My Marlin configs for Fabrikator Mini and CTC i3 Pro B
Du kan inte välja fler än 25 ämnen Ämnen måste starta med en bokstav eller siffra, kan innehålla bindestreck ('-') och vara max 35 tecken långa.

stepper.cpp 39KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302
  1. /**
  2. * stepper.cpp - stepper motor driver: executes motion plans using stepper motors
  3. * Marlin Firmware
  4. *
  5. * Derived from Grbl
  6. * Copyright (c) 2009-2011 Simen Svale Skogsrud
  7. *
  8. * Grbl is free software: you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation, either version 3 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * Grbl is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with Grbl. If not, see <http://www.gnu.org/licenses/>.
  20. */
  21. /* The timer calculations of this module informed by the 'RepRap cartesian firmware' by Zack Smith
  22. and Philipp Tiefenbacher. */
  23. #include "Marlin.h"
  24. #include "stepper.h"
  25. #include "planner.h"
  26. #include "temperature.h"
  27. #include "ultralcd.h"
  28. #include "language.h"
  29. #include "cardreader.h"
  30. #include "speed_lookuptable.h"
  31. #if HAS_DIGIPOTSS
  32. #include <SPI.h>
  33. #endif
  34. //===========================================================================
  35. //============================= public variables ============================
  36. //===========================================================================
  37. block_t *current_block; // A pointer to the block currently being traced
  38. //===========================================================================
  39. //============================= private variables ===========================
  40. //===========================================================================
  41. //static makes it impossible to be called from outside of this file by extern.!
  42. // Variables used by The Stepper Driver Interrupt
  43. static unsigned char out_bits = 0; // The next stepping-bits to be output
  44. static unsigned int cleaning_buffer_counter;
  45. #ifdef Z_DUAL_ENDSTOPS
  46. static bool performing_homing = false,
  47. locked_z_motor = false,
  48. locked_z2_motor = false;
  49. #endif
  50. // Counter variables for the Bresenham line tracer
  51. static long counter_x, counter_y, counter_z, counter_e;
  52. volatile static unsigned long step_events_completed; // The number of step events executed in the current block
  53. #ifdef ADVANCE
  54. static long advance_rate, advance, final_advance = 0;
  55. static long old_advance = 0;
  56. static long e_steps[4];
  57. #endif
  58. static long acceleration_time, deceleration_time;
  59. //static unsigned long accelerate_until, decelerate_after, acceleration_rate, initial_rate, final_rate, nominal_rate;
  60. static unsigned short acc_step_rate; // needed for deceleration start point
  61. static char step_loops;
  62. static unsigned short OCR1A_nominal;
  63. static unsigned short step_loops_nominal;
  64. volatile long endstops_trigsteps[3] = { 0 };
  65. volatile long endstops_stepsTotal, endstops_stepsDone;
  66. static volatile char endstop_hit_bits = 0; // use X_MIN, Y_MIN, Z_MIN and Z_PROBE as BIT value
  67. #ifndef Z_DUAL_ENDSTOPS
  68. static byte
  69. #else
  70. static uint16_t
  71. #endif
  72. old_endstop_bits = 0; // use X_MIN, X_MAX... Z_MAX, Z_PROBE, Z2_MIN, Z2_MAX
  73. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  74. bool abort_on_endstop_hit = false;
  75. #endif
  76. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  77. int motor_current_setting[3] = DEFAULT_PWM_MOTOR_CURRENT;
  78. #endif
  79. static bool check_endstops = true;
  80. volatile long count_position[NUM_AXIS] = { 0 };
  81. volatile signed char count_direction[NUM_AXIS] = { 1, 1, 1, 1 };
  82. //===========================================================================
  83. //================================ functions ================================
  84. //===========================================================================
  85. #ifdef DUAL_X_CARRIAGE
  86. #define X_APPLY_DIR(v,ALWAYS) \
  87. if (extruder_duplication_enabled || ALWAYS) { \
  88. X_DIR_WRITE(v); \
  89. X2_DIR_WRITE(v); \
  90. } \
  91. else { \
  92. if (current_block->active_extruder) X2_DIR_WRITE(v); else X_DIR_WRITE(v); \
  93. }
  94. #define X_APPLY_STEP(v,ALWAYS) \
  95. if (extruder_duplication_enabled || ALWAYS) { \
  96. X_STEP_WRITE(v); \
  97. X2_STEP_WRITE(v); \
  98. } \
  99. else { \
  100. if (current_block->active_extruder != 0) X2_STEP_WRITE(v); else X_STEP_WRITE(v); \
  101. }
  102. #else
  103. #define X_APPLY_DIR(v,Q) X_DIR_WRITE(v)
  104. #define X_APPLY_STEP(v,Q) X_STEP_WRITE(v)
  105. #endif
  106. #ifdef Y_DUAL_STEPPER_DRIVERS
  107. #define Y_APPLY_DIR(v,Q) { Y_DIR_WRITE(v); Y2_DIR_WRITE((v) != INVERT_Y2_VS_Y_DIR); }
  108. #define Y_APPLY_STEP(v,Q) { Y_STEP_WRITE(v); Y2_STEP_WRITE(v); }
  109. #else
  110. #define Y_APPLY_DIR(v,Q) Y_DIR_WRITE(v)
  111. #define Y_APPLY_STEP(v,Q) Y_STEP_WRITE(v)
  112. #endif
  113. #ifdef Z_DUAL_STEPPER_DRIVERS
  114. #define Z_APPLY_DIR(v,Q) { Z_DIR_WRITE(v); Z2_DIR_WRITE(v); }
  115. #ifdef Z_DUAL_ENDSTOPS
  116. #define Z_APPLY_STEP(v,Q) \
  117. if (performing_homing) { \
  118. if (Z_HOME_DIR > 0) {\
  119. if (!(TEST(old_endstop_bits, Z_MAX) && (count_direction[Z_AXIS] > 0)) && !locked_z_motor) Z_STEP_WRITE(v); \
  120. if (!(TEST(old_endstop_bits, Z2_MAX) && (count_direction[Z_AXIS] > 0)) && !locked_z2_motor) Z2_STEP_WRITE(v); \
  121. } else {\
  122. if (!(TEST(old_endstop_bits, Z_MIN) && (count_direction[Z_AXIS] < 0)) && !locked_z_motor) Z_STEP_WRITE(v); \
  123. if (!(TEST(old_endstop_bits, Z2_MIN) && (count_direction[Z_AXIS] < 0)) && !locked_z2_motor) Z2_STEP_WRITE(v); \
  124. } \
  125. } else { \
  126. Z_STEP_WRITE(v); \
  127. Z2_STEP_WRITE(v); \
  128. }
  129. #else
  130. #define Z_APPLY_STEP(v,Q) { Z_STEP_WRITE(v); Z2_STEP_WRITE(v); }
  131. #endif
  132. #else
  133. #define Z_APPLY_DIR(v,Q) Z_DIR_WRITE(v)
  134. #define Z_APPLY_STEP(v,Q) Z_STEP_WRITE(v)
  135. #endif
  136. #define E_APPLY_STEP(v,Q) E_STEP_WRITE(v)
  137. // intRes = intIn1 * intIn2 >> 16
  138. // uses:
  139. // r26 to store 0
  140. // r27 to store the byte 1 of the 24 bit result
  141. #define MultiU16X8toH16(intRes, charIn1, intIn2) \
  142. asm volatile ( \
  143. "clr r26 \n\t" \
  144. "mul %A1, %B2 \n\t" \
  145. "movw %A0, r0 \n\t" \
  146. "mul %A1, %A2 \n\t" \
  147. "add %A0, r1 \n\t" \
  148. "adc %B0, r26 \n\t" \
  149. "lsr r0 \n\t" \
  150. "adc %A0, r26 \n\t" \
  151. "adc %B0, r26 \n\t" \
  152. "clr r1 \n\t" \
  153. : \
  154. "=&r" (intRes) \
  155. : \
  156. "d" (charIn1), \
  157. "d" (intIn2) \
  158. : \
  159. "r26" \
  160. )
  161. // intRes = longIn1 * longIn2 >> 24
  162. // uses:
  163. // r26 to store 0
  164. // r27 to store bits 16-23 of the 48bit result. The top bit is used to round the two byte result.
