My Marlin configs for Fabrikator Mini and CTC i3 Pro B
Du kan inte välja fler än 25 ämnen Ämnen måste starta med en bokstav eller siffra, kan innehålla bindestreck ('-') och vara max 35 tecken långa.

Marlin_main.cpp 261KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997799879998000800180028003800480058006800780088009801080118012801380148015801680178018801980208021802280238024802580268027802880298030803180328033803480358036803780388039804080418042804380448045804680478048804980508051805280538054805580568057805880598060806180628063806480658066806780688069807080718072807380748075807680778078807980808081808280838084808580868087808880898090809180928093809480958096809780988099810081018102810381048105810681078108810981108111811281138114811581168117811881198120812181228123812481258126812781288129813081318132813381348135813681378138813981408141814281438144814581468147814881498150815181528153815481558156815781588159816081618162816381648165816681678168816981708171817281738174817581768177817881798180818181828183818481858186818781888189819081918192819381948195819681978198819982008201820282038204820582068207820882098210821182128213821482158216821782188219822082218222822382248225822682278228822982308231823282338234823582368237823882398240824182428243824482458246824782488249825082518252825382548255825682578258825982608261826282638264826582668267826882698270827182728273827482758276827782788279828082818282828382848285828682878288828982908291829282938294829582968297829882998300830183028303830483058306830783088309831083118312831383148315831683178318831983208321832283238324832583268327832883298330833183328333833483358336833783388339834083418342834383448345834683478348834983508351835283538354835583568357835883598360836183628363836483658366836783688369837083718372837383748375837683778378837983808381838283838384838583868387838883898390839183928393839483958396839783988399840084018402840384048405840684078408840984108411841284138414841584168417841884198420842184228423
  1. /**
  2. * Marlin 3D Printer Firmware
  3. * Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
  4. *
  5. * Based on Sprinter and grbl.
  6. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  7. *
  8. * This program is free software: you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation, either version 3 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  20. *
  21. */
  22. /**
  23. *
  24. * About Marlin
  25. *
  26. * This firmware is a mashup between Sprinter and grbl.
  27. * - https://github.com/kliment/Sprinter
  28. * - https://github.com/simen/grbl/tree
  29. *
  30. * It has preliminary support for Matthew Roberts advance algorithm
  31. * - http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  32. */
  33. #include "Marlin.h"
  34. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  35. #include "vector_3.h"
  36. #if ENABLED(AUTO_BED_LEVELING_GRID)
  37. #include "qr_solve.h"
  38. #endif
  39. #endif // AUTO_BED_LEVELING_FEATURE
  40. #if ENABLED(MESH_BED_LEVELING)
  41. #include "mesh_bed_leveling.h"
  42. #endif
  43. #if ENABLED(BEZIER_CURVE_SUPPORT)
  44. #include "planner_bezier.h"
  45. #endif
  46. #include "ultralcd.h"
  47. #include "planner.h"
  48. #include "stepper.h"
  49. #include "endstops.h"
  50. #include "temperature.h"
  51. #include "cardreader.h"
  52. #include "configuration_store.h"
  53. #include "language.h"
  54. #include "pins_arduino.h"
  55. #include "math.h"
  56. #if ENABLED(USE_WATCHDOG)
  57. #include "watchdog.h"
  58. #endif
  59. #if ENABLED(BLINKM)
  60. #include "blinkm.h"
  61. #include "Wire.h"
  62. #endif
  63. #if HAS_SERVOS
  64. #include "servo.h"
  65. #endif
  66. #if HAS_DIGIPOTSS
  67. #include <SPI.h>
  68. #endif
  69. #if ENABLED(DAC_STEPPER_CURRENT)
  70. #include "stepper_dac.h"
  71. #endif
  72. #if ENABLED(EXPERIMENTAL_I2CBUS)
  73. #include "twibus.h"
  74. #endif
  75. /**
  76. * Look here for descriptions of G-codes:
  77. * - http://linuxcnc.org/handbook/gcode/g-code.html
  78. * - http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  79. *
  80. * Help us document these G-codes online:
  81. * - https://github.com/MarlinFirmware/Marlin/wiki/G-Code-in-Marlin
  82. * - http://reprap.org/wiki/G-code
  83. *
  84. * -----------------
  85. * Implemented Codes
  86. * -----------------
  87. *
  88. * "G" Codes
  89. *
  90. * G0 -> G1
  91. * G1 - Coordinated Movement X Y Z E
  92. * G2 - CW ARC
  93. * G3 - CCW ARC
  94. * G4 - Dwell S<seconds> or P<milliseconds>
  95. * G5 - Cubic B-spline with XYZE destination and IJPQ offsets
  96. * G10 - retract filament according to settings of M207
  97. * G11 - retract recover filament according to settings of M208
  98. * G20 - Set input units to inches
  99. * G21 - Set input units to millimeters
  100. * G28 - Home one or more axes
  101. * G29 - Detailed Z probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  102. * G30 - Single Z probe, probes bed at current XY location.
  103. * G31 - Dock sled (Z_PROBE_SLED only)
  104. * G32 - Undock sled (Z_PROBE_SLED only)
  105. * G90 - Use Absolute Coordinates
  106. * G91 - Use Relative Coordinates
  107. * G92 - Set current position to coordinates given
  108. *
  109. * "M" Codes
  110. *
  111. * M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
  112. * M1 - Same as M0
  113. * M17 - Enable/Power all stepper motors
  114. * M18 - Disable all stepper motors; same as M84
  115. * M20 - List SD card
  116. * M21 - Init SD card
  117. * M22 - Release SD card
  118. * M23 - Select SD file (M23 filename.g)
  119. * M24 - Start/resume SD print
  120. * M25 - Pause SD print
  121. * M26 - Set SD position in bytes (M26 S12345)
  122. * M27 - Report SD print status
  123. * M28 - Start SD write (M28 filename.g)
  124. * M29 - Stop SD write
  125. * M30 - Delete file from SD (M30 filename.g)
  126. * M31 - Output time since last M109 or SD card start to serial
  127. * M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  128. * syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  129. * Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
  130. * The '#' is necessary when calling from within sd files, as it stops buffer prereading
  131. * M33 - Get the longname version of a path
  132. * M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  133. * M48 - Measure Z_Probe repeatability. M48 [P # of points] [X position] [Y position] [V_erboseness #] [E_ngage Probe] [L # of legs of travel]
  134. * M75 - Start the print job timer
  135. * M76 - Pause the print job timer
  136. * M77 - Stop the print job timer
  137. * M78 - Show statistical information about the print jobs
  138. * M80 - Turn on Power Supply
  139. * M81 - Turn off Power Supply
  140. * M82 - Set E codes absolute (default)
  141. * M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  142. * M84 - Disable steppers until next move,
  143. * or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  144. * M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  145. * M92 - Set planner.axis_steps_per_mm - same syntax as G92
  146. * M104 - Set extruder target temp
  147. * M105 - Read current temp
  148. * M106 - Fan on
  149. * M107 - Fan off
  150. * M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  151. * Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  152. * IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  153. * M110 - Set the current line number
  154. * M111 - Set debug flags with S<mask>. See flag bits defined in Marlin.h.
  155. * M112 - Emergency stop
  156. * M113 - Get or set the timeout interval for Host Keepalive "busy" messages
  157. * M114 - Output current position to serial port
  158. * M115 - Capabilities string
  159. * M117 - Display a message on the controller screen
  160. * M119 - Output Endstop status to serial port
  161. * M120 - Enable endstop detection
  162. * M121 - Disable endstop detection
  163. * M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  164. * M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  165. * M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  166. * M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  167. * M140 - Set bed target temp
  168. * M145 - Set the heatup state H<hotend> B<bed> F<fan speed> for S<material> (0=PLA, 1=ABS)
  169. * M149 - Set temperature units
  170. * M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  171. * M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  172. * Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  173. * M200 - set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).:D<millimeters>-
  174. * M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  175. * M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  176. * M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  177. * M204 - Set default acceleration: P for Printing moves, R for Retract only (no X, Y, Z) moves and T for Travel (non printing) moves (ex. M204 P800 T3000 R9000) in mm/sec^2
  178. * M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
  179. * M206 - Set additional homing offset
  180. * M207 - Set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
  181. * M208 - Set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  182. * M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  183. * M218 - Set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  184. * M220 - Set speed factor override percentage: S<factor in percent>
  185. * M221 - Set extrude factor override percentage: S<factor in percent>
  186. * M226 - Wait until the specified pin reaches the state required: P<pin number> S<pin state>
  187. * M240 - Trigger a camera to take a photograph
  188. * M250 - Set LCD contrast C<contrast value> (value 0..63)
  189. * M280 - Set servo position absolute. P: servo index, S: angle or microseconds
  190. * M300 - Play beep sound S<frequency Hz> P<duration ms>
  191. * M301 - Set PID parameters P I and D
  192. * M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  193. * M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  194. * M304 - Set bed PID parameters P I and D
  195. * M380 - Activate solenoid on active extruder
  196. * M381 - Disable all solenoids
  197. * M400 - Finish all moves
  198. * M401 - Lower Z probe if present
  199. * M402 - Raise Z probe if present
  200. * M404 - N<dia in mm> Enter the nominal filament width (3mm, 1.75mm ) or will display nominal filament width without parameters
  201. * M405 - Turn on Filament Sensor extrusion control. Optional D<delay in cm> to set delay in centimeters between sensor and extruder
  202. * M406 - Turn off Filament Sensor extrusion control
  203. * M407 - Display measured filament diameter
  204. * M410 - Quickstop. Abort all the planned moves
  205. * M420 - Enable/Disable Mesh Leveling (with current values) S1=enable S0=disable
  206. * M421 - Set a single Z coordinate in the Mesh Leveling grid. X<mm> Y<mm> Z<mm>
  207. * M428 - Set the home_offset logically based on the current_position
  208. * M500 - Store parameters in EEPROM
  209. * M501 - Read parameters from EEPROM (if you need reset them after you changed them temporarily).
  210. * M502 - Revert to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  211. * M503 - Print the current settings (from memory not from EEPROM). Use S0 to leave off headings.
  212. * M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  213. * M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  214. * M665 - Set delta configurations: L<diagonal rod> R<delta radius> S<segments/s>
  215. * M666 - Set delta endstop adjustment
  216. * M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  217. * M851 - Set Z probe's Z offset (mm). Set to a negative value for probes that trigger below the nozzle.
  218. * M907 - Set digital trimpot motor current using axis codes.
  219. * M908 - Control digital trimpot directly.
  220. * M909 - DAC_STEPPER_CURRENT: Print digipot/DAC current value
  221. * M910 - DAC_STEPPER_CURRENT: Commit digipot/DAC value to external EEPROM via I2C
  222. * M350 - Set microstepping mode.
  223. * M351 - Toggle MS1 MS2 pins directly.
  224. *
  225. * ************ SCARA Specific - This can change to suit future G-code regulations
  226. * M360 - SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  227. * M361 - SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  228. * M362 - SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  229. * M363 - SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  230. * M364 - SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
  231. * M365 - SCARA calibration: Scaling factor, X, Y, Z axis
  232. * ************* SCARA End ***************
  233. *
  234. * ************ Custom codes - This can change to suit future G-code regulations
  235. * M100 - Watch Free Memory (For Debugging Only)
  236. * M928 - Start SD logging (M928 filename.g) - ended by M29
  237. * M999 - Restart after being stopped by error
  238. *
  239. * "T" Codes
  240. *
  241. * T0-T3 - Select a tool by index (usually an extruder) [ F<mm/min> ]
  242. *
  243. */
  244. #if ENABLED(M100_FREE_MEMORY_WATCHER)
  245. void gcode_M100();
  246. #endif
  247. #if ENABLED(SDSUPPORT)
  248. CardReader card;
  249. #endif
  250. #if ENABLED(EXPERIMENTAL_I2CBUS)
  251. TWIBus i2c;
  252. #endif
  253. bool Running = true;
  254. uint8_t marlin_debug_flags = DEBUG_NONE;
  255. static float feedrate = 1500.0, saved_feedrate;
  256. float current_position[NUM_AXIS] = { 0.0 };
  257. static float destination[NUM_AXIS] = { 0.0 };
  258. bool axis_known_position[3] = { false };
  259. bool axis_homed[3] = { false };
  260. static long gcode_N, gcode_LastN, Stopped_gcode_LastN = 0;
  261. static char* current_command, *current_command_args;
  262. static int cmd_queue_index_r = 0;
  263. static int cmd_queue_index_w = 0;
  264. static int commands_in_queue = 0;
  265. static char command_queue[BUFSIZE][MAX_CMD_SIZE];
  266. #if ENABLED(INCH_MODE_SUPPORT)
  267. float linear_unit_factor = 1.0;
  268. float volumetric_unit_factor = 1.0;
  269. #endif
  270. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  271. TempUnit input_temp_units = TEMPUNIT_C;
  272. #endif
  273. const float homing_feedrate[] = HOMING_FEEDRATE;
  274. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  275. int feedrate_multiplier = 100; //100->1 200->2
  276. int saved_feedrate_multiplier;
  277. int extruder_multiplier[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(100);
  278. bool volumetric_enabled = false;
  279. float filament_size[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(DEFAULT_NOMINAL_FILAMENT_DIA);
  280. float volumetric_multiplier[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(1.0);
  281. // The distance that XYZ has been offset by G92. Reset by G28.
  282. float position_shift[3] = { 0 };
  283. // This offset is added to the configured home position.
  284. // Set by M206, M428, or menu item. Saved to EEPROM.
  285. float home_offset[3] = { 0 };
  286. // Software Endstops. Default to configured limits.
  287. float sw_endstop_min[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  288. float sw_endstop_max[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  289. #if FAN_COUNT > 0
  290. int fanSpeeds[FAN_COUNT] = { 0 };
  291. #endif
  292. // The active extruder (tool). Set with T<extruder> command.
  293. uint8_t active_extruder = 0;
  294. // Relative Mode. Enable with G91, disable with G90.
  295. static bool relative_mode = false;
  296. bool cancel_heatup = false;
  297. const char errormagic[] PROGMEM = "Error:";
  298. const char echomagic[] PROGMEM = "echo:";
  299. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  300. static int serial_count = 0;
  301. // GCode parameter pointer used by code_seen(), code_value_float(), etc.
  302. static char* seen_pointer;
  303. // Next Immediate GCode Command pointer. NULL if none.
  304. const char* queued_commands_P = NULL;
  305. const int sensitive_pins[] = SENSITIVE_PINS; ///< Sensitive pin list for M42
  306. // Inactivity shutdown
  307. millis_t previous_cmd_ms = 0;
  308. static millis_t max_inactive_time = 0;
  309. static millis_t stepper_inactive_time = (DEFAULT_STEPPER_DEACTIVE_TIME) * 1000UL;
  310. // Print Job Timer
  311. #if ENABLED(PRINTCOUNTER)
  312. PrintCounter print_job_timer = PrintCounter();
  313. #else
  314. Stopwatch print_job_timer = Stopwatch();
  315. #endif
  316. // Buzzer
  317. #if HAS_BUZZER
  318. #if ENABLED(SPEAKER)
  319. Speaker buzzer;
  320. #else
  321. Buzzer buzzer;
  322. #endif
  323. #endif
  324. static uint8_t target_extruder;
  325. #if HAS_BED_PROBE
  326. float zprobe_zoffset = Z_PROBE_OFFSET_FROM_EXTRUDER;
  327. #endif
  328. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  329. int xy_travel_speed = XY_TRAVEL_SPEED;
  330. bool bed_leveling_in_progress = false;
  331. #endif
  332. #if ENABLED(Z_DUAL_ENDSTOPS) && DISABLED(DELTA)
  333. float z_endstop_adj = 0;
  334. #endif
  335. // Extruder offsets
  336. #if HOTENDS > 1
  337. #ifndef HOTEND_OFFSET_X
  338. #define HOTEND_OFFSET_X { 0 } // X offsets for each extruder
  339. #endif
  340. #ifndef HOTEND_OFFSET_Y
  341. #define HOTEND_OFFSET_Y { 0 } // Y offsets for each extruder
  342. #endif
  343. float hotend_offset[][HOTENDS] = {
  344. HOTEND_OFFSET_X,
  345. HOTEND_OFFSET_Y
  346. #if ENABLED(DUAL_X_CARRIAGE)
  347. , { 0 } // Z offsets for each extruder
  348. #endif
  349. };
  350. #endif
  351. #if HAS_Z_SERVO_ENDSTOP
  352. const int z_servo_angle[2] = Z_SERVO_ANGLES;
  353. #endif
  354. #if ENABLED(BARICUDA)
  355. int baricuda_valve_pressure = 0;
  356. int baricuda_e_to_p_pressure = 0;
  357. #endif
  358. #if ENABLED(FWRETRACT)
  359. bool autoretract_enabled = false;
  360. bool retracted[EXTRUDERS] = { false };
  361. bool retracted_swap[EXTRUDERS] = { false };
  362. float retract_length = RETRACT_LENGTH;
  363. float retract_length_swap = RETRACT_LENGTH_SWAP;
  364. float retract_feedrate = RETRACT_FEEDRATE;
  365. float retract_zlift = RETRACT_ZLIFT;
  366. float retract_recover_length = RETRACT_RECOVER_LENGTH;
  367. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  368. float retract_recover_feedrate = RETRACT_RECOVER_FEEDRATE;
  369. #endif // FWRETRACT
  370. #if ENABLED(ULTIPANEL) && HAS_POWER_SWITCH
  371. bool powersupply =
  372. #if ENABLED(PS_DEFAULT_OFF)
  373. false
  374. #else
  375. true
  376. #endif
  377. ;
  378. #endif
  379. #if ENABLED(DELTA)
  380. #define TOWER_1 X_AXIS
  381. #define TOWER_2 Y_AXIS
  382. #define TOWER_3 Z_AXIS
  383. float delta[3] = { 0 };
  384. #define SIN_60 0.8660254037844386
  385. #define COS_60 0.5
  386. float endstop_adj[3] = { 0 };
  387. // these are the default values, can be overriden with M665
  388. float delta_radius = DELTA_RADIUS;
  389. float delta_tower1_x = -SIN_60 * (delta_radius + DELTA_RADIUS_TRIM_TOWER_1); // front left tower
  390. float delta_tower1_y = -COS_60 * (delta_radius + DELTA_RADIUS_TRIM_TOWER_1);
  391. float delta_tower2_x = SIN_60 * (delta_radius + DELTA_RADIUS_TRIM_TOWER_2); // front right tower
  392. float delta_tower2_y = -COS_60 * (delta_radius + DELTA_RADIUS_TRIM_TOWER_2);
  393. float delta_tower3_x = 0; // back middle tower
  394. float delta_tower3_y = (delta_radius + DELTA_RADIUS_TRIM_TOWER_3);
  395. float delta_diagonal_rod = DELTA_DIAGONAL_ROD;
  396. float delta_diagonal_rod_trim_tower_1 = DELTA_DIAGONAL_ROD_TRIM_TOWER_1;
  397. float delta_diagonal_rod_trim_tower_2 = DELTA_DIAGONAL_ROD_TRIM_TOWER_2;
  398. float delta_diagonal_rod_trim_tower_3 = DELTA_DIAGONAL_ROD_TRIM_TOWER_3;
  399. float delta_diagonal_rod_2_tower_1 = sq(delta_diagonal_rod + delta_diagonal_rod_trim_tower_1);
  400. float delta_diagonal_rod_2_tower_2 = sq(delta_diagonal_rod + delta_diagonal_rod_trim_tower_2);
  401. float delta_diagonal_rod_2_tower_3 = sq(delta_diagonal_rod + delta_diagonal_rod_trim_tower_3);
  402. //float delta_diagonal_rod_2 = sq(delta_diagonal_rod);
  403. float delta_segments_per_second = DELTA_SEGMENTS_PER_SECOND;
  404. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  405. int delta_grid_spacing[2] = { 0, 0 };
  406. float bed_level[AUTO_BED_LEVELING_GRID_POINTS][AUTO_BED_LEVELING_GRID_POINTS];
  407. #endif
  408. #else
  409. static bool home_all_axis = true;
  410. #endif
  411. #if ENABLED(SCARA)
  412. float delta_segments_per_second = SCARA_SEGMENTS_PER_SECOND;
  413. static float delta[3] = { 0 };
  414. float axis_scaling[3] = { 1, 1, 1 }; // Build size scaling, default to 1
  415. #endif
  416. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  417. //Variables for Filament Sensor input
  418. float filament_width_nominal = DEFAULT_NOMINAL_FILAMENT_DIA; //Set nominal filament width, can be changed with M404
  419. bool filament_sensor = false; //M405 turns on filament_sensor control, M406 turns it off
  420. float filament_width_meas = DEFAULT_MEASURED_FILAMENT_DIA; //Stores the measured filament diameter
  421. int8_t measurement_delay[MAX_MEASUREMENT_DELAY + 1]; //ring buffer to delay measurement store extruder factor after subtracting 100
  422. int filwidth_delay_index1 = 0; //index into ring buffer
  423. int filwidth_delay_index2 = -1; //index into ring buffer - set to -1 on startup to indicate ring buffer needs to be initialized
  424. int meas_delay_cm = MEASUREMENT_DELAY_CM; //distance delay setting
  425. #endif
  426. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  427. static bool filament_ran_out = false;
  428. #endif
  429. static bool send_ok[BUFSIZE];
  430. #if HAS_SERVOS
  431. Servo servo[NUM_SERVOS];
  432. #define MOVE_SERVO(I, P) servo[I].move(P)
  433. #define DEPLOY_Z_SERVO() MOVE_SERVO(Z_ENDSTOP_SERVO_NR, z_servo_angle[0])
  434. #define STOW_Z_SERVO() MOVE_SERVO(Z_ENDSTOP_SERVO_NR, z_servo_angle[1])
  435. #endif
  436. #ifdef CHDK
  437. millis_t chdkHigh = 0;
  438. boolean chdkActive = false;
  439. #endif
  440. #if ENABLED(PID_ADD_EXTRUSION_RATE)
  441. int lpq_len = 20;
  442. #endif
  443. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  444. // States for managing Marlin and host communication
  445. // Marlin sends messages if blocked or busy
  446. enum MarlinBusyState {
  447. NOT_BUSY, // Not in a handler
  448. IN_HANDLER, // Processing a GCode
  449. IN_PROCESS, // Known to be blocking command input (as in G29)
  450. PAUSED_FOR_USER, // Blocking pending any input
  451. PAUSED_FOR_INPUT // Blocking pending text input (concept)
  452. };
  453. static MarlinBusyState busy_state = NOT_BUSY;
  454. static millis_t next_busy_signal_ms = 0;
  455. uint8_t host_keepalive_interval = DEFAULT_KEEPALIVE_INTERVAL;
  456. #define KEEPALIVE_STATE(n) do{ busy_state = n; }while(0)
  457. #else
  458. #define host_keepalive() ;
  459. #define KEEPALIVE_STATE(n) ;
  460. #endif // HOST_KEEPALIVE_FEATURE
  461. /**
  462. * ***************************************************************************
  463. * ******************************** FUNCTIONS ********************************
  464. * ***************************************************************************
  465. */
  466. void stop();
  467. void get_available_commands();
  468. void process_next_command();
  469. void prepare_move_to_destination();
  470. #if ENABLED(ARC_SUPPORT)
  471. void plan_arc(float target[NUM_AXIS], float* offset, uint8_t clockwise);
  472. #endif
  473. #if ENABLED(BEZIER_CURVE_SUPPORT)
  474. void plan_cubic_move(const float offset[4]);
  475. #endif
  476. void serial_echopair_P(const char* s_P, int v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  477. void serial_echopair_P(const char* s_P, long v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  478. void serial_echopair_P(const char* s_P, float v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  479. void serial_echopair_P(const char* s_P, double v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  480. void serial_echopair_P(const char* s_P, unsigned long v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  481. static void report_current_position();
  482. #if ENABLED(DEBUG_LEVELING_FEATURE)
  483. void print_xyz(const char* prefix, const float x, const float y, const float z) {
  484. SERIAL_ECHO(prefix);
  485. SERIAL_ECHOPAIR(": (", x);
  486. SERIAL_ECHOPAIR(", ", y);
  487. SERIAL_ECHOPAIR(", ", z);
  488. SERIAL_ECHOLNPGM(")");
  489. }
  490. void print_xyz(const char* prefix, const float xyz[]) {
  491. print_xyz(prefix, xyz[X_AXIS], xyz[Y_AXIS], xyz[Z_AXIS]);
  492. }
  493. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  494. void print_xyz(const char* prefix, const vector_3 &xyz) {
  495. print_xyz(prefix, xyz.x, xyz.y, xyz.z);
  496. }
  497. #endif
  498. #define DEBUG_POS(PREFIX,VAR) do{ SERIAL_ECHOPGM(PREFIX); print_xyz(" > " STRINGIFY(VAR), VAR); }while(0)
  499. #endif
  500. #if ENABLED(DELTA) || ENABLED(SCARA)
  501. inline void sync_plan_position_delta() {
  502. #if ENABLED(DEBUG_LEVELING_FEATURE)
  503. if (DEBUGGING(LEVELING)) DEBUG_POS("sync_plan_position_delta", current_position);
  504. #endif
  505. calculate_delta(current_position);
  506. planner.set_position_mm(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
  507. }
  508. #endif
  509. #if ENABLED(SDSUPPORT)
  510. #include "SdFatUtil.h"
  511. int freeMemory() { return SdFatUtil::FreeRam(); }
  512. #else
  513. extern "C" {
  514. extern unsigned int __bss_end;
  515. extern unsigned int __heap_start;
  516. extern void* __brkval;
  517. int freeMemory() {
  518. int free_memory;
  519. if ((int)__brkval == 0)
  520. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  521. else
  522. free_memory = ((int)&free_memory) - ((int)__brkval);
  523. return free_memory;
  524. }
  525. }
  526. #endif //!SDSUPPORT
  527. #if ENABLED(DIGIPOT_I2C)
  528. extern void digipot_i2c_set_current(int channel, float current);
  529. extern void digipot_i2c_init();
  530. #endif
  531. /**
  532. * Inject the next "immediate" command, when possible.
  533. * Return true if any immediate commands remain to inject.
  534. */
  535. static bool drain_queued_commands_P() {
  536. if (queued_commands_P != NULL) {
  537. size_t i = 0;
  538. char c, cmd[30];
  539. strncpy_P(cmd, queued_commands_P, sizeof(cmd) - 1);
  540. cmd[sizeof(cmd) - 1] = '\0';
  541. while ((c = cmd[i]) && c != '\n') i++; // find the end of this gcode command
  542. cmd[i] = '\0';
  543. if (enqueue_and_echo_command(cmd)) { // success?
  544. if (c) // newline char?
  545. queued_commands_P += i + 1; // advance to the next command
  546. else
  547. queued_commands_P = NULL; // nul char? no more commands
  548. }
  549. }
  550. return (queued_commands_P != NULL); // return whether any more remain
  551. }
  552. /**
  553. * Record one or many commands to run from program memory.
  554. * Aborts the current queue, if any.
  555. * Note: drain_queued_commands_P() must be called repeatedly to drain the commands afterwards
  556. */
  557. void enqueue_and_echo_commands_P(const char* pgcode) {
  558. queued_commands_P = pgcode;
  559. drain_queued_commands_P(); // first command executed asap (when possible)
  560. }
  561. void clear_command_queue() {
  562. cmd_queue_index_r = cmd_queue_index_w;
  563. commands_in_queue = 0;
  564. }
  565. /**
  566. * Once a new command is in the ring buffer, call this to commit it
  567. */
  568. inline void _commit_command(bool say_ok) {
  569. send_ok[cmd_queue_index_w] = say_ok;
  570. cmd_queue_index_w = (cmd_queue_index_w + 1) % BUFSIZE;
  571. commands_in_queue++;
  572. }
  573. /**
  574. * Copy a command directly into the main command buffer, from RAM.
  575. * Returns true if successfully adds the command
  576. */
  577. inline bool _enqueuecommand(const char* cmd, bool say_ok=false) {
  578. if (*cmd == ';' || commands_in_queue >= BUFSIZE) return false;
  579. strcpy(command_queue[cmd_queue_index_w], cmd);
  580. _commit_command(say_ok);
  581. return true;
  582. }
  583. void enqueue_and_echo_command_now(const char* cmd) {
  584. while (!enqueue_and_echo_command(cmd)) idle();
  585. }
  586. /**
  587. * Enqueue with Serial Echo
  588. */
  589. bool enqueue_and_echo_command(const char* cmd, bool say_ok/*=false*/) {
  590. if (_enqueuecommand(cmd, say_ok)) {
  591. SERIAL_ECHO_START;
  592. SERIAL_ECHOPGM(MSG_Enqueueing);
  593. SERIAL_ECHO(cmd);
  594. SERIAL_ECHOLNPGM("\"");
  595. return true;
  596. }
  597. return false;
  598. }
  599. void setup_killpin() {
  600. #if HAS_KILL
  601. SET_INPUT(KILL_PIN);
  602. WRITE(KILL_PIN, HIGH);
  603. #endif
  604. }
  605. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  606. void setup_filrunoutpin() {
  607. pinMode(FIL_RUNOUT_PIN, INPUT);
  608. #if ENABLED(ENDSTOPPULLUP_FIL_RUNOUT)
  609. WRITE(FIL_RUNOUT_PIN, HIGH);
  610. #endif
  611. }
  612. #endif
  613. // Set home pin
  614. void setup_homepin(void) {
  615. #if HAS_HOME
  616. SET_INPUT(HOME_PIN);
  617. WRITE(HOME_PIN, HIGH);
  618. #endif
  619. }
  620. void setup_photpin() {
  621. #if HAS_PHOTOGRAPH
  622. OUT_WRITE(PHOTOGRAPH_PIN, LOW);
  623. #endif
  624. }
  625. void setup_powerhold() {
  626. #if HAS_SUICIDE
  627. OUT_WRITE(SUICIDE_PIN, HIGH);
  628. #endif
  629. #if HAS_POWER_SWITCH
  630. #if ENABLED(PS_DEFAULT_OFF)
  631. OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  632. #else
  633. OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE);
  634. #endif
  635. #endif
  636. }
  637. void suicide() {
  638. #if HAS_SUICIDE
  639. OUT_WRITE(SUICIDE_PIN, LOW);
  640. #endif
  641. }
  642. void servo_init() {
  643. #if NUM_SERVOS >= 1 && HAS_SERVO_0
  644. servo[0].attach(SERVO0_PIN);
  645. servo[0].detach(); // Just set up the pin. We don't have a position yet. Don't move to a random position.
  646. #endif
  647. #if NUM_SERVOS >= 2 && HAS_SERVO_1
  648. servo[1].attach(SERVO1_PIN);
  649. servo[1].detach();
  650. #endif
  651. #if NUM_SERVOS >= 3 && HAS_SERVO_2
  652. servo[2].attach(SERVO2_PIN);
  653. servo[2].detach();
  654. #endif
  655. #if NUM_SERVOS >= 4 && HAS_SERVO_3
  656. servo[3].attach(SERVO3_PIN);
  657. servo[3].detach();
  658. #endif
  659. #if HAS_Z_SERVO_ENDSTOP
  660. /**
  661. * Set position of Z Servo Endstop
  662. *
  663. * The servo might be deployed and positioned too low to stow
  664. * when starting up the machine or rebooting the board.
  665. * There's no way to know where the nozzle is positioned until
  666. * homing has been done - no homing with z-probe without init!
  667. *
  668. */
  669. STOW_Z_SERVO();
  670. #endif
  671. #if HAS_BED_PROBE
  672. endstops.enable_z_probe(false);
  673. #endif
  674. }
  675. /**
  676. * Stepper Reset (RigidBoard, et.al.)
  677. */
  678. #if HAS_STEPPER_RESET
  679. void disableStepperDrivers() {
  680. pinMode(STEPPER_RESET_PIN, OUTPUT);
  681. digitalWrite(STEPPER_RESET_PIN, LOW); // drive it down to hold in reset motor driver chips
  682. }
  683. void enableStepperDrivers() { pinMode(STEPPER_RESET_PIN, INPUT); } // set to input, which allows it to be pulled high by pullups
  684. #endif
  685. /**
  686. * Marlin entry-point: Set up before the program loop
  687. * - Set up the kill pin, filament runout, power hold
  688. * - Start the serial port
  689. * - Print startup messages and diagnostics
  690. * - Get EEPROM or default settings
  691. * - Initialize managers for:
  692. * • temperature
  693. * • planner
  694. * • watchdog
  695. * • stepper
  696. * • photo pin
  697. * • servos
  698. * • LCD controller
  699. * • Digipot I2C
  700. * • Z probe sled
  701. * • status LEDs
  702. */
  703. void setup() {
  704. #ifdef DISABLE_JTAG
  705. // Disable JTAG on AT90USB chips to free up pins for IO
  706. MCUCR = 0x80;
  707. MCUCR = 0x80;
  708. #endif
  709. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  710. setup_filrunoutpin();
  711. #endif
  712. setup_killpin();
  713. setup_powerhold();
  714. #if HAS_STEPPER_RESET
  715. disableStepperDrivers();
  716. #endif
  717. MYSERIAL.begin(BAUDRATE);
  718. SERIAL_PROTOCOLLNPGM("start");
  719. SERIAL_ECHO_START;
  720. // Check startup - does nothing if bootloader sets MCUSR to 0
  721. byte mcu = MCUSR;
  722. if (mcu & 1) SERIAL_ECHOLNPGM(MSG_POWERUP);
  723. if (mcu & 2) SERIAL_ECHOLNPGM(MSG_EXTERNAL_RESET);
  724. if (mcu & 4) SERIAL_ECHOLNPGM(MSG_BROWNOUT_RESET);
  725. if (mcu & 8) SERIAL_ECHOLNPGM(MSG_WATCHDOG_RESET);
  726. if (mcu & 32) SERIAL_ECHOLNPGM(MSG_SOFTWARE_RESET);
  727. MCUSR = 0;
  728. SERIAL_ECHOPGM(MSG_MARLIN);
  729. SERIAL_ECHOLNPGM(" " SHORT_BUILD_VERSION);
  730. #ifdef STRING_DISTRIBUTION_DATE
  731. #ifdef STRING_CONFIG_H_AUTHOR
  732. SERIAL_ECHO_START;
  733. SERIAL_ECHOPGM(MSG_CONFIGURATION_VER);
  734. SERIAL_ECHOPGM(STRING_DISTRIBUTION_DATE);
  735. SERIAL_ECHOPGM(MSG_AUTHOR);
  736. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  737. SERIAL_ECHOPGM("Compiled: ");
  738. SERIAL_ECHOLNPGM(__DATE__);
  739. #endif // STRING_CONFIG_H_AUTHOR
  740. #endif // STRING_DISTRIBUTION_DATE
  741. SERIAL_ECHO_START;
  742. SERIAL_ECHOPGM(MSG_FREE_MEMORY);
  743. SERIAL_ECHO(freeMemory());
  744. SERIAL_ECHOPGM(MSG_PLANNER_BUFFER_BYTES);
  745. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  746. // Send "ok" after commands by default
  747. for (int8_t i = 0; i < BUFSIZE; i++) send_ok[i] = true;
  748. // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  749. Config_RetrieveSettings();
  750. thermalManager.init(); // Initialize temperature loop
  751. #if ENABLED(DELTA) || ENABLED(SCARA)
  752. // Vital to init kinematic equivalent for X0 Y0 Z0
  753. sync_plan_position_delta();
  754. #endif
  755. #if ENABLED(USE_WATCHDOG)
  756. watchdog_init();
  757. #endif
  758. stepper.init(); // Initialize stepper, this enables interrupts!
  759. setup_photpin();
  760. servo_init();
  761. #if HAS_CONTROLLERFAN
  762. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  763. #endif
  764. #if HAS_STEPPER_RESET
  765. enableStepperDrivers();
  766. #endif
  767. #if ENABLED(DIGIPOT_I2C)
  768. digipot_i2c_init();
  769. #endif
  770. #if ENABLED(DAC_STEPPER_CURRENT)
  771. dac_init();
  772. #endif
  773. #if ENABLED(Z_PROBE_SLED)
  774. pinMode(SLED_PIN, OUTPUT);
  775. digitalWrite(SLED_PIN, LOW); // turn it off
  776. #endif // Z_PROBE_SLED
  777. setup_homepin();
  778. #ifdef STAT_LED_RED
  779. pinMode(STAT_LED_RED, OUTPUT);
  780. digitalWrite(STAT_LED_RED, LOW); // turn it off
  781. #endif
  782. #ifdef STAT_LED_BLUE
  783. pinMode(STAT_LED_BLUE, OUTPUT);
  784. digitalWrite(STAT_LED_BLUE, LOW); // turn it off
  785. #endif
  786. lcd_init();
  787. #if ENABLED(SHOW_BOOTSCREEN)
  788. #if ENABLED(DOGLCD)
  789. delay(1000);
  790. #elif ENABLED(ULTRA_LCD)
  791. bootscreen();
  792. lcd_init();
  793. #endif
  794. #endif
  795. }
  796. /**
  797. * The main Marlin program loop
  798. *
  799. * - Save or log commands to SD
  800. * - Process available commands (if not saving)
  801. * - Call heater manager
  802. * - Call inactivity manager
  803. * - Call endstop manager
  804. * - Call LCD update
  805. */
  806. void loop() {
  807. if (commands_in_queue < BUFSIZE) get_available_commands();
  808. #if ENABLED(SDSUPPORT)
  809. card.checkautostart(false);
  810. #endif
  811. if (commands_in_queue) {
  812. #if ENABLED(SDSUPPORT)
  813. if (card.saving) {
  814. char* command = command_queue[cmd_queue_index_r];
  815. if (strstr_P(command, PSTR("M29"))) {
  816. // M29 closes the file
  817. card.closefile();
  818. SERIAL_PROTOCOLLNPGM(MSG_FILE_SAVED);
  819. ok_to_send();
  820. }
  821. else {
  822. // Write the string from the read buffer to SD
  823. card.write_command(command);
  824. if (card.logging)
  825. process_next_command(); // The card is saving because it's logging
  826. else
  827. ok_to_send();
  828. }
  829. }
  830. else
  831. process_next_command();
  832. #else
  833. process_next_command();
  834. #endif // SDSUPPORT
  835. commands_in_queue--;
  836. cmd_queue_index_r = (cmd_queue_index_r + 1) % BUFSIZE;
  837. }
  838. endstops.report_state();
  839. idle();
  840. }
  841. void gcode_line_error(const char* err, bool doFlush = true) {
  842. SERIAL_ERROR_START;
  843. serialprintPGM(err);
  844. SERIAL_ERRORLN(gcode_LastN);
  845. //Serial.println(gcode_N);
  846. if (doFlush) FlushSerialRequestResend();
  847. serial_count = 0;
  848. }
  849. inline void get_serial_commands() {
  850. static char serial_line_buffer[MAX_CMD_SIZE];
  851. static boolean serial_comment_mode = false;
  852. // If the command buffer is empty for too long,
  853. // send "wait" to indicate Marlin is still waiting.
  854. #if defined(NO_TIMEOUTS) && NO_TIMEOUTS > 0
  855. static millis_t last_command_time = 0;
  856. millis_t ms = millis();
  857. if (commands_in_queue == 0 && !MYSERIAL.available() && ELAPSED(ms, last_command_time + NO_TIMEOUTS)) {
  858. SERIAL_ECHOLNPGM(MSG_WAIT);
  859. last_command_time = ms;
  860. }
  861. #endif
  862. /**
  863. * Loop while serial characters are incoming and the queue is not full
  864. */
  865. while (commands_in_queue < BUFSIZE && MYSERIAL.available() > 0) {
  866. char serial_char = MYSERIAL.read();
  867. /**
  868. * If the character ends the line
  869. */
  870. if (serial_char == '\n' || serial_char == '\r') {
  871. serial_comment_mode = false; // end of line == end of comment
  872. if (!serial_count) continue; // skip empty lines
  873. serial_line_buffer[serial_count] = 0; // terminate string
  874. serial_count = 0; //reset buffer
  875. char* command = serial_line_buffer;
  876. while (*command == ' ') command++; // skip any leading spaces
  877. char* npos = (*command == 'N') ? command : NULL; // Require the N parameter to start the line
  878. char* apos = strchr(command, '*');
  879. if (npos) {
  880. boolean M110 = strstr_P(command, PSTR("M110")) != NULL;
  881. if (M110) {
  882. char* n2pos = strchr(command + 4, 'N');
  883. if (n2pos) npos = n2pos;
  884. }
  885. gcode_N = strtol(npos + 1, NULL, 10);
  886. if (gcode_N != gcode_LastN + 1 && !M110) {
  887. gcode_line_error(PSTR(MSG_ERR_LINE_NO));
  888. return;
  889. }
  890. if (apos) {
  891. byte checksum = 0, count = 0;
  892. while (command[count] != '*') checksum ^= command[count++];
  893. if (strtol(apos + 1, NULL, 10) != checksum) {
  894. gcode_line_error(PSTR(MSG_ERR_CHECKSUM_MISMATCH));
  895. return;
  896. }
  897. // if no errors, continue parsing
  898. }
  899. else {
  900. gcode_line_error(PSTR(MSG_ERR_NO_CHECKSUM));
  901. return;
  902. }
  903. gcode_LastN = gcode_N;
  904. // if no errors, continue parsing
  905. }
  906. else if (apos) { // No '*' without 'N'
  907. gcode_line_error(PSTR(MSG_ERR_NO_LINENUMBER_WITH_CHECKSUM), false);
  908. return;
  909. }
  910. // Movement commands alert when stopped
  911. if (IsStopped()) {
  912. char* gpos = strchr(command, 'G');
  913. if (gpos) {
  914. int codenum = strtol(gpos + 1, NULL, 10);
  915. switch (codenum) {
  916. case 0:
  917. case 1:
  918. case 2:
  919. case 3:
  920. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  921. LCD_MESSAGEPGM(MSG_STOPPED);
  922. break;
  923. }
  924. }
  925. }
  926. // If command was e-stop process now
  927. if (strcmp(command, "M112") == 0) kill(PSTR(MSG_KILLED));
  928. #if defined(NO_TIMEOUTS) && NO_TIMEOUTS > 0
  929. last_command_time = ms;
  930. #endif
  931. // Add the command to the queue
  932. _enqueuecommand(serial_line_buffer, true);
  933. }
  934. else if (serial_count >= MAX_CMD_SIZE - 1) {
  935. // Keep fetching, but ignore normal characters beyond the max length
  936. // The command will be injected when EOL is reached
  937. }
  938. else if (serial_char == '\\') { // Handle escapes
  939. if (MYSERIAL.available() > 0) {
  940. // if we have one more character, copy it over
  941. serial_char = MYSERIAL.read();
  942. if (!serial_comment_mode) serial_line_buffer[serial_count++] = serial_char;
  943. }
  944. // otherwise do nothing
  945. }
  946. else { // it's not a newline, carriage return or escape char
  947. if (serial_char == ';') serial_comment_mode = true;
  948. if (!serial_comment_mode) serial_line_buffer[serial_count++] = serial_char;
  949. }
  950. } // queue has space, serial has data
  951. }
  952. #if ENABLED(SDSUPPORT)
  953. inline void get_sdcard_commands() {
  954. static bool stop_buffering = false,
  955. sd_comment_mode = false;
  956. if (!card.sdprinting) return;
  957. /**
  958. * '#' stops reading from SD to the buffer prematurely, so procedural
  959. * macro calls are possible. If it occurs, stop_buffering is triggered
  960. * and the buffer is run dry; this character _can_ occur in serial com
  961. * due to checksums, however, no checksums are used in SD printing.
