My Marlin configs for Fabrikator Mini and CTC i3 Pro B
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

configuration_store.cpp 90KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995
  1. /**
  2. * Marlin 3D Printer Firmware
  3. * Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
  4. *
  5. * Based on Sprinter and grbl.
  6. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  7. *
  8. * This program is free software: you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation, either version 3 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  20. *
  21. */
  22. /**
  23. * configuration_store.cpp
  24. *
  25. * Settings and EEPROM storage
  26. *
  27. * IMPORTANT: Whenever there are changes made to the variables stored in EEPROM
  28. * in the functions below, also increment the version number. This makes sure that
  29. * the default values are used whenever there is a change to the data, to prevent
  30. * wrong data being written to the variables.
  31. *
  32. * ALSO: Variables in the Store and Retrieve sections must be in the same order.
  33. * If a feature is disabled, some data must still be written that, when read,
  34. * either sets a Sane Default, or results in No Change to the existing value.
  35. *
  36. */
  37. // Change EEPROM version if the structure changes
  38. #define EEPROM_VERSION "V62"
  39. #define EEPROM_OFFSET 100
  40. // Check the integrity of data offsets.
  41. // Can be disabled for production build.
  42. //#define DEBUG_EEPROM_READWRITE
  43. #include "configuration_store.h"
  44. #if ADD_PORT_ARG
  45. #define PORTARG_SOLO const int8_t port
  46. #define PORTARG_AFTER ,const int8_t port
  47. #define PORTVAR_SOLO port
  48. #else
  49. #define PORTARG_SOLO
  50. #define PORTARG_AFTER
  51. #define PORTVAR_SOLO
  52. #endif
  53. #include "endstops.h"
  54. #include "planner.h"
  55. #include "stepper.h"
  56. #include "temperature.h"
  57. #include "../lcd/ultralcd.h"
  58. #include "../core/language.h"
  59. #include "../libs/vector_3.h"
  60. #include "../gcode/gcode.h"
  61. #include "../Marlin.h"
  62. #if HAS_LEVELING
  63. #include "../feature/bedlevel/bedlevel.h"
  64. #endif
  65. #if HAS_SERVOS
  66. #include "servo.h"
  67. #else
  68. #undef NUM_SERVOS
  69. #define NUM_SERVOS NUM_SERVO_PLUGS
  70. #endif
  71. #if HAS_BED_PROBE
  72. #include "../module/probe.h"
  73. #endif
  74. #include "../feature/fwretract.h"
  75. #include "../feature/pause.h"
  76. #if EXTRUDERS > 1
  77. #include "tool_change.h"
  78. void M217_report(const bool eeprom);
  79. #endif
  80. #if HAS_TRINAMIC
  81. #include "stepper_indirection.h"
  82. #include "../feature/tmc_util.h"
  83. #define TMC_GET_PWMTHRS(A,Q) _tmc_thrs(stepper##Q.microsteps(), stepper##Q.TPWMTHRS(), planner.settings.axis_steps_per_mm[_AXIS(A)])
  84. #endif
  85. #pragma pack(push, 1) // No padding between variables
  86. typedef struct { uint16_t X, Y, Z, X2, Y2, Z2, Z3, E0, E1, E2, E3, E4, E5; } tmc_stepper_current_t;
  87. typedef struct { uint32_t X, Y, Z, X2, Y2, Z2, Z3, E0, E1, E2, E3, E4, E5; } tmc_hybrid_threshold_t;
  88. typedef struct { int16_t X, Y, Z; } tmc_sgt_t;
  89. // Limit an index to an array size
  90. #define ALIM(I,ARR) MIN(I, COUNT(ARR) - 1)
  91. /**
  92. * Current EEPROM Layout
  93. *
  94. * Keep this data structure up to date so
  95. * EEPROM size is known at compile time!
  96. */
  97. typedef struct SettingsDataStruct {
  98. char version[4]; // Vnn\0
  99. uint16_t crc; // Data Checksum
  100. //
  101. // DISTINCT_E_FACTORS
  102. //
  103. uint8_t esteppers; // XYZE_N - XYZ
  104. planner_settings_t planner_settings;
  105. float planner_max_jerk[XYZE], // M205 XYZE planner.max_jerk[XYZE]
  106. planner_junction_deviation_mm; // M205 J planner.junction_deviation_mm
  107. float home_offset[XYZ]; // M206 XYZ / M665 TPZ
  108. #if HAS_HOTEND_OFFSET
  109. float hotend_offset[XYZ][HOTENDS - 1]; // M218 XYZ
  110. #endif
  111. //
  112. // ENABLE_LEVELING_FADE_HEIGHT
  113. //
  114. float planner_z_fade_height; // M420 Zn planner.z_fade_height
  115. //
  116. // MESH_BED_LEVELING
  117. //
  118. float mbl_z_offset; // mbl.z_offset
  119. uint8_t mesh_num_x, mesh_num_y; // GRID_MAX_POINTS_X, GRID_MAX_POINTS_Y
  120. #if ENABLED(MESH_BED_LEVELING)
  121. float mbl_z_values[GRID_MAX_POINTS_X][GRID_MAX_POINTS_Y]; // mbl.z_values
  122. #else
  123. float mbl_z_values[3][3];
  124. #endif
  125. //
  126. // HAS_BED_PROBE
  127. //
  128. float zprobe_zoffset;
  129. //
  130. // ABL_PLANAR
  131. //
  132. matrix_3x3 planner_bed_level_matrix; // planner.bed_level_matrix
  133. //
  134. // AUTO_BED_LEVELING_BILINEAR
  135. //
  136. uint8_t grid_max_x, grid_max_y; // GRID_MAX_POINTS_X, GRID_MAX_POINTS_Y
  137. int bilinear_grid_spacing[2],
  138. bilinear_start[2]; // G29 L F
  139. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  140. float z_values[GRID_MAX_POINTS_X][GRID_MAX_POINTS_Y]; // G29
  141. #else
  142. float z_values[3][3];
  143. #endif
  144. //
  145. // AUTO_BED_LEVELING_UBL
  146. //
  147. bool planner_leveling_active; // M420 S planner.leveling_active
  148. int8_t ubl_storage_slot; // ubl.storage_slot
  149. //
  150. // SERVO_ANGLES
  151. //
  152. uint16_t servo_angles[NUM_SERVOS][2]; // M281 P L U
  153. //
  154. // DELTA / [XYZ]_DUAL_ENDSTOPS
  155. //
  156. #if ENABLED(DELTA)
  157. float delta_height, // M666 H
  158. delta_endstop_adj[ABC], // M666 XYZ
  159. delta_radius, // M665 R
  160. delta_diagonal_rod, // M665 L
  161. delta_segments_per_second, // M665 S
  162. delta_calibration_radius, // M665 B
  163. delta_tower_angle_trim[ABC]; // M665 XYZ
  164. #elif ENABLED(X_DUAL_ENDSTOPS) || ENABLED(Y_DUAL_ENDSTOPS) || Z_MULTI_ENDSTOPS
  165. float x2_endstop_adj, // M666 X
  166. y2_endstop_adj, // M666 Y
  167. z2_endstop_adj, // M666 Z (S2)
  168. z3_endstop_adj; // M666 Z (S3)
  169. #endif
  170. //
  171. // ULTIPANEL
  172. //
  173. int16_t lcd_preheat_hotend_temp[2], // M145 S0 H
  174. lcd_preheat_bed_temp[2]; // M145 S0 B
  175. uint8_t lcd_preheat_fan_speed[2]; // M145 S0 F
  176. //
  177. // PIDTEMP
  178. //
  179. PIDC_t hotendPID[HOTENDS]; // M301 En PIDC / M303 En U
  180. int16_t lpq_len; // M301 L
  181. //
  182. // PIDTEMPBED
  183. //
  184. PID_t bedPID; // M304 PID / M303 E-1 U
  185. //
  186. // HAS_LCD_CONTRAST
  187. //
  188. int16_t lcd_contrast; // M250 C
  189. //
  190. // FWRETRACT
  191. //
  192. fwretract_settings_t fwretract_settings; // M207 S F Z W, M208 S F W R
  193. bool autoretract_enabled; // M209 S
  194. //
  195. // !NO_VOLUMETRIC
  196. //
  197. bool parser_volumetric_enabled; // M200 D parser.volumetric_enabled
  198. float planner_filament_size[EXTRUDERS]; // M200 T D planner.filament_size[]
  199. //
  200. // HAS_TRINAMIC
  201. //
  202. tmc_stepper_current_t tmc_stepper_current; // M906 X Y Z X2 Y2 Z2 Z3 E0 E1 E2 E3 E4 E5
  203. tmc_hybrid_threshold_t tmc_hybrid_threshold; // M913 X Y Z X2 Y2 Z2 Z3 E0 E1 E2 E3 E4 E5
  204. tmc_sgt_t tmc_sgt; // M914 X Y Z
  205. //
  206. // LIN_ADVANCE
  207. //
  208. float planner_extruder_advance_K[EXTRUDERS]; // M900 K planner.extruder_advance_K
  209. //
  210. // HAS_MOTOR_CURRENT_PWM
  211. //
  212. uint32_t motor_current_setting[3]; // M907 X Z E
  213. //
  214. // CNC_COORDINATE_SYSTEMS
  215. //
  216. float coordinate_system[MAX_COORDINATE_SYSTEMS][XYZ]; // G54-G59.3
  217. //
  218. // SKEW_CORRECTION
  219. //
  220. skew_factor_t planner_skew_factor; // M852 I J K planner.skew_factor
  221. //
  222. // ADVANCED_PAUSE_FEATURE
  223. //
  224. fil_change_settings_t fc_settings[EXTRUDERS]; // M603 T U L
  225. //
  226. // Tool-change settings
  227. //
  228. #if EXTRUDERS > 1
  229. toolchange_settings_t toolchange_settings; // M217 S P R
  230. #endif
  231. } SettingsData;
  232. MarlinSettings settings;
  233. uint16_t MarlinSettings::datasize() { return sizeof(SettingsData); }
  234. /**
  235. * Post-process after Retrieve or Reset
  236. */
  237. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  238. float new_z_fade_height;
  239. #endif
  240. void MarlinSettings::postprocess() {
  241. const float oldpos[XYZE] = { current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS] };
  242. // steps per s2 needs to be updated to agree with units per s2
  243. planner.reset_acceleration_rates();
  244. // Make sure delta kinematics are updated before refreshing the
  245. // planner position so the stepper counts will be set correctly.
  246. #if ENABLED(DELTA)
  247. recalc_delta_settings();
  248. #endif
  249. #if ENABLED(PIDTEMP)
  250. thermalManager.updatePID();
  251. #endif
  252. #if DISABLED(NO_VOLUMETRICS)
  253. planner.calculate_volumetric_multipliers();
  254. #else
  255. for (uint8_t i = COUNT(planner.e_factor); i--;)
  256. planner.refresh_e_factor(i);
  257. #endif
  258. // Software endstops depend on home_offset
  259. LOOP_XYZ(i) {
  260. update_workspace_offset((AxisEnum)i);
  261. update_software_endstops((AxisEnum)i);
  262. }
  263. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  264. set_z_fade_height(new_z_fade_height, false); // false = no report
  265. #endif
  266. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  267. refresh_bed_level();
  268. #endif
  269. #if HAS_MOTOR_CURRENT_PWM
  270. stepper.refresh_motor_power();
  271. #endif
  272. #if ENABLED(FWRETRACT)
  273. fwretract.refresh_autoretract();
  274. #endif
  275. #if ENABLED(JUNCTION_DEVIATION) && ENABLED(LIN_ADVANCE)
  276. planner.recalculate_max_e_jerk();
  277. #endif
  278. // Refresh steps_to_mm with the reciprocal of axis_steps_per_mm
  279. // and init stepper.count[], planner.position[] with current_position
  280. planner.refresh_positioning();
  281. // Various factors can change the current position
  282. if (memcmp(oldpos, current_position, sizeof(oldpos)))
  283. report_current_position();
  284. }
  285. #if ENABLED(SD_FIRMWARE_UPDATE)
  286. #if ENABLED(EEPROM_SETTINGS)
  287. static_assert(
  288. !WITHIN(SD_FIRMWARE_UPDATE_EEPROM_ADDR, EEPROM_OFFSET, EEPROM_OFFSET + sizeof(SettingsData)),
  289. "SD_FIRMWARE_UPDATE_EEPROM_ADDR collides with EEPROM settings storage."
  290. );
  291. #endif
  292. bool MarlinSettings::sd_update_status() {
  293. uint8_t val;
  294. persistentStore.read_data(SD_FIRMWARE_UPDATE_EEPROM_ADDR, &val);
  295. return (val == SD_FIRMWARE_UPDATE_ACTIVE_VALUE);
  296. }
  297. bool MarlinSettings::set_sd_update_status(const bool enable) {
  298. if (enable != sd_update_status())
  299. persistentStore.write_data(
  300. SD_FIRMWARE_UPDATE_EEPROM_ADDR,
  301. enable ? SD_FIRMWARE_UPDATE_ACTIVE_VALUE : SD_FIRMWARE_UPDATE_INACTIVE_VALUE
  302. );
  303. return true;
  304. }
  305. #endif // SD_FIRMWARE_UPDATE
  306. #if ENABLED(EEPROM_SETTINGS)
  307. #include "../HAL/shared/persistent_store_api.h"
  308. #define EEPROM_START() int eeprom_index = EEPROM_OFFSET; persistentStore.access_start()
  309. #define EEPROM_FINISH() persistentStore.access_finish()
  310. #define EEPROM_SKIP(VAR) eeprom_index += sizeof(VAR)
  311. #define EEPROM_WRITE(VAR) persistentStore.write_data(eeprom_index, (uint8_t*)&VAR, sizeof(VAR), &working_crc)
  312. #define EEPROM_READ(VAR) persistentStore.read_data(eeprom_index, (uint8_t*)&VAR, sizeof(VAR), &working_crc, !validating)
  313. #define EEPROM_READ_ALWAYS(VAR) persistentStore.read_data(eeprom_index, (uint8_t*)&VAR, sizeof(VAR), &working_crc)
  314. #define EEPROM_ASSERT(TST,ERR) do{ if (!(TST)) { SERIAL_ERROR_START_P(port); SERIAL_ERRORLNPGM_P(port, ERR); eeprom_error = true; } }while(0)
  315. #if ENABLED(DEBUG_EEPROM_READWRITE)
  316. #define _FIELD_TEST(FIELD) \
  317. EEPROM_ASSERT( \
  318. eeprom_error || eeprom_index == offsetof(SettingsData, FIELD) + EEPROM_OFFSET, \
  319. "Field " STRINGIFY(FIELD) " mismatch." \
  320. )
  321. #else
  322. #define _FIELD_TEST(FIELD) NOOP
  323. #endif
  324. const char version[4] = EEPROM_VERSION;
  325. bool MarlinSettings::eeprom_error, MarlinSettings::validating;
  326. bool MarlinSettings::size_error(const uint16_t size PORTARG_AFTER) {
  327. if (size != datasize()) {
  328. #if ENABLED(EEPROM_CHITCHAT)
  329. SERIAL_ERROR_START_P(port);
  330. SERIAL_ERRORLNPGM_P(port, "EEPROM datasize error.");
  331. #endif
  332. return true;
  333. }
  334. return false;
  335. }
  336. /**
  337. * M500 - Store Configuration
  338. */
  339. bool MarlinSettings::save(PORTARG_SOLO) {
  340. float dummy = 0;
  341. char ver[4] = "ERR";
  342. uint16_t working_crc = 0;
  343. EEPROM_START();
  344. eeprom_error = false;
  345. #if ENABLED(FLASH_EEPROM_EMULATION)
  346. EEPROM_SKIP(ver); // Flash doesn't allow rewriting without erase
  347. #else
  348. EEPROM_WRITE(ver); // invalidate data first
  349. #endif
  350. EEPROM_SKIP(working_crc); // Skip the checksum slot
  351. working_crc = 0; // clear before first "real data"
  352. _FIELD_TEST(esteppers);
  353. const uint8_t esteppers = COUNT(planner.settings.axis_steps_per_mm) - XYZ;
  354. EEPROM_WRITE(esteppers);
  355. //
  356. // Planner Motion
  357. //
  358. {
  359. EEPROM_WRITE(planner.settings);
  360. #if HAS_CLASSIC_JERK
  361. EEPROM_WRITE(planner.max_jerk);
  362. #if ENABLED(JUNCTION_DEVIATION) && ENABLED(LIN_ADVANCE)
  363. dummy = float(DEFAULT_EJERK);
  364. EEPROM_WRITE(dummy);
  365. #endif
  366. #else
  367. const float planner_max_jerk[XYZE] = { float(DEFAULT_XJERK), float(DEFAULT_YJERK), float(DEFAULT_ZJERK), float(DEFAULT_EJERK) };
  368. EEPROM_WRITE(planner_max_jerk);
  369. #endif
  370. #if ENABLED(JUNCTION_DEVIATION)
  371. EEPROM_WRITE(planner.junction_deviation_mm);
  372. #else
  373. dummy = 0.02f;
  374. EEPROM_WRITE(dummy);
  375. #endif
  376. }
  377. //
  378. // Home Offset
  379. //
  380. {
  381. _FIELD_TEST(home_offset);
  382. #if HAS_SCARA_OFFSET
  383. EEPROM_WRITE(scara_home_offset);
  384. #else
  385. #if !HAS_HOME_OFFSET
  386. const float home_offset[XYZ] = { 0 };
  387. #endif
  388. EEPROM_WRITE(home_offset);
  389. #endif
  390. #if HAS_HOTEND_OFFSET
  391. // Skip hotend 0 which must be 0
  392. for (uint8_t e = 1; e < HOTENDS; e++)
  393. LOOP_XYZ(i) EEPROM_WRITE(hotend_offset[i][e]);
  394. #endif
  395. }
  396. //
  397. // Global Leveling
  398. //
  399. {
  400. const float zfh = (
  401. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  402. planner.z_fade_height
  403. #else
  404. 10.0
  405. #endif
  406. );
  407. EEPROM_WRITE(zfh);
  408. }
  409. //
  410. // Mesh Bed Leveling
  411. //
  412. {
  413. #if ENABLED(MESH_BED_LEVELING)
  414. // Compile time test that sizeof(mbl.z_values) is as expected
  415. static_assert(
  416. sizeof(mbl.z_values) == (GRID_MAX_POINTS) * sizeof(mbl.z_values[0][0]),
  417. "MBL Z array is the wrong size."
