My Marlin configs for Fabrikator Mini and CTC i3 Pro B
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

Marlin_main.cpp 391KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861786278637864786578667867786878697870787178727873787478757876787778787879788078817882788378847885788678877888788978907891789278937894789578967897789878997900790179027903790479057906790779087909791079117912791379147915791679177918791979207921792279237924792579267927792879297930793179327933793479357936793779387939794079417942794379447945794679477948794979507951795279537954795579567957795879597960796179627963796479657966796779687969797079717972797379747975797679777978797979807981798279837984798579867987798879897990799179927993799479957996799779987999800080018002800380048005800680078008800980108011801280138014801580168017801880198020802180228023802480258026802780288029803080318032803380348035803680378038803980408041804280438044804580468047804880498050805180528053805480558056805780588059806080618062806380648065806680678068806980708071807280738074807580768077807880798080808180828083808480858086808780888089809080918092809380948095809680978098809981008101810281038104810581068107810881098110811181128113811481158116811781188119812081218122812381248125812681278128812981308131813281338134813581368137813881398140814181428143814481458146814781488149815081518152815381548155815681578158815981608161816281638164816581668167816881698170817181728173817481758176817781788179818081818182818381848185818681878188818981908191819281938194819581968197819881998200820182028203820482058206820782088209821082118212821382148215821682178218821982208221822282238224822582268227822882298230823182328233823482358236823782388239824082418242824382448245824682478248824982508251825282538254825582568257825882598260826182628263826482658266826782688269827082718272827382748275827682778278827982808281828282838284828582868287828882898290829182928293829482958296829782988299830083018302830383048305830683078308830983108311831283138314831583168317831883198320832183228323832483258326832783288329833083318332833383348335833683378338833983408341834283438344834583468347834883498350835183528353835483558356835783588359836083618362836383648365836683678368836983708371837283738374837583768377837883798380838183828383838483858386838783888389839083918392839383948395839683978398839984008401840284038404840584068407840884098410841184128413841484158416841784188419842084218422842384248425842684278428842984308431843284338434843584368437843884398440844184428443844484458446844784488449845084518452845384548455845684578458845984608461846284638464846584668467846884698470847184728473847484758476847784788479848084818482848384848485848684878488848984908491849284938494849584968497849884998500850185028503850485058506850785088509851085118512851385148515851685178518851985208521852285238524852585268527852885298530853185328533853485358536853785388539854085418542854385448545854685478548854985508551855285538554855585568557855885598560856185628563856485658566856785688569857085718572857385748575857685778578857985808581858285838584858585868587858885898590859185928593859485958596859785988599860086018602860386048605860686078608860986108611861286138614861586168617861886198620862186228623862486258626862786288629863086318632863386348635863686378638863986408641864286438644864586468647864886498650865186528653865486558656865786588659866086618662866386648665866686678668866986708671867286738674867586768677867886798680868186828683868486858686868786888689869086918692869386948695869686978698869987008701870287038704870587068707870887098710871187128713871487158716871787188719872087218722872387248725872687278728872987308731873287338734873587368737873887398740874187428743874487458746874787488749875087518752875387548755875687578758875987608761876287638764876587668767876887698770877187728773877487758776877787788779878087818782878387848785878687878788878987908791879287938794879587968797879887998800880188028803880488058806880788088809881088118812881388148815881688178818881988208821882288238824882588268827882888298830883188328833883488358836883788388839884088418842884388448845884688478848884988508851885288538854885588568857885888598860886188628863886488658866886788688869887088718872887388748875887688778878887988808881888288838884888588868887888888898890889188928893889488958896889788988899890089018902890389048905890689078908890989108911891289138914891589168917891889198920892189228923892489258926892789288929893089318932893389348935893689378938893989408941894289438944894589468947894889498950895189528953895489558956895789588959896089618962896389648965896689678968896989708971897289738974897589768977897889798980898189828983898489858986898789888989899089918992899389948995899689978998899990009001900290039004900590069007900890099010901190129013901490159016901790189019902090219022902390249025902690279028902990309031903290339034903590369037903890399040904190429043904490459046904790489049905090519052905390549055905690579058905990609061906290639064906590669067906890699070907190729073907490759076907790789079908090819082908390849085908690879088908990909091909290939094909590969097909890999100910191029103910491059106910791089109911091119112911391149115911691179118911991209121912291239124912591269127912891299130913191329133913491359136913791389139914091419142914391449145914691479148914991509151915291539154915591569157915891599160916191629163916491659166916791689169917091719172917391749175917691779178917991809181918291839184918591869187918891899190919191929193919491959196919791989199920092019202920392049205920692079208920992109211921292139214921592169217921892199220922192229223922492259226922792289229923092319232923392349235923692379238923992409241924292439244924592469247924892499250925192529253925492559256925792589259926092619262926392649265926692679268926992709271927292739274927592769277927892799280928192829283928492859286928792889289929092919292929392949295929692979298929993009301930293039304930593069307930893099310931193129313931493159316931793189319932093219322932393249325932693279328932993309331933293339334933593369337933893399340934193429343934493459346934793489349935093519352935393549355935693579358935993609361936293639364936593669367936893699370937193729373937493759376937793789379938093819382938393849385938693879388938993909391939293939394939593969397939893999400940194029403940494059406940794089409941094119412941394149415941694179418941994209421942294239424942594269427942894299430943194329433943494359436943794389439944094419442944394449445944694479448944994509451945294539454945594569457945894599460946194629463946494659466946794689469947094719472947394749475947694779478947994809481948294839484948594869487948894899490949194929493949494959496949794989499950095019502950395049505950695079508950995109511951295139514951595169517951895199520952195229523952495259526952795289529953095319532953395349535953695379538953995409541954295439544954595469547954895499550955195529553955495559556955795589559956095619562956395649565956695679568956995709571957295739574957595769577957895799580958195829583958495859586958795889589959095919592959395949595959695979598959996009601960296039604960596069607960896099610961196129613961496159616961796189619962096219622962396249625962696279628962996309631963296339634963596369637963896399640964196429643964496459646964796489649965096519652965396549655965696579658965996609661966296639664966596669667966896699670967196729673967496759676967796789679968096819682968396849685968696879688968996909691969296939694969596969697969896999700970197029703970497059706970797089709971097119712971397149715971697179718971997209721972297239724972597269727972897299730973197329733973497359736973797389739974097419742974397449745974697479748974997509751975297539754975597569757975897599760976197629763976497659766976797689769977097719772977397749775977697779778977997809781978297839784978597869787978897899790979197929793979497959796979797989799980098019802980398049805980698079808980998109811981298139814981598169817981898199820982198229823982498259826982798289829983098319832983398349835983698379838983998409841984298439844984598469847984898499850985198529853985498559856985798589859986098619862986398649865986698679868986998709871987298739874987598769877987898799880988198829883988498859886988798889889989098919892989398949895989698979898989999009901990299039904990599069907990899099910991199129913991499159916991799189919992099219922992399249925992699279928992999309931993299339934993599369937993899399940994199429943994499459946994799489949995099519952995399549955995699579958995999609961996299639964996599669967996899699970997199729973997499759976997799789979998099819982998399849985998699879988998999909991999299939994999599969997999899991000010001100021000310004100051000610007100081000910010100111001210013100141001510016100171001810019100201002110022100231002410025100261002710028100291003010031100321003310034100351003610037100381003910040100411004210043100441004510046100471004810049100501005110052100531005410055100561005710058100591006010061100621006310064100651006610067100681006910070100711007210073100741007510076100771007810079100801008110082100831008410085100861008710088100891009010091100921009310094100951009610097100981009910100101011010210103101041010510106101071010810109101101011110112101131011410115101161011710118101191012010121101221012310124101251012610127101281012910130101311013210133101341013510136101371013810139101401014110142101431014410145101461014710148101491015010151101521015310154101551015610157101581015910160101611016210163101641016510166101671016810169101701017110172101731017410175101761017710178101791018010181101821018310184101851018610187101881018910190101911019210193101941019510196101971019810199102001020110202102031020410205102061020710208102091021010211102121021310214102151021610217102181021910220102211022210223102241022510226102271022810229102301023110232102331023410235102361023710238102391024010241102421024310244102451024610247102481024910250102511025210253102541025510256102571025810259102601026110262102631026410265102661026710268102691027010271102721027310274102751027610277102781027910280102811028210283102841028510286102871028810289102901029110292102931029410295102961029710298102991030010301103021030310304103051030610307103081030910310103111031210313103141031510316103171031810319103201032110322103231032410325103261032710328103291033010331103321033310334103351033610337103381033910340103411034210343103441034510346103471034810349103501035110352103531035410355103561035710358103591036010361103621036310364103651036610367103681036910370103711037210373103741037510376103771037810379103801038110382103831038410385103861038710388103891039010391103921039310394103951039610397103981039910400104011040210403104041040510406104071040810409104101041110412104131041410415104161041710418104191042010421104221042310424104251042610427104281042910430104311043210433104341043510436104371043810439104401044110442104431044410445104461044710448104491045010451104521045310454104551045610457104581045910460104611046210463104641046510466104671046810469104701047110472104731047410475104761047710478104791048010481104821048310484104851048610487104881048910490104911049210493104941049510496104971049810499105001050110502105031050410505105061050710508105091051010511105121051310514105151051610517105181051910520105211052210523105241052510526105271052810529105301053110532105331053410535105361053710538105391054010541105421054310544105451054610547105481054910550105511055210553105541055510556105571055810559105601056110562105631056410565105661056710568105691057010571105721057310574105751057610577105781057910580105811058210583105841058510586105871058810589105901059110592105931059410595105961059710598105991060010601106021060310604106051060610607106081060910610106111061210613106141061510616106171061810619106201062110622106231062410625106261062710628106291063010631106321063310634106351063610637106381063910640106411064210643106441064510646106471064810649106501065110652106531065410655106561065710658106591066010661106621066310664106651066610667106681066910670106711067210673106741067510676106771067810679106801068110682106831068410685106861068710688106891069010691106921069310694106951069610697106981069910700107011070210703107041070510706107071070810709107101071110712107131071410715107161071710718107191072010721107221072310724107251072610727107281072910730107311073210733107341073510736107371073810739107401074110742107431074410745107461074710748107491075010751107521075310754107551075610757107581075910760107611076210763107641076510766107671076810769107701077110772107731077410775107761077710778107791078010781107821078310784107851078610787107881078910790107911079210793107941079510796107971079810799108001080110802108031080410805108061080710808108091081010811108121081310814108151081610817108181081910820108211082210823108241082510826108271082810829108301083110832108331083410835108361083710838108391084010841108421084310844108451084610847108481084910850108511085210853108541085510856108571085810859108601086110862108631086410865108661086710868108691087010871108721087310874108751087610877108781087910880108811088210883108841088510886108871088810889108901089110892108931089410895108961089710898108991090010901109021090310904109051090610907109081090910910109111091210913109141091510916109171091810919109201092110922109231092410925109261092710928109291093010931109321093310934109351093610937109381093910940109411094210943109441094510946109471094810949109501095110952109531095410955109561095710958109591096010961109621096310964109651096610967109681096910970109711097210973109741097510976109771097810979109801098110982109831098410985109861098710988109891099010991109921099310994109951099610997109981099911000110011100211003110041100511006110071100811009110101101111012110131101411015110161101711018110191102011021110221102311024110251102611027110281102911030110311103211033110341103511036110371103811039110401104111042110431104411045110461104711048110491105011051110521105311054110551105611057110581105911060110611106211063110641106511066110671106811069110701107111072110731107411075110761107711078110791108011081110821108311084110851108611087110881108911090110911109211093110941109511096110971109811099111001110111102111031110411105111061110711108111091111011111111121111311114111151111611117111181111911120111211112211123111241112511126111271112811129111301113111132111331113411135111361113711138111391114011141111421114311144111451114611147111481114911150111511115211153111541115511156111571115811159111601116111162111631116411165111661116711168111691117011171111721117311174111751117611177111781117911180111811118211183111841118511186111871118811189111901119111192111931119411195111961119711198111991120011201112021120311204112051120611207112081120911210112111121211213112141121511216112171121811219112201122111222112231122411225112261122711228112291123011231112321123311234112351123611237112381123911240112411124211243112441124511246112471124811249112501125111252112531125411255112561125711258112591126011261112621126311264112651126611267112681126911270112711127211273112741127511276112771127811279112801128111282112831128411285112861128711288112891129011291112921129311294112951129611297112981129911300113011130211303113041130511306113071130811309113101131111312113131131411315113161131711318113191132011321113221132311324113251132611327113281132911330113311133211333113341133511336113371133811339113401134111342113431134411345113461134711348113491135011351113521135311354113551135611357113581135911360113611136211363113641136511366113671136811369113701137111372113731137411375113761137711378113791138011381113821138311384113851138611387113881138911390113911139211393113941139511396113971139811399114001140111402114031140411405114061140711408114091141011411114121141311414114151141611417114181141911420114211142211423114241142511426114271142811429114301143111432114331143411435114361143711438114391144011441114421144311444114451144611447114481144911450114511145211453114541145511456114571145811459114601146111462114631146411465114661146711468114691147011471114721147311474114751147611477114781147911480114811148211483114841148511486114871148811489114901149111492114931149411495114961149711498114991150011501115021150311504115051150611507115081150911510115111151211513115141151511516115171151811519115201152111522115231152411525115261152711528115291153011531115321153311534115351153611537115381153911540115411154211543115441154511546115471154811549115501155111552115531155411555115561155711558115591156011561115621156311564115651156611567115681156911570115711157211573115741157511576115771157811579115801158111582115831158411585115861158711588115891159011591115921159311594115951159611597115981159911600116011160211603116041160511606116071160811609116101161111612116131161411615116161161711618116191162011621116221162311624116251162611627116281162911630116311163211633116341163511636116371163811639116401164111642116431164411645116461164711648116491165011651116521165311654116551165611657116581165911660116611166211663116641166511666116671166811669116701167111672116731167411675116761167711678116791168011681116821168311684116851168611687116881168911690116911169211693116941169511696116971169811699117001170111702117031170411705117061170711708117091171011711117121171311714117151171611717117181171911720117211172211723117241172511726117271172811729117301173111732117331173411735117361173711738117391174011741117421174311744117451174611747117481174911750117511175211753117541175511756117571175811759117601176111762117631176411765117661176711768117691177011771117721177311774117751177611777117781177911780117811178211783117841178511786117871178811789117901179111792117931179411795117961179711798117991180011801118021180311804118051180611807118081180911810118111181211813118141181511816118171181811819118201182111822118231182411825118261182711828118291183011831118321183311834118351183611837118381183911840118411184211843118441184511846118471184811849118501185111852118531185411855118561185711858118591186011861118621186311864118651186611867118681186911870118711187211873118741187511876118771187811879118801188111882118831188411885118861188711888118891189011891118921189311894118951189611897118981189911900119011190211903119041190511906119071190811909119101191111912119131191411915119161191711918119191192011921119221192311924119251192611927119281192911930119311193211933119341193511936119371193811939119401194111942119431194411945119461194711948119491195011951119521195311954119551195611957119581195911960119611196211963119641196511966119671196811969119701197111972119731197411975119761197711978119791198011981119821198311984119851198611987119881198911990119911199211993119941199511996119971199811999120001200112002120031200412005120061200712008120091201012011120121201312014120151201612017120181201912020120211202212023120241202512026120271202812029120301203112032120331203412035120361203712038120391204012041120421204312044120451204612047120481204912050120511205212053120541205512056120571205812059120601206112062120631206412065120661206712068120691207012071120721207312074120751207612077120781207912080120811208212083120841208512086120871208812089120901209112092120931209412095120961209712098120991210012101121021210312104121051210612107121081210912110121111211212113121141211512116121171211812119121201212112122121231212412125121261212712128121291213012131121321213312134121351213612137121381213912140121411214212143121441214512146121471214812149121501215112152121531215412155121561215712158121591216012161121621216312164121651216612167121681216912170121711217212173121741217512176121771217812179121801218112182121831218412185121861218712188121891219012191121921219312194121951219612197121981219912200122011220212203122041220512206122071220812209122101221112212122131221412215122161221712218122191222012221122221222312224122251222612227122281222912230122311223212233122341223512236122371223812239122401224112242122431224412245122461224712248122491225012251122521225312254122551225612257122581225912260122611226212263122641226512266122671226812269122701227112272122731227412275122761227712278122791228012281122821228312284122851228612287122881228912290122911229212293122941229512296122971229812299123001230112302123031230412305123061230712308123091231012311123121231312314123151231612317123181231912320123211232212323123241232512326123271232812329123301233112332123331233412335123361233712338
  1. /**
  2. * Marlin 3D Printer Firmware
  3. * Copyright (C) 2016, 2017 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
  4. *
  5. * Based on Sprinter and grbl.
  6. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  7. *
  8. * This program is free software: you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation, either version 3 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  20. *
  21. */
  22. /**
  23. * About Marlin
  24. *
  25. * This firmware is a mashup between Sprinter and grbl.
  26. * - https://github.com/kliment/Sprinter
  27. * - https://github.com/simen/grbl/tree
  28. */
  29. /**
  30. * -----------------
  31. * G-Codes in Marlin
  32. * -----------------
  33. *
  34. * Helpful G-code references:
  35. * - http://linuxcnc.org/handbook/gcode/g-code.html
  36. * - http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  37. *
  38. * Help to document Marlin's G-codes online:
  39. * - http://reprap.org/wiki/G-code
  40. * - https://github.com/MarlinFirmware/MarlinDocumentation
  41. *
  42. * -----------------
  43. *
  44. * "G" Codes
  45. *
  46. * G0 -> G1
  47. * G1 - Coordinated Movement X Y Z E
  48. * G2 - CW ARC
  49. * G3 - CCW ARC
  50. * G4 - Dwell S<seconds> or P<milliseconds>
  51. * G5 - Cubic B-spline with XYZE destination and IJPQ offsets
  52. * G10 - Retract filament according to settings of M207
  53. * G11 - Retract recover filament according to settings of M208
  54. * G12 - Clean tool
  55. * G20 - Set input units to inches
  56. * G21 - Set input units to millimeters
  57. * G28 - Home one or more axes
  58. * G29 - Detailed Z probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  59. * G30 - Single Z probe, probes bed at X Y location (defaults to current XY location)
  60. * G31 - Dock sled (Z_PROBE_SLED only)
  61. * G32 - Undock sled (Z_PROBE_SLED only)
  62. * G33 - Delta '1-4-7-point' auto calibration : "G33 V<verbose> P<points> <A> <O> <T>" (Requires DELTA)
  63. * G38 - Probe target - similar to G28 except it uses the Z_MIN_PROBE for all three axes
  64. * G90 - Use Absolute Coordinates
  65. * G91 - Use Relative Coordinates
  66. * G92 - Set current position to coordinates given
  67. *
  68. * "M" Codes
  69. *
  70. * M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
  71. * M1 - Same as M0
  72. * M17 - Enable/Power all stepper motors
  73. * M18 - Disable all stepper motors; same as M84
  74. * M20 - List SD card. (Requires SDSUPPORT)
  75. * M21 - Init SD card. (Requires SDSUPPORT)
  76. * M22 - Release SD card. (Requires SDSUPPORT)
  77. * M23 - Select SD file: "M23 /path/file.gco". (Requires SDSUPPORT)
  78. * M24 - Start/resume SD print. (Requires SDSUPPORT)
  79. * M25 - Pause SD print. (Requires SDSUPPORT)
  80. * M26 - Set SD position in bytes: "M26 S12345". (Requires SDSUPPORT)
  81. * M27 - Report SD print status. (Requires SDSUPPORT)
  82. * M28 - Start SD write: "M28 /path/file.gco". (Requires SDSUPPORT)
  83. * M29 - Stop SD write. (Requires SDSUPPORT)
  84. * M30 - Delete file from SD: "M30 /path/file.gco"
  85. * M31 - Report time since last M109 or SD card start to serial.
  86. * M32 - Select file and start SD print: "M32 [S<bytepos>] !/path/file.gco#". (Requires SDSUPPORT)
  87. * Use P to run other files as sub-programs: "M32 P !filename#"
  88. * The '#' is necessary when calling from within sd files, as it stops buffer prereading
  89. * M33 - Get the longname version of a path. (Requires LONG_FILENAME_HOST_SUPPORT)
  90. * M34 - Set SD Card sorting options. (Requires SDCARD_SORT_ALPHA)
  91. * M42 - Change pin status via gcode: M42 P<pin> S<value>. LED pin assumed if P is omitted.
  92. * M43 - Display pin status, watch pins for changes, watch endstops & toggle LED, Z servo probe test, toggle pins
  93. * M48 - Measure Z Probe repeatability: M48 P<points> X<pos> Y<pos> V<level> E<engage> L<legs>. (Requires Z_MIN_PROBE_REPEATABILITY_TEST)
  94. * M75 - Start the print job timer.
  95. * M76 - Pause the print job timer.
  96. * M77 - Stop the print job timer.
  97. * M78 - Show statistical information about the print jobs. (Requires PRINTCOUNTER)
  98. * M80 - Turn on Power Supply. (Requires POWER_SUPPLY)
  99. * M81 - Turn off Power Supply. (Requires POWER_SUPPLY)
  100. * M82 - Set E codes absolute (default).
  101. * M83 - Set E codes relative while in Absolute (G90) mode.
  102. * M84 - Disable steppers until next move, or use S<seconds> to specify an idle
  103. * duration after which steppers should turn off. S0 disables the timeout.
  104. * M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  105. * M92 - Set planner.axis_steps_per_mm for one or more axes.
  106. * M104 - Set extruder target temp.
  107. * M105 - Report current temperatures.
  108. * M106 - Fan on.
  109. * M107 - Fan off.
  110. * M108 - Break out of heating loops (M109, M190, M303). With no controller, breaks out of M0/M1. (Requires EMERGENCY_PARSER)
  111. * M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  112. * Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  113. * If AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  114. * M110 - Set the current line number. (Used by host printing)
  115. * M111 - Set debug flags: "M111 S<flagbits>". See flag bits defined in enum.h.
  116. * M112 - Emergency stop.
  117. * M113 - Get or set the timeout interval for Host Keepalive "busy" messages. (Requires HOST_KEEPALIVE_FEATURE)
  118. * M114 - Report current position.
  119. * M115 - Report capabilities. (Extended capabilities requires EXTENDED_CAPABILITIES_REPORT)
  120. * M117 - Display a message on the controller screen. (Requires an LCD)
  121. * M119 - Report endstops status.
  122. * M120 - Enable endstops detection.
  123. * M121 - Disable endstops detection.
  124. * M125 - Save current position and move to filament change position. (Requires PARK_HEAD_ON_PAUSE)
  125. * M126 - Solenoid Air Valve Open. (Requires BARICUDA)
  126. * M127 - Solenoid Air Valve Closed. (Requires BARICUDA)
  127. * M128 - EtoP Open. (Requires BARICUDA)
  128. * M129 - EtoP Closed. (Requires BARICUDA)
  129. * M140 - Set bed target temp. S<temp>
  130. * M145 - Set heatup values for materials on the LCD. H<hotend> B<bed> F<fan speed> for S<material> (0=PLA, 1=ABS)
  131. * M149 - Set temperature units. (Requires TEMPERATURE_UNITS_SUPPORT)
  132. * M150 - Set Status LED Color as R<red> U<green> B<blue>. Values 0-255. (Requires BLINKM or RGB_LED)
  133. * M155 - Auto-report temperatures with interval of S<seconds>. (Requires AUTO_REPORT_TEMPERATURES)
  134. * M163 - Set a single proportion for a mixing extruder. (Requires MIXING_EXTRUDER)
  135. * M164 - Save the mix as a virtual extruder. (Requires MIXING_EXTRUDER and MIXING_VIRTUAL_TOOLS)
  136. * M165 - Set the proportions for a mixing extruder. Use parameters ABCDHI to set the mixing factors. (Requires MIXING_EXTRUDER)
  137. * M190 - Sxxx Wait for bed current temp to reach target temp. ** Waits only when heating! **
  138. * Rxxx Wait for bed current temp to reach target temp. ** Waits for heating or cooling. **
  139. * M200 - Set filament diameter, D<diameter>, setting E axis units to cubic. (Use S0 to revert to linear units.)
  140. * M201 - Set max acceleration in units/s^2 for print moves: "M201 X<accel> Y<accel> Z<accel> E<accel>"
  141. * M202 - Set max acceleration in units/s^2 for travel moves: "M202 X<accel> Y<accel> Z<accel> E<accel>" ** UNUSED IN MARLIN! **
  142. * M203 - Set maximum feedrate: "M203 X<fr> Y<fr> Z<fr> E<fr>" in units/sec.
  143. * M204 - Set default acceleration in units/sec^2: P<printing> R<extruder_only> T<travel>
  144. * M205 - Set advanced settings. Current units apply:
  145. S<print> T<travel> minimum speeds
  146. B<minimum segment time>
  147. X<max X jerk>, Y<max Y jerk>, Z<max Z jerk>, E<max E jerk>
  148. * M206 - Set additional homing offset. (Disabled by NO_WORKSPACE_OFFSETS or DELTA)
  149. * M207 - Set Retract Length: S<length>, Feedrate: F<units/min>, and Z lift: Z<distance>. (Requires FWRETRACT)
  150. * M208 - Set Recover (unretract) Additional (!) Length: S<length> and Feedrate: F<units/min>. (Requires FWRETRACT)
  151. * M209 - Turn Automatic Retract Detection on/off: S<0|1> (For slicers that don't support G10/11). (Requires FWRETRACT)
  152. Every normal extrude-only move will be classified as retract depending on the direction.
  153. * M211 - Enable, Disable, and/or Report software endstops: S<0|1> (Requires MIN_SOFTWARE_ENDSTOPS or MAX_SOFTWARE_ENDSTOPS)
  154. * M218 - Set a tool offset: "M218 T<index> X<offset> Y<offset>". (Requires 2 or more extruders)
  155. * M220 - Set Feedrate Percentage: "M220 S<percent>" (i.e., "FR" on the LCD)
  156. * M221 - Set Flow Percentage: "M221 S<percent>"
  157. * M226 - Wait until a pin is in a given state: "M226 P<pin> S<state>"
  158. * M240 - Trigger a camera to take a photograph. (Requires CHDK or PHOTOGRAPH_PIN)
  159. * M250 - Set LCD contrast: "M250 C<contrast>" (0-63). (Requires LCD support)
  160. * M260 - i2c Send Data (Requires EXPERIMENTAL_I2CBUS)
  161. * M261 - i2c Request Data (Requires EXPERIMENTAL_I2CBUS)
  162. * M280 - Set servo position absolute: "M280 P<index> S<angle|µs>". (Requires servos)
  163. * M300 - Play beep sound S<frequency Hz> P<duration ms>
  164. * M301 - Set PID parameters P I and D. (Requires PIDTEMP)
  165. * M302 - Allow cold extrudes, or set the minimum extrude S<temperature>. (Requires PREVENT_COLD_EXTRUSION)
  166. * M303 - PID relay autotune S<temperature> sets the target temperature. Default 150C. (Requires PIDTEMP)
  167. * M304 - Set bed PID parameters P I and D. (Requires PIDTEMPBED)
  168. * M355 - Turn the Case Light on/off and set its brightness. (Requires CASE_LIGHT_PIN)
  169. * M380 - Activate solenoid on active extruder. (Requires EXT_SOLENOID)
  170. * M381 - Disable all solenoids. (Requires EXT_SOLENOID)
  171. * M400 - Finish all moves.
  172. * M401 - Lower Z probe. (Requires a probe)
  173. * M402 - Raise Z probe. (Requires a probe)
  174. * M404 - Display or set the Nominal Filament Width: "W<diameter>". (Requires FILAMENT_WIDTH_SENSOR)
  175. * M405 - Enable Filament Sensor flow control. "M405 D<delay_cm>". (Requires FILAMENT_WIDTH_SENSOR)
  176. * M406 - Disable Filament Sensor flow control. (Requires FILAMENT_WIDTH_SENSOR)
  177. * M407 - Display measured filament diameter in millimeters. (Requires FILAMENT_WIDTH_SENSOR)
  178. * M410 - Quickstop. Abort all planned moves.
  179. * M420 - Enable/Disable Leveling (with current values) S1=enable S0=disable (Requires MESH_BED_LEVELING or ABL)
  180. * M421 - Set a single Z coordinate in the Mesh Leveling grid. X<units> Y<units> Z<units> (Requires MESH_BED_LEVELING or AUTO_BED_LEVELING_UBL)
  181. * M428 - Set the home_offset based on the current_position. Nearest edge applies. (Disabled by NO_WORKSPACE_OFFSETS or DELTA)
  182. * M500 - Store parameters in EEPROM. (Requires EEPROM_SETTINGS)
  183. * M501 - Restore parameters from EEPROM. (Requires EEPROM_SETTINGS)
  184. * M502 - Revert to the default "factory settings". ** Does not write them to EEPROM! **
  185. * M503 - Print the current settings (in memory): "M503 S<verbose>". S0 specifies compact output.
  186. * M540 - Enable/disable SD card abort on endstop hit: "M540 S<state>". (Requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  187. * M600 - Pause for filament change: "M600 X<pos> Y<pos> Z<raise> E<first_retract> L<later_retract>". (Requires FILAMENT_CHANGE_FEATURE)
  188. * M665 - Set delta configurations: "M665 L<diagonal rod> R<delta radius> S<segments/s> A<rod A trim mm> B<rod B trim mm> C<rod C trim mm> I<tower A trim angle> J<tower B trim angle> K<tower C trim angle>" (Requires DELTA)
  189. * M666 - Set delta endstop adjustment. (Requires DELTA)
  190. * M605 - Set dual x-carriage movement mode: "M605 S<mode> [X<x_offset>] [R<temp_offset>]". (Requires DUAL_X_CARRIAGE)
  191. * M851 - Set Z probe's Z offset in current units. (Negative = below the nozzle.)
  192. * M906 - Set or get motor current in milliamps using axis codes X, Y, Z, E. Report values if no axis codes given. (Requires HAVE_TMC2130)
  193. * M907 - Set digital trimpot motor current using axis codes. (Requires a board with digital trimpots)
  194. * M908 - Control digital trimpot directly. (Requires DAC_STEPPER_CURRENT or DIGIPOTSS_PIN)
  195. * M909 - Print digipot/DAC current value. (Requires DAC_STEPPER_CURRENT)
  196. * M910 - Commit digipot/DAC value to external EEPROM via I2C. (Requires DAC_STEPPER_CURRENT)
  197. * M911 - Report stepper driver overtemperature pre-warn condition. (Requires HAVE_TMC2130)
  198. * M912 - Clear stepper driver overtemperature pre-warn condition flag. (Requires HAVE_TMC2130)
  199. * M913 - Set HYBRID_THRESHOLD speed. (Requires HYBRID_THRESHOLD)
  200. * M914 - Set SENSORLESS_HOMING sensitivity. (Requires SENSORLESS_HOMING)
  201. * M350 - Set microstepping mode. (Requires digital microstepping pins.)
  202. * M351 - Toggle MS1 MS2 pins directly. (Requires digital microstepping pins.)
  203. *
  204. * M360 - SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  205. * M361 - SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  206. * M362 - SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  207. * M363 - SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  208. * M364 - SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
  209. *
  210. * ************ Custom codes - This can change to suit future G-code regulations
  211. * M100 - Watch Free Memory (For Debugging). (Requires M100_FREE_MEMORY_WATCHER)
  212. * M928 - Start SD logging: "M928 filename.gco". Stop with M29. (Requires SDSUPPORT)
  213. * M999 - Restart after being stopped by error
  214. *
  215. * "T" Codes
  216. *
  217. * T0-T3 - Select an extruder (tool) by index: "T<n> F<units/min>"
  218. *
  219. */
  220. #include "Marlin.h"
  221. #include "ultralcd.h"
  222. #include "planner.h"
  223. #include "stepper.h"
  224. #include "endstops.h"
  225. #include "temperature.h"
  226. #include "cardreader.h"
  227. #include "configuration_store.h"
  228. #include "language.h"
  229. #include "pins_arduino.h"
  230. #include "math.h"
  231. #include "nozzle.h"
  232. #include "duration_t.h"
  233. #include "types.h"
  234. #if HAS_ABL
  235. #include "vector_3.h"
  236. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  237. #include "qr_solve.h"
  238. #endif
  239. #elif ENABLED(MESH_BED_LEVELING)
  240. #include "mesh_bed_leveling.h"
  241. #endif
  242. #if ENABLED(BEZIER_CURVE_SUPPORT)
  243. #include "planner_bezier.h"
  244. #endif
  245. #if HAS_BUZZER && DISABLED(LCD_USE_I2C_BUZZER)
  246. #include "buzzer.h"
  247. #endif
  248. #if ENABLED(USE_WATCHDOG)
  249. #include "watchdog.h"
  250. #endif
  251. #if ENABLED(BLINKM)
  252. #include "blinkm.h"
  253. #include "Wire.h"
  254. #endif
  255. #if HAS_SERVOS
  256. #include "servo.h"
  257. #endif
  258. #if HAS_DIGIPOTSS
  259. #include <SPI.h>
  260. #endif
  261. #if ENABLED(DAC_STEPPER_CURRENT)
  262. #include "stepper_dac.h"
  263. #endif
  264. #if ENABLED(EXPERIMENTAL_I2CBUS)
  265. #include "twibus.h"
  266. #endif
  267. #if ENABLED(ENDSTOP_INTERRUPTS_FEATURE)
  268. #include "endstop_interrupts.h"
  269. #endif
  270. #if ENABLED(M100_FREE_MEMORY_WATCHER)
  271. void gcode_M100();
  272. void M100_dump_routine(const char * const title, const char *start, const char *end);
  273. #endif
  274. #if ENABLED(SDSUPPORT)
  275. CardReader card;
  276. #endif
  277. #if ENABLED(EXPERIMENTAL_I2CBUS)
  278. TWIBus i2c;
  279. #endif
  280. #if ENABLED(G38_PROBE_TARGET)
  281. bool G38_move = false,
  282. G38_endstop_hit = false;
  283. #endif
  284. #if ENABLED(AUTO_BED_LEVELING_UBL)
  285. #include "ubl.h"
  286. unified_bed_leveling ubl;
  287. #define UBL_MESH_VALID !( ( ubl.z_values[0][0] == ubl.z_values[0][1] && ubl.z_values[0][1] == ubl.z_values[0][2] \
  288. && ubl.z_values[1][0] == ubl.z_values[1][1] && ubl.z_values[1][1] == ubl.z_values[1][2] \
  289. && ubl.z_values[2][0] == ubl.z_values[2][1] && ubl.z_values[2][1] == ubl.z_values[2][2] \
  290. && ubl.z_values[0][0] == 0 && ubl.z_values[1][0] == 0 && ubl.z_values[2][0] == 0 ) \
  291. || isnan(ubl.z_values[0][0]))
  292. #endif
  293. bool Running = true;
  294. uint8_t marlin_debug_flags = DEBUG_NONE;
  295. /**
  296. * Cartesian Current Position
  297. * Used to track the logical position as moves are queued.
  298. * Used by 'line_to_current_position' to do a move after changing it.
  299. * Used by 'SYNC_PLAN_POSITION_KINEMATIC' to update 'planner.position'.
  300. */
  301. float current_position[XYZE] = { 0.0 };
  302. /**
  303. * Cartesian Destination
  304. * A temporary position, usually applied to 'current_position'.
  305. * Set with 'gcode_get_destination' or 'set_destination_to_current'.
  306. * 'line_to_destination' sets 'current_position' to 'destination'.
  307. */
  308. float destination[XYZE] = { 0.0 };
  309. /**
  310. * axis_homed
  311. * Flags that each linear axis was homed.
  312. * XYZ on cartesian, ABC on delta, ABZ on SCARA.
  313. *
  314. * axis_known_position
  315. * Flags that the position is known in each linear axis. Set when homed.
  316. * Cleared whenever a stepper powers off, potentially losing its position.
  317. */
  318. bool axis_homed[XYZ] = { false }, axis_known_position[XYZ] = { false };
  319. /**
  320. * GCode line number handling. Hosts may opt to include line numbers when
  321. * sending commands to Marlin, and lines will be checked for sequentiality.
  322. * M110 N<int> sets the current line number.
  323. */
  324. static long gcode_N, gcode_LastN, Stopped_gcode_LastN = 0;
  325. /**
  326. * GCode Command Queue
  327. * A simple ring buffer of BUFSIZE command strings.
  328. *
  329. * Commands are copied into this buffer by the command injectors
  330. * (immediate, serial, sd card) and they are processed sequentially by
  331. * the main loop. The process_next_command function parses the next
  332. * command and hands off execution to individual handler functions.
  333. */
  334. uint8_t commands_in_queue = 0; // Count of commands in the queue
  335. static uint8_t cmd_queue_index_r = 0, // Ring buffer read position
  336. cmd_queue_index_w = 0; // Ring buffer write position
  337. #if ENABLED(M100_FREE_MEMORY_WATCHER)
  338. char command_queue[BUFSIZE][MAX_CMD_SIZE]; // Necessary so M100 Free Memory Dumper can show us the commands and any corruption
  339. #else // This can be collapsed back to the way it was soon.
  340. static char command_queue[BUFSIZE][MAX_CMD_SIZE];
  341. #endif
  342. /**
  343. * Current GCode Command
  344. * When a GCode handler is running, these will be set
  345. */
  346. static char *current_command, // The command currently being executed
  347. *current_command_args, // The address where arguments begin
  348. *seen_pointer; // Set by code_seen(), used by the code_value functions
  349. /**
  350. * Next Injected Command pointer. NULL if no commands are being injected.
  351. * Used by Marlin internally to ensure that commands initiated from within
  352. * are enqueued ahead of any pending serial or sd card commands.
  353. */
  354. static const char *injected_commands_P = NULL;
  355. #if ENABLED(INCH_MODE_SUPPORT)
  356. float linear_unit_factor = 1.0, volumetric_unit_factor = 1.0;
  357. #endif
  358. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  359. TempUnit input_temp_units = TEMPUNIT_C;
  360. #endif
  361. /**
  362. * Feed rates are often configured with mm/m
  363. * but the planner and stepper like mm/s units.
  364. */
  365. float constexpr homing_feedrate_mm_s[] = {
  366. #if ENABLED(DELTA)
  367. MMM_TO_MMS(HOMING_FEEDRATE_Z), MMM_TO_MMS(HOMING_FEEDRATE_Z),
  368. #else
  369. MMM_TO_MMS(HOMING_FEEDRATE_XY), MMM_TO_MMS(HOMING_FEEDRATE_XY),
  370. #endif
  371. MMM_TO_MMS(HOMING_FEEDRATE_Z), 0
  372. };
  373. static float feedrate_mm_s = MMM_TO_MMS(1500.0), saved_feedrate_mm_s;
  374. int feedrate_percentage = 100, saved_feedrate_percentage,
  375. flow_percentage[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(100);
  376. bool axis_relative_modes[] = AXIS_RELATIVE_MODES,
  377. volumetric_enabled =
  378. #if ENABLED(VOLUMETRIC_DEFAULT_ON)
  379. true
  380. #else
  381. false
  382. #endif
  383. ;
  384. float filament_size[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(DEFAULT_NOMINAL_FILAMENT_DIA),
  385. volumetric_multiplier[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(1.0);
  386. #if HAS_WORKSPACE_OFFSET
  387. #if HAS_POSITION_SHIFT
  388. // The distance that XYZ has been offset by G92. Reset by G28.
  389. float position_shift[XYZ] = { 0 };
  390. #endif
  391. #if HAS_HOME_OFFSET
  392. // This offset is added to the configured home position.
  393. // Set by M206, M428, or menu item. Saved to EEPROM.
  394. float home_offset[XYZ] = { 0 };
  395. #endif
  396. #if HAS_HOME_OFFSET && HAS_POSITION_SHIFT
  397. // The above two are combined to save on computes
  398. float workspace_offset[XYZ] = { 0 };
  399. #endif
  400. #endif
  401. // Software Endstops are based on the configured limits.
  402. #if HAS_SOFTWARE_ENDSTOPS
  403. bool soft_endstops_enabled = true;
  404. #endif
  405. float soft_endstop_min[XYZ] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS },
  406. soft_endstop_max[XYZ] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  407. #if FAN_COUNT > 0
  408. int fanSpeeds[FAN_COUNT] = { 0 };
  409. #endif
  410. // The active extruder (tool). Set with T<extruder> command.
  411. uint8_t active_extruder = 0;
  412. // Relative Mode. Enable with G91, disable with G90.
  413. static bool relative_mode = false;
  414. // For M109 and M190, this flag may be cleared (by M108) to exit the wait loop
  415. volatile bool wait_for_heatup = true;
  416. // For M0/M1, this flag may be cleared (by M108) to exit the wait-for-user loop
  417. #if HAS_RESUME_CONTINUE
  418. volatile bool wait_for_user = false;
  419. #endif
  420. const char axis_codes[XYZE] = {'X', 'Y', 'Z', 'E'};
  421. // Number of characters read in the current line of serial input
  422. static int serial_count = 0;
  423. // Inactivity shutdown
  424. millis_t previous_cmd_ms = 0;
  425. static millis_t max_inactive_time = 0;
  426. static millis_t stepper_inactive_time = (DEFAULT_STEPPER_DEACTIVE_TIME) * 1000UL;
  427. // Print Job Timer
  428. #if ENABLED(PRINTCOUNTER)
  429. PrintCounter print_job_timer = PrintCounter();
  430. #else
  431. Stopwatch print_job_timer = Stopwatch();
  432. #endif
  433. // Buzzer - I2C on the LCD or a BEEPER_PIN
  434. #if ENABLED(LCD_USE_I2C_BUZZER)
  435. #define BUZZ(d,f) lcd_buzz(d, f)
  436. #elif PIN_EXISTS(BEEPER)
  437. Buzzer buzzer;
  438. #define BUZZ(d,f) buzzer.tone(d, f)
  439. #else
  440. #define BUZZ(d,f) NOOP
  441. #endif
  442. static uint8_t target_extruder;
  443. #if HAS_BED_PROBE
  444. float zprobe_zoffset = Z_PROBE_OFFSET_FROM_EXTRUDER;
  445. #endif
  446. #if HAS_ABL
  447. float xy_probe_feedrate_mm_s = MMM_TO_MMS(XY_PROBE_SPEED);
  448. #define XY_PROBE_FEEDRATE_MM_S xy_probe_feedrate_mm_s
  449. #elif defined(XY_PROBE_SPEED)
  450. #define XY_PROBE_FEEDRATE_MM_S MMM_TO_MMS(XY_PROBE_SPEED)
  451. #else
  452. #define XY_PROBE_FEEDRATE_MM_S PLANNER_XY_FEEDRATE()
  453. #endif
  454. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  455. #if ENABLED(DELTA)
  456. #define ADJUST_DELTA(V) \
  457. if (planner.abl_enabled) { \
  458. const float zadj = bilinear_z_offset(V); \
  459. delta[A_AXIS] += zadj; \
  460. delta[B_AXIS] += zadj; \
  461. delta[C_AXIS] += zadj; \
  462. }
  463. #else
  464. #define ADJUST_DELTA(V) if (planner.abl_enabled) { delta[Z_AXIS] += bilinear_z_offset(V); }
  465. #endif
  466. #elif IS_KINEMATIC
  467. #define ADJUST_DELTA(V) NOOP
  468. #endif
  469. #if ENABLED(Z_DUAL_ENDSTOPS)
  470. float z_endstop_adj =
  471. #ifdef Z_DUAL_ENDSTOPS_ADJUSTMENT
  472. Z_DUAL_ENDSTOPS_ADJUSTMENT
  473. #else
  474. 0
  475. #endif
  476. ;
  477. #endif
  478. // Extruder offsets
  479. #if HOTENDS > 1
  480. float hotend_offset[XYZ][HOTENDS];
  481. #endif
  482. #if HAS_Z_SERVO_ENDSTOP
  483. const int z_servo_angle[2] = Z_SERVO_ANGLES;
  484. #endif
  485. #if ENABLED(BARICUDA)
  486. int baricuda_valve_pressure = 0;
  487. int baricuda_e_to_p_pressure = 0;
  488. #endif
  489. #if ENABLED(FWRETRACT)
  490. bool autoretract_enabled = false;
  491. bool retracted[EXTRUDERS] = { false };
  492. bool retracted_swap[EXTRUDERS] = { false };
  493. float retract_length = RETRACT_LENGTH;
  494. float retract_length_swap = RETRACT_LENGTH_SWAP;
  495. float retract_feedrate_mm_s = RETRACT_FEEDRATE;
  496. float retract_zlift = RETRACT_ZLIFT;
  497. float retract_recover_length = RETRACT_RECOVER_LENGTH;
  498. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  499. float retract_recover_feedrate_mm_s = RETRACT_RECOVER_FEEDRATE;
  500. #endif // FWRETRACT
  501. #if ENABLED(ULTIPANEL) && HAS_POWER_SWITCH
  502. bool powersupply =
  503. #if ENABLED(PS_DEFAULT_OFF)
  504. false
  505. #else
  506. true
  507. #endif
  508. ;
  509. #endif
  510. #if HAS_CASE_LIGHT
  511. bool case_light_on =
  512. #if ENABLED(CASE_LIGHT_DEFAULT_ON)
  513. true
  514. #else
  515. false
  516. #endif
  517. ;
  518. #endif
  519. #if ENABLED(DELTA)
  520. float delta[ABC],
  521. endstop_adj[ABC] = { 0 };
  522. // These values are loaded or reset at boot time when setup() calls
  523. // settings.load(), which calls recalc_delta_settings().
  524. float delta_radius,
  525. delta_tower_angle_trim[2],
  526. delta_tower[ABC][2],
  527. delta_diagonal_rod,
  528. delta_calibration_radius,
  529. delta_diagonal_rod_2_tower[ABC],
  530. delta_segments_per_second,
  531. delta_clip_start_height = Z_MAX_POS;
  532. float delta_safe_distance_from_top();
  533. #endif
  534. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  535. int bilinear_grid_spacing[2], bilinear_start[2];
  536. float bilinear_grid_factor[2],
  537. z_values[GRID_MAX_POINTS_X][GRID_MAX_POINTS_Y];
  538. #endif
  539. #if IS_SCARA
  540. // Float constants for SCARA calculations
  541. const float L1 = SCARA_LINKAGE_1, L2 = SCARA_LINKAGE_2,
  542. L1_2 = sq(float(L1)), L1_2_2 = 2.0 * L1_2,
  543. L2_2 = sq(float(L2));
  544. float delta_segments_per_second = SCARA_SEGMENTS_PER_SECOND,
  545. delta[ABC];
  546. #endif
  547. float cartes[XYZ] = { 0 };
  548. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  549. bool filament_sensor = false; // M405 turns on filament sensor control. M406 turns it off.
  550. float filament_width_nominal = DEFAULT_NOMINAL_FILAMENT_DIA, // Nominal filament width. Change with M404.
  551. filament_width_meas = DEFAULT_MEASURED_FILAMENT_DIA; // Measured filament diameter
  552. int8_t measurement_delay[MAX_MEASUREMENT_DELAY + 1]; // Ring buffer to delayed measurement. Store extruder factor after subtracting 100
  553. int filwidth_delay_index[2] = { 0, -1 }; // Indexes into ring buffer
  554. int meas_delay_cm = MEASUREMENT_DELAY_CM; // Distance delay setting
  555. #endif
  556. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  557. static bool filament_ran_out = false;
  558. #endif
  559. #if ENABLED(FILAMENT_CHANGE_FEATURE)
  560. FilamentChangeMenuResponse filament_change_menu_response;
  561. #endif
  562. #if ENABLED(MIXING_EXTRUDER)
  563. float mixing_factor[MIXING_STEPPERS]; // Reciprocal of mix proportion. 0.0 = off, otherwise >= 1.0.
  564. #if MIXING_VIRTUAL_TOOLS > 1
  565. float mixing_virtual_tool_mix[MIXING_VIRTUAL_TOOLS][MIXING_STEPPERS];
  566. #endif
  567. #endif
  568. static bool send_ok[BUFSIZE];
  569. #if HAS_SERVOS
  570. Servo servo[NUM_SERVOS];
  571. #define MOVE_SERVO(I, P) servo[I].move(P)
  572. #if HAS_Z_SERVO_ENDSTOP
  573. #define DEPLOY_Z_SERVO() MOVE_SERVO(Z_ENDSTOP_SERVO_NR, z_servo_angle[0])
  574. #define STOW_Z_SERVO() MOVE_SERVO(Z_ENDSTOP_SERVO_NR, z_servo_angle[1])
  575. #endif
  576. #endif
  577. #ifdef CHDK
  578. millis_t chdkHigh = 0;
  579. bool chdkActive = false;
  580. #endif
  581. #ifdef AUTOMATIC_CURRENT_CONTROL
  582. bool auto_current_control = 0;
  583. #endif
  584. #if ENABLED(PID_EXTRUSION_SCALING)
  585. int lpq_len = 20;
  586. #endif
  587. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  588. MarlinBusyState busy_state = NOT_BUSY;
  589. static millis_t next_busy_signal_ms = 0;
  590. uint8_t host_keepalive_interval = DEFAULT_KEEPALIVE_INTERVAL;
  591. #else
  592. #define host_keepalive() NOOP
  593. #endif
  594. static inline float pgm_read_any(const float *p) { return pgm_read_float_near(p); }
  595. static inline signed char pgm_read_any(const signed char *p) { return pgm_read_byte_near(p); }
  596. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  597. static const PROGMEM type array##_P[XYZ] = { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  598. static inline type array(AxisEnum axis) { return pgm_read_any(&array##_P[axis]); } \
  599. typedef void __void_##CONFIG##__
  600. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  601. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  602. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  603. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  604. XYZ_CONSTS_FROM_CONFIG(float, home_bump_mm, HOME_BUMP_MM);
  605. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  606. /**
  607. * ***************************************************************************
  608. * ******************************** FUNCTIONS ********************************
  609. * ***************************************************************************
  610. */
  611. void stop();
  612. void get_available_commands();
  613. void process_next_command();
  614. void prepare_move_to_destination();
  615. void get_cartesian_from_steppers();
  616. void set_current_from_steppers_for_axis(const AxisEnum axis);
  617. #if ENABLED(ARC_SUPPORT)
  618. void plan_arc(float target[XYZE], float* offset, uint8_t clockwise);
  619. #endif
  620. #if ENABLED(BEZIER_CURVE_SUPPORT)
  621. void plan_cubic_move(const float offset[4]);
  622. #endif
  623. void tool_change(const uint8_t tmp_extruder, const float fr_mm_s=0.0, bool no_move=false);
  624. static void report_current_position();
  625. #if ENABLED(DEBUG_LEVELING_FEATURE)
  626. void print_xyz(const char* prefix, const char* suffix, const float x, const float y, const float z) {
  627. serialprintPGM(prefix);
  628. SERIAL_CHAR('(');
  629. SERIAL_ECHO(x);
  630. SERIAL_ECHOPAIR(", ", y);
  631. SERIAL_ECHOPAIR(", ", z);
  632. SERIAL_CHAR(')');
  633. suffix ? serialprintPGM(suffix) : SERIAL_EOL;
  634. }
  635. void print_xyz(const char* prefix, const char* suffix, const float xyz[]) {
  636. print_xyz(prefix, suffix, xyz[X_AXIS], xyz[Y_AXIS], xyz[Z_AXIS]);
  637. }
  638. #if HAS_ABL
  639. void print_xyz(const char* prefix, const char* suffix, const vector_3 &xyz) {
  640. print_xyz(prefix, suffix, xyz.x, xyz.y, xyz.z);
  641. }
  642. #endif
  643. #define DEBUG_POS(SUFFIX,VAR) do { \
  644. print_xyz(PSTR(" " STRINGIFY(VAR) "="), PSTR(" : " SUFFIX "\n"), VAR); } while(0)
  645. #endif
  646. /**
  647. * sync_plan_position
  648. *
  649. * Set the planner/stepper positions directly from current_position with
  650. * no kinematic translation. Used for homing axes and cartesian/core syncing.
  651. */
  652. inline void sync_plan_position() {
  653. #if ENABLED(DEBUG_LEVELING_FEATURE)
  654. if (DEBUGGING(LEVELING)) DEBUG_POS("sync_plan_position", current_position);
  655. #endif
  656. planner.set_position_mm(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  657. }
  658. inline void sync_plan_position_e() { planner.set_e_position_mm(current_position[E_AXIS]); }
  659. #if IS_KINEMATIC
  660. inline void sync_plan_position_kinematic() {
  661. #if ENABLED(DEBUG_LEVELING_FEATURE)
  662. if (DEBUGGING(LEVELING)) DEBUG_POS("sync_plan_position_kinematic", current_position);
  663. #endif
  664. planner.set_position_mm_kinematic(current_position);
  665. }
  666. #define SYNC_PLAN_POSITION_KINEMATIC() sync_plan_position_kinematic()
  667. #else
  668. #define SYNC_PLAN_POSITION_KINEMATIC() sync_plan_position()
  669. #endif
  670. #if ENABLED(SDSUPPORT)
  671. #include "SdFatUtil.h"
  672. int freeMemory() { return SdFatUtil::FreeRam(); }
  673. #else
  674. extern "C" {
  675. extern char __bss_end;
  676. extern char __heap_start;
  677. extern void* __brkval;
  678. int freeMemory() {
  679. int free_memory;
  680. if ((int)__brkval == 0)
  681. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  682. else
  683. free_memory = ((int)&free_memory) - ((int)__brkval);
  684. return free_memory;
  685. }
  686. }
  687. #endif //!SDSUPPORT
  688. #if ENABLED(DIGIPOT_I2C)
  689. extern void digipot_i2c_set_current(int channel, float current);
  690. extern void digipot_i2c_init();
  691. #endif
  692. /**
  693. * Inject the next "immediate" command, when possible, onto the front of the queue.
  694. * Return true if any immediate commands remain to inject.
  695. */
  696. static bool drain_injected_commands_P() {
  697. if (injected_commands_P != NULL) {
  698. size_t i = 0;
  699. char c, cmd[30];
  700. strncpy_P(cmd, injected_commands_P, sizeof(cmd) - 1);
  701. cmd[sizeof(cmd) - 1] = '\0';
  702. while ((c = cmd[i]) && c != '\n') i++; // find the end of this gcode command
  703. cmd[i] = '\0';
  704. if (enqueue_and_echo_command(cmd)) // success?
  705. injected_commands_P = c ? injected_commands_P + i + 1 : NULL; // next command or done
  706. }
  707. return (injected_commands_P != NULL); // return whether any more remain
  708. }
  709. /**
  710. * Record one or many commands to run from program memory.
  711. * Aborts the current queue, if any.
  712. * Note: drain_injected_commands_P() must be called repeatedly to drain the commands afterwards
  713. */
  714. void enqueue_and_echo_commands_P(const char* pgcode) {
  715. injected_commands_P = pgcode;
  716. drain_injected_commands_P(); // first command executed asap (when possible)
  717. }
  718. /**
  719. * Clear the Marlin command queue
  720. */
  721. void clear_command_queue() {
  722. cmd_queue_index_r = cmd_queue_index_w;
  723. commands_in_queue = 0;
  724. }
  725. /**
  726. * Once a new command is in the ring buffer, call this to commit it
  727. */
  728. inline void _commit_command(bool say_ok) {
  729. send_ok[cmd_queue_index_w] = say_ok;
  730. cmd_queue_index_w = (cmd_queue_index_w + 1) % BUFSIZE;
  731. commands_in_queue++;
  732. }
  733. /**
  734. * Copy a command from RAM into the main command buffer.
  735. * Return true if the command was successfully added.
  736. * Return false for a full buffer, or if the 'command' is a comment.
  737. */
  738. inline bool _enqueuecommand(const char* cmd, bool say_ok=false) {
  739. if (*cmd == ';' || commands_in_queue >= BUFSIZE) return false;
  740. strcpy(command_queue[cmd_queue_index_w], cmd);
  741. _commit_command(say_ok);
  742. return true;
  743. }
  744. /**
  745. * Enqueue with Serial Echo
  746. */
  747. bool enqueue_and_echo_command(const char* cmd, bool say_ok/*=false*/) {
  748. if (_enqueuecommand(cmd, say_ok)) {
  749. SERIAL_ECHO_START;
  750. SERIAL_ECHOPAIR(MSG_ENQUEUEING, cmd);
  751. SERIAL_CHAR('"');
  752. SERIAL_EOL;
  753. return true;
  754. }
  755. return false;
  756. }
  757. void setup_killpin() {
  758. #if HAS_KILL
  759. SET_INPUT_PULLUP(KILL_PIN);
  760. #endif
  761. }
  762. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  763. void setup_filrunoutpin() {
  764. #if ENABLED(ENDSTOPPULLUP_FIL_RUNOUT)
  765. SET_INPUT_PULLUP(FIL_RUNOUT_PIN);
  766. #else
  767. SET_INPUT(FIL_RUNOUT_PIN);
  768. #endif
  769. }
  770. #endif
  771. void setup_homepin(void) {
  772. #if HAS_HOME
  773. SET_INPUT_PULLUP(HOME_PIN);
  774. #endif
  775. }
  776. void setup_powerhold() {
  777. #if HAS_SUICIDE
  778. OUT_WRITE(SUICIDE_PIN, HIGH);
  779. #endif
  780. #if HAS_POWER_SWITCH
  781. #if ENABLED(PS_DEFAULT_OFF)
  782. OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  783. #else
  784. OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE);
  785. #endif
  786. #endif
  787. }
  788. void suicide() {
  789. #if HAS_SUICIDE
  790. OUT_WRITE(SUICIDE_PIN, LOW);
  791. #endif
  792. }
  793. void servo_init() {
  794. #if NUM_SERVOS >= 1 && HAS_SERVO_0
  795. servo[0].attach(SERVO0_PIN);
  796. servo[0].detach(); // Just set up the pin. We don't have a position yet. Don't move to a random position.
  797. #endif
  798. #if NUM_SERVOS >= 2 && HAS_SERVO_1
  799. servo[1].attach(SERVO1_PIN);
  800. servo[1].detach();
  801. #endif
  802. #if NUM_SERVOS >= 3 && HAS_SERVO_2
  803. servo[2].attach(SERVO2_PIN);
  804. servo[2].detach();
  805. #endif
  806. #if NUM_SERVOS >= 4 && HAS_SERVO_3
  807. servo[3].attach(SERVO3_PIN);
  808. servo[3].detach();
  809. #endif
  810. #if HAS_Z_SERVO_ENDSTOP
  811. /**
  812. * Set position of Z Servo Endstop
  813. *
  814. * The servo might be deployed and positioned too low to stow
  815. * when starting up the machine or rebooting the board.
  816. * There's no way to know where the nozzle is positioned until
  817. * homing has been done - no homing with z-probe without init!
  818. *
  819. */
  820. STOW_Z_SERVO();
  821. #endif
  822. }
  823. /**
  824. * Stepper Reset (RigidBoard, et.al.)
  825. */
  826. #if HAS_STEPPER_RESET
  827. void disableStepperDrivers() {
  828. OUT_WRITE(STEPPER_RESET_PIN, LOW); // drive it down to hold in reset motor driver chips
  829. }
  830. void enableStepperDrivers() { SET_INPUT(STEPPER_RESET_PIN); } // set to input, which allows it to be pulled high by pullups
  831. #endif
  832. #if ENABLED(EXPERIMENTAL_I2CBUS) && I2C_SLAVE_ADDRESS > 0
  833. void i2c_on_receive(int bytes) { // just echo all bytes received to serial
  834. i2c.receive(bytes);
  835. }
  836. void i2c_on_request() { // just send dummy data for now
  837. i2c.reply("Hello World!\n");
  838. }
  839. #endif
  840. #if HAS_COLOR_LEDS
  841. void set_led_color(
  842. const uint8_t r, const uint8_t g, const uint8_t b
  843. #if ENABLED(RGBW_LED)
  844. , const uint8_t w=0
  845. #endif
  846. ) {
  847. #if ENABLED(BLINKM)
  848. // This variant uses i2c to send the RGB components to the device.
  849. SendColors(r, g, b);
  850. #else
  851. // This variant uses 3 separate pins for the RGB components.
  852. // If the pins can do PWM then their intensity will be set.
  853. WRITE(RGB_LED_R_PIN, r ? HIGH : LOW);
  854. WRITE(RGB_LED_G_PIN, g ? HIGH : LOW);
  855. WRITE(RGB_LED_B_PIN, b ? HIGH : LOW);
  856. analogWrite(RGB_LED_R_PIN, r);
  857. analogWrite(RGB_LED_G_PIN, g);
  858. analogWrite(RGB_LED_B_PIN, b);
  859. #if ENABLED(RGBW_LED)
  860. WRITE(RGB_LED_W_PIN, w ? HIGH : LOW);
  861. analogWrite(RGB_LED_W_PIN, w);
  862. #endif
  863. #endif
  864. }
  865. #endif // HAS_COLOR_LEDS
  866. void gcode_line_error(const char* err, bool doFlush = true) {
  867. SERIAL_ERROR_START;
  868. serialprintPGM(err);
  869. SERIAL_ERRORLN(gcode_LastN);
  870. //Serial.println(gcode_N);
  871. if (doFlush) FlushSerialRequestResend();
  872. serial_count = 0;
  873. }
  874. /**
  875. * Get all commands waiting on the serial port and queue them.
  876. * Exit when the buffer is full or when no more characters are
  877. * left on the serial port.
  878. */
  879. inline void get_serial_commands() {
  880. static char serial_line_buffer[MAX_CMD_SIZE];
  881. static bool serial_comment_mode = false;
  882. // If the command buffer is empty for too long,
  883. // send "wait" to indicate Marlin is still waiting.
  884. #if defined(NO_TIMEOUTS) && NO_TIMEOUTS > 0
  885. static millis_t last_command_time = 0;
  886. const millis_t ms = millis();
  887. if (commands_in_queue == 0 && !MYSERIAL.available() && ELAPSED(ms, last_command_time + NO_TIMEOUTS)) {
  888. SERIAL_ECHOLNPGM(MSG_WAIT);
  889. last_command_time = ms;
  890. }
  891. #endif
  892. /**
  893. * Loop while serial characters are incoming and the queue is not full
  894. */
  895. while (commands_in_queue < BUFSIZE && MYSERIAL.available() > 0) {
  896. char serial_char = MYSERIAL.read();
  897. /**
  898. * If the character ends the line
  899. */
  900. if (serial_char == '\n' || serial_char == '\r') {
  901. serial_comment_mode = false; // end of line == end of comment
  902. if (!serial_count) continue; // skip empty lines
  903. serial_line_buffer[serial_count] = 0; // terminate string
  904. serial_count = 0; //reset buffer
  905. char* command = serial_line_buffer;
  906. while (*command == ' ') command++; // skip any leading spaces
  907. char* npos = (*command == 'N') ? command : NULL; // Require the N parameter to start the line
  908. char* apos = strchr(command, '*');
  909. if (npos) {
  910. bool M110 = strstr_P(command, PSTR("M110")) != NULL;
  911. if (M110) {
  912. char* n2pos = strchr(command + 4, 'N');
  913. if (n2pos) npos = n2pos;
  914. }
  915. gcode_N = strtol(npos + 1, NULL, 10);
  916. if (gcode_N != gcode_LastN + 1 && !M110) {
  917. gcode_line_error(PSTR(MSG_ERR_LINE_NO));
  918. return;
  919. }
  920. if (apos) {
  921. byte checksum = 0, count = 0;
  922. while (command[count] != '*') checksum ^= command[count++];
  923. if (strtol(apos + 1, NULL, 10) != checksum) {
  924. gcode_line_error(PSTR(MSG_ERR_CHECKSUM_MISMATCH));
  925. return;
  926. }
  927. // if no errors, continue parsing
  928. }
  929. else {
  930. gcode_line_error(PSTR(MSG_ERR_NO_CHECKSUM));
  931. return;
  932. }
  933. gcode_LastN = gcode_N;
  934. // if no errors, continue parsing
  935. }
  936. else if (apos) { // No '*' without 'N'
  937. gcode_line_error(PSTR(MSG_ERR_NO_LINENUMBER_WITH_CHECKSUM), false);
  938. return;
  939. }
  940. // Movement commands alert when stopped
  941. if (IsStopped()) {
  942. char* gpos = strchr(command, 'G');
  943. if (gpos) {
  944. const int codenum = strtol(gpos + 1, NULL, 10);
  945. switch (codenum) {
  946. case 0:
  947. case 1:
  948. case 2:
  949. case 3:
  950. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  951. LCD_MESSAGEPGM(MSG_STOPPED);
  952. break;
  953. }
  954. }
  955. }
  956. #if DISABLED(EMERGENCY_PARSER)
  957. // If command was e-stop process now
  958. if (strcmp(command, "M108") == 0) {
  959. wait_for_heatup = false;
  960. #if ENABLED(ULTIPANEL)
  961. wait_for_user = false;
  962. #endif
  963. }
  964. if (strcmp(command, "M112") == 0) kill(PSTR(MSG_KILLED));
  965. if (strcmp(command, "M410") == 0) { quickstop_stepper(); }
  966. #endif
  967. #if defined(NO_TIMEOUTS) && NO_TIMEOUTS > 0
  968. last_command_time = ms;
  969. #endif
  970. // Add the command to the queue
  971. _enqueuecommand(serial_line_buffer, true);
  972. }
  973. else if (serial_count >= MAX_CMD_SIZE - 1) {
  974. // Keep fetching, but ignore normal characters beyond the max length
  975. // The command will be injected when EOL is reached
  976. }
  977. else if (serial_char == '\\') { // Handle escapes
  978. if (MYSERIAL.available() > 0) {
  979. // if we have one more character, copy it over
  980. serial_char = MYSERIAL.read();
  981. if (!serial_comment_mode) serial_line_buffer[serial_count++] = serial_char;
  982. }
  983. // otherwise do nothing
  984. }
  985. else { // it's not a newline, carriage return or escape char
  986. if (serial_char == ';') serial_comment_mode = true;
  987. if (!serial_comment_mode) serial_line_buffer[serial_count++] = serial_char;
  988. }
  989. } // queue has space, serial has data
  990. }
  991. #if ENABLED(SDSUPPORT)
  992. /**
  993. * Get commands from the SD Card until the command buffer is full
  994. * or until the end of the file is reached. The special character '#'
  995. * can also interrupt buffering.
  996. */
  997. inline void get_sdcard_commands() {
  998. static bool stop_buffering = false,
  999. sd_comment_mode = false;
  1000. if (!card.sdprinting) return;
  1001. /**
  1002. * '#' stops reading from SD to the buffer prematurely, so procedural
  1003. * macro calls are possible. If it occurs, stop_buffering is triggered
  1004. * and the buffer is run dry; this character _can_ occur in serial com
  1005. * due to checksums, however, no checksums are used in SD printing.