  962. */
  963. if (commands_in_queue == 0) stop_buffering = false;
  964. uint16_t sd_count = 0;
  965. bool card_eof = card.eof();
  966. while (commands_in_queue < BUFSIZE && !card_eof && !stop_buffering) {
  967. int16_t n = card.get();
  968. char sd_char = (char)n;
  969. card_eof = card.eof();
  970. if (card_eof || n == -1
  971. || sd_char == '\n' || sd_char == '\r'
  972. || ((sd_char == '#' || sd_char == ':') && !sd_comment_mode)
  973. ) {
  974. if (card_eof) {
  975. SERIAL_PROTOCOLLNPGM(MSG_FILE_PRINTED);
  976. print_job_timer.stop();
  977. char time[30];
  978. millis_t t = print_job_timer.duration();
  979. int hours = t / 60 / 60, minutes = (t / 60) % 60;
  980. sprintf_P(time, PSTR("%i " MSG_END_HOUR " %i " MSG_END_MINUTE), hours, minutes);
  981. SERIAL_ECHO_START;
  982. SERIAL_ECHOLN(time);
  983. lcd_setstatus(time, true);
  984. card.printingHasFinished();
  985. card.checkautostart(true);
  986. }
  987. else if (n == -1) {
  988. SERIAL_ERROR_START;
  989. SERIAL_ECHOLNPGM(MSG_SD_ERR_READ);
  990. }
  991. if (sd_char == '#') stop_buffering = true;
  992. sd_comment_mode = false; //for new command
  993. if (!sd_count) continue; //skip empty lines
  994. command_queue[cmd_queue_index_w][sd_count] = '\0'; //terminate string
  995. sd_count = 0; //clear buffer
  996. _commit_command(false);
  997. }
  998. else if (sd_count >= MAX_CMD_SIZE - 1) {
  999. /**
  1000. * Keep fetching, but ignore normal characters beyond the max length
  1001. * The command will be injected when EOL is reached
  1002. */
  1003. }
  1004. else {
  1005. if (sd_char == ';') sd_comment_mode = true;
  1006. if (!sd_comment_mode) command_queue[cmd_queue_index_w][sd_count++] = sd_char;
  1007. }
  1008. }
  1009. }
  1010. #endif // SDSUPPORT
  1011. /**
  1012. * Add to the circular command queue the next command from:
  1013. * - The command-injection queue (queued_commands_P)
  1014. * - The active serial input (usually USB)
  1015. * - The SD card file being actively printed
  1016. */
  1017. void get_available_commands() {
  1018. // if any immediate commands remain, don't get other commands yet
  1019. if (drain_queued_commands_P()) return;
  1020. get_serial_commands();
  1021. #if ENABLED(SDSUPPORT)
  1022. get_sdcard_commands();
  1023. #endif
  1024. }
  1025. inline bool code_has_value() {
  1026. int i = 1;
  1027. char c = seen_pointer[i];
  1028. while (c == ' ') c = seen_pointer[++i];
  1029. if (c == '-' || c == '+') c = seen_pointer[++i];
  1030. if (c == '.') c = seen_pointer[++i];
  1031. return NUMERIC(c);
  1032. }
  1033. inline float code_value_float() {
  1034. float ret;
  1035. char* e = strchr(seen_pointer, 'E');
  1036. if (e) {
  1037. *e = 0;
  1038. ret = strtod(seen_pointer + 1, NULL);
  1039. *e = 'E';
  1040. }
  1041. else
  1042. ret = strtod(seen_pointer + 1, NULL);
  1043. return ret;
  1044. }
  1045. inline unsigned long code_value_ulong() { return strtoul(seen_pointer + 1, NULL, 10); }
  1046. inline long code_value_long() { return strtol(seen_pointer + 1, NULL, 10); }
  1047. inline int code_value_int() { return (int)strtol(seen_pointer + 1, NULL, 10); }
  1048. inline uint16_t code_value_ushort() { return (uint16_t)strtoul(seen_pointer + 1, NULL, 10); }
  1049. inline uint8_t code_value_byte() { return (uint8_t)(constrain(strtol(seen_pointer + 1, NULL, 10), 0, 255)); }
  1050. inline bool code_value_bool() { return code_value_byte() > 0; }
  1051. #if ENABLED(INCH_MODE_SUPPORT)
  1052. inline void set_input_linear_units(LinearUnit units) {
  1053. switch (units) {
  1054. case LINEARUNIT_INCH:
  1055. linear_unit_factor = 25.4;
  1056. break;
  1057. case LINEARUNIT_MM:
  1058. default:
  1059. linear_unit_factor = 1.0;
  1060. break;
  1061. }
  1062. volumetric_unit_factor = pow(linear_unit_factor, 3.0);
  1063. }
  1064. inline float axis_unit_factor(int axis) {
  1065. return (axis == E_AXIS && volumetric_enabled ? volumetric_unit_factor : linear_unit_factor);
  1066. }
  1067. inline float code_value_linear_units() { return code_value_float() * linear_unit_factor; }
  1068. inline float code_value_axis_units(int axis) { return code_value_float() * axis_unit_factor(axis); }
  1069. inline float code_value_per_axis_unit(int axis) { return code_value_float() / axis_unit_factor(axis); }
  1070. #else
  1071. inline float code_value_linear_units() { return code_value_float(); }
  1072. inline float code_value_axis_units(int axis) { UNUSED(axis); return code_value_float(); }
  1073. inline float code_value_per_axis_unit(int axis) { UNUSED(axis); return code_value_float(); }
  1074. #endif
  1075. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  1076. inline void set_input_temp_units(TempUnit units) { input_temp_units = units; }
  1077. float code_value_temp_abs() {
  1078. switch (input_temp_units) {
  1079. case TEMPUNIT_C:
  1080. return code_value_float();
  1081. case TEMPUNIT_F:
  1082. return (code_value_float() - 32) / 1.8;
  1083. case TEMPUNIT_K:
  1084. return code_value_float() - 272.15;
  1085. default:
  1086. return code_value_float();
  1087. }
  1088. }
  1089. float code_value_temp_diff() {
  1090. switch (input_temp_units) {
  1091. case TEMPUNIT_C:
  1092. case TEMPUNIT_K:
  1093. return code_value_float();
  1094. case TEMPUNIT_F:
  1095. return code_value_float() / 1.8;
  1096. default:
  1097. return code_value_float();
  1098. }
  1099. }
  1100. #else
  1101. float code_value_temp_abs() { return code_value_float(); }
  1102. float code_value_temp_diff() { return code_value_float(); }
  1103. #endif
  1104. inline millis_t code_value_millis() { return code_value_ulong(); }
  1105. inline millis_t code_value_millis_from_seconds() { return code_value_float() * 1000; }
  1106. bool code_seen(char code) {
  1107. seen_pointer = strchr(current_command_args, code);
  1108. return (seen_pointer != NULL); // Return TRUE if the code-letter was found
  1109. }
  1110. /**
  1111. * Set target_extruder from the T parameter or the active_extruder
  1112. *
  1113. * Returns TRUE if the target is invalid
  1114. */
  1115. bool get_target_extruder_from_command(int code) {
  1116. if (code_seen('T')) {
  1117. uint8_t t = code_value_byte();
  1118. if (t >= EXTRUDERS) {
  1119. SERIAL_ECHO_START;
  1120. SERIAL_CHAR('M');
  1121. SERIAL_ECHO(code);
  1122. SERIAL_ECHOPAIR(" " MSG_INVALID_EXTRUDER " ", t);
  1123. SERIAL_EOL;
  1124. return true;
  1125. }
  1126. target_extruder = t;
  1127. }
  1128. else
  1129. target_extruder = active_extruder;
  1130. return false;
  1131. }
  1132. #define DEFINE_PGM_READ_ANY(type, reader) \
  1133. static inline type pgm_read_any(const type *p) \
  1134. { return pgm_read_##reader##_near(p); }
  1135. DEFINE_PGM_READ_ANY(float, float);
  1136. DEFINE_PGM_READ_ANY(signed char, byte);
  1137. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  1138. static const PROGMEM type array##_P[3] = \
  1139. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  1140. static inline type array(int axis) \
  1141. { return pgm_read_any(&array##_P[axis]); }
  1142. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  1143. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  1144. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  1145. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  1146. XYZ_CONSTS_FROM_CONFIG(float, home_bump_mm, HOME_BUMP_MM);
  1147. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  1148. #if ENABLED(DUAL_X_CARRIAGE)
  1149. #define DXC_FULL_CONTROL_MODE 0
  1150. #define DXC_AUTO_PARK_MODE 1
  1151. #define DXC_DUPLICATION_MODE 2
  1152. static int dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  1153. static float x_home_pos(int extruder) {
  1154. if (extruder == 0)
  1155. return base_home_pos(X_AXIS) + home_offset[X_AXIS];
  1156. else
  1157. /**
  1158. * In dual carriage mode the extruder offset provides an override of the
  1159. * second X-carriage offset when homed - otherwise X2_HOME_POS is used.
  1160. * This allow soft recalibration of the second extruder offset position
  1161. * without firmware reflash (through the M218 command).
  1162. */
  1163. return (hotend_offset[X_AXIS][1] > 0) ? hotend_offset[X_AXIS][1] : X2_HOME_POS;
  1164. }
  1165. static int x_home_dir(int extruder) {
  1166. return (extruder == 0) ? X_HOME_DIR : X2_HOME_DIR;
  1167. }
  1168. static float inactive_extruder_x_pos = X2_MAX_POS; // used in mode 0 & 1
  1169. static bool active_extruder_parked = false; // used in mode 1 & 2
  1170. static float raised_parked_position[NUM_AXIS]; // used in mode 1
  1171. static millis_t delayed_move_time = 0; // used in mode 1
  1172. static float duplicate_extruder_x_offset = DEFAULT_DUPLICATION_X_OFFSET; // used in mode 2
  1173. static float duplicate_extruder_temp_offset = 0; // used in mode 2
  1174. bool extruder_duplication_enabled = false; // used in mode 2
  1175. #endif //DUAL_X_CARRIAGE
  1176. /**
  1177. * Software endstops can be used to monitor the open end of
  1178. * an axis that has a hardware endstop on the other end. Or
  1179. * they can prevent axes from moving past endstops and grinding.
  1180. *
  1181. * To keep doing their job as the coordinate system changes,
  1182. * the software endstop positions must be refreshed to remain
  1183. * at the same positions relative to the machine.
  1184. */
  1185. static void update_software_endstops(AxisEnum axis) {
  1186. float offs = home_offset[axis] + position_shift[axis];
  1187. #if ENABLED(DUAL_X_CARRIAGE)
  1188. if (axis == X_AXIS) {
  1189. float dual_max_x = max(hotend_offset[X_AXIS][1], X2_MAX_POS);
  1190. if (active_extruder != 0) {
  1191. sw_endstop_min[X_AXIS] = X2_MIN_POS + offs;
  1192. sw_endstop_max[X_AXIS] = dual_max_x + offs;
  1193. return;
  1194. }
  1195. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE) {
  1196. sw_endstop_min[X_AXIS] = base_min_pos(X_AXIS) + offs;
  1197. sw_endstop_max[X_AXIS] = min(base_max_pos(X_AXIS), dual_max_x - duplicate_extruder_x_offset) + offs;
  1198. return;
  1199. }
  1200. }
  1201. else
  1202. #endif
  1203. {
  1204. sw_endstop_min[axis] = base_min_pos(axis) + offs;
  1205. sw_endstop_max[axis] = base_max_pos(axis) + offs;
  1206. }
  1207. }
  1208. /**
  1209. * Change the home offset for an axis, update the current
  1210. * position and the software endstops to retain the same
  1211. * relative distance to the new home.
  1212. *
  1213. * Since this changes the current_position, code should
  1214. * call sync_plan_position soon after this.
  1215. */
  1216. static void set_home_offset(AxisEnum axis, float v) {
  1217. current_position[axis] += v - home_offset[axis];
  1218. home_offset[axis] = v;
  1219. update_software_endstops(axis);
  1220. }
  1221. static void set_axis_is_at_home(AxisEnum axis) {
  1222. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1223. if (DEBUGGING(LEVELING)) {
  1224. SERIAL_ECHOPAIR("set_axis_is_at_home(", axis);
  1225. SERIAL_ECHOLNPGM(") >>>");
  1226. }
  1227. #endif
  1228. position_shift[axis] = 0;
  1229. #if ENABLED(DUAL_X_CARRIAGE)
  1230. if (axis == X_AXIS && (active_extruder != 0 || dual_x_carriage_mode == DXC_DUPLICATION_MODE)) {
  1231. if (active_extruder != 0)
  1232. current_position[X_AXIS] = x_home_pos(active_extruder);
  1233. else
  1234. current_position[X_AXIS] = base_home_pos(X_AXIS) + home_offset[X_AXIS];
  1235. update_software_endstops(X_AXIS);
  1236. return;
  1237. }
  1238. #endif
  1239. #if ENABLED(SCARA)
  1240. if (axis == X_AXIS || axis == Y_AXIS) {
  1241. float homeposition[3];
  1242. for (int i = 0; i < 3; i++) homeposition[i] = base_home_pos(i);
  1243. // SERIAL_ECHOPGM("homeposition[x]= "); SERIAL_ECHO(homeposition[0]);
  1244. // SERIAL_ECHOPGM("homeposition[y]= "); SERIAL_ECHOLN(homeposition[1]);
  1245. /**
  1246. * Works out real Homeposition angles using inverse kinematics,
  1247. * and calculates homing offset using forward kinematics
  1248. */
  1249. calculate_delta(homeposition);
  1250. // SERIAL_ECHOPGM("base Theta= "); SERIAL_ECHO(delta[X_AXIS]);
  1251. // SERIAL_ECHOPGM(" base Psi+Theta="); SERIAL_ECHOLN(delta[Y_AXIS]);
  1252. for (int i = 0; i < 2; i++) delta[i] -= home_offset[i];
  1253. // SERIAL_ECHOPGM("addhome X="); SERIAL_ECHO(home_offset[X_AXIS]);
  1254. // SERIAL_ECHOPGM(" addhome Y="); SERIAL_ECHO(home_offset[Y_AXIS]);
  1255. // SERIAL_ECHOPGM(" addhome Theta="); SERIAL_ECHO(delta[X_AXIS]);
  1256. // SERIAL_ECHOPGM(" addhome Psi+Theta="); SERIAL_ECHOLN(delta[Y_AXIS]);
  1257. calculate_SCARA_forward_Transform(delta);
  1258. // SERIAL_ECHOPGM("Delta X="); SERIAL_ECHO(delta[X_AXIS]);
  1259. // SERIAL_ECHOPGM(" Delta Y="); SERIAL_ECHOLN(delta[Y_AXIS]);
  1260. current_position[axis] = delta[axis];
  1261. /**
  1262. * SCARA home positions are based on configuration since the actual
  1263. * limits are determined by the inverse kinematic transform.
  1264. */
  1265. sw_endstop_min[axis] = base_min_pos(axis); // + (delta[axis] - base_home_pos(axis));
  1266. sw_endstop_max[axis] = base_max_pos(axis); // + (delta[axis] - base_home_pos(axis));
  1267. }
  1268. else
  1269. #endif
  1270. {
  1271. current_position[axis] = base_home_pos(axis) + home_offset[axis];
  1272. update_software_endstops(axis);
  1273. #if HAS_BED_PROBE && Z_HOME_DIR < 0
  1274. if (axis == Z_AXIS) {
  1275. current_position[Z_AXIS] -= zprobe_zoffset;
  1276. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1277. if (DEBUGGING(LEVELING)) {
  1278. SERIAL_ECHOPAIR("> zprobe_zoffset==", zprobe_zoffset);
  1279. SERIAL_EOL;
  1280. }
  1281. #endif
  1282. }
  1283. #endif
  1284. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1285. if (DEBUGGING(LEVELING)) {
  1286. SERIAL_ECHOPAIR("> home_offset[axis]==", home_offset[axis]);
  1287. DEBUG_POS("", current_position);
  1288. }
  1289. #endif
  1290. }
  1291. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1292. if (DEBUGGING(LEVELING)) {
  1293. SERIAL_ECHOPAIR("<<< set_axis_is_at_home(", axis);
  1294. SERIAL_ECHOLNPGM(")");
  1295. }
  1296. #endif
  1297. }
  1298. /**
  1299. * Some planner shorthand inline functions
  1300. */
  1301. inline void set_homing_bump_feedrate(AxisEnum axis) {
  1302. const int homing_bump_divisor[] = HOMING_BUMP_DIVISOR;
  1303. int hbd = homing_bump_divisor[axis];
  1304. if (hbd < 1) {
  1305. hbd = 10;
  1306. SERIAL_ECHO_START;
  1307. SERIAL_ECHOLNPGM("Warning: Homing Bump Divisor < 1");
  1308. }
  1309. feedrate = homing_feedrate[axis] / hbd;
  1310. }
  1311. //
  1312. // line_to_current_position
  1313. // Move the planner to the current position from wherever it last moved
  1314. // (or from wherever it has been told it is located).
  1315. //
  1316. inline void line_to_current_position() {
  1317. planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate / 60, active_extruder);
  1318. }
  1319. inline void line_to_z(float zPosition) {
  1320. planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate / 60, active_extruder);
  1321. }
  1322. //
  1323. // line_to_destination
  1324. // Move the planner, not necessarily synced with current_position
  1325. //
  1326. inline void line_to_destination(float mm_m) {
  1327. planner.buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], mm_m / 60, active_extruder);
  1328. }
  1329. inline void line_to_destination() {
  1330. line_to_destination(feedrate);
  1331. }
  1332. /**
  1333. * sync_plan_position
  1334. * Set planner / stepper positions to the cartesian current_position.
  1335. * The stepper code translates these coordinates into step units.
  1336. * Allows translation between steps and units (mm) for cartesian & core robots
  1337. */
  1338. inline void sync_plan_position() {
  1339. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1340. if (DEBUGGING(LEVELING)) DEBUG_POS("sync_plan_position", current_position);
  1341. #endif
  1342. planner.set_position_mm(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1343. }
  1344. inline void sync_plan_position_e() { planner.set_e_position_mm(current_position[E_AXIS]); }
  1345. inline void set_current_to_destination() { memcpy(current_position, destination, sizeof(current_position)); }
  1346. inline void set_destination_to_current() { memcpy(destination, current_position, sizeof(destination)); }
  1347. static void setup_for_endstop_move() {
  1348. saved_feedrate = feedrate;
  1349. saved_feedrate_multiplier = feedrate_multiplier;
  1350. feedrate_multiplier = 100;
  1351. refresh_cmd_timeout();
  1352. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1353. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("setup_for_endstop_move > endstops.enable()");
  1354. #endif
  1355. endstops.enable();
  1356. }
  1357. #if HAS_BED_PROBE
  1358. static void clean_up_after_endstop_move() {
  1359. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1360. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("clean_up_after_endstop_move > endstops.not_homing()");
  1361. #endif
  1362. endstops.not_homing();
  1363. feedrate = saved_feedrate;
  1364. feedrate_multiplier = saved_feedrate_multiplier;
  1365. refresh_cmd_timeout();
  1366. }
  1367. #if ENABLED(DELTA)
  1368. /**
  1369. * Calculate delta, start a line, and set current_position to destination
  1370. */
  1371. void prepare_move_to_destination_raw() {
  1372. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1373. if (DEBUGGING(LEVELING)) DEBUG_POS("prepare_move_to_destination_raw", destination);
  1374. #endif
  1375. refresh_cmd_timeout();
  1376. calculate_delta(destination);
  1377. planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], destination[E_AXIS], (feedrate / 60) * (feedrate_multiplier / 100.0), active_extruder);
  1378. set_current_to_destination();
  1379. }
  1380. #endif
  1381. /**
  1382. * Plan a move to (X, Y, Z) and set the current_position
  1383. * The final current_position may not be the one that was requested
  1384. */
  1385. static void do_blocking_move_to(float x, float y, float z) {
  1386. float old_feedrate = feedrate;
  1387. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1388. if (DEBUGGING(LEVELING)) print_xyz("do_blocking_move_to", x, y, z);
  1389. #endif
  1390. #if ENABLED(DELTA)
  1391. feedrate =
  1392. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  1393. xy_travel_speed
  1394. #else
  1395. min(planner.max_feedrate[X_AXIS], planner.max_feedrate[Y_AXIS]) * 60
  1396. #endif
  1397. ;
  1398. destination[X_AXIS] = x;
  1399. destination[Y_AXIS] = y;
  1400. destination[Z_AXIS] = z;
  1401. if (x == current_position[X_AXIS] && y == current_position[Y_AXIS])
  1402. prepare_move_to_destination_raw(); // this will also set_current_to_destination
  1403. else
  1404. prepare_move_to_destination(); // this will also set_current_to_destination
  1405. #else
  1406. feedrate = homing_feedrate[Z_AXIS];
  1407. current_position[Z_AXIS] = z;
  1408. line_to_current_position();
  1409. stepper.synchronize();
  1410. feedrate =
  1411. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  1412. xy_travel_speed
  1413. #else
  1414. min(planner.max_feedrate[X_AXIS], planner.max_feedrate[Y_AXIS]) * 60
  1415. #endif
  1416. ;
  1417. current_position[X_AXIS] = x;
  1418. current_position[Y_AXIS] = y;
  1419. line_to_current_position();
  1420. #endif
  1421. stepper.synchronize();
  1422. feedrate = old_feedrate;
  1423. }
  1424. inline void do_blocking_move_to_x(float x) {
  1425. do_blocking_move_to(x, current_position[Y_AXIS], current_position[Z_AXIS]);
  1426. }
  1427. inline void do_blocking_move_to_z(float z) {
  1428. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z);
  1429. }
  1430. #endif //HAS_BED_PROBE
  1431. #if HAS_Z_SERVO_ENDSTOP
  1432. /**
  1433. * Raise Z to a minimum height to make room for a servo to move
  1434. *
  1435. * zprobe_zoffset: Negative of the Z height where the probe engages
  1436. * z_dest: The before / after probing raise distance
  1437. *
  1438. * The zprobe_zoffset is negative for a switch below the nozzle, so
  1439. * multiply by Z_HOME_DIR (-1) to move enough away from the bed.
  1440. */
  1441. void raise_z_for_servo(float z_dest) {
  1442. z_dest += home_offset[Z_AXIS];
  1443. if ((Z_HOME_DIR) < 0 && zprobe_zoffset < 0)
  1444. z_dest -= zprobe_zoffset;
  1445. if (z_dest > current_position[Z_AXIS])
  1446. do_blocking_move_to_z(z_dest); // also updates current_position
  1447. }
  1448. #endif
  1449. #if HAS_BED_PROBE
  1450. inline void raise_z_after_probing() {
  1451. #if Z_RAISE_AFTER_PROBING > 0
  1452. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1453. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("raise_z_after_probing()");
  1454. #endif
  1455. do_blocking_move_to_z(current_position[Z_AXIS] + Z_RAISE_AFTER_PROBING);
  1456. #endif
  1457. }
  1458. #endif
  1459. #if ENABLED(Z_PROBE_SLED)
  1460. #ifndef SLED_DOCKING_OFFSET
  1461. #define SLED_DOCKING_OFFSET 0
  1462. #endif
  1463. /**
  1464. * Method to dock/undock a sled designed by Charles Bell.
  1465. *
  1466. * dock[in] If true, move to MAX_X and engage the electromagnet
  1467. * offset[in] The additional distance to move to adjust docking location
  1468. */
  1469. static void dock_sled(bool dock, int offset = 0) {
  1470. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1471. if (DEBUGGING(LEVELING)) {
  1472. SERIAL_ECHOPAIR("dock_sled(", dock);
  1473. SERIAL_ECHOLNPGM(")");
  1474. }
  1475. #endif
  1476. if (!axis_homed[X_AXIS] || !axis_homed[Y_AXIS] || !axis_homed[Z_AXIS]) {
  1477. axis_unhomed_error(true);
  1478. return;
  1479. }
  1480. if (endstops.z_probe_enabled == !dock) return; // already docked/undocked?
  1481. float oldXpos = current_position[X_AXIS]; // save x position
  1482. if (dock) {
  1483. raise_z_after_probing(); // raise Z
  1484. // Dock sled a bit closer to ensure proper capturing
  1485. do_blocking_move_to_x(X_MAX_POS + SLED_DOCKING_OFFSET + offset - 1);
  1486. digitalWrite(SLED_PIN, LOW); // turn off magnet
  1487. }
  1488. else {
  1489. float z_loc = current_position[Z_AXIS];
  1490. if (z_loc < Z_RAISE_BEFORE_PROBING + 5) z_loc = Z_RAISE_BEFORE_PROBING;
  1491. do_blocking_move_to(X_MAX_POS + SLED_DOCKING_OFFSET + offset, current_position[Y_AXIS], z_loc); // this also updates current_position
  1492. digitalWrite(SLED_PIN, HIGH); // turn on magnet
  1493. }
  1494. do_blocking_move_to_x(oldXpos); // return to position before docking
  1495. }
  1496. #endif // Z_PROBE_SLED
  1497. #if HAS_BED_PROBE
  1498. static void deploy_z_probe() {
  1499. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1500. if (DEBUGGING(LEVELING)) DEBUG_POS("deploy_z_probe", current_position);
  1501. #endif
  1502. if (endstops.z_probe_enabled) return;
  1503. #if ENABLED(Z_PROBE_SLED)
  1504. dock_sled(false);
  1505. #elif HAS_Z_SERVO_ENDSTOP
  1506. // Make room for Z Servo
  1507. raise_z_for_servo(Z_RAISE_BEFORE_PROBING);
  1508. // Engage Z Servo endstop if enabled
  1509. DEPLOY_Z_SERVO();
  1510. #elif ENABLED(Z_PROBE_ALLEN_KEY)
  1511. float old_feedrate = feedrate;
  1512. feedrate = Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE;
  1513. // If endstop is already false, the Z probe is deployed
  1514. #if ENABLED(Z_MIN_PROBE_ENDSTOP)
  1515. bool z_probe_endstop = (READ(Z_MIN_PROBE_PIN) != Z_MIN_PROBE_ENDSTOP_INVERTING);
  1516. if (z_probe_endstop)
  1517. #else
  1518. bool z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
  1519. if (z_min_endstop)
  1520. #endif
  1521. {
  1522. // Move to the start position to initiate deployment
  1523. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_1_X;
  1524. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_1_Y;
  1525. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_1_Z;
  1526. prepare_move_to_destination_raw(); // this will also set_current_to_destination
  1527. // Move to engage deployment
  1528. if (Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE != Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE)
  1529. feedrate = Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE;
  1530. if (Z_PROBE_ALLEN_KEY_DEPLOY_2_X != Z_PROBE_ALLEN_KEY_DEPLOY_1_X)
  1531. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_2_X;
  1532. if (Z_PROBE_ALLEN_KEY_DEPLOY_2_Y != Z_PROBE_ALLEN_KEY_DEPLOY_1_Y)
  1533. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_2_Y;
  1534. if (Z_PROBE_ALLEN_KEY_DEPLOY_2_Z != Z_PROBE_ALLEN_KEY_DEPLOY_1_Z)
  1535. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_2_Z;
  1536. prepare_move_to_destination_raw();
  1537. #ifdef Z_PROBE_ALLEN_KEY_DEPLOY_3_X
  1538. if (Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE != Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE)
  1539. feedrate = Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE;
  1540. // Move to trigger deployment
  1541. if (Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE != Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE)
  1542. feedrate = Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE;
  1543. if (Z_PROBE_ALLEN_KEY_DEPLOY_3_X != Z_PROBE_ALLEN_KEY_DEPLOY_2_X)
  1544. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_3_X;
  1545. if (Z_PROBE_ALLEN_KEY_DEPLOY_3_Y != Z_PROBE_ALLEN_KEY_DEPLOY_2_Y)
  1546. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_3_Y;
  1547. if (Z_PROBE_ALLEN_KEY_DEPLOY_3_Z != Z_PROBE_ALLEN_KEY_DEPLOY_2_Z)
  1548. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_3_Z;
  1549. prepare_move_to_destination_raw();
  1550. #endif
  1551. }
  1552. // Partially Home X,Y for safety
  1553. destination[X_AXIS] *= 0.75;
  1554. destination[Y_AXIS] *= 0.75;
  1555. prepare_move_to_destination_raw(); // this will also set_current_to_destination
  1556. feedrate = old_feedrate;
  1557. stepper.synchronize();
  1558. #if ENABLED(Z_MIN_PROBE_ENDSTOP)
  1559. z_probe_endstop = (READ(Z_MIN_PROBE_PIN) != Z_MIN_PROBE_ENDSTOP_INVERTING);
  1560. if (z_probe_endstop)
  1561. #else
  1562. z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
  1563. if (z_min_endstop)
  1564. #endif
  1565. {
  1566. if (IsRunning()) {
  1567. SERIAL_ERROR_START;
  1568. SERIAL_ERRORLNPGM("Z-Probe failed to engage!");
  1569. LCD_ALERTMESSAGEPGM("Err: ZPROBE");
  1570. }
  1571. stop();
  1572. }
  1573. #elif ENABLED(FIX_MOUNTED_PROBE)
  1574. // Nothing to be done. Just enable_z_probe below...
  1575. #endif
  1576. endstops.enable_z_probe();
  1577. }
  1578. static void stow_z_probe() {
  1579. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1580. if (DEBUGGING(LEVELING)) DEBUG_POS("stow_z_probe", current_position);
  1581. #endif
  1582. if (!endstops.z_probe_enabled) return;
  1583. #if ENABLED(Z_PROBE_SLED)
  1584. dock_sled(true);
  1585. #elif HAS_Z_SERVO_ENDSTOP
  1586. // Make room for the servo
  1587. raise_z_for_servo(Z_RAISE_AFTER_PROBING);
  1588. // Change the Z servo angle
  1589. STOW_Z_SERVO();
  1590. #elif ENABLED(Z_PROBE_ALLEN_KEY)
  1591. float old_feedrate = feedrate;
  1592. // Move up for safety
  1593. feedrate = Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE;
  1594. #if Z_RAISE_AFTER_PROBING > 0
  1595. destination[Z_AXIS] = current_position[Z_AXIS] + Z_RAISE_AFTER_PROBING;
  1596. prepare_move_to_destination_raw(); // this will also set_current_to_destination
  1597. #endif
  1598. // Move to the start position to initiate retraction
  1599. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_STOW_1_X;
  1600. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_STOW_1_Y;
  1601. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_STOW_1_Z;
  1602. prepare_move_to_destination_raw();
  1603. // Move the nozzle down to push the Z probe into retracted position
  1604. if (Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE != Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE)
  1605. feedrate = Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE;
  1606. if (Z_PROBE_ALLEN_KEY_STOW_2_X != Z_PROBE_ALLEN_KEY_STOW_1_X)
  1607. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_STOW_2_X;
  1608. if (Z_PROBE_ALLEN_KEY_STOW_2_Y != Z_PROBE_ALLEN_KEY_STOW_1_Y)
  1609. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_STOW_2_Y;
  1610. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_STOW_2_Z;
  1611. prepare_move_to_destination_raw();
  1612. // Move up for safety
  1613. if (Z_PROBE_ALLEN_KEY_STOW_3_FEEDRATE != Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE)
  1614. feedrate = Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE;
  1615. if (Z_PROBE_ALLEN_KEY_STOW_3_X != Z_PROBE_ALLEN_KEY_STOW_2_X)
  1616. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_STOW_3_X;
  1617. if (Z_PROBE_ALLEN_KEY_STOW_3_Y != Z_PROBE_ALLEN_KEY_STOW_2_Y)
  1618. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_STOW_3_Y;
  1619. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_STOW_3_Z;
  1620. prepare_move_to_destination_raw();
  1621. // Home XY for safety
  1622. feedrate = homing_feedrate[X_AXIS] / 2;
  1623. destination[X_AXIS] = 0;
  1624. destination[Y_AXIS] = 0;
  1625. prepare_move_to_destination_raw(); // this will also set_current_to_destination
  1626. feedrate = old_feedrate;
  1627. stepper.synchronize();
  1628. #if ENABLED(Z_MIN_PROBE_ENDSTOP)
  1629. bool z_probe_endstop = (READ(Z_MIN_PROBE_PIN) != Z_MIN_PROBE_ENDSTOP_INVERTING);
  1630. if (!z_probe_endstop)
  1631. #else
  1632. bool z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
  1633. if (!z_min_endstop)
  1634. #endif
  1635. {
  1636. if (IsRunning()) {
  1637. SERIAL_ERROR_START;
  1638. SERIAL_ERRORLNPGM("Z-Probe failed to retract!");
  1639. LCD_ALERTMESSAGEPGM("Err: ZPROBE");
  1640. }
  1641. stop();
  1642. }
  1643. #elif ENABLED(FIX_MOUNTED_PROBE)
  1644. // Nothing to do here. Just clear endstops.z_probe_enabled
  1645. #endif
  1646. endstops.enable_z_probe(false);
  1647. }
  1648. #endif // HAS_BED_PROBE
  1649. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  1650. #if ENABLED(AUTO_BED_LEVELING_GRID)
  1651. #if DISABLED(DELTA)
  1652. static void set_bed_level_equation_lsq(double* plane_equation_coefficients) {
  1653. //planner.bed_level_matrix.debug("bed level before");
  1654. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1655. planner.bed_level_matrix.set_to_identity();
  1656. if (DEBUGGING(LEVELING)) {
  1657. vector_3 uncorrected_position = planner.adjusted_position();
  1658. DEBUG_POS(">>> set_bed_level_equation_lsq", uncorrected_position);
  1659. DEBUG_POS(">>> set_bed_level_equation_lsq", current_position);
  1660. }
  1661. #endif
  1662. vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
  1663. planner.bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1664. vector_3 corrected_position = planner.adjusted_position();
  1665. current_position[X_AXIS] = corrected_position.x;
  1666. current_position[Y_AXIS] = corrected_position.y;
  1667. current_position[Z_AXIS] = corrected_position.z;
  1668. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1669. if (DEBUGGING(LEVELING)) DEBUG_POS("<<< set_bed_level_equation_lsq", corrected_position);
  1670. #endif
  1671. sync_plan_position();
  1672. }
  1673. #endif // !DELTA
  1674. #else // !AUTO_BED_LEVELING_GRID
  1675. static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
  1676. planner.bed_level_matrix.set_to_identity();
  1677. vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
  1678. vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
  1679. vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
  1680. vector_3 planeNormal = vector_3::cross(pt1 - pt2, pt3 - pt2).get_normal();
  1681. if (planeNormal.z < 0) {
  1682. planeNormal.x = -planeNormal.x;
  1683. planeNormal.y = -planeNormal.y;
  1684. planeNormal.z = -planeNormal.z;
  1685. }
  1686. planner.bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1687. vector_3 corrected_position = planner.adjusted_position();
  1688. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1689. if (DEBUGGING(LEVELING)) {
  1690. vector_3 uncorrected_position = corrected_position;
  1691. DEBUG_POS("set_bed_level_equation_3pts", uncorrected_position);
  1692. }
  1693. #endif
  1694. current_position[X_AXIS] = corrected_position.x;
  1695. current_position[Y_AXIS] = corrected_position.y;
  1696. current_position[Z_AXIS] = corrected_position.z;
  1697. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1698. if (DEBUGGING(LEVELING)) DEBUG_POS("set_bed_level_equation_3pts", corrected_position);
  1699. #endif
  1700. sync_plan_position();
  1701. }
  1702. #endif // !AUTO_BED_LEVELING_GRID
  1703. #endif // AUTO_BED_LEVELING_FEATURE
  1704. #if HAS_BED_PROBE
  1705. static void run_z_probe() {
  1706. float old_feedrate = feedrate;
  1707. /**
  1708. * To prevent stepper_inactive_time from running out and
  1709. * EXTRUDER_RUNOUT_PREVENT from extruding
  1710. */
  1711. refresh_cmd_timeout();
  1712. #if ENABLED(DELTA)
  1713. float start_z = current_position[Z_AXIS];
  1714. long start_steps = stepper.position(Z_AXIS);
  1715. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1716. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("run_z_probe (DELTA) 1");
  1717. #endif
  1718. // move down slowly until you find the bed
  1719. feedrate = homing_feedrate[Z_AXIS] / 4;
  1720. destination[Z_AXIS] = -10;
  1721. prepare_move_to_destination_raw(); // this will also set_current_to_destination
  1722. stepper.synchronize();
  1723. endstops.hit_on_purpose(); // clear endstop hit flags
  1724. /**
  1725. * We have to let the planner know where we are right now as it
  1726. * is not where we said to go.
  1727. */
  1728. long stop_steps = stepper.position(Z_AXIS);
  1729. float mm = start_z - float(start_steps - stop_steps) / planner.axis_steps_per_mm[Z_AXIS];
  1730. current_position[Z_AXIS] = mm;
  1731. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1732. if (DEBUGGING(LEVELING)) DEBUG_POS("run_z_probe (DELTA) 2", current_position);
  1733. #endif
  1734. sync_plan_position_delta();
  1735. #else // !DELTA
  1736. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  1737. planner.bed_level_matrix.set_to_identity();
  1738. #endif
  1739. feedrate = homing_feedrate[Z_AXIS];
  1740. // Move down until the Z probe (or endstop?) is triggered
  1741. float zPosition = -(Z_MAX_LENGTH + 10);
  1742. line_to_z(zPosition);
  1743. stepper.synchronize();
  1744. // Tell the planner where we ended up - Get this from the stepper handler
  1745. zPosition = stepper.get_axis_position_mm(Z_AXIS);
  1746. planner.set_position_mm(
  1747. current_position[X_AXIS], current_position[Y_AXIS], zPosition,
  1748. current_position[E_AXIS]
  1749. );
  1750. // move up the retract distance
  1751. zPosition += home_bump_mm(Z_AXIS);
  1752. line_to_z(zPosition);
  1753. stepper.synchronize();
  1754. endstops.hit_on_purpose(); // clear endstop hit flags
  1755. // move back down slowly to find bed
  1756. set_homing_bump_feedrate(Z_AXIS);
  1757. zPosition -= home_bump_mm(Z_AXIS) * 2;
  1758. line_to_z(zPosition);
  1759. stepper.synchronize();
  1760. endstops.hit_on_purpose(); // clear endstop hit flags
  1761. // Get the current stepper position after bumping an endstop
  1762. current_position[Z_AXIS] = stepper.get_axis_position_mm(Z_AXIS);
  1763. sync_plan_position();
  1764. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1765. if (DEBUGGING(LEVELING)) DEBUG_POS("run_z_probe", current_position);
  1766. #endif
  1767. #endif // !DELTA
  1768. feedrate = old_feedrate;
  1769. }
  1770. #endif // HAS_BED_PROBE
  1771. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  1772. inline void do_blocking_move_to_xy(float x, float y) {
  1773. do_blocking_move_to(x, y, current_position[Z_AXIS]);
  1774. }
  1775. enum ProbeAction {
  1776. ProbeStay = 0,
  1777. ProbeDeploy = _BV(0),
  1778. ProbeStow = _BV(1),
  1779. ProbeDeployAndStow = (ProbeDeploy | ProbeStow)
  1780. };
  1781. // Probe bed height at position (x,y), returns the measured z value
  1782. static float probe_pt(float x, float y, float z_before, ProbeAction probe_action = ProbeDeployAndStow, int verbose_level = 1) {
  1783. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1784. if (DEBUGGING(LEVELING)) {
  1785. SERIAL_ECHOLNPGM("probe_pt >>>");
  1786. SERIAL_ECHOPAIR("> ProbeAction:", probe_action);
  1787. SERIAL_EOL;
  1788. DEBUG_POS("", current_position);
  1789. }
  1790. #endif
  1791. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1792. if (DEBUGGING(LEVELING)) {
  1793. SERIAL_ECHOPAIR("Z Raise to z_before ", z_before);
  1794. SERIAL_EOL;
  1795. SERIAL_ECHOPAIR("> do_blocking_move_to_z ", z_before);
  1796. SERIAL_EOL;
  1797. }
  1798. #endif
  1799. // Move Z up to the z_before height, then move the Z probe to the given XY
  1800. do_blocking_move_to_z(z_before); // this also updates current_position
  1801. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1802. if (DEBUGGING(LEVELING)) {
  1803. SERIAL_ECHOPAIR("> do_blocking_move_to_xy ", x - (X_PROBE_OFFSET_FROM_EXTRUDER));
  1804. SERIAL_ECHOPAIR(", ", y - (Y_PROBE_OFFSET_FROM_EXTRUDER));
  1805. SERIAL_EOL;
  1806. }
  1807. #endif
  1808. // this also updates current_position
  1809. do_blocking_move_to_xy(x - (X_PROBE_OFFSET_FROM_EXTRUDER), y - (Y_PROBE_OFFSET_FROM_EXTRUDER));
  1810. #if DISABLED(Z_PROBE_SLED) && DISABLED(Z_PROBE_ALLEN_KEY)
  1811. if (probe_action & ProbeDeploy) {
  1812. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1813. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> ProbeDeploy");
  1814. #endif
  1815. deploy_z_probe();
  1816. }
  1817. #endif
  1818. run_z_probe();
  1819. float measured_z = current_position[Z_AXIS];
  1820. #if DISABLED(Z_PROBE_SLED) && DISABLED(Z_PROBE_ALLEN_KEY)
  1821. if (probe_action & ProbeStow) {
  1822. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1823. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> ProbeStow (stow_z_probe will do Z Raise)");
  1824. #endif
  1825. stow_z_probe();
  1826. }
  1827. #endif
  1828. if (verbose_level > 2) {
  1829. SERIAL_PROTOCOLPGM("Bed X: ");
  1830. SERIAL_PROTOCOL_F(x, 3);
  1831. SERIAL_PROTOCOLPGM(" Y: ");
  1832. SERIAL_PROTOCOL_F(y, 3);
  1833. SERIAL_PROTOCOLPGM(" Z: ");
  1834. SERIAL_PROTOCOL_F(measured_z, 3);
  1835. SERIAL_EOL;
  1836. }
  1837. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1838. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< probe_pt");
  1839. #endif
  1840. return measured_z;
  1841. }
  1842. #if ENABLED(DELTA)
  1843. /**
  1844. * All DELTA leveling in the Marlin uses NONLINEAR_BED_LEVELING
  1845. */
  1846. static void extrapolate_one_point(int x, int y, int xdir, int ydir) {
  1847. if (bed_level[x][y] != 0.0) {
  1848. return; // Don't overwrite good values.