  165. // note that the lower two bytes and the upper byte of the 48bit result are not calculated.
  166. // this can cause the result to be out by one as the lower bytes may cause carries into the upper ones.
  167. // B0 A0 are bits 24-39 and are the returned value
  168. // C1 B1 A1 is longIn1
  169. // D2 C2 B2 A2 is longIn2
  170. //
  171. #define MultiU24X32toH16(intRes, longIn1, longIn2) \
  172. asm volatile ( \
  173. "clr r26 \n\t" \
  174. "mul %A1, %B2 \n\t" \
  175. "mov r27, r1 \n\t" \
  176. "mul %B1, %C2 \n\t" \
  177. "movw %A0, r0 \n\t" \
  178. "mul %C1, %C2 \n\t" \
  179. "add %B0, r0 \n\t" \
  180. "mul %C1, %B2 \n\t" \
  181. "add %A0, r0 \n\t" \
  182. "adc %B0, r1 \n\t" \
  183. "mul %A1, %C2 \n\t" \
  184. "add r27, r0 \n\t" \
  185. "adc %A0, r1 \n\t" \
  186. "adc %B0, r26 \n\t" \
  187. "mul %B1, %B2 \n\t" \
  188. "add r27, r0 \n\t" \
  189. "adc %A0, r1 \n\t" \
  190. "adc %B0, r26 \n\t" \
  191. "mul %C1, %A2 \n\t" \
  192. "add r27, r0 \n\t" \
  193. "adc %A0, r1 \n\t" \
  194. "adc %B0, r26 \n\t" \
  195. "mul %B1, %A2 \n\t" \
  196. "add r27, r1 \n\t" \
  197. "adc %A0, r26 \n\t" \
  198. "adc %B0, r26 \n\t" \
  199. "lsr r27 \n\t" \
  200. "adc %A0, r26 \n\t" \
  201. "adc %B0, r26 \n\t" \
  202. "mul %D2, %A1 \n\t" \
  203. "add %A0, r0 \n\t" \
  204. "adc %B0, r1 \n\t" \
  205. "mul %D2, %B1 \n\t" \
  206. "add %B0, r0 \n\t" \
  207. "clr r1 \n\t" \
  208. : \
  209. "=&r" (intRes) \
  210. : \
  211. "d" (longIn1), \
  212. "d" (longIn2) \
  213. : \
  214. "r26" , "r27" \
  215. )
  216. // Some useful constants
  217. #define ENABLE_STEPPER_DRIVER_INTERRUPT() TIMSK1 |= BIT(OCIE1A)
  218. #define DISABLE_STEPPER_DRIVER_INTERRUPT() TIMSK1 &= ~BIT(OCIE1A)
  219. void endstops_hit_on_purpose() {
  220. endstop_hit_bits = 0;
  221. }
  222. void checkHitEndstops() {
  223. if (endstop_hit_bits) {
  224. SERIAL_ECHO_START;
  225. SERIAL_ECHOPGM(MSG_ENDSTOPS_HIT);
  226. if (endstop_hit_bits & BIT(X_MIN)) {
  227. SERIAL_ECHOPAIR(" X:", (float)endstops_trigsteps[X_AXIS] / axis_steps_per_unit[X_AXIS]);
  228. LCD_MESSAGEPGM(MSG_ENDSTOPS_HIT "X");
  229. }
  230. if (endstop_hit_bits & BIT(Y_MIN)) {
  231. SERIAL_ECHOPAIR(" Y:", (float)endstops_trigsteps[Y_AXIS] / axis_steps_per_unit[Y_AXIS]);
  232. LCD_MESSAGEPGM(MSG_ENDSTOPS_HIT "Y");
  233. }
  234. if (endstop_hit_bits & BIT(Z_MIN)) {
  235. SERIAL_ECHOPAIR(" Z:", (float)endstops_trigsteps[Z_AXIS] / axis_steps_per_unit[Z_AXIS]);
  236. LCD_MESSAGEPGM(MSG_ENDSTOPS_HIT "Z");
  237. }
  238. #ifdef Z_PROBE_ENDSTOP
  239. if (endstop_hit_bits & BIT(Z_PROBE)) {
  240. SERIAL_ECHOPAIR(" Z_PROBE:", (float)endstops_trigsteps[Z_AXIS] / axis_steps_per_unit[Z_AXIS]);
  241. LCD_MESSAGEPGM(MSG_ENDSTOPS_HIT "ZP");
  242. }
  243. #endif
  244. SERIAL_EOL;
  245. endstops_hit_on_purpose();
  246. #if defined(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED) && defined(SDSUPPORT)
  247. if (abort_on_endstop_hit) {
  248. card.sdprinting = false;
  249. card.closefile();
  250. quickStop();
  251. disable_all_heaters(); // switch off all heaters.
  252. }
  253. #endif
  254. }
  255. }
  256. void enable_endstops(bool check) { check_endstops = check; }
  257. // __________________________
  258. // /| |\ _________________ ^
  259. // / | | \ /| |\ |
  260. // / | | \ / | | \ s
  261. // / | | | | | \ p
  262. // / | | | | | \ e
  263. // +-----+------------------------+---+--+---------------+----+ e
  264. // | BLOCK 1 | BLOCK 2 | d
  265. //
  266. // time ----->
  267. //
  268. // The trapezoid is the shape the speed curve over time. It starts at block->initial_rate, accelerates
  269. // first block->accelerate_until step_events_completed, then keeps going at constant speed until
  270. // step_events_completed reaches block->decelerate_after after which it decelerates until the trapezoid generator is reset.
  271. // The slope of acceleration is calculated using v = u + at where t is the accumulated timer values of the steps so far.
