My Marlin configs for Fabrikator Mini and CTC i3 Pro B
Du kan inte välja fler än 25 ämnen Ämnen måste starta med en bokstav eller siffra, kan innehålla bindestreck ('-') och vara max 35 tecken långa.

ConfigurationStore.cpp 20KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693
  1. /**
  2. * ConfigurationStore.cpp
  3. *
  4. * Configuration and EEPROM storage
  5. *
  6. * V16 EEPROM Layout:
  7. *
  8. * ver
  9. * axis_steps_per_unit (x4)
  10. * max_feedrate (x4)
  11. * max_acceleration_units_per_sq_second (x4)
  12. * acceleration
  13. * retract_acceleration
  14. * travel_aceeleration
  15. * minimumfeedrate
  16. * mintravelfeedrate
  17. * minsegmenttime
  18. * max_xy_jerk
  19. * max_z_jerk
  20. * max_e_jerk
  21. * add_homing (x3)
  22. *
  23. * Mesh bed leveling:
  24. * active
  25. * z_values[][]
  26. *
  27. * DELTA:
  28. * endstop_adj (x3)
  29. * delta_radius
  30. * delta_diagonal_rod
  31. * delta_segments_per_second
  32. *
  33. * ULTIPANEL:
  34. * plaPreheatHotendTemp
  35. * plaPreheatHPBTemp
  36. * plaPreheatFanSpeed
  37. * absPreheatHotendTemp
  38. * absPreheatHPBTemp
  39. * absPreheatFanSpeed
  40. * zprobe_zoffset
  41. *
  42. * PIDTEMP:
  43. * Kp[0], Ki[0], Kd[0], Kc[0]
  44. * Kp[1], Ki[1], Kd[1], Kc[1]
  45. * Kp[2], Ki[2], Kd[2], Kc[2]
  46. * Kp[3], Ki[3], Kd[3], Kc[3]
  47. *
  48. * DOGLCD:
  49. * lcd_contrast
  50. *
  51. * SCARA:
  52. * axis_scaling (x3)
  53. *
  54. * FWRETRACT:
  55. * autoretract_enabled
  56. * retract_length
  57. * retract_length_swap
  58. * retract_feedrate
  59. * retract_zlift
  60. * retract_recover_length
  61. * retract_recover_length_swap
  62. * retract_recover_feedrate
  63. *
  64. * volumetric_enabled
  65. *
  66. * filament_size (x4)
  67. *
  68. */
  69. #include "Marlin.h"
  70. #include "language.h"
  71. #include "planner.h"
  72. #include "temperature.h"
  73. #include "ultralcd.h"
  74. #include "ConfigurationStore.h"
  75. #if defined(MESH_BED_LEVELING)
  76. #include "mesh_bed_leveling.h"
  77. #endif // MESH_BED_LEVELING
  78. void _EEPROM_writeData(int &pos, uint8_t* value, uint8_t size) {
  79. uint8_t c;
  80. while(size--) {
  81. eeprom_write_byte((unsigned char*)pos, *value);
  82. c = eeprom_read_byte((unsigned char*)pos);
  83. if (c != *value) {
  84. SERIAL_ECHO_START;
  85. SERIAL_ECHOLNPGM(MSG_ERR_EEPROM_WRITE);
  86. }
  87. pos++;
  88. value++;
  89. };
  90. }
  91. void _EEPROM_readData(int &pos, uint8_t* value, uint8_t size) {
  92. do {
  93. *value = eeprom_read_byte((unsigned char*)pos);
  94. pos++;
  95. value++;
  96. } while (--size);
  97. }
  98. #define EEPROM_WRITE_VAR(pos, value) _EEPROM_writeData(pos, (uint8_t*)&value, sizeof(value))
  99. #define EEPROM_READ_VAR(pos, value) _EEPROM_readData(pos, (uint8_t*)&value, sizeof(value))
  100. //======================================================================================
  101. #define DUMMY_PID_VALUE 3000.0f
  102. #define EEPROM_OFFSET 100
  103. // IMPORTANT: Whenever there are changes made to the variables stored in EEPROM
  104. // in the functions below, also increment the version number. This makes sure that
  105. // the default values are used whenever there is a change to the data, to prevent
  106. // wrong data being written to the variables.