  1849. }
  1850. float a = 2 * bed_level[x + xdir][y] - bed_level[x + xdir * 2][y]; // Left to right.
  1851. float b = 2 * bed_level[x][y + ydir] - bed_level[x][y + ydir * 2]; // Front to back.
  1852. float c = 2 * bed_level[x + xdir][y + ydir] - bed_level[x + xdir * 2][y + ydir * 2]; // Diagonal.
  1853. float median = c; // Median is robust (ignores outliers).
  1854. if (a < b) {
  1855. if (b < c) median = b;
  1856. if (c < a) median = a;
  1857. }
  1858. else { // b <= a
  1859. if (c < b) median = b;
  1860. if (a < c) median = a;
  1861. }
  1862. bed_level[x][y] = median;
  1863. }
  1864. /**
  1865. * Fill in the unprobed points (corners of circular print surface)
  1866. * using linear extrapolation, away from the center.
  1867. */
  1868. static void extrapolate_unprobed_bed_level() {
  1869. int half = (AUTO_BED_LEVELING_GRID_POINTS - 1) / 2;
  1870. for (int y = 0; y <= half; y++) {
  1871. for (int x = 0; x <= half; x++) {
  1872. if (x + y < 3) continue;
  1873. extrapolate_one_point(half - x, half - y, x > 1 ? +1 : 0, y > 1 ? +1 : 0);
  1874. extrapolate_one_point(half + x, half - y, x > 1 ? -1 : 0, y > 1 ? +1 : 0);
  1875. extrapolate_one_point(half - x, half + y, x > 1 ? +1 : 0, y > 1 ? -1 : 0);
  1876. extrapolate_one_point(half + x, half + y, x > 1 ? -1 : 0, y > 1 ? -1 : 0);
  1877. }
  1878. }
  1879. }
  1880. /**
  1881. * Print calibration results for plotting or manual frame adjustment.
  1882. */
  1883. static void print_bed_level() {
  1884. for (int y = 0; y < AUTO_BED_LEVELING_GRID_POINTS; y++) {
  1885. for (int x = 0; x < AUTO_BED_LEVELING_GRID_POINTS; x++) {
  1886. SERIAL_PROTOCOL_F(bed_level[x][y], 2);
  1887. SERIAL_PROTOCOLCHAR(' ');
  1888. }
  1889. SERIAL_EOL;
  1890. }
  1891. }
  1892. /**
  1893. * Reset calibration results to zero.
  1894. */
  1895. void reset_bed_level() {
  1896. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1897. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("reset_bed_level");
  1898. #endif
  1899. for (int y = 0; y < AUTO_BED_LEVELING_GRID_POINTS; y++) {
  1900. for (int x = 0; x < AUTO_BED_LEVELING_GRID_POINTS; x++) {
  1901. bed_level[x][y] = 0.0;
  1902. }
  1903. }
  1904. }
  1905. #endif // DELTA
  1906. #endif // AUTO_BED_LEVELING_FEATURE
  1907. #if ENABLED(Z_PROBE_SLED) || ENABLED(Z_SAFE_HOMING) || ENABLED(AUTO_BED_LEVELING_FEATURE)
  1908. static void axis_unhomed_error(bool xyz=false) {
  1909. if (xyz) {
  1910. LCD_MESSAGEPGM(MSG_XYZ_UNHOMED);
  1911. SERIAL_ECHO_START;
  1912. SERIAL_ECHOLNPGM(MSG_XYZ_UNHOMED);
  1913. }
  1914. else {
  1915. LCD_MESSAGEPGM(MSG_YX_UNHOMED);
  1916. SERIAL_ECHO_START;
  1917. SERIAL_ECHOLNPGM(MSG_YX_UNHOMED);
  1918. }
  1919. }
  1920. #endif
  1921. /**
  1922. * Home an individual axis
  1923. */
  1924. #define HOMEAXIS(LETTER) homeaxis(LETTER##_AXIS)
  1925. static void homeaxis(AxisEnum axis) {
  1926. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1927. if (DEBUGGING(LEVELING)) {
  1928. SERIAL_ECHOPAIR(">>> homeaxis(", axis);
  1929. SERIAL_ECHOLNPGM(")");
  1930. }
  1931. #endif
  1932. #define HOMEAXIS_DO(LETTER) \
  1933. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  1934. if (axis == X_AXIS ? HOMEAXIS_DO(X) : axis == Y_AXIS ? HOMEAXIS_DO(Y) : axis == Z_AXIS ? HOMEAXIS_DO(Z) : 0) {
  1935. int axis_home_dir =
  1936. #if ENABLED(DUAL_X_CARRIAGE)
  1937. (axis == X_AXIS) ? x_home_dir(active_extruder) :
  1938. #endif
  1939. home_dir(axis);
  1940. // Set the axis position as setup for the move
  1941. current_position[axis] = 0;
  1942. sync_plan_position();
  1943. // Homing Z towards the bed? Deploy the Z probe or endstop.
  1944. #if HAS_BED_PROBE
  1945. if (axis == Z_AXIS && axis_home_dir < 0) {
  1946. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1947. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM(" > deploy_z_probe()");
  1948. #endif
  1949. deploy_z_probe();
  1950. }
  1951. #endif
  1952. // Set a flag for Z motor locking
  1953. #if ENABLED(Z_DUAL_ENDSTOPS)
  1954. if (axis == Z_AXIS) stepper.set_homing_flag(true);
  1955. #endif
  1956. // Move towards the endstop until an endstop is triggered
  1957. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  1958. feedrate = homing_feedrate[axis];
  1959. line_to_destination();
  1960. stepper.synchronize();
  1961. // Set the axis position as setup for the move
  1962. current_position[axis] = 0;
  1963. sync_plan_position();
  1964. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1965. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> endstops.enable(false)");
  1966. #endif
  1967. endstops.enable(false); // Disable endstops while moving away
  1968. // Move away from the endstop by the axis HOME_BUMP_MM
  1969. destination[axis] = -home_bump_mm(axis) * axis_home_dir;
  1970. line_to_destination();
  1971. stepper.synchronize();
  1972. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1973. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> endstops.enable(true)");
  1974. #endif
  1975. endstops.enable(true); // Enable endstops for next homing move
  1976. // Slow down the feedrate for the next move
  1977. set_homing_bump_feedrate(axis);
  1978. // Move slowly towards the endstop until triggered
  1979. destination[axis] = 2 * home_bump_mm(axis) * axis_home_dir;
  1980. line_to_destination();
  1981. stepper.synchronize();
  1982. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1983. if (DEBUGGING(LEVELING)) DEBUG_POS("> TRIGGER ENDSTOP", current_position);
  1984. #endif
  1985. #if ENABLED(Z_DUAL_ENDSTOPS)
  1986. if (axis == Z_AXIS) {
  1987. float adj = fabs(z_endstop_adj);
  1988. bool lockZ1;
  1989. if (axis_home_dir > 0) {
  1990. adj = -adj;
  1991. lockZ1 = (z_endstop_adj > 0);
  1992. }
  1993. else
  1994. lockZ1 = (z_endstop_adj < 0);
  1995. if (lockZ1) stepper.set_z_lock(true); else stepper.set_z2_lock(true);
  1996. sync_plan_position();
  1997. // Move to the adjusted endstop height
  1998. feedrate = homing_feedrate[axis];
  1999. destination[Z_AXIS] = adj;
  2000. line_to_destination();
  2001. stepper.synchronize();
  2002. if (lockZ1) stepper.set_z_lock(false); else stepper.set_z2_lock(false);
  2003. stepper.set_homing_flag(false);
  2004. } // Z_AXIS
  2005. #endif
  2006. #if ENABLED(DELTA)
  2007. // retrace by the amount specified in endstop_adj
  2008. if (endstop_adj[axis] * axis_home_dir < 0) {
  2009. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2010. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> endstops.enable(false)");
  2011. #endif
  2012. endstops.enable(false); // Disable endstops while moving away
  2013. sync_plan_position();
  2014. destination[axis] = endstop_adj[axis];
  2015. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2016. if (DEBUGGING(LEVELING)) {
  2017. SERIAL_ECHOPAIR("> endstop_adj = ", endstop_adj[axis]);
  2018. DEBUG_POS("", destination);
  2019. }
  2020. #endif
  2021. line_to_destination();
  2022. stepper.synchronize();
  2023. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2024. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> endstops.enable(true)");
  2025. #endif
  2026. endstops.enable(true); // Enable endstops for next homing move
  2027. }
  2028. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2029. else {
  2030. if (DEBUGGING(LEVELING)) {
  2031. SERIAL_ECHOPAIR("> endstop_adj * axis_home_dir = ", endstop_adj[axis] * axis_home_dir);
  2032. SERIAL_EOL;
  2033. }
  2034. }
  2035. #endif
  2036. #endif
  2037. // Set the axis position to its home position (plus home offsets)
  2038. set_axis_is_at_home(axis);
  2039. sync_plan_position();
  2040. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2041. if (DEBUGGING(LEVELING)) DEBUG_POS("> AFTER set_axis_is_at_home", current_position);
  2042. #endif
  2043. destination[axis] = current_position[axis];
  2044. feedrate = 0.0;
  2045. endstops.hit_on_purpose(); // clear endstop hit flags
  2046. axis_known_position[axis] = true;
  2047. axis_homed[axis] = true;
  2048. // Put away the Z probe
  2049. #if HAS_BED_PROBE
  2050. if (axis == Z_AXIS && axis_home_dir < 0) {
  2051. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2052. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM(" > stow_z_probe()");
  2053. #endif
  2054. stow_z_probe();
  2055. }
  2056. #endif
  2057. }
  2058. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2059. if (DEBUGGING(LEVELING)) {
  2060. SERIAL_ECHOPAIR("<<< homeaxis(", axis);
  2061. SERIAL_ECHOLNPGM(")");
  2062. }
  2063. #endif
  2064. }
  2065. #if ENABLED(FWRETRACT)
  2066. void retract(bool retracting, bool swapping = false) {
  2067. if (retracting == retracted[active_extruder]) return;
  2068. float oldFeedrate = feedrate;
  2069. set_destination_to_current();
  2070. if (retracting) {
  2071. feedrate = retract_feedrate * 60;
  2072. current_position[E_AXIS] += (swapping ? retract_length_swap : retract_length) / volumetric_multiplier[active_extruder];
  2073. sync_plan_position_e();
  2074. prepare_move_to_destination();
  2075. if (retract_zlift > 0.01) {
  2076. current_position[Z_AXIS] -= retract_zlift;
  2077. #if ENABLED(DELTA)
  2078. sync_plan_position_delta();
  2079. #else
  2080. sync_plan_position();
  2081. #endif
  2082. prepare_move_to_destination();
  2083. }
  2084. }
  2085. else {
  2086. if (retract_zlift > 0.01) {
  2087. current_position[Z_AXIS] += retract_zlift;
  2088. #if ENABLED(DELTA)
  2089. sync_plan_position_delta();
  2090. #else
  2091. sync_plan_position();
  2092. #endif
  2093. }
  2094. feedrate = retract_recover_feedrate * 60;
  2095. float move_e = swapping ? retract_length_swap + retract_recover_length_swap : retract_length + retract_recover_length;
  2096. current_position[E_AXIS] -= move_e / volumetric_multiplier[active_extruder];
  2097. sync_plan_position_e();
  2098. prepare_move_to_destination();
  2099. }
  2100. feedrate = oldFeedrate;
  2101. retracted[active_extruder] = retracting;
  2102. } // retract()
  2103. #endif // FWRETRACT
  2104. /**
  2105. * ***************************************************************************
  2106. * ***************************** G-CODE HANDLING *****************************
  2107. * ***************************************************************************
  2108. */
  2109. /**
  2110. * Set XYZE destination and feedrate from the current GCode command
  2111. *
  2112. * - Set destination from included axis codes
  2113. * - Set to current for missing axis codes
  2114. * - Set the feedrate, if included
  2115. */
  2116. void gcode_get_destination() {
  2117. for (int i = 0; i < NUM_AXIS; i++) {
  2118. if (code_seen(axis_codes[i]))
  2119. destination[i] = code_value_axis_units(i) + (axis_relative_modes[i] || relative_mode ? current_position[i] : 0);
  2120. else
  2121. destination[i] = current_position[i];
  2122. }
  2123. if (code_seen('F')) {
  2124. float next_feedrate = code_value_linear_units();
  2125. if (next_feedrate > 0.0) feedrate = next_feedrate;
  2126. }
  2127. }
  2128. void unknown_command_error() {
  2129. SERIAL_ECHO_START;
  2130. SERIAL_ECHOPGM(MSG_UNKNOWN_COMMAND);
  2131. SERIAL_ECHO(current_command);
  2132. SERIAL_ECHOPGM("\"\n");
  2133. }
  2134. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  2135. /**
  2136. * Output a "busy" message at regular intervals
  2137. * while the machine is not accepting commands.
  2138. */
  2139. void host_keepalive() {
  2140. millis_t ms = millis();
  2141. if (host_keepalive_interval && busy_state != NOT_BUSY) {
  2142. if (PENDING(ms, next_busy_signal_ms)) return;
  2143. switch (busy_state) {
  2144. case IN_HANDLER:
  2145. case IN_PROCESS:
  2146. SERIAL_ECHO_START;
  2147. SERIAL_ECHOLNPGM(MSG_BUSY_PROCESSING);
  2148. break;
  2149. case PAUSED_FOR_USER:
  2150. SERIAL_ECHO_START;
  2151. SERIAL_ECHOLNPGM(MSG_BUSY_PAUSED_FOR_USER);
  2152. break;
  2153. case PAUSED_FOR_INPUT:
  2154. SERIAL_ECHO_START;
  2155. SERIAL_ECHOLNPGM(MSG_BUSY_PAUSED_FOR_INPUT);
  2156. break;
  2157. default:
  2158. break;
  2159. }
  2160. }
  2161. next_busy_signal_ms = ms + host_keepalive_interval * 1000UL;
  2162. }
  2163. #endif //HOST_KEEPALIVE_FEATURE
  2164. /**
  2165. * G0, G1: Coordinated movement of X Y Z E axes
  2166. */
  2167. inline void gcode_G0_G1() {
  2168. if (IsRunning()) {
  2169. gcode_get_destination(); // For X Y Z E F
  2170. #if ENABLED(FWRETRACT)
  2171. if (autoretract_enabled && !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  2172. float echange = destination[E_AXIS] - current_position[E_AXIS];
  2173. // Is this move an attempt to retract or recover?
  2174. if ((echange < -MIN_RETRACT && !retracted[active_extruder]) || (echange > MIN_RETRACT && retracted[active_extruder])) {
  2175. current_position[E_AXIS] = destination[E_AXIS]; // hide the slicer-generated retract/recover from calculations
  2176. sync_plan_position_e(); // AND from the planner
  2177. retract(!retracted[active_extruder]);
  2178. return;
  2179. }
  2180. }
  2181. #endif //FWRETRACT
  2182. prepare_move_to_destination();
  2183. }
  2184. }
  2185. /**
  2186. * G2: Clockwise Arc
  2187. * G3: Counterclockwise Arc
  2188. */
  2189. #if ENABLED(ARC_SUPPORT)
  2190. inline void gcode_G2_G3(bool clockwise) {
  2191. if (IsRunning()) {
  2192. #if ENABLED(SF_ARC_FIX)
  2193. bool relative_mode_backup = relative_mode;
  2194. relative_mode = true;
  2195. #endif
  2196. gcode_get_destination();
  2197. #if ENABLED(SF_ARC_FIX)
  2198. relative_mode = relative_mode_backup;
  2199. #endif
  2200. // Center of arc as offset from current_position
  2201. float arc_offset[2] = {
  2202. code_seen('I') ? code_value_axis_units(X_AXIS) : 0,
  2203. code_seen('J') ? code_value_axis_units(Y_AXIS) : 0
  2204. };
  2205. // Send an arc to the planner
  2206. plan_arc(destination, arc_offset, clockwise);
  2207. refresh_cmd_timeout();
  2208. }
  2209. }
  2210. #endif
  2211. /**
  2212. * G4: Dwell S<seconds> or P<milliseconds>
  2213. */
  2214. inline void gcode_G4() {
  2215. millis_t codenum = 0;
  2216. if (code_seen('P')) codenum = code_value_millis(); // milliseconds to wait
  2217. if (code_seen('S')) codenum = code_value_millis_from_seconds(); // seconds to wait
  2218. stepper.synchronize();
  2219. refresh_cmd_timeout();
  2220. codenum += previous_cmd_ms; // keep track of when we started waiting
  2221. if (!lcd_hasstatus()) LCD_MESSAGEPGM(MSG_DWELL);
  2222. while (PENDING(millis(), codenum)) idle();
  2223. }
  2224. #if ENABLED(BEZIER_CURVE_SUPPORT)
  2225. /**
  2226. * Parameters interpreted according to:
  2227. * http://linuxcnc.org/docs/2.6/html/gcode/gcode.html#sec:G5-Cubic-Spline
  2228. * However I, J omission is not supported at this point; all
  2229. * parameters can be omitted and default to zero.
  2230. */
  2231. /**
  2232. * G5: Cubic B-spline
  2233. */
  2234. inline void gcode_G5() {
  2235. if (IsRunning()) {
  2236. gcode_get_destination();
  2237. float offset[] = {
  2238. code_seen('I') ? code_value_axis_units(X_AXIS) : 0.0,
  2239. code_seen('J') ? code_value_axis_units(Y_AXIS) : 0.0,
  2240. code_seen('P') ? code_value_axis_units(X_AXIS) : 0.0,
  2241. code_seen('Q') ? code_value_axis_units(Y_AXIS) : 0.0
  2242. };
  2243. plan_cubic_move(offset);
  2244. }
  2245. }
  2246. #endif // BEZIER_CURVE_SUPPORT
  2247. #if ENABLED(FWRETRACT)
  2248. /**
  2249. * G10 - Retract filament according to settings of M207
  2250. * G11 - Recover filament according to settings of M208
  2251. */
  2252. inline void gcode_G10_G11(bool doRetract=false) {
  2253. #if EXTRUDERS > 1
  2254. if (doRetract) {
  2255. retracted_swap[active_extruder] = (code_seen('S') && code_value_bool()); // checks for swap retract argument
  2256. }
  2257. #endif
  2258. retract(doRetract
  2259. #if EXTRUDERS > 1
  2260. , retracted_swap[active_extruder]
  2261. #endif
  2262. );
  2263. }
  2264. #endif //FWRETRACT
  2265. #if ENABLED(INCH_MODE_SUPPORT)
  2266. /**
  2267. * G20: Set input mode to inches
  2268. */
  2269. inline void gcode_G20() {
  2270. set_input_linear_units(LINEARUNIT_INCH);
  2271. }
  2272. /**
  2273. * G21: Set input mode to millimeters
  2274. */
  2275. inline void gcode_G21() {
  2276. set_input_linear_units(LINEARUNIT_MM);
  2277. }
  2278. #endif
  2279. /**
  2280. * G28: Home all axes according to settings
  2281. *
  2282. * Parameters
  2283. *
  2284. * None Home to all axes with no parameters.
  2285. * With QUICK_HOME enabled XY will home together, then Z.
  2286. *
  2287. * Cartesian parameters
  2288. *
  2289. * X Home to the X endstop
  2290. * Y Home to the Y endstop
  2291. * Z Home to the Z endstop
  2292. *
  2293. */
  2294. inline void gcode_G28() {
  2295. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2296. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("gcode_G28 >>>");
  2297. #endif
  2298. // Wait for planner moves to finish!
  2299. stepper.synchronize();
  2300. // For auto bed leveling, clear the level matrix
  2301. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  2302. planner.bed_level_matrix.set_to_identity();
  2303. #if ENABLED(DELTA)
  2304. reset_bed_level();
  2305. #endif
  2306. #endif
  2307. /**
  2308. * For mesh bed leveling deactivate the mesh calculations, will be turned
  2309. * on again when homing all axis
  2310. */
  2311. #if ENABLED(MESH_BED_LEVELING)
  2312. float pre_home_z = MESH_HOME_SEARCH_Z;
  2313. if (mbl.active()) {
  2314. // Save known Z position if already homed
  2315. if (axis_homed[X_AXIS] && axis_homed[Y_AXIS] && axis_homed[Z_AXIS]) {
  2316. pre_home_z = current_position[Z_AXIS];
  2317. pre_home_z += mbl.get_z(current_position[X_AXIS] - home_offset[X_AXIS],
  2318. current_position[Y_AXIS] - home_offset[Y_AXIS]);
  2319. }
  2320. mbl.set_active(false);
  2321. }
  2322. #endif
  2323. setup_for_endstop_move();
  2324. /**
  2325. * Directly after a reset this is all 0. Later we get a hint if we have
  2326. * to raise z or not.
  2327. */
  2328. set_destination_to_current();
  2329. feedrate = 0.0;
  2330. #if ENABLED(DELTA)
  2331. /**
  2332. * A delta can only safely home all axis at the same time
  2333. * all axis have to home at the same time
  2334. */
  2335. // Pretend the current position is 0,0,0
  2336. for (int i = X_AXIS; i <= Z_AXIS; i++) current_position[i] = 0;
  2337. sync_plan_position();
  2338. // Move all carriages up together until the first endstop is hit.
  2339. for (int i = X_AXIS; i <= Z_AXIS; i++) destination[i] = 3 * (Z_MAX_LENGTH);
  2340. feedrate = 1.732 * homing_feedrate[X_AXIS];
  2341. line_to_destination();
  2342. stepper.synchronize();
  2343. endstops.hit_on_purpose(); // clear endstop hit flags
  2344. // Destination reached
  2345. for (int i = X_AXIS; i <= Z_AXIS; i++) current_position[i] = destination[i];
  2346. // take care of back off and rehome now we are all at the top
  2347. HOMEAXIS(X);
  2348. HOMEAXIS(Y);
  2349. HOMEAXIS(Z);
  2350. sync_plan_position_delta();
  2351. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2352. if (DEBUGGING(LEVELING)) DEBUG_POS("(DELTA)", current_position);
  2353. #endif
  2354. #else // NOT DELTA
  2355. bool homeX = code_seen(axis_codes[X_AXIS]),
  2356. homeY = code_seen(axis_codes[Y_AXIS]),
  2357. homeZ = code_seen(axis_codes[Z_AXIS]);
  2358. home_all_axis = (!homeX && !homeY && !homeZ) || (homeX && homeY && homeZ);
  2359. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  2360. if (home_all_axis || homeZ) {
  2361. HOMEAXIS(Z);
  2362. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2363. if (DEBUGGING(LEVELING)) DEBUG_POS("> HOMEAXIS(Z)", current_position);
  2364. #endif
  2365. }
  2366. #elif defined(MIN_Z_HEIGHT_FOR_HOMING) && MIN_Z_HEIGHT_FOR_HOMING > 0
  2367. // Raise Z before homing any other axes and z is not already high enough (never lower z)
  2368. if (current_position[Z_AXIS] <= MIN_Z_HEIGHT_FOR_HOMING) {
  2369. destination[Z_AXIS] = MIN_Z_HEIGHT_FOR_HOMING;
  2370. feedrate = planner.max_feedrate[Z_AXIS] * 60; // feedrate (mm/m) = max_feedrate (mm/s)
  2371. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2372. if (DEBUGGING(LEVELING)) {
  2373. SERIAL_ECHOPAIR("Raise Z (before homing) to ", (MIN_Z_HEIGHT_FOR_HOMING));
  2374. SERIAL_EOL;
  2375. DEBUG_POS("> (home_all_axis || homeZ)", current_position);
  2376. DEBUG_POS("> (home_all_axis || homeZ)", destination);
  2377. }
  2378. #endif
  2379. line_to_destination();
  2380. stepper.synchronize();
  2381. /**
  2382. * Update the current Z position even if it currently not real from
  2383. * Z-home otherwise each call to line_to_destination() will want to
  2384. * move Z-axis by MIN_Z_HEIGHT_FOR_HOMING.
  2385. */
  2386. current_position[Z_AXIS] = destination[Z_AXIS];
  2387. }
  2388. #endif
  2389. #if ENABLED(QUICK_HOME)
  2390. if (home_all_axis || (homeX && homeY)) { // First diagonal move
  2391. current_position[X_AXIS] = current_position[Y_AXIS] = 0;
  2392. #if ENABLED(DUAL_X_CARRIAGE)
  2393. int x_axis_home_dir = x_home_dir(active_extruder);
  2394. extruder_duplication_enabled = false;
  2395. #else
  2396. int x_axis_home_dir = home_dir(X_AXIS);
  2397. #endif
  2398. sync_plan_position();
  2399. float mlx = max_length(X_AXIS), mly = max_length(Y_AXIS),
  2400. mlratio = mlx > mly ? mly / mlx : mlx / mly;
  2401. destination[X_AXIS] = 1.5 * mlx * x_axis_home_dir;
  2402. destination[Y_AXIS] = 1.5 * mly * home_dir(Y_AXIS);
  2403. feedrate = min(homing_feedrate[X_AXIS], homing_feedrate[Y_AXIS]) * sqrt(mlratio * mlratio + 1);
  2404. line_to_destination();
  2405. stepper.synchronize();
  2406. set_axis_is_at_home(X_AXIS);
  2407. set_axis_is_at_home(Y_AXIS);
  2408. sync_plan_position();
  2409. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2410. if (DEBUGGING(LEVELING)) DEBUG_POS("> QUICK_HOME 1", current_position);
  2411. #endif
  2412. destination[X_AXIS] = current_position[X_AXIS];
  2413. destination[Y_AXIS] = current_position[Y_AXIS];
  2414. line_to_destination();
  2415. feedrate = 0.0;
  2416. stepper.synchronize();
  2417. endstops.hit_on_purpose(); // clear endstop hit flags
  2418. current_position[X_AXIS] = destination[X_AXIS];
  2419. current_position[Y_AXIS] = destination[Y_AXIS];
  2420. #if DISABLED(SCARA)
  2421. current_position[Z_AXIS] = destination[Z_AXIS];
  2422. #endif
  2423. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2424. if (DEBUGGING(LEVELING)) DEBUG_POS("> QUICK_HOME 2", current_position);
  2425. #endif
  2426. }
  2427. #endif // QUICK_HOME
  2428. #if ENABLED(HOME_Y_BEFORE_X)
  2429. // Home Y
  2430. if (home_all_axis || homeY) HOMEAXIS(Y);
  2431. #endif
  2432. // Home X
  2433. if (home_all_axis || homeX) {
  2434. #if ENABLED(DUAL_X_CARRIAGE)
  2435. int tmp_extruder = active_extruder;
  2436. extruder_duplication_enabled = false;
  2437. active_extruder = !active_extruder;
  2438. HOMEAXIS(X);
  2439. inactive_extruder_x_pos = current_position[X_AXIS];
  2440. active_extruder = tmp_extruder;
  2441. HOMEAXIS(X);
  2442. // reset state used by the different modes
  2443. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  2444. delayed_move_time = 0;
  2445. active_extruder_parked = true;
  2446. #else
  2447. HOMEAXIS(X);
  2448. #endif
  2449. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2450. if (DEBUGGING(LEVELING)) DEBUG_POS("> homeX", current_position);
  2451. #endif
  2452. }
  2453. #if DISABLED(HOME_Y_BEFORE_X)
  2454. // Home Y
  2455. if (home_all_axis || homeY) {
  2456. HOMEAXIS(Y);
  2457. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2458. if (DEBUGGING(LEVELING)) DEBUG_POS("> homeY", current_position);
  2459. #endif
  2460. }
  2461. #endif
  2462. // Home Z last if homing towards the bed
  2463. #if Z_HOME_DIR < 0
  2464. if (home_all_axis || homeZ) {
  2465. #if ENABLED(Z_SAFE_HOMING)
  2466. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2467. if (DEBUGGING(LEVELING)) {
  2468. SERIAL_ECHOLNPGM("> Z_SAFE_HOMING >>>");
  2469. }
  2470. #endif
  2471. if (home_all_axis) {
  2472. /**
  2473. * At this point we already have Z at MIN_Z_HEIGHT_FOR_HOMING height
  2474. * No need to move Z any more as this height should already be safe
  2475. * enough to reach Z_SAFE_HOMING XY positions.
  2476. * Just make sure the planner is in sync.
  2477. */
  2478. sync_plan_position();
  2479. /**
  2480. * Set the Z probe (or just the nozzle) destination to the safe
  2481. * homing point
  2482. */
  2483. destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - (X_PROBE_OFFSET_FROM_EXTRUDER));
  2484. destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - (Y_PROBE_OFFSET_FROM_EXTRUDER));
  2485. destination[Z_AXIS] = current_position[Z_AXIS]; //z is already at the right height
  2486. feedrate = XY_TRAVEL_SPEED;
  2487. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2488. if (DEBUGGING(LEVELING)) {
  2489. DEBUG_POS("> Z_SAFE_HOMING > home_all_axis", current_position);
  2490. DEBUG_POS("> Z_SAFE_HOMING > home_all_axis", destination);
  2491. }
  2492. #endif
  2493. // Move in the XY plane
  2494. line_to_destination();
  2495. stepper.synchronize();
  2496. /**
  2497. * Update the current positions for XY, Z is still at least at
  2498. * MIN_Z_HEIGHT_FOR_HOMING height, no changes there.
  2499. */
  2500. current_position[X_AXIS] = destination[X_AXIS];
  2501. current_position[Y_AXIS] = destination[Y_AXIS];
  2502. // Home the Z axis
  2503. HOMEAXIS(Z);
  2504. }
  2505. else if (homeZ) { // Don't need to Home Z twice
  2506. // Let's see if X and Y are homed
  2507. if (axis_homed[X_AXIS] && axis_homed[Y_AXIS]) {
  2508. /**
  2509. * Make sure the Z probe is within the physical limits
  2510. * NOTE: This doesn't necessarily ensure the Z probe is also
  2511. * within the bed!
  2512. */
  2513. float cpx = current_position[X_AXIS], cpy = current_position[Y_AXIS];
  2514. if ( cpx >= X_MIN_POS - (X_PROBE_OFFSET_FROM_EXTRUDER)
  2515. && cpx <= X_MAX_POS - (X_PROBE_OFFSET_FROM_EXTRUDER)
  2516. && cpy >= Y_MIN_POS - (Y_PROBE_OFFSET_FROM_EXTRUDER)
  2517. && cpy <= Y_MAX_POS - (Y_PROBE_OFFSET_FROM_EXTRUDER)) {
  2518. // Home the Z axis
  2519. HOMEAXIS(Z);
  2520. }
  2521. else {
  2522. LCD_MESSAGEPGM(MSG_ZPROBE_OUT);
  2523. SERIAL_ECHO_START;
  2524. SERIAL_ECHOLNPGM(MSG_ZPROBE_OUT);
  2525. }
  2526. }
  2527. else {
  2528. axis_unhomed_error();
  2529. }
  2530. } // !home_all_axes && homeZ
  2531. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2532. if (DEBUGGING(LEVELING)) {
  2533. SERIAL_ECHOLNPGM("<<< Z_SAFE_HOMING");
  2534. }
  2535. #endif
  2536. #else // !Z_SAFE_HOMING
  2537. HOMEAXIS(Z);
  2538. #endif // !Z_SAFE_HOMING
  2539. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2540. if (DEBUGGING(LEVELING)) DEBUG_POS("> (home_all_axis || homeZ) > final", current_position);
  2541. #endif
  2542. } // home_all_axis || homeZ
  2543. #endif // Z_HOME_DIR < 0
  2544. sync_plan_position();
  2545. #endif // else DELTA
  2546. #if ENABLED(SCARA)
  2547. sync_plan_position_delta();
  2548. #endif
  2549. #if ENABLED(ENDSTOPS_ONLY_FOR_HOMING)
  2550. endstops.enable(false);
  2551. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2552. if (DEBUGGING(LEVELING)) {
  2553. SERIAL_ECHOLNPGM("ENDSTOPS_ONLY_FOR_HOMING endstops.enable(false)");
  2554. }
  2555. #endif
  2556. #endif
  2557. // Enable mesh leveling again
  2558. #if ENABLED(MESH_BED_LEVELING)
  2559. if (mbl.has_mesh()) {
  2560. if (home_all_axis || (axis_homed[X_AXIS] && axis_homed[Y_AXIS] && homeZ)) {
  2561. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z;
  2562. sync_plan_position();
  2563. mbl.set_active(true);
  2564. #if ENABLED(MESH_G28_REST_ORIGIN)
  2565. current_position[Z_AXIS] = 0.0;
  2566. set_destination_to_current();
  2567. feedrate = homing_feedrate[Z_AXIS];
  2568. line_to_destination();
  2569. stepper.synchronize();
  2570. #else
  2571. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z -
  2572. mbl.get_z(current_position[X_AXIS] - home_offset[X_AXIS],
  2573. current_position[Y_AXIS] - home_offset[Y_AXIS]);
  2574. #endif
  2575. }
  2576. else if ((axis_homed[X_AXIS] && axis_homed[Y_AXIS] && axis_homed[Z_AXIS]) && (homeX || homeY)) {
  2577. current_position[Z_AXIS] = pre_home_z;
  2578. sync_plan_position();
  2579. mbl.set_active(true);
  2580. current_position[Z_AXIS] = pre_home_z -
  2581. mbl.get_z(current_position[X_AXIS] - home_offset[X_AXIS],
  2582. current_position[Y_AXIS] - home_offset[Y_AXIS]);
  2583. }
  2584. }
  2585. #endif
  2586. feedrate = saved_feedrate;
  2587. feedrate_multiplier = saved_feedrate_multiplier;
  2588. refresh_cmd_timeout();
  2589. endstops.hit_on_purpose(); // clear endstop hit flags
  2590. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2591. if (DEBUGGING(LEVELING)) {
  2592. SERIAL_ECHOLNPGM("<<< gcode_G28");
  2593. }
  2594. #endif
  2595. report_current_position();
  2596. }
  2597. #if ENABLED(MESH_BED_LEVELING)
  2598. enum MeshLevelingState { MeshReport, MeshStart, MeshNext, MeshSet, MeshSetZOffset, MeshReset };
  2599. inline void _mbl_goto_xy(float x, float y) {
  2600. saved_feedrate = feedrate;
  2601. feedrate = homing_feedrate[X_AXIS];
  2602. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z
  2603. #if MIN_Z_HEIGHT_FOR_HOMING > 0
  2604. + MIN_Z_HEIGHT_FOR_HOMING
  2605. #endif
  2606. ;
  2607. line_to_current_position();
  2608. current_position[X_AXIS] = x + home_offset[X_AXIS];
  2609. current_position[Y_AXIS] = y + home_offset[Y_AXIS];
  2610. line_to_current_position();
  2611. #if MIN_Z_HEIGHT_FOR_HOMING > 0
  2612. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z;
  2613. line_to_current_position();
  2614. #endif
  2615. feedrate = saved_feedrate;
  2616. stepper.synchronize();
  2617. }
  2618. /**
  2619. * G29: Mesh-based Z probe, probes a grid and produces a
  2620. * mesh to compensate for variable bed height
  2621. *
  2622. * Parameters With MESH_BED_LEVELING:
  2623. *
  2624. * S0 Produce a mesh report
  2625. * S1 Start probing mesh points
  2626. * S2 Probe the next mesh point
  2627. * S3 Xn Yn Zn.nn Manually modify a single point
  2628. * S4 Zn.nn Set z offset. Positive away from bed, negative closer to bed.
  2629. * S5 Reset and disable mesh
  2630. *
  2631. * The S0 report the points as below
  2632. *
  2633. * +----> X-axis 1-n
  2634. * |
  2635. * |
  2636. * v Y-axis 1-n
  2637. *
  2638. */
  2639. inline void gcode_G29() {
  2640. static int probe_point = -1;
  2641. MeshLevelingState state = code_seen('S') ? (MeshLevelingState)code_value_byte() : MeshReport;
  2642. if (state < 0 || state > 5) {
  2643. SERIAL_PROTOCOLLNPGM("S out of range (0-5).");
  2644. return;
  2645. }
  2646. int8_t px, py;
  2647. float z;
  2648. switch (state) {
  2649. case MeshReport:
  2650. if (mbl.has_mesh()) {
  2651. SERIAL_PROTOCOLPGM("State: ");
  2652. if (mbl.active())
  2653. SERIAL_PROTOCOLPGM("On");
  2654. else
  2655. SERIAL_PROTOCOLPGM("Off");
  2656. SERIAL_PROTOCOLPGM("\nNum X,Y: ");
  2657. SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
  2658. SERIAL_PROTOCOLCHAR(',');
  2659. SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  2660. SERIAL_PROTOCOLPGM("\nZ search height: ");
  2661. SERIAL_PROTOCOL(MESH_HOME_SEARCH_Z);
  2662. SERIAL_PROTOCOLPGM("\nZ offset: ");
  2663. SERIAL_PROTOCOL_F(mbl.z_offset, 5);
  2664. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  2665. for (py = 0; py < MESH_NUM_Y_POINTS; py++) {
  2666. for (px = 0; px < MESH_NUM_X_POINTS; px++) {
  2667. SERIAL_PROTOCOLPGM(" ");
  2668. SERIAL_PROTOCOL_F(mbl.z_values[py][px], 5);
  2669. }
  2670. SERIAL_EOL;
  2671. }
  2672. }
  2673. else
  2674. SERIAL_PROTOCOLLNPGM("Mesh bed leveling not active.");
  2675. break;
  2676. case MeshStart:
  2677. mbl.reset();
  2678. probe_point = 0;
  2679. enqueue_and_echo_commands_P(PSTR("G28\nG29 S2"));
  2680. break;
  2681. case MeshNext:
  2682. if (probe_point < 0) {
  2683. SERIAL_PROTOCOLLNPGM("Start mesh probing with \"G29 S1\" first.");
  2684. return;
  2685. }
  2686. // For each G29 S2...
  2687. if (probe_point == 0) {
  2688. // For the intial G29 S2 make Z a positive value (e.g., 4.0)
  2689. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z;
  2690. sync_plan_position();
  2691. }
  2692. else {
  2693. // For G29 S2 after adjusting Z.
  2694. mbl.set_zigzag_z(probe_point - 1, current_position[Z_AXIS]);
  2695. }
  2696. // If there's another point to sample, move there with optional lift.
  2697. if (probe_point < (MESH_NUM_X_POINTS) * (MESH_NUM_Y_POINTS)) {
  2698. mbl.zigzag(probe_point, px, py);
  2699. _mbl_goto_xy(mbl.get_probe_x(px), mbl.get_probe_y(py));
  2700. probe_point++;
  2701. }
  2702. else {
  2703. // One last "return to the bed" (as originally coded) at completion
  2704. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z
  2705. #if MIN_Z_HEIGHT_FOR_HOMING > 0
  2706. + MIN_Z_HEIGHT_FOR_HOMING
  2707. #endif
  2708. ;
  2709. line_to_current_position();
  2710. stepper.synchronize();
  2711. // After recording the last point, activate the mbl and home
  2712. SERIAL_PROTOCOLLNPGM("Mesh probing done.");
  2713. probe_point = -1;
  2714. mbl.set_has_mesh(true);
  2715. enqueue_and_echo_commands_P(PSTR("G28"));
  2716. }
  2717. break;
  2718. case MeshSet:
  2719. if (code_seen('X')) {
  2720. px = code_value_int() - 1;
  2721. if (px < 0 || px >= MESH_NUM_X_POINTS) {
  2722. SERIAL_PROTOCOLPGM("X out of range (1-" STRINGIFY(MESH_NUM_X_POINTS) ").\n");
  2723. return;
  2724. }
  2725. }
  2726. else {
  2727. SERIAL_PROTOCOLPGM("X not entered.\n");
  2728. return;
  2729. }
  2730. if (code_seen('Y')) {
  2731. py = code_value_int() - 1;
  2732. if (py < 0 || py >= MESH_NUM_Y_POINTS) {
  2733. SERIAL_PROTOCOLPGM("Y out of range (1-" STRINGIFY(MESH_NUM_Y_POINTS) ").\n");
  2734. return;
  2735. }
  2736. }
  2737. else {
  2738. SERIAL_PROTOCOLPGM("Y not entered.\n");
  2739. return;
  2740. }
  2741. if (code_seen('Z')) {
  2742. z = code_value_axis_units(Z_AXIS);
  2743. }
  2744. else {
  2745. SERIAL_PROTOCOLPGM("Z not entered.\n");
  2746. return;
  2747. }
  2748. mbl.z_values[py][px] = z;
  2749. break;
  2750. case MeshSetZOffset:
  2751. if (code_seen('Z')) {
  2752. z = code_value_axis_units(Z_AXIS);
  2753. }
  2754. else {
  2755. SERIAL_PROTOCOLPGM("Z not entered.\n");
  2756. return;
  2757. }
  2758. mbl.z_offset = z;
  2759. break;
  2760. case MeshReset:
  2761. if (mbl.active()) {
  2762. current_position[Z_AXIS] +=
  2763. mbl.get_z(current_position[X_AXIS] - home_offset[X_AXIS],
  2764. current_position[Y_AXIS] - home_offset[Y_AXIS]) - MESH_HOME_SEARCH_Z;
  2765. mbl.reset();
  2766. sync_plan_position();
  2767. }
  2768. else
  2769. mbl.reset();
  2770. } // switch(state)
  2771. report_current_position();
  2772. }
  2773. #elif ENABLED(AUTO_BED_LEVELING_FEATURE)
  2774. void out_of_range_error(const char* p_edge) {
  2775. SERIAL_PROTOCOLPGM("?Probe ");
  2776. serialprintPGM(p_edge);
  2777. SERIAL_PROTOCOLLNPGM(" position out of range.");
  2778. }
  2779. /**
  2780. * G29: Detailed Z probe, probes the bed at 3 or more points.
