MIN_PIN) != Y_ENDSTOPS_INVERTING);
  373. if(y_min_endstop && old_y_min_endstop && (current_block->steps_y > 0)) {
  374. endstops_trigsteps[Y_AXIS] = count_position[Y_AXIS];
  375. endstop_y_hit=true;
  376. step_events_completed = current_block->step_event_count;
  377. }
  378. old_y_min_endstop = y_min_endstop;
  379. #endif
  380. }
  381. }
  382. else { // +direction
  383. CHECK_ENDSTOPS
  384. {
  385. #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
  386. bool y_max_endstop=(READ(Y_MAX_PIN) != Y_ENDSTOPS_INVERTING);
  387. if(y_max_endstop && old_y_max_endstop && (current_block->steps_y > 0)){
  388. endstops_trigsteps[Y_AXIS] = count_position[Y_AXIS];
  389. endstop_y_hit=true;
  390. step_events_completed = current_block->step_event_count;
  391. }
  392. old_y_max_endstop = y_max_endstop;
  393. #endif
  394. }
  395. }
  396. if ((out_bits & (1<<Z_AXIS)) != 0) { // -direction
  397. WRITE(Z_DIR_PIN,INVERT_Z_DIR);
  398. #ifdef Z_DUAL_STEPPER_DRIVERS
  399. WRITE(Z2_DIR_PIN,INVERT_Z_DIR);
  400. #endif
  401. count_direction[Z_AXIS]=-1;
  402. CHECK_ENDSTOPS
  403. {
  404. #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
  405. bool z_min_endstop=(READ(Z_MIN_PIN) != Z_ENDSTOPS_INVERTING);
  406. if(z_min_endstop && old_z_min_endstop && (current_block->steps_z > 0)) {
  407. endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS];
  408. endstop_z_hit=true;
  409. step_events_completed = current_block->step_event_count;
  410. }
  411. old_z_min_endstop = z_min_endstop;
  412. #endif
  413. }
  414. }
  415. else { // +direction
  416. WRITE(Z_DIR_PIN,!INVERT_Z_DIR);
  417. #ifdef Z_DUAL_STEPPER_DRIVERS
  418. WRITE(Z2_DIR_PIN,!INVERT_Z_DIR);
  419. #endif
  420. count_direction[Z_AXIS]=1;
  421. CHECK_ENDSTOPS
  422. {
  423. #if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
  424. bool z_max_endstop=(READ(Z_MAX_PIN) != Z_ENDSTOPS_INVERTING);
  425. if(z_max_endstop && old_z_max_endstop && (current_block->steps_z > 0)) {
  426. endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS];
  427. endstop_z_hit=true;
  428. step_events_completed = current_block->step_event_count;
  429. }
  430. old_z_max_endstop = z_max_endstop;
  431. #endif
  432. }
  433. }
  434. #ifndef ADVANCE
  435. if ((out_bits & (1<<E_AXIS)) != 0) { // -direction
  436. REV_E_DIR();
  437. count_direction[E_AXIS]=-1;
  438. }
  439. else { // +direction
  440. NORM_E_DIR();
  441. count_direction[E_AXIS]=1;
  442. }
  443. #endif //!ADVANCE
  444. for(int8_t i=0; i < step_loops; i++) { // Take multiple steps per interrupt (For high speed moves)
