My Marlin configs for Fabrikator Mini and CTC i3 Pro B
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

Marlin_main.cpp 290KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861786278637864786578667867786878697870787178727873787478757876787778787879788078817882788378847885788678877888788978907891789278937894789578967897789878997900790179027903790479057906790779087909791079117912791379147915791679177918791979207921792279237924792579267927792879297930793179327933793479357936793779387939794079417942794379447945794679477948794979507951795279537954795579567957795879597960796179627963796479657966796779687969797079717972797379747975797679777978797979807981798279837984798579867987798879897990799179927993799479957996799779987999800080018002800380048005800680078008800980108011801280138014801580168017801880198020802180228023802480258026802780288029803080318032803380348035803680378038803980408041804280438044804580468047804880498050805180528053805480558056805780588059806080618062806380648065806680678068806980708071807280738074807580768077807880798080808180828083808480858086808780888089809080918092809380948095809680978098809981008101810281038104810581068107810881098110811181128113811481158116811781188119812081218122812381248125812681278128812981308131813281338134813581368137813881398140814181428143814481458146814781488149815081518152815381548155815681578158815981608161816281638164816581668167816881698170817181728173817481758176817781788179818081818182818381848185818681878188818981908191819281938194819581968197819881998200820182028203820482058206820782088209821082118212821382148215821682178218821982208221822282238224822582268227822882298230823182328233823482358236823782388239824082418242824382448245824682478248824982508251825282538254825582568257825882598260826182628263826482658266826782688269827082718272827382748275827682778278827982808281828282838284828582868287828882898290829182928293829482958296829782988299830083018302830383048305830683078308830983108311831283138314831583168317831883198320832183228323832483258326832783288329833083318332833383348335833683378338833983408341834283438344834583468347834883498350835183528353835483558356835783588359836083618362836383648365836683678368836983708371837283738374837583768377837883798380838183828383838483858386838783888389839083918392839383948395839683978398839984008401840284038404840584068407840884098410841184128413841484158416841784188419842084218422842384248425842684278428842984308431843284338434843584368437843884398440844184428443844484458446844784488449845084518452845384548455845684578458845984608461846284638464846584668467846884698470847184728473847484758476847784788479848084818482848384848485848684878488848984908491849284938494849584968497849884998500850185028503850485058506850785088509851085118512851385148515851685178518851985208521852285238524852585268527852885298530853185328533853485358536853785388539854085418542854385448545854685478548854985508551855285538554855585568557855885598560856185628563856485658566856785688569857085718572857385748575857685778578857985808581858285838584858585868587858885898590859185928593859485958596859785988599860086018602860386048605860686078608860986108611861286138614861586168617861886198620862186228623862486258626862786288629863086318632863386348635863686378638863986408641864286438644864586468647864886498650865186528653865486558656865786588659866086618662866386648665866686678668866986708671867286738674867586768677867886798680868186828683868486858686868786888689869086918692869386948695869686978698869987008701870287038704870587068707870887098710871187128713871487158716871787188719872087218722872387248725872687278728872987308731873287338734873587368737873887398740874187428743874487458746874787488749875087518752875387548755875687578758875987608761876287638764876587668767876887698770877187728773877487758776877787788779878087818782878387848785878687878788878987908791879287938794879587968797879887998800880188028803880488058806880788088809881088118812881388148815881688178818881988208821882288238824882588268827882888298830883188328833883488358836883788388839884088418842884388448845884688478848884988508851885288538854885588568857885888598860886188628863886488658866886788688869887088718872887388748875887688778878887988808881888288838884888588868887888888898890889188928893889488958896889788988899890089018902890389048905890689078908890989108911891289138914891589168917891889198920892189228923892489258926892789288929893089318932893389348935893689378938893989408941894289438944894589468947894889498950895189528953895489558956895789588959896089618962896389648965896689678968896989708971897289738974897589768977897889798980898189828983898489858986898789888989899089918992899389948995899689978998899990009001900290039004900590069007900890099010901190129013901490159016901790189019902090219022902390249025902690279028902990309031903290339034903590369037903890399040904190429043904490459046904790489049905090519052905390549055905690579058905990609061906290639064906590669067906890699070907190729073907490759076907790789079908090819082908390849085908690879088908990909091909290939094909590969097909890999100910191029103910491059106910791089109911091119112911391149115911691179118911991209121912291239124912591269127912891299130913191329133913491359136913791389139914091419142914391449145914691479148914991509151915291539154915591569157915891599160916191629163916491659166916791689169917091719172917391749175917691779178917991809181918291839184918591869187918891899190919191929193919491959196919791989199920092019202920392049205920692079208920992109211921292139214921592169217921892199220922192229223922492259226922792289229923092319232923392349235923692379238923992409241924292439244924592469247924892499250925192529253925492559256925792589259926092619262926392649265926692679268926992709271927292739274927592769277927892799280928192829283928492859286928792889289929092919292929392949295929692979298929993009301930293039304
  1. /**
  2. * Marlin 3D Printer Firmware
  3. * Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
  4. *
  5. * Based on Sprinter and grbl.
  6. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  7. *
  8. * This program is free software: you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation, either version 3 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  20. *
  21. */
  22. /**
  23. * About Marlin
  24. *
  25. * This firmware is a mashup between Sprinter and grbl.
  26. * - https://github.com/kliment/Sprinter
  27. * - https://github.com/simen/grbl/tree
  28. *
  29. * It has preliminary support for Matthew Roberts advance algorithm
  30. * - http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  31. */
  32. #include "Marlin.h"
  33. #if HAS_ABL
  34. #include "vector_3.h"
  35. #endif
  36. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  37. #include "qr_solve.h"
  38. #elif ENABLED(MESH_BED_LEVELING)
  39. #include "mesh_bed_leveling.h"
  40. #endif
  41. #if ENABLED(BEZIER_CURVE_SUPPORT)
  42. #include "planner_bezier.h"
  43. #endif
  44. #include "ultralcd.h"
  45. #include "planner.h"
  46. #include "stepper.h"
  47. #include "endstops.h"
  48. #include "temperature.h"
  49. #include "cardreader.h"
  50. #include "configuration_store.h"
  51. #include "language.h"
  52. #include "pins_arduino.h"
  53. #include "math.h"
  54. #include "nozzle.h"
  55. #include "duration_t.h"
  56. #include "types.h"
  57. #if ENABLED(USE_WATCHDOG)
  58. #include "watchdog.h"
  59. #endif
  60. #if ENABLED(BLINKM)
  61. #include "blinkm.h"
  62. #include "Wire.h"
  63. #endif
  64. #if HAS_SERVOS
  65. #include "servo.h"
  66. #endif
  67. #if HAS_DIGIPOTSS
  68. #include <SPI.h>
  69. #endif
  70. #if ENABLED(DAC_STEPPER_CURRENT)
  71. #include "stepper_dac.h"
  72. #endif
  73. #if ENABLED(EXPERIMENTAL_I2CBUS)
  74. #include "twibus.h"
  75. #endif
  76. /**
  77. * Look here for descriptions of G-codes:
  78. * - http://linuxcnc.org/handbook/gcode/g-code.html
  79. * - http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  80. *
  81. * Help us document these G-codes online:
  82. * - https://github.com/MarlinFirmware/Marlin/wiki/G-Code-in-Marlin
  83. * - http://reprap.org/wiki/G-code
  84. *
  85. * -----------------
  86. * Implemented Codes
  87. * -----------------
  88. *
  89. * "G" Codes
  90. *
  91. * G0 -> G1
  92. * G1 - Coordinated Movement X Y Z E
  93. * G2 - CW ARC
  94. * G3 - CCW ARC
  95. * G4 - Dwell S<seconds> or P<milliseconds>
  96. * G5 - Cubic B-spline with XYZE destination and IJPQ offsets
  97. * G10 - Retract filament according to settings of M207
  98. * G11 - Retract recover filament according to settings of M208
  99. * G12 - Clean tool
  100. * G20 - Set input units to inches
  101. * G21 - Set input units to millimeters
  102. * G28 - Home one or more axes
  103. * G29 - Detailed Z probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  104. * G30 - Single Z probe, probes bed at current XY location.
  105. * G31 - Dock sled (Z_PROBE_SLED only)
  106. * G32 - Undock sled (Z_PROBE_SLED only)
  107. * G90 - Use Absolute Coordinates
  108. * G91 - Use Relative Coordinates
  109. * G92 - Set current position to coordinates given
  110. *
  111. * "M" Codes
  112. *
  113. * M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
  114. * M1 - Same as M0
  115. * M17 - Enable/Power all stepper motors
  116. * M18 - Disable all stepper motors; same as M84
  117. * M20 - List SD card. (Requires SDSUPPORT)
  118. * M21 - Init SD card. (Requires SDSUPPORT)
  119. * M22 - Release SD card. (Requires SDSUPPORT)
  120. * M23 - Select SD file: "M23 /path/file.gco". (Requires SDSUPPORT)
  121. * M24 - Start/resume SD print. (Requires SDSUPPORT)
  122. * M25 - Pause SD print. (Requires SDSUPPORT)
  123. * M26 - Set SD position in bytes: "M26 S12345". (Requires SDSUPPORT)
  124. * M27 - Report SD print status. (Requires SDSUPPORT)
  125. * M28 - Start SD write: "M28 /path/file.gco". (Requires SDSUPPORT)
  126. * M29 - Stop SD write. (Requires SDSUPPORT)
  127. * M30 - Delete file from SD: "M30 /path/file.gco"
  128. * M31 - Report time since last M109 or SD card start to serial.
  129. * M32 - Select file and start SD print: "M32 [S<bytepos>] !/path/file.gco#". (Requires SDSUPPORT)
  130. * Use P to run other files as sub-programs: "M32 P !filename#"
  131. * The '#' is necessary when calling from within sd files, as it stops buffer prereading
  132. * M33 - Get the longname version of a path. (Requires LONG_FILENAME_HOST_SUPPORT)
  133. * M42 - Change pin status via gcode: M42 P<pin> S<value>. LED pin assumed if P is omitted.
  134. * M48 - Measure Z Probe repeatability: M48 P<points> X<pos> Y<pos> V<level> E<engage> L<legs>. (Requires Z_MIN_PROBE_REPEATABILITY_TEST)
  135. * M75 - Start the print job timer.
  136. * M76 - Pause the print job timer.
  137. * M77 - Stop the print job timer.
  138. * M78 - Show statistical information about the print jobs. (Requires PRINTCOUNTER)
  139. * M80 - Turn on Power Supply. (Requires POWER_SUPPLY)
  140. * M81 - Turn off Power Supply. (Requires POWER_SUPPLY)
  141. * M82 - Set E codes absolute (default).
  142. * M83 - Set E codes relative while in Absolute (G90) mode.
  143. * M84 - Disable steppers until next move, or use S<seconds> to specify an idle
  144. * duration after which steppers should turn off. S0 disables the timeout.
  145. * M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  146. * M92 - Set planner.axis_steps_per_mm for one or more axes.
  147. * M104 - Set extruder target temp.
  148. * M105 - Report current temperatures.
  149. * M106 - Fan on.
  150. * M107 - Fan off.
  151. * M108 - Break out of heating loops (M109, M190, M303). With no controller, breaks out of M0/M1. (Requires EMERGENCY_PARSER)
  152. * M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  153. * Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  154. * IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  155. * M110 - Set the current line number. (Used by host printing)
  156. * M111 - Set debug flags: "M111 S<flagbits>". See flag bits defined in enum.h.
  157. * M112 - Emergency stop.
  158. * M113 - Get or set the timeout interval for Host Keepalive "busy" messages. (Requires HOST_KEEPALIVE_FEATURE)
  159. * M114 - Report current position.
  160. * M115 - Report capabilities.
  161. * M117 - Display a message on the controller screen. (Requires an LCD)
  162. * M119 - Report endstops status.
  163. * M120 - Enable endstops detection.
  164. * M121 - Disable endstops detection.
  165. * M126 - Solenoid Air Valve Open. (Requires BARICUDA)
  166. * M127 - Solenoid Air Valve Closed. (Requires BARICUDA)
  167. * M128 - EtoP Open. (Requires BARICUDA)
  168. * M129 - EtoP Closed. (Requires BARICUDA)
  169. * M140 - Set bed target temp. S<temp>
  170. * M145 - Set heatup values for materials on the LCD. H<hotend> B<bed> F<fan speed> for S<material> (0=PLA, 1=ABS)
  171. * M149 - Set temperature units. (Requires TEMPERATURE_UNITS_SUPPORT)
  172. * M150 - Set BlinkM Color R<red> U<green> B<blue>. Values 0-255. (Requires BLINKM)
  173. * M163 - Set a single proportion for a mixing extruder. (Requires MIXING_EXTRUDER)
  174. * M164 - Save the mix as a virtual extruder. (Requires MIXING_EXTRUDER and MIXING_VIRTUAL_TOOLS)
  175. * M165 - Set the proportions for a mixing extruder. Use parameters ABCDHI to set the mixing factors. (Requires MIXING_EXTRUDER)
  176. * M190 - Sxxx Wait for bed current temp to reach target temp. ** Waits only when heating! **
  177. * Rxxx Wait for bed current temp to reach target temp. ** Waits for heating or cooling. **
  178. * M200 - Set filament diameter, D<diameter>, setting E axis units to cubic. (Use S0 to revert to linear units.)
  179. * M201 - Set max acceleration in units/s^2 for print moves: "M201 X<accel> Y<accel> Z<accel> E<accel>"
  180. * M202 - Set max acceleration in units/s^2 for travel moves: "M202 X<accel> Y<accel> Z<accel> E<accel>" ** UNUSED IN MARLIN! **
  181. * M203 - Set maximum feedrate: "M203 X<fr> Y<fr> Z<fr> E<fr>" in units/sec.
  182. * M204 - Set default acceleration in units/sec^2: P<printing> R<extruder_only> T<travel>
  183. * M205 - Set advanced settings. Current units apply:
  184. S<print> T<travel> minimum speeds
  185. B<minimum segment time>
  186. X<max xy jerk>, Z<max Z jerk>, E<max E jerk>
  187. * M206 - Set additional homing offset.
  188. * M207 - Set Retract Length: S<length>, Feedrate: F<units/min>, and Z lift: Z<distance>. (Requires FWRETRACT)
  189. * M208 - Set Recover (unretract) Additional (!) Length: S<length> and Feedrate: F<units/min>. (Requires FWRETRACT)
  190. * M209 - Turn Automatic Retract Detection on/off: S<0|1> (For slicers that don't support G10/11). (Requires FWRETRACT)
  191. Every normal extrude-only move will be classified as retract depending on the direction.
  192. * M211 - Enable, Disable, and/or Report software endstops: S<0|1>
  193. * M218 - Set a tool offset: "M218 T<index> X<offset> Y<offset>". (Requires 2 or more extruders)
  194. * M220 - Set Feedrate Percentage: "M220 S<percent>" (i.e., "FR" on the LCD)
  195. * M221 - Set Flow Percentage: "M221 S<percent>"
  196. * M226 - Wait until a pin is in a given state: "M226 P<pin> S<state>"
  197. * M240 - Trigger a camera to take a photograph. (Requires CHDK or PHOTOGRAPH_PIN)
  198. * M250 - Set LCD contrast: "M250 C<contrast>" (0-63). (Requires LCD support)
  199. * M280 - Set servo position absolute: "M280 P<index> S<angle|µs>". (Requires servos)
  200. * M300 - Play beep sound S<frequency Hz> P<duration ms>
  201. * M301 - Set PID parameters P I and D. (Requires PIDTEMP)
  202. * M302 - Allow cold extrudes, or set the minimum extrude S<temperature>. (Requires PREVENT_COLD_EXTRUSION)
  203. * M303 - PID relay autotune S<temperature> sets the target temperature. Default 150C. (Requires PIDTEMP)
  204. * M304 - Set bed PID parameters P I and D. (Requires PIDTEMPBED)
  205. * M380 - Activate solenoid on active extruder. (Requires EXT_SOLENOID)
  206. * M381 - Disable all solenoids. (Requires EXT_SOLENOID)
  207. * M400 - Finish all moves.
  208. * M401 - Lower Z probe. (Requires a probe)
  209. * M402 - Raise Z probe. (Requires a probe)
  210. * M404 - Display or set the Nominal Filament Width: "W<diameter>". (Requires FILAMENT_WIDTH_SENSOR)
  211. * M405 - Enable Filament Sensor flow control. "M405 D<delay_cm>". (Requires FILAMENT_WIDTH_SENSOR)
  212. * M406 - Disable Filament Sensor flow control. (Requires FILAMENT_WIDTH_SENSOR)
  213. * M407 - Display measured filament diameter in millimeters. (Requires FILAMENT_WIDTH_SENSOR)
  214. * M410 - Quickstop. Abort all planned moves.
  215. * M420 - Enable/Disable Mesh Leveling (with current values) S1=enable S0=disable (Requires MESH_BED_LEVELING)
  216. * M421 - Set a single Z coordinate in the Mesh Leveling grid. X<units> Y<units> Z<units> (Requires MESH_BED_LEVELING)
  217. * M428 - Set the home_offset based on the current_position. Nearest edge applies.
  218. * M500 - Store parameters in EEPROM. (Requires EEPROM_SETTINGS)
  219. * M501 - Restore parameters from EEPROM. (Requires EEPROM_SETTINGS)
  220. * M502 - Revert to the default "factory settings". ** Does not write them to EEPROM! **
  221. * M503 - Print the current settings (in memory): "M503 S<verbose>". S0 specifies compact output.
  222. * M540 - Enable/disable SD card abort on endstop hit: "M540 S<state>". (Requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  223. * M600 - Pause for filament change: "M600 X<pos> Y<pos> Z<raise> E<first_retract> L<later_retract>". (Requires FILAMENT_CHANGE_FEATURE)
  224. * M665 - Set delta configurations: "M665 L<diagonal rod> R<delta radius> S<segments/s>" (Requires DELTA)
  225. * M666 - Set delta endstop adjustment. (Requires DELTA)
  226. * M605 - Set dual x-carriage movement mode: "M605 S<mode> [X<x_offset>] [R<temp_offset>]". (Requires DUAL_X_CARRIAGE)
  227. * M851 - Set Z probe's Z offset in current units. (Negative = below the nozzle.)
  228. * M907 - Set digital trimpot motor current using axis codes. (Requires a board with digital trimpots)
  229. * M908 - Control digital trimpot directly. (Requires DAC_STEPPER_CURRENT or DIGIPOTSS_PIN)
  230. * M909 - Print digipot/DAC current value. (Requires DAC_STEPPER_CURRENT)
  231. * M910 - Commit digipot/DAC value to external EEPROM via I2C. (Requires DAC_STEPPER_CURRENT)
  232. * M350 - Set microstepping mode. (Requires digital microstepping pins.)
  233. * M351 - Toggle MS1 MS2 pins directly. (Requires digital microstepping pins.)
  234. *
  235. * ************ SCARA Specific - This can change to suit future G-code regulations
  236. * M360 - SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  237. * M361 - SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  238. * M362 - SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  239. * M363 - SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  240. * M364 - SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
  241. * ************* SCARA End ***************
  242. *
  243. * ************ Custom codes - This can change to suit future G-code regulations
  244. * M100 - Watch Free Memory (For Debugging). (Requires M100_FREE_MEMORY_WATCHER)
  245. * M928 - Start SD logging: "M928 filename.gco". Stop with M29. (Requires SDSUPPORT)
  246. * M999 - Restart after being stopped by error
  247. *
  248. * "T" Codes
  249. *
  250. * T0-T3 - Select an extruder (tool) by index: "T<n> F<units/min>"
  251. *
  252. */
  253. #if ENABLED(M100_FREE_MEMORY_WATCHER)
  254. void gcode_M100();
  255. #endif
  256. #if ENABLED(SDSUPPORT)
  257. CardReader card;
  258. #endif
  259. #if ENABLED(EXPERIMENTAL_I2CBUS)
  260. TWIBus i2c;
  261. #endif
  262. bool Running = true;
  263. uint8_t marlin_debug_flags = DEBUG_NONE;
  264. float current_position[NUM_AXIS] = { 0.0 };
  265. static float destination[NUM_AXIS] = { 0.0 };
  266. bool axis_known_position[XYZ] = { false };
  267. bool axis_homed[XYZ] = { false };
  268. static long gcode_N, gcode_LastN, Stopped_gcode_LastN = 0;
  269. static char command_queue[BUFSIZE][MAX_CMD_SIZE];
  270. static char* current_command, *current_command_args;
  271. static uint8_t cmd_queue_index_r = 0,
  272. cmd_queue_index_w = 0,
  273. commands_in_queue = 0;
  274. #if ENABLED(INCH_MODE_SUPPORT)
  275. float linear_unit_factor = 1.0;
  276. float volumetric_unit_factor = 1.0;
  277. #endif
  278. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  279. TempUnit input_temp_units = TEMPUNIT_C;
  280. #endif
  281. /**
  282. * Feed rates are often configured with mm/m
  283. * but the planner and stepper like mm/s units.
  284. */
  285. float constexpr homing_feedrate_mm_s[] = {
  286. #if ENABLED(DELTA)
  287. MMM_TO_MMS(HOMING_FEEDRATE_Z), MMM_TO_MMS(HOMING_FEEDRATE_Z),
  288. #else
  289. MMM_TO_MMS(HOMING_FEEDRATE_XY), MMM_TO_MMS(HOMING_FEEDRATE_XY),
  290. #endif
  291. MMM_TO_MMS(HOMING_FEEDRATE_Z), 0
  292. };
  293. static float feedrate_mm_s = MMM_TO_MMS(1500.0), saved_feedrate_mm_s;
  294. int feedrate_percentage = 100, saved_feedrate_percentage;
  295. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  296. int flow_percentage[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(100);
  297. bool volumetric_enabled = false;
  298. float filament_size[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(DEFAULT_NOMINAL_FILAMENT_DIA);
  299. float volumetric_multiplier[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(1.0);
  300. // The distance that XYZ has been offset by G92. Reset by G28.
  301. float position_shift[XYZ] = { 0 };
  302. // This offset is added to the configured home position.
  303. // Set by M206, M428, or menu item. Saved to EEPROM.
  304. float home_offset[XYZ] = { 0 };
  305. // Software Endstops are based on the configured limits.
  306. #if ENABLED(min_software_endstops) || ENABLED(max_software_endstops)
  307. bool soft_endstops_enabled = true;
  308. #endif
  309. float soft_endstop_min[XYZ] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS },
  310. soft_endstop_max[XYZ] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  311. #if FAN_COUNT > 0
  312. int fanSpeeds[FAN_COUNT] = { 0 };
  313. #endif
  314. // The active extruder (tool). Set with T<extruder> command.
  315. uint8_t active_extruder = 0;
  316. // Relative Mode. Enable with G91, disable with G90.
  317. static bool relative_mode = false;
  318. volatile bool wait_for_heatup = true;
  319. #if ENABLED(EMERGENCY_PARSER) && DISABLED(ULTIPANEL)
  320. volatile bool wait_for_user = false;
  321. #endif
  322. const char errormagic[] PROGMEM = "Error:";
  323. const char echomagic[] PROGMEM = "echo:";
  324. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  325. static int serial_count = 0;
  326. // GCode parameter pointer used by code_seen(), code_value_float(), etc.
  327. static char* seen_pointer;
  328. // Next Immediate GCode Command pointer. NULL if none.
  329. const char* queued_commands_P = NULL;
  330. const int sensitive_pins[] = SENSITIVE_PINS; ///< Sensitive pin list for M42
  331. // Inactivity shutdown
  332. millis_t previous_cmd_ms = 0;
  333. static millis_t max_inactive_time = 0;
  334. static millis_t stepper_inactive_time = (DEFAULT_STEPPER_DEACTIVE_TIME) * 1000UL;
  335. // Print Job Timer
  336. #if ENABLED(PRINTCOUNTER)
  337. PrintCounter print_job_timer = PrintCounter();
  338. #else
  339. Stopwatch print_job_timer = Stopwatch();
  340. #endif
  341. // Buzzer - I2C on the LCD or a BEEPER_PIN
  342. #if ENABLED(LCD_USE_I2C_BUZZER)
  343. #define BUZZ(d,f) lcd_buzz(d, f)
  344. #elif HAS_BUZZER
  345. Buzzer buzzer;
  346. #define BUZZ(d,f) buzzer.tone(d, f)
  347. #else
  348. #define BUZZ(d,f) NOOP
  349. #endif
  350. static uint8_t target_extruder;
  351. #if HAS_BED_PROBE
  352. float zprobe_zoffset = Z_PROBE_OFFSET_FROM_EXTRUDER;
  353. #endif
  354. #define PLANNER_XY_FEEDRATE() (min(planner.max_feedrate_mm_s[X_AXIS], planner.max_feedrate_mm_s[Y_AXIS]))
  355. #if HAS_ABL
  356. float xy_probe_feedrate_mm_s = MMM_TO_MMS(XY_PROBE_SPEED);
  357. #define XY_PROBE_FEEDRATE_MM_S xy_probe_feedrate_mm_s
  358. #elif defined(XY_PROBE_SPEED)
  359. #define XY_PROBE_FEEDRATE_MM_S MMM_TO_MMS(XY_PROBE_SPEED)
  360. #else
  361. #define XY_PROBE_FEEDRATE_MM_S PLANNER_XY_FEEDRATE()
  362. #endif
  363. #if ENABLED(Z_DUAL_ENDSTOPS)
  364. float z_endstop_adj = 0;
  365. #endif
  366. // Extruder offsets
  367. #if HOTENDS > 1
  368. float hotend_offset[][HOTENDS] = {
  369. HOTEND_OFFSET_X,
  370. HOTEND_OFFSET_Y
  371. #ifdef HOTEND_OFFSET_Z
  372. , HOTEND_OFFSET_Z
  373. #endif
  374. };
  375. #endif
  376. #if HAS_Z_SERVO_ENDSTOP
  377. const int z_servo_angle[2] = Z_SERVO_ANGLES;
  378. #endif
  379. #if ENABLED(BARICUDA)
  380. int baricuda_valve_pressure = 0;
  381. int baricuda_e_to_p_pressure = 0;
  382. #endif
  383. #if ENABLED(FWRETRACT)
  384. bool autoretract_enabled = false;
  385. bool retracted[EXTRUDERS] = { false };
  386. bool retracted_swap[EXTRUDERS] = { false };
  387. float retract_length = RETRACT_LENGTH;
  388. float retract_length_swap = RETRACT_LENGTH_SWAP;
  389. float retract_feedrate_mm_s = RETRACT_FEEDRATE;
  390. float retract_zlift = RETRACT_ZLIFT;
  391. float retract_recover_length = RETRACT_RECOVER_LENGTH;
  392. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  393. float retract_recover_feedrate_mm_s = RETRACT_RECOVER_FEEDRATE;
  394. #endif // FWRETRACT
  395. #if ENABLED(ULTIPANEL) && HAS_POWER_SWITCH
  396. bool powersupply =
  397. #if ENABLED(PS_DEFAULT_OFF)
  398. false
  399. #else
  400. true
  401. #endif
  402. ;
  403. #endif
  404. #if ENABLED(DELTA)
  405. #define SIN_60 0.8660254037844386
  406. #define COS_60 0.5
  407. float delta[ABC],
  408. endstop_adj[ABC] = { 0 };
  409. // these are the default values, can be overriden with M665
  410. float delta_radius = DELTA_RADIUS,
  411. delta_tower1_x = -SIN_60 * (delta_radius + DELTA_RADIUS_TRIM_TOWER_1), // front left tower
  412. delta_tower1_y = -COS_60 * (delta_radius + DELTA_RADIUS_TRIM_TOWER_1),
  413. delta_tower2_x = SIN_60 * (delta_radius + DELTA_RADIUS_TRIM_TOWER_2), // front right tower
  414. delta_tower2_y = -COS_60 * (delta_radius + DELTA_RADIUS_TRIM_TOWER_2),
  415. delta_tower3_x = 0, // back middle tower
  416. delta_tower3_y = (delta_radius + DELTA_RADIUS_TRIM_TOWER_3),
  417. delta_diagonal_rod = DELTA_DIAGONAL_ROD,
  418. delta_diagonal_rod_trim_tower_1 = DELTA_DIAGONAL_ROD_TRIM_TOWER_1,
  419. delta_diagonal_rod_trim_tower_2 = DELTA_DIAGONAL_ROD_TRIM_TOWER_2,
  420. delta_diagonal_rod_trim_tower_3 = DELTA_DIAGONAL_ROD_TRIM_TOWER_3,
  421. delta_diagonal_rod_2_tower_1 = sq(delta_diagonal_rod + delta_diagonal_rod_trim_tower_1),
  422. delta_diagonal_rod_2_tower_2 = sq(delta_diagonal_rod + delta_diagonal_rod_trim_tower_2),
  423. delta_diagonal_rod_2_tower_3 = sq(delta_diagonal_rod + delta_diagonal_rod_trim_tower_3),
  424. delta_segments_per_second = DELTA_SEGMENTS_PER_SECOND,
  425. delta_clip_start_height = Z_MAX_POS;
  426. float delta_safe_distance_from_top();
  427. #else
  428. static bool home_all_axis = true;
  429. #endif
  430. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  431. int bilinear_grid_spacing[2] = { 0 };
  432. float bed_level_grid[ABL_GRID_POINTS_X][ABL_GRID_POINTS_Y];
  433. #endif
  434. #if IS_SCARA
  435. // Float constants for SCARA calculations
  436. const float L1 = SCARA_LINKAGE_1, L2 = SCARA_LINKAGE_2,
  437. L1_2 = sq(float(L1)), L1_2_2 = 2.0 * L1_2,
  438. L2_2 = sq(float(L2));
  439. float delta_segments_per_second = SCARA_SEGMENTS_PER_SECOND,
  440. delta[ABC];
  441. #endif
  442. float cartes[XYZ] = { 0 };
  443. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  444. bool filament_sensor = false; //M405 turns on filament_sensor control, M406 turns it off
  445. float filament_width_nominal = DEFAULT_NOMINAL_FILAMENT_DIA, // Nominal filament width. Change with M404
  446. filament_width_meas = DEFAULT_MEASURED_FILAMENT_DIA; // Measured filament diameter
  447. int8_t measurement_delay[MAX_MEASUREMENT_DELAY + 1]; // Ring buffer to delayed measurement. Store extruder factor after subtracting 100
  448. int filwidth_delay_index[2] = { 0, -1 }; // Indexes into ring buffer
  449. int meas_delay_cm = MEASUREMENT_DELAY_CM; //distance delay setting
  450. #endif
  451. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  452. static bool filament_ran_out = false;
  453. #endif
  454. #if ENABLED(FILAMENT_CHANGE_FEATURE)
  455. FilamentChangeMenuResponse filament_change_menu_response;
  456. #endif
  457. #if ENABLED(MIXING_EXTRUDER)
  458. float mixing_factor[MIXING_STEPPERS];
  459. #if MIXING_VIRTUAL_TOOLS > 1
  460. float mixing_virtual_tool_mix[MIXING_VIRTUAL_TOOLS][MIXING_STEPPERS];
  461. #endif
  462. #endif
  463. static bool send_ok[BUFSIZE];
  464. #if HAS_SERVOS
  465. Servo servo[NUM_SERVOS];
  466. #define MOVE_SERVO(I, P) servo[I].move(P)
  467. #if HAS_Z_SERVO_ENDSTOP
  468. #define DEPLOY_Z_SERVO() MOVE_SERVO(Z_ENDSTOP_SERVO_NR, z_servo_angle[0])
  469. #define STOW_Z_SERVO() MOVE_SERVO(Z_ENDSTOP_SERVO_NR, z_servo_angle[1])
  470. #endif
  471. #endif
  472. #ifdef CHDK
  473. millis_t chdkHigh = 0;
  474. boolean chdkActive = false;
  475. #endif
  476. #if ENABLED(PID_EXTRUSION_SCALING)
  477. int lpq_len = 20;
  478. #endif
  479. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  480. static MarlinBusyState busy_state = NOT_BUSY;
  481. static millis_t next_busy_signal_ms = 0;
  482. uint8_t host_keepalive_interval = DEFAULT_KEEPALIVE_INTERVAL;
  483. #define KEEPALIVE_STATE(n) do{ busy_state = n; }while(0)
  484. #else
  485. #define host_keepalive() ;
  486. #define KEEPALIVE_STATE(n) ;
  487. #endif // HOST_KEEPALIVE_FEATURE
  488. #define DEFINE_PGM_READ_ANY(type, reader) \
  489. static inline type pgm_read_any(const type *p) \
  490. { return pgm_read_##reader##_near(p); }
  491. DEFINE_PGM_READ_ANY(float, float);
  492. DEFINE_PGM_READ_ANY(signed char, byte);
  493. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  494. static const PROGMEM type array##_P[XYZ] = \
  495. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  496. static inline type array(int axis) \
  497. { return pgm_read_any(&array##_P[axis]); }
  498. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  499. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  500. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  501. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  502. XYZ_CONSTS_FROM_CONFIG(float, home_bump_mm, HOME_BUMP_MM);
  503. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  504. /**
  505. * ***************************************************************************
  506. * ******************************** FUNCTIONS ********************************
  507. * ***************************************************************************
  508. */
  509. void stop();
  510. void get_available_commands();
  511. void process_next_command();
  512. void prepare_move_to_destination();
  513. void get_cartesian_from_steppers();
  514. void set_current_from_steppers_for_axis(const AxisEnum axis);
  515. #if ENABLED(ARC_SUPPORT)
  516. void plan_arc(float target[NUM_AXIS], float* offset, uint8_t clockwise);
  517. #endif
  518. #if ENABLED(BEZIER_CURVE_SUPPORT)
  519. void plan_cubic_move(const float offset[4]);
  520. #endif
  521. void serial_echopair_P(const char* s_P, const char *v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  522. void serial_echopair_P(const char* s_P, char v) { serialprintPGM(s_P); SERIAL_CHAR(v); }
  523. void serial_echopair_P(const char* s_P, int v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  524. void serial_echopair_P(const char* s_P, long v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  525. void serial_echopair_P(const char* s_P, float v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  526. void serial_echopair_P(const char* s_P, double v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  527. void serial_echopair_P(const char* s_P, unsigned long v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  528. void tool_change(const uint8_t tmp_extruder, const float fr_mm_s=0.0, bool no_move=false);
  529. static void report_current_position();
  530. #if ENABLED(DEBUG_LEVELING_FEATURE)
  531. void print_xyz(const char* prefix, const char* suffix, const float x, const float y, const float z) {
  532. serialprintPGM(prefix);
  533. SERIAL_ECHOPAIR("(", x);
  534. SERIAL_ECHOPAIR(", ", y);
  535. SERIAL_ECHOPAIR(", ", z);
  536. SERIAL_ECHOPGM(")");
  537. if (suffix) serialprintPGM(suffix);
  538. else SERIAL_EOL;
  539. }
  540. void print_xyz(const char* prefix, const char* suffix, const float xyz[]) {
  541. print_xyz(prefix, suffix, xyz[X_AXIS], xyz[Y_AXIS], xyz[Z_AXIS]);
  542. }
  543. #if HAS_ABL
  544. void print_xyz(const char* prefix, const char* suffix, const vector_3 &xyz) {
  545. print_xyz(prefix, suffix, xyz.x, xyz.y, xyz.z);
  546. }
  547. #endif
  548. #define DEBUG_POS(SUFFIX,VAR) do { \
  549. print_xyz(PSTR(STRINGIFY(VAR) "="), PSTR(" : " SUFFIX "\n"), VAR); } while(0)
  550. #endif
  551. /**
  552. * sync_plan_position
  553. *
  554. * Set the planner/stepper positions directly from current_position with
  555. * no kinematic translation. Used for homing axes and cartesian/core syncing.
  556. */
  557. inline void sync_plan_position() {
  558. #if ENABLED(DEBUG_LEVELING_FEATURE)
  559. if (DEBUGGING(LEVELING)) DEBUG_POS("sync_plan_position", current_position);
  560. #endif
  561. planner.set_position_mm(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  562. }
  563. inline void sync_plan_position_e() { planner.set_e_position_mm(current_position[E_AXIS]); }
  564. #if IS_KINEMATIC
  565. inline void sync_plan_position_kinematic() {
  566. #if ENABLED(DEBUG_LEVELING_FEATURE)
  567. if (DEBUGGING(LEVELING)) DEBUG_POS("sync_plan_position_kinematic", current_position);
  568. #endif
  569. inverse_kinematics(current_position);
  570. planner.set_position_mm(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], current_position[E_AXIS]);
  571. }
  572. #define SYNC_PLAN_POSITION_KINEMATIC() sync_plan_position_kinematic()
  573. #else
  574. #define SYNC_PLAN_POSITION_KINEMATIC() sync_plan_position()
  575. #endif
  576. #if ENABLED(SDSUPPORT)
  577. #include "SdFatUtil.h"
  578. int freeMemory() { return SdFatUtil::FreeRam(); }
  579. #else
  580. extern "C" {
  581. extern unsigned int __bss_end;
  582. extern unsigned int __heap_start;
  583. extern void* __brkval;
  584. int freeMemory() {
  585. int free_memory;
  586. if ((int)__brkval == 0)
  587. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  588. else
  589. free_memory = ((int)&free_memory) - ((int)__brkval);
  590. return free_memory;
  591. }
  592. }
  593. #endif //!SDSUPPORT
  594. #if ENABLED(DIGIPOT_I2C)
  595. extern void digipot_i2c_set_current(int channel, float current);
  596. extern void digipot_i2c_init();
  597. #endif
  598. /**
  599. * Inject the next "immediate" command, when possible.
  600. * Return true if any immediate commands remain to inject.
  601. */
  602. static bool drain_queued_commands_P() {
  603. if (queued_commands_P != NULL) {
  604. size_t i = 0;
  605. char c, cmd[30];
  606. strncpy_P(cmd, queued_commands_P, sizeof(cmd) - 1);
  607. cmd[sizeof(cmd) - 1] = '\0';
  608. while ((c = cmd[i]) && c != '\n') i++; // find the end of this gcode command
  609. cmd[i] = '\0';
  610. if (enqueue_and_echo_command(cmd)) { // success?
  611. if (c) // newline char?
  612. queued_commands_P += i + 1; // advance to the next command
  613. else
  614. queued_commands_P = NULL; // nul char? no more commands
  615. }
  616. }
  617. return (queued_commands_P != NULL); // return whether any more remain
  618. }
  619. /**
  620. * Record one or many commands to run from program memory.