  2781. * Will fail if the printer has not been homed with G28.
  2782. *
  2783. * Enhanced G29 Auto Bed Leveling Probe Routine
  2784. *
  2785. * Parameters With AUTO_BED_LEVELING_GRID:
  2786. *
  2787. * P Set the size of the grid that will be probed (P x P points).
  2788. * Not supported by non-linear delta printer bed leveling.
  2789. * Example: "G29 P4"
  2790. *
  2791. * S Set the XY travel speed between probe points (in mm/min)
  2792. *
  2793. * D Dry-Run mode. Just evaluate the bed Topology - Don't apply
  2794. * or clean the rotation Matrix. Useful to check the topology
  2795. * after a first run of G29.
  2796. *
  2797. * V Set the verbose level (0-4). Example: "G29 V3"
  2798. *
  2799. * T Generate a Bed Topology Report. Example: "G29 P5 T" for a detailed report.
  2800. * This is useful for manual bed leveling and finding flaws in the bed (to
  2801. * assist with part placement).
  2802. * Not supported by non-linear delta printer bed leveling.
  2803. *
  2804. * F Set the Front limit of the probing grid
  2805. * B Set the Back limit of the probing grid
  2806. * L Set the Left limit of the probing grid
  2807. * R Set the Right limit of the probing grid
  2808. *
  2809. * Global Parameters:
  2810. *
  2811. * E/e By default G29 will engage the Z probe, test the bed, then disengage.
  2812. * Include "E" to engage/disengage the Z probe for each sample.
  2813. * There's no extra effect if you have a fixed Z probe.
  2814. * Usage: "G29 E" or "G29 e"
  2815. *
  2816. */
  2817. inline void gcode_G29() {
  2818. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2819. if (DEBUGGING(LEVELING)) {
  2820. SERIAL_ECHOLNPGM("gcode_G29 >>>");
  2821. DEBUG_POS("", current_position);
  2822. }
  2823. #endif
  2824. // Don't allow auto-leveling without homing first
  2825. if (!axis_homed[X_AXIS] || !axis_homed[Y_AXIS] || !axis_homed[Z_AXIS]) {
  2826. axis_unhomed_error(true);
  2827. return;
  2828. }
  2829. int verbose_level = code_seen('V') ? code_value_int() : 1;
  2830. if (verbose_level < 0 || verbose_level > 4) {
  2831. SERIAL_ECHOLNPGM("?(V)erbose Level is implausible (0-4).");
  2832. return;
  2833. }
  2834. bool dryrun = code_seen('D'),
  2835. deploy_probe_for_each_reading = code_seen('E');
  2836. #if ENABLED(AUTO_BED_LEVELING_GRID)
  2837. #if DISABLED(DELTA)
  2838. bool do_topography_map = verbose_level > 2 || code_seen('T');
  2839. #endif
  2840. if (verbose_level > 0) {
  2841. SERIAL_PROTOCOLPGM("G29 Auto Bed Leveling\n");
  2842. if (dryrun) SERIAL_ECHOLNPGM("Running in DRY-RUN mode");
  2843. }
  2844. int auto_bed_leveling_grid_points = AUTO_BED_LEVELING_GRID_POINTS;
  2845. #if DISABLED(DELTA)
  2846. if (code_seen('P')) auto_bed_leveling_grid_points = code_value_int();
  2847. if (auto_bed_leveling_grid_points < 2) {
  2848. SERIAL_PROTOCOLPGM("?Number of probed (P)oints is implausible (2 minimum).\n");
  2849. return;
  2850. }
  2851. #endif
  2852. xy_travel_speed = code_seen('S') ? (int)code_value_linear_units() : XY_TRAVEL_SPEED;
  2853. int left_probe_bed_position = code_seen('L') ? (int)code_value_axis_units(X_AXIS) : LEFT_PROBE_BED_POSITION,
  2854. right_probe_bed_position = code_seen('R') ? (int)code_value_axis_units(X_AXIS) : RIGHT_PROBE_BED_POSITION,
  2855. front_probe_bed_position = code_seen('F') ? (int)code_value_axis_units(Y_AXIS) : FRONT_PROBE_BED_POSITION,
  2856. back_probe_bed_position = code_seen('B') ? (int)code_value_axis_units(Y_AXIS) : BACK_PROBE_BED_POSITION;
  2857. bool left_out_l = left_probe_bed_position < MIN_PROBE_X,
  2858. left_out = left_out_l || left_probe_bed_position > right_probe_bed_position - (MIN_PROBE_EDGE),
  2859. right_out_r = right_probe_bed_position > MAX_PROBE_X,
  2860. right_out = right_out_r || right_probe_bed_position < left_probe_bed_position + MIN_PROBE_EDGE,
  2861. front_out_f = front_probe_bed_position < MIN_PROBE_Y,
  2862. front_out = front_out_f || front_probe_bed_position > back_probe_bed_position - (MIN_PROBE_EDGE),
  2863. back_out_b = back_probe_bed_position > MAX_PROBE_Y,
  2864. back_out = back_out_b || back_probe_bed_position < front_probe_bed_position + MIN_PROBE_EDGE;
  2865. if (left_out || right_out || front_out || back_out) {
  2866. if (left_out) {
  2867. out_of_range_error(PSTR("(L)eft"));
  2868. left_probe_bed_position = left_out_l ? MIN_PROBE_X : right_probe_bed_position - (MIN_PROBE_EDGE);
  2869. }
  2870. if (right_out) {
  2871. out_of_range_error(PSTR("(R)ight"));
  2872. right_probe_bed_position = right_out_r ? MAX_PROBE_X : left_probe_bed_position + MIN_PROBE_EDGE;
  2873. }
  2874. if (front_out) {
  2875. out_of_range_error(PSTR("(F)ront"));
  2876. front_probe_bed_position = front_out_f ? MIN_PROBE_Y : back_probe_bed_position - (MIN_PROBE_EDGE);
  2877. }
  2878. if (back_out) {
  2879. out_of_range_error(PSTR("(B)ack"));
  2880. back_probe_bed_position = back_out_b ? MAX_PROBE_Y : front_probe_bed_position + MIN_PROBE_EDGE;
  2881. }
  2882. return;
  2883. }
  2884. #endif // AUTO_BED_LEVELING_GRID
  2885. if (!dryrun) {
  2886. #if ENABLED(DEBUG_LEVELING_FEATURE) && DISABLED(DELTA)
  2887. if (DEBUGGING(LEVELING)) {
  2888. vector_3 corrected_position = planner.adjusted_position();
  2889. DEBUG_POS("BEFORE matrix.set_to_identity", corrected_position);
  2890. DEBUG_POS("BEFORE matrix.set_to_identity", current_position);
  2891. }
  2892. #endif
  2893. // make sure the bed_level_rotation_matrix is identity or the planner will get it wrong
  2894. planner.bed_level_matrix.set_to_identity();
  2895. #if ENABLED(DELTA)
  2896. reset_bed_level();
  2897. #else //!DELTA
  2898. //vector_3 corrected_position = planner.adjusted_position();
  2899. //corrected_position.debug("position before G29");
  2900. vector_3 uncorrected_position = planner.adjusted_position();
  2901. //uncorrected_position.debug("position during G29");
  2902. current_position[X_AXIS] = uncorrected_position.x;
  2903. current_position[Y_AXIS] = uncorrected_position.y;
  2904. current_position[Z_AXIS] = uncorrected_position.z;
  2905. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2906. if (DEBUGGING(LEVELING)) DEBUG_POS("AFTER matrix.set_to_identity", uncorrected_position);
  2907. #endif
  2908. sync_plan_position();
  2909. #endif // !DELTA
  2910. }
  2911. #if HAS_BED_PROBE
  2912. deploy_z_probe();
  2913. #endif
  2914. stepper.synchronize();
  2915. setup_for_endstop_move();
  2916. feedrate = homing_feedrate[Z_AXIS];
  2917. bed_leveling_in_progress = true;
  2918. #if ENABLED(AUTO_BED_LEVELING_GRID)
  2919. // probe at the points of a lattice grid
  2920. const int xGridSpacing = (right_probe_bed_position - left_probe_bed_position) / (auto_bed_leveling_grid_points - 1),
  2921. yGridSpacing = (back_probe_bed_position - front_probe_bed_position) / (auto_bed_leveling_grid_points - 1);
  2922. #if ENABLED(DELTA)
  2923. delta_grid_spacing[0] = xGridSpacing;
  2924. delta_grid_spacing[1] = yGridSpacing;
  2925. float zoffset = zprobe_zoffset;
  2926. if (code_seen(axis_codes[Z_AXIS])) zoffset += code_value_axis_units(Z_AXIS);
  2927. #else // !DELTA
  2928. /**
  2929. * solve the plane equation ax + by + d = z
  2930. * A is the matrix with rows [x y 1] for all the probed points
  2931. * B is the vector of the Z positions
  2932. * the normal vector to the plane is formed by the coefficients of the
  2933. * plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  2934. * so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  2935. */
  2936. int abl2 = auto_bed_leveling_grid_points * auto_bed_leveling_grid_points;
  2937. double eqnAMatrix[abl2 * 3], // "A" matrix of the linear system of equations
  2938. eqnBVector[abl2], // "B" vector of Z points
  2939. mean = 0.0;
  2940. int8_t indexIntoAB[auto_bed_leveling_grid_points][auto_bed_leveling_grid_points];
  2941. #endif // !DELTA
  2942. int probePointCounter = 0;
  2943. bool zig = (auto_bed_leveling_grid_points & 1) ? true : false; //always end at [RIGHT_PROBE_BED_POSITION, BACK_PROBE_BED_POSITION]
  2944. for (int yCount = 0; yCount < auto_bed_leveling_grid_points; yCount++) {
  2945. double yProbe = front_probe_bed_position + yGridSpacing * yCount;
  2946. int xStart, xStop, xInc;
  2947. if (zig) {
  2948. xStart = 0;
  2949. xStop = auto_bed_leveling_grid_points;
  2950. xInc = 1;
  2951. }
  2952. else {
  2953. xStart = auto_bed_leveling_grid_points - 1;
  2954. xStop = -1;
  2955. xInc = -1;
  2956. }
  2957. zig = !zig;
  2958. for (int xCount = xStart; xCount != xStop; xCount += xInc) {
  2959. double xProbe = left_probe_bed_position + xGridSpacing * xCount;
  2960. // raise extruder
  2961. float measured_z,
  2962. z_before = probePointCounter ? Z_RAISE_BETWEEN_PROBINGS + current_position[Z_AXIS] : Z_RAISE_BEFORE_PROBING + home_offset[Z_AXIS];
  2963. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2964. if (DEBUGGING(LEVELING)) {
  2965. SERIAL_ECHOPGM("z_before = (");
  2966. if (probePointCounter)
  2967. SERIAL_ECHOPGM("between) ");
  2968. else
  2969. SERIAL_ECHOPGM("before) ");
  2970. SERIAL_ECHOLN(z_before);
  2971. }
  2972. #endif
  2973. #if ENABLED(DELTA)
  2974. // Avoid probing the corners (outside the round or hexagon print surface) on a delta printer.
  2975. float distance_from_center = sqrt(xProbe * xProbe + yProbe * yProbe);
  2976. if (distance_from_center > DELTA_PROBEABLE_RADIUS) continue;
  2977. #endif //DELTA
  2978. ProbeAction act;
  2979. if (deploy_probe_for_each_reading) // G29 E - Stow between probes
  2980. act = ProbeDeployAndStow;
  2981. else if (yCount == 0 && xCount == xStart)
  2982. act = ProbeDeploy;
  2983. else if (yCount == auto_bed_leveling_grid_points - 1 && xCount == xStop - xInc)
  2984. act = ProbeStow;
  2985. else
  2986. act = ProbeStay;
  2987. measured_z = probe_pt(xProbe, yProbe, z_before, act, verbose_level);
  2988. #if DISABLED(DELTA)
  2989. mean += measured_z;
  2990. eqnBVector[probePointCounter] = measured_z;
  2991. eqnAMatrix[probePointCounter + 0 * abl2] = xProbe;
  2992. eqnAMatrix[probePointCounter + 1 * abl2] = yProbe;
  2993. eqnAMatrix[probePointCounter + 2 * abl2] = 1;
  2994. indexIntoAB[xCount][yCount] = probePointCounter;
  2995. #else
  2996. bed_level[xCount][yCount] = measured_z + zoffset;
  2997. #endif
  2998. probePointCounter++;
  2999. idle();
  3000. } //xProbe
  3001. } //yProbe
  3002. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3003. if (DEBUGGING(LEVELING)) DEBUG_POS("> probing complete", current_position);
  3004. #endif
  3005. clean_up_after_endstop_move();
  3006. #if ENABLED(DELTA)
  3007. if (!dryrun) extrapolate_unprobed_bed_level();
  3008. print_bed_level();
  3009. #else // !DELTA
  3010. // solve lsq problem
  3011. double plane_equation_coefficients[3];
  3012. qr_solve(plane_equation_coefficients, abl2, 3, eqnAMatrix, eqnBVector);
  3013. mean /= abl2;
  3014. if (verbose_level) {
  3015. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  3016. SERIAL_PROTOCOL_F(plane_equation_coefficients[0], 8);
  3017. SERIAL_PROTOCOLPGM(" b: ");
  3018. SERIAL_PROTOCOL_F(plane_equation_coefficients[1], 8);
  3019. SERIAL_PROTOCOLPGM(" d: ");
  3020. SERIAL_PROTOCOL_F(plane_equation_coefficients[2], 8);
  3021. SERIAL_EOL;
  3022. if (verbose_level > 2) {
  3023. SERIAL_PROTOCOLPGM("Mean of sampled points: ");
  3024. SERIAL_PROTOCOL_F(mean, 8);
  3025. SERIAL_EOL;
  3026. }
  3027. }
  3028. if (!dryrun) set_bed_level_equation_lsq(plane_equation_coefficients);
  3029. // Show the Topography map if enabled
  3030. if (do_topography_map) {
  3031. SERIAL_PROTOCOLPGM(" \nBed Height Topography: \n");
  3032. SERIAL_PROTOCOLPGM(" +--- BACK --+\n");
  3033. SERIAL_PROTOCOLPGM(" | |\n");
  3034. SERIAL_PROTOCOLPGM(" L | (+) | R\n");
  3035. SERIAL_PROTOCOLPGM(" E | | I\n");
  3036. SERIAL_PROTOCOLPGM(" F | (-) N (+) | G\n");
  3037. SERIAL_PROTOCOLPGM(" T | | H\n");
  3038. SERIAL_PROTOCOLPGM(" | (-) | T\n");
  3039. SERIAL_PROTOCOLPGM(" | |\n");
  3040. SERIAL_PROTOCOLPGM(" O-- FRONT --+\n");
  3041. SERIAL_PROTOCOLPGM(" (0,0)\n");
  3042. float min_diff = 999;
  3043. for (int yy = auto_bed_leveling_grid_points - 1; yy >= 0; yy--) {
  3044. for (int xx = 0; xx < auto_bed_leveling_grid_points; xx++) {
  3045. int ind = indexIntoAB[xx][yy];
  3046. float diff = eqnBVector[ind] - mean;
  3047. float x_tmp = eqnAMatrix[ind + 0 * abl2],
  3048. y_tmp = eqnAMatrix[ind + 1 * abl2],
  3049. z_tmp = 0;
  3050. apply_rotation_xyz(planner.bed_level_matrix, x_tmp, y_tmp, z_tmp);
  3051. NOMORE(min_diff, eqnBVector[ind] - z_tmp);
  3052. if (diff >= 0.0)
  3053. SERIAL_PROTOCOLPGM(" +"); // Include + for column alignment
  3054. else
  3055. SERIAL_PROTOCOLCHAR(' ');
  3056. SERIAL_PROTOCOL_F(diff, 5);
  3057. } // xx
  3058. SERIAL_EOL;
  3059. } // yy
  3060. SERIAL_EOL;
  3061. if (verbose_level > 3) {
  3062. SERIAL_PROTOCOLPGM(" \nCorrected Bed Height vs. Bed Topology: \n");
  3063. for (int yy = auto_bed_leveling_grid_points - 1; yy >= 0; yy--) {
  3064. for (int xx = 0; xx < auto_bed_leveling_grid_points; xx++) {
  3065. int ind = indexIntoAB[xx][yy];
  3066. float x_tmp = eqnAMatrix[ind + 0 * abl2],
  3067. y_tmp = eqnAMatrix[ind + 1 * abl2],
  3068. z_tmp = 0;
  3069. apply_rotation_xyz(planner.bed_level_matrix, x_tmp, y_tmp, z_tmp);
  3070. float diff = eqnBVector[ind] - z_tmp - min_diff;
  3071. if (diff >= 0.0)
  3072. SERIAL_PROTOCOLPGM(" +");
  3073. // Include + for column alignment
  3074. else
  3075. SERIAL_PROTOCOLCHAR(' ');
  3076. SERIAL_PROTOCOL_F(diff, 5);
  3077. } // xx
  3078. SERIAL_EOL;
  3079. } // yy
  3080. SERIAL_EOL;
  3081. }
  3082. } //do_topography_map
  3083. #endif //!DELTA
  3084. #else // !AUTO_BED_LEVELING_GRID
  3085. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3086. if (DEBUGGING(LEVELING)) {
  3087. SERIAL_ECHOLNPGM("> 3-point Leveling");
  3088. }
  3089. #endif
  3090. // Actions for each probe
  3091. ProbeAction p1, p2, p3;
  3092. if (deploy_probe_for_each_reading)
  3093. p1 = p2 = p3 = ProbeDeployAndStow;
  3094. else
  3095. p1 = ProbeDeploy, p2 = ProbeStay, p3 = ProbeStow;
  3096. // Probe at 3 arbitrary points
  3097. float z_at_pt_1 = probe_pt( ABL_PROBE_PT_1_X + home_offset[X_AXIS],
  3098. ABL_PROBE_PT_1_Y + home_offset[Y_AXIS],
  3099. Z_RAISE_BEFORE_PROBING + home_offset[Z_AXIS],
  3100. p1, verbose_level),
  3101. z_at_pt_2 = probe_pt( ABL_PROBE_PT_2_X + home_offset[X_AXIS],
  3102. ABL_PROBE_PT_2_Y + home_offset[Y_AXIS],
  3103. current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS,
  3104. p2, verbose_level),
  3105. z_at_pt_3 = probe_pt( ABL_PROBE_PT_3_X + home_offset[X_AXIS],
  3106. ABL_PROBE_PT_3_Y + home_offset[Y_AXIS],
  3107. current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS,
  3108. p3, verbose_level);
  3109. clean_up_after_endstop_move();
  3110. if (!dryrun) set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
  3111. #endif // !AUTO_BED_LEVELING_GRID
  3112. #if DISABLED(DELTA)
  3113. if (verbose_level > 0)
  3114. planner.bed_level_matrix.debug(" \n\nBed Level Correction Matrix:");
  3115. if (!dryrun) {
  3116. /**
  3117. * Correct the Z height difference from Z probe position and nozzle tip position.
  3118. * The Z height on homing is measured by Z probe, but the Z probe is quite far
  3119. * from the nozzle. When the bed is uneven, this height must be corrected.
  3120. */
  3121. float x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER,
  3122. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER,
  3123. z_tmp = current_position[Z_AXIS],
  3124. real_z = stepper.get_axis_position_mm(Z_AXIS); //get the real Z (since planner.adjusted_position is now correcting the plane)
  3125. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3126. if (DEBUGGING(LEVELING)) {
  3127. SERIAL_ECHOPAIR("> BEFORE apply_rotation_xyz > z_tmp = ", z_tmp);
  3128. SERIAL_EOL;
  3129. SERIAL_ECHOPAIR("> BEFORE apply_rotation_xyz > real_z = ", real_z);
  3130. SERIAL_EOL;
  3131. }
  3132. #endif
  3133. // Apply the correction sending the Z probe offset
  3134. apply_rotation_xyz(planner.bed_level_matrix, x_tmp, y_tmp, z_tmp);
  3135. /*
  3136. * Get the current Z position and send it to the planner.
  3137. *
  3138. * >> (z_tmp - real_z) : The rotated current Z minus the uncorrected Z
  3139. * (most recent planner.set_position_mm/sync_plan_position)
  3140. *
  3141. * >> zprobe_zoffset : Z distance from nozzle to Z probe
  3142. * (set by default, M851, EEPROM, or Menu)
  3143. *
  3144. * >> Z_RAISE_AFTER_PROBING : The distance the Z probe will have lifted
  3145. * after the last probe
  3146. *
  3147. * >> Should home_offset[Z_AXIS] be included?
  3148. *
  3149. *
  3150. * Discussion: home_offset[Z_AXIS] was applied in G28 to set the
  3151. * starting Z. If Z is not tweaked in G29 -and- the Z probe in G29 is
  3152. * not actually "homing" Z... then perhaps it should not be included
  3153. * here. The purpose of home_offset[] is to adjust for inaccurate
  3154. * endstops, not for reasonably accurate probes. If it were added
  3155. * here, it could be seen as a compensating factor for the Z probe.
  3156. */
  3157. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3158. if (DEBUGGING(LEVELING)) {
  3159. SERIAL_ECHOPAIR("> AFTER apply_rotation_xyz > z_tmp = ", z_tmp);
  3160. SERIAL_EOL;
  3161. }
  3162. #endif
  3163. current_position[Z_AXIS] = -zprobe_zoffset + (z_tmp - real_z)
  3164. #if HAS_Z_SERVO_ENDSTOP || ENABLED(Z_PROBE_ALLEN_KEY) || ENABLED(Z_PROBE_SLED)
  3165. + Z_RAISE_AFTER_PROBING
  3166. #endif
  3167. ;
  3168. // current_position[Z_AXIS] += home_offset[Z_AXIS]; // The Z probe determines Z=0, not "Z home"
  3169. sync_plan_position();
  3170. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3171. if (DEBUGGING(LEVELING)) DEBUG_POS("> corrected Z in G29", current_position);
  3172. #endif
  3173. }
  3174. #endif // !DELTA
  3175. #if DISABLED(Z_PROBE_ALLEN_KEY) && DISABLED(Z_PROBE_SLED) && !HAS_Z_SERVO_ENDSTOP
  3176. raise_z_after_probing();
  3177. #endif
  3178. #if ENABLED(Z_PROBE_ALLEN_KEY) || ENABLED(Z_PROBE_SLED) || ENABLED(MECHANICAL_PROBE)
  3179. stow_z_probe();
  3180. #endif
  3181. #ifdef Z_PROBE_END_SCRIPT
  3182. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3183. if (DEBUGGING(LEVELING)) {
  3184. SERIAL_ECHO("Z Probe End Script: ");
  3185. SERIAL_ECHOLNPGM(Z_PROBE_END_SCRIPT);
  3186. }
  3187. #endif
  3188. enqueue_and_echo_commands_P(PSTR(Z_PROBE_END_SCRIPT));
  3189. #if HAS_BED_PROBE
  3190. endstops.enable_z_probe(false);
  3191. #endif
  3192. stepper.synchronize();
  3193. #endif
  3194. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3195. if (DEBUGGING(LEVELING)) {
  3196. SERIAL_ECHOLNPGM("<<< gcode_G29");
  3197. }
  3198. #endif
  3199. bed_leveling_in_progress = false;
  3200. report_current_position();
  3201. KEEPALIVE_STATE(IN_HANDLER);
  3202. }
  3203. #endif //AUTO_BED_LEVELING_FEATURE
  3204. #if HAS_BED_PROBE
  3205. /**
  3206. * G30: Do a single Z probe at the current XY
  3207. */
  3208. inline void gcode_G30() {
  3209. deploy_z_probe();
  3210. stepper.synchronize();
  3211. // TODO: clear the leveling matrix or the planner will be set incorrectly
  3212. setup_for_endstop_move(); // Too late. Must be done before deploying.
  3213. run_z_probe();
  3214. SERIAL_PROTOCOLPGM("Bed X: ");
  3215. SERIAL_PROTOCOL(current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER + 0.0001);
  3216. SERIAL_PROTOCOLPGM(" Y: ");
  3217. SERIAL_PROTOCOL(current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER + 0.0001);
  3218. SERIAL_PROTOCOLPGM(" Z: ");
  3219. SERIAL_PROTOCOL(current_position[Z_AXIS] + 0.0001);
  3220. SERIAL_EOL;
  3221. clean_up_after_endstop_move(); // Too early. must be done after the stowing.
  3222. stow_z_probe();
  3223. report_current_position();
  3224. }
  3225. #endif // HAS_BED_PROBE
  3226. /**
  3227. * G92: Set current position to given X Y Z E
  3228. */
  3229. inline void gcode_G92() {
  3230. bool didE = code_seen(axis_codes[E_AXIS]);
  3231. if (!didE) stepper.synchronize();
  3232. bool didXYZ = false;
  3233. for (int i = 0; i < NUM_AXIS; i++) {
  3234. if (code_seen(axis_codes[i])) {
  3235. float p = current_position[i],
  3236. v = code_value_axis_units(i);
  3237. current_position[i] = v;
  3238. if (i != E_AXIS) {
  3239. position_shift[i] += v - p; // Offset the coordinate space
  3240. update_software_endstops((AxisEnum)i);
  3241. didXYZ = true;
  3242. }
  3243. }
  3244. }
  3245. if (didXYZ) {
  3246. #if ENABLED(DELTA) || ENABLED(SCARA)
  3247. sync_plan_position_delta();
  3248. #else
  3249. sync_plan_position();
  3250. #endif
  3251. }
  3252. else if (didE) {
  3253. sync_plan_position_e();
  3254. }
  3255. }
  3256. #if ENABLED(ULTIPANEL)
  3257. /**
  3258. * M0: // M0 - Unconditional stop - Wait for user button press on LCD
  3259. * M1: // M1 - Conditional stop - Wait for user button press on LCD
  3260. */
  3261. inline void gcode_M0_M1() {
  3262. char* args = current_command_args;
  3263. uint8_t test_value = 12;
  3264. SERIAL_ECHOPAIR("TEST", test_value);
  3265. millis_t codenum = 0;
  3266. bool hasP = false, hasS = false;
  3267. if (code_seen('P')) {
  3268. codenum = code_value_millis(); // milliseconds to wait
  3269. hasP = codenum > 0;
  3270. }
  3271. if (code_seen('S')) {
  3272. codenum = code_value_millis_from_seconds(); // seconds to wait
  3273. hasS = codenum > 0;
  3274. }
  3275. if (!hasP && !hasS && *args != '\0')
  3276. lcd_setstatus(args, true);
  3277. else {
  3278. LCD_MESSAGEPGM(MSG_USERWAIT);
  3279. #if ENABLED(LCD_PROGRESS_BAR) && PROGRESS_MSG_EXPIRE > 0
  3280. dontExpireStatus();
  3281. #endif
  3282. }
  3283. lcd_ignore_click();
  3284. stepper.synchronize();
  3285. refresh_cmd_timeout();
  3286. if (codenum > 0) {
  3287. codenum += previous_cmd_ms; // wait until this time for a click
  3288. KEEPALIVE_STATE(PAUSED_FOR_USER);
  3289. while (PENDING(millis(), codenum) && !lcd_clicked()) idle();
  3290. KEEPALIVE_STATE(IN_HANDLER);
  3291. lcd_ignore_click(false);
  3292. }
  3293. else {
  3294. if (!lcd_detected()) return;
  3295. KEEPALIVE_STATE(PAUSED_FOR_USER);
  3296. while (!lcd_clicked()) idle();
  3297. KEEPALIVE_STATE(IN_HANDLER);
  3298. }
  3299. if (IS_SD_PRINTING)
  3300. LCD_MESSAGEPGM(MSG_RESUMING);
  3301. else
  3302. LCD_MESSAGEPGM(WELCOME_MSG);
  3303. }
  3304. #endif // ULTIPANEL
  3305. /**
  3306. * M17: Enable power on all stepper motors
  3307. */
  3308. inline void gcode_M17() {
  3309. LCD_MESSAGEPGM(MSG_NO_MOVE);
  3310. enable_all_steppers();
  3311. }
  3312. #if ENABLED(SDSUPPORT)
  3313. /**
  3314. * M20: List SD card to serial output
  3315. */
  3316. inline void gcode_M20() {
  3317. SERIAL_PROTOCOLLNPGM(MSG_BEGIN_FILE_LIST);
  3318. card.ls();
  3319. SERIAL_PROTOCOLLNPGM(MSG_END_FILE_LIST);
  3320. }
  3321. /**
  3322. * M21: Init SD Card
  3323. */
  3324. inline void gcode_M21() {
  3325. card.initsd();
  3326. }
  3327. /**
  3328. * M22: Release SD Card
  3329. */
  3330. inline void gcode_M22() {
  3331. card.release();
  3332. }
  3333. /**
  3334. * M23: Open a file
  3335. */
  3336. inline void gcode_M23() {
  3337. card.openFile(current_command_args, true);
  3338. }
  3339. /**
  3340. * M24: Start SD Print
  3341. */
  3342. inline void gcode_M24() {
  3343. card.startFileprint();
  3344. print_job_timer.start();
  3345. }
  3346. /**
  3347. * M25: Pause SD Print
  3348. */
  3349. inline void gcode_M25() {
  3350. card.pauseSDPrint();
  3351. }
  3352. /**
  3353. * M26: Set SD Card file index
  3354. */
  3355. inline void gcode_M26() {
  3356. if (card.cardOK && code_seen('S'))
  3357. card.setIndex(code_value_long());
  3358. }
  3359. /**
  3360. * M27: Get SD Card status
  3361. */
  3362. inline void gcode_M27() {
  3363. card.getStatus();
  3364. }
  3365. /**
  3366. * M28: Start SD Write
  3367. */
  3368. inline void gcode_M28() {
  3369. card.openFile(current_command_args, false);
  3370. }
  3371. /**
  3372. * M29: Stop SD Write
  3373. * Processed in write to file routine above
  3374. */
  3375. inline void gcode_M29() {
  3376. // card.saving = false;
  3377. }
  3378. /**
  3379. * M30 <filename>: Delete SD Card file
  3380. */
  3381. inline void gcode_M30() {
  3382. if (card.cardOK) {
  3383. card.closefile();
  3384. card.removeFile(current_command_args);
  3385. }
  3386. }
  3387. #endif //SDSUPPORT
  3388. /**
  3389. * M31: Get the time since the start of SD Print (or last M109)
  3390. */
  3391. inline void gcode_M31() {
  3392. millis_t t = print_job_timer.duration();
  3393. int min = t / 60, sec = t % 60;
  3394. char time[30];
  3395. sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
  3396. SERIAL_ECHO_START;
  3397. SERIAL_ECHOLN(time);
  3398. lcd_setstatus(time);
  3399. thermalManager.autotempShutdown();
  3400. }
  3401. #if ENABLED(SDSUPPORT)
  3402. /**
  3403. * M32: Select file and start SD Print
  3404. */
  3405. inline void gcode_M32() {
  3406. if (card.sdprinting)
  3407. stepper.synchronize();
  3408. char* namestartpos = strchr(current_command_args, '!'); // Find ! to indicate filename string start.
  3409. if (!namestartpos)
  3410. namestartpos = current_command_args; // Default name position, 4 letters after the M
  3411. else
  3412. namestartpos++; //to skip the '!'
  3413. bool call_procedure = code_seen('P') && (seen_pointer < namestartpos);
  3414. if (card.cardOK) {
  3415. card.openFile(namestartpos, true, call_procedure);
  3416. if (code_seen('S') && seen_pointer < namestartpos) // "S" (must occur _before_ the filename!)
  3417. card.setIndex(code_value_long());
  3418. card.startFileprint();
  3419. // Procedure calls count as normal print time.
  3420. if (!call_procedure) print_job_timer.start();
  3421. }
  3422. }
  3423. #if ENABLED(LONG_FILENAME_HOST_SUPPORT)
  3424. /**
  3425. * M33: Get the long full path of a file or folder
  3426. *
  3427. * Parameters:
  3428. * <dospath> Case-insensitive DOS-style path to a file or folder
  3429. *
  3430. * Example:
  3431. * M33 miscel~1/armchair/armcha~1.gco
  3432. *
  3433. * Output:
  3434. * /Miscellaneous/Armchair/Armchair.gcode
  3435. */
  3436. inline void gcode_M33() {
  3437. card.printLongPath(current_command_args);
  3438. }
  3439. #endif
  3440. /**
  3441. * M928: Start SD Write
  3442. */
  3443. inline void gcode_M928() {
  3444. card.openLogFile(current_command_args);
  3445. }
  3446. #endif // SDSUPPORT
  3447. /**
  3448. * M42: Change pin status via GCode
  3449. *
  3450. * P<pin> Pin number (LED if omitted)
  3451. * S<byte> Pin status from 0 - 255
  3452. */
  3453. inline void gcode_M42() {
  3454. if (code_seen('S')) {
  3455. int pin_status = code_value_int();
  3456. if (pin_status < 0 || pin_status > 255) return;
  3457. int pin_number = code_seen('P') ? code_value_int() : LED_PIN;
  3458. if (pin_number < 0) return;
  3459. for (uint8_t i = 0; i < COUNT(sensitive_pins); i++)
  3460. if (pin_number == sensitive_pins[i]) return;
  3461. pinMode(pin_number, OUTPUT);
  3462. digitalWrite(pin_number, pin_status);
  3463. analogWrite(pin_number, pin_status);
  3464. #if FAN_COUNT > 0
  3465. switch (pin_number) {
  3466. #if HAS_FAN0
  3467. case FAN_PIN: fanSpeeds[0] = pin_status; break;
  3468. #endif
  3469. #if HAS_FAN1
  3470. case FAN1_PIN: fanSpeeds[1] = pin_status; break;
  3471. #endif
  3472. #if HAS_FAN2
  3473. case FAN2_PIN: fanSpeeds[2] = pin_status; break;
  3474. #endif
  3475. }
  3476. #endif
  3477. } // code_seen('S')
  3478. }
  3479. #if ENABLED(AUTO_BED_LEVELING_FEATURE) && ENABLED(Z_MIN_PROBE_REPEATABILITY_TEST)
  3480. /**
  3481. * This is redundant since the SanityCheck.h already checks for a valid
  3482. * Z_MIN_PROBE_PIN, but here for clarity.
  3483. */
  3484. #if ENABLED(Z_MIN_PROBE_ENDSTOP)
  3485. #if !HAS_Z_MIN_PROBE_PIN
  3486. #error "You must define Z_MIN_PROBE_PIN to enable Z probe repeatability calculation."
  3487. #endif
  3488. #elif !HAS_Z_MIN
  3489. #error "You must define Z_MIN_PIN to enable Z probe repeatability calculation."
  3490. #endif
  3491. /**
  3492. * M48: Z probe repeatability measurement function.
  3493. *
  3494. * Usage:
  3495. * M48 <P#> <X#> <Y#> <V#> <E> <L#>
  3496. * P = Number of sampled points (4-50, default 10)
  3497. * X = Sample X position
  3498. * Y = Sample Y position
  3499. * V = Verbose level (0-4, default=1)
  3500. * E = Engage Z probe for each reading
  3501. * L = Number of legs of movement before probe
  3502. * S = Schizoid (Or Star if you prefer)
  3503. *
  3504. * This function assumes the bed has been homed. Specifically, that a G28 command
  3505. * as been issued prior to invoking the M48 Z probe repeatability measurement function.
  3506. * Any information generated by a prior G29 Bed leveling command will be lost and need to be
  3507. * regenerated.
  3508. */
  3509. inline void gcode_M48() {
  3510. if (!axis_homed[X_AXIS] || !axis_homed[Y_AXIS] || !axis_homed[Z_AXIS]) {
  3511. axis_unhomed_error(true);
  3512. return;
  3513. }
  3514. int8_t verbose_level = code_seen('V') ? code_value_byte() : 1;
  3515. if (verbose_level < 0 || verbose_level > 4) {
  3516. SERIAL_PROTOCOLPGM("?Verbose Level not plausible (0-4).\n");
  3517. return;
  3518. }
  3519. if (verbose_level > 0)
  3520. SERIAL_PROTOCOLPGM("M48 Z-Probe Repeatability test\n");
  3521. int8_t n_samples = code_seen('P') ? code_value_byte() : 10;
  3522. if (n_samples < 4 || n_samples > 50) {
  3523. SERIAL_PROTOCOLPGM("?Sample size not plausible (4-50).\n");
  3524. return;
  3525. }
  3526. float X_current = current_position[X_AXIS],
  3527. Y_current = current_position[Y_AXIS],
  3528. Z_start_location = current_position[Z_AXIS] + Z_RAISE_BEFORE_PROBING;
  3529. bool deploy_probe_for_each_reading = code_seen('E');
  3530. float X_probe_location = code_seen('X') ? code_value_axis_units(X_AXIS) : X_current + X_PROBE_OFFSET_FROM_EXTRUDER;
  3531. #if DISABLED(DELTA)
  3532. if (X_probe_location < MIN_PROBE_X || X_probe_location > MAX_PROBE_X) {
  3533. out_of_range_error(PSTR("X"));
  3534. return;
  3535. }
  3536. #endif
  3537. float Y_probe_location = code_seen('Y') ? code_value_axis_units(Y_AXIS) : Y_current + Y_PROBE_OFFSET_FROM_EXTRUDER;
  3538. #if DISABLED(DELTA)
  3539. if (Y_probe_location < MIN_PROBE_Y || Y_probe_location > MAX_PROBE_Y) {
  3540. out_of_range_error(PSTR("Y"));
  3541. return;
  3542. }
  3543. #else
  3544. if (sqrt(X_probe_location * X_probe_location + Y_probe_location * Y_probe_location) > DELTA_PROBEABLE_RADIUS) {
  3545. SERIAL_PROTOCOLPGM("? (X,Y) location outside of probeable radius.\n");
  3546. return;
  3547. }
  3548. #endif
  3549. bool seen_L = code_seen('L');
  3550. uint8_t n_legs = seen_L ? code_value_byte() : 0;
  3551. if (n_legs < 0 || n_legs > 15) {
  3552. SERIAL_PROTOCOLPGM("?Number of legs in movement not plausible (0-15).\n");
  3553. return;
  3554. }
  3555. if (n_legs == 1) n_legs = 2;
  3556. bool schizoid_flag = code_seen('S');
  3557. if (schizoid_flag && !seen_L) n_legs = 7;
  3558. /**
  3559. * Now get everything to the specified probe point So we can safely do a
  3560. * probe to get us close to the bed. If the Z-Axis is far from the bed,
  3561. * we don't want to use that as a starting point for each probe.
  3562. */
  3563. if (verbose_level > 2)
  3564. SERIAL_PROTOCOLPGM("Positioning the probe...\n");
  3565. #if ENABLED(DELTA)
  3566. // we don't do bed level correction in M48 because we want the raw data when we probe
  3567. reset_bed_level();
  3568. #else
  3569. // we don't do bed level correction in M48 because we want the raw data when we probe
  3570. planner.bed_level_matrix.set_to_identity();
  3571. #endif
  3572. if (Z_start_location < Z_RAISE_BEFORE_PROBING * 2.0)
  3573. do_blocking_move_to_z(Z_start_location);
  3574. do_blocking_move_to_xy(X_probe_location - (X_PROBE_OFFSET_FROM_EXTRUDER), Y_probe_location - (Y_PROBE_OFFSET_FROM_EXTRUDER));
  3575. /**
  3576. * OK, do the initial probe to get us close to the bed.