  1006. */
  1007. if (commands_in_queue == 0) stop_buffering = false;
  1008. uint16_t sd_count = 0;
  1009. bool card_eof = card.eof();
  1010. while (commands_in_queue < BUFSIZE && !card_eof && !stop_buffering) {
  1011. const int16_t n = card.get();
  1012. char sd_char = (char)n;
  1013. card_eof = card.eof();
  1014. if (card_eof || n == -1
  1015. || sd_char == '\n' || sd_char == '\r'
  1016. || ((sd_char == '#' || sd_char == ':') && !sd_comment_mode)
  1017. ) {
  1018. if (card_eof) {
  1019. SERIAL_PROTOCOLLNPGM(MSG_FILE_PRINTED);
  1020. card.printingHasFinished();
  1021. #if ENABLED(PRINTER_EVENT_LEDS)
  1022. LCD_MESSAGEPGM(MSG_INFO_COMPLETED_PRINTS);
  1023. set_led_color(0, 255, 0); // Green
  1024. #if HAS_RESUME_CONTINUE
  1025. KEEPALIVE_STATE(PAUSED_FOR_USER);
  1026. wait_for_user = true;
  1027. while (wait_for_user) idle();
  1028. KEEPALIVE_STATE(IN_HANDLER);
  1029. #else
  1030. safe_delay(1000);
  1031. #endif
  1032. set_led_color(0, 0, 0); // OFF
  1033. #endif
  1034. card.checkautostart(true);
  1035. }
  1036. else if (n == -1) {
  1037. SERIAL_ERROR_START;
  1038. SERIAL_ECHOLNPGM(MSG_SD_ERR_READ);
  1039. }
  1040. if (sd_char == '#') stop_buffering = true;
  1041. sd_comment_mode = false; // for new command
  1042. if (!sd_count) continue; // skip empty lines (and comment lines)
  1043. command_queue[cmd_queue_index_w][sd_count] = '\0'; // terminate string
  1044. sd_count = 0; // clear sd line buffer
  1045. _commit_command(false);
  1046. }
  1047. else if (sd_count >= MAX_CMD_SIZE - 1) {
  1048. /**
  1049. * Keep fetching, but ignore normal characters beyond the max length
  1050. * The command will be injected when EOL is reached
  1051. */
  1052. }
  1053. else {
  1054. if (sd_char == ';') sd_comment_mode = true;
  1055. if (!sd_comment_mode) command_queue[cmd_queue_index_w][sd_count++] = sd_char;
  1056. }
  1057. }
  1058. }
  1059. #endif // SDSUPPORT
  1060. /**
  1061. * Add to the circular command queue the next command from:
  1062. * - The command-injection queue (injected_commands_P)
  1063. * - The active serial input (usually USB)
  1064. * - The SD card file being actively printed
  1065. */
  1066. void get_available_commands() {
  1067. // if any immediate commands remain, don't get other commands yet
  1068. if (drain_injected_commands_P()) return;
  1069. get_serial_commands();
  1070. #if ENABLED(SDSUPPORT)
  1071. get_sdcard_commands();
  1072. #endif
  1073. }
  1074. inline bool code_has_value() {
  1075. int i = 1;
  1076. char c = seen_pointer[i];
  1077. while (c == ' ') c = seen_pointer[++i];
  1078. if (c == '-' || c == '+') c = seen_pointer[++i];
  1079. if (c == '.') c = seen_pointer[++i];
  1080. return NUMERIC(c);
  1081. }
  1082. inline float code_value_float() {
  1083. char* e = strchr(seen_pointer, 'E');
  1084. if (!e) return strtod(seen_pointer + 1, NULL);
  1085. *e = 0;
  1086. float ret = strtod(seen_pointer + 1, NULL);
  1087. *e = 'E';
  1088. return ret;
  1089. }
  1090. inline unsigned long code_value_ulong() { return strtoul(seen_pointer + 1, NULL, 10); }
  1091. inline long code_value_long() { return strtol(seen_pointer + 1, NULL, 10); }
  1092. inline int code_value_int() { return (int)strtol(seen_pointer + 1, NULL, 10); }
  1093. inline uint16_t code_value_ushort() { return (uint16_t)strtoul(seen_pointer + 1, NULL, 10); }
  1094. inline uint8_t code_value_byte() { return (uint8_t)(constrain(strtol(seen_pointer + 1, NULL, 10), 0, 255)); }
  1095. inline bool code_value_bool() { return !code_has_value() || code_value_byte() > 0; }
  1096. #if ENABLED(INCH_MODE_SUPPORT)
  1097. inline void set_input_linear_units(LinearUnit units) {
  1098. switch (units) {
  1099. case LINEARUNIT_INCH:
  1100. linear_unit_factor = 25.4;
  1101. break;
  1102. case LINEARUNIT_MM:
  1103. default:
  1104. linear_unit_factor = 1.0;
  1105. break;
  1106. }
  1107. volumetric_unit_factor = pow(linear_unit_factor, 3.0);
  1108. }
  1109. inline float axis_unit_factor(const AxisEnum axis) {
  1110. return (axis >= E_AXIS && volumetric_enabled ? volumetric_unit_factor : linear_unit_factor);
  1111. }
  1112. inline float code_value_linear_units() { return code_value_float() * linear_unit_factor; }
  1113. inline float code_value_axis_units(const AxisEnum axis) { return code_value_float() * axis_unit_factor(axis); }
  1114. inline float code_value_per_axis_unit(const AxisEnum axis) { return code_value_float() / axis_unit_factor(axis); }
  1115. #else
  1116. #define code_value_linear_units() code_value_float()
  1117. #define code_value_axis_units(A) code_value_float()
  1118. #define code_value_per_axis_unit(A) code_value_float()
  1119. #endif
  1120. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  1121. inline void set_input_temp_units(TempUnit units) { input_temp_units = units; }
  1122. float code_value_temp_abs() {
  1123. switch (input_temp_units) {
  1124. case TEMPUNIT_C:
  1125. return code_value_float();
  1126. case TEMPUNIT_F:
  1127. return (code_value_float() - 32) * 0.5555555556;
  1128. case TEMPUNIT_K:
  1129. return code_value_float() - 273.15;
  1130. default:
  1131. return code_value_float();
  1132. }
  1133. }
  1134. float code_value_temp_diff() {
  1135. switch (input_temp_units) {
  1136. case TEMPUNIT_C:
  1137. case TEMPUNIT_K:
  1138. return code_value_float();
  1139. case TEMPUNIT_F:
  1140. return code_value_float() * 0.5555555556;
  1141. default:
  1142. return code_value_float();
  1143. }
  1144. }
  1145. #else
  1146. float code_value_temp_abs() { return code_value_float(); }
  1147. float code_value_temp_diff() { return code_value_float(); }
  1148. #endif
  1149. FORCE_INLINE millis_t code_value_millis() { return code_value_ulong(); }
  1150. inline millis_t code_value_millis_from_seconds() { return code_value_float() * 1000; }
  1151. bool code_seen(char code) {
  1152. seen_pointer = strchr(current_command_args, code);
  1153. return (seen_pointer != NULL); // Return TRUE if the code-letter was found
  1154. }
  1155. /**
  1156. * Set target_extruder from the T parameter or the active_extruder
  1157. *
  1158. * Returns TRUE if the target is invalid
  1159. */
  1160. bool get_target_extruder_from_command(int code) {
  1161. if (code_seen('T')) {
  1162. if (code_value_byte() >= EXTRUDERS) {
  1163. SERIAL_ECHO_START;
  1164. SERIAL_CHAR('M');
  1165. SERIAL_ECHO(code);
  1166. SERIAL_ECHOLNPAIR(" " MSG_INVALID_EXTRUDER " ", code_value_byte());
  1167. return true;
  1168. }
  1169. target_extruder = code_value_byte();
  1170. }
  1171. else
  1172. target_extruder = active_extruder;
  1173. return false;
  1174. }
  1175. #if ENABLED(DUAL_X_CARRIAGE) || ENABLED(DUAL_NOZZLE_DUPLICATION_MODE)
  1176. bool extruder_duplication_enabled = false; // Used in Dual X mode 2
  1177. #endif
  1178. #if ENABLED(DUAL_X_CARRIAGE)
  1179. static DualXMode dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  1180. static float x_home_pos(const int extruder) {
  1181. if (extruder == 0)
  1182. return LOGICAL_X_POSITION(base_home_pos(X_AXIS));
  1183. else
  1184. /**
  1185. * In dual carriage mode the extruder offset provides an override of the
  1186. * second X-carriage position when homed - otherwise X2_HOME_POS is used.
  1187. * This allows soft recalibration of the second extruder home position
  1188. * without firmware reflash (through the M218 command).
  1189. */
  1190. return LOGICAL_X_POSITION(hotend_offset[X_AXIS][1] > 0 ? hotend_offset[X_AXIS][1] : X2_HOME_POS);
  1191. }
  1192. static int x_home_dir(const int extruder) { return extruder ? X2_HOME_DIR : X_HOME_DIR; }
  1193. static float inactive_extruder_x_pos = X2_MAX_POS; // used in mode 0 & 1
  1194. static bool active_extruder_parked = false; // used in mode 1 & 2
  1195. static float raised_parked_position[XYZE]; // used in mode 1
  1196. static millis_t delayed_move_time = 0; // used in mode 1
  1197. static float duplicate_extruder_x_offset = DEFAULT_DUPLICATION_X_OFFSET; // used in mode 2
  1198. static float duplicate_extruder_temp_offset = 0; // used in mode 2
  1199. #endif // DUAL_X_CARRIAGE
  1200. #if HAS_WORKSPACE_OFFSET || ENABLED(DUAL_X_CARRIAGE)
  1201. /**
  1202. * Software endstops can be used to monitor the open end of
  1203. * an axis that has a hardware endstop on the other end. Or
  1204. * they can prevent axes from moving past endstops and grinding.
  1205. *
  1206. * To keep doing their job as the coordinate system changes,
  1207. * the software endstop positions must be refreshed to remain
  1208. * at the same positions relative to the machine.
  1209. */
  1210. void update_software_endstops(const AxisEnum axis) {
  1211. const float offs = 0.0
  1212. #if HAS_HOME_OFFSET
  1213. + home_offset[axis]
  1214. #endif
  1215. #if HAS_POSITION_SHIFT
  1216. + position_shift[axis]
  1217. #endif
  1218. ;
  1219. #if HAS_HOME_OFFSET && HAS_POSITION_SHIFT
  1220. workspace_offset[axis] = offs;
  1221. #endif
  1222. #if ENABLED(DUAL_X_CARRIAGE)
  1223. if (axis == X_AXIS) {
  1224. // In Dual X mode hotend_offset[X] is T1's home position
  1225. float dual_max_x = max(hotend_offset[X_AXIS][1], X2_MAX_POS);
  1226. if (active_extruder != 0) {
  1227. // T1 can move from X2_MIN_POS to X2_MAX_POS or X2 home position (whichever is larger)
  1228. soft_endstop_min[X_AXIS] = X2_MIN_POS + offs;
  1229. soft_endstop_max[X_AXIS] = dual_max_x + offs;
  1230. }
  1231. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE) {
  1232. // In Duplication Mode, T0 can move as far left as X_MIN_POS
  1233. // but not so far to the right that T1 would move past the end
  1234. soft_endstop_min[X_AXIS] = base_min_pos(X_AXIS) + offs;
  1235. soft_endstop_max[X_AXIS] = min(base_max_pos(X_AXIS), dual_max_x - duplicate_extruder_x_offset) + offs;
  1236. }
  1237. else {
  1238. // In other modes, T0 can move from X_MIN_POS to X_MAX_POS
  1239. soft_endstop_min[axis] = base_min_pos(axis) + offs;
  1240. soft_endstop_max[axis] = base_max_pos(axis) + offs;
  1241. }
  1242. }
  1243. #else
  1244. soft_endstop_min[axis] = base_min_pos(axis) + offs;
  1245. soft_endstop_max[axis] = base_max_pos(axis) + offs;
  1246. #endif
  1247. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1248. if (DEBUGGING(LEVELING)) {
  1249. SERIAL_ECHOPAIR("For ", axis_codes[axis]);
  1250. #if HAS_HOME_OFFSET
  1251. SERIAL_ECHOPAIR(" axis:\n home_offset = ", home_offset[axis]);
  1252. #endif
  1253. #if HAS_POSITION_SHIFT
  1254. SERIAL_ECHOPAIR("\n position_shift = ", position_shift[axis]);
  1255. #endif
  1256. SERIAL_ECHOPAIR("\n soft_endstop_min = ", soft_endstop_min[axis]);
  1257. SERIAL_ECHOLNPAIR("\n soft_endstop_max = ", soft_endstop_max[axis]);
  1258. }
  1259. #endif
  1260. #if ENABLED(DELTA)
  1261. if (axis == Z_AXIS)
  1262. delta_clip_start_height = soft_endstop_max[axis] - delta_safe_distance_from_top();
  1263. #endif
  1264. }
  1265. #endif // HAS_WORKSPACE_OFFSET || DUAL_X_CARRIAGE
  1266. #if HAS_M206_COMMAND
  1267. /**
  1268. * Change the home offset for an axis, update the current
  1269. * position and the software endstops to retain the same
  1270. * relative distance to the new home.
  1271. *
  1272. * Since this changes the current_position, code should
  1273. * call sync_plan_position soon after this.
  1274. */
  1275. static void set_home_offset(const AxisEnum axis, const float v) {
  1276. current_position[axis] += v - home_offset[axis];
  1277. home_offset[axis] = v;
  1278. update_software_endstops(axis);
  1279. }
  1280. #endif // HAS_M206_COMMAND
  1281. /**
  1282. * Set an axis' current position to its home position (after homing).
  1283. *
  1284. * For Core and Cartesian robots this applies one-to-one when an
  1285. * individual axis has been homed.
  1286. *
  1287. * DELTA should wait until all homing is done before setting the XYZ
  1288. * current_position to home, because homing is a single operation.
  1289. * In the case where the axis positions are already known and previously
  1290. * homed, DELTA could home to X or Y individually by moving either one
  1291. * to the center. However, homing Z always homes XY and Z.
  1292. *
  1293. * SCARA should wait until all XY homing is done before setting the XY
  1294. * current_position to home, because neither X nor Y is at home until
  1295. * both are at home. Z can however be homed individually.
  1296. *
  1297. * Callers must sync the planner position after calling this!
  1298. */
  1299. static void set_axis_is_at_home(AxisEnum axis) {
  1300. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1301. if (DEBUGGING(LEVELING)) {
  1302. SERIAL_ECHOPAIR(">>> set_axis_is_at_home(", axis_codes[axis]);
  1303. SERIAL_CHAR(')');
  1304. SERIAL_EOL;
  1305. }
  1306. #endif
  1307. axis_known_position[axis] = axis_homed[axis] = true;
  1308. #if HAS_POSITION_SHIFT
  1309. position_shift[axis] = 0;
  1310. update_software_endstops(axis);
  1311. #endif
  1312. #if ENABLED(DUAL_X_CARRIAGE)
  1313. if (axis == X_AXIS && (active_extruder == 1 || dual_x_carriage_mode == DXC_DUPLICATION_MODE)) {
  1314. current_position[X_AXIS] = x_home_pos(active_extruder);
  1315. return;
  1316. }
  1317. #endif
  1318. #if ENABLED(MORGAN_SCARA)
  1319. /**
  1320. * Morgan SCARA homes XY at the same time
  1321. */
  1322. if (axis == X_AXIS || axis == Y_AXIS) {
  1323. float homeposition[XYZ];
  1324. LOOP_XYZ(i) homeposition[i] = LOGICAL_POSITION(base_home_pos((AxisEnum)i), i);
  1325. // SERIAL_ECHOPAIR("homeposition X:", homeposition[X_AXIS]);
  1326. // SERIAL_ECHOLNPAIR(" Y:", homeposition[Y_AXIS]);
  1327. /**
  1328. * Get Home position SCARA arm angles using inverse kinematics,
  1329. * and calculate homing offset using forward kinematics
  1330. */
  1331. inverse_kinematics(homeposition);
  1332. forward_kinematics_SCARA(delta[A_AXIS], delta[B_AXIS]);
  1333. // SERIAL_ECHOPAIR("Cartesian X:", cartes[X_AXIS]);
  1334. // SERIAL_ECHOLNPAIR(" Y:", cartes[Y_AXIS]);
  1335. current_position[axis] = LOGICAL_POSITION(cartes[axis], axis);
  1336. /**
  1337. * SCARA home positions are based on configuration since the actual
  1338. * limits are determined by the inverse kinematic transform.
  1339. */
  1340. soft_endstop_min[axis] = base_min_pos(axis); // + (cartes[axis] - base_home_pos(axis));
  1341. soft_endstop_max[axis] = base_max_pos(axis); // + (cartes[axis] - base_home_pos(axis));
  1342. }
  1343. else
  1344. #endif
  1345. {
  1346. current_position[axis] = LOGICAL_POSITION(base_home_pos(axis), axis);
  1347. }
  1348. /**
  1349. * Z Probe Z Homing? Account for the probe's Z offset.
  1350. */
  1351. #if HAS_BED_PROBE && Z_HOME_DIR < 0
  1352. if (axis == Z_AXIS) {
  1353. #if HOMING_Z_WITH_PROBE
  1354. current_position[Z_AXIS] -= zprobe_zoffset;
  1355. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1356. if (DEBUGGING(LEVELING)) {
  1357. SERIAL_ECHOLNPGM("*** Z HOMED WITH PROBE (Z_MIN_PROBE_USES_Z_MIN_ENDSTOP_PIN) ***");
  1358. SERIAL_ECHOLNPAIR("> zprobe_zoffset = ", zprobe_zoffset);
  1359. }
  1360. #endif
  1361. #elif ENABLED(DEBUG_LEVELING_FEATURE)
  1362. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("*** Z HOMED TO ENDSTOP (Z_MIN_PROBE_ENDSTOP) ***");
  1363. #endif
  1364. }
  1365. #endif
  1366. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1367. if (DEBUGGING(LEVELING)) {
  1368. #if HAS_HOME_OFFSET
  1369. SERIAL_ECHOPAIR("> home_offset[", axis_codes[axis]);
  1370. SERIAL_ECHOLNPAIR("] = ", home_offset[axis]);
  1371. #endif
  1372. DEBUG_POS("", current_position);
  1373. SERIAL_ECHOPAIR("<<< set_axis_is_at_home(", axis_codes[axis]);
  1374. SERIAL_CHAR(')');
  1375. SERIAL_EOL;
  1376. }
  1377. #endif
  1378. }
  1379. /**
  1380. * Some planner shorthand inline functions
  1381. */
  1382. inline float get_homing_bump_feedrate(AxisEnum axis) {
  1383. int constexpr homing_bump_divisor[] = HOMING_BUMP_DIVISOR;
  1384. int hbd = homing_bump_divisor[axis];
  1385. if (hbd < 1) {
  1386. hbd = 10;
  1387. SERIAL_ECHO_START;
  1388. SERIAL_ECHOLNPGM("Warning: Homing Bump Divisor < 1");
  1389. }
  1390. return homing_feedrate_mm_s[axis] / hbd;
  1391. }
  1392. //
  1393. // line_to_current_position
  1394. // Move the planner to the current position from wherever it last moved
  1395. // (or from wherever it has been told it is located).
  1396. //
  1397. inline void line_to_current_position() {
  1398. planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate_mm_s, active_extruder);
  1399. }
  1400. //
  1401. // line_to_destination
  1402. // Move the planner, not necessarily synced with current_position
  1403. //
  1404. inline void line_to_destination(float fr_mm_s) {
  1405. planner.buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], fr_mm_s, active_extruder);
  1406. }
  1407. inline void line_to_destination() { line_to_destination(feedrate_mm_s); }
  1408. inline void set_current_to_destination() { COPY(current_position, destination); }
  1409. inline void set_destination_to_current() { COPY(destination, current_position); }
  1410. #if IS_KINEMATIC
  1411. /**
  1412. * Calculate delta, start a line, and set current_position to destination
  1413. */
  1414. void prepare_uninterpolated_move_to_destination(const float fr_mm_s=0.0) {
  1415. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1416. if (DEBUGGING(LEVELING)) DEBUG_POS("prepare_uninterpolated_move_to_destination", destination);
  1417. #endif
  1418. if ( current_position[X_AXIS] == destination[X_AXIS]
  1419. && current_position[Y_AXIS] == destination[Y_AXIS]
  1420. && current_position[Z_AXIS] == destination[Z_AXIS]
  1421. && current_position[E_AXIS] == destination[E_AXIS]
  1422. ) return;
  1423. refresh_cmd_timeout();
  1424. planner.buffer_line_kinematic(destination, MMS_SCALED(fr_mm_s ? fr_mm_s : feedrate_mm_s), active_extruder);
  1425. set_current_to_destination();
  1426. }
  1427. #endif // IS_KINEMATIC
  1428. /**
  1429. * Plan a move to (X, Y, Z) and set the current_position
  1430. * The final current_position may not be the one that was requested
  1431. */
  1432. void do_blocking_move_to(const float &x, const float &y, const float &z, const float &fr_mm_s /*=0.0*/) {
  1433. const float old_feedrate_mm_s = feedrate_mm_s;
  1434. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1435. if (DEBUGGING(LEVELING)) print_xyz(PSTR(">>> do_blocking_move_to"), NULL, x, y, z);
  1436. #endif
  1437. #if ENABLED(DELTA)
  1438. feedrate_mm_s = fr_mm_s ? fr_mm_s : XY_PROBE_FEEDRATE_MM_S;
  1439. set_destination_to_current(); // sync destination at the start
  1440. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1441. if (DEBUGGING(LEVELING)) DEBUG_POS("set_destination_to_current", destination);
  1442. #endif
  1443. // when in the danger zone
  1444. if (current_position[Z_AXIS] > delta_clip_start_height) {
  1445. if (z > delta_clip_start_height) { // staying in the danger zone
  1446. destination[X_AXIS] = x; // move directly (uninterpolated)
  1447. destination[Y_AXIS] = y;
  1448. destination[Z_AXIS] = z;
  1449. prepare_uninterpolated_move_to_destination(); // set_current_to_destination
  1450. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1451. if (DEBUGGING(LEVELING)) DEBUG_POS("danger zone move", current_position);
  1452. #endif
  1453. return;
  1454. }
  1455. else {
  1456. destination[Z_AXIS] = delta_clip_start_height;
  1457. prepare_uninterpolated_move_to_destination(); // set_current_to_destination
  1458. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1459. if (DEBUGGING(LEVELING)) DEBUG_POS("zone border move", current_position);
  1460. #endif
  1461. }
  1462. }
  1463. if (z > current_position[Z_AXIS]) { // raising?
  1464. destination[Z_AXIS] = z;
  1465. prepare_uninterpolated_move_to_destination(); // set_current_to_destination
  1466. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1467. if (DEBUGGING(LEVELING)) DEBUG_POS("z raise move", current_position);
  1468. #endif
  1469. }
  1470. destination[X_AXIS] = x;
  1471. destination[Y_AXIS] = y;
  1472. prepare_move_to_destination(); // set_current_to_destination
  1473. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1474. if (DEBUGGING(LEVELING)) DEBUG_POS("xy move", current_position);
  1475. #endif
  1476. if (z < current_position[Z_AXIS]) { // lowering?
  1477. destination[Z_AXIS] = z;
  1478. prepare_uninterpolated_move_to_destination(); // set_current_to_destination
  1479. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1480. if (DEBUGGING(LEVELING)) DEBUG_POS("z lower move", current_position);
  1481. #endif
  1482. }
  1483. #elif IS_SCARA
  1484. set_destination_to_current();
  1485. // If Z needs to raise, do it before moving XY
  1486. if (destination[Z_AXIS] < z) {
  1487. destination[Z_AXIS] = z;
  1488. prepare_uninterpolated_move_to_destination(fr_mm_s ? fr_mm_s : homing_feedrate_mm_s[Z_AXIS]);
  1489. }
  1490. destination[X_AXIS] = x;
  1491. destination[Y_AXIS] = y;
  1492. prepare_uninterpolated_move_to_destination(fr_mm_s ? fr_mm_s : XY_PROBE_FEEDRATE_MM_S);
  1493. // If Z needs to lower, do it after moving XY
  1494. if (destination[Z_AXIS] > z) {
  1495. destination[Z_AXIS] = z;
  1496. prepare_uninterpolated_move_to_destination(fr_mm_s ? fr_mm_s : homing_feedrate_mm_s[Z_AXIS]);
  1497. }
  1498. #else
  1499. // If Z needs to raise, do it before moving XY
  1500. if (current_position[Z_AXIS] < z) {
  1501. feedrate_mm_s = fr_mm_s ? fr_mm_s : homing_feedrate_mm_s[Z_AXIS];
  1502. current_position[Z_AXIS] = z;
  1503. line_to_current_position();
  1504. }
  1505. feedrate_mm_s = fr_mm_s ? fr_mm_s : XY_PROBE_FEEDRATE_MM_S;
  1506. current_position[X_AXIS] = x;
  1507. current_position[Y_AXIS] = y;
  1508. line_to_current_position();
  1509. // If Z needs to lower, do it after moving XY
  1510. if (current_position[Z_AXIS] > z) {
  1511. feedrate_mm_s = fr_mm_s ? fr_mm_s : homing_feedrate_mm_s[Z_AXIS];
  1512. current_position[Z_AXIS] = z;
  1513. line_to_current_position();
  1514. }
  1515. #endif
  1516. stepper.synchronize();
  1517. feedrate_mm_s = old_feedrate_mm_s;
  1518. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1519. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< do_blocking_move_to");
  1520. #endif
  1521. }
  1522. void do_blocking_move_to_x(const float &x, const float &fr_mm_s/*=0.0*/) {
  1523. do_blocking_move_to(x, current_position[Y_AXIS], current_position[Z_AXIS], fr_mm_s);
  1524. }
  1525. void do_blocking_move_to_z(const float &z, const float &fr_mm_s/*=0.0*/) {
  1526. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z, fr_mm_s);
  1527. }
  1528. void do_blocking_move_to_xy(const float &x, const float &y, const float &fr_mm_s/*=0.0*/) {
  1529. do_blocking_move_to(x, y, current_position[Z_AXIS], fr_mm_s);
  1530. }
  1531. //
  1532. // Prepare to do endstop or probe moves
  1533. // with custom feedrates.
  1534. //
  1535. // - Save current feedrates
  1536. // - Reset the rate multiplier
  1537. // - Reset the command timeout
  1538. // - Enable the endstops (for endstop moves)
  1539. //
  1540. static void setup_for_endstop_or_probe_move() {
  1541. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1542. if (DEBUGGING(LEVELING)) DEBUG_POS("setup_for_endstop_or_probe_move", current_position);
  1543. #endif
  1544. saved_feedrate_mm_s = feedrate_mm_s;
  1545. saved_feedrate_percentage = feedrate_percentage;
  1546. feedrate_percentage = 100;
  1547. refresh_cmd_timeout();
  1548. }
  1549. static void clean_up_after_endstop_or_probe_move() {
  1550. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1551. if (DEBUGGING(LEVELING)) DEBUG_POS("clean_up_after_endstop_or_probe_move", current_position);
  1552. #endif
  1553. feedrate_mm_s = saved_feedrate_mm_s;
  1554. feedrate_percentage = saved_feedrate_percentage;
  1555. refresh_cmd_timeout();
  1556. }
  1557. #if HAS_BED_PROBE
  1558. /**
  1559. * Raise Z to a minimum height to make room for a probe to move
  1560. */
  1561. inline void do_probe_raise(float z_raise) {
  1562. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1563. if (DEBUGGING(LEVELING)) {
  1564. SERIAL_ECHOPAIR("do_probe_raise(", z_raise);
  1565. SERIAL_CHAR(')');
  1566. SERIAL_EOL;
  1567. }
  1568. #endif
  1569. float z_dest = LOGICAL_Z_POSITION(z_raise);
  1570. if (zprobe_zoffset < 0) z_dest -= zprobe_zoffset;
  1571. #if ENABLED(DELTA)
  1572. z_dest -= home_offset[Z_AXIS];
  1573. #endif
  1574. if (z_dest > current_position[Z_AXIS])
  1575. do_blocking_move_to_z(z_dest);
  1576. }
  1577. #endif //HAS_BED_PROBE
  1578. #if HAS_PROBING_PROCEDURE || HOTENDS > 1 || ENABLED(Z_PROBE_ALLEN_KEY) || ENABLED(Z_PROBE_SLED) || ENABLED(NOZZLE_CLEAN_FEATURE) || ENABLED(NOZZLE_PARK_FEATURE) || ENABLED(DELTA_AUTO_CALIBRATION)
  1579. bool axis_unhomed_error(const bool x, const bool y, const bool z) {
  1580. const bool xx = x && !axis_homed[X_AXIS],
  1581. yy = y && !axis_homed[Y_AXIS],
  1582. zz = z && !axis_homed[Z_AXIS];
  1583. if (xx || yy || zz) {
  1584. SERIAL_ECHO_START;
  1585. SERIAL_ECHOPGM(MSG_HOME " ");
  1586. if (xx) SERIAL_ECHOPGM(MSG_X);
  1587. if (yy) SERIAL_ECHOPGM(MSG_Y);
  1588. if (zz) SERIAL_ECHOPGM(MSG_Z);
  1589. SERIAL_ECHOLNPGM(" " MSG_FIRST);
  1590. #if ENABLED(ULTRA_LCD)
  1591. lcd_status_printf_P(0, PSTR(MSG_HOME " %s%s%s " MSG_FIRST), xx ? MSG_X : "", yy ? MSG_Y : "", zz ? MSG_Z : "");
  1592. #endif
  1593. return true;
  1594. }
  1595. return false;
  1596. }
  1597. #endif
  1598. #if ENABLED(Z_PROBE_SLED)
  1599. #ifndef SLED_DOCKING_OFFSET
  1600. #define SLED_DOCKING_OFFSET 0
  1601. #endif
  1602. /**
  1603. * Method to dock/undock a sled designed by Charles Bell.
  1604. *
  1605. * stow[in] If false, move to MAX_X and engage the solenoid
  1606. * If true, move to MAX_X and release the solenoid
  1607. */
  1608. static void dock_sled(bool stow) {
  1609. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1610. if (DEBUGGING(LEVELING)) {
  1611. SERIAL_ECHOPAIR("dock_sled(", stow);
  1612. SERIAL_CHAR(')');
  1613. SERIAL_EOL;
  1614. }
  1615. #endif
  1616. // Dock sled a bit closer to ensure proper capturing
  1617. do_blocking_move_to_x(X_MAX_POS + SLED_DOCKING_OFFSET - ((stow) ? 1 : 0));
  1618. #if HAS_SOLENOID_1 && DISABLED(EXT_SOLENOID)
  1619. WRITE(SOL1_PIN, !stow); // switch solenoid
  1620. #endif
  1621. }
  1622. #elif ENABLED(Z_PROBE_ALLEN_KEY)
  1623. void run_deploy_moves_script() {
  1624. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_1_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_1_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_1_Z)
  1625. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_X
  1626. #define Z_PROBE_ALLEN_KEY_DEPLOY_1_X current_position[X_AXIS]
  1627. #endif
  1628. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_Y
  1629. #define Z_PROBE_ALLEN_KEY_DEPLOY_1_Y current_position[Y_AXIS]
  1630. #endif
  1631. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_Z
  1632. #define Z_PROBE_ALLEN_KEY_DEPLOY_1_Z current_position[Z_AXIS]
  1633. #endif
  1634. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE
  1635. #define Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE 0.0
  1636. #endif
  1637. do_blocking_move_to(Z_PROBE_ALLEN_KEY_DEPLOY_1_X, Z_PROBE_ALLEN_KEY_DEPLOY_1_Y, Z_PROBE_ALLEN_KEY_DEPLOY_1_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE));
  1638. #endif
  1639. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_2_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_2_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_2_Z)
  1640. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_X
  1641. #define Z_PROBE_ALLEN_KEY_DEPLOY_2_X current_position[X_AXIS]
  1642. #endif
  1643. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_Y
  1644. #define Z_PROBE_ALLEN_KEY_DEPLOY_2_Y current_position[Y_AXIS]
  1645. #endif
  1646. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_Z
  1647. #define Z_PROBE_ALLEN_KEY_DEPLOY_2_Z current_position[Z_AXIS]
  1648. #endif
  1649. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE
  1650. #define Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE 0.0
  1651. #endif
  1652. do_blocking_move_to(Z_PROBE_ALLEN_KEY_DEPLOY_2_X, Z_PROBE_ALLEN_KEY_DEPLOY_2_Y, Z_PROBE_ALLEN_KEY_DEPLOY_2_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE));
  1653. #endif
  1654. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_3_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_3_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_3_Z)
  1655. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_X
  1656. #define Z_PROBE_ALLEN_KEY_DEPLOY_3_X current_position[X_AXIS]
  1657. #endif
  1658. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_Y
  1659. #define Z_PROBE_ALLEN_KEY_DEPLOY_3_Y current_position[Y_AXIS]
  1660. #endif
  1661. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_Z
  1662. #define Z_PROBE_ALLEN_KEY_DEPLOY_3_Z current_position[Z_AXIS]
  1663. #endif
  1664. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE
  1665. #define Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE 0.0
  1666. #endif
  1667. do_blocking_move_to(Z_PROBE_ALLEN_KEY_DEPLOY_3_X, Z_PROBE_ALLEN_KEY_DEPLOY_3_Y, Z_PROBE_ALLEN_KEY_DEPLOY_3_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE));
  1668. #endif
  1669. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_4_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_4_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_4_Z)
  1670. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_X
  1671. #define Z_PROBE_ALLEN_KEY_DEPLOY_4_X current_position[X_AXIS]
  1672. #endif
  1673. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_Y
  1674. #define Z_PROBE_ALLEN_KEY_DEPLOY_4_Y current_position[Y_AXIS]
  1675. #endif
  1676. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_Z
  1677. #define Z_PROBE_ALLEN_KEY_DEPLOY_4_Z current_position[Z_AXIS]
  1678. #endif
  1679. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_FEEDRATE
  1680. #define Z_PROBE_ALLEN_KEY_DEPLOY_4_FEEDRATE 0.0
  1681. #endif
  1682. do_blocking_move_to(Z_PROBE_ALLEN_KEY_DEPLOY_4_X, Z_PROBE_ALLEN_KEY_DEPLOY_4_Y, Z_PROBE_ALLEN_KEY_DEPLOY_4_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_4_FEEDRATE));
  1683. #endif
  1684. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_5_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_5_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_5_Z)
  1685. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_X
  1686. #define Z_PROBE_ALLEN_KEY_DEPLOY_5_X current_position[X_AXIS]
  1687. #endif
  1688. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_Y
  1689. #define Z_PROBE_ALLEN_KEY_DEPLOY_5_Y current_position[Y_AXIS]
  1690. #endif
  1691. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_Z
  1692. #define Z_PROBE_ALLEN_KEY_DEPLOY_5_Z current_position[Z_AXIS]
  1693. #endif
  1694. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_FEEDRATE
  1695. #define Z_PROBE_ALLEN_KEY_DEPLOY_5_FEEDRATE 0.0
  1696. #endif
  1697. do_blocking_move_to(Z_PROBE_ALLEN_KEY_DEPLOY_5_X, Z_PROBE_ALLEN_KEY_DEPLOY_5_Y, Z_PROBE_ALLEN_KEY_DEPLOY_5_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_5_FEEDRATE));
  1698. #endif
  1699. }
  1700. void run_stow_moves_script() {
  1701. #if defined(Z_PROBE_ALLEN_KEY_STOW_1_X) || defined(Z_PROBE_ALLEN_KEY_STOW_1_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_1_Z)
  1702. #ifndef Z_PROBE_ALLEN_KEY_STOW_1_X
  1703. #define Z_PROBE_ALLEN_KEY_STOW_1_X current_position[X_AXIS]
  1704. #endif
  1705. #ifndef Z_PROBE_ALLEN_KEY_STOW_1_Y
  1706. #define Z_PROBE_ALLEN_KEY_STOW_1_Y current_position[Y_AXIS]
  1707. #endif
  1708. #ifndef Z_PROBE_ALLEN_KEY_STOW_1_Z
  1709. #define Z_PROBE_ALLEN_KEY_STOW_1_Z current_position[Z_AXIS]
  1710. #endif
  1711. #ifndef Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE
  1712. #define Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE 0.0
  1713. #endif
  1714. do_blocking_move_to(Z_PROBE_ALLEN_KEY_STOW_1_X, Z_PROBE_ALLEN_KEY_STOW_1_Y, Z_PROBE_ALLEN_KEY_STOW_1_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE));
  1715. #endif
  1716. #if defined(Z_PROBE_ALLEN_KEY_STOW_2_X) || defined(Z_PROBE_ALLEN_KEY_STOW_2_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_2_Z)
  1717. #ifndef Z_PROBE_ALLEN_KEY_STOW_2_X
  1718. #define Z_PROBE_ALLEN_KEY_STOW_2_X current_position[X_AXIS]
  1719. #endif
  1720. #ifndef Z_PROBE_ALLEN_KEY_STOW_2_Y
  1721. #define Z_PROBE_ALLEN_KEY_STOW_2_Y current_position[Y_AXIS]
  1722. #endif
  1723. #ifndef Z_PROBE_ALLEN_KEY_STOW_2_Z
  1724. #define Z_PROBE_ALLEN_KEY_STOW_2_Z current_position[Z_AXIS]
  1725. #endif
  1726. #ifndef Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE
  1727. #define Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE 0.0
  1728. #endif
  1729. do_blocking_move_to(Z_PROBE_ALLEN_KEY_STOW_2_X, Z_PROBE_ALLEN_KEY_STOW_2_Y, Z_PROBE_ALLEN_KEY_STOW_2_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE));
  1730. #endif
  1731. #if defined(Z_PROBE_ALLEN_KEY_STOW_3_X) || defined(Z_PROBE_ALLEN_KEY_STOW_3_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_3_Z)
  1732. #ifndef Z_PROBE_ALLEN_KEY_STOW_3_X
  1733. #define Z_PROBE_ALLEN_KEY_STOW_3_X current_position[X_AXIS]
  1734. #endif
  1735. #ifndef Z_PROBE_ALLEN_KEY_STOW_3_Y
  1736. #define Z_PROBE_ALLEN_KEY_STOW_3_Y current_position[Y_AXIS]
  1737. #endif
  1738. #ifndef Z_PROBE_ALLEN_KEY_STOW_3_Z
  1739. #define Z_PROBE_ALLEN_KEY_STOW_3_Z current_position[Z_AXIS]
  1740. #endif
  1741. #ifndef Z_PROBE_ALLEN_KEY_STOW_3_FEEDRATE
  1742. #define Z_PROBE_ALLEN_KEY_STOW_3_FEEDRATE 0.0
  1743. #endif
  1744. do_blocking_move_to(Z_PROBE_ALLEN_KEY_STOW_3_X, Z_PROBE_ALLEN_KEY_STOW_3_Y, Z_PROBE_ALLEN_KEY_STOW_3_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_3_FEEDRATE));
  1745. #endif
  1746. #if defined(Z_PROBE_ALLEN_KEY_STOW_4_X) || defined(Z_PROBE_ALLEN_KEY_STOW_4_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_4_Z)
  1747. #ifndef Z_PROBE_ALLEN_KEY_STOW_4_X
  1748. #define Z_PROBE_ALLEN_KEY_STOW_4_X current_position[X_AXIS]
  1749. #endif
  1750. #ifndef Z_PROBE_ALLEN_KEY_STOW_4_Y
  1751. #define Z_PROBE_ALLEN_KEY_STOW_4_Y current_position[Y_AXIS]
  1752. #endif
  1753. #ifndef Z_PROBE_ALLEN_KEY_STOW_4_Z
  1754. #define Z_PROBE_ALLEN_KEY_STOW_4_Z current_position[Z_AXIS]
  1755. #endif
  1756. #ifndef Z_PROBE_ALLEN_KEY_STOW_4_FEEDRATE
  1757. #define Z_PROBE_ALLEN_KEY_STOW_4_FEEDRATE 0.0
  1758. #endif
  1759. do_blocking_move_to(Z_PROBE_ALLEN_KEY_STOW_4_X, Z_PROBE_ALLEN_KEY_STOW_4_Y, Z_PROBE_ALLEN_KEY_STOW_4_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_4_FEEDRATE));
  1760. #endif
  1761. #if defined(Z_PROBE_ALLEN_KEY_STOW_5_X) || defined(Z_PROBE_ALLEN_KEY_STOW_5_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_5_Z)
  1762. #ifndef Z_PROBE_ALLEN_KEY_STOW_5_X
  1763. #define Z_PROBE_ALLEN_KEY_STOW_5_X current_position[X_AXIS]
  1764. #endif
  1765. #ifndef Z_PROBE_ALLEN_KEY_STOW_5_Y
  1766. #define Z_PROBE_ALLEN_KEY_STOW_5_Y current_position[Y_AXIS]
  1767. #endif
  1768. #ifndef Z_PROBE_ALLEN_KEY_STOW_5_Z
  1769. #define Z_PROBE_ALLEN_KEY_STOW_5_Z current_position[Z_AXIS]
  1770. #endif
  1771. #ifndef Z_PROBE_ALLEN_KEY_STOW_5_FEEDRATE
  1772. #define Z_PROBE_ALLEN_KEY_STOW_5_FEEDRATE 0.0
  1773. #endif
  1774. do_blocking_move_to(Z_PROBE_ALLEN_KEY_STOW_5_X, Z_PROBE_ALLEN_KEY_STOW_5_Y, Z_PROBE_ALLEN_KEY_STOW_5_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_5_FEEDRATE));
  1775. #endif
  1776. }
  1777. #endif
  1778. #if HAS_BED_PROBE
  1779. // TRIGGERED_WHEN_STOWED_TEST can easily be extended to servo probes, ... if needed.
  1780. #if ENABLED(PROBE_IS_TRIGGERED_WHEN_STOWED_TEST)
  1781. #if ENABLED(Z_MIN_PROBE_ENDSTOP)
  1782. #define _TRIGGERED_WHEN_STOWED_TEST (READ(Z_MIN_PROBE_PIN) != Z_MIN_PROBE_ENDSTOP_INVERTING)
  1783. #else
  1784. #define _TRIGGERED_WHEN_STOWED_TEST (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING)
  1785. #endif
  1786. #endif
  1787. #if ENABLED(BLTOUCH)
  1788. void bltouch_command(int angle) {
  1789. servo[Z_ENDSTOP_SERVO_NR].move(angle); // Give the BL-Touch the command and wait
  1790. safe_delay(BLTOUCH_DELAY);
  1791. }
  1792. /**
  1793. * BLTouch probes have a Hall effect sensor. The high currents switching
  1794. * on and off cause a magnetic field that can affect the repeatability of the
  1795. * sensor. So for BLTouch probes, heaters are turned off during the probe,
  1796. * then quickly turned back on after the point is sampled.
  1797. */
  1798. #if ENABLED(BLTOUCH_HEATERS_OFF)
  1799. void set_heaters_for_bltouch(const bool deploy) {
  1800. static bool heaters_were_disabled = false;
  1801. static millis_t next_emi_protection;
  1802. static float temps_at_entry[HOTENDS];
  1803. #if HAS_TEMP_BED
  1804. static float bed_temp_at_entry;
  1805. #endif
  1806. // If called out of order or far apart something is seriously wrong
  1807. if (deploy == heaters_were_disabled
  1808. || (next_emi_protection && ELAPSED(millis(), next_emi_protection)))
  1809. kill(PSTR(MSG_KILLED));
  1810. if (deploy) {
  1811. next_emi_protection = millis() + 20 * 1000UL;
  1812. HOTEND_LOOP() {
  1813. temps_at_entry[e] = thermalManager.degTargetHotend(e);
  1814. thermalManager.setTargetHotend(0, e);
  1815. }
  1816. #if HAS_TEMP_BED
  1817. bed_temp_at_entry = thermalManager.degTargetBed();
  1818. thermalManager.setTargetBed(0);
  1819. #endif
  1820. }
  1821. else {
  1822. next_emi_protection = 0;
  1823. HOTEND_LOOP() thermalManager.setTargetHotend(temps_at_entry[e], e);
  1824. #if HAS_TEMP_BED
  1825. thermalManager.setTargetBed(bed_temp_at_entry);
  1826. #endif
  1827. }
  1828. heaters_were_disabled = deploy;
  1829. }
  1830. #endif // BLTOUCH_HEATERS_OFF
  1831. void set_bltouch_deployed(const bool deploy) {
  1832. if (deploy && TEST_BLTOUCH()) { // If BL-Touch says it's triggered
  1833. bltouch_command(BLTOUCH_RESET); // try to reset it.
  1834. bltouch_command(BLTOUCH_DEPLOY); // Also needs to deploy and stow to
  1835. bltouch_command(BLTOUCH_STOW); // clear the triggered condition.
  1836. safe_delay(1500); // Wait for internal self-test to complete.
  1837. // (Measured completion time was 0.65 seconds
  1838. // after reset, deploy, and stow sequence)
  1839. if (TEST_BLTOUCH()) { // If it still claims to be triggered...
  1840. SERIAL_ERROR_START;
  1841. SERIAL_ERRORLNPGM(MSG_STOP_BLTOUCH);
  1842. stop(); // punt!
  1843. }
  1844. }
  1845. #if ENABLED(BLTOUCH_HEATERS_OFF)
  1846. set_heaters_for_bltouch(deploy);
  1847. #endif
  1848. bltouch_command(deploy ? BLTOUCH_DEPLOY : BLTOUCH_STOW);
  1849. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1850. if (DEBUGGING(LEVELING)) {
  1851. SERIAL_ECHOPAIR("set_bltouch_deployed(", deploy);
  1852. SERIAL_CHAR(')');
  1853. SERIAL_EOL;
  1854. }
  1855. #endif
  1856. }
  1857. #endif // BLTOUCH
  1858. // returns false for ok and true for failure
  1859. bool set_probe_deployed(bool deploy) {
  1860. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1861. if (DEBUGGING(LEVELING)) {
  1862. DEBUG_POS("set_probe_deployed", current_position);
  1863. SERIAL_ECHOLNPAIR("deploy: ", deploy);
  1864. }
  1865. #endif
  1866. if (endstops.z_probe_enabled == deploy) return false;
  1867. #if ENABLED(BLTOUCH) && ENABLED(BLTOUCH_HEATERS_OFF)
  1868. set_heaters_for_bltouch(deploy);
  1869. #endif
  1870. // Make room for probe
  1871. do_probe_raise(_Z_CLEARANCE_DEPLOY_PROBE);
  1872. // When deploying make sure BLTOUCH is not already triggered
  1873. #if ENABLED(BLTOUCH)
  1874. if (deploy && TEST_BLTOUCH()) { // If BL-Touch says it's triggered
  1875. bltouch_command(BLTOUCH_RESET); // try to reset it.
  1876. bltouch_command(BLTOUCH_DEPLOY); // Also needs to deploy and stow to
  1877. bltouch_command(BLTOUCH_STOW); // clear the triggered condition.
  1878. safe_delay(1500); // wait for internal self test to complete
  1879. // measured completion time was 0.65 seconds
  1880. // after reset, deploy & stow sequence
  1881. if (TEST_BLTOUCH()) { // If it still claims to be triggered...
  1882. SERIAL_ERROR_START;
  1883. SERIAL_ERRORLNPGM(MSG_STOP_BLTOUCH);
  1884. stop(); // punt!
  1885. return true;
  1886. }
  1887. }
  1888. #elif ENABLED(Z_PROBE_SLED)
  1889. if (axis_unhomed_error(true, false, false)) {
  1890. SERIAL_ERROR_START;
  1891. SERIAL_ERRORLNPGM(MSG_STOP_UNHOMED);
  1892. stop();
  1893. return true;
  1894. }
  1895. #elif ENABLED(Z_PROBE_ALLEN_KEY)
  1896. if (axis_unhomed_error(true, true, true )) {
  1897. SERIAL_ERROR_START;
  1898. SERIAL_ERRORLNPGM(MSG_STOP_UNHOMED);
  1899. stop();
  1900. return true;
  1901. }
  1902. #endif
  1903. const float oldXpos = current_position[X_AXIS],
  1904. oldYpos = current_position[Y_AXIS];
  1905. #ifdef _TRIGGERED_WHEN_STOWED_TEST
  1906. // If endstop is already false, the Z probe is deployed
  1907. if (_TRIGGERED_WHEN_STOWED_TEST == deploy) { // closed after the probe specific actions.
  1908. // Would a goto be less ugly?
  1909. //while (!_TRIGGERED_WHEN_STOWED_TEST) idle(); // would offer the opportunity
  1910. // for a triggered when stowed manual probe.
  1911. if (!deploy) endstops.enable_z_probe(false); // Switch off triggered when stowed probes early
  1912. // otherwise an Allen-Key probe can't be stowed.
  1913. #endif
  1914. #if ENABLED(SOLENOID_PROBE)
  1915. #if HAS_SOLENOID_1
  1916. WRITE(SOL1_PIN, deploy);
  1917. #endif
  1918. #elif ENABLED(Z_PROBE_SLED)
  1919. dock_sled(!deploy);
  1920. #elif HAS_Z_SERVO_ENDSTOP && DISABLED(BLTOUCH)
  1921. servo[Z_ENDSTOP_SERVO_NR].move(z_servo_angle[deploy ? 0 : 1]);
  1922. #elif ENABLED(Z_PROBE_ALLEN_KEY)
  1923. deploy ? run_deploy_moves_script() : run_stow_moves_script();
  1924. #endif
  1925. #ifdef _TRIGGERED_WHEN_STOWED_TEST
  1926. } // _TRIGGERED_WHEN_STOWED_TEST == deploy
  1927. if (_TRIGGERED_WHEN_STOWED_TEST == deploy) { // State hasn't changed?
  1928. if (IsRunning()) {
  1929. SERIAL_ERROR_START;
  1930. SERIAL_ERRORLNPGM("Z-Probe failed");
  1931. LCD_ALERTMESSAGEPGM("Err: ZPROBE");
  1932. }
  1933. stop();
  1934. return true;
  1935. } // _TRIGGERED_WHEN_STOWED_TEST == deploy
  1936. #endif
  1937. do_blocking_move_to(oldXpos, oldYpos, current_position[Z_AXIS]); // return to position before deploy
  1938. endstops.enable_z_probe(deploy);
  1939. return false;
  1940. }
  1941. static void do_probe_move(float z, float fr_mm_m) {
  1942. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1943. if (DEBUGGING(LEVELING)) DEBUG_POS(">>> do_probe_move", current_position);
  1944. #endif
  1945. // Deploy BLTouch at the start of any probe
  1946. #if ENABLED(BLTOUCH)
  1947. set_bltouch_deployed(true);
  1948. #endif
  1949. // Move down until probe triggered
  1950. do_blocking_move_to_z(LOGICAL_Z_POSITION(z), MMM_TO_MMS(fr_mm_m));
  1951. // Retract BLTouch immediately after a probe
  1952. #if ENABLED(BLTOUCH)
  1953. set_bltouch_deployed(false);
  1954. #endif
  1955. // Clear endstop flags
  1956. endstops.hit_on_purpose();
  1957. // Get Z where the steppers were interrupted
  1958. set_current_from_steppers_for_axis(Z_AXIS);
  1959. // Tell the planner where we actually are
  1960. SYNC_PLAN_POSITION_KINEMATIC();
  1961. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1962. if (DEBUGGING(LEVELING)) DEBUG_POS("<<< do_probe_move", current_position);
  1963. #endif
  1964. }
  1965. // Do a single Z probe and return with current_position[Z_AXIS]
  1966. // at the height where the probe triggered.
  1967. static float run_z_probe() {
  1968. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1969. if (DEBUGGING(LEVELING)) DEBUG_POS(">>> run_z_probe", current_position);
  1970. #endif
  1971. // Prevent stepper_inactive_time from running out and EXTRUDER_RUNOUT_PREVENT from extruding
  1972. refresh_cmd_timeout();
  1973. #if ENABLED(PROBE_DOUBLE_TOUCH)
  1974. // Do a first probe at the fast speed
  1975. do_probe_move(-(Z_MAX_LENGTH) - 10, Z_PROBE_SPEED_FAST);
  1976. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1977. float first_probe_z = current_position[Z_AXIS];
  1978. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPAIR("1st Probe Z:", first_probe_z);
  1979. #endif
  1980. // move up by the bump distance
  1981. do_blocking_move_to_z(current_position[Z_AXIS] + home_bump_mm(Z_AXIS), MMM_TO_MMS(Z_PROBE_SPEED_FAST));
  1982. #else
  1983. // If the nozzle is above the travel height then
  1984. // move down quickly before doing the slow probe
  1985. float z = LOGICAL_Z_POSITION(Z_CLEARANCE_BETWEEN_PROBES);
  1986. if (zprobe_zoffset < 0) z -= zprobe_zoffset;
  1987. #if ENABLED(DELTA)
  1988. z -= home_offset[Z_AXIS];
  1989. #endif
  1990. if (z < current_position[Z_AXIS])
  1991. do_blocking_move_to_z(z, MMM_TO_MMS(Z_PROBE_SPEED_FAST));
  1992. #endif
  1993. // move down slowly to find bed
  1994. do_probe_move(-(Z_MAX_LENGTH) - 10, Z_PROBE_SPEED_SLOW);
  1995. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1996. if (DEBUGGING(LEVELING)) DEBUG_POS("<<< run_z_probe", current_position);
  1997. #endif
  1998. // Debug: compare probe heights
  1999. #if ENABLED(PROBE_DOUBLE_TOUCH) && ENABLED(DEBUG_LEVELING_FEATURE)
  2000. if (DEBUGGING(LEVELING)) {
  2001. SERIAL_ECHOPAIR("2nd Probe Z:", current_position[Z_AXIS]);
  2002. SERIAL_ECHOLNPAIR(" Discrepancy:", first_probe_z - current_position[Z_AXIS]);
  2003. }
  2004. #endif
  2005. return current_position[Z_AXIS] + zprobe_zoffset;
  2006. }
  2007. /**
  2008. * - Move to the given XY
  2009. * - Deploy the probe, if not already deployed
  2010. * - Probe the bed, get the Z position
  2011. * - Depending on the 'stow' flag
  2012. * - Stow the probe, or
  2013. * - Raise to the BETWEEN height
  2014. * - Return the probed Z position
  2015. */
  2016. float probe_pt(const float x, const float y, const bool stow/*=true*/, const int verbose_level/*=1*/) {
  2017. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2018. if (DEBUGGING(LEVELING)) {
  2019. SERIAL_ECHOPAIR(">>> probe_pt(", x);
  2020. SERIAL_ECHOPAIR(", ", y);
  2021. SERIAL_ECHOPAIR(", ", stow ? "" : "no ");
  2022. SERIAL_ECHOLNPGM("stow)");
  2023. DEBUG_POS("", current_position);
  2024. }
  2025. #endif
  2026. const float old_feedrate_mm_s = feedrate_mm_s;
  2027. #if ENABLED(DELTA)
  2028. if (current_position[Z_AXIS] > delta_clip_start_height)
  2029. do_blocking_move_to_z(delta_clip_start_height);
  2030. #endif
  2031. // Ensure a minimum height before moving the probe
  2032. do_probe_raise(Z_CLEARANCE_BETWEEN_PROBES);
  2033. feedrate_mm_s = XY_PROBE_FEEDRATE_MM_S;
  2034. // Move the probe to the given XY
  2035. do_blocking_move_to_xy(x - (X_PROBE_OFFSET_FROM_EXTRUDER), y - (Y_PROBE_OFFSET_FROM_EXTRUDER));
  2036. if (DEPLOY_PROBE()) return NAN;
  2037. const float measured_z = run_z_probe();
  2038. if (!stow)
  2039. do_probe_raise(Z_CLEARANCE_BETWEEN_PROBES);
  2040. else
  2041. if (STOW_PROBE()) return NAN;
  2042. if (verbose_level > 2) {
  2043. SERIAL_PROTOCOLPGM("Bed X: ");
  2044. SERIAL_PROTOCOL_F(x, 3);
  2045. SERIAL_PROTOCOLPGM(" Y: ");
  2046. SERIAL_PROTOCOL_F(y, 3);
  2047. SERIAL_PROTOCOLPGM(" Z: ");
  2048. SERIAL_PROTOCOL_F(measured_z, 3);
  2049. SERIAL_EOL;
  2050. }
  2051. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2052. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< probe_pt");
  2053. #endif
  2054. feedrate_mm_s = old_feedrate_mm_s;
  2055. return measured_z;
  2056. }
  2057. #endif // HAS_BED_PROBE
  2058. #if HAS_LEVELING
  2059. /**
  2060. * Turn bed leveling on or off, fixing the current
  2061. * position as-needed.
  2062. *
  2063. * Disable: Current position = physical position
  2064. * Enable: Current position = "unleveled" physical position
  2065. */
  2066. void set_bed_leveling_enabled(bool enable/*=true*/) {
  2067. #if ENABLED(MESH_BED_LEVELING)
  2068. if (enable != mbl.active()) {
  2069. if (!enable)
  2070. planner.apply_leveling(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS]);
  2071. mbl.set_active(enable && mbl.has_mesh());
  2072. if (enable && mbl.has_mesh()) planner.unapply_leveling(current_position);
  2073. }
  2074. #elif HAS_ABL && !ENABLED(AUTO_BED_LEVELING_UBL)
  2075. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  2076. const bool can_change = (!enable || (bilinear_grid_spacing[0] && bilinear_grid_spacing[1]));
  2077. #else
  2078. constexpr bool can_change = true;
  2079. #endif
  2080. if (can_change && enable != planner.abl_enabled) {
  2081. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  2082. // Force bilinear_z_offset to re-calculate next time
  2083. const float reset[XYZ] = { -9999.999, -9999.999, 0 };
  2084. (void)bilinear_z_offset(reset);
  2085. #endif
  2086. planner.abl_enabled = enable;
  2087. if (!enable)
  2088. set_current_from_steppers_for_axis(
  2089. #if ABL_PLANAR
  2090. ALL_AXES
  2091. #else
  2092. Z_AXIS
  2093. #endif
  2094. );
  2095. else
  2096. planner.unapply_leveling(current_position);
  2097. }
  2098. #elif ENABLED(AUTO_BED_LEVELING_UBL)
  2099. ubl.state.active = enable;
  2100. //set_current_from_steppers_for_axis(Z_AXIS);
  2101. #endif
  2102. }
  2103. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  2104. void set_z_fade_height(const float zfh) {
  2105. planner.z_fade_height = zfh;
  2106. planner.inverse_z_fade_height = RECIPROCAL(zfh);
  2107. if (
  2108. #if ENABLED(MESH_BED_LEVELING)
  2109. mbl.active()
  2110. #else
  2111. planner.abl_enabled
  2112. #endif
  2113. ) {
  2114. set_current_from_steppers_for_axis(
  2115. #if ABL_PLANAR
  2116. ALL_AXES
  2117. #else
  2118. Z_AXIS
  2119. #endif
  2120. );
  2121. }
  2122. }
  2123. #endif // LEVELING_FADE_HEIGHT
  2124. /**
  2125. * Reset calibration results to zero.
  2126. */
  2127. void reset_bed_level() {
  2128. set_bed_leveling_enabled(false);
  2129. #if ENABLED(MESH_BED_LEVELING)
  2130. if (mbl.has_mesh()) {
  2131. mbl.reset();
  2132. mbl.set_has_mesh(false);
  2133. }
  2134. #else
  2135. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2136. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("reset_bed_level");
  2137. #endif
  2138. #if ABL_PLANAR
  2139. planner.bed_level_matrix.set_to_identity();
  2140. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  2141. bilinear_start[X_AXIS] = bilinear_start[Y_AXIS] =
  2142. bilinear_grid_spacing[X_AXIS] = bilinear_grid_spacing[Y_AXIS] = 0;
  2143. for (uint8_t x = 0; x < GRID_MAX_POINTS_X; x++)
  2144. for (uint8_t y = 0; y < GRID_MAX_POINTS_Y; y++)
  2145. z_values[x][y] = NAN;
  2146. #elif ENABLED(AUTO_BED_LEVELING_UBL)
  2147. ubl.reset();
  2148. #endif
  2149. #endif
  2150. }
  2151. #endif // HAS_LEVELING
  2152. #if ENABLED(AUTO_BED_LEVELING_BILINEAR) || ENABLED(MESH_BED_LEVELING)
  2153. /**
  2154. * Enable to produce output in JSON format suitable
  2155. * for SCAD or JavaScript mesh visualizers.
  2156. *
  2157. * Visualize meshes in OpenSCAD using the included script.
  2158. *
  2159. * buildroot/shared/scripts/MarlinMesh.scad
  2160. */
  2161. //#define SCAD_MESH_OUTPUT
  2162. /**
  2163. * Print calibration results for plotting or manual frame adjustment.
  2164. */
  2165. static void print_2d_array(const uint8_t sx, const uint8_t sy, const uint8_t precision, float (*fn)(const uint8_t, const uint8_t)) {
  2166. #ifndef SCAD_MESH_OUTPUT
  2167. for (uint8_t x = 0; x < sx; x++) {
  2168. for (uint8_t i = 0; i < precision + 2 + (x < 10 ? 1 : 0); i++)
  2169. SERIAL_PROTOCOLCHAR(' ');
  2170. SERIAL_PROTOCOL((int)x);
  2171. }
  2172. SERIAL_EOL;
  2173. #endif
  2174. #ifdef SCAD_MESH_OUTPUT
  2175. SERIAL_PROTOCOLLNPGM("measured_z = ["); // open 2D array
  2176. #endif
  2177. for (uint8_t y = 0; y < sy; y++) {
  2178. #ifdef SCAD_MESH_OUTPUT
  2179. SERIAL_PROTOCOLLNPGM(" ["); // open sub-array
  2180. #else
  2181. if (y < 10) SERIAL_PROTOCOLCHAR(' ');
  2182. SERIAL_PROTOCOL((int)y);
  2183. #endif
  2184. for (uint8_t x = 0; x < sx; x++) {
  2185. SERIAL_PROTOCOLCHAR(' ');
  2186. const float offset = fn(x, y);
  2187. if (!isnan(offset)) {
  2188. if (offset >= 0) SERIAL_PROTOCOLCHAR('+');
  2189. SERIAL_PROTOCOL_F(offset, precision);
  2190. }
  2191. else {
  2192. #ifdef SCAD_MESH_OUTPUT
  2193. for (uint8_t i = 3; i < precision + 3; i++)
  2194. SERIAL_PROTOCOLCHAR(' ');
  2195. SERIAL_PROTOCOLPGM("NAN");
  2196. #else
  2197. for (uint8_t i = 0; i < precision + 3; i++)
  2198. SERIAL_PROTOCOLCHAR(i ? '=' : ' ');
  2199. #endif
  2200. }
  2201. #ifdef SCAD_MESH_OUTPUT
  2202. if (x < sx - 1) SERIAL_PROTOCOLCHAR(',');
  2203. #endif
  2204. }
  2205. #ifdef SCAD_MESH_OUTPUT
  2206. SERIAL_PROTOCOLCHAR(' ');
  2207. SERIAL_PROTOCOLCHAR(']'); // close sub-array
  2208. if (y < sy - 1) SERIAL_PROTOCOLCHAR(',');
  2209. #endif
  2210. SERIAL_EOL;
  2211. }
  2212. #ifdef SCAD_MESH_OUTPUT
  2213. SERIAL_PROTOCOLPGM("\n];"); // close 2D array
  2214. #endif
  2215. SERIAL_EOL;
  2216. }
  2217. #endif
  2218. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  2219. /**
  2220. * Extrapolate a single point from its neighbors
  2221. */
  2222. static void extrapolate_one_point(uint8_t x, uint8_t y, int8_t xdir, int8_t ydir) {
  2223. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2224. if (DEBUGGING(LEVELING)) {
  2225. SERIAL_ECHOPGM("Extrapolate [");
  2226. if (x < 10) SERIAL_CHAR(' ');
  2227. SERIAL_ECHO((int)x);
  2228. SERIAL_CHAR(xdir ? (xdir > 0 ? '+' : '-') : ' ');
  2229. SERIAL_CHAR(' ');
  2230. if (y < 10) SERIAL_CHAR(' ');
  2231. SERIAL_ECHO((int)y);
  2232. SERIAL_CHAR(ydir ? (ydir > 0 ? '+' : '-') : ' ');
  2233. SERIAL_CHAR(']');
  2234. }
  2235. #endif
  2236. if (!isnan(z_values[x][y])) {
  2237. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2238. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM(" (done)");
  2239. #endif
  2240. return; // Don't overwrite good values.
  2241. }
  2242. SERIAL_EOL;
  2243. // Get X neighbors, Y neighbors, and XY neighbors
  2244. float a1 = z_values[x + xdir][y], a2 = z_values[x + xdir * 2][y],
  2245. b1 = z_values[x][y + ydir], b2 = z_values[x][y + ydir * 2],
  2246. c1 = z_values[x + xdir][y + ydir], c2 = z_values[x + xdir * 2][y + ydir * 2];
  2247. // Treat far unprobed points as zero, near as equal to far
  2248. if (isnan(a2)) a2 = 0.0; if (isnan(a1)) a1 = a2;
  2249. if (isnan(b2)) b2 = 0.0; if (isnan(b1)) b1 = b2;
  2250. if (isnan(c2)) c2 = 0.0; if (isnan(c1)) c1 = c2;
  2251. const float a = 2 * a1 - a2, b = 2 * b1 - b2, c = 2 * c1 - c2;
  2252. // Take the average instead of the median
  2253. z_values[x][y] = (a + b + c) / 3.0;
  2254. // Median is robust (ignores outliers).
  2255. // z_values[x][y] = (a < b) ? ((b < c) ? b : (c < a) ? a : c)
  2256. // : ((c < b) ? b : (a < c) ? a : c);
  2257. }
  2258. //Enable this if your SCARA uses 180° of total area
  2259. //#define EXTRAPOLATE_FROM_EDGE
  2260. #if ENABLED(EXTRAPOLATE_FROM_EDGE)
  2261. #if GRID_MAX_POINTS_X < GRID_MAX_POINTS_Y
  2262. #define HALF_IN_X
  2263. #elif GRID_MAX_POINTS_Y < GRID_MAX_POINTS_X
  2264. #define HALF_IN_Y
  2265. #endif
  2266. #endif
  2267. /**
  2268. * Fill in the unprobed points (corners of circular print surface)
  2269. * using linear extrapolation, away from the center.