  621. * Aborts the current queue, if any.
  622. * Note: drain_queued_commands_P() must be called repeatedly to drain the commands afterwards
  623. */
  624. void enqueue_and_echo_commands_P(const char* pgcode) {
  625. queued_commands_P = pgcode;
  626. drain_queued_commands_P(); // first command executed asap (when possible)
  627. }
  628. void clear_command_queue() {
  629. cmd_queue_index_r = cmd_queue_index_w;
  630. commands_in_queue = 0;
  631. }
  632. /**
  633. * Once a new command is in the ring buffer, call this to commit it
  634. */
  635. inline void _commit_command(bool say_ok) {
  636. send_ok[cmd_queue_index_w] = say_ok;
  637. cmd_queue_index_w = (cmd_queue_index_w + 1) % BUFSIZE;
  638. commands_in_queue++;
  639. }
  640. /**
  641. * Copy a command directly into the main command buffer, from RAM.
  642. * Returns true if successfully adds the command
  643. */
  644. inline bool _enqueuecommand(const char* cmd, bool say_ok=false) {
  645. if (*cmd == ';' || commands_in_queue >= BUFSIZE) return false;
  646. strcpy(command_queue[cmd_queue_index_w], cmd);
  647. _commit_command(say_ok);
  648. return true;
  649. }
  650. void enqueue_and_echo_command_now(const char* cmd) {
  651. while (!enqueue_and_echo_command(cmd)) idle();
  652. }
  653. /**
  654. * Enqueue with Serial Echo
  655. */
  656. bool enqueue_and_echo_command(const char* cmd, bool say_ok/*=false*/) {
  657. if (_enqueuecommand(cmd, say_ok)) {
  658. SERIAL_ECHO_START;
  659. SERIAL_ECHOPAIR(MSG_Enqueueing, cmd);
  660. SERIAL_ECHOLNPGM("\"");
  661. return true;
  662. }
  663. return false;
  664. }
  665. void setup_killpin() {
  666. #if HAS_KILL
  667. SET_INPUT(KILL_PIN);
  668. WRITE(KILL_PIN, HIGH);
  669. #endif
  670. }
  671. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  672. void setup_filrunoutpin() {
  673. SET_INPUT(FIL_RUNOUT_PIN);
  674. #if ENABLED(ENDSTOPPULLUP_FIL_RUNOUT)
  675. WRITE(FIL_RUNOUT_PIN, HIGH);
  676. #endif
  677. }
  678. #endif
  679. // Set home pin
  680. void setup_homepin(void) {
  681. #if HAS_HOME
  682. SET_INPUT(HOME_PIN);
  683. WRITE(HOME_PIN, HIGH);
  684. #endif
  685. }
  686. void setup_photpin() {
  687. #if HAS_PHOTOGRAPH
  688. OUT_WRITE(PHOTOGRAPH_PIN, LOW);
  689. #endif
  690. }
  691. void setup_powerhold() {
  692. #if HAS_SUICIDE
  693. OUT_WRITE(SUICIDE_PIN, HIGH);
  694. #endif
  695. #if HAS_POWER_SWITCH
  696. #if ENABLED(PS_DEFAULT_OFF)
  697. OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  698. #else
  699. OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE);
  700. #endif
  701. #endif
  702. }
  703. void suicide() {
  704. #if HAS_SUICIDE
  705. OUT_WRITE(SUICIDE_PIN, LOW);
  706. #endif
  707. }
  708. void servo_init() {
  709. #if NUM_SERVOS >= 1 && HAS_SERVO_0
  710. servo[0].attach(SERVO0_PIN);
  711. servo[0].detach(); // Just set up the pin. We don't have a position yet. Don't move to a random position.
  712. #endif
  713. #if NUM_SERVOS >= 2 && HAS_SERVO_1
  714. servo[1].attach(SERVO1_PIN);
  715. servo[1].detach();
  716. #endif
  717. #if NUM_SERVOS >= 3 && HAS_SERVO_2
  718. servo[2].attach(SERVO2_PIN);
  719. servo[2].detach();
  720. #endif
  721. #if NUM_SERVOS >= 4 && HAS_SERVO_3
  722. servo[3].attach(SERVO3_PIN);
  723. servo[3].detach();
  724. #endif
  725. #if HAS_Z_SERVO_ENDSTOP
  726. /**
  727. * Set position of Z Servo Endstop
  728. *
  729. * The servo might be deployed and positioned too low to stow
  730. * when starting up the machine or rebooting the board.
  731. * There's no way to know where the nozzle is positioned until
  732. * homing has been done - no homing with z-probe without init!
  733. *
  734. */
  735. STOW_Z_SERVO();
  736. #endif
  737. }
  738. /**
  739. * Stepper Reset (RigidBoard, et.al.)
  740. */
  741. #if HAS_STEPPER_RESET
  742. void disableStepperDrivers() {
  743. OUT_WRITE(STEPPER_RESET_PIN, LOW); // drive it down to hold in reset motor driver chips
  744. }
  745. void enableStepperDrivers() { SET_INPUT(STEPPER_RESET_PIN); } // set to input, which allows it to be pulled high by pullups
  746. #endif
  747. #if ENABLED(EXPERIMENTAL_I2CBUS) && I2C_SLAVE_ADDRESS > 0
  748. void i2c_on_receive(int bytes) { // just echo all bytes received to serial
  749. i2c.receive(bytes);
  750. }
  751. void i2c_on_request() { // just send dummy data for now
  752. i2c.reply("Hello World!\n");
  753. }
  754. #endif
  755. void gcode_line_error(const char* err, bool doFlush = true) {
  756. SERIAL_ERROR_START;
  757. serialprintPGM(err);
  758. SERIAL_ERRORLN(gcode_LastN);
  759. //Serial.println(gcode_N);
  760. if (doFlush) FlushSerialRequestResend();
  761. serial_count = 0;
  762. }
  763. inline void get_serial_commands() {
  764. static char serial_line_buffer[MAX_CMD_SIZE];
  765. static boolean serial_comment_mode = false;
  766. // If the command buffer is empty for too long,
  767. // send "wait" to indicate Marlin is still waiting.
  768. #if defined(NO_TIMEOUTS) && NO_TIMEOUTS > 0
  769. static millis_t last_command_time = 0;
  770. millis_t ms = millis();
  771. if (commands_in_queue == 0 && !MYSERIAL.available() && ELAPSED(ms, last_command_time + NO_TIMEOUTS)) {
  772. SERIAL_ECHOLNPGM(MSG_WAIT);
  773. last_command_time = ms;
  774. }
  775. #endif
  776. /**
  777. * Loop while serial characters are incoming and the queue is not full
  778. */
  779. while (commands_in_queue < BUFSIZE && MYSERIAL.available() > 0) {
  780. char serial_char = MYSERIAL.read();
  781. /**
  782. * If the character ends the line
  783. */
  784. if (serial_char == '\n' || serial_char == '\r') {
  785. serial_comment_mode = false; // end of line == end of comment
  786. if (!serial_count) continue; // skip empty lines
  787. serial_line_buffer[serial_count] = 0; // terminate string
  788. serial_count = 0; //reset buffer
  789. char* command = serial_line_buffer;
  790. while (*command == ' ') command++; // skip any leading spaces
  791. char* npos = (*command == 'N') ? command : NULL; // Require the N parameter to start the line
  792. char* apos = strchr(command, '*');
  793. if (npos) {
  794. boolean M110 = strstr_P(command, PSTR("M110")) != NULL;
  795. if (M110) {
  796. char* n2pos = strchr(command + 4, 'N');
  797. if (n2pos) npos = n2pos;
  798. }
  799. gcode_N = strtol(npos + 1, NULL, 10);
  800. if (gcode_N != gcode_LastN + 1 && !M110) {
  801. gcode_line_error(PSTR(MSG_ERR_LINE_NO));
  802. return;
  803. }
  804. if (apos) {
  805. byte checksum = 0, count = 0;
  806. while (command[count] != '*') checksum ^= command[count++];
  807. if (strtol(apos + 1, NULL, 10) != checksum) {
  808. gcode_line_error(PSTR(MSG_ERR_CHECKSUM_MISMATCH));
  809. return;
  810. }
  811. // if no errors, continue parsing
  812. }
  813. else {
  814. gcode_line_error(PSTR(MSG_ERR_NO_CHECKSUM));
  815. return;
  816. }
  817. gcode_LastN = gcode_N;
  818. // if no errors, continue parsing
  819. }
  820. else if (apos) { // No '*' without 'N'
  821. gcode_line_error(PSTR(MSG_ERR_NO_LINENUMBER_WITH_CHECKSUM), false);
  822. return;
  823. }
  824. // Movement commands alert when stopped
  825. if (IsStopped()) {
  826. char* gpos = strchr(command, 'G');
  827. if (gpos) {
  828. int codenum = strtol(gpos + 1, NULL, 10);
  829. switch (codenum) {
  830. case 0:
  831. case 1:
  832. case 2:
  833. case 3:
  834. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  835. LCD_MESSAGEPGM(MSG_STOPPED);
  836. break;
  837. }
  838. }
  839. }
  840. #if DISABLED(EMERGENCY_PARSER)
  841. // If command was e-stop process now
  842. if (strcmp(command, "M108") == 0) wait_for_heatup = false;
  843. if (strcmp(command, "M112") == 0) kill(PSTR(MSG_KILLED));
  844. if (strcmp(command, "M410") == 0) { quickstop_stepper(); }
  845. #endif
  846. #if defined(NO_TIMEOUTS) && NO_TIMEOUTS > 0
  847. last_command_time = ms;
  848. #endif
  849. // Add the command to the queue
  850. _enqueuecommand(serial_line_buffer, true);
  851. }
  852. else if (serial_count >= MAX_CMD_SIZE - 1) {
  853. // Keep fetching, but ignore normal characters beyond the max length
  854. // The command will be injected when EOL is reached
  855. }
  856. else if (serial_char == '\\') { // Handle escapes
  857. if (MYSERIAL.available() > 0) {
  858. // if we have one more character, copy it over
  859. serial_char = MYSERIAL.read();
  860. if (!serial_comment_mode) serial_line_buffer[serial_count++] = serial_char;
  861. }
  862. // otherwise do nothing
  863. }
  864. else { // it's not a newline, carriage return or escape char
  865. if (serial_char == ';') serial_comment_mode = true;
  866. if (!serial_comment_mode) serial_line_buffer[serial_count++] = serial_char;
  867. }
  868. } // queue has space, serial has data
  869. }
  870. #if ENABLED(SDSUPPORT)
  871. inline void get_sdcard_commands() {
  872. static bool stop_buffering = false,
  873. sd_comment_mode = false;
  874. if (!card.sdprinting) return;
  875. /**
  876. * '#' stops reading from SD to the buffer prematurely, so procedural
  877. * macro calls are possible. If it occurs, stop_buffering is triggered
  878. * and the buffer is run dry; this character _can_ occur in serial com
  879. * due to checksums, however, no checksums are used in SD printing.
  880. */
  881. if (commands_in_queue == 0) stop_buffering = false;
  882. uint16_t sd_count = 0;
  883. bool card_eof = card.eof();
  884. while (commands_in_queue < BUFSIZE && !card_eof && !stop_buffering) {
  885. int16_t n = card.get();
  886. char sd_char = (char)n;
  887. card_eof = card.eof();
  888. if (card_eof || n == -1
  889. || sd_char == '\n' || sd_char == '\r'
  890. || ((sd_char == '#' || sd_char == ':') && !sd_comment_mode)
  891. ) {
  892. if (card_eof) {
  893. SERIAL_PROTOCOLLNPGM(MSG_FILE_PRINTED);
  894. card.printingHasFinished();
  895. card.checkautostart(true);
  896. }
  897. else if (n == -1) {
  898. SERIAL_ERROR_START;
  899. SERIAL_ECHOLNPGM(MSG_SD_ERR_READ);
  900. }
  901. if (sd_char == '#') stop_buffering = true;
  902. sd_comment_mode = false; //for new command
  903. if (!sd_count) continue; //skip empty lines
  904. command_queue[cmd_queue_index_w][sd_count] = '\0'; //terminate string
  905. sd_count = 0; //clear buffer
  906. _commit_command(false);
  907. }
  908. else if (sd_count >= MAX_CMD_SIZE - 1) {
  909. /**
  910. * Keep fetching, but ignore normal characters beyond the max length
  911. * The command will be injected when EOL is reached
  912. */
  913. }
  914. else {
  915. if (sd_char == ';') sd_comment_mode = true;
  916. if (!sd_comment_mode) command_queue[cmd_queue_index_w][sd_count++] = sd_char;
  917. }
  918. }
  919. }
  920. #endif // SDSUPPORT
  921. /**
  922. * Add to the circular command queue the next command from:
  923. * - The command-injection queue (queued_commands_P)
  924. * - The active serial input (usually USB)
  925. * - The SD card file being actively printed
  926. */
  927. void get_available_commands() {
  928. // if any immediate commands remain, don't get other commands yet
  929. if (drain_queued_commands_P()) return;
  930. get_serial_commands();
  931. #if ENABLED(SDSUPPORT)
  932. get_sdcard_commands();
  933. #endif
  934. }
  935. inline bool code_has_value() {
  936. int i = 1;
  937. char c = seen_pointer[i];
  938. while (c == ' ') c = seen_pointer[++i];
  939. if (c == '-' || c == '+') c = seen_pointer[++i];
  940. if (c == '.') c = seen_pointer[++i];
  941. return NUMERIC(c);
  942. }
  943. inline float code_value_float() {
  944. float ret;
  945. char* e = strchr(seen_pointer, 'E');
  946. if (e) {
  947. *e = 0;
  948. ret = strtod(seen_pointer + 1, NULL);
  949. *e = 'E';
  950. }
  951. else
  952. ret = strtod(seen_pointer + 1, NULL);
  953. return ret;
  954. }
  955. inline unsigned long code_value_ulong() { return strtoul(seen_pointer + 1, NULL, 10); }
  956. inline long code_value_long() { return strtol(seen_pointer + 1, NULL, 10); }
  957. inline int code_value_int() { return (int)strtol(seen_pointer + 1, NULL, 10); }
  958. inline uint16_t code_value_ushort() { return (uint16_t)strtoul(seen_pointer + 1, NULL, 10); }
  959. inline uint8_t code_value_byte() { return (uint8_t)(constrain(strtol(seen_pointer + 1, NULL, 10), 0, 255)); }
  960. inline bool code_value_bool() { return !code_has_value() || code_value_byte() > 0; }
  961. #if ENABLED(INCH_MODE_SUPPORT)
  962. inline void set_input_linear_units(LinearUnit units) {
  963. switch (units) {
  964. case LINEARUNIT_INCH:
  965. linear_unit_factor = 25.4;
  966. break;
  967. case LINEARUNIT_MM:
  968. default:
  969. linear_unit_factor = 1.0;
  970. break;
  971. }
  972. volumetric_unit_factor = pow(linear_unit_factor, 3.0);
  973. }
  974. inline float axis_unit_factor(int axis) {
  975. return (axis == E_AXIS && volumetric_enabled ? volumetric_unit_factor : linear_unit_factor);
  976. }
  977. inline float code_value_linear_units() { return code_value_float() * linear_unit_factor; }
  978. inline float code_value_axis_units(int axis) { return code_value_float() * axis_unit_factor(axis); }
  979. inline float code_value_per_axis_unit(int axis) { return code_value_float() / axis_unit_factor(axis); }
  980. #else
  981. inline float code_value_linear_units() { return code_value_float(); }
  982. inline float code_value_axis_units(int axis) { UNUSED(axis); return code_value_float(); }
  983. inline float code_value_per_axis_unit(int axis) { UNUSED(axis); return code_value_float(); }
  984. #endif
  985. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  986. inline void set_input_temp_units(TempUnit units) { input_temp_units = units; }
  987. float code_value_temp_abs() {
  988. switch (input_temp_units) {
  989. case TEMPUNIT_C:
  990. return code_value_float();
  991. case TEMPUNIT_F:
  992. return (code_value_float() - 32) * 0.5555555556;
  993. case TEMPUNIT_K:
  994. return code_value_float() - 272.15;
  995. default:
  996. return code_value_float();
  997. }
  998. }
  999. float code_value_temp_diff() {
  1000. switch (input_temp_units) {
  1001. case TEMPUNIT_C:
  1002. case TEMPUNIT_K:
  1003. return code_value_float();
  1004. case TEMPUNIT_F:
  1005. return code_value_float() * 0.5555555556;
  1006. default:
  1007. return code_value_float();
  1008. }
  1009. }
  1010. #else
  1011. float code_value_temp_abs() { return code_value_float(); }
  1012. float code_value_temp_diff() { return code_value_float(); }
  1013. #endif
  1014. FORCE_INLINE millis_t code_value_millis() { return code_value_ulong(); }
  1015. inline millis_t code_value_millis_from_seconds() { return code_value_float() * 1000; }
  1016. bool code_seen(char code) {
  1017. seen_pointer = strchr(current_command_args, code);
  1018. return (seen_pointer != NULL); // Return TRUE if the code-letter was found
  1019. }
  1020. /**
  1021. * Set target_extruder from the T parameter or the active_extruder
  1022. *
  1023. * Returns TRUE if the target is invalid
  1024. */
  1025. bool get_target_extruder_from_command(int code) {
  1026. if (code_seen('T')) {
  1027. if (code_value_byte() >= EXTRUDERS) {
  1028. SERIAL_ECHO_START;
  1029. SERIAL_CHAR('M');
  1030. SERIAL_ECHO(code);
  1031. SERIAL_ECHOLNPAIR(" " MSG_INVALID_EXTRUDER " ", code_value_byte());
  1032. return true;
  1033. }
  1034. target_extruder = code_value_byte();
  1035. }
  1036. else
  1037. target_extruder = active_extruder;
  1038. return false;
  1039. }
  1040. #if ENABLED(DUAL_X_CARRIAGE) || ENABLED(DUAL_NOZZLE_DUPLICATION_MODE)
  1041. bool extruder_duplication_enabled = false; // Used in Dual X mode 2
  1042. #endif
  1043. #if ENABLED(DUAL_X_CARRIAGE)
  1044. #define DXC_FULL_CONTROL_MODE 0
  1045. #define DXC_AUTO_PARK_MODE 1
  1046. #define DXC_DUPLICATION_MODE 2
  1047. static int dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  1048. static float x_home_pos(int extruder) {
  1049. if (extruder == 0)
  1050. return LOGICAL_X_POSITION(base_home_pos(X_AXIS));
  1051. else
  1052. /**
  1053. * In dual carriage mode the extruder offset provides an override of the
  1054. * second X-carriage offset when homed - otherwise X2_HOME_POS is used.
  1055. * This allow soft recalibration of the second extruder offset position
  1056. * without firmware reflash (through the M218 command).
  1057. */
  1058. return (hotend_offset[X_AXIS][1] > 0) ? hotend_offset[X_AXIS][1] : X2_HOME_POS;
  1059. }
  1060. static int x_home_dir(int extruder) {
  1061. return (extruder == 0) ? X_HOME_DIR : X2_HOME_DIR;
  1062. }
  1063. static float inactive_extruder_x_pos = X2_MAX_POS; // used in mode 0 & 1
  1064. static bool active_extruder_parked = false; // used in mode 1 & 2
  1065. static float raised_parked_position[NUM_AXIS]; // used in mode 1
  1066. static millis_t delayed_move_time = 0; // used in mode 1
  1067. static float duplicate_extruder_x_offset = DEFAULT_DUPLICATION_X_OFFSET; // used in mode 2
  1068. static float duplicate_extruder_temp_offset = 0; // used in mode 2
  1069. #endif //DUAL_X_CARRIAGE
  1070. /**
  1071. * Software endstops can be used to monitor the open end of
  1072. * an axis that has a hardware endstop on the other end. Or
  1073. * they can prevent axes from moving past endstops and grinding.
  1074. *
  1075. * To keep doing their job as the coordinate system changes,
  1076. * the software endstop positions must be refreshed to remain
  1077. * at the same positions relative to the machine.
  1078. */
  1079. void update_software_endstops(AxisEnum axis) {
  1080. float offs = LOGICAL_POSITION(0, axis);
  1081. #if ENABLED(DUAL_X_CARRIAGE)
  1082. if (axis == X_AXIS) {
  1083. float dual_max_x = max(hotend_offset[X_AXIS][1], X2_MAX_POS);
  1084. if (active_extruder != 0) {
  1085. soft_endstop_min[X_AXIS] = X2_MIN_POS + offs;
  1086. soft_endstop_max[X_AXIS] = dual_max_x + offs;
  1087. return;
  1088. }
  1089. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE) {
  1090. soft_endstop_min[X_AXIS] = base_min_pos(X_AXIS) + offs;
  1091. soft_endstop_max[X_AXIS] = min(base_max_pos(X_AXIS), dual_max_x - duplicate_extruder_x_offset) + offs;
  1092. return;
  1093. }
  1094. }
  1095. else
  1096. #endif
  1097. {
  1098. soft_endstop_min[axis] = base_min_pos(axis) + offs;
  1099. soft_endstop_max[axis] = base_max_pos(axis) + offs;
  1100. }
  1101. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1102. if (DEBUGGING(LEVELING)) {
  1103. SERIAL_ECHOPAIR("For ", axis_codes[axis]);
  1104. SERIAL_ECHOPAIR(" axis:\n home_offset = ", home_offset[axis]);
  1105. SERIAL_ECHOPAIR("\n position_shift = ", position_shift[axis]);
  1106. SERIAL_ECHOPAIR("\n soft_endstop_min = ", soft_endstop_min[axis]);
  1107. SERIAL_ECHOLNPAIR("\n soft_endstop_max = ", soft_endstop_max[axis]);
  1108. }
  1109. #endif
  1110. #if ENABLED(DELTA)
  1111. if (axis == Z_AXIS)
  1112. delta_clip_start_height = soft_endstop_max[axis] - delta_safe_distance_from_top();
  1113. #endif
  1114. }
  1115. /**
  1116. * Change the home offset for an axis, update the current
  1117. * position and the software endstops to retain the same
  1118. * relative distance to the new home.
  1119. *
  1120. * Since this changes the current_position, code should
  1121. * call sync_plan_position soon after this.
  1122. */
  1123. static void set_home_offset(AxisEnum axis, float v) {
  1124. current_position[axis] += v - home_offset[axis];
  1125. home_offset[axis] = v;
  1126. update_software_endstops(axis);
  1127. }
  1128. /**
  1129. * Set an axis' current position to its home position (after homing).
  1130. *
  1131. * For Core and Cartesian robots this applies one-to-one when an
  1132. * individual axis has been homed.
  1133. *
  1134. * DELTA should wait until all homing is done before setting the XYZ
  1135. * current_position to home, because homing is a single operation.
  1136. * In the case where the axis positions are already known and previously
  1137. * homed, DELTA could home to X or Y individually by moving either one
  1138. * to the center. However, homing Z always homes XY and Z.
  1139. *
  1140. * SCARA should wait until all XY homing is done before setting the XY
  1141. * current_position to home, because neither X nor Y is at home until
  1142. * both are at home. Z can however be homed individually.
  1143. *
  1144. */
  1145. static void set_axis_is_at_home(AxisEnum axis) {
  1146. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1147. if (DEBUGGING(LEVELING)) {
  1148. SERIAL_ECHOPAIR(">>> set_axis_is_at_home(", axis_codes[axis]);
  1149. SERIAL_ECHOLNPGM(")");
  1150. }
  1151. #endif
  1152. axis_known_position[axis] = axis_homed[axis] = true;
  1153. position_shift[axis] = 0;
  1154. update_software_endstops(axis);
  1155. #if ENABLED(DUAL_X_CARRIAGE)
  1156. if (axis == X_AXIS && (active_extruder != 0 || dual_x_carriage_mode == DXC_DUPLICATION_MODE)) {
  1157. if (active_extruder != 0)
  1158. current_position[X_AXIS] = x_home_pos(active_extruder);
  1159. else
  1160. current_position[X_AXIS] = LOGICAL_X_POSITION(base_home_pos(X_AXIS));
  1161. update_software_endstops(X_AXIS);
  1162. return;
  1163. }
  1164. #endif
  1165. #if ENABLED(MORGAN_SCARA)
  1166. /**
  1167. * Morgan SCARA homes XY at the same time
  1168. */
  1169. if (axis == X_AXIS || axis == Y_AXIS) {
  1170. float homeposition[XYZ];
  1171. LOOP_XYZ(i) homeposition[i] = LOGICAL_POSITION(base_home_pos(i), i);
  1172. // SERIAL_ECHOPAIR("homeposition X:", homeposition[X_AXIS]);
  1173. // SERIAL_ECHOLNPAIR(" Y:", homeposition[Y_AXIS]);
  1174. /**
  1175. * Get Home position SCARA arm angles using inverse kinematics,
  1176. * and calculate homing offset using forward kinematics
  1177. */
  1178. inverse_kinematics(homeposition);
  1179. forward_kinematics_SCARA(delta[A_AXIS], delta[B_AXIS]);
  1180. // SERIAL_ECHOPAIR("Cartesian X:", cartes[X_AXIS]);
  1181. // SERIAL_ECHOLNPAIR(" Y:", cartes[Y_AXIS]);
  1182. current_position[axis] = LOGICAL_POSITION(cartes[axis], axis);
  1183. /**
  1184. * SCARA home positions are based on configuration since the actual
  1185. * limits are determined by the inverse kinematic transform.
  1186. */
  1187. soft_endstop_min[axis] = base_min_pos(axis); // + (cartes[axis] - base_home_pos(axis));
  1188. soft_endstop_max[axis] = base_max_pos(axis); // + (cartes[axis] - base_home_pos(axis));
  1189. }
  1190. else
  1191. #endif
  1192. {
  1193. current_position[axis] = LOGICAL_POSITION(base_home_pos(axis), axis);
  1194. }
  1195. /**
  1196. * Z Probe Z Homing? Account for the probe's Z offset.
  1197. */
  1198. #if HAS_BED_PROBE && Z_HOME_DIR < 0
  1199. if (axis == Z_AXIS) {
  1200. #if HOMING_Z_WITH_PROBE
  1201. current_position[Z_AXIS] -= zprobe_zoffset;
  1202. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1203. if (DEBUGGING(LEVELING)) {
  1204. SERIAL_ECHOLNPGM("*** Z HOMED WITH PROBE (Z_MIN_PROBE_USES_Z_MIN_ENDSTOP_PIN) ***");
  1205. SERIAL_ECHOLNPAIR("> zprobe_zoffset = ", zprobe_zoffset);
  1206. }
  1207. #endif
  1208. #elif ENABLED(DEBUG_LEVELING_FEATURE)
  1209. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("*** Z HOMED TO ENDSTOP (Z_MIN_PROBE_ENDSTOP) ***");
  1210. #endif
  1211. }
  1212. #endif
  1213. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1214. if (DEBUGGING(LEVELING)) {
  1215. SERIAL_ECHOPAIR("> home_offset[", axis_codes[axis]);
  1216. SERIAL_ECHOLNPAIR("] = ", home_offset[axis]);
  1217. DEBUG_POS("", current_position);
  1218. SERIAL_ECHOPAIR("<<< set_axis_is_at_home(", axis_codes[axis]);
  1219. SERIAL_ECHOLNPGM(")");
  1220. }
  1221. #endif
  1222. }
  1223. /**
  1224. * Some planner shorthand inline functions
  1225. */
  1226. inline float get_homing_bump_feedrate(AxisEnum axis) {
  1227. int constexpr homing_bump_divisor[] = HOMING_BUMP_DIVISOR;
  1228. int hbd = homing_bump_divisor[axis];
  1229. if (hbd < 1) {
  1230. hbd = 10;
  1231. SERIAL_ECHO_START;
  1232. SERIAL_ECHOLNPGM("Warning: Homing Bump Divisor < 1");
  1233. }
  1234. return homing_feedrate_mm_s[axis] / hbd;
  1235. }
  1236. //
  1237. // line_to_current_position
  1238. // Move the planner to the current position from wherever it last moved
  1239. // (or from wherever it has been told it is located).
  1240. //
  1241. inline void line_to_current_position() {
  1242. planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate_mm_s, active_extruder);
  1243. }
  1244. //
  1245. // line_to_destination
  1246. // Move the planner, not necessarily synced with current_position
  1247. //
  1248. inline void line_to_destination(float fr_mm_s) {
  1249. planner.buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], fr_mm_s, active_extruder);
  1250. }
  1251. inline void line_to_destination() { line_to_destination(feedrate_mm_s); }
  1252. inline void set_current_to_destination() { memcpy(current_position, destination, sizeof(current_position)); }
  1253. inline void set_destination_to_current() { memcpy(destination, current_position, sizeof(destination)); }
  1254. #if IS_KINEMATIC
  1255. /**
  1256. * Calculate delta, start a line, and set current_position to destination
  1257. */
  1258. void prepare_uninterpolated_move_to_destination(const float fr_mm_s=0.0) {
  1259. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1260. if (DEBUGGING(LEVELING)) DEBUG_POS("prepare_uninterpolated_move_to_destination", destination);
  1261. #endif
  1262. if ( current_position[X_AXIS] == destination[X_AXIS]
  1263. && current_position[Y_AXIS] == destination[Y_AXIS]
  1264. && current_position[Z_AXIS] == destination[Z_AXIS]
  1265. && current_position[E_AXIS] == destination[E_AXIS]
  1266. ) return;
  1267. refresh_cmd_timeout();
  1268. inverse_kinematics(destination);
  1269. planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], destination[E_AXIS], MMS_SCALED(fr_mm_s ? fr_mm_s : feedrate_mm_s), active_extruder);
  1270. set_current_to_destination();
  1271. }
  1272. #endif // IS_KINEMATIC
  1273. /**
  1274. * Plan a move to (X, Y, Z) and set the current_position
  1275. * The final current_position may not be the one that was requested
  1276. */
  1277. void do_blocking_move_to(const float &x, const float &y, const float &z, const float &fr_mm_s /*=0.0*/) {
  1278. float old_feedrate_mm_s = feedrate_mm_s;
  1279. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1280. if (DEBUGGING(LEVELING)) print_xyz(PSTR(">>> do_blocking_move_to"), NULL, x, y, z);
  1281. #endif
  1282. #if ENABLED(DELTA)
  1283. feedrate_mm_s = fr_mm_s ? fr_mm_s : XY_PROBE_FEEDRATE_MM_S;
  1284. set_destination_to_current(); // sync destination at the start
  1285. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1286. if (DEBUGGING(LEVELING)) DEBUG_POS("set_destination_to_current", destination);
  1287. #endif
  1288. // when in the danger zone
  1289. if (current_position[Z_AXIS] > delta_clip_start_height) {
  1290. if (z > delta_clip_start_height) { // staying in the danger zone
  1291. destination[X_AXIS] = x; // move directly (uninterpolated)
  1292. destination[Y_AXIS] = y;
  1293. destination[Z_AXIS] = z;
  1294. prepare_uninterpolated_move_to_destination(); // set_current_to_destination
  1295. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1296. if (DEBUGGING(LEVELING)) DEBUG_POS("danger zone move", current_position);
  1297. #endif
  1298. return;
  1299. }
  1300. else {
  1301. destination[Z_AXIS] = delta_clip_start_height;
  1302. prepare_uninterpolated_move_to_destination(); // set_current_to_destination
  1303. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1304. if (DEBUGGING(LEVELING)) DEBUG_POS("zone border move", current_position);
  1305. #endif
  1306. }
  1307. }
  1308. if (z > current_position[Z_AXIS]) { // raising?
  1309. destination[Z_AXIS] = z;
  1310. prepare_uninterpolated_move_to_destination(); // set_current_to_destination
  1311. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1312. if (DEBUGGING(LEVELING)) DEBUG_POS("z raise move", current_position);
  1313. #endif
  1314. }
  1315. destination[X_AXIS] = x;
  1316. destination[Y_AXIS] = y;
  1317. prepare_move_to_destination(); // set_current_to_destination
  1318. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1319. if (DEBUGGING(LEVELING)) DEBUG_POS("xy move", current_position);
  1320. #endif
  1321. if (z < current_position[Z_AXIS]) { // lowering?
  1322. destination[Z_AXIS] = z;
  1323. prepare_uninterpolated_move_to_destination(); // set_current_to_destination
  1324. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1325. if (DEBUGGING(LEVELING)) DEBUG_POS("z lower move", current_position);
  1326. #endif
  1327. }
  1328. #elif IS_SCARA
  1329. set_destination_to_current();
  1330. // If Z needs to raise, do it before moving XY
  1331. if (destination[Z_AXIS] < z) {
  1332. destination[Z_AXIS] = z;
  1333. prepare_uninterpolated_move_to_destination(fr_mm_s ? fr_mm_s : homing_feedrate_mm_s[Z_AXIS]);
  1334. }
  1335. destination[X_AXIS] = x;
  1336. destination[Y_AXIS] = y;
  1337. prepare_uninterpolated_move_to_destination(fr_mm_s ? fr_mm_s : XY_PROBE_FEEDRATE_MM_S);
  1338. // If Z needs to lower, do it after moving XY
  1339. if (destination[Z_AXIS] > z) {
  1340. destination[Z_AXIS] = z;
  1341. prepare_uninterpolated_move_to_destination(fr_mm_s ? fr_mm_s : homing_feedrate_mm_s[Z_AXIS]);
  1342. }
  1343. #else
  1344. // If Z needs to raise, do it before moving XY
  1345. if (current_position[Z_AXIS] < z) {
  1346. feedrate_mm_s = fr_mm_s ? fr_mm_s : homing_feedrate_mm_s[Z_AXIS];
  1347. current_position[Z_AXIS] = z;
  1348. line_to_current_position();
  1349. }
  1350. feedrate_mm_s = fr_mm_s ? fr_mm_s : XY_PROBE_FEEDRATE_MM_S;
  1351. current_position[X_AXIS] = x;
  1352. current_position[Y_AXIS] = y;
  1353. line_to_current_position();
  1354. // If Z needs to lower, do it after moving XY
  1355. if (current_position[Z_AXIS] > z) {
  1356. feedrate_mm_s = fr_mm_s ? fr_mm_s : homing_feedrate_mm_s[Z_AXIS];
  1357. current_position[Z_AXIS] = z;
  1358. line_to_current_position();
  1359. }
  1360. #endif
  1361. stepper.synchronize();
  1362. feedrate_mm_s = old_feedrate_mm_s;
  1363. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1364. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< do_blocking_move_to");
  1365. #endif
  1366. }
  1367. void do_blocking_move_to_x(const float &x, const float &fr_mm_s/*=0.0*/) {
  1368. do_blocking_move_to(x, current_position[Y_AXIS], current_position[Z_AXIS], fr_mm_s);
  1369. }
  1370. void do_blocking_move_to_z(const float &z, const float &fr_mm_s/*=0.0*/) {
  1371. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z, fr_mm_s);
  1372. }
  1373. void do_blocking_move_to_xy(const float &x, const float &y, const float &fr_mm_s/*=0.0*/) {
  1374. do_blocking_move_to(x, y, current_position[Z_AXIS], fr_mm_s);
  1375. }
  1376. //
  1377. // Prepare to do endstop or probe moves
  1378. // with custom feedrates.
  1379. //
  1380. // - Save current feedrates
  1381. // - Reset the rate multiplier
  1382. // - Reset the command timeout
  1383. // - Enable the endstops (for endstop moves)
  1384. //
  1385. static void setup_for_endstop_or_probe_move() {
  1386. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1387. if (DEBUGGING(LEVELING)) DEBUG_POS("setup_for_endstop_or_probe_move", current_position);
  1388. #endif
  1389. saved_feedrate_mm_s = feedrate_mm_s;
  1390. saved_feedrate_percentage = feedrate_percentage;
  1391. feedrate_percentage = 100;
  1392. refresh_cmd_timeout();
  1393. }
  1394. static void clean_up_after_endstop_or_probe_move() {
  1395. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1396. if (DEBUGGING(LEVELING)) DEBUG_POS("clean_up_after_endstop_or_probe_move", current_position);
  1397. #endif
  1398. feedrate_mm_s = saved_feedrate_mm_s;
  1399. feedrate_percentage = saved_feedrate_percentage;
  1400. refresh_cmd_timeout();
  1401. }
  1402. #if HAS_BED_PROBE
  1403. /**
  1404. * Raise Z to a minimum height to make room for a probe to move
  1405. */
  1406. inline void do_probe_raise(float z_raise) {
  1407. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1408. if (DEBUGGING(LEVELING)) {
  1409. SERIAL_ECHOPAIR("do_probe_raise(", z_raise);
  1410. SERIAL_ECHOLNPGM(")");
  1411. }
  1412. #endif
  1413. float z_dest = LOGICAL_Z_POSITION(z_raise);
  1414. if (zprobe_zoffset < 0) z_dest -= zprobe_zoffset;
  1415. if (z_dest > current_position[Z_AXIS])
  1416. do_blocking_move_to_z(z_dest);
  1417. }
  1418. #endif //HAS_BED_PROBE
  1419. #if ENABLED(Z_PROBE_ALLEN_KEY) || ENABLED(Z_PROBE_SLED) || HAS_PROBING_PROCEDURE || HOTENDS > 1 || ENABLED(NOZZLE_CLEAN_FEATURE) || ENABLED(NOZZLE_PARK_FEATURE)
  1420. static bool axis_unhomed_error(const bool x, const bool y, const bool z) {
  1421. const bool xx = x && !axis_homed[X_AXIS],
  1422. yy = y && !axis_homed[Y_AXIS],
  1423. zz = z && !axis_homed[Z_AXIS];
  1424. if (xx || yy || zz) {
  1425. SERIAL_ECHO_START;
  1426. SERIAL_ECHOPGM(MSG_HOME " ");
  1427. if (xx) SERIAL_ECHOPGM(MSG_X);
  1428. if (yy) SERIAL_ECHOPGM(MSG_Y);
  1429. if (zz) SERIAL_ECHOPGM(MSG_Z);
  1430. SERIAL_ECHOLNPGM(" " MSG_FIRST);
  1431. #if ENABLED(ULTRA_LCD)
  1432. char message[3 * (LCD_WIDTH) + 1] = ""; // worst case is kana.utf with up to 3*LCD_WIDTH+1
  1433. strcat_P(message, PSTR(MSG_HOME " "));
  1434. if (xx) strcat_P(message, PSTR(MSG_X));
  1435. if (yy) strcat_P(message, PSTR(MSG_Y));
  1436. if (zz) strcat_P(message, PSTR(MSG_Z));
  1437. strcat_P(message, PSTR(" " MSG_FIRST));
  1438. lcd_setstatus(message);
  1439. #endif
  1440. return true;
  1441. }
  1442. return false;
  1443. }
  1444. #endif
  1445. #if ENABLED(Z_PROBE_SLED)
  1446. #ifndef SLED_DOCKING_OFFSET
  1447. #define SLED_DOCKING_OFFSET 0
  1448. #endif
  1449. /**
  1450. * Method to dock/undock a sled designed by Charles Bell.