  445. #ifndef AT90USB
  446. MSerial.checkRx(); // Check for serial chars.
  447. #endif
  448. #ifdef ADVANCE
  449. counter_e += current_block->steps_e;
  450. if (counter_e > 0) {
  451. counter_e -= current_block->step_event_count;
  452. if ((out_bits & (1<<E_AXIS)) != 0) { // - direction
  453. e_steps[current_block->active_extruder]--;
  454. }
  455. else {
  456. e_steps[current_block->active_extruder]++;
  457. }
  458. }
  459. #endif //ADVANCE
  460. counter_x += current_block->steps_x;
  461. if (counter_x > 0) {
  462. WRITE(X_STEP_PIN, !INVERT_X_STEP_PIN);
  463. counter_x -= current_block->step_event_count;
  464. count_position[X_AXIS]+=count_direction[X_AXIS];
  465. WRITE(X_STEP_PIN, INVERT_X_STEP_PIN);
  466. }
  467. counter_y += current_block->steps_y;
  468. if (counter_y > 0) {
  469. WRITE(Y_STEP_PIN, !INVERT_Y_STEP_PIN);
  470. #ifdef Y_DUAL_STEPPER_DRIVERS
  471. WRITE(Y2_STEP_PIN, !INVERT_Y_STEP_PIN);
  472. #endif
  473. counter_y -= current_block->step_event_count;
  474. count_position[Y_AXIS]+=count_direction[Y_AXIS];
  475. WRITE(Y_STEP_PIN, INVERT_Y_STEP_PIN);
  476. #ifdef Y_DUAL_STEPPER_DRIVERS
  477. WRITE(Y2_STEP_PIN, INVERT_Y_STEP_PIN);
  478. #endif
  479. }
  480. counter_z += current_block->steps_z;
  481. if (counter_z > 0) {
  482. WRITE(Z_STEP_PIN, !INVERT_Z_STEP_PIN);
  483. #ifdef Z_DUAL_STEPPER_DRIVERS
  484. WRITE(Z2_STEP_PIN, !INVERT_Z_STEP_PIN);
  485. #endif
  486. counter_z -= current_block->step_event_count;
  487. count_position[Z_AXIS]+=count_direction[Z_AXIS];
  488. WRITE(Z_STEP_PIN, INVERT_Z_STEP_PIN);
  489. #ifdef Z_DUAL_STEPPER_DRIVERS
  490. WRITE(Z2_STEP_PIN, INVERT_Z_STEP_PIN);
  491. #endif
  492. }
  493. #ifndef ADVANCE
  494. counter_e += current_block->steps_e;
  495. if (counter_e > 0) {
  496. WRITE_E_STEP(!INVERT_E_STEP_PIN);
  497. counter_e -= current_block->step_event_count;
  498. count_position[E_AXIS]+=count_direction[E_AXIS];
  499. WRITE_E_STEP(INVERT_E_STEP_PIN);
  500. }
  501. #endif //!ADVANCE
  502. step_events_completed += 1;
  503. if(step_events_completed >= current_block->step_event_count) break;
  504. }
  505. // Calculare new timer value
  506. unsigned short timer;
  507. unsigned short step_rate;
  508. if (step_events_completed <= (unsigned long int)current_block->accelerate_until) {
  509. MultiU24X24toH16(acc_step_rate, acceleration_time, current_block->acceleration_rate);
  510. acc_step_rate += current_block->initial_rate;
  511. // upper limit
  512. if(acc_step_rate > current_block->nominal_rate)
  513. acc_step_rate = current_block->nominal_rate;
  514. // step_rate to timer interval
  515. timer = calc_timer(acc_step_rate);
  516. OCR1A = timer;
  517. acceleration_time += timer;
  518. #ifdef ADVANCE
  519. for(int8_t i=0; i < step_loops; i++) {
  520. advance += advance_rate;
  521. }
  522. //if(advance > current_block->advance) advance = current_block->advance;
  523. // Do E steps + advance steps
  524. e_steps[current_block->active_extruder] += ((advance >>8) - old_advance);
  525. old_advance = advance >>8;
  526. #endif
  527. }
  528. else if (step_events_completed > (unsigned long int)current_block->decelerate_after) {
  529. MultiU24X24toH16(step_rate, deceleration_time, current_block->acceleration_rate);
  530. if(step_rate > acc_step_rate) { // Check step_rate stays positive
  531. step_rate = current_block->final_rate;
  532. }
  533. else {
  534. step_rate = acc_step_rate - step_rate; // Decelerate from aceleration end point.