  2270. */
  2271. static void extrapolate_unprobed_bed_level() {
  2272. #ifdef HALF_IN_X
  2273. const uint8_t ctrx2 = 0, xlen = GRID_MAX_POINTS_X - 1;
  2274. #else
  2275. const uint8_t ctrx1 = (GRID_MAX_POINTS_X - 1) / 2, // left-of-center
  2276. ctrx2 = GRID_MAX_POINTS_X / 2, // right-of-center
  2277. xlen = ctrx1;
  2278. #endif
  2279. #ifdef HALF_IN_Y
  2280. const uint8_t ctry2 = 0, ylen = GRID_MAX_POINTS_Y - 1;
  2281. #else
  2282. const uint8_t ctry1 = (GRID_MAX_POINTS_Y - 1) / 2, // top-of-center
  2283. ctry2 = GRID_MAX_POINTS_Y / 2, // bottom-of-center
  2284. ylen = ctry1;
  2285. #endif
  2286. for (uint8_t xo = 0; xo <= xlen; xo++)
  2287. for (uint8_t yo = 0; yo <= ylen; yo++) {
  2288. uint8_t x2 = ctrx2 + xo, y2 = ctry2 + yo;
  2289. #ifndef HALF_IN_X
  2290. const uint8_t x1 = ctrx1 - xo;
  2291. #endif
  2292. #ifndef HALF_IN_Y
  2293. const uint8_t y1 = ctry1 - yo;
  2294. #ifndef HALF_IN_X
  2295. extrapolate_one_point(x1, y1, +1, +1); // left-below + +
  2296. #endif
  2297. extrapolate_one_point(x2, y1, -1, +1); // right-below - +
  2298. #endif
  2299. #ifndef HALF_IN_X
  2300. extrapolate_one_point(x1, y2, +1, -1); // left-above + -
  2301. #endif
  2302. extrapolate_one_point(x2, y2, -1, -1); // right-above - -
  2303. }
  2304. }
  2305. static void print_bilinear_leveling_grid() {
  2306. SERIAL_ECHOLNPGM("Bilinear Leveling Grid:");
  2307. print_2d_array(GRID_MAX_POINTS_X, GRID_MAX_POINTS_Y, 3,
  2308. [](const uint8_t ix, const uint8_t iy) { return z_values[ix][iy]; }
  2309. );
  2310. }
  2311. #if ENABLED(ABL_BILINEAR_SUBDIVISION)
  2312. #define ABL_GRID_POINTS_VIRT_X (GRID_MAX_POINTS_X - 1) * (BILINEAR_SUBDIVISIONS) + 1
  2313. #define ABL_GRID_POINTS_VIRT_Y (GRID_MAX_POINTS_Y - 1) * (BILINEAR_SUBDIVISIONS) + 1
  2314. #define ABL_TEMP_POINTS_X (GRID_MAX_POINTS_X + 2)
  2315. #define ABL_TEMP_POINTS_Y (GRID_MAX_POINTS_Y + 2)
  2316. float z_values_virt[ABL_GRID_POINTS_VIRT_X][ABL_GRID_POINTS_VIRT_Y];
  2317. int bilinear_grid_spacing_virt[2] = { 0 };
  2318. float bilinear_grid_factor_virt[2] = { 0 };
  2319. static void bed_level_virt_print() {
  2320. SERIAL_ECHOLNPGM("Subdivided with CATMULL ROM Leveling Grid:");
  2321. print_2d_array(ABL_GRID_POINTS_VIRT_X, ABL_GRID_POINTS_VIRT_Y, 5,
  2322. [](const uint8_t ix, const uint8_t iy) { return z_values_virt[ix][iy]; }
  2323. );
  2324. }
  2325. #define LINEAR_EXTRAPOLATION(E, I) ((E) * 2 - (I))
  2326. float bed_level_virt_coord(const uint8_t x, const uint8_t y) {
  2327. uint8_t ep = 0, ip = 1;
  2328. if (!x || x == ABL_TEMP_POINTS_X - 1) {
  2329. if (x) {
  2330. ep = GRID_MAX_POINTS_X - 1;
  2331. ip = GRID_MAX_POINTS_X - 2;
  2332. }
  2333. if (WITHIN(y, 1, ABL_TEMP_POINTS_Y - 2))
  2334. return LINEAR_EXTRAPOLATION(
  2335. z_values[ep][y - 1],
  2336. z_values[ip][y - 1]
  2337. );
  2338. else
  2339. return LINEAR_EXTRAPOLATION(
  2340. bed_level_virt_coord(ep + 1, y),
  2341. bed_level_virt_coord(ip + 1, y)
  2342. );
  2343. }
  2344. if (!y || y == ABL_TEMP_POINTS_Y - 1) {
  2345. if (y) {
  2346. ep = GRID_MAX_POINTS_Y - 1;
  2347. ip = GRID_MAX_POINTS_Y - 2;
  2348. }
  2349. if (WITHIN(x, 1, ABL_TEMP_POINTS_X - 2))
  2350. return LINEAR_EXTRAPOLATION(
  2351. z_values[x - 1][ep],
  2352. z_values[x - 1][ip]
  2353. );
  2354. else
  2355. return LINEAR_EXTRAPOLATION(
  2356. bed_level_virt_coord(x, ep + 1),
  2357. bed_level_virt_coord(x, ip + 1)
  2358. );
  2359. }
  2360. return z_values[x - 1][y - 1];
  2361. }
  2362. static float bed_level_virt_cmr(const float p[4], const uint8_t i, const float t) {
  2363. return (
  2364. p[i-1] * -t * sq(1 - t)
  2365. + p[i] * (2 - 5 * sq(t) + 3 * t * sq(t))
  2366. + p[i+1] * t * (1 + 4 * t - 3 * sq(t))
  2367. - p[i+2] * sq(t) * (1 - t)
  2368. ) * 0.5;
  2369. }
  2370. static float bed_level_virt_2cmr(const uint8_t x, const uint8_t y, const float &tx, const float &ty) {
  2371. float row[4], column[4];
  2372. for (uint8_t i = 0; i < 4; i++) {
  2373. for (uint8_t j = 0; j < 4; j++) {
  2374. column[j] = bed_level_virt_coord(i + x - 1, j + y - 1);
  2375. }
  2376. row[i] = bed_level_virt_cmr(column, 1, ty);
  2377. }
  2378. return bed_level_virt_cmr(row, 1, tx);
  2379. }
  2380. void bed_level_virt_interpolate() {
  2381. bilinear_grid_spacing_virt[X_AXIS] = bilinear_grid_spacing[X_AXIS] / (BILINEAR_SUBDIVISIONS);
  2382. bilinear_grid_spacing_virt[Y_AXIS] = bilinear_grid_spacing[Y_AXIS] / (BILINEAR_SUBDIVISIONS);
  2383. bilinear_grid_factor_virt[X_AXIS] = RECIPROCAL(bilinear_grid_spacing_virt[X_AXIS]);
  2384. bilinear_grid_factor_virt[Y_AXIS] = RECIPROCAL(bilinear_grid_spacing_virt[Y_AXIS]);
  2385. for (uint8_t y = 0; y < GRID_MAX_POINTS_Y; y++)
  2386. for (uint8_t x = 0; x < GRID_MAX_POINTS_X; x++)
  2387. for (uint8_t ty = 0; ty < BILINEAR_SUBDIVISIONS; ty++)
  2388. for (uint8_t tx = 0; tx < BILINEAR_SUBDIVISIONS; tx++) {
  2389. if ((ty && y == GRID_MAX_POINTS_Y - 1) || (tx && x == GRID_MAX_POINTS_X - 1))
  2390. continue;
  2391. z_values_virt[x * (BILINEAR_SUBDIVISIONS) + tx][y * (BILINEAR_SUBDIVISIONS) + ty] =
  2392. bed_level_virt_2cmr(
  2393. x + 1,
  2394. y + 1,
  2395. (float)tx / (BILINEAR_SUBDIVISIONS),
  2396. (float)ty / (BILINEAR_SUBDIVISIONS)
  2397. );
  2398. }
  2399. }
  2400. #endif // ABL_BILINEAR_SUBDIVISION
  2401. // Refresh after other values have been updated
  2402. void refresh_bed_level() {
  2403. bilinear_grid_factor[X_AXIS] = RECIPROCAL(bilinear_grid_spacing[X_AXIS]);
  2404. bilinear_grid_factor[Y_AXIS] = RECIPROCAL(bilinear_grid_spacing[Y_AXIS]);
  2405. #if ENABLED(ABL_BILINEAR_SUBDIVISION)
  2406. bed_level_virt_interpolate();
  2407. #endif
  2408. }
  2409. #endif // AUTO_BED_LEVELING_BILINEAR
  2410. /**
  2411. * Home an individual linear axis
  2412. */
  2413. static void do_homing_move(const AxisEnum axis, float distance, float fr_mm_s=0.0) {
  2414. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2415. if (DEBUGGING(LEVELING)) {
  2416. SERIAL_ECHOPAIR(">>> do_homing_move(", axis_codes[axis]);
  2417. SERIAL_ECHOPAIR(", ", distance);
  2418. SERIAL_ECHOPAIR(", ", fr_mm_s);
  2419. SERIAL_CHAR(')');
  2420. SERIAL_EOL;
  2421. }
  2422. #endif
  2423. #if HOMING_Z_WITH_PROBE && ENABLED(BLTOUCH)
  2424. const bool deploy_bltouch = (axis == Z_AXIS && distance < 0);
  2425. if (deploy_bltouch) set_bltouch_deployed(true);
  2426. #endif
  2427. // Tell the planner we're at Z=0
  2428. current_position[axis] = 0;
  2429. #if IS_SCARA
  2430. SYNC_PLAN_POSITION_KINEMATIC();
  2431. current_position[axis] = distance;
  2432. inverse_kinematics(current_position);
  2433. planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], current_position[E_AXIS], fr_mm_s ? fr_mm_s : homing_feedrate_mm_s[axis], active_extruder);
  2434. #else
  2435. sync_plan_position();
  2436. current_position[axis] = distance;
  2437. planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], fr_mm_s ? fr_mm_s : homing_feedrate_mm_s[axis], active_extruder);
  2438. #endif
  2439. stepper.synchronize();
  2440. #if HOMING_Z_WITH_PROBE && ENABLED(BLTOUCH)
  2441. if (deploy_bltouch) set_bltouch_deployed(false);
  2442. #endif
  2443. endstops.hit_on_purpose();
  2444. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2445. if (DEBUGGING(LEVELING)) {
  2446. SERIAL_ECHOPAIR("<<< do_homing_move(", axis_codes[axis]);
  2447. SERIAL_CHAR(')');
  2448. SERIAL_EOL;
  2449. }
  2450. #endif
  2451. }
  2452. /**
  2453. * TMC2130 specific sensorless homing using stallGuard2.
  2454. * stallGuard2 only works when in spreadCycle mode.
  2455. * spreadCycle and stealthChop are mutually exclusive.
  2456. */
  2457. #if ENABLED(SENSORLESS_HOMING)
  2458. void tmc2130_sensorless_homing(TMC2130Stepper &st, bool enable=true) {
  2459. #if ENABLED(STEALTHCHOP)
  2460. if (enable) {
  2461. st.coolstep_min_speed(1024UL * 1024UL - 1UL);
  2462. st.stealthChop(0);
  2463. }
  2464. else {
  2465. st.coolstep_min_speed(0);
  2466. st.stealthChop(1);
  2467. }
  2468. #endif
  2469. st.diag1_stall(enable ? 1 : 0);
  2470. }
  2471. #endif
  2472. /**
  2473. * Home an individual "raw axis" to its endstop.
  2474. * This applies to XYZ on Cartesian and Core robots, and
  2475. * to the individual ABC steppers on DELTA and SCARA.
  2476. *
  2477. * At the end of the procedure the axis is marked as
  2478. * homed and the current position of that axis is updated.
  2479. * Kinematic robots should wait till all axes are homed
  2480. * before updating the current position.
  2481. */
  2482. #define HOMEAXIS(LETTER) homeaxis(LETTER##_AXIS)
  2483. static void homeaxis(const AxisEnum axis) {
  2484. #if IS_SCARA
  2485. // Only Z homing (with probe) is permitted
  2486. if (axis != Z_AXIS) { BUZZ(100, 880); return; }
  2487. #else
  2488. #define CAN_HOME(A) \
  2489. (axis == A##_AXIS && ((A##_MIN_PIN > -1 && A##_HOME_DIR < 0) || (A##_MAX_PIN > -1 && A##_HOME_DIR > 0)))
  2490. if (!CAN_HOME(X) && !CAN_HOME(Y) && !CAN_HOME(Z)) return;
  2491. #endif
  2492. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2493. if (DEBUGGING(LEVELING)) {
  2494. SERIAL_ECHOPAIR(">>> homeaxis(", axis_codes[axis]);
  2495. SERIAL_CHAR(')');
  2496. SERIAL_EOL;
  2497. }
  2498. #endif
  2499. const int axis_home_dir =
  2500. #if ENABLED(DUAL_X_CARRIAGE)
  2501. (axis == X_AXIS) ? x_home_dir(active_extruder) :
  2502. #endif
  2503. home_dir(axis);
  2504. // Homing Z towards the bed? Deploy the Z probe or endstop.
  2505. #if HOMING_Z_WITH_PROBE
  2506. if (axis == Z_AXIS && DEPLOY_PROBE()) return;
  2507. #endif
  2508. // Set a flag for Z motor locking
  2509. #if ENABLED(Z_DUAL_ENDSTOPS)
  2510. if (axis == Z_AXIS) stepper.set_homing_flag(true);
  2511. #endif
  2512. // Disable stealthChop if used. Enable diag1 pin on driver.
  2513. #if ENABLED(SENSORLESS_HOMING)
  2514. #if ENABLED(X_IS_TMC2130)
  2515. if (axis == X_AXIS) tmc2130_sensorless_homing(stepperX);
  2516. #endif
  2517. #if ENABLED(Y_IS_TMC2130)
  2518. if (axis == Y_AXIS) tmc2130_sensorless_homing(stepperY);
  2519. #endif
  2520. #endif
  2521. // Fast move towards endstop until triggered
  2522. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2523. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("Home 1 Fast:");
  2524. #endif
  2525. do_homing_move(axis, 1.5 * max_length(axis) * axis_home_dir);
  2526. // When homing Z with probe respect probe clearance
  2527. const float bump = axis_home_dir * (
  2528. #if HOMING_Z_WITH_PROBE
  2529. (axis == Z_AXIS) ? max(Z_CLEARANCE_BETWEEN_PROBES, home_bump_mm(Z_AXIS)) :
  2530. #endif
  2531. home_bump_mm(axis)
  2532. );
  2533. // If a second homing move is configured...
  2534. if (bump) {
  2535. // Move away from the endstop by the axis HOME_BUMP_MM
  2536. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2537. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("Move Away:");
  2538. #endif
  2539. do_homing_move(axis, -bump);
  2540. // Slow move towards endstop until triggered
  2541. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2542. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("Home 2 Slow:");
  2543. #endif
  2544. do_homing_move(axis, 2 * bump, get_homing_bump_feedrate(axis));
  2545. }
  2546. #if ENABLED(Z_DUAL_ENDSTOPS)
  2547. if (axis == Z_AXIS) {
  2548. float adj = fabs(z_endstop_adj);
  2549. bool lockZ1;
  2550. if (axis_home_dir > 0) {
  2551. adj = -adj;
  2552. lockZ1 = (z_endstop_adj > 0);
  2553. }
  2554. else
  2555. lockZ1 = (z_endstop_adj < 0);
  2556. if (lockZ1) stepper.set_z_lock(true); else stepper.set_z2_lock(true);
  2557. // Move to the adjusted endstop height
  2558. do_homing_move(axis, adj);
  2559. if (lockZ1) stepper.set_z_lock(false); else stepper.set_z2_lock(false);
  2560. stepper.set_homing_flag(false);
  2561. } // Z_AXIS
  2562. #endif
  2563. #if IS_SCARA
  2564. set_axis_is_at_home(axis);
  2565. SYNC_PLAN_POSITION_KINEMATIC();
  2566. #elif ENABLED(DELTA)
  2567. // Delta has already moved all three towers up in G28
  2568. // so here it re-homes each tower in turn.
  2569. // Delta homing treats the axes as normal linear axes.
  2570. // retrace by the amount specified in endstop_adj
  2571. if (endstop_adj[axis] * Z_HOME_DIR < 0) {
  2572. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2573. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("endstop_adj:");
  2574. #endif
  2575. do_homing_move(axis, endstop_adj[axis]);
  2576. }
  2577. #else
  2578. // For cartesian/core machines,
  2579. // set the axis to its home position
  2580. set_axis_is_at_home(axis);
  2581. sync_plan_position();
  2582. destination[axis] = current_position[axis];
  2583. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2584. if (DEBUGGING(LEVELING)) DEBUG_POS("> AFTER set_axis_is_at_home", current_position);
  2585. #endif
  2586. #endif
  2587. // Re-enable stealthChop if used. Disable diag1 pin on driver.
  2588. #if ENABLED(SENSORLESS_HOMING)
  2589. #if ENABLED(X_IS_TMC2130)
  2590. if (axis == X_AXIS) tmc2130_sensorless_homing(stepperX, false);
  2591. #endif
  2592. #if ENABLED(Y_IS_TMC2130)
  2593. if (axis == Y_AXIS) tmc2130_sensorless_homing(stepperY, false);
  2594. #endif
  2595. #endif
  2596. // Put away the Z probe
  2597. #if HOMING_Z_WITH_PROBE
  2598. if (axis == Z_AXIS && STOW_PROBE()) return;
  2599. #endif
  2600. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2601. if (DEBUGGING(LEVELING)) {
  2602. SERIAL_ECHOPAIR("<<< homeaxis(", axis_codes[axis]);
  2603. SERIAL_CHAR(')');
  2604. SERIAL_EOL;
  2605. }
  2606. #endif
  2607. } // homeaxis()
  2608. #if ENABLED(FWRETRACT)
  2609. void retract(const bool retracting, const bool swapping = false) {
  2610. static float hop_height;
  2611. if (retracting == retracted[active_extruder]) return;
  2612. const float old_feedrate_mm_s = feedrate_mm_s;
  2613. set_destination_to_current();
  2614. if (retracting) {
  2615. feedrate_mm_s = retract_feedrate_mm_s;
  2616. current_position[E_AXIS] += (swapping ? retract_length_swap : retract_length) / volumetric_multiplier[active_extruder];
  2617. sync_plan_position_e();
  2618. prepare_move_to_destination();
  2619. if (retract_zlift > 0.01) {
  2620. hop_height = current_position[Z_AXIS];
  2621. // Pretend current position is lower
  2622. current_position[Z_AXIS] -= retract_zlift;
  2623. SYNC_PLAN_POSITION_KINEMATIC();
  2624. // Raise up to the old current_position
  2625. prepare_move_to_destination();
  2626. }
  2627. }
  2628. else {
  2629. // If the height hasn't been altered, undo the Z hop
  2630. if (retract_zlift > 0.01 && hop_height == current_position[Z_AXIS]) {
  2631. // Pretend current position is higher. Z will lower on the next move
  2632. current_position[Z_AXIS] += retract_zlift;
  2633. SYNC_PLAN_POSITION_KINEMATIC();
  2634. }
  2635. feedrate_mm_s = retract_recover_feedrate_mm_s;
  2636. const float move_e = swapping ? retract_length_swap + retract_recover_length_swap : retract_length + retract_recover_length;
  2637. current_position[E_AXIS] -= move_e / volumetric_multiplier[active_extruder];
  2638. sync_plan_position_e();
  2639. // Lower Z and recover E
  2640. prepare_move_to_destination();
  2641. }
  2642. feedrate_mm_s = old_feedrate_mm_s;
  2643. retracted[active_extruder] = retracting;
  2644. } // retract()
  2645. #endif // FWRETRACT
  2646. #if ENABLED(MIXING_EXTRUDER)
  2647. void normalize_mix() {
  2648. float mix_total = 0.0;
  2649. for (uint8_t i = 0; i < MIXING_STEPPERS; i++) mix_total += RECIPROCAL(mixing_factor[i]);
  2650. // Scale all values if they don't add up to ~1.0
  2651. if (!NEAR(mix_total, 1.0)) {
  2652. SERIAL_PROTOCOLLNPGM("Warning: Mix factors must add up to 1.0. Scaling.");
  2653. for (uint8_t i = 0; i < MIXING_STEPPERS; i++) mixing_factor[i] *= mix_total;
  2654. }
  2655. }
  2656. #if ENABLED(DIRECT_MIXING_IN_G1)
  2657. // Get mixing parameters from the GCode
  2658. // The total "must" be 1.0 (but it will be normalized)
  2659. // If no mix factors are given, the old mix is preserved
  2660. void gcode_get_mix() {
  2661. const char* mixing_codes = "ABCDHI";
  2662. byte mix_bits = 0;
  2663. for (uint8_t i = 0; i < MIXING_STEPPERS; i++) {
  2664. if (code_seen(mixing_codes[i])) {
  2665. SBI(mix_bits, i);
  2666. float v = code_value_float();
  2667. NOLESS(v, 0.0);
  2668. mixing_factor[i] = RECIPROCAL(v);
  2669. }
  2670. }
  2671. // If any mixing factors were included, clear the rest
  2672. // If none were included, preserve the last mix
  2673. if (mix_bits) {
  2674. for (uint8_t i = 0; i < MIXING_STEPPERS; i++)
  2675. if (!TEST(mix_bits, i)) mixing_factor[i] = 0.0;
  2676. normalize_mix();
  2677. }
  2678. }
  2679. #endif
  2680. #endif
  2681. /**
  2682. * ***************************************************************************
  2683. * ***************************** G-CODE HANDLING *****************************
  2684. * ***************************************************************************
  2685. */
  2686. /**
  2687. * Set XYZE destination and feedrate from the current GCode command
  2688. *
  2689. * - Set destination from included axis codes
  2690. * - Set to current for missing axis codes
  2691. * - Set the feedrate, if included
  2692. */
  2693. void gcode_get_destination() {
  2694. LOOP_XYZE(i) {
  2695. if (code_seen(axis_codes[i]))
  2696. destination[i] = code_value_axis_units((AxisEnum)i) + (axis_relative_modes[i] || relative_mode ? current_position[i] : 0);
  2697. else
  2698. destination[i] = current_position[i];
  2699. }
  2700. if (code_seen('F') && code_value_linear_units() > 0.0)
  2701. feedrate_mm_s = MMM_TO_MMS(code_value_linear_units());
  2702. #if ENABLED(PRINTCOUNTER)
  2703. if (!DEBUGGING(DRYRUN))
  2704. print_job_timer.incFilamentUsed(destination[E_AXIS] - current_position[E_AXIS]);
  2705. #endif
  2706. // Get ABCDHI mixing factors
  2707. #if ENABLED(MIXING_EXTRUDER) && ENABLED(DIRECT_MIXING_IN_G1)
  2708. gcode_get_mix();
  2709. #endif
  2710. }
  2711. void unknown_command_error() {
  2712. SERIAL_ECHO_START;
  2713. SERIAL_ECHOPAIR(MSG_UNKNOWN_COMMAND, current_command);
  2714. SERIAL_CHAR('"');
  2715. SERIAL_EOL;
  2716. }
  2717. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  2718. /**
  2719. * Output a "busy" message at regular intervals
  2720. * while the machine is not accepting commands.
  2721. */
  2722. void host_keepalive() {
  2723. const millis_t ms = millis();
  2724. if (host_keepalive_interval && busy_state != NOT_BUSY) {
  2725. if (PENDING(ms, next_busy_signal_ms)) return;
  2726. switch (busy_state) {
  2727. case IN_HANDLER:
  2728. case IN_PROCESS:
  2729. SERIAL_ECHO_START;
  2730. SERIAL_ECHOLNPGM(MSG_BUSY_PROCESSING);
  2731. break;
  2732. case PAUSED_FOR_USER:
  2733. SERIAL_ECHO_START;
  2734. SERIAL_ECHOLNPGM(MSG_BUSY_PAUSED_FOR_USER);
  2735. break;
  2736. case PAUSED_FOR_INPUT:
  2737. SERIAL_ECHO_START;
  2738. SERIAL_ECHOLNPGM(MSG_BUSY_PAUSED_FOR_INPUT);
  2739. break;
  2740. default:
  2741. break;
  2742. }
  2743. }
  2744. next_busy_signal_ms = ms + host_keepalive_interval * 1000UL;
  2745. }
  2746. #endif //HOST_KEEPALIVE_FEATURE
  2747. bool position_is_reachable(const float target[XYZ]
  2748. #if HAS_BED_PROBE
  2749. , bool by_probe=false
  2750. #endif
  2751. ) {
  2752. float dx = RAW_X_POSITION(target[X_AXIS]),
  2753. dy = RAW_Y_POSITION(target[Y_AXIS]);
  2754. #if HAS_BED_PROBE
  2755. if (by_probe) {
  2756. dx -= X_PROBE_OFFSET_FROM_EXTRUDER;
  2757. dy -= Y_PROBE_OFFSET_FROM_EXTRUDER;
  2758. }
  2759. #endif
  2760. #if IS_SCARA
  2761. #if MIDDLE_DEAD_ZONE_R > 0
  2762. const float R2 = HYPOT2(dx - SCARA_OFFSET_X, dy - SCARA_OFFSET_Y);
  2763. return R2 >= sq(float(MIDDLE_DEAD_ZONE_R)) && R2 <= sq(L1 + L2);
  2764. #else
  2765. return HYPOT2(dx - SCARA_OFFSET_X, dy - SCARA_OFFSET_Y) <= sq(L1 + L2);
  2766. #endif
  2767. #elif ENABLED(DELTA)
  2768. return HYPOT2(dx, dy) <= sq((float)(DELTA_PRINTABLE_RADIUS));
  2769. #else
  2770. const float dz = RAW_Z_POSITION(target[Z_AXIS]);
  2771. return WITHIN(dx, X_MIN_POS - 0.0001, X_MAX_POS + 0.0001)
  2772. && WITHIN(dy, Y_MIN_POS - 0.0001, Y_MAX_POS + 0.0001)
  2773. && WITHIN(dz, Z_MIN_POS - 0.0001, Z_MAX_POS + 0.0001);
  2774. #endif
  2775. }
  2776. /**************************************************
  2777. ***************** GCode Handlers *****************
  2778. **************************************************/
  2779. /**
  2780. * G0, G1: Coordinated movement of X Y Z E axes
  2781. */
  2782. inline void gcode_G0_G1(
  2783. #if IS_SCARA
  2784. bool fast_move=false
  2785. #endif
  2786. ) {
  2787. if (IsRunning()) {
  2788. gcode_get_destination(); // For X Y Z E F
  2789. #if ENABLED(FWRETRACT)
  2790. if (autoretract_enabled && !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  2791. const float echange = destination[E_AXIS] - current_position[E_AXIS];
  2792. // Is this move an attempt to retract or recover?
  2793. if ((echange < -MIN_RETRACT && !retracted[active_extruder]) || (echange > MIN_RETRACT && retracted[active_extruder])) {
  2794. current_position[E_AXIS] = destination[E_AXIS]; // hide the slicer-generated retract/recover from calculations
  2795. sync_plan_position_e(); // AND from the planner
  2796. retract(!retracted[active_extruder]);
  2797. return;
  2798. }
  2799. }
  2800. #endif //FWRETRACT
  2801. #if IS_SCARA
  2802. fast_move ? prepare_uninterpolated_move_to_destination() : prepare_move_to_destination();
  2803. #else
  2804. prepare_move_to_destination();
  2805. #endif
  2806. }
  2807. }
  2808. /**
  2809. * G2: Clockwise Arc
  2810. * G3: Counterclockwise Arc
  2811. *
  2812. * This command has two forms: IJ-form and R-form.
  2813. *
  2814. * - I specifies an X offset. J specifies a Y offset.
  2815. * At least one of the IJ parameters is required.
  2816. * X and Y can be omitted to do a complete circle.
  2817. * The given XY is not error-checked. The arc ends
  2818. * based on the angle of the destination.
  2819. * Mixing I or J with R will throw an error.
  2820. *
  2821. * - R specifies the radius. X or Y is required.
  2822. * Omitting both X and Y will throw an error.
  2823. * X or Y must differ from the current XY.
  2824. * Mixing R with I or J will throw an error.
  2825. *
  2826. * Examples:
  2827. *
  2828. * G2 I10 ; CW circle centered at X+10
  2829. * G3 X20 Y12 R14 ; CCW circle with r=14 ending at X20 Y12
  2830. */
  2831. #if ENABLED(ARC_SUPPORT)
  2832. inline void gcode_G2_G3(bool clockwise) {
  2833. if (IsRunning()) {
  2834. #if ENABLED(SF_ARC_FIX)
  2835. const bool relative_mode_backup = relative_mode;
  2836. relative_mode = true;
  2837. #endif
  2838. gcode_get_destination();
  2839. #if ENABLED(SF_ARC_FIX)
  2840. relative_mode = relative_mode_backup;
  2841. #endif
  2842. float arc_offset[2] = { 0.0, 0.0 };
  2843. if (code_seen('R')) {
  2844. const float r = code_value_linear_units(),
  2845. x1 = current_position[X_AXIS], y1 = current_position[Y_AXIS],
  2846. x2 = destination[X_AXIS], y2 = destination[Y_AXIS];
  2847. if (r && (x2 != x1 || y2 != y1)) {
  2848. const float e = clockwise ^ (r < 0) ? -1 : 1, // clockwise -1/1, counterclockwise 1/-1
  2849. dx = x2 - x1, dy = y2 - y1, // X and Y differences
  2850. d = HYPOT(dx, dy), // Linear distance between the points
  2851. h = sqrt(sq(r) - sq(d * 0.5)), // Distance to the arc pivot-point
  2852. mx = (x1 + x2) * 0.5, my = (y1 + y2) * 0.5, // Point between the two points
  2853. sx = -dy / d, sy = dx / d, // Slope of the perpendicular bisector
  2854. cx = mx + e * h * sx, cy = my + e * h * sy; // Pivot-point of the arc
  2855. arc_offset[X_AXIS] = cx - x1;
  2856. arc_offset[Y_AXIS] = cy - y1;
  2857. }
  2858. }
  2859. else {
  2860. if (code_seen('I')) arc_offset[X_AXIS] = code_value_linear_units();
  2861. if (code_seen('J')) arc_offset[Y_AXIS] = code_value_linear_units();
  2862. }
  2863. if (arc_offset[0] || arc_offset[1]) {
  2864. // Send an arc to the planner
  2865. plan_arc(destination, arc_offset, clockwise);
  2866. refresh_cmd_timeout();
  2867. }
  2868. else {
  2869. // Bad arguments
  2870. SERIAL_ERROR_START;
  2871. SERIAL_ERRORLNPGM(MSG_ERR_ARC_ARGS);
  2872. }
  2873. }
  2874. }
  2875. #endif
  2876. /**
  2877. * G4: Dwell S<seconds> or P<milliseconds>
  2878. */
  2879. inline void gcode_G4() {
  2880. millis_t dwell_ms = 0;
  2881. if (code_seen('P')) dwell_ms = code_value_millis(); // milliseconds to wait
  2882. if (code_seen('S')) dwell_ms = code_value_millis_from_seconds(); // seconds to wait
  2883. stepper.synchronize();
  2884. refresh_cmd_timeout();
  2885. dwell_ms += previous_cmd_ms; // keep track of when we started waiting
  2886. if (!lcd_hasstatus()) LCD_MESSAGEPGM(MSG_DWELL);
  2887. while (PENDING(millis(), dwell_ms)) idle();
  2888. }
  2889. #if ENABLED(BEZIER_CURVE_SUPPORT)
  2890. /**
  2891. * Parameters interpreted according to:
  2892. * http://linuxcnc.org/docs/2.6/html/gcode/gcode.html#sec:G5-Cubic-Spline
  2893. * However I, J omission is not supported at this point; all
  2894. * parameters can be omitted and default to zero.
  2895. */
  2896. /**
  2897. * G5: Cubic B-spline
  2898. */
  2899. inline void gcode_G5() {
  2900. if (IsRunning()) {
  2901. gcode_get_destination();
  2902. const float offset[] = {
  2903. code_seen('I') ? code_value_linear_units() : 0.0,
  2904. code_seen('J') ? code_value_linear_units() : 0.0,
  2905. code_seen('P') ? code_value_linear_units() : 0.0,
  2906. code_seen('Q') ? code_value_linear_units() : 0.0
  2907. };
  2908. plan_cubic_move(offset);
  2909. }
  2910. }
  2911. #endif // BEZIER_CURVE_SUPPORT
  2912. #if ENABLED(FWRETRACT)
  2913. /**
  2914. * G10 - Retract filament according to settings of M207
  2915. * G11 - Recover filament according to settings of M208
  2916. */
  2917. inline void gcode_G10_G11(bool doRetract=false) {
  2918. #if EXTRUDERS > 1
  2919. if (doRetract) {
  2920. retracted_swap[active_extruder] = (code_seen('S') && code_value_bool()); // checks for swap retract argument
  2921. }
  2922. #endif
  2923. retract(doRetract
  2924. #if EXTRUDERS > 1
  2925. , retracted_swap[active_extruder]
  2926. #endif
  2927. );
  2928. }
  2929. #endif //FWRETRACT
  2930. #if ENABLED(NOZZLE_CLEAN_FEATURE)
  2931. /**
  2932. * G12: Clean the nozzle
  2933. */
  2934. inline void gcode_G12() {
  2935. // Don't allow nozzle cleaning without homing first
  2936. if (axis_unhomed_error(true, true, true)) return;
  2937. const uint8_t pattern = code_seen('P') ? code_value_ushort() : 0,
  2938. strokes = code_seen('S') ? code_value_ushort() : NOZZLE_CLEAN_STROKES,
  2939. objects = code_seen('T') ? code_value_ushort() : NOZZLE_CLEAN_TRIANGLES;
  2940. const float radius = code_seen('R') ? code_value_float() : NOZZLE_CLEAN_CIRCLE_RADIUS;
  2941. Nozzle::clean(pattern, strokes, radius, objects);
  2942. }
  2943. #endif
  2944. #if ENABLED(INCH_MODE_SUPPORT)
  2945. /**
  2946. * G20: Set input mode to inches
  2947. */
  2948. inline void gcode_G20() { set_input_linear_units(LINEARUNIT_INCH); }
  2949. /**
  2950. * G21: Set input mode to millimeters
  2951. */
  2952. inline void gcode_G21() { set_input_linear_units(LINEARUNIT_MM); }
  2953. #endif
  2954. #if ENABLED(NOZZLE_PARK_FEATURE)
  2955. /**
  2956. * G27: Park the nozzle
  2957. */
  2958. inline void gcode_G27() {
  2959. // Don't allow nozzle parking without homing first
  2960. if (axis_unhomed_error(true, true, true)) return;
  2961. Nozzle::park(code_seen('P') ? code_value_ushort() : 0);
  2962. }
  2963. #endif // NOZZLE_PARK_FEATURE
  2964. #if ENABLED(QUICK_HOME)
  2965. static void quick_home_xy() {
  2966. // Pretend the current position is 0,0
  2967. current_position[X_AXIS] = current_position[Y_AXIS] = 0.0;
  2968. sync_plan_position();
  2969. const int x_axis_home_dir =
  2970. #if ENABLED(DUAL_X_CARRIAGE)
  2971. x_home_dir(active_extruder)
  2972. #else
  2973. home_dir(X_AXIS)
  2974. #endif
  2975. ;
  2976. const float mlx = max_length(X_AXIS),
  2977. mly = max_length(Y_AXIS),
  2978. mlratio = mlx > mly ? mly / mlx : mlx / mly,
  2979. fr_mm_s = min(homing_feedrate_mm_s[X_AXIS], homing_feedrate_mm_s[Y_AXIS]) * sqrt(sq(mlratio) + 1.0);
  2980. do_blocking_move_to_xy(1.5 * mlx * x_axis_home_dir, 1.5 * mly * home_dir(Y_AXIS), fr_mm_s);
  2981. endstops.hit_on_purpose(); // clear endstop hit flags
  2982. current_position[X_AXIS] = current_position[Y_AXIS] = 0.0;
  2983. }
  2984. #endif // QUICK_HOME
  2985. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2986. void log_machine_info() {
  2987. SERIAL_ECHOPGM("Machine Type: ");
  2988. #if ENABLED(DELTA)
  2989. SERIAL_ECHOLNPGM("Delta");
  2990. #elif IS_SCARA
  2991. SERIAL_ECHOLNPGM("SCARA");
  2992. #elif IS_CORE
  2993. SERIAL_ECHOLNPGM("Core");
  2994. #else
  2995. SERIAL_ECHOLNPGM("Cartesian");
  2996. #endif
  2997. SERIAL_ECHOPGM("Probe: ");
  2998. #if ENABLED(PROBE_MANUALLY)
  2999. SERIAL_ECHOLNPGM("PROBE_MANUALLY");
  3000. #elif ENABLED(FIX_MOUNTED_PROBE)
  3001. SERIAL_ECHOLNPGM("FIX_MOUNTED_PROBE");
  3002. #elif ENABLED(BLTOUCH)
  3003. SERIAL_ECHOLNPGM("BLTOUCH");
  3004. #elif HAS_Z_SERVO_ENDSTOP
  3005. SERIAL_ECHOLNPGM("SERVO PROBE");
  3006. #elif ENABLED(Z_PROBE_SLED)
  3007. SERIAL_ECHOLNPGM("Z_PROBE_SLED");
  3008. #elif ENABLED(Z_PROBE_ALLEN_KEY)
  3009. SERIAL_ECHOLNPGM("Z_PROBE_ALLEN_KEY");
  3010. #else
  3011. SERIAL_ECHOLNPGM("NONE");
  3012. #endif
  3013. #if HAS_BED_PROBE
  3014. SERIAL_ECHOPAIR("Probe Offset X:", X_PROBE_OFFSET_FROM_EXTRUDER);
  3015. SERIAL_ECHOPAIR(" Y:", Y_PROBE_OFFSET_FROM_EXTRUDER);
  3016. SERIAL_ECHOPAIR(" Z:", zprobe_zoffset);
  3017. #if (X_PROBE_OFFSET_FROM_EXTRUDER > 0)
  3018. SERIAL_ECHOPGM(" (Right");
  3019. #elif (X_PROBE_OFFSET_FROM_EXTRUDER < 0)
  3020. SERIAL_ECHOPGM(" (Left");
  3021. #elif (Y_PROBE_OFFSET_FROM_EXTRUDER != 0)
  3022. SERIAL_ECHOPGM(" (Middle");
  3023. #else
  3024. SERIAL_ECHOPGM(" (Aligned With");
  3025. #endif
  3026. #if (Y_PROBE_OFFSET_FROM_EXTRUDER > 0)
  3027. SERIAL_ECHOPGM("-Back");
  3028. #elif (Y_PROBE_OFFSET_FROM_EXTRUDER < 0)
  3029. SERIAL_ECHOPGM("-Front");
  3030. #elif (X_PROBE_OFFSET_FROM_EXTRUDER != 0)
  3031. SERIAL_ECHOPGM("-Center");
  3032. #endif
  3033. if (zprobe_zoffset < 0)
  3034. SERIAL_ECHOPGM(" & Below");
  3035. else if (zprobe_zoffset > 0)
  3036. SERIAL_ECHOPGM(" & Above");
  3037. else
  3038. SERIAL_ECHOPGM(" & Same Z as");
  3039. SERIAL_ECHOLNPGM(" Nozzle)");
  3040. #endif
  3041. #if HAS_ABL
  3042. SERIAL_ECHOPGM("Auto Bed Leveling: ");
  3043. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  3044. SERIAL_ECHOPGM("LINEAR");
  3045. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  3046. SERIAL_ECHOPGM("BILINEAR");
  3047. #elif ENABLED(AUTO_BED_LEVELING_3POINT)
  3048. SERIAL_ECHOPGM("3POINT");
  3049. #elif ENABLED(AUTO_BED_LEVELING_UBL)
  3050. SERIAL_ECHOPGM("UBL");
  3051. #endif
  3052. if (planner.abl_enabled) {
  3053. SERIAL_ECHOLNPGM(" (enabled)");
  3054. #if ABL_PLANAR
  3055. float diff[XYZ] = {
  3056. stepper.get_axis_position_mm(X_AXIS) - current_position[X_AXIS],
  3057. stepper.get_axis_position_mm(Y_AXIS) - current_position[Y_AXIS],
  3058. stepper.get_axis_position_mm(Z_AXIS) - current_position[Z_AXIS]
  3059. };
  3060. SERIAL_ECHOPGM("ABL Adjustment X");
  3061. if (diff[X_AXIS] > 0) SERIAL_CHAR('+');
  3062. SERIAL_ECHO(diff[X_AXIS]);
  3063. SERIAL_ECHOPGM(" Y");
  3064. if (diff[Y_AXIS] > 0) SERIAL_CHAR('+');
  3065. SERIAL_ECHO(diff[Y_AXIS]);
  3066. SERIAL_ECHOPGM(" Z");
  3067. if (diff[Z_AXIS] > 0) SERIAL_CHAR('+');
  3068. SERIAL_ECHO(diff[Z_AXIS]);
  3069. #elif ENABLED(AUTO_BED_LEVELING_UBL)
  3070. SERIAL_ECHOPAIR("UBL Adjustment Z", stepper.get_axis_position_mm(Z_AXIS) - current_position[Z_AXIS]);
  3071. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  3072. SERIAL_ECHOPAIR("ABL Adjustment Z", bilinear_z_offset(current_position));
  3073. #endif
  3074. }
  3075. else
  3076. SERIAL_ECHOLNPGM(" (disabled)");
  3077. SERIAL_EOL;
  3078. #elif ENABLED(MESH_BED_LEVELING)
  3079. SERIAL_ECHOPGM("Mesh Bed Leveling");
  3080. if (mbl.active()) {
  3081. float lz = current_position[Z_AXIS];
  3082. planner.apply_leveling(current_position[X_AXIS], current_position[Y_AXIS], lz);
  3083. SERIAL_ECHOLNPGM(" (enabled)");
  3084. SERIAL_ECHOPAIR("MBL Adjustment Z", lz);
  3085. }
  3086. else
  3087. SERIAL_ECHOPGM(" (disabled)");
  3088. SERIAL_EOL;
  3089. #endif // MESH_BED_LEVELING
  3090. }
  3091. #endif // DEBUG_LEVELING_FEATURE
  3092. #if ENABLED(DELTA)
  3093. /**
  3094. * A delta can only safely home all axes at the same time
  3095. * This is like quick_home_xy() but for 3 towers.
  3096. */
  3097. inline void home_delta() {
  3098. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3099. if (DEBUGGING(LEVELING)) DEBUG_POS(">>> home_delta", current_position);
  3100. #endif
  3101. // Init the current position of all carriages to 0,0,0
  3102. ZERO(current_position);
  3103. sync_plan_position();
  3104. // Move all carriages together linearly until an endstop is hit.
  3105. current_position[X_AXIS] = current_position[Y_AXIS] = current_position[Z_AXIS] = (Z_MAX_LENGTH + 10);
  3106. feedrate_mm_s = homing_feedrate_mm_s[X_AXIS];
  3107. line_to_current_position();
  3108. stepper.synchronize();
  3109. endstops.hit_on_purpose(); // clear endstop hit flags
  3110. // At least one carriage has reached the top.
  3111. // Now re-home each carriage separately.
  3112. HOMEAXIS(A);
  3113. HOMEAXIS(B);
  3114. HOMEAXIS(C);
  3115. // Set all carriages to their home positions
  3116. // Do this here all at once for Delta, because
  3117. // XYZ isn't ABC. Applying this per-tower would
  3118. // give the impression that they are the same.
  3119. LOOP_XYZ(i) set_axis_is_at_home((AxisEnum)i);
  3120. SYNC_PLAN_POSITION_KINEMATIC();
  3121. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3122. if (DEBUGGING(LEVELING)) DEBUG_POS("<<< home_delta", current_position);
  3123. #endif
  3124. }
  3125. #endif // DELTA
  3126. #if ENABLED(Z_SAFE_HOMING)
  3127. inline void home_z_safely() {
  3128. // Disallow Z homing if X or Y are unknown
  3129. if (!axis_known_position[X_AXIS] || !axis_known_position[Y_AXIS]) {
  3130. LCD_MESSAGEPGM(MSG_ERR_Z_HOMING);
  3131. SERIAL_ECHO_START;
  3132. SERIAL_ECHOLNPGM(MSG_ERR_Z_HOMING);
  3133. return;
  3134. }
  3135. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3136. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("Z_SAFE_HOMING >>>");
  3137. #endif
  3138. SYNC_PLAN_POSITION_KINEMATIC();
  3139. /**
  3140. * Move the Z probe (or just the nozzle) to the safe homing point
  3141. */
  3142. destination[X_AXIS] = LOGICAL_X_POSITION(Z_SAFE_HOMING_X_POINT);
  3143. destination[Y_AXIS] = LOGICAL_Y_POSITION(Z_SAFE_HOMING_Y_POINT);
  3144. destination[Z_AXIS] = current_position[Z_AXIS]; // Z is already at the right height
  3145. if (position_is_reachable(
  3146. destination
  3147. #if HOMING_Z_WITH_PROBE
  3148. , true
  3149. #endif
  3150. )
  3151. ) {
  3152. #if HOMING_Z_WITH_PROBE
  3153. destination[X_AXIS] -= X_PROBE_OFFSET_FROM_EXTRUDER;
  3154. destination[Y_AXIS] -= Y_PROBE_OFFSET_FROM_EXTRUDER;
  3155. #endif
  3156. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3157. if (DEBUGGING(LEVELING)) DEBUG_POS("Z_SAFE_HOMING", destination);
  3158. #endif
  3159. // This causes the carriage on Dual X to unpark
  3160. #if ENABLED(DUAL_X_CARRIAGE)
  3161. active_extruder_parked = false;
  3162. #endif
  3163. do_blocking_move_to_xy(destination[X_AXIS], destination[Y_AXIS]);
  3164. HOMEAXIS(Z);
  3165. }
  3166. else {
  3167. LCD_MESSAGEPGM(MSG_ZPROBE_OUT);
  3168. SERIAL_ECHO_START;
  3169. SERIAL_ECHOLNPGM(MSG_ZPROBE_OUT);
  3170. }
  3171. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3172. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< Z_SAFE_HOMING");
  3173. #endif
  3174. }
  3175. #endif // Z_SAFE_HOMING
  3176. #if ENABLED(PROBE_MANUALLY)
  3177. bool g29_in_progress = false;
  3178. #else
  3179. constexpr bool g29_in_progress = false;
  3180. #endif
  3181. /**
  3182. * G28: Home all axes according to settings
  3183. *
  3184. * Parameters
  3185. *
  3186. * None Home to all axes with no parameters.
  3187. * With QUICK_HOME enabled XY will home together, then Z.
  3188. *
  3189. * Cartesian parameters
  3190. *
  3191. * X Home to the X endstop
  3192. * Y Home to the Y endstop
  3193. * Z Home to the Z endstop
  3194. *
  3195. */
  3196. inline void gcode_G28() {
  3197. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3198. if (DEBUGGING(LEVELING)) {
  3199. SERIAL_ECHOLNPGM(">>> gcode_G28");
  3200. log_machine_info();
  3201. }
  3202. #endif
  3203. // Wait for planner moves to finish!
  3204. stepper.synchronize();
  3205. // Cancel the active G29 session
  3206. #if ENABLED(PROBE_MANUALLY)
  3207. g29_in_progress = false;
  3208. #endif
  3209. // Disable the leveling matrix before homing
  3210. #if HAS_LEVELING
  3211. #if ENABLED(AUTO_BED_LEVELING_UBL)
  3212. const bool bed_leveling_state_at_entry = ubl.state.active;
  3213. #endif
  3214. set_bed_leveling_enabled(false);
  3215. #endif
  3216. // Always home with tool 0 active
  3217. #if HOTENDS > 1
  3218. const uint8_t old_tool_index = active_extruder;
  3219. tool_change(0, 0, true);
  3220. #endif
  3221. #if ENABLED(DUAL_X_CARRIAGE) || ENABLED(DUAL_NOZZLE_DUPLICATION_MODE)
  3222. extruder_duplication_enabled = false;
  3223. #endif
  3224. setup_for_endstop_or_probe_move();
  3225. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3226. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> endstops.enable(true)");
  3227. #endif
  3228. endstops.enable(true); // Enable endstops for next homing move
  3229. #if ENABLED(DELTA)
  3230. home_delta();
  3231. #else // NOT DELTA
  3232. const bool homeX = code_seen('X'), homeY = code_seen('Y'), homeZ = code_seen('Z'),
  3233. home_all_axis = (!homeX && !homeY && !homeZ) || (homeX && homeY && homeZ);
  3234. set_destination_to_current();
  3235. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  3236. if (home_all_axis || homeZ) {
  3237. HOMEAXIS(Z);
  3238. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3239. if (DEBUGGING(LEVELING)) DEBUG_POS("> HOMEAXIS(Z)", current_position);
  3240. #endif
  3241. }
  3242. #else
  3243. if (home_all_axis || homeX || homeY) {
  3244. // Raise Z before homing any other axes and z is not already high enough (never lower z)
  3245. destination[Z_AXIS] = LOGICAL_Z_POSITION(Z_HOMING_HEIGHT);
  3246. if (destination[Z_AXIS] > current_position[Z_AXIS]) {
  3247. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3248. if (DEBUGGING(LEVELING))
  3249. SERIAL_ECHOLNPAIR("Raise Z (before homing) to ", destination[Z_AXIS]);
  3250. #endif
  3251. do_blocking_move_to_z(destination[Z_AXIS]);
  3252. }
  3253. }
  3254. #endif
  3255. #if ENABLED(QUICK_HOME)
  3256. if (home_all_axis || (homeX && homeY)) quick_home_xy();
  3257. #endif
  3258. #if ENABLED(HOME_Y_BEFORE_X)
  3259. // Home Y
  3260. if (home_all_axis || homeY) {
  3261. HOMEAXIS(Y);
  3262. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3263. if (DEBUGGING(LEVELING)) DEBUG_POS("> homeY", current_position);
  3264. #endif
  3265. }
  3266. #endif
  3267. // Home X
  3268. if (home_all_axis || homeX) {
  3269. #if ENABLED(DUAL_X_CARRIAGE)
  3270. // Always home the 2nd (right) extruder first
  3271. active_extruder = 1;
  3272. HOMEAXIS(X);
  3273. // Remember this extruder's position for later tool change
  3274. inactive_extruder_x_pos = RAW_X_POSITION(current_position[X_AXIS]);
  3275. // Home the 1st (left) extruder
  3276. active_extruder = 0;
  3277. HOMEAXIS(X);
  3278. // Consider the active extruder to be parked
  3279. COPY(raised_parked_position, current_position);
  3280. delayed_move_time = 0;
  3281. active_extruder_parked = true;
  3282. #else
  3283. HOMEAXIS(X);
  3284. #endif
  3285. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3286. if (DEBUGGING(LEVELING)) DEBUG_POS("> homeX", current_position);
  3287. #endif
  3288. }
  3289. #if DISABLED(HOME_Y_BEFORE_X)
  3290. // Home Y
  3291. if (home_all_axis || homeY) {
  3292. HOMEAXIS(Y);
  3293. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3294. if (DEBUGGING(LEVELING)) DEBUG_POS("> homeY", current_position);
  3295. #endif
  3296. }
  3297. #endif
  3298. // Home Z last if homing towards the bed
  3299. #if Z_HOME_DIR < 0
  3300. if (home_all_axis || homeZ) {
  3301. #if ENABLED(Z_SAFE_HOMING)
  3302. home_z_safely();
  3303. #else
  3304. HOMEAXIS(Z);
  3305. #endif
  3306. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3307. if (DEBUGGING(LEVELING)) DEBUG_POS("> (home_all_axis || homeZ) > final", current_position);
  3308. #endif
  3309. } // home_all_axis || homeZ
  3310. #endif // Z_HOME_DIR < 0
  3311. SYNC_PLAN_POSITION_KINEMATIC();
  3312. #endif // !DELTA (gcode_G28)
  3313. endstops.not_homing();
  3314. #if ENABLED(DELTA) && ENABLED(DELTA_HOME_TO_SAFE_ZONE)
  3315. // move to a height where we can use the full xy-area
  3316. do_blocking_move_to_z(delta_clip_start_height);
  3317. #endif
  3318. #if ENABLED(AUTO_BED_LEVELING_UBL)
  3319. set_bed_leveling_enabled(bed_leveling_state_at_entry);
  3320. #endif
  3321. // Enable mesh leveling again
  3322. #if ENABLED(MESH_BED_LEVELING)
  3323. if (mbl.reactivate()) {
  3324. set_bed_leveling_enabled(true);
  3325. if (home_all_axis || (axis_homed[X_AXIS] && axis_homed[Y_AXIS] && homeZ)) {
  3326. #if ENABLED(MESH_G28_REST_ORIGIN)
  3327. current_position[Z_AXIS] = LOGICAL_Z_POSITION(Z_MIN_POS);
  3328. set_destination_to_current();
  3329. line_to_destination(homing_feedrate_mm_s[Z_AXIS]);
  3330. stepper.synchronize();
  3331. #endif
  3332. }
  3333. }
  3334. #endif
  3335. clean_up_after_endstop_or_probe_move();
  3336. // Restore the active tool after homing
  3337. #if HOTENDS > 1
  3338. tool_change(old_tool_index, 0, true);
  3339. #endif
  3340. report_current_position();
  3341. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3342. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< gcode_G28");
  3343. #endif
  3344. }
  3345. void home_all_axes() { gcode_G28(); }
  3346. #if HAS_PROBING_PROCEDURE
  3347. void out_of_range_error(const char* p_edge) {
  3348. SERIAL_PROTOCOLPGM("?Probe ");
  3349. serialprintPGM(p_edge);
  3350. SERIAL_PROTOCOLLNPGM(" position out of range.");
  3351. }
  3352. #endif
  3353. #if ENABLED(MESH_BED_LEVELING) || ENABLED(PROBE_MANUALLY)
  3354. inline void _manual_goto_xy(const float &x, const float &y) {
  3355. const float old_feedrate_mm_s = feedrate_mm_s;
  3356. #if MANUAL_PROBE_HEIGHT > 0
  3357. feedrate_mm_s = homing_feedrate_mm_s[Z_AXIS];
  3358. current_position[Z_AXIS] = LOGICAL_Z_POSITION(Z_MIN_POS) + MANUAL_PROBE_HEIGHT;
  3359. line_to_current_position();
  3360. #endif
  3361. feedrate_mm_s = MMM_TO_MMS(XY_PROBE_SPEED);
  3362. current_position[X_AXIS] = LOGICAL_X_POSITION(x);
  3363. current_position[Y_AXIS] = LOGICAL_Y_POSITION(y);
  3364. line_to_current_position();
  3365. #if MANUAL_PROBE_HEIGHT > 0
  3366. feedrate_mm_s = homing_feedrate_mm_s[Z_AXIS];
  3367. current_position[Z_AXIS] = LOGICAL_Z_POSITION(Z_MIN_POS) + 0.2; // just slightly over the bed
  3368. line_to_current_position();
  3369. #endif
  3370. feedrate_mm_s = old_feedrate_mm_s;
  3371. stepper.synchronize();
  3372. }
  3373. #endif
  3374. #if ENABLED(MESH_BED_LEVELING)
  3375. // Save 130 bytes with non-duplication of PSTR
  3376. void say_not_entered() { SERIAL_PROTOCOLLNPGM(" not entered."); }
  3377. void mbl_mesh_report() {
  3378. SERIAL_PROTOCOLLNPGM("Num X,Y: " STRINGIFY(GRID_MAX_POINTS_X) "," STRINGIFY(GRID_MAX_POINTS_Y));
  3379. SERIAL_PROTOCOLPGM("Z offset: "); SERIAL_PROTOCOL_F(mbl.z_offset, 5);
  3380. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  3381. print_2d_array(GRID_MAX_POINTS_X, GRID_MAX_POINTS_Y, 5,
  3382. [](const uint8_t ix, const uint8_t iy) { return mbl.z_values[ix][iy]; }
  3383. );
  3384. }
  3385. /**
  3386. * G29: Mesh-based Z probe, probes a grid and produces a
  3387. * mesh to compensate for variable bed height
  3388. *
  3389. * Parameters With MESH_BED_LEVELING:
  3390. *
  3391. * S0 Produce a mesh report
  3392. * S1 Start probing mesh points
  3393. * S2 Probe the next mesh point
  3394. * S3 Xn Yn Zn.nn Manually modify a single point
  3395. * S4 Zn.nn Set z offset. Positive away from bed, negative closer to bed.
  3396. * S5 Reset and disable mesh
  3397. *
  3398. * The S0 report the points as below
  3399. *
  3400. * +----> X-axis 1-n
  3401. * |
  3402. * |
  3403. * v Y-axis 1-n
  3404. *
  3405. */
  3406. inline void gcode_G29() {
  3407. static int mbl_probe_index = -1;
  3408. #if HAS_SOFTWARE_ENDSTOPS
  3409. static bool enable_soft_endstops;
  3410. #endif
  3411. const MeshLevelingState state = code_seen('S') ? (MeshLevelingState)code_value_byte() : MeshReport;
  3412. if (!WITHIN(state, 0, 5)) {
  3413. SERIAL_PROTOCOLLNPGM("S out of range (0-5).");
  3414. return;
  3415. }
  3416. int8_t px, py;
  3417. switch (state) {
  3418. case MeshReport:
  3419. if (mbl.has_mesh()) {
  3420. SERIAL_PROTOCOLLNPAIR("State: ", mbl.active() ? MSG_ON : MSG_OFF);
  3421. mbl_mesh_report();
  3422. }
  3423. else
  3424. SERIAL_PROTOCOLLNPGM("Mesh bed leveling has no data.");
  3425. break;
  3426. case MeshStart:
  3427. mbl.reset();
  3428. mbl_probe_index = 0;
  3429. enqueue_and_echo_commands_P(PSTR("G28\nG29 S2"));
  3430. break;
  3431. case MeshNext:
  3432. if (mbl_probe_index < 0) {
  3433. SERIAL_PROTOCOLLNPGM("Start mesh probing with \"G29 S1\" first.");
  3434. return;
  3435. }
  3436. // For each G29 S2...
  3437. if (mbl_probe_index == 0) {
  3438. #if HAS_SOFTWARE_ENDSTOPS
  3439. // For the initial G29 S2 save software endstop state
  3440. enable_soft_endstops = soft_endstops_enabled;
  3441. #endif
  3442. }
  3443. else {
  3444. // For G29 S2 after adjusting Z.
  3445. mbl.set_zigzag_z(mbl_probe_index - 1, current_position[Z_AXIS]);
  3446. #if HAS_SOFTWARE_ENDSTOPS
  3447. soft_endstops_enabled = enable_soft_endstops;
  3448. #endif
  3449. }
  3450. // If there's another point to sample, move there with optional lift.
  3451. if (mbl_probe_index < (GRID_MAX_POINTS_X) * (GRID_MAX_POINTS_Y)) {
  3452. mbl.zigzag(mbl_probe_index, px, py);
  3453. _manual_goto_xy(mbl.index_to_xpos[px], mbl.index_to_ypos[py]);
  3454. #if HAS_SOFTWARE_ENDSTOPS
  3455. // Disable software endstops to allow manual adjustment
  3456. // If G29 is not completed, they will not be re-enabled
  3457. soft_endstops_enabled = false;
  3458. #endif
  3459. mbl_probe_index++;
  3460. }
  3461. else {
  3462. // One last "return to the bed" (as originally coded) at completion
  3463. current_position[Z_AXIS] = LOGICAL_Z_POSITION(Z_MIN_POS) + MANUAL_PROBE_HEIGHT;
  3464. line_to_current_position();
  3465. stepper.synchronize();
  3466. // After recording the last point, activate the mbl and home
  3467. SERIAL_PROTOCOLLNPGM("Mesh probing done.");
  3468. mbl_probe_index = -1;
  3469. mbl.set_has_mesh(true);
  3470. mbl.set_reactivate(true);
  3471. enqueue_and_echo_commands_P(PSTR("G28"));
  3472. BUZZ(100, 659);
  3473. BUZZ(100, 698);
  3474. }
  3475. break;
  3476. case MeshSet:
  3477. if (code_seen('X')) {
  3478. px = code_value_int() - 1;
  3479. if (!WITHIN(px, 0, GRID_MAX_POINTS_X - 1)) {
  3480. SERIAL_PROTOCOLLNPGM("X out of range (1-" STRINGIFY(GRID_MAX_POINTS_X) ").");
  3481. return;
  3482. }
  3483. }
  3484. else {
  3485. SERIAL_CHAR('X'); say_not_entered();
  3486. return;
  3487. }
  3488. if (code_seen('Y')) {
  3489. py = code_value_int() - 1;
  3490. if (!WITHIN(py, 0, GRID_MAX_POINTS_Y - 1)) {
  3491. SERIAL_PROTOCOLLNPGM("Y out of range (1-" STRINGIFY(GRID_MAX_POINTS_Y) ").");
  3492. return;
  3493. }
  3494. }
  3495. else {
  3496. SERIAL_CHAR('Y'); say_not_entered();
  3497. return;
  3498. }
  3499. if (code_seen('Z')) {
  3500. mbl.z_values[px][py] = code_value_linear_units();
  3501. }
  3502. else {
  3503. SERIAL_CHAR('Z'); say_not_entered();
  3504. return;
  3505. }
  3506. break;
  3507. case MeshSetZOffset:
  3508. if (code_seen('Z')) {
  3509. mbl.z_offset = code_value_linear_units();
  3510. }
  3511. else {
  3512. SERIAL_CHAR('Z'); say_not_entered();
  3513. return;
  3514. }
  3515. break;
  3516. case MeshReset:
  3517. reset_bed_level();
  3518. break;
  3519. } // switch(state)
  3520. report_current_position();
  3521. }
  3522. #elif HAS_ABL && DISABLED(AUTO_BED_LEVELING_UBL)
  3523. #if ABL_GRID
  3524. #if ENABLED(PROBE_Y_FIRST)
  3525. #define PR_OUTER_VAR xCount
  3526. #define PR_OUTER_END abl_grid_points_x
  3527. #define PR_INNER_VAR yCount
  3528. #define PR_INNER_END abl_grid_points_y
  3529. #else
  3530. #define PR_OUTER_VAR yCount
  3531. #define PR_OUTER_END abl_grid_points_y
  3532. #define PR_INNER_VAR xCount
  3533. #define PR_INNER_END abl_grid_points_x
  3534. #endif
  3535. #endif
  3536. /**
  3537. * G29: Detailed Z probe, probes the bed at 3 or more points.
  3538. * Will fail if the printer has not been homed with G28.
  3539. *
  3540. * Enhanced G29 Auto Bed Leveling Probe Routine
  3541. *
  3542. * D Dry-Run mode. Just evaluate the bed Topology - Don't apply
  3543. * or alter the bed level data. Useful to check the topology
  3544. * after a first run of G29.
  3545. *
  3546. * J Jettison current bed leveling data
  3547. *
  3548. * V Set the verbose level (0-4). Example: "G29 V3"
  3549. *
  3550. * Parameters With LINEAR leveling only:
  3551. *
  3552. * P Set the size of the grid that will be probed (P x P points).
  3553. * Example: "G29 P4"
  3554. *
  3555. * X Set the X size of the grid that will be probed (X x Y points).
  3556. * Example: "G29 X7 Y5"
  3557. *
  3558. * Y Set the Y size of the grid that will be probed (X x Y points).
  3559. *
  3560. * T Generate a Bed Topology Report. Example: "G29 P5 T" for a detailed report.
  3561. * This is useful for manual bed leveling and finding flaws in the bed (to
  3562. * assist with part placement).
  3563. * Not supported by non-linear delta printer bed leveling.
  3564. *
  3565. * Parameters With LINEAR and BILINEAR leveling only:
  3566. *
  3567. * S Set the XY travel speed between probe points (in units/min)
  3568. *
  3569. * F Set the Front limit of the probing grid
  3570. * B Set the Back limit of the probing grid
  3571. * L Set the Left limit of the probing grid
  3572. * R Set the Right limit of the probing grid
  3573. *
  3574. * Parameters with DEBUG_LEVELING_FEATURE only:
  3575. *
  3576. * C Make a totally fake grid with no actual probing.
  3577. * For use in testing when no probing is possible.
  3578. *
  3579. * Parameters with BILINEAR leveling only:
  3580. *
  3581. * Z Supply an additional Z probe offset
  3582. *
  3583. * Extra parameters with PROBE_MANUALLY:
  3584. *
  3585. * To do manual probing simply repeat G29 until the procedure is complete.
  3586. * The first G29 accepts parameters. 'G29 Q' for status, 'G29 A' to abort.
  3587. *
  3588. * Q Query leveling and G29 state
  3589. *
  3590. * A Abort current leveling procedure
  3591. *
  3592. * W Write a mesh point. (Ignored during leveling.)
  3593. * X Required X for mesh point
  3594. * Y Required Y for mesh point
  3595. * Z Required Z for mesh point
  3596. *
  3597. * Without PROBE_MANUALLY:
  3598. *
  3599. * E By default G29 will engage the Z probe, test the bed, then disengage.
  3600. * Include "E" to engage/disengage the Z probe for each sample.
  3601. * There's no extra effect if you have a fixed Z probe.
  3602. *
  3603. */
  3604. inline void gcode_G29() {
  3605. // G29 Q is also available if debugging
  3606. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3607. const bool query = code_seen('Q');
  3608. const uint8_t old_debug_flags = marlin_debug_flags;
  3609. if (query) marlin_debug_flags |= DEBUG_LEVELING;
  3610. if (DEBUGGING(LEVELING)) {
  3611. DEBUG_POS(">>> gcode_G29", current_position);
  3612. log_machine_info();
  3613. }
  3614. marlin_debug_flags = old_debug_flags;
  3615. #if DISABLED(PROBE_MANUALLY)
  3616. if (query) return;
  3617. #endif
  3618. #endif
  3619. #if ENABLED(DEBUG_LEVELING_FEATURE) && DISABLED(PROBE_MANUALLY)
  3620. const bool faux = code_seen('C') && code_value_bool();
  3621. #else
  3622. bool constexpr faux = false;
  3623. #endif
  3624. // Don't allow auto-leveling without homing first
  3625. if (axis_unhomed_error(true, true, true)) return;
  3626. // Define local vars 'static' for manual probing, 'auto' otherwise
  3627. #if ENABLED(PROBE_MANUALLY)
  3628. #define ABL_VAR static
  3629. #else
  3630. #define ABL_VAR
  3631. #endif
  3632. ABL_VAR int verbose_level;
  3633. ABL_VAR float xProbe, yProbe, measured_z;
  3634. ABL_VAR bool dryrun, abl_should_enable;
  3635. #if ENABLED(PROBE_MANUALLY) || ENABLED(AUTO_BED_LEVELING_LINEAR)
  3636. ABL_VAR int abl_probe_index;
  3637. #endif
  3638. #if HAS_SOFTWARE_ENDSTOPS && ENABLED(PROBE_MANUALLY)
  3639. ABL_VAR bool enable_soft_endstops = true;
  3640. #endif
  3641. #if ABL_GRID
  3642. #if ENABLED(PROBE_MANUALLY)
  3643. ABL_VAR uint8_t PR_OUTER_VAR;
  3644. ABL_VAR int8_t PR_INNER_VAR;
  3645. #endif
  3646. ABL_VAR int left_probe_bed_position, right_probe_bed_position, front_probe_bed_position, back_probe_bed_position;
  3647. ABL_VAR float xGridSpacing, yGridSpacing;
  3648. #define ABL_GRID_MAX (GRID_MAX_POINTS_X) * (GRID_MAX_POINTS_Y)
  3649. #if ABL_PLANAR
  3650. ABL_VAR uint8_t abl_grid_points_x = GRID_MAX_POINTS_X,
  3651. abl_grid_points_y = GRID_MAX_POINTS_Y;
  3652. ABL_VAR bool do_topography_map;
  3653. #else // 3-point
  3654. uint8_t constexpr abl_grid_points_x = GRID_MAX_POINTS_X,
  3655. abl_grid_points_y = GRID_MAX_POINTS_Y;
  3656. #endif
  3657. #if ENABLED(AUTO_BED_LEVELING_LINEAR) || ENABLED(PROBE_MANUALLY)
  3658. #if ABL_PLANAR
  3659. ABL_VAR int abl2;
  3660. #else // 3-point
  3661. int constexpr abl2 = ABL_GRID_MAX;
  3662. #endif
  3663. #endif
  3664. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  3665. ABL_VAR float zoffset;
  3666. #elif ENABLED(AUTO_BED_LEVELING_LINEAR)
  3667. ABL_VAR int indexIntoAB[GRID_MAX_POINTS_X][GRID_MAX_POINTS_Y];
  3668. ABL_VAR float eqnAMatrix[ABL_GRID_MAX * 3], // "A" matrix of the linear system of equations
  3669. eqnBVector[ABL_GRID_MAX], // "B" vector of Z points
  3670. mean;
  3671. #endif
  3672. #elif ENABLED(AUTO_BED_LEVELING_3POINT)
  3673. // Probe at 3 arbitrary points
  3674. ABL_VAR vector_3 points[3] = {
  3675. vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, 0),
  3676. vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, 0),
  3677. vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, 0)
  3678. };
  3679. #endif // AUTO_BED_LEVELING_3POINT
  3680. /**
  3681. * On the initial G29 fetch command parameters.