  1451. *
  1452. * stow[in] If false, move to MAX_X and engage the solenoid
  1453. * If true, move to MAX_X and release the solenoid
  1454. */
  1455. static void dock_sled(bool stow) {
  1456. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1457. if (DEBUGGING(LEVELING)) {
  1458. SERIAL_ECHOPAIR("dock_sled(", stow);
  1459. SERIAL_ECHOLNPGM(")");
  1460. }
  1461. #endif
  1462. // Dock sled a bit closer to ensure proper capturing
  1463. do_blocking_move_to_x(X_MAX_POS + SLED_DOCKING_OFFSET - ((stow) ? 1 : 0));
  1464. #if PIN_EXISTS(SLED)
  1465. digitalWrite(SLED_PIN, !stow); // switch solenoid
  1466. #endif
  1467. }
  1468. #endif // Z_PROBE_SLED
  1469. #if ENABLED(Z_PROBE_ALLEN_KEY)
  1470. void run_deploy_moves_script() {
  1471. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_1_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_1_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_1_Z)
  1472. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_X
  1473. #define Z_PROBE_ALLEN_KEY_DEPLOY_1_X current_position[X_AXIS]
  1474. #endif
  1475. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_Y
  1476. #define Z_PROBE_ALLEN_KEY_DEPLOY_1_Y current_position[Y_AXIS]
  1477. #endif
  1478. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_Z
  1479. #define Z_PROBE_ALLEN_KEY_DEPLOY_1_Z current_position[Z_AXIS]
  1480. #endif
  1481. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE
  1482. #define Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE 0.0
  1483. #endif
  1484. do_blocking_move_to(Z_PROBE_ALLEN_KEY_DEPLOY_1_X, Z_PROBE_ALLEN_KEY_DEPLOY_1_Y, Z_PROBE_ALLEN_KEY_DEPLOY_1_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE));
  1485. #endif
  1486. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_2_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_2_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_2_Z)
  1487. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_X
  1488. #define Z_PROBE_ALLEN_KEY_DEPLOY_2_X current_position[X_AXIS]
  1489. #endif
  1490. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_Y
  1491. #define Z_PROBE_ALLEN_KEY_DEPLOY_2_Y current_position[Y_AXIS]
  1492. #endif
  1493. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_Z
  1494. #define Z_PROBE_ALLEN_KEY_DEPLOY_2_Z current_position[Z_AXIS]
  1495. #endif
  1496. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE
  1497. #define Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE 0.0
  1498. #endif
  1499. do_blocking_move_to(Z_PROBE_ALLEN_KEY_DEPLOY_2_X, Z_PROBE_ALLEN_KEY_DEPLOY_2_Y, Z_PROBE_ALLEN_KEY_DEPLOY_2_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE));
  1500. #endif
  1501. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_3_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_3_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_3_Z)
  1502. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_X
  1503. #define Z_PROBE_ALLEN_KEY_DEPLOY_3_X current_position[X_AXIS]
  1504. #endif
  1505. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_Y
  1506. #define Z_PROBE_ALLEN_KEY_DEPLOY_3_Y current_position[Y_AXIS]
  1507. #endif
  1508. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_Z
  1509. #define Z_PROBE_ALLEN_KEY_DEPLOY_3_Z current_position[Z_AXIS]
  1510. #endif
  1511. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE
  1512. #define Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE 0.0
  1513. #endif
  1514. do_blocking_move_to(Z_PROBE_ALLEN_KEY_DEPLOY_3_X, Z_PROBE_ALLEN_KEY_DEPLOY_3_Y, Z_PROBE_ALLEN_KEY_DEPLOY_3_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE));
  1515. #endif
  1516. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_4_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_4_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_4_Z)
  1517. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_X
  1518. #define Z_PROBE_ALLEN_KEY_DEPLOY_4_X current_position[X_AXIS]
  1519. #endif
  1520. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_Y
  1521. #define Z_PROBE_ALLEN_KEY_DEPLOY_4_Y current_position[Y_AXIS]
  1522. #endif
  1523. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_Z
  1524. #define Z_PROBE_ALLEN_KEY_DEPLOY_4_Z current_position[Z_AXIS]
  1525. #endif
  1526. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_FEEDRATE
  1527. #define Z_PROBE_ALLEN_KEY_DEPLOY_4_FEEDRATE 0.0
  1528. #endif
  1529. do_blocking_move_to(Z_PROBE_ALLEN_KEY_DEPLOY_4_X, Z_PROBE_ALLEN_KEY_DEPLOY_4_Y, Z_PROBE_ALLEN_KEY_DEPLOY_4_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_4_FEEDRATE));
  1530. #endif
  1531. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_5_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_5_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_5_Z)
  1532. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_X
  1533. #define Z_PROBE_ALLEN_KEY_DEPLOY_5_X current_position[X_AXIS]
  1534. #endif
  1535. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_Y
  1536. #define Z_PROBE_ALLEN_KEY_DEPLOY_5_Y current_position[Y_AXIS]
  1537. #endif
  1538. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_Z
  1539. #define Z_PROBE_ALLEN_KEY_DEPLOY_5_Z current_position[Z_AXIS]
  1540. #endif
  1541. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_FEEDRATE
  1542. #define Z_PROBE_ALLEN_KEY_DEPLOY_5_FEEDRATE 0.0
  1543. #endif
  1544. do_blocking_move_to(Z_PROBE_ALLEN_KEY_DEPLOY_5_X, Z_PROBE_ALLEN_KEY_DEPLOY_5_Y, Z_PROBE_ALLEN_KEY_DEPLOY_5_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_5_FEEDRATE));
  1545. #endif
  1546. }
  1547. void run_stow_moves_script() {
  1548. #if defined(Z_PROBE_ALLEN_KEY_STOW_1_X) || defined(Z_PROBE_ALLEN_KEY_STOW_1_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_1_Z)
  1549. #ifndef Z_PROBE_ALLEN_KEY_STOW_1_X
  1550. #define Z_PROBE_ALLEN_KEY_STOW_1_X current_position[X_AXIS]
  1551. #endif
  1552. #ifndef Z_PROBE_ALLEN_KEY_STOW_1_Y
  1553. #define Z_PROBE_ALLEN_KEY_STOW_1_Y current_position[Y_AXIS]
  1554. #endif
  1555. #ifndef Z_PROBE_ALLEN_KEY_STOW_1_Z
  1556. #define Z_PROBE_ALLEN_KEY_STOW_1_Z current_position[Z_AXIS]
  1557. #endif
  1558. #ifndef Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE
  1559. #define Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE 0.0
  1560. #endif
  1561. do_blocking_move_to(Z_PROBE_ALLEN_KEY_STOW_1_X, Z_PROBE_ALLEN_KEY_STOW_1_Y, Z_PROBE_ALLEN_KEY_STOW_1_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE));
  1562. #endif
  1563. #if defined(Z_PROBE_ALLEN_KEY_STOW_2_X) || defined(Z_PROBE_ALLEN_KEY_STOW_2_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_2_Z)
  1564. #ifndef Z_PROBE_ALLEN_KEY_STOW_2_X
  1565. #define Z_PROBE_ALLEN_KEY_STOW_2_X current_position[X_AXIS]
  1566. #endif
  1567. #ifndef Z_PROBE_ALLEN_KEY_STOW_2_Y
  1568. #define Z_PROBE_ALLEN_KEY_STOW_2_Y current_position[Y_AXIS]
  1569. #endif
  1570. #ifndef Z_PROBE_ALLEN_KEY_STOW_2_Z
  1571. #define Z_PROBE_ALLEN_KEY_STOW_2_Z current_position[Z_AXIS]
  1572. #endif
  1573. #ifndef Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE
  1574. #define Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE 0.0
  1575. #endif
  1576. do_blocking_move_to(Z_PROBE_ALLEN_KEY_STOW_2_X, Z_PROBE_ALLEN_KEY_STOW_2_Y, Z_PROBE_ALLEN_KEY_STOW_2_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE));
  1577. #endif
  1578. #if defined(Z_PROBE_ALLEN_KEY_STOW_3_X) || defined(Z_PROBE_ALLEN_KEY_STOW_3_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_3_Z)
  1579. #ifndef Z_PROBE_ALLEN_KEY_STOW_3_X
  1580. #define Z_PROBE_ALLEN_KEY_STOW_3_X current_position[X_AXIS]
  1581. #endif
  1582. #ifndef Z_PROBE_ALLEN_KEY_STOW_3_Y
  1583. #define Z_PROBE_ALLEN_KEY_STOW_3_Y current_position[Y_AXIS]
  1584. #endif
  1585. #ifndef Z_PROBE_ALLEN_KEY_STOW_3_Z
  1586. #define Z_PROBE_ALLEN_KEY_STOW_3_Z current_position[Z_AXIS]
  1587. #endif
  1588. #ifndef Z_PROBE_ALLEN_KEY_STOW_3_FEEDRATE
  1589. #define Z_PROBE_ALLEN_KEY_STOW_3_FEEDRATE 0.0
  1590. #endif
  1591. do_blocking_move_to(Z_PROBE_ALLEN_KEY_STOW_3_X, Z_PROBE_ALLEN_KEY_STOW_3_Y, Z_PROBE_ALLEN_KEY_STOW_3_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_3_FEEDRATE));
  1592. #endif
  1593. #if defined(Z_PROBE_ALLEN_KEY_STOW_4_X) || defined(Z_PROBE_ALLEN_KEY_STOW_4_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_4_Z)
  1594. #ifndef Z_PROBE_ALLEN_KEY_STOW_4_X
  1595. #define Z_PROBE_ALLEN_KEY_STOW_4_X current_position[X_AXIS]
  1596. #endif
  1597. #ifndef Z_PROBE_ALLEN_KEY_STOW_4_Y
  1598. #define Z_PROBE_ALLEN_KEY_STOW_4_Y current_position[Y_AXIS]
  1599. #endif
  1600. #ifndef Z_PROBE_ALLEN_KEY_STOW_4_Z
  1601. #define Z_PROBE_ALLEN_KEY_STOW_4_Z current_position[Z_AXIS]
  1602. #endif
  1603. #ifndef Z_PROBE_ALLEN_KEY_STOW_4_FEEDRATE
  1604. #define Z_PROBE_ALLEN_KEY_STOW_4_FEEDRATE 0.0
  1605. #endif
  1606. do_blocking_move_to(Z_PROBE_ALLEN_KEY_STOW_4_X, Z_PROBE_ALLEN_KEY_STOW_4_Y, Z_PROBE_ALLEN_KEY_STOW_4_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_4_FEEDRATE));
  1607. #endif
  1608. #if defined(Z_PROBE_ALLEN_KEY_STOW_5_X) || defined(Z_PROBE_ALLEN_KEY_STOW_5_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_5_Z)
  1609. #ifndef Z_PROBE_ALLEN_KEY_STOW_5_X
  1610. #define Z_PROBE_ALLEN_KEY_STOW_5_X current_position[X_AXIS]
  1611. #endif
  1612. #ifndef Z_PROBE_ALLEN_KEY_STOW_5_Y
  1613. #define Z_PROBE_ALLEN_KEY_STOW_5_Y current_position[Y_AXIS]
  1614. #endif
  1615. #ifndef Z_PROBE_ALLEN_KEY_STOW_5_Z
  1616. #define Z_PROBE_ALLEN_KEY_STOW_5_Z current_position[Z_AXIS]
  1617. #endif
  1618. #ifndef Z_PROBE_ALLEN_KEY_STOW_5_FEEDRATE
  1619. #define Z_PROBE_ALLEN_KEY_STOW_5_FEEDRATE 0.0
  1620. #endif
  1621. do_blocking_move_to(Z_PROBE_ALLEN_KEY_STOW_5_X, Z_PROBE_ALLEN_KEY_STOW_5_Y, Z_PROBE_ALLEN_KEY_STOW_5_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_5_FEEDRATE));
  1622. #endif
  1623. }
  1624. #endif
  1625. #if HAS_BED_PROBE
  1626. // TRIGGERED_WHEN_STOWED_TEST can easily be extended to servo probes, ... if needed.
  1627. #if ENABLED(PROBE_IS_TRIGGERED_WHEN_STOWED_TEST)
  1628. #if ENABLED(Z_MIN_PROBE_ENDSTOP)
  1629. #define _TRIGGERED_WHEN_STOWED_TEST (READ(Z_MIN_PROBE_PIN) != Z_MIN_PROBE_ENDSTOP_INVERTING)
  1630. #else
  1631. #define _TRIGGERED_WHEN_STOWED_TEST (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING)
  1632. #endif
  1633. #endif
  1634. #define DEPLOY_PROBE() set_probe_deployed(true)
  1635. #define STOW_PROBE() set_probe_deployed(false)
  1636. #if ENABLED(BLTOUCH)
  1637. FORCE_INLINE void set_bltouch_deployed(const bool &deploy) {
  1638. servo[Z_ENDSTOP_SERVO_NR].move(deploy ? BLTOUCH_DEPLOY : BLTOUCH_STOW);
  1639. }
  1640. #endif
  1641. // returns false for ok and true for failure
  1642. static bool set_probe_deployed(bool deploy) {
  1643. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1644. if (DEBUGGING(LEVELING)) {
  1645. DEBUG_POS("set_probe_deployed", current_position);
  1646. SERIAL_ECHOLNPAIR("deploy: ", deploy);
  1647. }
  1648. #endif
  1649. if (endstops.z_probe_enabled == deploy) return false;
  1650. // Make room for probe
  1651. do_probe_raise(_Z_CLEARANCE_DEPLOY_PROBE);
  1652. // When deploying make sure BLTOUCH is not already triggered
  1653. #if ENABLED(BLTOUCH)
  1654. if (deploy && TEST_BLTOUCH()) { stop(); return true; }
  1655. #endif
  1656. #if ENABLED(Z_PROBE_SLED)
  1657. if (axis_unhomed_error(true, false, false)) { stop(); return true; }
  1658. #elif ENABLED(Z_PROBE_ALLEN_KEY)
  1659. if (axis_unhomed_error(true, true, true )) { stop(); return true; }
  1660. #endif
  1661. float oldXpos = current_position[X_AXIS],
  1662. oldYpos = current_position[Y_AXIS];
  1663. #ifdef _TRIGGERED_WHEN_STOWED_TEST
  1664. // If endstop is already false, the Z probe is deployed
  1665. if (_TRIGGERED_WHEN_STOWED_TEST == deploy) { // closed after the probe specific actions.
  1666. // Would a goto be less ugly?
  1667. //while (!_TRIGGERED_WHEN_STOWED_TEST) idle(); // would offer the opportunity
  1668. // for a triggered when stowed manual probe.
  1669. if (!deploy) endstops.enable_z_probe(false); // Switch off triggered when stowed probes early
  1670. // otherwise an Allen-Key probe can't be stowed.
  1671. #endif
  1672. #if ENABLED(Z_PROBE_SLED)
  1673. dock_sled(!deploy);
  1674. #elif HAS_Z_SERVO_ENDSTOP && DISABLED(BLTOUCH)
  1675. servo[Z_ENDSTOP_SERVO_NR].move(z_servo_angle[deploy ? 0 : 1]);
  1676. #elif ENABLED(Z_PROBE_ALLEN_KEY)
  1677. deploy ? run_deploy_moves_script() : run_stow_moves_script();
  1678. #endif
  1679. #ifdef _TRIGGERED_WHEN_STOWED_TEST
  1680. } // _TRIGGERED_WHEN_STOWED_TEST == deploy
  1681. if (_TRIGGERED_WHEN_STOWED_TEST == deploy) { // State hasn't changed?
  1682. if (IsRunning()) {
  1683. SERIAL_ERROR_START;
  1684. SERIAL_ERRORLNPGM("Z-Probe failed");
  1685. LCD_ALERTMESSAGEPGM("Err: ZPROBE");
  1686. }
  1687. stop();
  1688. return true;
  1689. } // _TRIGGERED_WHEN_STOWED_TEST == deploy
  1690. #endif
  1691. do_blocking_move_to(oldXpos, oldYpos, current_position[Z_AXIS]); // return to position before deploy
  1692. endstops.enable_z_probe(deploy);
  1693. return false;
  1694. }
  1695. static void do_probe_move(float z, float fr_mm_m) {
  1696. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1697. if (DEBUGGING(LEVELING)) DEBUG_POS(">>> do_probe_move", current_position);
  1698. #endif
  1699. // Deploy BLTouch at the start of any probe
  1700. #if ENABLED(BLTOUCH)
  1701. set_bltouch_deployed(true);
  1702. #endif
  1703. // Move down until probe triggered
  1704. do_blocking_move_to_z(LOGICAL_Z_POSITION(z), MMM_TO_MMS(fr_mm_m));
  1705. // Retract BLTouch immediately after a probe
  1706. #if ENABLED(BLTOUCH)
  1707. set_bltouch_deployed(false);
  1708. #endif
  1709. // Clear endstop flags
  1710. endstops.hit_on_purpose();
  1711. // Tell the planner where we actually are
  1712. planner.sync_from_steppers();
  1713. // Get Z where the steppers were interrupted
  1714. set_current_from_steppers_for_axis(Z_AXIS);
  1715. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1716. if (DEBUGGING(LEVELING)) DEBUG_POS("<<< do_probe_move", current_position);
  1717. #endif
  1718. }
  1719. // Do a single Z probe and return with current_position[Z_AXIS]
  1720. // at the height where the probe triggered.
  1721. static float run_z_probe() {
  1722. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1723. if (DEBUGGING(LEVELING)) DEBUG_POS(">>> run_z_probe", current_position);
  1724. #endif
  1725. // Prevent stepper_inactive_time from running out and EXTRUDER_RUNOUT_PREVENT from extruding
  1726. refresh_cmd_timeout();
  1727. #if ENABLED(PROBE_DOUBLE_TOUCH)
  1728. // Do a first probe at the fast speed
  1729. do_probe_move(-(Z_MAX_LENGTH) - 10, Z_PROBE_SPEED_FAST);
  1730. // move up by the bump distance
  1731. do_blocking_move_to_z(current_position[Z_AXIS] + home_bump_mm(Z_AXIS), MMM_TO_MMS(Z_PROBE_SPEED_FAST));
  1732. #else
  1733. // If the nozzle is above the travel height then
  1734. // move down quickly before doing the slow probe
  1735. float z = LOGICAL_Z_POSITION(Z_CLEARANCE_BETWEEN_PROBES);
  1736. if (z < current_position[Z_AXIS])
  1737. do_blocking_move_to_z(z, MMM_TO_MMS(Z_PROBE_SPEED_FAST));
  1738. #endif
  1739. // move down slowly to find bed
  1740. do_probe_move(-(Z_MAX_LENGTH) - 10, Z_PROBE_SPEED_SLOW);
  1741. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1742. if (DEBUGGING(LEVELING)) DEBUG_POS("<<< run_z_probe", current_position);
  1743. #endif
  1744. return current_position[Z_AXIS];
  1745. }
  1746. //
  1747. // - Move to the given XY
  1748. // - Deploy the probe, if not already deployed
  1749. // - Probe the bed, get the Z position
  1750. // - Depending on the 'stow' flag
  1751. // - Stow the probe, or
  1752. // - Raise to the BETWEEN height
  1753. // - Return the probed Z position
  1754. //
  1755. static float probe_pt(const float &x, const float &y, bool stow = true, int verbose_level = 1) {
  1756. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1757. if (DEBUGGING(LEVELING)) {
  1758. SERIAL_ECHOPAIR(">>> probe_pt(", x);
  1759. SERIAL_ECHOPAIR(", ", y);
  1760. SERIAL_ECHOPAIR(", ", stow ? "stow" : "no stow");
  1761. SERIAL_ECHOLNPGM(")");
  1762. DEBUG_POS("", current_position);
  1763. }
  1764. #endif
  1765. float old_feedrate_mm_s = feedrate_mm_s;
  1766. // Ensure a minimum height before moving the probe
  1767. do_probe_raise(Z_CLEARANCE_BETWEEN_PROBES);
  1768. // Move to the XY where we shall probe
  1769. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1770. if (DEBUGGING(LEVELING)) {
  1771. SERIAL_ECHOPAIR("> do_blocking_move_to_xy(", x - (X_PROBE_OFFSET_FROM_EXTRUDER));
  1772. SERIAL_ECHOPAIR(", ", y - (Y_PROBE_OFFSET_FROM_EXTRUDER));
  1773. SERIAL_ECHOLNPGM(")");
  1774. }
  1775. #endif
  1776. feedrate_mm_s = XY_PROBE_FEEDRATE_MM_S;
  1777. // Move the probe to the given XY
  1778. do_blocking_move_to_xy(x - (X_PROBE_OFFSET_FROM_EXTRUDER), y - (Y_PROBE_OFFSET_FROM_EXTRUDER));
  1779. if (DEPLOY_PROBE()) return NAN;
  1780. float measured_z = run_z_probe();
  1781. if (!stow)
  1782. do_probe_raise(Z_CLEARANCE_BETWEEN_PROBES);
  1783. else
  1784. if (STOW_PROBE()) return NAN;
  1785. if (verbose_level > 2) {
  1786. SERIAL_PROTOCOLPGM("Bed X: ");
  1787. SERIAL_PROTOCOL_F(x, 3);
  1788. SERIAL_PROTOCOLPGM(" Y: ");
  1789. SERIAL_PROTOCOL_F(y, 3);
  1790. SERIAL_PROTOCOLPGM(" Z: ");
  1791. SERIAL_PROTOCOL_F(measured_z, 3);
  1792. SERIAL_EOL;
  1793. }
  1794. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1795. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< probe_pt");
  1796. #endif
  1797. feedrate_mm_s = old_feedrate_mm_s;
  1798. return measured_z;
  1799. }
  1800. #endif // HAS_BED_PROBE
  1801. #if HAS_ABL
  1802. /**
  1803. * Reset calibration results to zero.
  1804. *
  1805. * TODO: Proper functions to disable / enable
  1806. * bed leveling via a flag, correcting the
  1807. * current position in each case.
  1808. */
  1809. void reset_bed_level() {
  1810. planner.abl_enabled = false;
  1811. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1812. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("reset_bed_level");
  1813. #endif
  1814. #if ABL_PLANAR
  1815. planner.bed_level_matrix.set_to_identity();
  1816. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  1817. memset(bed_level_grid, 0, sizeof(bed_level_grid));
  1818. #endif
  1819. }
  1820. #endif // HAS_ABL
  1821. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  1822. /**
  1823. * Extrapolate a single point from its neighbors
  1824. */
  1825. static void extrapolate_one_point(uint8_t x, uint8_t y, int8_t xdir, int8_t ydir) {
  1826. if (bed_level_grid[x][y]) return; // Don't overwrite good values.
  1827. float a = 2 * bed_level_grid[x + xdir][y] - bed_level_grid[x + xdir * 2][y], // Left to right.
  1828. b = 2 * bed_level_grid[x][y + ydir] - bed_level_grid[x][y + ydir * 2], // Front to back.
  1829. c = 2 * bed_level_grid[x + xdir][y + ydir] - bed_level_grid[x + xdir * 2][y + ydir * 2]; // Diagonal.
  1830. // Median is robust (ignores outliers).
  1831. bed_level_grid[x][y] = (a < b) ? ((b < c) ? b : (c < a) ? a : c)
  1832. : ((c < b) ? b : (a < c) ? a : c);
  1833. }
  1834. /**
  1835. * Fill in the unprobed points (corners of circular print surface)
  1836. * using linear extrapolation, away from the center.
  1837. */
  1838. static void extrapolate_unprobed_bed_level() {
  1839. int half_x = (ABL_GRID_POINTS_X - 1) / 2,
  1840. half_y = (ABL_GRID_POINTS_Y - 1) / 2;
  1841. for (uint8_t y = 0; y <= half_y; y++) {
  1842. for (uint8_t x = 0; x <= half_x; x++) {
  1843. if (x + y < 3) continue;
  1844. extrapolate_one_point(half_x - x, half_y - y, x > 1 ? +1 : 0, y > 1 ? +1 : 0);
  1845. extrapolate_one_point(half_x + x, half_y - y, x > 1 ? -1 : 0, y > 1 ? +1 : 0);
  1846. extrapolate_one_point(half_x - x, half_y + y, x > 1 ? +1 : 0, y > 1 ? -1 : 0);
  1847. extrapolate_one_point(half_x + x, half_y + y, x > 1 ? -1 : 0, y > 1 ? -1 : 0);
  1848. }
  1849. }
  1850. }
  1851. /**
  1852. * Print calibration results for plotting or manual frame adjustment.
  1853. */
  1854. static void print_bed_level() {
  1855. for (uint8_t y = 0; y < ABL_GRID_POINTS_Y; y++) {
  1856. for (uint8_t x = 0; x < ABL_GRID_POINTS_X; x++) {
  1857. SERIAL_PROTOCOL_F(bed_level_grid[x][y], 2);
  1858. SERIAL_PROTOCOLCHAR(' ');
  1859. }
  1860. SERIAL_EOL;
  1861. }
  1862. }
  1863. #endif // AUTO_BED_LEVELING_BILINEAR
  1864. /**
  1865. * Home an individual linear axis
  1866. */
  1867. static void do_homing_move(const AxisEnum axis, float distance, float fr_mm_s=0.0) {
  1868. #if HOMING_Z_WITH_PROBE && ENABLED(BLTOUCH)
  1869. bool deploy_bltouch = (axis == Z_AXIS && distance < 0);
  1870. if (deploy_bltouch) set_bltouch_deployed(true);
  1871. #endif
  1872. // Tell the planner we're at Z=0
  1873. current_position[axis] = 0;
  1874. #if IS_SCARA
  1875. SYNC_PLAN_POSITION_KINEMATIC();
  1876. current_position[axis] = distance;
  1877. inverse_kinematics(current_position);
  1878. planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], current_position[E_AXIS], fr_mm_s ? fr_mm_s : homing_feedrate_mm_s[axis], active_extruder);
  1879. #else
  1880. sync_plan_position();
  1881. current_position[axis] = distance;
  1882. planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], fr_mm_s ? fr_mm_s : homing_feedrate_mm_s[axis], active_extruder);
  1883. #endif
  1884. stepper.synchronize();
  1885. #if HOMING_Z_WITH_PROBE && ENABLED(BLTOUCH)
  1886. if (deploy_bltouch) set_bltouch_deployed(false);
  1887. #endif
  1888. endstops.hit_on_purpose();
  1889. }
  1890. /**
  1891. * Home an individual "raw axis" to its endstop.
  1892. * This applies to XYZ on Cartesian and Core robots, and
  1893. * to the individual ABC steppers on DELTA and SCARA.
  1894. *
  1895. * At the end of the procedure the axis is marked as
  1896. * homed and the current position of that axis is updated.
  1897. * Kinematic robots should wait till all axes are homed
  1898. * before updating the current position.
  1899. */
  1900. #define HOMEAXIS(LETTER) homeaxis(LETTER##_AXIS)
  1901. static void homeaxis(AxisEnum axis) {
  1902. #if IS_SCARA
  1903. // Only Z homing (with probe) is permitted
  1904. if (axis != Z_AXIS) { BUZZ(100, 880); return; }
  1905. #else
  1906. #define CAN_HOME(A) \
  1907. (axis == A##_AXIS && ((A##_MIN_PIN > -1 && A##_HOME_DIR < 0) || (A##_MAX_PIN > -1 && A##_HOME_DIR > 0)))
  1908. if (!CAN_HOME(X) && !CAN_HOME(Y) && !CAN_HOME(Z)) return;
  1909. #endif
  1910. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1911. if (DEBUGGING(LEVELING)) {
  1912. SERIAL_ECHOPAIR(">>> homeaxis(", axis_codes[axis]);
  1913. SERIAL_ECHOLNPGM(")");
  1914. }
  1915. #endif
  1916. int axis_home_dir =
  1917. #if ENABLED(DUAL_X_CARRIAGE)
  1918. (axis == X_AXIS) ? x_home_dir(active_extruder) :
  1919. #endif
  1920. home_dir(axis);
  1921. // Homing Z towards the bed? Deploy the Z probe or endstop.
  1922. #if HOMING_Z_WITH_PROBE
  1923. if (axis == Z_AXIS && DEPLOY_PROBE()) return;
  1924. #endif
  1925. // Set a flag for Z motor locking
  1926. #if ENABLED(Z_DUAL_ENDSTOPS)
  1927. if (axis == Z_AXIS) stepper.set_homing_flag(true);
  1928. #endif
  1929. // Fast move towards endstop until triggered
  1930. do_homing_move(axis, 1.5 * max_length(axis) * axis_home_dir);
  1931. // When homing Z with probe respect probe clearance
  1932. const float bump = axis_home_dir * (
  1933. #if HOMING_Z_WITH_PROBE
  1934. (axis == Z_AXIS) ? max(Z_CLEARANCE_BETWEEN_PROBES, home_bump_mm(Z_AXIS)) :
  1935. #endif
  1936. home_bump_mm(axis)
  1937. );
  1938. // If a second homing move is configured...
  1939. if (bump) {
  1940. // Move away from the endstop by the axis HOME_BUMP_MM
  1941. do_homing_move(axis, -bump);
  1942. // Slow move towards endstop until triggered
  1943. do_homing_move(axis, 2 * bump, get_homing_bump_feedrate(axis));
  1944. }
  1945. #if ENABLED(Z_DUAL_ENDSTOPS)
  1946. if (axis == Z_AXIS) {
  1947. float adj = fabs(z_endstop_adj);
  1948. bool lockZ1;
  1949. if (axis_home_dir > 0) {
  1950. adj = -adj;
  1951. lockZ1 = (z_endstop_adj > 0);
  1952. }
  1953. else
  1954. lockZ1 = (z_endstop_adj < 0);
  1955. if (lockZ1) stepper.set_z_lock(true); else stepper.set_z2_lock(true);
  1956. // Move to the adjusted endstop height
  1957. do_homing_move(axis, adj);
  1958. if (lockZ1) stepper.set_z_lock(false); else stepper.set_z2_lock(false);
  1959. stepper.set_homing_flag(false);
  1960. } // Z_AXIS
  1961. #endif
  1962. #if IS_SCARA
  1963. set_axis_is_at_home(axis);
  1964. SYNC_PLAN_POSITION_KINEMATIC();
  1965. #elif ENABLED(DELTA)
  1966. // Delta has already moved all three towers up in G28
  1967. // so here it re-homes each tower in turn.
  1968. // Delta homing treats the axes as normal linear axes.
  1969. // retrace by the amount specified in endstop_adj
  1970. if (endstop_adj[axis] * Z_HOME_DIR < 0) {
  1971. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1972. if (DEBUGGING(LEVELING)) {
  1973. SERIAL_ECHOPAIR("> endstop_adj = ", endstop_adj[axis] * Z_HOME_DIR);
  1974. DEBUG_POS("", current_position);
  1975. }
  1976. #endif
  1977. do_homing_move(axis, endstop_adj[axis]);
  1978. }
  1979. #else
  1980. // For cartesian/core machines,
  1981. // set the axis to its home position
  1982. set_axis_is_at_home(axis);
  1983. sync_plan_position();
  1984. destination[axis] = current_position[axis];
  1985. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1986. if (DEBUGGING(LEVELING)) DEBUG_POS("> AFTER set_axis_is_at_home", current_position);
  1987. #endif
  1988. #endif
  1989. // Put away the Z probe
  1990. #if HOMING_Z_WITH_PROBE
  1991. if (axis == Z_AXIS && STOW_PROBE()) return;
  1992. #endif
  1993. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1994. if (DEBUGGING(LEVELING)) {
  1995. SERIAL_ECHOPAIR("<<< homeaxis(", axis_codes[axis]);
  1996. SERIAL_ECHOLNPGM(")");
  1997. }
  1998. #endif
  1999. } // homeaxis()
  2000. #if ENABLED(FWRETRACT)
  2001. void retract(bool retracting, bool swapping = false) {
  2002. if (retracting == retracted[active_extruder]) return;
  2003. float old_feedrate_mm_s = feedrate_mm_s;
  2004. set_destination_to_current();
  2005. if (retracting) {
  2006. feedrate_mm_s = retract_feedrate_mm_s;
  2007. current_position[E_AXIS] += (swapping ? retract_length_swap : retract_length) / volumetric_multiplier[active_extruder];
  2008. sync_plan_position_e();
  2009. prepare_move_to_destination();
  2010. if (retract_zlift > 0.01) {
  2011. current_position[Z_AXIS] -= retract_zlift;
  2012. SYNC_PLAN_POSITION_KINEMATIC();
  2013. prepare_move_to_destination();
  2014. }
  2015. }
  2016. else {
  2017. if (retract_zlift > 0.01) {
  2018. current_position[Z_AXIS] += retract_zlift;
  2019. SYNC_PLAN_POSITION_KINEMATIC();
  2020. }
  2021. feedrate_mm_s = retract_recover_feedrate_mm_s;
  2022. float move_e = swapping ? retract_length_swap + retract_recover_length_swap : retract_length + retract_recover_length;
  2023. current_position[E_AXIS] -= move_e / volumetric_multiplier[active_extruder];
  2024. sync_plan_position_e();
  2025. prepare_move_to_destination();
  2026. }
  2027. feedrate_mm_s = old_feedrate_mm_s;
  2028. retracted[active_extruder] = retracting;
  2029. } // retract()
  2030. #endif // FWRETRACT
  2031. #if ENABLED(MIXING_EXTRUDER)
  2032. void normalize_mix() {
  2033. float mix_total = 0.0;
  2034. for (int i = 0; i < MIXING_STEPPERS; i++) {
  2035. float v = mixing_factor[i];
  2036. if (v < 0) v = mixing_factor[i] = 0;
  2037. mix_total += v;
  2038. }
  2039. // Scale all values if they don't add up to ~1.0
  2040. if (mix_total < 0.9999 || mix_total > 1.0001) {
  2041. SERIAL_PROTOCOLLNPGM("Warning: Mix factors must add up to 1.0. Scaling.");
  2042. float mix_scale = 1.0 / mix_total;
  2043. for (int i = 0; i < MIXING_STEPPERS; i++)
  2044. mixing_factor[i] *= mix_scale;
  2045. }
  2046. }
  2047. #if ENABLED(DIRECT_MIXING_IN_G1)
  2048. // Get mixing parameters from the GCode
  2049. // Factors that are left out are set to 0
  2050. // The total "must" be 1.0 (but it will be normalized)
  2051. void gcode_get_mix() {
  2052. const char* mixing_codes = "ABCDHI";
  2053. for (int i = 0; i < MIXING_STEPPERS; i++)
  2054. mixing_factor[i] = code_seen(mixing_codes[i]) ? code_value_float() : 0;
  2055. normalize_mix();
  2056. }
  2057. #endif
  2058. #endif
  2059. /**
  2060. * ***************************************************************************
  2061. * ***************************** G-CODE HANDLING *****************************
  2062. * ***************************************************************************
  2063. */
  2064. /**
  2065. * Set XYZE destination and feedrate from the current GCode command
  2066. *
  2067. * - Set destination from included axis codes
  2068. * - Set to current for missing axis codes
  2069. * - Set the feedrate, if included
  2070. */
  2071. void gcode_get_destination() {
  2072. LOOP_XYZE(i) {
  2073. if (code_seen(axis_codes[i]))
  2074. destination[i] = code_value_axis_units(i) + (axis_relative_modes[i] || relative_mode ? current_position[i] : 0);
  2075. else
  2076. destination[i] = current_position[i];
  2077. }
  2078. if (code_seen('F') && code_value_linear_units() > 0.0)
  2079. feedrate_mm_s = MMM_TO_MMS(code_value_linear_units());
  2080. #if ENABLED(PRINTCOUNTER)
  2081. if (!DEBUGGING(DRYRUN))
  2082. print_job_timer.incFilamentUsed(destination[E_AXIS] - current_position[E_AXIS]);
  2083. #endif
  2084. // Get ABCDHI mixing factors
  2085. #if ENABLED(MIXING_EXTRUDER) && ENABLED(DIRECT_MIXING_IN_G1)
  2086. gcode_get_mix();
  2087. #endif
  2088. }
  2089. void unknown_command_error() {
  2090. SERIAL_ECHO_START;
  2091. SERIAL_ECHOPAIR(MSG_UNKNOWN_COMMAND, current_command);
  2092. SERIAL_ECHOLNPGM("\"");
  2093. }
  2094. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  2095. /**
  2096. * Output a "busy" message at regular intervals
  2097. * while the machine is not accepting commands.