  107. // ALSO: always make sure the variables in the Store and retrieve sections are in the same order.
  108. #define EEPROM_VERSION "V16"
  109. #ifdef EEPROM_SETTINGS
  110. void Config_StoreSettings() {
  111. float dummy = 0.0f;
  112. char ver[4] = "000";
  113. int i = EEPROM_OFFSET;
  114. EEPROM_WRITE_VAR(i, ver); // invalidate data first
  115. EEPROM_WRITE_VAR(i, axis_steps_per_unit);
  116. EEPROM_WRITE_VAR(i, max_feedrate);
  117. EEPROM_WRITE_VAR(i, max_acceleration_units_per_sq_second);
  118. EEPROM_WRITE_VAR(i, acceleration);
  119. EEPROM_WRITE_VAR(i, retract_acceleration);
  120. EEPROM_WRITE_VAR(i, travel_acceleration);
  121. EEPROM_WRITE_VAR(i, minimumfeedrate);
  122. EEPROM_WRITE_VAR(i, mintravelfeedrate);
  123. EEPROM_WRITE_VAR(i, minsegmenttime);
  124. EEPROM_WRITE_VAR(i, max_xy_jerk);
  125. EEPROM_WRITE_VAR(i, max_z_jerk);
  126. EEPROM_WRITE_VAR(i, max_e_jerk);
  127. EEPROM_WRITE_VAR(i, add_homing);
  128. #if defined(MESH_BED_LEVELING)
  129. EEPROM_WRITE_VAR(i, mbl.active);
  130. EEPROM_WRITE_VAR(i, mbl.z_values);
  131. #endif // MESH_BED_LEVELING
  132. #ifdef DELTA
  133. EEPROM_WRITE_VAR(i, endstop_adj); // 3 floats
  134. EEPROM_WRITE_VAR(i, delta_radius); // 1 float
  135. EEPROM_WRITE_VAR(i, delta_diagonal_rod); // 1 float
  136. EEPROM_WRITE_VAR(i, delta_segments_per_second); // 1 float
  137. #else
  138. dummy = 0.0f;
  139. for (int q=6; q--;) EEPROM_WRITE_VAR(i, dummy);
  140. #endif
  141. #ifndef ULTIPANEL
  142. int plaPreheatHotendTemp = PLA_PREHEAT_HOTEND_TEMP, plaPreheatHPBTemp = PLA_PREHEAT_HPB_TEMP, plaPreheatFanSpeed = PLA_PREHEAT_FAN_SPEED,
  143. absPreheatHotendTemp = ABS_PREHEAT_HOTEND_TEMP, absPreheatHPBTemp = ABS_PREHEAT_HPB_TEMP, absPreheatFanSpeed = ABS_PREHEAT_FAN_SPEED;
  144. #endif // !ULTIPANEL
  145. EEPROM_WRITE_VAR(i, plaPreheatHotendTemp);
  146. EEPROM_WRITE_VAR(i, plaPreheatHPBTemp);
  147. EEPROM_WRITE_VAR(i, plaPreheatFanSpeed);
  148. EEPROM_WRITE_VAR(i, absPreheatHotendTemp);
  149. EEPROM_WRITE_VAR(i, absPreheatHPBTemp);
  150. EEPROM_WRITE_VAR(i, absPreheatFanSpeed);
  151. EEPROM_WRITE_VAR(i, zprobe_zoffset);
  152. for (int e = 0; e < 4; e++) {
  153. #ifdef PIDTEMP
  154. if (e < EXTRUDERS) {
  155. EEPROM_WRITE_VAR(i, PID_PARAM(Kp, e));
  156. EEPROM_WRITE_VAR(i, PID_PARAM(Ki, e));
  157. EEPROM_WRITE_VAR(i, PID_PARAM(Kd, e));
  158. #ifdef PID_ADD_EXTRUSION_RATE
  159. EEPROM_WRITE_VAR(i, PID_PARAM(Kc, e));
  160. #else
  161. dummy = 1.0f; // 1.0 = default kc
  162. EEPROM_WRITE_VAR(i, dummy);
  163. #endif
  164. }
  165. else {
  166. #else // !PIDTEMP
  167. {
  168. #endif // !PIDTEMP
  169. dummy = DUMMY_PID_VALUE;
  170. EEPROM_WRITE_VAR(i, dummy);
  171. dummy = 0.0f;