  272. void st_wake_up() {
  273. // TCNT1 = 0;
  274. ENABLE_STEPPER_DRIVER_INTERRUPT();
  275. }
  276. FORCE_INLINE unsigned short calc_timer(unsigned short step_rate) {
  277. unsigned short timer;
  278. if (step_rate > MAX_STEP_FREQUENCY) step_rate = MAX_STEP_FREQUENCY;
  279. if (step_rate > 20000) { // If steprate > 20kHz >> step 4 times
  280. step_rate = (step_rate >> 2) & 0x3fff;
  281. step_loops = 4;
  282. }
  283. else if (step_rate > 10000) { // If steprate > 10kHz >> step 2 times
  284. step_rate = (step_rate >> 1) & 0x7fff;
  285. step_loops = 2;
  286. }
  287. else {
  288. step_loops = 1;
  289. }
  290. if (step_rate < (F_CPU / 500000)) step_rate = (F_CPU / 500000);
  291. step_rate -= (F_CPU / 500000); // Correct for minimal speed
  292. if (step_rate >= (8 * 256)) { // higher step rate
  293. unsigned short table_address = (unsigned short)&speed_lookuptable_fast[(unsigned char)(step_rate>>8)][0];
  294. unsigned char tmp_step_rate = (step_rate & 0x00ff);
  295. unsigned short gain = (unsigned short)pgm_read_word_near(table_address+2);
  296. MultiU16X8toH16(timer, tmp_step_rate, gain);
  297. timer = (unsigned short)pgm_read_word_near(table_address) - timer;
  298. }
  299. else { // lower step rates
  300. unsigned short table_address = (unsigned short)&speed_lookuptable_slow[0][0];
  301. table_address += ((step_rate)>>1) & 0xfffc;
  302. timer = (unsigned short)pgm_read_word_near(table_address);
  303. timer -= (((unsigned short)pgm_read_word_near(table_address+2) * (unsigned char)(step_rate & 0x0007))>>3);
  304. }
  305. if (timer < 100) { timer = 100; MYSERIAL.print(MSG_STEPPER_TOO_HIGH); MYSERIAL.println(step_rate); }//(20kHz this should never happen)
  306. return timer;
  307. }
  308. // set the stepper direction of each axis
  309. void set_stepper_direction() {
  310. // Set the direction bits (X_AXIS=A_AXIS and Y_AXIS=B_AXIS for COREXY)
  311. if (TEST(out_bits, X_AXIS)) {
  312. X_APPLY_DIR(INVERT_X_DIR,0);
  313. count_direction[X_AXIS] = -1;
  314. }
  315. else {
  316. X_APPLY_DIR(!INVERT_X_DIR,0);
  317. count_direction[X_AXIS] = 1;
  318. }
  319. if (TEST(out_bits, Y_AXIS)) {
  320. Y_APPLY_DIR(INVERT_Y_DIR,0);
  321. count_direction[Y_AXIS] = -1;
  322. }
  323. else {
  324. Y_APPLY_DIR(!INVERT_Y_DIR,0);
  325. count_direction[Y_AXIS] = 1;
  326. }
  327. if (TEST(out_bits, Z_AXIS)) {
  328. Z_APPLY_DIR(INVERT_Z_DIR,0);
  329. count_direction[Z_AXIS] = -1;
  330. }
  331. else {
  332. Z_APPLY_DIR(!INVERT_Z_DIR,0);
  333. count_direction[Z_AXIS] = 1;
  334. }
  335. #ifndef ADVANCE
  336. if (TEST(out_bits, E_AXIS)) {
  337. REV_E_DIR();
  338. count_direction[E_AXIS] = -1;
  339. }
  340. else {
  341. NORM_E_DIR();
  342. count_direction[E_AXIS] = 1;
  343. }
  344. #endif //!ADVANCE
  345. }
  346. // Initializes the trapezoid generator from the current block. Called whenever a new
  347. // block begins.
  348. FORCE_INLINE void trapezoid_generator_reset() {
  349. if (current_block->direction_bits != out_bits) {
  350. out_bits = current_block->direction_bits;
  351. set_stepper_direction();
  352. }
  353. #ifdef ADVANCE
  354. advance = current_block->initial_advance;
  355. final_advance = current_block->final_advance;
  356. // Do E steps + advance steps
  357. e_steps[current_block->active_extruder] += ((advance >>8) - old_advance);
  358. old_advance = advance >>8;
  359. #endif
  360. deceleration_time = 0;
  361. // step_rate to timer interval
  362. OCR1A_nominal = calc_timer(current_block->nominal_rate);
  363. // make a note of the number of step loops required at nominal speed
  364. step_loops_nominal = step_loops;
  365. acc_step_rate = current_block->initial_rate;
  366. acceleration_time = calc_timer(acc_step_rate);
  367. OCR1A = acceleration_time;
  368. // SERIAL_ECHO_START;
  369. // SERIAL_ECHOPGM("advance :");
  370. // SERIAL_ECHO(current_block->advance/256.0);
  371. // SERIAL_ECHOPGM("advance rate :");
  372. // SERIAL_ECHO(current_block->advance_rate/256.0);
  373. // SERIAL_ECHOPGM("initial advance :");
  374. // SERIAL_ECHO(current_block->initial_advance/256.0);
  375. // SERIAL_ECHOPGM("final advance :");
  376. // SERIAL_ECHOLN(current_block->final_advance/256.0);
  377. }
  378. // "The Stepper Driver Interrupt" - This timer interrupt is the workhorse.
  379. // It pops blocks from the block_buffer and executes them by pulsing the stepper pins appropriately.
  380. ISR(TIMER1_COMPA_vect) {
  381. if (cleaning_buffer_counter)
  382. {
  383. current_block = NULL;
  384. plan_discard_current_block();
  385. #ifdef SD_FINISHED_RELEASECOMMAND
  386. if ((cleaning_buffer_counter == 1) && (SD_FINISHED_STEPPERRELEASE)) enqueuecommands_P(PSTR(SD_FINISHED_RELEASECOMMAND));
  387. #endif
  388. cleaning_buffer_counter--;
  389. OCR1A = 200;
  390. return;
  391. }
  392. // If there is no current block, attempt to pop one from the buffer
  393. if (!current_block) {
  394. // Anything in the buffer?
  395. current_block = plan_get_current_block();
  396. if (current_block) {
  397. current_block->busy = true;
  398. trapezoid_generator_reset();
  399. counter_x = -(current_block->step_event_count >> 1);
  400. counter_y = counter_z = counter_e = counter_x;
  401. step_events_completed = 0;
  402. #ifdef Z_LATE_ENABLE
  403. if (current_block->steps[Z_AXIS] > 0) {
  404. enable_z();
  405. OCR1A = 2000; //1ms wait
  406. return;
  407. }
  408. #endif
  409. // #ifdef ADVANCE
  410. // e_steps[current_block->active_extruder] = 0;
  411. // #endif
  412. }
  413. else {
  414. OCR1A = 2000; // 1kHz.
  415. }
  416. }
  417. if (current_block != NULL) {
  418. // Check endstops
  419. if (check_endstops) {
  420. #ifdef Z_DUAL_ENDSTOPS
  421. uint16_t
  422. #else
  423. byte
  424. #endif
  425. current_endstop_bits;
  426. #define _ENDSTOP_PIN(AXIS, MINMAX) AXIS ##_## MINMAX ##_PIN
  427. #define _ENDSTOP_INVERTING(AXIS, MINMAX) AXIS ##_## MINMAX ##_ENDSTOP_INVERTING
  428. #define _AXIS(AXIS) AXIS ##_AXIS
  429. #define _ENDSTOP_HIT(AXIS) endstop_hit_bits |= BIT(_ENDSTOP(AXIS, MIN))
  430. #define _ENDSTOP(AXIS, MINMAX) AXIS ##_## MINMAX
  431. // SET_ENDSTOP_BIT: set the current endstop bits for an endstop to its status
  432. #define SET_ENDSTOP_BIT(AXIS, MINMAX) SET_BIT(current_endstop_bits, _ENDSTOP(AXIS, MINMAX), (READ(_ENDSTOP_PIN(AXIS, MINMAX)) != _ENDSTOP_INVERTING(AXIS, MINMAX)))
  433. // COPY_BIT: copy the value of COPY_BIT to BIT in bits
  434. #define COPY_BIT(bits, COPY_BIT, BIT) SET_BIT(bits, BIT, TEST(bits, COPY_BIT))
  435. // TEST_ENDSTOP: test the old and the current status of an endstop
  436. #define TEST_ENDSTOP(ENDSTOP) (TEST(current_endstop_bits, ENDSTOP) && TEST(old_endstop_bits, ENDSTOP))
  437. #define UPDATE_ENDSTOP(AXIS,MINMAX) \
  438. SET_ENDSTOP_BIT(AXIS, MINMAX); \
  439. if (TEST_ENDSTOP(_ENDSTOP(AXIS, MINMAX)) && (current_block->steps[_AXIS(AXIS)] > 0)) { \
  440. endstops_trigsteps[_AXIS(AXIS)] = count_position[_AXIS(AXIS)]; \
  441. _ENDSTOP_HIT(AXIS); \
  442. step_events_completed = current_block->step_event_count; \
  443. }
  444. #ifdef COREXY
  445. // Head direction in -X axis for CoreXY bots.