  2098. */
  2099. void host_keepalive() {
  2100. millis_t ms = millis();
  2101. if (host_keepalive_interval && busy_state != NOT_BUSY) {
  2102. if (PENDING(ms, next_busy_signal_ms)) return;
  2103. switch (busy_state) {
  2104. case IN_HANDLER:
  2105. case IN_PROCESS:
  2106. SERIAL_ECHO_START;
  2107. SERIAL_ECHOLNPGM(MSG_BUSY_PROCESSING);
  2108. break;
  2109. case PAUSED_FOR_USER:
  2110. SERIAL_ECHO_START;
  2111. SERIAL_ECHOLNPGM(MSG_BUSY_PAUSED_FOR_USER);
  2112. break;
  2113. case PAUSED_FOR_INPUT:
  2114. SERIAL_ECHO_START;
  2115. SERIAL_ECHOLNPGM(MSG_BUSY_PAUSED_FOR_INPUT);
  2116. break;
  2117. default:
  2118. break;
  2119. }
  2120. }
  2121. next_busy_signal_ms = ms + host_keepalive_interval * 1000UL;
  2122. }
  2123. #endif //HOST_KEEPALIVE_FEATURE
  2124. bool position_is_reachable(float target[XYZ]
  2125. #if HAS_BED_PROBE
  2126. , bool by_probe=false
  2127. #endif
  2128. ) {
  2129. float dx = RAW_X_POSITION(target[X_AXIS]),
  2130. dy = RAW_Y_POSITION(target[Y_AXIS]);
  2131. #if HAS_BED_PROBE
  2132. if (by_probe) {
  2133. dx -= X_PROBE_OFFSET_FROM_EXTRUDER;
  2134. dy -= Y_PROBE_OFFSET_FROM_EXTRUDER;
  2135. }
  2136. #endif
  2137. #if IS_SCARA
  2138. #if MIDDLE_DEAD_ZONE_R > 0
  2139. const float R2 = HYPOT2(dx - SCARA_OFFSET_X, dy - SCARA_OFFSET_Y);
  2140. return R2 >= sq(float(MIDDLE_DEAD_ZONE_R)) && R2 <= sq(L1 + L2);
  2141. #else
  2142. return HYPOT2(dx - SCARA_OFFSET_X, dy - SCARA_OFFSET_Y) <= sq(L1 + L2);
  2143. #endif
  2144. #elif ENABLED(DELTA)
  2145. return HYPOT2(dx, dy) <= sq(DELTA_PRINTABLE_RADIUS);
  2146. #else
  2147. const float dz = RAW_Z_POSITION(target[Z_AXIS]);
  2148. return dx >= X_MIN_POS - 0.0001 && dx <= X_MAX_POS + 0.0001
  2149. && dy >= Y_MIN_POS - 0.0001 && dy <= Y_MAX_POS + 0.0001
  2150. && dz >= Z_MIN_POS - 0.0001 && dz <= Z_MAX_POS + 0.0001;
  2151. #endif
  2152. }
  2153. /**************************************************
  2154. ***************** GCode Handlers *****************
  2155. **************************************************/
  2156. /**
  2157. * G0, G1: Coordinated movement of X Y Z E axes
  2158. */
  2159. inline void gcode_G0_G1(
  2160. #if IS_SCARA
  2161. bool fast_move=false
  2162. #endif
  2163. ) {
  2164. if (IsRunning()) {
  2165. gcode_get_destination(); // For X Y Z E F
  2166. #if ENABLED(FWRETRACT)
  2167. if (autoretract_enabled && !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  2168. float echange = destination[E_AXIS] - current_position[E_AXIS];
  2169. // Is this move an attempt to retract or recover?
  2170. if ((echange < -MIN_RETRACT && !retracted[active_extruder]) || (echange > MIN_RETRACT && retracted[active_extruder])) {
  2171. current_position[E_AXIS] = destination[E_AXIS]; // hide the slicer-generated retract/recover from calculations
  2172. sync_plan_position_e(); // AND from the planner
  2173. retract(!retracted[active_extruder]);
  2174. return;
  2175. }
  2176. }
  2177. #endif //FWRETRACT
  2178. #if IS_SCARA
  2179. fast_move ? prepare_uninterpolated_move_to_destination() : prepare_move_to_destination();
  2180. #else
  2181. prepare_move_to_destination();
  2182. #endif
  2183. }
  2184. }
  2185. /**
  2186. * G2: Clockwise Arc
  2187. * G3: Counterclockwise Arc
  2188. *
  2189. * This command has two forms: IJ-form and R-form.
  2190. *
  2191. * - I specifies an X offset. J specifies a Y offset.
  2192. * At least one of the IJ parameters is required.
  2193. * X and Y can be omitted to do a complete circle.
  2194. * The given XY is not error-checked. The arc ends
  2195. * based on the angle of the destination.
  2196. * Mixing I or J with R will throw an error.
  2197. *
  2198. * - R specifies the radius. X or Y is required.
  2199. * Omitting both X and Y will throw an error.
  2200. * X or Y must differ from the current XY.
  2201. * Mixing R with I or J will throw an error.
  2202. *
  2203. * Examples:
  2204. *
  2205. * G2 I10 ; CW circle centered at X+10
  2206. * G3 X20 Y12 R14 ; CCW circle with r=14 ending at X20 Y12
  2207. */
  2208. #if ENABLED(ARC_SUPPORT)
  2209. inline void gcode_G2_G3(bool clockwise) {
  2210. if (IsRunning()) {
  2211. #if ENABLED(SF_ARC_FIX)
  2212. bool relative_mode_backup = relative_mode;
  2213. relative_mode = true;
  2214. #endif
  2215. gcode_get_destination();
  2216. #if ENABLED(SF_ARC_FIX)
  2217. relative_mode = relative_mode_backup;
  2218. #endif
  2219. float arc_offset[2] = { 0.0, 0.0 };
  2220. if (code_seen('R')) {
  2221. const float r = code_value_axis_units(X_AXIS),
  2222. x1 = current_position[X_AXIS], y1 = current_position[Y_AXIS],
  2223. x2 = destination[X_AXIS], y2 = destination[Y_AXIS];
  2224. if (r && (x2 != x1 || y2 != y1)) {
  2225. const float e = clockwise ? -1 : 1, // clockwise -1, counterclockwise 1
  2226. dx = x2 - x1, dy = y2 - y1, // X and Y differences
  2227. d = HYPOT(dx, dy), // Linear distance between the points
  2228. h = sqrt(sq(r) - sq(d * 0.5)), // Distance to the arc pivot-point
  2229. mx = (x1 + x2) * 0.5, my = (y1 + y2) * 0.5, // Point between the two points
  2230. sx = -dy / d, sy = dx / d, // Slope of the perpendicular bisector
  2231. cx = mx + e * h * sx, cy = my + e * h * sy; // Pivot-point of the arc
  2232. arc_offset[X_AXIS] = cx - x1;
  2233. arc_offset[Y_AXIS] = cy - y1;
  2234. }
  2235. }
  2236. else {
  2237. if (code_seen('I')) arc_offset[X_AXIS] = code_value_axis_units(X_AXIS);
  2238. if (code_seen('J')) arc_offset[Y_AXIS] = code_value_axis_units(Y_AXIS);
  2239. }
  2240. if (arc_offset[0] || arc_offset[1]) {
  2241. // Send an arc to the planner
  2242. plan_arc(destination, arc_offset, clockwise);
  2243. refresh_cmd_timeout();
  2244. }
  2245. else {
  2246. // Bad arguments
  2247. SERIAL_ERROR_START;
  2248. SERIAL_ERRORLNPGM(MSG_ERR_ARC_ARGS);
  2249. }
  2250. }
  2251. }
  2252. #endif
  2253. /**
  2254. * G4: Dwell S<seconds> or P<milliseconds>
  2255. */
  2256. inline void gcode_G4() {
  2257. millis_t dwell_ms = 0;
  2258. if (code_seen('P')) dwell_ms = code_value_millis(); // milliseconds to wait
  2259. if (code_seen('S')) dwell_ms = code_value_millis_from_seconds(); // seconds to wait
  2260. stepper.synchronize();
  2261. refresh_cmd_timeout();
  2262. dwell_ms += previous_cmd_ms; // keep track of when we started waiting
  2263. if (!lcd_hasstatus()) LCD_MESSAGEPGM(MSG_DWELL);
  2264. while (PENDING(millis(), dwell_ms)) idle();
  2265. }
  2266. #if ENABLED(BEZIER_CURVE_SUPPORT)
  2267. /**
  2268. * Parameters interpreted according to:
  2269. * http://linuxcnc.org/docs/2.6/html/gcode/gcode.html#sec:G5-Cubic-Spline
  2270. * However I, J omission is not supported at this point; all
  2271. * parameters can be omitted and default to zero.
  2272. */
  2273. /**
  2274. * G5: Cubic B-spline
  2275. */
  2276. inline void gcode_G5() {
  2277. if (IsRunning()) {
  2278. gcode_get_destination();
  2279. float offset[] = {
  2280. code_seen('I') ? code_value_axis_units(X_AXIS) : 0.0,
  2281. code_seen('J') ? code_value_axis_units(Y_AXIS) : 0.0,
  2282. code_seen('P') ? code_value_axis_units(X_AXIS) : 0.0,
  2283. code_seen('Q') ? code_value_axis_units(Y_AXIS) : 0.0
  2284. };
  2285. plan_cubic_move(offset);
  2286. }
  2287. }
  2288. #endif // BEZIER_CURVE_SUPPORT
  2289. #if ENABLED(FWRETRACT)
  2290. /**
  2291. * G10 - Retract filament according to settings of M207
  2292. * G11 - Recover filament according to settings of M208
  2293. */
  2294. inline void gcode_G10_G11(bool doRetract=false) {
  2295. #if EXTRUDERS > 1
  2296. if (doRetract) {
  2297. retracted_swap[active_extruder] = (code_seen('S') && code_value_bool()); // checks for swap retract argument
  2298. }
  2299. #endif
  2300. retract(doRetract
  2301. #if EXTRUDERS > 1
  2302. , retracted_swap[active_extruder]
  2303. #endif
  2304. );
  2305. }
  2306. #endif //FWRETRACT
  2307. #if ENABLED(NOZZLE_CLEAN_FEATURE)
  2308. /**
  2309. * G12: Clean the nozzle
  2310. */
  2311. inline void gcode_G12() {
  2312. // Don't allow nozzle cleaning without homing first
  2313. if (axis_unhomed_error(true, true, true)) { return; }
  2314. uint8_t const pattern = code_seen('P') ? code_value_ushort() : 0;
  2315. uint8_t const strokes = code_seen('S') ? code_value_ushort() : NOZZLE_CLEAN_STROKES;
  2316. uint8_t const objects = code_seen('T') ? code_value_ushort() : 3;
  2317. Nozzle::clean(pattern, strokes, objects);
  2318. }
  2319. #endif
  2320. #if ENABLED(INCH_MODE_SUPPORT)
  2321. /**
  2322. * G20: Set input mode to inches
  2323. */
  2324. inline void gcode_G20() { set_input_linear_units(LINEARUNIT_INCH); }
  2325. /**
  2326. * G21: Set input mode to millimeters
  2327. */
  2328. inline void gcode_G21() { set_input_linear_units(LINEARUNIT_MM); }
  2329. #endif
  2330. #if ENABLED(NOZZLE_PARK_FEATURE)
  2331. /**
  2332. * G27: Park the nozzle
  2333. */
  2334. inline void gcode_G27() {
  2335. // Don't allow nozzle parking without homing first
  2336. if (axis_unhomed_error(true, true, true)) { return; }
  2337. uint8_t const z_action = code_seen('P') ? code_value_ushort() : 0;
  2338. Nozzle::park(z_action);
  2339. }
  2340. #endif // NOZZLE_PARK_FEATURE
  2341. #if ENABLED(QUICK_HOME)
  2342. static void quick_home_xy() {
  2343. // Pretend the current position is 0,0
  2344. current_position[X_AXIS] = current_position[Y_AXIS] = 0.0;
  2345. sync_plan_position();
  2346. int x_axis_home_dir =
  2347. #if ENABLED(DUAL_X_CARRIAGE)
  2348. x_home_dir(active_extruder)
  2349. #else
  2350. home_dir(X_AXIS)
  2351. #endif
  2352. ;
  2353. float mlx = max_length(X_AXIS),
  2354. mly = max_length(Y_AXIS),
  2355. mlratio = mlx > mly ? mly / mlx : mlx / mly,
  2356. fr_mm_s = min(homing_feedrate_mm_s[X_AXIS], homing_feedrate_mm_s[Y_AXIS]) * sqrt(sq(mlratio) + 1.0);
  2357. do_blocking_move_to_xy(1.5 * mlx * x_axis_home_dir, 1.5 * mly * home_dir(Y_AXIS), fr_mm_s);
  2358. endstops.hit_on_purpose(); // clear endstop hit flags
  2359. current_position[X_AXIS] = current_position[Y_AXIS] = 0.0;
  2360. }
  2361. #endif // QUICK_HOME
  2362. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2363. void log_machine_info() {
  2364. SERIAL_ECHOPGM("Machine Type: ");
  2365. #if ENABLED(DELTA)
  2366. SERIAL_ECHOLNPGM("Delta");
  2367. #elif IS_SCARA
  2368. SERIAL_ECHOLNPGM("SCARA");
  2369. #elif ENABLED(COREXY) || ENABLED(COREXZ) || ENABLED(COREYZ)
  2370. SERIAL_ECHOLNPGM("Core");
  2371. #else
  2372. SERIAL_ECHOLNPGM("Cartesian");
  2373. #endif
  2374. SERIAL_ECHOPGM("Probe: ");
  2375. #if ENABLED(FIX_MOUNTED_PROBE)
  2376. SERIAL_ECHOLNPGM("FIX_MOUNTED_PROBE");
  2377. #elif HAS_Z_SERVO_ENDSTOP
  2378. SERIAL_ECHOLNPGM("SERVO PROBE");
  2379. #elif ENABLED(BLTOUCH)
  2380. SERIAL_ECHOLNPGM("BLTOUCH");
  2381. #elif ENABLED(Z_PROBE_SLED)
  2382. SERIAL_ECHOLNPGM("Z_PROBE_SLED");
  2383. #elif ENABLED(Z_PROBE_ALLEN_KEY)
  2384. SERIAL_ECHOLNPGM("Z_PROBE_ALLEN_KEY");
  2385. #else
  2386. SERIAL_ECHOLNPGM("NONE");
  2387. #endif
  2388. #if HAS_BED_PROBE
  2389. SERIAL_ECHOPAIR("Probe Offset X:", X_PROBE_OFFSET_FROM_EXTRUDER);
  2390. SERIAL_ECHOPAIR(" Y:", Y_PROBE_OFFSET_FROM_EXTRUDER);
  2391. SERIAL_ECHOPAIR(" Z:", zprobe_zoffset);
  2392. #if (X_PROBE_OFFSET_FROM_EXTRUDER > 0)
  2393. SERIAL_ECHOPGM(" (Right");
  2394. #elif (X_PROBE_OFFSET_FROM_EXTRUDER < 0)
  2395. SERIAL_ECHOPGM(" (Left");
  2396. #elif (Y_PROBE_OFFSET_FROM_EXTRUDER != 0)
  2397. SERIAL_ECHOPGM(" (Middle");
  2398. #else
  2399. SERIAL_ECHOPGM(" (Aligned With");
  2400. #endif
  2401. #if (Y_PROBE_OFFSET_FROM_EXTRUDER > 0)
  2402. SERIAL_ECHOPGM("-Back");
  2403. #elif (Y_PROBE_OFFSET_FROM_EXTRUDER < 0)
  2404. SERIAL_ECHOPGM("-Front");
  2405. #elif (X_PROBE_OFFSET_FROM_EXTRUDER != 0)
  2406. SERIAL_ECHOPGM("-Center");
  2407. #endif
  2408. if (zprobe_zoffset < 0)
  2409. SERIAL_ECHOPGM(" & Below");
  2410. else if (zprobe_zoffset > 0)
  2411. SERIAL_ECHOPGM(" & Above");
  2412. else
  2413. SERIAL_ECHOPGM(" & Same Z as");
  2414. SERIAL_ECHOLNPGM(" Nozzle)");
  2415. #endif
  2416. }
  2417. #endif // DEBUG_LEVELING_FEATURE
  2418. #if ENABLED(DELTA)
  2419. /**
  2420. * A delta can only safely home all axes at the same time
  2421. * This is like quick_home_xy() but for 3 towers.
  2422. */
  2423. inline void home_delta() {
  2424. // Init the current position of all carriages to 0,0,0
  2425. memset(current_position, 0, sizeof(current_position));
  2426. sync_plan_position();
  2427. // Move all carriages together linearly until an endstop is hit.
  2428. current_position[X_AXIS] = current_position[Y_AXIS] = current_position[Z_AXIS] = (Z_MAX_LENGTH + 10);
  2429. feedrate_mm_s = homing_feedrate_mm_s[X_AXIS];
  2430. line_to_current_position();
  2431. stepper.synchronize();
  2432. endstops.hit_on_purpose(); // clear endstop hit flags
  2433. // Probably not needed. Double-check this line:
  2434. memset(current_position, 0, sizeof(current_position));
  2435. // At least one carriage has reached the top.
  2436. // Now back off and re-home each carriage separately.
  2437. HOMEAXIS(A);
  2438. HOMEAXIS(B);
  2439. HOMEAXIS(C);
  2440. // Set all carriages to their home positions
  2441. // Do this here all at once for Delta, because
  2442. // XYZ isn't ABC. Applying this per-tower would
  2443. // give the impression that they are the same.
  2444. LOOP_XYZ(i) set_axis_is_at_home((AxisEnum)i);
  2445. SYNC_PLAN_POSITION_KINEMATIC();
  2446. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2447. if (DEBUGGING(LEVELING)) DEBUG_POS("(DELTA)", current_position);
  2448. #endif
  2449. }
  2450. #endif // DELTA
  2451. #if ENABLED(Z_SAFE_HOMING)
  2452. inline void home_z_safely() {
  2453. // Disallow Z homing if X or Y are unknown
  2454. if (!axis_known_position[X_AXIS] || !axis_known_position[Y_AXIS]) {
  2455. LCD_MESSAGEPGM(MSG_ERR_Z_HOMING);
  2456. SERIAL_ECHO_START;
  2457. SERIAL_ECHOLNPGM(MSG_ERR_Z_HOMING);
  2458. return;
  2459. }
  2460. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2461. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("Z_SAFE_HOMING >>>");
  2462. #endif
  2463. SYNC_PLAN_POSITION_KINEMATIC();
  2464. /**
  2465. * Move the Z probe (or just the nozzle) to the safe homing point
  2466. */
  2467. destination[X_AXIS] = LOGICAL_X_POSITION(Z_SAFE_HOMING_X_POINT);
  2468. destination[Y_AXIS] = LOGICAL_Y_POSITION(Z_SAFE_HOMING_Y_POINT);
  2469. destination[Z_AXIS] = current_position[Z_AXIS]; // Z is already at the right height
  2470. if (position_is_reachable(
  2471. destination
  2472. #if HOMING_Z_WITH_PROBE
  2473. , true
  2474. #endif
  2475. )
  2476. ) {
  2477. #if HOMING_Z_WITH_PROBE
  2478. destination[X_AXIS] -= X_PROBE_OFFSET_FROM_EXTRUDER;
  2479. destination[Y_AXIS] -= Y_PROBE_OFFSET_FROM_EXTRUDER;
  2480. #endif
  2481. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2482. if (DEBUGGING(LEVELING)) DEBUG_POS("Z_SAFE_HOMING", destination);
  2483. #endif
  2484. do_blocking_move_to_xy(destination[X_AXIS], destination[Y_AXIS]);
  2485. HOMEAXIS(Z);
  2486. }
  2487. else {
  2488. LCD_MESSAGEPGM(MSG_ZPROBE_OUT);
  2489. SERIAL_ECHO_START;
  2490. SERIAL_ECHOLNPGM(MSG_ZPROBE_OUT);
  2491. }
  2492. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2493. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< Z_SAFE_HOMING");
  2494. #endif
  2495. }
  2496. #endif // Z_SAFE_HOMING
  2497. /**
  2498. * G28: Home all axes according to settings
  2499. *
  2500. * Parameters
  2501. *
  2502. * None Home to all axes with no parameters.
  2503. * With QUICK_HOME enabled XY will home together, then Z.
  2504. *
  2505. * Cartesian parameters
  2506. *
  2507. * X Home to the X endstop
  2508. * Y Home to the Y endstop
  2509. * Z Home to the Z endstop
  2510. *
  2511. */
  2512. inline void gcode_G28() {
  2513. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2514. if (DEBUGGING(LEVELING)) {
  2515. SERIAL_ECHOLNPGM(">>> gcode_G28");
  2516. log_machine_info();
  2517. }
  2518. #endif
  2519. // Wait for planner moves to finish!
  2520. stepper.synchronize();
  2521. // For auto bed leveling, clear the level matrix
  2522. #if HAS_ABL
  2523. reset_bed_level();
  2524. #endif
  2525. // Always home with tool 0 active
  2526. #if HOTENDS > 1
  2527. uint8_t old_tool_index = active_extruder;
  2528. tool_change(0, 0, true);
  2529. #endif
  2530. #if ENABLED(DUAL_X_CARRIAGE) || ENABLED(DUAL_NOZZLE_DUPLICATION_MODE)
  2531. extruder_duplication_enabled = false;
  2532. #endif
  2533. /**
  2534. * For mesh bed leveling deactivate the mesh calculations, will be turned
  2535. * on again when homing all axis
  2536. */
  2537. #if ENABLED(MESH_BED_LEVELING)
  2538. float pre_home_z = MESH_HOME_SEARCH_Z;
  2539. if (mbl.active()) {
  2540. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2541. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("MBL was active");
  2542. #endif
  2543. // Save known Z position if already homed
  2544. if (axis_homed[X_AXIS] && axis_homed[Y_AXIS] && axis_homed[Z_AXIS]) {
  2545. pre_home_z = current_position[Z_AXIS];
  2546. pre_home_z += mbl.get_z(RAW_CURRENT_POSITION(X_AXIS), RAW_CURRENT_POSITION(Y_AXIS));
  2547. }
  2548. mbl.set_active(false);
  2549. current_position[Z_AXIS] = pre_home_z;
  2550. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2551. if (DEBUGGING(LEVELING)) DEBUG_POS("Set Z to pre_home_z", current_position);
  2552. #endif
  2553. }
  2554. #endif
  2555. setup_for_endstop_or_probe_move();
  2556. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2557. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> endstops.enable(true)");
  2558. #endif
  2559. endstops.enable(true); // Enable endstops for next homing move
  2560. #if ENABLED(DELTA)
  2561. home_delta();
  2562. #else // NOT DELTA
  2563. bool homeX = code_seen('X'), homeY = code_seen('Y'), homeZ = code_seen('Z');
  2564. home_all_axis = (!homeX && !homeY && !homeZ) || (homeX && homeY && homeZ);
  2565. set_destination_to_current();
  2566. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  2567. if (home_all_axis || homeZ) {
  2568. HOMEAXIS(Z);
  2569. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2570. if (DEBUGGING(LEVELING)) DEBUG_POS("> HOMEAXIS(Z)", current_position);
  2571. #endif
  2572. }
  2573. #else
  2574. if (home_all_axis || homeX || homeY) {
  2575. // Raise Z before homing any other axes and z is not already high enough (never lower z)
  2576. destination[Z_AXIS] = LOGICAL_Z_POSITION(Z_HOMING_HEIGHT);
  2577. if (destination[Z_AXIS] > current_position[Z_AXIS]) {
  2578. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2579. if (DEBUGGING(LEVELING))
  2580. SERIAL_ECHOLNPAIR("Raise Z (before homing) to ", destination[Z_AXIS]);
  2581. #endif
  2582. do_blocking_move_to_z(destination[Z_AXIS]);
  2583. }
  2584. }
  2585. #endif
  2586. #if ENABLED(QUICK_HOME)
  2587. if (home_all_axis || (homeX && homeY)) quick_home_xy();
  2588. #endif
  2589. #if ENABLED(HOME_Y_BEFORE_X)
  2590. // Home Y
  2591. if (home_all_axis || homeY) {
  2592. HOMEAXIS(Y);
  2593. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2594. if (DEBUGGING(LEVELING)) DEBUG_POS("> homeY", current_position);
  2595. #endif
  2596. }
  2597. #endif
  2598. // Home X
  2599. if (home_all_axis || homeX) {
  2600. #if ENABLED(DUAL_X_CARRIAGE)
  2601. int tmp_extruder = active_extruder;
  2602. active_extruder = !active_extruder;
  2603. HOMEAXIS(X);
  2604. inactive_extruder_x_pos = RAW_X_POSITION(current_position[X_AXIS]);
  2605. active_extruder = tmp_extruder;
  2606. HOMEAXIS(X);
  2607. // reset state used by the different modes
  2608. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  2609. delayed_move_time = 0;
  2610. active_extruder_parked = true;
  2611. #else
  2612. HOMEAXIS(X);
  2613. #endif
  2614. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2615. if (DEBUGGING(LEVELING)) DEBUG_POS("> homeX", current_position);
  2616. #endif
  2617. }
  2618. #if DISABLED(HOME_Y_BEFORE_X)
  2619. // Home Y
  2620. if (home_all_axis || homeY) {
  2621. HOMEAXIS(Y);
  2622. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2623. if (DEBUGGING(LEVELING)) DEBUG_POS("> homeY", current_position);
  2624. #endif
  2625. }
  2626. #endif
  2627. // Home Z last if homing towards the bed
  2628. #if Z_HOME_DIR < 0
  2629. if (home_all_axis || homeZ) {
  2630. #if ENABLED(Z_SAFE_HOMING)
  2631. home_z_safely();
  2632. #else
  2633. HOMEAXIS(Z);
  2634. #endif
  2635. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2636. if (DEBUGGING(LEVELING)) DEBUG_POS("> (home_all_axis || homeZ) > final", current_position);
  2637. #endif
  2638. } // home_all_axis || homeZ
  2639. #endif // Z_HOME_DIR < 0
  2640. SYNC_PLAN_POSITION_KINEMATIC();
  2641. #endif // !DELTA (gcode_G28)
  2642. endstops.not_homing();
  2643. // Enable mesh leveling again
  2644. #if ENABLED(MESH_BED_LEVELING)
  2645. if (mbl.has_mesh()) {
  2646. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2647. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("MBL has mesh");
  2648. #endif
  2649. if (home_all_axis || (axis_homed[X_AXIS] && axis_homed[Y_AXIS] && homeZ)) {
  2650. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2651. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("MBL Z homing");
  2652. #endif
  2653. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z
  2654. #if Z_HOME_DIR > 0
  2655. + Z_MAX_POS
  2656. #endif
  2657. ;
  2658. SYNC_PLAN_POSITION_KINEMATIC();
  2659. mbl.set_active(true);
  2660. #if ENABLED(MESH_G28_REST_ORIGIN)
  2661. current_position[Z_AXIS] = 0.0;
  2662. set_destination_to_current();
  2663. line_to_destination(homing_feedrate_mm_s[Z_AXIS]);
  2664. stepper.synchronize();
  2665. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2666. if (DEBUGGING(LEVELING)) DEBUG_POS("MBL Rest Origin", current_position);
  2667. #endif
  2668. #else
  2669. planner.unapply_leveling(current_position);
  2670. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2671. if (DEBUGGING(LEVELING)) DEBUG_POS("MBL adjusted MESH_HOME_SEARCH_Z", current_position);
  2672. #endif
  2673. #endif
  2674. }
  2675. else if ((axis_homed[X_AXIS] && axis_homed[Y_AXIS] && axis_homed[Z_AXIS]) && (homeX || homeY)) {
  2676. current_position[Z_AXIS] = pre_home_z;
  2677. SYNC_PLAN_POSITION_KINEMATIC();
  2678. mbl.set_active(true);
  2679. planner.unapply_leveling(current_position);
  2680. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2681. if (DEBUGGING(LEVELING)) DEBUG_POS("MBL Home X or Y", current_position);
  2682. #endif
  2683. }
  2684. }
  2685. #endif
  2686. #if ENABLED(DELTA)
  2687. // move to a height where we can use the full xy-area
  2688. do_blocking_move_to_z(delta_clip_start_height);
  2689. #endif
  2690. clean_up_after_endstop_or_probe_move();
  2691. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2692. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< gcode_G28");
  2693. #endif
  2694. // Restore the active tool after homing
  2695. #if HOTENDS > 1
  2696. tool_change(old_tool_index, 0, true);
  2697. #endif
  2698. report_current_position();
  2699. }
  2700. #if HAS_PROBING_PROCEDURE
  2701. void out_of_range_error(const char* p_edge) {
  2702. SERIAL_PROTOCOLPGM("?Probe ");
  2703. serialprintPGM(p_edge);
  2704. SERIAL_PROTOCOLLNPGM(" position out of range.");
  2705. }
  2706. #endif
  2707. #if ENABLED(MESH_BED_LEVELING)
  2708. inline void _mbl_goto_xy(float x, float y) {
  2709. float old_feedrate_mm_s = feedrate_mm_s;
  2710. feedrate_mm_s = homing_feedrate_mm_s[X_AXIS];
  2711. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z
  2712. #if Z_CLEARANCE_BETWEEN_PROBES > Z_HOMING_HEIGHT
  2713. + Z_CLEARANCE_BETWEEN_PROBES
  2714. #elif Z_HOMING_HEIGHT > 0
  2715. + Z_HOMING_HEIGHT
  2716. #endif
  2717. ;
  2718. line_to_current_position();
  2719. current_position[X_AXIS] = LOGICAL_X_POSITION(x);
  2720. current_position[Y_AXIS] = LOGICAL_Y_POSITION(y);
  2721. line_to_current_position();
  2722. #if Z_CLEARANCE_BETWEEN_PROBES > 0 || Z_HOMING_HEIGHT > 0
  2723. current_position[Z_AXIS] = LOGICAL_Z_POSITION(MESH_HOME_SEARCH_Z);
  2724. line_to_current_position();
  2725. #endif
  2726. feedrate_mm_s = old_feedrate_mm_s;
  2727. stepper.synchronize();
  2728. }
  2729. /**
  2730. * G29: Mesh-based Z probe, probes a grid and produces a
  2731. * mesh to compensate for variable bed height
  2732. *
  2733. * Parameters With MESH_BED_LEVELING:
  2734. *
  2735. * S0 Produce a mesh report
  2736. * S1 Start probing mesh points
  2737. * S2 Probe the next mesh point
  2738. * S3 Xn Yn Zn.nn Manually modify a single point
  2739. * S4 Zn.nn Set z offset. Positive away from bed, negative closer to bed.
  2740. * S5 Reset and disable mesh
  2741. *
  2742. * The S0 report the points as below
  2743. *
  2744. * +----> X-axis 1-n
  2745. * |
  2746. * |
  2747. * v Y-axis 1-n
  2748. *
  2749. */
  2750. inline void gcode_G29() {
  2751. static int probe_point = -1;
  2752. MeshLevelingState state = code_seen('S') ? (MeshLevelingState)code_value_byte() : MeshReport;
  2753. if (state < 0 || state > 5) {
  2754. SERIAL_PROTOCOLLNPGM("S out of range (0-5).");
  2755. return;
  2756. }
  2757. int8_t px, py;
  2758. switch (state) {
  2759. case MeshReport:
  2760. if (mbl.has_mesh()) {
  2761. SERIAL_PROTOCOLPAIR("State: ", mbl.active() ? MSG_ON : MSG_OFF);
  2762. SERIAL_PROTOCOLLNPGM("\nNum X,Y: " STRINGIFY(MESH_NUM_X_POINTS) "," STRINGIFY(MESH_NUM_Y_POINTS));
  2763. SERIAL_PROTOCOLLNPGM("Z search height: " STRINGIFY(MESH_HOME_SEARCH_Z));
  2764. SERIAL_PROTOCOLPGM("Z offset: "); SERIAL_PROTOCOL_F(mbl.z_offset, 5);
  2765. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  2766. for (py = 0; py < MESH_NUM_Y_POINTS; py++) {
  2767. for (px = 0; px < MESH_NUM_X_POINTS; px++) {
  2768. SERIAL_PROTOCOLPGM(" ");
  2769. SERIAL_PROTOCOL_F(mbl.z_values[py][px], 5);
  2770. }
  2771. SERIAL_EOL;
  2772. }
  2773. }
  2774. else
  2775. SERIAL_PROTOCOLLNPGM("Mesh bed leveling not active.");
  2776. break;
  2777. case MeshStart:
  2778. mbl.reset();
  2779. probe_point = 0;
  2780. enqueue_and_echo_commands_P(PSTR("G28\nG29 S2"));
  2781. break;
  2782. case MeshNext:
  2783. if (probe_point < 0) {
  2784. SERIAL_PROTOCOLLNPGM("Start mesh probing with \"G29 S1\" first.");
  2785. return;
  2786. }
  2787. // For each G29 S2...
  2788. if (probe_point == 0) {
  2789. // For the initial G29 S2 make Z a positive value (e.g., 4.0)
  2790. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z
  2791. #if Z_HOME_DIR > 0
  2792. + Z_MAX_POS
  2793. #endif
  2794. ;
  2795. SYNC_PLAN_POSITION_KINEMATIC();
  2796. }
  2797. else {
  2798. // For G29 S2 after adjusting Z.
  2799. mbl.set_zigzag_z(probe_point - 1, current_position[Z_AXIS]);
  2800. }
  2801. // If there's another point to sample, move there with optional lift.
  2802. if (probe_point < (MESH_NUM_X_POINTS) * (MESH_NUM_Y_POINTS)) {
  2803. mbl.zigzag(probe_point, px, py);
  2804. _mbl_goto_xy(mbl.get_probe_x(px), mbl.get_probe_y(py));
  2805. probe_point++;
  2806. }
  2807. else {
  2808. // One last "return to the bed" (as originally coded) at completion
  2809. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z
  2810. #if Z_CLEARANCE_BETWEEN_PROBES > Z_HOMING_HEIGHT
  2811. + Z_CLEARANCE_BETWEEN_PROBES
  2812. #elif Z_HOMING_HEIGHT > 0
  2813. + Z_HOMING_HEIGHT
  2814. #endif
  2815. ;
  2816. line_to_current_position();
  2817. stepper.synchronize();
  2818. // After recording the last point, activate the mbl and home
  2819. SERIAL_PROTOCOLLNPGM("Mesh probing done.");
  2820. probe_point = -1;
  2821. mbl.set_has_mesh(true);
  2822. enqueue_and_echo_commands_P(PSTR("G28"));
  2823. }
  2824. break;
  2825. case MeshSet:
  2826. if (code_seen('X')) {
  2827. px = code_value_int() - 1;
  2828. if (px < 0 || px >= MESH_NUM_X_POINTS) {
  2829. SERIAL_PROTOCOLLNPGM("X out of range (1-" STRINGIFY(MESH_NUM_X_POINTS) ").");
  2830. return;
  2831. }
  2832. }
  2833. else {
  2834. SERIAL_PROTOCOLLNPGM("X not entered.");
  2835. return;
  2836. }
  2837. if (code_seen('Y')) {
  2838. py = code_value_int() - 1;
  2839. if (py < 0 || py >= MESH_NUM_Y_POINTS) {
  2840. SERIAL_PROTOCOLLNPGM("Y out of range (1-" STRINGIFY(MESH_NUM_Y_POINTS) ").");
  2841. return;
  2842. }
  2843. }
  2844. else {
  2845. SERIAL_PROTOCOLLNPGM("Y not entered.");
  2846. return;
  2847. }
  2848. if (code_seen('Z')) {
  2849. mbl.z_values[py][px] = code_value_axis_units(Z_AXIS);
  2850. }
  2851. else {
  2852. SERIAL_PROTOCOLLNPGM("Z not entered.");
  2853. return;
  2854. }
  2855. break;
  2856. case MeshSetZOffset:
  2857. if (code_seen('Z')) {
  2858. mbl.z_offset = code_value_axis_units(Z_AXIS);
  2859. }
  2860. else {
  2861. SERIAL_PROTOCOLLNPGM("Z not entered.");
  2862. return;
  2863. }
  2864. break;
  2865. case MeshReset:
  2866. if (mbl.active()) {
  2867. current_position[Z_AXIS] +=
  2868. mbl.get_z(RAW_CURRENT_POSITION(X_AXIS), RAW_CURRENT_POSITION(Y_AXIS)) - MESH_HOME_SEARCH_Z;
  2869. mbl.reset();
  2870. SYNC_PLAN_POSITION_KINEMATIC();
  2871. }
  2872. else
  2873. mbl.reset();
  2874. } // switch(state)
  2875. report_current_position();
  2876. }
  2877. #elif HAS_ABL
  2878. /**
  2879. * G29: Detailed Z probe, probes the bed at 3 or more points.
  2880. * Will fail if the printer has not been homed with G28.
  2881. *
  2882. * Enhanced G29 Auto Bed Leveling Probe Routine
  2883. *
  2884. * Parameters With ABL_GRID:
  2885. *
  2886. * P Set the size of the grid that will be probed (P x P points).
  2887. * Not supported by non-linear delta printer bed leveling.
  2888. * Example: "G29 P4"
  2889. *
  2890. * S Set the XY travel speed between probe points (in units/min)
  2891. *
  2892. * D Dry-Run mode. Just evaluate the bed Topology - Don't apply
  2893. * or clean the rotation Matrix. Useful to check the topology
  2894. * after a first run of G29.
  2895. *
  2896. * V Set the verbose level (0-4). Example: "G29 V3"
  2897. *
  2898. * T Generate a Bed Topology Report. Example: "G29 P5 T" for a detailed report.
  2899. * This is useful for manual bed leveling and finding flaws in the bed (to
  2900. * assist with part placement).
  2901. * Not supported by non-linear delta printer bed leveling.
  2902. *
  2903. * F Set the Front limit of the probing grid
  2904. * B Set the Back limit of the probing grid
  2905. * L Set the Left limit of the probing grid
  2906. * R Set the Right limit of the probing grid
  2907. *
  2908. * Global Parameters:
  2909. *
  2910. * E/e By default G29 will engage the Z probe, test the bed, then disengage.
  2911. * Include "E" to engage/disengage the Z probe for each sample.
  2912. * There's no extra effect if you have a fixed Z probe.