  172. for (int q = 3; q--;) EEPROM_WRITE_VAR(i, dummy);
  173. }
  174. } // Extruders Loop
  175. #ifndef DOGLCD
  176. int lcd_contrast = 32;
  177. #endif
  178. EEPROM_WRITE_VAR(i, lcd_contrast);
  179. #ifdef SCARA
  180. EEPROM_WRITE_VAR(i, axis_scaling); // 3 floats
  181. #else
  182. dummy = 1.0f;
  183. EEPROM_WRITE_VAR(i, dummy);
  184. #endif
  185. #ifdef FWRETRACT
  186. EEPROM_WRITE_VAR(i, autoretract_enabled);
  187. EEPROM_WRITE_VAR(i, retract_length);
  188. #if EXTRUDERS > 1
  189. EEPROM_WRITE_VAR(i, retract_length_swap);
  190. #else
  191. dummy = 0.0f;
  192. EEPROM_WRITE_VAR(i, dummy);
  193. #endif
  194. EEPROM_WRITE_VAR(i, retract_feedrate);
  195. EEPROM_WRITE_VAR(i, retract_zlift);
  196. EEPROM_WRITE_VAR(i, retract_recover_length);
  197. #if EXTRUDERS > 1
  198. EEPROM_WRITE_VAR(i, retract_recover_length_swap);
  199. #else
  200. dummy = 0.0f;
  201. EEPROM_WRITE_VAR(i, dummy);
  202. #endif
  203. EEPROM_WRITE_VAR(i, retract_recover_feedrate);
  204. #endif // FWRETRACT
  205. EEPROM_WRITE_VAR(i, volumetric_enabled);
  206. // Save filament sizes
  207. for (int q = 0; q < 4; q++) {
  208. if (q < EXTRUDERS) dummy = filament_size[q];
  209. EEPROM_WRITE_VAR(i, dummy);
  210. }
  211. int storageSize = i;
  212. char ver2[4] = EEPROM_VERSION;
  213. int j = EEPROM_OFFSET;
  214. EEPROM_WRITE_VAR(j, ver2); // validate data
  215. // Report storage size
  216. SERIAL_ECHO_START;
  217. SERIAL_ECHOPAIR("Settings Stored (", (unsigned long)i);
  218. SERIAL_ECHOLNPGM(" bytes)");
  219. }
  220. void Config_RetrieveSettings() {
  221. int i = EEPROM_OFFSET;
  222. char stored_ver[4];
  223. char ver[4] = EEPROM_VERSION;
  224. EEPROM_READ_VAR(i, stored_ver); //read stored version
  225. // SERIAL_ECHOLN("Version: [" << ver << "] Stored version: [" << stored_ver << "]");
  226. if (strncmp(ver, stored_ver, 3) != 0) {
  227. Config_ResetDefault();
  228. }
  229. else {
  230. float dummy = 0;
  231. // version number match
  232. EEPROM_READ_VAR(i, axis_steps_per_unit);
  233. EEPROM_READ_VAR(i, max_feedrate);
  234. EEPROM_READ_VAR(i, max_acceleration_units_per_sq_second);
  235. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  236. reset_acceleration_rates();
  237. EEPROM_READ_VAR(i, acceleration);
  238. EEPROM_READ_VAR(i, retract_acceleration);
  239. EEPROM_READ_VAR(i, travel_acceleration);
  240. EEPROM_READ_VAR(i, minimumfeedrate);
  241. EEPROM_READ_VAR(i, mintravelfeedrate);
  242. EEPROM_READ_VAR(i, minsegmenttime);
  243. EEPROM_READ_VAR(i, max_xy_jerk);
  244. EEPROM_READ_VAR(i, max_z_jerk);
  245. EEPROM_READ_VAR(i, max_e_jerk);
  246. EEPROM_READ_VAR(i, add_homing);
  247. #if defined(MESH_BED_LEVELING)