  3682. */
  3683. if (!g29_in_progress) {
  3684. #if ENABLED(PROBE_MANUALLY) || ENABLED(AUTO_BED_LEVELING_LINEAR)
  3685. abl_probe_index = 0;
  3686. #endif
  3687. abl_should_enable = planner.abl_enabled;
  3688. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  3689. if (code_seen('W')) {
  3690. if (!bilinear_grid_spacing[X_AXIS]) {
  3691. SERIAL_ERROR_START;
  3692. SERIAL_ERRORLNPGM("No bilinear grid");
  3693. return;
  3694. }
  3695. const float z = code_seen('Z') && code_has_value() ? code_value_float() : 99999;
  3696. if (!WITHIN(z, -10, 10)) {
  3697. SERIAL_ERROR_START;
  3698. SERIAL_ERRORLNPGM("Bad Z value");
  3699. return;
  3700. }
  3701. const float x = code_seen('X') && code_has_value() ? code_value_float() : 99999,
  3702. y = code_seen('Y') && code_has_value() ? code_value_float() : 99999;
  3703. int8_t i = code_seen('I') && code_has_value() ? code_value_byte() : -1,
  3704. j = code_seen('J') && code_has_value() ? code_value_byte() : -1;
  3705. if (x < 99998 && y < 99998) {
  3706. // Get nearest i / j from x / y
  3707. i = (x - LOGICAL_X_POSITION(bilinear_start[X_AXIS]) + 0.5 * xGridSpacing) / xGridSpacing;
  3708. j = (y - LOGICAL_Y_POSITION(bilinear_start[Y_AXIS]) + 0.5 * yGridSpacing) / yGridSpacing;
  3709. i = constrain(i, 0, GRID_MAX_POINTS_X - 1);
  3710. j = constrain(j, 0, GRID_MAX_POINTS_Y - 1);
  3711. }
  3712. if (WITHIN(i, 0, GRID_MAX_POINTS_X - 1) && WITHIN(j, 0, GRID_MAX_POINTS_Y)) {
  3713. set_bed_leveling_enabled(false);
  3714. z_values[i][j] = z;
  3715. #if ENABLED(ABL_BILINEAR_SUBDIVISION)
  3716. bed_level_virt_interpolate();
  3717. #endif
  3718. set_bed_leveling_enabled(abl_should_enable);
  3719. }
  3720. return;
  3721. } // code_seen('W')
  3722. #endif
  3723. #if HAS_LEVELING
  3724. // Jettison bed leveling data
  3725. if (code_seen('J')) {
  3726. reset_bed_level();
  3727. return;
  3728. }
  3729. #endif
  3730. verbose_level = code_seen('V') && code_has_value() ? code_value_int() : 0;
  3731. if (!WITHIN(verbose_level, 0, 4)) {
  3732. SERIAL_PROTOCOLLNPGM("?(V)erbose Level is implausible (0-4).");
  3733. return;
  3734. }
  3735. dryrun = code_seen('D') && code_value_bool();
  3736. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  3737. do_topography_map = verbose_level > 2 || code_seen('T');
  3738. // X and Y specify points in each direction, overriding the default
  3739. // These values may be saved with the completed mesh
  3740. abl_grid_points_x = code_seen('X') ? code_value_int() : GRID_MAX_POINTS_X;
  3741. abl_grid_points_y = code_seen('Y') ? code_value_int() : GRID_MAX_POINTS_Y;
  3742. if (code_seen('P')) abl_grid_points_x = abl_grid_points_y = code_value_int();
  3743. if (abl_grid_points_x < 2 || abl_grid_points_y < 2) {
  3744. SERIAL_PROTOCOLLNPGM("?Number of probe points is implausible (2 minimum).");
  3745. return;
  3746. }
  3747. abl2 = abl_grid_points_x * abl_grid_points_y;
  3748. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  3749. zoffset = code_seen('Z') ? code_value_linear_units() : 0;
  3750. #endif
  3751. #if ABL_GRID
  3752. xy_probe_feedrate_mm_s = MMM_TO_MMS(code_seen('S') ? code_value_linear_units() : XY_PROBE_SPEED);
  3753. left_probe_bed_position = code_seen('L') ? (int)code_value_linear_units() : LOGICAL_X_POSITION(LEFT_PROBE_BED_POSITION);
  3754. right_probe_bed_position = code_seen('R') ? (int)code_value_linear_units() : LOGICAL_X_POSITION(RIGHT_PROBE_BED_POSITION);
  3755. front_probe_bed_position = code_seen('F') ? (int)code_value_linear_units() : LOGICAL_Y_POSITION(FRONT_PROBE_BED_POSITION);
  3756. back_probe_bed_position = code_seen('B') ? (int)code_value_linear_units() : LOGICAL_Y_POSITION(BACK_PROBE_BED_POSITION);
  3757. const bool left_out_l = left_probe_bed_position < LOGICAL_X_POSITION(MIN_PROBE_X),
  3758. left_out = left_out_l || left_probe_bed_position > right_probe_bed_position - (MIN_PROBE_EDGE),
  3759. right_out_r = right_probe_bed_position > LOGICAL_X_POSITION(MAX_PROBE_X),
  3760. right_out = right_out_r || right_probe_bed_position < left_probe_bed_position + MIN_PROBE_EDGE,
  3761. front_out_f = front_probe_bed_position < LOGICAL_Y_POSITION(MIN_PROBE_Y),
  3762. front_out = front_out_f || front_probe_bed_position > back_probe_bed_position - (MIN_PROBE_EDGE),
  3763. back_out_b = back_probe_bed_position > LOGICAL_Y_POSITION(MAX_PROBE_Y),
  3764. back_out = back_out_b || back_probe_bed_position < front_probe_bed_position + MIN_PROBE_EDGE;
  3765. if (left_out || right_out || front_out || back_out) {
  3766. if (left_out) {
  3767. out_of_range_error(PSTR("(L)eft"));
  3768. left_probe_bed_position = left_out_l ? LOGICAL_X_POSITION(MIN_PROBE_X) : right_probe_bed_position - (MIN_PROBE_EDGE);
  3769. }
  3770. if (right_out) {
  3771. out_of_range_error(PSTR("(R)ight"));
  3772. right_probe_bed_position = right_out_r ? LOGICAL_Y_POSITION(MAX_PROBE_X) : left_probe_bed_position + MIN_PROBE_EDGE;
  3773. }
  3774. if (front_out) {
  3775. out_of_range_error(PSTR("(F)ront"));
  3776. front_probe_bed_position = front_out_f ? LOGICAL_Y_POSITION(MIN_PROBE_Y) : back_probe_bed_position - (MIN_PROBE_EDGE);
  3777. }
  3778. if (back_out) {
  3779. out_of_range_error(PSTR("(B)ack"));
  3780. back_probe_bed_position = back_out_b ? LOGICAL_Y_POSITION(MAX_PROBE_Y) : front_probe_bed_position + MIN_PROBE_EDGE;
  3781. }
  3782. return;
  3783. }
  3784. // probe at the points of a lattice grid
  3785. xGridSpacing = (right_probe_bed_position - left_probe_bed_position) / (abl_grid_points_x - 1);
  3786. yGridSpacing = (back_probe_bed_position - front_probe_bed_position) / (abl_grid_points_y - 1);
  3787. #endif // ABL_GRID
  3788. if (verbose_level > 0) {
  3789. SERIAL_PROTOCOLLNPGM("G29 Auto Bed Leveling");
  3790. if (dryrun) SERIAL_PROTOCOLLNPGM("Running in DRY-RUN mode");
  3791. }
  3792. stepper.synchronize();
  3793. // Disable auto bed leveling during G29
  3794. planner.abl_enabled = false;
  3795. if (!dryrun) {
  3796. // Re-orient the current position without leveling
  3797. // based on where the steppers are positioned.
  3798. set_current_from_steppers_for_axis(ALL_AXES);
  3799. // Sync the planner to where the steppers stopped
  3800. SYNC_PLAN_POSITION_KINEMATIC();
  3801. }
  3802. if (!faux) setup_for_endstop_or_probe_move();
  3803. //xProbe = yProbe = measured_z = 0;
  3804. #if HAS_BED_PROBE
  3805. // Deploy the probe. Probe will raise if needed.
  3806. if (DEPLOY_PROBE()) {
  3807. planner.abl_enabled = abl_should_enable;
  3808. return;
  3809. }
  3810. #endif
  3811. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  3812. if ( xGridSpacing != bilinear_grid_spacing[X_AXIS]
  3813. || yGridSpacing != bilinear_grid_spacing[Y_AXIS]
  3814. || left_probe_bed_position != LOGICAL_X_POSITION(bilinear_start[X_AXIS])
  3815. || front_probe_bed_position != LOGICAL_Y_POSITION(bilinear_start[Y_AXIS])
  3816. ) {
  3817. if (dryrun) {
  3818. // Before reset bed level, re-enable to correct the position
  3819. planner.abl_enabled = abl_should_enable;
  3820. }
  3821. // Reset grid to 0.0 or "not probed". (Also disables ABL)
  3822. reset_bed_level();
  3823. // Initialize a grid with the given dimensions
  3824. bilinear_grid_spacing[X_AXIS] = xGridSpacing;
  3825. bilinear_grid_spacing[Y_AXIS] = yGridSpacing;
  3826. bilinear_start[X_AXIS] = RAW_X_POSITION(left_probe_bed_position);
  3827. bilinear_start[Y_AXIS] = RAW_Y_POSITION(front_probe_bed_position);
  3828. // Can't re-enable (on error) until the new grid is written
  3829. abl_should_enable = false;
  3830. }
  3831. #elif ENABLED(AUTO_BED_LEVELING_LINEAR)
  3832. mean = 0.0;
  3833. #endif // AUTO_BED_LEVELING_LINEAR
  3834. #if ENABLED(AUTO_BED_LEVELING_3POINT)
  3835. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3836. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> 3-point Leveling");
  3837. #endif
  3838. // Probe at 3 arbitrary points
  3839. points[0].z = points[1].z = points[2].z = 0;
  3840. #endif // AUTO_BED_LEVELING_3POINT
  3841. } // !g29_in_progress
  3842. #if ENABLED(PROBE_MANUALLY)
  3843. // Abort current G29 procedure, go back to ABLStart
  3844. if (code_seen('A') && g29_in_progress) {
  3845. SERIAL_PROTOCOLLNPGM("Manual G29 aborted");
  3846. #if HAS_SOFTWARE_ENDSTOPS
  3847. soft_endstops_enabled = enable_soft_endstops;
  3848. #endif
  3849. planner.abl_enabled = abl_should_enable;
  3850. g29_in_progress = false;
  3851. }
  3852. // Query G29 status
  3853. if (code_seen('Q')) {
  3854. if (!g29_in_progress)
  3855. SERIAL_PROTOCOLLNPGM("Manual G29 idle");
  3856. else {
  3857. SERIAL_PROTOCOLPAIR("Manual G29 point ", abl_probe_index + 1);
  3858. SERIAL_PROTOCOLLNPAIR(" of ", abl2);
  3859. }
  3860. }
  3861. if (code_seen('A') || code_seen('Q')) return;
  3862. // Fall through to probe the first point
  3863. g29_in_progress = true;
  3864. if (abl_probe_index == 0) {
  3865. // For the initial G29 save software endstop state
  3866. #if HAS_SOFTWARE_ENDSTOPS
  3867. enable_soft_endstops = soft_endstops_enabled;
  3868. #endif
  3869. }
  3870. else {
  3871. // For G29 after adjusting Z.
  3872. // Save the previous Z before going to the next point
  3873. measured_z = current_position[Z_AXIS];
  3874. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  3875. mean += measured_z;
  3876. eqnBVector[abl_probe_index] = measured_z;
  3877. eqnAMatrix[abl_probe_index + 0 * abl2] = xProbe;
  3878. eqnAMatrix[abl_probe_index + 1 * abl2] = yProbe;
  3879. eqnAMatrix[abl_probe_index + 2 * abl2] = 1;
  3880. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  3881. z_values[xCount][yCount] = measured_z + zoffset;
  3882. #elif ENABLED(AUTO_BED_LEVELING_3POINT)
  3883. points[i].z = measured_z;
  3884. #endif
  3885. }
  3886. //
  3887. // If there's another point to sample, move there with optional lift.
  3888. //
  3889. #if ABL_GRID
  3890. // Find a next point to probe
  3891. // On the first G29 this will be the first probe point
  3892. while (abl_probe_index < abl2) {
  3893. // Set xCount, yCount based on abl_probe_index, with zig-zag
  3894. PR_OUTER_VAR = abl_probe_index / PR_INNER_END;
  3895. PR_INNER_VAR = abl_probe_index - (PR_OUTER_VAR * PR_INNER_END);
  3896. bool zig = (PR_OUTER_VAR & 1) != ((PR_OUTER_END) & 1);
  3897. if (zig) PR_INNER_VAR = (PR_INNER_END - 1) - PR_INNER_VAR;
  3898. const float xBase = left_probe_bed_position + xGridSpacing * xCount,
  3899. yBase = front_probe_bed_position + yGridSpacing * yCount;
  3900. xProbe = floor(xBase + (xBase < 0 ? 0 : 0.5));
  3901. yProbe = floor(yBase + (yBase < 0 ? 0 : 0.5));
  3902. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  3903. indexIntoAB[xCount][yCount] = abl_probe_index;
  3904. #endif
  3905. float pos[XYZ] = { xProbe, yProbe, 0 };
  3906. if (position_is_reachable(pos)) break;
  3907. ++abl_probe_index;
  3908. }
  3909. // Is there a next point to move to?
  3910. if (abl_probe_index < abl2) {
  3911. _manual_goto_xy(xProbe, yProbe); // Can be used here too!
  3912. ++abl_probe_index;
  3913. #if HAS_SOFTWARE_ENDSTOPS
  3914. // Disable software endstops to allow manual adjustment
  3915. // If G29 is not completed, they will not be re-enabled
  3916. soft_endstops_enabled = false;
  3917. #endif
  3918. return;
  3919. }
  3920. else {
  3921. // Then leveling is done!
  3922. // G29 finishing code goes here
  3923. // After recording the last point, activate abl
  3924. SERIAL_PROTOCOLLNPGM("Grid probing done.");
  3925. g29_in_progress = false;
  3926. // Re-enable software endstops, if needed
  3927. #if HAS_SOFTWARE_ENDSTOPS
  3928. soft_endstops_enabled = enable_soft_endstops;
  3929. #endif
  3930. }
  3931. #elif ENABLED(AUTO_BED_LEVELING_3POINT)
  3932. // Probe at 3 arbitrary points
  3933. if (abl_probe_index < 3) {
  3934. xProbe = LOGICAL_X_POSITION(points[i].x);
  3935. yProbe = LOGICAL_Y_POSITION(points[i].y);
  3936. ++abl_probe_index;
  3937. #if HAS_SOFTWARE_ENDSTOPS
  3938. // Disable software endstops to allow manual adjustment
  3939. // If G29 is not completed, they will not be re-enabled
  3940. soft_endstops_enabled = false;
  3941. #endif
  3942. return;
  3943. }
  3944. else {
  3945. SERIAL_PROTOCOLLNPGM("3-point probing done.");
  3946. g29_in_progress = false;
  3947. // Re-enable software endstops, if needed
  3948. #if HAS_SOFTWARE_ENDSTOPS
  3949. soft_endstops_enabled = enable_soft_endstops;
  3950. #endif
  3951. if (!dryrun) {
  3952. vector_3 planeNormal = vector_3::cross(points[0] - points[1], points[2] - points[1]).get_normal();
  3953. if (planeNormal.z < 0) {
  3954. planeNormal.x *= -1;
  3955. planeNormal.y *= -1;
  3956. planeNormal.z *= -1;
  3957. }
  3958. planner.bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  3959. // Can't re-enable (on error) until the new grid is written
  3960. abl_should_enable = false;
  3961. }
  3962. }
  3963. #endif // AUTO_BED_LEVELING_3POINT
  3964. #else // !PROBE_MANUALLY
  3965. bool stow_probe_after_each = code_seen('E');
  3966. #if ABL_GRID
  3967. bool zig = PR_OUTER_END & 1; // Always end at RIGHT and BACK_PROBE_BED_POSITION
  3968. // Outer loop is Y with PROBE_Y_FIRST disabled
  3969. for (uint8_t PR_OUTER_VAR = 0; PR_OUTER_VAR < PR_OUTER_END; PR_OUTER_VAR++) {
  3970. int8_t inStart, inStop, inInc;
  3971. if (zig) { // away from origin
  3972. inStart = 0;
  3973. inStop = PR_INNER_END;
  3974. inInc = 1;
  3975. }
  3976. else { // towards origin
  3977. inStart = PR_INNER_END - 1;
  3978. inStop = -1;
  3979. inInc = -1;
  3980. }
  3981. zig ^= true; // zag
  3982. // Inner loop is Y with PROBE_Y_FIRST enabled
  3983. for (int8_t PR_INNER_VAR = inStart; PR_INNER_VAR != inStop; PR_INNER_VAR += inInc) {
  3984. float xBase = left_probe_bed_position + xGridSpacing * xCount,
  3985. yBase = front_probe_bed_position + yGridSpacing * yCount;
  3986. xProbe = floor(xBase + (xBase < 0 ? 0 : 0.5));
  3987. yProbe = floor(yBase + (yBase < 0 ? 0 : 0.5));
  3988. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  3989. indexIntoAB[xCount][yCount] = ++abl_probe_index;
  3990. #endif
  3991. #if IS_KINEMATIC
  3992. // Avoid probing outside the round or hexagonal area
  3993. const float pos[XYZ] = { xProbe, yProbe, 0 };
  3994. if (!position_is_reachable(pos, true)) continue;
  3995. #endif
  3996. measured_z = faux ? 0.001 * random(-100, 101) : probe_pt(xProbe, yProbe, stow_probe_after_each, verbose_level);
  3997. if (isnan(measured_z)) {
  3998. planner.abl_enabled = abl_should_enable;
  3999. return;
  4000. }
  4001. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  4002. mean += measured_z;
  4003. eqnBVector[abl_probe_index] = measured_z;
  4004. eqnAMatrix[abl_probe_index + 0 * abl2] = xProbe;
  4005. eqnAMatrix[abl_probe_index + 1 * abl2] = yProbe;
  4006. eqnAMatrix[abl_probe_index + 2 * abl2] = 1;
  4007. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  4008. z_values[xCount][yCount] = measured_z + zoffset;
  4009. #endif
  4010. abl_should_enable = false;
  4011. idle();
  4012. } // inner
  4013. } // outer
  4014. #elif ENABLED(AUTO_BED_LEVELING_3POINT)
  4015. // Probe at 3 arbitrary points
  4016. for (uint8_t i = 0; i < 3; ++i) {
  4017. // Retain the last probe position
  4018. xProbe = LOGICAL_X_POSITION(points[i].x);
  4019. yProbe = LOGICAL_Y_POSITION(points[i].y);
  4020. measured_z = points[i].z = faux ? 0.001 * random(-100, 101) : probe_pt(xProbe, yProbe, stow_probe_after_each, verbose_level);
  4021. }
  4022. if (isnan(measured_z)) {
  4023. planner.abl_enabled = abl_should_enable;
  4024. return;
  4025. }
  4026. if (!dryrun) {
  4027. vector_3 planeNormal = vector_3::cross(points[0] - points[1], points[2] - points[1]).get_normal();
  4028. if (planeNormal.z < 0) {
  4029. planeNormal.x *= -1;
  4030. planeNormal.y *= -1;
  4031. planeNormal.z *= -1;
  4032. }
  4033. planner.bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  4034. // Can't re-enable (on error) until the new grid is written
  4035. abl_should_enable = false;
  4036. }
  4037. #endif // AUTO_BED_LEVELING_3POINT
  4038. // Raise to _Z_CLEARANCE_DEPLOY_PROBE. Stow the probe.
  4039. if (STOW_PROBE()) {
  4040. planner.abl_enabled = abl_should_enable;
  4041. return;
  4042. }
  4043. #endif // !PROBE_MANUALLY
  4044. //
  4045. // G29 Finishing Code
  4046. //
  4047. // Unless this is a dry run, auto bed leveling will
  4048. // definitely be enabled after this point
  4049. //
  4050. // Restore state after probing
  4051. if (!faux) clean_up_after_endstop_or_probe_move();
  4052. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4053. if (DEBUGGING(LEVELING)) DEBUG_POS("> probing complete", current_position);
  4054. #endif
  4055. // Calculate leveling, print reports, correct the position
  4056. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  4057. if (!dryrun) extrapolate_unprobed_bed_level();
  4058. print_bilinear_leveling_grid();
  4059. refresh_bed_level();
  4060. #if ENABLED(ABL_BILINEAR_SUBDIVISION)
  4061. bed_level_virt_print();
  4062. #endif
  4063. #elif ENABLED(AUTO_BED_LEVELING_LINEAR)
  4064. // For LINEAR leveling calculate matrix, print reports, correct the position
  4065. /**
  4066. * solve the plane equation ax + by + d = z
  4067. * A is the matrix with rows [x y 1] for all the probed points
  4068. * B is the vector of the Z positions
  4069. * the normal vector to the plane is formed by the coefficients of the
  4070. * plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  4071. * so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  4072. */
  4073. float plane_equation_coefficients[3];
  4074. qr_solve(plane_equation_coefficients, abl2, 3, eqnAMatrix, eqnBVector);
  4075. mean /= abl2;
  4076. if (verbose_level) {
  4077. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  4078. SERIAL_PROTOCOL_F(plane_equation_coefficients[0], 8);
  4079. SERIAL_PROTOCOLPGM(" b: ");
  4080. SERIAL_PROTOCOL_F(plane_equation_coefficients[1], 8);
  4081. SERIAL_PROTOCOLPGM(" d: ");
  4082. SERIAL_PROTOCOL_F(plane_equation_coefficients[2], 8);
  4083. SERIAL_EOL;
  4084. if (verbose_level > 2) {
  4085. SERIAL_PROTOCOLPGM("Mean of sampled points: ");
  4086. SERIAL_PROTOCOL_F(mean, 8);
  4087. SERIAL_EOL;
  4088. }
  4089. }
  4090. // Create the matrix but don't correct the position yet
  4091. if (!dryrun) {
  4092. planner.bed_level_matrix = matrix_3x3::create_look_at(
  4093. vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1)
  4094. );
  4095. }
  4096. // Show the Topography map if enabled
  4097. if (do_topography_map) {
  4098. SERIAL_PROTOCOLLNPGM("\nBed Height Topography:\n"
  4099. " +--- BACK --+\n"
  4100. " | |\n"
  4101. " L | (+) | R\n"
  4102. " E | | I\n"
  4103. " F | (-) N (+) | G\n"
  4104. " T | | H\n"
  4105. " | (-) | T\n"
  4106. " | |\n"
  4107. " O-- FRONT --+\n"
  4108. " (0,0)");
  4109. float min_diff = 999;
  4110. for (int8_t yy = abl_grid_points_y - 1; yy >= 0; yy--) {
  4111. for (uint8_t xx = 0; xx < abl_grid_points_x; xx++) {
  4112. int ind = indexIntoAB[xx][yy];
  4113. float diff = eqnBVector[ind] - mean,
  4114. x_tmp = eqnAMatrix[ind + 0 * abl2],
  4115. y_tmp = eqnAMatrix[ind + 1 * abl2],
  4116. z_tmp = 0;
  4117. apply_rotation_xyz(planner.bed_level_matrix, x_tmp, y_tmp, z_tmp);
  4118. NOMORE(min_diff, eqnBVector[ind] - z_tmp);
  4119. if (diff >= 0.0)
  4120. SERIAL_PROTOCOLPGM(" +"); // Include + for column alignment
  4121. else
  4122. SERIAL_PROTOCOLCHAR(' ');
  4123. SERIAL_PROTOCOL_F(diff, 5);
  4124. } // xx
  4125. SERIAL_EOL;
  4126. } // yy
  4127. SERIAL_EOL;
  4128. if (verbose_level > 3) {
  4129. SERIAL_PROTOCOLLNPGM("\nCorrected Bed Height vs. Bed Topology:");
  4130. for (int8_t yy = abl_grid_points_y - 1; yy >= 0; yy--) {
  4131. for (uint8_t xx = 0; xx < abl_grid_points_x; xx++) {
  4132. int ind = indexIntoAB[xx][yy];
  4133. float x_tmp = eqnAMatrix[ind + 0 * abl2],
  4134. y_tmp = eqnAMatrix[ind + 1 * abl2],
  4135. z_tmp = 0;
  4136. apply_rotation_xyz(planner.bed_level_matrix, x_tmp, y_tmp, z_tmp);
  4137. float diff = eqnBVector[ind] - z_tmp - min_diff;
  4138. if (diff >= 0.0)
  4139. SERIAL_PROTOCOLPGM(" +");
  4140. // Include + for column alignment
  4141. else
  4142. SERIAL_PROTOCOLCHAR(' ');
  4143. SERIAL_PROTOCOL_F(diff, 5);
  4144. } // xx
  4145. SERIAL_EOL;
  4146. } // yy
  4147. SERIAL_EOL;
  4148. }
  4149. } //do_topography_map
  4150. #endif // AUTO_BED_LEVELING_LINEAR
  4151. #if ABL_PLANAR
  4152. // For LINEAR and 3POINT leveling correct the current position
  4153. if (verbose_level > 0)
  4154. planner.bed_level_matrix.debug("\n\nBed Level Correction Matrix:");
  4155. if (!dryrun) {
  4156. //
  4157. // Correct the current XYZ position based on the tilted plane.
  4158. //
  4159. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4160. if (DEBUGGING(LEVELING)) DEBUG_POS("G29 uncorrected XYZ", current_position);
  4161. #endif
  4162. float converted[XYZ];
  4163. COPY(converted, current_position);
  4164. planner.abl_enabled = true;
  4165. planner.unapply_leveling(converted); // use conversion machinery
  4166. planner.abl_enabled = false;
  4167. // Use the last measured distance to the bed, if possible
  4168. if ( NEAR(current_position[X_AXIS], xProbe - (X_PROBE_OFFSET_FROM_EXTRUDER))
  4169. && NEAR(current_position[Y_AXIS], yProbe - (Y_PROBE_OFFSET_FROM_EXTRUDER))
  4170. ) {
  4171. float simple_z = current_position[Z_AXIS] - measured_z;
  4172. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4173. if (DEBUGGING(LEVELING)) {
  4174. SERIAL_ECHOPAIR("Z from Probe:", simple_z);
  4175. SERIAL_ECHOPAIR(" Matrix:", converted[Z_AXIS]);
  4176. SERIAL_ECHOLNPAIR(" Discrepancy:", simple_z - converted[Z_AXIS]);
  4177. }
  4178. #endif
  4179. converted[Z_AXIS] = simple_z;
  4180. }
  4181. // The rotated XY and corrected Z are now current_position
  4182. COPY(current_position, converted);
  4183. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4184. if (DEBUGGING(LEVELING)) DEBUG_POS("G29 corrected XYZ", current_position);
  4185. #endif
  4186. }
  4187. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  4188. if (!dryrun) {
  4189. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4190. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPAIR("G29 uncorrected Z:", current_position[Z_AXIS]);
  4191. #endif
  4192. // Unapply the offset because it is going to be immediately applied
  4193. // and cause compensation movement in Z
  4194. current_position[Z_AXIS] -= bilinear_z_offset(current_position);
  4195. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4196. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPAIR(" corrected Z:", current_position[Z_AXIS]);
  4197. #endif
  4198. }
  4199. #endif // ABL_PLANAR
  4200. #ifdef Z_PROBE_END_SCRIPT
  4201. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4202. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPAIR("Z Probe End Script: ", Z_PROBE_END_SCRIPT);
  4203. #endif
  4204. enqueue_and_echo_commands_P(PSTR(Z_PROBE_END_SCRIPT));
  4205. stepper.synchronize();
  4206. #endif
  4207. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4208. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< gcode_G29");
  4209. #endif
  4210. report_current_position();
  4211. KEEPALIVE_STATE(IN_HANDLER);
  4212. // Auto Bed Leveling is complete! Enable if possible.
  4213. planner.abl_enabled = dryrun ? abl_should_enable : true;
  4214. if (planner.abl_enabled)
  4215. SYNC_PLAN_POSITION_KINEMATIC();
  4216. }
  4217. #endif // HAS_ABL && DISABLED(AUTO_BED_LEVELING_UBL)
  4218. #if HAS_BED_PROBE
  4219. /**
  4220. * G30: Do a single Z probe at the current XY
  4221. *
  4222. * Parameters:
  4223. *
  4224. * X Probe X position (default current X)
  4225. * Y Probe Y position (default current Y)
  4226. * S0 Leave the probe deployed
  4227. */
  4228. inline void gcode_G30() {
  4229. const float xpos = code_seen('X') ? code_value_linear_units() : current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER,
  4230. ypos = code_seen('Y') ? code_value_linear_units() : current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER,
  4231. pos[XYZ] = { xpos, ypos, LOGICAL_Z_POSITION(0) };
  4232. if (!position_is_reachable(pos, true)) return;
  4233. // Disable leveling so the planner won't mess with us
  4234. #if HAS_LEVELING
  4235. set_bed_leveling_enabled(false);
  4236. #endif
  4237. setup_for_endstop_or_probe_move();
  4238. const float measured_z = probe_pt(xpos, ypos, !code_seen('S') || code_value_bool(), 1);
  4239. SERIAL_PROTOCOLPAIR("Bed X: ", FIXFLOAT(xpos));
  4240. SERIAL_PROTOCOLPAIR(" Y: ", FIXFLOAT(ypos));
  4241. SERIAL_PROTOCOLLNPAIR(" Z: ", FIXFLOAT(measured_z));
  4242. clean_up_after_endstop_or_probe_move();
  4243. report_current_position();
  4244. }
  4245. #if ENABLED(Z_PROBE_SLED)
  4246. /**
  4247. * G31: Deploy the Z probe
  4248. */
  4249. inline void gcode_G31() { DEPLOY_PROBE(); }
  4250. /**
  4251. * G32: Stow the Z probe
  4252. */
  4253. inline void gcode_G32() { STOW_PROBE(); }
  4254. #endif // Z_PROBE_SLED
  4255. #if ENABLED(DELTA_AUTO_CALIBRATION)
  4256. /**
  4257. * G33 - Delta '1-4-7-point' auto calibration (Requires DELTA)
  4258. *
  4259. * Usage:
  4260. * G33 <Vn> <Pn> <A> <O> <T>
  4261. *
  4262. * Vn = verbose level (n=0-2 default 1)
  4263. * n=0 dry-run mode: setting + probe results / no calibration
  4264. * n=1 settings
  4265. * n=2 setting + probe results
  4266. * Pn = n=-7 -> +7 : n*n probe points
  4267. * calibrates height ('1 point'), endstops, and delta radius ('4 points')
  4268. * and tower angles with n > 2 ('7+ points')
  4269. * n=1 probes center / sets height only
  4270. * n=2 probes center and towers / sets height, endstops and delta radius
  4271. * n=3 probes all points: center, towers and opposite towers / sets all
  4272. * n>3 probes all points multiple times and averages
  4273. * A = abort 1 point delta height calibration after 1 probe
  4274. * O = use oposite tower points instead of tower points with 4 point calibration
  4275. * T = do not calibrate tower angles with 7+ point calibration
  4276. */
  4277. inline void gcode_G33() {
  4278. stepper.synchronize();
  4279. #if HAS_LEVELING
  4280. set_bed_leveling_enabled(false);
  4281. #endif
  4282. int8_t pp = (code_seen('P') ? code_value_int() : DELTA_CALIBRATION_DEFAULT_POINTS),
  4283. probe_mode = (WITHIN(pp, 1, 7) ? pp : DELTA_CALIBRATION_DEFAULT_POINTS);
  4284. probe_mode = (code_seen('A') && probe_mode == 1 ? -probe_mode : probe_mode);
  4285. probe_mode = (code_seen('O') && probe_mode == 2 ? -probe_mode : probe_mode);
  4286. probe_mode = (code_seen('T') && probe_mode > 2 ? -probe_mode : probe_mode);
  4287. int8_t verbose_level = (code_seen('V') ? code_value_byte() : 1);
  4288. if (!WITHIN(verbose_level, 0, 2)) verbose_level = 1;
  4289. gcode_G28();
  4290. const static char save_message[] PROGMEM = "Save with M500 and/or copy to Configuration.h";
  4291. float test_precision,
  4292. zero_std_dev = (verbose_level ? 999.0 : 0.0), // 0.0 in dry-run mode : forced end
  4293. e_old[XYZ] = {
  4294. endstop_adj[A_AXIS],
  4295. endstop_adj[B_AXIS],
  4296. endstop_adj[C_AXIS]
  4297. },
  4298. dr_old = delta_radius,
  4299. zh_old = home_offset[Z_AXIS],
  4300. alpha_old = delta_tower_angle_trim[A_AXIS],
  4301. beta_old = delta_tower_angle_trim[B_AXIS];
  4302. int8_t iterations = 0,
  4303. probe_points = abs(probe_mode);
  4304. const bool pp_equals_1 = (probe_points == 1),
  4305. pp_equals_2 = (probe_points == 2),
  4306. pp_equals_3 = (probe_points == 3),
  4307. pp_equals_4 = (probe_points == 4),
  4308. pp_equals_5 = (probe_points == 5),
  4309. pp_equals_6 = (probe_points == 6),
  4310. pp_equals_7 = (probe_points == 7),
  4311. pp_greather_2 = (probe_points > 2),
  4312. pp_greather_3 = (probe_points > 3),
  4313. pp_greather_4 = (probe_points > 4),
  4314. pp_greather_5 = (probe_points > 5);
  4315. // print settings
  4316. SERIAL_PROTOCOLLNPGM("G33 Auto Calibrate");
  4317. SERIAL_PROTOCOLPGM("Checking... AC");
  4318. if (verbose_level == 0) SERIAL_PROTOCOLPGM(" (DRY-RUN)");
  4319. SERIAL_EOL;
  4320. LCD_MESSAGEPGM("Checking... AC");
  4321. SERIAL_PROTOCOLPAIR(".Height:", DELTA_HEIGHT + home_offset[Z_AXIS]);
  4322. if (!pp_equals_1) {
  4323. SERIAL_PROTOCOLPGM(" Ex:");
  4324. if (endstop_adj[A_AXIS] >= 0) SERIAL_CHAR('+');
  4325. SERIAL_PROTOCOL_F(endstop_adj[A_AXIS], 2);
  4326. SERIAL_PROTOCOLPGM(" Ey:");
  4327. if (endstop_adj[B_AXIS] >= 0) SERIAL_CHAR('+');
  4328. SERIAL_PROTOCOL_F(endstop_adj[B_AXIS], 2);
  4329. SERIAL_PROTOCOLPGM(" Ez:");
  4330. if (endstop_adj[C_AXIS] >= 0) SERIAL_CHAR('+');
  4331. SERIAL_PROTOCOL_F(endstop_adj[C_AXIS], 2);
  4332. SERIAL_PROTOCOLPAIR(" Radius:", delta_radius);
  4333. }
  4334. SERIAL_EOL;
  4335. if (probe_mode > 2) { // negative disables tower angles
  4336. SERIAL_PROTOCOLPGM(".Tower angle : Tx:");
  4337. if (delta_tower_angle_trim[A_AXIS] >= 0) SERIAL_CHAR('+');
  4338. SERIAL_PROTOCOL_F(delta_tower_angle_trim[A_AXIS], 2);
  4339. SERIAL_PROTOCOLPGM(" Ty:");
  4340. if (delta_tower_angle_trim[B_AXIS] >= 0) SERIAL_CHAR('+');
  4341. SERIAL_PROTOCOL_F(delta_tower_angle_trim[B_AXIS], 2);
  4342. SERIAL_PROTOCOLPGM(" Tz:+0.00");
  4343. SERIAL_EOL;
  4344. }
  4345. #if ENABLED(Z_PROBE_SLED)
  4346. DEPLOY_PROBE();
  4347. #endif
  4348. do {
  4349. float z_at_pt[13] = { 0 },
  4350. S1 = 0.0,
  4351. S2 = 0.0;
  4352. int16_t N = 0;
  4353. test_precision = zero_std_dev;
  4354. iterations++;
  4355. // probe the points
  4356. if (!pp_equals_3 && !pp_equals_6) { // probe the centre
  4357. setup_for_endstop_or_probe_move();
  4358. z_at_pt[0] += probe_pt(0.0, 0.0 , true, 1);
  4359. clean_up_after_endstop_or_probe_move();
  4360. }
  4361. if (pp_greather_2) { // probe extra centre points
  4362. for (int8_t axis = (pp_greather_4 ? 11 : 9); axis > 0; axis -= (pp_greather_4 ? 2 : 4)) {
  4363. setup_for_endstop_or_probe_move();
  4364. z_at_pt[0] += probe_pt(
  4365. cos(RADIANS(180 + 30 * axis)) * (0.1 * delta_calibration_radius),
  4366. sin(RADIANS(180 + 30 * axis)) * (0.1 * delta_calibration_radius), true, 1);
  4367. clean_up_after_endstop_or_probe_move();
  4368. }
  4369. z_at_pt[0] /= (pp_equals_5 ? 7 : probe_points);
  4370. }
  4371. if (!pp_equals_1) { // probe the radius
  4372. float start_circles = (pp_equals_7 ? -1.5 : pp_equals_6 || pp_equals_5 ? -1 : 0),
  4373. end_circles = -start_circles;
  4374. bool zig_zag = true;
  4375. for (uint8_t axis = (probe_mode == -2 ? 3 : 1); axis < 13;
  4376. axis += (pp_equals_2 ? 4 : pp_equals_3 || pp_equals_5 ? 2 : 1)) {
  4377. for (float circles = start_circles ; circles <= end_circles; circles++) {
  4378. setup_for_endstop_or_probe_move();
  4379. z_at_pt[axis] += probe_pt(
  4380. cos(RADIANS(180 + 30 * axis)) *
  4381. (1 + circles * 0.1 * (zig_zag ? 1 : -1)) * delta_calibration_radius,
  4382. sin(RADIANS(180 + 30 * axis)) *
  4383. (1 + circles * 0.1 * (zig_zag ? 1 : -1)) * delta_calibration_radius, true, 1);
  4384. clean_up_after_endstop_or_probe_move();
  4385. }
  4386. start_circles += (pp_greather_5 ? (zig_zag ? 0.5 : -0.5) : 0);
  4387. end_circles = -start_circles;
  4388. zig_zag = !zig_zag;
  4389. z_at_pt[axis] /= (pp_equals_7 ? (zig_zag ? 4.0 : 3.0) :
  4390. pp_equals_6 ? (zig_zag ? 3.0 : 2.0) : pp_equals_5 ? 3 : 1);
  4391. }
  4392. }
  4393. if (pp_greather_3 && !pp_equals_5) // average intermediates to tower and opposites
  4394. for (uint8_t axis = 1; axis < 13; axis += 2)
  4395. z_at_pt[axis] = (z_at_pt[axis] + (z_at_pt[axis + 1] + z_at_pt[(axis + 10) % 12 + 1]) / 2.0) / 2.0;
  4396. S1 += z_at_pt[0];
  4397. S2 += sq(z_at_pt[0]);
  4398. N++;
  4399. if (!pp_equals_1) // std dev from zero plane
  4400. for (uint8_t axis = (probe_mode == -2 ? 3 : 1); axis < 13; axis += (pp_equals_2 ? 4 : 2)) {
  4401. S1 += z_at_pt[axis];
  4402. S2 += sq(z_at_pt[axis]);
  4403. N++;
  4404. }
  4405. zero_std_dev = round(sqrt(S2 / N) * 1000.0) / 1000.0 + 0.00001;
  4406. // Solve matrices
  4407. if (zero_std_dev < test_precision) {
  4408. COPY(e_old, endstop_adj);
  4409. dr_old = delta_radius;
  4410. zh_old = home_offset[Z_AXIS];
  4411. alpha_old = delta_tower_angle_trim[A_AXIS];
  4412. beta_old = delta_tower_angle_trim[B_AXIS];
  4413. float e_delta[XYZ] = { 0.0 }, r_delta = 0.0,
  4414. t_alpha = 0.0, t_beta = 0.0;
  4415. const float r_diff = delta_radius - delta_calibration_radius,
  4416. h_factor = 1.00 + r_diff * 0.001, //1.02 for r_diff = 20mm
  4417. r_factor = -(1.75 + 0.005 * r_diff + 0.001 * sq(r_diff)), //2.25 for r_diff = 20mm
  4418. a_factor = 100.0 / delta_calibration_radius; //1.25 for cal_rd = 80mm
  4419. #define ZP(N,I) ((N) * z_at_pt[I])
  4420. #define Z1000(I) ZP(1.00, I)
  4421. #define Z1050(I) ZP(h_factor, I)
  4422. #define Z0700(I) ZP(h_factor * 2.0 / 3.00, I)
  4423. #define Z0350(I) ZP(h_factor / 3.00, I)
  4424. #define Z0175(I) ZP(h_factor / 6.00, I)
  4425. #define Z2250(I) ZP(r_factor, I)
  4426. #define Z0750(I) ZP(r_factor / 3.00, I)
  4427. #define Z0375(I) ZP(r_factor / 6.00, I)
  4428. #define Z0444(I) ZP(a_factor * 4.0 / 9.0, I)
  4429. #define Z0888(I) ZP(a_factor * 8.0 / 9.0, I)
  4430. switch (probe_mode) {
  4431. case -1:
  4432. test_precision = 0.00;
  4433. case 1:
  4434. LOOP_XYZ(i) e_delta[i] = Z1000(0);
  4435. break;
  4436. case 2:
  4437. e_delta[X_AXIS] = Z1050(0) + Z0700(1) - Z0350(5) - Z0350(9);
  4438. e_delta[Y_AXIS] = Z1050(0) - Z0350(1) + Z0700(5) - Z0350(9);
  4439. e_delta[Z_AXIS] = Z1050(0) - Z0350(1) - Z0350(5) + Z0700(9);
  4440. r_delta = Z2250(0) - Z0750(1) - Z0750(5) - Z0750(9);
  4441. break;
  4442. case -2:
  4443. e_delta[X_AXIS] = Z1050(0) - Z0700(7) + Z0350(11) + Z0350(3);
  4444. e_delta[Y_AXIS] = Z1050(0) + Z0350(7) - Z0700(11) + Z0350(3);
  4445. e_delta[Z_AXIS] = Z1050(0) + Z0350(7) + Z0350(11) - Z0700(3);
  4446. r_delta = Z2250(0) - Z0750(7) - Z0750(11) - Z0750(3);
  4447. break;
  4448. default:
  4449. e_delta[X_AXIS] = Z1050(0) + Z0350(1) - Z0175(5) - Z0175(9) - Z0350(7) + Z0175(11) + Z0175(3);
  4450. e_delta[Y_AXIS] = Z1050(0) - Z0175(1) + Z0350(5) - Z0175(9) + Z0175(7) - Z0350(11) + Z0175(3);
  4451. e_delta[Z_AXIS] = Z1050(0) - Z0175(1) - Z0175(5) + Z0350(9) + Z0175(7) + Z0175(11) - Z0350(3);
  4452. r_delta = Z2250(0) - Z0375(1) - Z0375(5) - Z0375(9) - Z0375(7) - Z0375(11) - Z0375(3);
  4453. if (probe_mode > 0) { // negative disables tower angles
  4454. t_alpha = + Z0444(1) - Z0888(5) + Z0444(9) + Z0444(7) - Z0888(11) + Z0444(3);
  4455. t_beta = - Z0888(1) + Z0444(5) + Z0444(9) - Z0888(7) + Z0444(11) + Z0444(3);
  4456. }
  4457. break;
  4458. }
  4459. LOOP_XYZ(axis) endstop_adj[axis] += e_delta[axis];
  4460. delta_radius += r_delta;
  4461. delta_tower_angle_trim[A_AXIS] += t_alpha;
  4462. delta_tower_angle_trim[B_AXIS] -= t_beta;
  4463. // adjust delta_height and endstops by the max amount
  4464. const float z_temp = MAX3(endstop_adj[A_AXIS], endstop_adj[B_AXIS], endstop_adj[C_AXIS]);
  4465. home_offset[Z_AXIS] -= z_temp;
  4466. LOOP_XYZ(i) endstop_adj[i] -= z_temp;
  4467. recalc_delta_settings(delta_radius, delta_diagonal_rod);
  4468. }
  4469. else { // step one back
  4470. COPY(endstop_adj, e_old);
  4471. delta_radius = dr_old;
  4472. home_offset[Z_AXIS] = zh_old;
  4473. delta_tower_angle_trim[A_AXIS] = alpha_old;
  4474. delta_tower_angle_trim[B_AXIS] = beta_old;
  4475. recalc_delta_settings(delta_radius, delta_diagonal_rod);
  4476. }
  4477. // print report
  4478. if (verbose_level != 1) {
  4479. SERIAL_PROTOCOLPGM(". c:");
  4480. if (z_at_pt[0] > 0) SERIAL_CHAR('+');
  4481. SERIAL_PROTOCOL_F(z_at_pt[0], 2);
  4482. if (probe_mode == 2 || pp_greather_2) {
  4483. SERIAL_PROTOCOLPGM(" x:");
  4484. if (z_at_pt[1] >= 0) SERIAL_CHAR('+');
  4485. SERIAL_PROTOCOL_F(z_at_pt[1], 2);
  4486. SERIAL_PROTOCOLPGM(" y:");
  4487. if (z_at_pt[5] >= 0) SERIAL_CHAR('+');
  4488. SERIAL_PROTOCOL_F(z_at_pt[5], 2);
  4489. SERIAL_PROTOCOLPGM(" z:");
  4490. if (z_at_pt[9] >= 0) SERIAL_CHAR('+');
  4491. SERIAL_PROTOCOL_F(z_at_pt[9], 2);
  4492. }
  4493. if (probe_mode != -2) SERIAL_EOL;
  4494. if (probe_mode == -2 || pp_greather_2) {
  4495. if (pp_greather_2) {
  4496. SERIAL_CHAR('.');
  4497. SERIAL_PROTOCOL_SP(13);
  4498. }
  4499. SERIAL_PROTOCOLPGM(" yz:");
  4500. if (z_at_pt[7] >= 0) SERIAL_CHAR('+');
  4501. SERIAL_PROTOCOL_F(z_at_pt[7], 2);
  4502. SERIAL_PROTOCOLPGM(" zx:");
  4503. if (z_at_pt[11] >= 0) SERIAL_CHAR('+');
  4504. SERIAL_PROTOCOL_F(z_at_pt[11], 2);
  4505. SERIAL_PROTOCOLPGM(" xy:");
  4506. if (z_at_pt[3] >= 0) SERIAL_CHAR('+');
  4507. SERIAL_PROTOCOL_F(z_at_pt[3], 2);
  4508. SERIAL_EOL;
  4509. }
  4510. }
  4511. if (test_precision != 0.0) { // !forced end
  4512. if (zero_std_dev >= test_precision) { // end iterations
  4513. SERIAL_PROTOCOLPGM("Calibration OK");
  4514. SERIAL_PROTOCOL_SP(36);
  4515. SERIAL_PROTOCOLPGM("rolling back.");
  4516. SERIAL_EOL;
  4517. LCD_MESSAGEPGM("Calibration OK");
  4518. }
  4519. else { // !end iterations
  4520. char mess[15] = "No convergence";
  4521. if (iterations < 31)
  4522. sprintf_P(mess, PSTR("Iteration : %02i"), (int)iterations);
  4523. SERIAL_PROTOCOL(mess);
  4524. SERIAL_PROTOCOL_SP(36);
  4525. SERIAL_PROTOCOLPGM("std dev:");
  4526. SERIAL_PROTOCOL_F(zero_std_dev, 3);
  4527. SERIAL_EOL;
  4528. lcd_setstatus(mess);
  4529. }
  4530. SERIAL_PROTOCOLPAIR(".Height:", DELTA_HEIGHT + home_offset[Z_AXIS]);
  4531. if (!pp_equals_1) {
  4532. SERIAL_PROTOCOLPGM(" Ex:");
  4533. if (endstop_adj[A_AXIS] >= 0) SERIAL_CHAR('+');
  4534. SERIAL_PROTOCOL_F(endstop_adj[A_AXIS], 2);
  4535. SERIAL_PROTOCOLPGM(" Ey:");
  4536. if (endstop_adj[B_AXIS] >= 0) SERIAL_CHAR('+');
  4537. SERIAL_PROTOCOL_F(endstop_adj[B_AXIS], 2);
  4538. SERIAL_PROTOCOLPGM(" Ez:");
  4539. if (endstop_adj[C_AXIS] >= 0) SERIAL_CHAR('+');
  4540. SERIAL_PROTOCOL_F(endstop_adj[C_AXIS], 2);
  4541. SERIAL_PROTOCOLPAIR(" Radius:", delta_radius);
  4542. }
  4543. SERIAL_EOL;
  4544. if (probe_mode > 2) { // negative disables tower angles
  4545. SERIAL_PROTOCOLPGM(".Tower angle : Tx:");
  4546. if (delta_tower_angle_trim[A_AXIS] >= 0) SERIAL_CHAR('+');
  4547. SERIAL_PROTOCOL_F(delta_tower_angle_trim[A_AXIS], 2);
  4548. SERIAL_PROTOCOLPGM(" Ty:");
  4549. if (delta_tower_angle_trim[B_AXIS] >= 0) SERIAL_CHAR('+');
  4550. SERIAL_PROTOCOL_F(delta_tower_angle_trim[B_AXIS], 2);
  4551. SERIAL_PROTOCOLPGM(" Tz:+0.00");
  4552. SERIAL_EOL;
  4553. }
  4554. if (zero_std_dev >= test_precision)
  4555. serialprintPGM(save_message);
  4556. SERIAL_EOL;
  4557. }
  4558. else { // forced end
  4559. if (verbose_level == 0) {
  4560. SERIAL_PROTOCOLPGM("End DRY-RUN");
  4561. SERIAL_PROTOCOL_SP(39);
  4562. SERIAL_PROTOCOLPGM("std dev:");
  4563. SERIAL_PROTOCOL_F(zero_std_dev, 3);
  4564. SERIAL_EOL;
  4565. }
  4566. else {
  4567. SERIAL_PROTOCOLLNPGM("Calibration OK");
  4568. LCD_MESSAGEPGM("Calibration OK");
  4569. SERIAL_PROTOCOLPAIR(".Height:", DELTA_HEIGHT + home_offset[Z_AXIS]);
  4570. SERIAL_EOL;
  4571. serialprintPGM(save_message);
  4572. SERIAL_EOL;
  4573. }
  4574. }
  4575. stepper.synchronize();
  4576. gcode_G28();
  4577. } while (zero_std_dev < test_precision && iterations < 31);
  4578. #if ENABLED(Z_PROBE_SLED)
  4579. RETRACT_PROBE();
  4580. #endif
  4581. }
  4582. #endif // DELTA_AUTO_CALIBRATION
  4583. #endif // HAS_BED_PROBE
  4584. #if ENABLED(G38_PROBE_TARGET)
  4585. static bool G38_run_probe() {
  4586. bool G38_pass_fail = false;
  4587. // Get direction of move and retract
  4588. float retract_mm[XYZ];
  4589. LOOP_XYZ(i) {
  4590. float dist = destination[i] - current_position[i];
  4591. retract_mm[i] = fabs(dist) < G38_MINIMUM_MOVE ? 0 : home_bump_mm((AxisEnum)i) * (dist > 0 ? -1 : 1);
  4592. }
  4593. stepper.synchronize(); // wait until the machine is idle
  4594. // Move until destination reached or target hit
  4595. endstops.enable(true);
  4596. G38_move = true;
  4597. G38_endstop_hit = false;
  4598. prepare_move_to_destination();
  4599. stepper.synchronize();
  4600. G38_move = false;
  4601. endstops.hit_on_purpose();
  4602. set_current_from_steppers_for_axis(ALL_AXES);
  4603. SYNC_PLAN_POSITION_KINEMATIC();
  4604. if (G38_endstop_hit) {
  4605. G38_pass_fail = true;
  4606. #if ENABLED(PROBE_DOUBLE_TOUCH)
  4607. // Move away by the retract distance
  4608. set_destination_to_current();
  4609. LOOP_XYZ(i) destination[i] += retract_mm[i];
  4610. endstops.enable(false);
  4611. prepare_move_to_destination();
  4612. stepper.synchronize();
  4613. feedrate_mm_s /= 4;
  4614. // Bump the target more slowly
  4615. LOOP_XYZ(i) destination[i] -= retract_mm[i] * 2;
  4616. endstops.enable(true);
  4617. G38_move = true;
  4618. prepare_move_to_destination();
  4619. stepper.synchronize();
  4620. G38_move = false;
  4621. set_current_from_steppers_for_axis(ALL_AXES);
  4622. SYNC_PLAN_POSITION_KINEMATIC();
  4623. #endif
  4624. }
  4625. endstops.hit_on_purpose();
  4626. endstops.not_homing();
  4627. return G38_pass_fail;
  4628. }
  4629. /**
  4630. * G38.2 - probe toward workpiece, stop on contact, signal error if failure
  4631. * G38.3 - probe toward workpiece, stop on contact
  4632. *
  4633. * Like G28 except uses Z min probe for all axes
  4634. */
  4635. inline void gcode_G38(bool is_38_2) {
  4636. // Get X Y Z E F
  4637. gcode_get_destination();
  4638. setup_for_endstop_or_probe_move();
  4639. // If any axis has enough movement, do the move
  4640. LOOP_XYZ(i)
  4641. if (fabs(destination[i] - current_position[i]) >= G38_MINIMUM_MOVE) {
  4642. if (!code_seen('F')) feedrate_mm_s = homing_feedrate_mm_s[i];
  4643. // If G38.2 fails throw an error
  4644. if (!G38_run_probe() && is_38_2) {
  4645. SERIAL_ERROR_START;
  4646. SERIAL_ERRORLNPGM("Failed to reach target");
  4647. }
  4648. break;
  4649. }
  4650. clean_up_after_endstop_or_probe_move();
  4651. }
  4652. #endif // G38_PROBE_TARGET
  4653. /**
  4654. * G92: Set current position to given X Y Z E
  4655. */
  4656. inline void gcode_G92() {
  4657. bool didXYZ = false,
  4658. didE = code_seen('E');
  4659. if (!didE) stepper.synchronize();
  4660. LOOP_XYZE(i) {
  4661. if (code_seen(axis_codes[i])) {
  4662. #if IS_SCARA
  4663. current_position[i] = code_value_axis_units((AxisEnum)i);
  4664. if (i != E_AXIS) didXYZ = true;
  4665. #else
  4666. #if HAS_POSITION_SHIFT
  4667. const float p = current_position[i];
  4668. #endif
  4669. float v = code_value_axis_units((AxisEnum)i);
  4670. current_position[i] = v;
  4671. if (i != E_AXIS) {
  4672. didXYZ = true;
  4673. #if HAS_POSITION_SHIFT
  4674. position_shift[i] += v - p; // Offset the coordinate space
  4675. update_software_endstops((AxisEnum)i);
  4676. #endif
  4677. }
  4678. #endif
  4679. }
  4680. }
  4681. if (didXYZ)
  4682. SYNC_PLAN_POSITION_KINEMATIC();
  4683. else if (didE)
  4684. sync_plan_position_e();
  4685. report_current_position();
  4686. }
  4687. #if HAS_RESUME_CONTINUE
  4688. /**
  4689. * M0: Unconditional stop - Wait for user button press on LCD
  4690. * M1: Conditional stop - Wait for user button press on LCD
  4691. */
  4692. inline void gcode_M0_M1() {
  4693. const char * const args = current_command_args;
  4694. millis_t codenum = 0;
  4695. bool hasP = false, hasS = false;
  4696. if (code_seen('P')) {
  4697. codenum = code_value_millis(); // milliseconds to wait
  4698. hasP = codenum > 0;
  4699. }
  4700. if (code_seen('S')) {
  4701. codenum = code_value_millis_from_seconds(); // seconds to wait
  4702. hasS = codenum > 0;
  4703. }
  4704. #if ENABLED(ULTIPANEL)
  4705. if (!hasP && !hasS && *args != '\0')
  4706. lcd_setstatus(args, true);
  4707. else {
  4708. LCD_MESSAGEPGM(MSG_USERWAIT);
  4709. #if ENABLED(LCD_PROGRESS_BAR) && PROGRESS_MSG_EXPIRE > 0
  4710. dontExpireStatus();
  4711. #endif
  4712. }
  4713. #else
  4714. if (!hasP && !hasS && *args != '\0') {
  4715. SERIAL_ECHO_START;
  4716. SERIAL_ECHOLN(args);
  4717. }
  4718. #endif
  4719. KEEPALIVE_STATE(PAUSED_FOR_USER);
  4720. wait_for_user = true;
  4721. stepper.synchronize();
  4722. refresh_cmd_timeout();
  4723. if (codenum > 0) {
  4724. codenum += previous_cmd_ms; // wait until this time for a click
  4725. while (PENDING(millis(), codenum) && wait_for_user) idle();
  4726. }
  4727. else {
  4728. #if ENABLED(ULTIPANEL)
  4729. if (lcd_detected()) {
  4730. while (wait_for_user) idle();
  4731. IS_SD_PRINTING ? LCD_MESSAGEPGM(MSG_RESUMING) : LCD_MESSAGEPGM(WELCOME_MSG);
  4732. }
  4733. #else
  4734. while (wait_for_user) idle();
  4735. #endif
  4736. }
  4737. wait_for_user = false;
  4738. KEEPALIVE_STATE(IN_HANDLER);
  4739. }
  4740. #endif // HAS_RESUME_CONTINUE
  4741. /**
  4742. * M17: Enable power on all stepper motors
  4743. */
  4744. inline void gcode_M17() {
  4745. LCD_MESSAGEPGM(MSG_NO_MOVE);
  4746. enable_all_steppers();
  4747. }
  4748. #if IS_KINEMATIC
  4749. #define RUNPLAN(RATE_MM_S) planner.buffer_line_kinematic(destination, RATE_MM_S, active_extruder)
  4750. #else
  4751. #define RUNPLAN(RATE_MM_S) line_to_destination(RATE_MM_S)
  4752. #endif
  4753. #if ENABLED(PARK_HEAD_ON_PAUSE)
  4754. float resume_position[XYZE];
  4755. bool move_away_flag = false;
  4756. inline void move_back_on_resume() {
  4757. if (!move_away_flag) return;
  4758. move_away_flag = false;
  4759. // Set extruder to saved position
  4760. destination[E_AXIS] = current_position[E_AXIS] = resume_position[E_AXIS];
  4761. planner.set_e_position_mm(current_position[E_AXIS]);
  4762. #if IS_KINEMATIC
  4763. // Move XYZ to starting position
  4764. planner.buffer_line_kinematic(lastpos, FILAMENT_CHANGE_XY_FEEDRATE, active_extruder);
  4765. #else
  4766. // Move XY to starting position, then Z
  4767. destination[X_AXIS] = resume_position[X_AXIS];
  4768. destination[Y_AXIS] = resume_position[Y_AXIS];
  4769. RUNPLAN(FILAMENT_CHANGE_XY_FEEDRATE);
  4770. destination[Z_AXIS] = resume_position[Z_AXIS];
  4771. RUNPLAN(FILAMENT_CHANGE_Z_FEEDRATE);
  4772. #endif
  4773. stepper.synchronize();
  4774. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  4775. filament_ran_out = false;
  4776. #endif
  4777. set_current_to_destination();
  4778. }
  4779. #endif // PARK_HEAD_ON_PAUSE
  4780. #if ENABLED(SDSUPPORT)
  4781. /**
  4782. * M20: List SD card to serial output
  4783. */
  4784. inline void gcode_M20() {
  4785. SERIAL_PROTOCOLLNPGM(MSG_BEGIN_FILE_LIST);
  4786. card.ls();
  4787. SERIAL_PROTOCOLLNPGM(MSG_END_FILE_LIST);
  4788. }
  4789. /**
  4790. * M21: Init SD Card
  4791. */
  4792. inline void gcode_M21() { card.initsd(); }
  4793. /**
  4794. * M22: Release SD Card
  4795. */
  4796. inline void gcode_M22() { card.release(); }
  4797. /**
  4798. * M23: Open a file
  4799. */
  4800. inline void gcode_M23() { card.openFile(current_command_args, true); }
  4801. /**
  4802. * M24: Start or Resume SD Print
  4803. */
  4804. inline void gcode_M24() {
  4805. #if ENABLED(PARK_HEAD_ON_PAUSE)
  4806. move_back_on_resume();
  4807. #endif
  4808. card.startFileprint();
  4809. print_job_timer.start();
  4810. }
  4811. /**
  4812. * M25: Pause SD Print
  4813. */
  4814. inline void gcode_M25() {
  4815. card.pauseSDPrint();
  4816. print_job_timer.pause();
  4817. #if ENABLED(PARK_HEAD_ON_PAUSE)
  4818. enqueue_and_echo_commands_P(PSTR("M125")); // Must be enqueued with pauseSDPrint set to be last in the buffer
  4819. #endif
  4820. }
  4821. /**
  4822. * M26: Set SD Card file index
  4823. */
  4824. inline void gcode_M26() {
  4825. if (card.cardOK && code_seen('S'))
  4826. card.setIndex(code_value_long());
  4827. }
  4828. /**
  4829. * M27: Get SD Card status
  4830. */
  4831. inline void gcode_M27() { card.getStatus(); }
  4832. /**
  4833. * M28: Start SD Write
  4834. */
  4835. inline void gcode_M28() { card.openFile(current_command_args, false); }
  4836. /**
  4837. * M29: Stop SD Write
  4838. * Processed in write to file routine above
  4839. */
  4840. inline void gcode_M29() {
  4841. // card.saving = false;
  4842. }
  4843. /**
  4844. * M30 <filename>: Delete SD Card file
  4845. */
  4846. inline void gcode_M30() {
  4847. if (card.cardOK) {
  4848. card.closefile();
  4849. card.removeFile(current_command_args);
  4850. }
  4851. }
  4852. #endif // SDSUPPORT
  4853. /**
  4854. * M31: Get the time since the start of SD Print (or last M109)
  4855. */
  4856. inline void gcode_M31() {
  4857. char buffer[21];
  4858. duration_t elapsed = print_job_timer.duration();
  4859. elapsed.toString(buffer);
  4860. lcd_setstatus(buffer);
  4861. SERIAL_ECHO_START;
  4862. SERIAL_ECHOLNPAIR("Print time: ", buffer);
  4863. #if ENABLED(AUTOTEMP)
  4864. thermalManager.autotempShutdown();
  4865. #endif
  4866. }
  4867. #if ENABLED(SDSUPPORT)
  4868. /**
  4869. * M32: Select file and start SD Print
  4870. */
  4871. inline void gcode_M32() {
  4872. if (card.sdprinting)
  4873. stepper.synchronize();
  4874. char* namestartpos = strchr(current_command_args, '!'); // Find ! to indicate filename string start.
  4875. if (!namestartpos)
  4876. namestartpos = current_command_args; // Default name position, 4 letters after the M
  4877. else
  4878. namestartpos++; //to skip the '!'
  4879. bool call_procedure = code_seen('P') && (seen_pointer < namestartpos);
  4880. if (card.cardOK) {
  4881. card.openFile(namestartpos, true, call_procedure);
  4882. if (code_seen('S') && seen_pointer < namestartpos) // "S" (must occur _before_ the filename!)
  4883. card.setIndex(code_value_long());
  4884. card.startFileprint();
  4885. // Procedure calls count as normal print time.