  2913. * Usage: "G29 E" or "G29 e"
  2914. *
  2915. */
  2916. inline void gcode_G29() {
  2917. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2918. if (DEBUGGING(LEVELING)) {
  2919. SERIAL_ECHOLNPGM(">>> gcode_G29");
  2920. DEBUG_POS("", current_position);
  2921. log_machine_info();
  2922. }
  2923. #endif
  2924. // Don't allow auto-leveling without homing first
  2925. if (axis_unhomed_error(true, true, true)) return;
  2926. int verbose_level = code_seen('V') ? code_value_int() : 1;
  2927. if (verbose_level < 0 || verbose_level > 4) {
  2928. SERIAL_PROTOCOLLNPGM("?(V)erbose Level is implausible (0-4).");
  2929. return;
  2930. }
  2931. bool dryrun = code_seen('D'),
  2932. stow_probe_after_each = code_seen('E');
  2933. #if ABL_GRID
  2934. #if ABL_PLANAR
  2935. bool do_topography_map = verbose_level > 2 || code_seen('T');
  2936. #endif
  2937. if (verbose_level > 0) {
  2938. SERIAL_PROTOCOLLNPGM("G29 Auto Bed Leveling");
  2939. if (dryrun) SERIAL_PROTOCOLLNPGM("Running in DRY-RUN mode");
  2940. }
  2941. int abl_grid_points_x = ABL_GRID_POINTS_X,
  2942. abl_grid_points_y = ABL_GRID_POINTS_Y;
  2943. #if ABL_PLANAR
  2944. if (code_seen('P')) abl_grid_points_x = abl_grid_points_y = code_value_int();
  2945. if (abl_grid_points_x < 2) {
  2946. SERIAL_PROTOCOLLNPGM("?Number of probed (P)oints is implausible (2 minimum).");
  2947. return;
  2948. }
  2949. #endif
  2950. xy_probe_feedrate_mm_s = MMM_TO_MMS(code_seen('S') ? code_value_linear_units() : XY_PROBE_SPEED);
  2951. int left_probe_bed_position = code_seen('L') ? (int)code_value_axis_units(X_AXIS) : LOGICAL_X_POSITION(LEFT_PROBE_BED_POSITION),
  2952. right_probe_bed_position = code_seen('R') ? (int)code_value_axis_units(X_AXIS) : LOGICAL_X_POSITION(RIGHT_PROBE_BED_POSITION),
  2953. front_probe_bed_position = code_seen('F') ? (int)code_value_axis_units(Y_AXIS) : LOGICAL_Y_POSITION(FRONT_PROBE_BED_POSITION),
  2954. back_probe_bed_position = code_seen('B') ? (int)code_value_axis_units(Y_AXIS) : LOGICAL_Y_POSITION(BACK_PROBE_BED_POSITION);
  2955. bool left_out_l = left_probe_bed_position < LOGICAL_X_POSITION(MIN_PROBE_X),
  2956. left_out = left_out_l || left_probe_bed_position > right_probe_bed_position - (MIN_PROBE_EDGE),
  2957. right_out_r = right_probe_bed_position > LOGICAL_X_POSITION(MAX_PROBE_X),
  2958. right_out = right_out_r || right_probe_bed_position < left_probe_bed_position + MIN_PROBE_EDGE,
  2959. front_out_f = front_probe_bed_position < LOGICAL_Y_POSITION(MIN_PROBE_Y),
  2960. front_out = front_out_f || front_probe_bed_position > back_probe_bed_position - (MIN_PROBE_EDGE),
  2961. back_out_b = back_probe_bed_position > LOGICAL_Y_POSITION(MAX_PROBE_Y),
  2962. back_out = back_out_b || back_probe_bed_position < front_probe_bed_position + MIN_PROBE_EDGE;
  2963. if (left_out || right_out || front_out || back_out) {
  2964. if (left_out) {
  2965. out_of_range_error(PSTR("(L)eft"));
  2966. left_probe_bed_position = left_out_l ? LOGICAL_X_POSITION(MIN_PROBE_X) : right_probe_bed_position - (MIN_PROBE_EDGE);
  2967. }
  2968. if (right_out) {
  2969. out_of_range_error(PSTR("(R)ight"));
  2970. right_probe_bed_position = right_out_r ? LOGICAL_Y_POSITION(MAX_PROBE_X) : left_probe_bed_position + MIN_PROBE_EDGE;
  2971. }
  2972. if (front_out) {
  2973. out_of_range_error(PSTR("(F)ront"));
  2974. front_probe_bed_position = front_out_f ? LOGICAL_Y_POSITION(MIN_PROBE_Y) : back_probe_bed_position - (MIN_PROBE_EDGE);
  2975. }
  2976. if (back_out) {
  2977. out_of_range_error(PSTR("(B)ack"));
  2978. back_probe_bed_position = back_out_b ? LOGICAL_Y_POSITION(MAX_PROBE_Y) : front_probe_bed_position + MIN_PROBE_EDGE;
  2979. }
  2980. return;
  2981. }
  2982. #endif // ABL_GRID
  2983. stepper.synchronize();
  2984. // Disable auto bed leveling during G29
  2985. bool abl_should_reenable = planner.abl_enabled;
  2986. planner.abl_enabled = false;
  2987. if (!dryrun) {
  2988. // Re-orient the current position without leveling
  2989. // based on where the steppers are positioned.
  2990. get_cartesian_from_steppers();
  2991. memcpy(current_position, cartes, sizeof(cartes));
  2992. // Inform the planner about the new coordinates
  2993. SYNC_PLAN_POSITION_KINEMATIC();
  2994. }
  2995. setup_for_endstop_or_probe_move();
  2996. // Deploy the probe. Probe will raise if needed.
  2997. if (DEPLOY_PROBE()) {
  2998. planner.abl_enabled = abl_should_reenable;
  2999. return;
  3000. }
  3001. float xProbe = 0, yProbe = 0, measured_z = 0;
  3002. #if ABL_GRID
  3003. // probe at the points of a lattice grid
  3004. const float xGridSpacing = (right_probe_bed_position - left_probe_bed_position) / (abl_grid_points_x - 1),
  3005. yGridSpacing = (back_probe_bed_position - front_probe_bed_position) / (abl_grid_points_y - 1);
  3006. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  3007. float zoffset = zprobe_zoffset;
  3008. if (code_seen('Z')) zoffset += code_value_axis_units(Z_AXIS);
  3009. if (xGridSpacing != bilinear_grid_spacing[X_AXIS] || yGridSpacing != bilinear_grid_spacing[Y_AXIS]) {
  3010. bilinear_grid_spacing[X_AXIS] = xGridSpacing;
  3011. bilinear_grid_spacing[Y_AXIS] = yGridSpacing;
  3012. // Can't re-enable (on error) until the new grid is written
  3013. abl_should_reenable = false;
  3014. }
  3015. #elif ENABLED(AUTO_BED_LEVELING_LINEAR)
  3016. /**
  3017. * solve the plane equation ax + by + d = z
  3018. * A is the matrix with rows [x y 1] for all the probed points
  3019. * B is the vector of the Z positions
  3020. * the normal vector to the plane is formed by the coefficients of the
  3021. * plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  3022. * so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  3023. */
  3024. int abl2 = abl_grid_points_x * abl_grid_points_y,
  3025. indexIntoAB[abl_grid_points_x][abl_grid_points_y],
  3026. probePointCounter = -1;
  3027. float eqnAMatrix[abl2 * 3], // "A" matrix of the linear system of equations
  3028. eqnBVector[abl2], // "B" vector of Z points
  3029. mean = 0.0;
  3030. #endif // AUTO_BED_LEVELING_LINEAR
  3031. bool zig = abl_grid_points_y & 1; //always end at [RIGHT_PROBE_BED_POSITION, BACK_PROBE_BED_POSITION]
  3032. for (uint8_t yCount = 0; yCount < abl_grid_points_y; yCount++) {
  3033. float yBase = front_probe_bed_position + yGridSpacing * yCount;
  3034. yProbe = floor(yBase + (yBase < 0 ? 0 : 0.5));
  3035. int8_t xStart, xStop, xInc;
  3036. if (zig) {
  3037. xStart = 0;
  3038. xStop = abl_grid_points_x;
  3039. xInc = 1;
  3040. }
  3041. else {
  3042. xStart = abl_grid_points_x - 1;
  3043. xStop = -1;
  3044. xInc = -1;
  3045. }
  3046. zig = !zig;
  3047. for (int8_t xCount = xStart; xCount != xStop; xCount += xInc) {
  3048. float xBase = left_probe_bed_position + xGridSpacing * xCount;
  3049. xProbe = floor(xBase + (xBase < 0 ? 0 : 0.5));
  3050. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  3051. indexIntoAB[xCount][yCount] = ++probePointCounter;
  3052. #endif
  3053. #if IS_KINEMATIC
  3054. // Avoid probing outside the round or hexagonal area
  3055. float pos[XYZ] = { xProbe, yProbe, 0 };
  3056. if (!position_is_reachable(pos, true)) continue;
  3057. #endif
  3058. measured_z = probe_pt(xProbe, yProbe, stow_probe_after_each, verbose_level);
  3059. if (measured_z == NAN) {
  3060. planner.abl_enabled = abl_should_reenable;
  3061. return;
  3062. }
  3063. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  3064. mean += measured_z;
  3065. eqnBVector[probePointCounter] = measured_z;
  3066. eqnAMatrix[probePointCounter + 0 * abl2] = xProbe;
  3067. eqnAMatrix[probePointCounter + 1 * abl2] = yProbe;
  3068. eqnAMatrix[probePointCounter + 2 * abl2] = 1;
  3069. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  3070. bed_level_grid[xCount][yCount] = measured_z + zoffset;
  3071. #endif
  3072. idle();
  3073. } //xProbe
  3074. } //yProbe
  3075. #elif ENABLED(AUTO_BED_LEVELING_3POINT)
  3076. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3077. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> 3-point Leveling");
  3078. #endif
  3079. // Probe at 3 arbitrary points
  3080. vector_3 points[3] = {
  3081. vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, 0),
  3082. vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, 0),
  3083. vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, 0)
  3084. };
  3085. for (uint8_t i = 0; i < 3; ++i) {
  3086. // Retain the last probe position
  3087. xProbe = LOGICAL_X_POSITION(points[i].x);
  3088. yProbe = LOGICAL_Y_POSITION(points[i].y);
  3089. measured_z = points[i].z = probe_pt(xProbe, yProbe, stow_probe_after_each, verbose_level);
  3090. }
  3091. if (measured_z == NAN) {
  3092. planner.abl_enabled = abl_should_reenable;
  3093. return;
  3094. }
  3095. if (!dryrun) {
  3096. vector_3 planeNormal = vector_3::cross(points[0] - points[1], points[2] - points[1]).get_normal();
  3097. if (planeNormal.z < 0) {
  3098. planeNormal.x *= -1;
  3099. planeNormal.y *= -1;
  3100. planeNormal.z *= -1;
  3101. }
  3102. planner.bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  3103. // Can't re-enable (on error) until the new grid is written
  3104. abl_should_reenable = false;
  3105. }
  3106. #endif // AUTO_BED_LEVELING_3POINT
  3107. // Raise to _Z_CLEARANCE_DEPLOY_PROBE. Stow the probe.
  3108. if (STOW_PROBE()) {
  3109. planner.abl_enabled = abl_should_reenable;
  3110. return;
  3111. }
  3112. //
  3113. // Unless this is a dry run, auto bed leveling will
  3114. // definitely be enabled after this point
  3115. //
  3116. // Restore state after probing
  3117. clean_up_after_endstop_or_probe_move();
  3118. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3119. if (DEBUGGING(LEVELING)) DEBUG_POS("> probing complete", current_position);
  3120. #endif
  3121. // Calculate leveling, print reports, correct the position
  3122. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  3123. if (!dryrun) extrapolate_unprobed_bed_level();
  3124. print_bed_level();
  3125. #elif ENABLED(AUTO_BED_LEVELING_LINEAR)
  3126. // For LINEAR leveling calculate matrix, print reports, correct the position
  3127. // solve lsq problem
  3128. float plane_equation_coefficients[3];
  3129. qr_solve(plane_equation_coefficients, abl2, 3, eqnAMatrix, eqnBVector);
  3130. mean /= abl2;
  3131. if (verbose_level) {
  3132. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  3133. SERIAL_PROTOCOL_F(plane_equation_coefficients[0], 8);
  3134. SERIAL_PROTOCOLPGM(" b: ");
  3135. SERIAL_PROTOCOL_F(plane_equation_coefficients[1], 8);
  3136. SERIAL_PROTOCOLPGM(" d: ");
  3137. SERIAL_PROTOCOL_F(plane_equation_coefficients[2], 8);
  3138. SERIAL_EOL;
  3139. if (verbose_level > 2) {
  3140. SERIAL_PROTOCOLPGM("Mean of sampled points: ");
  3141. SERIAL_PROTOCOL_F(mean, 8);
  3142. SERIAL_EOL;
  3143. }
  3144. }
  3145. // Create the matrix but don't correct the position yet
  3146. if (!dryrun) {
  3147. planner.bed_level_matrix = matrix_3x3::create_look_at(
  3148. vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1)
  3149. );
  3150. }
  3151. // Show the Topography map if enabled
  3152. if (do_topography_map) {
  3153. SERIAL_PROTOCOLLNPGM("\nBed Height Topography:\n"
  3154. " +--- BACK --+\n"
  3155. " | |\n"
  3156. " L | (+) | R\n"
  3157. " E | | I\n"
  3158. " F | (-) N (+) | G\n"
  3159. " T | | H\n"
  3160. " | (-) | T\n"
  3161. " | |\n"
  3162. " O-- FRONT --+\n"
  3163. " (0,0)");
  3164. float min_diff = 999;
  3165. for (int8_t yy = abl_grid_points_y - 1; yy >= 0; yy--) {
  3166. for (uint8_t xx = 0; xx < abl_grid_points_x; xx++) {
  3167. int ind = indexIntoAB[xx][yy];
  3168. float diff = eqnBVector[ind] - mean,
  3169. x_tmp = eqnAMatrix[ind + 0 * abl2],
  3170. y_tmp = eqnAMatrix[ind + 1 * abl2],
  3171. z_tmp = 0;
  3172. apply_rotation_xyz(planner.bed_level_matrix, x_tmp, y_tmp, z_tmp);
  3173. NOMORE(min_diff, eqnBVector[ind] - z_tmp);
  3174. if (diff >= 0.0)
  3175. SERIAL_PROTOCOLPGM(" +"); // Include + for column alignment
  3176. else
  3177. SERIAL_PROTOCOLCHAR(' ');
  3178. SERIAL_PROTOCOL_F(diff, 5);
  3179. } // xx
  3180. SERIAL_EOL;
  3181. } // yy
  3182. SERIAL_EOL;
  3183. if (verbose_level > 3) {
  3184. SERIAL_PROTOCOLLNPGM("\nCorrected Bed Height vs. Bed Topology:");
  3185. for (int8_t yy = abl_grid_points_y - 1; yy >= 0; yy--) {
  3186. for (uint8_t xx = 0; xx < abl_grid_points_x; xx++) {
  3187. int ind = indexIntoAB[xx][yy];
  3188. float x_tmp = eqnAMatrix[ind + 0 * abl2],
  3189. y_tmp = eqnAMatrix[ind + 1 * abl2],
  3190. z_tmp = 0;
  3191. apply_rotation_xyz(planner.bed_level_matrix, x_tmp, y_tmp, z_tmp);
  3192. float diff = eqnBVector[ind] - z_tmp - min_diff;
  3193. if (diff >= 0.0)
  3194. SERIAL_PROTOCOLPGM(" +");
  3195. // Include + for column alignment
  3196. else
  3197. SERIAL_PROTOCOLCHAR(' ');
  3198. SERIAL_PROTOCOL_F(diff, 5);
  3199. } // xx
  3200. SERIAL_EOL;
  3201. } // yy
  3202. SERIAL_EOL;
  3203. }
  3204. } //do_topography_map
  3205. #endif // AUTO_BED_LEVELING_LINEAR
  3206. #if ABL_PLANAR
  3207. // For LINEAR and 3POINT leveling correct the current position
  3208. if (verbose_level > 0)
  3209. planner.bed_level_matrix.debug("\n\nBed Level Correction Matrix:");
  3210. if (!dryrun) {
  3211. //
  3212. // Correct the current XYZ position based on the tilted plane.
  3213. //
  3214. // 1. Get the distance from the current position to the reference point.
  3215. float x_dist = RAW_CURRENT_POSITION(X_AXIS) - X_TILT_FULCRUM,
  3216. y_dist = RAW_CURRENT_POSITION(Y_AXIS) - Y_TILT_FULCRUM,
  3217. z_real = current_position[Z_AXIS],
  3218. z_zero = 0;
  3219. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3220. if (DEBUGGING(LEVELING)) DEBUG_POS("G29 uncorrected XYZ", current_position);
  3221. #endif
  3222. matrix_3x3 inverse = matrix_3x3::transpose(planner.bed_level_matrix);
  3223. // 2. Apply the inverse matrix to the distance
  3224. // from the reference point to X, Y, and zero.
  3225. apply_rotation_xyz(inverse, x_dist, y_dist, z_zero);
  3226. // 3. Get the matrix-based corrected Z.
  3227. // (Even if not used, get it for comparison.)
  3228. float new_z = z_real + z_zero;
  3229. // 4. Use the last measured distance to the bed, if possible
  3230. if ( NEAR(current_position[X_AXIS], xProbe - (X_PROBE_OFFSET_FROM_EXTRUDER))
  3231. && NEAR(current_position[Y_AXIS], yProbe - (Y_PROBE_OFFSET_FROM_EXTRUDER))
  3232. ) {
  3233. float simple_z = z_real - (measured_z - (-zprobe_zoffset));
  3234. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3235. if (DEBUGGING(LEVELING)) {
  3236. SERIAL_ECHOPAIR("Z from Probe:", simple_z);
  3237. SERIAL_ECHOPAIR(" Matrix:", new_z);
  3238. SERIAL_ECHOLNPAIR(" Discrepancy:", simple_z - new_z);
  3239. }
  3240. #endif
  3241. new_z = simple_z;
  3242. }
  3243. // 5. The rotated XY and corrected Z are now current_position
  3244. current_position[X_AXIS] = LOGICAL_X_POSITION(x_dist) + X_TILT_FULCRUM;
  3245. current_position[Y_AXIS] = LOGICAL_Y_POSITION(y_dist) + Y_TILT_FULCRUM;
  3246. current_position[Z_AXIS] = new_z;
  3247. SYNC_PLAN_POSITION_KINEMATIC();
  3248. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3249. if (DEBUGGING(LEVELING)) DEBUG_POS("G29 corrected XYZ", current_position);
  3250. #endif
  3251. }
  3252. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  3253. if (!dryrun) {
  3254. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3255. if (DEBUGGING(LEVELING)) SERIAL_ECHOPAIR("G29 uncorrected Z:", current_position[Z_AXIS]);
  3256. #endif
  3257. current_position[Z_AXIS] -= bilinear_z_offset(current_position);
  3258. SYNC_PLAN_POSITION_KINEMATIC();
  3259. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3260. if (DEBUGGING(LEVELING)) SERIAL_ECHOPAIR("G29 corrected Z:", current_position[Z_AXIS]);
  3261. #endif
  3262. }
  3263. #endif // ABL_PLANAR
  3264. #ifdef Z_PROBE_END_SCRIPT
  3265. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3266. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPAIR("Z Probe End Script: ", Z_PROBE_END_SCRIPT);
  3267. #endif
  3268. enqueue_and_echo_commands_P(PSTR(Z_PROBE_END_SCRIPT));
  3269. stepper.synchronize();
  3270. #endif
  3271. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3272. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< gcode_G29");
  3273. #endif
  3274. report_current_position();
  3275. KEEPALIVE_STATE(IN_HANDLER);
  3276. // Auto Bed Leveling is complete! Enable if possible.
  3277. planner.abl_enabled = dryrun ? abl_should_reenable : true;
  3278. }
  3279. #endif // HAS_ABL
  3280. #if HAS_BED_PROBE
  3281. /**
  3282. * G30: Do a single Z probe at the current XY
  3283. */
  3284. inline void gcode_G30() {
  3285. #if HAS_ABL
  3286. reset_bed_level();
  3287. #endif
  3288. setup_for_endstop_or_probe_move();
  3289. // TODO: clear the leveling matrix or the planner will be set incorrectly
  3290. float measured_z = probe_pt(current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER,
  3291. current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER,
  3292. true, 1);
  3293. SERIAL_PROTOCOLPGM("Bed X: ");
  3294. SERIAL_PROTOCOL(current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER + 0.0001);
  3295. SERIAL_PROTOCOLPGM(" Y: ");
  3296. SERIAL_PROTOCOL(current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER + 0.0001);
  3297. SERIAL_PROTOCOLPGM(" Z: ");
  3298. SERIAL_PROTOCOL(measured_z + 0.0001);
  3299. SERIAL_EOL;
  3300. clean_up_after_endstop_or_probe_move();
  3301. report_current_position();
  3302. }
  3303. #if ENABLED(Z_PROBE_SLED)
  3304. /**
  3305. * G31: Deploy the Z probe
  3306. */
  3307. inline void gcode_G31() { DEPLOY_PROBE(); }
  3308. /**
  3309. * G32: Stow the Z probe
  3310. */
  3311. inline void gcode_G32() { STOW_PROBE(); }
  3312. #endif // Z_PROBE_SLED
  3313. #endif // HAS_BED_PROBE
  3314. /**
  3315. * G92: Set current position to given X Y Z E
  3316. */
  3317. inline void gcode_G92() {
  3318. bool didXYZ = false,
  3319. didE = code_seen('E');
  3320. if (!didE) stepper.synchronize();
  3321. LOOP_XYZE(i) {
  3322. if (code_seen(axis_codes[i])) {
  3323. #if IS_SCARA
  3324. current_position[i] = code_value_axis_units(i);
  3325. if (i != E_AXIS) didXYZ = true;
  3326. #else
  3327. float p = current_position[i],
  3328. v = code_value_axis_units(i);
  3329. current_position[i] = v;
  3330. if (i != E_AXIS) {
  3331. didXYZ = true;
  3332. position_shift[i] += v - p; // Offset the coordinate space
  3333. update_software_endstops((AxisEnum)i);
  3334. }
  3335. #endif
  3336. }
  3337. }
  3338. if (didXYZ)
  3339. SYNC_PLAN_POSITION_KINEMATIC();
  3340. else if (didE)
  3341. sync_plan_position_e();
  3342. report_current_position();
  3343. }
  3344. #if ENABLED(ULTIPANEL) || ENABLED(EMERGENCY_PARSER)
  3345. /**
  3346. * M0: Unconditional stop - Wait for user button press on LCD
  3347. * M1: Conditional stop - Wait for user button press on LCD
  3348. */
  3349. inline void gcode_M0_M1() {
  3350. char* args = current_command_args;
  3351. millis_t codenum = 0;
  3352. bool hasP = false, hasS = false;
  3353. if (code_seen('P')) {
  3354. codenum = code_value_millis(); // milliseconds to wait
  3355. hasP = codenum > 0;
  3356. }
  3357. if (code_seen('S')) {
  3358. codenum = code_value_millis_from_seconds(); // seconds to wait
  3359. hasS = codenum > 0;
  3360. }
  3361. #if ENABLED(ULTIPANEL)
  3362. if (!hasP && !hasS && *args != '\0')
  3363. lcd_setstatus(args, true);
  3364. else {
  3365. LCD_MESSAGEPGM(MSG_USERWAIT);
  3366. #if ENABLED(LCD_PROGRESS_BAR) && PROGRESS_MSG_EXPIRE > 0
  3367. dontExpireStatus();
  3368. #endif
  3369. }
  3370. lcd_ignore_click();
  3371. #else
  3372. if (!hasP && !hasS && *args != '\0') {
  3373. SERIAL_ECHO_START;
  3374. SERIAL_ECHOLN(args);
  3375. }
  3376. #endif
  3377. stepper.synchronize();
  3378. refresh_cmd_timeout();
  3379. #if ENABLED(ULTIPANEL)
  3380. if (codenum > 0) {
  3381. codenum += previous_cmd_ms; // wait until this time for a click
  3382. KEEPALIVE_STATE(PAUSED_FOR_USER);
  3383. while (PENDING(millis(), codenum) && !lcd_clicked()) idle();
  3384. lcd_ignore_click(false);
  3385. }
  3386. else if (lcd_detected()) {
  3387. KEEPALIVE_STATE(PAUSED_FOR_USER);
  3388. while (!lcd_clicked()) idle();
  3389. }
  3390. else return;
  3391. if (IS_SD_PRINTING)
  3392. LCD_MESSAGEPGM(MSG_RESUMING);
  3393. else
  3394. LCD_MESSAGEPGM(WELCOME_MSG);
  3395. #else
  3396. KEEPALIVE_STATE(PAUSED_FOR_USER);
  3397. wait_for_user = true;
  3398. if (codenum > 0) {
  3399. codenum += previous_cmd_ms; // wait until this time for an M108
  3400. while (PENDING(millis(), codenum) && wait_for_user) idle();
  3401. }
  3402. else while (wait_for_user) idle();
  3403. wait_for_user = false;
  3404. #endif
  3405. KEEPALIVE_STATE(IN_HANDLER);
  3406. }
  3407. #endif // ULTIPANEL || EMERGENCY_PARSER
  3408. /**
  3409. * M17: Enable power on all stepper motors
  3410. */
  3411. inline void gcode_M17() {
  3412. LCD_MESSAGEPGM(MSG_NO_MOVE);
  3413. enable_all_steppers();
  3414. }
  3415. #if ENABLED(SDSUPPORT)
  3416. /**
  3417. * M20: List SD card to serial output
  3418. */
  3419. inline void gcode_M20() {
  3420. SERIAL_PROTOCOLLNPGM(MSG_BEGIN_FILE_LIST);
  3421. card.ls();
  3422. SERIAL_PROTOCOLLNPGM(MSG_END_FILE_LIST);
  3423. }
  3424. /**
  3425. * M21: Init SD Card
  3426. */
  3427. inline void gcode_M21() { card.initsd(); }
  3428. /**
  3429. * M22: Release SD Card
  3430. */
  3431. inline void gcode_M22() { card.release(); }
  3432. /**
  3433. * M23: Open a file
  3434. */
  3435. inline void gcode_M23() { card.openFile(current_command_args, true); }
  3436. /**
  3437. * M24: Start SD Print
  3438. */
  3439. inline void gcode_M24() {
  3440. card.startFileprint();
  3441. print_job_timer.start();
  3442. }
  3443. /**
  3444. * M25: Pause SD Print
  3445. */
  3446. inline void gcode_M25() { card.pauseSDPrint(); }
  3447. /**
  3448. * M26: Set SD Card file index
  3449. */
  3450. inline void gcode_M26() {
  3451. if (card.cardOK && code_seen('S'))
  3452. card.setIndex(code_value_long());
  3453. }
  3454. /**
  3455. * M27: Get SD Card status
  3456. */
  3457. inline void gcode_M27() { card.getStatus(); }
  3458. /**
  3459. * M28: Start SD Write
  3460. */
  3461. inline void gcode_M28() { card.openFile(current_command_args, false); }
  3462. /**
  3463. * M29: Stop SD Write
  3464. * Processed in write to file routine above
  3465. */
  3466. inline void gcode_M29() {
  3467. // card.saving = false;
  3468. }
  3469. /**
  3470. * M30 <filename>: Delete SD Card file
  3471. */
  3472. inline void gcode_M30() {
  3473. if (card.cardOK) {
  3474. card.closefile();
  3475. card.removeFile(current_command_args);
  3476. }
  3477. }
  3478. #endif // SDSUPPORT
  3479. /**
  3480. * M31: Get the time since the start of SD Print (or last M109)
  3481. */
  3482. inline void gcode_M31() {
  3483. char buffer[21];
  3484. duration_t elapsed = print_job_timer.duration();
  3485. elapsed.toString(buffer);
  3486. lcd_setstatus(buffer);
  3487. SERIAL_ECHO_START;
  3488. SERIAL_ECHOLNPAIR("Print time: ", buffer);
  3489. thermalManager.autotempShutdown();
  3490. }
  3491. #if ENABLED(SDSUPPORT)
  3492. /**
  3493. * M32: Select file and start SD Print
  3494. */
  3495. inline void gcode_M32() {
  3496. if (card.sdprinting)
  3497. stepper.synchronize();
  3498. char* namestartpos = strchr(current_command_args, '!'); // Find ! to indicate filename string start.
  3499. if (!namestartpos)
  3500. namestartpos = current_command_args; // Default name position, 4 letters after the M
  3501. else
  3502. namestartpos++; //to skip the '!'
  3503. bool call_procedure = code_seen('P') && (seen_pointer < namestartpos);
  3504. if (card.cardOK) {
  3505. card.openFile(namestartpos, true, call_procedure);
  3506. if (code_seen('S') && seen_pointer < namestartpos) // "S" (must occur _before_ the filename!)
  3507. card.setIndex(code_value_long());
  3508. card.startFileprint();
  3509. // Procedure calls count as normal print time.
  3510. if (!call_procedure) print_job_timer.start();
  3511. }
  3512. }
  3513. #if ENABLED(LONG_FILENAME_HOST_SUPPORT)
  3514. /**
  3515. * M33: Get the long full path of a file or folder
  3516. *
  3517. * Parameters:
  3518. * <dospath> Case-insensitive DOS-style path to a file or folder
  3519. *
  3520. * Example:
  3521. * M33 miscel~1/armchair/armcha~1.gco
  3522. *
  3523. * Output:
  3524. * /Miscellaneous/Armchair/Armchair.gcode
  3525. */
  3526. inline void gcode_M33() {
  3527. card.printLongPath(current_command_args);
  3528. }
  3529. #endif
  3530. /**
  3531. * M928: Start SD Write
  3532. */
  3533. inline void gcode_M928() {
  3534. card.openLogFile(current_command_args);
  3535. }
  3536. #endif // SDSUPPORT
  3537. /**
  3538. * M42: Change pin status via GCode
  3539. *
  3540. * P<pin> Pin number (LED if omitted)
  3541. * S<byte> Pin status from 0 - 255
  3542. */
  3543. inline void gcode_M42() {
  3544. if (!code_seen('S')) return;
  3545. int pin_status = code_value_int();
  3546. if (pin_status < 0 || pin_status > 255) return;
  3547. int pin_number = code_seen('P') ? code_value_int() : LED_PIN;
  3548. if (pin_number < 0) return;
  3549. for (uint8_t i = 0; i < COUNT(sensitive_pins); i++)
  3550. if (pin_number == sensitive_pins[i]) {
  3551. SERIAL_ERROR_START;
  3552. SERIAL_ERRORLNPGM(MSG_ERR_PROTECTED_PIN);
  3553. return;
  3554. }
  3555. pinMode(pin_number, OUTPUT);
  3556. digitalWrite(pin_number, pin_status);
  3557. analogWrite(pin_number, pin_status);
  3558. #if FAN_COUNT > 0
  3559. switch (pin_number) {
  3560. #if HAS_FAN0
  3561. case FAN_PIN: fanSpeeds[0] = pin_status; break;
  3562. #endif
  3563. #if HAS_FAN1
  3564. case FAN1_PIN: fanSpeeds[1] = pin_status; break;
  3565. #endif
  3566. #if HAS_FAN2
  3567. case FAN2_PIN: fanSpeeds[2] = pin_status; break;
  3568. #endif
  3569. }
  3570. #endif
  3571. }
  3572. #if ENABLED(Z_MIN_PROBE_REPEATABILITY_TEST)
  3573. /**
  3574. * M48: Z probe repeatability measurement function.
  3575. *
  3576. * Usage:
  3577. * M48 <P#> <X#> <Y#> <V#> <E> <L#>
  3578. * P = Number of sampled points (4-50, default 10)
  3579. * X = Sample X position
  3580. * Y = Sample Y position
  3581. * V = Verbose level (0-4, default=1)
  3582. * E = Engage Z probe for each reading
  3583. * L = Number of legs of movement before probe
  3584. * S = Schizoid (Or Star if you prefer)
  3585. *
  3586. * This function assumes the bed has been homed. Specifically, that a G28 command
  3587. * as been issued prior to invoking the M48 Z probe repeatability measurement function.
  3588. * Any information generated by a prior G29 Bed leveling command will be lost and need to be
  3589. * regenerated.
  3590. */
  3591. inline void gcode_M48() {
  3592. if (axis_unhomed_error(true, true, true)) return;
  3593. int8_t verbose_level = code_seen('V') ? code_value_byte() : 1;
  3594. if (verbose_level < 0 || verbose_level > 4) {
  3595. SERIAL_PROTOCOLLNPGM("?Verbose Level not plausible (0-4).");
  3596. return;
  3597. }
  3598. if (verbose_level > 0)
  3599. SERIAL_PROTOCOLLNPGM("M48 Z-Probe Repeatability test");
  3600. int8_t n_samples = code_seen('P') ? code_value_byte() : 10;
  3601. if (n_samples < 4 || n_samples > 50) {
  3602. SERIAL_PROTOCOLLNPGM("?Sample size not plausible (4-50).");
  3603. return;
  3604. }
  3605. float X_current = current_position[X_AXIS],
  3606. Y_current = current_position[Y_AXIS];
  3607. bool stow_probe_after_each = code_seen('E');
  3608. float X_probe_location = code_seen('X') ? code_value_axis_units(X_AXIS) : X_current + X_PROBE_OFFSET_FROM_EXTRUDER;
  3609. #if DISABLED(DELTA)
  3610. if (X_probe_location < LOGICAL_X_POSITION(MIN_PROBE_X) || X_probe_location > LOGICAL_X_POSITION(MAX_PROBE_X)) {
  3611. out_of_range_error(PSTR("X"));
  3612. return;
  3613. }
  3614. #endif
  3615. float Y_probe_location = code_seen('Y') ? code_value_axis_units(Y_AXIS) : Y_current + Y_PROBE_OFFSET_FROM_EXTRUDER;
  3616. #if DISABLED(DELTA)
  3617. if (Y_probe_location < LOGICAL_Y_POSITION(MIN_PROBE_Y) || Y_probe_location > LOGICAL_Y_POSITION(MAX_PROBE_Y)) {
  3618. out_of_range_error(PSTR("Y"));
  3619. return;
  3620. }
  3621. #else
  3622. float pos[XYZ] = { X_probe_location, Y_probe_location, 0 };
  3623. if (!position_is_reachable(pos, true)) {
  3624. SERIAL_PROTOCOLLNPGM("? (X,Y) location outside of probeable radius.");
  3625. return;
  3626. }
  3627. #endif
  3628. bool seen_L = code_seen('L');
  3629. uint8_t n_legs = seen_L ? code_value_byte() : 0;
  3630. if (n_legs > 15) {
  3631. SERIAL_PROTOCOLLNPGM("?Number of legs in movement not plausible (0-15).");
  3632. return;
  3633. }
  3634. if (n_legs == 1) n_legs = 2;
  3635. bool schizoid_flag = code_seen('S');
  3636. if (schizoid_flag && !seen_L) n_legs = 7;
  3637. /**
  3638. * Now get everything to the specified probe point So we can safely do a
  3639. * probe to get us close to the bed. If the Z-Axis is far from the bed,
  3640. * we don't want to use that as a starting point for each probe.
  3641. */
  3642. if (verbose_level > 2)
  3643. SERIAL_PROTOCOLLNPGM("Positioning the probe...");
  3644. // Disable bed level correction in M48 because we want the raw data when we probe
  3645. #if HAS_ABL
  3646. reset_bed_level();
  3647. #endif
  3648. setup_for_endstop_or_probe_move();
  3649. // Move to the first point, deploy, and probe
  3650. probe_pt(X_probe_location, Y_probe_location, stow_probe_after_each, verbose_level);
  3651. randomSeed(millis());
  3652. double mean = 0, sigma = 0, sample_set[n_samples];
  3653. for (uint8_t n = 0; n < n_samples; n++) {
  3654. if (n_legs) {
  3655. int dir = (random(0, 10) > 5.0) ? -1 : 1; // clockwise or counter clockwise
  3656. float angle = random(0.0, 360.0),
  3657. radius = random(
  3658. #if ENABLED(DELTA)
  3659. DELTA_PROBEABLE_RADIUS / 8, DELTA_PROBEABLE_RADIUS / 3
  3660. #else
  3661. 5, X_MAX_LENGTH / 8
  3662. #endif
  3663. );
  3664. if (verbose_level > 3) {
  3665. SERIAL_ECHOPAIR("Starting radius: ", radius);
  3666. SERIAL_ECHOPAIR(" angle: ", angle);
  3667. SERIAL_ECHOPGM(" Direction: ");
  3668. if (dir > 0) SERIAL_ECHOPGM("Counter-");
  3669. SERIAL_ECHOLNPGM("Clockwise");
  3670. }
  3671. for (uint8_t l = 0; l < n_legs - 1; l++) {
  3672. double delta_angle;
  3673. if (schizoid_flag)
  3674. // The points of a 5 point star are 72 degrees apart. We need to
  3675. // skip a point and go to the next one on the star.
  3676. delta_angle = dir * 2.0 * 72.0;
  3677. else
  3678. // If we do this line, we are just trying to move further
  3679. // around the circle.
  3680. delta_angle = dir * (float) random(25, 45);
  3681. angle += delta_angle;
  3682. while (angle > 360.0) // We probably do not need to keep the angle between 0 and 2*PI, but the
  3683. angle -= 360.0; // Arduino documentation says the trig functions should not be given values
  3684. while (angle < 0.0) // outside of this range. It looks like they behave correctly with
  3685. angle += 360.0; // numbers outside of the range, but just to be safe we clamp them.
  3686. X_current = X_probe_location - (X_PROBE_OFFSET_FROM_EXTRUDER) + cos(RADIANS(angle)) * radius;
  3687. Y_current = Y_probe_location - (Y_PROBE_OFFSET_FROM_EXTRUDER) + sin(RADIANS(angle)) * radius;
  3688. #if DISABLED(DELTA)
  3689. X_current = constrain(X_current, X_MIN_POS, X_MAX_POS);
  3690. Y_current = constrain(Y_current, Y_MIN_POS, Y_MAX_POS);
  3691. #else
  3692. // If we have gone out too far, we can do a simple fix and scale the numbers
  3693. // back in closer to the origin.