  248. EEPROM_READ_VAR(i, mbl.active);
  249. EEPROM_READ_VAR(i, mbl.z_values);
  250. #endif // MESH_BED_LEVELING
  251. #ifdef DELTA
  252. EEPROM_READ_VAR(i, endstop_adj); // 3 floats
  253. EEPROM_READ_VAR(i, delta_radius); // 1 float
  254. EEPROM_READ_VAR(i, delta_diagonal_rod); // 1 float
  255. EEPROM_READ_VAR(i, delta_segments_per_second); // 1 float
  256. #else
  257. for (int q=6; q--;) EEPROM_READ_VAR(i, dummy);
  258. #endif
  259. #ifndef ULTIPANEL
  260. int plaPreheatHotendTemp, plaPreheatHPBTemp, plaPreheatFanSpeed,
  261. absPreheatHotendTemp, absPreheatHPBTemp, absPreheatFanSpeed;
  262. #endif
  263. EEPROM_READ_VAR(i, plaPreheatHotendTemp);
  264. EEPROM_READ_VAR(i, plaPreheatHPBTemp);
  265. EEPROM_READ_VAR(i, plaPreheatFanSpeed);
  266. EEPROM_READ_VAR(i, absPreheatHotendTemp);
  267. EEPROM_READ_VAR(i, absPreheatHPBTemp);
  268. EEPROM_READ_VAR(i, absPreheatFanSpeed);
  269. EEPROM_READ_VAR(i, zprobe_zoffset);
  270. #ifdef PIDTEMP
  271. for (int e = 0; e < 4; e++) { // 4 = max extruders currently supported by Marlin
  272. EEPROM_READ_VAR(i, dummy);
  273. if (e < EXTRUDERS && dummy != DUMMY_PID_VALUE) {
  274. // do not need to scale PID values as the values in EEPROM are already scaled
  275. PID_PARAM(Kp, e) = dummy;
  276. EEPROM_READ_VAR(i, PID_PARAM(Ki, e));
  277. EEPROM_READ_VAR(i, PID_PARAM(Kd, e));
  278. #ifdef PID_ADD_EXTRUSION_RATE
  279. EEPROM_READ_VAR(i, PID_PARAM(Kc, e));
  280. #else
  281. EEPROM_READ_VAR(i, dummy);
  282. #endif
  283. }
  284. else {
  285. for (int q=3; q--;) EEPROM_READ_VAR(i, dummy); // Ki, Kd, Kc
  286. }
  287. }
  288. #else // !PIDTEMP
  289. // 4 x 4 = 16 slots for PID parameters
  290. for (int q=16; q--;) EEPROM_READ_VAR(i, dummy); // 4x Kp, Ki, Kd, Kc
  291. #endif // !PIDTEMP
  292. #ifndef DOGLCD
  293. int lcd_contrast;
  294. #endif
  295. EEPROM_READ_VAR(i, lcd_contrast);
  296. #ifdef SCARA
  297. EEPROM_READ_VAR(i, axis_scaling); // 3 floats
  298. #else
  299. EEPROM_READ_VAR(i, dummy);
  300. #endif
  301. #ifdef FWRETRACT
  302. EEPROM_READ_VAR(i, autoretract_enabled);
  303. EEPROM_READ_VAR(i, retract_length);
  304. #if EXTRUDERS > 1
  305. EEPROM_READ_VAR(i, retract_length_swap);
  306. #else
  307. EEPROM_READ_VAR(i, dummy);
  308. #endif
  309. EEPROM_READ_VAR(i, retract_feedrate);
  310. EEPROM_READ_VAR(i, retract_zlift);
  311. EEPROM_READ_VAR(i, retract_recover_length);
  312. #if EXTRUDERS > 1
  313. EEPROM_READ_VAR(i, retract_recover_length_swap);
  314. #else
  315. EEPROM_READ_VAR(i, dummy);
  316. #endif
  317. EEPROM_READ_VAR(i, retract_recover_feedrate);
  318. #endif // FWRETRACT
  319. EEPROM_READ_VAR(i, volumetric_enabled);
  320. for (int q = 0; q < 4; q++) {