  535. }
  536. // lower limit
  537. if(step_rate < current_block->final_rate)
  538. step_rate = current_block->final_rate;
  539. // step_rate to timer interval
  540. timer = calc_timer(step_rate);
  541. OCR1A = timer;
  542. deceleration_time += timer;
  543. #ifdef ADVANCE
  544. for(int8_t i=0; i < step_loops; i++) {
  545. advance -= advance_rate;
  546. }
  547. if(advance < final_advance) advance = final_advance;
  548. // Do E steps + advance steps
  549. e_steps[current_block->active_extruder] += ((advance >>8) - old_advance);
  550. old_advance = advance >>8;
  551. #endif //ADVANCE
  552. }
  553. else {
  554. OCR1A = OCR1A_nominal;
  555. // ensure we're running at the correct step rate, even if we just came off an acceleration
  556. step_loops = step_loops_nominal;
  557. }
  558. // If current block is finished, reset pointer
  559. if (step_events_completed >= current_block->step_event_count) {
  560. current_block = NULL;
  561. plan_discard_current_block();
  562. }
  563. }
  564. }
  565. #ifdef ADVANCE
  566. unsigned char old_OCR0A;
  567. // Timer interrupt for E. e_steps is set in the main routine;
  568. // Timer 0 is shared with millies
  569. ISR(TIMER0_COMPA_vect)
  570. {
  571. old_OCR0A += 52; // ~10kHz interrupt (250000 / 26 = 9615kHz)
  572. OCR0A = old_OCR0A;
  573. // Set E direction (Depends on E direction + advance)
  574. for(unsigned char i=0; i<4;i++) {
  575. if (e_steps[0] != 0) {
  576. WRITE(E0_STEP_PIN, INVERT_E_STEP_PIN);
  577. if (e_steps[0] < 0) {
  578. WRITE(E0_DIR_PIN, INVERT_E0_DIR);
  579. e_steps[0]++;
  580. WRITE(E0_STEP_PIN, !INVERT_E_STEP_PIN);
  581. }
  582. else if (e_steps[0] > 0) {
  583. WRITE(E0_DIR_PIN, !INVERT_E0_DIR);
  584. e_steps[0]--;
  585. WRITE(E0_STEP_PIN, !INVERT_E_STEP_PIN);
  586. }
  587. }
  588. #if EXTRUDERS > 1
  589. if (e_steps[1] != 0) {
  590. WRITE(E1_STEP_PIN, INVERT_E_STEP_PIN);
  591. if (e_steps[1] < 0) {
  592. WRITE(E1_DIR_PIN, INVERT_E1_DIR);
  593. e_steps[1]++;
  594. WRITE(E1_STEP_PIN, !INVERT_E_STEP_PIN);
  595. }
  596. else if (e_steps[1] > 0) {
  597. WRITE(E1_DIR_PIN, !INVERT_E1_DIR);
  598. e_steps[1]--;
  599. WRITE(E1_STEP_PIN, !INVERT_E_STEP_PIN);
  600. }
  601. }
  602. #endif
  603. #if EXTRUDERS > 2
  604. if (e_steps[2] != 0) {
  605. WRITE(E2_STEP_PIN, INVERT_E_STEP_PIN);
  606. if (e_steps[2] < 0) {
  607. WRITE(E2_DIR_PIN, INVERT_E2_DIR);
  608. e_steps[2]++;
  609. WRITE(E2_STEP_PIN, !INVERT_E_STEP_PIN);
  610. }
  611. else if (e_steps[2] > 0) {
  612. WRITE(E2_DIR_PIN, !INVERT_E2_DIR);
  613. e_steps[2]--;
  614. WRITE(E2_STEP_PIN, !INVERT_E_STEP_PIN);
  615. }
  616. }
  617. #endif
  618. }
  619. }
