My Marlin configs for Fabrikator Mini and CTC i3 Pro B
Du kannst nicht mehr als 25 Themen auswählen Themen müssen mit entweder einem Buchstaben oder einer Ziffer beginnen. Sie können Bindestriche („-“) enthalten und bis zu 35 Zeichen lang sein.

UBL_line_to_destination.cpp 23KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576
  1. /**
  2. * Marlin 3D Printer Firmware
  3. * Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
  4. *
  5. * Based on Sprinter and grbl.
  6. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  7. *
  8. * This program is free software: you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation, either version 3 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  20. *
  21. */
  22. #include "MarlinConfig.h"
  23. #if ENABLED(AUTO_BED_LEVELING_UBL)
  24. #include "Marlin.h"
  25. #include "UBL.h"
  26. #include "planner.h"
  27. #include <avr/io.h>
  28. #include <math.h>
  29. extern float destination[XYZE];
  30. extern void set_current_to_destination();
  31. extern float destination[];
  32. bool g26_debug_flag = false;
  33. void debug_current_and_destination(char *title) {
  34. // if the title message starts with a '!' it is so important, we are going to
  35. // ignore the status of the g26_debug_flag
  36. if (*title != '!' && !g26_debug_flag) return;
  37. const float de = destination[E_AXIS] - current_position[E_AXIS];
  38. if (de == 0.0) return;
  39. const float dx = current_position[X_AXIS] - destination[X_AXIS],
  40. dy = current_position[Y_AXIS] - destination[Y_AXIS],
  41. xy_dist = HYPOT(dx, dy);
  42. if (xy_dist == 0.0) {
  43. return;
  44. //SERIAL_ECHOPGM(" FPMM=");
  45. //const float fpmm = de / xy_dist;
  46. //SERIAL_PROTOCOL_F(fpmm, 6);
  47. }
  48. else {
  49. SERIAL_ECHOPGM(" fpmm=");
  50. const float fpmm = de / xy_dist;
  51. SERIAL_ECHO_F(fpmm, 6);
  52. }
  53. SERIAL_ECHOPGM(" current=( ");
  54. SERIAL_ECHO_F(current_position[X_AXIS], 6);
  55. SERIAL_ECHOPGM(", ");
  56. SERIAL_ECHO_F(current_position[Y_AXIS], 6);
  57. SERIAL_ECHOPGM(", ");
  58. SERIAL_ECHO_F(current_position[Z_AXIS], 6);
  59. SERIAL_ECHOPGM(", ");
  60. SERIAL_ECHO_F(current_position[E_AXIS], 6);
  61. SERIAL_ECHOPGM(" ) destination=( ");
  62. if (current_position[X_AXIS] == destination[X_AXIS])
  63. SERIAL_ECHOPGM("-------------");
  64. else
  65. SERIAL_ECHO_F(destination[X_AXIS], 6);
  66. SERIAL_ECHOPGM(", ");
  67. if (current_position[Y_AXIS] == destination[Y_AXIS])
  68. SERIAL_ECHOPGM("-------------");
  69. else
  70. SERIAL_ECHO_F(destination[Y_AXIS], 6);
  71. SERIAL_ECHOPGM(", ");
  72. if (current_position[Z_AXIS] == destination[Z_AXIS])
  73. SERIAL_ECHOPGM("-------------");
  74. else
  75. SERIAL_ECHO_F(destination[Z_AXIS], 6);
  76. SERIAL_ECHOPGM(", ");
  77. if (current_position[E_AXIS] == destination[E_AXIS])
  78. SERIAL_ECHOPGM("-------------");
  79. else
  80. SERIAL_ECHO_F(destination[E_AXIS], 6);
  81. SERIAL_ECHOPGM(" ) ");
  82. SERIAL_ECHO(title);
  83. SERIAL_EOL;
  84. SET_INPUT_PULLUP(66); // Roxy's Left Switch is on pin 66. Right Switch is on pin 65
  85. //if (been_to_2_6) {
  86. //while ((digitalRead(66) & 0x01) != 0)
  87. // idle();
  88. //}
  89. }
  90. void ubl_line_to_destination(const float &x_end, const float &y_end, const float &z_end, const float &e_end, const float &feed_rate, uint8_t extruder) {
  91. /**
  92. * Much of the nozzle movement will be within the same cell. So we will do as little computation