  418. );
  419. const uint8_t mesh_num_x = GRID_MAX_POINTS_X, mesh_num_y = GRID_MAX_POINTS_Y;
  420. EEPROM_WRITE(mbl.z_offset);
  421. EEPROM_WRITE(mesh_num_x);
  422. EEPROM_WRITE(mesh_num_y);
  423. EEPROM_WRITE(mbl.z_values);
  424. #else // For disabled MBL write a default mesh
  425. dummy = 0;
  426. const uint8_t mesh_num_x = 3, mesh_num_y = 3;
  427. EEPROM_WRITE(dummy); // z_offset
  428. EEPROM_WRITE(mesh_num_x);
  429. EEPROM_WRITE(mesh_num_y);
  430. for (uint8_t q = mesh_num_x * mesh_num_y; q--;) EEPROM_WRITE(dummy);
  431. #endif
  432. }
  433. //
  434. // Probe Z Offset
  435. //
  436. {
  437. _FIELD_TEST(zprobe_zoffset);
  438. #if !HAS_BED_PROBE
  439. const float zprobe_zoffset = 0;
  440. #endif
  441. EEPROM_WRITE(zprobe_zoffset);
  442. }
  443. //
  444. // Planar Bed Leveling matrix
  445. //
  446. {
  447. #if ABL_PLANAR
  448. EEPROM_WRITE(planner.bed_level_matrix);
  449. #else
  450. dummy = 0;
  451. for (uint8_t q = 9; q--;) EEPROM_WRITE(dummy);
  452. #endif
  453. }
  454. //
  455. // Bilinear Auto Bed Leveling
  456. //
  457. {
  458. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  459. // Compile time test that sizeof(z_values) is as expected
  460. static_assert(
  461. sizeof(z_values) == (GRID_MAX_POINTS) * sizeof(z_values[0][0]),
  462. "Bilinear Z array is the wrong size."
  463. );
  464. const uint8_t grid_max_x = GRID_MAX_POINTS_X, grid_max_y = GRID_MAX_POINTS_Y;
  465. EEPROM_WRITE(grid_max_x); // 1 byte
  466. EEPROM_WRITE(grid_max_y); // 1 byte
  467. EEPROM_WRITE(bilinear_grid_spacing); // 2 ints
  468. EEPROM_WRITE(bilinear_start); // 2 ints
  469. EEPROM_WRITE(z_values); // 9-256 floats
  470. #else
  471. // For disabled Bilinear Grid write an empty 3x3 grid
  472. const uint8_t grid_max_x = 3, grid_max_y = 3;
  473. const int bilinear_start[2] = { 0 }, bilinear_grid_spacing[2] = { 0 };
  474. dummy = 0;
  475. EEPROM_WRITE(grid_max_x);
  476. EEPROM_WRITE(grid_max_y);
  477. EEPROM_WRITE(bilinear_grid_spacing);
  478. EEPROM_WRITE(bilinear_start);
  479. for (uint16_t q = grid_max_x * grid_max_y; q--;) EEPROM_WRITE(dummy);
  480. #endif
  481. }
  482. //
  483. // Unified Bed Leveling
  484. //
  485. {
  486. _FIELD_TEST(planner_leveling_active);
  487. #if ENABLED(AUTO_BED_LEVELING_UBL)
  488. EEPROM_WRITE(planner.leveling_active);
  489. EEPROM_WRITE(ubl.storage_slot);
  490. #else
  491. const bool ubl_active = false;
  492. const int8_t storage_slot = -1;
  493. EEPROM_WRITE(ubl_active);
  494. EEPROM_WRITE(storage_slot);
  495. #endif // AUTO_BED_LEVELING_UBL
  496. }
  497. //
  498. // Servo Angles
  499. //
  500. {
  501. #if !(HAS_SERVOS && ENABLED(EDITABLE_SERVO_ANGLES))
  502. uint16_t servo_angles[NUM_SERVOS][2] = { { 0, 0 } };
  503. #if ENABLED(SWITCHING_EXTRUDER)
  504. constexpr uint16_t sesa[][2] = SWITCHING_EXTRUDER_SERVO_ANGLES;
  505. servo_angles[SWITCHING_EXTRUDER_SERVO_NR][0] = sesa[0][0];
  506. servo_angles[SWITCHING_EXTRUDER_SERVO_NR][1] = sesa[0][1];
  507. #if EXTRUDERS > 3
  508. servo_angles[SWITCHING_EXTRUDER_E23_SERVO_NR][0] = sesa[1][0];
  509. servo_angles[SWITCHING_EXTRUDER_E23_SERVO_NR][1] = sesa[1][1];
  510. #endif
  511. #elif ENABLED(SWITCHING_NOZZLE)
  512. constexpr uint16_t snsa[] = SWITCHING_NOZZLE_SERVO_ANGLES;
  513. servo_angles[SWITCHING_NOZZLE_SERVO_NR][0] = snsa[0];
  514. servo_angles[SWITCHING_NOZZLE_SERVO_NR][1] = snsa[1];
  515. #elif defined(Z_SERVO_ANGLES) && defined(Z_PROBE_SERVO_NR)
  516. constexpr uint16_t zsa[] = Z_SERVO_ANGLES;
  517. servo_angles[Z_PROBE_SERVO_NR][0] = zsa[0];
  518. servo_angles[Z_PROBE_SERVO_NR][1] = zsa[1];
  519. #endif
  520. #endif // !HAS_SERVOS || !EDITABLE_SERVO_ANGLES
  521. EEPROM_WRITE(servo_angles);
  522. }
  523. //
  524. // DELTA Geometry or Dual Endstops offsets
  525. //
  526. {
  527. #if ENABLED(DELTA)
  528. _FIELD_TEST(delta_height);
  529. EEPROM_WRITE(delta_height); // 1 float
  530. EEPROM_WRITE(delta_endstop_adj); // 3 floats
  531. EEPROM_WRITE(delta_radius); // 1 float
  532. EEPROM_WRITE(delta_diagonal_rod); // 1 float
  533. EEPROM_WRITE(delta_segments_per_second); // 1 float
  534. EEPROM_WRITE(delta_calibration_radius); // 1 float
  535. EEPROM_WRITE(delta_tower_angle_trim); // 3 floats
  536. #elif ENABLED(X_DUAL_ENDSTOPS) || ENABLED(Y_DUAL_ENDSTOPS) || Z_MULTI_ENDSTOPS
  537. _FIELD_TEST(x2_endstop_adj);
  538. // Write dual endstops in X, Y, Z order. Unused = 0.0
  539. dummy = 0;
  540. #if ENABLED(X_DUAL_ENDSTOPS)
  541. EEPROM_WRITE(endstops.x2_endstop_adj); // 1 float
  542. #else
  543. EEPROM_WRITE(dummy);
  544. #endif
  545. #if ENABLED(Y_DUAL_ENDSTOPS)
  546. EEPROM_WRITE(endstops.y2_endstop_adj); // 1 float
  547. #else
  548. EEPROM_WRITE(dummy);
  549. #endif
  550. #if Z_MULTI_ENDSTOPS
  551. EEPROM_WRITE(endstops.z2_endstop_adj); // 1 float
  552. #else
  553. EEPROM_WRITE(dummy);
  554. #endif
  555. #if ENABLED(Z_TRIPLE_ENDSTOPS)
  556. EEPROM_WRITE(endstops.z3_endstop_adj); // 1 float
  557. #else
  558. EEPROM_WRITE(dummy);
  559. #endif
  560. #endif
  561. }
  562. //
  563. // LCD Preheat settings
  564. //
  565. {
  566. _FIELD_TEST(lcd_preheat_hotend_temp);
  567. #if !HAS_LCD_MENU
  568. constexpr int16_t lcd_preheat_hotend_temp[2] = { PREHEAT_1_TEMP_HOTEND, PREHEAT_2_TEMP_HOTEND },
  569. lcd_preheat_bed_temp[2] = { PREHEAT_1_TEMP_BED, PREHEAT_2_TEMP_BED };
  570. constexpr uint8_t lcd_preheat_fan_speed[2] = { PREHEAT_1_FAN_SPEED, PREHEAT_2_FAN_SPEED };
  571. #endif
  572. EEPROM_WRITE(lcd_preheat_hotend_temp);
  573. EEPROM_WRITE(lcd_preheat_bed_temp);
  574. EEPROM_WRITE(lcd_preheat_fan_speed);
  575. }
  576. //
  577. // PIDTEMP
  578. //
  579. {
  580. _FIELD_TEST(hotendPID);
  581. HOTEND_LOOP() {
  582. PIDC_t pidc = {
  583. PID_PARAM(Kp, e), PID_PARAM(Ki, e), PID_PARAM(Kd, e), PID_PARAM(Kc, e)
  584. };
  585. EEPROM_WRITE(pidc);
  586. }
  587. _FIELD_TEST(lpq_len);
  588. #if ENABLED(PID_EXTRUSION_SCALING)
  589. EEPROM_WRITE(thermalManager.lpq_len);
  590. #else
  591. const int16_t lpq_len = 20;
  592. EEPROM_WRITE(lpq_len);
  593. #endif
  594. }
  595. //
  596. // PIDTEMPBED
  597. //
  598. {
  599. _FIELD_TEST(bedPID);
  600. #if DISABLED(PIDTEMPBED)
  601. const PID_t bed_pid = { DUMMY_PID_VALUE, DUMMY_PID_VALUE, DUMMY_PID_VALUE };
  602. EEPROM_WRITE(bed_pid);
  603. #else
  604. EEPROM_WRITE(thermalManager.bed_pid);
  605. #endif
  606. }
  607. //
  608. // LCD Contrast
  609. //
  610. {
  611. _FIELD_TEST(lcd_contrast);
  612. #if !HAS_LCD_CONTRAST
  613. const int16_t lcd_contrast = 32;
  614. #endif
  615. EEPROM_WRITE(lcd_contrast);
  616. }
  617. //
  618. // Firmware Retraction
  619. //
  620. {
  621. _FIELD_TEST(fwretract_settings);
  622. #if ENABLED(FWRETRACT)
  623. EEPROM_WRITE(fwretract.settings);
  624. #else
  625. const fwretract_settings_t autoretract_defaults = { 3, 45, 0, 0, 0, 13, 0, 8 };
  626. EEPROM_WRITE(autoretract_defaults);
  627. #endif
  628. #if ENABLED(FWRETRACT) && ENABLED(FWRETRACT_AUTORETRACT)
  629. EEPROM_WRITE(fwretract.autoretract_enabled);
  630. #else
  631. const bool autoretract_enabled = false;
  632. EEPROM_WRITE(autoretract_enabled);
  633. #endif
  634. }
  635. //
  636. // Volumetric & Filament Size
  637. //
  638. {
  639. _FIELD_TEST(parser_volumetric_enabled);
  640. #if DISABLED(NO_VOLUMETRICS)
  641. EEPROM_WRITE(parser.volumetric_enabled);
  642. EEPROM_WRITE(planner.filament_size);
  643. #else
  644. const bool volumetric_enabled = false;
  645. dummy = DEFAULT_NOMINAL_FILAMENT_DIA;
  646. EEPROM_WRITE(volumetric_enabled);
  647. for (uint8_t q = EXTRUDERS; q--;) EEPROM_WRITE(dummy);
  648. #endif
  649. }
  650. //
  651. // TMC Configuration
  652. //
  653. {
  654. _FIELD_TEST(tmc_stepper_current);
  655. tmc_stepper_current_t tmc_stepper_current = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 };
  656. #if HAS_TRINAMIC
  657. #if AXIS_IS_TMC(X)
  658. tmc_stepper_current.X = stepperX.getMilliamps();
  659. #endif
  660. #if AXIS_IS_TMC(Y)
  661. tmc_stepper_current.Y = stepperY.getMilliamps();
  662. #endif
  663. #if AXIS_IS_TMC(Z)
  664. tmc_stepper_current.Z = stepperZ.getMilliamps();
  665. #endif
  666. #if AXIS_IS_TMC(X2)
  667. tmc_stepper_current.X2 = stepperX2.getMilliamps();
  668. #endif
  669. #if AXIS_IS_TMC(Y2)
  670. tmc_stepper_current.Y2 = stepperY2.getMilliamps();
  671. #endif
  672. #if AXIS_IS_TMC(Z2)
  673. tmc_stepper_current.Z2 = stepperZ2.getMilliamps();
  674. #endif
  675. #if AXIS_IS_TMC(Z3)
  676. tmc_stepper_current.Z3 = stepperZ3.getMilliamps();
  677. #endif
  678. #if MAX_EXTRUDERS
  679. #if AXIS_IS_TMC(E0)
  680. tmc_stepper_current.E0 = stepperE0.getMilliamps();
  681. #endif
  682. #if MAX_EXTRUDERS > 1
  683. #if AXIS_IS_TMC(E1)
  684. tmc_stepper_current.E1 = stepperE1.getMilliamps();
  685. #endif
  686. #if MAX_EXTRUDERS > 2
  687. #if AXIS_IS_TMC(E2)
  688. tmc_stepper_current.E2 = stepperE2.getMilliamps();
  689. #endif
  690. #if MAX_EXTRUDERS > 3
  691. #if AXIS_IS_TMC(E3)
  692. tmc_stepper_current.E3 = stepperE3.getMilliamps();
  693. #endif
  694. #if MAX_EXTRUDERS > 4
  695. #if AXIS_IS_TMC(E4)
  696. tmc_stepper_current.E4 = stepperE4.getMilliamps();
  697. #endif
  698. #if MAX_EXTRUDERS > 5
  699. #if AXIS_IS_TMC(E5)
  700. tmc_stepper_current.E5 = stepperE5.getMilliamps();
  701. #endif
  702. #endif // MAX_EXTRUDERS > 5
  703. #endif // MAX_EXTRUDERS > 4
  704. #endif // MAX_EXTRUDERS > 3
  705. #endif // MAX_EXTRUDERS > 2
  706. #endif // MAX_EXTRUDERS > 1
  707. #endif // MAX_EXTRUDERS
  708. #endif
  709. EEPROM_WRITE(tmc_stepper_current);
  710. }
  711. //
  712. // TMC Hybrid Threshold, and placeholder values
  713. //
  714. {
  715. _FIELD_TEST(tmc_hybrid_threshold);
  716. #if ENABLED(HYBRID_THRESHOLD)
  717. tmc_hybrid_threshold_t tmc_hybrid_threshold = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 };
  718. #if AXIS_HAS_STEALTHCHOP(X)
  719. tmc_hybrid_threshold.X = TMC_GET_PWMTHRS(X, X);
  720. #endif
  721. #if AXIS_HAS_STEALTHCHOP(Y)
  722. tmc_hybrid_threshold.Y = TMC_GET_PWMTHRS(Y, Y);
  723. #endif
  724. #if AXIS_HAS_STEALTHCHOP(Z)
  725. tmc_hybrid_threshold.Z = TMC_GET_PWMTHRS(Z, Z);
  726. #endif
  727. #if AXIS_HAS_STEALTHCHOP(X2)
  728. tmc_hybrid_threshold.X2 = TMC_GET_PWMTHRS(X, X2);
  729. #endif
  730. #if AXIS_HAS_STEALTHCHOP(Y2)
  731. tmc_hybrid_threshold.Y2 = TMC_GET_PWMTHRS(Y, Y2);
  732. #endif
  733. #if AXIS_HAS_STEALTHCHOP(Z2)
  734. tmc_hybrid_threshold.Z2 = TMC_GET_PWMTHRS(Z, Z2);
  735. #endif
  736. #if AXIS_HAS_STEALTHCHOP(Z3)
  737. tmc_hybrid_threshold.Z3 = TMC_GET_PWMTHRS(Z, Z3);
  738. #endif
  739. #if MAX_EXTRUDERS
  740. #if AXIS_HAS_STEALTHCHOP(E0)
  741. tmc_hybrid_threshold.E0 = TMC_GET_PWMTHRS(E, E0);
  742. #endif
  743. #if MAX_EXTRUDERS > 1
  744. #if AXIS_HAS_STEALTHCHOP(E1)
  745. tmc_hybrid_threshold.E1 = TMC_GET_PWMTHRS(E, E1);
  746. #endif
  747. #if MAX_EXTRUDERS > 2
  748. #if AXIS_HAS_STEALTHCHOP(E2)
  749. tmc_hybrid_threshold.E2 = TMC_GET_PWMTHRS(E, E2);
  750. #endif
  751. #if MAX_EXTRUDERS > 3
  752. #if AXIS_HAS_STEALTHCHOP(E3)
  753. tmc_hybrid_threshold.E3 = TMC_GET_PWMTHRS(E, E3);
  754. #endif
  755. #if MAX_EXTRUDERS > 4
  756. #if AXIS_HAS_STEALTHCHOP(E4)
  757. tmc_hybrid_threshold.E4 = TMC_GET_PWMTHRS(E, E4);
  758. #endif
  759. #if MAX_EXTRUDERS > 5
  760. #if AXIS_HAS_STEALTHCHOP(E5)
  761. tmc_hybrid_threshold.E5 = TMC_GET_PWMTHRS(E, E5);
  762. #endif
  763. #endif // MAX_EXTRUDERS > 5
  764. #endif // MAX_EXTRUDERS > 4
  765. #endif // MAX_EXTRUDERS > 3