  3577. * Then retrace the right amount and use that in subsequent probes
  3578. */
  3579. setup_for_endstop_move();
  3580. // Height before each probe (except the first)
  3581. float z_between = home_offset[Z_AXIS] + (deploy_probe_for_each_reading ? Z_RAISE_BEFORE_PROBING : Z_RAISE_BETWEEN_PROBINGS);
  3582. // Deploy the probe and probe the first point
  3583. probe_pt(X_probe_location, Y_probe_location,
  3584. home_offset[Z_AXIS] + Z_RAISE_BEFORE_PROBING,
  3585. deploy_probe_for_each_reading ? ProbeDeployAndStow : ProbeDeploy,
  3586. verbose_level);
  3587. randomSeed(millis());
  3588. double mean, sigma, sample_set[n_samples];
  3589. for (uint8_t n = 0; n < n_samples; n++) {
  3590. if (n_legs) {
  3591. int dir = (random(0, 10) > 5.0) ? -1 : 1; // clockwise or counter clockwise
  3592. float angle = random(0.0, 360.0),
  3593. radius = random(
  3594. #if ENABLED(DELTA)
  3595. DELTA_PROBEABLE_RADIUS / 8, DELTA_PROBEABLE_RADIUS / 3
  3596. #else
  3597. 5, X_MAX_LENGTH / 8
  3598. #endif
  3599. );
  3600. if (verbose_level > 3) {
  3601. SERIAL_ECHOPAIR("Starting radius: ", radius);
  3602. SERIAL_ECHOPAIR(" angle: ", angle);
  3603. delay(100);
  3604. if (dir > 0)
  3605. SERIAL_ECHO(" Direction: Counter Clockwise \n");
  3606. else
  3607. SERIAL_ECHO(" Direction: Clockwise \n");
  3608. delay(100);
  3609. }
  3610. for (uint8_t l = 0; l < n_legs - 1; l++) {
  3611. double delta_angle;
  3612. if (schizoid_flag)
  3613. // The points of a 5 point star are 72 degrees apart. We need to
  3614. // skip a point and go to the next one on the star.
  3615. delta_angle = dir * 2.0 * 72.0;
  3616. else
  3617. // If we do this line, we are just trying to move further
  3618. // around the circle.
  3619. delta_angle = dir * (float) random(25, 45);
  3620. angle += delta_angle;
  3621. while (angle > 360.0) // We probably do not need to keep the angle between 0 and 2*PI, but the
  3622. angle -= 360.0; // Arduino documentation says the trig functions should not be given values
  3623. while (angle < 0.0) // outside of this range. It looks like they behave correctly with
  3624. angle += 360.0; // numbers outside of the range, but just to be safe we clamp them.
  3625. X_current = X_probe_location - (X_PROBE_OFFSET_FROM_EXTRUDER) + cos(RADIANS(angle)) * radius;
  3626. Y_current = Y_probe_location - (Y_PROBE_OFFSET_FROM_EXTRUDER) + sin(RADIANS(angle)) * radius;
  3627. #if DISABLED(DELTA)
  3628. X_current = constrain(X_current, X_MIN_POS, X_MAX_POS);
  3629. Y_current = constrain(Y_current, Y_MIN_POS, Y_MAX_POS);
  3630. #else
  3631. // If we have gone out too far, we can do a simple fix and scale the numbers
  3632. // back in closer to the origin.
  3633. while (sqrt(X_current * X_current + Y_current * Y_current) > DELTA_PROBEABLE_RADIUS) {
  3634. X_current /= 1.25;
  3635. Y_current /= 1.25;
  3636. if (verbose_level > 3) {
  3637. SERIAL_ECHOPAIR("Pulling point towards center:", X_current);
  3638. SERIAL_ECHOPAIR(", ", Y_current);
  3639. SERIAL_EOL;
  3640. delay(50);
  3641. }
  3642. }
  3643. #endif
  3644. if (verbose_level > 3) {
  3645. SERIAL_PROTOCOL("Going to:");
  3646. SERIAL_ECHOPAIR("x: ", X_current);
  3647. SERIAL_ECHOPAIR("y: ", Y_current);
  3648. SERIAL_ECHOPAIR(" z: ", current_position[Z_AXIS]);
  3649. SERIAL_EOL;
  3650. delay(55);
  3651. }
  3652. do_blocking_move_to_xy(X_current, Y_current);
  3653. } // n_legs loop
  3654. } // n_legs
  3655. // The last probe will differ
  3656. bool last_probe = (n == n_samples - 1);
  3657. // Probe a single point
  3658. sample_set[n] = probe_pt(
  3659. X_probe_location, Y_probe_location,
  3660. z_between,
  3661. deploy_probe_for_each_reading ? ProbeDeployAndStow : last_probe ? ProbeStow : ProbeStay,
  3662. verbose_level
  3663. );
  3664. /**
  3665. * Get the current mean for the data points we have so far
  3666. */
  3667. double sum = 0.0;
  3668. for (uint8_t j = 0; j <= n; j++) sum += sample_set[j];
  3669. mean = sum / (n + 1);
  3670. /**
  3671. * Now, use that mean to calculate the standard deviation for the
  3672. * data points we have so far
  3673. */
  3674. sum = 0.0;
  3675. for (uint8_t j = 0; j <= n; j++) {
  3676. float ss = sample_set[j] - mean;
  3677. sum += ss * ss;
  3678. }
  3679. sigma = sqrt(sum / (n + 1));
  3680. if (verbose_level > 0) {
  3681. if (verbose_level > 1) {
  3682. SERIAL_PROTOCOL(n + 1);
  3683. SERIAL_PROTOCOLPGM(" of ");
  3684. SERIAL_PROTOCOL((int)n_samples);
  3685. SERIAL_PROTOCOLPGM(" z: ");
  3686. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
  3687. delay(50);
  3688. if (verbose_level > 2) {
  3689. SERIAL_PROTOCOLPGM(" mean: ");
  3690. SERIAL_PROTOCOL_F(mean, 6);
  3691. SERIAL_PROTOCOLPGM(" sigma: ");
  3692. SERIAL_PROTOCOL_F(sigma, 6);
  3693. }
  3694. }
  3695. SERIAL_EOL;
  3696. }
  3697. // Raise before the next loop for the legs,
  3698. // or do the final raise after the last probe
  3699. if (n_legs || last_probe) {
  3700. do_blocking_move_to_z(last_probe ? home_offset[Z_AXIS] + Z_RAISE_AFTER_PROBING : z_between);
  3701. if (!last_probe) delay(500);
  3702. }
  3703. } // End of probe loop
  3704. if (verbose_level > 0) {
  3705. SERIAL_PROTOCOLPGM("Mean: ");
  3706. SERIAL_PROTOCOL_F(mean, 6);
  3707. SERIAL_EOL;
  3708. }
  3709. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  3710. SERIAL_PROTOCOL_F(sigma, 6);
  3711. SERIAL_EOL; SERIAL_EOL;
  3712. clean_up_after_endstop_move();
  3713. report_current_position();
  3714. }
  3715. #endif // AUTO_BED_LEVELING_FEATURE && Z_MIN_PROBE_REPEATABILITY_TEST
  3716. /**
  3717. * M75: Start print timer
  3718. */
  3719. inline void gcode_M75() { print_job_timer.start(); }
  3720. /**
  3721. * M76: Pause print timer
  3722. */
  3723. inline void gcode_M76() { print_job_timer.pause(); }
  3724. /**
  3725. * M77: Stop print timer
  3726. */
  3727. inline void gcode_M77() { print_job_timer.stop(); }
  3728. #if ENABLED(PRINTCOUNTER)
  3729. /*+
  3730. * M78: Show print statistics
  3731. */
  3732. inline void gcode_M78() {
  3733. // "M78 S78" will reset the statistics
  3734. if (code_seen('S') && code_value_int() == 78)
  3735. print_job_timer.initStats();
  3736. else print_job_timer.showStats();
  3737. }
  3738. #endif
  3739. /**
  3740. * M104: Set hot end temperature
  3741. */
  3742. inline void gcode_M104() {
  3743. if (get_target_extruder_from_command(104)) return;
  3744. if (DEBUGGING(DRYRUN)) return;
  3745. #if ENABLED(SINGLENOZZLE)
  3746. if (target_extruder != active_extruder) return;
  3747. #endif
  3748. if (code_seen('S')) {
  3749. float temp = code_value_temp_abs();
  3750. thermalManager.setTargetHotend(temp, target_extruder);
  3751. #if ENABLED(DUAL_X_CARRIAGE)
  3752. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && target_extruder == 0)
  3753. thermalManager.setTargetHotend(temp == 0.0 ? 0.0 : temp + duplicate_extruder_temp_offset, 1);
  3754. #endif
  3755. #if ENABLED(PRINTJOB_TIMER_AUTOSTART)
  3756. /**
  3757. * We use half EXTRUDE_MINTEMP here to allow nozzles to be put into hot
  3758. * stand by mode, for instance in a dual extruder setup, without affecting
  3759. * the running print timer.
  3760. */
  3761. if (temp <= (EXTRUDE_MINTEMP)/2) {
  3762. print_job_timer.stop();
  3763. LCD_MESSAGEPGM(WELCOME_MSG);
  3764. }
  3765. /**
  3766. * We do not check if the timer is already running because this check will
  3767. * be done for us inside the Stopwatch::start() method thus a running timer
  3768. * will not restart.
  3769. */
  3770. else print_job_timer.start();
  3771. #endif
  3772. if (temp > thermalManager.degHotend(target_extruder)) LCD_MESSAGEPGM(MSG_HEATING);
  3773. }
  3774. }
  3775. #if HAS_TEMP_HOTEND || HAS_TEMP_BED
  3776. void print_heaterstates() {
  3777. #if HAS_TEMP_HOTEND
  3778. SERIAL_PROTOCOLPGM(" T:");
  3779. SERIAL_PROTOCOL_F(thermalManager.degHotend(target_extruder), 1);
  3780. SERIAL_PROTOCOLPGM(" /");
  3781. SERIAL_PROTOCOL_F(thermalManager.degTargetHotend(target_extruder), 1);
  3782. #endif
  3783. #if HAS_TEMP_BED
  3784. SERIAL_PROTOCOLPGM(" B:");
  3785. SERIAL_PROTOCOL_F(thermalManager.degBed(), 1);
  3786. SERIAL_PROTOCOLPGM(" /");
  3787. SERIAL_PROTOCOL_F(thermalManager.degTargetBed(), 1);
  3788. #endif
  3789. #if HOTENDS > 1
  3790. for (int8_t e = 0; e < HOTENDS; ++e) {
  3791. SERIAL_PROTOCOLPGM(" T");
  3792. SERIAL_PROTOCOL(e);
  3793. SERIAL_PROTOCOLCHAR(':');
  3794. SERIAL_PROTOCOL_F(thermalManager.degHotend(e), 1);
  3795. SERIAL_PROTOCOLPGM(" /");
  3796. SERIAL_PROTOCOL_F(thermalManager.degTargetHotend(e), 1);
  3797. }
  3798. #endif
  3799. #if HAS_TEMP_BED
  3800. SERIAL_PROTOCOLPGM(" B@:");
  3801. #ifdef BED_WATTS
  3802. SERIAL_PROTOCOL(((BED_WATTS) * thermalManager.getHeaterPower(-1)) / 127);
  3803. SERIAL_PROTOCOLCHAR('W');
  3804. #else
  3805. SERIAL_PROTOCOL(thermalManager.getHeaterPower(-1));
  3806. #endif
  3807. #endif
  3808. SERIAL_PROTOCOLPGM(" @:");
  3809. #ifdef EXTRUDER_WATTS
  3810. SERIAL_PROTOCOL(((EXTRUDER_WATTS) * thermalManager.getHeaterPower(target_extruder)) / 127);
  3811. SERIAL_PROTOCOLCHAR('W');
  3812. #else
  3813. SERIAL_PROTOCOL(thermalManager.getHeaterPower(target_extruder));
  3814. #endif
  3815. #if HOTENDS > 1
  3816. for (int8_t e = 0; e < HOTENDS; ++e) {
  3817. SERIAL_PROTOCOLPGM(" @");
  3818. SERIAL_PROTOCOL(e);
  3819. SERIAL_PROTOCOLCHAR(':');
  3820. #ifdef EXTRUDER_WATTS
  3821. SERIAL_PROTOCOL(((EXTRUDER_WATTS) * thermalManager.getHeaterPower(e)) / 127);
  3822. SERIAL_PROTOCOLCHAR('W');
  3823. #else
  3824. SERIAL_PROTOCOL(thermalManager.getHeaterPower(e));
  3825. #endif
  3826. }
  3827. #endif
  3828. #if ENABLED(SHOW_TEMP_ADC_VALUES)
  3829. #if HAS_TEMP_BED
  3830. SERIAL_PROTOCOLPGM(" ADC B:");
  3831. SERIAL_PROTOCOL_F(thermalManager.degBed(), 1);
  3832. SERIAL_PROTOCOLPGM("C->");
  3833. SERIAL_PROTOCOL_F(thermalManager.rawBedTemp() / OVERSAMPLENR, 0);
  3834. #endif
  3835. for (int8_t cur_hotend = 0; cur_hotend < HOTENDS; ++cur_hotend) {
  3836. SERIAL_PROTOCOLPGM(" T");
  3837. SERIAL_PROTOCOL(cur_hotend);
  3838. SERIAL_PROTOCOLCHAR(':');
  3839. SERIAL_PROTOCOL_F(thermalManager.degHotend(cur_hotend), 1);
  3840. SERIAL_PROTOCOLPGM("C->");
  3841. SERIAL_PROTOCOL_F(thermalManager.rawHotendTemp(cur_hotend) / OVERSAMPLENR, 0);
  3842. }
  3843. #endif
  3844. }
  3845. #endif
  3846. /**
  3847. * M105: Read hot end and bed temperature
  3848. */
  3849. inline void gcode_M105() {
  3850. if (get_target_extruder_from_command(105)) return;
  3851. #if HAS_TEMP_HOTEND || HAS_TEMP_BED
  3852. SERIAL_PROTOCOLPGM(MSG_OK);
  3853. print_heaterstates();
  3854. #else // !HAS_TEMP_HOTEND && !HAS_TEMP_BED
  3855. SERIAL_ERROR_START;
  3856. SERIAL_ERRORLNPGM(MSG_ERR_NO_THERMISTORS);
  3857. #endif
  3858. SERIAL_EOL;
  3859. }
  3860. #if FAN_COUNT > 0
  3861. /**
  3862. * M106: Set Fan Speed
  3863. *
  3864. * S<int> Speed between 0-255
  3865. * P<index> Fan index, if more than one fan
  3866. */
  3867. inline void gcode_M106() {
  3868. uint16_t s = code_seen('S') ? code_value_ushort() : 255,
  3869. p = code_seen('P') ? code_value_ushort() : 0;
  3870. NOMORE(s, 255);
  3871. if (p < FAN_COUNT) fanSpeeds[p] = s;
  3872. }
  3873. /**
  3874. * M107: Fan Off
  3875. */
  3876. inline void gcode_M107() {
  3877. uint16_t p = code_seen('P') ? code_value_ushort() : 0;
  3878. if (p < FAN_COUNT) fanSpeeds[p] = 0;
  3879. }
  3880. #endif // FAN_COUNT > 0
  3881. /**
  3882. * M109: Sxxx Wait for extruder(s) to reach temperature. Waits only when heating.
  3883. * Rxxx Wait for extruder(s) to reach temperature. Waits when heating and cooling.
  3884. */
  3885. inline void gcode_M109() {
  3886. if (get_target_extruder_from_command(109)) return;
  3887. if (DEBUGGING(DRYRUN)) return;
  3888. #if ENABLED(SINGLENOZZLE)
  3889. if (target_extruder != active_extruder) return;
  3890. #endif
  3891. bool no_wait_for_cooling = code_seen('S');
  3892. if (no_wait_for_cooling || code_seen('R')) {
  3893. float temp = code_value_temp_abs();
  3894. thermalManager.setTargetHotend(temp, target_extruder);
  3895. #if ENABLED(DUAL_X_CARRIAGE)
  3896. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && target_extruder == 0)
  3897. thermalManager.setTargetHotend(temp == 0.0 ? 0.0 : temp + duplicate_extruder_temp_offset, 1);
  3898. #endif
  3899. #if ENABLED(PRINTJOB_TIMER_AUTOSTART)
  3900. /**
  3901. * We use half EXTRUDE_MINTEMP here to allow nozzles to be put into hot
  3902. * stand by mode, for instance in a dual extruder setup, without affecting
  3903. * the running print timer.
  3904. */
  3905. if (temp <= (EXTRUDE_MINTEMP)/2) {
  3906. print_job_timer.stop();
  3907. LCD_MESSAGEPGM(WELCOME_MSG);
  3908. }
  3909. /**
  3910. * We do not check if the timer is already running because this check will
  3911. * be done for us inside the Stopwatch::start() method thus a running timer
  3912. * will not restart.
  3913. */
  3914. else print_job_timer.start();
  3915. #endif
  3916. if (temp > thermalManager.degHotend(target_extruder)) LCD_MESSAGEPGM(MSG_HEATING);
  3917. }
  3918. #if ENABLED(AUTOTEMP)
  3919. planner.autotemp_M109();
  3920. #endif
  3921. #if TEMP_RESIDENCY_TIME > 0
  3922. millis_t residency_start_ms = 0;
  3923. // Loop until the temperature has stabilized
  3924. #define TEMP_CONDITIONS (!residency_start_ms || PENDING(now, residency_start_ms + (TEMP_RESIDENCY_TIME) * 1000UL))
  3925. #else
  3926. // Loop until the temperature is very close target
  3927. #define TEMP_CONDITIONS (wants_to_cool ? thermalManager.isCoolingHotend(target_extruder) : thermalManager.isHeatingHotend(target_extruder))
  3928. #endif //TEMP_RESIDENCY_TIME > 0
  3929. float theTarget = -1;
  3930. bool wants_to_cool;
  3931. cancel_heatup = false;
  3932. millis_t now, next_temp_ms = 0;
  3933. KEEPALIVE_STATE(NOT_BUSY);
  3934. do {
  3935. // Target temperature might be changed during the loop
  3936. if (theTarget != thermalManager.degTargetHotend(target_extruder)) {
  3937. wants_to_cool = thermalManager.isCoolingHotend(target_extruder);
  3938. theTarget = thermalManager.degTargetHotend(target_extruder);
  3939. // Exit if S<lower>, continue if S<higher>, R<lower>, or R<higher>
  3940. if (no_wait_for_cooling && wants_to_cool) break;
  3941. // Prevent a wait-forever situation if R is misused i.e. M109 R0
  3942. // Try to calculate a ballpark safe margin by halving EXTRUDE_MINTEMP
  3943. if (wants_to_cool && theTarget < (EXTRUDE_MINTEMP)/2) break;
  3944. }
  3945. now = millis();
  3946. if (ELAPSED(now, next_temp_ms)) { //Print temp & remaining time every 1s while waiting
  3947. next_temp_ms = now + 1000UL;
  3948. print_heaterstates();
  3949. #if TEMP_RESIDENCY_TIME > 0
  3950. SERIAL_PROTOCOLPGM(" W:");
  3951. if (residency_start_ms) {
  3952. long rem = (((TEMP_RESIDENCY_TIME) * 1000UL) - (now - residency_start_ms)) / 1000UL;
  3953. SERIAL_PROTOCOLLN(rem);
  3954. }
  3955. else {
  3956. SERIAL_PROTOCOLLNPGM("?");
  3957. }
  3958. #else
  3959. SERIAL_EOL;
  3960. #endif
  3961. }
  3962. idle();
  3963. refresh_cmd_timeout(); // to prevent stepper_inactive_time from running out
  3964. #if TEMP_RESIDENCY_TIME > 0
  3965. float temp_diff = fabs(theTarget - thermalManager.degHotend(target_extruder));
  3966. if (!residency_start_ms) {
  3967. // Start the TEMP_RESIDENCY_TIME timer when we reach target temp for the first time.
  3968. if (temp_diff < TEMP_WINDOW) residency_start_ms = now;
  3969. }
  3970. else if (temp_diff > TEMP_HYSTERESIS) {
  3971. // Restart the timer whenever the temperature falls outside the hysteresis.
  3972. residency_start_ms = now;
  3973. }
  3974. #endif //TEMP_RESIDENCY_TIME > 0
  3975. } while (!cancel_heatup && TEMP_CONDITIONS);
  3976. LCD_MESSAGEPGM(MSG_HEATING_COMPLETE);
  3977. KEEPALIVE_STATE(IN_HANDLER);
  3978. }
  3979. #if HAS_TEMP_BED
  3980. /**
  3981. * M190: Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  3982. * Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  3983. */
  3984. inline void gcode_M190() {
  3985. if (DEBUGGING(DRYRUN)) return;
  3986. LCD_MESSAGEPGM(MSG_BED_HEATING);
  3987. bool no_wait_for_cooling = code_seen('S');
  3988. if (no_wait_for_cooling || code_seen('R')) thermalManager.setTargetBed(code_value_temp_abs());
  3989. #if TEMP_BED_RESIDENCY_TIME > 0
  3990. millis_t residency_start_ms = 0;
  3991. // Loop until the temperature has stabilized
  3992. #define TEMP_BED_CONDITIONS (!residency_start_ms || PENDING(now, residency_start_ms + (TEMP_BED_RESIDENCY_TIME) * 1000UL))
  3993. #else
  3994. // Loop until the temperature is very close target
  3995. #define TEMP_BED_CONDITIONS (wants_to_cool ? thermalManager.isCoolingBed() : thermalManager.isHeatingBed())
  3996. #endif //TEMP_BED_RESIDENCY_TIME > 0
  3997. float theTarget = -1;
  3998. bool wants_to_cool;
  3999. cancel_heatup = false;
  4000. millis_t now, next_temp_ms = 0;
  4001. KEEPALIVE_STATE(NOT_BUSY);
  4002. do {
  4003. // Target temperature might be changed during the loop
  4004. if (theTarget != thermalManager.degTargetBed()) {
  4005. wants_to_cool = thermalManager.isCoolingBed();
  4006. theTarget = thermalManager.degTargetBed();
  4007. // Exit if S<lower>, continue if S<higher>, R<lower>, or R<higher>
  4008. if (no_wait_for_cooling && wants_to_cool) break;
  4009. // Prevent a wait-forever situation if R is misused i.e. M190 R0
  4010. // Simply don't wait to cool a bed under 30C
  4011. if (wants_to_cool && theTarget < 30) break;
  4012. }
  4013. now = millis();
  4014. if (ELAPSED(now, next_temp_ms)) { //Print Temp Reading every 1 second while heating up.
  4015. next_temp_ms = now + 1000UL;
  4016. print_heaterstates();
  4017. #if TEMP_BED_RESIDENCY_TIME > 0
  4018. SERIAL_PROTOCOLPGM(" W:");
  4019. if (residency_start_ms) {
  4020. long rem = (((TEMP_BED_RESIDENCY_TIME) * 1000UL) - (now - residency_start_ms)) / 1000UL;
  4021. SERIAL_PROTOCOLLN(rem);
  4022. }
  4023. else {
  4024. SERIAL_PROTOCOLLNPGM("?");
  4025. }
  4026. #else
  4027. SERIAL_EOL;
  4028. #endif
  4029. }
  4030. idle();
  4031. refresh_cmd_timeout(); // to prevent stepper_inactive_time from running out
  4032. #if TEMP_BED_RESIDENCY_TIME > 0
  4033. float temp_diff = fabs(theTarget - thermalManager.degBed());
  4034. if (!residency_start_ms) {
  4035. // Start the TEMP_BED_RESIDENCY_TIME timer when we reach target temp for the first time.
  4036. if (temp_diff < TEMP_BED_WINDOW) residency_start_ms = now;
  4037. }
  4038. else if (temp_diff > TEMP_BED_HYSTERESIS) {
  4039. // Restart the timer whenever the temperature falls outside the hysteresis.
  4040. residency_start_ms = now;
  4041. }
  4042. #endif //TEMP_BED_RESIDENCY_TIME > 0
  4043. } while (!cancel_heatup && TEMP_BED_CONDITIONS);
  4044. LCD_MESSAGEPGM(MSG_BED_DONE);
  4045. KEEPALIVE_STATE(IN_HANDLER);
  4046. }
  4047. #endif // HAS_TEMP_BED
  4048. /**
  4049. * M110: Set Current Line Number
  4050. */
  4051. inline void gcode_M110() {
  4052. if (code_seen('N')) gcode_N = code_value_long();
  4053. }
  4054. /**
  4055. * M111: Set the debug level
  4056. */
  4057. inline void gcode_M111() {
  4058. marlin_debug_flags = code_seen('S') ? code_value_byte() : (uint8_t) DEBUG_NONE;
  4059. const static char str_debug_1[] PROGMEM = MSG_DEBUG_ECHO;
  4060. const static char str_debug_2[] PROGMEM = MSG_DEBUG_INFO;
  4061. const static char str_debug_4[] PROGMEM = MSG_DEBUG_ERRORS;
  4062. const static char str_debug_8[] PROGMEM = MSG_DEBUG_DRYRUN;
  4063. const static char str_debug_16[] PROGMEM = MSG_DEBUG_COMMUNICATION;
  4064. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4065. const static char str_debug_32[] PROGMEM = MSG_DEBUG_LEVELING;
  4066. #endif
  4067. const static char* const debug_strings[] PROGMEM = {
  4068. str_debug_1, str_debug_2, str_debug_4, str_debug_8, str_debug_16,
  4069. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4070. str_debug_32
  4071. #endif
  4072. };
  4073. SERIAL_ECHO_START;
  4074. SERIAL_ECHOPGM(MSG_DEBUG_PREFIX);
  4075. if (marlin_debug_flags) {
  4076. uint8_t comma = 0;
  4077. for (uint8_t i = 0; i < COUNT(debug_strings); i++) {
  4078. if (TEST(marlin_debug_flags, i)) {
  4079. if (comma++) SERIAL_CHAR(',');
  4080. serialprintPGM((char*)pgm_read_word(&(debug_strings[i])));
  4081. }
  4082. }
  4083. }
  4084. else {
  4085. SERIAL_ECHOPGM(MSG_DEBUG_OFF);
  4086. }
  4087. SERIAL_EOL;
  4088. }
  4089. /**
  4090. * M112: Emergency Stop
  4091. */
  4092. inline void gcode_M112() { kill(PSTR(MSG_KILLED)); }
  4093. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  4094. /**
  4095. * M113: Get or set Host Keepalive interval (0 to disable)
  4096. *
  4097. * S<seconds> Optional. Set the keepalive interval.
  4098. */
  4099. inline void gcode_M113() {
  4100. if (code_seen('S')) {
  4101. host_keepalive_interval = code_value_byte();
  4102. NOMORE(host_keepalive_interval, 60);
  4103. }
  4104. else {
  4105. SERIAL_ECHO_START;
  4106. SERIAL_ECHOPAIR("M113 S", (unsigned long)host_keepalive_interval);
  4107. SERIAL_EOL;
  4108. }
  4109. }
  4110. #endif
  4111. #if ENABLED(BARICUDA)
  4112. #if HAS_HEATER_1
  4113. /**
  4114. * M126: Heater 1 valve open
  4115. */
  4116. inline void gcode_M126() { baricuda_valve_pressure = code_seen('S') ? code_value_byte() : 255; }
  4117. /**
  4118. * M127: Heater 1 valve close
  4119. */
  4120. inline void gcode_M127() { baricuda_valve_pressure = 0; }
  4121. #endif
  4122. #if HAS_HEATER_2
  4123. /**
  4124. * M128: Heater 2 valve open
  4125. */
  4126. inline void gcode_M128() { baricuda_e_to_p_pressure = code_seen('S') ? code_value_byte() : 255; }
  4127. /**
  4128. * M129: Heater 2 valve close
  4129. */
  4130. inline void gcode_M129() { baricuda_e_to_p_pressure = 0; }
  4131. #endif
  4132. #endif //BARICUDA
  4133. /**
  4134. * M140: Set bed temperature
  4135. */
  4136. inline void gcode_M140() {
  4137. if (DEBUGGING(DRYRUN)) return;
  4138. if (code_seen('S')) thermalManager.setTargetBed(code_value_temp_abs());
  4139. }
  4140. #if ENABLED(ULTIPANEL)
  4141. /**
  4142. * M145: Set the heatup state for a material in the LCD menu
  4143. * S<material> (0=PLA, 1=ABS)
  4144. * H<hotend temp>
  4145. * B<bed temp>
  4146. * F<fan speed>
  4147. */
  4148. inline void gcode_M145() {
  4149. int8_t material = code_seen('S') ? (int8_t)code_value_int() : 0;
  4150. if (material < 0 || material > 1) {
  4151. SERIAL_ERROR_START;
  4152. SERIAL_ERRORLNPGM(MSG_ERR_MATERIAL_INDEX);
  4153. }
  4154. else {
  4155. int v;
  4156. switch (material) {
  4157. case 0:
  4158. if (code_seen('H')) {
  4159. v = code_value_int();
  4160. plaPreheatHotendTemp = constrain(v, EXTRUDE_MINTEMP, HEATER_0_MAXTEMP - 15);
  4161. }
  4162. if (code_seen('F')) {
  4163. v = code_value_int();
  4164. plaPreheatFanSpeed = constrain(v, 0, 255);
  4165. }
  4166. #if TEMP_SENSOR_BED != 0
  4167. if (code_seen('B')) {
  4168. v = code_value_int();
  4169. plaPreheatHPBTemp = constrain(v, BED_MINTEMP, BED_MAXTEMP - 15);
  4170. }
  4171. #endif
  4172. break;
  4173. case 1:
  4174. if (code_seen('H')) {
  4175. v = code_value_int();
  4176. absPreheatHotendTemp = constrain(v, EXTRUDE_MINTEMP, HEATER_0_MAXTEMP - 15);
  4177. }
  4178. if (code_seen('F')) {
  4179. v = code_value_int();
  4180. absPreheatFanSpeed = constrain(v, 0, 255);
  4181. }
  4182. #if TEMP_SENSOR_BED != 0
  4183. if (code_seen('B')) {
  4184. v = code_value_int();
  4185. absPreheatHPBTemp = constrain(v, BED_MINTEMP, BED_MAXTEMP - 15);
  4186. }
  4187. #endif
  4188. break;
  4189. }
  4190. }
  4191. }
  4192. #endif
  4193. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  4194. /**
  4195. * M149: Set temperature units
  4196. */
  4197. inline void gcode_M149() {
  4198. if (code_seen('C')) {
  4199. set_input_temp_units(TEMPUNIT_C);
  4200. } else if (code_seen('K')) {
  4201. set_input_temp_units(TEMPUNIT_K);
  4202. } else if (code_seen('F')) {
  4203. set_input_temp_units(TEMPUNIT_F);
  4204. }
  4205. }
  4206. #endif
  4207. #if HAS_POWER_SWITCH
  4208. /**
  4209. * M80: Turn on Power Supply
  4210. */
  4211. inline void gcode_M80() {
  4212. OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE); //GND
  4213. /**
  4214. * If you have a switch on suicide pin, this is useful
  4215. * if you want to start another print with suicide feature after
  4216. * a print without suicide...
  4217. */
  4218. #if HAS_SUICIDE
  4219. OUT_WRITE(SUICIDE_PIN, HIGH);
  4220. #endif
  4221. #if ENABLED(ULTIPANEL)
  4222. powersupply = true;
  4223. LCD_MESSAGEPGM(WELCOME_MSG);
  4224. lcd_update();
  4225. #endif
  4226. }
  4227. #endif // HAS_POWER_SWITCH
  4228. /**
  4229. * M81: Turn off Power, including Power Supply, if there is one.
  4230. *
  4231. * This code should ALWAYS be available for EMERGENCY SHUTDOWN!
  4232. */
  4233. inline void gcode_M81() {
  4234. thermalManager.disable_all_heaters();
  4235. stepper.finish_and_disable();
  4236. #if FAN_COUNT > 0
  4237. #if FAN_COUNT > 1
  4238. for (uint8_t i = 0; i < FAN_COUNT; i++) fanSpeeds[i] = 0;
  4239. #else
  4240. fanSpeeds[0] = 0;
  4241. #endif
  4242. #endif
  4243. delay(1000); // Wait 1 second before switching off
  4244. #if HAS_SUICIDE
  4245. stepper.synchronize();
  4246. suicide();
  4247. #elif HAS_POWER_SWITCH
  4248. OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  4249. #endif
  4250. #if ENABLED(ULTIPANEL)
  4251. #if HAS_POWER_SWITCH
  4252. powersupply = false;
  4253. #endif
  4254. LCD_MESSAGEPGM(MACHINE_NAME " " MSG_OFF ".");
  4255. lcd_update();
  4256. #endif
  4257. }
  4258. /**
  4259. * M82: Set E codes absolute (default)
  4260. */
  4261. inline void gcode_M82() { axis_relative_modes[E_AXIS] = false; }
  4262. /**
  4263. * M83: Set E codes relative while in Absolute Coordinates (G90) mode
  4264. */
  4265. inline void gcode_M83() { axis_relative_modes[E_AXIS] = true; }
  4266. /**
  4267. * M18, M84: Disable all stepper motors
  4268. */
  4269. inline void gcode_M18_M84() {
  4270. if (code_seen('S')) {
  4271. stepper_inactive_time = code_value_millis_from_seconds();
  4272. }
  4273. else {
  4274. bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS])) || (code_seen(axis_codes[E_AXIS])));
  4275. if (all_axis) {
  4276. stepper.finish_and_disable();
  4277. }
  4278. else {
  4279. stepper.synchronize();
  4280. if (code_seen('X')) disable_x();
  4281. if (code_seen('Y')) disable_y();
  4282. if (code_seen('Z')) disable_z();
  4283. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  4284. if (code_seen('E')) {
  4285. disable_e0();
  4286. disable_e1();
  4287. disable_e2();
  4288. disable_e3();
  4289. }
  4290. #endif
  4291. }
  4292. }
  4293. }
  4294. /**
  4295. * M85: Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  4296. */
  4297. inline void gcode_M85() {
  4298. if (code_seen('S')) max_inactive_time = code_value_millis_from_seconds();
  4299. }
  4300. /**
  4301. * M92: Set axis steps-per-unit for one or more axes, X, Y, Z, and E.
  4302. * (Follows the same syntax as G92)
  4303. */
  4304. inline void gcode_M92() {
  4305. for (int8_t i = 0; i < NUM_AXIS; i++) {
  4306. if (code_seen(axis_codes[i])) {
  4307. if (i == E_AXIS) {
  4308. float value = code_value_per_axis_unit(i);
  4309. if (value < 20.0) {
  4310. float factor = planner.axis_steps_per_mm[i] / value; // increase e constants if M92 E14 is given for netfab.
  4311. planner.max_e_jerk *= factor;
  4312. planner.max_feedrate[i] *= factor;
  4313. planner.max_acceleration_steps_per_s2[i] *= factor;
  4314. }
  4315. planner.axis_steps_per_mm[i] = value;
  4316. }
  4317. else {
  4318. planner.axis_steps_per_mm[i] = code_value_per_axis_unit(i);
  4319. }
  4320. }
  4321. }
  4322. }
  4323. /**
  4324. * Output the current position to serial
  4325. */
  4326. static void report_current_position() {
  4327. SERIAL_PROTOCOLPGM("X:");
  4328. SERIAL_PROTOCOL(current_position[X_AXIS]);
  4329. SERIAL_PROTOCOLPGM(" Y:");
  4330. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  4331. SERIAL_PROTOCOLPGM(" Z:");
  4332. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  4333. SERIAL_PROTOCOLPGM(" E:");
  4334. SERIAL_PROTOCOL(current_position[E_AXIS]);
  4335. stepper.report_positions();
  4336. #if ENABLED(SCARA)
  4337. SERIAL_PROTOCOLPGM("SCARA Theta:");
  4338. SERIAL_PROTOCOL(delta[X_AXIS]);
  4339. SERIAL_PROTOCOLPGM(" Psi+Theta:");
  4340. SERIAL_PROTOCOL(delta[Y_AXIS]);
  4341. SERIAL_EOL;
  4342. SERIAL_PROTOCOLPGM("SCARA Cal - Theta:");
  4343. SERIAL_PROTOCOL(delta[X_AXIS] + home_offset[X_AXIS]);
  4344. SERIAL_PROTOCOLPGM(" Psi+Theta (90):");
  4345. SERIAL_PROTOCOL(delta[Y_AXIS] - delta[X_AXIS] - 90 + home_offset[Y_AXIS]);
  4346. SERIAL_EOL;
  4347. SERIAL_PROTOCOLPGM("SCARA step Cal - Theta:");
  4348. SERIAL_PROTOCOL(delta[X_AXIS] / 90 * planner.axis_steps_per_mm[X_AXIS]);
  4349. SERIAL_PROTOCOLPGM(" Psi+Theta:");
  4350. SERIAL_PROTOCOL((delta[Y_AXIS] - delta[X_AXIS]) / 90 * planner.axis_steps_per_mm[Y_AXIS]);
  4351. SERIAL_EOL; SERIAL_EOL;
  4352. #endif
  4353. }
  4354. /**
  4355. * M114: Output current position to serial port
  4356. */
  4357. inline void gcode_M114() { report_current_position(); }
  4358. /**
  4359. * M115: Capabilities string
  4360. */
  4361. inline void gcode_M115() {
  4362. SERIAL_PROTOCOLPGM(MSG_M115_REPORT);
  4363. }
  4364. /**
  4365. * M117: Set LCD Status Message
  4366. */
  4367. inline void gcode_M117() {
  4368. lcd_setstatus(current_command_args);
  4369. }
  4370. /**
  4371. * M119: Output endstop states to serial output
  4372. */
  4373. inline void gcode_M119() { endstops.M119(); }
  4374. /**
  4375. * M120: Enable endstops and set non-homing endstop state to "enabled"
  4376. */
  4377. inline void gcode_M120() { endstops.enable_globally(true); }
  4378. /**
  4379. * M121: Disable endstops and set non-homing endstop state to "disabled"
  4380. */
  4381. inline void gcode_M121() { endstops.enable_globally(false); }
  4382. #if ENABLED(BLINKM)
  4383. /**
  4384. * M150: Set Status LED Color - Use R-U-B for R-G-B
  4385. */
  4386. inline void gcode_M150() {
  4387. SendColors(
  4388. code_seen('R') ? code_value_byte() : 0,
  4389. code_seen('U') ? code_value_byte() : 0,
  4390. code_seen('B') ? code_value_byte() : 0
  4391. );
  4392. }
  4393. #endif // BLINKM
  4394. #if ENABLED(EXPERIMENTAL_I2CBUS)
  4395. /**
  4396. * M155: Send data to a I2C slave device
  4397. *
  4398. * This is a PoC, the formating and arguments for the GCODE will
  4399. * change to be more compatible, the current proposal is:
  4400. *
  4401. * M155 A<slave device address base 10> ; Sets the I2C slave address the data will be sent to
  4402. *
  4403. * M155 B<byte-1 value in base 10>
  4404. * M155 B<byte-2 value in base 10>
  4405. * M155 B<byte-3 value in base 10>
  4406. *
  4407. * M155 S1 ; Send the buffered data and reset the buffer
  4408. * M155 R1 ; Reset the buffer without sending data
  4409. *
  4410. */
  4411. inline void gcode_M155() {
  4412. // Set the target address
  4413. if (code_seen('A'))
  4414. i2c.address(code_value_byte());
  4415. // Add a new byte to the buffer
  4416. else if (code_seen('B'))
  4417. i2c.addbyte(code_value_int());
  4418. // Flush the buffer to the bus
  4419. else if (code_seen('S')) i2c.send();
  4420. // Reset and rewind the buffer
  4421. else if (code_seen('R')) i2c.reset();
  4422. }
  4423. /**
  4424. * M156: Request X bytes from I2C slave device
  4425. *
  4426. * Usage: M156 A<slave device address base 10> B<number of bytes>
  4427. */
  4428. inline void gcode_M156() {
  4429. uint8_t addr = code_seen('A') ? code_value_byte() : 0;
  4430. int bytes = code_seen('B') ? code_value_int() : 1;
  4431. if (addr && bytes > 0 && bytes <= 32) {
  4432. i2c.address(addr);
  4433. i2c.reqbytes(bytes);
  4434. }
  4435. else {
  4436. SERIAL_ERROR_START;
  4437. SERIAL_ERRORLN("Bad i2c request");
  4438. }
  4439. }
  4440. #endif //EXPERIMENTAL_I2CBUS
  4441. /**
  4442. * M200: Set filament diameter and set E axis units to cubic units
  4443. *
  4444. * T<extruder> - Optional extruder number. Current extruder if omitted.
  4445. * D<mm> - Diameter of the filament. Use "D0" to switch back to linear units on the E axis.
  4446. */
  4447. inline void gcode_M200() {
  4448. if (get_target_extruder_from_command(200)) return;
  4449. if (code_seen('D')) {
  4450. float diameter = code_value_linear_units();
  4451. // setting any extruder filament size disables volumetric on the assumption that
  4452. // slicers either generate in extruder values as cubic mm or as as filament feeds
  4453. // for all extruders
  4454. volumetric_enabled = (diameter != 0.0);
  4455. if (volumetric_enabled) {
  4456. filament_size[target_extruder] = diameter;
  4457. // make sure all extruders have some sane value for the filament size
  4458. for (int i = 0; i < EXTRUDERS; i++)
  4459. if (! filament_size[i]) filament_size[i] = DEFAULT_NOMINAL_FILAMENT_DIA;
  4460. }
  4461. }
  4462. else {
  4463. //reserved for setting filament diameter via UFID or filament measuring device
  4464. return;
  4465. }
  4466. calculate_volumetric_multipliers();
  4467. }
  4468. /**
  4469. * M201: Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  4470. */
  4471. inline void gcode_M201() {
  4472. for (int8_t i = 0; i < NUM_AXIS; i++) {
  4473. if (code_seen(axis_codes[i])) {
  4474. planner.max_acceleration_mm_per_s2[i] = code_value_axis_units(i);
  4475. }
  4476. }
  4477. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  4478. planner.reset_acceleration_rates();
  4479. }
  4480. #if 0 // Not used for Sprinter/grbl gen6
  4481. inline void gcode_M202() {
  4482. for (int8_t i = 0; i < NUM_AXIS; i++) {
  4483. if (code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value_axis_units(i) * planner.axis_steps_per_mm[i];
  4484. }
  4485. }
  4486. #endif
  4487. /**
  4488. * M203: Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  4489. */
  4490. inline void gcode_M203() {
  4491. for (int8_t i = 0; i < NUM_AXIS; i++) {
  4492. if (code_seen(axis_codes[i])) {
  4493. planner.max_feedrate[i] = code_value_axis_units(i);
  4494. }
  4495. }
  4496. }
  4497. /**
  4498. * M204: Set Accelerations in mm/sec^2 (M204 P1200 R3000 T3000)
  4499. *
  4500. * P = Printing moves
  4501. * R = Retract only (no X, Y, Z) moves
  4502. * T = Travel (non printing) moves
  4503. *
  4504. * Also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  4505. */
  4506. inline void gcode_M204() {
  4507. if (code_seen('S')) { // Kept for legacy compatibility. Should NOT BE USED for new developments.