  4886. if (!call_procedure) print_job_timer.start();
  4887. }
  4888. }
  4889. #if ENABLED(LONG_FILENAME_HOST_SUPPORT)
  4890. /**
  4891. * M33: Get the long full path of a file or folder
  4892. *
  4893. * Parameters:
  4894. * <dospath> Case-insensitive DOS-style path to a file or folder
  4895. *
  4896. * Example:
  4897. * M33 miscel~1/armchair/armcha~1.gco
  4898. *
  4899. * Output:
  4900. * /Miscellaneous/Armchair/Armchair.gcode
  4901. */
  4902. inline void gcode_M33() {
  4903. card.printLongPath(current_command_args);
  4904. }
  4905. #endif
  4906. #if ENABLED(SDCARD_SORT_ALPHA) && ENABLED(SDSORT_GCODE)
  4907. /**
  4908. * M34: Set SD Card Sorting Options
  4909. */
  4910. inline void gcode_M34() {
  4911. if (code_seen('S')) card.setSortOn(code_value_bool());
  4912. if (code_seen('F')) {
  4913. int v = code_value_long();
  4914. card.setSortFolders(v < 0 ? -1 : v > 0 ? 1 : 0);
  4915. }
  4916. //if (code_seen('R')) card.setSortReverse(code_value_bool());
  4917. }
  4918. #endif // SDCARD_SORT_ALPHA && SDSORT_GCODE
  4919. /**
  4920. * M928: Start SD Write
  4921. */
  4922. inline void gcode_M928() {
  4923. card.openLogFile(current_command_args);
  4924. }
  4925. #endif // SDSUPPORT
  4926. /**
  4927. * Sensitive pin test for M42, M226
  4928. */
  4929. static bool pin_is_protected(uint8_t pin) {
  4930. static const int sensitive_pins[] = SENSITIVE_PINS;
  4931. for (uint8_t i = 0; i < COUNT(sensitive_pins); i++)
  4932. if (sensitive_pins[i] == pin) return true;
  4933. return false;
  4934. }
  4935. /**
  4936. * M42: Change pin status via GCode
  4937. *
  4938. * P<pin> Pin number (LED if omitted)
  4939. * S<byte> Pin status from 0 - 255
  4940. */
  4941. inline void gcode_M42() {
  4942. if (!code_seen('S')) return;
  4943. int pin_status = code_value_int();
  4944. if (!WITHIN(pin_status, 0, 255)) return;
  4945. int pin_number = code_seen('P') ? code_value_int() : LED_PIN;
  4946. if (pin_number < 0) return;
  4947. if (pin_is_protected(pin_number)) {
  4948. SERIAL_ERROR_START;
  4949. SERIAL_ERRORLNPGM(MSG_ERR_PROTECTED_PIN);
  4950. return;
  4951. }
  4952. pinMode(pin_number, OUTPUT);
  4953. digitalWrite(pin_number, pin_status);
  4954. analogWrite(pin_number, pin_status);
  4955. #if FAN_COUNT > 0
  4956. switch (pin_number) {
  4957. #if HAS_FAN0
  4958. case FAN_PIN: fanSpeeds[0] = pin_status; break;
  4959. #endif
  4960. #if HAS_FAN1
  4961. case FAN1_PIN: fanSpeeds[1] = pin_status; break;
  4962. #endif
  4963. #if HAS_FAN2
  4964. case FAN2_PIN: fanSpeeds[2] = pin_status; break;
  4965. #endif
  4966. }
  4967. #endif
  4968. }
  4969. #if ENABLED(PINS_DEBUGGING)
  4970. #include "pinsDebug.h"
  4971. inline void toggle_pins() {
  4972. const bool I_flag = code_seen('I') && code_value_bool();
  4973. const int repeat = code_seen('R') ? code_value_int() : 1,
  4974. start = code_seen('S') ? code_value_int() : 0,
  4975. end = code_seen('E') ? code_value_int() : NUM_DIGITAL_PINS - 1,
  4976. wait = code_seen('W') ? code_value_int() : 500;
  4977. for (uint8_t pin = start; pin <= end; pin++) {
  4978. if (!I_flag && pin_is_protected(pin)) {
  4979. SERIAL_ECHOPAIR("Sensitive Pin: ", pin);
  4980. SERIAL_ECHOLNPGM(" untouched.");
  4981. }
  4982. else {
  4983. SERIAL_ECHOPAIR("Pulsing Pin: ", pin);
  4984. pinMode(pin, OUTPUT);
  4985. for (int16_t j = 0; j < repeat; j++) {
  4986. digitalWrite(pin, 0);
  4987. safe_delay(wait);
  4988. digitalWrite(pin, 1);
  4989. safe_delay(wait);
  4990. digitalWrite(pin, 0);
  4991. safe_delay(wait);
  4992. }
  4993. }
  4994. SERIAL_CHAR('\n');
  4995. }
  4996. SERIAL_ECHOLNPGM("Done.");
  4997. } // toggle_pins
  4998. inline void servo_probe_test() {
  4999. #if !(NUM_SERVOS > 0 && HAS_SERVO_0)
  5000. SERIAL_ERROR_START;
  5001. SERIAL_ERRORLNPGM("SERVO not setup");
  5002. #elif !HAS_Z_SERVO_ENDSTOP
  5003. SERIAL_ERROR_START;
  5004. SERIAL_ERRORLNPGM("Z_ENDSTOP_SERVO_NR not setup");
  5005. #else
  5006. const uint8_t probe_index = code_seen('P') ? code_value_byte() : Z_ENDSTOP_SERVO_NR;
  5007. SERIAL_PROTOCOLLNPGM("Servo probe test");
  5008. SERIAL_PROTOCOLLNPAIR(". using index: ", probe_index);
  5009. SERIAL_PROTOCOLLNPAIR(". deploy angle: ", z_servo_angle[0]);
  5010. SERIAL_PROTOCOLLNPAIR(". stow angle: ", z_servo_angle[1]);
  5011. bool probe_inverting;
  5012. #if ENABLED(Z_MIN_PROBE_USES_Z_MIN_ENDSTOP_PIN)
  5013. #define PROBE_TEST_PIN Z_MIN_PIN
  5014. SERIAL_PROTOCOLLNPAIR(". probe uses Z_MIN pin: ", PROBE_TEST_PIN);
  5015. SERIAL_PROTOCOLLNPGM(". uses Z_MIN_ENDSTOP_INVERTING (ignores Z_MIN_PROBE_ENDSTOP_INVERTING)");
  5016. SERIAL_PROTOCOLPGM(". Z_MIN_ENDSTOP_INVERTING: ");
  5017. #if Z_MIN_ENDSTOP_INVERTING
  5018. SERIAL_PROTOCOLLNPGM("true");
  5019. #else
  5020. SERIAL_PROTOCOLLNPGM("false");
  5021. #endif
  5022. probe_inverting = Z_MIN_ENDSTOP_INVERTING;
  5023. #elif ENABLED(Z_MIN_PROBE_ENDSTOP)
  5024. #define PROBE_TEST_PIN Z_MIN_PROBE_PIN
  5025. SERIAL_PROTOCOLLNPAIR(". probe uses Z_MIN_PROBE_PIN: ", PROBE_TEST_PIN);
  5026. SERIAL_PROTOCOLLNPGM(". uses Z_MIN_PROBE_ENDSTOP_INVERTING (ignores Z_MIN_ENDSTOP_INVERTING)");
  5027. SERIAL_PROTOCOLPGM(". Z_MIN_PROBE_ENDSTOP_INVERTING: ");
  5028. #if Z_MIN_PROBE_ENDSTOP_INVERTING
  5029. SERIAL_PROTOCOLLNPGM("true");
  5030. #else
  5031. SERIAL_PROTOCOLLNPGM("false");
  5032. #endif
  5033. probe_inverting = Z_MIN_PROBE_ENDSTOP_INVERTING;
  5034. #endif
  5035. SERIAL_PROTOCOLLNPGM(". deploy & stow 4 times");
  5036. pinMode(PROBE_TEST_PIN, INPUT_PULLUP);
  5037. bool deploy_state;
  5038. bool stow_state;
  5039. for (uint8_t i = 0; i < 4; i++) {
  5040. servo[probe_index].move(z_servo_angle[0]); //deploy
  5041. safe_delay(500);
  5042. deploy_state = digitalRead(PROBE_TEST_PIN);
  5043. servo[probe_index].move(z_servo_angle[1]); //stow
  5044. safe_delay(500);
  5045. stow_state = digitalRead(PROBE_TEST_PIN);
  5046. }
  5047. if (probe_inverting != deploy_state) SERIAL_PROTOCOLLNPGM("WARNING - INVERTING setting probably backwards");
  5048. refresh_cmd_timeout();
  5049. if (deploy_state != stow_state) {
  5050. SERIAL_PROTOCOLLNPGM("BLTouch clone detected");
  5051. if (deploy_state) {
  5052. SERIAL_PROTOCOLLNPGM(". DEPLOYED state: HIGH (logic 1)");
  5053. SERIAL_PROTOCOLLNPGM(". STOWED (triggered) state: LOW (logic 0)");
  5054. }
  5055. else {
  5056. SERIAL_PROTOCOLLNPGM(". DEPLOYED state: LOW (logic 0)");
  5057. SERIAL_PROTOCOLLNPGM(". STOWED (triggered) state: HIGH (logic 1)");
  5058. }
  5059. #if ENABLED(BLTOUCH)
  5060. SERIAL_PROTOCOLLNPGM("ERROR: BLTOUCH enabled - set this device up as a Z Servo Probe with inverting as true.");
  5061. #endif
  5062. }
  5063. else { // measure active signal length
  5064. servo[probe_index].move(z_servo_angle[0]); // deploy
  5065. safe_delay(500);
  5066. SERIAL_PROTOCOLLNPGM("please trigger probe");
  5067. uint16_t probe_counter = 0;
  5068. // Allow 30 seconds max for operator to trigger probe
  5069. for (uint16_t j = 0; j < 500 * 30 && probe_counter == 0 ; j++) {
  5070. safe_delay(2);
  5071. if (0 == j % (500 * 1)) // keep cmd_timeout happy
  5072. refresh_cmd_timeout();
  5073. if (deploy_state != digitalRead(PROBE_TEST_PIN)) { // probe triggered
  5074. for (probe_counter = 1; probe_counter < 50 && deploy_state != digitalRead(PROBE_TEST_PIN); ++probe_counter)
  5075. safe_delay(2);
  5076. if (probe_counter == 50)
  5077. SERIAL_PROTOCOLLNPGM("Z Servo Probe detected"); // >= 100mS active time
  5078. else if (probe_counter >= 2)
  5079. SERIAL_PROTOCOLLNPAIR("BLTouch compatible probe detected - pulse width (+/- 4mS): ", probe_counter * 2); // allow 4 - 100mS pulse
  5080. else
  5081. SERIAL_PROTOCOLLNPGM("noise detected - please re-run test"); // less than 2mS pulse
  5082. servo[probe_index].move(z_servo_angle[1]); //stow
  5083. } // pulse detected
  5084. } // for loop waiting for trigger
  5085. if (probe_counter == 0) SERIAL_PROTOCOLLNPGM("trigger not detected");
  5086. } // measure active signal length
  5087. #endif
  5088. } // servo_probe_test
  5089. /**
  5090. * M43: Pin debug - report pin state, watch pins, toggle pins and servo probe test/report
  5091. *
  5092. * M43 - report name and state of pin(s)
  5093. * P<pin> Pin to read or watch. If omitted, reads all pins.
  5094. * I Flag to ignore Marlin's pin protection.
  5095. *
  5096. * M43 W - Watch pins -reporting changes- until reset, click, or M108.
  5097. * P<pin> Pin to read or watch. If omitted, read/watch all pins.
  5098. * I Flag to ignore Marlin's pin protection.
  5099. *
  5100. * M43 E<bool> - Enable / disable background endstop monitoring
  5101. * - Machine continues to operate
  5102. * - Reports changes to endstops
  5103. * - Toggles LED when an endstop changes
  5104. * - Can not reliably catch the 5mS pulse from BLTouch type probes
  5105. *
  5106. * M43 T - Toggle pin(s) and report which pin is being toggled
  5107. * S<pin> - Start Pin number. If not given, will default to 0
  5108. * L<pin> - End Pin number. If not given, will default to last pin defined for this board
  5109. * I - Flag to ignore Marlin's pin protection. Use with caution!!!!
  5110. * R - Repeat pulses on each pin this number of times before continueing to next pin
  5111. * W - Wait time (in miliseconds) between pulses. If not given will default to 500
  5112. *
  5113. * M43 S - Servo probe test
  5114. * P<index> - Probe index (optional - defaults to 0
  5115. */
  5116. inline void gcode_M43() {
  5117. if (code_seen('T')) { // must be first ot else it's "S" and "E" parameters will execute endstop or servo test
  5118. toggle_pins();
  5119. return;
  5120. }
  5121. // Enable or disable endstop monitoring
  5122. if (code_seen('E')) {
  5123. endstop_monitor_flag = code_value_bool();
  5124. SERIAL_PROTOCOLPGM("endstop monitor ");
  5125. SERIAL_PROTOCOL(endstop_monitor_flag ? "en" : "dis");
  5126. SERIAL_PROTOCOLLNPGM("abled");
  5127. return;
  5128. }
  5129. if (code_seen('S')) {
  5130. servo_probe_test();
  5131. return;
  5132. }
  5133. // Get the range of pins to test or watch
  5134. const uint8_t first_pin = code_seen('P') ? code_value_byte() : 0,
  5135. last_pin = code_seen('P') ? first_pin : NUM_DIGITAL_PINS - 1;
  5136. if (first_pin > last_pin) return;
  5137. const bool ignore_protection = code_seen('I') && code_value_bool();
  5138. // Watch until click, M108, or reset
  5139. if (code_seen('W') && code_value_bool()) {
  5140. SERIAL_PROTOCOLLNPGM("Watching pins");
  5141. byte pin_state[last_pin - first_pin + 1];
  5142. for (int8_t pin = first_pin; pin <= last_pin; pin++) {
  5143. if (pin_is_protected(pin) && !ignore_protection) continue;
  5144. pinMode(pin, INPUT_PULLUP);
  5145. /*
  5146. if (IS_ANALOG(pin))
  5147. pin_state[pin - first_pin] = analogRead(pin - analogInputToDigitalPin(0)); // int16_t pin_state[...]
  5148. else
  5149. //*/
  5150. pin_state[pin - first_pin] = digitalRead(pin);
  5151. }
  5152. #if HAS_RESUME_CONTINUE
  5153. wait_for_user = true;
  5154. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5155. #endif
  5156. for (;;) {
  5157. for (int8_t pin = first_pin; pin <= last_pin; pin++) {
  5158. if (pin_is_protected(pin)) continue;
  5159. const byte val =
  5160. /*
  5161. IS_ANALOG(pin)
  5162. ? analogRead(pin - analogInputToDigitalPin(0)) : // int16_t val
  5163. :
  5164. //*/
  5165. digitalRead(pin);
  5166. if (val != pin_state[pin - first_pin]) {
  5167. report_pin_state(pin);
  5168. pin_state[pin - first_pin] = val;
  5169. }
  5170. }
  5171. #if HAS_RESUME_CONTINUE
  5172. if (!wait_for_user) {
  5173. KEEPALIVE_STATE(IN_HANDLER);
  5174. break;
  5175. }
  5176. #endif
  5177. safe_delay(500);
  5178. }
  5179. return;
  5180. }
  5181. // Report current state of selected pin(s)
  5182. for (uint8_t pin = first_pin; pin <= last_pin; pin++)
  5183. report_pin_state_extended(pin, ignore_protection);
  5184. }
  5185. #endif // PINS_DEBUGGING
  5186. #if ENABLED(Z_MIN_PROBE_REPEATABILITY_TEST)
  5187. /**
  5188. * M48: Z probe repeatability measurement function.
  5189. *
  5190. * Usage:
  5191. * M48 <P#> <X#> <Y#> <V#> <E> <L#>
  5192. * P = Number of sampled points (4-50, default 10)
  5193. * X = Sample X position
  5194. * Y = Sample Y position
  5195. * V = Verbose level (0-4, default=1)
  5196. * E = Engage Z probe for each reading
  5197. * L = Number of legs of movement before probe
  5198. * S = Schizoid (Or Star if you prefer)
  5199. *
  5200. * This function assumes the bed has been homed. Specifically, that a G28 command
  5201. * as been issued prior to invoking the M48 Z probe repeatability measurement function.
  5202. * Any information generated by a prior G29 Bed leveling command will be lost and need to be
  5203. * regenerated.
  5204. */
  5205. inline void gcode_M48() {
  5206. #if ENABLED(AUTO_BED_LEVELING_UBL)
  5207. bool bed_leveling_state_at_entry=0;
  5208. bed_leveling_state_at_entry = ubl.state.active;
  5209. #endif
  5210. if (axis_unhomed_error(true, true, true)) return;
  5211. const int8_t verbose_level = code_seen('V') ? code_value_byte() : 1;
  5212. if (!WITHIN(verbose_level, 0, 4)) {
  5213. SERIAL_PROTOCOLLNPGM("?Verbose Level not plausible (0-4).");
  5214. return;
  5215. }
  5216. if (verbose_level > 0)
  5217. SERIAL_PROTOCOLLNPGM("M48 Z-Probe Repeatability Test");
  5218. int8_t n_samples = code_seen('P') ? code_value_byte() : 10;
  5219. if (!WITHIN(n_samples, 4, 50)) {
  5220. SERIAL_PROTOCOLLNPGM("?Sample size not plausible (4-50).");
  5221. return;
  5222. }
  5223. float X_current = current_position[X_AXIS],
  5224. Y_current = current_position[Y_AXIS];
  5225. bool stow_probe_after_each = code_seen('E');
  5226. float X_probe_location = code_seen('X') ? code_value_linear_units() : X_current + X_PROBE_OFFSET_FROM_EXTRUDER;
  5227. #if DISABLED(DELTA)
  5228. if (!WITHIN(X_probe_location, LOGICAL_X_POSITION(MIN_PROBE_X), LOGICAL_X_POSITION(MAX_PROBE_X))) {
  5229. out_of_range_error(PSTR("X"));
  5230. return;
  5231. }
  5232. #endif
  5233. float Y_probe_location = code_seen('Y') ? code_value_linear_units() : Y_current + Y_PROBE_OFFSET_FROM_EXTRUDER;
  5234. #if DISABLED(DELTA)
  5235. if (!WITHIN(Y_probe_location, LOGICAL_Y_POSITION(MIN_PROBE_Y), LOGICAL_Y_POSITION(MAX_PROBE_Y))) {
  5236. out_of_range_error(PSTR("Y"));
  5237. return;
  5238. }
  5239. #else
  5240. float pos[XYZ] = { X_probe_location, Y_probe_location, 0 };
  5241. if (!position_is_reachable(pos, true)) {
  5242. SERIAL_PROTOCOLLNPGM("? (X,Y) location outside of probeable radius.");
  5243. return;
  5244. }
  5245. #endif
  5246. bool seen_L = code_seen('L');
  5247. uint8_t n_legs = seen_L ? code_value_byte() : 0;
  5248. if (n_legs > 15) {
  5249. SERIAL_PROTOCOLLNPGM("?Number of legs in movement not plausible (0-15).");
  5250. return;
  5251. }
  5252. if (n_legs == 1) n_legs = 2;
  5253. bool schizoid_flag = code_seen('S');
  5254. if (schizoid_flag && !seen_L) n_legs = 7;
  5255. /**
  5256. * Now get everything to the specified probe point So we can safely do a
  5257. * probe to get us close to the bed. If the Z-Axis is far from the bed,
  5258. * we don't want to use that as a starting point for each probe.
  5259. */
  5260. if (verbose_level > 2)
  5261. SERIAL_PROTOCOLLNPGM("Positioning the probe...");
  5262. // Disable bed level correction in M48 because we want the raw data when we probe
  5263. #if HAS_ABL
  5264. const bool abl_was_enabled = planner.abl_enabled;
  5265. set_bed_leveling_enabled(false);
  5266. #endif
  5267. setup_for_endstop_or_probe_move();
  5268. // Move to the first point, deploy, and probe
  5269. probe_pt(X_probe_location, Y_probe_location, stow_probe_after_each, verbose_level);
  5270. randomSeed(millis());
  5271. double mean = 0.0, sigma = 0.0, min = 99999.9, max = -99999.9, sample_set[n_samples];
  5272. for (uint8_t n = 0; n < n_samples; n++) {
  5273. if (n_legs) {
  5274. int dir = (random(0, 10) > 5.0) ? -1 : 1; // clockwise or counter clockwise
  5275. float angle = random(0.0, 360.0),
  5276. radius = random(
  5277. #if ENABLED(DELTA)
  5278. DELTA_PROBEABLE_RADIUS / 8, DELTA_PROBEABLE_RADIUS / 3
  5279. #else
  5280. 5, X_MAX_LENGTH / 8
  5281. #endif
  5282. );
  5283. if (verbose_level > 3) {
  5284. SERIAL_ECHOPAIR("Starting radius: ", radius);
  5285. SERIAL_ECHOPAIR(" angle: ", angle);
  5286. SERIAL_ECHOPGM(" Direction: ");
  5287. if (dir > 0) SERIAL_ECHOPGM("Counter-");
  5288. SERIAL_ECHOLNPGM("Clockwise");
  5289. }
  5290. for (uint8_t l = 0; l < n_legs - 1; l++) {
  5291. double delta_angle;
  5292. if (schizoid_flag)
  5293. // The points of a 5 point star are 72 degrees apart. We need to
  5294. // skip a point and go to the next one on the star.
  5295. delta_angle = dir * 2.0 * 72.0;
  5296. else
  5297. // If we do this line, we are just trying to move further
  5298. // around the circle.
  5299. delta_angle = dir * (float) random(25, 45);
  5300. angle += delta_angle;
  5301. while (angle > 360.0) // We probably do not need to keep the angle between 0 and 2*PI, but the
  5302. angle -= 360.0; // Arduino documentation says the trig functions should not be given values
  5303. while (angle < 0.0) // outside of this range. It looks like they behave correctly with
  5304. angle += 360.0; // numbers outside of the range, but just to be safe we clamp them.
  5305. X_current = X_probe_location - (X_PROBE_OFFSET_FROM_EXTRUDER) + cos(RADIANS(angle)) * radius;
  5306. Y_current = Y_probe_location - (Y_PROBE_OFFSET_FROM_EXTRUDER) + sin(RADIANS(angle)) * radius;
  5307. #if DISABLED(DELTA)
  5308. X_current = constrain(X_current, X_MIN_POS, X_MAX_POS);
  5309. Y_current = constrain(Y_current, Y_MIN_POS, Y_MAX_POS);
  5310. #else
  5311. // If we have gone out too far, we can do a simple fix and scale the numbers
  5312. // back in closer to the origin.
  5313. while (HYPOT(X_current, Y_current) > DELTA_PROBEABLE_RADIUS) {
  5314. X_current *= 0.8;
  5315. Y_current *= 0.8;
  5316. if (verbose_level > 3) {
  5317. SERIAL_ECHOPAIR("Pulling point towards center:", X_current);
  5318. SERIAL_ECHOLNPAIR(", ", Y_current);
  5319. }
  5320. }
  5321. #endif
  5322. if (verbose_level > 3) {
  5323. SERIAL_PROTOCOLPGM("Going to:");
  5324. SERIAL_ECHOPAIR(" X", X_current);
  5325. SERIAL_ECHOPAIR(" Y", Y_current);
  5326. SERIAL_ECHOLNPAIR(" Z", current_position[Z_AXIS]);
  5327. }
  5328. do_blocking_move_to_xy(X_current, Y_current);
  5329. } // n_legs loop
  5330. } // n_legs
  5331. // Probe a single point
  5332. sample_set[n] = probe_pt(X_probe_location, Y_probe_location, stow_probe_after_each, 0);
  5333. /**
  5334. * Get the current mean for the data points we have so far
  5335. */
  5336. double sum = 0.0;
  5337. for (uint8_t j = 0; j <= n; j++) sum += sample_set[j];
  5338. mean = sum / (n + 1);
  5339. NOMORE(min, sample_set[n]);
  5340. NOLESS(max, sample_set[n]);
  5341. /**
  5342. * Now, use that mean to calculate the standard deviation for the
  5343. * data points we have so far
  5344. */
  5345. sum = 0.0;
  5346. for (uint8_t j = 0; j <= n; j++)
  5347. sum += sq(sample_set[j] - mean);
  5348. sigma = sqrt(sum / (n + 1));
  5349. if (verbose_level > 0) {
  5350. if (verbose_level > 1) {
  5351. SERIAL_PROTOCOL(n + 1);
  5352. SERIAL_PROTOCOLPGM(" of ");
  5353. SERIAL_PROTOCOL((int)n_samples);
  5354. SERIAL_PROTOCOLPGM(": z: ");
  5355. SERIAL_PROTOCOL_F(sample_set[n], 3);
  5356. if (verbose_level > 2) {
  5357. SERIAL_PROTOCOLPGM(" mean: ");
  5358. SERIAL_PROTOCOL_F(mean, 4);
  5359. SERIAL_PROTOCOLPGM(" sigma: ");
  5360. SERIAL_PROTOCOL_F(sigma, 6);
  5361. SERIAL_PROTOCOLPGM(" min: ");
  5362. SERIAL_PROTOCOL_F(min, 3);
  5363. SERIAL_PROTOCOLPGM(" max: ");
  5364. SERIAL_PROTOCOL_F(max, 3);
  5365. SERIAL_PROTOCOLPGM(" range: ");
  5366. SERIAL_PROTOCOL_F(max-min, 3);
  5367. }
  5368. SERIAL_EOL;
  5369. }
  5370. }
  5371. } // End of probe loop
  5372. if (STOW_PROBE()) return;
  5373. SERIAL_PROTOCOLPGM("Finished!");
  5374. SERIAL_EOL;
  5375. if (verbose_level > 0) {
  5376. SERIAL_PROTOCOLPGM("Mean: ");
  5377. SERIAL_PROTOCOL_F(mean, 6);
  5378. SERIAL_PROTOCOLPGM(" Min: ");
  5379. SERIAL_PROTOCOL_F(min, 3);
  5380. SERIAL_PROTOCOLPGM(" Max: ");
  5381. SERIAL_PROTOCOL_F(max, 3);
  5382. SERIAL_PROTOCOLPGM(" Range: ");
  5383. SERIAL_PROTOCOL_F(max-min, 3);
  5384. SERIAL_EOL;
  5385. }
  5386. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  5387. SERIAL_PROTOCOL_F(sigma, 6);
  5388. SERIAL_EOL;
  5389. SERIAL_EOL;
  5390. clean_up_after_endstop_or_probe_move();
  5391. // Re-enable bed level correction if it has been on
  5392. #if HAS_ABL
  5393. set_bed_leveling_enabled(abl_was_enabled);
  5394. #endif
  5395. #if ENABLED(AUTO_BED_LEVELING_UBL)
  5396. set_bed_leveling_enabled(bed_leveling_state_at_entry);
  5397. ubl.state.active = bed_leveling_state_at_entry;
  5398. #endif
  5399. report_current_position();
  5400. }
  5401. #endif // Z_MIN_PROBE_REPEATABILITY_TEST
  5402. #if ENABLED(AUTO_BED_LEVELING_UBL) && ENABLED(UBL_G26_MESH_EDITING)
  5403. inline void gcode_M49() {
  5404. ubl.g26_debug_flag ^= true;
  5405. SERIAL_PROTOCOLPGM("UBL Debug Flag turned ");
  5406. serialprintPGM(ubl.g26_debug_flag ? PSTR("on.") : PSTR("off."));
  5407. }
  5408. #endif // AUTO_BED_LEVELING_UBL && UBL_G26_MESH_EDITING
  5409. /**
  5410. * M75: Start print timer
  5411. */
  5412. inline void gcode_M75() { print_job_timer.start(); }
  5413. /**
  5414. * M76: Pause print timer
  5415. */
  5416. inline void gcode_M76() { print_job_timer.pause(); }
  5417. /**
  5418. * M77: Stop print timer
  5419. */
  5420. inline void gcode_M77() { print_job_timer.stop(); }
  5421. #if ENABLED(PRINTCOUNTER)
  5422. /**
  5423. * M78: Show print statistics
  5424. */
  5425. inline void gcode_M78() {
  5426. // "M78 S78" will reset the statistics
  5427. if (code_seen('S') && code_value_int() == 78)
  5428. print_job_timer.initStats();
  5429. else
  5430. print_job_timer.showStats();
  5431. }
  5432. #endif
  5433. /**
  5434. * M104: Set hot end temperature
  5435. */
  5436. inline void gcode_M104() {
  5437. if (get_target_extruder_from_command(104)) return;
  5438. if (DEBUGGING(DRYRUN)) return;
  5439. #if ENABLED(SINGLENOZZLE)
  5440. if (target_extruder != active_extruder) return;
  5441. #endif
  5442. if (code_seen('S')) {
  5443. thermalManager.setTargetHotend(code_value_temp_abs(), target_extruder);
  5444. #if ENABLED(DUAL_X_CARRIAGE)
  5445. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && target_extruder == 0)
  5446. thermalManager.setTargetHotend(code_value_temp_abs() == 0.0 ? 0.0 : code_value_temp_abs() + duplicate_extruder_temp_offset, 1);
  5447. #endif
  5448. #if ENABLED(PRINTJOB_TIMER_AUTOSTART)
  5449. /**
  5450. * Stop the timer at the end of print. Start is managed by 'heat and wait' M109.
  5451. * We use half EXTRUDE_MINTEMP here to allow nozzles to be put into hot
  5452. * standby mode, for instance in a dual extruder setup, without affecting
  5453. * the running print timer.
  5454. */
  5455. if (code_value_temp_abs() <= (EXTRUDE_MINTEMP)/2) {
  5456. print_job_timer.stop();
  5457. LCD_MESSAGEPGM(WELCOME_MSG);
  5458. }
  5459. #endif
  5460. if (code_value_temp_abs() > thermalManager.degHotend(target_extruder)) lcd_status_printf_P(0, PSTR("E%i %s"), target_extruder + 1, MSG_HEATING);
  5461. }
  5462. #if ENABLED(AUTOTEMP)
  5463. planner.autotemp_M104_M109();
  5464. #endif
  5465. }
  5466. #if HAS_TEMP_HOTEND || HAS_TEMP_BED
  5467. void print_heaterstates() {
  5468. #if HAS_TEMP_HOTEND
  5469. SERIAL_PROTOCOLPGM(" T:");
  5470. SERIAL_PROTOCOL_F(thermalManager.degHotend(target_extruder), 1);
  5471. SERIAL_PROTOCOLPGM(" /");
  5472. SERIAL_PROTOCOL_F(thermalManager.degTargetHotend(target_extruder), 1);
  5473. #if ENABLED(SHOW_TEMP_ADC_VALUES)
  5474. SERIAL_PROTOCOLPAIR(" (", thermalManager.current_temperature_raw[target_extruder] / OVERSAMPLENR);
  5475. SERIAL_PROTOCOLCHAR(')');
  5476. #endif
  5477. #endif
  5478. #if HAS_TEMP_BED
  5479. SERIAL_PROTOCOLPGM(" B:");
  5480. SERIAL_PROTOCOL_F(thermalManager.degBed(), 1);
  5481. SERIAL_PROTOCOLPGM(" /");
  5482. SERIAL_PROTOCOL_F(thermalManager.degTargetBed(), 1);
  5483. #if ENABLED(SHOW_TEMP_ADC_VALUES)
  5484. SERIAL_PROTOCOLPAIR(" (", thermalManager.current_temperature_bed_raw / OVERSAMPLENR);
  5485. SERIAL_PROTOCOLCHAR(')');
  5486. #endif
  5487. #endif
  5488. #if HOTENDS > 1
  5489. HOTEND_LOOP() {
  5490. SERIAL_PROTOCOLPAIR(" T", e);
  5491. SERIAL_PROTOCOLCHAR(':');
  5492. SERIAL_PROTOCOL_F(thermalManager.degHotend(e), 1);
  5493. SERIAL_PROTOCOLPGM(" /");
  5494. SERIAL_PROTOCOL_F(thermalManager.degTargetHotend(e), 1);
  5495. #if ENABLED(SHOW_TEMP_ADC_VALUES)
  5496. SERIAL_PROTOCOLPAIR(" (", thermalManager.current_temperature_raw[e] / OVERSAMPLENR);
  5497. SERIAL_PROTOCOLCHAR(')');
  5498. #endif
  5499. }
  5500. #endif
  5501. SERIAL_PROTOCOLPGM(" @:");
  5502. SERIAL_PROTOCOL(thermalManager.getHeaterPower(target_extruder));
  5503. #if HAS_TEMP_BED
  5504. SERIAL_PROTOCOLPGM(" B@:");
  5505. SERIAL_PROTOCOL(thermalManager.getHeaterPower(-1));
  5506. #endif
  5507. #if HOTENDS > 1
  5508. HOTEND_LOOP() {
  5509. SERIAL_PROTOCOLPAIR(" @", e);
  5510. SERIAL_PROTOCOLCHAR(':');
  5511. SERIAL_PROTOCOL(thermalManager.getHeaterPower(e));
  5512. }
  5513. #endif
  5514. }
  5515. #endif
  5516. /**
  5517. * M105: Read hot end and bed temperature
  5518. */
  5519. inline void gcode_M105() {
  5520. if (get_target_extruder_from_command(105)) return;
  5521. #if HAS_TEMP_HOTEND || HAS_TEMP_BED
  5522. SERIAL_PROTOCOLPGM(MSG_OK);
  5523. print_heaterstates();
  5524. #else // !HAS_TEMP_HOTEND && !HAS_TEMP_BED
  5525. SERIAL_ERROR_START;
  5526. SERIAL_ERRORLNPGM(MSG_ERR_NO_THERMISTORS);
  5527. #endif
  5528. SERIAL_EOL;
  5529. }
  5530. #if ENABLED(AUTO_REPORT_TEMPERATURES) && (HAS_TEMP_HOTEND || HAS_TEMP_BED)
  5531. static uint8_t auto_report_temp_interval;
  5532. static millis_t next_temp_report_ms;
  5533. /**
  5534. * M155: Set temperature auto-report interval. M155 S<seconds>
  5535. */
  5536. inline void gcode_M155() {
  5537. if (code_seen('S')) {
  5538. auto_report_temp_interval = code_value_byte();
  5539. NOMORE(auto_report_temp_interval, 60);
  5540. next_temp_report_ms = millis() + 1000UL * auto_report_temp_interval;
  5541. }
  5542. }
  5543. inline void auto_report_temperatures() {
  5544. if (auto_report_temp_interval && ELAPSED(millis(), next_temp_report_ms)) {
  5545. next_temp_report_ms = millis() + 1000UL * auto_report_temp_interval;
  5546. print_heaterstates();
  5547. SERIAL_EOL;
  5548. }
  5549. }
  5550. #endif // AUTO_REPORT_TEMPERATURES
  5551. #if FAN_COUNT > 0
  5552. /**
  5553. * M106: Set Fan Speed
  5554. *
  5555. * S<int> Speed between 0-255
  5556. * P<index> Fan index, if more than one fan
  5557. */
  5558. inline void gcode_M106() {
  5559. uint16_t s = code_seen('S') ? code_value_ushort() : 255,
  5560. p = code_seen('P') ? code_value_ushort() : 0;
  5561. NOMORE(s, 255);
  5562. if (p < FAN_COUNT) fanSpeeds[p] = s;
  5563. }
  5564. /**
  5565. * M107: Fan Off
  5566. */
  5567. inline void gcode_M107() {
  5568. uint16_t p = code_seen('P') ? code_value_ushort() : 0;
  5569. if (p < FAN_COUNT) fanSpeeds[p] = 0;
  5570. }
  5571. #endif // FAN_COUNT > 0
  5572. #if DISABLED(EMERGENCY_PARSER)
  5573. /**
  5574. * M108: Stop the waiting for heaters in M109, M190, M303. Does not affect the target temperature.
  5575. */
  5576. inline void gcode_M108() { wait_for_heatup = false; }
  5577. /**
  5578. * M112: Emergency Stop
  5579. */
  5580. inline void gcode_M112() { kill(PSTR(MSG_KILLED)); }
  5581. /**
  5582. * M410: Quickstop - Abort all planned moves
  5583. *
  5584. * This will stop the carriages mid-move, so most likely they
  5585. * will be out of sync with the stepper position after this.
  5586. */
  5587. inline void gcode_M410() { quickstop_stepper(); }
  5588. #endif
  5589. /**
  5590. * M109: Sxxx Wait for extruder(s) to reach temperature. Waits only when heating.
  5591. * Rxxx Wait for extruder(s) to reach temperature. Waits when heating and cooling.
  5592. */
  5593. #ifndef MIN_COOLING_SLOPE_DEG
  5594. #define MIN_COOLING_SLOPE_DEG 1.50
  5595. #endif
  5596. #ifndef MIN_COOLING_SLOPE_TIME
  5597. #define MIN_COOLING_SLOPE_TIME 60
  5598. #endif
  5599. inline void gcode_M109() {
  5600. if (get_target_extruder_from_command(109)) return;
  5601. if (DEBUGGING(DRYRUN)) return;
  5602. #if ENABLED(SINGLENOZZLE)
  5603. if (target_extruder != active_extruder) return;
  5604. #endif
  5605. const bool no_wait_for_cooling = code_seen('S');
  5606. if (no_wait_for_cooling || code_seen('R')) {
  5607. thermalManager.setTargetHotend(code_value_temp_abs(), target_extruder);
  5608. #if ENABLED(DUAL_X_CARRIAGE)
  5609. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && target_extruder == 0)
  5610. thermalManager.setTargetHotend(code_value_temp_abs() == 0.0 ? 0.0 : code_value_temp_abs() + duplicate_extruder_temp_offset, 1);
  5611. #endif
  5612. #if ENABLED(PRINTJOB_TIMER_AUTOSTART)
  5613. /**
  5614. * Use half EXTRUDE_MINTEMP to allow nozzles to be put into hot
  5615. * standby mode, (e.g., in a dual extruder setup) without affecting
  5616. * the running print timer.
  5617. */
  5618. if (code_value_temp_abs() <= (EXTRUDE_MINTEMP) / 2) {
  5619. print_job_timer.stop();
  5620. LCD_MESSAGEPGM(WELCOME_MSG);
  5621. }
  5622. else
  5623. print_job_timer.start();
  5624. #endif
  5625. if (thermalManager.isHeatingHotend(target_extruder)) lcd_status_printf_P(0, PSTR("E%i %s"), target_extruder + 1, MSG_HEATING);
  5626. }
  5627. else return;
  5628. #if ENABLED(AUTOTEMP)
  5629. planner.autotemp_M104_M109();
  5630. #endif
  5631. #if TEMP_RESIDENCY_TIME > 0
  5632. millis_t residency_start_ms = 0;
  5633. // Loop until the temperature has stabilized
  5634. #define TEMP_CONDITIONS (!residency_start_ms || PENDING(now, residency_start_ms + (TEMP_RESIDENCY_TIME) * 1000UL))
  5635. #else
  5636. // Loop until the temperature is very close target
  5637. #define TEMP_CONDITIONS (wants_to_cool ? thermalManager.isCoolingHotend(target_extruder) : thermalManager.isHeatingHotend(target_extruder))
  5638. #endif
  5639. float target_temp = -1.0, old_temp = 9999.0;
  5640. bool wants_to_cool = false;
  5641. wait_for_heatup = true;
  5642. millis_t now, next_temp_ms = 0, next_cool_check_ms = 0;
  5643. KEEPALIVE_STATE(NOT_BUSY);
  5644. #if ENABLED(PRINTER_EVENT_LEDS)
  5645. const float start_temp = thermalManager.degHotend(target_extruder);
  5646. uint8_t old_blue = 0;
  5647. #endif
  5648. do {
  5649. // Target temperature might be changed during the loop
  5650. if (target_temp != thermalManager.degTargetHotend(target_extruder)) {
  5651. wants_to_cool = thermalManager.isCoolingHotend(target_extruder);
  5652. target_temp = thermalManager.degTargetHotend(target_extruder);
  5653. // Exit if S<lower>, continue if S<higher>, R<lower>, or R<higher>
  5654. if (no_wait_for_cooling && wants_to_cool) break;
  5655. }
  5656. now = millis();
  5657. if (ELAPSED(now, next_temp_ms)) { //Print temp & remaining time every 1s while waiting
  5658. next_temp_ms = now + 1000UL;
  5659. print_heaterstates();
  5660. #if TEMP_RESIDENCY_TIME > 0
  5661. SERIAL_PROTOCOLPGM(" W:");
  5662. if (residency_start_ms) {
  5663. long rem = (((TEMP_RESIDENCY_TIME) * 1000UL) - (now - residency_start_ms)) / 1000UL;
  5664. SERIAL_PROTOCOLLN(rem);
  5665. }
  5666. else {
  5667. SERIAL_PROTOCOLLNPGM("?");
  5668. }
  5669. #else
  5670. SERIAL_EOL;
  5671. #endif
  5672. }
  5673. idle();
  5674. refresh_cmd_timeout(); // to prevent stepper_inactive_time from running out
  5675. const float temp = thermalManager.degHotend(target_extruder);
  5676. #if ENABLED(PRINTER_EVENT_LEDS)
  5677. // Gradually change LED strip from violet to red as nozzle heats up
  5678. if (!wants_to_cool) {
  5679. const uint8_t blue = map(constrain(temp, start_temp, target_temp), start_temp, target_temp, 255, 0);
  5680. if (blue != old_blue) set_led_color(255, 0, (old_blue = blue));
  5681. }
  5682. #endif
  5683. #if TEMP_RESIDENCY_TIME > 0
  5684. const float temp_diff = fabs(target_temp - temp);
  5685. if (!residency_start_ms) {
  5686. // Start the TEMP_RESIDENCY_TIME timer when we reach target temp for the first time.
  5687. if (temp_diff < TEMP_WINDOW) residency_start_ms = now;
  5688. }
  5689. else if (temp_diff > TEMP_HYSTERESIS) {
  5690. // Restart the timer whenever the temperature falls outside the hysteresis.
  5691. residency_start_ms = now;
  5692. }
  5693. #endif
  5694. // Prevent a wait-forever situation if R is misused i.e. M109 R0
  5695. if (wants_to_cool) {
  5696. // break after MIN_COOLING_SLOPE_TIME seconds
  5697. // if the temperature did not drop at least MIN_COOLING_SLOPE_DEG
  5698. if (!next_cool_check_ms || ELAPSED(now, next_cool_check_ms)) {
  5699. if (old_temp - temp < MIN_COOLING_SLOPE_DEG) break;
  5700. next_cool_check_ms = now + 1000UL * MIN_COOLING_SLOPE_TIME;
  5701. old_temp = temp;
  5702. }
  5703. }
  5704. } while (wait_for_heatup && TEMP_CONDITIONS);
  5705. if (wait_for_heatup) {
  5706. LCD_MESSAGEPGM(MSG_HEATING_COMPLETE);
  5707. #if ENABLED(PRINTER_EVENT_LEDS)
  5708. #if ENABLED(RGBW_LED)
  5709. set_led_color(0, 0, 0, 255); // Turn on the WHITE LED
  5710. #else
  5711. set_led_color(255, 255, 255); // Set LEDs All On
  5712. #endif
  5713. #endif
  5714. }
  5715. KEEPALIVE_STATE(IN_HANDLER);
  5716. }
  5717. #if HAS_TEMP_BED
  5718. #ifndef MIN_COOLING_SLOPE_DEG_BED
  5719. #define MIN_COOLING_SLOPE_DEG_BED 1.50
  5720. #endif
  5721. #ifndef MIN_COOLING_SLOPE_TIME_BED
  5722. #define MIN_COOLING_SLOPE_TIME_BED 60
  5723. #endif
  5724. /**
  5725. * M190: Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  5726. * Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  5727. */
  5728. inline void gcode_M190() {
  5729. if (DEBUGGING(DRYRUN)) return;
  5730. LCD_MESSAGEPGM(MSG_BED_HEATING);
  5731. const bool no_wait_for_cooling = code_seen('S');
  5732. if (no_wait_for_cooling || code_seen('R')) {
  5733. thermalManager.setTargetBed(code_value_temp_abs());
  5734. #if ENABLED(PRINTJOB_TIMER_AUTOSTART)
  5735. if (code_value_temp_abs() > BED_MINTEMP)
  5736. print_job_timer.start();
  5737. #endif
  5738. }
  5739. else return;
  5740. #if TEMP_BED_RESIDENCY_TIME > 0
  5741. millis_t residency_start_ms = 0;
  5742. // Loop until the temperature has stabilized
  5743. #define TEMP_BED_CONDITIONS (!residency_start_ms || PENDING(now, residency_start_ms + (TEMP_BED_RESIDENCY_TIME) * 1000UL))
  5744. #else
  5745. // Loop until the temperature is very close target
  5746. #define TEMP_BED_CONDITIONS (wants_to_cool ? thermalManager.isCoolingBed() : thermalManager.isHeatingBed())
  5747. #endif
  5748. float target_temp = -1.0, old_temp = 9999.0;
  5749. bool wants_to_cool = false;
  5750. wait_for_heatup = true;
  5751. millis_t now, next_temp_ms = 0, next_cool_check_ms = 0;
  5752. KEEPALIVE_STATE(NOT_BUSY);
  5753. target_extruder = active_extruder; // for print_heaterstates
  5754. #if ENABLED(PRINTER_EVENT_LEDS)
  5755. const float start_temp = thermalManager.degBed();
  5756. uint8_t old_red = 255;
  5757. #endif
  5758. do {
  5759. // Target temperature might be changed during the loop
  5760. if (target_temp != thermalManager.degTargetBed()) {
  5761. wants_to_cool = thermalManager.isCoolingBed();
  5762. target_temp = thermalManager.degTargetBed();
  5763. // Exit if S<lower>, continue if S<higher>, R<lower>, or R<higher>
  5764. if (no_wait_for_cooling && wants_to_cool) break;
  5765. }
  5766. now = millis();
  5767. if (ELAPSED(now, next_temp_ms)) { //Print Temp Reading every 1 second while heating up.
  5768. next_temp_ms = now + 1000UL;
  5769. print_heaterstates();
  5770. #if TEMP_BED_RESIDENCY_TIME > 0
  5771. SERIAL_PROTOCOLPGM(" W:");
  5772. if (residency_start_ms) {
  5773. long rem = (((TEMP_BED_RESIDENCY_TIME) * 1000UL) - (now - residency_start_ms)) / 1000UL;
  5774. SERIAL_PROTOCOLLN(rem);
  5775. }
  5776. else {
  5777. SERIAL_PROTOCOLLNPGM("?");
  5778. }
  5779. #else
  5780. SERIAL_EOL;
  5781. #endif
  5782. }
  5783. idle();
  5784. refresh_cmd_timeout(); // to prevent stepper_inactive_time from running out
  5785. const float temp = thermalManager.degBed();
  5786. #if ENABLED(PRINTER_EVENT_LEDS)
  5787. // Gradually change LED strip from blue to violet as bed heats up
  5788. if (!wants_to_cool) {
  5789. const uint8_t red = map(constrain(temp, start_temp, target_temp), start_temp, target_temp, 0, 255);
  5790. if (red != old_red) set_led_color((old_red = red), 0, 255);
  5791. }
  5792. }
  5793. #endif
  5794. #if TEMP_BED_RESIDENCY_TIME > 0
  5795. const float temp_diff = fabs(target_temp - temp);
  5796. if (!residency_start_ms) {
  5797. // Start the TEMP_BED_RESIDENCY_TIME timer when we reach target temp for the first time.
  5798. if (temp_diff < TEMP_BED_WINDOW) residency_start_ms = now;
  5799. }
  5800. else if (temp_diff > TEMP_BED_HYSTERESIS) {
  5801. // Restart the timer whenever the temperature falls outside the hysteresis.
  5802. residency_start_ms = now;
  5803. }
  5804. #endif // TEMP_BED_RESIDENCY_TIME > 0
  5805. // Prevent a wait-forever situation if R is misused i.e. M190 R0
  5806. if (wants_to_cool) {
  5807. // Break after MIN_COOLING_SLOPE_TIME_BED seconds
  5808. // if the temperature did not drop at least MIN_COOLING_SLOPE_DEG_BED
  5809. if (!next_cool_check_ms || ELAPSED(now, next_cool_check_ms)) {
  5810. if (old_temp - temp < MIN_COOLING_SLOPE_DEG_BED) break;
  5811. next_cool_check_ms = now + 1000UL * MIN_COOLING_SLOPE_TIME_BED;
  5812. old_temp = temp;
  5813. }
  5814. }
  5815. } while (wait_for_heatup && TEMP_BED_CONDITIONS);
  5816. if (wait_for_heatup) LCD_MESSAGEPGM(MSG_BED_DONE);
  5817. KEEPALIVE_STATE(IN_HANDLER);
  5818. }
  5819. #endif // HAS_TEMP_BED
  5820. /**
  5821. * M110: Set Current Line Number
  5822. */
  5823. inline void gcode_M110() {
  5824. if (code_seen('N')) gcode_LastN = code_value_long();
  5825. }
  5826. /**
  5827. * M111: Set the debug level
  5828. */
  5829. inline void gcode_M111() {
  5830. marlin_debug_flags = code_seen('S') ? code_value_byte() : (uint8_t)DEBUG_NONE;
  5831. const static char str_debug_1[] PROGMEM = MSG_DEBUG_ECHO;
  5832. const static char str_debug_2[] PROGMEM = MSG_DEBUG_INFO;
  5833. const static char str_debug_4[] PROGMEM = MSG_DEBUG_ERRORS;
  5834. const static char str_debug_8[] PROGMEM = MSG_DEBUG_DRYRUN;
  5835. const static char str_debug_16[] PROGMEM = MSG_DEBUG_COMMUNICATION;
  5836. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5837. const static char str_debug_32[] PROGMEM = MSG_DEBUG_LEVELING;
  5838. #endif
  5839. const static char* const debug_strings[] PROGMEM = {
  5840. str_debug_1, str_debug_2, str_debug_4, str_debug_8, str_debug_16,
  5841. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5842. str_debug_32
  5843. #endif
  5844. };
  5845. SERIAL_ECHO_START;
  5846. SERIAL_ECHOPGM(MSG_DEBUG_PREFIX);
  5847. if (marlin_debug_flags) {
  5848. uint8_t comma = 0;
  5849. for (uint8_t i = 0; i < COUNT(debug_strings); i++) {
  5850. if (TEST(marlin_debug_flags, i)) {
  5851. if (comma++) SERIAL_CHAR(',');
  5852. serialprintPGM((char*)pgm_read_word(&(debug_strings[i])));
  5853. }
  5854. }
  5855. }
  5856. else {
  5857. SERIAL_ECHOPGM(MSG_DEBUG_OFF);
  5858. }
  5859. SERIAL_EOL;
  5860. }
  5861. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  5862. /**
  5863. * M113: Get or set Host Keepalive interval (0 to disable)
  5864. *
  5865. * S<seconds> Optional. Set the keepalive interval.
  5866. */
  5867. inline void gcode_M113() {
  5868. if (code_seen('S')) {
  5869. host_keepalive_interval = code_value_byte();
  5870. NOMORE(host_keepalive_interval, 60);
  5871. }
  5872. else {
  5873. SERIAL_ECHO_START;
  5874. SERIAL_ECHOLNPAIR("M113 S", (unsigned long)host_keepalive_interval);
  5875. }
  5876. }
  5877. #endif
  5878. #if ENABLED(BARICUDA)
  5879. #if HAS_HEATER_1
  5880. /**
  5881. * M126: Heater 1 valve open
  5882. */
  5883. inline void gcode_M126() { baricuda_valve_pressure = code_seen('S') ? code_value_byte() : 255; }
  5884. /**
  5885. * M127: Heater 1 valve close
  5886. */
  5887. inline void gcode_M127() { baricuda_valve_pressure = 0; }
  5888. #endif
  5889. #if HAS_HEATER_2
  5890. /**
  5891. * M128: Heater 2 valve open
  5892. */
  5893. inline void gcode_M128() { baricuda_e_to_p_pressure = code_seen('S') ? code_value_byte() : 255; }
  5894. /**
  5895. * M129: Heater 2 valve close
  5896. */
  5897. inline void gcode_M129() { baricuda_e_to_p_pressure = 0; }
  5898. #endif
  5899. #endif //BARICUDA
  5900. /**
  5901. * M140: Set bed temperature
  5902. */
  5903. inline void gcode_M140() {
  5904. if (DEBUGGING(DRYRUN)) return;
  5905. if (code_seen('S')) thermalManager.setTargetBed(code_value_temp_abs());
  5906. }
  5907. #if ENABLED(ULTIPANEL)
  5908. /**
  5909. * M145: Set the heatup state for a material in the LCD menu
  5910. *
  5911. * S<material> (0=PLA, 1=ABS)
  5912. * H<hotend temp>
  5913. * B<bed temp>
  5914. * F<fan speed>
  5915. */
  5916. inline void gcode_M145() {
  5917. uint8_t material = code_seen('S') ? (uint8_t)code_value_int() : 0;
  5918. if (material >= COUNT(lcd_preheat_hotend_temp)) {
  5919. SERIAL_ERROR_START;
  5920. SERIAL_ERRORLNPGM(MSG_ERR_MATERIAL_INDEX);
  5921. }
  5922. else {
  5923. int v;
  5924. if (code_seen('H')) {
  5925. v = code_value_int();
  5926. lcd_preheat_hotend_temp[material] = constrain(v, EXTRUDE_MINTEMP, HEATER_0_MAXTEMP - 15);
  5927. }
  5928. if (code_seen('F')) {
  5929. v = code_value_int();
  5930. lcd_preheat_fan_speed[material] = constrain(v, 0, 255);
  5931. }
  5932. #if TEMP_SENSOR_BED != 0
  5933. if (code_seen('B')) {
  5934. v = code_value_int();
  5935. lcd_preheat_bed_temp[material] = constrain(v, BED_MINTEMP, BED_MAXTEMP - 15);
  5936. }
  5937. #endif
  5938. }
  5939. }
  5940. #endif // ULTIPANEL
  5941. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  5942. /**
  5943. * M149: Set temperature units
  5944. */
  5945. inline void gcode_M149() {
  5946. if (code_seen('C')) set_input_temp_units(TEMPUNIT_C);
  5947. else if (code_seen('K')) set_input_temp_units(TEMPUNIT_K);
  5948. else if (code_seen('F')) set_input_temp_units(TEMPUNIT_F);
  5949. }
  5950. #endif
  5951. #if HAS_POWER_SWITCH
  5952. /**
  5953. * M80: Turn on Power Supply
  5954. */
  5955. inline void gcode_M80() {
  5956. OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE); //GND
  5957. /**
  5958. * If you have a switch on suicide pin, this is useful
  5959. * if you want to start another print with suicide feature after
  5960. * a print without suicide...
  5961. */
  5962. #if HAS_SUICIDE
  5963. OUT_WRITE(SUICIDE_PIN, HIGH);
  5964. #endif
  5965. #if ENABLED(HAVE_TMC2130)
  5966. delay(100);
  5967. tmc2130_init(); // Settings only stick when the driver has power
  5968. #endif
  5969. #if ENABLED(ULTIPANEL)
  5970. powersupply = true;
  5971. LCD_MESSAGEPGM(WELCOME_MSG);
  5972. #endif
  5973. }
  5974. #endif // HAS_POWER_SWITCH
  5975. /**
  5976. * M81: Turn off Power, including Power Supply, if there is one.
  5977. *
  5978. * This code should ALWAYS be available for EMERGENCY SHUTDOWN!
  5979. */
  5980. inline void gcode_M81() {
  5981. thermalManager.disable_all_heaters();
  5982. stepper.finish_and_disable();
  5983. #if FAN_COUNT > 0
  5984. #if FAN_COUNT > 1
  5985. for (uint8_t i = 0; i < FAN_COUNT; i++) fanSpeeds[i] = 0;
  5986. #else
  5987. fanSpeeds[0] = 0;
  5988. #endif
  5989. #endif
  5990. safe_delay(1000); // Wait 1 second before switching off
  5991. #if HAS_SUICIDE
  5992. stepper.synchronize();
  5993. suicide();
  5994. #elif HAS_POWER_SWITCH
  5995. OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  5996. #endif
  5997. #if ENABLED(ULTIPANEL)
  5998. #if HAS_POWER_SWITCH
  5999. powersupply = false;
  6000. #endif
  6001. LCD_MESSAGEPGM(MACHINE_NAME " " MSG_OFF ".");
  6002. #endif
  6003. }
  6004. /**
  6005. * M82: Set E codes absolute (default)
  6006. */
  6007. inline void gcode_M82() { axis_relative_modes[E_AXIS] = false; }
  6008. /**
  6009. * M83: Set E codes relative while in Absolute Coordinates (G90) mode
  6010. */
  6011. inline void gcode_M83() { axis_relative_modes[E_AXIS] = true; }
  6012. /**
  6013. * M18, M84: Disable all stepper motors
  6014. */
  6015. inline void gcode_M18_M84() {
  6016. if (code_seen('S')) {
  6017. stepper_inactive_time = code_value_millis_from_seconds();
  6018. }
  6019. else {
  6020. bool all_axis = !((code_seen('X')) || (code_seen('Y')) || (code_seen('Z')) || (code_seen('E')));
  6021. if (all_axis) {
  6022. stepper.finish_and_disable();
  6023. }
  6024. else {
  6025. stepper.synchronize();
  6026. if (code_seen('X')) disable_X();
  6027. if (code_seen('Y')) disable_Y();
  6028. if (code_seen('Z')) disable_Z();
  6029. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  6030. if (code_seen('E')) disable_e_steppers();
  6031. #endif
  6032. }
  6033. }
  6034. }
  6035. /**
  6036. * M85: Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  6037. */
  6038. inline void gcode_M85() {
  6039. if (code_seen('S')) max_inactive_time = code_value_millis_from_seconds();
  6040. }
  6041. /**
  6042. * Multi-stepper support for M92, M201, M203
  6043. */
  6044. #if ENABLED(DISTINCT_E_FACTORS)
  6045. #define GET_TARGET_EXTRUDER(CMD) if (get_target_extruder_from_command(CMD)) return
  6046. #define TARGET_EXTRUDER target_extruder
  6047. #else
  6048. #define GET_TARGET_EXTRUDER(CMD) NOOP
  6049. #define TARGET_EXTRUDER 0
  6050. #endif
  6051. /**
  6052. * M92: Set axis steps-per-unit for one or more axes, X, Y, Z, and E.
  6053. * (Follows the same syntax as G92)
  6054. *
  6055. * With multiple extruders use T to specify which one.
  6056. */
  6057. inline void gcode_M92() {
  6058. GET_TARGET_EXTRUDER(92);
  6059. LOOP_XYZE(i) {
  6060. if (code_seen(axis_codes[i])) {
  6061. if (i == E_AXIS) {
  6062. const float value = code_value_per_axis_unit(E_AXIS + TARGET_EXTRUDER);
  6063. if (value < 20.0) {
  6064. float factor = planner.axis_steps_per_mm[E_AXIS + TARGET_EXTRUDER] / value; // increase e constants if M92 E14 is given for netfab.
  6065. planner.max_jerk[E_AXIS] *= factor;
  6066. planner.max_feedrate_mm_s[E_AXIS + TARGET_EXTRUDER] *= factor;
  6067. planner.max_acceleration_steps_per_s2[E_AXIS + TARGET_EXTRUDER] *= factor;
  6068. }
  6069. planner.axis_steps_per_mm[E_AXIS + TARGET_EXTRUDER] = value;
  6070. }
  6071. else {
  6072. planner.axis_steps_per_mm[i] = code_value_per_axis_unit(i);
  6073. }
  6074. }
  6075. }
  6076. planner.refresh_positioning();
  6077. }
  6078. /**
  6079. * Output the current position to serial
  6080. */
  6081. static void report_current_position() {
  6082. SERIAL_PROTOCOLPGM("X:");
  6083. SERIAL_PROTOCOL(current_position[X_AXIS]);
  6084. SERIAL_PROTOCOLPGM(" Y:");
  6085. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  6086. SERIAL_PROTOCOLPGM(" Z:");
  6087. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  6088. SERIAL_PROTOCOLPGM(" E:");
  6089. SERIAL_PROTOCOL(current_position[E_AXIS]);
  6090. stepper.report_positions();
  6091. #if IS_SCARA
  6092. SERIAL_PROTOCOLPAIR("SCARA Theta:", stepper.get_axis_position_degrees(A_AXIS));
  6093. SERIAL_PROTOCOLLNPAIR(" Psi+Theta:", stepper.get_axis_position_degrees(B_AXIS));
  6094. SERIAL_EOL;
  6095. #endif
  6096. }
  6097. /**
  6098. * M114: Output current position to serial port
  6099. */
  6100. inline void gcode_M114() { stepper.synchronize(); report_current_position(); }
  6101. /**
  6102. * M115: Capabilities string
  6103. */
  6104. inline void gcode_M115() {
  6105. SERIAL_PROTOCOLLNPGM(MSG_M115_REPORT);
  6106. #if ENABLED(EXTENDED_CAPABILITIES_REPORT)
  6107. // EEPROM (M500, M501)
  6108. #if ENABLED(EEPROM_SETTINGS)
  6109. SERIAL_PROTOCOLLNPGM("Cap:EEPROM:1");
  6110. #else
  6111. SERIAL_PROTOCOLLNPGM("Cap:EEPROM:0");
  6112. #endif
  6113. // AUTOREPORT_TEMP (M155)
  6114. #if ENABLED(AUTO_REPORT_TEMPERATURES)
  6115. SERIAL_PROTOCOLLNPGM("Cap:AUTOREPORT_TEMP:1");
  6116. #else
  6117. SERIAL_PROTOCOLLNPGM("Cap:AUTOREPORT_TEMP:0");
  6118. #endif
  6119. // PROGRESS (M530 S L, M531 <file>, M532 X L)
  6120. SERIAL_PROTOCOLLNPGM("Cap:PROGRESS:0");
  6121. // AUTOLEVEL (G29)
  6122. #if HAS_ABL
  6123. SERIAL_PROTOCOLLNPGM("Cap:AUTOLEVEL:1");
  6124. #else
  6125. SERIAL_PROTOCOLLNPGM("Cap:AUTOLEVEL:0");
  6126. #endif
  6127. // Z_PROBE (G30)
  6128. #if HAS_BED_PROBE
  6129. SERIAL_PROTOCOLLNPGM("Cap:Z_PROBE:1");
  6130. #else
  6131. SERIAL_PROTOCOLLNPGM("Cap:Z_PROBE:0");
  6132. #endif
  6133. // MESH_REPORT (M420 V)
  6134. #if HAS_LEVELING
  6135. SERIAL_PROTOCOLLNPGM("Cap:LEVELING_DATA:1");
  6136. #else
  6137. SERIAL_PROTOCOLLNPGM("Cap:LEVELING_DATA:0");
  6138. #endif
  6139. // SOFTWARE_POWER (G30)
  6140. #if HAS_POWER_SWITCH
  6141. SERIAL_PROTOCOLLNPGM("Cap:SOFTWARE_POWER:1");
  6142. #else
  6143. SERIAL_PROTOCOLLNPGM("Cap:SOFTWARE_POWER:0");
  6144. #endif
  6145. // TOGGLE_LIGHTS (M355)
  6146. #if HAS_CASE_LIGHT
  6147. SERIAL_PROTOCOLLNPGM("Cap:TOGGLE_LIGHTS:1");
  6148. #else
  6149. SERIAL_PROTOCOLLNPGM("Cap:TOGGLE_LIGHTS:0");
  6150. #endif
  6151. // EMERGENCY_PARSER (M108, M112, M410)
  6152. #if ENABLED(EMERGENCY_PARSER)
  6153. SERIAL_PROTOCOLLNPGM("Cap:EMERGENCY_PARSER:1");
  6154. #else
  6155. SERIAL_PROTOCOLLNPGM("Cap:EMERGENCY_PARSER:0");
  6156. #endif
  6157. #endif // EXTENDED_CAPABILITIES_REPORT
  6158. }
  6159. /**
  6160. * M117: Set LCD Status Message
  6161. */
  6162. inline void gcode_M117() {
  6163. lcd_setstatus(current_command_args);
  6164. }
  6165. /**
  6166. * M119: Output endstop states to serial output
  6167. */
  6168. inline void gcode_M119() { endstops.M119(); }
  6169. /**
  6170. * M120: Enable endstops and set non-homing endstop state to "enabled"
  6171. */
  6172. inline void gcode_M120() { endstops.enable_globally(true); }
  6173. /**
  6174. * M121: Disable endstops and set non-homing endstop state to "disabled"
  6175. */
  6176. inline void gcode_M121() { endstops.enable_globally(false); }
  6177. #if ENABLED(PARK_HEAD_ON_PAUSE)
  6178. /**
  6179. * M125: Store current position and move to filament change position.
  6180. * Called on pause (by M25) to prevent material leaking onto the
  6181. * object. On resume (M24) the head will be moved back and the
  6182. * print will resume.
  6183. *
  6184. * If Marlin is compiled without SD Card support, M125 can be
  6185. * used directly to pause the print and move to park position,
  6186. * resuming with a button click or M108.
  6187. *
  6188. * L = override retract length
  6189. * X = override X
  6190. * Y = override Y
  6191. * Z = override Z raise
  6192. */
  6193. inline void gcode_M125() {
  6194. if (move_away_flag) return; // already paused
  6195. const bool job_running = print_job_timer.isRunning();
  6196. // there are blocks after this one, or sd printing
  6197. move_away_flag = job_running || planner.blocks_queued()
  6198. #if ENABLED(SDSUPPORT)
  6199. || card.sdprinting
  6200. #endif
  6201. ;
  6202. if (!move_away_flag) return; // nothing to pause
  6203. // M125 can be used to pause a print too
  6204. #if ENABLED(SDSUPPORT)
  6205. card.pauseSDPrint();
  6206. #endif
  6207. print_job_timer.pause();
  6208. // Save current position
  6209. COPY(resume_position, current_position);
  6210. set_destination_to_current();
  6211. // Initial retract before move to filament change position
  6212. destination[E_AXIS] += code_seen('L') ? code_value_axis_units(E_AXIS) : 0
  6213. #if defined(FILAMENT_CHANGE_RETRACT_LENGTH) && FILAMENT_CHANGE_RETRACT_LENGTH > 0
  6214. - (FILAMENT_CHANGE_RETRACT_LENGTH)
  6215. #endif
  6216. ;
  6217. RUNPLAN(FILAMENT_CHANGE_RETRACT_FEEDRATE);
  6218. // Lift Z axis
  6219. const float z_lift = code_seen('Z') ? code_value_linear_units() :
  6220. #if defined(FILAMENT_CHANGE_Z_ADD) && FILAMENT_CHANGE_Z_ADD > 0
  6221. FILAMENT_CHANGE_Z_ADD
  6222. #else
  6223. 0
  6224. #endif
  6225. ;
  6226. if (z_lift > 0) {
  6227. destination[Z_AXIS] += z_lift;
  6228. NOMORE(destination[Z_AXIS], Z_MAX_POS);
  6229. RUNPLAN(FILAMENT_CHANGE_Z_FEEDRATE);
  6230. }
  6231. // Move XY axes to filament change position or given position
  6232. destination[X_AXIS] = code_seen('X') ? code_value_linear_units() : 0
  6233. #ifdef FILAMENT_CHANGE_X_POS
  6234. + FILAMENT_CHANGE_X_POS
  6235. #endif
  6236. ;
  6237. destination[Y_AXIS] = code_seen('Y') ? code_value_linear_units() : 0
  6238. #ifdef FILAMENT_CHANGE_Y_POS
  6239. + FILAMENT_CHANGE_Y_POS
  6240. #endif
  6241. ;
  6242. #if HOTENDS > 1 && DISABLED(DUAL_X_CARRIAGE)
  6243. if (active_extruder > 0) {
  6244. if (!code_seen('X')) destination[X_AXIS] += hotend_offset[X_AXIS][active_extruder];
  6245. if (!code_seen('Y')) destination[Y_AXIS] += hotend_offset[Y_AXIS][active_extruder];
  6246. }
  6247. #endif
  6248. clamp_to_software_endstops(destination);
  6249. RUNPLAN(FILAMENT_CHANGE_XY_FEEDRATE);
  6250. set_current_to_destination();
  6251. stepper.synchronize();
  6252. disable_e_steppers();
  6253. #if DISABLED(SDSUPPORT)
  6254. // Wait for lcd click or M108
  6255. KEEPALIVE_STATE(PAUSED_FOR_USER);
  6256. wait_for_user = true;
  6257. while (wait_for_user) idle();
  6258. KEEPALIVE_STATE(IN_HANDLER);
  6259. // Return to print position and continue
  6260. move_back_on_resume();
  6261. if (job_running) print_job_timer.start();
  6262. move_away_flag = false;
  6263. #endif
  6264. }
  6265. #endif // PARK_HEAD_ON_PAUSE
  6266. #if HAS_COLOR_LEDS
  6267. /**
  6268. * M150: Set Status LED Color - Use R-U-B-W for R-G-B-W
  6269. *
  6270. * Always sets all 3 or 4 components. If a component is left out, set to 0.
  6271. *
  6272. * Examples:
  6273. *
  6274. * M150 R255 ; Turn LED red
  6275. * M150 R255 U127 ; Turn LED orange (PWM only)
  6276. * M150 ; Turn LED off
  6277. * M150 R U B ; Turn LED white
  6278. * M150 W ; Turn LED white using a white LED
  6279. *
  6280. */
  6281. inline void gcode_M150() {
  6282. set_led_color(
  6283. code_seen('R') ? (code_has_value() ? code_value_byte() : 255) : 0,
  6284. code_seen('U') ? (code_has_value() ? code_value_byte() : 255) : 0,
  6285. code_seen('B') ? (code_has_value() ? code_value_byte() : 255) : 0
  6286. #if ENABLED(RGBW_LED)
  6287. , code_seen('W') ? (code_has_value() ? code_value_byte() : 255) : 0
  6288. #endif
  6289. );
  6290. }
  6291. #endif // BLINKM || RGB_LED
  6292. /**
  6293. * M200: Set filament diameter and set E axis units to cubic units
  6294. *
  6295. * T<extruder> - Optional extruder number. Current extruder if omitted.
  6296. * D<linear> - Diameter of the filament. Use "D0" to switch back to linear units on the E axis.
  6297. */
  6298. inline void gcode_M200() {
  6299. if (get_target_extruder_from_command(200)) return;
  6300. if (code_seen('D')) {
  6301. // setting any extruder filament size disables volumetric on the assumption that
  6302. // slicers either generate in extruder values as cubic mm or as as filament feeds
  6303. // for all extruders
  6304. volumetric_enabled = (code_value_linear_units() != 0.0);
  6305. if (volumetric_enabled) {
  6306. filament_size[target_extruder] = code_value_linear_units();
  6307. // make sure all extruders have some sane value for the filament size
  6308. for (uint8_t i = 0; i < COUNT(filament_size); i++)
  6309. if (! filament_size[i]) filament_size[i] = DEFAULT_NOMINAL_FILAMENT_DIA;
  6310. }
  6311. }
  6312. calculate_volumetric_multipliers();
  6313. }
  6314. /**
  6315. * M201: Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  6316. *
  6317. * With multiple extruders use T to specify which one.
  6318. */
  6319. inline void gcode_M201() {
  6320. GET_TARGET_EXTRUDER(201);
  6321. LOOP_XYZE(i) {
  6322. if (code_seen(axis_codes[i])) {
  6323. const uint8_t a = i + (i == E_AXIS ? TARGET_EXTRUDER : 0);
  6324. planner.max_acceleration_mm_per_s2[a] = code_value_axis_units((AxisEnum)a);
  6325. }
  6326. }
  6327. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  6328. planner.reset_acceleration_rates();
  6329. }
  6330. #if 0 // Not used for Sprinter/grbl gen6
  6331. inline void gcode_M202() {
  6332. LOOP_XYZE(i) {
  6333. if (code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value_axis_units((AxisEnum)i) * planner.axis_steps_per_mm[i];
  6334. }
  6335. }
  6336. #endif
  6337. /**
  6338. * M203: Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in units/sec
  6339. *
  6340. * With multiple extruders use T to specify which one.
  6341. */
  6342. inline void gcode_M203() {
  6343. GET_TARGET_EXTRUDER(203);
  6344. LOOP_XYZE(i)
  6345. if (code_seen(axis_codes[i])) {
  6346. const uint8_t a = i + (i == E_AXIS ? TARGET_EXTRUDER : 0);
  6347. planner.max_feedrate_mm_s[a] = code_value_axis_units((AxisEnum)a);
  6348. }
  6349. }
  6350. /**
  6351. * M204: Set Accelerations in units/sec^2 (M204 P1200 R3000 T3000)
  6352. *
  6353. * P = Printing moves
  6354. * R = Retract only (no X, Y, Z) moves
  6355. * T = Travel (non printing) moves
  6356. *
  6357. * Also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  6358. */
  6359. inline void gcode_M204() {
  6360. if (code_seen('S')) { // Kept for legacy compatibility. Should NOT BE USED for new developments.