  446. // If DeltaX == -DeltaY, the movement is only in Y axis
  447. if ((current_block->steps[A_AXIS] != current_block->steps[B_AXIS]) || (TEST(out_bits, A_AXIS) == TEST(out_bits, B_AXIS))) {
  448. if (TEST(out_bits, X_HEAD))
  449. #else
  450. if (TEST(out_bits, X_AXIS)) // stepping along -X axis (regular Cartesian bot)
  451. #endif
  452. { // -direction
  453. #ifdef DUAL_X_CARRIAGE
  454. // with 2 x-carriages, endstops are only checked in the homing direction for the active extruder
  455. if ((current_block->active_extruder == 0 && X_HOME_DIR == -1) || (current_block->active_extruder != 0 && X2_HOME_DIR == -1))
  456. #endif
  457. {
  458. #if HAS_X_MIN
  459. UPDATE_ENDSTOP(X, MIN);
  460. #endif
  461. }
  462. }
  463. else { // +direction
  464. #ifdef DUAL_X_CARRIAGE
  465. // with 2 x-carriages, endstops are only checked in the homing direction for the active extruder
  466. if ((current_block->active_extruder == 0 && X_HOME_DIR == 1) || (current_block->active_extruder != 0 && X2_HOME_DIR == 1))
  467. #endif
  468. {
  469. #if HAS_X_MAX
  470. UPDATE_ENDSTOP(X, MAX);
  471. #endif
  472. }
  473. }
  474. #ifdef COREXY
  475. }
  476. // Head direction in -Y axis for CoreXY bots.
  477. // If DeltaX == DeltaY, the movement is only in X axis
  478. if ((current_block->steps[A_AXIS] != current_block->steps[B_AXIS]) || (TEST(out_bits, A_AXIS) != TEST(out_bits, B_AXIS))) {
  479. if (TEST(out_bits, Y_HEAD))
  480. #else
  481. if (TEST(out_bits, Y_AXIS)) // -direction
  482. #endif
  483. { // -direction
  484. #if HAS_Y_MIN
  485. UPDATE_ENDSTOP(Y, MIN);
  486. #endif
  487. }
  488. else { // +direction
  489. #if HAS_Y_MAX
  490. UPDATE_ENDSTOP(Y, MAX);
  491. #endif
  492. }
  493. #ifdef COREXY
  494. }
  495. #endif
  496. if (TEST(out_bits, Z_AXIS)) { // z -direction
  497. #if HAS_Z_MIN
  498. #ifdef Z_DUAL_ENDSTOPS
  499. SET_ENDSTOP_BIT(Z, MIN);
  500. #if HAS_Z2_MIN
  501. SET_ENDSTOP_BIT(Z2, MIN);
  502. #else
  503. COPY_BIT(current_endstop_bits, Z_MIN, Z2_MIN)
  504. #endif
  505. byte z_test = TEST_ENDSTOP(Z_MIN) << 0 + TEST_ENDSTOP(Z2_MIN) << 1; // bit 0 for Z, bit 1 for Z2
  506. if (z_test && current_block->steps[Z_AXIS] > 0) { // z_test = Z_MIN || Z2_MIN
  507. endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS];
  508. endstop_hit_bits |= BIT(Z_MIN);
  509. if (!performing_homing || (performing_homing && !((~z_test) & 0x3))) //if not performing home or if both endstops were trigged during homing...
  510. step_events_completed = current_block->step_event_count; //!((~z_test) & 0x3) = Z_MIN && Z2_MIN
  511. }
  512. #else // !Z_DUAL_ENDSTOPS
  513. UPDATE_ENDSTOP(Z, MIN);
  514. #endif // !Z_DUAL_ENDSTOPS
  515. #endif // Z_MIN_PIN
  516. #ifdef Z_PROBE_ENDSTOP
  517. UPDATE_ENDSTOP(Z, PROBE);
  518. SET_ENDSTOP_BIT(Z, PROBE);
  519. if (TEST_ENDSTOP(Z_PROBE))
  520. {
  521. endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS];
  522. endstop_hit_bits |= BIT(Z_PROBE);
  523. }
  524. #endif
  525. }
  526. else { // z +direction
  527. #if HAS_Z_MAX
  528. #ifdef Z_DUAL_ENDSTOPS
  529. SET_ENDSTOP_BIT(Z, MAX);
  530. #if HAS_Z2_MAX
  531. SET_ENDSTOP_BIT(Z2, MAX);
  532. #else
  533. COPY_BIT(current_endstop_bits, Z_MAX, Z2_MAX)
  534. #endif
  535. byte z_test = TEST_ENDSTOP(Z_MAX) << 0 + TEST_ENDSTOP(Z2_MAX) << 1; // bit 0 for Z, bit 1 for Z2
  536. if (z_test && current_block->steps[Z_AXIS] > 0) { // t_test = Z_MAX || Z2_MAX
  537. endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS];
  538. endstop_hit_bits |= BIT(Z_MIN);
  539. if (!performing_homing || (performing_homing && !((~z_test) & 0x3))) //if not performing home or if both endstops were trigged during homing...
  540. step_events_completed = current_block->step_event_count; //!((~z_test) & 0x3) = Z_MAX && Z2_MAX
  541. }
  542. #else // !Z_DUAL_ENDSTOPS
  543. UPDATE_ENDSTOP(Z, MAX);
  544. #endif // !Z_DUAL_ENDSTOPS
  545. #endif // Z_MAX_PIN
  546. #ifdef Z_PROBE_ENDSTOP
  547. UPDATE_ENDSTOP(Z, PROBE);
  548. SET_ENDSTOP_BIT(Z, PROBE);
  549. if (TEST_ENDSTOP(Z_PROBE))
  550. {
  551. endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS];
  552. endstop_hit_bits |= BIT(Z_PROBE);
  553. }
  554. #endif
  555. }
  556. old_endstop_bits = current_endstop_bits;
  557. }
  558. // Take multiple steps per interrupt (For high speed moves)