  321. EEPROM_READ_VAR(i, dummy);
  322. if (q < EXTRUDERS) filament_size[q] = dummy;
  323. }
  324. calculate_volumetric_multipliers();
  325. // Call updatePID (similar to when we have processed M301)
  326. updatePID();
  327. // Report settings retrieved and length
  328. SERIAL_ECHO_START;
  329. SERIAL_ECHO(ver);
  330. SERIAL_ECHOPAIR(" stored settings retrieved (", (unsigned long)i);
  331. SERIAL_ECHOLNPGM(" bytes)");
  332. }
  333. #ifdef EEPROM_CHITCHAT
  334. Config_PrintSettings();
  335. #endif
  336. }
  337. #endif // EEPROM_SETTINGS
  338. void Config_ResetDefault() {
  339. float tmp1[] = DEFAULT_AXIS_STEPS_PER_UNIT;
  340. float tmp2[] = DEFAULT_MAX_FEEDRATE;
  341. long tmp3[] = DEFAULT_MAX_ACCELERATION;
  342. for (int i = 0; i < NUM_AXIS; i++) {
  343. axis_steps_per_unit[i] = tmp1[i];
  344. max_feedrate[i] = tmp2[i];
  345. max_acceleration_units_per_sq_second[i] = tmp3[i];
  346. #ifdef SCARA
  347. if (i < sizeof(axis_scaling) / sizeof(*axis_scaling))
  348. axis_scaling[i] = 1;
  349. #endif
  350. }
  351. // steps per sq second need to be updated to agree with the units per sq second
  352. reset_acceleration_rates();
  353. acceleration = DEFAULT_ACCELERATION;
  354. retract_acceleration = DEFAULT_RETRACT_ACCELERATION;
  355. travel_acceleration = DEFAULT_TRAVEL_ACCELERATION;
  356. minimumfeedrate = DEFAULT_MINIMUMFEEDRATE;
  357. minsegmenttime = DEFAULT_MINSEGMENTTIME;
  358. mintravelfeedrate = DEFAULT_MINTRAVELFEEDRATE;
  359. max_xy_jerk = DEFAULT_XYJERK;
  360. max_z_jerk = DEFAULT_ZJERK;
  361. max_e_jerk = DEFAULT_EJERK;
  362. add_homing[X_AXIS] = add_homing[Y_AXIS] = add_homing[Z_AXIS] = 0;
  363. #if defined(MESH_BED_LEVELING)
  364. mbl.active = 0;
  365. #endif // MESH_BED_LEVELING
  366. #ifdef DELTA
  367. endstop_adj[X_AXIS] = endstop_adj[Y_AXIS] = endstop_adj[Z_AXIS] = 0;
  368. delta_radius = DELTA_RADIUS;
  369. delta_diagonal_rod = DELTA_DIAGONAL_ROD;
  370. delta_segments_per_second = DELTA_SEGMENTS_PER_SECOND;
  371. recalc_delta_settings(delta_radius, delta_diagonal_rod);
  372. #endif
  373. #ifdef ULTIPANEL
  374. plaPreheatHotendTemp = PLA_PREHEAT_HOTEND_TEMP;
  375. plaPreheatHPBTemp = PLA_PREHEAT_HPB_TEMP;
  376. plaPreheatFanSpeed = PLA_PREHEAT_FAN_SPEED;
  377. absPreheatHotendTemp = ABS_PREHEAT_HOTEND_TEMP;
  378. absPreheatHPBTemp = ABS_PREHEAT_HPB_TEMP;
  379. absPreheatFanSpeed = ABS_PREHEAT_FAN_SPEED;
  380. #endif
  381. #ifdef ENABLE_AUTO_BED_LEVELING
  382. zprobe_zoffset = -Z_PROBE_OFFSET_FROM_EXTRUDER;
  383. #endif
  384. #ifdef DOGLCD
  385. lcd_contrast = DEFAULT_LCD_CONTRAST;
  386. #endif
  387. #ifdef PIDTEMP
  388. #ifdef PID_PARAMS_PER_EXTRUDER
  389. for (int e = 0; e < EXTRUDERS; e++)