  6361. planner.travel_acceleration = planner.acceleration = code_value_linear_units();
  6362. SERIAL_ECHOLNPAIR("Setting Print and Travel Acceleration: ", planner.acceleration);
  6363. }
  6364. if (code_seen('P')) {
  6365. planner.acceleration = code_value_linear_units();
  6366. SERIAL_ECHOLNPAIR("Setting Print Acceleration: ", planner.acceleration);
  6367. }
  6368. if (code_seen('R')) {
  6369. planner.retract_acceleration = code_value_linear_units();
  6370. SERIAL_ECHOLNPAIR("Setting Retract Acceleration: ", planner.retract_acceleration);
  6371. }
  6372. if (code_seen('T')) {
  6373. planner.travel_acceleration = code_value_linear_units();
  6374. SERIAL_ECHOLNPAIR("Setting Travel Acceleration: ", planner.travel_acceleration);
  6375. }
  6376. }
  6377. /**
  6378. * M205: Set Advanced Settings
  6379. *
  6380. * S = Min Feed Rate (units/s)
  6381. * T = Min Travel Feed Rate (units/s)
  6382. * B = Min Segment Time (µs)
  6383. * X = Max X Jerk (units/sec^2)
  6384. * Y = Max Y Jerk (units/sec^2)
  6385. * Z = Max Z Jerk (units/sec^2)
  6386. * E = Max E Jerk (units/sec^2)
  6387. */
  6388. inline void gcode_M205() {
  6389. if (code_seen('S')) planner.min_feedrate_mm_s = code_value_linear_units();
  6390. if (code_seen('T')) planner.min_travel_feedrate_mm_s = code_value_linear_units();
  6391. if (code_seen('B')) planner.min_segment_time = code_value_millis();
  6392. if (code_seen('X')) planner.max_jerk[X_AXIS] = code_value_linear_units();
  6393. if (code_seen('Y')) planner.max_jerk[Y_AXIS] = code_value_linear_units();
  6394. if (code_seen('Z')) planner.max_jerk[Z_AXIS] = code_value_linear_units();
  6395. if (code_seen('E')) planner.max_jerk[E_AXIS] = code_value_linear_units();
  6396. }
  6397. #if HAS_M206_COMMAND
  6398. /**
  6399. * M206: Set Additional Homing Offset (X Y Z). SCARA aliases T=X, P=Y
  6400. */
  6401. inline void gcode_M206() {
  6402. LOOP_XYZ(i)
  6403. if (code_seen(axis_codes[i]))
  6404. set_home_offset((AxisEnum)i, code_value_linear_units());
  6405. #if ENABLED(MORGAN_SCARA)
  6406. if (code_seen('T')) set_home_offset(A_AXIS, code_value_linear_units()); // Theta
  6407. if (code_seen('P')) set_home_offset(B_AXIS, code_value_linear_units()); // Psi
  6408. #endif
  6409. SYNC_PLAN_POSITION_KINEMATIC();
  6410. report_current_position();
  6411. }
  6412. #endif // HAS_M206_COMMAND
  6413. #if ENABLED(DELTA)
  6414. /**
  6415. * M665: Set delta configurations
  6416. *
  6417. * H = diagonal rod // AC-version
  6418. * L = diagonal rod
  6419. * R = delta radius
  6420. * S = segments per second
  6421. * A = Alpha (Tower 1) diagonal rod trim
  6422. * B = Beta (Tower 2) diagonal rod trim
  6423. * C = Gamma (Tower 3) diagonal rod trim
  6424. */
  6425. inline void gcode_M665() {
  6426. if (code_seen('H')) {
  6427. home_offset[Z_AXIS] = code_value_linear_units() - DELTA_HEIGHT;
  6428. current_position[Z_AXIS] += code_value_linear_units() - DELTA_HEIGHT - home_offset[Z_AXIS];
  6429. home_offset[Z_AXIS] = code_value_linear_units() - DELTA_HEIGHT;
  6430. update_software_endstops(Z_AXIS);
  6431. }
  6432. if (code_seen('L')) delta_diagonal_rod = code_value_linear_units();
  6433. if (code_seen('R')) delta_radius = code_value_linear_units();
  6434. if (code_seen('S')) delta_segments_per_second = code_value_float();
  6435. if (code_seen('B')) delta_calibration_radius = code_value_float();
  6436. if (code_seen('X')) delta_tower_angle_trim[A_AXIS] = code_value_linear_units();
  6437. if (code_seen('Y')) delta_tower_angle_trim[B_AXIS] = code_value_linear_units();
  6438. if (code_seen('Z')) { // rotate all 3 axis for Z = 0
  6439. delta_tower_angle_trim[A_AXIS] -= code_value_linear_units();
  6440. delta_tower_angle_trim[B_AXIS] -= code_value_linear_units();
  6441. }
  6442. recalc_delta_settings(delta_radius, delta_diagonal_rod);
  6443. }
  6444. /**
  6445. * M666: Set delta endstop adjustment
  6446. */
  6447. inline void gcode_M666() {
  6448. #if ENABLED(DEBUG_LEVELING_FEATURE)
  6449. if (DEBUGGING(LEVELING)) {
  6450. SERIAL_ECHOLNPGM(">>> gcode_M666");
  6451. }
  6452. #endif
  6453. LOOP_XYZ(i) {
  6454. if (code_seen(axis_codes[i])) {
  6455. endstop_adj[i] = code_value_linear_units();
  6456. #if ENABLED(DEBUG_LEVELING_FEATURE)
  6457. if (DEBUGGING(LEVELING)) {
  6458. SERIAL_ECHOPAIR("endstop_adj[", axis_codes[i]);
  6459. SERIAL_ECHOLNPAIR("] = ", endstop_adj[i]);
  6460. }
  6461. #endif
  6462. }
  6463. }
  6464. #if ENABLED(DEBUG_LEVELING_FEATURE)
  6465. if (DEBUGGING(LEVELING)) {
  6466. SERIAL_ECHOLNPGM("<<< gcode_M666");
  6467. }
  6468. #endif
  6469. // normalize endstops so all are <=0; set the residue to delta height
  6470. const float z_temp = MAX3(endstop_adj[A_AXIS], endstop_adj[B_AXIS], endstop_adj[C_AXIS]);
  6471. home_offset[Z_AXIS] -= z_temp;
  6472. LOOP_XYZ(i) endstop_adj[i] -= z_temp;
  6473. }
  6474. #elif ENABLED(Z_DUAL_ENDSTOPS) // !DELTA && ENABLED(Z_DUAL_ENDSTOPS)
  6475. /**
  6476. * M666: For Z Dual Endstop setup, set z axis offset to the z2 axis.
  6477. */
  6478. inline void gcode_M666() {
  6479. if (code_seen('Z')) z_endstop_adj = code_value_linear_units();
  6480. SERIAL_ECHOLNPAIR("Z Endstop Adjustment set to (mm):", z_endstop_adj);
  6481. }
  6482. #endif // !DELTA && Z_DUAL_ENDSTOPS
  6483. #if ENABLED(FWRETRACT)
  6484. /**
  6485. * M207: Set firmware retraction values
  6486. *
  6487. * S[+units] retract_length
  6488. * W[+units] retract_length_swap (multi-extruder)
  6489. * F[units/min] retract_feedrate_mm_s
  6490. * Z[units] retract_zlift
  6491. */
  6492. inline void gcode_M207() {
  6493. if (code_seen('S')) retract_length = code_value_axis_units(E_AXIS);
  6494. if (code_seen('F')) retract_feedrate_mm_s = MMM_TO_MMS(code_value_axis_units(E_AXIS));
  6495. if (code_seen('Z')) retract_zlift = code_value_linear_units();
  6496. #if EXTRUDERS > 1
  6497. if (code_seen('W')) retract_length_swap = code_value_axis_units(E_AXIS);
  6498. #endif
  6499. }
  6500. /**
  6501. * M208: Set firmware un-retraction values
  6502. *
  6503. * S[+units] retract_recover_length (in addition to M207 S*)
  6504. * W[+units] retract_recover_length_swap (multi-extruder)
  6505. * F[units/min] retract_recover_feedrate_mm_s
  6506. */
  6507. inline void gcode_M208() {
  6508. if (code_seen('S')) retract_recover_length = code_value_axis_units(E_AXIS);
  6509. if (code_seen('F')) retract_recover_feedrate_mm_s = MMM_TO_MMS(code_value_axis_units(E_AXIS));
  6510. #if EXTRUDERS > 1
  6511. if (code_seen('W')) retract_recover_length_swap = code_value_axis_units(E_AXIS);
  6512. #endif
  6513. }
  6514. /**
  6515. * M209: Enable automatic retract (M209 S1)
  6516. * For slicers that don't support G10/11, reversed extrude-only
  6517. * moves will be classified as retraction.
  6518. */
  6519. inline void gcode_M209() {
  6520. if (code_seen('S')) {
  6521. autoretract_enabled = code_value_bool();
  6522. for (int i = 0; i < EXTRUDERS; i++) retracted[i] = false;
  6523. }
  6524. }
  6525. #endif // FWRETRACT
  6526. /**
  6527. * M211: Enable, Disable, and/or Report software endstops
  6528. *
  6529. * Usage: M211 S1 to enable, M211 S0 to disable, M211 alone for report
  6530. */
  6531. inline void gcode_M211() {
  6532. SERIAL_ECHO_START;
  6533. #if HAS_SOFTWARE_ENDSTOPS
  6534. if (code_seen('S')) soft_endstops_enabled = code_value_bool();
  6535. SERIAL_ECHOPGM(MSG_SOFT_ENDSTOPS);
  6536. serialprintPGM(soft_endstops_enabled ? PSTR(MSG_ON) : PSTR(MSG_OFF));
  6537. #else
  6538. SERIAL_ECHOPGM(MSG_SOFT_ENDSTOPS);
  6539. SERIAL_ECHOPGM(MSG_OFF);
  6540. #endif
  6541. SERIAL_ECHOPGM(MSG_SOFT_MIN);
  6542. SERIAL_ECHOPAIR( MSG_X, soft_endstop_min[X_AXIS]);
  6543. SERIAL_ECHOPAIR(" " MSG_Y, soft_endstop_min[Y_AXIS]);
  6544. SERIAL_ECHOPAIR(" " MSG_Z, soft_endstop_min[Z_AXIS]);
  6545. SERIAL_ECHOPGM(MSG_SOFT_MAX);
  6546. SERIAL_ECHOPAIR( MSG_X, soft_endstop_max[X_AXIS]);
  6547. SERIAL_ECHOPAIR(" " MSG_Y, soft_endstop_max[Y_AXIS]);
  6548. SERIAL_ECHOLNPAIR(" " MSG_Z, soft_endstop_max[Z_AXIS]);
  6549. }
  6550. #if HOTENDS > 1
  6551. /**
  6552. * M218 - set hotend offset (in linear units)
  6553. *
  6554. * T<tool>
  6555. * X<xoffset>
  6556. * Y<yoffset>
  6557. * Z<zoffset> - Available with DUAL_X_CARRIAGE and SWITCHING_EXTRUDER
  6558. */
  6559. inline void gcode_M218() {
  6560. if (get_target_extruder_from_command(218) || target_extruder == 0) return;
  6561. if (code_seen('X')) hotend_offset[X_AXIS][target_extruder] = code_value_linear_units();
  6562. if (code_seen('Y')) hotend_offset[Y_AXIS][target_extruder] = code_value_linear_units();
  6563. #if ENABLED(DUAL_X_CARRIAGE) || ENABLED(SWITCHING_EXTRUDER)
  6564. if (code_seen('Z')) hotend_offset[Z_AXIS][target_extruder] = code_value_linear_units();
  6565. #endif
  6566. SERIAL_ECHO_START;
  6567. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  6568. HOTEND_LOOP() {
  6569. SERIAL_CHAR(' ');
  6570. SERIAL_ECHO(hotend_offset[X_AXIS][e]);
  6571. SERIAL_CHAR(',');
  6572. SERIAL_ECHO(hotend_offset[Y_AXIS][e]);
  6573. #if ENABLED(DUAL_X_CARRIAGE) || ENABLED(SWITCHING_EXTRUDER)
  6574. SERIAL_CHAR(',');
  6575. SERIAL_ECHO(hotend_offset[Z_AXIS][e]);
  6576. #endif
  6577. }
  6578. SERIAL_EOL;
  6579. }
  6580. #endif // HOTENDS > 1
  6581. /**
  6582. * M220: Set speed percentage factor, aka "Feed Rate" (M220 S95)
  6583. */
  6584. inline void gcode_M220() {
  6585. if (code_seen('S')) feedrate_percentage = code_value_int();
  6586. }
  6587. /**
  6588. * M221: Set extrusion percentage (M221 T0 S95)
  6589. */
  6590. inline void gcode_M221() {
  6591. if (get_target_extruder_from_command(221)) return;
  6592. if (code_seen('S'))
  6593. flow_percentage[target_extruder] = code_value_int();
  6594. }
  6595. /**
  6596. * M226: Wait until the specified pin reaches the state required (M226 P<pin> S<state>)
  6597. */
  6598. inline void gcode_M226() {
  6599. if (code_seen('P')) {
  6600. int pin_number = code_value_int(),
  6601. pin_state = code_seen('S') ? code_value_int() : -1; // required pin state - default is inverted
  6602. if (pin_state >= -1 && pin_state <= 1 && pin_number > -1 && !pin_is_protected(pin_number)) {
  6603. int target = LOW;
  6604. stepper.synchronize();
  6605. pinMode(pin_number, INPUT);
  6606. switch (pin_state) {
  6607. case 1:
  6608. target = HIGH;
  6609. break;
  6610. case 0:
  6611. target = LOW;
  6612. break;
  6613. case -1:
  6614. target = !digitalRead(pin_number);
  6615. break;
  6616. }
  6617. while (digitalRead(pin_number) != target) idle();
  6618. } // pin_state -1 0 1 && pin_number > -1
  6619. } // code_seen('P')
  6620. }
  6621. #if ENABLED(EXPERIMENTAL_I2CBUS)
  6622. /**
  6623. * M260: Send data to a I2C slave device
  6624. *
  6625. * This is a PoC, the formating and arguments for the GCODE will
  6626. * change to be more compatible, the current proposal is:
  6627. *
  6628. * M260 A<slave device address base 10> ; Sets the I2C slave address the data will be sent to
  6629. *
  6630. * M260 B<byte-1 value in base 10>
  6631. * M260 B<byte-2 value in base 10>
  6632. * M260 B<byte-3 value in base 10>
  6633. *
  6634. * M260 S1 ; Send the buffered data and reset the buffer
  6635. * M260 R1 ; Reset the buffer without sending data
  6636. *
  6637. */
  6638. inline void gcode_M260() {
  6639. // Set the target address
  6640. if (code_seen('A')) i2c.address(code_value_byte());
  6641. // Add a new byte to the buffer
  6642. if (code_seen('B')) i2c.addbyte(code_value_byte());
  6643. // Flush the buffer to the bus
  6644. if (code_seen('S')) i2c.send();
  6645. // Reset and rewind the buffer
  6646. else if (code_seen('R')) i2c.reset();
  6647. }
  6648. /**
  6649. * M261: Request X bytes from I2C slave device
  6650. *
  6651. * Usage: M261 A<slave device address base 10> B<number of bytes>
  6652. */
  6653. inline void gcode_M261() {
  6654. if (code_seen('A')) i2c.address(code_value_byte());
  6655. uint8_t bytes = code_seen('B') ? code_value_byte() : 1;
  6656. if (i2c.addr && bytes && bytes <= TWIBUS_BUFFER_SIZE) {
  6657. i2c.relay(bytes);
  6658. }
  6659. else {
  6660. SERIAL_ERROR_START;
  6661. SERIAL_ERRORLN("Bad i2c request");
  6662. }
  6663. }
  6664. #endif // EXPERIMENTAL_I2CBUS
  6665. #if HAS_SERVOS
  6666. /**
  6667. * M280: Get or set servo position. P<index> [S<angle>]
  6668. */
  6669. inline void gcode_M280() {
  6670. if (!code_seen('P')) return;
  6671. int servo_index = code_value_int();
  6672. if (WITHIN(servo_index, 0, NUM_SERVOS - 1)) {
  6673. if (code_seen('S'))
  6674. MOVE_SERVO(servo_index, code_value_int());
  6675. else {
  6676. SERIAL_ECHO_START;
  6677. SERIAL_ECHOPAIR(" Servo ", servo_index);
  6678. SERIAL_ECHOLNPAIR(": ", servo[servo_index].read());
  6679. }
  6680. }
  6681. else {
  6682. SERIAL_ERROR_START;
  6683. SERIAL_ECHOPAIR("Servo ", servo_index);
  6684. SERIAL_ECHOLNPGM(" out of range");
  6685. }
  6686. }
  6687. #endif // HAS_SERVOS
  6688. #if HAS_BUZZER
  6689. /**
  6690. * M300: Play beep sound S<frequency Hz> P<duration ms>
  6691. */
  6692. inline void gcode_M300() {
  6693. uint16_t const frequency = code_seen('S') ? code_value_ushort() : 260;
  6694. uint16_t duration = code_seen('P') ? code_value_ushort() : 1000;
  6695. // Limits the tone duration to 0-5 seconds.
  6696. NOMORE(duration, 5000);
  6697. BUZZ(duration, frequency);
  6698. }
  6699. #endif // HAS_BUZZER
  6700. #if ENABLED(PIDTEMP)
  6701. /**
  6702. * M301: Set PID parameters P I D (and optionally C, L)
  6703. *
  6704. * P[float] Kp term
  6705. * I[float] Ki term (unscaled)
  6706. * D[float] Kd term (unscaled)
  6707. *
  6708. * With PID_EXTRUSION_SCALING:
  6709. *
  6710. * C[float] Kc term
  6711. * L[float] LPQ length
  6712. */
  6713. inline void gcode_M301() {
  6714. // multi-extruder PID patch: M301 updates or prints a single extruder's PID values
  6715. // default behaviour (omitting E parameter) is to update for extruder 0 only
  6716. int e = code_seen('E') ? code_value_int() : 0; // extruder being updated
  6717. if (e < HOTENDS) { // catch bad input value
  6718. if (code_seen('P')) PID_PARAM(Kp, e) = code_value_float();
  6719. if (code_seen('I')) PID_PARAM(Ki, e) = scalePID_i(code_value_float());
  6720. if (code_seen('D')) PID_PARAM(Kd, e) = scalePID_d(code_value_float());
  6721. #if ENABLED(PID_EXTRUSION_SCALING)
  6722. if (code_seen('C')) PID_PARAM(Kc, e) = code_value_float();
  6723. if (code_seen('L')) lpq_len = code_value_float();
  6724. NOMORE(lpq_len, LPQ_MAX_LEN);
  6725. #endif
  6726. thermalManager.updatePID();
  6727. SERIAL_ECHO_START;
  6728. #if ENABLED(PID_PARAMS_PER_HOTEND)
  6729. SERIAL_ECHOPAIR(" e:", e); // specify extruder in serial output
  6730. #endif // PID_PARAMS_PER_HOTEND
  6731. SERIAL_ECHOPAIR(" p:", PID_PARAM(Kp, e));
  6732. SERIAL_ECHOPAIR(" i:", unscalePID_i(PID_PARAM(Ki, e)));
  6733. SERIAL_ECHOPAIR(" d:", unscalePID_d(PID_PARAM(Kd, e)));
  6734. #if ENABLED(PID_EXTRUSION_SCALING)
  6735. //Kc does not have scaling applied above, or in resetting defaults
  6736. SERIAL_ECHOPAIR(" c:", PID_PARAM(Kc, e));
  6737. #endif
  6738. SERIAL_EOL;
  6739. }
  6740. else {
  6741. SERIAL_ERROR_START;
  6742. SERIAL_ERRORLN(MSG_INVALID_EXTRUDER);
  6743. }
  6744. }
  6745. #endif // PIDTEMP
  6746. #if ENABLED(PIDTEMPBED)
  6747. inline void gcode_M304() {
  6748. if (code_seen('P')) thermalManager.bedKp = code_value_float();
  6749. if (code_seen('I')) thermalManager.bedKi = scalePID_i(code_value_float());
  6750. if (code_seen('D')) thermalManager.bedKd = scalePID_d(code_value_float());
  6751. thermalManager.updatePID();
  6752. SERIAL_ECHO_START;
  6753. SERIAL_ECHOPAIR(" p:", thermalManager.bedKp);
  6754. SERIAL_ECHOPAIR(" i:", unscalePID_i(thermalManager.bedKi));
  6755. SERIAL_ECHOLNPAIR(" d:", unscalePID_d(thermalManager.bedKd));
  6756. }
  6757. #endif // PIDTEMPBED
  6758. #if defined(CHDK) || HAS_PHOTOGRAPH
  6759. /**
  6760. * M240: Trigger a camera by emulating a Canon RC-1
  6761. * See http://www.doc-diy.net/photo/rc-1_hacked/
  6762. */
  6763. inline void gcode_M240() {
  6764. #ifdef CHDK
  6765. OUT_WRITE(CHDK, HIGH);
  6766. chdkHigh = millis();
  6767. chdkActive = true;
  6768. #elif HAS_PHOTOGRAPH
  6769. const uint8_t NUM_PULSES = 16;
  6770. const float PULSE_LENGTH = 0.01524;
  6771. for (int i = 0; i < NUM_PULSES; i++) {
  6772. WRITE(PHOTOGRAPH_PIN, HIGH);
  6773. _delay_ms(PULSE_LENGTH);
  6774. WRITE(PHOTOGRAPH_PIN, LOW);
  6775. _delay_ms(PULSE_LENGTH);
  6776. }
  6777. delay(7.33);
  6778. for (int i = 0; i < NUM_PULSES; i++) {
  6779. WRITE(PHOTOGRAPH_PIN, HIGH);
  6780. _delay_ms(PULSE_LENGTH);
  6781. WRITE(PHOTOGRAPH_PIN, LOW);
  6782. _delay_ms(PULSE_LENGTH);
  6783. }
  6784. #endif // !CHDK && HAS_PHOTOGRAPH
  6785. }
  6786. #endif // CHDK || PHOTOGRAPH_PIN
  6787. #if HAS_LCD_CONTRAST
  6788. /**
  6789. * M250: Read and optionally set the LCD contrast
  6790. */
  6791. inline void gcode_M250() {
  6792. if (code_seen('C')) set_lcd_contrast(code_value_int());
  6793. SERIAL_PROTOCOLPGM("lcd contrast value: ");
  6794. SERIAL_PROTOCOL(lcd_contrast);
  6795. SERIAL_EOL;
  6796. }
  6797. #endif // HAS_LCD_CONTRAST
  6798. #if ENABLED(PREVENT_COLD_EXTRUSION)
  6799. /**
  6800. * M302: Allow cold extrudes, or set the minimum extrude temperature
  6801. *
  6802. * S<temperature> sets the minimum extrude temperature
  6803. * P<bool> enables (1) or disables (0) cold extrusion
  6804. *
  6805. * Examples:
  6806. *
  6807. * M302 ; report current cold extrusion state
  6808. * M302 P0 ; enable cold extrusion checking
  6809. * M302 P1 ; disables cold extrusion checking
  6810. * M302 S0 ; always allow extrusion (disables checking)
  6811. * M302 S170 ; only allow extrusion above 170
  6812. * M302 S170 P1 ; set min extrude temp to 170 but leave disabled
  6813. */
  6814. inline void gcode_M302() {
  6815. bool seen_S = code_seen('S');
  6816. if (seen_S) {
  6817. thermalManager.extrude_min_temp = code_value_temp_abs();
  6818. thermalManager.allow_cold_extrude = (thermalManager.extrude_min_temp == 0);
  6819. }
  6820. if (code_seen('P'))
  6821. thermalManager.allow_cold_extrude = (thermalManager.extrude_min_temp == 0) || code_value_bool();
  6822. else if (!seen_S) {
  6823. // Report current state
  6824. SERIAL_ECHO_START;
  6825. SERIAL_ECHOPAIR("Cold extrudes are ", (thermalManager.allow_cold_extrude ? "en" : "dis"));
  6826. SERIAL_ECHOPAIR("abled (min temp ", int(thermalManager.extrude_min_temp + 0.5));
  6827. SERIAL_ECHOLNPGM("C)");
  6828. }
  6829. }
  6830. #endif // PREVENT_COLD_EXTRUSION
  6831. /**
  6832. * M303: PID relay autotune
  6833. *
  6834. * S<temperature> sets the target temperature. (default 150C)
  6835. * E<extruder> (-1 for the bed) (default 0)
  6836. * C<cycles>
  6837. * U<bool> with a non-zero value will apply the result to current settings
  6838. */
  6839. inline void gcode_M303() {
  6840. #if HAS_PID_HEATING
  6841. int e = code_seen('E') ? code_value_int() : 0;
  6842. int c = code_seen('C') ? code_value_int() : 5;
  6843. bool u = code_seen('U') && code_value_bool();
  6844. float temp = code_seen('S') ? code_value_temp_abs() : (e < 0 ? 70.0 : 150.0);
  6845. if (WITHIN(e, 0, HOTENDS - 1))
  6846. target_extruder = e;
  6847. KEEPALIVE_STATE(NOT_BUSY); // don't send "busy: processing" messages during autotune output
  6848. thermalManager.PID_autotune(temp, e, c, u);
  6849. KEEPALIVE_STATE(IN_HANDLER);
  6850. #else
  6851. SERIAL_ERROR_START;
  6852. SERIAL_ERRORLNPGM(MSG_ERR_M303_DISABLED);
  6853. #endif
  6854. }
  6855. #if ENABLED(MORGAN_SCARA)
  6856. bool SCARA_move_to_cal(uint8_t delta_a, uint8_t delta_b) {
  6857. if (IsRunning()) {
  6858. forward_kinematics_SCARA(delta_a, delta_b);
  6859. destination[X_AXIS] = LOGICAL_X_POSITION(cartes[X_AXIS]);
  6860. destination[Y_AXIS] = LOGICAL_Y_POSITION(cartes[Y_AXIS]);
  6861. destination[Z_AXIS] = current_position[Z_AXIS];
  6862. prepare_move_to_destination();
  6863. return true;
  6864. }
  6865. return false;
  6866. }
  6867. /**
  6868. * M360: SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  6869. */
  6870. inline bool gcode_M360() {
  6871. SERIAL_ECHOLNPGM(" Cal: Theta 0");
  6872. return SCARA_move_to_cal(0, 120);
  6873. }
  6874. /**
  6875. * M361: SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  6876. */
  6877. inline bool gcode_M361() {
  6878. SERIAL_ECHOLNPGM(" Cal: Theta 90");
  6879. return SCARA_move_to_cal(90, 130);
  6880. }
  6881. /**
  6882. * M362: SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  6883. */
  6884. inline bool gcode_M362() {
  6885. SERIAL_ECHOLNPGM(" Cal: Psi 0");
  6886. return SCARA_move_to_cal(60, 180);
  6887. }
  6888. /**
  6889. * M363: SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  6890. */
  6891. inline bool gcode_M363() {
  6892. SERIAL_ECHOLNPGM(" Cal: Psi 90");
  6893. return SCARA_move_to_cal(50, 90);
  6894. }
  6895. /**
  6896. * M364: SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
  6897. */
  6898. inline bool gcode_M364() {
  6899. SERIAL_ECHOLNPGM(" Cal: Theta-Psi 90");
  6900. return SCARA_move_to_cal(45, 135);
  6901. }
  6902. #endif // SCARA
  6903. #if ENABLED(EXT_SOLENOID)
  6904. void enable_solenoid(const uint8_t num) {
  6905. switch (num) {
  6906. case 0:
  6907. OUT_WRITE(SOL0_PIN, HIGH);
  6908. break;
  6909. #if HAS_SOLENOID_1 && EXTRUDERS > 1
  6910. case 1:
  6911. OUT_WRITE(SOL1_PIN, HIGH);
  6912. break;
  6913. #endif
  6914. #if HAS_SOLENOID_2 && EXTRUDERS > 2
  6915. case 2:
  6916. OUT_WRITE(SOL2_PIN, HIGH);
  6917. break;
  6918. #endif
  6919. #if HAS_SOLENOID_3 && EXTRUDERS > 3
  6920. case 3:
  6921. OUT_WRITE(SOL3_PIN, HIGH);
  6922. break;
  6923. #endif
  6924. #if HAS_SOLENOID_4 && EXTRUDERS > 4
  6925. case 4:
  6926. OUT_WRITE(SOL4_PIN, HIGH);
  6927. break;
  6928. #endif
  6929. default:
  6930. SERIAL_ECHO_START;
  6931. SERIAL_ECHOLNPGM(MSG_INVALID_SOLENOID);
  6932. break;
  6933. }
  6934. }
  6935. void enable_solenoid_on_active_extruder() { enable_solenoid(active_extruder); }
  6936. void disable_all_solenoids() {
  6937. OUT_WRITE(SOL0_PIN, LOW);
  6938. #if HAS_SOLENOID_1 && EXTRUDERS > 1
  6939. OUT_WRITE(SOL1_PIN, LOW);
  6940. #endif
  6941. #if HAS_SOLENOID_2 && EXTRUDERS > 2
  6942. OUT_WRITE(SOL2_PIN, LOW);
  6943. #endif
  6944. #if HAS_SOLENOID_3 && EXTRUDERS > 3
  6945. OUT_WRITE(SOL3_PIN, LOW);
  6946. #endif
  6947. #if HAS_SOLENOID_4 && EXTRUDERS > 4
  6948. OUT_WRITE(SOL4_PIN, LOW);
  6949. #endif
  6950. }
  6951. /**
  6952. * M380: Enable solenoid on the active extruder
  6953. */
  6954. inline void gcode_M380() { enable_solenoid_on_active_extruder(); }
  6955. /**
  6956. * M381: Disable all solenoids
  6957. */
  6958. inline void gcode_M381() { disable_all_solenoids(); }
  6959. #endif // EXT_SOLENOID
  6960. /**
  6961. * M400: Finish all moves
  6962. */
  6963. inline void gcode_M400() { stepper.synchronize(); }
  6964. #if HAS_BED_PROBE
  6965. /**
  6966. * M401: Engage Z Servo endstop if available
  6967. */
  6968. inline void gcode_M401() { DEPLOY_PROBE(); }
  6969. /**
  6970. * M402: Retract Z Servo endstop if enabled
  6971. */
  6972. inline void gcode_M402() { STOW_PROBE(); }
  6973. #endif // HAS_BED_PROBE
  6974. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  6975. /**
  6976. * M404: Display or set (in current units) the nominal filament width (3mm, 1.75mm ) W<3.0>
  6977. */
  6978. inline void gcode_M404() {
  6979. if (code_seen('W')) {
  6980. filament_width_nominal = code_value_linear_units();
  6981. }
  6982. else {
  6983. SERIAL_PROTOCOLPGM("Filament dia (nominal mm):");
  6984. SERIAL_PROTOCOLLN(filament_width_nominal);
  6985. }
  6986. }
  6987. /**
  6988. * M405: Turn on filament sensor for control
  6989. */
  6990. inline void gcode_M405() {
  6991. // This is technically a linear measurement, but since it's quantized to centimeters and is a different unit than
  6992. // everything else, it uses code_value_int() instead of code_value_linear_units().
  6993. if (code_seen('D')) meas_delay_cm = code_value_int();
  6994. NOMORE(meas_delay_cm, MAX_MEASUREMENT_DELAY);
  6995. if (filwidth_delay_index[1] == -1) { // Initialize the ring buffer if not done since startup
  6996. const int temp_ratio = thermalManager.widthFil_to_size_ratio() - 100; // -100 to scale within a signed byte
  6997. for (uint8_t i = 0; i < COUNT(measurement_delay); ++i)
  6998. measurement_delay[i] = temp_ratio;
  6999. filwidth_delay_index[0] = filwidth_delay_index[1] = 0;
  7000. }
  7001. filament_sensor = true;
  7002. //SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  7003. //SERIAL_PROTOCOL(filament_width_meas);
  7004. //SERIAL_PROTOCOLPGM("Extrusion ratio(%):");
  7005. //SERIAL_PROTOCOL(flow_percentage[active_extruder]);
  7006. }
  7007. /**
  7008. * M406: Turn off filament sensor for control
  7009. */
  7010. inline void gcode_M406() { filament_sensor = false; }
  7011. /**
  7012. * M407: Get measured filament diameter on serial output
  7013. */
  7014. inline void gcode_M407() {
  7015. SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  7016. SERIAL_PROTOCOLLN(filament_width_meas);
  7017. }
  7018. #endif // FILAMENT_WIDTH_SENSOR
  7019. void quickstop_stepper() {
  7020. stepper.quick_stop();
  7021. stepper.synchronize();
  7022. set_current_from_steppers_for_axis(ALL_AXES);
  7023. SYNC_PLAN_POSITION_KINEMATIC();
  7024. }
  7025. #if HAS_LEVELING
  7026. /**
  7027. * M420: Enable/Disable Bed Leveling and/or set the Z fade height.
  7028. *
  7029. * S[bool] Turns leveling on or off
  7030. * Z[height] Sets the Z fade height (0 or none to disable)
  7031. * V[bool] Verbose - Print the leveling grid
  7032. *
  7033. * With AUTO_BED_LEVELING_UBL only:
  7034. *
  7035. * L[index] Load UBL mesh from index (0 is default)
  7036. */
  7037. inline void gcode_M420() {
  7038. #if ENABLED(AUTO_BED_LEVELING_UBL)
  7039. // L to load a mesh from the EEPROM
  7040. if (code_seen('L')) {
  7041. const int8_t storage_slot = code_has_value() ? code_value_int() : ubl.state.eeprom_storage_slot;
  7042. const int16_t j = (UBL_LAST_EEPROM_INDEX - ubl.eeprom_start) / sizeof(ubl.z_values);
  7043. if (!WITHIN(storage_slot, 0, j - 1) || ubl.eeprom_start <= 0) {
  7044. SERIAL_PROTOCOLLNPGM("?EEPROM storage not available for use.\n");
  7045. return;
  7046. }
  7047. ubl.load_mesh(storage_slot);
  7048. ubl.state.eeprom_storage_slot = storage_slot;
  7049. }
  7050. #endif // AUTO_BED_LEVELING_UBL
  7051. // V to print the matrix or mesh
  7052. if (code_seen('V')) {
  7053. #if ABL_PLANAR
  7054. planner.bed_level_matrix.debug("Bed Level Correction Matrix:");
  7055. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  7056. if (bilinear_grid_spacing[X_AXIS]) {
  7057. print_bilinear_leveling_grid();
  7058. #if ENABLED(ABL_BILINEAR_SUBDIVISION)
  7059. bed_level_virt_print();
  7060. #endif
  7061. }
  7062. #elif ENABLED(MESH_BED_LEVELING)
  7063. if (mbl.has_mesh()) {
  7064. SERIAL_ECHOLNPGM("Mesh Bed Level data:");
  7065. mbl_mesh_report();
  7066. }
  7067. #endif
  7068. }
  7069. #if ENABLED(AUTO_BED_LEVELING_UBL)
  7070. // L to load a mesh from the EEPROM
  7071. if (code_seen('L') || code_seen('V')) {
  7072. ubl.display_map(0); // Currently only supports one map type
  7073. SERIAL_ECHOLNPAIR("UBL_MESH_VALID = ", UBL_MESH_VALID);
  7074. SERIAL_ECHOLNPAIR("eeprom_storage_slot = ", ubl.state.eeprom_storage_slot);
  7075. }
  7076. #endif
  7077. bool to_enable = false;
  7078. if (code_seen('S')) {
  7079. to_enable = code_value_bool();
  7080. set_bed_leveling_enabled(to_enable);
  7081. }
  7082. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  7083. if (code_seen('Z')) set_z_fade_height(code_value_linear_units());
  7084. #endif
  7085. const bool new_status =
  7086. #if ENABLED(MESH_BED_LEVELING)
  7087. mbl.active()
  7088. #elif ENABLED(AUTO_BED_LEVELING_UBL)
  7089. ubl.state.active
  7090. #else
  7091. planner.abl_enabled
  7092. #endif
  7093. ;
  7094. if (to_enable && !new_status) {
  7095. SERIAL_ERROR_START;
  7096. SERIAL_ERRORLNPGM(MSG_ERR_M420_FAILED);
  7097. }
  7098. SERIAL_ECHO_START;
  7099. SERIAL_ECHOLNPAIR("Bed Leveling ", new_status ? MSG_ON : MSG_OFF);
  7100. }
  7101. #endif
  7102. #if ENABLED(MESH_BED_LEVELING)
  7103. /**
  7104. * M421: Set a single Mesh Bed Leveling Z coordinate
  7105. * Use either 'M421 X<linear> Y<linear> Z<linear>' or 'M421 I<xindex> J<yindex> Z<linear>'
  7106. */
  7107. inline void gcode_M421() {
  7108. int8_t px = 0, py = 0;
  7109. float z = 0;
  7110. bool hasX, hasY, hasZ, hasI, hasJ;
  7111. if ((hasX = code_seen('X'))) px = mbl.probe_index_x(code_value_linear_units());
  7112. if ((hasY = code_seen('Y'))) py = mbl.probe_index_y(code_value_linear_units());
  7113. if ((hasI = code_seen('I'))) px = code_value_linear_units();
  7114. if ((hasJ = code_seen('J'))) py = code_value_linear_units();
  7115. if ((hasZ = code_seen('Z'))) z = code_value_linear_units();
  7116. if (hasX && hasY && hasZ) {
  7117. if (px >= 0 && py >= 0)
  7118. mbl.set_z(px, py, z);
  7119. else {
  7120. SERIAL_ERROR_START;
  7121. SERIAL_ERRORLNPGM(MSG_ERR_MESH_XY);
  7122. }
  7123. }
  7124. else if (hasI && hasJ && hasZ) {
  7125. if (WITHIN(px, 0, GRID_MAX_POINTS_X - 1) && WITHIN(py, 0, GRID_MAX_POINTS_Y - 1))
  7126. mbl.set_z(px, py, z);
  7127. else {
  7128. SERIAL_ERROR_START;
  7129. SERIAL_ERRORLNPGM(MSG_ERR_MESH_XY);
  7130. }
  7131. }
  7132. else {
  7133. SERIAL_ERROR_START;
  7134. SERIAL_ERRORLNPGM(MSG_ERR_M421_PARAMETERS);
  7135. }
  7136. }
  7137. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR) || ENABLED(AUTO_BED_LEVELING_UBL)
  7138. /**
  7139. * M421: Set a single Mesh Bed Leveling Z coordinate
  7140. *
  7141. * M421 I<xindex> J<yindex> Z<linear>
  7142. */
  7143. inline void gcode_M421() {
  7144. int8_t px = 0, py = 0;
  7145. float z = 0;
  7146. bool hasI, hasJ, hasZ;
  7147. if ((hasI = code_seen('I'))) px = code_value_linear_units();
  7148. if ((hasJ = code_seen('J'))) py = code_value_linear_units();
  7149. if ((hasZ = code_seen('Z'))) z = code_value_linear_units();
  7150. if (hasI && hasJ && hasZ) {
  7151. if (WITHIN(px, 0, GRID_MAX_POINTS_X - 1) && WITHIN(py, 0, GRID_MAX_POINTS_X - 1)) {
  7152. #if ENABLED(AUTO_BED_LEVELING_UBL)
  7153. ubl.z_values[px][py] = z;
  7154. #else
  7155. z_values[px][py] = z;
  7156. #if ENABLED(ABL_BILINEAR_SUBDIVISION)
  7157. bed_level_virt_interpolate();
  7158. #endif
  7159. #endif
  7160. }
  7161. else {
  7162. SERIAL_ERROR_START;
  7163. SERIAL_ERRORLNPGM(MSG_ERR_MESH_XY);
  7164. }
  7165. }
  7166. else {
  7167. SERIAL_ERROR_START;
  7168. SERIAL_ERRORLNPGM(MSG_ERR_M421_PARAMETERS);
  7169. }
  7170. }
  7171. #endif
  7172. #if HAS_M206_COMMAND
  7173. /**
  7174. * M428: Set home_offset based on the distance between the
  7175. * current_position and the nearest "reference point."
  7176. * If an axis is past center its endstop position
  7177. * is the reference-point. Otherwise it uses 0. This allows
  7178. * the Z offset to be set near the bed when using a max endstop.
  7179. *
  7180. * M428 can't be used more than 2cm away from 0 or an endstop.
  7181. *
  7182. * Use M206 to set these values directly.
  7183. */
  7184. inline void gcode_M428() {
  7185. bool err = false;
  7186. LOOP_XYZ(i) {
  7187. if (axis_homed[i]) {
  7188. float base = (current_position[i] > (soft_endstop_min[i] + soft_endstop_max[i]) * 0.5) ? base_home_pos((AxisEnum)i) : 0,
  7189. diff = current_position[i] - LOGICAL_POSITION(base, i);
  7190. if (WITHIN(diff, -20, 20)) {
  7191. set_home_offset((AxisEnum)i, home_offset[i] - diff);
  7192. }
  7193. else {
  7194. SERIAL_ERROR_START;
  7195. SERIAL_ERRORLNPGM(MSG_ERR_M428_TOO_FAR);
  7196. LCD_ALERTMESSAGEPGM("Err: Too far!");
  7197. BUZZ(200, 40);
  7198. err = true;
  7199. break;
  7200. }
  7201. }
  7202. }
  7203. if (!err) {
  7204. SYNC_PLAN_POSITION_KINEMATIC();
  7205. report_current_position();
  7206. LCD_MESSAGEPGM(MSG_HOME_OFFSETS_APPLIED);
  7207. BUZZ(100, 659);
  7208. BUZZ(100, 698);
  7209. }
  7210. }
  7211. #endif // HAS_M206_COMMAND
  7212. /**
  7213. * M500: Store settings in EEPROM
  7214. */
  7215. inline void gcode_M500() {
  7216. (void)settings.save();
  7217. }
  7218. /**
  7219. * M501: Read settings from EEPROM
  7220. */
  7221. inline void gcode_M501() {
  7222. (void)settings.load();
  7223. }
  7224. /**
  7225. * M502: Revert to default settings
  7226. */
  7227. inline void gcode_M502() {
  7228. (void)settings.reset();
  7229. }
  7230. /**
  7231. * M503: print settings currently in memory
  7232. */
  7233. inline void gcode_M503() {
  7234. (void)settings.report(code_seen('S') && !code_value_bool());
  7235. }
  7236. #if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  7237. /**
  7238. * M540: Set whether SD card print should abort on endstop hit (M540 S<0|1>)
  7239. */
  7240. inline void gcode_M540() {
  7241. if (code_seen('S')) stepper.abort_on_endstop_hit = code_value_bool();
  7242. }
  7243. #endif // ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  7244. #if HAS_BED_PROBE
  7245. void refresh_zprobe_zoffset(const bool no_babystep/*=false*/) {
  7246. static float last_zoffset = NAN;
  7247. if (!isnan(last_zoffset)) {
  7248. #if ENABLED(AUTO_BED_LEVELING_BILINEAR) || ENABLED(BABYSTEP_ZPROBE_OFFSET) || ENABLED(DELTA)
  7249. const float diff = zprobe_zoffset - last_zoffset;
  7250. #endif
  7251. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  7252. // Correct bilinear grid for new probe offset
  7253. if (diff) {
  7254. for (uint8_t x = 0; x < GRID_MAX_POINTS_X; x++)
  7255. for (uint8_t y = 0; y < GRID_MAX_POINTS_Y; y++)
  7256. z_values[x][y] -= diff;
  7257. }
  7258. #if ENABLED(ABL_BILINEAR_SUBDIVISION)
  7259. bed_level_virt_interpolate();
  7260. #endif
  7261. #endif
  7262. #if ENABLED(BABYSTEP_ZPROBE_OFFSET)
  7263. if (!no_babystep && planner.abl_enabled)
  7264. thermalManager.babystep_axis(Z_AXIS, -lround(diff * planner.axis_steps_per_mm[Z_AXIS]));
  7265. #else
  7266. UNUSED(no_babystep);
  7267. #endif
  7268. #if ENABLED(DELTA) // correct the delta_height
  7269. home_offset[Z_AXIS] -= diff;
  7270. #endif
  7271. }
  7272. last_zoffset = zprobe_zoffset;
  7273. }
  7274. inline void gcode_M851() {
  7275. SERIAL_ECHO_START;
  7276. SERIAL_ECHOPGM(MSG_ZPROBE_ZOFFSET " ");
  7277. if (code_seen('Z')) {
  7278. const float value = code_value_linear_units();
  7279. if (WITHIN(value, Z_PROBE_OFFSET_RANGE_MIN, Z_PROBE_OFFSET_RANGE_MAX)) {
  7280. zprobe_zoffset = value;
  7281. refresh_zprobe_zoffset();
  7282. SERIAL_ECHO(zprobe_zoffset);
  7283. }
  7284. else
  7285. SERIAL_ECHOPGM(MSG_Z_MIN " " STRINGIFY(Z_PROBE_OFFSET_RANGE_MIN) " " MSG_Z_MAX " " STRINGIFY(Z_PROBE_OFFSET_RANGE_MAX));
  7286. }
  7287. else
  7288. SERIAL_ECHOPAIR(": ", zprobe_zoffset);
  7289. SERIAL_EOL;
  7290. }
  7291. #endif // HAS_BED_PROBE
  7292. #if ENABLED(FILAMENT_CHANGE_FEATURE)
  7293. void filament_change_beep(const bool init=false) {
  7294. static millis_t next_buzz = 0;
  7295. static uint16_t runout_beep = 0;
  7296. if (init) next_buzz = runout_beep = 0;
  7297. const millis_t ms = millis();
  7298. if (ELAPSED(ms, next_buzz)) {
  7299. if (runout_beep <= FILAMENT_CHANGE_NUMBER_OF_ALERT_BEEPS + 5) { // Only beep as long as we're supposed to
  7300. next_buzz = ms + (runout_beep <= FILAMENT_CHANGE_NUMBER_OF_ALERT_BEEPS ? 2500 : 400);
  7301. BUZZ(300, 2000);
  7302. runout_beep++;
  7303. }
  7304. }
  7305. }
  7306. static bool busy_doing_M600 = false;
  7307. /**
  7308. * M600: Pause for filament change
  7309. *
  7310. * E[distance] - Retract the filament this far (negative value)
  7311. * Z[distance] - Move the Z axis by this distance
  7312. * X[position] - Move to this X position, with Y
  7313. * Y[position] - Move to this Y position, with X
  7314. * L[distance] - Retract distance for removal (manual reload)
  7315. *
  7316. * Default values are used for omitted arguments.
  7317. *
  7318. */
  7319. inline void gcode_M600() {
  7320. if (!DEBUGGING(DRYRUN) && thermalManager.tooColdToExtrude(active_extruder)) {
  7321. SERIAL_ERROR_START;
  7322. SERIAL_ERRORLNPGM(MSG_TOO_COLD_FOR_M600);
  7323. return;
  7324. }
  7325. busy_doing_M600 = true; // Stepper Motors can't timeout when this is set
  7326. // Pause the print job timer
  7327. const bool job_running = print_job_timer.isRunning();
  7328. print_job_timer.pause();
  7329. // Show initial message and wait for synchronize steppers
  7330. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_INIT);
  7331. stepper.synchronize();
  7332. // Save current position of all axes
  7333. float lastpos[XYZE];
  7334. COPY(lastpos, current_position);
  7335. set_destination_to_current();
  7336. // Initial retract before move to filament change position
  7337. destination[E_AXIS] += code_seen('E') ? code_value_axis_units(E_AXIS) : 0
  7338. #if defined(FILAMENT_CHANGE_RETRACT_LENGTH) && FILAMENT_CHANGE_RETRACT_LENGTH > 0
  7339. - (FILAMENT_CHANGE_RETRACT_LENGTH)
  7340. #endif
  7341. ;
  7342. RUNPLAN(FILAMENT_CHANGE_RETRACT_FEEDRATE);
  7343. // Lift Z axis
  7344. float z_lift = code_seen('Z') ? code_value_linear_units() :
  7345. #if defined(FILAMENT_CHANGE_Z_ADD) && FILAMENT_CHANGE_Z_ADD > 0
  7346. FILAMENT_CHANGE_Z_ADD
  7347. #else
  7348. 0
  7349. #endif
  7350. ;
  7351. if (z_lift > 0) {
  7352. destination[Z_AXIS] += z_lift;
  7353. NOMORE(destination[Z_AXIS], Z_MAX_POS);
  7354. RUNPLAN(FILAMENT_CHANGE_Z_FEEDRATE);
  7355. }
  7356. // Move XY axes to filament exchange position
  7357. if (code_seen('X')) destination[X_AXIS] = code_value_linear_units();
  7358. #ifdef FILAMENT_CHANGE_X_POS
  7359. else destination[X_AXIS] = FILAMENT_CHANGE_X_POS;
  7360. #endif
  7361. if (code_seen('Y')) destination[Y_AXIS] = code_value_linear_units();
  7362. #ifdef FILAMENT_CHANGE_Y_POS
  7363. else destination[Y_AXIS] = FILAMENT_CHANGE_Y_POS;
  7364. #endif
  7365. RUNPLAN(FILAMENT_CHANGE_XY_FEEDRATE);
  7366. stepper.synchronize();
  7367. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_UNLOAD);
  7368. idle();
  7369. // Unload filament
  7370. destination[E_AXIS] += code_seen('L') ? code_value_axis_units(E_AXIS) : 0
  7371. #if FILAMENT_CHANGE_UNLOAD_LENGTH > 0
  7372. - (FILAMENT_CHANGE_UNLOAD_LENGTH)
  7373. #endif
  7374. ;
  7375. RUNPLAN(FILAMENT_CHANGE_UNLOAD_FEEDRATE);
  7376. // Synchronize steppers and then disable extruders steppers for manual filament changing
  7377. stepper.synchronize();
  7378. disable_e_steppers();
  7379. safe_delay(100);
  7380. const millis_t nozzle_timeout = millis() + (millis_t)(FILAMENT_CHANGE_NOZZLE_TIMEOUT) * 1000UL;
  7381. bool nozzle_timed_out = false;
  7382. float temps[4];
  7383. // Wait for filament insert by user and press button
  7384. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_INSERT);
  7385. #if HAS_BUZZER
  7386. filament_change_beep(true);
  7387. #endif
  7388. idle();
  7389. HOTEND_LOOP() temps[e] = thermalManager.target_temperature[e]; // Save nozzle temps
  7390. KEEPALIVE_STATE(PAUSED_FOR_USER);
  7391. wait_for_user = true; // LCD click or M108 will clear this
  7392. while (wait_for_user) {
  7393. if (nozzle_timed_out)
  7394. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_CLICK_TO_HEAT_NOZZLE);
  7395. #if HAS_BUZZER
  7396. filament_change_beep();
  7397. #endif
  7398. if (!nozzle_timed_out && ELAPSED(millis(), nozzle_timeout)) {
  7399. nozzle_timed_out = true; // on nozzle timeout remember the nozzles need to be reheated
  7400. HOTEND_LOOP() thermalManager.setTargetHotend(0, e); // Turn off all the nozzles
  7401. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_CLICK_TO_HEAT_NOZZLE);
  7402. }
  7403. idle(true);
  7404. }
  7405. KEEPALIVE_STATE(IN_HANDLER);
  7406. if (nozzle_timed_out) // Turn nozzles back on if they were turned off
  7407. HOTEND_LOOP() thermalManager.setTargetHotend(temps[e], e);
  7408. // Show "wait for heating"
  7409. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_WAIT_FOR_NOZZLES_TO_HEAT);
  7410. wait_for_heatup = true;
  7411. while (wait_for_heatup) {
  7412. idle();
  7413. wait_for_heatup = false;
  7414. HOTEND_LOOP() {
  7415. if (abs(thermalManager.degHotend(e) - temps[e]) > 3) {
  7416. wait_for_heatup = true;
  7417. break;
  7418. }
  7419. }
  7420. }
  7421. // Show "insert filament"
  7422. if (nozzle_timed_out)
  7423. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_INSERT);
  7424. #if HAS_BUZZER
  7425. filament_change_beep(true);
  7426. #endif
  7427. KEEPALIVE_STATE(PAUSED_FOR_USER);
  7428. wait_for_user = true; // LCD click or M108 will clear this
  7429. while (wait_for_user && nozzle_timed_out) {
  7430. #if HAS_BUZZER
  7431. filament_change_beep();
  7432. #endif
  7433. idle(true);
  7434. }
  7435. KEEPALIVE_STATE(IN_HANDLER);
  7436. // Show "load" message
  7437. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_LOAD);
  7438. // Load filament
  7439. destination[E_AXIS] += code_seen('L') ? -code_value_axis_units(E_AXIS) : 0
  7440. #if FILAMENT_CHANGE_LOAD_LENGTH > 0
  7441. + FILAMENT_CHANGE_LOAD_LENGTH
  7442. #endif
  7443. ;
  7444. RUNPLAN(FILAMENT_CHANGE_LOAD_FEEDRATE);
  7445. stepper.synchronize();
  7446. #if defined(FILAMENT_CHANGE_EXTRUDE_LENGTH) && FILAMENT_CHANGE_EXTRUDE_LENGTH > 0
  7447. do {
  7448. // "Wait for filament extrude"
  7449. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_EXTRUDE);
  7450. // Extrude filament to get into hotend
  7451. destination[E_AXIS] += FILAMENT_CHANGE_EXTRUDE_LENGTH;
  7452. RUNPLAN(FILAMENT_CHANGE_EXTRUDE_FEEDRATE);
  7453. stepper.synchronize();
  7454. // Show "Extrude More" / "Resume" menu and wait for reply
  7455. KEEPALIVE_STATE(PAUSED_FOR_USER);
  7456. wait_for_user = false;
  7457. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_OPTION);
  7458. while (filament_change_menu_response == FILAMENT_CHANGE_RESPONSE_WAIT_FOR) idle(true);
  7459. KEEPALIVE_STATE(IN_HANDLER);
  7460. // Keep looping if "Extrude More" was selected
  7461. } while (filament_change_menu_response == FILAMENT_CHANGE_RESPONSE_EXTRUDE_MORE);
  7462. #endif
  7463. // "Wait for print to resume"
  7464. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_RESUME);
  7465. // Set extruder to saved position
  7466. destination[E_AXIS] = current_position[E_AXIS] = lastpos[E_AXIS];
  7467. planner.set_e_position_mm(current_position[E_AXIS]);
  7468. #if IS_KINEMATIC
  7469. // Move XYZ to starting position
  7470. planner.buffer_line_kinematic(lastpos, FILAMENT_CHANGE_XY_FEEDRATE, active_extruder);
  7471. #else
  7472. // Move XY to starting position, then Z
  7473. destination[X_AXIS] = lastpos[X_AXIS];
  7474. destination[Y_AXIS] = lastpos[Y_AXIS];
  7475. RUNPLAN(FILAMENT_CHANGE_XY_FEEDRATE);
  7476. destination[Z_AXIS] = lastpos[Z_AXIS];
  7477. RUNPLAN(FILAMENT_CHANGE_Z_FEEDRATE);
  7478. #endif
  7479. stepper.synchronize();
  7480. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  7481. filament_ran_out = false;
  7482. #endif
  7483. // Show status screen
  7484. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_STATUS);
  7485. // Resume the print job timer if it was running
  7486. if (job_running) print_job_timer.start();
  7487. busy_doing_M600 = false; // Allow Stepper Motors to be turned off during inactivity
  7488. }
  7489. #endif // FILAMENT_CHANGE_FEATURE
  7490. #if ENABLED(DUAL_X_CARRIAGE)
  7491. /**
  7492. * M605: Set dual x-carriage movement mode
  7493. *
  7494. * M605 S0: Full control mode. The slicer has full control over x-carriage movement
  7495. * M605 S1: Auto-park mode. The inactive head will auto park/unpark without slicer involvement
  7496. * M605 S2 [Xnnn] [Rmmm]: Duplication mode. The second extruder will duplicate the first with nnn
  7497. * units x-offset and an optional differential hotend temperature of
  7498. * mmm degrees. E.g., with "M605 S2 X100 R2" the second extruder will duplicate
  7499. * the first with a spacing of 100mm in the x direction and 2 degrees hotter.
  7500. *
  7501. * Note: the X axis should be homed after changing dual x-carriage mode.
  7502. */
  7503. inline void gcode_M605() {
  7504. stepper.synchronize();
  7505. if (code_seen('S')) dual_x_carriage_mode = (DualXMode)code_value_byte();
  7506. switch (dual_x_carriage_mode) {
  7507. case DXC_FULL_CONTROL_MODE:
  7508. case DXC_AUTO_PARK_MODE:
  7509. break;
  7510. case DXC_DUPLICATION_MODE:
  7511. if (code_seen('X')) duplicate_extruder_x_offset = max(code_value_linear_units(), X2_MIN_POS - x_home_pos(0));
  7512. if (code_seen('R')) duplicate_extruder_temp_offset = code_value_temp_diff();
  7513. SERIAL_ECHO_START;
  7514. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  7515. SERIAL_CHAR(' ');
  7516. SERIAL_ECHO(hotend_offset[X_AXIS][0]);
  7517. SERIAL_CHAR(',');
  7518. SERIAL_ECHO(hotend_offset[Y_AXIS][0]);
  7519. SERIAL_CHAR(' ');
  7520. SERIAL_ECHO(duplicate_extruder_x_offset);
  7521. SERIAL_CHAR(',');
  7522. SERIAL_ECHOLN(hotend_offset[Y_AXIS][1]);
  7523. break;
  7524. default:
  7525. dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  7526. break;
  7527. }
  7528. active_extruder_parked = false;
  7529. extruder_duplication_enabled = false;
  7530. delayed_move_time = 0;
  7531. }
  7532. #elif ENABLED(DUAL_NOZZLE_DUPLICATION_MODE)
  7533. inline void gcode_M605() {
  7534. stepper.synchronize();
  7535. extruder_duplication_enabled = code_seen('S') && code_value_int() == (int)DXC_DUPLICATION_MODE;
  7536. SERIAL_ECHO_START;
  7537. SERIAL_ECHOLNPAIR(MSG_DUPLICATION_MODE, extruder_duplication_enabled ? MSG_ON : MSG_OFF);
  7538. }
  7539. #endif // DUAL_NOZZLE_DUPLICATION_MODE
  7540. #if ENABLED(LIN_ADVANCE)
  7541. /**
  7542. * M900: Set and/or Get advance K factor and WH/D ratio
  7543. *
  7544. * K<factor> Set advance K factor
  7545. * R<ratio> Set ratio directly (overrides WH/D)
  7546. * W<width> H<height> D<diam> Set ratio from WH/D
  7547. */
  7548. inline void gcode_M900() {
  7549. stepper.synchronize();
  7550. const float newK = code_seen('K') ? code_value_float() : -1;
  7551. if (newK >= 0) planner.extruder_advance_k = newK;
  7552. float newR = code_seen('R') ? code_value_float() : -1;
  7553. if (newR < 0) {
  7554. const float newD = code_seen('D') ? code_value_float() : -1,
  7555. newW = code_seen('W') ? code_value_float() : -1,
  7556. newH = code_seen('H') ? code_value_float() : -1;
  7557. if (newD >= 0 && newW >= 0 && newH >= 0)
  7558. newR = newD ? (newW * newH) / (sq(newD * 0.5) * M_PI) : 0;
  7559. }
  7560. if (newR >= 0) planner.advance_ed_ratio = newR;
  7561. SERIAL_ECHO_START;
  7562. SERIAL_ECHOPAIR("Advance K=", planner.extruder_advance_k);
  7563. SERIAL_ECHOPGM(" E/D=");
  7564. const float ratio = planner.advance_ed_ratio;
  7565. ratio ? SERIAL_ECHO(ratio) : SERIAL_ECHOPGM("Auto");
  7566. SERIAL_EOL;
  7567. }
  7568. #endif // LIN_ADVANCE
  7569. #if ENABLED(HAVE_TMC2130)
  7570. static void tmc2130_get_current(TMC2130Stepper &st, const char name) {
  7571. SERIAL_CHAR(name);
  7572. SERIAL_ECHOPGM(" axis driver current: ");
  7573. SERIAL_ECHOLN(st.getCurrent());
  7574. }
  7575. static void tmc2130_set_current(TMC2130Stepper &st, const char name, const int mA) {
  7576. st.setCurrent(mA, R_SENSE, HOLD_MULTIPLIER);
  7577. tmc2130_get_current(st, name);
  7578. }
  7579. static void tmc2130_report_otpw(TMC2130Stepper &st, const char name) {
  7580. SERIAL_CHAR(name);
  7581. SERIAL_ECHOPGM(" axis temperature prewarn triggered: ");
  7582. serialprintPGM(st.getOTPW() ? PSTR("true") : PSTR("false"));
  7583. SERIAL_EOL;
  7584. }
  7585. static void tmc2130_clear_otpw(TMC2130Stepper &st, const char name) {
  7586. st.clear_otpw();
  7587. SERIAL_CHAR(name);
  7588. SERIAL_ECHOLNPGM(" prewarn flag cleared");
  7589. }
  7590. static void tmc2130_get_pwmthrs(TMC2130Stepper &st, const char name, const uint16_t spmm) {
  7591. SERIAL_CHAR(name);
  7592. SERIAL_ECHOPGM(" stealthChop max speed set to ");
  7593. SERIAL_ECHOLN(12650000UL * st.microsteps() / (256 * st.stealth_max_speed() * spmm));
  7594. }
  7595. static void tmc2130_set_pwmthrs(TMC2130Stepper &st, const char name, const int32_t thrs, const uint32_t spmm) {
  7596. st.stealth_max_speed(12650000UL * st.microsteps() / (256 * thrs * spmm));
  7597. tmc2130_get_pwmthrs(st, name, spmm);
  7598. }
  7599. static void tmc2130_get_sgt(TMC2130Stepper &st, const char name) {
  7600. SERIAL_CHAR(name);
  7601. SERIAL_ECHOPGM(" driver homing sensitivity set to ");
  7602. SERIAL_ECHOLN(st.sgt());
  7603. }
  7604. static void tmc2130_set_sgt(TMC2130Stepper &st, const char name, const int8_t sgt_val) {
  7605. st.sgt(sgt_val);
  7606. tmc2130_get_sgt(st, name);
  7607. }
  7608. /**
  7609. * M906: Set motor current in milliamps using axis codes X, Y, Z, E
  7610. * Report driver currents when no axis specified
  7611. *
  7612. * S1: Enable automatic current control
  7613. * S0: Disable
  7614. */
  7615. inline void gcode_M906() {
  7616. uint16_t values[XYZE];
  7617. LOOP_XYZE(i)
  7618. values[i] = code_seen(axis_codes[i]) ? code_value_int() : 0;
  7619. #if ENABLED(X_IS_TMC2130)
  7620. if (values[X_AXIS]) tmc2130_set_current(stepperX, 'X', values[X_AXIS]);
  7621. else tmc2130_get_current(stepperX, 'X');
  7622. #endif
  7623. #if ENABLED(Y_IS_TMC2130)
  7624. if (values[Y_AXIS]) tmc2130_set_current(stepperY, 'Y', values[Y_AXIS]);
  7625. else tmc2130_get_current(stepperY, 'Y');
  7626. #endif
  7627. #if ENABLED(Z_IS_TMC2130)
  7628. if (values[Z_AXIS]) tmc2130_set_current(stepperZ, 'Z', values[Z_AXIS]);
  7629. else tmc2130_get_current(stepperZ, 'Z');
  7630. #endif
  7631. #if ENABLED(E0_IS_TMC2130)
  7632. if (values[E_AXIS]) tmc2130_set_current(stepperE0, 'E', values[E_AXIS]);
  7633. else tmc2130_get_current(stepperE0, 'E');
  7634. #endif
  7635. #if ENABLED(AUTOMATIC_CURRENT_CONTROL)
  7636. if (code_seen('S')) auto_current_control = code_value_bool();
  7637. #endif
  7638. }
  7639. /**
  7640. * M911: Report TMC2130 stepper driver overtemperature pre-warn flag
  7641. * The flag is held by the library and persist until manually cleared by M912
  7642. */
  7643. inline void gcode_M911() {
  7644. const bool reportX = code_seen('X'), reportY = code_seen('Y'), reportZ = code_seen('Z'), reportE = code_seen('E'),
  7645. reportAll = (!reportX && !reportY && !reportZ && !reportE) || (reportX && reportY && reportZ && reportE);
  7646. #if ENABLED(X_IS_TMC2130)
  7647. if (reportX || reportAll) tmc2130_report_otpw(stepperX, 'X');
  7648. #endif
  7649. #if ENABLED(Y_IS_TMC2130)
  7650. if (reportY || reportAll) tmc2130_report_otpw(stepperY, 'Y');
  7651. #endif
  7652. #if ENABLED(Z_IS_TMC2130)
  7653. if (reportZ || reportAll) tmc2130_report_otpw(stepperZ, 'Z');
  7654. #endif
  7655. #if ENABLED(E0_IS_TMC2130)
  7656. if (reportE || reportAll) tmc2130_report_otpw(stepperE0, 'E');
  7657. #endif
  7658. }
  7659. /**
  7660. * M912: Clear TMC2130 stepper driver overtemperature pre-warn flag held by the library
  7661. */
  7662. inline void gcode_M912() {
  7663. const bool clearX = code_seen('X'), clearY = code_seen('Y'), clearZ = code_seen('Z'), clearE = code_seen('E'),
  7664. clearAll = (!clearX && !clearY && !clearZ && !clearE) || (clearX && clearY && clearZ && clearE);
  7665. #if ENABLED(X_IS_TMC2130)
  7666. if (clearX || clearAll) tmc2130_clear_otpw(stepperX, 'X');
  7667. #endif
  7668. #if ENABLED(Y_IS_TMC2130)
  7669. if (clearY || clearAll) tmc2130_clear_otpw(stepperY, 'Y');
  7670. #endif
  7671. #if ENABLED(Z_IS_TMC2130)
  7672. if (clearZ || clearAll) tmc2130_clear_otpw(stepperZ, 'Z');
  7673. #endif
  7674. #if ENABLED(E0_IS_TMC2130)
  7675. if (clearE || clearAll) tmc2130_clear_otpw(stepperE0, 'E');
  7676. #endif
  7677. }
  7678. /**
  7679. * M913: Set HYBRID_THRESHOLD speed.
  7680. */
  7681. #if ENABLED(HYBRID_THRESHOLD)
  7682. inline void gcode_M913() {
  7683. uint16_t values[XYZE];
  7684. LOOP_XYZE(i)
  7685. values[i] = code_seen(axis_codes[i]) ? code_value_int() : 0;
  7686. #if ENABLED(X_IS_TMC2130)
  7687. if (values[X_AXIS]) tmc2130_set_pwmthrs(stepperX, 'X', values[X_AXIS], planner.axis_steps_per_mm[X_AXIS]);
  7688. else tmc2130_get_pwmthrs(stepperX, 'X', planner.axis_steps_per_mm[X_AXIS]);
  7689. #endif
  7690. #if ENABLED(Y_IS_TMC2130)
  7691. if (values[Y_AXIS]) tmc2130_set_pwmthrs(stepperY, 'Y', values[Y_AXIS], planner.axis_steps_per_mm[Y_AXIS]);
  7692. else tmc2130_get_pwmthrs(stepperY, 'Y', planner.axis_steps_per_mm[Y_AXIS]);
  7693. #endif
  7694. #if ENABLED(Z_IS_TMC2130)
  7695. if (values[Z_AXIS]) tmc2130_set_pwmthrs(stepperZ, 'Z', values[Z_AXIS], planner.axis_steps_per_mm[Z_AXIS]);
  7696. else tmc2130_get_pwmthrs(stepperZ, 'Z', planner.axis_steps_per_mm[Z_AXIS]);
  7697. #endif
  7698. #if ENABLED(E0_IS_TMC2130)
  7699. if (values[E_AXIS]) tmc2130_set_pwmthrs(stepperE0, 'E', values[E_AXIS], planner.axis_steps_per_mm[E_AXIS]);
  7700. else tmc2130_get_pwmthrs(stepperE0, 'E', planner.axis_steps_per_mm[E_AXIS]);
  7701. #endif
  7702. }
  7703. #endif // HYBRID_THRESHOLD
  7704. /**
  7705. * M914: Set SENSORLESS_HOMING sensitivity.