  620. #endif // ADVANCE
  621. void st_init()
  622. {
  623. digipot_init(); //Initialize Digipot Motor Current
  624. microstep_init(); //Initialize Microstepping Pins
  625. //Initialize Dir Pins
  626. #if defined(X_DIR_PIN) && X_DIR_PIN > -1
  627. SET_OUTPUT(X_DIR_PIN);
  628. #endif
  629. #if defined(Y_DIR_PIN) && Y_DIR_PIN > -1
  630. SET_OUTPUT(Y_DIR_PIN);
  631. #if defined(Y_DUAL_STEPPER_DRIVERS) && defined(Y2_DIR_PIN) && (Y2_DIR_PIN > -1)
  632. SET_OUTPUT(Y2_DIR_PIN);
  633. #endif
  634. #endif
  635. #if defined(Z_DIR_PIN) && Z_DIR_PIN > -1
  636. SET_OUTPUT(Z_DIR_PIN);
  637. #if defined(Z_DUAL_STEPPER_DRIVERS) && defined(Z2_DIR_PIN) && (Z2_DIR_PIN > -1)
  638. SET_OUTPUT(Z2_DIR_PIN);
  639. #endif
  640. #endif
  641. #if defined(E0_DIR_PIN) && E0_DIR_PIN > -1
  642. SET_OUTPUT(E0_DIR_PIN);
  643. #endif
  644. #if defined(E1_DIR_PIN) && (E1_DIR_PIN > -1)
  645. SET_OUTPUT(E1_DIR_PIN);
  646. #endif
  647. #if defined(E2_DIR_PIN) && (E2_DIR_PIN > -1)
  648. SET_OUTPUT(E2_DIR_PIN);
  649. #endif
  650. //Initialize Enable Pins - steppers default to disabled.
  651. #if defined(X_ENABLE_PIN) && X_ENABLE_PIN > -1
  652. SET_OUTPUT(X_ENABLE_PIN);
  653. if(!X_ENABLE_ON) WRITE(X_ENABLE_PIN,HIGH);
  654. #endif
  655. #if defined(Y_ENABLE_PIN) && Y_ENABLE_PIN > -1
  656. SET_OUTPUT(Y_ENABLE_PIN);
  657. if(!Y_ENABLE_ON) WRITE(Y_ENABLE_PIN,HIGH);
  658. #if defined(Y_DUAL_STEPPER_DRIVERS) && defined(Y2_ENABLE_PIN) && (Y2_ENABLE_PIN > -1)
  659. SET_OUTPUT(Y2_ENABLE_PIN);
  660. if(!Y_ENABLE_ON) WRITE(Y2_ENABLE_PIN,HIGH);
  661. #endif
  662. #endif
  663. #if defined(Z_ENABLE_PIN) && Z_ENABLE_PIN > -1
  664. SET_OUTPUT(Z_ENABLE_PIN);
  665. if(!Z_ENABLE_ON) WRITE(Z_ENABLE_PIN,HIGH);
  666. #if defined(Z_DUAL_STEPPER_DRIVERS) && defined(Z2_ENABLE_PIN) && (Z2_ENABLE_PIN > -1)
  667. SET_OUTPUT(Z2_ENABLE_PIN);
  668. if(!Z_ENABLE_ON) WRITE(Z2_ENABLE_PIN,HIGH);
  669. #endif
  670. #endif
  671. #if defined(E0_ENABLE_PIN) && (E0_ENABLE_PIN > -1)
  672. SET_OUTPUT(E0_ENABLE_PIN);
  673. if(!E_ENABLE_ON) WRITE(E0_ENABLE_PIN,HIGH);
  674. #endif
  675. #if defined(E1_ENABLE_PIN) && (E1_ENABLE_PIN > -1)
  676. SET_OUTPUT(E1_ENABLE_PIN);
  677. if(!E_ENABLE_ON) WRITE(E1_ENABLE_PIN,HIGH);
  678. #endif
  679. #if defined(E2_ENABLE_PIN) && (E2_ENABLE_PIN > -1)
  680. SET_OUTPUT(E2_ENABLE_PIN);
  681. if(!E_ENABLE_ON) WRITE(E2_ENABLE_PIN,HIGH);
  682. #endif
  683. //endstops and pullups
  684. #if defined(X_MIN_PIN) && X_MIN_PIN > -1
  685. SET_INPUT(X_MIN_PIN);
  686. #ifdef ENDSTOPPULLUP_XMIN
  687. WRITE(X_MIN_PIN,HIGH);
  688. #endif
  689. #endif
  690. #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
  691. SET_INPUT(Y_MIN_PIN);