  766. #endif // MAX_EXTRUDERS > 2
  767. #endif // MAX_EXTRUDERS > 1
  768. #endif // MAX_EXTRUDERS
  769. #else
  770. const tmc_hybrid_threshold_t tmc_hybrid_threshold = {
  771. .X = 100, .Y = 100, .Z = 3,
  772. .X2 = 100, .Y2 = 100, .Z2 = 3, .Z3 = 3,
  773. .E0 = 30, .E1 = 30, .E2 = 30,
  774. .E3 = 30, .E4 = 30, .E5 = 30
  775. };
  776. #endif
  777. EEPROM_WRITE(tmc_hybrid_threshold);
  778. }
  779. //
  780. // TMC StallGuard threshold
  781. //
  782. {
  783. tmc_sgt_t tmc_sgt = { 0, 0, 0 };
  784. #if USE_SENSORLESS
  785. #if X_SENSORLESS
  786. tmc_sgt.X = stepperX.sgt();
  787. #endif
  788. #if Y_SENSORLESS
  789. tmc_sgt.Y = stepperY.sgt();
  790. #endif
  791. #if Z_SENSORLESS
  792. tmc_sgt.Z = stepperZ.sgt();
  793. #endif
  794. #endif
  795. EEPROM_WRITE(tmc_sgt);
  796. }
  797. //
  798. // Linear Advance
  799. //
  800. {
  801. _FIELD_TEST(planner_extruder_advance_K);
  802. #if ENABLED(LIN_ADVANCE)
  803. EEPROM_WRITE(planner.extruder_advance_K);
  804. #else
  805. dummy = 0;
  806. for (uint8_t q = EXTRUDERS; q--;) EEPROM_WRITE(dummy);
  807. #endif
  808. }
  809. //
  810. // Motor Current PWM
  811. //
  812. {
  813. _FIELD_TEST(motor_current_setting);
  814. #if HAS_MOTOR_CURRENT_PWM
  815. EEPROM_WRITE(stepper.motor_current_setting);
  816. #else
  817. const uint32_t dummyui32[XYZ] = { 0 };
  818. EEPROM_WRITE(dummyui32);
  819. #endif
  820. }
  821. //
  822. // CNC Coordinate Systems
  823. //
  824. _FIELD_TEST(coordinate_system);
  825. #if ENABLED(CNC_COORDINATE_SYSTEMS)
  826. EEPROM_WRITE(gcode.coordinate_system);
  827. #else
  828. const float coordinate_system[MAX_COORDINATE_SYSTEMS][XYZ] = { { 0 } };
  829. EEPROM_WRITE(coordinate_system);
  830. #endif
  831. //
  832. // Skew correction factors
  833. //
  834. _FIELD_TEST(planner_skew_factor);
  835. EEPROM_WRITE(planner.skew_factor);
  836. //
  837. // Advanced Pause filament load & unload lengths
  838. //
  839. {
  840. #if DISABLED(ADVANCED_PAUSE_FEATURE)
  841. const fil_change_settings_t fc_settings[EXTRUDERS] = { 0, 0 };
  842. #endif
  843. _FIELD_TEST(fc_settings);
  844. EEPROM_WRITE(fc_settings);
  845. }
  846. //
  847. // Multiple Extruders
  848. //
  849. #if EXTRUDERS > 1
  850. _FIELD_TEST(toolchange_settings);
  851. EEPROM_WRITE(toolchange_settings);
  852. #endif
  853. //
  854. // Validate CRC and Data Size
  855. //
  856. if (!eeprom_error) {
  857. const uint16_t eeprom_size = eeprom_index - (EEPROM_OFFSET),
  858. final_crc = working_crc;
  859. // Write the EEPROM header
  860. eeprom_index = EEPROM_OFFSET;
  861. EEPROM_WRITE(version);
  862. EEPROM_WRITE(final_crc);
  863. // Report storage size
  864. #if ENABLED(EEPROM_CHITCHAT)
  865. SERIAL_ECHO_START_P(port);
  866. SERIAL_ECHOPAIR_P(port, "Settings Stored (", eeprom_size);
  867. SERIAL_ECHOPAIR_P(port, " bytes; crc ", (uint32_t)final_crc);
  868. SERIAL_ECHOLNPGM_P(port, ")");
  869. #endif
  870. eeprom_error |= size_error(eeprom_size);
  871. }
  872. EEPROM_FINISH();
  873. //
  874. // UBL Mesh
  875. //
  876. #if ENABLED(UBL_SAVE_ACTIVE_ON_M500)
  877. if (ubl.storage_slot >= 0)
  878. store_mesh(ubl.storage_slot);
  879. #endif
  880. return !eeprom_error;
  881. }
  882. /**
  883. * M501 - Retrieve Configuration
  884. */
  885. bool MarlinSettings::_load(PORTARG_SOLO) {
  886. uint16_t working_crc = 0;
  887. EEPROM_START();
  888. char stored_ver[4];
  889. EEPROM_READ_ALWAYS(stored_ver);
  890. uint16_t stored_crc;
  891. EEPROM_READ_ALWAYS(stored_crc);
  892. // Version has to match or defaults are used
  893. if (strncmp(version, stored_ver, 3) != 0) {
  894. if (stored_ver[3] != '\0') {
  895. stored_ver[0] = '?';
  896. stored_ver[1] = '\0';
  897. }
  898. #if ENABLED(EEPROM_CHITCHAT)
  899. SERIAL_ECHO_START_P(port);
  900. SERIAL_ECHOPGM_P(port, "EEPROM version mismatch ");
  901. SERIAL_ECHOPAIR_P(port, "(EEPROM=", stored_ver);
  902. SERIAL_ECHOLNPGM_P(port, " Marlin=" EEPROM_VERSION ")");
  903. #endif
  904. eeprom_error = true;
  905. }
  906. else {
  907. float dummy = 0;
  908. working_crc = 0; // Init to 0. Accumulated by EEPROM_READ
  909. _FIELD_TEST(esteppers);
  910. // Number of esteppers may change
  911. uint8_t esteppers;
  912. EEPROM_READ_ALWAYS(esteppers);
  913. //
  914. // Planner Motion
  915. //
  916. {
  917. // Get only the number of E stepper parameters previously stored
  918. // Any steppers added later are set to their defaults
  919. const uint32_t def1[] = DEFAULT_MAX_ACCELERATION;
  920. const float def2[] = DEFAULT_AXIS_STEPS_PER_UNIT, def3[] = DEFAULT_MAX_FEEDRATE;
  921. uint32_t tmp1[XYZ + esteppers];
  922. EEPROM_READ(tmp1); // max_acceleration_mm_per_s2
  923. EEPROM_READ(planner.settings.min_segment_time_us);
  924. float tmp2[XYZ + esteppers], tmp3[XYZ + esteppers];
  925. EEPROM_READ(tmp2); // axis_steps_per_mm
  926. EEPROM_READ(tmp3); // max_feedrate_mm_s
  927. if (!validating) LOOP_XYZE_N(i) {
  928. const bool in = (i < esteppers + XYZ);
  929. planner.settings.max_acceleration_mm_per_s2[i] = in ? tmp1[i] : def1[ALIM(i, def1)];
  930. planner.settings.axis_steps_per_mm[i] = in ? tmp2[i] : def2[ALIM(i, def2)];
  931. planner.settings.max_feedrate_mm_s[i] = in ? tmp3[i] : def3[ALIM(i, def3)];
  932. }
  933. EEPROM_READ(planner.settings.acceleration);
  934. EEPROM_READ(planner.settings.retract_acceleration);
  935. EEPROM_READ(planner.settings.travel_acceleration);
  936. EEPROM_READ(planner.settings.min_feedrate_mm_s);
  937. EEPROM_READ(planner.settings.min_travel_feedrate_mm_s);
  938. #if HAS_CLASSIC_JERK
  939. EEPROM_READ(planner.max_jerk);
  940. #if ENABLED(JUNCTION_DEVIATION) && ENABLED(LIN_ADVANCE)
  941. EEPROM_READ(dummy);
  942. #endif
  943. #else
  944. for (uint8_t q = 4; q--;) EEPROM_READ(dummy);
  945. #endif
  946. #if ENABLED(JUNCTION_DEVIATION)
  947. EEPROM_READ(planner.junction_deviation_mm);
  948. #else
  949. EEPROM_READ(dummy);
  950. #endif
  951. }
  952. //
  953. // Home Offset (M206 / M665)
  954. //
  955. {
  956. _FIELD_TEST(home_offset);
  957. #if HAS_SCARA_OFFSET
  958. EEPROM_READ(scara_home_offset);
  959. #else
  960. #if !HAS_HOME_OFFSET
  961. float home_offset[XYZ];
  962. #endif
  963. EEPROM_READ(home_offset);
  964. #endif
  965. }
  966. //
  967. // Hotend Offsets, if any
  968. //
  969. {
  970. #if HAS_HOTEND_OFFSET
  971. // Skip hotend 0 which must be 0
  972. for (uint8_t e = 1; e < HOTENDS; e++)
  973. LOOP_XYZ(i) EEPROM_READ(hotend_offset[i][e]);
  974. #endif
  975. }
  976. //
  977. // Global Leveling
  978. //
  979. {
  980. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  981. EEPROM_READ(new_z_fade_height);
  982. #else
  983. EEPROM_READ(dummy);
  984. #endif
  985. }
  986. //
  987. // Mesh (Manual) Bed Leveling
  988. //
  989. {
  990. uint8_t mesh_num_x, mesh_num_y;
  991. EEPROM_READ(dummy);
  992. EEPROM_READ_ALWAYS(mesh_num_x);
  993. EEPROM_READ_ALWAYS(mesh_num_y);
  994. #if ENABLED(MESH_BED_LEVELING)
  995. if (!validating) mbl.z_offset = dummy;
  996. if (mesh_num_x == GRID_MAX_POINTS_X && mesh_num_y == GRID_MAX_POINTS_Y) {
  997. // EEPROM data fits the current mesh
  998. EEPROM_READ(mbl.z_values);
  999. }
  1000. else {
  1001. // EEPROM data is stale
  1002. if (!validating) mbl.reset();
  1003. for (uint16_t q = mesh_num_x * mesh_num_y; q--;) EEPROM_READ(dummy);
  1004. }
  1005. #else
  1006. // MBL is disabled - skip the stored data
  1007. for (uint16_t q = mesh_num_x * mesh_num_y; q--;) EEPROM_READ(dummy);
  1008. #endif // MESH_BED_LEVELING
  1009. }
  1010. //
  1011. // Probe Z Offset
  1012. //
  1013. {
  1014. _FIELD_TEST(zprobe_zoffset);
  1015. #if !HAS_BED_PROBE
  1016. float zprobe_zoffset;
  1017. #endif
  1018. EEPROM_READ(zprobe_zoffset);
  1019. }
  1020. //
  1021. // Planar Bed Leveling matrix
  1022. //
  1023. {
  1024. #if ABL_PLANAR
  1025. EEPROM_READ(planner.bed_level_matrix);
  1026. #else
  1027. for (uint8_t q = 9; q--;) EEPROM_READ(dummy);
  1028. #endif
  1029. }
  1030. //
  1031. // Bilinear Auto Bed Leveling
  1032. //
  1033. {
  1034. uint8_t grid_max_x, grid_max_y;
  1035. EEPROM_READ_ALWAYS(grid_max_x); // 1 byte
  1036. EEPROM_READ_ALWAYS(grid_max_y); // 1 byte
  1037. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  1038. if (grid_max_x == GRID_MAX_POINTS_X && grid_max_y == GRID_MAX_POINTS_Y) {
  1039. if (!validating) set_bed_leveling_enabled(false);
  1040. EEPROM_READ(bilinear_grid_spacing); // 2 ints
  1041. EEPROM_READ(bilinear_start); // 2 ints
  1042. EEPROM_READ(z_values); // 9 to 256 floats
  1043. }
  1044. else // EEPROM data is stale
  1045. #endif // AUTO_BED_LEVELING_BILINEAR
  1046. {
  1047. // Skip past disabled (or stale) Bilinear Grid data
  1048. int bgs[2], bs[2];
  1049. EEPROM_READ(bgs);
  1050. EEPROM_READ(bs);
  1051. for (uint16_t q = grid_max_x * grid_max_y; q--;) EEPROM_READ(dummy);
  1052. }
  1053. }
  1054. //
  1055. // Unified Bed Leveling active state
  1056. //
  1057. {
  1058. _FIELD_TEST(planner_leveling_active);
  1059. #if ENABLED(AUTO_BED_LEVELING_UBL)
  1060. EEPROM_READ(planner.leveling_active);
  1061. EEPROM_READ(ubl.storage_slot);
  1062. #else
  1063. bool planner_leveling_active;
  1064. uint8_t ubl_storage_slot;
  1065. EEPROM_READ(planner_leveling_active);
  1066. EEPROM_READ(ubl_storage_slot);
  1067. #endif
  1068. }
  1069. //
  1070. // SERVO_ANGLES
  1071. //
  1072. {
  1073. #if !(HAS_SERVOS && ENABLED(EDITABLE_SERVO_ANGLES))
  1074. uint16_t servo_angles[NUM_SERVOS][2];
  1075. #endif
  1076. EEPROM_READ(servo_angles);
  1077. }
  1078. //
  1079. // DELTA Geometry or Dual Endstops offsets
  1080. //
  1081. {
  1082. #if ENABLED(DELTA)
  1083. _FIELD_TEST(delta_height);
  1084. EEPROM_READ(delta_height); // 1 float
  1085. EEPROM_READ(delta_endstop_adj); // 3 floats
  1086. EEPROM_READ(delta_radius); // 1 float
  1087. EEPROM_READ(delta_diagonal_rod); // 1 float
  1088. EEPROM_READ(delta_segments_per_second); // 1 float
  1089. EEPROM_READ(delta_calibration_radius); // 1 float
  1090. EEPROM_READ(delta_tower_angle_trim); // 3 floats
  1091. #elif ENABLED(X_DUAL_ENDSTOPS) || ENABLED(Y_DUAL_ENDSTOPS) || Z_MULTI_ENDSTOPS
  1092. _FIELD_TEST(x2_endstop_adj);
  1093. #if ENABLED(X_DUAL_ENDSTOPS)
  1094. EEPROM_READ(endstops.x2_endstop_adj); // 1 float
  1095. #else
  1096. EEPROM_READ(dummy);
  1097. #endif
  1098. #if ENABLED(Y_DUAL_ENDSTOPS)
  1099. EEPROM_READ(endstops.y2_endstop_adj); // 1 float
  1100. #else
  1101. EEPROM_READ(dummy);
  1102. #endif
  1103. #if Z_MULTI_ENDSTOPS
  1104. EEPROM_READ(endstops.z2_endstop_adj); // 1 float
  1105. #else
  1106. EEPROM_READ(dummy);
  1107. #endif
  1108. #if ENABLED(Z_TRIPLE_ENDSTOPS)
  1109. EEPROM_READ(endstops.z3_endstop_adj); // 1 float
  1110. #else
  1111. EEPROM_READ(dummy);
  1112. #endif
  1113. #endif
  1114. }
  1115. //
  1116. // LCD Preheat settings
  1117. //
  1118. {
  1119. _FIELD_TEST(lcd_preheat_hotend_temp);
  1120. #if !HAS_LCD_MENU
  1121. int16_t lcd_preheat_hotend_temp[2], lcd_preheat_bed_temp[2];
  1122. uint8_t lcd_preheat_fan_speed[2];
  1123. #endif
  1124. EEPROM_READ(lcd_preheat_hotend_temp); // 2 floats
  1125. EEPROM_READ(lcd_preheat_bed_temp); // 2 floats
  1126. EEPROM_READ(lcd_preheat_fan_speed); // 2 floats
  1127. }
  1128. //
  1129. // Hotend PID
  1130. //
  1131. {
  1132. HOTEND_LOOP() {
  1133. PIDC_t pidc;
  1134. EEPROM_READ(pidc);
  1135. #if ENABLED(PIDTEMP)
  1136. if (!validating && pidc.Kp != DUMMY_PID_VALUE) {
  1137. // No need to scale PID values since EEPROM values are scaled