  3694. while (HYPOT(X_current, Y_current) > DELTA_PROBEABLE_RADIUS) {
  3695. X_current /= 1.25;
  3696. Y_current /= 1.25;
  3697. if (verbose_level > 3) {
  3698. SERIAL_ECHOPAIR("Pulling point towards center:", X_current);
  3699. SERIAL_ECHOLNPAIR(", ", Y_current);
  3700. }
  3701. }
  3702. #endif
  3703. if (verbose_level > 3) {
  3704. SERIAL_PROTOCOLPGM("Going to:");
  3705. SERIAL_ECHOPAIR(" X", X_current);
  3706. SERIAL_ECHOPAIR(" Y", Y_current);
  3707. SERIAL_ECHOLNPAIR(" Z", current_position[Z_AXIS]);
  3708. }
  3709. do_blocking_move_to_xy(X_current, Y_current);
  3710. } // n_legs loop
  3711. } // n_legs
  3712. // Probe a single point
  3713. sample_set[n] = probe_pt(X_probe_location, Y_probe_location, stow_probe_after_each, verbose_level);
  3714. /**
  3715. * Get the current mean for the data points we have so far
  3716. */
  3717. double sum = 0.0;
  3718. for (uint8_t j = 0; j <= n; j++) sum += sample_set[j];
  3719. mean = sum / (n + 1);
  3720. /**
  3721. * Now, use that mean to calculate the standard deviation for the
  3722. * data points we have so far
  3723. */
  3724. sum = 0.0;
  3725. for (uint8_t j = 0; j <= n; j++)
  3726. sum += sq(sample_set[j] - mean);
  3727. sigma = sqrt(sum / (n + 1));
  3728. if (verbose_level > 0) {
  3729. if (verbose_level > 1) {
  3730. SERIAL_PROTOCOL(n + 1);
  3731. SERIAL_PROTOCOLPGM(" of ");
  3732. SERIAL_PROTOCOL((int)n_samples);
  3733. SERIAL_PROTOCOLPGM(" z: ");
  3734. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
  3735. if (verbose_level > 2) {
  3736. SERIAL_PROTOCOLPGM(" mean: ");
  3737. SERIAL_PROTOCOL_F(mean, 6);
  3738. SERIAL_PROTOCOLPGM(" sigma: ");
  3739. SERIAL_PROTOCOL_F(sigma, 6);
  3740. }
  3741. }
  3742. SERIAL_EOL;
  3743. }
  3744. } // End of probe loop
  3745. if (STOW_PROBE()) return;
  3746. if (verbose_level > 0) {
  3747. SERIAL_PROTOCOLPGM("Mean: ");
  3748. SERIAL_PROTOCOL_F(mean, 6);
  3749. SERIAL_EOL;
  3750. }
  3751. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  3752. SERIAL_PROTOCOL_F(sigma, 6);
  3753. SERIAL_EOL; SERIAL_EOL;
  3754. clean_up_after_endstop_or_probe_move();
  3755. report_current_position();
  3756. }
  3757. #endif // Z_MIN_PROBE_REPEATABILITY_TEST
  3758. /**
  3759. * M75: Start print timer
  3760. */
  3761. inline void gcode_M75() { print_job_timer.start(); }
  3762. /**
  3763. * M76: Pause print timer
  3764. */
  3765. inline void gcode_M76() { print_job_timer.pause(); }
  3766. /**
  3767. * M77: Stop print timer
  3768. */
  3769. inline void gcode_M77() { print_job_timer.stop(); }
  3770. #if ENABLED(PRINTCOUNTER)
  3771. /**
  3772. * M78: Show print statistics
  3773. */
  3774. inline void gcode_M78() {
  3775. // "M78 S78" will reset the statistics
  3776. if (code_seen('S') && code_value_int() == 78)
  3777. print_job_timer.initStats();
  3778. else
  3779. print_job_timer.showStats();
  3780. }
  3781. #endif
  3782. /**
  3783. * M104: Set hot end temperature
  3784. */
  3785. inline void gcode_M104() {
  3786. if (get_target_extruder_from_command(104)) return;
  3787. if (DEBUGGING(DRYRUN)) return;
  3788. #if ENABLED(SINGLENOZZLE)
  3789. if (target_extruder != active_extruder) return;
  3790. #endif
  3791. if (code_seen('S')) {
  3792. thermalManager.setTargetHotend(code_value_temp_abs(), target_extruder);
  3793. #if ENABLED(DUAL_X_CARRIAGE)
  3794. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && target_extruder == 0)
  3795. thermalManager.setTargetHotend(code_value_temp_abs() == 0.0 ? 0.0 : code_value_temp_abs() + duplicate_extruder_temp_offset, 1);
  3796. #endif
  3797. #if ENABLED(PRINTJOB_TIMER_AUTOSTART)
  3798. /**
  3799. * Stop the timer at the end of print, starting is managed by
  3800. * 'heat and wait' M109.
  3801. * We use half EXTRUDE_MINTEMP here to allow nozzles to be put into hot
  3802. * stand by mode, for instance in a dual extruder setup, without affecting
  3803. * the running print timer.
  3804. */
  3805. if (code_value_temp_abs() <= (EXTRUDE_MINTEMP)/2) {
  3806. print_job_timer.stop();
  3807. LCD_MESSAGEPGM(WELCOME_MSG);
  3808. }
  3809. #endif
  3810. if (code_value_temp_abs() > thermalManager.degHotend(target_extruder)) LCD_MESSAGEPGM(MSG_HEATING);
  3811. }
  3812. }
  3813. #if HAS_TEMP_HOTEND || HAS_TEMP_BED
  3814. void print_heaterstates() {
  3815. #if HAS_TEMP_HOTEND
  3816. SERIAL_PROTOCOLPGM(" T:");
  3817. SERIAL_PROTOCOL_F(thermalManager.degHotend(target_extruder), 1);
  3818. SERIAL_PROTOCOLPGM(" /");
  3819. SERIAL_PROTOCOL_F(thermalManager.degTargetHotend(target_extruder), 1);
  3820. #if ENABLED(SHOW_TEMP_ADC_VALUES)
  3821. SERIAL_PROTOCOLPAIR(" (", thermalManager.current_temperature_raw[target_extruder] / OVERSAMPLENR);
  3822. SERIAL_CHAR(')');
  3823. #endif
  3824. #endif
  3825. #if HAS_TEMP_BED
  3826. SERIAL_PROTOCOLPGM(" B:");
  3827. SERIAL_PROTOCOL_F(thermalManager.degBed(), 1);
  3828. SERIAL_PROTOCOLPGM(" /");
  3829. SERIAL_PROTOCOL_F(thermalManager.degTargetBed(), 1);
  3830. #if ENABLED(SHOW_TEMP_ADC_VALUES)
  3831. SERIAL_PROTOCOLPAIR(" (", thermalManager.current_temperature_bed_raw / OVERSAMPLENR);
  3832. SERIAL_CHAR(')');
  3833. #endif
  3834. #endif
  3835. #if HOTENDS > 1
  3836. HOTEND_LOOP() {
  3837. SERIAL_PROTOCOLPAIR(" T", e);
  3838. SERIAL_PROTOCOLCHAR(':');
  3839. SERIAL_PROTOCOL_F(thermalManager.degHotend(e), 1);
  3840. SERIAL_PROTOCOLPGM(" /");
  3841. SERIAL_PROTOCOL_F(thermalManager.degTargetHotend(e), 1);
  3842. #if ENABLED(SHOW_TEMP_ADC_VALUES)
  3843. SERIAL_PROTOCOLPAIR(" (", thermalManager.current_temperature_raw[e] / OVERSAMPLENR);
  3844. SERIAL_CHAR(')');
  3845. #endif
  3846. }
  3847. #endif
  3848. SERIAL_PROTOCOLPGM(" @:");
  3849. SERIAL_PROTOCOL(thermalManager.getHeaterPower(target_extruder));
  3850. #if HAS_TEMP_BED
  3851. SERIAL_PROTOCOLPGM(" B@:");
  3852. SERIAL_PROTOCOL(thermalManager.getHeaterPower(-1));
  3853. #endif
  3854. #if HOTENDS > 1
  3855. HOTEND_LOOP() {
  3856. SERIAL_PROTOCOLPAIR(" @", e);
  3857. SERIAL_PROTOCOLCHAR(':');
  3858. SERIAL_PROTOCOL(thermalManager.getHeaterPower(e));
  3859. }
  3860. #endif
  3861. }
  3862. #endif
  3863. /**
  3864. * M105: Read hot end and bed temperature
  3865. */
  3866. inline void gcode_M105() {
  3867. if (get_target_extruder_from_command(105)) return;
  3868. #if HAS_TEMP_HOTEND || HAS_TEMP_BED
  3869. SERIAL_PROTOCOLPGM(MSG_OK);
  3870. print_heaterstates();
  3871. #else // !HAS_TEMP_HOTEND && !HAS_TEMP_BED
  3872. SERIAL_ERROR_START;
  3873. SERIAL_ERRORLNPGM(MSG_ERR_NO_THERMISTORS);
  3874. #endif
  3875. SERIAL_EOL;
  3876. }
  3877. #if FAN_COUNT > 0
  3878. /**
  3879. * M106: Set Fan Speed
  3880. *
  3881. * S<int> Speed between 0-255
  3882. * P<index> Fan index, if more than one fan
  3883. */
  3884. inline void gcode_M106() {
  3885. uint16_t s = code_seen('S') ? code_value_ushort() : 255,
  3886. p = code_seen('P') ? code_value_ushort() : 0;
  3887. NOMORE(s, 255);
  3888. if (p < FAN_COUNT) fanSpeeds[p] = s;
  3889. }
  3890. /**
  3891. * M107: Fan Off
  3892. */
  3893. inline void gcode_M107() {
  3894. uint16_t p = code_seen('P') ? code_value_ushort() : 0;
  3895. if (p < FAN_COUNT) fanSpeeds[p] = 0;
  3896. }
  3897. #endif // FAN_COUNT > 0
  3898. #if DISABLED(EMERGENCY_PARSER)
  3899. /**
  3900. * M108: Stop the waiting for heaters in M109, M190, M303. Does not affect the target temperature.
  3901. */
  3902. inline void gcode_M108() { wait_for_heatup = false; }
  3903. /**
  3904. * M112: Emergency Stop
  3905. */
  3906. inline void gcode_M112() { kill(PSTR(MSG_KILLED)); }
  3907. /**
  3908. * M410: Quickstop - Abort all planned moves
  3909. *
  3910. * This will stop the carriages mid-move, so most likely they
  3911. * will be out of sync with the stepper position after this.
  3912. */
  3913. inline void gcode_M410() { quickstop_stepper(); }
  3914. #endif
  3915. #ifndef MIN_COOLING_SLOPE_DEG
  3916. #define MIN_COOLING_SLOPE_DEG 1.50
  3917. #endif
  3918. #ifndef MIN_COOLING_SLOPE_TIME
  3919. #define MIN_COOLING_SLOPE_TIME 60
  3920. #endif
  3921. /**
  3922. * M109: Sxxx Wait for extruder(s) to reach temperature. Waits only when heating.
  3923. * Rxxx Wait for extruder(s) to reach temperature. Waits when heating and cooling.
  3924. */
  3925. inline void gcode_M109() {
  3926. if (get_target_extruder_from_command(109)) return;
  3927. if (DEBUGGING(DRYRUN)) return;
  3928. #if ENABLED(SINGLENOZZLE)
  3929. if (target_extruder != active_extruder) return;
  3930. #endif
  3931. bool no_wait_for_cooling = code_seen('S');
  3932. if (no_wait_for_cooling || code_seen('R')) {
  3933. thermalManager.setTargetHotend(code_value_temp_abs(), target_extruder);
  3934. #if ENABLED(DUAL_X_CARRIAGE)
  3935. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && target_extruder == 0)
  3936. thermalManager.setTargetHotend(code_value_temp_abs() == 0.0 ? 0.0 : code_value_temp_abs() + duplicate_extruder_temp_offset, 1);
  3937. #endif
  3938. #if ENABLED(PRINTJOB_TIMER_AUTOSTART)
  3939. /**
  3940. * We use half EXTRUDE_MINTEMP here to allow nozzles to be put into hot
  3941. * stand by mode, for instance in a dual extruder setup, without affecting
  3942. * the running print timer.
  3943. */
  3944. if (code_value_temp_abs() <= (EXTRUDE_MINTEMP)/2) {
  3945. print_job_timer.stop();
  3946. LCD_MESSAGEPGM(WELCOME_MSG);
  3947. }
  3948. /**
  3949. * We do not check if the timer is already running because this check will
  3950. * be done for us inside the Stopwatch::start() method thus a running timer
  3951. * will not restart.
  3952. */
  3953. else print_job_timer.start();
  3954. #endif
  3955. if (thermalManager.isHeatingHotend(target_extruder)) LCD_MESSAGEPGM(MSG_HEATING);
  3956. }
  3957. #if ENABLED(AUTOTEMP)
  3958. planner.autotemp_M109();
  3959. #endif
  3960. #if TEMP_RESIDENCY_TIME > 0
  3961. millis_t residency_start_ms = 0;
  3962. // Loop until the temperature has stabilized
  3963. #define TEMP_CONDITIONS (!residency_start_ms || PENDING(now, residency_start_ms + (TEMP_RESIDENCY_TIME) * 1000UL))
  3964. #else
  3965. // Loop until the temperature is very close target
  3966. #define TEMP_CONDITIONS (wants_to_cool ? thermalManager.isCoolingHotend(target_extruder) : thermalManager.isHeatingHotend(target_extruder))
  3967. #endif //TEMP_RESIDENCY_TIME > 0
  3968. float theTarget = -1.0, old_temp = 9999.0;
  3969. bool wants_to_cool = false;
  3970. wait_for_heatup = true;
  3971. millis_t now, next_temp_ms = 0, next_cool_check_ms = 0;
  3972. KEEPALIVE_STATE(NOT_BUSY);
  3973. do {
  3974. // Target temperature might be changed during the loop
  3975. if (theTarget != thermalManager.degTargetHotend(target_extruder)) {
  3976. wants_to_cool = thermalManager.isCoolingHotend(target_extruder);
  3977. theTarget = thermalManager.degTargetHotend(target_extruder);
  3978. // Exit if S<lower>, continue if S<higher>, R<lower>, or R<higher>
  3979. if (no_wait_for_cooling && wants_to_cool) break;
  3980. }
  3981. now = millis();
  3982. if (ELAPSED(now, next_temp_ms)) { //Print temp & remaining time every 1s while waiting
  3983. next_temp_ms = now + 1000UL;
  3984. print_heaterstates();
  3985. #if TEMP_RESIDENCY_TIME > 0
  3986. SERIAL_PROTOCOLPGM(" W:");
  3987. if (residency_start_ms) {
  3988. long rem = (((TEMP_RESIDENCY_TIME) * 1000UL) - (now - residency_start_ms)) / 1000UL;
  3989. SERIAL_PROTOCOLLN(rem);
  3990. }
  3991. else {
  3992. SERIAL_PROTOCOLLNPGM("?");
  3993. }
  3994. #else
  3995. SERIAL_EOL;
  3996. #endif
  3997. }
  3998. idle();
  3999. refresh_cmd_timeout(); // to prevent stepper_inactive_time from running out
  4000. float temp = thermalManager.degHotend(target_extruder);
  4001. #if TEMP_RESIDENCY_TIME > 0
  4002. float temp_diff = fabs(theTarget - temp);
  4003. if (!residency_start_ms) {
  4004. // Start the TEMP_RESIDENCY_TIME timer when we reach target temp for the first time.
  4005. if (temp_diff < TEMP_WINDOW) residency_start_ms = now;
  4006. }
  4007. else if (temp_diff > TEMP_HYSTERESIS) {
  4008. // Restart the timer whenever the temperature falls outside the hysteresis.
  4009. residency_start_ms = now;
  4010. }
  4011. #endif //TEMP_RESIDENCY_TIME > 0
  4012. // Prevent a wait-forever situation if R is misused i.e. M109 R0
  4013. if (wants_to_cool) {
  4014. // break after MIN_COOLING_SLOPE_TIME seconds
  4015. // if the temperature did not drop at least MIN_COOLING_SLOPE_DEG
  4016. if (!next_cool_check_ms || ELAPSED(now, next_cool_check_ms)) {
  4017. if (old_temp - temp < MIN_COOLING_SLOPE_DEG) break;
  4018. next_cool_check_ms = now + 1000UL * MIN_COOLING_SLOPE_TIME;
  4019. old_temp = temp;
  4020. }
  4021. }
  4022. } while (wait_for_heatup && TEMP_CONDITIONS);
  4023. if (wait_for_heatup) LCD_MESSAGEPGM(MSG_HEATING_COMPLETE);
  4024. KEEPALIVE_STATE(IN_HANDLER);
  4025. }
  4026. #if HAS_TEMP_BED
  4027. #ifndef MIN_COOLING_SLOPE_DEG_BED
  4028. #define MIN_COOLING_SLOPE_DEG_BED 1.50
  4029. #endif
  4030. #ifndef MIN_COOLING_SLOPE_TIME_BED
  4031. #define MIN_COOLING_SLOPE_TIME_BED 60
  4032. #endif
  4033. /**
  4034. * M190: Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  4035. * Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  4036. */
  4037. inline void gcode_M190() {
  4038. if (DEBUGGING(DRYRUN)) return;
  4039. LCD_MESSAGEPGM(MSG_BED_HEATING);
  4040. bool no_wait_for_cooling = code_seen('S');
  4041. if (no_wait_for_cooling || code_seen('R')) {
  4042. thermalManager.setTargetBed(code_value_temp_abs());
  4043. #if ENABLED(PRINTJOB_TIMER_AUTOSTART)
  4044. if (code_value_temp_abs() > BED_MINTEMP) {
  4045. /**
  4046. * We start the timer when 'heating and waiting' command arrives, LCD
  4047. * functions never wait. Cooling down managed by extruders.
  4048. *
  4049. * We do not check if the timer is already running because this check will
  4050. * be done for us inside the Stopwatch::start() method thus a running timer
  4051. * will not restart.
  4052. */
  4053. print_job_timer.start();
  4054. }
  4055. #endif
  4056. }
  4057. #if TEMP_BED_RESIDENCY_TIME > 0
  4058. millis_t residency_start_ms = 0;
  4059. // Loop until the temperature has stabilized
  4060. #define TEMP_BED_CONDITIONS (!residency_start_ms || PENDING(now, residency_start_ms + (TEMP_BED_RESIDENCY_TIME) * 1000UL))
  4061. #else
  4062. // Loop until the temperature is very close target
  4063. #define TEMP_BED_CONDITIONS (wants_to_cool ? thermalManager.isCoolingBed() : thermalManager.isHeatingBed())
  4064. #endif //TEMP_BED_RESIDENCY_TIME > 0
  4065. float theTarget = -1.0, old_temp = 9999.0;
  4066. bool wants_to_cool = false;
  4067. wait_for_heatup = true;
  4068. millis_t now, next_temp_ms = 0, next_cool_check_ms = 0;
  4069. KEEPALIVE_STATE(NOT_BUSY);
  4070. target_extruder = active_extruder; // for print_heaterstates
  4071. do {
  4072. // Target temperature might be changed during the loop
  4073. if (theTarget != thermalManager.degTargetBed()) {
  4074. wants_to_cool = thermalManager.isCoolingBed();
  4075. theTarget = thermalManager.degTargetBed();
  4076. // Exit if S<lower>, continue if S<higher>, R<lower>, or R<higher>
  4077. if (no_wait_for_cooling && wants_to_cool) break;
  4078. }
  4079. now = millis();
  4080. if (ELAPSED(now, next_temp_ms)) { //Print Temp Reading every 1 second while heating up.
  4081. next_temp_ms = now + 1000UL;
  4082. print_heaterstates();
  4083. #if TEMP_BED_RESIDENCY_TIME > 0
  4084. SERIAL_PROTOCOLPGM(" W:");
  4085. if (residency_start_ms) {
  4086. long rem = (((TEMP_BED_RESIDENCY_TIME) * 1000UL) - (now - residency_start_ms)) / 1000UL;
  4087. SERIAL_PROTOCOLLN(rem);
  4088. }
  4089. else {
  4090. SERIAL_PROTOCOLLNPGM("?");
  4091. }
  4092. #else
  4093. SERIAL_EOL;
  4094. #endif
  4095. }
  4096. idle();
  4097. refresh_cmd_timeout(); // to prevent stepper_inactive_time from running out
  4098. float temp = thermalManager.degBed();
  4099. #if TEMP_BED_RESIDENCY_TIME > 0
  4100. float temp_diff = fabs(theTarget - temp);
  4101. if (!residency_start_ms) {
  4102. // Start the TEMP_BED_RESIDENCY_TIME timer when we reach target temp for the first time.
  4103. if (temp_diff < TEMP_BED_WINDOW) residency_start_ms = now;
  4104. }
  4105. else if (temp_diff > TEMP_BED_HYSTERESIS) {
  4106. // Restart the timer whenever the temperature falls outside the hysteresis.
  4107. residency_start_ms = now;
  4108. }
  4109. #endif //TEMP_BED_RESIDENCY_TIME > 0
  4110. // Prevent a wait-forever situation if R is misused i.e. M190 R0
  4111. if (wants_to_cool) {
  4112. // break after MIN_COOLING_SLOPE_TIME_BED seconds
  4113. // if the temperature did not drop at least MIN_COOLING_SLOPE_DEG_BED
  4114. if (!next_cool_check_ms || ELAPSED(now, next_cool_check_ms)) {
  4115. if (old_temp - temp < MIN_COOLING_SLOPE_DEG_BED) break;
  4116. next_cool_check_ms = now + 1000UL * MIN_COOLING_SLOPE_TIME_BED;
  4117. old_temp = temp;
  4118. }
  4119. }
  4120. } while (wait_for_heatup && TEMP_BED_CONDITIONS);
  4121. if (wait_for_heatup) LCD_MESSAGEPGM(MSG_BED_DONE);
  4122. KEEPALIVE_STATE(IN_HANDLER);
  4123. }
  4124. #endif // HAS_TEMP_BED
  4125. /**
  4126. * M110: Set Current Line Number
  4127. */
  4128. inline void gcode_M110() {
  4129. if (code_seen('N')) gcode_N = code_value_long();
  4130. }
  4131. /**
  4132. * M111: Set the debug level
  4133. */
  4134. inline void gcode_M111() {
  4135. marlin_debug_flags = code_seen('S') ? code_value_byte() : (uint8_t) DEBUG_NONE;
  4136. const static char str_debug_1[] PROGMEM = MSG_DEBUG_ECHO;
  4137. const static char str_debug_2[] PROGMEM = MSG_DEBUG_INFO;
  4138. const static char str_debug_4[] PROGMEM = MSG_DEBUG_ERRORS;
  4139. const static char str_debug_8[] PROGMEM = MSG_DEBUG_DRYRUN;
  4140. const static char str_debug_16[] PROGMEM = MSG_DEBUG_COMMUNICATION;
  4141. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4142. const static char str_debug_32[] PROGMEM = MSG_DEBUG_LEVELING;
  4143. #endif
  4144. const static char* const debug_strings[] PROGMEM = {
  4145. str_debug_1, str_debug_2, str_debug_4, str_debug_8, str_debug_16,
  4146. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4147. str_debug_32
  4148. #endif
  4149. };
  4150. SERIAL_ECHO_START;
  4151. SERIAL_ECHOPGM(MSG_DEBUG_PREFIX);
  4152. if (marlin_debug_flags) {
  4153. uint8_t comma = 0;
  4154. for (uint8_t i = 0; i < COUNT(debug_strings); i++) {
  4155. if (TEST(marlin_debug_flags, i)) {
  4156. if (comma++) SERIAL_CHAR(',');
  4157. serialprintPGM((char*)pgm_read_word(&(debug_strings[i])));
  4158. }
  4159. }
  4160. }
  4161. else {
  4162. SERIAL_ECHOPGM(MSG_DEBUG_OFF);
  4163. }
  4164. SERIAL_EOL;
  4165. }
  4166. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  4167. /**
  4168. * M113: Get or set Host Keepalive interval (0 to disable)
  4169. *
  4170. * S<seconds> Optional. Set the keepalive interval.
  4171. */
  4172. inline void gcode_M113() {
  4173. if (code_seen('S')) {
  4174. host_keepalive_interval = code_value_byte();
  4175. NOMORE(host_keepalive_interval, 60);
  4176. }
  4177. else {
  4178. SERIAL_ECHO_START;
  4179. SERIAL_ECHOLNPAIR("M113 S", (unsigned long)host_keepalive_interval);
  4180. }
  4181. }
  4182. #endif
  4183. #if ENABLED(BARICUDA)
  4184. #if HAS_HEATER_1
  4185. /**
  4186. * M126: Heater 1 valve open
  4187. */
  4188. inline void gcode_M126() { baricuda_valve_pressure = code_seen('S') ? code_value_byte() : 255; }
  4189. /**
  4190. * M127: Heater 1 valve close
  4191. */
  4192. inline void gcode_M127() { baricuda_valve_pressure = 0; }
  4193. #endif
  4194. #if HAS_HEATER_2
  4195. /**
  4196. * M128: Heater 2 valve open
  4197. */
  4198. inline void gcode_M128() { baricuda_e_to_p_pressure = code_seen('S') ? code_value_byte() : 255; }
  4199. /**
  4200. * M129: Heater 2 valve close
  4201. */
  4202. inline void gcode_M129() { baricuda_e_to_p_pressure = 0; }
  4203. #endif
  4204. #endif //BARICUDA
  4205. /**
  4206. * M140: Set bed temperature
  4207. */
  4208. inline void gcode_M140() {
  4209. if (DEBUGGING(DRYRUN)) return;
  4210. if (code_seen('S')) thermalManager.setTargetBed(code_value_temp_abs());
  4211. }
  4212. #if ENABLED(ULTIPANEL)
  4213. /**
  4214. * M145: Set the heatup state for a material in the LCD menu
  4215. * S<material> (0=PLA, 1=ABS)
  4216. * H<hotend temp>
  4217. * B<bed temp>
  4218. * F<fan speed>
  4219. */
  4220. inline void gcode_M145() {
  4221. int8_t material = code_seen('S') ? (int8_t)code_value_int() : 0;
  4222. if (material < 0 || material > 1) {
  4223. SERIAL_ERROR_START;
  4224. SERIAL_ERRORLNPGM(MSG_ERR_MATERIAL_INDEX);
  4225. }
  4226. else {
  4227. int v;
  4228. switch (material) {
  4229. case 0:
  4230. if (code_seen('H')) {
  4231. v = code_value_int();
  4232. preheatHotendTemp1 = constrain(v, EXTRUDE_MINTEMP, HEATER_0_MAXTEMP - 15);
  4233. }
  4234. if (code_seen('F')) {
  4235. v = code_value_int();
  4236. preheatFanSpeed1 = constrain(v, 0, 255);
  4237. }
  4238. #if TEMP_SENSOR_BED != 0
  4239. if (code_seen('B')) {
  4240. v = code_value_int();
  4241. preheatBedTemp1 = constrain(v, BED_MINTEMP, BED_MAXTEMP - 15);
  4242. }
  4243. #endif
  4244. break;
  4245. case 1:
  4246. if (code_seen('H')) {
  4247. v = code_value_int();
  4248. preheatHotendTemp2 = constrain(v, EXTRUDE_MINTEMP, HEATER_0_MAXTEMP - 15);
  4249. }
  4250. if (code_seen('F')) {
  4251. v = code_value_int();
  4252. preheatFanSpeed2 = constrain(v, 0, 255);
  4253. }
  4254. #if TEMP_SENSOR_BED != 0
  4255. if (code_seen('B')) {
  4256. v = code_value_int();
  4257. preheatBedTemp2 = constrain(v, BED_MINTEMP, BED_MAXTEMP - 15);
  4258. }
  4259. #endif
  4260. break;
  4261. }
  4262. }
  4263. }
  4264. #endif // ULTIPANEL
  4265. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  4266. /**
  4267. * M149: Set temperature units
  4268. */
  4269. inline void gcode_M149() {
  4270. if (code_seen('C')) {
  4271. set_input_temp_units(TEMPUNIT_C);
  4272. } else if (code_seen('K')) {
  4273. set_input_temp_units(TEMPUNIT_K);
  4274. } else if (code_seen('F')) {
  4275. set_input_temp_units(TEMPUNIT_F);
  4276. }
  4277. }
  4278. #endif
  4279. #if HAS_POWER_SWITCH
  4280. /**
  4281. * M80: Turn on Power Supply
  4282. */
  4283. inline void gcode_M80() {
  4284. OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE); //GND
  4285. /**
  4286. * If you have a switch on suicide pin, this is useful
  4287. * if you want to start another print with suicide feature after
  4288. * a print without suicide...
  4289. */
  4290. #if HAS_SUICIDE
  4291. OUT_WRITE(SUICIDE_PIN, HIGH);
  4292. #endif
  4293. #if ENABLED(ULTIPANEL)
  4294. powersupply = true;
  4295. LCD_MESSAGEPGM(WELCOME_MSG);
  4296. lcd_update();
  4297. #endif
  4298. }
  4299. #endif // HAS_POWER_SWITCH
  4300. /**
  4301. * M81: Turn off Power, including Power Supply, if there is one.
  4302. *
  4303. * This code should ALWAYS be available for EMERGENCY SHUTDOWN!
  4304. */
  4305. inline void gcode_M81() {
  4306. thermalManager.disable_all_heaters();
  4307. stepper.finish_and_disable();
  4308. #if FAN_COUNT > 0
  4309. #if FAN_COUNT > 1
  4310. for (uint8_t i = 0; i < FAN_COUNT; i++) fanSpeeds[i] = 0;
  4311. #else
  4312. fanSpeeds[0] = 0;
  4313. #endif
  4314. #endif
  4315. delay(1000); // Wait 1 second before switching off
  4316. #if HAS_SUICIDE
  4317. stepper.synchronize();
  4318. suicide();
  4319. #elif HAS_POWER_SWITCH
  4320. OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  4321. #endif
  4322. #if ENABLED(ULTIPANEL)
  4323. #if HAS_POWER_SWITCH
  4324. powersupply = false;
  4325. #endif
  4326. LCD_MESSAGEPGM(MACHINE_NAME " " MSG_OFF ".");
  4327. lcd_update();
  4328. #endif
  4329. }
  4330. /**
  4331. * M82: Set E codes absolute (default)
  4332. */
  4333. inline void gcode_M82() { axis_relative_modes[E_AXIS] = false; }
  4334. /**
  4335. * M83: Set E codes relative while in Absolute Coordinates (G90) mode
  4336. */
  4337. inline void gcode_M83() { axis_relative_modes[E_AXIS] = true; }
  4338. /**
  4339. * M18, M84: Disable all stepper motors
  4340. */
  4341. inline void gcode_M18_M84() {
  4342. if (code_seen('S')) {
  4343. stepper_inactive_time = code_value_millis_from_seconds();
  4344. }
  4345. else {
  4346. bool all_axis = !((code_seen('X')) || (code_seen('Y')) || (code_seen('Z')) || (code_seen('E')));
  4347. if (all_axis) {
  4348. stepper.finish_and_disable();
  4349. }
  4350. else {
  4351. stepper.synchronize();
  4352. if (code_seen('X')) disable_x();
  4353. if (code_seen('Y')) disable_y();
  4354. if (code_seen('Z')) disable_z();
  4355. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  4356. if (code_seen('E')) {
  4357. disable_e0();
  4358. disable_e1();
  4359. disable_e2();
  4360. disable_e3();
  4361. }
  4362. #endif
  4363. }
  4364. }
  4365. }
  4366. /**
  4367. * M85: Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  4368. */
  4369. inline void gcode_M85() {
  4370. if (code_seen('S')) max_inactive_time = code_value_millis_from_seconds();
  4371. }
  4372. /**
  4373. * M92: Set axis steps-per-unit for one or more axes, X, Y, Z, and E.
  4374. * (Follows the same syntax as G92)
  4375. */
  4376. inline void gcode_M92() {
  4377. LOOP_XYZE(i) {
  4378. if (code_seen(axis_codes[i])) {
  4379. if (i == E_AXIS) {
  4380. float value = code_value_per_axis_unit(i);
  4381. if (value < 20.0) {
  4382. float factor = planner.axis_steps_per_mm[i] / value; // increase e constants if M92 E14 is given for netfab.
  4383. planner.max_e_jerk *= factor;
  4384. planner.max_feedrate_mm_s[i] *= factor;
  4385. planner.max_acceleration_steps_per_s2[i] *= factor;
  4386. }
  4387. planner.axis_steps_per_mm[i] = value;
  4388. }
  4389. else {
  4390. planner.axis_steps_per_mm[i] = code_value_per_axis_unit(i);
  4391. }
  4392. }
  4393. }
  4394. planner.refresh_positioning();
  4395. }
  4396. /**
  4397. * Output the current position to serial
  4398. */
  4399. static void report_current_position() {
  4400. SERIAL_PROTOCOLPGM("X:");
  4401. SERIAL_PROTOCOL(current_position[X_AXIS]);
  4402. SERIAL_PROTOCOLPGM(" Y:");
  4403. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  4404. SERIAL_PROTOCOLPGM(" Z:");
  4405. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  4406. SERIAL_PROTOCOLPGM(" E:");
  4407. SERIAL_PROTOCOL(current_position[E_AXIS]);
  4408. stepper.report_positions();
  4409. #if IS_SCARA
  4410. SERIAL_PROTOCOLPAIR("SCARA Theta:", stepper.get_axis_position_mm(A_AXIS));
  4411. SERIAL_PROTOCOLLNPAIR(" Psi+Theta:", stepper.get_axis_position_mm(B_AXIS));
  4412. SERIAL_EOL;
  4413. #endif
  4414. }
  4415. /**
  4416. * M114: Output current position to serial port
  4417. */
  4418. inline void gcode_M114() { report_current_position(); }
  4419. /**
  4420. * M115: Capabilities string
  4421. */
  4422. inline void gcode_M115() {
  4423. SERIAL_PROTOCOLPGM(MSG_M115_REPORT);
  4424. }
  4425. /**
  4426. * M117: Set LCD Status Message
  4427. */
  4428. inline void gcode_M117() {
  4429. lcd_setstatus(current_command_args);
  4430. }
  4431. /**
  4432. * M119: Output endstop states to serial output
  4433. */
  4434. inline void gcode_M119() { endstops.M119(); }
  4435. /**
  4436. * M120: Enable endstops and set non-homing endstop state to "enabled"
  4437. */
  4438. inline void gcode_M120() { endstops.enable_globally(true); }
  4439. /**
  4440. * M121: Disable endstops and set non-homing endstop state to "disabled"
  4441. */
  4442. inline void gcode_M121() { endstops.enable_globally(false); }
  4443. #if ENABLED(BLINKM)
  4444. /**
  4445. * M150: Set Status LED Color - Use R-U-B for R-G-B
  4446. */
  4447. inline void gcode_M150() {
  4448. SendColors(
  4449. code_seen('R') ? code_value_byte() : 0,
  4450. code_seen('U') ? code_value_byte() : 0,
  4451. code_seen('B') ? code_value_byte() : 0
  4452. );
  4453. }
  4454. #endif // BLINKM
  4455. #if ENABLED(EXPERIMENTAL_I2CBUS)
  4456. /**
  4457. * M155: Send data to a I2C slave device
  4458. *
  4459. * This is a PoC, the formating and arguments for the GCODE will
  4460. * change to be more compatible, the current proposal is:
  4461. *
  4462. * M155 A<slave device address base 10> ; Sets the I2C slave address the data will be sent to
  4463. *
  4464. * M155 B<byte-1 value in base 10>
  4465. * M155 B<byte-2 value in base 10>
  4466. * M155 B<byte-3 value in base 10>
  4467. *
  4468. * M155 S1 ; Send the buffered data and reset the buffer
  4469. * M155 R1 ; Reset the buffer without sending data
  4470. *
  4471. */
  4472. inline void gcode_M155() {
  4473. // Set the target address
  4474. if (code_seen('A')) i2c.address(code_value_byte());
  4475. // Add a new byte to the buffer
  4476. if (code_seen('B')) i2c.addbyte(code_value_byte());
  4477. // Flush the buffer to the bus
  4478. if (code_seen('S')) i2c.send();
  4479. // Reset and rewind the buffer
  4480. else if (code_seen('R')) i2c.reset();
  4481. }
  4482. /**
  4483. * M156: Request X bytes from I2C slave device
  4484. *
  4485. * Usage: M156 A<slave device address base 10> B<number of bytes>
  4486. */
  4487. inline void gcode_M156() {
  4488. if (code_seen('A')) i2c.address(code_value_byte());
  4489. uint8_t bytes = code_seen('B') ? code_value_byte() : 1;
  4490. if (i2c.addr && bytes && bytes <= TWIBUS_BUFFER_SIZE) {
  4491. i2c.relay(bytes);
  4492. }
  4493. else {
  4494. SERIAL_ERROR_START;
  4495. SERIAL_ERRORLN("Bad i2c request");
  4496. }
  4497. }
  4498. #endif // EXPERIMENTAL_I2CBUS
  4499. /**
  4500. * M200: Set filament diameter and set E axis units to cubic units
  4501. *
  4502. * T<extruder> - Optional extruder number. Current extruder if omitted.
  4503. * D<linear> - Diameter of the filament. Use "D0" to switch back to linear units on the E axis.
  4504. */
  4505. inline void gcode_M200() {
  4506. if (get_target_extruder_from_command(200)) return;
  4507. if (code_seen('D')) {
  4508. // setting any extruder filament size disables volumetric on the assumption that
  4509. // slicers either generate in extruder values as cubic mm or as as filament feeds
  4510. // for all extruders
  4511. volumetric_enabled = (code_value_linear_units() != 0.0);
  4512. if (volumetric_enabled) {
  4513. filament_size[target_extruder] = code_value_linear_units();
  4514. // make sure all extruders have some sane value for the filament size
  4515. for (uint8_t i = 0; i < COUNT(filament_size); i++)
  4516. if (! filament_size[i]) filament_size[i] = DEFAULT_NOMINAL_FILAMENT_DIA;
  4517. }
  4518. }
  4519. else {
  4520. //reserved for setting filament diameter via UFID or filament measuring device
  4521. return;
  4522. }
  4523. calculate_volumetric_multipliers();
  4524. }
  4525. /**
  4526. * M201: Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  4527. */
  4528. inline void gcode_M201() {
  4529. LOOP_XYZE(i) {
  4530. if (code_seen(axis_codes[i])) {
  4531. planner.max_acceleration_mm_per_s2[i] = code_value_axis_units(i);
  4532. }
  4533. }
  4534. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  4535. planner.reset_acceleration_rates();
  4536. }
  4537. #if 0 // Not used for Sprinter/grbl gen6
  4538. inline void gcode_M202() {
  4539. LOOP_XYZE(i) {
  4540. if (code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value_axis_units(i) * planner.axis_steps_per_mm[i];
  4541. }
  4542. }
  4543. #endif
  4544. /**
  4545. * M203: Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in units/sec
  4546. */
  4547. inline void gcode_M203() {
  4548. LOOP_XYZE(i)
  4549. if (code_seen(axis_codes[i]))
  4550. planner.max_feedrate_mm_s[i] = code_value_axis_units(i);
  4551. }
  4552. /**
  4553. * M204: Set Accelerations in units/sec^2 (M204 P1200 R3000 T3000)
  4554. *
  4555. * P = Printing moves
  4556. * R = Retract only (no X, Y, Z) moves
  4557. * T = Travel (non printing) moves
  4558. *
  4559. * Also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  4560. */
  4561. inline void gcode_M204() {
  4562. if (code_seen('S')) { // Kept for legacy compatibility. Should NOT BE USED for new developments.