  390. #else
  391. int e = 0; // only need to write once
  392. #endif
  393. {
  394. PID_PARAM(Kp, e) = DEFAULT_Kp;
  395. PID_PARAM(Ki, e) = scalePID_i(DEFAULT_Ki);
  396. PID_PARAM(Kd, e) = scalePID_d(DEFAULT_Kd);
  397. #ifdef PID_ADD_EXTRUSION_RATE
  398. PID_PARAM(Kc, e) = DEFAULT_Kc;
  399. #endif
  400. }
  401. // call updatePID (similar to when we have processed M301)
  402. updatePID();
  403. #endif // PIDTEMP
  404. #ifdef FWRETRACT
  405. autoretract_enabled = false;
  406. retract_length = RETRACT_LENGTH;
  407. #if EXTRUDERS > 1
  408. retract_length_swap = RETRACT_LENGTH_SWAP;
  409. #endif
  410. retract_feedrate = RETRACT_FEEDRATE;
  411. retract_zlift = RETRACT_ZLIFT;
  412. retract_recover_length = RETRACT_RECOVER_LENGTH;
  413. #if EXTRUDERS > 1
  414. retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  415. #endif
  416. retract_recover_feedrate = RETRACT_RECOVER_FEEDRATE;
  417. #endif
  418. volumetric_enabled = false;
  419. filament_size[0] = DEFAULT_NOMINAL_FILAMENT_DIA;
  420. #if EXTRUDERS > 1
  421. filament_size[1] = DEFAULT_NOMINAL_FILAMENT_DIA;
  422. #if EXTRUDERS > 2
  423. filament_size[2] = DEFAULT_NOMINAL_FILAMENT_DIA;
  424. #if EXTRUDERS > 3
  425. filament_size[3] = DEFAULT_NOMINAL_FILAMENT_DIA;
  426. #endif
  427. #endif
  428. #endif
  429. calculate_volumetric_multipliers();
  430. SERIAL_ECHO_START;
  431. SERIAL_ECHOLNPGM("Hardcoded Default Settings Loaded");
  432. }
  433. #ifndef DISABLE_M503
  434. void Config_PrintSettings(bool forReplay) {
  435. // Always have this function, even with EEPROM_SETTINGS disabled, the current values will be shown
  436. SERIAL_ECHO_START;
  437. if (!forReplay) {
  438. SERIAL_ECHOLNPGM("Steps per unit:");
  439. SERIAL_ECHO_START;
  440. }
  441. SERIAL_ECHOPAIR(" M92 X", axis_steps_per_unit[X_AXIS]);
  442. SERIAL_ECHOPAIR(" Y", axis_steps_per_unit[Y_AXIS]);
  443. SERIAL_ECHOPAIR(" Z", axis_steps_per_unit[Z_AXIS]);
  444. SERIAL_ECHOPAIR(" E", axis_steps_per_unit[E_AXIS]);
  445. SERIAL_EOL;
  446. SERIAL_ECHO_START;
  447. #ifdef SCARA
  448. if (!forReplay) {
  449. SERIAL_ECHOLNPGM("Scaling factors:");
  450. SERIAL_ECHO_START;
  451. }
  452. SERIAL_ECHOPAIR(" M365 X", axis_scaling[X_AXIS]);
  453. SERIAL_ECHOPAIR(" Y", axis_scaling[Y_AXIS]);
  454. SERIAL_ECHOPAIR(" Z", axis_scaling[Z_AXIS]);
  455. SERIAL_EOL;
  456. SERIAL_ECHO_START;
  457. #endif // SCARA
  458. if (!forReplay) {
  459. SERIAL_ECHOLNPGM("Maximum feedrates (mm/s):");
  460. SERIAL_ECHO_START;
  461. }
  462. SERIAL_ECHOPAIR(" M203 X", max_feedrate[X_AXIS]);
  463. SERIAL_ECHOPAIR(" Y", max_feedrate[Y_AXIS]);
  464. SERIAL_ECHOPAIR(" Z", max_feedrate[Z_AXIS]);
  465. SERIAL_ECHOPAIR(" E", max_feedrate[E_AXIS]);