  1138. PID_PARAM(Kp, e) = pidc.Kp;
  1139. PID_PARAM(Ki, e) = pidc.Ki;
  1140. PID_PARAM(Kd, e) = pidc.Kd;
  1141. #if ENABLED(PID_EXTRUSION_SCALING)
  1142. PID_PARAM(Kc, e) = pidc.Kc;
  1143. #endif
  1144. }
  1145. #endif
  1146. }
  1147. }
  1148. //
  1149. // PID Extrusion Scaling
  1150. //
  1151. {
  1152. _FIELD_TEST(lpq_len);
  1153. #if ENABLED(PID_EXTRUSION_SCALING)
  1154. EEPROM_READ(thermalManager.lpq_len);
  1155. #else
  1156. int16_t lpq_len;
  1157. EEPROM_READ(lpq_len);
  1158. #endif
  1159. }
  1160. //
  1161. // Heated Bed PID
  1162. //
  1163. {
  1164. PID_t pid;
  1165. EEPROM_READ(pid);
  1166. #if ENABLED(PIDTEMPBED)
  1167. if (!validating && pid.Kp != DUMMY_PID_VALUE)
  1168. memcpy(&thermalManager.bed_pid, &pid, sizeof(pid));
  1169. #endif
  1170. }
  1171. //
  1172. // LCD Contrast
  1173. //
  1174. {
  1175. _FIELD_TEST(lcd_contrast);
  1176. #if !HAS_LCD_CONTRAST
  1177. int16_t lcd_contrast;
  1178. #endif
  1179. EEPROM_READ(lcd_contrast);
  1180. }
  1181. //
  1182. // Firmware Retraction
  1183. //
  1184. {
  1185. _FIELD_TEST(fwretract_settings);
  1186. #if ENABLED(FWRETRACT)
  1187. EEPROM_READ(fwretract.settings);
  1188. #else
  1189. fwretract_settings_t fwretract_settings;
  1190. EEPROM_READ(fwretract_settings);
  1191. #endif
  1192. #if ENABLED(FWRETRACT) && ENABLED(FWRETRACT_AUTORETRACT)
  1193. EEPROM_READ(fwretract.autoretract_enabled);
  1194. #else
  1195. bool autoretract_enabled;
  1196. EEPROM_READ(autoretract_enabled);
  1197. #endif
  1198. }
  1199. //
  1200. // Volumetric & Filament Size
  1201. //
  1202. {
  1203. struct {
  1204. bool volumetric_enabled;
  1205. float filament_size[EXTRUDERS];
  1206. } storage;
  1207. _FIELD_TEST(parser_volumetric_enabled);
  1208. EEPROM_READ(storage);
  1209. #if DISABLED(NO_VOLUMETRICS)
  1210. if (!validating) {
  1211. parser.volumetric_enabled = storage.volumetric_enabled;
  1212. COPY(planner.filament_size, storage.filament_size);
  1213. }
  1214. #endif
  1215. }
  1216. //
  1217. // TMC Stepper Settings
  1218. //
  1219. if (!validating) reset_stepper_drivers();
  1220. // TMC Stepper Current
  1221. {
  1222. _FIELD_TEST(tmc_stepper_current);
  1223. tmc_stepper_current_t currents;
  1224. EEPROM_READ(currents);
  1225. #if HAS_TRINAMIC
  1226. #define SET_CURR(Q) stepper##Q.rms_current(currents.Q ? currents.Q : Q##_CURRENT)
  1227. if (!validating) {
  1228. #if AXIS_IS_TMC(X)
  1229. SET_CURR(X);
  1230. #endif
  1231. #if AXIS_IS_TMC(Y)
  1232. SET_CURR(Y);
  1233. #endif
  1234. #if AXIS_IS_TMC(Z)
  1235. SET_CURR(Z);
  1236. #endif
  1237. #if AXIS_IS_TMC(X2)
  1238. SET_CURR(X2);
  1239. #endif
  1240. #if AXIS_IS_TMC(Y2)
  1241. SET_CURR(Y2);
  1242. #endif
  1243. #if AXIS_IS_TMC(Z2)
  1244. SET_CURR(Z2);
  1245. #endif
  1246. #if AXIS_IS_TMC(Z3)
  1247. SET_CURR(Z3);
  1248. #endif
  1249. #if AXIS_IS_TMC(E0)
  1250. SET_CURR(E0);
  1251. #endif
  1252. #if AXIS_IS_TMC(E1)
  1253. SET_CURR(E1);
  1254. #endif
  1255. #if AXIS_IS_TMC(E2)
  1256. SET_CURR(E2);
  1257. #endif
  1258. #if AXIS_IS_TMC(E3)
  1259. SET_CURR(E3);
  1260. #endif
  1261. #if AXIS_IS_TMC(E4)
  1262. SET_CURR(E4);
  1263. #endif
  1264. #if AXIS_IS_TMC(E5)
  1265. SET_CURR(E5);
  1266. #endif
  1267. }
  1268. #endif
  1269. }
  1270. // TMC Hybrid Threshold
  1271. {
  1272. tmc_hybrid_threshold_t tmc_hybrid_threshold;
  1273. _FIELD_TEST(tmc_hybrid_threshold);
  1274. EEPROM_READ(tmc_hybrid_threshold);
  1275. #if ENABLED(HYBRID_THRESHOLD)
  1276. #define TMC_SET_PWMTHRS(A,Q) tmc_set_pwmthrs(stepper##Q, tmc_hybrid_threshold.Q, planner.settings.axis_steps_per_mm[_AXIS(A)])
  1277. if (!validating) {
  1278. #if AXIS_HAS_STEALTHCHOP(X)
  1279. TMC_SET_PWMTHRS(X, X);
  1280. #endif
  1281. #if AXIS_HAS_STEALTHCHOP(Y)
  1282. TMC_SET_PWMTHRS(Y, Y);
  1283. #endif
  1284. #if AXIS_HAS_STEALTHCHOP(Z)
  1285. TMC_SET_PWMTHRS(Z, Z);
  1286. #endif
  1287. #if AXIS_HAS_STEALTHCHOP(X2)
  1288. TMC_SET_PWMTHRS(X, X2);
  1289. #endif
  1290. #if AXIS_HAS_STEALTHCHOP(Y2)
  1291. TMC_SET_PWMTHRS(Y, Y2);
  1292. #endif
  1293. #if AXIS_HAS_STEALTHCHOP(Z2)
  1294. TMC_SET_PWMTHRS(Z, Z2);
  1295. #endif
  1296. #if AXIS_HAS_STEALTHCHOP(Z3)
  1297. TMC_SET_PWMTHRS(Z, Z3);
  1298. #endif
  1299. #if AXIS_HAS_STEALTHCHOP(E0)
  1300. TMC_SET_PWMTHRS(E, E0);
  1301. #endif
  1302. #if AXIS_HAS_STEALTHCHOP(E1)
  1303. TMC_SET_PWMTHRS(E, E1);
  1304. #endif
  1305. #if AXIS_HAS_STEALTHCHOP(E2)
  1306. TMC_SET_PWMTHRS(E, E2);
  1307. #endif
  1308. #if AXIS_HAS_STEALTHCHOP(E3)
  1309. TMC_SET_PWMTHRS(E, E3);
  1310. #endif
  1311. #if AXIS_HAS_STEALTHCHOP(E4)
  1312. TMC_SET_PWMTHRS(E, E4);
  1313. #endif
  1314. #if AXIS_HAS_STEALTHCHOP(E5)
  1315. TMC_SET_PWMTHRS(E, E5);
  1316. #endif
  1317. }
  1318. #endif
  1319. }
  1320. //
  1321. // TMC StallGuard threshold.
  1322. // X and X2 use the same value
  1323. // Y and Y2 use the same value
  1324. // Z, Z2 and Z3 use the same value
  1325. //
  1326. {
  1327. tmc_sgt_t tmc_sgt;
  1328. _FIELD_TEST(tmc_sgt);
  1329. EEPROM_READ(tmc_sgt);
  1330. #if USE_SENSORLESS
  1331. if (!validating) {
  1332. #ifdef X_STALL_SENSITIVITY
  1333. #if AXIS_HAS_STALLGUARD(X)
  1334. stepperX.sgt(tmc_sgt.X);
  1335. #endif
  1336. #if AXIS_HAS_STALLGUARD(X2)
  1337. stepperX2.sgt(tmc_sgt.X);
  1338. #endif
  1339. #endif
  1340. #ifdef Y_STALL_SENSITIVITY
  1341. #if AXIS_HAS_STALLGUARD(Y)
  1342. stepperY.sgt(tmc_sgt.Y);
  1343. #endif
  1344. #if AXIS_HAS_STALLGUARD(Y2)
  1345. stepperY2.sgt(tmc_sgt.Y);
  1346. #endif
  1347. #endif
  1348. #ifdef Z_STALL_SENSITIVITY
  1349. #if AXIS_HAS_STALLGUARD(Z)
  1350. stepperZ.sgt(tmc_sgt.Z);
  1351. #endif
  1352. #if AXIS_HAS_STALLGUARD(Z2)
  1353. stepperZ2.sgt(tmc_sgt.Z);
  1354. #endif
  1355. #if AXIS_HAS_STALLGUARD(Z3)
  1356. stepperZ3.sgt(tmc_sgt.Z);
  1357. #endif
  1358. #endif
  1359. }
  1360. #endif
  1361. }
  1362. //
  1363. // Linear Advance
  1364. //
  1365. {
  1366. float extruder_advance_K[EXTRUDERS];
  1367. _FIELD_TEST(planner_extruder_advance_K);
  1368. EEPROM_READ(extruder_advance_K);
  1369. #if ENABLED(LIN_ADVANCE)
  1370. if (!validating)
  1371. COPY(planner.extruder_advance_K, extruder_advance_K);
  1372. #endif
  1373. }
  1374. //
  1375. // Motor Current PWM
  1376. //
  1377. {
  1378. uint32_t motor_current_setting[3];
  1379. _FIELD_TEST(motor_current_setting);
  1380. EEPROM_READ(motor_current_setting);
  1381. #if HAS_MOTOR_CURRENT_PWM
  1382. if (!validating)
  1383. COPY(stepper.motor_current_setting, motor_current_setting);
  1384. #endif
  1385. }
  1386. //
  1387. // CNC Coordinate System
  1388. //
  1389. {
  1390. _FIELD_TEST(coordinate_system);
  1391. #if ENABLED(CNC_COORDINATE_SYSTEMS)
  1392. if (!validating) (void)gcode.select_coordinate_system(-1); // Go back to machine space
  1393. EEPROM_READ(gcode.coordinate_system);
  1394. #else
  1395. float coordinate_system[MAX_COORDINATE_SYSTEMS][XYZ];
  1396. EEPROM_READ(coordinate_system);
  1397. #endif
  1398. }
  1399. //
  1400. // Skew correction factors
  1401. //
  1402. {
  1403. skew_factor_t skew_factor;
  1404. _FIELD_TEST(planner_skew_factor);
  1405. EEPROM_READ(skew_factor);
  1406. #if ENABLED(SKEW_CORRECTION_GCODE)
  1407. if (!validating) {
  1408. planner.skew_factor.xy = skew_factor.xy;
  1409. #if ENABLED(SKEW_CORRECTION_FOR_Z)
  1410. planner.skew_factor.xz = skew_factor.xz;
  1411. planner.skew_factor.yz = skew_factor.yz;
  1412. #endif
  1413. }
  1414. #endif
  1415. }
  1416. //
  1417. // Advanced Pause filament load & unload lengths
  1418. //
  1419. {
  1420. #if DISABLED(ADVANCED_PAUSE_FEATURE)
  1421. fil_change_settings_t fc_settings[EXTRUDERS];
  1422. #endif
  1423. _FIELD_TEST(fc_settings);
  1424. EEPROM_READ(fc_settings);
  1425. }
  1426. //
  1427. // Tool-change settings
  1428. //
  1429. #if EXTRUDERS > 1
  1430. _FIELD_TEST(toolchange_settings);
  1431. EEPROM_READ(toolchange_settings);
  1432. #endif
  1433. eeprom_error = size_error(eeprom_index - (EEPROM_OFFSET));
  1434. if (eeprom_error) {
  1435. #if ENABLED(EEPROM_CHITCHAT)
  1436. SERIAL_ECHO_START_P(port);
  1437. SERIAL_ECHOPAIR_P(port, "Index: ", int(eeprom_index - (EEPROM_OFFSET)));
  1438. SERIAL_ECHOLNPAIR_P(port, " Size: ", datasize());
  1439. #endif
  1440. }
  1441. else if (working_crc != stored_crc) {
  1442. eeprom_error = true;
  1443. #if ENABLED(EEPROM_CHITCHAT)
  1444. SERIAL_ERROR_START_P(port);
  1445. SERIAL_ERRORPGM_P(port, "EEPROM CRC mismatch - (stored) ");
  1446. SERIAL_ERROR_P(port, stored_crc);
  1447. SERIAL_ERRORPGM_P(port, " != ");
  1448. SERIAL_ERROR_P(port, working_crc);
  1449. SERIAL_ERRORLNPGM_P(port, " (calculated)!");
  1450. #endif
  1451. }
  1452. else if (!validating) {
  1453. #if ENABLED(EEPROM_CHITCHAT)
  1454. SERIAL_ECHO_START_P(port);
  1455. SERIAL_ECHO_P(port, version);
  1456. SERIAL_ECHOPAIR_P(port, " stored settings retrieved (", eeprom_index - (EEPROM_OFFSET));
  1457. SERIAL_ECHOPAIR_P(port, " bytes; crc ", (uint32_t)working_crc);
  1458. SERIAL_ECHOLNPGM_P(port, ")");
  1459. #endif
  1460. }
  1461. if (!validating && !eeprom_error) postprocess();
  1462. #if ENABLED(AUTO_BED_LEVELING_UBL)
  1463. if (!validating) {
  1464. ubl.report_state();
  1465. if (!ubl.sanity_check()) {
  1466. SERIAL_EOL_P(port);
  1467. #if ENABLED(EEPROM_CHITCHAT)
  1468. ubl.echo_name();
  1469. SERIAL_ECHOLNPGM_P(port, " initialized.\n");
  1470. #endif
  1471. }
  1472. else {
  1473. eeprom_error = true;
  1474. #if ENABLED(EEPROM_CHITCHAT)
  1475. SERIAL_PROTOCOLPGM_P(port, "?Can't enable ");
  1476. ubl.echo_name();
  1477. SERIAL_PROTOCOLLNPGM_P(port, ".");
  1478. #endif
  1479. ubl.reset();
  1480. }
  1481. if (ubl.storage_slot >= 0) {
  1482. load_mesh(ubl.storage_slot);
  1483. #if ENABLED(EEPROM_CHITCHAT)
  1484. SERIAL_ECHOPAIR_P(port, "Mesh ", ubl.storage_slot);
  1485. SERIAL_ECHOLNPGM_P(port, " loaded from storage.");
  1486. #endif
  1487. }
  1488. else {
  1489. ubl.reset();
  1490. #if ENABLED(EEPROM_CHITCHAT)
  1491. SERIAL_ECHOLNPGM_P(port, "UBL System reset()");
  1492. #endif
  1493. }
  1494. }
  1495. #endif
  1496. }
  1497. #if ENABLED(EEPROM_CHITCHAT) && DISABLED(DISABLE_M503)
  1498. if (!validating) report(PORTVAR_SOLO);
  1499. #endif
  1500. EEPROM_FINISH();
  1501. return !eeprom_error;
  1502. }
  1503. bool MarlinSettings::validate(PORTARG_SOLO) {
  1504. validating = true;
  1505. const bool success = _load(PORTVAR_SOLO);
  1506. validating = false;
  1507. return success;
  1508. }
  1509. bool MarlinSettings::load(PORTARG_SOLO) {
  1510. if (validate(PORTVAR_SOLO)) return _load(PORTVAR_SOLO);
  1511. reset();
  1512. return true;
  1513. }
  1514. #if ENABLED(AUTO_BED_LEVELING_UBL)
  1515. #if ENABLED(EEPROM_CHITCHAT)
  1516. void ubl_invalid_slot(const int s) {
  1517. SERIAL_PROTOCOLLNPGM("?Invalid slot.");
  1518. SERIAL_PROTOCOL(s);
  1519. SERIAL_PROTOCOLLNPGM(" mesh slots available.");
  1520. }
  1521. #endif
  1522. const uint16_t MarlinSettings::meshes_end = persistentStore.capacity() - 129; // 128 (+1 because of the change to capacity rather than last valid address)
  1523. // is a placeholder for the size of the MAT; the MAT will always
  1524. // live at the very end of the eeprom
  1525. uint16_t MarlinSettings::meshes_start_index() {
  1526. return (datasize() + EEPROM_OFFSET + 32) & 0xFFF8; // Pad the end of configuration data so it can float up
  1527. // or down a little bit without disrupting the mesh data
  1528. }
  1529. uint16_t MarlinSettings::calc_num_meshes() {