  4563. planner.travel_acceleration = planner.acceleration = code_value_linear_units();
  4564. SERIAL_ECHOLNPAIR("Setting Print and Travel Acceleration: ", planner.acceleration);
  4565. }
  4566. if (code_seen('P')) {
  4567. planner.acceleration = code_value_linear_units();
  4568. SERIAL_ECHOLNPAIR("Setting Print Acceleration: ", planner.acceleration);
  4569. }
  4570. if (code_seen('R')) {
  4571. planner.retract_acceleration = code_value_linear_units();
  4572. SERIAL_ECHOLNPAIR("Setting Retract Acceleration: ", planner.retract_acceleration);
  4573. }
  4574. if (code_seen('T')) {
  4575. planner.travel_acceleration = code_value_linear_units();
  4576. SERIAL_ECHOLNPAIR("Setting Travel Acceleration: ", planner.travel_acceleration);
  4577. }
  4578. }
  4579. /**
  4580. * M205: Set Advanced Settings
  4581. *
  4582. * S = Min Feed Rate (units/s)
  4583. * T = Min Travel Feed Rate (units/s)
  4584. * B = Min Segment Time (µs)
  4585. * X = Max XY Jerk (units/sec^2)
  4586. * Z = Max Z Jerk (units/sec^2)
  4587. * E = Max E Jerk (units/sec^2)
  4588. */
  4589. inline void gcode_M205() {
  4590. if (code_seen('S')) planner.min_feedrate_mm_s = code_value_linear_units();
  4591. if (code_seen('T')) planner.min_travel_feedrate_mm_s = code_value_linear_units();
  4592. if (code_seen('B')) planner.min_segment_time = code_value_millis();
  4593. if (code_seen('X')) planner.max_xy_jerk = code_value_linear_units();
  4594. if (code_seen('Z')) planner.max_z_jerk = code_value_axis_units(Z_AXIS);
  4595. if (code_seen('E')) planner.max_e_jerk = code_value_axis_units(E_AXIS);
  4596. }
  4597. /**
  4598. * M206: Set Additional Homing Offset (X Y Z). SCARA aliases T=X, P=Y
  4599. */
  4600. inline void gcode_M206() {
  4601. LOOP_XYZ(i)
  4602. if (code_seen(axis_codes[i]))
  4603. set_home_offset((AxisEnum)i, code_value_axis_units(i));
  4604. #if ENABLED(MORGAN_SCARA)
  4605. if (code_seen('T')) set_home_offset(A_AXIS, code_value_axis_units(A_AXIS)); // Theta
  4606. if (code_seen('P')) set_home_offset(B_AXIS, code_value_axis_units(B_AXIS)); // Psi
  4607. #endif
  4608. SYNC_PLAN_POSITION_KINEMATIC();
  4609. report_current_position();
  4610. }
  4611. #if ENABLED(DELTA)
  4612. /**
  4613. * M665: Set delta configurations
  4614. *
  4615. * L = diagonal rod
  4616. * R = delta radius
  4617. * S = segments per second
  4618. * A = Alpha (Tower 1) diagonal rod trim
  4619. * B = Beta (Tower 2) diagonal rod trim
  4620. * C = Gamma (Tower 3) diagonal rod trim
  4621. */
  4622. inline void gcode_M665() {
  4623. if (code_seen('L')) delta_diagonal_rod = code_value_linear_units();
  4624. if (code_seen('R')) delta_radius = code_value_linear_units();
  4625. if (code_seen('S')) delta_segments_per_second = code_value_float();
  4626. if (code_seen('A')) delta_diagonal_rod_trim_tower_1 = code_value_linear_units();
  4627. if (code_seen('B')) delta_diagonal_rod_trim_tower_2 = code_value_linear_units();
  4628. if (code_seen('C')) delta_diagonal_rod_trim_tower_3 = code_value_linear_units();
  4629. recalc_delta_settings(delta_radius, delta_diagonal_rod);
  4630. }
  4631. /**
  4632. * M666: Set delta endstop adjustment
  4633. */
  4634. inline void gcode_M666() {
  4635. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4636. if (DEBUGGING(LEVELING)) {
  4637. SERIAL_ECHOLNPGM(">>> gcode_M666");
  4638. }
  4639. #endif
  4640. LOOP_XYZ(i) {
  4641. if (code_seen(axis_codes[i])) {
  4642. endstop_adj[i] = code_value_axis_units(i);
  4643. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4644. if (DEBUGGING(LEVELING)) {
  4645. SERIAL_ECHOPAIR("endstop_adj[", axis_codes[i]);
  4646. SERIAL_ECHOLNPAIR("] = ", endstop_adj[i]);
  4647. }
  4648. #endif
  4649. }
  4650. }
  4651. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4652. if (DEBUGGING(LEVELING)) {
  4653. SERIAL_ECHOLNPGM("<<< gcode_M666");
  4654. }
  4655. #endif
  4656. }
  4657. #elif ENABLED(Z_DUAL_ENDSTOPS) // !DELTA && ENABLED(Z_DUAL_ENDSTOPS)
  4658. /**
  4659. * M666: For Z Dual Endstop setup, set z axis offset to the z2 axis.
  4660. */
  4661. inline void gcode_M666() {
  4662. if (code_seen('Z')) z_endstop_adj = code_value_axis_units(Z_AXIS);
  4663. SERIAL_ECHOLNPAIR("Z Endstop Adjustment set to (mm):", z_endstop_adj);
  4664. }
  4665. #endif // !DELTA && Z_DUAL_ENDSTOPS
  4666. #if ENABLED(FWRETRACT)
  4667. /**
  4668. * M207: Set firmware retraction values
  4669. *
  4670. * S[+units] retract_length
  4671. * W[+units] retract_length_swap (multi-extruder)
  4672. * F[units/min] retract_feedrate_mm_s
  4673. * Z[units] retract_zlift
  4674. */
  4675. inline void gcode_M207() {
  4676. if (code_seen('S')) retract_length = code_value_axis_units(E_AXIS);
  4677. if (code_seen('F')) retract_feedrate_mm_s = MMM_TO_MMS(code_value_axis_units(E_AXIS));
  4678. if (code_seen('Z')) retract_zlift = code_value_axis_units(Z_AXIS);
  4679. #if EXTRUDERS > 1
  4680. if (code_seen('W')) retract_length_swap = code_value_axis_units(E_AXIS);
  4681. #endif
  4682. }
  4683. /**
  4684. * M208: Set firmware un-retraction values
  4685. *
  4686. * S[+units] retract_recover_length (in addition to M207 S*)
  4687. * W[+units] retract_recover_length_swap (multi-extruder)
  4688. * F[units/min] retract_recover_feedrate_mm_s
  4689. */
  4690. inline void gcode_M208() {
  4691. if (code_seen('S')) retract_recover_length = code_value_axis_units(E_AXIS);
  4692. if (code_seen('F')) retract_recover_feedrate_mm_s = MMM_TO_MMS(code_value_axis_units(E_AXIS));
  4693. #if EXTRUDERS > 1
  4694. if (code_seen('W')) retract_recover_length_swap = code_value_axis_units(E_AXIS);
  4695. #endif
  4696. }
  4697. /**
  4698. * M209: Enable automatic retract (M209 S1)
  4699. * detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  4700. */
  4701. inline void gcode_M209() {
  4702. if (code_seen('S')) {
  4703. autoretract_enabled = code_value_bool();
  4704. for (int i = 0; i < EXTRUDERS; i++) retracted[i] = false;
  4705. }
  4706. }
  4707. #endif // FWRETRACT
  4708. /**
  4709. * M211: Enable, Disable, and/or Report software endstops
  4710. *
  4711. * Usage: M211 S1 to enable, M211 S0 to disable, M211 alone for report
  4712. */
  4713. inline void gcode_M211() {
  4714. SERIAL_ECHO_START;
  4715. #if ENABLED(min_software_endstops) || ENABLED(max_software_endstops)
  4716. if (code_seen('S')) soft_endstops_enabled = code_value_bool();
  4717. #endif
  4718. #if ENABLED(min_software_endstops) || ENABLED(max_software_endstops)
  4719. SERIAL_ECHOPGM(MSG_SOFT_ENDSTOPS);
  4720. serialprintPGM(soft_endstops_enabled ? PSTR(MSG_ON) : PSTR(MSG_OFF));
  4721. #else
  4722. SERIAL_ECHOPGM(MSG_SOFT_ENDSTOPS);
  4723. SERIAL_ECHOPGM(MSG_OFF);
  4724. #endif
  4725. SERIAL_ECHOPGM(MSG_SOFT_MIN);
  4726. SERIAL_ECHOPAIR( MSG_X, soft_endstop_min[X_AXIS]);
  4727. SERIAL_ECHOPAIR(" " MSG_Y, soft_endstop_min[Y_AXIS]);
  4728. SERIAL_ECHOPAIR(" " MSG_Z, soft_endstop_min[Z_AXIS]);
  4729. SERIAL_ECHOPGM(MSG_SOFT_MAX);
  4730. SERIAL_ECHOPAIR( MSG_X, soft_endstop_max[X_AXIS]);
  4731. SERIAL_ECHOPAIR(" " MSG_Y, soft_endstop_max[Y_AXIS]);
  4732. SERIAL_ECHOLNPAIR(" " MSG_Z, soft_endstop_max[Z_AXIS]);
  4733. }
  4734. #if HOTENDS > 1
  4735. /**
  4736. * M218 - set hotend offset (in linear units)
  4737. *
  4738. * T<tool>
  4739. * X<xoffset>
  4740. * Y<yoffset>
  4741. * Z<zoffset> - Available with DUAL_X_CARRIAGE and SWITCHING_EXTRUDER
  4742. */
  4743. inline void gcode_M218() {
  4744. if (get_target_extruder_from_command(218)) return;
  4745. if (code_seen('X')) hotend_offset[X_AXIS][target_extruder] = code_value_axis_units(X_AXIS);
  4746. if (code_seen('Y')) hotend_offset[Y_AXIS][target_extruder] = code_value_axis_units(Y_AXIS);
  4747. #if ENABLED(DUAL_X_CARRIAGE) || ENABLED(SWITCHING_EXTRUDER)
  4748. if (code_seen('Z')) hotend_offset[Z_AXIS][target_extruder] = code_value_axis_units(Z_AXIS);
  4749. #endif
  4750. SERIAL_ECHO_START;
  4751. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  4752. HOTEND_LOOP() {
  4753. SERIAL_CHAR(' ');
  4754. SERIAL_ECHO(hotend_offset[X_AXIS][e]);
  4755. SERIAL_CHAR(',');
  4756. SERIAL_ECHO(hotend_offset[Y_AXIS][e]);
  4757. #if ENABLED(DUAL_X_CARRIAGE) || ENABLED(SWITCHING_EXTRUDER)
  4758. SERIAL_CHAR(',');
  4759. SERIAL_ECHO(hotend_offset[Z_AXIS][e]);
  4760. #endif
  4761. }
  4762. SERIAL_EOL;
  4763. }
  4764. #endif // HOTENDS > 1
  4765. /**
  4766. * M220: Set speed percentage factor, aka "Feed Rate" (M220 S95)
  4767. */
  4768. inline void gcode_M220() {
  4769. if (code_seen('S')) feedrate_percentage = code_value_int();
  4770. }
  4771. /**
  4772. * M221: Set extrusion percentage (M221 T0 S95)
  4773. */
  4774. inline void gcode_M221() {
  4775. if (get_target_extruder_from_command(221)) return;
  4776. if (code_seen('S'))
  4777. flow_percentage[target_extruder] = code_value_int();
  4778. }
  4779. /**
  4780. * M226: Wait until the specified pin reaches the state required (M226 P<pin> S<state>)
  4781. */
  4782. inline void gcode_M226() {
  4783. if (code_seen('P')) {
  4784. int pin_number = code_value_int();
  4785. int pin_state = code_seen('S') ? code_value_int() : -1; // required pin state - default is inverted
  4786. if (pin_state >= -1 && pin_state <= 1) {
  4787. for (uint8_t i = 0; i < COUNT(sensitive_pins); i++) {
  4788. if (sensitive_pins[i] == pin_number) {
  4789. pin_number = -1;
  4790. break;
  4791. }
  4792. }
  4793. if (pin_number > -1) {
  4794. int target = LOW;
  4795. stepper.synchronize();
  4796. pinMode(pin_number, INPUT);
  4797. switch (pin_state) {
  4798. case 1:
  4799. target = HIGH;
  4800. break;
  4801. case 0:
  4802. target = LOW;
  4803. break;
  4804. case -1:
  4805. target = !digitalRead(pin_number);
  4806. break;
  4807. }
  4808. while (digitalRead(pin_number) != target) idle();
  4809. } // pin_number > -1
  4810. } // pin_state -1 0 1
  4811. } // code_seen('P')
  4812. }
  4813. #if HAS_SERVOS
  4814. /**
  4815. * M280: Get or set servo position. P<index> [S<angle>]
  4816. */
  4817. inline void gcode_M280() {
  4818. if (!code_seen('P')) return;
  4819. int servo_index = code_value_int();
  4820. if (servo_index >= 0 && servo_index < NUM_SERVOS) {
  4821. if (code_seen('S'))
  4822. MOVE_SERVO(servo_index, code_value_int());
  4823. else {
  4824. SERIAL_ECHO_START;
  4825. SERIAL_ECHOPAIR(" Servo ", servo_index);
  4826. SERIAL_ECHOLNPAIR(": ", servo[servo_index].read());
  4827. }
  4828. }
  4829. else {
  4830. SERIAL_ERROR_START;
  4831. SERIAL_ECHOPAIR("Servo ", servo_index);
  4832. SERIAL_ECHOLNPGM(" out of range");
  4833. }
  4834. }
  4835. #endif // HAS_SERVOS
  4836. #if HAS_BUZZER
  4837. /**
  4838. * M300: Play beep sound S<frequency Hz> P<duration ms>
  4839. */
  4840. inline void gcode_M300() {
  4841. uint16_t const frequency = code_seen('S') ? code_value_ushort() : 260;
  4842. uint16_t duration = code_seen('P') ? code_value_ushort() : 1000;
  4843. // Limits the tone duration to 0-5 seconds.
  4844. NOMORE(duration, 5000);
  4845. BUZZ(duration, frequency);
  4846. }
  4847. #endif // HAS_BUZZER
  4848. #if ENABLED(PIDTEMP)
  4849. /**
  4850. * M301: Set PID parameters P I D (and optionally C, L)
  4851. *
  4852. * P[float] Kp term
  4853. * I[float] Ki term (unscaled)
  4854. * D[float] Kd term (unscaled)
  4855. *
  4856. * With PID_EXTRUSION_SCALING:
  4857. *
  4858. * C[float] Kc term
  4859. * L[float] LPQ length
  4860. */
  4861. inline void gcode_M301() {
  4862. // multi-extruder PID patch: M301 updates or prints a single extruder's PID values
  4863. // default behaviour (omitting E parameter) is to update for extruder 0 only
  4864. int e = code_seen('E') ? code_value_int() : 0; // extruder being updated
  4865. if (e < HOTENDS) { // catch bad input value
  4866. if (code_seen('P')) PID_PARAM(Kp, e) = code_value_float();
  4867. if (code_seen('I')) PID_PARAM(Ki, e) = scalePID_i(code_value_float());
  4868. if (code_seen('D')) PID_PARAM(Kd, e) = scalePID_d(code_value_float());
  4869. #if ENABLED(PID_EXTRUSION_SCALING)
  4870. if (code_seen('C')) PID_PARAM(Kc, e) = code_value_float();
  4871. if (code_seen('L')) lpq_len = code_value_float();
  4872. NOMORE(lpq_len, LPQ_MAX_LEN);
  4873. #endif
  4874. thermalManager.updatePID();
  4875. SERIAL_ECHO_START;
  4876. #if ENABLED(PID_PARAMS_PER_HOTEND)
  4877. SERIAL_ECHOPAIR(" e:", e); // specify extruder in serial output
  4878. #endif // PID_PARAMS_PER_HOTEND
  4879. SERIAL_ECHOPAIR(" p:", PID_PARAM(Kp, e));
  4880. SERIAL_ECHOPAIR(" i:", unscalePID_i(PID_PARAM(Ki, e)));
  4881. SERIAL_ECHOPAIR(" d:", unscalePID_d(PID_PARAM(Kd, e)));
  4882. #if ENABLED(PID_EXTRUSION_SCALING)
  4883. //Kc does not have scaling applied above, or in resetting defaults
  4884. SERIAL_ECHOPAIR(" c:", PID_PARAM(Kc, e));
  4885. #endif
  4886. SERIAL_EOL;
  4887. }
  4888. else {
  4889. SERIAL_ERROR_START;
  4890. SERIAL_ERRORLN(MSG_INVALID_EXTRUDER);
  4891. }
  4892. }
  4893. #endif // PIDTEMP
  4894. #if ENABLED(PIDTEMPBED)
  4895. inline void gcode_M304() {
  4896. if (code_seen('P')) thermalManager.bedKp = code_value_float();
  4897. if (code_seen('I')) thermalManager.bedKi = scalePID_i(code_value_float());
  4898. if (code_seen('D')) thermalManager.bedKd = scalePID_d(code_value_float());
  4899. thermalManager.updatePID();
  4900. SERIAL_ECHO_START;
  4901. SERIAL_ECHOPAIR(" p:", thermalManager.bedKp);
  4902. SERIAL_ECHOPAIR(" i:", unscalePID_i(thermalManager.bedKi));
  4903. SERIAL_ECHOLNPAIR(" d:", unscalePID_d(thermalManager.bedKd));
  4904. }
  4905. #endif // PIDTEMPBED
  4906. #if defined(CHDK) || HAS_PHOTOGRAPH
  4907. /**
  4908. * M240: Trigger a camera by emulating a Canon RC-1
  4909. * See http://www.doc-diy.net/photo/rc-1_hacked/
  4910. */
  4911. inline void gcode_M240() {
  4912. #ifdef CHDK
  4913. OUT_WRITE(CHDK, HIGH);
  4914. chdkHigh = millis();
  4915. chdkActive = true;
  4916. #elif HAS_PHOTOGRAPH
  4917. const uint8_t NUM_PULSES = 16;
  4918. const float PULSE_LENGTH = 0.01524;
  4919. for (int i = 0; i < NUM_PULSES; i++) {
  4920. WRITE(PHOTOGRAPH_PIN, HIGH);
  4921. _delay_ms(PULSE_LENGTH);
  4922. WRITE(PHOTOGRAPH_PIN, LOW);
  4923. _delay_ms(PULSE_LENGTH);
  4924. }
  4925. delay(7.33);
  4926. for (int i = 0; i < NUM_PULSES; i++) {
  4927. WRITE(PHOTOGRAPH_PIN, HIGH);
  4928. _delay_ms(PULSE_LENGTH);
  4929. WRITE(PHOTOGRAPH_PIN, LOW);
  4930. _delay_ms(PULSE_LENGTH);
  4931. }
  4932. #endif // !CHDK && HAS_PHOTOGRAPH
  4933. }
  4934. #endif // CHDK || PHOTOGRAPH_PIN
  4935. #if HAS_LCD_CONTRAST
  4936. /**
  4937. * M250: Read and optionally set the LCD contrast
  4938. */
  4939. inline void gcode_M250() {
  4940. if (code_seen('C')) set_lcd_contrast(code_value_int());
  4941. SERIAL_PROTOCOLPGM("lcd contrast value: ");
  4942. SERIAL_PROTOCOL(lcd_contrast);
  4943. SERIAL_EOL;
  4944. }
  4945. #endif // HAS_LCD_CONTRAST
  4946. #if ENABLED(PREVENT_COLD_EXTRUSION)
  4947. /**
  4948. * M302: Allow cold extrudes, or set the minimum extrude temperature
  4949. *
  4950. * S<temperature> sets the minimum extrude temperature
  4951. * P<bool> enables (1) or disables (0) cold extrusion
  4952. *
  4953. * Examples:
  4954. *
  4955. * M302 ; report current cold extrusion state
  4956. * M302 P0 ; enable cold extrusion checking
  4957. * M302 P1 ; disables cold extrusion checking
  4958. * M302 S0 ; always allow extrusion (disables checking)
  4959. * M302 S170 ; only allow extrusion above 170
  4960. * M302 S170 P1 ; set min extrude temp to 170 but leave disabled
  4961. */
  4962. inline void gcode_M302() {
  4963. bool seen_S = code_seen('S');
  4964. if (seen_S) {
  4965. thermalManager.extrude_min_temp = code_value_temp_abs();
  4966. thermalManager.allow_cold_extrude = (thermalManager.extrude_min_temp == 0);
  4967. }
  4968. if (code_seen('P'))
  4969. thermalManager.allow_cold_extrude = (thermalManager.extrude_min_temp == 0) || code_value_bool();
  4970. else if (!seen_S) {
  4971. // Report current state
  4972. SERIAL_ECHO_START;
  4973. SERIAL_ECHOPAIR("Cold extrudes are ", (thermalManager.allow_cold_extrude ? "en" : "dis"));
  4974. SERIAL_ECHOPAIR("abled (min temp ", int(thermalManager.extrude_min_temp + 0.5));
  4975. SERIAL_ECHOLNPGM("C)");
  4976. }
  4977. }
  4978. #endif // PREVENT_COLD_EXTRUSION
  4979. /**
  4980. * M303: PID relay autotune
  4981. *
  4982. * S<temperature> sets the target temperature. (default 150C)
  4983. * E<extruder> (-1 for the bed) (default 0)
  4984. * C<cycles>
  4985. * U<bool> with a non-zero value will apply the result to current settings
  4986. */
  4987. inline void gcode_M303() {
  4988. #if HAS_PID_HEATING
  4989. int e = code_seen('E') ? code_value_int() : 0;
  4990. int c = code_seen('C') ? code_value_int() : 5;
  4991. bool u = code_seen('U') && code_value_bool();
  4992. float temp = code_seen('S') ? code_value_temp_abs() : (e < 0 ? 70.0 : 150.0);
  4993. if (e >= 0 && e < HOTENDS)
  4994. target_extruder = e;
  4995. KEEPALIVE_STATE(NOT_BUSY); // don't send "busy: processing" messages during autotune output
  4996. thermalManager.PID_autotune(temp, e, c, u);
  4997. KEEPALIVE_STATE(IN_HANDLER);
  4998. #else
  4999. SERIAL_ERROR_START;
  5000. SERIAL_ERRORLNPGM(MSG_ERR_M303_DISABLED);
  5001. #endif
  5002. }
  5003. #if ENABLED(MORGAN_SCARA)
  5004. bool SCARA_move_to_cal(uint8_t delta_a, uint8_t delta_b) {
  5005. if (IsRunning()) {
  5006. forward_kinematics_SCARA(delta_a, delta_b);
  5007. destination[X_AXIS] = LOGICAL_X_POSITION(cartes[X_AXIS]);
  5008. destination[Y_AXIS] = LOGICAL_Y_POSITION(cartes[Y_AXIS]);
  5009. destination[Z_AXIS] = current_position[Z_AXIS];
  5010. prepare_move_to_destination();
  5011. return true;
  5012. }
  5013. return false;
  5014. }
  5015. /**
  5016. * M360: SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  5017. */
  5018. inline bool gcode_M360() {
  5019. SERIAL_ECHOLNPGM(" Cal: Theta 0");
  5020. return SCARA_move_to_cal(0, 120);
  5021. }
  5022. /**
  5023. * M361: SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  5024. */
  5025. inline bool gcode_M361() {
  5026. SERIAL_ECHOLNPGM(" Cal: Theta 90");
  5027. return SCARA_move_to_cal(90, 130);
  5028. }
  5029. /**
  5030. * M362: SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  5031. */
  5032. inline bool gcode_M362() {
  5033. SERIAL_ECHOLNPGM(" Cal: Psi 0");
  5034. return SCARA_move_to_cal(60, 180);
  5035. }
  5036. /**
  5037. * M363: SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  5038. */
  5039. inline bool gcode_M363() {
  5040. SERIAL_ECHOLNPGM(" Cal: Psi 90");
  5041. return SCARA_move_to_cal(50, 90);
  5042. }
  5043. /**
  5044. * M364: SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
  5045. */
  5046. inline bool gcode_M364() {
  5047. SERIAL_ECHOLNPGM(" Cal: Theta-Psi 90");
  5048. return SCARA_move_to_cal(45, 135);
  5049. }
  5050. #endif // SCARA
  5051. #if ENABLED(EXT_SOLENOID)
  5052. void enable_solenoid(uint8_t num) {
  5053. switch (num) {
  5054. case 0:
  5055. OUT_WRITE(SOL0_PIN, HIGH);
  5056. break;
  5057. #if HAS_SOLENOID_1
  5058. case 1:
  5059. OUT_WRITE(SOL1_PIN, HIGH);
  5060. break;
  5061. #endif
  5062. #if HAS_SOLENOID_2
  5063. case 2:
  5064. OUT_WRITE(SOL2_PIN, HIGH);
  5065. break;
  5066. #endif
  5067. #if HAS_SOLENOID_3
  5068. case 3:
  5069. OUT_WRITE(SOL3_PIN, HIGH);
  5070. break;
  5071. #endif
  5072. default:
  5073. SERIAL_ECHO_START;
  5074. SERIAL_ECHOLNPGM(MSG_INVALID_SOLENOID);
  5075. break;
  5076. }
  5077. }
  5078. void enable_solenoid_on_active_extruder() { enable_solenoid(active_extruder); }
  5079. void disable_all_solenoids() {
  5080. OUT_WRITE(SOL0_PIN, LOW);
  5081. OUT_WRITE(SOL1_PIN, LOW);
  5082. OUT_WRITE(SOL2_PIN, LOW);
  5083. OUT_WRITE(SOL3_PIN, LOW);
  5084. }
  5085. /**
  5086. * M380: Enable solenoid on the active extruder
  5087. */
  5088. inline void gcode_M380() { enable_solenoid_on_active_extruder(); }
  5089. /**
  5090. * M381: Disable all solenoids
  5091. */
  5092. inline void gcode_M381() { disable_all_solenoids(); }
  5093. #endif // EXT_SOLENOID
  5094. /**
  5095. * M400: Finish all moves
  5096. */
  5097. inline void gcode_M400() { stepper.synchronize(); }
  5098. #if HAS_BED_PROBE
  5099. /**
  5100. * M401: Engage Z Servo endstop if available
  5101. */
  5102. inline void gcode_M401() { DEPLOY_PROBE(); }
  5103. /**
  5104. * M402: Retract Z Servo endstop if enabled
  5105. */
  5106. inline void gcode_M402() { STOW_PROBE(); }
  5107. #endif // HAS_BED_PROBE
  5108. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  5109. /**
  5110. * M404: Display or set (in current units) the nominal filament width (3mm, 1.75mm ) W<3.0>
  5111. */
  5112. inline void gcode_M404() {
  5113. if (code_seen('W')) {
  5114. filament_width_nominal = code_value_linear_units();
  5115. }
  5116. else {
  5117. SERIAL_PROTOCOLPGM("Filament dia (nominal mm):");
  5118. SERIAL_PROTOCOLLN(filament_width_nominal);
  5119. }
  5120. }
  5121. /**
  5122. * M405: Turn on filament sensor for control
  5123. */
  5124. inline void gcode_M405() {
  5125. // This is technically a linear measurement, but since it's quantized to centimeters and is a different unit than
  5126. // everything else, it uses code_value_int() instead of code_value_linear_units().
  5127. if (code_seen('D')) meas_delay_cm = code_value_int();
  5128. NOMORE(meas_delay_cm, MAX_MEASUREMENT_DELAY);
  5129. if (filwidth_delay_index[1] == -1) { // Initialize the ring buffer if not done since startup
  5130. int temp_ratio = thermalManager.widthFil_to_size_ratio();
  5131. for (uint8_t i = 0; i < COUNT(measurement_delay); ++i)
  5132. measurement_delay[i] = temp_ratio - 100; // Subtract 100 to scale within a signed byte
  5133. filwidth_delay_index[0] = filwidth_delay_index[1] = 0;
  5134. }
  5135. filament_sensor = true;
  5136. //SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  5137. //SERIAL_PROTOCOL(filament_width_meas);
  5138. //SERIAL_PROTOCOLPGM("Extrusion ratio(%):");
  5139. //SERIAL_PROTOCOL(flow_percentage[active_extruder]);
  5140. }
  5141. /**
  5142. * M406: Turn off filament sensor for control
  5143. */
  5144. inline void gcode_M406() { filament_sensor = false; }
  5145. /**
  5146. * M407: Get measured filament diameter on serial output
  5147. */
  5148. inline void gcode_M407() {
  5149. SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  5150. SERIAL_PROTOCOLLN(filament_width_meas);
  5151. }
  5152. #endif // FILAMENT_WIDTH_SENSOR
  5153. void quickstop_stepper() {
  5154. stepper.quick_stop();
  5155. stepper.synchronize();
  5156. set_current_from_steppers_for_axis(ALL_AXES);
  5157. SYNC_PLAN_POSITION_KINEMATIC();
  5158. }
  5159. #if ENABLED(MESH_BED_LEVELING)
  5160. /**
  5161. * M420: Enable/Disable Mesh Bed Leveling
  5162. */
  5163. inline void gcode_M420() { if (code_seen('S')) mbl.set_has_mesh(code_value_bool()); }
  5164. /**
  5165. * M421: Set a single Mesh Bed Leveling Z coordinate
  5166. * Use either 'M421 X<linear> Y<linear> Z<linear>' or 'M421 I<xindex> J<yindex> Z<linear>'
  5167. */
  5168. inline void gcode_M421() {
  5169. int8_t px = 0, py = 0;
  5170. float z = 0;
  5171. bool hasX, hasY, hasZ, hasI, hasJ;
  5172. if ((hasX = code_seen('X'))) px = mbl.probe_index_x(code_value_axis_units(X_AXIS));
  5173. if ((hasY = code_seen('Y'))) py = mbl.probe_index_y(code_value_axis_units(Y_AXIS));
  5174. if ((hasI = code_seen('I'))) px = code_value_axis_units(X_AXIS);
  5175. if ((hasJ = code_seen('J'))) py = code_value_axis_units(Y_AXIS);
  5176. if ((hasZ = code_seen('Z'))) z = code_value_axis_units(Z_AXIS);
  5177. if (hasX && hasY && hasZ) {
  5178. if (px >= 0 && py >= 0)
  5179. mbl.set_z(px, py, z);
  5180. else {
  5181. SERIAL_ERROR_START;
  5182. SERIAL_ERRORLNPGM(MSG_ERR_MESH_XY);
  5183. }
  5184. }
  5185. else if (hasI && hasJ && hasZ) {
  5186. if (px >= 0 && px < MESH_NUM_X_POINTS && py >= 0 && py < MESH_NUM_Y_POINTS)
  5187. mbl.set_z(px, py, z);
  5188. else {
  5189. SERIAL_ERROR_START;
  5190. SERIAL_ERRORLNPGM(MSG_ERR_MESH_XY);
  5191. }
  5192. }
  5193. else {
  5194. SERIAL_ERROR_START;
  5195. SERIAL_ERRORLNPGM(MSG_ERR_M421_PARAMETERS);
  5196. }
  5197. }
  5198. #endif
  5199. /**
  5200. * M428: Set home_offset based on the distance between the
  5201. * current_position and the nearest "reference point."
  5202. * If an axis is past center its endstop position
  5203. * is the reference-point. Otherwise it uses 0. This allows
  5204. * the Z offset to be set near the bed when using a max endstop.
  5205. *
  5206. * M428 can't be used more than 2cm away from 0 or an endstop.
  5207. *
  5208. * Use M206 to set these values directly.
  5209. */
  5210. inline void gcode_M428() {
  5211. bool err = false;
  5212. LOOP_XYZ(i) {
  5213. if (axis_homed[i]) {
  5214. float base = (current_position[i] > (soft_endstop_min[i] + soft_endstop_max[i]) * 0.5) ? base_home_pos(i) : 0,
  5215. diff = current_position[i] - LOGICAL_POSITION(base, i);
  5216. if (diff > -20 && diff < 20) {
  5217. set_home_offset((AxisEnum)i, home_offset[i] - diff);
  5218. }
  5219. else {
  5220. SERIAL_ERROR_START;
  5221. SERIAL_ERRORLNPGM(MSG_ERR_M428_TOO_FAR);
  5222. LCD_ALERTMESSAGEPGM("Err: Too far!");
  5223. BUZZ(200, 40);
  5224. err = true;
  5225. break;
  5226. }
  5227. }
  5228. }
  5229. if (!err) {
  5230. SYNC_PLAN_POSITION_KINEMATIC();
  5231. report_current_position();
  5232. LCD_MESSAGEPGM(MSG_HOME_OFFSETS_APPLIED);
  5233. BUZZ(200, 659);
  5234. BUZZ(200, 698);
  5235. }
  5236. }
  5237. /**
  5238. * M500: Store settings in EEPROM
  5239. */
  5240. inline void gcode_M500() {
  5241. Config_StoreSettings();
  5242. }
  5243. /**
  5244. * M501: Read settings from EEPROM
  5245. */
  5246. inline void gcode_M501() {
  5247. Config_RetrieveSettings();
  5248. }
  5249. /**
  5250. * M502: Revert to default settings
  5251. */
  5252. inline void gcode_M502() {
  5253. Config_ResetDefault();
  5254. }
  5255. /**
  5256. * M503: print settings currently in memory
  5257. */
  5258. inline void gcode_M503() {
  5259. Config_PrintSettings(code_seen('S') && !code_value_bool());
  5260. }
  5261. #if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  5262. /**
  5263. * M540: Set whether SD card print should abort on endstop hit (M540 S<0|1>)
  5264. */
  5265. inline void gcode_M540() {
  5266. if (code_seen('S')) stepper.abort_on_endstop_hit = code_value_bool();
  5267. }
  5268. #endif // ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  5269. #if HAS_BED_PROBE
  5270. inline void gcode_M851() {
  5271. SERIAL_ECHO_START;
  5272. SERIAL_ECHOPGM(MSG_ZPROBE_ZOFFSET);
  5273. SERIAL_CHAR(' ');
  5274. if (code_seen('Z')) {
  5275. float value = code_value_axis_units(Z_AXIS);
  5276. if (Z_PROBE_OFFSET_RANGE_MIN <= value && value <= Z_PROBE_OFFSET_RANGE_MAX) {
  5277. zprobe_zoffset = value;
  5278. SERIAL_ECHO(zprobe_zoffset);
  5279. }
  5280. else {
  5281. SERIAL_ECHOPAIR(MSG_Z_MIN, Z_PROBE_OFFSET_RANGE_MIN);
  5282. SERIAL_CHAR(' ');
  5283. SERIAL_ECHOPAIR(MSG_Z_MAX, Z_PROBE_OFFSET_RANGE_MAX);
  5284. }
  5285. }
  5286. else {
  5287. SERIAL_ECHOPAIR(": ", zprobe_zoffset);
  5288. }
  5289. SERIAL_EOL;
  5290. }
  5291. #endif // HAS_BED_PROBE
  5292. #if ENABLED(FILAMENT_CHANGE_FEATURE)
  5293. /**
  5294. * M600: Pause for filament change
  5295. *
  5296. * E[distance] - Retract the filament this far (negative value)
  5297. * Z[distance] - Move the Z axis by this distance
  5298. * X[position] - Move to this X position, with Y
  5299. * Y[position] - Move to this Y position, with X
  5300. * L[distance] - Retract distance for removal (manual reload)
  5301. *
  5302. * Default values are used for omitted arguments.