  93. * as possible to determine if this is the case. If this move is within the same cell, we will
  94. * just do the required Z-Height correction, call the Planner's buffer_line() routine, and leave
  95. */
  96. const float x_start = current_position[X_AXIS],
  97. y_start = current_position[Y_AXIS],
  98. z_start = current_position[Z_AXIS],
  99. e_start = current_position[E_AXIS];
  100. const int cell_start_xi = ubl.get_cell_index_x(RAW_X_POSITION(x_start)),
  101. cell_start_yi = ubl.get_cell_index_y(RAW_Y_POSITION(y_start)),
  102. cell_dest_xi = ubl.get_cell_index_x(RAW_X_POSITION(x_end)),
  103. cell_dest_yi = ubl.get_cell_index_y(RAW_Y_POSITION(y_end));
  104. if (g26_debug_flag) {
  105. SERIAL_ECHOPGM(" ubl_line_to_destination(xe=");
  106. SERIAL_ECHO(x_end);
  107. SERIAL_ECHOPGM(", ye=");
  108. SERIAL_ECHO(y_end);
  109. SERIAL_ECHOPGM(", ze=");
  110. SERIAL_ECHO(z_end);
  111. SERIAL_ECHOPGM(", ee=");
  112. SERIAL_ECHO(e_end);
  113. SERIAL_ECHOLNPGM(")");
  114. debug_current_and_destination((char*)"Start of ubl_line_to_destination()");
  115. }
  116. if (cell_start_xi == cell_dest_xi && cell_start_yi == cell_dest_yi) { // if the whole move is within the same cell,
  117. /**
  118. * we don't need to break up the move
  119. *
  120. * If we are moving off the print bed, we are going to allow the move at this level.
  121. * But we detect it and isolate it. For now, we just pass along the request.
  122. */
  123. if (cell_dest_xi < 0 || cell_dest_yi < 0 || cell_dest_xi >= UBL_MESH_NUM_X_POINTS || cell_dest_yi >= UBL_MESH_NUM_Y_POINTS) {
  124. // Note: There is no Z Correction in this case. We are off the grid and don't know what
  125. // a reasonable correction would be.
  126. planner.buffer_line(x_end, y_end, z_end + ubl.state.z_offset, e_end, feed_rate, extruder);
  127. set_current_to_destination();
  128. if (g26_debug_flag)
  129. debug_current_and_destination((char*)"out of bounds in ubl_line_to_destination()");
  130. return;
  131. }
  132. FINAL_MOVE:
  133. /**
  134. * Optimize some floating point operations here. We could call float get_z_correction(float x0, float y0) to
  135. * generate the correction for us. But we can lighten the load on the CPU by doing a modified version of the function.
  136. * We are going to only calculate the amount we are from the first mesh line towards the second mesh line once.
  137. * We will use this fraction in both of the original two Z Height calculations for the bi-linear interpolation. And,
  138. * instead of doing a generic divide of the distance, we know the distance is MESH_X_DIST so we can use the preprocessor
  139. * to create a 1-over number for us. That will allow us to do a floating point multiply instead of a floating point divide.
  140. */
  141. const float xratio = (RAW_X_POSITION(x_end) - mesh_index_to_x_location[cell_dest_xi]) * (1.0 / (MESH_X_DIST)),
  142. z1 = z_values[cell_dest_xi ][cell_dest_yi ] + xratio *
  143. (z_values[cell_dest_xi + 1][cell_dest_yi ] - z_values[cell_dest_xi][cell_dest_yi ]),
  144. z2 = z_values[cell_dest_xi ][cell_dest_yi + 1] + xratio *
  145. (z_values[cell_dest_xi + 1][cell_dest_yi + 1] - z_values[cell_dest_xi][cell_dest_yi + 1]);
  146. // we are done with the fractional X distance into the cell. Now with the two Z-Heights we have calculated, we
  147. // are going to apply the Y-Distance into the cell to interpolate the final Z correction.