  1530. return (meshes_end - meshes_start_index()) / sizeof(ubl.z_values);
  1531. }
  1532. int MarlinSettings::mesh_slot_offset(const int8_t slot) {
  1533. return meshes_end - (slot + 1) * sizeof(ubl.z_values);
  1534. }
  1535. void MarlinSettings::store_mesh(const int8_t slot) {
  1536. #if ENABLED(AUTO_BED_LEVELING_UBL)
  1537. const int16_t a = calc_num_meshes();
  1538. if (!WITHIN(slot, 0, a - 1)) {
  1539. #if ENABLED(EEPROM_CHITCHAT)
  1540. ubl_invalid_slot(a);
  1541. SERIAL_PROTOCOLPAIR("E2END=", persistentStore.capacity() - 1);
  1542. SERIAL_PROTOCOLPAIR(" meshes_end=", meshes_end);
  1543. SERIAL_PROTOCOLLNPAIR(" slot=", slot);
  1544. SERIAL_EOL();
  1545. #endif
  1546. return;
  1547. }
  1548. int pos = mesh_slot_offset(slot);
  1549. uint16_t crc = 0;
  1550. persistentStore.access_start();
  1551. const bool status = persistentStore.write_data(pos, (uint8_t *)&ubl.z_values, sizeof(ubl.z_values), &crc);
  1552. persistentStore.access_finish();
  1553. if (status)
  1554. SERIAL_PROTOCOLPGM("?Unable to save mesh data.\n");
  1555. // Write crc to MAT along with other data, or just tack on to the beginning or end
  1556. #if ENABLED(EEPROM_CHITCHAT)
  1557. if (!status)
  1558. SERIAL_PROTOCOLLNPAIR("Mesh saved in slot ", slot);
  1559. #endif
  1560. #else
  1561. // Other mesh types
  1562. #endif
  1563. }
  1564. void MarlinSettings::load_mesh(const int8_t slot, void * const into/*=NULL*/) {
  1565. #if ENABLED(AUTO_BED_LEVELING_UBL)
  1566. const int16_t a = settings.calc_num_meshes();
  1567. if (!WITHIN(slot, 0, a - 1)) {
  1568. #if ENABLED(EEPROM_CHITCHAT)
  1569. ubl_invalid_slot(a);
  1570. #endif
  1571. return;
  1572. }
  1573. int pos = mesh_slot_offset(slot);
  1574. uint16_t crc = 0;
  1575. uint8_t * const dest = into ? (uint8_t*)into : (uint8_t*)&ubl.z_values;
  1576. persistentStore.access_start();
  1577. const uint16_t status = persistentStore.read_data(pos, dest, sizeof(ubl.z_values), &crc);
  1578. persistentStore.access_finish();
  1579. if (status)
  1580. SERIAL_PROTOCOLPGM("?Unable to load mesh data.\n");
  1581. #if ENABLED(EEPROM_CHITCHAT)
  1582. else
  1583. SERIAL_PROTOCOLLNPAIR("Mesh loaded from slot ", slot);
  1584. #endif
  1585. EEPROM_FINISH();
  1586. #else
  1587. // Other mesh types
  1588. #endif
  1589. }
  1590. //void MarlinSettings::delete_mesh() { return; }
  1591. //void MarlinSettings::defrag_meshes() { return; }
  1592. #endif // AUTO_BED_LEVELING_UBL
  1593. #else // !EEPROM_SETTINGS
  1594. bool MarlinSettings::save(PORTARG_SOLO) {
  1595. #if ENABLED(EEPROM_CHITCHAT)
  1596. SERIAL_ERROR_START_P(port);
  1597. SERIAL_ERRORLNPGM_P(port, "EEPROM disabled");
  1598. #endif
  1599. return false;
  1600. }
  1601. #endif // !EEPROM_SETTINGS
  1602. /**
  1603. * M502 - Reset Configuration
  1604. */
  1605. void MarlinSettings::reset(PORTARG_SOLO) {
  1606. static const float tmp1[] PROGMEM = DEFAULT_AXIS_STEPS_PER_UNIT, tmp2[] PROGMEM = DEFAULT_MAX_FEEDRATE;
  1607. static const uint32_t tmp3[] PROGMEM = DEFAULT_MAX_ACCELERATION;
  1608. LOOP_XYZE_N(i) {
  1609. planner.settings.axis_steps_per_mm[i] = pgm_read_float(&tmp1[ALIM(i, tmp1)]);
  1610. planner.settings.max_feedrate_mm_s[i] = pgm_read_float(&tmp2[ALIM(i, tmp2)]);
  1611. planner.settings.max_acceleration_mm_per_s2[i] = pgm_read_dword(&tmp3[ALIM(i, tmp3)]);
  1612. }
  1613. planner.settings.min_segment_time_us = DEFAULT_MINSEGMENTTIME;
  1614. planner.settings.acceleration = DEFAULT_ACCELERATION;
  1615. planner.settings.retract_acceleration = DEFAULT_RETRACT_ACCELERATION;
  1616. planner.settings.travel_acceleration = DEFAULT_TRAVEL_ACCELERATION;
  1617. planner.settings.min_feedrate_mm_s = DEFAULT_MINIMUMFEEDRATE;
  1618. planner.settings.min_travel_feedrate_mm_s = DEFAULT_MINTRAVELFEEDRATE;
  1619. #if HAS_CLASSIC_JERK
  1620. planner.max_jerk[X_AXIS] = DEFAULT_XJERK;
  1621. planner.max_jerk[Y_AXIS] = DEFAULT_YJERK;
  1622. planner.max_jerk[Z_AXIS] = DEFAULT_ZJERK;
  1623. #if DISABLED(JUNCTION_DEVIATION) || DISABLED(LIN_ADVANCE)
  1624. planner.max_jerk[E_AXIS] = DEFAULT_EJERK;
  1625. #endif
  1626. #endif
  1627. #if ENABLED(JUNCTION_DEVIATION)
  1628. planner.junction_deviation_mm = float(JUNCTION_DEVIATION_MM);
  1629. #endif
  1630. #if HAS_SCARA_OFFSET
  1631. ZERO(scara_home_offset);
  1632. #elif HAS_HOME_OFFSET
  1633. ZERO(home_offset);
  1634. #endif
  1635. #if HAS_HOTEND_OFFSET
  1636. constexpr float tmp4[XYZ][HOTENDS] = { HOTEND_OFFSET_X, HOTEND_OFFSET_Y, HOTEND_OFFSET_Z };
  1637. static_assert(
  1638. tmp4[X_AXIS][0] == 0 && tmp4[Y_AXIS][0] == 0 && tmp4[Z_AXIS][0] == 0,
  1639. "Offsets for the first hotend must be 0.0."
  1640. );
  1641. LOOP_XYZ(i) HOTEND_LOOP() hotend_offset[i][e] = tmp4[i][e];
  1642. #if ENABLED(DUAL_X_CARRIAGE)
  1643. hotend_offset[X_AXIS][1] = MAX(X2_HOME_POS, X2_MAX_POS);
  1644. #endif
  1645. #endif
  1646. #if EXTRUDERS > 1
  1647. #if ENABLED(TOOLCHANGE_FILAMENT_SWAP)
  1648. toolchange_settings.swap_length = TOOLCHANGE_FIL_SWAP_LENGTH;
  1649. toolchange_settings.prime_speed = TOOLCHANGE_FIL_SWAP_PRIME_SPEED;
  1650. toolchange_settings.retract_speed = TOOLCHANGE_FIL_SWAP_RETRACT_SPEED;
  1651. #endif
  1652. #if ENABLED(TOOLCHANGE_PARK)
  1653. toolchange_settings.change_point = TOOLCHANGE_PARK_XY;
  1654. #endif
  1655. toolchange_settings.z_raise = TOOLCHANGE_ZRAISE;
  1656. #endif
  1657. //
  1658. // Global Leveling
  1659. //
  1660. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  1661. new_z_fade_height = 0.0;
  1662. #endif
  1663. #if HAS_LEVELING
  1664. reset_bed_level();
  1665. #endif
  1666. #if HAS_BED_PROBE
  1667. zprobe_zoffset = Z_PROBE_OFFSET_FROM_EXTRUDER;
  1668. #endif
  1669. //
  1670. // Servo Angles
  1671. //
  1672. #if HAS_SERVOS && ENABLED(EDITABLE_SERVO_ANGLES)
  1673. #if ENABLED(SWITCHING_EXTRUDER)
  1674. #if EXTRUDERS > 3
  1675. #define REQ_ANGLES 4
  1676. #else
  1677. #define REQ_ANGLES 2
  1678. #endif
  1679. constexpr uint16_t sesa[] = SWITCHING_EXTRUDER_SERVO_ANGLES;
  1680. static_assert(COUNT(sesa) == REQ_ANGLES, "SWITCHING_EXTRUDER_SERVO_ANGLES needs " STRINGIFY(REQ_ANGLES) " angles.");
  1681. servo_angles[SWITCHING_EXTRUDER_SERVO_NR][0] = sesa[0];
  1682. servo_angles[SWITCHING_EXTRUDER_SERVO_NR][1] = sesa[1];
  1683. #if EXTRUDERS > 3
  1684. servo_angles[SWITCHING_EXTRUDER_E23_SERVO_NR][0] = sesa[2];
  1685. servo_angles[SWITCHING_EXTRUDER_E23_SERVO_NR][1] = sesa[3];
  1686. #endif
  1687. #elif ENABLED(SWITCHING_NOZZLE)
  1688. constexpr uint16_t snsa[2] = SWITCHING_NOZZLE_SERVO_ANGLES;
  1689. servo_angles[SWITCHING_NOZZLE_SERVO_NR][0] = snsa[0];
  1690. servo_angles[SWITCHING_NOZZLE_SERVO_NR][1] = snsa[1];
  1691. #elif defined(Z_SERVO_ANGLES) && defined(Z_PROBE_SERVO_NR)
  1692. constexpr uint16_t zsa[2] = Z_SERVO_ANGLES;
  1693. servo_angles[Z_PROBE_SERVO_NR][0] = zsa[0];
  1694. servo_angles[Z_PROBE_SERVO_NR][1] = zsa[1];
  1695. #endif
  1696. #endif // HAS_SERVOS && EDITABLE_SERVO_ANGLES
  1697. #if ENABLED(DELTA)
  1698. const float adj[ABC] = DELTA_ENDSTOP_ADJ, dta[ABC] = DELTA_TOWER_ANGLE_TRIM;
  1699. delta_height = DELTA_HEIGHT;
  1700. COPY(delta_endstop_adj, adj);
  1701. delta_radius = DELTA_RADIUS;
  1702. delta_diagonal_rod = DELTA_DIAGONAL_ROD;
  1703. delta_segments_per_second = DELTA_SEGMENTS_PER_SECOND;
  1704. delta_calibration_radius = DELTA_CALIBRATION_RADIUS;
  1705. COPY(delta_tower_angle_trim, dta);
  1706. #elif ENABLED(X_DUAL_ENDSTOPS) || ENABLED(Y_DUAL_ENDSTOPS) || Z_MULTI_ENDSTOPS
  1707. #if ENABLED(X_DUAL_ENDSTOPS)
  1708. endstops.x2_endstop_adj = (
  1709. #ifdef X_DUAL_ENDSTOPS_ADJUSTMENT
  1710. X_DUAL_ENDSTOPS_ADJUSTMENT
  1711. #else
  1712. 0
  1713. #endif
  1714. );
  1715. #endif
  1716. #if ENABLED(Y_DUAL_ENDSTOPS)
  1717. endstops.y2_endstop_adj = (
  1718. #ifdef Y_DUAL_ENDSTOPS_ADJUSTMENT
  1719. Y_DUAL_ENDSTOPS_ADJUSTMENT
  1720. #else
  1721. 0
  1722. #endif
  1723. );
  1724. #endif
  1725. #if ENABLED(Z_DUAL_ENDSTOPS)
  1726. endstops.z2_endstop_adj = (
  1727. #ifdef Z_DUAL_ENDSTOPS_ADJUSTMENT
  1728. Z_DUAL_ENDSTOPS_ADJUSTMENT
  1729. #else
  1730. 0
  1731. #endif
  1732. );
  1733. #elif ENABLED(Z_TRIPLE_ENDSTOPS)
  1734. endstops.z2_endstop_adj = (
  1735. #ifdef Z_TRIPLE_ENDSTOPS_ADJUSTMENT2
  1736. Z_TRIPLE_ENDSTOPS_ADJUSTMENT2
  1737. #else
  1738. 0
  1739. #endif
  1740. );
  1741. endstops.z3_endstop_adj = (
  1742. #ifdef Z_TRIPLE_ENDSTOPS_ADJUSTMENT3
  1743. Z_TRIPLE_ENDSTOPS_ADJUSTMENT3
  1744. #else
  1745. 0
  1746. #endif
  1747. );
  1748. #endif
  1749. #endif
  1750. #if HAS_LCD_MENU
  1751. lcd_preheat_hotend_temp[0] = PREHEAT_1_TEMP_HOTEND;
  1752. lcd_preheat_hotend_temp[1] = PREHEAT_2_TEMP_HOTEND;
  1753. lcd_preheat_bed_temp[0] = PREHEAT_1_TEMP_BED;
  1754. lcd_preheat_bed_temp[1] = PREHEAT_2_TEMP_BED;
  1755. lcd_preheat_fan_speed[0] = PREHEAT_1_FAN_SPEED;
  1756. lcd_preheat_fan_speed[1] = PREHEAT_2_FAN_SPEED;
  1757. #endif
  1758. #if ENABLED(PIDTEMP)
  1759. HOTEND_LOOP() {
  1760. PID_PARAM(Kp, e) = float(DEFAULT_Kp);
  1761. PID_PARAM(Ki, e) = scalePID_i(DEFAULT_Ki);
  1762. PID_PARAM(Kd, e) = scalePID_d(DEFAULT_Kd);
  1763. #if ENABLED(PID_EXTRUSION_SCALING)
  1764. PID_PARAM(Kc, e) = DEFAULT_Kc;
  1765. #endif
  1766. }
  1767. #if ENABLED(PID_EXTRUSION_SCALING)
  1768. thermalManager.lpq_len = 20; // default last-position-queue size
  1769. #endif
  1770. #endif // PIDTEMP
  1771. #if ENABLED(PIDTEMPBED)
  1772. thermalManager.bed_pid.Kp = DEFAULT_bedKp;
  1773. thermalManager.bed_pid.Ki = scalePID_i(DEFAULT_bedKi);
  1774. thermalManager.bed_pid.Kd = scalePID_d(DEFAULT_bedKd);
  1775. #endif
  1776. #if HAS_LCD_CONTRAST
  1777. lcd_contrast = DEFAULT_LCD_CONTRAST;
  1778. #endif
  1779. #if ENABLED(FWRETRACT)
  1780. fwretract.reset();
  1781. #endif
  1782. #if DISABLED(NO_VOLUMETRICS)
  1783. parser.volumetric_enabled =
  1784. #if ENABLED(VOLUMETRIC_DEFAULT_ON)
  1785. true
  1786. #else
  1787. false
  1788. #endif
  1789. ;
  1790. for (uint8_t q = 0; q < COUNT(planner.filament_size); q++)
  1791. planner.filament_size[q] = DEFAULT_NOMINAL_FILAMENT_DIA;
  1792. #endif
  1793. endstops.enable_globally(
  1794. #if ENABLED(ENDSTOPS_ALWAYS_ON_DEFAULT)
  1795. true
  1796. #else
  1797. false
  1798. #endif
  1799. );
  1800. reset_stepper_drivers();
  1801. #if ENABLED(LIN_ADVANCE)
  1802. LOOP_L_N(i, EXTRUDERS) planner.extruder_advance_K[i] = LIN_ADVANCE_K;
  1803. #endif
  1804. #if HAS_MOTOR_CURRENT_PWM
  1805. uint32_t tmp_motor_current_setting[3] = PWM_MOTOR_CURRENT;
  1806. for (uint8_t q = 3; q--;)
  1807. stepper.digipot_current(q, (stepper.motor_current_setting[q] = tmp_motor_current_setting[q]));
  1808. #endif
  1809. #if ENABLED(SKEW_CORRECTION_GCODE)
  1810. planner.skew_factor.xy = XY_SKEW_FACTOR;
  1811. #if ENABLED(SKEW_CORRECTION_FOR_Z)
  1812. planner.skew_factor.xz = XZ_SKEW_FACTOR;
  1813. planner.skew_factor.yz = YZ_SKEW_FACTOR;
  1814. #endif
  1815. #endif
  1816. #if ENABLED(ADVANCED_PAUSE_FEATURE)
  1817. for (uint8_t e = 0; e < EXTRUDERS; e++) {
  1818. fc_settings[e].unload_length = FILAMENT_CHANGE_UNLOAD_LENGTH;
  1819. fc_settings[e].load_length = FILAMENT_CHANGE_FAST_LOAD_LENGTH;
  1820. }
  1821. #endif
  1822. postprocess();
  1823. #if ENABLED(EEPROM_CHITCHAT)
  1824. SERIAL_ECHO_START_P(port);
  1825. SERIAL_ECHOLNPGM_P(port, "Hardcoded Default Settings Loaded");
  1826. #endif
  1827. }
  1828. #if DISABLED(DISABLE_M503)
  1829. #define CONFIG_ECHO_START do{ if (!forReplay) SERIAL_ECHO_START_P(port); }while(0)
  1830. #if HAS_TRINAMIC