  7706. */
  7707. #if ENABLED(SENSORLESS_HOMING)
  7708. inline void gcode_M914() {
  7709. #if ENABLED(X_IS_TMC2130)
  7710. if (code_seen(axis_codes[X_AXIS])) tmc2130_set_sgt(stepperX, 'X', code_value_int());
  7711. else tmc2130_get_sgt(stepperX, 'X');
  7712. #endif
  7713. #if ENABLED(Y_IS_TMC2130)
  7714. if (code_seen(axis_codes[Y_AXIS])) tmc2130_set_sgt(stepperY, 'Y', code_value_int());
  7715. else tmc2130_get_sgt(stepperY, 'Y');
  7716. #endif
  7717. }
  7718. #endif // SENSORLESS_HOMING
  7719. #endif // HAVE_TMC2130
  7720. /**
  7721. * M907: Set digital trimpot motor current using axis codes X, Y, Z, E, B, S
  7722. */
  7723. inline void gcode_M907() {
  7724. #if HAS_DIGIPOTSS
  7725. LOOP_XYZE(i) if (code_seen(axis_codes[i])) stepper.digipot_current(i, code_value_int());
  7726. if (code_seen('B')) stepper.digipot_current(4, code_value_int());
  7727. if (code_seen('S')) for (uint8_t i = 0; i <= 4; i++) stepper.digipot_current(i, code_value_int());
  7728. #elif HAS_MOTOR_CURRENT_PWM
  7729. #if PIN_EXISTS(MOTOR_CURRENT_PWM_XY)
  7730. if (code_seen('X')) stepper.digipot_current(0, code_value_int());
  7731. #endif
  7732. #if PIN_EXISTS(MOTOR_CURRENT_PWM_Z)
  7733. if (code_seen('Z')) stepper.digipot_current(1, code_value_int());
  7734. #endif
  7735. #if PIN_EXISTS(MOTOR_CURRENT_PWM_E)
  7736. if (code_seen('E')) stepper.digipot_current(2, code_value_int());
  7737. #endif
  7738. #endif
  7739. #if ENABLED(DIGIPOT_I2C)
  7740. // this one uses actual amps in floating point
  7741. LOOP_XYZE(i) if (code_seen(axis_codes[i])) digipot_i2c_set_current(i, code_value_float());
  7742. // for each additional extruder (named B,C,D,E..., channels 4,5,6,7...)
  7743. for (uint8_t i = NUM_AXIS; i < DIGIPOT_I2C_NUM_CHANNELS; i++) if (code_seen('B' + i - (NUM_AXIS))) digipot_i2c_set_current(i, code_value_float());
  7744. #endif
  7745. #if ENABLED(DAC_STEPPER_CURRENT)
  7746. if (code_seen('S')) {
  7747. const float dac_percent = code_value_float();
  7748. for (uint8_t i = 0; i <= 4; i++) dac_current_percent(i, dac_percent);
  7749. }
  7750. LOOP_XYZE(i) if (code_seen(axis_codes[i])) dac_current_percent(i, code_value_float());
  7751. #endif
  7752. }
  7753. #if HAS_DIGIPOTSS || ENABLED(DAC_STEPPER_CURRENT)
  7754. /**
  7755. * M908: Control digital trimpot directly (M908 P<pin> S<current>)
  7756. */
  7757. inline void gcode_M908() {
  7758. #if HAS_DIGIPOTSS
  7759. stepper.digitalPotWrite(
  7760. code_seen('P') ? code_value_int() : 0,
  7761. code_seen('S') ? code_value_int() : 0
  7762. );
  7763. #endif
  7764. #ifdef DAC_STEPPER_CURRENT
  7765. dac_current_raw(
  7766. code_seen('P') ? code_value_byte() : -1,
  7767. code_seen('S') ? code_value_ushort() : 0
  7768. );
  7769. #endif
  7770. }
  7771. #if ENABLED(DAC_STEPPER_CURRENT) // As with Printrbot RevF
  7772. inline void gcode_M909() { dac_print_values(); }
  7773. inline void gcode_M910() { dac_commit_eeprom(); }
  7774. #endif
  7775. #endif // HAS_DIGIPOTSS || DAC_STEPPER_CURRENT
  7776. #if HAS_MICROSTEPS
  7777. // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  7778. inline void gcode_M350() {
  7779. if (code_seen('S')) for (int i = 0; i <= 4; i++) stepper.microstep_mode(i, code_value_byte());
  7780. LOOP_XYZE(i) if (code_seen(axis_codes[i])) stepper.microstep_mode(i, code_value_byte());
  7781. if (code_seen('B')) stepper.microstep_mode(4, code_value_byte());
  7782. stepper.microstep_readings();
  7783. }
  7784. /**
  7785. * M351: Toggle MS1 MS2 pins directly with axis codes X Y Z E B
  7786. * S# determines MS1 or MS2, X# sets the pin high/low.
  7787. */
  7788. inline void gcode_M351() {
  7789. if (code_seen('S')) switch (code_value_byte()) {
  7790. case 1:
  7791. LOOP_XYZE(i) if (code_seen(axis_codes[i])) stepper.microstep_ms(i, code_value_byte(), -1);
  7792. if (code_seen('B')) stepper.microstep_ms(4, code_value_byte(), -1);
  7793. break;
  7794. case 2:
  7795. LOOP_XYZE(i) if (code_seen(axis_codes[i])) stepper.microstep_ms(i, -1, code_value_byte());
  7796. if (code_seen('B')) stepper.microstep_ms(4, -1, code_value_byte());
  7797. break;
  7798. }
  7799. stepper.microstep_readings();
  7800. }
  7801. #endif // HAS_MICROSTEPS
  7802. #if HAS_CASE_LIGHT
  7803. uint8_t case_light_brightness = 255;
  7804. void update_case_light() {
  7805. WRITE(CASE_LIGHT_PIN, case_light_on != INVERT_CASE_LIGHT ? HIGH : LOW);
  7806. analogWrite(CASE_LIGHT_PIN, case_light_on != INVERT_CASE_LIGHT ? case_light_brightness : 0);
  7807. }
  7808. #endif // HAS_CASE_LIGHT
  7809. /**
  7810. * M355: Turn case lights on/off and set brightness
  7811. *
  7812. * S<bool> Turn case light on or off
  7813. * P<byte> Set case light brightness (PWM pin required)
  7814. */
  7815. inline void gcode_M355() {
  7816. #if HAS_CASE_LIGHT
  7817. if (code_seen('P')) case_light_brightness = code_value_byte();
  7818. if (code_seen('S')) case_light_on = code_value_bool();
  7819. update_case_light();
  7820. SERIAL_ECHO_START;
  7821. SERIAL_ECHOPGM("Case lights ");
  7822. case_light_on ? SERIAL_ECHOLNPGM("on") : SERIAL_ECHOLNPGM("off");
  7823. #else
  7824. SERIAL_ERROR_START;
  7825. SERIAL_ERRORLNPGM(MSG_ERR_M355_NONE);
  7826. #endif // HAS_CASE_LIGHT
  7827. }
  7828. #if ENABLED(MIXING_EXTRUDER)
  7829. /**
  7830. * M163: Set a single mix factor for a mixing extruder
  7831. * This is called "weight" by some systems.
  7832. *
  7833. * S[index] The channel index to set
  7834. * P[float] The mix value
  7835. *
  7836. */
  7837. inline void gcode_M163() {
  7838. const int mix_index = code_seen('S') ? code_value_int() : 0;
  7839. if (mix_index < MIXING_STEPPERS) {
  7840. float mix_value = code_seen('P') ? code_value_float() : 0.0;
  7841. NOLESS(mix_value, 0.0);
  7842. mixing_factor[mix_index] = RECIPROCAL(mix_value);
  7843. }
  7844. }
  7845. #if MIXING_VIRTUAL_TOOLS > 1
  7846. /**
  7847. * M164: Store the current mix factors as a virtual tool.
  7848. *
  7849. * S[index] The virtual tool to store
  7850. *
  7851. */
  7852. inline void gcode_M164() {
  7853. const int tool_index = code_seen('S') ? code_value_int() : 0;
  7854. if (tool_index < MIXING_VIRTUAL_TOOLS) {
  7855. normalize_mix();
  7856. for (uint8_t i = 0; i < MIXING_STEPPERS; i++)
  7857. mixing_virtual_tool_mix[tool_index][i] = mixing_factor[i];
  7858. }
  7859. }
  7860. #endif
  7861. #if ENABLED(DIRECT_MIXING_IN_G1)
  7862. /**
  7863. * M165: Set multiple mix factors for a mixing extruder.
  7864. * Factors that are left out will be set to 0.
  7865. * All factors together must add up to 1.0.
  7866. *
  7867. * A[factor] Mix factor for extruder stepper 1
  7868. * B[factor] Mix factor for extruder stepper 2
  7869. * C[factor] Mix factor for extruder stepper 3
  7870. * D[factor] Mix factor for extruder stepper 4
  7871. * H[factor] Mix factor for extruder stepper 5
  7872. * I[factor] Mix factor for extruder stepper 6
  7873. *
  7874. */
  7875. inline void gcode_M165() { gcode_get_mix(); }
  7876. #endif
  7877. #endif // MIXING_EXTRUDER
  7878. /**
  7879. * M999: Restart after being stopped
  7880. *
  7881. * Default behaviour is to flush the serial buffer and request
  7882. * a resend to the host starting on the last N line received.
  7883. *
  7884. * Sending "M999 S1" will resume printing without flushing the
  7885. * existing command buffer.
  7886. *
  7887. */
  7888. inline void gcode_M999() {
  7889. Running = true;
  7890. lcd_reset_alert_level();
  7891. if (code_seen('S') && code_value_bool()) return;
  7892. // gcode_LastN = Stopped_gcode_LastN;
  7893. FlushSerialRequestResend();
  7894. }
  7895. #if ENABLED(SWITCHING_EXTRUDER)
  7896. inline void move_extruder_servo(uint8_t e) {
  7897. const int angles[2] = SWITCHING_EXTRUDER_SERVO_ANGLES;
  7898. MOVE_SERVO(SWITCHING_EXTRUDER_SERVO_NR, angles[e]);
  7899. safe_delay(500);
  7900. }
  7901. #endif
  7902. inline void invalid_extruder_error(const uint8_t &e) {
  7903. SERIAL_ECHO_START;
  7904. SERIAL_CHAR('T');
  7905. SERIAL_ECHO_F(e, DEC);
  7906. SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
  7907. }
  7908. /**
  7909. * Perform a tool-change, which may result in moving the
  7910. * previous tool out of the way and the new tool into place.
  7911. */
  7912. void tool_change(const uint8_t tmp_extruder, const float fr_mm_s/*=0.0*/, bool no_move/*=false*/) {
  7913. #if ENABLED(MIXING_EXTRUDER) && MIXING_VIRTUAL_TOOLS > 1
  7914. if (tmp_extruder >= MIXING_VIRTUAL_TOOLS)
  7915. return invalid_extruder_error(tmp_extruder);
  7916. // T0-Tnnn: Switch virtual tool by changing the mix
  7917. for (uint8_t j = 0; j < MIXING_STEPPERS; j++)
  7918. mixing_factor[j] = mixing_virtual_tool_mix[tmp_extruder][j];
  7919. #else //!MIXING_EXTRUDER || MIXING_VIRTUAL_TOOLS <= 1
  7920. #if HOTENDS > 1
  7921. if (tmp_extruder >= EXTRUDERS)
  7922. return invalid_extruder_error(tmp_extruder);
  7923. const float old_feedrate_mm_s = fr_mm_s > 0.0 ? fr_mm_s : feedrate_mm_s;
  7924. feedrate_mm_s = fr_mm_s > 0.0 ? fr_mm_s : XY_PROBE_FEEDRATE_MM_S;
  7925. if (tmp_extruder != active_extruder) {
  7926. if (!no_move && axis_unhomed_error(true, true, true)) {
  7927. SERIAL_ECHOLNPGM("No move on toolchange");
  7928. no_move = true;
  7929. }
  7930. // Save current position to destination, for use later
  7931. set_destination_to_current();
  7932. #if ENABLED(DUAL_X_CARRIAGE)
  7933. #if ENABLED(DEBUG_LEVELING_FEATURE)
  7934. if (DEBUGGING(LEVELING)) {
  7935. SERIAL_ECHOPGM("Dual X Carriage Mode ");
  7936. switch (dual_x_carriage_mode) {
  7937. case DXC_FULL_CONTROL_MODE: SERIAL_ECHOLNPGM("DXC_FULL_CONTROL_MODE"); break;
  7938. case DXC_AUTO_PARK_MODE: SERIAL_ECHOLNPGM("DXC_AUTO_PARK_MODE"); break;
  7939. case DXC_DUPLICATION_MODE: SERIAL_ECHOLNPGM("DXC_DUPLICATION_MODE"); break;
  7940. }
  7941. }
  7942. #endif
  7943. const float xhome = x_home_pos(active_extruder);
  7944. if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE
  7945. && IsRunning()
  7946. && (delayed_move_time || current_position[X_AXIS] != xhome)
  7947. ) {
  7948. float raised_z = current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT;
  7949. #if ENABLED(MAX_SOFTWARE_ENDSTOPS)
  7950. NOMORE(raised_z, soft_endstop_max[Z_AXIS]);
  7951. #endif
  7952. #if ENABLED(DEBUG_LEVELING_FEATURE)
  7953. if (DEBUGGING(LEVELING)) {
  7954. SERIAL_ECHOLNPAIR("Raise to ", raised_z);
  7955. SERIAL_ECHOLNPAIR("MoveX to ", xhome);
  7956. SERIAL_ECHOLNPAIR("Lower to ", current_position[Z_AXIS]);
  7957. }
  7958. #endif
  7959. // Park old head: 1) raise 2) move to park position 3) lower
  7960. for (uint8_t i = 0; i < 3; i++)
  7961. planner.buffer_line(
  7962. i == 0 ? current_position[X_AXIS] : xhome,
  7963. current_position[Y_AXIS],
  7964. i == 2 ? current_position[Z_AXIS] : raised_z,
  7965. current_position[E_AXIS],
  7966. planner.max_feedrate_mm_s[i == 1 ? X_AXIS : Z_AXIS],
  7967. active_extruder
  7968. );
  7969. stepper.synchronize();
  7970. }
  7971. // Apply Y & Z extruder offset (X offset is used as home pos with Dual X)
  7972. current_position[Y_AXIS] -= hotend_offset[Y_AXIS][active_extruder] - hotend_offset[Y_AXIS][tmp_extruder];
  7973. current_position[Z_AXIS] -= hotend_offset[Z_AXIS][active_extruder] - hotend_offset[Z_AXIS][tmp_extruder];
  7974. // Activate the new extruder
  7975. active_extruder = tmp_extruder;
  7976. // This function resets the max/min values - the current position may be overwritten below.
  7977. set_axis_is_at_home(X_AXIS);
  7978. #if ENABLED(DEBUG_LEVELING_FEATURE)
  7979. if (DEBUGGING(LEVELING)) DEBUG_POS("New Extruder", current_position);
  7980. #endif
  7981. // Only when auto-parking are carriages safe to move
  7982. if (dual_x_carriage_mode != DXC_AUTO_PARK_MODE) no_move = true;
  7983. switch (dual_x_carriage_mode) {
  7984. case DXC_FULL_CONTROL_MODE:
  7985. // New current position is the position of the activated extruder
  7986. current_position[X_AXIS] = LOGICAL_X_POSITION(inactive_extruder_x_pos);
  7987. // Save the inactive extruder's position (from the old current_position)
  7988. inactive_extruder_x_pos = RAW_X_POSITION(destination[X_AXIS]);
  7989. break;
  7990. case DXC_AUTO_PARK_MODE:
  7991. // record raised toolhead position for use by unpark
  7992. COPY(raised_parked_position, current_position);
  7993. raised_parked_position[Z_AXIS] += TOOLCHANGE_UNPARK_ZLIFT;
  7994. #if ENABLED(MAX_SOFTWARE_ENDSTOPS)
  7995. NOMORE(raised_parked_position[Z_AXIS], soft_endstop_max[Z_AXIS]);
  7996. #endif
  7997. active_extruder_parked = true;
  7998. delayed_move_time = 0;
  7999. break;
  8000. case DXC_DUPLICATION_MODE:
  8001. // If the new extruder is the left one, set it "parked"
  8002. // This triggers the second extruder to move into the duplication position
  8003. active_extruder_parked = (active_extruder == 0);
  8004. if (active_extruder_parked)
  8005. current_position[X_AXIS] = LOGICAL_X_POSITION(inactive_extruder_x_pos);
  8006. else
  8007. current_position[X_AXIS] = destination[X_AXIS] + duplicate_extruder_x_offset;
  8008. inactive_extruder_x_pos = RAW_X_POSITION(destination[X_AXIS]);
  8009. extruder_duplication_enabled = false;
  8010. #if ENABLED(DEBUG_LEVELING_FEATURE)
  8011. if (DEBUGGING(LEVELING)) {
  8012. SERIAL_ECHOLNPAIR("Set inactive_extruder_x_pos=", inactive_extruder_x_pos);
  8013. SERIAL_ECHOLNPGM("Clear extruder_duplication_enabled");
  8014. }
  8015. #endif
  8016. break;
  8017. }
  8018. #if ENABLED(DEBUG_LEVELING_FEATURE)
  8019. if (DEBUGGING(LEVELING)) {
  8020. SERIAL_ECHOLNPAIR("Active extruder parked: ", active_extruder_parked ? "yes" : "no");
  8021. DEBUG_POS("New extruder (parked)", current_position);
  8022. }
  8023. #endif
  8024. // No extra case for HAS_ABL in DUAL_X_CARRIAGE. Does that mean they don't work together?
  8025. #else // !DUAL_X_CARRIAGE
  8026. #if ENABLED(SWITCHING_EXTRUDER)
  8027. // <0 if the new nozzle is higher, >0 if lower. A bigger raise when lower.
  8028. const float z_diff = hotend_offset[Z_AXIS][active_extruder] - hotend_offset[Z_AXIS][tmp_extruder],
  8029. z_raise = 0.3 + (z_diff > 0.0 ? z_diff : 0.0);
  8030. // Always raise by some amount (destination copied from current_position earlier)
  8031. current_position[Z_AXIS] += z_raise;
  8032. planner.buffer_line_kinematic(current_position, planner.max_feedrate_mm_s[Z_AXIS], active_extruder);
  8033. stepper.synchronize();
  8034. move_extruder_servo(active_extruder);
  8035. #endif
  8036. /**
  8037. * Set current_position to the position of the new nozzle.
  8038. * Offsets are based on linear distance, so we need to get
  8039. * the resulting position in coordinate space.
  8040. *
  8041. * - With grid or 3-point leveling, offset XYZ by a tilted vector
  8042. * - With mesh leveling, update Z for the new position
  8043. * - Otherwise, just use the raw linear distance
  8044. *
  8045. * Software endstops are altered here too. Consider a case where:
  8046. * E0 at X=0 ... E1 at X=10
  8047. * When we switch to E1 now X=10, but E1 can't move left.
  8048. * To express this we apply the change in XY to the software endstops.
  8049. * E1 can move farther right than E0, so the right limit is extended.
  8050. *
  8051. * Note that we don't adjust the Z software endstops. Why not?
  8052. * Consider a case where Z=0 (here) and switching to E1 makes Z=1
  8053. * because the bed is 1mm lower at the new position. As long as
  8054. * the first nozzle is out of the way, the carriage should be
  8055. * allowed to move 1mm lower. This technically "breaks" the
  8056. * Z software endstop. But this is technically correct (and
  8057. * there is no viable alternative).
  8058. */
  8059. #if ABL_PLANAR
  8060. // Offset extruder, make sure to apply the bed level rotation matrix
  8061. vector_3 tmp_offset_vec = vector_3(hotend_offset[X_AXIS][tmp_extruder],
  8062. hotend_offset[Y_AXIS][tmp_extruder],
  8063. 0),
  8064. act_offset_vec = vector_3(hotend_offset[X_AXIS][active_extruder],
  8065. hotend_offset[Y_AXIS][active_extruder],
  8066. 0),
  8067. offset_vec = tmp_offset_vec - act_offset_vec;
  8068. #if ENABLED(DEBUG_LEVELING_FEATURE)
  8069. if (DEBUGGING(LEVELING)) {
  8070. tmp_offset_vec.debug("tmp_offset_vec");
  8071. act_offset_vec.debug("act_offset_vec");
  8072. offset_vec.debug("offset_vec (BEFORE)");
  8073. }
  8074. #endif
  8075. offset_vec.apply_rotation(planner.bed_level_matrix.transpose(planner.bed_level_matrix));
  8076. #if ENABLED(DEBUG_LEVELING_FEATURE)
  8077. if (DEBUGGING(LEVELING)) offset_vec.debug("offset_vec (AFTER)");
  8078. #endif
  8079. // Adjustments to the current position
  8080. const float xydiff[2] = { offset_vec.x, offset_vec.y };
  8081. current_position[Z_AXIS] += offset_vec.z;
  8082. #else // !ABL_PLANAR
  8083. const float xydiff[2] = {
  8084. hotend_offset[X_AXIS][tmp_extruder] - hotend_offset[X_AXIS][active_extruder],
  8085. hotend_offset[Y_AXIS][tmp_extruder] - hotend_offset[Y_AXIS][active_extruder]
  8086. };
  8087. #if ENABLED(MESH_BED_LEVELING)
  8088. if (mbl.active()) {
  8089. #if ENABLED(DEBUG_LEVELING_FEATURE)
  8090. if (DEBUGGING(LEVELING)) SERIAL_ECHOPAIR("Z before MBL: ", current_position[Z_AXIS]);
  8091. #endif
  8092. float x2 = current_position[X_AXIS] + xydiff[X_AXIS],
  8093. y2 = current_position[Y_AXIS] + xydiff[Y_AXIS],
  8094. z1 = current_position[Z_AXIS], z2 = z1;
  8095. planner.apply_leveling(current_position[X_AXIS], current_position[Y_AXIS], z1);
  8096. planner.apply_leveling(x2, y2, z2);
  8097. current_position[Z_AXIS] += z2 - z1;
  8098. #if ENABLED(DEBUG_LEVELING_FEATURE)
  8099. if (DEBUGGING(LEVELING))
  8100. SERIAL_ECHOLNPAIR(" after: ", current_position[Z_AXIS]);
  8101. #endif
  8102. }
  8103. #endif // MESH_BED_LEVELING
  8104. #endif // !HAS_ABL
  8105. #if ENABLED(DEBUG_LEVELING_FEATURE)
  8106. if (DEBUGGING(LEVELING)) {
  8107. SERIAL_ECHOPAIR("Offset Tool XY by { ", xydiff[X_AXIS]);
  8108. SERIAL_ECHOPAIR(", ", xydiff[Y_AXIS]);
  8109. SERIAL_ECHOLNPGM(" }");
  8110. }
  8111. #endif
  8112. // The newly-selected extruder XY is actually at...
  8113. current_position[X_AXIS] += xydiff[X_AXIS];
  8114. current_position[Y_AXIS] += xydiff[Y_AXIS];
  8115. #if HAS_WORKSPACE_OFFSET || ENABLED(DUAL_X_CARRIAGE)
  8116. for (uint8_t i = X_AXIS; i <= Y_AXIS; i++) {
  8117. #if HAS_POSITION_SHIFT
  8118. position_shift[i] += xydiff[i];
  8119. #endif
  8120. update_software_endstops((AxisEnum)i);
  8121. }
  8122. #endif
  8123. // Set the new active extruder
  8124. active_extruder = tmp_extruder;
  8125. #endif // !DUAL_X_CARRIAGE
  8126. #if ENABLED(DEBUG_LEVELING_FEATURE)
  8127. if (DEBUGGING(LEVELING)) DEBUG_POS("Sync After Toolchange", current_position);
  8128. #endif
  8129. // Tell the planner the new "current position"
  8130. SYNC_PLAN_POSITION_KINEMATIC();
  8131. // Move to the "old position" (move the extruder into place)
  8132. if (!no_move && IsRunning()) {
  8133. #if ENABLED(DEBUG_LEVELING_FEATURE)
  8134. if (DEBUGGING(LEVELING)) DEBUG_POS("Move back", destination);
  8135. #endif
  8136. prepare_move_to_destination();
  8137. }
  8138. #if ENABLED(SWITCHING_EXTRUDER)
  8139. // Move back down, if needed. (Including when the new tool is higher.)
  8140. if (z_raise != z_diff) {
  8141. destination[Z_AXIS] += z_diff;
  8142. feedrate_mm_s = planner.max_feedrate_mm_s[Z_AXIS];
  8143. prepare_move_to_destination();
  8144. }
  8145. #endif
  8146. } // (tmp_extruder != active_extruder)
  8147. stepper.synchronize();
  8148. #if ENABLED(EXT_SOLENOID)
  8149. disable_all_solenoids();
  8150. enable_solenoid_on_active_extruder();
  8151. #endif // EXT_SOLENOID
  8152. feedrate_mm_s = old_feedrate_mm_s;
  8153. #else // HOTENDS <= 1
  8154. // Set the new active extruder
  8155. active_extruder = tmp_extruder;
  8156. UNUSED(fr_mm_s);
  8157. UNUSED(no_move);
  8158. #endif // HOTENDS <= 1
  8159. SERIAL_ECHO_START;
  8160. SERIAL_ECHOLNPAIR(MSG_ACTIVE_EXTRUDER, (int)active_extruder);
  8161. #endif //!MIXING_EXTRUDER || MIXING_VIRTUAL_TOOLS <= 1
  8162. }
  8163. /**
  8164. * T0-T3: Switch tool, usually switching extruders
  8165. *
  8166. * F[units/min] Set the movement feedrate
  8167. * S1 Don't move the tool in XY after change
  8168. */
  8169. inline void gcode_T(uint8_t tmp_extruder) {
  8170. #if ENABLED(DEBUG_LEVELING_FEATURE)
  8171. if (DEBUGGING(LEVELING)) {
  8172. SERIAL_ECHOPAIR(">>> gcode_T(", tmp_extruder);
  8173. SERIAL_CHAR(')');
  8174. SERIAL_EOL;
  8175. DEBUG_POS("BEFORE", current_position);
  8176. }
  8177. #endif
  8178. #if HOTENDS == 1 || (ENABLED(MIXING_EXTRUDER) && MIXING_VIRTUAL_TOOLS > 1)
  8179. tool_change(tmp_extruder);
  8180. #elif HOTENDS > 1
  8181. tool_change(
  8182. tmp_extruder,
  8183. code_seen('F') ? MMM_TO_MMS(code_value_linear_units()) : 0.0,
  8184. (tmp_extruder == active_extruder) || (code_seen('S') && code_value_bool())
  8185. );
  8186. #endif
  8187. #if ENABLED(DEBUG_LEVELING_FEATURE)
  8188. if (DEBUGGING(LEVELING)) {
  8189. DEBUG_POS("AFTER", current_position);
  8190. SERIAL_ECHOLNPGM("<<< gcode_T");
  8191. }
  8192. #endif
  8193. }
  8194. /**
  8195. * Process a single command and dispatch it to its handler
  8196. * This is called from the main loop()
  8197. */
  8198. void process_next_command() {
  8199. current_command = command_queue[cmd_queue_index_r];
  8200. if (DEBUGGING(ECHO)) {
  8201. SERIAL_ECHO_START;
  8202. SERIAL_ECHOLN(current_command);
  8203. #if ENABLED(M100_FREE_MEMORY_WATCHER)
  8204. SERIAL_ECHOPAIR("slot:", cmd_queue_index_r);
  8205. M100_dump_routine(" Command Queue:", &command_queue[0][0], &command_queue[BUFSIZE][MAX_CMD_SIZE]);
  8206. #endif
  8207. }
  8208. // Sanitize the current command:
  8209. // - Skip leading spaces
  8210. // - Bypass N[-0-9][0-9]*[ ]*
  8211. // - Overwrite * with nul to mark the end
  8212. while (*current_command == ' ') ++current_command;
  8213. if (*current_command == 'N' && NUMERIC_SIGNED(current_command[1])) {
  8214. current_command += 2; // skip N[-0-9]
  8215. while (NUMERIC(*current_command)) ++current_command; // skip [0-9]*
  8216. while (*current_command == ' ') ++current_command; // skip [ ]*
  8217. }
  8218. char* starpos = strchr(current_command, '*'); // * should always be the last parameter
  8219. if (starpos) while (*starpos == ' ' || *starpos == '*') *starpos-- = '\0'; // nullify '*' and ' '
  8220. char *cmd_ptr = current_command;
  8221. // Get the command code, which must be G, M, or T
  8222. char command_code = *cmd_ptr++;
  8223. // Skip spaces to get the numeric part
  8224. while (*cmd_ptr == ' ') cmd_ptr++;
  8225. // Allow for decimal point in command
  8226. #if ENABLED(G38_PROBE_TARGET)
  8227. uint8_t subcode = 0;
  8228. #endif
  8229. uint16_t codenum = 0; // define ahead of goto
  8230. // Bail early if there's no code
  8231. bool code_is_good = NUMERIC(*cmd_ptr);
  8232. if (!code_is_good) goto ExitUnknownCommand;
  8233. // Get and skip the code number
  8234. do {
  8235. codenum = (codenum * 10) + (*cmd_ptr - '0');
  8236. cmd_ptr++;
  8237. } while (NUMERIC(*cmd_ptr));
  8238. // Allow for decimal point in command
  8239. #if ENABLED(G38_PROBE_TARGET)
  8240. if (*cmd_ptr == '.') {
  8241. cmd_ptr++;
  8242. while (NUMERIC(*cmd_ptr))
  8243. subcode = (subcode * 10) + (*cmd_ptr++ - '0');
  8244. }
  8245. #endif
  8246. // Skip all spaces to get to the first argument, or nul
  8247. while (*cmd_ptr == ' ') cmd_ptr++;
  8248. // The command's arguments (if any) start here, for sure!
  8249. current_command_args = cmd_ptr;
  8250. KEEPALIVE_STATE(IN_HANDLER);
  8251. // Handle a known G, M, or T
  8252. switch (command_code) {
  8253. case 'G': switch (codenum) {
  8254. // G0, G1
  8255. case 0:
  8256. case 1:
  8257. #if IS_SCARA
  8258. gcode_G0_G1(codenum == 0);
  8259. #else
  8260. gcode_G0_G1();
  8261. #endif
  8262. break;
  8263. // G2, G3
  8264. #if ENABLED(ARC_SUPPORT) && DISABLED(SCARA)
  8265. case 2: // G2 - CW ARC
  8266. case 3: // G3 - CCW ARC
  8267. gcode_G2_G3(codenum == 2);
  8268. break;
  8269. #endif
  8270. // G4 Dwell
  8271. case 4:
  8272. gcode_G4();
  8273. break;
  8274. #if ENABLED(BEZIER_CURVE_SUPPORT)
  8275. // G5
  8276. case 5: // G5 - Cubic B_spline
  8277. gcode_G5();
  8278. break;
  8279. #endif // BEZIER_CURVE_SUPPORT
  8280. #if ENABLED(FWRETRACT)
  8281. case 10: // G10: retract
  8282. case 11: // G11: retract_recover
  8283. gcode_G10_G11(codenum == 10);
  8284. break;
  8285. #endif // FWRETRACT
  8286. #if ENABLED(NOZZLE_CLEAN_FEATURE)
  8287. case 12:
  8288. gcode_G12(); // G12: Nozzle Clean
  8289. break;
  8290. #endif // NOZZLE_CLEAN_FEATURE
  8291. #if ENABLED(INCH_MODE_SUPPORT)
  8292. case 20: //G20: Inch Mode
  8293. gcode_G20();
  8294. break;
  8295. case 21: //G21: MM Mode
  8296. gcode_G21();
  8297. break;
  8298. #endif // INCH_MODE_SUPPORT
  8299. #if ENABLED(AUTO_BED_LEVELING_UBL) && ENABLED(UBL_G26_MESH_EDITING)
  8300. case 26: // G26: Mesh Validation Pattern generation
  8301. gcode_G26();
  8302. break;
  8303. #endif // AUTO_BED_LEVELING_UBL
  8304. #if ENABLED(NOZZLE_PARK_FEATURE)
  8305. case 27: // G27: Nozzle Park
  8306. gcode_G27();
  8307. break;
  8308. #endif // NOZZLE_PARK_FEATURE
  8309. case 28: // G28: Home all axes, one at a time
  8310. gcode_G28();
  8311. break;
  8312. #if HAS_LEVELING
  8313. case 29: // G29 Detailed Z probe, probes the bed at 3 or more points,
  8314. // or provides access to the UBL System if enabled.
  8315. gcode_G29();
  8316. break;
  8317. #endif // HAS_LEVELING
  8318. #if HAS_BED_PROBE
  8319. case 30: // G30 Single Z probe
  8320. gcode_G30();
  8321. break;
  8322. #if ENABLED(Z_PROBE_SLED)
  8323. case 31: // G31: dock the sled
  8324. gcode_G31();
  8325. break;
  8326. case 32: // G32: undock the sled
  8327. gcode_G32();
  8328. break;
  8329. #endif // Z_PROBE_SLED
  8330. #if ENABLED(DELTA_AUTO_CALIBRATION)
  8331. case 33: // G33: Delta Auto Calibrate
  8332. gcode_G33();
  8333. break;
  8334. #endif // DELTA_AUTO_CALIBRATION
  8335. #endif // HAS_BED_PROBE
  8336. #if ENABLED(G38_PROBE_TARGET)
  8337. case 38: // G38.2 & G38.3
  8338. if (subcode == 2 || subcode == 3)
  8339. gcode_G38(subcode == 2);
  8340. break;
  8341. #endif
  8342. case 90: // G90
  8343. relative_mode = false;
  8344. break;
  8345. case 91: // G91
  8346. relative_mode = true;
  8347. break;
  8348. case 92: // G92
  8349. gcode_G92();
  8350. break;
  8351. }
  8352. break;
  8353. case 'M': switch (codenum) {
  8354. #if HAS_RESUME_CONTINUE
  8355. case 0: // M0: Unconditional stop - Wait for user button press on LCD
  8356. case 1: // M1: Conditional stop - Wait for user button press on LCD
  8357. gcode_M0_M1();
  8358. break;
  8359. #endif // ULTIPANEL
  8360. case 17: // M17: Enable all stepper motors
  8361. gcode_M17();
  8362. break;
  8363. #if ENABLED(SDSUPPORT)
  8364. case 20: // M20: list SD card
  8365. gcode_M20(); break;
  8366. case 21: // M21: init SD card
  8367. gcode_M21(); break;
  8368. case 22: // M22: release SD card
  8369. gcode_M22(); break;
  8370. case 23: // M23: Select file
  8371. gcode_M23(); break;
  8372. case 24: // M24: Start SD print
  8373. gcode_M24(); break;
  8374. case 25: // M25: Pause SD print
  8375. gcode_M25(); break;
  8376. case 26: // M26: Set SD index
  8377. gcode_M26(); break;
  8378. case 27: // M27: Get SD status
  8379. gcode_M27(); break;
  8380. case 28: // M28: Start SD write
  8381. gcode_M28(); break;
  8382. case 29: // M29: Stop SD write
  8383. gcode_M29(); break;
  8384. case 30: // M30 <filename> Delete File
  8385. gcode_M30(); break;
  8386. case 32: // M32: Select file and start SD print
  8387. gcode_M32(); break;
  8388. #if ENABLED(LONG_FILENAME_HOST_SUPPORT)
  8389. case 33: // M33: Get the long full path to a file or folder
  8390. gcode_M33(); break;
  8391. #endif
  8392. #if ENABLED(SDCARD_SORT_ALPHA) && ENABLED(SDSORT_GCODE)
  8393. case 34: //M34 - Set SD card sorting options
  8394. gcode_M34(); break;
  8395. #endif // SDCARD_SORT_ALPHA && SDSORT_GCODE
  8396. case 928: // M928: Start SD write
  8397. gcode_M928(); break;
  8398. #endif //SDSUPPORT
  8399. case 31: // M31: Report time since the start of SD print or last M109
  8400. gcode_M31(); break;
  8401. case 42: // M42: Change pin state
  8402. gcode_M42(); break;
  8403. #if ENABLED(PINS_DEBUGGING)
  8404. case 43: // M43: Read pin state
  8405. gcode_M43(); break;
  8406. #endif
  8407. #if ENABLED(Z_MIN_PROBE_REPEATABILITY_TEST)
  8408. case 48: // M48: Z probe repeatability test
  8409. gcode_M48();
  8410. break;
  8411. #endif // Z_MIN_PROBE_REPEATABILITY_TEST
  8412. #if ENABLED(AUTO_BED_LEVELING_UBL) && ENABLED(UBL_G26_MESH_EDITING)
  8413. case 49: // M49: Turn on or off G26 debug flag for verbose output
  8414. gcode_M49();
  8415. break;
  8416. #endif // AUTO_BED_LEVELING_UBL && UBL_G26_MESH_EDITING
  8417. case 75: // M75: Start print timer
  8418. gcode_M75(); break;
  8419. case 76: // M76: Pause print timer
  8420. gcode_M76(); break;
  8421. case 77: // M77: Stop print timer
  8422. gcode_M77(); break;
  8423. #if ENABLED(PRINTCOUNTER)
  8424. case 78: // M78: Show print statistics
  8425. gcode_M78(); break;
  8426. #endif
  8427. #if ENABLED(M100_FREE_MEMORY_WATCHER)
  8428. case 100: // M100: Free Memory Report
  8429. gcode_M100();
  8430. break;
  8431. #endif
  8432. case 104: // M104: Set hot end temperature
  8433. gcode_M104();
  8434. break;
  8435. case 110: // M110: Set Current Line Number
  8436. gcode_M110();
  8437. break;
  8438. case 111: // M111: Set debug level
  8439. gcode_M111();
  8440. break;
  8441. #if DISABLED(EMERGENCY_PARSER)
  8442. case 108: // M108: Cancel Waiting
  8443. gcode_M108();
  8444. break;
  8445. case 112: // M112: Emergency Stop
  8446. gcode_M112();
  8447. break;
  8448. case 410: // M410 quickstop - Abort all the planned moves.
  8449. gcode_M410();
  8450. break;
  8451. #endif
  8452. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  8453. case 113: // M113: Set Host Keepalive interval
  8454. gcode_M113();
  8455. break;
  8456. #endif
  8457. case 140: // M140: Set bed temperature
  8458. gcode_M140();
  8459. break;
  8460. case 105: // M105: Report current temperature
  8461. gcode_M105();
  8462. KEEPALIVE_STATE(NOT_BUSY);
  8463. return; // "ok" already printed
  8464. #if ENABLED(AUTO_REPORT_TEMPERATURES) && (HAS_TEMP_HOTEND || HAS_TEMP_BED)
  8465. case 155: // M155: Set temperature auto-report interval
  8466. gcode_M155();
  8467. break;
  8468. #endif
  8469. case 109: // M109: Wait for hotend temperature to reach target
  8470. gcode_M109();
  8471. break;
  8472. #if HAS_TEMP_BED
  8473. case 190: // M190: Wait for bed temperature to reach target
  8474. gcode_M190();
  8475. break;
  8476. #endif // HAS_TEMP_BED
  8477. #if FAN_COUNT > 0
  8478. case 106: // M106: Fan On
  8479. gcode_M106();
  8480. break;
  8481. case 107: // M107: Fan Off
  8482. gcode_M107();
  8483. break;
  8484. #endif // FAN_COUNT > 0
  8485. #if ENABLED(PARK_HEAD_ON_PAUSE)
  8486. case 125: // M125: Store current position and move to filament change position
  8487. gcode_M125(); break;
  8488. #endif
  8489. #if ENABLED(BARICUDA)
  8490. // PWM for HEATER_1_PIN
  8491. #if HAS_HEATER_1
  8492. case 126: // M126: valve open
  8493. gcode_M126();
  8494. break;
  8495. case 127: // M127: valve closed
  8496. gcode_M127();
  8497. break;
  8498. #endif // HAS_HEATER_1
  8499. // PWM for HEATER_2_PIN
  8500. #if HAS_HEATER_2
  8501. case 128: // M128: valve open
  8502. gcode_M128();
  8503. break;
  8504. case 129: // M129: valve closed
  8505. gcode_M129();
  8506. break;
  8507. #endif // HAS_HEATER_2
  8508. #endif // BARICUDA
  8509. #if HAS_POWER_SWITCH
  8510. case 80: // M80: Turn on Power Supply
  8511. gcode_M80();
  8512. break;
  8513. #endif // HAS_POWER_SWITCH
  8514. case 81: // M81: Turn off Power, including Power Supply, if possible
  8515. gcode_M81();
  8516. break;
  8517. case 82: // M83: Set E axis normal mode (same as other axes)
  8518. gcode_M82();
  8519. break;
  8520. case 83: // M83: Set E axis relative mode
  8521. gcode_M83();
  8522. break;
  8523. case 18: // M18 => M84
  8524. case 84: // M84: Disable all steppers or set timeout
  8525. gcode_M18_M84();
  8526. break;
  8527. case 85: // M85: Set inactivity stepper shutdown timeout
  8528. gcode_M85();
  8529. break;
  8530. case 92: // M92: Set the steps-per-unit for one or more axes
  8531. gcode_M92();
  8532. break;
  8533. case 114: // M114: Report current position
  8534. gcode_M114();
  8535. break;
  8536. case 115: // M115: Report capabilities
  8537. gcode_M115();
  8538. break;
  8539. case 117: // M117: Set LCD message text, if possible
  8540. gcode_M117();
  8541. break;
  8542. case 119: // M119: Report endstop states
  8543. gcode_M119();
  8544. break;
  8545. case 120: // M120: Enable endstops
  8546. gcode_M120();
  8547. break;
  8548. case 121: // M121: Disable endstops
  8549. gcode_M121();
  8550. break;
  8551. #if ENABLED(ULTIPANEL)
  8552. case 145: // M145: Set material heatup parameters
  8553. gcode_M145();
  8554. break;
  8555. #endif
  8556. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  8557. case 149: // M149: Set temperature units
  8558. gcode_M149();
  8559. break;
  8560. #endif
  8561. #if HAS_COLOR_LEDS
  8562. case 150: // M150: Set Status LED Color
  8563. gcode_M150();
  8564. break;
  8565. #endif // BLINKM
  8566. #if ENABLED(MIXING_EXTRUDER)
  8567. case 163: // M163: Set a component weight for mixing extruder
  8568. gcode_M163();
  8569. break;
  8570. #if MIXING_VIRTUAL_TOOLS > 1
  8571. case 164: // M164: Save current mix as a virtual extruder
  8572. gcode_M164();
  8573. break;
  8574. #endif
  8575. #if ENABLED(DIRECT_MIXING_IN_G1)
  8576. case 165: // M165: Set multiple mix weights
  8577. gcode_M165();
  8578. break;
  8579. #endif
  8580. #endif
  8581. case 200: // M200: Set filament diameter, E to cubic units
  8582. gcode_M200();
  8583. break;
  8584. case 201: // M201: Set max acceleration for print moves (units/s^2)
  8585. gcode_M201();
  8586. break;
  8587. #if 0 // Not used for Sprinter/grbl gen6
  8588. case 202: // M202
  8589. gcode_M202();
  8590. break;
  8591. #endif
  8592. case 203: // M203: Set max feedrate (units/sec)
  8593. gcode_M203();
  8594. break;
  8595. case 204: // M204: Set acceleration
  8596. gcode_M204();
  8597. break;
  8598. case 205: //M205: Set advanced settings
  8599. gcode_M205();
  8600. break;
  8601. #if HAS_M206_COMMAND
  8602. case 206: // M206: Set home offsets
  8603. gcode_M206();
  8604. break;
  8605. #endif
  8606. #if ENABLED(DELTA)
  8607. case 665: // M665: Set delta configurations
  8608. gcode_M665();
  8609. break;
  8610. #endif
  8611. #if ENABLED(DELTA) || ENABLED(Z_DUAL_ENDSTOPS)
  8612. case 666: // M666: Set delta or dual endstop adjustment
  8613. gcode_M666();
  8614. break;
  8615. #endif
  8616. #if ENABLED(FWRETRACT)
  8617. case 207: // M207: Set Retract Length, Feedrate, and Z lift
  8618. gcode_M207();
  8619. break;
  8620. case 208: // M208: Set Recover (unretract) Additional Length and Feedrate
  8621. gcode_M208();
  8622. break;
  8623. case 209: // M209: Turn Automatic Retract Detection on/off
  8624. gcode_M209();
  8625. break;
  8626. #endif // FWRETRACT
  8627. case 211: // M211: Enable, Disable, and/or Report software endstops
  8628. gcode_M211();
  8629. break;
  8630. #if HOTENDS > 1
  8631. case 218: // M218: Set a tool offset
  8632. gcode_M218();
  8633. break;
  8634. #endif
  8635. case 220: // M220: Set Feedrate Percentage: S<percent> ("FR" on your LCD)
  8636. gcode_M220();
  8637. break;
  8638. case 221: // M221: Set Flow Percentage
  8639. gcode_M221();
  8640. break;
  8641. case 226: // M226: Wait until a pin reaches a state
  8642. gcode_M226();
  8643. break;
  8644. #if HAS_SERVOS
  8645. case 280: // M280: Set servo position absolute
  8646. gcode_M280();
  8647. break;
  8648. #endif // HAS_SERVOS
  8649. #if HAS_BUZZER
  8650. case 300: // M300: Play beep tone
  8651. gcode_M300();
  8652. break;
  8653. #endif // HAS_BUZZER
  8654. #if ENABLED(PIDTEMP)
  8655. case 301: // M301: Set hotend PID parameters
  8656. gcode_M301();
  8657. break;
  8658. #endif // PIDTEMP
  8659. #if ENABLED(PIDTEMPBED)
  8660. case 304: // M304: Set bed PID parameters
  8661. gcode_M304();
  8662. break;
  8663. #endif // PIDTEMPBED
  8664. #if defined(CHDK) || HAS_PHOTOGRAPH
  8665. case 240: // M240: Trigger a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  8666. gcode_M240();
  8667. break;
  8668. #endif // CHDK || PHOTOGRAPH_PIN
  8669. #if HAS_LCD_CONTRAST
  8670. case 250: // M250: Set LCD contrast
  8671. gcode_M250();
  8672. break;
  8673. #endif // HAS_LCD_CONTRAST
  8674. #if ENABLED(EXPERIMENTAL_I2CBUS)
  8675. case 260: // M260: Send data to an i2c slave
  8676. gcode_M260();
  8677. break;
  8678. case 261: // M261: Request data from an i2c slave
  8679. gcode_M261();
  8680. break;
  8681. #endif // EXPERIMENTAL_I2CBUS
  8682. #if ENABLED(PREVENT_COLD_EXTRUSION)
  8683. case 302: // M302: Allow cold extrudes (set the minimum extrude temperature)
  8684. gcode_M302();
  8685. break;
  8686. #endif // PREVENT_COLD_EXTRUSION
  8687. case 303: // M303: PID autotune
  8688. gcode_M303();
  8689. break;
  8690. #if ENABLED(MORGAN_SCARA)
  8691. case 360: // M360: SCARA Theta pos1
  8692. if (gcode_M360()) return;
  8693. break;
  8694. case 361: // M361: SCARA Theta pos2
  8695. if (gcode_M361()) return;
  8696. break;
  8697. case 362: // M362: SCARA Psi pos1
  8698. if (gcode_M362()) return;
  8699. break;
  8700. case 363: // M363: SCARA Psi pos2
  8701. if (gcode_M363()) return;
  8702. break;
  8703. case 364: // M364: SCARA Psi pos3 (90 deg to Theta)
  8704. if (gcode_M364()) return;
  8705. break;
  8706. #endif // SCARA
  8707. case 400: // M400: Finish all moves
  8708. gcode_M400();
  8709. break;
  8710. #if HAS_BED_PROBE
  8711. case 401: // M401: Deploy probe
  8712. gcode_M401();
  8713. break;
  8714. case 402: // M402: Stow probe
  8715. gcode_M402();
  8716. break;
  8717. #endif // HAS_BED_PROBE
  8718. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  8719. case 404: // M404: Enter the nominal filament width (3mm, 1.75mm ) N<3.0> or display nominal filament width
  8720. gcode_M404();
  8721. break;
  8722. case 405: // M405: Turn on filament sensor for control
  8723. gcode_M405();
  8724. break;
  8725. case 406: // M406: Turn off filament sensor for control
  8726. gcode_M406();
  8727. break;
  8728. case 407: // M407: Display measured filament diameter
  8729. gcode_M407();
  8730. break;
  8731. #endif // FILAMENT_WIDTH_SENSOR
  8732. #if HAS_LEVELING
  8733. case 420: // M420: Enable/Disable Bed Leveling
  8734. gcode_M420();
  8735. break;
  8736. #endif
  8737. #if ENABLED(MESH_BED_LEVELING) || ENABLED(AUTO_BED_LEVELING_UBL) || ENABLED(AUTO_BED_LEVELING_BILINEAR)
  8738. case 421: // M421: Set a Mesh Bed Leveling Z coordinate
  8739. gcode_M421();
  8740. break;
  8741. #endif
  8742. #if HAS_M206_COMMAND
  8743. case 428: // M428: Apply current_position to home_offset
  8744. gcode_M428();
  8745. break;
  8746. #endif
  8747. case 500: // M500: Store settings in EEPROM
  8748. gcode_M500();
  8749. break;
  8750. case 501: // M501: Read settings from EEPROM
  8751. gcode_M501();
  8752. break;
  8753. case 502: // M502: Revert to default settings
  8754. gcode_M502();
  8755. break;
  8756. case 503: // M503: print settings currently in memory
  8757. gcode_M503();
  8758. break;
  8759. #if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  8760. case 540: // M540: Set abort on endstop hit for SD printing
  8761. gcode_M540();
  8762. break;
  8763. #endif
  8764. #if HAS_BED_PROBE
  8765. case 851: // M851: Set Z Probe Z Offset
  8766. gcode_M851();
  8767. break;
  8768. #endif // HAS_BED_PROBE
  8769. #if ENABLED(FILAMENT_CHANGE_FEATURE)
  8770. case 600: // M600: Pause for filament change
  8771. gcode_M600();
  8772. break;
  8773. #endif // FILAMENT_CHANGE_FEATURE
  8774. #if ENABLED(DUAL_X_CARRIAGE)
  8775. case 605: // M605: Set Dual X Carriage movement mode
  8776. gcode_M605();
  8777. break;
  8778. #endif // DUAL_X_CARRIAGE
  8779. #if ENABLED(LIN_ADVANCE)
  8780. case 900: // M900: Set advance K factor.
  8781. gcode_M900();
  8782. break;
  8783. #endif
  8784. #if ENABLED(HAVE_TMC2130)
  8785. case 906: // M906: Set motor current in milliamps using axis codes X, Y, Z, E
  8786. gcode_M906();
  8787. break;
  8788. #endif
  8789. case 907: // M907: Set digital trimpot motor current using axis codes.
  8790. gcode_M907();
  8791. break;
  8792. #if HAS_DIGIPOTSS || ENABLED(DAC_STEPPER_CURRENT)
  8793. case 908: // M908: Control digital trimpot directly.
  8794. gcode_M908();
  8795. break;
  8796. #if ENABLED(DAC_STEPPER_CURRENT) // As with Printrbot RevF
  8797. case 909: // M909: Print digipot/DAC current value
  8798. gcode_M909();
  8799. break;
  8800. case 910: // M910: Commit digipot/DAC value to external EEPROM
  8801. gcode_M910();
  8802. break;
  8803. #endif
  8804. #endif // HAS_DIGIPOTSS || DAC_STEPPER_CURRENT
  8805. #if ENABLED(HAVE_TMC2130)
  8806. case 911: // M911: Report TMC2130 prewarn triggered flags
  8807. gcode_M911();
  8808. break;
  8809. case 912: // M911: Clear TMC2130 prewarn triggered flags
  8810. gcode_M912();
  8811. break;
  8812. #if ENABLED(HYBRID_THRESHOLD)
  8813. case 913: // M913: Set HYBRID_THRESHOLD speed.
  8814. gcode_M913();
  8815. break;
  8816. #endif
  8817. #if ENABLED(SENSORLESS_HOMING)
  8818. case 914: // M914: Set SENSORLESS_HOMING sensitivity.
  8819. gcode_M914();
  8820. break;
  8821. #endif
  8822. #endif
  8823. #if HAS_MICROSTEPS
  8824. case 350: // M350: Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  8825. gcode_M350();
  8826. break;
  8827. case 351: // M351: Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  8828. gcode_M351();
  8829. break;
  8830. #endif // HAS_MICROSTEPS
  8831. case 355: // M355 Turn case lights on/off
  8832. gcode_M355();
  8833. break;
  8834. case 999: // M999: Restart after being Stopped
  8835. gcode_M999();
  8836. break;
  8837. }
  8838. break;
  8839. case 'T':
  8840. gcode_T(codenum);
  8841. break;
  8842. default: code_is_good = false;
  8843. }
  8844. KEEPALIVE_STATE(NOT_BUSY);
  8845. ExitUnknownCommand:
  8846. // Still unknown command? Throw an error
  8847. if (!code_is_good) unknown_command_error();
  8848. ok_to_send();
  8849. }
  8850. /**
  8851. * Send a "Resend: nnn" message to the host to
  8852. * indicate that a command needs to be re-sent.
  8853. */
  8854. void FlushSerialRequestResend() {
  8855. //char command_queue[cmd_queue_index_r][100]="Resend:";
  8856. MYSERIAL.flush();
  8857. SERIAL_PROTOCOLPGM(MSG_RESEND);
  8858. SERIAL_PROTOCOLLN(gcode_LastN + 1);
  8859. ok_to_send();
  8860. }
  8861. /**
  8862. * Send an "ok" message to the host, indicating
  8863. * that a command was successfully processed.
  8864. *
  8865. * If ADVANCED_OK is enabled also include:
  8866. * N<int> Line number of the command, if any
  8867. * P<int> Planner space remaining
  8868. * B<int> Block queue space remaining
  8869. */
  8870. void ok_to_send() {
  8871. refresh_cmd_timeout();
  8872. if (!send_ok[cmd_queue_index_r]) return;
  8873. SERIAL_PROTOCOLPGM(MSG_OK);
  8874. #if ENABLED(ADVANCED_OK)
  8875. char* p = command_queue[cmd_queue_index_r];
  8876. if (*p == 'N') {
  8877. SERIAL_PROTOCOL(' ');
  8878. SERIAL_ECHO(*p++);
  8879. while (NUMERIC_SIGNED(*p))
  8880. SERIAL_ECHO(*p++);
  8881. }
  8882. SERIAL_PROTOCOLPGM(" P"); SERIAL_PROTOCOL(int(BLOCK_BUFFER_SIZE - planner.movesplanned() - 1));
  8883. SERIAL_PROTOCOLPGM(" B"); SERIAL_PROTOCOL(BUFSIZE - commands_in_queue);
  8884. #endif
  8885. SERIAL_EOL;
  8886. }
  8887. #if HAS_SOFTWARE_ENDSTOPS
  8888. /**
  8889. * Constrain the given coordinates to the software endstops.
  8890. */
  8891. void clamp_to_software_endstops(float target[XYZ]) {
  8892. if (!soft_endstops_enabled) return;
  8893. #if ENABLED(MIN_SOFTWARE_ENDSTOPS)
  8894. NOLESS(target[X_AXIS], soft_endstop_min[X_AXIS]);
  8895. NOLESS(target[Y_AXIS], soft_endstop_min[Y_AXIS]);
  8896. NOLESS(target[Z_AXIS], soft_endstop_min[Z_AXIS]);
  8897. #endif
  8898. #if ENABLED(MAX_SOFTWARE_ENDSTOPS)
  8899. NOMORE(target[X_AXIS], soft_endstop_max[X_AXIS]);
  8900. NOMORE(target[Y_AXIS], soft_endstop_max[Y_AXIS]);
  8901. NOMORE(target[Z_AXIS], soft_endstop_max[Z_AXIS]);
  8902. #endif
  8903. }
  8904. #endif
  8905. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  8906. #if ENABLED(ABL_BILINEAR_SUBDIVISION)
  8907. #define ABL_BG_SPACING(A) bilinear_grid_spacing_virt[A]
  8908. #define ABL_BG_FACTOR(A) bilinear_grid_factor_virt[A]
  8909. #define ABL_BG_POINTS_X ABL_GRID_POINTS_VIRT_X
  8910. #define ABL_BG_POINTS_Y ABL_GRID_POINTS_VIRT_Y
  8911. #define ABL_BG_GRID(X,Y) z_values_virt[X][Y]
  8912. #else
  8913. #define ABL_BG_SPACING(A) bilinear_grid_spacing[A]
  8914. #define ABL_BG_FACTOR(A) bilinear_grid_factor[A]
  8915. #define ABL_BG_POINTS_X GRID_MAX_POINTS_X
  8916. #define ABL_BG_POINTS_Y GRID_MAX_POINTS_Y
  8917. #define ABL_BG_GRID(X,Y) z_values[X][Y]
  8918. #endif
  8919. // Get the Z adjustment for non-linear bed leveling
  8920. float bilinear_z_offset(const float logical[XYZ]) {
  8921. static float z1, d2, z3, d4, L, D, ratio_x, ratio_y,
  8922. last_x = -999.999, last_y = -999.999;
  8923. // Whole units for the grid line indices. Constrained within bounds.
  8924. static int8_t gridx, gridy, nextx, nexty,
  8925. last_gridx = -99, last_gridy = -99;
  8926. // XY relative to the probed area
  8927. const float x = RAW_X_POSITION(logical[X_AXIS]) - bilinear_start[X_AXIS],
  8928. y = RAW_Y_POSITION(logical[Y_AXIS]) - bilinear_start[Y_AXIS];
  8929. if (last_x != x) {
  8930. last_x = x;
  8931. ratio_x = x * ABL_BG_FACTOR(X_AXIS);
  8932. const float gx = constrain(floor(ratio_x), 0, ABL_BG_POINTS_X - 1);
  8933. ratio_x -= gx; // Subtract whole to get the ratio within the grid box
  8934. NOLESS(ratio_x, 0); // Never < 0.0. (> 1.0 is ok when nextx==gridx.)
  8935. gridx = gx;
  8936. nextx = min(gridx + 1, ABL_BG_POINTS_X - 1);
  8937. }
  8938. if (last_y != y || last_gridx != gridx) {
  8939. if (last_y != y) {
  8940. last_y = y;
  8941. ratio_y = y * ABL_BG_FACTOR(Y_AXIS);
  8942. const float gy = constrain(floor(ratio_y), 0, ABL_BG_POINTS_Y - 1);
  8943. ratio_y -= gy;
  8944. NOLESS(ratio_y, 0);
  8945. gridy = gy;
  8946. nexty = min(gridy + 1, ABL_BG_POINTS_Y - 1);
  8947. }
  8948. if (last_gridx != gridx || last_gridy != gridy) {
  8949. last_gridx = gridx;
  8950. last_gridy = gridy;
  8951. // Z at the box corners
  8952. z1 = ABL_BG_GRID(gridx, gridy); // left-front
  8953. d2 = ABL_BG_GRID(gridx, nexty) - z1; // left-back (delta)
  8954. z3 = ABL_BG_GRID(nextx, gridy); // right-front
  8955. d4 = ABL_BG_GRID(nextx, nexty) - z3; // right-back (delta)
  8956. }
  8957. // Bilinear interpolate. Needed since y or gridx has changed.
  8958. L = z1 + d2 * ratio_y; // Linear interp. LF -> LB
  8959. const float R = z3 + d4 * ratio_y; // Linear interp. RF -> RB
  8960. D = R - L;
  8961. }
  8962. const float offset = L + ratio_x * D; // the offset almost always changes
  8963. /*
  8964. static float last_offset = 0;
  8965. if (fabs(last_offset - offset) > 0.2) {
  8966. SERIAL_ECHOPGM("Sudden Shift at ");
  8967. SERIAL_ECHOPAIR("x=", x);
  8968. SERIAL_ECHOPAIR(" / ", bilinear_grid_spacing[X_AXIS]);
  8969. SERIAL_ECHOLNPAIR(" -> gridx=", gridx);
  8970. SERIAL_ECHOPAIR(" y=", y);
  8971. SERIAL_ECHOPAIR(" / ", bilinear_grid_spacing[Y_AXIS]);
  8972. SERIAL_ECHOLNPAIR(" -> gridy=", gridy);
  8973. SERIAL_ECHOPAIR(" ratio_x=", ratio_x);
  8974. SERIAL_ECHOLNPAIR(" ratio_y=", ratio_y);
  8975. SERIAL_ECHOPAIR(" z1=", z1);
  8976. SERIAL_ECHOPAIR(" z2=", z2);
  8977. SERIAL_ECHOPAIR(" z3=", z3);
  8978. SERIAL_ECHOLNPAIR(" z4=", z4);
  8979. SERIAL_ECHOPAIR(" L=", L);
  8980. SERIAL_ECHOPAIR(" R=", R);
  8981. SERIAL_ECHOLNPAIR(" offset=", offset);
  8982. }
  8983. last_offset = offset;
  8984. //*/
  8985. return offset;
  8986. }
  8987. #endif // AUTO_BED_LEVELING_BILINEAR
  8988. #if ENABLED(DELTA)
  8989. /**
  8990. * Recalculate factors used for delta kinematics whenever
  8991. * settings have been changed (e.g., by M665).
  8992. */
  8993. void recalc_delta_settings(float radius, float diagonal_rod) {
  8994. const float trt[ABC] = DELTA_RADIUS_TRIM_TOWER,
  8995. drt[ABC] = DELTA_DIAGONAL_ROD_TRIM_TOWER;
  8996. delta_tower[A_AXIS][X_AXIS] = cos(RADIANS(210 + delta_tower_angle_trim[A_AXIS])) * (radius + trt[A_AXIS]); // front left tower
  8997. delta_tower[A_AXIS][Y_AXIS] = sin(RADIANS(210 + delta_tower_angle_trim[A_AXIS])) * (radius + trt[A_AXIS]);
  8998. delta_tower[B_AXIS][X_AXIS] = cos(RADIANS(330 + delta_tower_angle_trim[B_AXIS])) * (radius + trt[B_AXIS]); // front right tower
  8999. delta_tower[B_AXIS][Y_AXIS] = sin(RADIANS(330 + delta_tower_angle_trim[B_AXIS])) * (radius + trt[B_AXIS]);
  9000. delta_tower[C_AXIS][X_AXIS] = 0.0; // back middle tower
  9001. delta_tower[C_AXIS][Y_AXIS] = (radius + trt[C_AXIS]);
  9002. delta_diagonal_rod_2_tower[A_AXIS] = sq(diagonal_rod + drt[A_AXIS]);
  9003. delta_diagonal_rod_2_tower[B_AXIS] = sq(diagonal_rod + drt[B_AXIS]);
  9004. delta_diagonal_rod_2_tower[C_AXIS] = sq(diagonal_rod + drt[C_AXIS]);
  9005. }
  9006. #if ENABLED(DELTA_FAST_SQRT)
  9007. /**
  9008. * Fast inverse sqrt from Quake III Arena
  9009. * See: https://en.wikipedia.org/wiki/Fast_inverse_square_root
  9010. */
  9011. float Q_rsqrt(float number) {
  9012. long i;
  9013. float x2, y;
  9014. const float threehalfs = 1.5f;
  9015. x2 = number * 0.5f;
  9016. y = number;
  9017. i = * ( long * ) &y; // evil floating point bit level hacking
  9018. i = 0x5F3759DF - ( i >> 1 ); // what the f***?
  9019. y = * ( float * ) &i;
  9020. y = y * ( threehalfs - ( x2 * y * y ) ); // 1st iteration
  9021. // y = y * ( threehalfs - ( x2 * y * y ) ); // 2nd iteration, this can be removed
  9022. return y;
  9023. }
  9024. #define _SQRT(n) (1.0f / Q_rsqrt(n))
  9025. #else
  9026. #define _SQRT(n) sqrt(n)
  9027. #endif
  9028. /**
  9029. * Delta Inverse Kinematics
  9030. *
  9031. * Calculate the tower positions for a given logical
  9032. * position, storing the result in the delta[] array.
  9033. *
  9034. * This is an expensive calculation, requiring 3 square
  9035. * roots per segmented linear move, and strains the limits
  9036. * of a Mega2560 with a Graphical Display.
  9037. *
  9038. * Suggested optimizations include:
  9039. *
  9040. * - Disable the home_offset (M206) and/or position_shift (G92)
  9041. * features to remove up to 12 float additions.
  9042. *
  9043. * - Use a fast-inverse-sqrt function and add the reciprocal.
  9044. * (see above)
  9045. */
  9046. // Macro to obtain the Z position of an individual tower
  9047. #define DELTA_Z(T) raw[Z_AXIS] + _SQRT( \
  9048. delta_diagonal_rod_2_tower[T] - HYPOT2( \
  9049. delta_tower[T][X_AXIS] - raw[X_AXIS], \
  9050. delta_tower[T][Y_AXIS] - raw[Y_AXIS] \
  9051. ) \
  9052. )
  9053. #define DELTA_RAW_IK() do { \
  9054. delta[A_AXIS] = DELTA_Z(A_AXIS); \
  9055. delta[B_AXIS] = DELTA_Z(B_AXIS); \
  9056. delta[C_AXIS] = DELTA_Z(C_AXIS); \
  9057. } while(0)
  9058. #define DELTA_LOGICAL_IK() do { \
  9059. const float raw[XYZ] = { \
  9060. RAW_X_POSITION(logical[X_AXIS]), \
  9061. RAW_Y_POSITION(logical[Y_AXIS]), \
  9062. RAW_Z_POSITION(logical[Z_AXIS]) \
  9063. }; \
  9064. DELTA_RAW_IK(); \
  9065. } while(0)
  9066. #define DELTA_DEBUG() do { \
  9067. SERIAL_ECHOPAIR("cartesian X:", raw[X_AXIS]); \
  9068. SERIAL_ECHOPAIR(" Y:", raw[Y_AXIS]); \
  9069. SERIAL_ECHOLNPAIR(" Z:", raw[Z_AXIS]); \
  9070. SERIAL_ECHOPAIR("delta A:", delta[A_AXIS]); \
  9071. SERIAL_ECHOPAIR(" B:", delta[B_AXIS]); \
  9072. SERIAL_ECHOLNPAIR(" C:", delta[C_AXIS]); \
  9073. } while(0)
  9074. void inverse_kinematics(const float logical[XYZ]) {
  9075. DELTA_LOGICAL_IK();
  9076. // DELTA_DEBUG();
  9077. }
  9078. /**
  9079. * Calculate the highest Z position where the
  9080. * effector has the full range of XY motion.
  9081. */
  9082. float delta_safe_distance_from_top() {
  9083. float cartesian[XYZ] = {
  9084. LOGICAL_X_POSITION(0),
  9085. LOGICAL_Y_POSITION(0),
  9086. LOGICAL_Z_POSITION(0)
  9087. };
  9088. inverse_kinematics(cartesian);
  9089. float distance = delta[A_AXIS];
  9090. cartesian[Y_AXIS] = LOGICAL_Y_POSITION(DELTA_PRINTABLE_RADIUS);
  9091. inverse_kinematics(cartesian);
  9092. return abs(distance - delta[A_AXIS]);
  9093. }
  9094. /**
  9095. * Delta Forward Kinematics
  9096. *
  9097. * See the Wikipedia article "Trilateration"
  9098. * https://en.wikipedia.org/wiki/Trilateration
  9099. *
  9100. * Establish a new coordinate system in the plane of the
  9101. * three carriage points. This system has its origin at
  9102. * tower1, with tower2 on the X axis. Tower3 is in the X-Y
  9103. * plane with a Z component of zero.