  692. #ifdef ENDSTOPPULLUP_YMIN
  693. WRITE(Y_MIN_PIN,HIGH);
  694. #endif
  695. #endif
  696. #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
  697. SET_INPUT(Z_MIN_PIN);
  698. #ifdef ENDSTOPPULLUP_ZMIN
  699. WRITE(Z_MIN_PIN,HIGH);
  700. #endif
  701. #endif
  702. #if defined(X_MAX_PIN) && X_MAX_PIN > -1
  703. SET_INPUT(X_MAX_PIN);
  704. #ifdef ENDSTOPPULLUP_XMAX
  705. WRITE(X_MAX_PIN,HIGH);
  706. #endif
  707. #endif
  708. #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
  709. SET_INPUT(Y_MAX_PIN);
  710. #ifdef ENDSTOPPULLUP_YMAX
  711. WRITE(Y_MAX_PIN,HIGH);
  712. #endif
  713. #endif
  714. #if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
  715. SET_INPUT(Z_MAX_PIN);
  716. #ifdef ENDSTOPPULLUP_ZMAX
  717. WRITE(Z_MAX_PIN,HIGH);
  718. #endif
  719. #endif
  720. //Initialize Step Pins
  721. #if defined(X_STEP_PIN) && (X_STEP_PIN > -1)
  722. SET_OUTPUT(X_STEP_PIN);
  723. WRITE(X_STEP_PIN,INVERT_X_STEP_PIN);
  724. disable_x();
  725. #endif
  726. #if defined(Y_STEP_PIN) && (Y_STEP_PIN > -1)
  727. SET_OUTPUT(Y_STEP_PIN);
  728. WRITE(Y_STEP_PIN,INVERT_Y_STEP_PIN);
  729. #if defined(Y_DUAL_STEPPER_DRIVERS) && defined(Y2_STEP_PIN) && (Y2_STEP_PIN > -1)
  730. SET_OUTPUT(Y2_STEP_PIN);
  731. WRITE(Y2_STEP_PIN,INVERT_Y_STEP_PIN);
  732. #endif
  733. disable_y();
  734. #endif
  735. #if defined(Z_STEP_PIN) && (Z_STEP_PIN > -1)
  736. SET_OUTPUT(Z_STEP_PIN);
  737. WRITE(Z_STEP_PIN,INVERT_Z_STEP_PIN);
  738. #if defined(Z_DUAL_STEPPER_DRIVERS) && defined(Z2_STEP_PIN) && (Z2_STEP_PIN > -1)
  739. SET_OUTPUT(Z2_STEP_PIN);
  740. WRITE(Z2_STEP_PIN,INVERT_Z_STEP_PIN);
  741. #endif
  742. disable_z();
  743. #endif
  744. #if defined(E0_STEP_PIN) && (E0_STEP_PIN > -1)
  745. SET_OUTPUT(E0_STEP_PIN);
  746. WRITE(E0_STEP_PIN,INVERT_E_STEP_PIN);
  747. disable_e0();
  748. #endif
  749. #if defined(E1_STEP_PIN) && (E1_STEP_PIN > -1)
  750. SET_OUTPUT(E1_STEP_PIN);
  751. WRITE(E1_STEP_PIN,INVERT_E_STEP_PIN);
  752. disable_e1();
  753. #endif
  754. #if defined(E2_STEP_PIN) && (E2_STEP_PIN > -1)
  755. SET_OUTPUT(E2_STEP_PIN);
  756. WRITE(E2_STEP_PIN,INVERT_E_STEP_PIN);
  757. disable_e2();
  758. #endif
  759. // waveform generation = 0100 = CTC
  760. TCCR1B &= ~(1<<WGM13);
  761. TCCR1B |= (1<<WGM12);
  762. TCCR1A &= ~(1<<WGM11);
  763. TCCR1A &= ~(1<<WGM10);
  764. // output mode = 00 (disconnected)
  765. TCCR1A &= ~(3<<COM1A0);
  766. TCCR1A &= ~(3<<COM1B0);
  767. // Set the timer pre-scaler
  768. // Generally we use a divider of 8, resulting in a 2MHz timer
  769. // frequency on a 16MHz MCU. If you are going to change this, be
  770. // sure to regenerate speed_lookuptable.h with