  1831. void say_M906(PORTARG_SOLO) { SERIAL_ECHOPGM_P(port, " M906"); }
  1832. #if ENABLED(HYBRID_THRESHOLD)
  1833. void say_M913(PORTARG_SOLO) { SERIAL_ECHOPGM_P(port, " M913"); }
  1834. #endif
  1835. #if USE_SENSORLESS
  1836. void say_M914(PORTARG_SOLO) { SERIAL_ECHOPGM_P(port, " M914"); }
  1837. #endif
  1838. #endif
  1839. #if ENABLED(ADVANCED_PAUSE_FEATURE)
  1840. void say_M603(PORTARG_SOLO) { SERIAL_ECHOPGM_P(port, " M603 "); }
  1841. #endif
  1842. inline void say_units(
  1843. #if NUM_SERIAL > 1
  1844. const int8_t port,
  1845. #endif
  1846. const bool colon
  1847. ) {
  1848. serialprintPGM_P(port,
  1849. #if ENABLED(INCH_MODE_SUPPORT)
  1850. parser.linear_unit_factor != 1.0 ? PSTR(" (in)") :
  1851. #endif
  1852. PSTR(" (mm)")
  1853. );
  1854. if (colon) SERIAL_ECHOLNPGM_P(port, ":");
  1855. }
  1856. #if NUM_SERIAL > 1
  1857. #define SAY_UNITS_P(PORT, COLON) say_units(PORT, COLON)
  1858. #else
  1859. #define SAY_UNITS_P(PORT, COLON) say_units(COLON)
  1860. #endif
  1861. /**
  1862. * M503 - Report current settings in RAM
  1863. *
  1864. * Unless specifically disabled, M503 is available even without EEPROM
  1865. */
  1866. void MarlinSettings::report(const bool forReplay
  1867. #if NUM_SERIAL > 1
  1868. , const int8_t port/*=-1*/
  1869. #endif
  1870. ) {
  1871. /**
  1872. * Announce current units, in case inches are being displayed
  1873. */
  1874. CONFIG_ECHO_START;
  1875. #if ENABLED(INCH_MODE_SUPPORT)
  1876. SERIAL_ECHOPGM_P(port, " G2");
  1877. SERIAL_CHAR_P(port, parser.linear_unit_factor == 1.0 ? '1' : '0');
  1878. SERIAL_ECHOPGM_P(port, " ;");
  1879. SAY_UNITS_P(port, false);
  1880. #else
  1881. SERIAL_ECHOPGM_P(port, " G21 ; Units in mm");
  1882. SAY_UNITS_P(port, false);
  1883. #endif
  1884. SERIAL_EOL_P(port);
  1885. #if HAS_LCD_MENU
  1886. // Temperature units - for Ultipanel temperature options
  1887. CONFIG_ECHO_START;
  1888. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  1889. SERIAL_ECHOPGM_P(port, " M149 ");
  1890. SERIAL_CHAR_P(port, parser.temp_units_code());
  1891. SERIAL_ECHOPGM_P(port, " ; Units in ");
  1892. serialprintPGM_P(port, parser.temp_units_name());
  1893. #else
  1894. SERIAL_ECHOLNPGM_P(port, " M149 C ; Units in Celsius");
  1895. #endif
  1896. #endif
  1897. SERIAL_EOL_P(port);
  1898. #if DISABLED(NO_VOLUMETRICS)
  1899. /**
  1900. * Volumetric extrusion M200
  1901. */
  1902. if (!forReplay) {
  1903. CONFIG_ECHO_START;
  1904. SERIAL_ECHOPGM_P(port, "Filament settings:");
  1905. if (parser.volumetric_enabled)
  1906. SERIAL_EOL_P(port);
  1907. else
  1908. SERIAL_ECHOLNPGM_P(port, " Disabled");
  1909. }
  1910. CONFIG_ECHO_START;
  1911. SERIAL_ECHOPAIR_P(port, " M200 D", LINEAR_UNIT(planner.filament_size[0]));
  1912. SERIAL_EOL_P(port);
  1913. #if EXTRUDERS > 1
  1914. CONFIG_ECHO_START;
  1915. SERIAL_ECHOPAIR_P(port, " M200 T1 D", LINEAR_UNIT(planner.filament_size[1]));
  1916. SERIAL_EOL_P(port);
  1917. #if EXTRUDERS > 2
  1918. CONFIG_ECHO_START;
  1919. SERIAL_ECHOPAIR_P(port, " M200 T2 D", LINEAR_UNIT(planner.filament_size[2]));
  1920. SERIAL_EOL_P(port);
  1921. #if EXTRUDERS > 3
  1922. CONFIG_ECHO_START;
  1923. SERIAL_ECHOPAIR_P(port, " M200 T3 D", LINEAR_UNIT(planner.filament_size[3]));
  1924. SERIAL_EOL_P(port);
  1925. #if EXTRUDERS > 4
  1926. CONFIG_ECHO_START;
  1927. SERIAL_ECHOPAIR_P(port, " M200 T4 D", LINEAR_UNIT(planner.filament_size[4]));
  1928. SERIAL_EOL_P(port);
  1929. #if EXTRUDERS > 5
  1930. CONFIG_ECHO_START;
  1931. SERIAL_ECHOPAIR_P(port, " M200 T5 D", LINEAR_UNIT(planner.filament_size[5]));
  1932. SERIAL_EOL_P(port);
  1933. #endif // EXTRUDERS > 5
  1934. #endif // EXTRUDERS > 4
  1935. #endif // EXTRUDERS > 3
  1936. #endif // EXTRUDERS > 2
  1937. #endif // EXTRUDERS > 1
  1938. if (!parser.volumetric_enabled) {
  1939. CONFIG_ECHO_START;
  1940. SERIAL_ECHOLNPGM_P(port, " M200 D0");
  1941. }
  1942. #endif // !NO_VOLUMETRICS
  1943. if (!forReplay) {
  1944. CONFIG_ECHO_START;
  1945. SERIAL_ECHOLNPGM_P(port, "Steps per unit:");
  1946. }
  1947. CONFIG_ECHO_START;
  1948. SERIAL_ECHOPAIR_P(port, " M92 X", LINEAR_UNIT(planner.settings.axis_steps_per_mm[X_AXIS]));
  1949. SERIAL_ECHOPAIR_P(port, " Y", LINEAR_UNIT(planner.settings.axis_steps_per_mm[Y_AXIS]));
  1950. SERIAL_ECHOPAIR_P(port, " Z", LINEAR_UNIT(planner.settings.axis_steps_per_mm[Z_AXIS]));
  1951. #if DISABLED(DISTINCT_E_FACTORS)
  1952. SERIAL_ECHOPAIR_P(port, " E", VOLUMETRIC_UNIT(planner.settings.axis_steps_per_mm[E_AXIS]));
  1953. #endif
  1954. SERIAL_EOL_P(port);
  1955. #if ENABLED(DISTINCT_E_FACTORS)
  1956. CONFIG_ECHO_START;
  1957. for (uint8_t i = 0; i < E_STEPPERS; i++) {
  1958. SERIAL_ECHOPAIR_P(port, " M92 T", (int)i);
  1959. SERIAL_ECHOLNPAIR_P(port, " E", VOLUMETRIC_UNIT(planner.settings.axis_steps_per_mm[E_AXIS + i]));
  1960. }
  1961. #endif
  1962. if (!forReplay) {
  1963. CONFIG_ECHO_START;
  1964. SERIAL_ECHOLNPGM_P(port, "Maximum feedrates (units/s):");
  1965. }
  1966. CONFIG_ECHO_START;
  1967. SERIAL_ECHOPAIR_P(port, " M203 X", LINEAR_UNIT(planner.settings.max_feedrate_mm_s[X_AXIS]));
  1968. SERIAL_ECHOPAIR_P(port, " Y", LINEAR_UNIT(planner.settings.max_feedrate_mm_s[Y_AXIS]));
  1969. SERIAL_ECHOPAIR_P(port, " Z", LINEAR_UNIT(planner.settings.max_feedrate_mm_s[Z_AXIS]));
  1970. #if DISABLED(DISTINCT_E_FACTORS)
  1971. SERIAL_ECHOPAIR_P(port, " E", VOLUMETRIC_UNIT(planner.settings.max_feedrate_mm_s[E_AXIS]));
  1972. #endif
  1973. SERIAL_EOL_P(port);
  1974. #if ENABLED(DISTINCT_E_FACTORS)
  1975. CONFIG_ECHO_START;
  1976. for (uint8_t i = 0; i < E_STEPPERS; i++) {
  1977. SERIAL_ECHOPAIR_P(port, " M203 T", (int)i);
  1978. SERIAL_ECHOLNPAIR_P(port, " E", VOLUMETRIC_UNIT(planner.settings.max_feedrate_mm_s[E_AXIS + i]));
  1979. }
  1980. #endif
  1981. if (!forReplay) {
  1982. CONFIG_ECHO_START;
  1983. SERIAL_ECHOLNPGM_P(port, "Maximum Acceleration (units/s2):");
  1984. }
  1985. CONFIG_ECHO_START;
  1986. SERIAL_ECHOPAIR_P(port, " M201 X", LINEAR_UNIT(planner.settings.max_acceleration_mm_per_s2[X_AXIS]));
  1987. SERIAL_ECHOPAIR_P(port, " Y", LINEAR_UNIT(planner.settings.max_acceleration_mm_per_s2[Y_AXIS]));
  1988. SERIAL_ECHOPAIR_P(port, " Z", LINEAR_UNIT(planner.settings.max_acceleration_mm_per_s2[Z_AXIS]));
  1989. #if DISABLED(DISTINCT_E_FACTORS)
  1990. SERIAL_ECHOPAIR_P(port, " E", VOLUMETRIC_UNIT(planner.settings.max_acceleration_mm_per_s2[E_AXIS]));
  1991. #endif
  1992. SERIAL_EOL_P(port);
  1993. #if ENABLED(DISTINCT_E_FACTORS)
  1994. CONFIG_ECHO_START;
  1995. for (uint8_t i = 0; i < E_STEPPERS; i++) {
  1996. SERIAL_ECHOPAIR_P(port, " M201 T", (int)i);
  1997. SERIAL_ECHOLNPAIR_P(port, " E", VOLUMETRIC_UNIT(planner.settings.max_acceleration_mm_per_s2[E_AXIS + i]));
  1998. }
  1999. #endif
  2000. if (!forReplay) {
  2001. CONFIG_ECHO_START;
  2002. SERIAL_ECHOLNPGM_P(port, "Acceleration (units/s2): P<print_accel> R<retract_accel> T<travel_accel>");
  2003. }
  2004. CONFIG_ECHO_START;
  2005. SERIAL_ECHOPAIR_P(port, " M204 P", LINEAR_UNIT(planner.settings.acceleration));
  2006. SERIAL_ECHOPAIR_P(port, " R", LINEAR_UNIT(planner.settings.retract_acceleration));
  2007. SERIAL_ECHOLNPAIR_P(port, " T", LINEAR_UNIT(planner.settings.travel_acceleration));
  2008. if (!forReplay) {
  2009. CONFIG_ECHO_START;
  2010. SERIAL_ECHOPGM_P(port, "Advanced: B<min_segment_time_us> S<min_feedrate> T<min_travel_feedrate>");
  2011. #if ENABLED(JUNCTION_DEVIATION)
  2012. SERIAL_ECHOPGM_P(port, " J<junc_dev>");
  2013. #endif
  2014. #if HAS_CLASSIC_JERK
  2015. SERIAL_ECHOPGM_P(port, " X<max_x_jerk> Y<max_y_jerk> Z<max_z_jerk>");
  2016. #if DISABLED(JUNCTION_DEVIATION) || DISABLED(LIN_ADVANCE)
  2017. SERIAL_ECHOPGM_P(port, " E<max_e_jerk>");
  2018. #endif
  2019. #endif
  2020. SERIAL_EOL_P(port);
  2021. }
  2022. CONFIG_ECHO_START;
  2023. SERIAL_ECHOPAIR_P(port, " M205 B", LINEAR_UNIT(planner.settings.min_segment_time_us));
  2024. SERIAL_ECHOPAIR_P(port, " S", LINEAR_UNIT(planner.settings.min_feedrate_mm_s));
  2025. SERIAL_ECHOPAIR_P(port, " T", LINEAR_UNIT(planner.settings.min_travel_feedrate_mm_s));
  2026. #if ENABLED(JUNCTION_DEVIATION)
  2027. SERIAL_ECHOPAIR_P(port, " J", LINEAR_UNIT(planner.junction_deviation_mm));
  2028. #endif
  2029. #if HAS_CLASSIC_JERK
  2030. SERIAL_ECHOPAIR_P(port, " X", LINEAR_UNIT(planner.max_jerk[X_AXIS]));
  2031. SERIAL_ECHOPAIR_P(port, " Y", LINEAR_UNIT(planner.max_jerk[Y_AXIS]));
  2032. SERIAL_ECHOPAIR_P(port, " Z", LINEAR_UNIT(planner.max_jerk[Z_AXIS]));
  2033. #if DISABLED(JUNCTION_DEVIATION) || DISABLED(LIN_ADVANCE)
  2034. SERIAL_ECHOPAIR_P(port, " E", LINEAR_UNIT(planner.max_jerk[E_AXIS]));
  2035. #endif
  2036. #endif
  2037. SERIAL_EOL_P(port);
  2038. #if HAS_M206_COMMAND
  2039. if (!forReplay) {
  2040. CONFIG_ECHO_START;
  2041. SERIAL_ECHOLNPGM_P(port, "Home offset:");
  2042. }
  2043. CONFIG_ECHO_START;
  2044. SERIAL_ECHOPAIR_P(port, " M206 X", LINEAR_UNIT(home_offset[X_AXIS]));
  2045. SERIAL_ECHOPAIR_P(port, " Y", LINEAR_UNIT(home_offset[Y_AXIS]));
  2046. SERIAL_ECHOLNPAIR_P(port, " Z", LINEAR_UNIT(home_offset[Z_AXIS]));
  2047. #endif
  2048. #if HAS_HOTEND_OFFSET
  2049. if (!forReplay) {
  2050. CONFIG_ECHO_START;
  2051. SERIAL_ECHOLNPGM_P(port, "Hotend offsets:");
  2052. }
  2053. CONFIG_ECHO_START;
  2054. for (uint8_t e = 1; e < HOTENDS; e++) {
  2055. SERIAL_ECHOPAIR_P(port, " M218 T", (int)e);
  2056. SERIAL_ECHOPAIR_P(port, " X", LINEAR_UNIT(hotend_offset[X_AXIS][e]));
  2057. SERIAL_ECHOPAIR_P(port, " Y", LINEAR_UNIT(hotend_offset[Y_AXIS][e]));
  2058. SERIAL_ECHO_P(port, " Z");
  2059. SERIAL_ECHO_F_P(port, LINEAR_UNIT(hotend_offset[Z_AXIS][e]), 3);
  2060. SERIAL_EOL_P(port);
  2061. }
  2062. #endif
  2063. /**
  2064. * Bed Leveling
  2065. */
  2066. #if HAS_LEVELING
  2067. #if ENABLED(MESH_BED_LEVELING)
  2068. if (!forReplay) {
  2069. CONFIG_ECHO_START;
  2070. SERIAL_ECHOLNPGM_P(port, "Mesh Bed Leveling:");
  2071. }
  2072. #elif ENABLED(AUTO_BED_LEVELING_UBL)
  2073. if (!forReplay) {
  2074. CONFIG_ECHO_START;
  2075. ubl.echo_name();
  2076. SERIAL_ECHOLNPGM_P(port, ":");
  2077. }
  2078. #elif HAS_ABL
  2079. if (!forReplay) {
  2080. CONFIG_ECHO_START;
  2081. SERIAL_ECHOLNPGM_P(port, "Auto Bed Leveling:");
  2082. }
  2083. #endif
  2084. CONFIG_ECHO_START;
  2085. SERIAL_ECHOPAIR_P(port, " M420 S", planner.leveling_active ? 1 : 0);
  2086. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  2087. SERIAL_ECHOPAIR_P(port, " Z", LINEAR_UNIT(planner.z_fade_height));
  2088. #endif
  2089. SERIAL_EOL_P(port);
  2090. #if ENABLED(MESH_BED_LEVELING)
  2091. if (leveling_is_valid()) {
  2092. for (uint8_t py = 0; py < GRID_MAX_POINTS_Y; py++) {
  2093. for (uint8_t px = 0; px < GRID_MAX_POINTS_X; px++) {
  2094. CONFIG_ECHO_START;
  2095. SERIAL_ECHOPAIR_P(port, " G29 S3 X", (int)px + 1);
  2096. SERIAL_ECHOPAIR_P(port, " Y", (int)py + 1);
  2097. SERIAL_ECHOPGM_P(port, " Z");
  2098. SERIAL_ECHO_F_P(port, LINEAR_UNIT(mbl.z_values[px][py]), 5);
  2099. SERIAL_EOL_P(port);
  2100. }
  2101. }
  2102. }
  2103. #elif ENABLED(AUTO_BED_LEVELING_UBL)
  2104. if (!forReplay) {
  2105. SERIAL_EOL_P(port);
  2106. ubl.report_state();
  2107. SERIAL_ECHOLNPAIR_P(port, "\nActive Mesh Slot: ", ubl.storage_slot);
  2108. SERIAL_ECHOPAIR_P(port, "EEPROM can hold ", calc_num_meshes());
  2109. SERIAL_ECHOLNPGM_P(port, " meshes.\n");
  2110. }
  2111. // ubl.report_current_mesh(PORTVAR_SOLO); // This is too verbose for large mesh's. A better (more terse)
  2112. // solution needs to be found.