  148. const float yratio = (RAW_Y_POSITION(y_end) - mesh_index_to_y_location[cell_dest_yi]) * (1.0 / (MESH_Y_DIST));
  149. float z0 = z1 + (z2 - z1) * yratio;
  150. /**
  151. * Debug code to use non-optimized get_z_correction() and to do a sanity check
  152. * that the correct value is being passed to planner.buffer_line()
  153. */
  154. /*
  155. z_optimized = z0;
  156. z0 = ubl.get_z_correction(x_end, y_end);
  157. if (fabs(z_optimized - z0) > .01 || isnan(z0) || isnan(z_optimized)) {
  158. debug_current_and_destination((char*)"FINAL_MOVE: z_correction()");
  159. if (isnan(z0)) SERIAL_ECHO(" z0==NAN ");
  160. if (isnan(z_optimized)) SERIAL_ECHO(" z_optimized==NAN ");
  161. SERIAL_ECHOPAIR(" x_end=", x_end);
  162. SERIAL_ECHOPAIR(" y_end=", y_end);
  163. SERIAL_ECHOPAIR(" z0=", z0);
  164. SERIAL_ECHOPAIR(" z_optimized=", z_optimized);
  165. SERIAL_ECHOPAIR(" err=",fabs(z_optimized - z0));
  166. SERIAL_EOL;
  167. }
  168. //*/
  169. z0 *= ubl.fade_scaling_factor_for_z(z_end);
  170. /**
  171. * If part of the Mesh is undefined, it will show up as NAN
  172. * in z_values[][] and propagate through the
  173. * calculations. If our correction is NAN, we throw it out
  174. * because part of the Mesh is undefined and we don't have the
  175. * information we need to complete the height correction.
  176. */
  177. if (isnan(z0)) z0 = 0.0;
  178. planner.buffer_line(x_end, y_end, z_end + z0 + ubl.state.z_offset, e_end, feed_rate, extruder);
  179. if (g26_debug_flag)
  180. debug_current_and_destination((char*)"FINAL_MOVE in ubl_line_to_destination()");
  181. set_current_to_destination();
  182. return;
  183. }
  184. /**
  185. * If we get here, we are processing a move that crosses at least one Mesh Line. We will check
  186. * for the simple case of just crossing X or just crossing Y Mesh Lines after we get all the details
  187. * of the move figured out. We can process the easy case of just crossing an X or Y Mesh Line with less
  188. * computation and in fact most lines are of this nature. We will check for that in the following
  189. * blocks of code:
  190. */
  191. const float dx = x_end - x_start,
  192. dy = y_end - y_start;
  193. const int left_flag = dx < 0.0 ? 1 : 0,
  194. down_flag = dy < 0.0 ? 1 : 0;
  195. const float adx = left_flag ? -dx : dx,
  196. ady = down_flag ? -dy : dy;
  197. const int dxi = cell_start_xi == cell_dest_xi ? 0 : left_flag ? -1 : 1,
  198. dyi = cell_start_yi == cell_dest_yi ? 0 : down_flag ? -1 : 1;
  199. /**
  200. * Compute the scaling factor for the extruder for each partial move.
  201. * We need to watch out for zero length moves because it will cause us to
  202. * have an infinate scaling factor. We are stuck doing a floating point
  203. * divide to get our scaling factor, but after that, we just multiply by this
  204. * number. We also pick our scaling factor based on whether the X or Y
  205. * component is larger. We use the biggest of the two to preserve precision.
  206. */
  207. const bool use_x_dist = adx > ady;
  208. float on_axis_distance = use_x_dist ? dx : dy,
  209. e_position = e_end - e_start,
  210. z_position = z_end - z_start;
  211. const float e_normalized_dist = e_position / on_axis_distance,
  212. z_normalized_dist = z_position / on_axis_distance;
  213. int current_xi = cell_start_xi, current_yi = cell_start_yi;
  214. const float m = dy / dx,
  215. c = y_start - m * x_start;
  216. const bool inf_normalized_flag = NEAR_ZERO(on_axis_distance),
  217. inf_m_flag = NEAR_ZERO(dx);
  218. /**
  219. * This block handles vertical lines. These are lines that stay within the same
  220. * X Cell column. They do not need to be perfectly vertical. They just can
  221. * not cross into another X Cell column.
  222. */
  223. if (dxi == 0) { // Check for a vertical line
  224. current_yi += down_flag; // Line is heading down, we just want to go to the bottom
  225. while (current_yi != cell_dest_yi + down_flag) {
  226. current_yi += dyi;
  227. const float next_mesh_line_y = LOGICAL_Y_POSITION(mesh_index_to_y_location[current_yi]);
  228. /**
  229. * inf_m_flag? the slope of the line is infinite, we won't do the calculations
  230. * else, we know the next X is the same so we can recover and continue!