  771. // create_speed_lookuptable.py
  772. TCCR1B = (TCCR1B & ~(0x07<<CS10)) | (2<<CS10);
  773. OCR1A = 0x4000;
  774. TCNT1 = 0;
  775. ENABLE_STEPPER_DRIVER_INTERRUPT();
  776. #ifdef ADVANCE
  777. #if defined(TCCR0A) && defined(WGM01)
  778. TCCR0A &= ~(1<<WGM01);
  779. TCCR0A &= ~(1<<WGM00);
  780. #endif
  781. e_steps[0] = 0;
  782. e_steps[1] = 0;
  783. e_steps[2] = 0;
  784. TIMSK0 |= (1<<OCIE0A);
  785. #endif //ADVANCE
  786. enable_endstops(true); // Start with endstops active. After homing they can be disabled
  787. sei();
  788. }
  789. // Block until all buffered steps are executed
  790. void st_synchronize()
  791. {
  792. while( blocks_queued()) {
  793. manage_heater();
  794. manage_inactivity();
  795. lcd_update();
  796. }
  797. }
  798. void st_set_position(const long &x, const long &y, const long &z, const long &e)
  799. {
  800. CRITICAL_SECTION_START;
  801. count_position[X_AXIS] = x;
  802. count_position[Y_AXIS] = y;
  803. count_position[Z_AXIS] = z;
  804. count_position[E_AXIS] = e;
  805. CRITICAL_SECTION_END;
  806. }
  807. void st_set_e_position(const long &e)
  808. {
  809. CRITICAL_SECTION_START;
  810. count_position[E_AXIS] = e;
  811. CRITICAL_SECTION_END;
  812. }
  813. long st_get_position(uint8_t axis)
  814. {
  815. long count_pos;
  816. CRITICAL_SECTION_START;
  817. count_pos = count_position[axis];
  818. CRITICAL_SECTION_END;
  819. return count_pos;
  820. }
  821. void finishAndDisableSteppers()
  822. {
  823. st_synchronize();
  824. disable_x();
  825. disable_y();
  826. disable_z();
  827. disable_e0();
  828. disable_e1();
  829. disable_e2();
  830. }
  831. void quickStop()
  832. {
  833. DISABLE_STEPPER_DRIVER_INTERRUPT();
  834. while(blocks_queued())
  835. plan_discard_current_block();
  836. current_block = NULL;
  837. ENABLE_STEPPER_DRIVER_INTERRUPT();
  838. }
  839. void digitalPotWrite(int address, int value) // From Arduino DigitalPotControl example
  840. {
  841. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  842. digitalWrite(DIGIPOTSS_PIN,LOW); // take the SS pin low to select the chip
  843. SPI.transfer(address); // send in the address and value via SPI:
  844. SPI.transfer(value);
  845. digitalWrite(DIGIPOTSS_PIN,HIGH); // take the SS pin high to de-select the chip:
  846. //delay(10);
  847. #endif
  848. }
  849. void digipot_init() //Initialize Digipot Motor Current
  850. {
  851. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  852. const uint8_t digipot_motor_current[] = DIGIPOT_MOTOR_CURRENT;
  853. SPI.begin();
  854. pinMode(DIGIPOTSS_PIN, OUTPUT);
  855. for(int i=0;i<=4;i++)