  2113. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  2114. if (leveling_is_valid()) {
  2115. for (uint8_t py = 0; py < GRID_MAX_POINTS_Y; py++) {
  2116. for (uint8_t px = 0; px < GRID_MAX_POINTS_X; px++) {
  2117. CONFIG_ECHO_START;
  2118. SERIAL_ECHOPAIR_P(port, " G29 W I", (int)px);
  2119. SERIAL_ECHOPAIR_P(port, " J", (int)py);
  2120. SERIAL_ECHOPGM_P(port, " Z");
  2121. SERIAL_ECHO_F_P(port, LINEAR_UNIT(z_values[px][py]), 5);
  2122. SERIAL_EOL_P(port);
  2123. }
  2124. }
  2125. }
  2126. #endif
  2127. #endif // HAS_LEVELING
  2128. #if HAS_SERVOS && ENABLED(EDITABLE_SERVO_ANGLES)
  2129. if (!forReplay) {
  2130. CONFIG_ECHO_START;
  2131. SERIAL_ECHOLNPGM_P(port, "Servo Angles:");
  2132. }
  2133. for (uint8_t i = 0; i < NUM_SERVOS; i++) {
  2134. switch (i) {
  2135. #if ENABLED(SWITCHING_EXTRUDER)
  2136. case SWITCHING_EXTRUDER_SERVO_NR:
  2137. #if EXTRUDERS > 3
  2138. case SWITCHING_EXTRUDER_E23_SERVO_NR:
  2139. #endif
  2140. #elif ENABLED(SWITCHING_NOZZLE)
  2141. case SWITCHING_NOZZLE_SERVO_NR:
  2142. #elif defined(Z_SERVO_ANGLES) && defined(Z_PROBE_SERVO_NR)
  2143. case Z_PROBE_SERVO_NR:
  2144. #endif
  2145. CONFIG_ECHO_START;
  2146. SERIAL_ECHOPAIR_P(port, " M281 P", int(i));
  2147. SERIAL_ECHOPAIR_P(port, " L", servo_angles[i][0]);
  2148. SERIAL_ECHOPAIR_P(port, " U", servo_angles[i][1]);
  2149. SERIAL_EOL_P(port);
  2150. default: break;
  2151. }
  2152. }
  2153. #endif // HAS_SERVOS && EDITABLE_SERVO_ANGLES
  2154. #if HAS_SCARA_OFFSET
  2155. if (!forReplay) {
  2156. CONFIG_ECHO_START;
  2157. SERIAL_ECHOLNPGM_P(port, "SCARA settings: S<seg-per-sec> P<theta-psi-offset> T<theta-offset>");
  2158. }
  2159. CONFIG_ECHO_START;
  2160. SERIAL_ECHOPAIR_P(port, " M665 S", delta_segments_per_second);
  2161. SERIAL_ECHOPAIR_P(port, " P", scara_home_offset[A_AXIS]);
  2162. SERIAL_ECHOPAIR_P(port, " T", scara_home_offset[B_AXIS]);
  2163. SERIAL_ECHOPAIR_P(port, " Z", LINEAR_UNIT(scara_home_offset[Z_AXIS]));
  2164. SERIAL_EOL_P(port);
  2165. #elif ENABLED(DELTA)
  2166. if (!forReplay) {
  2167. CONFIG_ECHO_START;
  2168. SERIAL_ECHOLNPGM_P(port, "Endstop adjustment:");
  2169. }
  2170. CONFIG_ECHO_START;
  2171. SERIAL_ECHOPAIR_P(port, " M666 X", LINEAR_UNIT(delta_endstop_adj[X_AXIS]));
  2172. SERIAL_ECHOPAIR_P(port, " Y", LINEAR_UNIT(delta_endstop_adj[Y_AXIS]));
  2173. SERIAL_ECHOLNPAIR_P(port, " Z", LINEAR_UNIT(delta_endstop_adj[Z_AXIS]));
  2174. if (!forReplay) {
  2175. CONFIG_ECHO_START;
  2176. SERIAL_ECHOLNPGM_P(port, "Delta settings: L<diagonal_rod> R<radius> H<height> S<segments_per_s> B<calibration radius> XYZ<tower angle corrections>");
  2177. }
  2178. CONFIG_ECHO_START;
  2179. SERIAL_ECHOPAIR_P(port, " M665 L", LINEAR_UNIT(delta_diagonal_rod));
  2180. SERIAL_ECHOPAIR_P(port, " R", LINEAR_UNIT(delta_radius));
  2181. SERIAL_ECHOPAIR_P(port, " H", LINEAR_UNIT(delta_height));
  2182. SERIAL_ECHOPAIR_P(port, " S", delta_segments_per_second);
  2183. SERIAL_ECHOPAIR_P(port, " B", LINEAR_UNIT(delta_calibration_radius));
  2184. SERIAL_ECHOPAIR_P(port, " X", LINEAR_UNIT(delta_tower_angle_trim[A_AXIS]));
  2185. SERIAL_ECHOPAIR_P(port, " Y", LINEAR_UNIT(delta_tower_angle_trim[B_AXIS]));
  2186. SERIAL_ECHOPAIR_P(port, " Z", LINEAR_UNIT(delta_tower_angle_trim[C_AXIS]));
  2187. SERIAL_EOL_P(port);
  2188. #elif ENABLED(X_DUAL_ENDSTOPS) || ENABLED(Y_DUAL_ENDSTOPS) || ENABLED(Z_DUAL_ENDSTOPS)
  2189. if (!forReplay) {
  2190. CONFIG_ECHO_START;
  2191. SERIAL_ECHOLNPGM_P(port, "Endstop adjustment:");
  2192. }
  2193. CONFIG_ECHO_START;
  2194. SERIAL_ECHOPGM_P(port, " M666");
  2195. #if ENABLED(X_DUAL_ENDSTOPS)
  2196. SERIAL_ECHOPAIR_P(port, " X", LINEAR_UNIT(endstops.x2_endstop_adj));
  2197. #endif
  2198. #if ENABLED(Y_DUAL_ENDSTOPS)
  2199. SERIAL_ECHOPAIR_P(port, " Y", LINEAR_UNIT(endstops.y2_endstop_adj));
  2200. #endif
  2201. #if ENABLED(Z_TRIPLE_ENDSTOPS)
  2202. SERIAL_ECHOLNPAIR_P(port, "S1 Z", LINEAR_UNIT(endstops.z2_endstop_adj));
  2203. CONFIG_ECHO_START;
  2204. SERIAL_ECHOPAIR_P(port, " M666 S2 Z", LINEAR_UNIT(endstops.z3_endstop_adj));
  2205. #elif ENABLED(Z_DUAL_ENDSTOPS)
  2206. SERIAL_ECHOPAIR_P(port, " Z", LINEAR_UNIT(endstops.z2_endstop_adj));
  2207. #endif
  2208. SERIAL_EOL_P(port);
  2209. #endif // [XYZ]_DUAL_ENDSTOPS
  2210. #if HAS_LCD_MENU
  2211. if (!forReplay) {
  2212. CONFIG_ECHO_START;
  2213. SERIAL_ECHOLNPGM_P(port, "Material heatup parameters:");
  2214. }
  2215. for (uint8_t i = 0; i < COUNT(lcd_preheat_hotend_temp); i++) {
  2216. CONFIG_ECHO_START;
  2217. SERIAL_ECHOPAIR_P(port, " M145 S", (int)i);
  2218. SERIAL_ECHOPAIR_P(port, " H", TEMP_UNIT(lcd_preheat_hotend_temp[i]));
  2219. SERIAL_ECHOPAIR_P(port, " B", TEMP_UNIT(lcd_preheat_bed_temp[i]));
  2220. SERIAL_ECHOLNPAIR_P(port, " F", int(lcd_preheat_fan_speed[i]));
  2221. }
  2222. #endif
  2223. #if HAS_PID_HEATING
  2224. if (!forReplay) {
  2225. CONFIG_ECHO_START;
  2226. SERIAL_ECHOLNPGM_P(port, "PID settings:");
  2227. }
  2228. #if ENABLED(PIDTEMP)
  2229. #if HOTENDS > 1
  2230. if (forReplay) {
  2231. HOTEND_LOOP() {
  2232. CONFIG_ECHO_START;
  2233. SERIAL_ECHOPAIR_P(port, " M301 E", e);
  2234. SERIAL_ECHOPAIR_P(port, " P", PID_PARAM(Kp, e));
  2235. SERIAL_ECHOPAIR_P(port, " I", unscalePID_i(PID_PARAM(Ki, e)));
  2236. SERIAL_ECHOPAIR_P(port, " D", unscalePID_d(PID_PARAM(Kd, e)));
  2237. #if ENABLED(PID_EXTRUSION_SCALING)
  2238. SERIAL_ECHOPAIR_P(port, " C", PID_PARAM(Kc, e));
  2239. if (e == 0) SERIAL_ECHOPAIR_P(port, " L", thermalManager.lpq_len);
  2240. #endif
  2241. SERIAL_EOL_P(port);
  2242. }
  2243. }
  2244. else
  2245. #endif // HOTENDS > 1
  2246. // !forReplay || HOTENDS == 1
  2247. {
  2248. CONFIG_ECHO_START;
  2249. SERIAL_ECHOPAIR_P(port, " M301 P", PID_PARAM(Kp, 0)); // for compatibility with hosts, only echo values for E0
  2250. SERIAL_ECHOPAIR_P(port, " I", unscalePID_i(PID_PARAM(Ki, 0)));
  2251. SERIAL_ECHOPAIR_P(port, " D", unscalePID_d(PID_PARAM(Kd, 0)));
  2252. #if ENABLED(PID_EXTRUSION_SCALING)
  2253. SERIAL_ECHOPAIR_P(port, " C", PID_PARAM(Kc, 0));
  2254. SERIAL_ECHOPAIR_P(port, " L", thermalManager.lpq_len);
  2255. #endif
  2256. SERIAL_EOL_P(port);
  2257. }
  2258. #endif // PIDTEMP
  2259. #if ENABLED(PIDTEMPBED)
  2260. CONFIG_ECHO_START;
  2261. SERIAL_ECHOPAIR_P(port, " M304 P", thermalManager.bed_pid.Kp);
  2262. SERIAL_ECHOPAIR_P(port, " I", unscalePID_i(thermalManager.bed_pid.Ki));
  2263. SERIAL_ECHOPAIR_P(port, " D", unscalePID_d(thermalManager.bed_pid.Kd));
  2264. SERIAL_EOL_P(port);
  2265. #endif
  2266. #endif // PIDTEMP || PIDTEMPBED
  2267. #if HAS_LCD_CONTRAST
  2268. if (!forReplay) {
  2269. CONFIG_ECHO_START;
  2270. SERIAL_ECHOLNPGM_P(port, "LCD Contrast:");
  2271. }
  2272. CONFIG_ECHO_START;
  2273. SERIAL_ECHOLNPAIR_P(port, " M250 C", lcd_contrast);
  2274. #endif
  2275. #if ENABLED(FWRETRACT)
  2276. if (!forReplay) {
  2277. CONFIG_ECHO_START;
  2278. SERIAL_ECHOLNPGM_P(port, "Retract: S<length> F<units/m> Z<lift>");
  2279. }
  2280. CONFIG_ECHO_START;
  2281. SERIAL_ECHOPAIR_P(port, " M207 S", LINEAR_UNIT(fwretract.settings.retract_length));
  2282. SERIAL_ECHOPAIR_P(port, " W", LINEAR_UNIT(fwretract.settings.swap_retract_length));
  2283. SERIAL_ECHOPAIR_P(port, " F", MMS_TO_MMM(LINEAR_UNIT(fwretract.settings.retract_feedrate_mm_s)));
  2284. SERIAL_ECHOLNPAIR_P(port, " Z", LINEAR_UNIT(fwretract.settings.retract_zraise));
  2285. if (!forReplay) {
  2286. CONFIG_ECHO_START;
  2287. SERIAL_ECHOLNPGM_P(port, "Recover: S<length> F<units/m>");
  2288. }
  2289. CONFIG_ECHO_START;
  2290. SERIAL_ECHOPAIR_P(port, " M208 S", LINEAR_UNIT(fwretract.settings.retract_recover_length));
  2291. SERIAL_ECHOPAIR_P(port, " W", LINEAR_UNIT(fwretract.settings.swap_retract_recover_length));
  2292. SERIAL_ECHOLNPAIR_P(port, " F", MMS_TO_MMM(LINEAR_UNIT(fwretract.settings.retract_recover_feedrate_mm_s)));
  2293. #if ENABLED(FWRETRACT_AUTORETRACT)
  2294. if (!forReplay) {
  2295. CONFIG_ECHO_START;
  2296. SERIAL_ECHOLNPGM_P(port, "Auto-Retract: S=0 to disable, 1 to interpret E-only moves as retract/recover");
  2297. }
  2298. CONFIG_ECHO_START;
  2299. SERIAL_ECHOLNPAIR_P(port, " M209 S", fwretract.autoretract_enabled ? 1 : 0);
  2300. #endif // FWRETRACT_AUTORETRACT
  2301. #endif // FWRETRACT
  2302. /**
  2303. * Probe Offset
  2304. */
  2305. #if HAS_BED_PROBE
  2306. if (!forReplay) {
  2307. CONFIG_ECHO_START;
  2308. SERIAL_ECHOPGM_P(port, "Z-Probe Offset (mm):");
  2309. SAY_UNITS_P(port, true);
  2310. }
  2311. CONFIG_ECHO_START;
  2312. SERIAL_ECHOLNPAIR_P(port, " M851 Z", LINEAR_UNIT(zprobe_zoffset));
  2313. #endif
  2314. /**
  2315. * Bed Skew Correction
  2316. */
  2317. #if ENABLED(SKEW_CORRECTION_GCODE)
  2318. if (!forReplay) {
  2319. CONFIG_ECHO_START;
  2320. SERIAL_ECHOLNPGM_P(port, "Skew Factor: ");
  2321. }
  2322. CONFIG_ECHO_START;
  2323. #if ENABLED(SKEW_CORRECTION_FOR_Z)
  2324. SERIAL_ECHOPGM_P(port, " M852 I");
  2325. SERIAL_ECHO_F_P(port, LINEAR_UNIT(planner.skew_factor.xy), 6);
  2326. SERIAL_ECHOPGM_P(port, " J");
  2327. SERIAL_ECHO_F_P(port, LINEAR_UNIT(planner.skew_factor.xz), 6);
  2328. SERIAL_ECHOPGM_P(port, " K");
  2329. SERIAL_ECHO_F_P(port, LINEAR_UNIT(planner.skew_factor.yz), 6);
  2330. SERIAL_EOL_P(port);
  2331. #else
  2332. SERIAL_ECHOPGM_P(port, " M852 S");
  2333. SERIAL_ECHO_F_P(port, LINEAR_UNIT(planner.skew_factor.xy), 6);
  2334. SERIAL_EOL_P(port);
  2335. #endif
  2336. #endif
  2337. #if HAS_TRINAMIC
  2338. /**
  2339. * TMC stepper driver current
  2340. */
  2341. if (!forReplay) {
  2342. CONFIG_ECHO_START;
  2343. SERIAL_ECHOLNPGM_P(port, "Stepper driver current:");
  2344. }
  2345. CONFIG_ECHO_START;
  2346. #if AXIS_IS_TMC(X) || AXIS_IS_TMC(Y) || AXIS_IS_TMC(Z)
  2347. say_M906(PORTVAR_SOLO);
  2348. #endif
  2349. #if AXIS_IS_TMC(X)