  4508. planner.travel_acceleration = planner.acceleration = code_value_linear_units();
  4509. SERIAL_ECHOPAIR("Setting Print and Travel Acceleration: ", planner.acceleration);
  4510. SERIAL_EOL;
  4511. }
  4512. if (code_seen('P')) {
  4513. planner.acceleration = code_value_linear_units();
  4514. SERIAL_ECHOPAIR("Setting Print Acceleration: ", planner.acceleration);
  4515. SERIAL_EOL;
  4516. }
  4517. if (code_seen('R')) {
  4518. planner.retract_acceleration = code_value_linear_units();
  4519. SERIAL_ECHOPAIR("Setting Retract Acceleration: ", planner.retract_acceleration);
  4520. SERIAL_EOL;
  4521. }
  4522. if (code_seen('T')) {
  4523. planner.travel_acceleration = code_value_linear_units();
  4524. SERIAL_ECHOPAIR("Setting Travel Acceleration: ", planner.travel_acceleration);
  4525. SERIAL_EOL;
  4526. }
  4527. }
  4528. /**
  4529. * M205: Set Advanced Settings
  4530. *
  4531. * S = Min Feed Rate (mm/s)
  4532. * T = Min Travel Feed Rate (mm/s)
  4533. * B = Min Segment Time (µs)
  4534. * X = Max XY Jerk (mm/s/s)
  4535. * Z = Max Z Jerk (mm/s/s)
  4536. * E = Max E Jerk (mm/s/s)
  4537. */
  4538. inline void gcode_M205() {
  4539. if (code_seen('S')) planner.min_feedrate = code_value_linear_units();
  4540. if (code_seen('T')) planner.min_travel_feedrate = code_value_linear_units();
  4541. if (code_seen('B')) planner.min_segment_time = code_value_millis();
  4542. if (code_seen('X')) planner.max_xy_jerk = code_value_linear_units();
  4543. if (code_seen('Z')) planner.max_z_jerk = code_value_axis_units(Z_AXIS);
  4544. if (code_seen('E')) planner.max_e_jerk = code_value_axis_units(E_AXIS);
  4545. }
  4546. /**
  4547. * M206: Set Additional Homing Offset (X Y Z). SCARA aliases T=X, P=Y
  4548. */
  4549. inline void gcode_M206() {
  4550. for (int8_t i = X_AXIS; i <= Z_AXIS; i++)
  4551. if (code_seen(axis_codes[i]))
  4552. set_home_offset((AxisEnum)i, code_value_axis_units(i));
  4553. #if ENABLED(SCARA)
  4554. if (code_seen('T')) set_home_offset(X_AXIS, code_value_axis_units(X_AXIS)); // Theta
  4555. if (code_seen('P')) set_home_offset(Y_AXIS, code_value_axis_units(Y_AXIS)); // Psi
  4556. #endif
  4557. sync_plan_position();
  4558. report_current_position();
  4559. }
  4560. #if ENABLED(DELTA)
  4561. /**
  4562. * M665: Set delta configurations
  4563. *
  4564. * L = diagonal rod
  4565. * R = delta radius
  4566. * S = segments per second
  4567. * A = Alpha (Tower 1) diagonal rod trim
  4568. * B = Beta (Tower 2) diagonal rod trim
  4569. * C = Gamma (Tower 3) diagonal rod trim
  4570. */
  4571. inline void gcode_M665() {
  4572. if (code_seen('L')) delta_diagonal_rod = code_value_linear_units();
  4573. if (code_seen('R')) delta_radius = code_value_linear_units();
  4574. if (code_seen('S')) delta_segments_per_second = code_value_float();
  4575. if (code_seen('A')) delta_diagonal_rod_trim_tower_1 = code_value_linear_units();
  4576. if (code_seen('B')) delta_diagonal_rod_trim_tower_2 = code_value_linear_units();
  4577. if (code_seen('C')) delta_diagonal_rod_trim_tower_3 = code_value_linear_units();
  4578. recalc_delta_settings(delta_radius, delta_diagonal_rod);
  4579. }
  4580. /**
  4581. * M666: Set delta endstop adjustment
  4582. */
  4583. inline void gcode_M666() {
  4584. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4585. if (DEBUGGING(LEVELING)) {
  4586. SERIAL_ECHOLNPGM(">>> gcode_M666");
  4587. }
  4588. #endif
  4589. for (int8_t i = X_AXIS; i <= Z_AXIS; i++) {
  4590. if (code_seen(axis_codes[i])) {
  4591. endstop_adj[i] = code_value_axis_units(i);
  4592. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4593. if (DEBUGGING(LEVELING)) {
  4594. SERIAL_ECHOPGM("endstop_adj[");
  4595. SERIAL_ECHO(axis_codes[i]);
  4596. SERIAL_ECHOPAIR("] = ", endstop_adj[i]);
  4597. SERIAL_EOL;
  4598. }
  4599. #endif
  4600. }
  4601. }
  4602. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4603. if (DEBUGGING(LEVELING)) {
  4604. SERIAL_ECHOLNPGM("<<< gcode_M666");
  4605. }
  4606. #endif
  4607. }
  4608. #elif ENABLED(Z_DUAL_ENDSTOPS) // !DELTA && ENABLED(Z_DUAL_ENDSTOPS)
  4609. /**
  4610. * M666: For Z Dual Endstop setup, set z axis offset to the z2 axis.
  4611. */
  4612. inline void gcode_M666() {
  4613. if (code_seen('Z')) z_endstop_adj = code_value_axis_units(Z_AXIS);
  4614. SERIAL_ECHOPAIR("Z Endstop Adjustment set to (mm):", z_endstop_adj);
  4615. SERIAL_EOL;
  4616. }
  4617. #endif // !DELTA && Z_DUAL_ENDSTOPS
  4618. #if ENABLED(FWRETRACT)
  4619. /**
  4620. * M207: Set firmware retraction values
  4621. *
  4622. * S[+mm] retract_length
  4623. * W[+mm] retract_length_swap (multi-extruder)
  4624. * F[mm/min] retract_feedrate
  4625. * Z[mm] retract_zlift
  4626. */
  4627. inline void gcode_M207() {
  4628. if (code_seen('S')) retract_length = code_value_axis_units(E_AXIS);
  4629. if (code_seen('F')) retract_feedrate = code_value_axis_units(E_AXIS) / 60;
  4630. if (code_seen('Z')) retract_zlift = code_value_axis_units(Z_AXIS);
  4631. #if EXTRUDERS > 1
  4632. if (code_seen('W')) retract_length_swap = code_value_axis_units(E_AXIS);
  4633. #endif
  4634. }
  4635. /**
  4636. * M208: Set firmware un-retraction values
  4637. *
  4638. * S[+mm] retract_recover_length (in addition to M207 S*)
  4639. * W[+mm] retract_recover_length_swap (multi-extruder)
  4640. * F[mm/min] retract_recover_feedrate
  4641. */
  4642. inline void gcode_M208() {
  4643. if (code_seen('S')) retract_recover_length = code_value_axis_units(E_AXIS);
  4644. if (code_seen('F')) retract_recover_feedrate = code_value_axis_units(E_AXIS) / 60;
  4645. #if EXTRUDERS > 1
  4646. if (code_seen('W')) retract_recover_length_swap = code_value_axis_units(E_AXIS);
  4647. #endif
  4648. }
  4649. /**
  4650. * M209: Enable automatic retract (M209 S1)
  4651. * detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  4652. */
  4653. inline void gcode_M209() {
  4654. if (code_seen('S')) {
  4655. int t = code_value_int();
  4656. switch (t) {
  4657. case 0:
  4658. autoretract_enabled = false;
  4659. break;
  4660. case 1:
  4661. autoretract_enabled = true;
  4662. break;
  4663. default:
  4664. unknown_command_error();
  4665. return;
  4666. }
  4667. for (int i = 0; i < EXTRUDERS; i++) retracted[i] = false;
  4668. }
  4669. }
  4670. #endif // FWRETRACT
  4671. #if HOTENDS > 1
  4672. /**
  4673. * M218 - set hotend offset (in mm)
  4674. *
  4675. * T<tool>
  4676. * X<xoffset>
  4677. * Y<yoffset>
  4678. * Z<zoffset> - Available with DUAL_X_CARRIAGE
  4679. */
  4680. inline void gcode_M218() {
  4681. if (get_target_extruder_from_command(218)) return;
  4682. if (code_seen('X')) hotend_offset[X_AXIS][target_extruder] = code_value_axis_units(X_AXIS);
  4683. if (code_seen('Y')) hotend_offset[Y_AXIS][target_extruder] = code_value_axis_units(Y_AXIS);
  4684. #if ENABLED(DUAL_X_CARRIAGE)
  4685. if (code_seen('Z')) hotend_offset[Z_AXIS][target_extruder] = code_value_axis_units(Z_AXIS);
  4686. #endif
  4687. SERIAL_ECHO_START;
  4688. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  4689. for (int e = 0; e < HOTENDS; e++) {
  4690. SERIAL_CHAR(' ');
  4691. SERIAL_ECHO(hotend_offset[X_AXIS][e]);
  4692. SERIAL_CHAR(',');
  4693. SERIAL_ECHO(hotend_offset[Y_AXIS][e]);
  4694. #if ENABLED(DUAL_X_CARRIAGE)
  4695. SERIAL_CHAR(',');
  4696. SERIAL_ECHO(hotend_offset[Z_AXIS][e]);
  4697. #endif
  4698. }
  4699. SERIAL_EOL;
  4700. }
  4701. #endif // HOTENDS > 1
  4702. /**
  4703. * M220: Set speed percentage factor, aka "Feed Rate" (M220 S95)
  4704. */
  4705. inline void gcode_M220() {
  4706. if (code_seen('S')) feedrate_multiplier = code_value_int();
  4707. }
  4708. /**
  4709. * M221: Set extrusion percentage (M221 T0 S95)
  4710. */
  4711. inline void gcode_M221() {
  4712. if (code_seen('S')) {
  4713. int sval = code_value_int();
  4714. if (get_target_extruder_from_command(221)) return;
  4715. extruder_multiplier[target_extruder] = sval;
  4716. }
  4717. }
  4718. /**
  4719. * M226: Wait until the specified pin reaches the state required (M226 P<pin> S<state>)
  4720. */
  4721. inline void gcode_M226() {
  4722. if (code_seen('P')) {
  4723. int pin_number = code_value_int();
  4724. int pin_state = code_seen('S') ? code_value_int() : -1; // required pin state - default is inverted
  4725. if (pin_state >= -1 && pin_state <= 1) {
  4726. for (uint8_t i = 0; i < COUNT(sensitive_pins); i++) {
  4727. if (sensitive_pins[i] == pin_number) {
  4728. pin_number = -1;
  4729. break;
  4730. }
  4731. }
  4732. if (pin_number > -1) {
  4733. int target = LOW;
  4734. stepper.synchronize();
  4735. pinMode(pin_number, INPUT);
  4736. switch (pin_state) {
  4737. case 1:
  4738. target = HIGH;
  4739. break;
  4740. case 0:
  4741. target = LOW;
  4742. break;
  4743. case -1:
  4744. target = !digitalRead(pin_number);
  4745. break;
  4746. }
  4747. while (digitalRead(pin_number) != target) idle();
  4748. } // pin_number > -1
  4749. } // pin_state -1 0 1
  4750. } // code_seen('P')
  4751. }
  4752. #if HAS_SERVOS
  4753. /**
  4754. * M280: Get or set servo position. P<index> S<angle>
  4755. */
  4756. inline void gcode_M280() {
  4757. int servo_index = code_seen('P') ? code_value_int() : -1;
  4758. int servo_position = 0;
  4759. if (code_seen('S')) {
  4760. servo_position = code_value_int();
  4761. if (servo_index >= 0 && servo_index < NUM_SERVOS)
  4762. MOVE_SERVO(servo_index, servo_position);
  4763. else {
  4764. SERIAL_ERROR_START;
  4765. SERIAL_ERROR("Servo ");
  4766. SERIAL_ERROR(servo_index);
  4767. SERIAL_ERRORLN(" out of range");
  4768. }
  4769. }
  4770. else if (servo_index >= 0) {
  4771. SERIAL_ECHO_START;
  4772. SERIAL_ECHO(" Servo ");
  4773. SERIAL_ECHO(servo_index);
  4774. SERIAL_ECHO(": ");
  4775. SERIAL_ECHOLN(servo[servo_index].read());
  4776. }
  4777. }
  4778. #endif // HAS_SERVOS
  4779. #if HAS_BUZZER
  4780. /**
  4781. * M300: Play beep sound S<frequency Hz> P<duration ms>
  4782. */
  4783. inline void gcode_M300() {
  4784. uint16_t const frequency = code_seen('S') ? code_value_ushort() : 260;
  4785. uint16_t duration = code_seen('P') ? code_value_ushort() : 1000;
  4786. // Limits the tone duration to 0-5 seconds.
  4787. NOMORE(duration, 5000);
  4788. buzzer.tone(duration, frequency);
  4789. }
  4790. #endif // HAS_BUZZER
  4791. #if ENABLED(PIDTEMP)
  4792. /**
  4793. * M301: Set PID parameters P I D (and optionally C, L)
  4794. *
  4795. * P[float] Kp term
  4796. * I[float] Ki term (unscaled)
  4797. * D[float] Kd term (unscaled)
  4798. *
  4799. * With PID_ADD_EXTRUSION_RATE:
  4800. *
  4801. * C[float] Kc term
  4802. * L[float] LPQ length
  4803. */
  4804. inline void gcode_M301() {
  4805. // multi-extruder PID patch: M301 updates or prints a single extruder's PID values
  4806. // default behaviour (omitting E parameter) is to update for extruder 0 only
  4807. int e = code_seen('E') ? code_value_int() : 0; // extruder being updated
  4808. if (e < HOTENDS) { // catch bad input value
  4809. if (code_seen('P')) PID_PARAM(Kp, e) = code_value_float();
  4810. if (code_seen('I')) PID_PARAM(Ki, e) = scalePID_i(code_value_float());
  4811. if (code_seen('D')) PID_PARAM(Kd, e) = scalePID_d(code_value_float());
  4812. #if ENABLED(PID_ADD_EXTRUSION_RATE)
  4813. if (code_seen('C')) PID_PARAM(Kc, e) = code_value_float();
  4814. if (code_seen('L')) lpq_len = code_value_float();
  4815. NOMORE(lpq_len, LPQ_MAX_LEN);
  4816. #endif
  4817. thermalManager.updatePID();
  4818. SERIAL_ECHO_START;
  4819. #if ENABLED(PID_PARAMS_PER_HOTEND)
  4820. SERIAL_ECHO(" e:"); // specify extruder in serial output
  4821. SERIAL_ECHO(e);
  4822. #endif // PID_PARAMS_PER_HOTEND
  4823. SERIAL_ECHO(" p:");
  4824. SERIAL_ECHO(PID_PARAM(Kp, e));
  4825. SERIAL_ECHO(" i:");
  4826. SERIAL_ECHO(unscalePID_i(PID_PARAM(Ki, e)));
  4827. SERIAL_ECHO(" d:");
  4828. SERIAL_ECHO(unscalePID_d(PID_PARAM(Kd, e)));
  4829. #if ENABLED(PID_ADD_EXTRUSION_RATE)
  4830. SERIAL_ECHO(" c:");
  4831. //Kc does not have scaling applied above, or in resetting defaults
  4832. SERIAL_ECHO(PID_PARAM(Kc, e));
  4833. #endif
  4834. SERIAL_EOL;
  4835. }
  4836. else {
  4837. SERIAL_ERROR_START;
  4838. SERIAL_ERRORLN(MSG_INVALID_EXTRUDER);
  4839. }
  4840. }
  4841. #endif // PIDTEMP
  4842. #if ENABLED(PIDTEMPBED)
  4843. inline void gcode_M304() {
  4844. if (code_seen('P')) thermalManager.bedKp = code_value_float();
  4845. if (code_seen('I')) thermalManager.bedKi = scalePID_i(code_value_float());
  4846. if (code_seen('D')) thermalManager.bedKd = scalePID_d(code_value_float());
  4847. thermalManager.updatePID();
  4848. SERIAL_ECHO_START;
  4849. SERIAL_ECHO(" p:");
  4850. SERIAL_ECHO(thermalManager.bedKp);
  4851. SERIAL_ECHO(" i:");
  4852. SERIAL_ECHO(unscalePID_i(thermalManager.bedKi));
  4853. SERIAL_ECHO(" d:");
  4854. SERIAL_ECHOLN(unscalePID_d(thermalManager.bedKd));
  4855. }
  4856. #endif // PIDTEMPBED
  4857. #if defined(CHDK) || HAS_PHOTOGRAPH
  4858. /**
  4859. * M240: Trigger a camera by emulating a Canon RC-1
  4860. * See http://www.doc-diy.net/photo/rc-1_hacked/
  4861. */
  4862. inline void gcode_M240() {
  4863. #ifdef CHDK
  4864. OUT_WRITE(CHDK, HIGH);
  4865. chdkHigh = millis();
  4866. chdkActive = true;
  4867. #elif HAS_PHOTOGRAPH
  4868. const uint8_t NUM_PULSES = 16;
  4869. const float PULSE_LENGTH = 0.01524;
  4870. for (int i = 0; i < NUM_PULSES; i++) {
  4871. WRITE(PHOTOGRAPH_PIN, HIGH);
  4872. _delay_ms(PULSE_LENGTH);
  4873. WRITE(PHOTOGRAPH_PIN, LOW);
  4874. _delay_ms(PULSE_LENGTH);
  4875. }
  4876. delay(7.33);
  4877. for (int i = 0; i < NUM_PULSES; i++) {
  4878. WRITE(PHOTOGRAPH_PIN, HIGH);
  4879. _delay_ms(PULSE_LENGTH);
  4880. WRITE(PHOTOGRAPH_PIN, LOW);
  4881. _delay_ms(PULSE_LENGTH);
  4882. }
  4883. #endif // !CHDK && HAS_PHOTOGRAPH
  4884. }
  4885. #endif // CHDK || PHOTOGRAPH_PIN
  4886. #if HAS_LCD_CONTRAST
  4887. /**
  4888. * M250: Read and optionally set the LCD contrast
  4889. */
  4890. inline void gcode_M250() {
  4891. if (code_seen('C')) set_lcd_contrast(code_value_int());
  4892. SERIAL_PROTOCOLPGM("lcd contrast value: ");
  4893. SERIAL_PROTOCOL(lcd_contrast);
  4894. SERIAL_EOL;
  4895. }
  4896. #endif // HAS_LCD_CONTRAST
  4897. #if ENABLED(PREVENT_DANGEROUS_EXTRUDE)
  4898. /**
  4899. * M302: Allow cold extrudes, or set the minimum extrude S<temperature>.
  4900. */
  4901. inline void gcode_M302() {
  4902. thermalManager.extrude_min_temp = code_seen('S') ? code_value_temp_abs() : 0;
  4903. }
  4904. #endif // PREVENT_DANGEROUS_EXTRUDE
  4905. /**
  4906. * M303: PID relay autotune
  4907. *
  4908. * S<temperature> sets the target temperature. (default 150C)
  4909. * E<extruder> (-1 for the bed) (default 0)
  4910. * C<cycles>
  4911. * U<bool> with a non-zero value will apply the result to current settings
  4912. */
  4913. inline void gcode_M303() {
  4914. #if HAS_PID_HEATING
  4915. int e = code_seen('E') ? code_value_int() : 0;
  4916. int c = code_seen('C') ? code_value_int() : 5;
  4917. bool u = code_seen('U') && code_value_bool();
  4918. float temp = code_seen('S') ? code_value_temp_abs() : (e < 0 ? 70.0 : 150.0);
  4919. if (e >= 0 && e < HOTENDS)
  4920. target_extruder = e;
  4921. KEEPALIVE_STATE(NOT_BUSY); // don't send "busy: processing" messages during autotune output
  4922. thermalManager.PID_autotune(temp, e, c, u);
  4923. KEEPALIVE_STATE(IN_HANDLER);
  4924. #else
  4925. SERIAL_ERROR_START;
  4926. SERIAL_ERRORLNPGM(MSG_ERR_M303_DISABLED);
  4927. #endif
  4928. }
  4929. #if ENABLED(SCARA)
  4930. bool SCARA_move_to_cal(uint8_t delta_x, uint8_t delta_y) {
  4931. //SoftEndsEnabled = false; // Ignore soft endstops during calibration
  4932. //SERIAL_ECHOLN(" Soft endstops disabled ");
  4933. if (IsRunning()) {
  4934. //gcode_get_destination(); // For X Y Z E F
  4935. delta[X_AXIS] = delta_x;
  4936. delta[Y_AXIS] = delta_y;
  4937. calculate_SCARA_forward_Transform(delta);
  4938. destination[X_AXIS] = delta[X_AXIS] / axis_scaling[X_AXIS];
  4939. destination[Y_AXIS] = delta[Y_AXIS] / axis_scaling[Y_AXIS];
  4940. prepare_move_to_destination();
  4941. //ok_to_send();
  4942. return true;
  4943. }
  4944. return false;
  4945. }
  4946. /**
  4947. * M360: SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  4948. */
  4949. inline bool gcode_M360() {
  4950. SERIAL_ECHOLN(" Cal: Theta 0 ");
  4951. return SCARA_move_to_cal(0, 120);
  4952. }
  4953. /**
  4954. * M361: SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  4955. */
  4956. inline bool gcode_M361() {
  4957. SERIAL_ECHOLN(" Cal: Theta 90 ");
  4958. return SCARA_move_to_cal(90, 130);
  4959. }
  4960. /**
  4961. * M362: SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  4962. */
  4963. inline bool gcode_M362() {
  4964. SERIAL_ECHOLN(" Cal: Psi 0 ");
  4965. return SCARA_move_to_cal(60, 180);
  4966. }
  4967. /**
  4968. * M363: SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  4969. */
  4970. inline bool gcode_M363() {
  4971. SERIAL_ECHOLN(" Cal: Psi 90 ");
  4972. return SCARA_move_to_cal(50, 90);
  4973. }
  4974. /**
  4975. * M364: SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
  4976. */
  4977. inline bool gcode_M364() {
  4978. SERIAL_ECHOLN(" Cal: Theta-Psi 90 ");
  4979. return SCARA_move_to_cal(45, 135);
  4980. }
  4981. /**
  4982. * M365: SCARA calibration: Scaling factor, X, Y, Z axis
  4983. */
  4984. inline void gcode_M365() {
  4985. for (int8_t i = X_AXIS; i <= Z_AXIS; i++) {
  4986. if (code_seen(axis_codes[i])) {
  4987. axis_scaling[i] = code_value_float();
  4988. }
  4989. }
  4990. }
  4991. #endif // SCARA
  4992. #if ENABLED(EXT_SOLENOID)
  4993. void enable_solenoid(uint8_t num) {
  4994. switch (num) {
  4995. case 0:
  4996. OUT_WRITE(SOL0_PIN, HIGH);
  4997. break;
  4998. #if HAS_SOLENOID_1
  4999. case 1:
  5000. OUT_WRITE(SOL1_PIN, HIGH);
  5001. break;
  5002. #endif
  5003. #if HAS_SOLENOID_2
  5004. case 2:
  5005. OUT_WRITE(SOL2_PIN, HIGH);
  5006. break;
  5007. #endif
  5008. #if HAS_SOLENOID_3
  5009. case 3:
  5010. OUT_WRITE(SOL3_PIN, HIGH);
  5011. break;
  5012. #endif
  5013. default:
  5014. SERIAL_ECHO_START;
  5015. SERIAL_ECHOLNPGM(MSG_INVALID_SOLENOID);
  5016. break;
  5017. }
  5018. }
  5019. void enable_solenoid_on_active_extruder() { enable_solenoid(active_extruder); }
  5020. void disable_all_solenoids() {
  5021. OUT_WRITE(SOL0_PIN, LOW);
  5022. OUT_WRITE(SOL1_PIN, LOW);
  5023. OUT_WRITE(SOL2_PIN, LOW);
  5024. OUT_WRITE(SOL3_PIN, LOW);
  5025. }
  5026. /**
  5027. * M380: Enable solenoid on the active extruder
  5028. */
  5029. inline void gcode_M380() { enable_solenoid_on_active_extruder(); }
  5030. /**
  5031. * M381: Disable all solenoids
  5032. */
  5033. inline void gcode_M381() { disable_all_solenoids(); }
  5034. #endif // EXT_SOLENOID
  5035. /**
  5036. * M400: Finish all moves
  5037. */
  5038. inline void gcode_M400() { stepper.synchronize(); }
  5039. #if ENABLED(AUTO_BED_LEVELING_FEATURE) && DISABLED(Z_PROBE_SLED) && (HAS_Z_SERVO_ENDSTOP || ENABLED(Z_PROBE_ALLEN_KEY))
  5040. /**
  5041. * M401: Engage Z Servo endstop if available
  5042. */
  5043. inline void gcode_M401() {
  5044. deploy_z_probe();
  5045. }
  5046. /**
  5047. * M402: Retract Z Servo endstop if enabled
  5048. */
  5049. inline void gcode_M402() {
  5050. stow_z_probe();
  5051. }
  5052. #endif // AUTO_BED_LEVELING_FEATURE && (HAS_Z_SERVO_ENDSTOP || Z_PROBE_ALLEN_KEY) && !Z_PROBE_SLED
  5053. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  5054. /**
  5055. * M404: Display or set the nominal filament width (3mm, 1.75mm ) W<3.0>
  5056. */
  5057. inline void gcode_M404() {
  5058. if (code_seen('W')) {
  5059. filament_width_nominal = code_value_linear_units();
  5060. }
  5061. else {
  5062. SERIAL_PROTOCOLPGM("Filament dia (nominal mm):");
  5063. SERIAL_PROTOCOLLN(filament_width_nominal);
  5064. }
  5065. }
  5066. /**
  5067. * M405: Turn on filament sensor for control
  5068. */
  5069. inline void gcode_M405() {
  5070. // This is technically a linear measurement, but since it's quantized to centimeters and is a different unit than
  5071. // everything else, it uses code_value_int() instead of code_value_linear_units().
  5072. if (code_seen('D')) meas_delay_cm = code_value_int();
  5073. NOMORE(meas_delay_cm, MAX_MEASUREMENT_DELAY);
  5074. if (filwidth_delay_index2 == -1) { // Initialize the ring buffer if not done since startup
  5075. int temp_ratio = thermalManager.widthFil_to_size_ratio();
  5076. for (uint8_t i = 0; i < COUNT(measurement_delay); ++i)
  5077. measurement_delay[i] = temp_ratio - 100; // Subtract 100 to scale within a signed byte
  5078. filwidth_delay_index1 = filwidth_delay_index2 = 0;
  5079. }
  5080. filament_sensor = true;
  5081. //SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  5082. //SERIAL_PROTOCOL(filament_width_meas);
  5083. //SERIAL_PROTOCOLPGM("Extrusion ratio(%):");
  5084. //SERIAL_PROTOCOL(extruder_multiplier[active_extruder]);
  5085. }
  5086. /**
  5087. * M406: Turn off filament sensor for control
  5088. */
  5089. inline void gcode_M406() { filament_sensor = false; }
  5090. /**
  5091. * M407: Get measured filament diameter on serial output
  5092. */
  5093. inline void gcode_M407() {
  5094. SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  5095. SERIAL_PROTOCOLLN(filament_width_meas);
  5096. }
  5097. #endif // FILAMENT_WIDTH_SENSOR
  5098. #if DISABLED(DELTA) && DISABLED(SCARA)
  5099. void set_current_position_from_planner() {
  5100. stepper.synchronize();
  5101. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  5102. vector_3 pos = planner.adjusted_position(); // values directly from steppers...
  5103. current_position[X_AXIS] = pos.x;
  5104. current_position[Y_AXIS] = pos.y;
  5105. current_position[Z_AXIS] = pos.z;
  5106. #else
  5107. current_position[X_AXIS] = stepper.get_axis_position_mm(X_AXIS);
  5108. current_position[Y_AXIS] = stepper.get_axis_position_mm(Y_AXIS);
  5109. current_position[Z_AXIS] = stepper.get_axis_position_mm(Z_AXIS);
  5110. #endif
  5111. sync_plan_position(); // ...re-apply to planner position
  5112. }
  5113. #endif
  5114. /**
  5115. * M410: Quickstop - Abort all planned moves
  5116. *
  5117. * This will stop the carriages mid-move, so most likely they
  5118. * will be out of sync with the stepper position after this.
  5119. */
  5120. inline void gcode_M410() {
  5121. stepper.quick_stop();
  5122. #if DISABLED(DELTA) && DISABLED(SCARA)
  5123. set_current_position_from_planner();
  5124. #endif
  5125. }
  5126. #if ENABLED(MESH_BED_LEVELING)
  5127. /**
  5128. * M420: Enable/Disable Mesh Bed Leveling
  5129. */
  5130. inline void gcode_M420() { if (code_seen('S') && code_has_value()) mbl.set_has_mesh(code_value_bool()); }
  5131. /**
  5132. * M421: Set a single Mesh Bed Leveling Z coordinate
  5133. * Use either 'M421 X<mm> Y<mm> Z<mm>' or 'M421 I<xindex> J<yindex> Z<mm>'
  5134. */
  5135. inline void gcode_M421() {
  5136. int8_t px, py;
  5137. float z = 0;
  5138. bool hasX, hasY, hasZ, hasI, hasJ;
  5139. if ((hasX = code_seen('X'))) px = mbl.probe_index_x(code_value_axis_units(X_AXIS));
  5140. if ((hasY = code_seen('Y'))) py = mbl.probe_index_y(code_value_axis_units(Y_AXIS));
  5141. if ((hasI = code_seen('I'))) px = code_value_axis_units(X_AXIS);
  5142. if ((hasJ = code_seen('J'))) py = code_value_axis_units(Y_AXIS);
  5143. if ((hasZ = code_seen('Z'))) z = code_value_axis_units(Z_AXIS);
  5144. if (hasX && hasY && hasZ) {
  5145. if (px >= 0 && py >= 0)
  5146. mbl.set_z(px, py, z);
  5147. else {
  5148. SERIAL_ERROR_START;
  5149. SERIAL_ERRORLNPGM(MSG_ERR_MESH_XY);
  5150. }
  5151. }
  5152. else if (hasI && hasJ && hasZ) {
  5153. if (px >= 0 && px < MESH_NUM_X_POINTS && py >= 0 && py < MESH_NUM_Y_POINTS)
  5154. mbl.set_z(px, py, z);
  5155. else {
  5156. SERIAL_ERROR_START;
  5157. SERIAL_ERRORLNPGM(MSG_ERR_MESH_XY);
  5158. }
  5159. }
  5160. else {
  5161. SERIAL_ERROR_START;
  5162. SERIAL_ERRORLNPGM(MSG_ERR_M421_PARAMETERS);
  5163. }
  5164. }
  5165. #endif
  5166. /**
  5167. * M428: Set home_offset based on the distance between the
  5168. * current_position and the nearest "reference point."
  5169. * If an axis is past center its endstop position
  5170. * is the reference-point. Otherwise it uses 0. This allows
  5171. * the Z offset to be set near the bed when using a max endstop.
  5172. *
  5173. * M428 can't be used more than 2cm away from 0 or an endstop.
  5174. *
  5175. * Use M206 to set these values directly.
  5176. */
  5177. inline void gcode_M428() {
  5178. bool err = false;
  5179. for (int8_t i = X_AXIS; i <= Z_AXIS; i++) {
  5180. if (axis_homed[i]) {
  5181. float base = (current_position[i] > (sw_endstop_min[i] + sw_endstop_max[i]) / 2) ? base_home_pos(i) : 0,
  5182. diff = current_position[i] - base;
  5183. if (diff > -20 && diff < 20) {
  5184. set_home_offset((AxisEnum)i, home_offset[i] - diff);
  5185. }
  5186. else {
  5187. SERIAL_ERROR_START;
  5188. SERIAL_ERRORLNPGM(MSG_ERR_M428_TOO_FAR);
  5189. LCD_ALERTMESSAGEPGM("Err: Too far!");
  5190. #if HAS_BUZZER
  5191. buzzer.tone(200, 40);
  5192. #endif
  5193. err = true;
  5194. break;
  5195. }
  5196. }
  5197. }
  5198. if (!err) {
  5199. #if ENABLED(DELTA) || ENABLED(SCARA)
  5200. sync_plan_position_delta();
  5201. #else
  5202. sync_plan_position();
  5203. #endif
  5204. report_current_position();
  5205. LCD_MESSAGEPGM(MSG_HOME_OFFSETS_APPLIED);
  5206. #if HAS_BUZZER
  5207. buzzer.tone(200, 659);
  5208. buzzer.tone(200, 698);
  5209. #endif
  5210. }
  5211. }
  5212. /**
  5213. * M500: Store settings in EEPROM
  5214. */
  5215. inline void gcode_M500() {
  5216. Config_StoreSettings();
  5217. }
  5218. /**
  5219. * M501: Read settings from EEPROM
  5220. */
  5221. inline void gcode_M501() {
  5222. Config_RetrieveSettings();
  5223. }
  5224. /**
  5225. * M502: Revert to default settings
  5226. */
  5227. inline void gcode_M502() {
  5228. Config_ResetDefault();
  5229. }
  5230. /**
  5231. * M503: print settings currently in memory
  5232. */
  5233. inline void gcode_M503() {
  5234. Config_PrintSettings(code_seen('S') && !code_value_bool());
  5235. }
  5236. #if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  5237. /**
  5238. * M540: Set whether SD card print should abort on endstop hit (M540 S<0|1>)
  5239. */
  5240. inline void gcode_M540() {
  5241. if (code_seen('S')) stepper.abort_on_endstop_hit = code_value_bool();
  5242. }
  5243. #endif // ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  5244. #if HAS_BED_PROBE
  5245. inline void gcode_M851() {
  5246. SERIAL_ECHO_START;
  5247. SERIAL_ECHOPGM(MSG_ZPROBE_ZOFFSET);
  5248. SERIAL_CHAR(' ');
  5249. if (code_seen('Z')) {
  5250. float value = code_value_axis_units(Z_AXIS);
  5251. if (Z_PROBE_OFFSET_RANGE_MIN <= value && value <= Z_PROBE_OFFSET_RANGE_MAX) {
  5252. zprobe_zoffset = value;
  5253. SERIAL_ECHO(zprobe_zoffset);
  5254. }
  5255. else {
  5256. SERIAL_ECHOPGM(MSG_Z_MIN);
  5257. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
  5258. SERIAL_ECHOPGM(MSG_Z_MAX);
  5259. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
  5260. }
  5261. }
  5262. else {
  5263. SERIAL_ECHOPAIR(": ", zprobe_zoffset);
  5264. }
  5265. SERIAL_EOL;
  5266. }
  5267. #endif // HAS_BED_PROBE
  5268. #if ENABLED(FILAMENTCHANGEENABLE)
  5269. /**
  5270. * M600: Pause for filament change
  5271. *
  5272. * E[distance] - Retract the filament this far (negative value)
  5273. * Z[distance] - Move the Z axis by this distance
  5274. * X[position] - Move to this X position, with Y
  5275. * Y[position] - Move to this Y position, with X
  5276. * L[distance] - Retract distance for removal (manual reload)
  5277. *
  5278. * Default values are used for omitted arguments.
  5279. *
  5280. */
  5281. inline void gcode_M600() {
  5282. if (thermalManager.tooColdToExtrude(active_extruder)) {
  5283. SERIAL_ERROR_START;
  5284. SERIAL_ERRORLNPGM(MSG_TOO_COLD_FOR_M600);
  5285. return;
  5286. }
  5287. float lastpos[NUM_AXIS];
  5288. #if ENABLED(DELTA)
  5289. float fr60 = feedrate / 60;
  5290. #endif
  5291. for (int i = 0; i < NUM_AXIS; i++)
  5292. lastpos[i] = destination[i] = current_position[i];
  5293. #if ENABLED(DELTA)
  5294. #define RUNPLAN calculate_delta(destination); \
  5295. planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], destination[E_AXIS], fr60, active_extruder);
  5296. #else
  5297. #define RUNPLAN line_to_destination();
  5298. #endif
  5299. //retract by E
  5300. if (code_seen('E')) destination[E_AXIS] += code_value_axis_units(E_AXIS);
  5301. #ifdef FILAMENTCHANGE_FIRSTRETRACT
  5302. else destination[E_AXIS] += FILAMENTCHANGE_FIRSTRETRACT;
  5303. #endif
  5304. RUNPLAN;
  5305. //lift Z
  5306. if (code_seen('Z')) destination[Z_AXIS] += code_value_axis_units(Z_AXIS);
  5307. #ifdef FILAMENTCHANGE_ZADD
  5308. else destination[Z_AXIS] += FILAMENTCHANGE_ZADD;
  5309. #endif
  5310. RUNPLAN;
  5311. //move xy
  5312. if (code_seen('X')) destination[X_AXIS] = code_value_axis_units(X_AXIS);
  5313. #ifdef FILAMENTCHANGE_XPOS
  5314. else destination[X_AXIS] = FILAMENTCHANGE_XPOS;
  5315. #endif
  5316. if (code_seen('Y')) destination[Y_AXIS] = code_value_axis_units(Y_AXIS);
  5317. #ifdef FILAMENTCHANGE_YPOS
  5318. else destination[Y_AXIS] = FILAMENTCHANGE_YPOS;
  5319. #endif
  5320. RUNPLAN;
  5321. if (code_seen('L')) destination[E_AXIS] += code_value_axis_units(E_AXIS);
  5322. #ifdef FILAMENTCHANGE_FINALRETRACT
  5323. else destination[E_AXIS] += FILAMENTCHANGE_FINALRETRACT;
  5324. #endif
  5325. RUNPLAN;
  5326. //finish moves
  5327. stepper.synchronize();
  5328. //disable extruder steppers so filament can be removed
  5329. disable_e0();
  5330. disable_e1();
  5331. disable_e2();
  5332. disable_e3();
  5333. delay(100);
  5334. LCD_ALERTMESSAGEPGM(MSG_FILAMENTCHANGE);
  5335. #if DISABLED(AUTO_FILAMENT_CHANGE)
  5336. millis_t next_tick = 0;
  5337. #endif
  5338. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5339. while (!lcd_clicked()) {
  5340. #if DISABLED(AUTO_FILAMENT_CHANGE)
  5341. millis_t ms = millis();
  5342. if (ELAPSED(ms, next_tick)) {
  5343. lcd_quick_feedback();
  5344. next_tick = ms + 2500UL; // feedback every 2.5s while waiting
  5345. }
  5346. idle(true);
  5347. #else
  5348. current_position[E_AXIS] += AUTO_FILAMENT_CHANGE_LENGTH;
  5349. destination[E_AXIS] = current_position[E_AXIS];
  5350. line_to_destination(AUTO_FILAMENT_CHANGE_FEEDRATE);
  5351. stepper.synchronize();
  5352. #endif
  5353. } // while(!lcd_clicked)
  5354. KEEPALIVE_STATE(IN_HANDLER);
  5355. lcd_quick_feedback(); // click sound feedback
  5356. #if ENABLED(AUTO_FILAMENT_CHANGE)
  5357. current_position[E_AXIS] = 0;
  5358. stepper.synchronize();
  5359. #endif
  5360. //return to normal
  5361. if (code_seen('L')) destination[E_AXIS] -= code_value_axis_units(E_AXIS);
  5362. #ifdef FILAMENTCHANGE_FINALRETRACT
  5363. else destination[E_AXIS] -= FILAMENTCHANGE_FINALRETRACT;
  5364. #endif
  5365. current_position[E_AXIS] = destination[E_AXIS]; //the long retract of L is compensated by manual filament feeding
  5366. sync_plan_position_e();
  5367. RUNPLAN; //should do nothing
  5368. lcd_reset_alert_level();
  5369. #if ENABLED(DELTA)
  5370. // Move XYZ to starting position, then E
  5371. calculate_delta(lastpos);
  5372. planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], destination[E_AXIS], fr60, active_extruder);
  5373. planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], lastpos[E_AXIS], fr60, active_extruder);
  5374. #else
  5375. // Move XY to starting position, then Z, then E
  5376. destination[X_AXIS] = lastpos[X_AXIS];
  5377. destination[Y_AXIS] = lastpos[Y_AXIS];
  5378. line_to_destination();
  5379. destination[Z_AXIS] = lastpos[Z_AXIS];
  5380. line_to_destination();
  5381. destination[E_AXIS] = lastpos[E_AXIS];
  5382. line_to_destination();
  5383. #endif
  5384. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  5385. filament_ran_out = false;
  5386. #endif
  5387. }
  5388. #endif // FILAMENTCHANGEENABLE
  5389. #if ENABLED(DUAL_X_CARRIAGE)
  5390. /**
  5391. * M605: Set dual x-carriage movement mode
  5392. *
  5393. * M605 S0: Full control mode. The slicer has full control over x-carriage movement
  5394. * M605 S1: Auto-park mode. The inactive head will auto park/unpark without slicer involvement
  5395. * M605 S2 [Xnnn] [Rmmm]: Duplication mode. The second extruder will duplicate the first with nnn
  5396. * millimeters x-offset and an optional differential hotend temperature of
  5397. * mmm degrees. E.g., with "M605 S2 X100 R2" the second extruder will duplicate
  5398. * the first with a spacing of 100mm in the x direction and 2 degrees hotter.
  5399. *
  5400. * Note: the X axis should be homed after changing dual x-carriage mode.