  231. * Calculate X at the next Y mesh line
  232. */
  233. const float x = inf_m_flag ? x_start : (next_mesh_line_y - c) / m;
  234. float z0 = ubl.get_z_correction_along_horizontal_mesh_line_at_specific_X(x, current_xi, current_yi);
  235. /**
  236. * Debug code to use non-optimized get_z_correction() and to do a sanity check
  237. * that the correct value is being passed to planner.buffer_line()
  238. */
  239. /*
  240. z_optimized = z0;
  241. z0 = ubl.get_z_correction(x, next_mesh_line_y);
  242. if (fabs(z_optimized - z0) > .01 || isnan(z0) || isnan(z_optimized)) {
  243. debug_current_and_destination((char*)"VERTICAL z_correction()");
  244. if (isnan(z0)) SERIAL_ECHO(" z0==NAN ");
  245. if (isnan(z_optimized)) SERIAL_ECHO(" z_optimized==NAN ");
  246. SERIAL_ECHOPAIR(" x=", x);
  247. SERIAL_ECHOPAIR(" next_mesh_line_y=", next_mesh_line_y);
  248. SERIAL_ECHOPAIR(" z0=", z0);
  249. SERIAL_ECHOPAIR(" z_optimized=", z_optimized);
  250. SERIAL_ECHOPAIR(" err=",fabs(z_optimized-z0));
  251. SERIAL_ECHO("\n");
  252. }
  253. //*/
  254. z0 *= ubl.fade_scaling_factor_for_z(z_end);
  255. /**
  256. * If part of the Mesh is undefined, it will show up as NAN
  257. * in z_values[][] and propagate through the
  258. * calculations. If our correction is NAN, we throw it out
  259. * because part of the Mesh is undefined and we don't have the
  260. * information we need to complete the height correction.
  261. */
  262. if (isnan(z0)) z0 = 0.0;
  263. const float y = LOGICAL_Y_POSITION(mesh_index_to_y_location[current_yi]);
  264. /**
  265. * Without this check, it is possible for the algorithm to generate a zero length move in the case
  266. * where the line is heading down and it is starting right on a Mesh Line boundary. For how often that
  267. * happens, it might be best to remove the check and always 'schedule' the move because
  268. * the planner.buffer_line() routine will filter it if that happens.
  269. */
  270. if (y != y_start) {
  271. if (!inf_normalized_flag) {
  272. on_axis_distance = y - y_start; // we don't need to check if the extruder position
  273. e_position = e_start + on_axis_distance * e_normalized_dist; // is based on X or Y because this is a vertical move
  274. z_position = z_start + on_axis_distance * z_normalized_dist;
  275. }
  276. else {
  277. e_position = e_start;
  278. z_position = z_start;
  279. }
  280. planner.buffer_line(x, y, z_position + z0 + ubl.state.z_offset, e_position, feed_rate, extruder);
  281. } //else printf("FIRST MOVE PRUNED ");
  282. }
  283. if (g26_debug_flag)
  284. debug_current_and_destination((char*)"vertical move done in ubl_line_to_destination()");
  285. //
  286. // Check if we are at the final destination. Usually, we won't be, but if it is on a Y Mesh Line, we are done.
  287. //
  288. if (current_position[X_AXIS] != x_end || current_position[Y_AXIS] != y_end)
  289. goto FINAL_MOVE;
  290. set_current_to_destination();
  291. return;
  292. }
  293. /**
  294. *
  295. * This block handles horizontal lines. These are lines that stay within the same
  296. * Y Cell row. They do not need to be perfectly horizontal. They just can
  297. * not cross into another Y Cell row.
  298. *
  299. */
  300. if (dyi == 0) { // Check for a horizontal line
  301. current_xi += left_flag; // Line is heading left, we just want to go to the left
  302. // edge of this cell for the first move.