  466. SERIAL_EOL;
  467. SERIAL_ECHO_START;
  468. if (!forReplay) {
  469. SERIAL_ECHOLNPGM("Maximum Acceleration (mm/s2):");
  470. SERIAL_ECHO_START;
  471. }
  472. SERIAL_ECHOPAIR(" M201 X", max_acceleration_units_per_sq_second[X_AXIS] );
  473. SERIAL_ECHOPAIR(" Y", max_acceleration_units_per_sq_second[Y_AXIS] );
  474. SERIAL_ECHOPAIR(" Z", max_acceleration_units_per_sq_second[Z_AXIS] );
  475. SERIAL_ECHOPAIR(" E", max_acceleration_units_per_sq_second[E_AXIS]);
  476. SERIAL_EOL;
  477. SERIAL_ECHO_START;
  478. if (!forReplay) {
  479. SERIAL_ECHOLNPGM("Accelerations: P=printing, R=retract and T=travel");
  480. SERIAL_ECHO_START;
  481. }
  482. SERIAL_ECHOPAIR(" M204 P", acceleration );
  483. SERIAL_ECHOPAIR(" R", retract_acceleration);
  484. SERIAL_ECHOPAIR(" T", travel_acceleration);
  485. SERIAL_EOL;
  486. SERIAL_ECHO_START;
  487. if (!forReplay) {
  488. SERIAL_ECHOLNPGM("Advanced variables: S=Min feedrate (mm/s), T=Min travel feedrate (mm/s), B=minimum segment time (ms), X=maximum XY jerk (mm/s), Z=maximum Z jerk (mm/s), E=maximum E jerk (mm/s)");
  489. SERIAL_ECHO_START;
  490. }
  491. SERIAL_ECHOPAIR(" M205 S", minimumfeedrate );
  492. SERIAL_ECHOPAIR(" T", mintravelfeedrate );
  493. SERIAL_ECHOPAIR(" B", minsegmenttime );
  494. SERIAL_ECHOPAIR(" X", max_xy_jerk );
  495. SERIAL_ECHOPAIR(" Z", max_z_jerk);
  496. SERIAL_ECHOPAIR(" E", max_e_jerk);
  497. SERIAL_EOL;
  498. SERIAL_ECHO_START;
  499. if (!forReplay) {
  500. SERIAL_ECHOLNPGM("Home offset (mm):");
  501. SERIAL_ECHO_START;
  502. }
  503. SERIAL_ECHOPAIR(" M206 X", add_homing[X_AXIS] );
  504. SERIAL_ECHOPAIR(" Y", add_homing[Y_AXIS] );
  505. SERIAL_ECHOPAIR(" Z", add_homing[Z_AXIS] );
  506. SERIAL_EOL;
  507. #ifdef DELTA
  508. SERIAL_ECHO_START;
  509. if (!forReplay) {
  510. SERIAL_ECHOLNPGM("Endstop adjustement (mm):");
  511. SERIAL_ECHO_START;
  512. }
  513. SERIAL_ECHOPAIR(" M666 X", endstop_adj[X_AXIS] );
  514. SERIAL_ECHOPAIR(" Y", endstop_adj[Y_AXIS] );
  515. SERIAL_ECHOPAIR(" Z", endstop_adj[Z_AXIS] );
  516. SERIAL_EOL;
  517. SERIAL_ECHO_START;
  518. SERIAL_ECHOLNPGM("Delta settings: L=delta_diagonal_rod, R=delta_radius, S=delta_segments_per_second");
  519. SERIAL_ECHO_START;
  520. SERIAL_ECHOPAIR(" M665 L", delta_diagonal_rod );
  521. SERIAL_ECHOPAIR(" R", delta_radius );
  522. SERIAL_ECHOPAIR(" S", delta_segments_per_second );
  523. SERIAL_EOL;
  524. #endif // DELTA
  525. #ifdef PIDTEMP
  526. SERIAL_ECHO_START;
  527. if (!forReplay) {
  528. SERIAL_ECHOLNPGM("PID settings:");
  529. SERIAL_ECHO_START;
  530. }
  531. SERIAL_ECHOPAIR(" M301 P", PID_PARAM(Kp, 0)); // for compatibility with hosts, only echos values for E0