  5401. */
  5402. inline void gcode_M605() {
  5403. stepper.synchronize();
  5404. if (code_seen('S')) dual_x_carriage_mode = code_value_byte();
  5405. switch (dual_x_carriage_mode) {
  5406. case DXC_DUPLICATION_MODE:
  5407. if (code_seen('X')) duplicate_extruder_x_offset = max(code_value_axis_units(X_AXIS), X2_MIN_POS - x_home_pos(0));
  5408. if (code_seen('R')) duplicate_extruder_temp_offset = code_value_temp_diff();
  5409. SERIAL_ECHO_START;
  5410. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  5411. SERIAL_CHAR(' ');
  5412. SERIAL_ECHO(hotend_offset[X_AXIS][0]);
  5413. SERIAL_CHAR(',');
  5414. SERIAL_ECHO(hotend_offset[Y_AXIS][0]);
  5415. SERIAL_CHAR(' ');
  5416. SERIAL_ECHO(duplicate_extruder_x_offset);
  5417. SERIAL_CHAR(',');
  5418. SERIAL_ECHOLN(hotend_offset[Y_AXIS][1]);
  5419. break;
  5420. case DXC_FULL_CONTROL_MODE:
  5421. case DXC_AUTO_PARK_MODE:
  5422. break;
  5423. default:
  5424. dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  5425. break;
  5426. }
  5427. active_extruder_parked = false;
  5428. extruder_duplication_enabled = false;
  5429. delayed_move_time = 0;
  5430. }
  5431. #endif // DUAL_X_CARRIAGE
  5432. #if ENABLED(LIN_ADVANCE)
  5433. /**
  5434. * M905: Set advance factor
  5435. */
  5436. inline void gcode_M905() {
  5437. stepper.synchronize();
  5438. stepper.advance_M905(code_seen('K') ? code_value_float() : -1.0);
  5439. }
  5440. #endif
  5441. /**
  5442. * M907: Set digital trimpot motor current using axis codes X, Y, Z, E, B, S
  5443. */
  5444. inline void gcode_M907() {
  5445. #if HAS_DIGIPOTSS
  5446. for (int i = 0; i < NUM_AXIS; i++)
  5447. if (code_seen(axis_codes[i])) stepper.digipot_current(i, code_value_int());
  5448. if (code_seen('B')) stepper.digipot_current(4, code_value_int());
  5449. if (code_seen('S')) for (int i = 0; i <= 4; i++) stepper.digipot_current(i, code_value_int());
  5450. #endif
  5451. #if PIN_EXISTS(MOTOR_CURRENT_PWM_XY)
  5452. if (code_seen('X')) stepper.digipot_current(0, code_value_int());
  5453. #endif
  5454. #if PIN_EXISTS(MOTOR_CURRENT_PWM_Z)
  5455. if (code_seen('Z')) stepper.digipot_current(1, code_value_int());
  5456. #endif
  5457. #if PIN_EXISTS(MOTOR_CURRENT_PWM_E)
  5458. if (code_seen('E')) stepper.digipot_current(2, code_value_int());
  5459. #endif
  5460. #if ENABLED(DIGIPOT_I2C)
  5461. // this one uses actual amps in floating point
  5462. for (int i = 0; i < NUM_AXIS; i++) if (code_seen(axis_codes[i])) digipot_i2c_set_current(i, code_value_float());
  5463. // for each additional extruder (named B,C,D,E..., channels 4,5,6,7...)
  5464. for (int i = NUM_AXIS; i < DIGIPOT_I2C_NUM_CHANNELS; i++) if (code_seen('B' + i - (NUM_AXIS))) digipot_i2c_set_current(i, code_value_float());
  5465. #endif
  5466. #if ENABLED(DAC_STEPPER_CURRENT)
  5467. if (code_seen('S')) {
  5468. float dac_percent = code_value_float();
  5469. for (uint8_t i = 0; i <= 4; i++) dac_current_percent(i, dac_percent);
  5470. }
  5471. for (uint8_t i = 0; i < NUM_AXIS; i++) if (code_seen(axis_codes[i])) dac_current_percent(i, code_value_float());
  5472. #endif
  5473. }
  5474. #if HAS_DIGIPOTSS || ENABLED(DAC_STEPPER_CURRENT)
  5475. /**
  5476. * M908: Control digital trimpot directly (M908 P<pin> S<current>)
  5477. */
  5478. inline void gcode_M908() {
  5479. #if HAS_DIGIPOTSS
  5480. stepper.digitalPotWrite(
  5481. code_seen('P') ? code_value_int() : 0,
  5482. code_seen('S') ? code_value_int() : 0
  5483. );
  5484. #endif
  5485. #ifdef DAC_STEPPER_CURRENT
  5486. dac_current_raw(
  5487. code_seen('P') ? code_value_byte() : -1,
  5488. code_seen('S') ? code_value_ushort() : 0
  5489. );
  5490. #endif
  5491. }
  5492. #if ENABLED(DAC_STEPPER_CURRENT) // As with Printrbot RevF
  5493. inline void gcode_M909() { dac_print_values(); }
  5494. inline void gcode_M910() { dac_commit_eeprom(); }
  5495. #endif
  5496. #endif // HAS_DIGIPOTSS || DAC_STEPPER_CURRENT
  5497. #if HAS_MICROSTEPS
  5498. // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  5499. inline void gcode_M350() {
  5500. if (code_seen('S')) for (int i = 0; i <= 4; i++) stepper.microstep_mode(i, code_value_byte());
  5501. for (int i = 0; i < NUM_AXIS; i++) if (code_seen(axis_codes[i])) stepper.microstep_mode(i, code_value_byte());
  5502. if (code_seen('B')) stepper.microstep_mode(4, code_value_byte());
  5503. stepper.microstep_readings();
  5504. }
  5505. /**
  5506. * M351: Toggle MS1 MS2 pins directly with axis codes X Y Z E B
  5507. * S# determines MS1 or MS2, X# sets the pin high/low.
  5508. */
  5509. inline void gcode_M351() {
  5510. if (code_seen('S')) switch (code_value_byte()) {
  5511. case 1:
  5512. for (int i = 0; i < NUM_AXIS; i++) if (code_seen(axis_codes[i])) stepper.microstep_ms(i, code_value_byte(), -1);
  5513. if (code_seen('B')) stepper.microstep_ms(4, code_value_byte(), -1);
  5514. break;
  5515. case 2:
  5516. for (int i = 0; i < NUM_AXIS; i++) if (code_seen(axis_codes[i])) stepper.microstep_ms(i, -1, code_value_byte());
  5517. if (code_seen('B')) stepper.microstep_ms(4, -1, code_value_byte());
  5518. break;
  5519. }
  5520. stepper.microstep_readings();
  5521. }
  5522. #endif // HAS_MICROSTEPS
  5523. /**
  5524. * M999: Restart after being stopped
  5525. *
  5526. * Default behaviour is to flush the serial buffer and request
  5527. * a resend to the host starting on the last N line received.
  5528. *
  5529. * Sending "M999 S1" will resume printing without flushing the
  5530. * existing command buffer.
  5531. *
  5532. */
  5533. inline void gcode_M999() {
  5534. Running = true;
  5535. lcd_reset_alert_level();
  5536. if (code_seen('S') && code_value_bool()) return;
  5537. // gcode_LastN = Stopped_gcode_LastN;
  5538. FlushSerialRequestResend();
  5539. }
  5540. /**
  5541. * T0-T3: Switch tool, usually switching extruders
  5542. *
  5543. * F[mm/min] Set the movement feedrate
  5544. * S1 Don't move the tool in XY after change
  5545. */
  5546. inline void gcode_T(uint8_t tmp_extruder) {
  5547. if (tmp_extruder >= EXTRUDERS) {
  5548. SERIAL_ECHO_START;
  5549. SERIAL_CHAR('T');
  5550. SERIAL_PROTOCOL_F(tmp_extruder, DEC);
  5551. SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
  5552. return;
  5553. }
  5554. #if HOTENDS > 1
  5555. float stored_feedrate = feedrate;
  5556. if (code_seen('F')) {
  5557. float next_feedrate = code_value_axis_units(X_AXIS);
  5558. if (next_feedrate > 0.0) stored_feedrate = feedrate = next_feedrate;
  5559. }
  5560. else {
  5561. feedrate =
  5562. #ifdef XY_TRAVEL_SPEED
  5563. XY_TRAVEL_SPEED
  5564. #else
  5565. min(planner.max_feedrate[X_AXIS], planner.max_feedrate[Y_AXIS]) * 60
  5566. #endif
  5567. ;
  5568. }
  5569. if (tmp_extruder != active_extruder) {
  5570. bool no_move = code_seen('S') && code_value_bool();
  5571. // Save current position to return to after applying extruder offset
  5572. if (!no_move) set_destination_to_current();
  5573. #if ENABLED(DUAL_X_CARRIAGE)
  5574. if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE && IsRunning() &&
  5575. (delayed_move_time || current_position[X_AXIS] != x_home_pos(active_extruder))) {
  5576. // Park old head: 1) raise 2) move to park position 3) lower
  5577. planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
  5578. current_position[E_AXIS], planner.max_feedrate[Z_AXIS], active_extruder);
  5579. planner.buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
  5580. current_position[E_AXIS], planner.max_feedrate[X_AXIS], active_extruder);
  5581. planner.buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS],
  5582. current_position[E_AXIS], planner.max_feedrate[Z_AXIS], active_extruder);
  5583. stepper.synchronize();
  5584. }
  5585. // apply Y & Z extruder offset (x offset is already used in determining home pos)
  5586. current_position[Y_AXIS] -= hotend_offset[Y_AXIS][active_extruder] - hotend_offset[Y_AXIS][tmp_extruder];
  5587. current_position[Z_AXIS] -= hotend_offset[Z_AXIS][active_extruder] - hotend_offset[Z_AXIS][tmp_extruder];
  5588. active_extruder = tmp_extruder;
  5589. // This function resets the max/min values - the current position may be overwritten below.
  5590. set_axis_is_at_home(X_AXIS);
  5591. if (dual_x_carriage_mode == DXC_FULL_CONTROL_MODE) {
  5592. current_position[X_AXIS] = inactive_extruder_x_pos;
  5593. inactive_extruder_x_pos = destination[X_AXIS];
  5594. }
  5595. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE) {
  5596. active_extruder_parked = (active_extruder == 0); // this triggers the second extruder to move into the duplication position
  5597. if (active_extruder_parked)
  5598. current_position[X_AXIS] = inactive_extruder_x_pos;
  5599. else
  5600. current_position[X_AXIS] = destination[X_AXIS] + duplicate_extruder_x_offset;
  5601. inactive_extruder_x_pos = destination[X_AXIS];
  5602. extruder_duplication_enabled = false;
  5603. }
  5604. else {
  5605. // record raised toolhead position for use by unpark
  5606. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  5607. raised_parked_position[Z_AXIS] += TOOLCHANGE_UNPARK_ZLIFT;
  5608. active_extruder_parked = true;
  5609. delayed_move_time = 0;
  5610. }
  5611. // No extra case for AUTO_BED_LEVELING_FEATURE in DUAL_X_CARRIAGE. Does that mean they don't work together?
  5612. #else // !DUAL_X_CARRIAGE
  5613. //
  5614. // Set current_position to the position of the new nozzle.
  5615. // Offsets are based on linear distance, so we need to get
  5616. // the resulting position in coordinate space.
  5617. //
  5618. // - With grid or 3-point leveling, offset XYZ by a tilted vector
  5619. // - With mesh leveling, update Z for the new position
  5620. // - Otherwise, just use the raw linear distance
  5621. //
  5622. // Software endstops are altered here too. Consider a case where:
  5623. // E0 at X=0 ... E1 at X=10
  5624. // When we switch to E1 now X=10, but E1 can't move left.
  5625. // To express this we apply the change in XY to the software endstops.
  5626. // E1 can move farther right than E0, so the right limit is extended.
  5627. //
  5628. // Note that we don't adjust the Z software endstops. Why not?
  5629. // Consider a case where Z=0 (here) and switching to E1 makes Z=1
  5630. // because the bed is 1mm lower at the new position. As long as
  5631. // the first nozzle is out of the way, the carriage should be
  5632. // allowed to move 1mm lower. This technically "breaks" the
  5633. // Z software endstop. But this is technically correct (and
  5634. // there is no viable alternative).
  5635. //
  5636. float xydiff[2] = {
  5637. hotend_offset[X_AXIS][tmp_extruder] - hotend_offset[X_AXIS][active_extruder],
  5638. hotend_offset[Y_AXIS][tmp_extruder] - hotend_offset[Y_AXIS][active_extruder]
  5639. };
  5640. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  5641. // Offset extruder, make sure to apply the bed level rotation matrix
  5642. vector_3 tmp_offset_vec = vector_3(hotend_offset[X_AXIS][tmp_extruder],
  5643. hotend_offset[Y_AXIS][tmp_extruder],
  5644. 0),
  5645. act_offset_vec = vector_3(hotend_offset[X_AXIS][active_extruder],
  5646. hotend_offset[Y_AXIS][active_extruder],
  5647. 0),
  5648. offset_vec = tmp_offset_vec - act_offset_vec;
  5649. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5650. if (DEBUGGING(LEVELING)) {
  5651. SERIAL_ECHOLNPGM(">>> gcode_T");
  5652. tmp_offset_vec.debug("tmp_offset_vec");
  5653. act_offset_vec.debug("act_offset_vec");
  5654. offset_vec.debug("offset_vec (BEFORE)");
  5655. DEBUG_POS("BEFORE rotation", current_position);
  5656. }
  5657. #endif
  5658. offset_vec.apply_rotation(planner.bed_level_matrix.transpose(planner.bed_level_matrix));
  5659. // Adjust the current position
  5660. current_position[X_AXIS] += offset_vec.x;
  5661. current_position[Y_AXIS] += offset_vec.y;
  5662. current_position[Z_AXIS] += offset_vec.z;
  5663. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5664. if (DEBUGGING(LEVELING)) {
  5665. offset_vec.debug("offset_vec (AFTER)");
  5666. DEBUG_POS("AFTER rotation", current_position);
  5667. SERIAL_ECHOLNPGM("<<< gcode_T");
  5668. }
  5669. #endif
  5670. #elif ENABLED(MESH_BED_LEVELING)
  5671. if (mbl.active()) {
  5672. float xpos = current_position[X_AXIS] - home_offset[X_AXIS],
  5673. ypos = current_position[Y_AXIS] - home_offset[Y_AXIS];
  5674. current_position[Z_AXIS] += mbl.get_z(xpos + xydiff[X_AXIS], ypos + xydiff[Y_AXIS]) - mbl.get_z(xpos, ypos);
  5675. }
  5676. #else // no bed leveling
  5677. // The newly-selected extruder XY is actually at...
  5678. current_position[X_AXIS] += xydiff[X_AXIS];
  5679. current_position[Y_AXIS] += xydiff[Y_AXIS];
  5680. #endif // no bed leveling
  5681. for (uint8_t i = X_AXIS; i <= Y_AXIS; i++) {
  5682. position_shift[i] += xydiff[i];
  5683. update_software_endstops((AxisEnum)i);
  5684. }
  5685. // Set the new active extruder
  5686. active_extruder = tmp_extruder;
  5687. #endif // !DUAL_X_CARRIAGE
  5688. // Tell the planner the new "current position"
  5689. #if ENABLED(DELTA)
  5690. sync_plan_position_delta();
  5691. #else
  5692. sync_plan_position();
  5693. #endif
  5694. // Move to the "old position" (move the extruder into place)
  5695. if (!no_move && IsRunning()) prepare_move_to_destination();
  5696. } // (tmp_extruder != active_extruder)
  5697. #if ENABLED(EXT_SOLENOID)
  5698. stepper.synchronize();
  5699. disable_all_solenoids();
  5700. enable_solenoid_on_active_extruder();
  5701. #endif // EXT_SOLENOID
  5702. feedrate = stored_feedrate;
  5703. #else // !HOTENDS > 1
  5704. // Set the new active extruder
  5705. active_extruder = tmp_extruder;
  5706. #endif
  5707. SERIAL_ECHO_START;
  5708. SERIAL_ECHO(MSG_ACTIVE_EXTRUDER);
  5709. SERIAL_PROTOCOLLN((int)active_extruder);
  5710. }
  5711. /**
  5712. * Process a single command and dispatch it to its handler
  5713. * This is called from the main loop()
  5714. */
  5715. void process_next_command() {
  5716. current_command = command_queue[cmd_queue_index_r];
  5717. if (DEBUGGING(ECHO)) {
  5718. SERIAL_ECHO_START;
  5719. SERIAL_ECHOLN(current_command);
  5720. }
  5721. // Sanitize the current command:
  5722. // - Skip leading spaces
  5723. // - Bypass N[-0-9][0-9]*[ ]*
  5724. // - Overwrite * with nul to mark the end
  5725. while (*current_command == ' ') ++current_command;
  5726. if (*current_command == 'N' && NUMERIC_SIGNED(current_command[1])) {
  5727. current_command += 2; // skip N[-0-9]
  5728. while (NUMERIC(*current_command)) ++current_command; // skip [0-9]*
  5729. while (*current_command == ' ') ++current_command; // skip [ ]*
  5730. }
  5731. char* starpos = strchr(current_command, '*'); // * should always be the last parameter
  5732. if (starpos) while (*starpos == ' ' || *starpos == '*') *starpos-- = '\0'; // nullify '*' and ' '
  5733. char *cmd_ptr = current_command;
  5734. // Get the command code, which must be G, M, or T
  5735. char command_code = *cmd_ptr++;
  5736. // Skip spaces to get the numeric part
  5737. while (*cmd_ptr == ' ') cmd_ptr++;
  5738. uint16_t codenum = 0; // define ahead of goto
  5739. // Bail early if there's no code
  5740. bool code_is_good = NUMERIC(*cmd_ptr);
  5741. if (!code_is_good) goto ExitUnknownCommand;
  5742. // Get and skip the code number
  5743. do {
  5744. codenum = (codenum * 10) + (*cmd_ptr - '0');
  5745. cmd_ptr++;
  5746. } while (NUMERIC(*cmd_ptr));
  5747. // Skip all spaces to get to the first argument, or nul
  5748. while (*cmd_ptr == ' ') cmd_ptr++;
  5749. // The command's arguments (if any) start here, for sure!
  5750. current_command_args = cmd_ptr;
  5751. KEEPALIVE_STATE(IN_HANDLER);
  5752. // Handle a known G, M, or T
  5753. switch (command_code) {
  5754. case 'G': switch (codenum) {
  5755. // G0, G1
  5756. case 0:
  5757. case 1:
  5758. gcode_G0_G1();
  5759. break;
  5760. // G2, G3
  5761. #if ENABLED(ARC_SUPPORT) && DISABLED(SCARA)
  5762. case 2: // G2 - CW ARC
  5763. case 3: // G3 - CCW ARC
  5764. gcode_G2_G3(codenum == 2);
  5765. break;
  5766. #endif
  5767. // G4 Dwell
  5768. case 4:
  5769. gcode_G4();
  5770. break;
  5771. #if ENABLED(BEZIER_CURVE_SUPPORT)
  5772. // G5
  5773. case 5: // G5 - Cubic B_spline
  5774. gcode_G5();
  5775. break;
  5776. #endif // BEZIER_CURVE_SUPPORT
  5777. #if ENABLED(FWRETRACT)
  5778. case 10: // G10: retract
  5779. case 11: // G11: retract_recover
  5780. gcode_G10_G11(codenum == 10);
  5781. break;
  5782. #endif // FWRETRACT
  5783. #if ENABLED(INCH_MODE_SUPPORT)
  5784. case 20: //G20: Inch Mode
  5785. gcode_G20();
  5786. break;
  5787. case 21: //G21: MM Mode
  5788. gcode_G21();
  5789. break;
  5790. #endif
  5791. case 28: // G28: Home all axes, one at a time
  5792. gcode_G28();
  5793. break;
  5794. #if ENABLED(AUTO_BED_LEVELING_FEATURE) || ENABLED(MESH_BED_LEVELING)
  5795. case 29: // G29 Detailed Z probe, probes the bed at 3 or more points.
  5796. gcode_G29();
  5797. break;
  5798. #endif
  5799. #if HAS_BED_PROBE
  5800. case 30: // G30 Single Z probe
  5801. gcode_G30();
  5802. break;
  5803. #if ENABLED(Z_PROBE_SLED)
  5804. case 31: // G31: dock the sled
  5805. stow_z_probe();
  5806. break;
  5807. case 32: // G32: undock the sled
  5808. deploy_z_probe();
  5809. break;
  5810. #endif // Z_PROBE_SLED
  5811. #endif // HAS_BED_PROBE
  5812. case 90: // G90
  5813. relative_mode = false;
  5814. break;
  5815. case 91: // G91
  5816. relative_mode = true;
  5817. break;
  5818. case 92: // G92
  5819. gcode_G92();
  5820. break;
  5821. }
  5822. break;
  5823. case 'M': switch (codenum) {
  5824. #if ENABLED(ULTIPANEL)
  5825. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  5826. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  5827. gcode_M0_M1();
  5828. break;
  5829. #endif // ULTIPANEL
  5830. case 17:
  5831. gcode_M17();
  5832. break;
  5833. #if ENABLED(SDSUPPORT)
  5834. case 20: // M20 - list SD card
  5835. gcode_M20(); break;
  5836. case 21: // M21 - init SD card
  5837. gcode_M21(); break;
  5838. case 22: //M22 - release SD card
  5839. gcode_M22(); break;
  5840. case 23: //M23 - Select file
  5841. gcode_M23(); break;
  5842. case 24: //M24 - Start SD print
  5843. gcode_M24(); break;
  5844. case 25: //M25 - Pause SD print
  5845. gcode_M25(); break;
  5846. case 26: //M26 - Set SD index
  5847. gcode_M26(); break;
  5848. case 27: //M27 - Get SD status
  5849. gcode_M27(); break;
  5850. case 28: //M28 - Start SD write
  5851. gcode_M28(); break;
  5852. case 29: //M29 - Stop SD write
  5853. gcode_M29(); break;
  5854. case 30: //M30 <filename> Delete File
  5855. gcode_M30(); break;
  5856. case 32: //M32 - Select file and start SD print
  5857. gcode_M32(); break;
  5858. #if ENABLED(LONG_FILENAME_HOST_SUPPORT)
  5859. case 33: //M33 - Get the long full path to a file or folder
  5860. gcode_M33(); break;
  5861. #endif // LONG_FILENAME_HOST_SUPPORT
  5862. case 928: //M928 - Start SD write
  5863. gcode_M928(); break;
  5864. #endif //SDSUPPORT
  5865. case 31: //M31 take time since the start of the SD print or an M109 command
  5866. gcode_M31();
  5867. break;
  5868. case 42: //M42 -Change pin status via gcode
  5869. gcode_M42();
  5870. break;
  5871. #if ENABLED(AUTO_BED_LEVELING_FEATURE) && ENABLED(Z_MIN_PROBE_REPEATABILITY_TEST)
  5872. case 48: // M48 Z probe repeatability
  5873. gcode_M48();
  5874. break;
  5875. #endif // AUTO_BED_LEVELING_FEATURE && Z_MIN_PROBE_REPEATABILITY_TEST
  5876. case 75: // Start print timer
  5877. gcode_M75();
  5878. break;
  5879. case 76: // Pause print timer
  5880. gcode_M76();
  5881. break;
  5882. case 77: // Stop print timer
  5883. gcode_M77();
  5884. break;
  5885. #if ENABLED(PRINTCOUNTER)
  5886. case 78: // Show print statistics
  5887. gcode_M78();
  5888. break;
  5889. #endif
  5890. #if ENABLED(M100_FREE_MEMORY_WATCHER)
  5891. case 100:
  5892. gcode_M100();
  5893. break;
  5894. #endif
  5895. case 104: // M104
  5896. gcode_M104();
  5897. break;
  5898. case 110: // M110: Set Current Line Number
  5899. gcode_M110();
  5900. break;
  5901. case 111: // M111: Set debug level
  5902. gcode_M111();
  5903. break;
  5904. case 112: // M112: Emergency Stop
  5905. gcode_M112();
  5906. break;
  5907. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  5908. case 113: // M113: Set Host Keepalive interval
  5909. gcode_M113();
  5910. break;
  5911. #endif
  5912. case 140: // M140: Set bed temp
  5913. gcode_M140();
  5914. break;
  5915. case 105: // M105: Read current temperature
  5916. gcode_M105();
  5917. KEEPALIVE_STATE(NOT_BUSY);
  5918. return; // "ok" already printed
  5919. case 109: // M109: Wait for temperature
  5920. gcode_M109();
  5921. break;
  5922. #if HAS_TEMP_BED
  5923. case 190: // M190: Wait for bed heater to reach target
  5924. gcode_M190();
  5925. break;
  5926. #endif // HAS_TEMP_BED
  5927. #if FAN_COUNT > 0
  5928. case 106: // M106: Fan On
  5929. gcode_M106();
  5930. break;
  5931. case 107: // M107: Fan Off
  5932. gcode_M107();
  5933. break;
  5934. #endif // FAN_COUNT > 0
  5935. #if ENABLED(BARICUDA)
  5936. // PWM for HEATER_1_PIN
  5937. #if HAS_HEATER_1
  5938. case 126: // M126: valve open
  5939. gcode_M126();
  5940. break;
  5941. case 127: // M127: valve closed
  5942. gcode_M127();
  5943. break;
  5944. #endif // HAS_HEATER_1
  5945. // PWM for HEATER_2_PIN
  5946. #if HAS_HEATER_2
  5947. case 128: // M128: valve open
  5948. gcode_M128();
  5949. break;
  5950. case 129: // M129: valve closed
  5951. gcode_M129();
  5952. break;
  5953. #endif // HAS_HEATER_2
  5954. #endif // BARICUDA
  5955. #if HAS_POWER_SWITCH
  5956. case 80: // M80: Turn on Power Supply
  5957. gcode_M80();
  5958. break;
  5959. #endif // HAS_POWER_SWITCH
  5960. case 81: // M81: Turn off Power, including Power Supply, if possible
  5961. gcode_M81();
  5962. break;
  5963. case 82:
  5964. gcode_M82();
  5965. break;
  5966. case 83:
  5967. gcode_M83();
  5968. break;
  5969. case 18: // (for compatibility)
  5970. case 84: // M84
  5971. gcode_M18_M84();
  5972. break;
  5973. case 85: // M85
  5974. gcode_M85();
  5975. break;
  5976. case 92: // M92: Set the steps-per-unit for one or more axes
  5977. gcode_M92();
  5978. break;
  5979. case 115: // M115: Report capabilities
  5980. gcode_M115();
  5981. break;
  5982. case 117: // M117: Set LCD message text, if possible
  5983. gcode_M117();
  5984. break;
  5985. case 114: // M114: Report current position
  5986. gcode_M114();
  5987. break;
  5988. case 120: // M120: Enable endstops
  5989. gcode_M120();
  5990. break;
  5991. case 121: // M121: Disable endstops
  5992. gcode_M121();
  5993. break;
  5994. case 119: // M119: Report endstop states
  5995. gcode_M119();
  5996. break;
  5997. #if ENABLED(ULTIPANEL)
  5998. case 145: // M145: Set material heatup parameters
  5999. gcode_M145();
  6000. break;
  6001. #endif
  6002. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  6003. case 149:
  6004. gcode_M149();
  6005. break;
  6006. #endif
  6007. #if ENABLED(BLINKM)
  6008. case 150: // M150
  6009. gcode_M150();
  6010. break;
  6011. #endif //BLINKM
  6012. #if ENABLED(EXPERIMENTAL_I2CBUS)
  6013. case 155:
  6014. gcode_M155();
  6015. break;
  6016. case 156:
  6017. gcode_M156();
  6018. break;
  6019. #endif //EXPERIMENTAL_I2CBUS
  6020. case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  6021. gcode_M200();
  6022. break;
  6023. case 201: // M201
  6024. gcode_M201();
  6025. break;
  6026. #if 0 // Not used for Sprinter/grbl gen6
  6027. case 202: // M202
  6028. gcode_M202();
  6029. break;
  6030. #endif
  6031. case 203: // M203 max feedrate mm/sec
  6032. gcode_M203();
  6033. break;
  6034. case 204: // M204 acclereration S normal moves T filmanent only moves
  6035. gcode_M204();
  6036. break;
  6037. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  6038. gcode_M205();
  6039. break;
  6040. case 206: // M206 additional homing offset
  6041. gcode_M206();
  6042. break;
  6043. #if ENABLED(DELTA)
  6044. case 665: // M665 set delta configurations L<diagonal_rod> R<delta_radius> S<segments_per_sec>
  6045. gcode_M665();
  6046. break;
  6047. #endif
  6048. #if ENABLED(DELTA) || ENABLED(Z_DUAL_ENDSTOPS)
  6049. case 666: // M666 set delta / dual endstop adjustment
  6050. gcode_M666();
  6051. break;
  6052. #endif
  6053. #if ENABLED(FWRETRACT)
  6054. case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
  6055. gcode_M207();
  6056. break;
  6057. case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  6058. gcode_M208();
  6059. break;
  6060. case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  6061. gcode_M209();
  6062. break;
  6063. #endif // FWRETRACT
  6064. #if HOTENDS > 1
  6065. case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  6066. gcode_M218();
  6067. break;
  6068. #endif
  6069. case 220: // M220 S<factor in percent>- set speed factor override percentage
  6070. gcode_M220();
  6071. break;
  6072. case 221: // M221 S<factor in percent>- set extrude factor override percentage
  6073. gcode_M221();
  6074. break;
  6075. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  6076. gcode_M226();
  6077. break;
  6078. #if HAS_SERVOS
  6079. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  6080. gcode_M280();
  6081. break;
  6082. #endif // HAS_SERVOS
  6083. #if HAS_BUZZER
  6084. case 300: // M300 - Play beep tone
  6085. gcode_M300();
  6086. break;
  6087. #endif // HAS_BUZZER
  6088. #if ENABLED(PIDTEMP)
  6089. case 301: // M301
  6090. gcode_M301();
  6091. break;
  6092. #endif // PIDTEMP
  6093. #if ENABLED(PIDTEMPBED)
  6094. case 304: // M304
  6095. gcode_M304();
  6096. break;
  6097. #endif // PIDTEMPBED
  6098. #if defined(CHDK) || HAS_PHOTOGRAPH
  6099. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  6100. gcode_M240();
  6101. break;
  6102. #endif // CHDK || PHOTOGRAPH_PIN
  6103. #if HAS_LCD_CONTRAST
  6104. case 250: // M250 Set LCD contrast value: C<value> (value 0..63)
  6105. gcode_M250();
  6106. break;
  6107. #endif // HAS_LCD_CONTRAST
  6108. #if ENABLED(PREVENT_DANGEROUS_EXTRUDE)
  6109. case 302: // allow cold extrudes, or set the minimum extrude temperature
  6110. gcode_M302();
  6111. break;
  6112. #endif // PREVENT_DANGEROUS_EXTRUDE
  6113. case 303: // M303 PID autotune
  6114. gcode_M303();
  6115. break;
  6116. #if ENABLED(SCARA)
  6117. case 360: // M360 SCARA Theta pos1
  6118. if (gcode_M360()) return;
  6119. break;
  6120. case 361: // M361 SCARA Theta pos2
  6121. if (gcode_M361()) return;
  6122. break;
  6123. case 362: // M362 SCARA Psi pos1
  6124. if (gcode_M362()) return;
  6125. break;
  6126. case 363: // M363 SCARA Psi pos2
  6127. if (gcode_M363()) return;
  6128. break;
  6129. case 364: // M364 SCARA Psi pos3 (90 deg to Theta)
  6130. if (gcode_M364()) return;
  6131. break;
  6132. case 365: // M365 Set SCARA scaling for X Y Z
  6133. gcode_M365();
  6134. break;
  6135. #endif // SCARA
  6136. case 400: // M400 finish all moves
  6137. gcode_M400();
  6138. break;
  6139. #if ENABLED(AUTO_BED_LEVELING_FEATURE) && (HAS_Z_SERVO_ENDSTOP || ENABLED(Z_PROBE_ALLEN_KEY)) && DISABLED(Z_PROBE_SLED)
  6140. case 401:
  6141. gcode_M401();
  6142. break;
  6143. case 402:
  6144. gcode_M402();
  6145. break;
  6146. #endif // AUTO_BED_LEVELING_FEATURE && (HAS_Z_SERVO_ENDSTOP || Z_PROBE_ALLEN_KEY) && !Z_PROBE_SLED
  6147. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  6148. case 404: //M404 Enter the nominal filament width (3mm, 1.75mm ) N<3.0> or display nominal filament width
  6149. gcode_M404();
  6150. break;
  6151. case 405: //M405 Turn on filament sensor for control
  6152. gcode_M405();
  6153. break;
  6154. case 406: //M406 Turn off filament sensor for control
  6155. gcode_M406();
  6156. break;
  6157. case 407: //M407 Display measured filament diameter
  6158. gcode_M407();
  6159. break;
  6160. #endif // ENABLED(FILAMENT_WIDTH_SENSOR)
  6161. case 410: // M410 quickstop - Abort all the planned moves.
  6162. gcode_M410();
  6163. break;
  6164. #if ENABLED(MESH_BED_LEVELING)
  6165. case 420: // M420 Enable/Disable Mesh Bed Leveling
  6166. gcode_M420();
  6167. break;
  6168. case 421: // M421 Set a Mesh Bed Leveling Z coordinate
  6169. gcode_M421();
  6170. break;
  6171. #endif
  6172. case 428: // M428 Apply current_position to home_offset
  6173. gcode_M428();
  6174. break;
  6175. case 500: // M500 Store settings in EEPROM
  6176. gcode_M500();
  6177. break;
  6178. case 501: // M501 Read settings from EEPROM
  6179. gcode_M501();
  6180. break;
  6181. case 502: // M502 Revert to default settings
  6182. gcode_M502();
  6183. break;
  6184. case 503: // M503 print settings currently in memory
  6185. gcode_M503();
  6186. break;
  6187. #if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  6188. case 540:
  6189. gcode_M540();
  6190. break;
  6191. #endif
  6192. #if HAS_BED_PROBE
  6193. case 851:
  6194. gcode_M851();
  6195. break;
  6196. #endif // HAS_BED_PROBE
  6197. #if ENABLED(FILAMENTCHANGEENABLE)
  6198. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  6199. gcode_M600();
  6200. break;
  6201. #endif // FILAMENTCHANGEENABLE
  6202. #if ENABLED(DUAL_X_CARRIAGE)
  6203. case 605:
  6204. gcode_M605();
  6205. break;
  6206. #endif // DUAL_X_CARRIAGE
  6207. #if ENABLED(LIN_ADVANCE)
  6208. case 905: // M905 Set advance factor.
  6209. gcode_M905();
  6210. break;
  6211. #endif
  6212. case 907: // M907 Set digital trimpot motor current using axis codes.
  6213. gcode_M907();
  6214. break;
  6215. #if HAS_DIGIPOTSS || ENABLED(DAC_STEPPER_CURRENT)
  6216. case 908: // M908 Control digital trimpot directly.
  6217. gcode_M908();
  6218. break;
  6219. #if ENABLED(DAC_STEPPER_CURRENT) // As with Printrbot RevF
  6220. case 909: // M909 Print digipot/DAC current value
  6221. gcode_M909();
  6222. break;
  6223. case 910: // M910 Commit digipot/DAC value to external EEPROM
  6224. gcode_M910();
  6225. break;
  6226. #endif
  6227. #endif // HAS_DIGIPOTSS || DAC_STEPPER_CURRENT
  6228. #if HAS_MICROSTEPS
  6229. case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  6230. gcode_M350();
  6231. break;
  6232. case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  6233. gcode_M351();
  6234. break;
  6235. #endif // HAS_MICROSTEPS
  6236. case 999: // M999: Restart after being Stopped
  6237. gcode_M999();
  6238. break;
  6239. }
  6240. break;
  6241. case 'T':
  6242. gcode_T(codenum);
  6243. break;
  6244. default: code_is_good = false;
  6245. }
  6246. KEEPALIVE_STATE(NOT_BUSY);
  6247. ExitUnknownCommand:
  6248. // Still unknown command? Throw an error
  6249. if (!code_is_good) unknown_command_error();
  6250. ok_to_send();
  6251. }
  6252. void FlushSerialRequestResend() {
  6253. //char command_queue[cmd_queue_index_r][100]="Resend:";
  6254. MYSERIAL.flush();
  6255. SERIAL_PROTOCOLPGM(MSG_RESEND);
  6256. SERIAL_PROTOCOLLN(gcode_LastN + 1);
  6257. ok_to_send();
  6258. }
  6259. void ok_to_send() {
  6260. refresh_cmd_timeout();
  6261. if (!send_ok[cmd_queue_index_r]) return;
  6262. SERIAL_PROTOCOLPGM(MSG_OK);
  6263. #if ENABLED(ADVANCED_OK)
  6264. char* p = command_queue[cmd_queue_index_r];
  6265. if (*p == 'N') {
  6266. SERIAL_PROTOCOL(' ');
  6267. SERIAL_ECHO(*p++);
  6268. while (NUMERIC_SIGNED(*p))
  6269. SERIAL_ECHO(*p++);
  6270. }
  6271. SERIAL_PROTOCOLPGM(" P"); SERIAL_PROTOCOL(int(BLOCK_BUFFER_SIZE - planner.movesplanned() - 1));
  6272. SERIAL_PROTOCOLPGM(" B"); SERIAL_PROTOCOL(BUFSIZE - commands_in_queue);
  6273. #endif
  6274. SERIAL_EOL;
  6275. }
  6276. void clamp_to_software_endstops(float target[3]) {
  6277. if (min_software_endstops) {
  6278. NOLESS(target[X_AXIS], sw_endstop_min[X_AXIS]);
  6279. NOLESS(target[Y_AXIS], sw_endstop_min[Y_AXIS]);
  6280. NOLESS(target[Z_AXIS], sw_endstop_min[Z_AXIS]);
  6281. }
  6282. if (max_software_endstops) {
  6283. NOMORE(target[X_AXIS], sw_endstop_max[X_AXIS]);
  6284. NOMORE(target[Y_AXIS], sw_endstop_max[Y_AXIS]);
  6285. NOMORE(target[Z_AXIS], sw_endstop_max[Z_AXIS]);
  6286. }
  6287. }
  6288. #if ENABLED(DELTA)
  6289. void recalc_delta_settings(float radius, float diagonal_rod) {
  6290. delta_tower1_x = -SIN_60 * (radius + DELTA_RADIUS_TRIM_TOWER_1); // front left tower
  6291. delta_tower1_y = -COS_60 * (radius + DELTA_RADIUS_TRIM_TOWER_1);
  6292. delta_tower2_x = SIN_60 * (radius + DELTA_RADIUS_TRIM_TOWER_2); // front right tower
  6293. delta_tower2_y = -COS_60 * (radius + DELTA_RADIUS_TRIM_TOWER_2);
  6294. delta_tower3_x = 0.0; // back middle tower
  6295. delta_tower3_y = (radius + DELTA_RADIUS_TRIM_TOWER_3);
  6296. delta_diagonal_rod_2_tower_1 = sq(diagonal_rod + delta_diagonal_rod_trim_tower_1);
  6297. delta_diagonal_rod_2_tower_2 = sq(diagonal_rod + delta_diagonal_rod_trim_tower_2);
  6298. delta_diagonal_rod_2_tower_3 = sq(diagonal_rod + delta_diagonal_rod_trim_tower_3);
  6299. }
  6300. void calculate_delta(float cartesian[3]) {
  6301. delta[TOWER_1] = sqrt(delta_diagonal_rod_2_tower_1
  6302. - sq(delta_tower1_x - cartesian[X_AXIS])
  6303. - sq(delta_tower1_y - cartesian[Y_AXIS])
  6304. ) + cartesian[Z_AXIS];
  6305. delta[TOWER_2] = sqrt(delta_diagonal_rod_2_tower_2
  6306. - sq(delta_tower2_x - cartesian[X_AXIS])
  6307. - sq(delta_tower2_y - cartesian[Y_AXIS])
  6308. ) + cartesian[Z_AXIS];
  6309. delta[TOWER_3] = sqrt(delta_diagonal_rod_2_tower_3
  6310. - sq(delta_tower3_x - cartesian[X_AXIS])
  6311. - sq(delta_tower3_y - cartesian[Y_AXIS])
  6312. ) + cartesian[Z_AXIS];
  6313. /**
  6314. SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);
  6315. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]);
  6316. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]);
  6317. SERIAL_ECHOPGM("delta a="); SERIAL_ECHO(delta[TOWER_1]);
  6318. SERIAL_ECHOPGM(" b="); SERIAL_ECHO(delta[TOWER_2]);
  6319. SERIAL_ECHOPGM(" c="); SERIAL_ECHOLN(delta[TOWER_3]);
  6320. */
  6321. }
  6322. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  6323. // Adjust print surface height by linear interpolation over the bed_level array.
  6324. void adjust_delta(float cartesian[3]) {
  6325. if (delta_grid_spacing[0] == 0 || delta_grid_spacing[1] == 0) return; // G29 not done!