  559. for (int8_t i = 0; i < step_loops; i++) {
  560. #ifndef AT90USB
  561. MSerial.checkRx(); // Check for serial chars.
  562. #endif
  563. #ifdef ADVANCE
  564. counter_e += current_block->steps[E_AXIS];
  565. if (counter_e > 0) {
  566. counter_e -= current_block->step_event_count;
  567. e_steps[current_block->active_extruder] += TEST(out_bits, E_AXIS) ? -1 : 1;
  568. }
  569. #endif //ADVANCE
  570. #define _COUNTER(axis) counter_## axis
  571. #define _APPLY_STEP(AXIS) AXIS ##_APPLY_STEP
  572. #define _INVERT_STEP_PIN(AXIS) INVERT_## AXIS ##_STEP_PIN
  573. #define STEP_ADD(axis, AXIS) \
  574. _COUNTER(axis) += current_block->steps[_AXIS(AXIS)]; \
  575. if (_COUNTER(axis) > 0) { _APPLY_STEP(AXIS)(!_INVERT_STEP_PIN(AXIS),0); }
  576. STEP_ADD(x,X);
  577. STEP_ADD(y,Y);
  578. STEP_ADD(z,Z);
  579. #ifndef ADVANCE
  580. STEP_ADD(e,E);
  581. #endif
  582. #define STEP_IF_COUNTER(axis, AXIS) \
  583. if (_COUNTER(axis) > 0) { \
  584. _COUNTER(axis) -= current_block->step_event_count; \
  585. count_position[_AXIS(AXIS)] += count_direction[_AXIS(AXIS)]; \
  586. _APPLY_STEP(AXIS)(_INVERT_STEP_PIN(AXIS),0); \
  587. }
  588. STEP_IF_COUNTER(x, X);
  589. STEP_IF_COUNTER(y, Y);
  590. STEP_IF_COUNTER(z, Z);
  591. #ifndef ADVANCE
  592. STEP_IF_COUNTER(e, E);
  593. #endif
  594. step_events_completed++;
  595. if (step_events_completed >= current_block->step_event_count) break;
  596. }
  597. // Calculate new timer value
  598. unsigned short timer;
  599. unsigned short step_rate;
  600. if (step_events_completed <= (unsigned long)current_block->accelerate_until) {
  601. MultiU24X32toH16(acc_step_rate, acceleration_time, current_block->acceleration_rate);
  602. acc_step_rate += current_block->initial_rate;
  603. // upper limit
  604. if (acc_step_rate > current_block->nominal_rate)
  605. acc_step_rate = current_block->nominal_rate;
  606. // step_rate to timer interval
  607. timer = calc_timer(acc_step_rate);
  608. OCR1A = timer;
  609. acceleration_time += timer;
  610. #ifdef ADVANCE
  611. for(int8_t i=0; i < step_loops; i++) {
  612. advance += advance_rate;
  613. }
  614. //if (advance > current_block->advance) advance = current_block->advance;
  615. // Do E steps + advance steps
  616. e_steps[current_block->active_extruder] += ((advance >>8) - old_advance);
  617. old_advance = advance >>8;
  618. #endif
  619. }
  620. else if (step_events_completed > (unsigned long)current_block->decelerate_after) {
  621. MultiU24X32toH16(step_rate, deceleration_time, current_block->acceleration_rate);
  622. if (step_rate > acc_step_rate) { // Check step_rate stays positive
  623. step_rate = current_block->final_rate;
  624. }
  625. else {
  626. step_rate = acc_step_rate - step_rate; // Decelerate from aceleration end point.
  627. }
  628. // lower limit
  629. if (step_rate < current_block->final_rate)
  630. step_rate = current_block->final_rate;
  631. // step_rate to timer interval
  632. timer = calc_timer(step_rate);
  633. OCR1A = timer;
  634. deceleration_time += timer;
  635. #ifdef ADVANCE
  636. for(int8_t i=0; i < step_loops; i++) {
  637. advance -= advance_rate;
  638. }
  639. if (advance < final_advance) advance = final_advance;
  640. // Do E steps + advance steps
  641. e_steps[current_block->active_extruder] += ((advance >>8) - old_advance);
  642. old_advance = advance >>8;
  643. #endif //ADVANCE
  644. }
  645. else {
  646. OCR1A = OCR1A_nominal;
  647. // ensure we're running at the correct step rate, even if we just came off an acceleration
  648. step_loops = step_loops_nominal;
  649. }
  650. // If current block is finished, reset pointer
  651. if (step_events_completed >= current_block->step_event_count) {
  652. current_block = NULL;
  653. plan_discard_current_block();
  654. }
  655. }
  656. }
  657. #ifdef ADVANCE
  658. unsigned char old_OCR0A;
  659. // Timer interrupt for E. e_steps is set in the main routine;
  660. // Timer 0 is shared with millies
  661. ISR(TIMER0_COMPA_vect)
  662. {
  663. old_OCR0A += 52; // ~10kHz interrupt (250000 / 26 = 9615kHz)
  664. OCR0A = old_OCR0A;
  665. // Set E direction (Depends on E direction + advance)
  666. for(unsigned char i=0; i<4;i++) {
  667. if (e_steps[0] != 0) {
  668. E0_STEP_WRITE(INVERT_E_STEP_PIN);
  669. if (e_steps[0] < 0) {
  670. E0_DIR_WRITE(INVERT_E0_DIR);
  671. e_steps[0]++;
  672. E0_STEP_WRITE(!INVERT_E_STEP_PIN);
  673. }
  674. else if (e_steps[0] > 0) {
  675. E0_DIR_WRITE(!INVERT_E0_DIR);
  676. e_steps[0]--;
  677. E0_STEP_WRITE(!INVERT_E_STEP_PIN);
  678. }
  679. }
  680. #if EXTRUDERS > 1
  681. if (e_steps[1] != 0) {
  682. E1_STEP_WRITE(INVERT_E_STEP_PIN);
  683. if (e_steps[1] < 0) {
  684. E1_DIR_WRITE(INVERT_E1_DIR);
  685. e_steps[1]++;
  686. E1_STEP_WRITE(!INVERT_E_STEP_PIN);
  687. }
  688. else if (e_steps[1] > 0) {
  689. E1_DIR_WRITE(!INVERT_E1_DIR);
  690. e_steps[1]--;
  691. E1_STEP_WRITE(!INVERT_E_STEP_PIN);
  692. }
  693. }
  694. #endif
  695. #if EXTRUDERS > 2
  696. if (e_steps[2] != 0) {
  697. E2_STEP_WRITE(INVERT_E_STEP_PIN);
  698. if (e_steps[2] < 0) {
  699. E2_DIR_WRITE(INVERT_E2_DIR);
  700. e_steps[2]++;
  701. E2_STEP_WRITE(!INVERT_E_STEP_PIN);
  702. }
  703. else if (e_steps[2] > 0) {
  704. E2_DIR_WRITE(!INVERT_E2_DIR);
  705. e_steps[2]--;
  706. E2_STEP_WRITE(!INVERT_E_STEP_PIN);
  707. }
  708. }
  709. #endif
  710. #if EXTRUDERS > 3
  711. if (e_steps[3] != 0) {
  712. E3_STEP_WRITE(INVERT_E_STEP_PIN);
  713. if (e_steps[3] < 0) {
  714. E3_DIR_WRITE(INVERT_E3_DIR);
  715. e_steps[3]++;
  716. E3_STEP_WRITE(!INVERT_E_STEP_PIN);
  717. }
  718. else if (e_steps[3] > 0) {
  719. E3_DIR_WRITE(!INVERT_E3_DIR);
  720. e_steps[3]--;
  721. E3_STEP_WRITE(!INVERT_E_STEP_PIN);
  722. }
  723. }
  724. #endif
  725. }
  726. }
  727. #endif // ADVANCE
  728. void st_init() {
  729. digipot_init(); //Initialize Digipot Motor Current
  730. microstep_init(); //Initialize Microstepping Pins
  731. // initialise TMC Steppers
  732. #ifdef HAVE_TMCDRIVER
  733. tmc_init();
  734. #endif
  735. // initialise L6470 Steppers
  736. #ifdef HAVE_L6470DRIVER
  737. L6470_init();
  738. #endif
  739. // Initialize Dir Pins
  740. #if HAS_X_DIR
  741. X_DIR_INIT;
  742. #endif
  743. #if HAS_X2_DIR
  744. X2_DIR_INIT;
  745. #endif
  746. #if HAS_Y_DIR
  747. Y_DIR_INIT;
  748. #if defined(Y_DUAL_STEPPER_DRIVERS) && HAS_Y2_DIR
  749. Y2_DIR_INIT;
  750. #endif
  751. #endif
  752. #if HAS_Z_DIR
  753. Z_DIR_INIT;
  754. #if defined(Z_DUAL_STEPPER_DRIVERS) && HAS_Z2_DIR
  755. Z2_DIR_INIT;
  756. #endif
  757. #endif
  758. #if HAS_E0_DIR
  759. E0_DIR_INIT;
  760. #endif
  761. #if HAS_E1_DIR
  762. E1_DIR_INIT;
  763. #endif
  764. #if HAS_E2_DIR
  765. E2_DIR_INIT;
  766. #endif
  767. #if HAS_E3_DIR
  768. E3_DIR_INIT;
  769. #endif
  770. //Initialize Enable Pins - steppers default to disabled.