  303. while (current_xi != cell_dest_xi + left_flag) {
  304. current_xi += dxi;
  305. const float next_mesh_line_x = LOGICAL_X_POSITION(mesh_index_to_x_location[current_xi]),
  306. y = m * next_mesh_line_x + c; // Calculate X at the next Y mesh line
  307. float z0 = ubl.get_z_correction_along_vertical_mesh_line_at_specific_Y(y, current_xi, current_yi);
  308. /**
  309. * Debug code to use non-optimized get_z_correction() and to do a sanity check
  310. * that the correct value is being passed to planner.buffer_line()
  311. */
  312. /*
  313. z_optimized = z0;
  314. z0 = ubl.get_z_correction(next_mesh_line_x, y);
  315. if (fabs(z_optimized - z0) > .01 || isnan(z0) || isnan(z_optimized)) {
  316. debug_current_and_destination((char*)"HORIZONTAL z_correction()");
  317. if (isnan(z0)) SERIAL_ECHO(" z0==NAN ");
  318. if (isnan(z_optimized)) SERIAL_ECHO(" z_optimized==NAN ");
  319. SERIAL_ECHOPAIR(" next_mesh_line_x=", next_mesh_line_x);
  320. SERIAL_ECHOPAIR(" y=", y);
  321. SERIAL_ECHOPAIR(" z0=", z0);
  322. SERIAL_ECHOPAIR(" z_optimized=", z_optimized);
  323. SERIAL_ECHOPAIR(" err=",fabs(z_optimized-z0));
  324. SERIAL_ECHO("\n");
  325. }
  326. //*/
  327. z0 = z0 * ubl.fade_scaling_factor_for_z(z_end);
  328. /**
  329. * If part of the Mesh is undefined, it will show up as NAN
  330. * in z_values[][] and propagate through the
  331. * calculations. If our correction is NAN, we throw it out
  332. * because part of the Mesh is undefined and we don't have the
  333. * information we need to complete the height correction.
  334. */
  335. if (isnan(z0)) z0 = 0.0;
  336. const float x = LOGICAL_X_POSITION(mesh_index_to_x_location[current_xi]);
  337. /**
  338. * Without this check, it is possible for the algorithm to generate a zero length move in the case
  339. * where the line is heading left and it is starting right on a Mesh Line boundary. For how often
  340. * that happens, it might be best to remove the check and always 'schedule' the move because
  341. * the planner.buffer_line() routine will filter it if that happens.
  342. */
  343. if (x != x_start) {
  344. if (!inf_normalized_flag) {
  345. on_axis_distance = x - x_start; // we don't need to check if the extruder position
  346. e_position = e_start + on_axis_distance * e_normalized_dist; // is based on X or Y because this is a horizontal move
  347. z_position = z_start + on_axis_distance * z_normalized_dist;
  348. }
  349. else {
  350. e_position = e_start;
  351. z_position = z_start;
  352. }
  353. planner.buffer_line(x, y, z_position + z0 + ubl.state.z_offset, e_position, feed_rate, extruder);
  354. } //else printf("FIRST MOVE PRUNED ");
  355. }
  356. if (g26_debug_flag)
  357. debug_current_and_destination((char*)"horizontal move done in ubl_line_to_destination()");
  358. if (current_position[X_AXIS] != x_end || current_position[Y_AXIS] != y_end)
  359. goto FINAL_MOVE;
  360. set_current_to_destination();
  361. return;
  362. }
  363. /**
  364. *
  365. * This block handles the generic case of a line crossing both X and Y Mesh lines.
  366. *
  367. */
  368. int xi_cnt = cell_start_xi - cell_dest_xi,
  369. yi_cnt = cell_start_yi - cell_dest_yi;
  370. if (xi_cnt < 0) xi_cnt = -xi_cnt;
  371. if (yi_cnt < 0) yi_cnt = -yi_cnt;
  372. current_xi += left_flag;
  373. current_yi += down_flag;
  374. while (xi_cnt > 0 || yi_cnt > 0) {
  375. const float next_mesh_line_x = LOGICAL_X_POSITION(mesh_index_to_x_location[current_xi + dxi]),
  376. next_mesh_line_y = LOGICAL_Y_POSITION(mesh_index_to_y_location[current_yi + dyi]),
  377. y = m * next_mesh_line_x + c, // Calculate Y at the next X mesh line
  378. x = (next_mesh_line_y - c) / m; // Calculate X at the next Y mesh line (we don't have to worry
  379. // about m being equal to 0.0 If this was the case, we would have
  380. // detected this as a vertical line move up above and we wouldn't
  381. // be down here doing a generic type of move.