  6326. int half = (AUTO_BED_LEVELING_GRID_POINTS - 1) / 2;
  6327. float h1 = 0.001 - half, h2 = half - 0.001,
  6328. grid_x = max(h1, min(h2, cartesian[X_AXIS] / delta_grid_spacing[0])),
  6329. grid_y = max(h1, min(h2, cartesian[Y_AXIS] / delta_grid_spacing[1]));
  6330. int floor_x = floor(grid_x), floor_y = floor(grid_y);
  6331. float ratio_x = grid_x - floor_x, ratio_y = grid_y - floor_y,
  6332. z1 = bed_level[floor_x + half][floor_y + half],
  6333. z2 = bed_level[floor_x + half][floor_y + half + 1],
  6334. z3 = bed_level[floor_x + half + 1][floor_y + half],
  6335. z4 = bed_level[floor_x + half + 1][floor_y + half + 1],
  6336. left = (1 - ratio_y) * z1 + ratio_y * z2,
  6337. right = (1 - ratio_y) * z3 + ratio_y * z4,
  6338. offset = (1 - ratio_x) * left + ratio_x * right;
  6339. delta[X_AXIS] += offset;
  6340. delta[Y_AXIS] += offset;
  6341. delta[Z_AXIS] += offset;
  6342. /**
  6343. SERIAL_ECHOPGM("grid_x="); SERIAL_ECHO(grid_x);
  6344. SERIAL_ECHOPGM(" grid_y="); SERIAL_ECHO(grid_y);
  6345. SERIAL_ECHOPGM(" floor_x="); SERIAL_ECHO(floor_x);
  6346. SERIAL_ECHOPGM(" floor_y="); SERIAL_ECHO(floor_y);
  6347. SERIAL_ECHOPGM(" ratio_x="); SERIAL_ECHO(ratio_x);
  6348. SERIAL_ECHOPGM(" ratio_y="); SERIAL_ECHO(ratio_y);
  6349. SERIAL_ECHOPGM(" z1="); SERIAL_ECHO(z1);
  6350. SERIAL_ECHOPGM(" z2="); SERIAL_ECHO(z2);
  6351. SERIAL_ECHOPGM(" z3="); SERIAL_ECHO(z3);
  6352. SERIAL_ECHOPGM(" z4="); SERIAL_ECHO(z4);
  6353. SERIAL_ECHOPGM(" left="); SERIAL_ECHO(left);
  6354. SERIAL_ECHOPGM(" right="); SERIAL_ECHO(right);
  6355. SERIAL_ECHOPGM(" offset="); SERIAL_ECHOLN(offset);
  6356. */
  6357. }
  6358. #endif // AUTO_BED_LEVELING_FEATURE
  6359. #endif // DELTA
  6360. #if ENABLED(MESH_BED_LEVELING)
  6361. // This function is used to split lines on mesh borders so each segment is only part of one mesh area
  6362. void mesh_buffer_line(float x, float y, float z, const float e, float feed_rate, const uint8_t& extruder, uint8_t x_splits = 0xff, uint8_t y_splits = 0xff) {
  6363. if (!mbl.active()) {
  6364. planner.buffer_line(x, y, z, e, feed_rate, extruder);
  6365. set_current_to_destination();
  6366. return;
  6367. }
  6368. int pcx = mbl.cell_index_x(current_position[X_AXIS] - home_offset[X_AXIS]);
  6369. int pcy = mbl.cell_index_y(current_position[Y_AXIS] - home_offset[Y_AXIS]);
  6370. int cx = mbl.cell_index_x(x - home_offset[X_AXIS]);
  6371. int cy = mbl.cell_index_y(y - home_offset[Y_AXIS]);
  6372. NOMORE(pcx, MESH_NUM_X_POINTS - 2);
  6373. NOMORE(pcy, MESH_NUM_Y_POINTS - 2);
  6374. NOMORE(cx, MESH_NUM_X_POINTS - 2);
  6375. NOMORE(cy, MESH_NUM_Y_POINTS - 2);
  6376. if (pcx == cx && pcy == cy) {
  6377. // Start and end on same mesh square
  6378. planner.buffer_line(x, y, z, e, feed_rate, extruder);
  6379. set_current_to_destination();
  6380. return;
  6381. }
  6382. float nx, ny, nz, ne, normalized_dist;
  6383. if (cx > pcx && TEST(x_splits, cx)) {
  6384. nx = mbl.get_probe_x(cx) + home_offset[X_AXIS];
  6385. normalized_dist = (nx - current_position[X_AXIS]) / (x - current_position[X_AXIS]);
  6386. ny = current_position[Y_AXIS] + (y - current_position[Y_AXIS]) * normalized_dist;
  6387. nz = current_position[Z_AXIS] + (z - current_position[Z_AXIS]) * normalized_dist;
  6388. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  6389. CBI(x_splits, cx);
  6390. }
  6391. else if (cx < pcx && TEST(x_splits, pcx)) {
  6392. nx = mbl.get_probe_x(pcx) + home_offset[X_AXIS];
  6393. normalized_dist = (nx - current_position[X_AXIS]) / (x - current_position[X_AXIS]);
  6394. ny = current_position[Y_AXIS] + (y - current_position[Y_AXIS]) * normalized_dist;
  6395. nz = current_position[Z_AXIS] + (z - current_position[Z_AXIS]) * normalized_dist;
  6396. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  6397. CBI(x_splits, pcx);
  6398. }
  6399. else if (cy > pcy && TEST(y_splits, cy)) {
  6400. ny = mbl.get_probe_y(cy) + home_offset[Y_AXIS];
  6401. normalized_dist = (ny - current_position[Y_AXIS]) / (y - current_position[Y_AXIS]);
  6402. nx = current_position[X_AXIS] + (x - current_position[X_AXIS]) * normalized_dist;
  6403. nz = current_position[Z_AXIS] + (z - current_position[Z_AXIS]) * normalized_dist;
  6404. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  6405. CBI(y_splits, cy);
  6406. }
  6407. else if (cy < pcy && TEST(y_splits, pcy)) {
  6408. ny = mbl.get_probe_y(pcy) + home_offset[Y_AXIS];
  6409. normalized_dist = (ny - current_position[Y_AXIS]) / (y - current_position[Y_AXIS]);
  6410. nx = current_position[X_AXIS] + (x - current_position[X_AXIS]) * normalized_dist;
  6411. nz = current_position[Z_AXIS] + (z - current_position[Z_AXIS]) * normalized_dist;
  6412. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  6413. CBI(y_splits, pcy);
  6414. }
  6415. else {
  6416. // Already split on a border
  6417. planner.buffer_line(x, y, z, e, feed_rate, extruder);
  6418. set_current_to_destination();
  6419. return;
  6420. }
  6421. // Do the split and look for more borders
  6422. destination[X_AXIS] = nx;
  6423. destination[Y_AXIS] = ny;
  6424. destination[Z_AXIS] = nz;
  6425. destination[E_AXIS] = ne;
  6426. mesh_buffer_line(nx, ny, nz, ne, feed_rate, extruder, x_splits, y_splits);
  6427. destination[X_AXIS] = x;
  6428. destination[Y_AXIS] = y;
  6429. destination[Z_AXIS] = z;
  6430. destination[E_AXIS] = e;
  6431. mesh_buffer_line(x, y, z, e, feed_rate, extruder, x_splits, y_splits);
  6432. }
  6433. #endif // MESH_BED_LEVELING
  6434. #if ENABLED(DELTA) || ENABLED(SCARA)
  6435. inline bool prepare_delta_move_to(float target[NUM_AXIS]) {
  6436. float difference[NUM_AXIS];
  6437. for (int8_t i = 0; i < NUM_AXIS; i++) difference[i] = target[i] - current_position[i];
  6438. float cartesian_mm = sqrt(sq(difference[X_AXIS]) + sq(difference[Y_AXIS]) + sq(difference[Z_AXIS]));
  6439. if (cartesian_mm < 0.000001) cartesian_mm = abs(difference[E_AXIS]);
  6440. if (cartesian_mm < 0.000001) return false;
  6441. float _feedrate = feedrate * feedrate_multiplier / 6000.0;
  6442. float seconds = cartesian_mm / _feedrate;
  6443. int steps = max(1, int(delta_segments_per_second * seconds));
  6444. float inv_steps = 1.0/steps;
  6445. // SERIAL_ECHOPGM("mm="); SERIAL_ECHO(cartesian_mm);
  6446. // SERIAL_ECHOPGM(" seconds="); SERIAL_ECHO(seconds);
  6447. // SERIAL_ECHOPGM(" steps="); SERIAL_ECHOLN(steps);
  6448. for (int s = 1; s <= steps; s++) {
  6449. float fraction = float(s) * inv_steps;
  6450. for (int8_t i = 0; i < NUM_AXIS; i++)
  6451. target[i] = current_position[i] + difference[i] * fraction;
  6452. calculate_delta(target);
  6453. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  6454. if (!bed_leveling_in_progress) adjust_delta(target);
  6455. #endif
  6456. //DEBUG_POS("prepare_delta_move_to", target);
  6457. //DEBUG_POS("prepare_delta_move_to", delta);
  6458. planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], target[E_AXIS], _feedrate, active_extruder);
  6459. }
  6460. return true;
  6461. }
  6462. #endif // DELTA || SCARA
  6463. #if ENABLED(SCARA)
  6464. inline bool prepare_scara_move_to(float target[NUM_AXIS]) { return prepare_delta_move_to(target); }
  6465. #endif
  6466. #if ENABLED(DUAL_X_CARRIAGE)
  6467. inline bool prepare_move_dual_x_carriage() {
  6468. if (active_extruder_parked) {
  6469. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && active_extruder == 0) {
  6470. // move duplicate extruder into correct duplication position.
  6471. planner.set_position_mm(inactive_extruder_x_pos, current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  6472. planner.buffer_line(current_position[X_AXIS] + duplicate_extruder_x_offset,
  6473. current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], planner.max_feedrate[X_AXIS], 1);
  6474. sync_plan_position();
  6475. stepper.synchronize();
  6476. extruder_duplication_enabled = true;
  6477. active_extruder_parked = false;
  6478. }
  6479. else if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE) { // handle unparking of head
  6480. if (current_position[E_AXIS] == destination[E_AXIS]) {
  6481. // This is a travel move (with no extrusion)
  6482. // Skip it, but keep track of the current position
  6483. // (so it can be used as the start of the next non-travel move)
  6484. if (delayed_move_time != 0xFFFFFFFFUL) {
  6485. set_current_to_destination();
  6486. NOLESS(raised_parked_position[Z_AXIS], destination[Z_AXIS]);
  6487. delayed_move_time = millis();
  6488. return false;
  6489. }
  6490. }
  6491. delayed_move_time = 0;
  6492. // unpark extruder: 1) raise, 2) move into starting XY position, 3) lower
  6493. planner.buffer_line(raised_parked_position[X_AXIS], raised_parked_position[Y_AXIS], raised_parked_position[Z_AXIS], current_position[E_AXIS], planner.max_feedrate[Z_AXIS], active_extruder);
  6494. planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], raised_parked_position[Z_AXIS], current_position[E_AXIS], min(planner.max_feedrate[X_AXIS], planner.max_feedrate[Y_AXIS]), active_extruder);
  6495. planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], planner.max_feedrate[Z_AXIS], active_extruder);
  6496. active_extruder_parked = false;
  6497. }
  6498. }
  6499. return true;
  6500. }
  6501. #endif // DUAL_X_CARRIAGE
  6502. #if DISABLED(DELTA) && DISABLED(SCARA)
  6503. inline bool prepare_cartesian_move_to_destination() {
  6504. // Do not use feedrate_multiplier for E or Z only moves
  6505. if (current_position[X_AXIS] == destination[X_AXIS] && current_position[Y_AXIS] == destination[Y_AXIS]) {
  6506. line_to_destination();
  6507. }
  6508. else {
  6509. #if ENABLED(MESH_BED_LEVELING)
  6510. mesh_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], (feedrate / 60) * (feedrate_multiplier / 100.0), active_extruder);
  6511. return false;
  6512. #else
  6513. line_to_destination(feedrate * feedrate_multiplier / 100.0);
  6514. #endif
  6515. }
  6516. return true;
  6517. }
  6518. #endif // !DELTA && !SCARA
  6519. #if ENABLED(PREVENT_DANGEROUS_EXTRUDE)
  6520. inline void prevent_dangerous_extrude(float& curr_e, float& dest_e) {
  6521. if (DEBUGGING(DRYRUN)) return;
  6522. float de = dest_e - curr_e;
  6523. if (de) {
  6524. if (thermalManager.tooColdToExtrude(active_extruder)) {
  6525. curr_e = dest_e; // Behave as if the move really took place, but ignore E part
  6526. SERIAL_ECHO_START;
  6527. SERIAL_ECHOLNPGM(MSG_ERR_COLD_EXTRUDE_STOP);
  6528. }
  6529. #if ENABLED(PREVENT_LENGTHY_EXTRUDE)
  6530. if (labs(de) > EXTRUDE_MAXLENGTH) {
  6531. curr_e = dest_e; // Behave as if the move really took place, but ignore E part
  6532. SERIAL_ECHO_START;
  6533. SERIAL_ECHOLNPGM(MSG_ERR_LONG_EXTRUDE_STOP);
  6534. }
  6535. #endif
  6536. }
  6537. }
  6538. #endif // PREVENT_DANGEROUS_EXTRUDE
  6539. /**
  6540. * Prepare a single move and get ready for the next one
  6541. *
  6542. * (This may call planner.buffer_line several times to put
  6543. * smaller moves into the planner for DELTA or SCARA.)
  6544. */
  6545. void prepare_move_to_destination() {
  6546. clamp_to_software_endstops(destination);
  6547. refresh_cmd_timeout();
  6548. #if ENABLED(PREVENT_DANGEROUS_EXTRUDE)
  6549. prevent_dangerous_extrude(current_position[E_AXIS], destination[E_AXIS]);
  6550. #endif
  6551. #if ENABLED(SCARA)
  6552. if (!prepare_scara_move_to(destination)) return;
  6553. #elif ENABLED(DELTA)
  6554. if (!prepare_delta_move_to(destination)) return;
  6555. #else
  6556. #if ENABLED(DUAL_X_CARRIAGE)
  6557. if (!prepare_move_dual_x_carriage()) return;
  6558. #endif
  6559. if (!prepare_cartesian_move_to_destination()) return;
  6560. #endif
  6561. set_current_to_destination();
  6562. }
  6563. #if ENABLED(ARC_SUPPORT)
  6564. /**
  6565. * Plan an arc in 2 dimensions
  6566. *
  6567. * The arc is approximated by generating many small linear segments.
  6568. * The length of each segment is configured in MM_PER_ARC_SEGMENT (Default 1mm)
  6569. * Arcs should only be made relatively large (over 5mm), as larger arcs with
  6570. * larger segments will tend to be more efficient. Your slicer should have
  6571. * options for G2/G3 arc generation. In future these options may be GCode tunable.
  6572. */
  6573. void plan_arc(
  6574. float target[NUM_AXIS], // Destination position
  6575. float* offset, // Center of rotation relative to current_position
  6576. uint8_t clockwise // Clockwise?
  6577. ) {
  6578. float radius = hypot(offset[X_AXIS], offset[Y_AXIS]),
  6579. center_X = current_position[X_AXIS] + offset[X_AXIS],
  6580. center_Y = current_position[Y_AXIS] + offset[Y_AXIS],
  6581. linear_travel = target[Z_AXIS] - current_position[Z_AXIS],
  6582. extruder_travel = target[E_AXIS] - current_position[E_AXIS],
  6583. r_X = -offset[X_AXIS], // Radius vector from center to current location
  6584. r_Y = -offset[Y_AXIS],
  6585. rt_X = target[X_AXIS] - center_X,
  6586. rt_Y = target[Y_AXIS] - center_Y;
  6587. // CCW angle of rotation between position and target from the circle center. Only one atan2() trig computation required.
  6588. float angular_travel = atan2(r_X * rt_Y - r_Y * rt_X, r_X * rt_X + r_Y * rt_Y);
  6589. if (angular_travel < 0) angular_travel += RADIANS(360);
  6590. if (clockwise) angular_travel -= RADIANS(360);
  6591. // Make a circle if the angular rotation is 0
  6592. if (angular_travel == 0 && current_position[X_AXIS] == target[X_AXIS] && current_position[Y_AXIS] == target[Y_AXIS])
  6593. angular_travel += RADIANS(360);
  6594. float mm_of_travel = hypot(angular_travel * radius, fabs(linear_travel));
  6595. if (mm_of_travel < 0.001) return;
  6596. uint16_t segments = floor(mm_of_travel / (MM_PER_ARC_SEGMENT));
  6597. if (segments == 0) segments = 1;
  6598. float theta_per_segment = angular_travel / segments;
  6599. float linear_per_segment = linear_travel / segments;
  6600. float extruder_per_segment = extruder_travel / segments;
  6601. /**
  6602. * Vector rotation by transformation matrix: r is the original vector, r_T is the rotated vector,
  6603. * and phi is the angle of rotation. Based on the solution approach by Jens Geisler.
  6604. * r_T = [cos(phi) -sin(phi);
  6605. * sin(phi) cos(phi] * r ;
  6606. *
  6607. * For arc generation, the center of the circle is the axis of rotation and the radius vector is
  6608. * defined from the circle center to the initial position. Each line segment is formed by successive
  6609. * vector rotations. This requires only two cos() and sin() computations to form the rotation
  6610. * matrix for the duration of the entire arc. Error may accumulate from numerical round-off, since
  6611. * all double numbers are single precision on the Arduino. (True double precision will not have
  6612. * round off issues for CNC applications.) Single precision error can accumulate to be greater than
  6613. * tool precision in some cases. Therefore, arc path correction is implemented.
  6614. *
  6615. * Small angle approximation may be used to reduce computation overhead further. This approximation
  6616. * holds for everything, but very small circles and large MM_PER_ARC_SEGMENT values. In other words,
  6617. * theta_per_segment would need to be greater than 0.1 rad and N_ARC_CORRECTION would need to be large
  6618. * to cause an appreciable drift error. N_ARC_CORRECTION~=25 is more than small enough to correct for
  6619. * numerical drift error. N_ARC_CORRECTION may be on the order a hundred(s) before error becomes an
  6620. * issue for CNC machines with the single precision Arduino calculations.
  6621. *
  6622. * This approximation also allows plan_arc to immediately insert a line segment into the planner
  6623. * without the initial overhead of computing cos() or sin(). By the time the arc needs to be applied
  6624. * a correction, the planner should have caught up to the lag caused by the initial plan_arc overhead.
  6625. * This is important when there are successive arc motions.
  6626. */
  6627. // Vector rotation matrix values
  6628. float cos_T = 1 - 0.5 * theta_per_segment * theta_per_segment; // Small angle approximation
  6629. float sin_T = theta_per_segment;
  6630. float arc_target[NUM_AXIS];
  6631. float sin_Ti, cos_Ti, r_new_Y;
  6632. uint16_t i;
  6633. int8_t count = 0;
  6634. // Initialize the linear axis
  6635. arc_target[Z_AXIS] = current_position[Z_AXIS];
  6636. // Initialize the extruder axis
  6637. arc_target[E_AXIS] = current_position[E_AXIS];
  6638. float feed_rate = feedrate * feedrate_multiplier / 60 / 100.0;
  6639. millis_t next_idle_ms = millis() + 200UL;
  6640. for (i = 1; i < segments; i++) { // Iterate (segments-1) times
  6641. thermalManager.manage_heater();
  6642. millis_t now = millis();
  6643. if (ELAPSED(now, next_idle_ms)) {
  6644. next_idle_ms = now + 200UL;
  6645. idle();
  6646. }
  6647. if (++count < N_ARC_CORRECTION) {
  6648. // Apply vector rotation matrix to previous r_X / 1
  6649. r_new_Y = r_X * sin_T + r_Y * cos_T;
  6650. r_X = r_X * cos_T - r_Y * sin_T;
  6651. r_Y = r_new_Y;
  6652. }
  6653. else {
  6654. // Arc correction to radius vector. Computed only every N_ARC_CORRECTION increments.
  6655. // Compute exact location by applying transformation matrix from initial radius vector(=-offset).
  6656. // To reduce stuttering, the sin and cos could be computed at different times.
  6657. // For now, compute both at the same time.
  6658. cos_Ti = cos(i * theta_per_segment);
  6659. sin_Ti = sin(i * theta_per_segment);
  6660. r_X = -offset[X_AXIS] * cos_Ti + offset[Y_AXIS] * sin_Ti;
  6661. r_Y = -offset[X_AXIS] * sin_Ti - offset[Y_AXIS] * cos_Ti;
  6662. count = 0;
  6663. }
  6664. // Update arc_target location
  6665. arc_target[X_AXIS] = center_X + r_X;
  6666. arc_target[Y_AXIS] = center_Y + r_Y;
  6667. arc_target[Z_AXIS] += linear_per_segment;
  6668. arc_target[E_AXIS] += extruder_per_segment;
  6669. clamp_to_software_endstops(arc_target);
  6670. #if ENABLED(DELTA) || ENABLED(SCARA)
  6671. calculate_delta(arc_target);
  6672. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  6673. adjust_delta(arc_target);
  6674. #endif
  6675. planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], arc_target[E_AXIS], feed_rate, active_extruder);
  6676. #else
  6677. planner.buffer_line(arc_target[X_AXIS], arc_target[Y_AXIS], arc_target[Z_AXIS], arc_target[E_AXIS], feed_rate, active_extruder);
  6678. #endif
  6679. }
  6680. // Ensure last segment arrives at target location.
  6681. #if ENABLED(DELTA) || ENABLED(SCARA)
  6682. calculate_delta(target);
  6683. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  6684. adjust_delta(target);
  6685. #endif
  6686. planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], target[E_AXIS], feed_rate, active_extruder);
  6687. #else
  6688. planner.buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feed_rate, active_extruder);
  6689. #endif
  6690. // As far as the parser is concerned, the position is now == target. In reality the
  6691. // motion control system might still be processing the action and the real tool position
  6692. // in any intermediate location.
  6693. set_current_to_destination();
  6694. }
  6695. #endif
  6696. #if ENABLED(BEZIER_CURVE_SUPPORT)
  6697. void plan_cubic_move(const float offset[4]) {
  6698. cubic_b_spline(current_position, destination, offset, feedrate * feedrate_multiplier / 60 / 100.0, active_extruder);
  6699. // As far as the parser is concerned, the position is now == target. In reality the
  6700. // motion control system might still be processing the action and the real tool position
  6701. // in any intermediate location.
  6702. set_current_to_destination();
  6703. }
  6704. #endif // BEZIER_CURVE_SUPPORT
  6705. #if HAS_CONTROLLERFAN
  6706. void controllerFan() {
  6707. static millis_t lastMotorOn = 0; // Last time a motor was turned on
  6708. static millis_t nextMotorCheck = 0; // Last time the state was checked
  6709. millis_t ms = millis();
  6710. if (ELAPSED(ms, nextMotorCheck)) {
  6711. nextMotorCheck = ms + 2500UL; // Not a time critical function, so only check every 2.5s
  6712. if (X_ENABLE_READ == X_ENABLE_ON || Y_ENABLE_READ == Y_ENABLE_ON || Z_ENABLE_READ == Z_ENABLE_ON || thermalManager.soft_pwm_bed > 0
  6713. || E0_ENABLE_READ == E_ENABLE_ON // If any of the drivers are enabled...
  6714. #if EXTRUDERS > 1
  6715. || E1_ENABLE_READ == E_ENABLE_ON
  6716. #if HAS_X2_ENABLE
  6717. || X2_ENABLE_READ == X_ENABLE_ON
  6718. #endif
  6719. #if EXTRUDERS > 2
  6720. || E2_ENABLE_READ == E_ENABLE_ON
  6721. #if EXTRUDERS > 3
  6722. || E3_ENABLE_READ == E_ENABLE_ON
  6723. #endif
  6724. #endif
  6725. #endif
  6726. ) {
  6727. lastMotorOn = ms; //... set time to NOW so the fan will turn on
  6728. }
  6729. // Fan off if no steppers have been enabled for CONTROLLERFAN_SECS seconds
  6730. uint8_t speed = (!lastMotorOn || ELAPSED(ms, lastMotorOn + (CONTROLLERFAN_SECS) * 1000UL)) ? 0 : CONTROLLERFAN_SPEED;
  6731. // allows digital or PWM fan output to be used (see M42 handling)
  6732. digitalWrite(CONTROLLERFAN_PIN, speed);
  6733. analogWrite(CONTROLLERFAN_PIN, speed);
  6734. }
  6735. }
  6736. #endif // HAS_CONTROLLERFAN
  6737. #if ENABLED(SCARA)
  6738. void calculate_SCARA_forward_Transform(float f_scara[3]) {
  6739. // Perform forward kinematics, and place results in delta[3]
  6740. // The maths and first version has been done by QHARLEY . Integrated into masterbranch 06/2014 and slightly restructured by Joachim Cerny in June 2014
  6741. float x_sin, x_cos, y_sin, y_cos;
  6742. //SERIAL_ECHOPGM("f_delta x="); SERIAL_ECHO(f_scara[X_AXIS]);
  6743. //SERIAL_ECHOPGM(" y="); SERIAL_ECHO(f_scara[Y_AXIS]);
  6744. x_sin = sin(f_scara[X_AXIS] / SCARA_RAD2DEG) * Linkage_1;
  6745. x_cos = cos(f_scara[X_AXIS] / SCARA_RAD2DEG) * Linkage_1;
  6746. y_sin = sin(f_scara[Y_AXIS] / SCARA_RAD2DEG) * Linkage_2;
  6747. y_cos = cos(f_scara[Y_AXIS] / SCARA_RAD2DEG) * Linkage_2;
  6748. //SERIAL_ECHOPGM(" x_sin="); SERIAL_ECHO(x_sin);
  6749. //SERIAL_ECHOPGM(" x_cos="); SERIAL_ECHO(x_cos);
  6750. //SERIAL_ECHOPGM(" y_sin="); SERIAL_ECHO(y_sin);
  6751. //SERIAL_ECHOPGM(" y_cos="); SERIAL_ECHOLN(y_cos);
  6752. delta[X_AXIS] = x_cos + y_cos + SCARA_offset_x; //theta
  6753. delta[Y_AXIS] = x_sin + y_sin + SCARA_offset_y; //theta+phi
  6754. //SERIAL_ECHOPGM(" delta[X_AXIS]="); SERIAL_ECHO(delta[X_AXIS]);
  6755. //SERIAL_ECHOPGM(" delta[Y_AXIS]="); SERIAL_ECHOLN(delta[Y_AXIS]);
  6756. }
  6757. void calculate_delta(float cartesian[3]) {
  6758. //reverse kinematics.
  6759. // Perform reversed kinematics, and place results in delta[3]
  6760. // The maths and first version has been done by QHARLEY . Integrated into masterbranch 06/2014 and slightly restructured by Joachim Cerny in June 2014
  6761. float SCARA_pos[2];
  6762. static float SCARA_C2, SCARA_S2, SCARA_K1, SCARA_K2, SCARA_theta, SCARA_psi;
  6763. SCARA_pos[X_AXIS] = cartesian[X_AXIS] * axis_scaling[X_AXIS] - SCARA_offset_x; //Translate SCARA to standard X Y
  6764. SCARA_pos[Y_AXIS] = cartesian[Y_AXIS] * axis_scaling[Y_AXIS] - SCARA_offset_y; // With scaling factor.
  6765. #if (Linkage_1 == Linkage_2)
  6766. SCARA_C2 = ((sq(SCARA_pos[X_AXIS]) + sq(SCARA_pos[Y_AXIS])) / (2 * (float)L1_2)) - 1;
  6767. #else
  6768. SCARA_C2 = (sq(SCARA_pos[X_AXIS]) + sq(SCARA_pos[Y_AXIS]) - (float)L1_2 - (float)L2_2) / 45000;
  6769. #endif
  6770. SCARA_S2 = sqrt(1 - sq(SCARA_C2));
  6771. SCARA_K1 = Linkage_1 + Linkage_2 * SCARA_C2;
  6772. SCARA_K2 = Linkage_2 * SCARA_S2;
  6773. SCARA_theta = (atan2(SCARA_pos[X_AXIS], SCARA_pos[Y_AXIS]) - atan2(SCARA_K1, SCARA_K2)) * -1;
  6774. SCARA_psi = atan2(SCARA_S2, SCARA_C2);
  6775. delta[X_AXIS] = SCARA_theta * SCARA_RAD2DEG; // Multiply by 180/Pi - theta is support arm angle
  6776. delta[Y_AXIS] = (SCARA_theta + SCARA_psi) * SCARA_RAD2DEG; // - equal to sub arm angle (inverted motor)
  6777. delta[Z_AXIS] = cartesian[Z_AXIS];
  6778. /**
  6779. SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);
  6780. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]);
  6781. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]);
  6782. SERIAL_ECHOPGM("scara x="); SERIAL_ECHO(SCARA_pos[X_AXIS]);
  6783. SERIAL_ECHOPGM(" y="); SERIAL_ECHOLN(SCARA_pos[Y_AXIS]);
  6784. SERIAL_ECHOPGM("delta x="); SERIAL_ECHO(delta[X_AXIS]);
  6785. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(delta[Y_AXIS]);
  6786. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(delta[Z_AXIS]);
  6787. SERIAL_ECHOPGM("C2="); SERIAL_ECHO(SCARA_C2);
  6788. SERIAL_ECHOPGM(" S2="); SERIAL_ECHO(SCARA_S2);
  6789. SERIAL_ECHOPGM(" Theta="); SERIAL_ECHO(SCARA_theta);
  6790. SERIAL_ECHOPGM(" Psi="); SERIAL_ECHOLN(SCARA_psi);
  6791. SERIAL_EOL;
  6792. */
  6793. }
  6794. #endif // SCARA
  6795. #if ENABLED(TEMP_STAT_LEDS)
  6796. static bool red_led = false;
  6797. static millis_t next_status_led_update_ms = 0;
  6798. void handle_status_leds(void) {
  6799. float max_temp = 0.0;
  6800. if (ELAPSED(millis(), next_status_led_update_ms)) {
  6801. next_status_led_update_ms += 500; // Update every 0.5s
  6802. for (int8_t cur_hotend = 0; cur_hotend < HOTENDS; ++cur_hotend)
  6803. max_temp = max(max(max_temp, thermalManager.degHotend(cur_hotend)), thermalManager.degTargetHotend(cur_hotend));
  6804. #if HAS_TEMP_BED
  6805. max_temp = max(max(max_temp, thermalManager.degTargetBed()), thermalManager.degBed());
  6806. #endif
  6807. bool new_led = (max_temp > 55.0) ? true : (max_temp < 54.0) ? false : red_led;
  6808. if (new_led != red_led) {
  6809. red_led = new_led;
  6810. digitalWrite(STAT_LED_RED, new_led ? HIGH : LOW);
  6811. digitalWrite(STAT_LED_BLUE, new_led ? LOW : HIGH);
  6812. }
  6813. }
  6814. }
  6815. #endif
  6816. void enable_all_steppers() {
  6817. enable_x();
  6818. enable_y();
  6819. enable_z();
  6820. enable_e0();
  6821. enable_e1();
  6822. enable_e2();
  6823. enable_e3();
  6824. }
  6825. void disable_all_steppers() {
  6826. disable_x();
  6827. disable_y();
  6828. disable_z();
  6829. disable_e0();
  6830. disable_e1();
  6831. disable_e2();
  6832. disable_e3();
  6833. }
  6834. /**
  6835. * Standard idle routine keeps the machine alive
  6836. */
  6837. void idle(
  6838. #if ENABLED(FILAMENTCHANGEENABLE)
  6839. bool no_stepper_sleep/*=false*/
  6840. #endif
  6841. ) {
  6842. lcd_update();
  6843. host_keepalive();
  6844. manage_inactivity(
  6845. #if ENABLED(FILAMENTCHANGEENABLE)
  6846. no_stepper_sleep
  6847. #endif
  6848. );
  6849. thermalManager.manage_heater();
  6850. #if ENABLED(PRINTCOUNTER)
  6851. print_job_timer.tick();
  6852. #endif
  6853. #if HAS_BUZZER
  6854. buzzer.tick();
  6855. #endif
  6856. }
  6857. /**
  6858. * Manage several activities:
  6859. * - Check for Filament Runout
  6860. * - Keep the command buffer full
  6861. * - Check for maximum inactive time between commands
  6862. * - Check for maximum inactive time between stepper commands
  6863. * - Check if pin CHDK needs to go LOW
  6864. * - Check for KILL button held down
  6865. * - Check for HOME button held down
  6866. * - Check if cooling fan needs to be switched on
  6867. * - Check if an idle but hot extruder needs filament extruded (EXTRUDER_RUNOUT_PREVENT)
  6868. */
  6869. void manage_inactivity(bool ignore_stepper_queue/*=false*/) {
  6870. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  6871. if (IS_SD_PRINTING && !(READ(FIL_RUNOUT_PIN) ^ FIL_RUNOUT_INVERTING))
  6872. handle_filament_runout();
  6873. #endif
  6874. if (commands_in_queue < BUFSIZE) get_available_commands();
  6875. millis_t ms = millis();
  6876. if (max_inactive_time && ELAPSED(ms, previous_cmd_ms + max_inactive_time)) kill(PSTR(MSG_KILLED));
  6877. if (stepper_inactive_time && ELAPSED(ms, previous_cmd_ms + stepper_inactive_time)
  6878. && !ignore_stepper_queue && !planner.blocks_queued()) {
  6879. #if ENABLED(DISABLE_INACTIVE_X)
  6880. disable_x();
  6881. #endif
  6882. #if ENABLED(DISABLE_INACTIVE_Y)
  6883. disable_y();
  6884. #endif
  6885. #if ENABLED(DISABLE_INACTIVE_Z)
  6886. disable_z();
  6887. #endif
  6888. #if ENABLED(DISABLE_INACTIVE_E)
  6889. disable_e0();
  6890. disable_e1();
  6891. disable_e2();
  6892. disable_e3();
  6893. #endif
  6894. }
  6895. #ifdef CHDK // Check if pin should be set to LOW after M240 set it to HIGH
  6896. if (chdkActive && PENDING(ms, chdkHigh + CHDK_DELAY)) {
  6897. chdkActive = false;
  6898. WRITE(CHDK, LOW);
  6899. }
  6900. #endif
  6901. #if HAS_KILL
  6902. // Check if the kill button was pressed and wait just in case it was an accidental
  6903. // key kill key press
  6904. // -------------------------------------------------------------------------------
  6905. static int killCount = 0; // make the inactivity button a bit less responsive
  6906. const int KILL_DELAY = 750;
  6907. if (!READ(KILL_PIN))
  6908. killCount++;
  6909. else if (killCount > 0)
  6910. killCount--;
  6911. // Exceeded threshold and we can confirm that it was not accidental
  6912. // KILL the machine
  6913. // ----------------------------------------------------------------
  6914. if (killCount >= KILL_DELAY) kill(PSTR(MSG_KILLED));
  6915. #endif
  6916. #if HAS_HOME
  6917. // Check to see if we have to home, use poor man's debouncer
  6918. // ---------------------------------------------------------
  6919. static int homeDebounceCount = 0; // poor man's debouncing count
  6920. const int HOME_DEBOUNCE_DELAY = 2500;
  6921. if (!READ(HOME_PIN)) {
  6922. if (!homeDebounceCount) {
  6923. enqueue_and_echo_commands_P(PSTR("G28"));
  6924. LCD_MESSAGEPGM(MSG_AUTO_HOME);
  6925. }
  6926. if (homeDebounceCount < HOME_DEBOUNCE_DELAY)
  6927. homeDebounceCount++;
  6928. else
  6929. homeDebounceCount = 0;
  6930. }
  6931. #endif
  6932. #if HAS_CONTROLLERFAN
  6933. controllerFan(); // Check if fan should be turned on to cool stepper drivers down
  6934. #endif
  6935. #if ENABLED(EXTRUDER_RUNOUT_PREVENT)
  6936. if (ELAPSED(ms, previous_cmd_ms + (EXTRUDER_RUNOUT_SECONDS) * 1000UL))
  6937. if (thermalManager.degHotend(active_extruder) > EXTRUDER_RUNOUT_MINTEMP) {
  6938. bool oldstatus;
  6939. switch (active_extruder) {
  6940. case 0:
  6941. oldstatus = E0_ENABLE_READ;
  6942. enable_e0();
  6943. break;
  6944. #if EXTRUDERS > 1
  6945. case 1:
  6946. oldstatus = E1_ENABLE_READ;
  6947. enable_e1();
  6948. break;
  6949. #if EXTRUDERS > 2
  6950. case 2:
  6951. oldstatus = E2_ENABLE_READ;
  6952. enable_e2();
  6953. break;
  6954. #if EXTRUDERS > 3
  6955. case 3:
  6956. oldstatus = E3_ENABLE_READ;
  6957. enable_e3();
  6958. break;
  6959. #endif
  6960. #endif
  6961. #endif
  6962. }
  6963. float oldepos = current_position[E_AXIS], oldedes = destination[E_AXIS];
  6964. planner.buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
  6965. destination[E_AXIS] + (EXTRUDER_RUNOUT_EXTRUDE) * (EXTRUDER_RUNOUT_ESTEPS) / planner.axis_steps_per_mm[E_AXIS],
  6966. (EXTRUDER_RUNOUT_SPEED) / 60. * (EXTRUDER_RUNOUT_ESTEPS) / planner.axis_steps_per_mm[E_AXIS], active_extruder);
  6967. current_position[E_AXIS] = oldepos;
  6968. destination[E_AXIS] = oldedes;
  6969. planner.set_e_position_mm(oldepos);
  6970. previous_cmd_ms = ms; // refresh_cmd_timeout()
  6971. stepper.synchronize();
  6972. switch (active_extruder) {
  6973. case 0:
  6974. E0_ENABLE_WRITE(oldstatus);
  6975. break;
  6976. #if EXTRUDERS > 1
  6977. case 1:
  6978. E1_ENABLE_WRITE(oldstatus);
  6979. break;
  6980. #if EXTRUDERS > 2
  6981. case 2:
  6982. E2_ENABLE_WRITE(oldstatus);
  6983. break;
  6984. #if EXTRUDERS > 3
  6985. case 3:
  6986. E3_ENABLE_WRITE(oldstatus);
  6987. break;
  6988. #endif
  6989. #endif
  6990. #endif
  6991. }
  6992. }
  6993. #endif
  6994. #if ENABLED(DUAL_X_CARRIAGE)
  6995. // handle delayed move timeout
  6996. if (delayed_move_time && ELAPSED(ms, delayed_move_time + 1000UL) && IsRunning()) {
  6997. // travel moves have been received so enact them
  6998. delayed_move_time = 0xFFFFFFFFUL; // force moves to be done
  6999. set_destination_to_current();
  7000. prepare_move_to_destination();
  7001. }
  7002. #endif
  7003. #if ENABLED(TEMP_STAT_LEDS)
  7004. handle_status_leds();
  7005. #endif
  7006. planner.check_axes_activity();
  7007. }
  7008. void kill(const char* lcd_msg) {
  7009. #if ENABLED(ULTRA_LCD)
  7010. lcd_init();
  7011. lcd_setalertstatuspgm(lcd_msg);
  7012. #else
  7013. UNUSED(lcd_msg);
  7014. #endif
  7015. cli(); // Stop interrupts
  7016. thermalManager.disable_all_heaters();
  7017. disable_all_steppers();
  7018. #if HAS_POWER_SWITCH
  7019. pinMode(PS_ON_PIN, INPUT);
  7020. #endif
  7021. SERIAL_ERROR_START;
  7022. SERIAL_ERRORLNPGM(MSG_ERR_KILLED);
  7023. // FMC small patch to update the LCD before ending
  7024. sei(); // enable interrupts
  7025. for (int i = 5; i--; lcd_update()) delay(200); // Wait a short time
  7026. cli(); // disable interrupts
  7027. suicide();
  7028. while (1) {
  7029. #if ENABLED(USE_WATCHDOG)
  7030. watchdog_reset();
  7031. #endif
  7032. } // Wait for reset
  7033. }
  7034. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  7035. void handle_filament_runout() {
  7036. if (!filament_ran_out) {
  7037. filament_ran_out = true;
  7038. enqueue_and_echo_commands_P(PSTR(FILAMENT_RUNOUT_SCRIPT));
  7039. stepper.synchronize();
  7040. }
  7041. }
  7042. #endif // FILAMENT_RUNOUT_SENSOR
  7043. #if ENABLED(FAST_PWM_FAN)
  7044. void setPwmFrequency(uint8_t pin, int val) {
  7045. val &= 0x07;
  7046. switch (digitalPinToTimer(pin)) {
  7047. #if defined(TCCR0A)
  7048. case TIMER0A:
  7049. case TIMER0B:
  7050. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  7051. // TCCR0B |= val;
  7052. break;
  7053. #endif
  7054. #if defined(TCCR1A)
  7055. case TIMER1A:
  7056. case TIMER1B:
  7057. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  7058. // TCCR1B |= val;
  7059. break;
  7060. #endif
  7061. #if defined(TCCR2)
  7062. case TIMER2:
  7063. case TIMER2:
  7064. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  7065. TCCR2 |= val;
  7066. break;
  7067. #endif
  7068. #if defined(TCCR2A)
  7069. case TIMER2A:
  7070. case TIMER2B:
  7071. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  7072. TCCR2B |= val;
  7073. break;
  7074. #endif
  7075. #if defined(TCCR3A)
  7076. case TIMER3A:
  7077. case TIMER3B:
  7078. case TIMER3C:
  7079. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  7080. TCCR3B |= val;
  7081. break;
  7082. #endif
  7083. #if defined(TCCR4A)
  7084. case TIMER4A:
  7085. case TIMER4B:
  7086. case TIMER4C:
  7087. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  7088. TCCR4B |= val;
  7089. break;
  7090. #endif
  7091. #if defined(TCCR5A)
  7092. case TIMER5A:
  7093. case TIMER5B:
  7094. case TIMER5C:
  7095. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  7096. TCCR5B |= val;
  7097. break;
  7098. #endif
  7099. }
  7100. }
  7101. #endif // FAST_PWM_FAN
  7102. void stop() {
  7103. thermalManager.disable_all_heaters();
  7104. if (IsRunning()) {
  7105. Running = false;
  7106. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  7107. SERIAL_ERROR_START;
  7108. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  7109. LCD_MESSAGEPGM(MSG_STOPPED);
  7110. }
  7111. }
  7112. float calculate_volumetric_multiplier(float diameter) {
  7113. if (!volumetric_enabled || diameter == 0) return 1.0;
  7114. float d2 = diameter * 0.5;
  7115. return 1.0 / (M_PI * d2 * d2);
  7116. }
  7117. void calculate_volumetric_multipliers() {
  7118. for (int i = 0; i < EXTRUDERS; i++)
  7119. volumetric_multiplier[i] = calculate_volumetric_multiplier(filament_size[i]);
  7120. }