  771. #if HAS_X_ENABLE
  772. X_ENABLE_INIT;
  773. if (!X_ENABLE_ON) X_ENABLE_WRITE(HIGH);
  774. #endif
  775. #if HAS_X2_ENABLE
  776. X2_ENABLE_INIT;
  777. if (!X_ENABLE_ON) X2_ENABLE_WRITE(HIGH);
  778. #endif
  779. #if HAS_Y_ENABLE
  780. Y_ENABLE_INIT;
  781. if (!Y_ENABLE_ON) Y_ENABLE_WRITE(HIGH);
  782. #if defined(Y_DUAL_STEPPER_DRIVERS) && HAS_Y2_ENABLE
  783. Y2_ENABLE_INIT;
  784. if (!Y_ENABLE_ON) Y2_ENABLE_WRITE(HIGH);
  785. #endif
  786. #endif
  787. #if HAS_Z_ENABLE
  788. Z_ENABLE_INIT;
  789. if (!Z_ENABLE_ON) Z_ENABLE_WRITE(HIGH);
  790. #if defined(Z_DUAL_STEPPER_DRIVERS) && HAS_Z2_ENABLE
  791. Z2_ENABLE_INIT;
  792. if (!Z_ENABLE_ON) Z2_ENABLE_WRITE(HIGH);
  793. #endif
  794. #endif
  795. #if HAS_E0_ENABLE
  796. E0_ENABLE_INIT;
  797. if (!E_ENABLE_ON) E0_ENABLE_WRITE(HIGH);
  798. #endif
  799. #if HAS_E1_ENABLE
  800. E1_ENABLE_INIT;
  801. if (!E_ENABLE_ON) E1_ENABLE_WRITE(HIGH);
  802. #endif
  803. #if HAS_E2_ENABLE
  804. E2_ENABLE_INIT;
  805. if (!E_ENABLE_ON) E2_ENABLE_WRITE(HIGH);
  806. #endif
  807. #if HAS_E3_ENABLE
  808. E3_ENABLE_INIT;
  809. if (!E_ENABLE_ON) E3_ENABLE_WRITE(HIGH);
  810. #endif
  811. //endstops and pullups
  812. #if HAS_X_MIN
  813. SET_INPUT(X_MIN_PIN);
  814. #ifdef ENDSTOPPULLUP_XMIN
  815. WRITE(X_MIN_PIN,HIGH);
  816. #endif
  817. #endif
  818. #if HAS_Y_MIN
  819. SET_INPUT(Y_MIN_PIN);
  820. #ifdef ENDSTOPPULLUP_YMIN
  821. WRITE(Y_MIN_PIN,HIGH);
  822. #endif
  823. #endif
  824. #if HAS_Z_MIN
  825. SET_INPUT(Z_MIN_PIN);
  826. #ifdef ENDSTOPPULLUP_ZMIN
  827. WRITE(Z_MIN_PIN,HIGH);
  828. #endif
  829. #endif
  830. #if HAS_X_MAX
  831. SET_INPUT(X_MAX_PIN);
  832. #ifdef ENDSTOPPULLUP_XMAX
  833. WRITE(X_MAX_PIN,HIGH);
  834. #endif
  835. #endif
  836. #if HAS_Y_MAX
  837. SET_INPUT(Y_MAX_PIN);
  838. #ifdef ENDSTOPPULLUP_YMAX
  839. WRITE(Y_MAX_PIN,HIGH);
  840. #endif
  841. #endif
  842. #if HAS_Z_MAX
  843. SET_INPUT(Z_MAX_PIN);
  844. #ifdef ENDSTOPPULLUP_ZMAX
  845. WRITE(Z_MAX_PIN,HIGH);
  846. #endif
  847. #endif
  848. #if HAS_Z2_MAX
  849. SET_INPUT(Z2_MAX_PIN);
  850. #ifdef ENDSTOPPULLUP_ZMAX
  851. WRITE(Z2_MAX_PIN,HIGH);
  852. #endif
  853. #endif
  854. #if (defined(Z_PROBE_PIN) && Z_PROBE_PIN >= 0) && defined(Z_PROBE_ENDSTOP) // Check for Z_PROBE_ENDSTOP so we don't pull a pin high unless it's to be used.