  382. if (left_flag == (x > next_mesh_line_x)) { // Check if we hit the Y line first
  383. //
  384. // Yes! Crossing a Y Mesh Line next
  385. //
  386. float z0 = ubl.get_z_correction_along_horizontal_mesh_line_at_specific_X(x, current_xi - left_flag, current_yi + dyi);
  387. /**
  388. * Debug code to use non-optimized get_z_correction() and to do a sanity check
  389. * that the correct value is being passed to planner.buffer_line()
  390. */
  391. /*
  392. z_optimized = z0;
  393. z0 = ubl.get_z_correction(x, next_mesh_line_y);
  394. if (fabs(z_optimized - z0) > .01 || isnan(z0) || isnan(z_optimized)) {
  395. debug_current_and_destination((char*)"General_1: z_correction()");
  396. if (isnan(z0)) SERIAL_ECHO(" z0==NAN ");
  397. if (isnan(z_optimized)) SERIAL_ECHO(" z_optimized==NAN "); {
  398. SERIAL_ECHOPAIR(" x=", x);
  399. }
  400. SERIAL_ECHOPAIR(" next_mesh_line_y=", next_mesh_line_y);
  401. SERIAL_ECHOPAIR(" z0=", z0);
  402. SERIAL_ECHOPAIR(" z_optimized=", z_optimized);
  403. SERIAL_ECHOPAIR(" err=",fabs(z_optimized-z0));
  404. SERIAL_ECHO("\n");
  405. }
  406. //*/
  407. z0 *= ubl.fade_scaling_factor_for_z(z_end);
  408. /**
  409. * If part of the Mesh is undefined, it will show up as NAN
  410. * in z_values[][] and propagate through the
  411. * calculations. If our correction is NAN, we throw it out
  412. * because part of the Mesh is undefined and we don't have the
  413. * information we need to complete the height correction.
  414. */
  415. if (isnan(z0)) z0 = 0.0;
  416. if (!inf_normalized_flag) {
  417. on_axis_distance = use_x_dist ? x - x_start : next_mesh_line_y - y_start;
  418. e_position = e_start + on_axis_distance * e_normalized_dist;
  419. z_position = z_start + on_axis_distance * z_normalized_dist;
  420. }
  421. else {
  422. e_position = e_start;
  423. z_position = z_start;
  424. }
  425. planner.buffer_line(x, next_mesh_line_y, z_position + z0 + ubl.state.z_offset, e_position, feed_rate, extruder);
  426. current_yi += dyi;
  427. yi_cnt--;
  428. }
  429. else {
  430. //
  431. // Yes! Crossing a X Mesh Line next
  432. //
  433. float z0 = ubl.get_z_correction_along_vertical_mesh_line_at_specific_Y(y, current_xi + dxi, current_yi - down_flag);
  434. /**
  435. * Debug code to use non-optimized get_z_correction() and to do a sanity check
  436. * that the correct value is being passed to planner.buffer_line()
  437. */
  438. /*
  439. z_optimized = z0;
  440. z0 = ubl.get_z_correction(next_mesh_line_x, y);
  441. if (fabs(z_optimized - z0) > .01 || isnan(z0) || isnan(z_optimized)) {
  442. debug_current_and_destination((char*)"General_2: z_correction()");
  443. if (isnan(z0)) SERIAL_ECHO(" z0==NAN ");
  444. if (isnan(z_optimized)) SERIAL_ECHO(" z_optimized==NAN ");
  445. SERIAL_ECHOPAIR(" next_mesh_line_x=", next_mesh_line_x);
  446. SERIAL_ECHOPAIR(" y=", y);
  447. SERIAL_ECHOPAIR(" z0=", z0);
  448. SERIAL_ECHOPAIR(" z_optimized=", z_optimized);
  449. SERIAL_ECHOPAIR(" err=",fabs(z_optimized-z0));
  450. SERIAL_ECHO("\n");
  451. }
  452. //*/
  453. z0 *= ubl.fade_scaling_factor_for_z(z_end);
  454. /**
  455. * If part of the Mesh is undefined, it will show up as NAN
  456. * in z_values[][] and propagate through the
  457. * calculations. If our correction is NAN, we throw it out
  458. * because part of the Mesh is undefined and we don't have the
  459. * information we need to complete the height correction.
  460. */
  461. if (isnan(z0)) z0 = 0.0;
  462. if (!inf_normalized_flag) {
  463. on_axis_distance = use_x_dist ? next_mesh_line_x - x_start : y - y_start;
  464. e_position = e_start + on_axis_distance * e_normalized_dist;
  465. z_position = z_start + on_axis_distance * z_normalized_dist;
  466. }
  467. else {
  468. e_position = e_start;
  469. z_position = z_start;
  470. }
  471. planner.buffer_line(next_mesh_line_x, y, z_position + z0 + ubl.state.z_offset, e_position, feed_rate, extruder);
  472. current_xi += dxi;
  473. xi_cnt--;
  474. }
  475. }
  476. if (g26_debug_flag)
  477. debug_current_and_destination((char*)"generic move done in ubl_line_to_destination()");
  478. if (current_position[0] != x_end || current_position[1] != y_end)
  479. goto FINAL_MOVE;
  480. set_current_to_destination();
  481. }
  482. #endif