  856. //digitalPotWrite(digipot_ch[i], digipot_motor_current[i]);
  857. digipot_current(i,digipot_motor_current[i]);
  858. #endif
  859. }
  860. void digipot_current(uint8_t driver, int current)
  861. {
  862. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  863. const uint8_t digipot_ch[] = DIGIPOT_CHANNELS;
  864. digitalPotWrite(digipot_ch[driver], current);
  865. #endif
  866. }
  867. void microstep_init()
  868. {
  869. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  870. const uint8_t microstep_modes[] = MICROSTEP_MODES;
  871. pinMode(X_MS2_PIN,OUTPUT);
  872. pinMode(Y_MS2_PIN,OUTPUT);
  873. pinMode(Z_MS2_PIN,OUTPUT);
  874. pinMode(E0_MS2_PIN,OUTPUT);
  875. pinMode(E1_MS2_PIN,OUTPUT);
  876. for(int i=0;i<=4;i++) microstep_mode(i,microstep_modes[i]);
  877. #endif
  878. }
  879. void microstep_ms(uint8_t driver, int8_t ms1, int8_t ms2)
  880. {
  881. if(ms1 > -1) switch(driver)
  882. {
  883. case 0: digitalWrite( X_MS1_PIN,ms1); break;
  884. case 1: digitalWrite( Y_MS1_PIN,ms1); break;
  885. case 2: digitalWrite( Z_MS1_PIN,ms1); break;
  886. case 3: digitalWrite(E0_MS1_PIN,ms1); break;
  887. case 4: digitalWrite(E1_MS1_PIN,ms1); break;
  888. }
  889. if(ms2 > -1) switch(driver)
  890. {
  891. case 0: digitalWrite( X_MS2_PIN,ms2); break;
  892. case 1: digitalWrite( Y_MS2_PIN,ms2); break;
  893. case 2: digitalWrite( Z_MS2_PIN,ms2); break;
  894. case 3: digitalWrite(E0_MS2_PIN,ms2); break;
  895. case 4: digitalWrite(E1_MS2_PIN,ms2); break;
  896. }
  897. }
  898. void microstep_mode(uint8_t driver, uint8_t stepping_mode)
  899. {
  900. switch(stepping_mode)
  901. {
  902. case 1: microstep_ms(driver,MICROSTEP1); break;
  903. case 2: microstep_ms(driver,MICROSTEP2); break;
  904. case 4: microstep_ms(driver,MICROSTEP4); break;
  905. case 8: microstep_ms(driver,MICROSTEP8); break;
  906. case 16: microstep_ms(driver,MICROSTEP16); break;
  907. }
  908. }
  909. void microstep_readings()
  910. {
  911. SERIAL_PROTOCOLPGM("MS1,MS2 Pins\n");
  912. SERIAL_PROTOCOLPGM("X: ");
  913. SERIAL_PROTOCOL( digitalRead(X_MS1_PIN));
  914. SERIAL_PROTOCOLLN( digitalRead(X_MS2_PIN));
  915. SERIAL_PROTOCOLPGM("Y: ");
  916. SERIAL_PROTOCOL( digitalRead(Y_MS1_PIN));
  917. SERIAL_PROTOCOLLN( digitalRead(Y_MS2_PIN));
  918. SERIAL_PROTOCOLPGM("Z: ");
  919. SERIAL_PROTOCOL( digitalRead(Z_MS1_PIN));
  920. SERIAL_PROTOCOLLN( digitalRead(Z_MS2_PIN));
  921. SERIAL_PROTOCOLPGM("E0: ");
  922. SERIAL_PROTOCOL( digitalRead(E0_MS1_PIN));
  923. SERIAL_PROTOCOLLN( digitalRead(E0_MS2_PIN));
  924. SERIAL_PROTOCOLPGM("E1: ");
  925. SERIAL_PROTOCOL( digitalRead(E1_MS1_PIN));
  926. SERIAL_PROTOCOLLN( digitalRead(E1_MS2_PIN));
  927. }