  855. SET_INPUT(Z_PROBE_PIN);
  856. #ifdef ENDSTOPPULLUP_ZPROBE
  857. WRITE(Z_PROBE_PIN,HIGH);
  858. #endif
  859. #endif
  860. #define _STEP_INIT(AXIS) AXIS ##_STEP_INIT
  861. #define _WRITE_STEP(AXIS, HIGHLOW) AXIS ##_STEP_WRITE(HIGHLOW)
  862. #define _DISABLE(axis) disable_## axis()
  863. #define AXIS_INIT(axis, AXIS, PIN) \
  864. _STEP_INIT(AXIS); \
  865. _WRITE_STEP(AXIS, _INVERT_STEP_PIN(PIN)); \
  866. _DISABLE(axis)
  867. #define E_AXIS_INIT(NUM) AXIS_INIT(e## NUM, E## NUM, E)
  868. // Initialize Step Pins
  869. #if HAS_X_STEP
  870. AXIS_INIT(x, X, X);
  871. #endif
  872. #if HAS_X2_STEP
  873. AXIS_INIT(x, X2, X);
  874. #endif
  875. #if HAS_Y_STEP
  876. #if defined(Y_DUAL_STEPPER_DRIVERS) && HAS_Y2_STEP
  877. Y2_STEP_INIT;
  878. Y2_STEP_WRITE(INVERT_Y_STEP_PIN);
  879. #endif
  880. AXIS_INIT(y, Y, Y);
  881. #endif
  882. #if HAS_Z_STEP
  883. #if defined(Z_DUAL_STEPPER_DRIVERS) && HAS_Z2_STEP
  884. Z2_STEP_INIT;
  885. Z2_STEP_WRITE(INVERT_Z_STEP_PIN);
  886. #endif
  887. AXIS_INIT(z, Z, Z);
  888. #endif
  889. #if HAS_E0_STEP
  890. E_AXIS_INIT(0);
  891. #endif
  892. #if HAS_E1_STEP
  893. E_AXIS_INIT(1);
  894. #endif
  895. #if HAS_E2_STEP
  896. E_AXIS_INIT(2);
  897. #endif
  898. #if HAS_E3_STEP
  899. E_AXIS_INIT(3);
  900. #endif
  901. // waveform generation = 0100 = CTC
  902. TCCR1B &= ~BIT(WGM13);
  903. TCCR1B |= BIT(WGM12);
  904. TCCR1A &= ~BIT(WGM11);
  905. TCCR1A &= ~BIT(WGM10);
  906. // output mode = 00 (disconnected)
  907. TCCR1A &= ~(3<<COM1A0);
  908. TCCR1A &= ~(3<<COM1B0);
  909. // Set the timer pre-scaler
  910. // Generally we use a divider of 8, resulting in a 2MHz timer
  911. // frequency on a 16MHz MCU. If you are going to change this, be
  912. // sure to regenerate speed_lookuptable.h with
  913. // create_speed_lookuptable.py
  914. TCCR1B = (TCCR1B & ~(0x07<<CS10)) | (2<<CS10);
  915. OCR1A = 0x4000;
  916. TCNT1 = 0;
  917. ENABLE_STEPPER_DRIVER_INTERRUPT();
  918. #ifdef ADVANCE
  919. #if defined(TCCR0A) && defined(WGM01)
  920. TCCR0A &= ~BIT(WGM01);
  921. TCCR0A &= ~BIT(WGM00);
  922. #endif
  923. e_steps[0] = e_steps[1] = e_steps[2] = e_steps[3] = 0;
  924. TIMSK0 |= BIT(OCIE0A);
  925. #endif //ADVANCE
  926. enable_endstops(true); // Start with endstops active. After homing they can be disabled
  927. sei();
  928. set_stepper_direction(); // Init directions to out_bits = 0
  929. }
  930. // Block until all buffered steps are executed
  931. void st_synchronize() {
  932. while (blocks_queued()) {
  933. manage_heater();
  934. manage_inactivity();
  935. lcd_update();
  936. }
  937. }
  938. void st_set_position(const long &x, const long &y, const long &z, const long &e) {
  939. CRITICAL_SECTION_START;
  940. count_position[X_AXIS] = x;
  941. count_position[Y_AXIS] = y;
  942. count_position[Z_AXIS] = z;
  943. count_position[E_AXIS] = e;
  944. CRITICAL_SECTION_END;
  945. }
  946. void st_set_e_position(const long &e) {
  947. CRITICAL_SECTION_START;
  948. count_position[E_AXIS] = e;
  949. CRITICAL_SECTION_END;
  950. }
  951. long st_get_position(uint8_t axis) {
  952. long count_pos;
  953. CRITICAL_SECTION_START;
  954. count_pos = count_position[axis];
  955. CRITICAL_SECTION_END;
  956. return count_pos;
  957. }
  958. #ifdef ENABLE_AUTO_BED_LEVELING
  959. float st_get_position_mm(AxisEnum axis) {
  960. return st_get_position(axis) / axis_steps_per_unit[axis];
  961. }
  962. #endif // ENABLE_AUTO_BED_LEVELING
  963. void finishAndDisableSteppers() {
  964. st_synchronize();
  965. disable_all_steppers();
  966. }
  967. void quickStop() {
  968. cleaning_buffer_counter = 5000;
  969. DISABLE_STEPPER_DRIVER_INTERRUPT();
  970. while (blocks_queued()) plan_discard_current_block();
  971. current_block = NULL;
  972. ENABLE_STEPPER_DRIVER_INTERRUPT();
  973. }
  974. #ifdef BABYSTEPPING
  975. // MUST ONLY BE CALLED BY AN ISR,
  976. // No other ISR should ever interrupt this!
  977. void babystep(const uint8_t axis, const bool direction) {
  978. #define _ENABLE(axis) enable_## axis()
  979. #define _READ_DIR(AXIS) AXIS ##_DIR_READ
  980. #define _INVERT_DIR(AXIS) INVERT_## AXIS ##_DIR
  981. #define _APPLY_DIR(AXIS, INVERT) AXIS ##_APPLY_DIR(INVERT, true)
  982. #define BABYSTEP_AXIS(axis, AXIS, INVERT) { \
  983. _ENABLE(axis); \
  984. uint8_t old_pin = _READ_DIR(AXIS); \
  985. _APPLY_DIR(AXIS, _INVERT_DIR(AXIS)^direction^INVERT); \
  986. _APPLY_STEP(AXIS)(!_INVERT_STEP_PIN(AXIS), true); \
  987. delayMicroseconds(2); \
  988. _APPLY_STEP(AXIS)(_INVERT_STEP_PIN(AXIS), true); \
  989. _APPLY_DIR(AXIS, old_pin); \
  990. }
  991. switch(axis) {
  992. case X_AXIS:
  993. BABYSTEP_AXIS(x, X, false);
  994. break;
  995. case Y_AXIS:
  996. BABYSTEP_AXIS(y, Y, false);
  997. break;
  998. case Z_AXIS: {
  999. #ifndef DELTA
  1000. BABYSTEP_AXIS(z, Z, BABYSTEP_INVERT_Z);
  1001. #else // DELTA
  1002. bool z_direction = direction ^ BABYSTEP_INVERT_Z;
  1003. enable_x();
  1004. enable_y();
  1005. enable_z();
  1006. uint8_t old_x_dir_pin = X_DIR_READ,
  1007. old_y_dir_pin = Y_DIR_READ,
  1008. old_z_dir_pin = Z_DIR_READ;
  1009. //setup new step
  1010. X_DIR_WRITE(INVERT_X_DIR^z_direction);
  1011. Y_DIR_WRITE(INVERT_Y_DIR^z_direction);
  1012. Z_DIR_WRITE(INVERT_Z_DIR^z_direction);
  1013. //perform step
  1014. X_STEP_WRITE(!INVERT_X_STEP_PIN);
  1015. Y_STEP_WRITE(!INVERT_Y_STEP_PIN);
  1016. Z_STEP_WRITE(!INVERT_Z_STEP_PIN);
  1017. delayMicroseconds(2);
  1018. X_STEP_WRITE(INVERT_X_STEP_PIN);
  1019. Y_STEP_WRITE(INVERT_Y_STEP_PIN);
  1020. Z_STEP_WRITE(INVERT_Z_STEP_PIN);
  1021. //get old pin state back.