  9104. * We will define unit vectors in this coordinate system
  9105. * in our original coordinate system. Then when we calculate
  9106. * the Xnew, Ynew and Znew values, we can translate back into
  9107. * the original system by moving along those unit vectors
  9108. * by the corresponding values.
  9109. *
  9110. * Variable names matched to Marlin, c-version, and avoid the
  9111. * use of any vector library.
  9112. *
  9113. * by Andreas Hardtung 2016-06-07
  9114. * based on a Java function from "Delta Robot Kinematics V3"
  9115. * by Steve Graves
  9116. *
  9117. * The result is stored in the cartes[] array.
  9118. */
  9119. void forward_kinematics_DELTA(float z1, float z2, float z3) {
  9120. // Create a vector in old coordinates along x axis of new coordinate
  9121. float p12[3] = { delta_tower[B_AXIS][X_AXIS] - delta_tower[A_AXIS][X_AXIS], delta_tower[B_AXIS][Y_AXIS] - delta_tower[A_AXIS][Y_AXIS], z2 - z1 };
  9122. // Get the Magnitude of vector.
  9123. float d = sqrt( sq(p12[0]) + sq(p12[1]) + sq(p12[2]) );
  9124. // Create unit vector by dividing by magnitude.
  9125. float ex[3] = { p12[0] / d, p12[1] / d, p12[2] / d };
  9126. // Get the vector from the origin of the new system to the third point.
  9127. float p13[3] = { delta_tower[C_AXIS][X_AXIS] - delta_tower[A_AXIS][X_AXIS], delta_tower[C_AXIS][Y_AXIS] - delta_tower[A_AXIS][Y_AXIS], z3 - z1 };
  9128. // Use the dot product to find the component of this vector on the X axis.
  9129. float i = ex[0] * p13[0] + ex[1] * p13[1] + ex[2] * p13[2];
  9130. // Create a vector along the x axis that represents the x component of p13.
  9131. float iex[3] = { ex[0] * i, ex[1] * i, ex[2] * i };
  9132. // Subtract the X component from the original vector leaving only Y. We use the
  9133. // variable that will be the unit vector after we scale it.
  9134. float ey[3] = { p13[0] - iex[0], p13[1] - iex[1], p13[2] - iex[2] };
  9135. // The magnitude of Y component
  9136. float j = sqrt( sq(ey[0]) + sq(ey[1]) + sq(ey[2]) );
  9137. // Convert to a unit vector
  9138. ey[0] /= j; ey[1] /= j; ey[2] /= j;
  9139. // The cross product of the unit x and y is the unit z
  9140. // float[] ez = vectorCrossProd(ex, ey);
  9141. float ez[3] = {
  9142. ex[1] * ey[2] - ex[2] * ey[1],
  9143. ex[2] * ey[0] - ex[0] * ey[2],
  9144. ex[0] * ey[1] - ex[1] * ey[0]
  9145. };
  9146. // We now have the d, i and j values defined in Wikipedia.
  9147. // Plug them into the equations defined in Wikipedia for Xnew, Ynew and Znew
  9148. float Xnew = (delta_diagonal_rod_2_tower[A_AXIS] - delta_diagonal_rod_2_tower[B_AXIS] + sq(d)) / (d * 2),
  9149. Ynew = ((delta_diagonal_rod_2_tower[A_AXIS] - delta_diagonal_rod_2_tower[C_AXIS] + HYPOT2(i, j)) / 2 - i * Xnew) / j,
  9150. Znew = sqrt(delta_diagonal_rod_2_tower[A_AXIS] - HYPOT2(Xnew, Ynew));
  9151. // Start from the origin of the old coordinates and add vectors in the
  9152. // old coords that represent the Xnew, Ynew and Znew to find the point
  9153. // in the old system.
  9154. cartes[X_AXIS] = delta_tower[A_AXIS][X_AXIS] + ex[0] * Xnew + ey[0] * Ynew - ez[0] * Znew;
  9155. cartes[Y_AXIS] = delta_tower[A_AXIS][Y_AXIS] + ex[1] * Xnew + ey[1] * Ynew - ez[1] * Znew;
  9156. cartes[Z_AXIS] = z1 + ex[2] * Xnew + ey[2] * Ynew - ez[2] * Znew;
  9157. }
  9158. void forward_kinematics_DELTA(float point[ABC]) {
  9159. forward_kinematics_DELTA(point[A_AXIS], point[B_AXIS], point[C_AXIS]);
  9160. }
  9161. #endif // DELTA
  9162. /**
  9163. * Get the stepper positions in the cartes[] array.
  9164. * Forward kinematics are applied for DELTA and SCARA.
  9165. *
  9166. * The result is in the current coordinate space with
  9167. * leveling applied. The coordinates need to be run through
  9168. * unapply_leveling to obtain the "ideal" coordinates
  9169. * suitable for current_position, etc.
  9170. */
  9171. void get_cartesian_from_steppers() {
  9172. #if ENABLED(DELTA)
  9173. forward_kinematics_DELTA(
  9174. stepper.get_axis_position_mm(A_AXIS),
  9175. stepper.get_axis_position_mm(B_AXIS),
  9176. stepper.get_axis_position_mm(C_AXIS)
  9177. );
  9178. cartes[X_AXIS] += LOGICAL_X_POSITION(0);
  9179. cartes[Y_AXIS] += LOGICAL_Y_POSITION(0);
  9180. cartes[Z_AXIS] += LOGICAL_Z_POSITION(0);
  9181. #elif IS_SCARA
  9182. forward_kinematics_SCARA(
  9183. stepper.get_axis_position_degrees(A_AXIS),
  9184. stepper.get_axis_position_degrees(B_AXIS)
  9185. );
  9186. cartes[X_AXIS] += LOGICAL_X_POSITION(0);
  9187. cartes[Y_AXIS] += LOGICAL_Y_POSITION(0);
  9188. cartes[Z_AXIS] = stepper.get_axis_position_mm(Z_AXIS);
  9189. #else
  9190. cartes[X_AXIS] = stepper.get_axis_position_mm(X_AXIS);
  9191. cartes[Y_AXIS] = stepper.get_axis_position_mm(Y_AXIS);
  9192. cartes[Z_AXIS] = stepper.get_axis_position_mm(Z_AXIS);
  9193. #endif
  9194. }
  9195. /**
  9196. * Set the current_position for an axis based on
  9197. * the stepper positions, removing any leveling that
  9198. * may have been applied.
  9199. */
  9200. void set_current_from_steppers_for_axis(const AxisEnum axis) {
  9201. get_cartesian_from_steppers();
  9202. #if PLANNER_LEVELING
  9203. planner.unapply_leveling(cartes);
  9204. #endif
  9205. if (axis == ALL_AXES)
  9206. COPY(current_position, cartes);
  9207. else
  9208. current_position[axis] = cartes[axis];
  9209. }
  9210. #if ENABLED(MESH_BED_LEVELING)
  9211. /**
  9212. * Prepare a mesh-leveled linear move in a Cartesian setup,
  9213. * splitting the move where it crosses mesh borders.
  9214. */
  9215. void mesh_line_to_destination(float fr_mm_s, uint8_t x_splits = 0xFF, uint8_t y_splits = 0xFF) {
  9216. int cx1 = mbl.cell_index_x(RAW_CURRENT_POSITION(X)),
  9217. cy1 = mbl.cell_index_y(RAW_CURRENT_POSITION(Y)),
  9218. cx2 = mbl.cell_index_x(RAW_X_POSITION(destination[X_AXIS])),
  9219. cy2 = mbl.cell_index_y(RAW_Y_POSITION(destination[Y_AXIS]));
  9220. NOMORE(cx1, GRID_MAX_POINTS_X - 2);
  9221. NOMORE(cy1, GRID_MAX_POINTS_Y - 2);
  9222. NOMORE(cx2, GRID_MAX_POINTS_X - 2);
  9223. NOMORE(cy2, GRID_MAX_POINTS_Y - 2);
  9224. if (cx1 == cx2 && cy1 == cy2) {
  9225. // Start and end on same mesh square
  9226. line_to_destination(fr_mm_s);
  9227. set_current_to_destination();
  9228. return;
  9229. }
  9230. #define MBL_SEGMENT_END(A) (current_position[A ##_AXIS] + (destination[A ##_AXIS] - current_position[A ##_AXIS]) * normalized_dist)
  9231. float normalized_dist, end[XYZE];
  9232. // Split at the left/front border of the right/top square
  9233. const int8_t gcx = max(cx1, cx2), gcy = max(cy1, cy2);
  9234. if (cx2 != cx1 && TEST(x_splits, gcx)) {
  9235. COPY(end, destination);
  9236. destination[X_AXIS] = LOGICAL_X_POSITION(mbl.index_to_xpos[gcx]);
  9237. normalized_dist = (destination[X_AXIS] - current_position[X_AXIS]) / (end[X_AXIS] - current_position[X_AXIS]);
  9238. destination[Y_AXIS] = MBL_SEGMENT_END(Y);
  9239. CBI(x_splits, gcx);
  9240. }
  9241. else if (cy2 != cy1 && TEST(y_splits, gcy)) {
  9242. COPY(end, destination);
  9243. destination[Y_AXIS] = LOGICAL_Y_POSITION(mbl.index_to_ypos[gcy]);
  9244. normalized_dist = (destination[Y_AXIS] - current_position[Y_AXIS]) / (end[Y_AXIS] - current_position[Y_AXIS]);
  9245. destination[X_AXIS] = MBL_SEGMENT_END(X);
  9246. CBI(y_splits, gcy);
  9247. }
  9248. else {
  9249. // Already split on a border
  9250. line_to_destination(fr_mm_s);
  9251. set_current_to_destination();
  9252. return;
  9253. }
  9254. destination[Z_AXIS] = MBL_SEGMENT_END(Z);
  9255. destination[E_AXIS] = MBL_SEGMENT_END(E);
  9256. // Do the split and look for more borders
  9257. mesh_line_to_destination(fr_mm_s, x_splits, y_splits);
  9258. // Restore destination from stack
  9259. COPY(destination, end);
  9260. mesh_line_to_destination(fr_mm_s, x_splits, y_splits);
  9261. }
  9262. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR) && !IS_KINEMATIC
  9263. #define CELL_INDEX(A,V) ((RAW_##A##_POSITION(V) - bilinear_start[A##_AXIS]) * ABL_BG_FACTOR(A##_AXIS))
  9264. /**
  9265. * Prepare a bilinear-leveled linear move on Cartesian,
  9266. * splitting the move where it crosses grid borders.
  9267. */
  9268. void bilinear_line_to_destination(float fr_mm_s, uint16_t x_splits = 0xFFFF, uint16_t y_splits = 0xFFFF) {
  9269. int cx1 = CELL_INDEX(X, current_position[X_AXIS]),
  9270. cy1 = CELL_INDEX(Y, current_position[Y_AXIS]),
  9271. cx2 = CELL_INDEX(X, destination[X_AXIS]),
  9272. cy2 = CELL_INDEX(Y, destination[Y_AXIS]);
  9273. cx1 = constrain(cx1, 0, ABL_BG_POINTS_X - 2);
  9274. cy1 = constrain(cy1, 0, ABL_BG_POINTS_Y - 2);
  9275. cx2 = constrain(cx2, 0, ABL_BG_POINTS_X - 2);
  9276. cy2 = constrain(cy2, 0, ABL_BG_POINTS_Y - 2);
  9277. if (cx1 == cx2 && cy1 == cy2) {
  9278. // Start and end on same mesh square
  9279. line_to_destination(fr_mm_s);
  9280. set_current_to_destination();
  9281. return;
  9282. }
  9283. #define LINE_SEGMENT_END(A) (current_position[A ##_AXIS] + (destination[A ##_AXIS] - current_position[A ##_AXIS]) * normalized_dist)
  9284. float normalized_dist, end[XYZE];
  9285. // Split at the left/front border of the right/top square
  9286. const int8_t gcx = max(cx1, cx2), gcy = max(cy1, cy2);
  9287. if (cx2 != cx1 && TEST(x_splits, gcx)) {
  9288. COPY(end, destination);
  9289. destination[X_AXIS] = LOGICAL_X_POSITION(bilinear_start[X_AXIS] + ABL_BG_SPACING(X_AXIS) * gcx);
  9290. normalized_dist = (destination[X_AXIS] - current_position[X_AXIS]) / (end[X_AXIS] - current_position[X_AXIS]);
  9291. destination[Y_AXIS] = LINE_SEGMENT_END(Y);
  9292. CBI(x_splits, gcx);
  9293. }
  9294. else if (cy2 != cy1 && TEST(y_splits, gcy)) {
  9295. COPY(end, destination);
  9296. destination[Y_AXIS] = LOGICAL_Y_POSITION(bilinear_start[Y_AXIS] + ABL_BG_SPACING(Y_AXIS) * gcy);
  9297. normalized_dist = (destination[Y_AXIS] - current_position[Y_AXIS]) / (end[Y_AXIS] - current_position[Y_AXIS]);
  9298. destination[X_AXIS] = LINE_SEGMENT_END(X);
  9299. CBI(y_splits, gcy);
  9300. }
  9301. else {
  9302. // Already split on a border
  9303. line_to_destination(fr_mm_s);
  9304. set_current_to_destination();
  9305. return;
  9306. }
  9307. destination[Z_AXIS] = LINE_SEGMENT_END(Z);
  9308. destination[E_AXIS] = LINE_SEGMENT_END(E);
  9309. // Do the split and look for more borders
  9310. bilinear_line_to_destination(fr_mm_s, x_splits, y_splits);
  9311. // Restore destination from stack
  9312. COPY(destination, end);
  9313. bilinear_line_to_destination(fr_mm_s, x_splits, y_splits);
  9314. }
  9315. #endif // AUTO_BED_LEVELING_BILINEAR
  9316. #if IS_KINEMATIC
  9317. /**
  9318. * Prepare a linear move in a DELTA or SCARA setup.
  9319. *
  9320. * This calls planner.buffer_line several times, adding
  9321. * small incremental moves for DELTA or SCARA.
  9322. */
  9323. inline bool prepare_kinematic_move_to(float ltarget[XYZE]) {
  9324. // Get the top feedrate of the move in the XY plane
  9325. float _feedrate_mm_s = MMS_SCALED(feedrate_mm_s);
  9326. // If the move is only in Z/E don't split up the move
  9327. if (ltarget[X_AXIS] == current_position[X_AXIS] && ltarget[Y_AXIS] == current_position[Y_AXIS]) {
  9328. planner.buffer_line_kinematic(ltarget, _feedrate_mm_s, active_extruder);
  9329. return false;
  9330. }
  9331. // Get the cartesian distances moved in XYZE
  9332. float difference[XYZE];
  9333. LOOP_XYZE(i) difference[i] = ltarget[i] - current_position[i];
  9334. // Get the linear distance in XYZ
  9335. float cartesian_mm = sqrt(sq(difference[X_AXIS]) + sq(difference[Y_AXIS]) + sq(difference[Z_AXIS]));
  9336. // If the move is very short, check the E move distance
  9337. if (UNEAR_ZERO(cartesian_mm)) cartesian_mm = abs(difference[E_AXIS]);
  9338. // No E move either? Game over.
  9339. if (UNEAR_ZERO(cartesian_mm)) return true;
  9340. // Minimum number of seconds to move the given distance
  9341. float seconds = cartesian_mm / _feedrate_mm_s;
  9342. // The number of segments-per-second times the duration
  9343. // gives the number of segments
  9344. uint16_t segments = delta_segments_per_second * seconds;
  9345. // For SCARA minimum segment size is 0.25mm
  9346. #if IS_SCARA
  9347. NOMORE(segments, cartesian_mm * 4);
  9348. #endif
  9349. // At least one segment is required
  9350. NOLESS(segments, 1);
  9351. // The approximate length of each segment
  9352. const float inv_segments = 1.0 / float(segments),
  9353. segment_distance[XYZE] = {
  9354. difference[X_AXIS] * inv_segments,
  9355. difference[Y_AXIS] * inv_segments,
  9356. difference[Z_AXIS] * inv_segments,
  9357. difference[E_AXIS] * inv_segments
  9358. };
  9359. // SERIAL_ECHOPAIR("mm=", cartesian_mm);
  9360. // SERIAL_ECHOPAIR(" seconds=", seconds);
  9361. // SERIAL_ECHOLNPAIR(" segments=", segments);
  9362. #if IS_SCARA
  9363. // SCARA needs to scale the feed rate from mm/s to degrees/s
  9364. const float inv_segment_length = min(10.0, float(segments) / cartesian_mm), // 1/mm/segs
  9365. feed_factor = inv_segment_length * _feedrate_mm_s;
  9366. float oldA = stepper.get_axis_position_degrees(A_AXIS),
  9367. oldB = stepper.get_axis_position_degrees(B_AXIS);
  9368. #endif
  9369. // Get the logical current position as starting point
  9370. float logical[XYZE];
  9371. COPY(logical, current_position);
  9372. // Drop one segment so the last move is to the exact target.
  9373. // If there's only 1 segment, loops will be skipped entirely.
  9374. --segments;
  9375. // Calculate and execute the segments
  9376. for (uint16_t s = segments + 1; --s;) {
  9377. LOOP_XYZE(i) logical[i] += segment_distance[i];
  9378. #if ENABLED(DELTA)
  9379. DELTA_LOGICAL_IK(); // Delta can inline its kinematics
  9380. #else
  9381. inverse_kinematics(logical);
  9382. #endif
  9383. ADJUST_DELTA(logical); // Adjust Z if bed leveling is enabled
  9384. #if IS_SCARA
  9385. // For SCARA scale the feed rate from mm/s to degrees/s
  9386. // Use ratio between the length of the move and the larger angle change
  9387. const float adiff = abs(delta[A_AXIS] - oldA),
  9388. bdiff = abs(delta[B_AXIS] - oldB);
  9389. planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], logical[E_AXIS], max(adiff, bdiff) * feed_factor, active_extruder);
  9390. oldA = delta[A_AXIS];
  9391. oldB = delta[B_AXIS];
  9392. #else
  9393. planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], logical[E_AXIS], _feedrate_mm_s, active_extruder);
  9394. #endif
  9395. }
  9396. // Since segment_distance is only approximate,
  9397. // the final move must be to the exact destination.
  9398. #if IS_SCARA
  9399. // For SCARA scale the feed rate from mm/s to degrees/s
  9400. // With segments > 1 length is 1 segment, otherwise total length
  9401. inverse_kinematics(ltarget);
  9402. ADJUST_DELTA(logical);
  9403. const float adiff = abs(delta[A_AXIS] - oldA),
  9404. bdiff = abs(delta[B_AXIS] - oldB);
  9405. planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], logical[E_AXIS], max(adiff, bdiff) * feed_factor, active_extruder);
  9406. #else
  9407. planner.buffer_line_kinematic(ltarget, _feedrate_mm_s, active_extruder);
  9408. #endif
  9409. return false;
  9410. }
  9411. #else // !IS_KINEMATIC
  9412. /**
  9413. * Prepare a linear move in a Cartesian setup.
  9414. * If Mesh Bed Leveling is enabled, perform a mesh move.
  9415. *
  9416. * Returns true if the caller didn't update current_position.
  9417. */
  9418. inline bool prepare_move_to_destination_cartesian() {
  9419. // Do not use feedrate_percentage for E or Z only moves
  9420. if (current_position[X_AXIS] == destination[X_AXIS] && current_position[Y_AXIS] == destination[Y_AXIS]) {
  9421. line_to_destination();
  9422. }
  9423. else {
  9424. #if ENABLED(MESH_BED_LEVELING)
  9425. if (mbl.active()) {
  9426. mesh_line_to_destination(MMS_SCALED(feedrate_mm_s));
  9427. return true;
  9428. }
  9429. else
  9430. #elif ENABLED(AUTO_BED_LEVELING_UBL)
  9431. if (ubl.state.active) {
  9432. ubl_line_to_destination(MMS_SCALED(feedrate_mm_s), active_extruder);
  9433. return true;
  9434. }
  9435. else
  9436. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  9437. if (planner.abl_enabled) {
  9438. bilinear_line_to_destination(MMS_SCALED(feedrate_mm_s));
  9439. return true;
  9440. }
  9441. else
  9442. #endif
  9443. line_to_destination(MMS_SCALED(feedrate_mm_s));
  9444. }
  9445. return false;
  9446. }
  9447. #endif // !IS_KINEMATIC
  9448. #if ENABLED(DUAL_X_CARRIAGE)
  9449. /**
  9450. * Prepare a linear move in a dual X axis setup
  9451. */
  9452. inline bool prepare_move_to_destination_dualx() {
  9453. if (active_extruder_parked) {
  9454. switch (dual_x_carriage_mode) {
  9455. case DXC_FULL_CONTROL_MODE:
  9456. break;
  9457. case DXC_AUTO_PARK_MODE:
  9458. if (current_position[E_AXIS] == destination[E_AXIS]) {
  9459. // This is a travel move (with no extrusion)
  9460. // Skip it, but keep track of the current position
  9461. // (so it can be used as the start of the next non-travel move)
  9462. if (delayed_move_time != 0xFFFFFFFFUL) {
  9463. set_current_to_destination();
  9464. NOLESS(raised_parked_position[Z_AXIS], destination[Z_AXIS]);
  9465. delayed_move_time = millis();
  9466. return true;
  9467. }
  9468. }
  9469. // unpark extruder: 1) raise, 2) move into starting XY position, 3) lower
  9470. for (uint8_t i = 0; i < 3; i++)
  9471. planner.buffer_line(
  9472. i == 0 ? raised_parked_position[X_AXIS] : current_position[X_AXIS],
  9473. i == 0 ? raised_parked_position[Y_AXIS] : current_position[Y_AXIS],
  9474. i == 2 ? current_position[Z_AXIS] : raised_parked_position[Z_AXIS],
  9475. current_position[E_AXIS],
  9476. i == 1 ? PLANNER_XY_FEEDRATE() : planner.max_feedrate_mm_s[Z_AXIS],
  9477. active_extruder
  9478. );
  9479. delayed_move_time = 0;
  9480. active_extruder_parked = false;
  9481. #if ENABLED(DEBUG_LEVELING_FEATURE)
  9482. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("Clear active_extruder_parked");
  9483. #endif
  9484. break;
  9485. case DXC_DUPLICATION_MODE:
  9486. if (active_extruder == 0) {
  9487. #if ENABLED(DEBUG_LEVELING_FEATURE)
  9488. if (DEBUGGING(LEVELING)) {
  9489. SERIAL_ECHOPAIR("Set planner X", LOGICAL_X_POSITION(inactive_extruder_x_pos));
  9490. SERIAL_ECHOLNPAIR(" ... Line to X", current_position[X_AXIS] + duplicate_extruder_x_offset);
  9491. }
  9492. #endif
  9493. // move duplicate extruder into correct duplication position.
  9494. planner.set_position_mm(
  9495. LOGICAL_X_POSITION(inactive_extruder_x_pos),
  9496. current_position[Y_AXIS],
  9497. current_position[Z_AXIS],
  9498. current_position[E_AXIS]
  9499. );
  9500. planner.buffer_line(
  9501. current_position[X_AXIS] + duplicate_extruder_x_offset,
  9502. current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS],
  9503. planner.max_feedrate_mm_s[X_AXIS], 1
  9504. );
  9505. SYNC_PLAN_POSITION_KINEMATIC();
  9506. stepper.synchronize();
  9507. extruder_duplication_enabled = true;
  9508. active_extruder_parked = false;
  9509. #if ENABLED(DEBUG_LEVELING_FEATURE)
  9510. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("Set extruder_duplication_enabled\nClear active_extruder_parked");
  9511. #endif
  9512. }
  9513. else {
  9514. #if ENABLED(DEBUG_LEVELING_FEATURE)
  9515. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("Active extruder not 0");
  9516. #endif
  9517. }
  9518. break;
  9519. }
  9520. }
  9521. return false;
  9522. }
  9523. #endif // DUAL_X_CARRIAGE
  9524. /**
  9525. * Prepare a single move and get ready for the next one
  9526. *
  9527. * This may result in several calls to planner.buffer_line to
  9528. * do smaller moves for DELTA, SCARA, mesh moves, etc.
  9529. */
  9530. void prepare_move_to_destination() {
  9531. clamp_to_software_endstops(destination);
  9532. refresh_cmd_timeout();
  9533. #if ENABLED(PREVENT_COLD_EXTRUSION)
  9534. if (!DEBUGGING(DRYRUN)) {
  9535. if (destination[E_AXIS] != current_position[E_AXIS]) {
  9536. if (thermalManager.tooColdToExtrude(active_extruder)) {
  9537. current_position[E_AXIS] = destination[E_AXIS]; // Behave as if the move really took place, but ignore E part
  9538. SERIAL_ECHO_START;
  9539. SERIAL_ECHOLNPGM(MSG_ERR_COLD_EXTRUDE_STOP);
  9540. }
  9541. #if ENABLED(PREVENT_LENGTHY_EXTRUDE)
  9542. if (labs(destination[E_AXIS] - current_position[E_AXIS]) > EXTRUDE_MAXLENGTH) {
  9543. current_position[E_AXIS] = destination[E_AXIS]; // Behave as if the move really took place, but ignore E part
  9544. SERIAL_ECHO_START;
  9545. SERIAL_ECHOLNPGM(MSG_ERR_LONG_EXTRUDE_STOP);
  9546. }
  9547. #endif
  9548. }
  9549. }
  9550. #endif
  9551. #if IS_KINEMATIC
  9552. if (prepare_kinematic_move_to(destination)) return;
  9553. #else
  9554. #if ENABLED(DUAL_X_CARRIAGE)
  9555. if (prepare_move_to_destination_dualx()) return;
  9556. #endif
  9557. if (prepare_move_to_destination_cartesian()) return;
  9558. #endif
  9559. set_current_to_destination();
  9560. }
  9561. #if ENABLED(ARC_SUPPORT)
  9562. /**
  9563. * Plan an arc in 2 dimensions
  9564. *
  9565. * The arc is approximated by generating many small linear segments.
  9566. * The length of each segment is configured in MM_PER_ARC_SEGMENT (Default 1mm)
  9567. * Arcs should only be made relatively large (over 5mm), as larger arcs with
  9568. * larger segments will tend to be more efficient. Your slicer should have
  9569. * options for G2/G3 arc generation. In future these options may be GCode tunable.
  9570. */
  9571. void plan_arc(
  9572. float logical[XYZE], // Destination position
  9573. float *offset, // Center of rotation relative to current_position
  9574. uint8_t clockwise // Clockwise?
  9575. ) {
  9576. float r_X = -offset[X_AXIS], // Radius vector from center to current location
  9577. r_Y = -offset[Y_AXIS];
  9578. const float radius = HYPOT(r_X, r_Y),
  9579. center_X = current_position[X_AXIS] - r_X,
  9580. center_Y = current_position[Y_AXIS] - r_Y,
  9581. rt_X = logical[X_AXIS] - center_X,
  9582. rt_Y = logical[Y_AXIS] - center_Y,
  9583. linear_travel = logical[Z_AXIS] - current_position[Z_AXIS],
  9584. extruder_travel = logical[E_AXIS] - current_position[E_AXIS];
  9585. // CCW angle of rotation between position and target from the circle center. Only one atan2() trig computation required.
  9586. float angular_travel = atan2(r_X * rt_Y - r_Y * rt_X, r_X * rt_X + r_Y * rt_Y);
  9587. if (angular_travel < 0) angular_travel += RADIANS(360);
  9588. if (clockwise) angular_travel -= RADIANS(360);
  9589. // Make a circle if the angular rotation is 0
  9590. if (angular_travel == 0 && current_position[X_AXIS] == logical[X_AXIS] && current_position[Y_AXIS] == logical[Y_AXIS])
  9591. angular_travel += RADIANS(360);
  9592. float mm_of_travel = HYPOT(angular_travel * radius, fabs(linear_travel));
  9593. if (mm_of_travel < 0.001) return;
  9594. uint16_t segments = floor(mm_of_travel / (MM_PER_ARC_SEGMENT));
  9595. if (segments == 0) segments = 1;
  9596. /**
  9597. * Vector rotation by transformation matrix: r is the original vector, r_T is the rotated vector,
  9598. * and phi is the angle of rotation. Based on the solution approach by Jens Geisler.
  9599. * r_T = [cos(phi) -sin(phi);
  9600. * sin(phi) cos(phi)] * r ;
  9601. *
  9602. * For arc generation, the center of the circle is the axis of rotation and the radius vector is
  9603. * defined from the circle center to the initial position. Each line segment is formed by successive
  9604. * vector rotations. This requires only two cos() and sin() computations to form the rotation
  9605. * matrix for the duration of the entire arc. Error may accumulate from numerical round-off, since
  9606. * all double numbers are single precision on the Arduino. (True double precision will not have
  9607. * round off issues for CNC applications.) Single precision error can accumulate to be greater than
  9608. * tool precision in some cases. Therefore, arc path correction is implemented.
  9609. *
  9610. * Small angle approximation may be used to reduce computation overhead further. This approximation
  9611. * holds for everything, but very small circles and large MM_PER_ARC_SEGMENT values. In other words,
  9612. * theta_per_segment would need to be greater than 0.1 rad and N_ARC_CORRECTION would need to be large
  9613. * to cause an appreciable drift error. N_ARC_CORRECTION~=25 is more than small enough to correct for
  9614. * numerical drift error. N_ARC_CORRECTION may be on the order a hundred(s) before error becomes an
  9615. * issue for CNC machines with the single precision Arduino calculations.
  9616. *
  9617. * This approximation also allows plan_arc to immediately insert a line segment into the planner
  9618. * without the initial overhead of computing cos() or sin(). By the time the arc needs to be applied
  9619. * a correction, the planner should have caught up to the lag caused by the initial plan_arc overhead.
  9620. * This is important when there are successive arc motions.
  9621. */
  9622. // Vector rotation matrix values
  9623. float arc_target[XYZE];
  9624. const float theta_per_segment = angular_travel / segments,
  9625. linear_per_segment = linear_travel / segments,
  9626. extruder_per_segment = extruder_travel / segments,
  9627. sin_T = theta_per_segment,
  9628. cos_T = 1 - 0.5 * sq(theta_per_segment); // Small angle approximation
  9629. // Initialize the linear axis
  9630. arc_target[Z_AXIS] = current_position[Z_AXIS];
  9631. // Initialize the extruder axis
  9632. arc_target[E_AXIS] = current_position[E_AXIS];
  9633. const float fr_mm_s = MMS_SCALED(feedrate_mm_s);
  9634. millis_t next_idle_ms = millis() + 200UL;
  9635. int8_t count = 0;
  9636. for (uint16_t i = 1; i < segments; i++) { // Iterate (segments-1) times
  9637. thermalManager.manage_heater();
  9638. if (ELAPSED(millis(), next_idle_ms)) {
  9639. next_idle_ms = millis() + 200UL;
  9640. idle();
  9641. }
  9642. if (++count < N_ARC_CORRECTION) {
  9643. // Apply vector rotation matrix to previous r_X / 1
  9644. const float r_new_Y = r_X * sin_T + r_Y * cos_T;
  9645. r_X = r_X * cos_T - r_Y * sin_T;
  9646. r_Y = r_new_Y;
  9647. }
  9648. else {
  9649. // Arc correction to radius vector. Computed only every N_ARC_CORRECTION increments.
  9650. // Compute exact location by applying transformation matrix from initial radius vector(=-offset).
  9651. // To reduce stuttering, the sin and cos could be computed at different times.
  9652. // For now, compute both at the same time.
  9653. const float cos_Ti = cos(i * theta_per_segment),
  9654. sin_Ti = sin(i * theta_per_segment);
  9655. r_X = -offset[X_AXIS] * cos_Ti + offset[Y_AXIS] * sin_Ti;
  9656. r_Y = -offset[X_AXIS] * sin_Ti - offset[Y_AXIS] * cos_Ti;
  9657. count = 0;
  9658. }
  9659. // Update arc_target location
  9660. arc_target[X_AXIS] = center_X + r_X;
  9661. arc_target[Y_AXIS] = center_Y + r_Y;
  9662. arc_target[Z_AXIS] += linear_per_segment;
  9663. arc_target[E_AXIS] += extruder_per_segment;
  9664. clamp_to_software_endstops(arc_target);
  9665. planner.buffer_line_kinematic(arc_target, fr_mm_s, active_extruder);
  9666. }
  9667. // Ensure last segment arrives at target location.
  9668. planner.buffer_line_kinematic(logical, fr_mm_s, active_extruder);
  9669. // As far as the parser is concerned, the position is now == target. In reality the
  9670. // motion control system might still be processing the action and the real tool position
  9671. // in any intermediate location.
  9672. set_current_to_destination();
  9673. }
  9674. #endif
  9675. #if ENABLED(BEZIER_CURVE_SUPPORT)
  9676. void plan_cubic_move(const float offset[4]) {
  9677. cubic_b_spline(current_position, destination, offset, MMS_SCALED(feedrate_mm_s), active_extruder);
  9678. // As far as the parser is concerned, the position is now == destination. In reality the
  9679. // motion control system might still be processing the action and the real tool position
  9680. // in any intermediate location.
  9681. set_current_to_destination();
  9682. }
  9683. #endif // BEZIER_CURVE_SUPPORT
  9684. #if HAS_CONTROLLERFAN
  9685. void controllerFan() {
  9686. static millis_t lastMotorOn = 0, // Last time a motor was turned on
  9687. nextMotorCheck = 0; // Last time the state was checked
  9688. const millis_t ms = millis();
  9689. if (ELAPSED(ms, nextMotorCheck)) {
  9690. nextMotorCheck = ms + 2500UL; // Not a time critical function, so only check every 2.5s
  9691. if (X_ENABLE_READ == X_ENABLE_ON || Y_ENABLE_READ == Y_ENABLE_ON || Z_ENABLE_READ == Z_ENABLE_ON || thermalManager.soft_pwm_bed > 0
  9692. || E0_ENABLE_READ == E_ENABLE_ON // If any of the drivers are enabled...
  9693. #if E_STEPPERS > 1
  9694. || E1_ENABLE_READ == E_ENABLE_ON
  9695. #if HAS_X2_ENABLE
  9696. || X2_ENABLE_READ == X_ENABLE_ON
  9697. #endif
  9698. #if E_STEPPERS > 2
  9699. || E2_ENABLE_READ == E_ENABLE_ON
  9700. #if E_STEPPERS > 3
  9701. || E3_ENABLE_READ == E_ENABLE_ON
  9702. #if E_STEPPERS > 4
  9703. || E4_ENABLE_READ == E_ENABLE_ON
  9704. #endif // E_STEPPERS > 4
  9705. #endif // E_STEPPERS > 3
  9706. #endif // E_STEPPERS > 2
  9707. #endif // E_STEPPERS > 1
  9708. ) {
  9709. lastMotorOn = ms; //... set time to NOW so the fan will turn on
  9710. }
  9711. // Fan off if no steppers have been enabled for CONTROLLERFAN_SECS seconds
  9712. uint8_t speed = (!lastMotorOn || ELAPSED(ms, lastMotorOn + (CONTROLLERFAN_SECS) * 1000UL)) ? 0 : CONTROLLERFAN_SPEED;
  9713. // allows digital or PWM fan output to be used (see M42 handling)
  9714. WRITE(CONTROLLERFAN_PIN, speed);
  9715. analogWrite(CONTROLLERFAN_PIN, speed);
  9716. }
  9717. }
  9718. #endif // HAS_CONTROLLERFAN
  9719. #if ENABLED(MORGAN_SCARA)
  9720. /**
  9721. * Morgan SCARA Forward Kinematics. Results in cartes[].
  9722. * Maths and first version by QHARLEY.
  9723. * Integrated into Marlin and slightly restructured by Joachim Cerny.
  9724. */
  9725. void forward_kinematics_SCARA(const float &a, const float &b) {
  9726. float a_sin = sin(RADIANS(a)) * L1,
  9727. a_cos = cos(RADIANS(a)) * L1,
  9728. b_sin = sin(RADIANS(b)) * L2,
  9729. b_cos = cos(RADIANS(b)) * L2;
  9730. cartes[X_AXIS] = a_cos + b_cos + SCARA_OFFSET_X; //theta
  9731. cartes[Y_AXIS] = a_sin + b_sin + SCARA_OFFSET_Y; //theta+phi
  9732. /*
  9733. SERIAL_ECHOPAIR("SCARA FK Angle a=", a);
  9734. SERIAL_ECHOPAIR(" b=", b);
  9735. SERIAL_ECHOPAIR(" a_sin=", a_sin);
  9736. SERIAL_ECHOPAIR(" a_cos=", a_cos);
  9737. SERIAL_ECHOPAIR(" b_sin=", b_sin);
  9738. SERIAL_ECHOLNPAIR(" b_cos=", b_cos);
  9739. SERIAL_ECHOPAIR(" cartes[X_AXIS]=", cartes[X_AXIS]);
  9740. SERIAL_ECHOLNPAIR(" cartes[Y_AXIS]=", cartes[Y_AXIS]);
  9741. //*/
  9742. }
  9743. /**
  9744. * Morgan SCARA Inverse Kinematics. Results in delta[].
  9745. *
  9746. * See http://forums.reprap.org/read.php?185,283327
  9747. *
  9748. * Maths and first version by QHARLEY.
  9749. * Integrated into Marlin and slightly restructured by Joachim Cerny.
  9750. */
  9751. void inverse_kinematics(const float logical[XYZ]) {
  9752. static float C2, S2, SK1, SK2, THETA, PSI;
  9753. float sx = RAW_X_POSITION(logical[X_AXIS]) - SCARA_OFFSET_X, // Translate SCARA to standard X Y
  9754. sy = RAW_Y_POSITION(logical[Y_AXIS]) - SCARA_OFFSET_Y; // With scaling factor.
  9755. if (L1 == L2)
  9756. C2 = HYPOT2(sx, sy) / L1_2_2 - 1;
  9757. else
  9758. C2 = (HYPOT2(sx, sy) - (L1_2 + L2_2)) / (2.0 * L1 * L2);
  9759. S2 = sqrt(sq(C2) - 1);
  9760. // Unrotated Arm1 plus rotated Arm2 gives the distance from Center to End
  9761. SK1 = L1 + L2 * C2;
  9762. // Rotated Arm2 gives the distance from Arm1 to Arm2
  9763. SK2 = L2 * S2;
  9764. // Angle of Arm1 is the difference between Center-to-End angle and the Center-to-Elbow
  9765. THETA = atan2(SK1, SK2) - atan2(sx, sy);
  9766. // Angle of Arm2
  9767. PSI = atan2(S2, C2);
  9768. delta[A_AXIS] = DEGREES(THETA); // theta is support arm angle
  9769. delta[B_AXIS] = DEGREES(THETA + PSI); // equal to sub arm angle (inverted motor)
  9770. delta[C_AXIS] = logical[Z_AXIS];
  9771. /*
  9772. DEBUG_POS("SCARA IK", logical);
  9773. DEBUG_POS("SCARA IK", delta);
  9774. SERIAL_ECHOPAIR(" SCARA (x,y) ", sx);
  9775. SERIAL_ECHOPAIR(",", sy);
  9776. SERIAL_ECHOPAIR(" C2=", C2);
  9777. SERIAL_ECHOPAIR(" S2=", S2);
  9778. SERIAL_ECHOPAIR(" Theta=", THETA);
  9779. SERIAL_ECHOLNPAIR(" Phi=", PHI);
  9780. //*/
  9781. }
  9782. #endif // MORGAN_SCARA
  9783. #if ENABLED(TEMP_STAT_LEDS)
  9784. static bool red_led = false;
  9785. static millis_t next_status_led_update_ms = 0;
  9786. void handle_status_leds(void) {
  9787. if (ELAPSED(millis(), next_status_led_update_ms)) {
  9788. next_status_led_update_ms += 500; // Update every 0.5s
  9789. float max_temp = 0.0;
  9790. #if HAS_TEMP_BED
  9791. max_temp = MAX3(max_temp, thermalManager.degTargetBed(), thermalManager.degBed());
  9792. #endif
  9793. HOTEND_LOOP() {
  9794. max_temp = MAX3(max_temp, thermalManager.degHotend(e), thermalManager.degTargetHotend(e));
  9795. }
  9796. bool new_led = (max_temp > 55.0) ? true : (max_temp < 54.0) ? false : red_led;
  9797. if (new_led != red_led) {
  9798. red_led = new_led;
  9799. #if PIN_EXISTS(STAT_LED_RED)
  9800. WRITE(STAT_LED_RED_PIN, new_led ? HIGH : LOW);
  9801. #if PIN_EXISTS(STAT_LED_BLUE)
  9802. WRITE(STAT_LED_BLUE_PIN, new_led ? LOW : HIGH);
  9803. #endif
  9804. #else
  9805. WRITE(STAT_LED_BLUE_PIN, new_led ? HIGH : LOW);
  9806. #endif
  9807. }
  9808. }
  9809. }
  9810. #endif
  9811. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  9812. void handle_filament_runout() {
  9813. if (!filament_ran_out) {
  9814. filament_ran_out = true;
  9815. enqueue_and_echo_commands_P(PSTR(FILAMENT_RUNOUT_SCRIPT));
  9816. stepper.synchronize();
  9817. }
  9818. }
  9819. #endif // FILAMENT_RUNOUT_SENSOR
  9820. #if ENABLED(FAST_PWM_FAN)
  9821. void setPwmFrequency(uint8_t pin, int val) {
  9822. val &= 0x07;
  9823. switch (digitalPinToTimer(pin)) {
  9824. #ifdef TCCR0A
  9825. case TIMER0A:
  9826. case TIMER0B:
  9827. //_SET_CS(0, val);
  9828. break;
  9829. #endif
  9830. #ifdef TCCR1A
  9831. case TIMER1A:
  9832. case TIMER1B:
  9833. //_SET_CS(1, val);
  9834. break;
  9835. #endif
  9836. #ifdef TCCR2
  9837. case TIMER2:
  9838. case TIMER2:
  9839. _SET_CS(2, val);
  9840. break;
  9841. #endif
  9842. #ifdef TCCR2A
  9843. case TIMER2A:
  9844. case TIMER2B:
  9845. _SET_CS(2, val);
  9846. break;
  9847. #endif
  9848. #ifdef TCCR3A
  9849. case TIMER3A:
  9850. case TIMER3B:
  9851. case TIMER3C:
  9852. _SET_CS(3, val);
  9853. break;
  9854. #endif
  9855. #ifdef TCCR4A
  9856. case TIMER4A:
  9857. case TIMER4B:
  9858. case TIMER4C:
  9859. _SET_CS(4, val);
  9860. break;
  9861. #endif
  9862. #ifdef TCCR5A
  9863. case TIMER5A:
  9864. case TIMER5B:
  9865. case TIMER5C:
  9866. _SET_CS(5, val);
  9867. break;
  9868. #endif
  9869. }
  9870. }
  9871. #endif // FAST_PWM_FAN
  9872. float calculate_volumetric_multiplier(float diameter) {
  9873. if (!volumetric_enabled || diameter == 0) return 1.0;
  9874. return 1.0 / (M_PI * sq(diameter * 0.5));
  9875. }
  9876. void calculate_volumetric_multipliers() {
  9877. for (uint8_t i = 0; i < COUNT(filament_size); i++)
  9878. volumetric_multiplier[i] = calculate_volumetric_multiplier(filament_size[i]);
  9879. }
  9880. void enable_all_steppers() {
  9881. enable_X();
  9882. enable_Y();
  9883. enable_Z();
  9884. enable_E0();
  9885. enable_E1();
  9886. enable_E2();
  9887. enable_E3();
  9888. enable_E4();
  9889. }
  9890. void disable_e_steppers() {
  9891. disable_E0();
  9892. disable_E1();
  9893. disable_E2();
  9894. disable_E3();
  9895. disable_E4();
  9896. }
  9897. void disable_all_steppers() {
  9898. disable_X();
  9899. disable_Y();
  9900. disable_Z();
  9901. disable_e_steppers();
  9902. }
  9903. #if ENABLED(HAVE_TMC2130)
  9904. void automatic_current_control(TMC2130Stepper &st, String axisID) {
  9905. // Check otpw even if we don't use automatic control. Allows for flag inspection.
  9906. const bool is_otpw = st.checkOT();
  9907. // Report if a warning was triggered
  9908. static bool previous_otpw = false;
  9909. if (is_otpw && !previous_otpw) {
  9910. char timestamp[10];
  9911. duration_t elapsed = print_job_timer.duration();
  9912. const bool has_days = (elapsed.value > 60*60*24L);
  9913. (void)elapsed.toDigital(timestamp, has_days);
  9914. SERIAL_ECHO(timestamp);
  9915. SERIAL_ECHO(": ");
  9916. SERIAL_ECHO(axisID);
  9917. SERIAL_ECHOLNPGM(" driver overtemperature warning!");
  9918. }
  9919. previous_otpw = is_otpw;
  9920. #if CURRENT_STEP > 0 && ENABLED(AUTOMATIC_CURRENT_CONTROL)
  9921. // Return if user has not enabled current control start with M906 S1.
  9922. if (!auto_current_control) return;
  9923. /**
  9924. * Decrease current if is_otpw is true.
  9925. * Bail out if driver is disabled.
  9926. * Increase current if OTPW has not been triggered yet.
  9927. */
  9928. uint16_t current = st.getCurrent();
  9929. if (is_otpw) {
  9930. st.setCurrent(current - CURRENT_STEP, R_SENSE, HOLD_MULTIPLIER);
  9931. #if ENABLED(REPORT_CURRENT_CHANGE)
  9932. SERIAL_ECHO(axisID);
  9933. SERIAL_ECHOPAIR(" current decreased to ", st.getCurrent());
  9934. #endif
  9935. }
  9936. else if (!st.isEnabled())
  9937. return;
  9938. else if (!is_otpw && !st.getOTPW()) {
  9939. current += CURRENT_STEP;
  9940. if (current <= AUTO_ADJUST_MAX) {
  9941. st.setCurrent(current, R_SENSE, HOLD_MULTIPLIER);
  9942. #if ENABLED(REPORT_CURRENT_CHANGE)
  9943. SERIAL_ECHO(axisID);
  9944. SERIAL_ECHOPAIR(" current increased to ", st.getCurrent());
  9945. #endif
  9946. }
  9947. }
  9948. SERIAL_EOL;
  9949. #endif
  9950. }
  9951. void checkOverTemp() {
  9952. static millis_t next_cOT = 0;
  9953. if (ELAPSED(millis(), next_cOT)) {
  9954. next_cOT = millis() + 5000;
  9955. #if ENABLED(X_IS_TMC2130)
  9956. automatic_current_control(stepperX, "X");
  9957. #endif
  9958. #if ENABLED(Y_IS_TMC2130)
  9959. automatic_current_control(stepperY, "Y");
  9960. #endif
  9961. #if ENABLED(Z_IS_TMC2130)
  9962. automatic_current_control(stepperZ, "Z");
  9963. #endif
  9964. #if ENABLED(X2_IS_TMC2130)
  9965. automatic_current_control(stepperX2, "X2");
  9966. #endif
  9967. #if ENABLED(Y2_IS_TMC2130)
  9968. automatic_current_control(stepperY2, "Y2");
  9969. #endif
  9970. #if ENABLED(Z2_IS_TMC2130)
  9971. automatic_current_control(stepperZ2, "Z2");
  9972. #endif
  9973. #if ENABLED(E0_IS_TMC2130)
  9974. automatic_current_control(stepperE0, "E0");
  9975. #endif
  9976. #if ENABLED(E1_IS_TMC2130)
  9977. automatic_current_control(stepperE1, "E1");
  9978. #endif
  9979. #if ENABLED(E2_IS_TMC2130)
  9980. automatic_current_control(stepperE2, "E2");
  9981. #endif
  9982. #if ENABLED(E3_IS_TMC2130)
  9983. automatic_current_control(stepperE3, "E3");
  9984. #endif
  9985. #if ENABLED(E4_IS_TMC2130)
  9986. automatic_current_control(stepperE4, "E4");
  9987. #endif
  9988. #if ENABLED(E4_IS_TMC2130)
  9989. automatic_current_control(stepperE4);
  9990. #endif
  9991. }
  9992. }
  9993. #endif // HAVE_TMC2130
  9994. /**
  9995. * Manage several activities:
  9996. * - Check for Filament Runout
  9997. * - Keep the command buffer full
  9998. * - Check for maximum inactive time between commands
  9999. * - Check for maximum inactive time between stepper commands
  10000. * - Check if pin CHDK needs to go LOW
  10001. * - Check for KILL button held down
  10002. * - Check for HOME button held down
  10003. * - Check if cooling fan needs to be switched on
  10004. * - Check if an idle but hot extruder needs filament extruded (EXTRUDER_RUNOUT_PREVENT)
  10005. */
  10006. void manage_inactivity(bool ignore_stepper_queue/*=false*/) {
  10007. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  10008. if ((IS_SD_PRINTING || print_job_timer.isRunning()) && (READ(FIL_RUNOUT_PIN) == FIL_RUNOUT_INVERTING))
  10009. handle_filament_runout();
  10010. #endif
  10011. if (commands_in_queue < BUFSIZE) get_available_commands();
  10012. const millis_t ms = millis();
  10013. if (max_inactive_time && ELAPSED(ms, previous_cmd_ms + max_inactive_time)) {
  10014. SERIAL_ERROR_START;
  10015. SERIAL_ECHOLNPAIR(MSG_KILL_INACTIVE_TIME, current_command);
  10016. kill(PSTR(MSG_KILLED));
  10017. }
  10018. // Prevent steppers timing-out in the middle of M600
  10019. #if ENABLED(FILAMENT_CHANGE_FEATURE) && ENABLED(FILAMENT_CHANGE_NO_STEPPER_TIMEOUT)
  10020. #define M600_TEST !busy_doing_M600
  10021. #else
  10022. #define M600_TEST true
  10023. #endif
  10024. if (M600_TEST && stepper_inactive_time && ELAPSED(ms, previous_cmd_ms + stepper_inactive_time)
  10025. && !ignore_stepper_queue && !planner.blocks_queued()) {
  10026. #if ENABLED(DISABLE_INACTIVE_X)
  10027. disable_X();
  10028. #endif
  10029. #if ENABLED(DISABLE_INACTIVE_Y)
  10030. disable_Y();
  10031. #endif
  10032. #if ENABLED(DISABLE_INACTIVE_Z)
  10033. disable_Z();
  10034. #endif
  10035. #if ENABLED(DISABLE_INACTIVE_E)
  10036. disable_e_steppers();
  10037. #endif
  10038. }
  10039. #ifdef CHDK // Check if pin should be set to LOW after M240 set it to HIGH
  10040. if (chdkActive && ELAPSED(ms, chdkHigh + CHDK_DELAY)) {
  10041. chdkActive = false;
  10042. WRITE(CHDK, LOW);
  10043. }
  10044. #endif
  10045. #if HAS_KILL
  10046. // Check if the kill button was pressed and wait just in case it was an accidental
  10047. // key kill key press
  10048. // -------------------------------------------------------------------------------
  10049. static int killCount = 0; // make the inactivity button a bit less responsive
  10050. const int KILL_DELAY = 750;
  10051. if (!READ(KILL_PIN))
  10052. killCount++;
  10053. else if (killCount > 0)
  10054. killCount--;
  10055. // Exceeded threshold and we can confirm that it was not accidental
  10056. // KILL the machine
  10057. // ----------------------------------------------------------------
  10058. if (killCount >= KILL_DELAY) {
  10059. SERIAL_ERROR_START;
  10060. SERIAL_ERRORLNPGM(MSG_KILL_BUTTON);
  10061. kill(PSTR(MSG_KILLED));
  10062. }
  10063. #endif
  10064. #if HAS_HOME
  10065. // Check to see if we have to home, use poor man's debouncer
  10066. // ---------------------------------------------------------
  10067. static int homeDebounceCount = 0; // poor man's debouncing count
  10068. const int HOME_DEBOUNCE_DELAY = 2500;
  10069. if (!IS_SD_PRINTING && !READ(HOME_PIN)) {
  10070. if (!homeDebounceCount) {
  10071. enqueue_and_echo_commands_P(PSTR("G28"));
  10072. LCD_MESSAGEPGM(MSG_AUTO_HOME);
  10073. }
  10074. if (homeDebounceCount < HOME_DEBOUNCE_DELAY)
  10075. homeDebounceCount++;
  10076. else
  10077. homeDebounceCount = 0;
  10078. }
  10079. #endif
  10080. #if HAS_CONTROLLERFAN
  10081. controllerFan(); // Check if fan should be turned on to cool stepper drivers down
  10082. #endif
  10083. #if ENABLED(EXTRUDER_RUNOUT_PREVENT)
  10084. if (ELAPSED(ms, previous_cmd_ms + (EXTRUDER_RUNOUT_SECONDS) * 1000UL)
  10085. && thermalManager.degHotend(active_extruder) > EXTRUDER_RUNOUT_MINTEMP) {
  10086. bool oldstatus;
  10087. #if ENABLED(SWITCHING_EXTRUDER)
  10088. oldstatus = E0_ENABLE_READ;
  10089. enable_E0();
  10090. #else // !SWITCHING_EXTRUDER
  10091. switch (active_extruder) {
  10092. case 0: oldstatus = E0_ENABLE_READ; enable_E0(); break;
  10093. #if E_STEPPERS > 1
  10094. case 1: oldstatus = E1_ENABLE_READ; enable_E1(); break;
  10095. #if E_STEPPERS > 2
  10096. case 2: oldstatus = E2_ENABLE_READ; enable_E2(); break;
  10097. #if E_STEPPERS > 3
  10098. case 3: oldstatus = E3_ENABLE_READ; enable_E3(); break;
  10099. #if E_STEPPERS > 4
  10100. case 4: oldstatus = E4_ENABLE_READ; enable_E4(); break;
  10101. #endif // E_STEPPERS > 4
  10102. #endif // E_STEPPERS > 3
  10103. #endif // E_STEPPERS > 2
  10104. #endif // E_STEPPERS > 1
  10105. }
  10106. #endif // !SWITCHING_EXTRUDER
  10107. previous_cmd_ms = ms; // refresh_cmd_timeout()
  10108. const float olde = current_position[E_AXIS];
  10109. current_position[E_AXIS] += EXTRUDER_RUNOUT_EXTRUDE;
  10110. planner.buffer_line_kinematic(current_position, MMM_TO_MMS(EXTRUDER_RUNOUT_SPEED), active_extruder);
  10111. current_position[E_AXIS] = olde;
  10112. planner.set_e_position_mm(olde);
  10113. stepper.synchronize();
  10114. #if ENABLED(SWITCHING_EXTRUDER)
  10115. E0_ENABLE_WRITE(oldstatus);
  10116. #else
  10117. switch (active_extruder) {
  10118. case 0: E0_ENABLE_WRITE(oldstatus); break;
  10119. #if E_STEPPERS > 1
  10120. case 1: E1_ENABLE_WRITE(oldstatus); break;
  10121. #if E_STEPPERS > 2
  10122. case 2: E2_ENABLE_WRITE(oldstatus); break;
  10123. #if E_STEPPERS > 3
  10124. case 3: E3_ENABLE_WRITE(oldstatus); break;
  10125. #if E_STEPPERS > 4
  10126. case 4: E4_ENABLE_WRITE(oldstatus); break;
  10127. #endif // E_STEPPERS > 4
  10128. #endif // E_STEPPERS > 3
  10129. #endif // E_STEPPERS > 2
  10130. #endif // E_STEPPERS > 1
  10131. }
  10132. #endif // !SWITCHING_EXTRUDER
  10133. }
  10134. #endif // EXTRUDER_RUNOUT_PREVENT
  10135. #if ENABLED(DUAL_X_CARRIAGE)
  10136. // handle delayed move timeout
  10137. if (delayed_move_time && ELAPSED(ms, delayed_move_time + 1000UL) && IsRunning()) {
  10138. // travel moves have been received so enact them
  10139. delayed_move_time = 0xFFFFFFFFUL; // force moves to be done
  10140. set_destination_to_current();
  10141. prepare_move_to_destination();
  10142. }
  10143. #endif
  10144. #if ENABLED(TEMP_STAT_LEDS)
  10145. handle_status_leds();
  10146. #endif
  10147. #if ENABLED(HAVE_TMC2130)
  10148. checkOverTemp();
  10149. #endif
  10150. planner.check_axes_activity();
  10151. }
  10152. /**
  10153. * Standard idle routine keeps the machine alive
  10154. */
  10155. void idle(
  10156. #if ENABLED(FILAMENT_CHANGE_FEATURE)
  10157. bool no_stepper_sleep/*=false*/
  10158. #endif
  10159. ) {
  10160. lcd_update();
  10161. host_keepalive();
  10162. #if ENABLED(AUTO_REPORT_TEMPERATURES) && (HAS_TEMP_HOTEND || HAS_TEMP_BED)
  10163. auto_report_temperatures();
  10164. #endif
  10165. manage_inactivity(
  10166. #if ENABLED(FILAMENT_CHANGE_FEATURE)
  10167. no_stepper_sleep
  10168. #endif
  10169. );
  10170. thermalManager.manage_heater();
  10171. #if ENABLED(PRINTCOUNTER)
  10172. print_job_timer.tick();
  10173. #endif
  10174. #if HAS_BUZZER && DISABLED(LCD_USE_I2C_BUZZER)
  10175. buzzer.tick();
  10176. #endif
  10177. }
  10178. /**
  10179. * Kill all activity and lock the machine.
  10180. * After this the machine will need to be reset.
  10181. */
  10182. void kill(const char* lcd_msg) {
  10183. SERIAL_ERROR_START;
  10184. SERIAL_ERRORLNPGM(MSG_ERR_KILLED);
  10185. thermalManager.disable_all_heaters();
  10186. disable_all_steppers();
  10187. #if ENABLED(ULTRA_LCD)
  10188. kill_screen(lcd_msg);
  10189. #else
  10190. UNUSED(lcd_msg);
  10191. #endif
  10192. _delay_ms(600); // Wait a short time (allows messages to get out before shutting down.
  10193. cli(); // Stop interrupts
  10194. _delay_ms(250); //Wait to ensure all interrupts routines stopped
  10195. thermalManager.disable_all_heaters(); //turn off heaters again
  10196. #if HAS_POWER_SWITCH
  10197. SET_INPUT(PS_ON_PIN);
  10198. #endif
  10199. suicide();
  10200. while (1) {
  10201. #if ENABLED(USE_WATCHDOG)
  10202. watchdog_reset();
  10203. #endif
  10204. } // Wait for reset
  10205. }
  10206. /**
  10207. * Turn off heaters and stop the print in progress
  10208. * After a stop the machine may be resumed with M999
  10209. */
  10210. void stop() {
  10211. thermalManager.disable_all_heaters();
  10212. if (IsRunning()) {
  10213. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  10214. SERIAL_ERROR_START;
  10215. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  10216. LCD_MESSAGEPGM(MSG_STOPPED);
  10217. safe_delay(350); // allow enough time for messages to get out before stopping
  10218. Running = false;
  10219. }
  10220. }
  10221. /**
  10222. * Marlin entry-point: Set up before the program loop
  10223. * - Set up the kill pin, filament runout, power hold
  10224. * - Start the serial port
  10225. * - Print startup messages and diagnostics
  10226. * - Get EEPROM or default settings
  10227. * - Initialize managers for:
  10228. * • temperature
  10229. * • planner
  10230. * • watchdog
  10231. * • stepper
  10232. * • photo pin
  10233. * • servos
  10234. * • LCD controller
  10235. * • Digipot I2C
  10236. * • Z probe sled
  10237. * • status LEDs
  10238. */
  10239. void setup() {
  10240. #ifdef DISABLE_JTAG
  10241. // Disable JTAG on AT90USB chips to free up pins for IO
  10242. MCUCR = 0x80;
  10243. MCUCR = 0x80;
  10244. #endif
  10245. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  10246. setup_filrunoutpin();
  10247. #endif
  10248. setup_killpin();
  10249. setup_powerhold();
  10250. #if HAS_STEPPER_RESET
  10251. disableStepperDrivers();
  10252. #endif
  10253. MYSERIAL.begin(BAUDRATE);
  10254. SERIAL_PROTOCOLLNPGM("start");
  10255. SERIAL_ECHO_START;
  10256. // Check startup - does nothing if bootloader sets MCUSR to 0
  10257. byte mcu = MCUSR;
  10258. if (mcu & 1) SERIAL_ECHOLNPGM(MSG_POWERUP);
  10259. if (mcu & 2) SERIAL_ECHOLNPGM(MSG_EXTERNAL_RESET);
  10260. if (mcu & 4) SERIAL_ECHOLNPGM(MSG_BROWNOUT_RESET);
  10261. if (mcu & 8) SERIAL_ECHOLNPGM(MSG_WATCHDOG_RESET);
  10262. if (mcu & 32) SERIAL_ECHOLNPGM(MSG_SOFTWARE_RESET);
  10263. MCUSR = 0;
  10264. SERIAL_ECHOPGM(MSG_MARLIN);
  10265. SERIAL_CHAR(' ');
  10266. SERIAL_ECHOLNPGM(SHORT_BUILD_VERSION);
  10267. SERIAL_EOL;
  10268. #if defined(STRING_DISTRIBUTION_DATE) && defined(STRING_CONFIG_H_AUTHOR)
  10269. SERIAL_ECHO_START;
  10270. SERIAL_ECHOPGM(MSG_CONFIGURATION_VER);
  10271. SERIAL_ECHOPGM(STRING_DISTRIBUTION_DATE);
  10272. SERIAL_ECHOLNPGM(MSG_AUTHOR STRING_CONFIG_H_AUTHOR);
  10273. SERIAL_ECHOLNPGM("Compiled: " __DATE__);
  10274. #endif
  10275. SERIAL_ECHO_START;
  10276. SERIAL_ECHOPAIR(MSG_FREE_MEMORY, freeMemory());
  10277. SERIAL_ECHOLNPAIR(MSG_PLANNER_BUFFER_BYTES, (int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  10278. // Send "ok" after commands by default
  10279. for (int8_t i = 0; i < BUFSIZE; i++) send_ok[i] = true;
  10280. // Load data from EEPROM if available (or use defaults)
  10281. // This also updates variables in the planner, elsewhere
  10282. (void)settings.load();
  10283. #if HAS_M206_COMMAND
  10284. // Initialize current position based on home_offset
  10285. COPY(current_position, home_offset);
  10286. #else
  10287. ZERO(current_position);
  10288. #endif
  10289. // Vital to init stepper/planner equivalent for current_position
  10290. SYNC_PLAN_POSITION_KINEMATIC();
  10291. thermalManager.init(); // Initialize temperature loop
  10292. #if ENABLED(USE_WATCHDOG)
  10293. watchdog_init();
  10294. #endif
  10295. stepper.init(); // Initialize stepper, this enables interrupts!
  10296. servo_init();
  10297. #if HAS_PHOTOGRAPH
  10298. OUT_WRITE(PHOTOGRAPH_PIN, LOW);
  10299. #endif
  10300. #if HAS_CASE_LIGHT
  10301. update_case_light();
  10302. #endif
  10303. #if HAS_BED_PROBE
  10304. endstops.enable_z_probe(false);
  10305. #endif
  10306. #if HAS_CONTROLLERFAN
  10307. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  10308. #endif
  10309. #if HAS_STEPPER_RESET
  10310. enableStepperDrivers();
  10311. #endif
  10312. #if ENABLED(DIGIPOT_I2C)
  10313. digipot_i2c_init();
  10314. #endif
  10315. #if ENABLED(DAC_STEPPER_CURRENT)
  10316. dac_init();
  10317. #endif
  10318. #if (ENABLED(Z_PROBE_SLED) || ENABLED(SOLENOID_PROBE)) && HAS_SOLENOID_1
  10319. OUT_WRITE(SOL1_PIN, LOW); // turn it off
  10320. #endif
  10321. setup_homepin();
  10322. #if PIN_EXISTS(STAT_LED_RED)
  10323. OUT_WRITE(STAT_LED_RED_PIN, LOW); // turn it off
  10324. #endif
  10325. #if PIN_EXISTS(STAT_LED_BLUE)
  10326. OUT_WRITE(STAT_LED_BLUE_PIN, LOW); // turn it off
  10327. #endif
  10328. #if ENABLED(RGB_LED) || ENABLED(RGBW_LED)
  10329. SET_OUTPUT(RGB_LED_R_PIN);
  10330. SET_OUTPUT(RGB_LED_G_PIN);
  10331. SET_OUTPUT(RGB_LED_B_PIN);
  10332. #if ENABLED(RGBW_LED)
  10333. SET_OUTPUT(RGB_LED_W_PIN);
  10334. #endif
  10335. #endif
  10336. lcd_init();
  10337. #if ENABLED(SHOW_BOOTSCREEN)
  10338. #if ENABLED(DOGLCD)
  10339. safe_delay(BOOTSCREEN_TIMEOUT);
  10340. #elif ENABLED(ULTRA_LCD)
  10341. bootscreen();
  10342. #if DISABLED(SDSUPPORT)
  10343. lcd_init();
  10344. #endif
  10345. #endif
  10346. #endif
  10347. #if ENABLED(MIXING_EXTRUDER) && MIXING_VIRTUAL_TOOLS > 1
  10348. // Initialize mixing to 100% color 1
  10349. for (uint8_t i = 0; i < MIXING_STEPPERS; i++)
  10350. mixing_factor[i] = (i == 0) ? 1.0 : 0.0;
  10351. for (uint8_t t = 0; t < MIXING_VIRTUAL_TOOLS; t++)
  10352. for (uint8_t i = 0; i < MIXING_STEPPERS; i++)
  10353. mixing_virtual_tool_mix[t][i] = mixing_factor[i];
  10354. #endif
  10355. #if ENABLED(BLTOUCH)
  10356. // Make sure any BLTouch error condition is cleared
  10357. bltouch_command(BLTOUCH_RESET);
  10358. set_bltouch_deployed(true);
  10359. set_bltouch_deployed(false);
  10360. #endif
  10361. #if ENABLED(EXPERIMENTAL_I2CBUS) && I2C_SLAVE_ADDRESS > 0
  10362. i2c.onReceive(i2c_on_receive);
  10363. i2c.onRequest(i2c_on_request);
  10364. #endif
  10365. #if ENABLED(ENDSTOP_INTERRUPTS_FEATURE)
  10366. setup_endstop_interrupts();
  10367. #endif
  10368. }
  10369. /**
  10370. * The main Marlin program loop
  10371. *
  10372. * - Save or log commands to SD
  10373. * - Process available commands (if not saving)
  10374. * - Call heater manager
  10375. * - Call inactivity manager
  10376. * - Call endstop manager
  10377. * - Call LCD update
  10378. */
  10379. void loop() {
  10380. if (commands_in_queue < BUFSIZE) get_available_commands();
  10381. #if ENABLED(SDSUPPORT)
  10382. card.checkautostart(false);
  10383. #endif
  10384. if (commands_in_queue) {
  10385. #if ENABLED(SDSUPPORT)
  10386. if (card.saving) {
  10387. char* command = command_queue[cmd_queue_index_r];
  10388. if (strstr_P(command, PSTR("M29"))) {
  10389. // M29 closes the file
  10390. card.closefile();
  10391. SERIAL_PROTOCOLLNPGM(MSG_FILE_SAVED);
  10392. ok_to_send();
  10393. }
  10394. else {
  10395. // Write the string from the read buffer to SD
  10396. card.write_command(command);
  10397. if (card.logging)
  10398. process_next_command(); // The card is saving because it's logging
  10399. else
  10400. ok_to_send();
  10401. }
  10402. }
  10403. else
  10404. process_next_command();
  10405. #else
  10406. process_next_command();
  10407. #endif // SDSUPPORT
  10408. // The queue may be reset by a command handler or by code invoked by idle() within a handler
  10409. if (commands_in_queue) {
  10410. --commands_in_queue;
  10411. cmd_queue_index_r = (cmd_queue_index_r + 1) % BUFSIZE;
  10412. }
  10413. }
  10414. endstops.report_state();
  10415. idle();
  10416. }