  2350. SERIAL_ECHOPAIR_P(port, " X", stepperX.getMilliamps());
  2351. #endif
  2352. #if AXIS_IS_TMC(Y)
  2353. SERIAL_ECHOPAIR_P(port, " Y", stepperY.getMilliamps());
  2354. #endif
  2355. #if AXIS_IS_TMC(Z)
  2356. SERIAL_ECHOPAIR_P(port, " Z", stepperZ.getMilliamps());
  2357. #endif
  2358. #if AXIS_IS_TMC(X) || AXIS_IS_TMC(Y) || AXIS_IS_TMC(Z)
  2359. SERIAL_EOL_P(port);
  2360. #endif
  2361. #if AXIS_IS_TMC(X2) || AXIS_IS_TMC(Y2) || AXIS_IS_TMC(Z2)
  2362. say_M906(PORTVAR_SOLO);
  2363. SERIAL_ECHOPGM_P(port, " I1");
  2364. #endif
  2365. #if AXIS_IS_TMC(X2)
  2366. SERIAL_ECHOPAIR_P(port, " X", stepperX2.getMilliamps());
  2367. #endif
  2368. #if AXIS_IS_TMC(Y2)
  2369. SERIAL_ECHOPAIR_P(port, " Y", stepperY2.getMilliamps());
  2370. #endif
  2371. #if AXIS_IS_TMC(Z2)
  2372. SERIAL_ECHOPAIR_P(port, " Z", stepperZ2.getMilliamps());
  2373. #endif
  2374. #if AXIS_IS_TMC(X2) || AXIS_IS_TMC(Y2) || AXIS_IS_TMC(Z2)
  2375. SERIAL_EOL_P(port);
  2376. #endif
  2377. #if AXIS_IS_TMC(Z3)
  2378. say_M906(PORTVAR_SOLO);
  2379. SERIAL_ECHOLNPAIR_P(port, " I2 Z", stepperZ3.getMilliamps());
  2380. #endif
  2381. #if AXIS_IS_TMC(E0)
  2382. say_M906(PORTVAR_SOLO);
  2383. SERIAL_ECHOLNPAIR_P(port, " T0 E", stepperE0.getMilliamps());
  2384. #endif
  2385. #if AXIS_IS_TMC(E1)
  2386. say_M906(PORTVAR_SOLO);
  2387. SERIAL_ECHOLNPAIR_P(port, " T1 E", stepperE1.getMilliamps());
  2388. #endif
  2389. #if AXIS_IS_TMC(E2)
  2390. say_M906(PORTVAR_SOLO);
  2391. SERIAL_ECHOLNPAIR_P(port, " T2 E", stepperE2.getMilliamps());
  2392. #endif
  2393. #if AXIS_IS_TMC(E3)
  2394. say_M906(PORTVAR_SOLO);
  2395. SERIAL_ECHOLNPAIR_P(port, " T3 E", stepperE3.getMilliamps());
  2396. #endif
  2397. #if AXIS_IS_TMC(E4)
  2398. say_M906(PORTVAR_SOLO);
  2399. SERIAL_ECHOLNPAIR_P(port, " T4 E", stepperE4.getMilliamps());
  2400. #endif
  2401. #if AXIS_IS_TMC(E5)
  2402. say_M906(PORTVAR_SOLO);
  2403. SERIAL_ECHOLNPAIR_P(port, " T5 E", stepperE5.getMilliamps());
  2404. #endif
  2405. SERIAL_EOL_P(port);
  2406. /**
  2407. * TMC Hybrid Threshold
  2408. */
  2409. #if ENABLED(HYBRID_THRESHOLD)
  2410. if (!forReplay) {
  2411. CONFIG_ECHO_START;
  2412. SERIAL_ECHOLNPGM_P(port, "Hybrid Threshold:");
  2413. }
  2414. CONFIG_ECHO_START;
  2415. #if AXIS_HAS_STEALTHCHOP(X) || AXIS_HAS_STEALTHCHOP(Y) || AXIS_HAS_STEALTHCHOP(Z)
  2416. say_M913(PORTVAR_SOLO);
  2417. #endif
  2418. #if AXIS_HAS_STEALTHCHOP(X)
  2419. SERIAL_ECHOPAIR_P(port, " X", TMC_GET_PWMTHRS(X, X));
  2420. #endif
  2421. #if AXIS_HAS_STEALTHCHOP(Y)
  2422. SERIAL_ECHOPAIR_P(port, " Y", TMC_GET_PWMTHRS(Y, Y));
  2423. #endif
  2424. #if AXIS_HAS_STEALTHCHOP(Z)
  2425. SERIAL_ECHOPAIR_P(port, " Z", TMC_GET_PWMTHRS(Z, Z));
  2426. #endif
  2427. #if AXIS_HAS_STEALTHCHOP(X) || AXIS_HAS_STEALTHCHOP(Y) || AXIS_HAS_STEALTHCHOP(Z)
  2428. SERIAL_EOL_P(port);
  2429. #endif
  2430. #if AXIS_HAS_STEALTHCHOP(X2) || AXIS_HAS_STEALTHCHOP(Y2) || AXIS_HAS_STEALTHCHOP(Z2)
  2431. say_M913(PORTVAR_SOLO);
  2432. SERIAL_ECHOPGM_P(port, " I1");
  2433. #endif
  2434. #if AXIS_HAS_STEALTHCHOP(X2)
  2435. SERIAL_ECHOPAIR_P(port, " X", TMC_GET_PWMTHRS(X, X2));
  2436. #endif
  2437. #if AXIS_HAS_STEALTHCHOP(Y2)
  2438. SERIAL_ECHOPAIR_P(port, " Y", TMC_GET_PWMTHRS(Y, Y2));
  2439. #endif
  2440. #if AXIS_HAS_STEALTHCHOP(Z2)
  2441. SERIAL_ECHOPAIR_P(port, " Z", TMC_GET_PWMTHRS(Z, Z2));
  2442. #endif
  2443. #if AXIS_HAS_STEALTHCHOP(X2) || AXIS_HAS_STEALTHCHOP(Y2) || AXIS_HAS_STEALTHCHOP(Z2)
  2444. SERIAL_EOL_P(port);
  2445. #endif
  2446. #if AXIS_HAS_STEALTHCHOP(Z3)
  2447. say_M913(PORTVAR_SOLO);
  2448. SERIAL_ECHOPGM_P(port, " I2");
  2449. SERIAL_ECHOLNPAIR_P(port, " Z", TMC_GET_PWMTHRS(Z, Z3));
  2450. #endif
  2451. #if AXIS_HAS_STEALTHCHOP(E0)
  2452. say_M913(PORTVAR_SOLO);
  2453. SERIAL_ECHOLNPAIR_P(port, " T0 E", TMC_GET_PWMTHRS(E, E0));
  2454. #endif
  2455. #if AXIS_HAS_STEALTHCHOP(E1)
  2456. say_M913(PORTVAR_SOLO);
  2457. SERIAL_ECHOLNPAIR_P(port, " T1 E", TMC_GET_PWMTHRS(E, E1));
  2458. #endif
  2459. #if AXIS_HAS_STEALTHCHOP(E2)
  2460. say_M913(PORTVAR_SOLO);
  2461. SERIAL_ECHOLNPAIR_P(port, " T2 E", TMC_GET_PWMTHRS(E, E2));
  2462. #endif
  2463. #if AXIS_HAS_STEALTHCHOP(E3)
  2464. say_M913(PORTVAR_SOLO);
  2465. SERIAL_ECHOLNPAIR_P(port, " T3 E", TMC_GET_PWMTHRS(E, E3));
  2466. #endif
  2467. #if AXIS_HAS_STEALTHCHOP(E4)
  2468. say_M913(PORTVAR_SOLO);
  2469. SERIAL_ECHOLNPAIR_P(port, " T4 E", TMC_GET_PWMTHRS(E, E4));
  2470. #endif
  2471. #if AXIS_HAS_STEALTHCHOP(E5)
  2472. say_M913(PORTVAR_SOLO);
  2473. SERIAL_ECHOLNPAIR_P(port, " T5 E", TMC_GET_PWMTHRS(E, E5));
  2474. #endif
  2475. SERIAL_EOL_P(port);
  2476. #endif // HYBRID_THRESHOLD
  2477. /**
  2478. * TMC Sensorless homing thresholds
  2479. */
  2480. #if USE_SENSORLESS
  2481. if (!forReplay) {
  2482. CONFIG_ECHO_START;
  2483. SERIAL_ECHOLNPGM_P(port, "TMC2130 StallGuard threshold:");
  2484. }
  2485. CONFIG_ECHO_START;
  2486. #if X_SENSORLESS || Y_SENSORLESS || Z_SENSORLESS
  2487. say_M914(PORTVAR_SOLO);
  2488. #if X_SENSORLESS
  2489. SERIAL_ECHOPAIR_P(port, " X", stepperX.sgt());
  2490. #endif
  2491. #if Y_SENSORLESS
  2492. SERIAL_ECHOPAIR_P(port, " Y", stepperY.sgt());
  2493. #endif
  2494. #if Z_SENSORLESS
  2495. SERIAL_ECHOPAIR_P(port, " Z", stepperZ.sgt());
  2496. #endif
  2497. SERIAL_EOL_P(port);
  2498. #endif
  2499. #define HAS_X2_SENSORLESS (defined(X_STALL_SENSITIVITY) && AXIS_HAS_STALLGUARD(X2))
  2500. #define HAS_Y2_SENSORLESS (defined(Y_STALL_SENSITIVITY) && AXIS_HAS_STALLGUARD(Y2))
  2501. #define HAS_Z2_SENSORLESS (defined(Z_STALL_SENSITIVITY) && AXIS_HAS_STALLGUARD(Z2))
  2502. #define HAS_Z3_SENSORLESS (defined(Z_STALL_SENSITIVITY) && AXIS_HAS_STALLGUARD(Z3))
  2503. #if HAS_X2_SENSORLESS || HAS_Y2_SENSORLESS || HAS_Z2_SENSORLESS
  2504. say_M914(PORTVAR_SOLO);
  2505. SERIAL_ECHOPGM_P(port, " I1");
  2506. #if HAS_X2_SENSORLESS
  2507. SERIAL_ECHOPAIR_P(port, " X", stepperX2.sgt());
  2508. #endif
  2509. #if HAS_Y2_SENSORLESS
  2510. SERIAL_ECHOPAIR_P(port, " Y", stepperY2.sgt());
  2511. #endif
  2512. #if HAS_Z2_SENSORLESS
  2513. SERIAL_ECHOPAIR_P(port, " Z", stepperZ2.sgt());
  2514. #endif
  2515. SERIAL_EOL_P(port);
  2516. #endif
  2517. #if HAS_Z3_SENSORLESS
  2518. say_M914(PORTVAR_SOLO);
  2519. SERIAL_ECHOPGM_P(port, " I2");
  2520. SERIAL_ECHOLNPAIR_P(port, " Z", stepperZ3.sgt());
  2521. #endif
  2522. #endif // USE_SENSORLESS
  2523. #endif // HAS_TRINAMIC
  2524. /**
  2525. * Linear Advance
  2526. */
  2527. #if ENABLED(LIN_ADVANCE)
  2528. if (!forReplay) {
  2529. CONFIG_ECHO_START;
  2530. SERIAL_ECHOLNPGM_P(port, "Linear Advance:");
  2531. }
  2532. CONFIG_ECHO_START;
  2533. #if EXTRUDERS < 2
  2534. SERIAL_ECHOLNPAIR_P(port, " M900 K", planner.extruder_advance_K[0]);
  2535. #else
  2536. LOOP_L_N(i, EXTRUDERS) {
  2537. SERIAL_ECHOPAIR_P(port, " M900 T", int(i));
  2538. SERIAL_ECHOLNPAIR_P(port, " K", planner.extruder_advance_K[i]);
  2539. }
  2540. #endif
  2541. #endif
  2542. #if HAS_MOTOR_CURRENT_PWM
  2543. CONFIG_ECHO_START;
  2544. if (!forReplay) {
  2545. SERIAL_ECHOLNPGM_P(port, "Stepper motor currents:");
  2546. CONFIG_ECHO_START;
  2547. }
  2548. SERIAL_ECHOPAIR_P(port, " M907 X", stepper.motor_current_setting[0]);
  2549. SERIAL_ECHOPAIR_P(port, " Z", stepper.motor_current_setting[1]);
  2550. SERIAL_ECHOPAIR_P(port, " E", stepper.motor_current_setting[2]);
  2551. SERIAL_EOL_P(port);
  2552. #endif
  2553. /**
  2554. * Advanced Pause filament load & unload lengths
  2555. */
  2556. #if ENABLED(ADVANCED_PAUSE_FEATURE)
  2557. if (!forReplay) {
  2558. CONFIG_ECHO_START;
  2559. SERIAL_ECHOLNPGM_P(port, "Filament load/unload lengths:");
  2560. }
  2561. CONFIG_ECHO_START;
  2562. #if EXTRUDERS == 1
  2563. say_M603(PORTVAR_SOLO);
  2564. SERIAL_ECHOPAIR_P(port, "L", LINEAR_UNIT(fc_settings[0].load_length));
  2565. SERIAL_ECHOLNPAIR_P(port, " U", LINEAR_UNIT(fc_settings[0].unload_length));
  2566. #else
  2567. say_M603(PORTVAR_SOLO);
  2568. SERIAL_ECHOPAIR_P(port, "T0 L", LINEAR_UNIT(fc_settings[0].load_length));
  2569. SERIAL_ECHOLNPAIR_P(port, " U", LINEAR_UNIT(fc_settings[0].unload_length));
  2570. CONFIG_ECHO_START;
  2571. say_M603(PORTVAR_SOLO);
  2572. SERIAL_ECHOPAIR_P(port, "T1 L", LINEAR_UNIT(fc_settings[1].load_length));
  2573. SERIAL_ECHOLNPAIR_P(port, " U", LINEAR_UNIT(fc_settings[1].unload_length));
  2574. #if EXTRUDERS > 2
  2575. CONFIG_ECHO_START;
  2576. say_M603(PORTVAR_SOLO);
  2577. SERIAL_ECHOPAIR_P(port, "T2 L", LINEAR_UNIT(fc_settings[2].load_length));
  2578. SERIAL_ECHOLNPAIR_P(port, " U", LINEAR_UNIT(fc_settings[2].unload_length));
  2579. #if EXTRUDERS > 3
  2580. CONFIG_ECHO_START;
  2581. say_M603(PORTVAR_SOLO);
  2582. SERIAL_ECHOPAIR_P(port, "T3 L", LINEAR_UNIT(fc_settings[3].load_length));
  2583. SERIAL_ECHOLNPAIR_P(port, " U", LINEAR_UNIT(fc_settings[3].unload_length));
  2584. #if EXTRUDERS > 4
  2585. CONFIG_ECHO_START;
  2586. say_M603(PORTVAR_SOLO);
  2587. SERIAL_ECHOPAIR_P(port, "T4 L", LINEAR_UNIT(fc_settings[4].load_length));
  2588. SERIAL_ECHOLNPAIR_P(port, " U", LINEAR_UNIT(fc_settings[4].unload_length));
  2589. #if EXTRUDERS > 5
  2590. CONFIG_ECHO_START;
  2591. say_M603(PORTVAR_SOLO);
  2592. SERIAL_ECHOPAIR_P(port, "T5 L", LINEAR_UNIT(fc_settings[5].load_length));
  2593. SERIAL_ECHOLNPAIR_P(port, " U", LINEAR_UNIT(fc_settings[5].unload_length));
  2594. #endif // EXTRUDERS > 5
  2595. #endif // EXTRUDERS > 4
  2596. #endif // EXTRUDERS > 3
  2597. #endif // EXTRUDERS > 2
  2598. #endif // EXTRUDERS == 1
  2599. #endif // ADVANCED_PAUSE_FEATURE
  2600. #if EXTRUDERS > 1
  2601. CONFIG_ECHO_START;
  2602. if (!forReplay) {
  2603. SERIAL_ECHOLNPGM_P(port, "Tool-changing:");
  2604. CONFIG_ECHO_START;
  2605. }
  2606. M217_report(true);
  2607. #endif
  2608. }
  2609. #endif // !DISABLE_M503
  2610. #pragma pack(pop)