  1022. X_DIR_WRITE(old_x_dir_pin);
  1023. Y_DIR_WRITE(old_y_dir_pin);
  1024. Z_DIR_WRITE(old_z_dir_pin);
  1025. #endif
  1026. } break;
  1027. default: break;
  1028. }
  1029. }
  1030. #endif //BABYSTEPPING
  1031. // From Arduino DigitalPotControl example
  1032. void digitalPotWrite(int address, int value) {
  1033. #if HAS_DIGIPOTSS
  1034. digitalWrite(DIGIPOTSS_PIN,LOW); // take the SS pin low to select the chip
  1035. SPI.transfer(address); // send in the address and value via SPI:
  1036. SPI.transfer(value);
  1037. digitalWrite(DIGIPOTSS_PIN,HIGH); // take the SS pin high to de-select the chip:
  1038. //delay(10);
  1039. #endif
  1040. }
  1041. // Initialize Digipot Motor Current
  1042. void digipot_init() {
  1043. #if HAS_DIGIPOTSS
  1044. const uint8_t digipot_motor_current[] = DIGIPOT_MOTOR_CURRENT;
  1045. SPI.begin();
  1046. pinMode(DIGIPOTSS_PIN, OUTPUT);
  1047. for (int i = 0; i <= 4; i++) {
  1048. //digitalPotWrite(digipot_ch[i], digipot_motor_current[i]);
  1049. digipot_current(i,digipot_motor_current[i]);
  1050. }
  1051. #endif
  1052. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  1053. pinMode(MOTOR_CURRENT_PWM_XY_PIN, OUTPUT);
  1054. pinMode(MOTOR_CURRENT_PWM_Z_PIN, OUTPUT);
  1055. pinMode(MOTOR_CURRENT_PWM_E_PIN, OUTPUT);
  1056. digipot_current(0, motor_current_setting[0]);
  1057. digipot_current(1, motor_current_setting[1]);
  1058. digipot_current(2, motor_current_setting[2]);
  1059. //Set timer5 to 31khz so the PWM of the motor power is as constant as possible. (removes a buzzing noise)
  1060. TCCR5B = (TCCR5B & ~(_BV(CS50) | _BV(CS51) | _BV(CS52))) | _BV(CS50);
  1061. #endif
  1062. }
  1063. void digipot_current(uint8_t driver, int current) {
  1064. #if HAS_DIGIPOTSS
  1065. const uint8_t digipot_ch[] = DIGIPOT_CHANNELS;
  1066. digitalPotWrite(digipot_ch[driver], current);
  1067. #endif
  1068. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  1069. switch(driver) {
  1070. case 0: analogWrite(MOTOR_CURRENT_PWM_XY_PIN, 255L * current / MOTOR_CURRENT_PWM_RANGE); break;
  1071. case 1: analogWrite(MOTOR_CURRENT_PWM_Z_PIN, 255L * current / MOTOR_CURRENT_PWM_RANGE); break;
  1072. case 2: analogWrite(MOTOR_CURRENT_PWM_E_PIN, 255L * current / MOTOR_CURRENT_PWM_RANGE); break;
  1073. }
  1074. #endif
  1075. }
  1076. void microstep_init() {
  1077. #if HAS_MICROSTEPS_E1
  1078. pinMode(E1_MS1_PIN,OUTPUT);
  1079. pinMode(E1_MS2_PIN,OUTPUT);
  1080. #endif
  1081. #if HAS_MICROSTEPS
  1082. pinMode(X_MS1_PIN,OUTPUT);
  1083. pinMode(X_MS2_PIN,OUTPUT);
  1084. pinMode(Y_MS1_PIN,OUTPUT);
  1085. pinMode(Y_MS2_PIN,OUTPUT);
  1086. pinMode(Z_MS1_PIN,OUTPUT);
  1087. pinMode(Z_MS2_PIN,OUTPUT);
  1088. pinMode(E0_MS1_PIN,OUTPUT);
  1089. pinMode(E0_MS2_PIN,OUTPUT);
  1090. const uint8_t microstep_modes[] = MICROSTEP_MODES;
  1091. for (uint16_t i = 0; i < sizeof(microstep_modes) / sizeof(microstep_modes[0]); i++)
  1092. microstep_mode(i, microstep_modes[i]);
  1093. #endif
  1094. }
  1095. void microstep_ms(uint8_t driver, int8_t ms1, int8_t ms2) {
  1096. if (ms1 >= 0) switch(driver) {
  1097. case 0: digitalWrite(X_MS1_PIN, ms1); break;
  1098. case 1: digitalWrite(Y_MS1_PIN, ms1); break;
  1099. case 2: digitalWrite(Z_MS1_PIN, ms1); break;
  1100. case 3: digitalWrite(E0_MS1_PIN, ms1); break;
  1101. #if HAS_MICROSTEPS_E1
  1102. case 4: digitalWrite(E1_MS1_PIN, ms1); break;
  1103. #endif
  1104. }
  1105. if (ms2 >= 0) switch(driver) {
  1106. case 0: digitalWrite(X_MS2_PIN, ms2); break;
  1107. case 1: digitalWrite(Y_MS2_PIN, ms2); break;
  1108. case 2: digitalWrite(Z_MS2_PIN, ms2); break;
  1109. case 3: digitalWrite(E0_MS2_PIN, ms2); break;
  1110. #if defined(E1_MS2_PIN) && E1_MS2_PIN >= 0
  1111. case 4: digitalWrite(E1_MS2_PIN, ms2); break;
  1112. #endif
  1113. }
  1114. }
  1115. void microstep_mode(uint8_t driver, uint8_t stepping_mode) {
  1116. switch(stepping_mode) {
  1117. case 1: microstep_ms(driver,MICROSTEP1); break;
  1118. case 2: microstep_ms(driver,MICROSTEP2); break;
  1119. case 4: microstep_ms(driver,MICROSTEP4); break;
  1120. case 8: microstep_ms(driver,MICROSTEP8); break;
  1121. case 16: microstep_ms(driver,MICROSTEP16); break;
  1122. }
  1123. }
  1124. void microstep_readings() {
  1125. SERIAL_PROTOCOLPGM("MS1,MS2 Pins\n");
  1126. SERIAL_PROTOCOLPGM("X: ");
  1127. SERIAL_PROTOCOL(digitalRead(X_MS1_PIN));
  1128. SERIAL_PROTOCOLLN(digitalRead(X_MS2_PIN));
  1129. SERIAL_PROTOCOLPGM("Y: ");
  1130. SERIAL_PROTOCOL(digitalRead(Y_MS1_PIN));
  1131. SERIAL_PROTOCOLLN(digitalRead(Y_MS2_PIN));
  1132. SERIAL_PROTOCOLPGM("Z: ");
  1133. SERIAL_PROTOCOL(digitalRead(Z_MS1_PIN));
  1134. SERIAL_PROTOCOLLN(digitalRead(Z_MS2_PIN));
  1135. SERIAL_PROTOCOLPGM("E0: ");
  1136. SERIAL_PROTOCOL(digitalRead(E0_MS1_PIN));
  1137. SERIAL_PROTOCOLLN(digitalRead(E0_MS2_PIN));
  1138. #if HAS_MICROSTEPS_E1
  1139. SERIAL_PROTOCOLPGM("E1: ");
  1140. SERIAL_PROTOCOL(digitalRead(E1_MS1_PIN));
  1141. SERIAL_PROTOCOLLN(digitalRead(E1_MS2_PIN));
  1142. #endif
  1143. }
  1144. #ifdef Z_DUAL_ENDSTOPS
  1145. void In_Homing_Process(bool state) { performing_homing = state; }
  1146. void Lock_z_motor(bool state) { locked_z_motor = state; }
  1147. void Lock_z2_motor(bool state) { locked_z2_motor = state; }
  1148. #endif