  532. SERIAL_ECHOPAIR(" I", unscalePID_i(PID_PARAM(Ki, 0)));
  533. SERIAL_ECHOPAIR(" D", unscalePID_d(PID_PARAM(Kd, 0)));
  534. SERIAL_EOL;
  535. #endif // PIDTEMP
  536. #ifdef FWRETRACT
  537. SERIAL_ECHO_START;
  538. if (!forReplay) {
  539. SERIAL_ECHOLNPGM("Retract: S=Length (mm) F:Speed (mm/m) Z: ZLift (mm)");
  540. SERIAL_ECHO_START;
  541. }
  542. SERIAL_ECHOPAIR(" M207 S", retract_length);
  543. SERIAL_ECHOPAIR(" F", retract_feedrate*60);
  544. SERIAL_ECHOPAIR(" Z", retract_zlift);
  545. SERIAL_EOL;
  546. SERIAL_ECHO_START;
  547. if (!forReplay) {
  548. SERIAL_ECHOLNPGM("Recover: S=Extra length (mm) F:Speed (mm/m)");
  549. SERIAL_ECHO_START;
  550. }
  551. SERIAL_ECHOPAIR(" M208 S", retract_recover_length);
  552. SERIAL_ECHOPAIR(" F", retract_recover_feedrate*60);
  553. SERIAL_EOL;
  554. SERIAL_ECHO_START;
  555. if (!forReplay) {
  556. SERIAL_ECHOLNPGM("Auto-Retract: S=0 to disable, 1 to interpret extrude-only moves as retracts or recoveries");
  557. SERIAL_ECHO_START;
  558. }
  559. SERIAL_ECHOPAIR(" M209 S", (unsigned long)(autoretract_enabled ? 1 : 0));
  560. SERIAL_EOL;
  561. #if EXTRUDERS > 1
  562. if (!forReplay) {
  563. SERIAL_ECHO_START;
  564. SERIAL_ECHOLNPGM("Multi-extruder settings:");
  565. SERIAL_ECHO_START;
  566. SERIAL_ECHOPAIR(" Swap retract length (mm): ", retract_length_swap);
  567. SERIAL_EOL;
  568. SERIAL_ECHO_START;
  569. SERIAL_ECHOPAIR(" Swap rec. addl. length (mm): ", retract_recover_length_swap);
  570. SERIAL_EOL;
  571. }
  572. #endif // EXTRUDERS > 1
  573. #endif // FWRETRACT
  574. SERIAL_ECHO_START;
  575. if (volumetric_enabled) {
  576. if (!forReplay) {
  577. SERIAL_ECHOLNPGM("Filament settings:");
  578. SERIAL_ECHO_START;
  579. }
  580. SERIAL_ECHOPAIR(" M200 D", filament_size[0]);
  581. SERIAL_EOL;
  582. #if EXTRUDERS > 1
  583. SERIAL_ECHO_START;
  584. SERIAL_ECHOPAIR(" M200 T1 D", filament_size[1]);
  585. SERIAL_EOL;
  586. #if EXTRUDERS > 2
  587. SERIAL_ECHO_START;
  588. SERIAL_ECHOPAIR(" M200 T2 D", filament_size[2]);
  589. SERIAL_EOL;
  590. #if EXTRUDERS > 3
  591. SERIAL_ECHO_START;
  592. SERIAL_ECHOPAIR(" M200 T3 D", filament_size[3]);
  593. SERIAL_EOL;
  594. #endif
  595. #endif
  596. #endif
  597. } else {
  598. if (!forReplay) {
  599. SERIAL_ECHOLNPGM("Filament settings: Disabled");
  600. }
  601. }
  602. #ifdef CUSTOM_M_CODES
  603. SERIAL_ECHO_START;
  604. if (!forReplay) {
  605. SERIAL_ECHOLNPGM("Z-Probe Offset (mm):");
  606. SERIAL_ECHO_START;
  607. }
  608. SERIAL_ECHO(" M");
  609. SERIAL_ECHO(CUSTOM_M_CODE_SET_Z_PROBE_OFFSET);
  610. SERIAL_ECHOPAIR(" Z", -zprobe_zoffset);
  611. SERIAL_EOL;
  612. #endif
  613. }
  614. #endif // !DISABLE_M503