  5303. *
  5304. */
  5305. inline void gcode_M600() {
  5306. if (thermalManager.tooColdToExtrude(active_extruder)) {
  5307. SERIAL_ERROR_START;
  5308. SERIAL_ERRORLNPGM(MSG_TOO_COLD_FOR_M600);
  5309. return;
  5310. }
  5311. // Show initial message and wait for synchronize steppers
  5312. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_INIT);
  5313. stepper.synchronize();
  5314. float lastpos[NUM_AXIS];
  5315. // Save current position of all axes
  5316. LOOP_XYZE(i)
  5317. lastpos[i] = destination[i] = current_position[i];
  5318. // Define runplan for move axes
  5319. #if IS_KINEMATIC
  5320. #define RUNPLAN(RATE_MM_S) inverse_kinematics(destination); \
  5321. planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], destination[E_AXIS], RATE_MM_S, active_extruder);
  5322. #else
  5323. #define RUNPLAN(RATE_MM_S) line_to_destination(RATE_MM_S);
  5324. #endif
  5325. KEEPALIVE_STATE(IN_HANDLER);
  5326. // Initial retract before move to filament change position
  5327. if (code_seen('E')) destination[E_AXIS] += code_value_axis_units(E_AXIS);
  5328. #if defined(FILAMENT_CHANGE_RETRACT_LENGTH) && FILAMENT_CHANGE_RETRACT_LENGTH > 0
  5329. else destination[E_AXIS] -= FILAMENT_CHANGE_RETRACT_LENGTH;
  5330. #endif
  5331. RUNPLAN(FILAMENT_CHANGE_RETRACT_FEEDRATE);
  5332. // Lift Z axis
  5333. float z_lift = code_seen('Z') ? code_value_axis_units(Z_AXIS) :
  5334. #if defined(FILAMENT_CHANGE_Z_ADD) && FILAMENT_CHANGE_Z_ADD > 0
  5335. FILAMENT_CHANGE_Z_ADD
  5336. #else
  5337. 0
  5338. #endif
  5339. ;
  5340. if (z_lift > 0) {
  5341. destination[Z_AXIS] += z_lift;
  5342. NOMORE(destination[Z_AXIS], Z_MAX_POS);
  5343. RUNPLAN(FILAMENT_CHANGE_Z_FEEDRATE);
  5344. }
  5345. // Move XY axes to filament exchange position
  5346. if (code_seen('X')) destination[X_AXIS] = code_value_axis_units(X_AXIS);
  5347. #ifdef FILAMENT_CHANGE_X_POS
  5348. else destination[X_AXIS] = FILAMENT_CHANGE_X_POS;
  5349. #endif
  5350. if (code_seen('Y')) destination[Y_AXIS] = code_value_axis_units(Y_AXIS);
  5351. #ifdef FILAMENT_CHANGE_Y_POS
  5352. else destination[Y_AXIS] = FILAMENT_CHANGE_Y_POS;
  5353. #endif
  5354. RUNPLAN(FILAMENT_CHANGE_XY_FEEDRATE);
  5355. stepper.synchronize();
  5356. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_UNLOAD);
  5357. // Unload filament
  5358. if (code_seen('L')) destination[E_AXIS] += code_value_axis_units(E_AXIS);
  5359. #if defined(FILAMENT_CHANGE_UNLOAD_LENGTH) && FILAMENT_CHANGE_UNLOAD_LENGTH > 0
  5360. else destination[E_AXIS] -= FILAMENT_CHANGE_UNLOAD_LENGTH;
  5361. #endif
  5362. RUNPLAN(FILAMENT_CHANGE_UNLOAD_FEEDRATE);
  5363. // Synchronize steppers and then disable extruders steppers for manual filament changing
  5364. stepper.synchronize();
  5365. disable_e0();
  5366. disable_e1();
  5367. disable_e2();
  5368. disable_e3();
  5369. delay(100);
  5370. #if HAS_BUZZER
  5371. millis_t next_tick = 0;
  5372. #endif
  5373. // Wait for filament insert by user and press button
  5374. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_INSERT);
  5375. while (!lcd_clicked()) {
  5376. #if HAS_BUZZER
  5377. millis_t ms = millis();
  5378. if (ms >= next_tick) {
  5379. BUZZ(300, 2000);
  5380. next_tick = ms + 2500; // Beep every 2.5s while waiting
  5381. }
  5382. #endif
  5383. idle(true);
  5384. }
  5385. delay(100);
  5386. while (lcd_clicked()) idle(true);
  5387. delay(100);
  5388. // Show load message
  5389. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_LOAD);
  5390. // Load filament
  5391. if (code_seen('L')) destination[E_AXIS] -= code_value_axis_units(E_AXIS);
  5392. #if defined(FILAMENT_CHANGE_LOAD_LENGTH) && FILAMENT_CHANGE_LOAD_LENGTH > 0
  5393. else destination[E_AXIS] += FILAMENT_CHANGE_LOAD_LENGTH;
  5394. #endif
  5395. RUNPLAN(FILAMENT_CHANGE_LOAD_FEEDRATE);
  5396. stepper.synchronize();
  5397. #if defined(FILAMENT_CHANGE_EXTRUDE_LENGTH) && FILAMENT_CHANGE_EXTRUDE_LENGTH > 0
  5398. do {
  5399. // Extrude filament to get into hotend
  5400. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_EXTRUDE);
  5401. destination[E_AXIS] += FILAMENT_CHANGE_EXTRUDE_LENGTH;
  5402. RUNPLAN(FILAMENT_CHANGE_EXTRUDE_FEEDRATE);
  5403. stepper.synchronize();
  5404. // Ask user if more filament should be extruded
  5405. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5406. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_OPTION);
  5407. while (filament_change_menu_response == FILAMENT_CHANGE_RESPONSE_WAIT_FOR) idle(true);
  5408. KEEPALIVE_STATE(IN_HANDLER);
  5409. } while (filament_change_menu_response != FILAMENT_CHANGE_RESPONSE_RESUME_PRINT);
  5410. #endif
  5411. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_RESUME);
  5412. KEEPALIVE_STATE(IN_HANDLER);
  5413. // Set extruder to saved position
  5414. current_position[E_AXIS] = lastpos[E_AXIS];
  5415. destination[E_AXIS] = lastpos[E_AXIS];
  5416. planner.set_e_position_mm(current_position[E_AXIS]);
  5417. #if IS_KINEMATIC
  5418. // Move XYZ to starting position, then E
  5419. inverse_kinematics(lastpos);
  5420. planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], destination[E_AXIS], FILAMENT_CHANGE_XY_FEEDRATE, active_extruder);
  5421. planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], lastpos[E_AXIS], FILAMENT_CHANGE_XY_FEEDRATE, active_extruder);
  5422. #else
  5423. // Move XY to starting position, then Z, then E
  5424. destination[X_AXIS] = lastpos[X_AXIS];
  5425. destination[Y_AXIS] = lastpos[Y_AXIS];
  5426. RUNPLAN(FILAMENT_CHANGE_XY_FEEDRATE);
  5427. destination[Z_AXIS] = lastpos[Z_AXIS];
  5428. RUNPLAN(FILAMENT_CHANGE_Z_FEEDRATE);
  5429. #endif
  5430. stepper.synchronize();
  5431. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  5432. filament_ran_out = false;
  5433. #endif
  5434. // Show status screen
  5435. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_STATUS);
  5436. }
  5437. #endif // FILAMENT_CHANGE_FEATURE
  5438. #if ENABLED(DUAL_X_CARRIAGE)
  5439. /**
  5440. * M605: Set dual x-carriage movement mode
  5441. *
  5442. * M605 S0: Full control mode. The slicer has full control over x-carriage movement
  5443. * M605 S1: Auto-park mode. The inactive head will auto park/unpark without slicer involvement
  5444. * M605 S2 [Xnnn] [Rmmm]: Duplication mode. The second extruder will duplicate the first with nnn
  5445. * units x-offset and an optional differential hotend temperature of
  5446. * mmm degrees. E.g., with "M605 S2 X100 R2" the second extruder will duplicate
  5447. * the first with a spacing of 100mm in the x direction and 2 degrees hotter.
  5448. *
  5449. * Note: the X axis should be homed after changing dual x-carriage mode.
  5450. */
  5451. inline void gcode_M605() {
  5452. stepper.synchronize();
  5453. if (code_seen('S')) dual_x_carriage_mode = code_value_byte();
  5454. switch (dual_x_carriage_mode) {
  5455. case DXC_DUPLICATION_MODE:
  5456. if (code_seen('X')) duplicate_extruder_x_offset = max(code_value_axis_units(X_AXIS), X2_MIN_POS - x_home_pos(0));
  5457. if (code_seen('R')) duplicate_extruder_temp_offset = code_value_temp_diff();
  5458. SERIAL_ECHO_START;
  5459. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  5460. SERIAL_CHAR(' ');
  5461. SERIAL_ECHO(hotend_offset[X_AXIS][0]);
  5462. SERIAL_CHAR(',');
  5463. SERIAL_ECHO(hotend_offset[Y_AXIS][0]);
  5464. SERIAL_CHAR(' ');
  5465. SERIAL_ECHO(duplicate_extruder_x_offset);
  5466. SERIAL_CHAR(',');
  5467. SERIAL_ECHOLN(hotend_offset[Y_AXIS][1]);
  5468. break;
  5469. case DXC_FULL_CONTROL_MODE:
  5470. case DXC_AUTO_PARK_MODE:
  5471. break;
  5472. default:
  5473. dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  5474. break;
  5475. }
  5476. active_extruder_parked = false;
  5477. extruder_duplication_enabled = false;
  5478. delayed_move_time = 0;
  5479. }
  5480. #elif ENABLED(DUAL_NOZZLE_DUPLICATION_MODE)
  5481. inline void gcode_M605() {
  5482. stepper.synchronize();
  5483. extruder_duplication_enabled = code_seen('S') && code_value_int() == 2;
  5484. SERIAL_ECHO_START;
  5485. SERIAL_ECHOLNPAIR(MSG_DUPLICATION_MODE, extruder_duplication_enabled ? MSG_ON : MSG_OFF);
  5486. }
  5487. #endif // M605
  5488. #if ENABLED(LIN_ADVANCE)
  5489. /**
  5490. * M905: Set advance factor
  5491. */
  5492. inline void gcode_M905() {
  5493. stepper.synchronize();
  5494. stepper.advance_M905(code_seen('K') ? code_value_float() : -1.0);
  5495. }
  5496. #endif
  5497. /**
  5498. * M907: Set digital trimpot motor current using axis codes X, Y, Z, E, B, S
  5499. */
  5500. inline void gcode_M907() {
  5501. #if HAS_DIGIPOTSS
  5502. LOOP_XYZE(i)
  5503. if (code_seen(axis_codes[i])) stepper.digipot_current(i, code_value_int());
  5504. if (code_seen('B')) stepper.digipot_current(4, code_value_int());
  5505. if (code_seen('S')) for (int i = 0; i <= 4; i++) stepper.digipot_current(i, code_value_int());
  5506. #elif HAS_MOTOR_CURRENT_PWM
  5507. #if PIN_EXISTS(MOTOR_CURRENT_PWM_XY)
  5508. if (code_seen('X')) stepper.digipot_current(0, code_value_int());
  5509. #endif
  5510. #if PIN_EXISTS(MOTOR_CURRENT_PWM_Z)
  5511. if (code_seen('Z')) stepper.digipot_current(1, code_value_int());
  5512. #endif
  5513. #if PIN_EXISTS(MOTOR_CURRENT_PWM_E)
  5514. if (code_seen('E')) stepper.digipot_current(2, code_value_int());
  5515. #endif
  5516. #endif
  5517. #if ENABLED(DIGIPOT_I2C)
  5518. // this one uses actual amps in floating point
  5519. LOOP_XYZE(i) if (code_seen(axis_codes[i])) digipot_i2c_set_current(i, code_value_float());
  5520. // for each additional extruder (named B,C,D,E..., channels 4,5,6,7...)
  5521. for (int i = NUM_AXIS; i < DIGIPOT_I2C_NUM_CHANNELS; i++) if (code_seen('B' + i - (NUM_AXIS))) digipot_i2c_set_current(i, code_value_float());
  5522. #endif
  5523. #if ENABLED(DAC_STEPPER_CURRENT)
  5524. if (code_seen('S')) {
  5525. float dac_percent = code_value_float();
  5526. for (uint8_t i = 0; i <= 4; i++) dac_current_percent(i, dac_percent);
  5527. }
  5528. LOOP_XYZE(i) if (code_seen(axis_codes[i])) dac_current_percent(i, code_value_float());
  5529. #endif
  5530. }
  5531. #if HAS_DIGIPOTSS || ENABLED(DAC_STEPPER_CURRENT)
  5532. /**
  5533. * M908: Control digital trimpot directly (M908 P<pin> S<current>)
  5534. */
  5535. inline void gcode_M908() {
  5536. #if HAS_DIGIPOTSS
  5537. stepper.digitalPotWrite(
  5538. code_seen('P') ? code_value_int() : 0,
  5539. code_seen('S') ? code_value_int() : 0
  5540. );
  5541. #endif
  5542. #ifdef DAC_STEPPER_CURRENT
  5543. dac_current_raw(
  5544. code_seen('P') ? code_value_byte() : -1,
  5545. code_seen('S') ? code_value_ushort() : 0
  5546. );
  5547. #endif
  5548. }
  5549. #if ENABLED(DAC_STEPPER_CURRENT) // As with Printrbot RevF
  5550. inline void gcode_M909() { dac_print_values(); }
  5551. inline void gcode_M910() { dac_commit_eeprom(); }
  5552. #endif
  5553. #endif // HAS_DIGIPOTSS || DAC_STEPPER_CURRENT
  5554. #if HAS_MICROSTEPS
  5555. // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  5556. inline void gcode_M350() {
  5557. if (code_seen('S')) for (int i = 0; i <= 4; i++) stepper.microstep_mode(i, code_value_byte());
  5558. LOOP_XYZE(i) if (code_seen(axis_codes[i])) stepper.microstep_mode(i, code_value_byte());
  5559. if (code_seen('B')) stepper.microstep_mode(4, code_value_byte());
  5560. stepper.microstep_readings();
  5561. }
  5562. /**
  5563. * M351: Toggle MS1 MS2 pins directly with axis codes X Y Z E B
  5564. * S# determines MS1 or MS2, X# sets the pin high/low.
  5565. */
  5566. inline void gcode_M351() {
  5567. if (code_seen('S')) switch (code_value_byte()) {
  5568. case 1:
  5569. LOOP_XYZE(i) if (code_seen(axis_codes[i])) stepper.microstep_ms(i, code_value_byte(), -1);
  5570. if (code_seen('B')) stepper.microstep_ms(4, code_value_byte(), -1);
  5571. break;
  5572. case 2:
  5573. LOOP_XYZE(i) if (code_seen(axis_codes[i])) stepper.microstep_ms(i, -1, code_value_byte());
  5574. if (code_seen('B')) stepper.microstep_ms(4, -1, code_value_byte());
  5575. break;
  5576. }
  5577. stepper.microstep_readings();
  5578. }
  5579. #endif // HAS_MICROSTEPS
  5580. #if ENABLED(MIXING_EXTRUDER)
  5581. /**
  5582. * M163: Set a single mix factor for a mixing extruder
  5583. * This is called "weight" by some systems.
  5584. *
  5585. * S[index] The channel index to set
  5586. * P[float] The mix value
  5587. *
  5588. */
  5589. inline void gcode_M163() {
  5590. int mix_index = code_seen('S') ? code_value_int() : 0;
  5591. float mix_value = code_seen('P') ? code_value_float() : 0.0;
  5592. if (mix_index < MIXING_STEPPERS) mixing_factor[mix_index] = mix_value;
  5593. }
  5594. #if MIXING_VIRTUAL_TOOLS > 1
  5595. /**
  5596. * M164: Store the current mix factors as a virtual tool.
  5597. *
  5598. * S[index] The virtual tool to store
  5599. *
  5600. */
  5601. inline void gcode_M164() {
  5602. int tool_index = code_seen('S') ? code_value_int() : 0;
  5603. if (tool_index < MIXING_VIRTUAL_TOOLS) {
  5604. normalize_mix();
  5605. for (uint8_t i = 0; i < MIXING_STEPPERS; i++)
  5606. mixing_virtual_tool_mix[tool_index][i] = mixing_factor[i];
  5607. }
  5608. }
  5609. #endif
  5610. #if ENABLED(DIRECT_MIXING_IN_G1)
  5611. /**
  5612. * M165: Set multiple mix factors for a mixing extruder.
  5613. * Factors that are left out will be set to 0.
  5614. * All factors together must add up to 1.0.
  5615. *
  5616. * A[factor] Mix factor for extruder stepper 1
  5617. * B[factor] Mix factor for extruder stepper 2
  5618. * C[factor] Mix factor for extruder stepper 3
  5619. * D[factor] Mix factor for extruder stepper 4
  5620. * H[factor] Mix factor for extruder stepper 5
  5621. * I[factor] Mix factor for extruder stepper 6
  5622. *
  5623. */
  5624. inline void gcode_M165() { gcode_get_mix(); }
  5625. #endif
  5626. #endif // MIXING_EXTRUDER
  5627. /**
  5628. * M999: Restart after being stopped
  5629. *
  5630. * Default behaviour is to flush the serial buffer and request
  5631. * a resend to the host starting on the last N line received.
  5632. *
  5633. * Sending "M999 S1" will resume printing without flushing the
  5634. * existing command buffer.
  5635. *
  5636. */
  5637. inline void gcode_M999() {
  5638. Running = true;
  5639. lcd_reset_alert_level();
  5640. if (code_seen('S') && code_value_bool()) return;
  5641. // gcode_LastN = Stopped_gcode_LastN;
  5642. FlushSerialRequestResend();
  5643. }
  5644. #if ENABLED(SWITCHING_EXTRUDER)
  5645. inline void move_extruder_servo(uint8_t e) {
  5646. const int angles[2] = SWITCHING_EXTRUDER_SERVO_ANGLES;
  5647. MOVE_SERVO(SWITCHING_EXTRUDER_SERVO_NR, angles[e]);
  5648. }
  5649. #endif
  5650. inline void invalid_extruder_error(const uint8_t &e) {
  5651. SERIAL_ECHO_START;
  5652. SERIAL_CHAR('T');
  5653. SERIAL_PROTOCOL_F(e, DEC);
  5654. SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
  5655. }
  5656. /**
  5657. * Perform a tool-change, which may result in moving the
  5658. * previous tool out of the way and the new tool into place.
  5659. */
  5660. void tool_change(const uint8_t tmp_extruder, const float fr_mm_s/*=0.0*/, bool no_move/*=false*/) {
  5661. #if ENABLED(MIXING_EXTRUDER) && MIXING_VIRTUAL_TOOLS > 1
  5662. if (tmp_extruder >= MIXING_VIRTUAL_TOOLS) {
  5663. invalid_extruder_error(tmp_extruder);
  5664. return;
  5665. }
  5666. // T0-Tnnn: Switch virtual tool by changing the mix
  5667. for (uint8_t j = 0; j < MIXING_STEPPERS; j++)
  5668. mixing_factor[j] = mixing_virtual_tool_mix[tmp_extruder][j];
  5669. #else //!MIXING_EXTRUDER || MIXING_VIRTUAL_TOOLS <= 1
  5670. #if HOTENDS > 1
  5671. if (tmp_extruder >= EXTRUDERS) {
  5672. invalid_extruder_error(tmp_extruder);
  5673. return;
  5674. }
  5675. float old_feedrate_mm_s = feedrate_mm_s;
  5676. feedrate_mm_s = fr_mm_s > 0.0 ? (old_feedrate_mm_s = fr_mm_s) : XY_PROBE_FEEDRATE_MM_S;
  5677. if (tmp_extruder != active_extruder) {
  5678. if (!no_move && axis_unhomed_error(true, true, true)) {
  5679. SERIAL_ECHOLNPGM("No move on toolchange");
  5680. no_move = true;
  5681. }
  5682. // Save current position to destination, for use later
  5683. set_destination_to_current();
  5684. #if ENABLED(DUAL_X_CARRIAGE)
  5685. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5686. if (DEBUGGING(LEVELING)) {
  5687. SERIAL_ECHOPGM("Dual X Carriage Mode ");
  5688. switch (dual_x_carriage_mode) {
  5689. case DXC_DUPLICATION_MODE: SERIAL_ECHOLNPGM("DXC_DUPLICATION_MODE"); break;
  5690. case DXC_AUTO_PARK_MODE: SERIAL_ECHOLNPGM("DXC_AUTO_PARK_MODE"); break;
  5691. case DXC_FULL_CONTROL_MODE: SERIAL_ECHOLNPGM("DXC_FULL_CONTROL_MODE"); break;
  5692. }
  5693. }
  5694. #endif
  5695. if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE && IsRunning() &&
  5696. (delayed_move_time || current_position[X_AXIS] != x_home_pos(active_extruder))
  5697. ) {
  5698. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5699. if (DEBUGGING(LEVELING)) {
  5700. SERIAL_ECHOPAIR("Raise to ", current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT); SERIAL_EOL;
  5701. SERIAL_ECHOPAIR("MoveX to ", x_home_pos(active_extruder)); SERIAL_EOL;
  5702. SERIAL_ECHOPAIR("Lower to ", current_position[Z_AXIS]); SERIAL_EOL;
  5703. }
  5704. #endif
  5705. // Park old head: 1) raise 2) move to park position 3) lower
  5706. for (uint8_t i = 0; i < 3; i++)
  5707. planner.buffer_line(
  5708. i == 0 ? current_position[X_AXIS] : x_home_pos(active_extruder),
  5709. current_position[Y_AXIS],
  5710. current_position[Z_AXIS] + (i == 2 ? 0 : TOOLCHANGE_PARK_ZLIFT),
  5711. current_position[E_AXIS],
  5712. planner.max_feedrate_mm_s[i == 1 ? X_AXIS : Z_AXIS],
  5713. active_extruder
  5714. );
  5715. stepper.synchronize();
  5716. }
  5717. // apply Y & Z extruder offset (x offset is already used in determining home pos)
  5718. current_position[Y_AXIS] -= hotend_offset[Y_AXIS][active_extruder] - hotend_offset[Y_AXIS][tmp_extruder];
  5719. current_position[Z_AXIS] -= hotend_offset[Z_AXIS][active_extruder] - hotend_offset[Z_AXIS][tmp_extruder];
  5720. active_extruder = tmp_extruder;
  5721. // This function resets the max/min values - the current position may be overwritten below.
  5722. set_axis_is_at_home(X_AXIS);
  5723. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5724. if (DEBUGGING(LEVELING)) DEBUG_POS("New Extruder", current_position);
  5725. #endif
  5726. switch (dual_x_carriage_mode) {
  5727. case DXC_FULL_CONTROL_MODE:
  5728. current_position[X_AXIS] = LOGICAL_X_POSITION(inactive_extruder_x_pos);
  5729. inactive_extruder_x_pos = RAW_X_POSITION(destination[X_AXIS]);
  5730. break;
  5731. case DXC_DUPLICATION_MODE:
  5732. active_extruder_parked = (active_extruder == 0); // this triggers the second extruder to move into the duplication position
  5733. if (active_extruder_parked)
  5734. current_position[X_AXIS] = LOGICAL_X_POSITION(inactive_extruder_x_pos);
  5735. else
  5736. current_position[X_AXIS] = destination[X_AXIS] + duplicate_extruder_x_offset;
  5737. inactive_extruder_x_pos = RAW_X_POSITION(destination[X_AXIS]);
  5738. extruder_duplication_enabled = false;
  5739. break;
  5740. default:
  5741. // record raised toolhead position for use by unpark
  5742. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  5743. raised_parked_position[Z_AXIS] += TOOLCHANGE_UNPARK_ZLIFT;
  5744. active_extruder_parked = true;
  5745. delayed_move_time = 0;
  5746. break;
  5747. }
  5748. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5749. if (DEBUGGING(LEVELING)) {
  5750. SERIAL_ECHOLNPAIR("Active extruder parked: ", active_extruder_parked ? "yes" : "no");
  5751. DEBUG_POS("New extruder (parked)", current_position);
  5752. }
  5753. #endif
  5754. // No extra case for HAS_ABL in DUAL_X_CARRIAGE. Does that mean they don't work together?
  5755. #else // !DUAL_X_CARRIAGE
  5756. #if ENABLED(SWITCHING_EXTRUDER)
  5757. // <0 if the new nozzle is higher, >0 if lower. A bigger raise when lower.
  5758. float z_diff = hotend_offset[Z_AXIS][active_extruder] - hotend_offset[Z_AXIS][tmp_extruder],
  5759. z_raise = 0.3 + (z_diff > 0.0 ? z_diff : 0.0);
  5760. // Always raise by some amount
  5761. planner.buffer_line(
  5762. current_position[X_AXIS],
  5763. current_position[Y_AXIS],
  5764. current_position[Z_AXIS] + z_raise,
  5765. current_position[E_AXIS],
  5766. planner.max_feedrate_mm_s[Z_AXIS],
  5767. active_extruder
  5768. );
  5769. stepper.synchronize();
  5770. move_extruder_servo(active_extruder);
  5771. delay(500);
  5772. // Move back down, if needed
  5773. if (z_raise != z_diff) {
  5774. planner.buffer_line(
  5775. current_position[X_AXIS],
  5776. current_position[Y_AXIS],
  5777. current_position[Z_AXIS] + z_diff,
  5778. current_position[E_AXIS],
  5779. planner.max_feedrate_mm_s[Z_AXIS],
  5780. active_extruder
  5781. );
  5782. stepper.synchronize();
  5783. }
  5784. #endif
  5785. /**
  5786. * Set current_position to the position of the new nozzle.
  5787. * Offsets are based on linear distance, so we need to get
  5788. * the resulting position in coordinate space.
  5789. *
  5790. * - With grid or 3-point leveling, offset XYZ by a tilted vector
  5791. * - With mesh leveling, update Z for the new position
  5792. * - Otherwise, just use the raw linear distance
  5793. *
  5794. * Software endstops are altered here too. Consider a case where:
  5795. * E0 at X=0 ... E1 at X=10
  5796. * When we switch to E1 now X=10, but E1 can't move left.
  5797. * To express this we apply the change in XY to the software endstops.
  5798. * E1 can move farther right than E0, so the right limit is extended.
  5799. *
  5800. * Note that we don't adjust the Z software endstops. Why not?
  5801. * Consider a case where Z=0 (here) and switching to E1 makes Z=1
  5802. * because the bed is 1mm lower at the new position. As long as
  5803. * the first nozzle is out of the way, the carriage should be
  5804. * allowed to move 1mm lower. This technically "breaks" the
  5805. * Z software endstop. But this is technically correct (and
  5806. * there is no viable alternative).
  5807. */
  5808. #if ABL_PLANAR
  5809. // Offset extruder, make sure to apply the bed level rotation matrix
  5810. vector_3 tmp_offset_vec = vector_3(hotend_offset[X_AXIS][tmp_extruder],
  5811. hotend_offset[Y_AXIS][tmp_extruder],
  5812. 0),
  5813. act_offset_vec = vector_3(hotend_offset[X_AXIS][active_extruder],
  5814. hotend_offset[Y_AXIS][active_extruder],
  5815. 0),
  5816. offset_vec = tmp_offset_vec - act_offset_vec;
  5817. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5818. if (DEBUGGING(LEVELING)) {
  5819. tmp_offset_vec.debug("tmp_offset_vec");
  5820. act_offset_vec.debug("act_offset_vec");
  5821. offset_vec.debug("offset_vec (BEFORE)");
  5822. }
  5823. #endif
  5824. offset_vec.apply_rotation(planner.bed_level_matrix.transpose(planner.bed_level_matrix));
  5825. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5826. if (DEBUGGING(LEVELING)) offset_vec.debug("offset_vec (AFTER)");
  5827. #endif
  5828. // Adjustments to the current position
  5829. float xydiff[2] = { offset_vec.x, offset_vec.y };
  5830. current_position[Z_AXIS] += offset_vec.z;
  5831. #else // !ABL_PLANAR
  5832. float xydiff[2] = {
  5833. hotend_offset[X_AXIS][tmp_extruder] - hotend_offset[X_AXIS][active_extruder],
  5834. hotend_offset[Y_AXIS][tmp_extruder] - hotend_offset[Y_AXIS][active_extruder]
  5835. };
  5836. #if ENABLED(MESH_BED_LEVELING)
  5837. if (mbl.active()) {
  5838. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5839. if (DEBUGGING(LEVELING)) SERIAL_ECHOPAIR("Z before MBL: ", current_position[Z_AXIS]);
  5840. #endif
  5841. float xpos = RAW_CURRENT_POSITION(X_AXIS),
  5842. ypos = RAW_CURRENT_POSITION(Y_AXIS);
  5843. current_position[Z_AXIS] += mbl.get_z(xpos + xydiff[X_AXIS], ypos + xydiff[Y_AXIS]) - mbl.get_z(xpos, ypos);
  5844. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5845. if (DEBUGGING(LEVELING))
  5846. SERIAL_ECHOLNPAIR(" after: ", current_position[Z_AXIS]);
  5847. #endif
  5848. }
  5849. #endif // MESH_BED_LEVELING
  5850. #endif // !HAS_ABL
  5851. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5852. if (DEBUGGING(LEVELING)) {
  5853. SERIAL_ECHOPAIR("Offset Tool XY by { ", xydiff[X_AXIS]);
  5854. SERIAL_ECHOPAIR(", ", xydiff[Y_AXIS]);
  5855. SERIAL_ECHOLNPGM(" }");
  5856. }
  5857. #endif
  5858. // The newly-selected extruder XY is actually at...
  5859. current_position[X_AXIS] += xydiff[X_AXIS];
  5860. current_position[Y_AXIS] += xydiff[Y_AXIS];
  5861. for (uint8_t i = X_AXIS; i <= Y_AXIS; i++) {
  5862. position_shift[i] += xydiff[i];
  5863. update_software_endstops((AxisEnum)i);
  5864. }
  5865. // Set the new active extruder
  5866. active_extruder = tmp_extruder;
  5867. #endif // !DUAL_X_CARRIAGE
  5868. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5869. if (DEBUGGING(LEVELING)) DEBUG_POS("Sync After Toolchange", current_position);
  5870. #endif
  5871. // Tell the planner the new "current position"
  5872. SYNC_PLAN_POSITION_KINEMATIC();
  5873. // Move to the "old position" (move the extruder into place)
  5874. if (!no_move && IsRunning()) {
  5875. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5876. if (DEBUGGING(LEVELING)) DEBUG_POS("Move back", destination);
  5877. #endif
  5878. prepare_move_to_destination();
  5879. }
  5880. } // (tmp_extruder != active_extruder)
  5881. stepper.synchronize();
  5882. #if ENABLED(EXT_SOLENOID)
  5883. disable_all_solenoids();
  5884. enable_solenoid_on_active_extruder();
  5885. #endif // EXT_SOLENOID
  5886. feedrate_mm_s = old_feedrate_mm_s;
  5887. #else // HOTENDS <= 1
  5888. // Set the new active extruder
  5889. active_extruder = tmp_extruder;
  5890. UNUSED(fr_mm_s);
  5891. UNUSED(no_move);
  5892. #endif // HOTENDS <= 1
  5893. SERIAL_ECHO_START;
  5894. SERIAL_ECHOLNPAIR(MSG_ACTIVE_EXTRUDER, (int)active_extruder);
  5895. #endif //!MIXING_EXTRUDER || MIXING_VIRTUAL_TOOLS <= 1
  5896. }
  5897. /**
  5898. * T0-T3: Switch tool, usually switching extruders
  5899. *
  5900. * F[units/min] Set the movement feedrate
  5901. * S1 Don't move the tool in XY after change
  5902. */
  5903. inline void gcode_T(uint8_t tmp_extruder) {
  5904. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5905. if (DEBUGGING(LEVELING)) {
  5906. SERIAL_ECHOPAIR(">>> gcode_T(", tmp_extruder);
  5907. SERIAL_ECHOLNPGM(")");
  5908. DEBUG_POS("BEFORE", current_position);
  5909. }
  5910. #endif
  5911. #if HOTENDS == 1 || (ENABLED(MIXING_EXTRUDER) && MIXING_VIRTUAL_TOOLS > 1)
  5912. tool_change(tmp_extruder);
  5913. #elif HOTENDS > 1
  5914. tool_change(
  5915. tmp_extruder,
  5916. code_seen('F') ? MMM_TO_MMS(code_value_axis_units(X_AXIS)) : 0.0,
  5917. (tmp_extruder == active_extruder) || (code_seen('S') && code_value_bool())
  5918. );
  5919. #endif
  5920. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5921. if (DEBUGGING(LEVELING)) {
  5922. DEBUG_POS("AFTER", current_position);
  5923. SERIAL_ECHOLNPGM("<<< gcode_T");
  5924. }
  5925. #endif
  5926. }
  5927. /**
  5928. * Process a single command and dispatch it to its handler
  5929. * This is called from the main loop()
  5930. */
  5931. void process_next_command() {
  5932. current_command = command_queue[cmd_queue_index_r];
  5933. if (DEBUGGING(ECHO)) {
  5934. SERIAL_ECHO_START;
  5935. SERIAL_ECHOLN(current_command);
  5936. }
  5937. // Sanitize the current command:
  5938. // - Skip leading spaces
  5939. // - Bypass N[-0-9][0-9]*[ ]*
  5940. // - Overwrite * with nul to mark the end
  5941. while (*current_command == ' ') ++current_command;
  5942. if (*current_command == 'N' && NUMERIC_SIGNED(current_command[1])) {
  5943. current_command += 2; // skip N[-0-9]
  5944. while (NUMERIC(*current_command)) ++current_command; // skip [0-9]*
  5945. while (*current_command == ' ') ++current_command; // skip [ ]*
  5946. }
  5947. char* starpos = strchr(current_command, '*'); // * should always be the last parameter
  5948. if (starpos) while (*starpos == ' ' || *starpos == '*') *starpos-- = '\0'; // nullify '*' and ' '
  5949. char *cmd_ptr = current_command;
  5950. // Get the command code, which must be G, M, or T
  5951. char command_code = *cmd_ptr++;
  5952. // Skip spaces to get the numeric part
  5953. while (*cmd_ptr == ' ') cmd_ptr++;
  5954. uint16_t codenum = 0; // define ahead of goto
  5955. // Bail early if there's no code
  5956. bool code_is_good = NUMERIC(*cmd_ptr);
  5957. if (!code_is_good) goto ExitUnknownCommand;
  5958. // Get and skip the code number
  5959. do {
  5960. codenum = (codenum * 10) + (*cmd_ptr - '0');
  5961. cmd_ptr++;
  5962. } while (NUMERIC(*cmd_ptr));
  5963. // Skip all spaces to get to the first argument, or nul
  5964. while (*cmd_ptr == ' ') cmd_ptr++;
  5965. // The command's arguments (if any) start here, for sure!
  5966. current_command_args = cmd_ptr;
  5967. KEEPALIVE_STATE(IN_HANDLER);
  5968. // Handle a known G, M, or T
  5969. switch (command_code) {
  5970. case 'G': switch (codenum) {
  5971. // G0, G1
  5972. case 0:
  5973. case 1:
  5974. #if IS_SCARA
  5975. gcode_G0_G1(codenum == 0);
  5976. #else
  5977. gcode_G0_G1();
  5978. #endif
  5979. break;
  5980. // G2, G3
  5981. #if ENABLED(ARC_SUPPORT) && DISABLED(SCARA)
  5982. case 2: // G2 - CW ARC
  5983. case 3: // G3 - CCW ARC
  5984. gcode_G2_G3(codenum == 2);
  5985. break;
  5986. #endif
  5987. // G4 Dwell
  5988. case 4:
  5989. gcode_G4();
  5990. break;
  5991. #if ENABLED(BEZIER_CURVE_SUPPORT)
  5992. // G5
  5993. case 5: // G5 - Cubic B_spline
  5994. gcode_G5();
  5995. break;
  5996. #endif // BEZIER_CURVE_SUPPORT
  5997. #if ENABLED(FWRETRACT)
  5998. case 10: // G10: retract
  5999. case 11: // G11: retract_recover
  6000. gcode_G10_G11(codenum == 10);
  6001. break;
  6002. #endif // FWRETRACT
  6003. #if ENABLED(NOZZLE_CLEAN_FEATURE)
  6004. case 12:
  6005. gcode_G12(); // G12: Nozzle Clean
  6006. break;
  6007. #endif // NOZZLE_CLEAN_FEATURE
  6008. #if ENABLED(INCH_MODE_SUPPORT)
  6009. case 20: //G20: Inch Mode
  6010. gcode_G20();
  6011. break;
  6012. case 21: //G21: MM Mode
  6013. gcode_G21();
  6014. break;
  6015. #endif // INCH_MODE_SUPPORT
  6016. #if ENABLED(NOZZLE_PARK_FEATURE)
  6017. case 27: // G27: Nozzle Park
  6018. gcode_G27();
  6019. break;
  6020. #endif // NOZZLE_PARK_FEATURE
  6021. case 28: // G28: Home all axes, one at a time
  6022. gcode_G28();
  6023. break;
  6024. #if HAS_ABL || ENABLED(MESH_BED_LEVELING)
  6025. case 29: // G29 Detailed Z probe, probes the bed at 3 or more points.
  6026. gcode_G29();
  6027. break;
  6028. #endif // HAS_ABL
  6029. #if HAS_BED_PROBE
  6030. case 30: // G30 Single Z probe
  6031. gcode_G30();
  6032. break;
  6033. #if ENABLED(Z_PROBE_SLED)
  6034. case 31: // G31: dock the sled
  6035. gcode_G31();
  6036. break;
  6037. case 32: // G32: undock the sled
  6038. gcode_G32();
  6039. break;
  6040. #endif // Z_PROBE_SLED
  6041. #endif // HAS_BED_PROBE
  6042. case 90: // G90
  6043. relative_mode = false;
  6044. break;
  6045. case 91: // G91
  6046. relative_mode = true;
  6047. break;
  6048. case 92: // G92
  6049. gcode_G92();
  6050. break;
  6051. }
  6052. break;
  6053. case 'M': switch (codenum) {
  6054. #if ENABLED(ULTIPANEL) || ENABLED(EMERGENCY_PARSER)
  6055. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  6056. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  6057. gcode_M0_M1();
  6058. break;
  6059. #endif // ULTIPANEL
  6060. case 17:
  6061. gcode_M17();
  6062. break;
  6063. #if ENABLED(SDSUPPORT)
  6064. case 20: // M20 - list SD card
  6065. gcode_M20(); break;
  6066. case 21: // M21 - init SD card
  6067. gcode_M21(); break;
  6068. case 22: //M22 - release SD card
  6069. gcode_M22(); break;
  6070. case 23: //M23 - Select file
  6071. gcode_M23(); break;
  6072. case 24: //M24 - Start SD print
  6073. gcode_M24(); break;
  6074. case 25: //M25 - Pause SD print
  6075. gcode_M25(); break;
  6076. case 26: //M26 - Set SD index
  6077. gcode_M26(); break;
  6078. case 27: //M27 - Get SD status
  6079. gcode_M27(); break;
  6080. case 28: //M28 - Start SD write
  6081. gcode_M28(); break;
  6082. case 29: //M29 - Stop SD write
  6083. gcode_M29(); break;
  6084. case 30: //M30 <filename> Delete File
  6085. gcode_M30(); break;
  6086. case 32: //M32 - Select file and start SD print
  6087. gcode_M32(); break;
  6088. #if ENABLED(LONG_FILENAME_HOST_SUPPORT)
  6089. case 33: //M33 - Get the long full path to a file or folder
  6090. gcode_M33(); break;
  6091. #endif // LONG_FILENAME_HOST_SUPPORT
  6092. case 928: //M928 - Start SD write
  6093. gcode_M928(); break;
  6094. #endif //SDSUPPORT
  6095. case 31: //M31 take time since the start of the SD print or an M109 command
  6096. gcode_M31();
  6097. break;
  6098. case 42: //M42 -Change pin status via gcode
  6099. gcode_M42();
  6100. break;
  6101. #if ENABLED(Z_MIN_PROBE_REPEATABILITY_TEST)
  6102. case 48: // M48 Z probe repeatability
  6103. gcode_M48();
  6104. break;
  6105. #endif // Z_MIN_PROBE_REPEATABILITY_TEST
  6106. case 75: // Start print timer
  6107. gcode_M75();
  6108. break;
  6109. case 76: // Pause print timer
  6110. gcode_M76();
  6111. break;
  6112. case 77: // Stop print timer
  6113. gcode_M77();
  6114. break;
  6115. #if ENABLED(PRINTCOUNTER)
  6116. case 78: // Show print statistics
  6117. gcode_M78();
  6118. break;
  6119. #endif
  6120. #if ENABLED(M100_FREE_MEMORY_WATCHER)
  6121. case 100:
  6122. gcode_M100();
  6123. break;
  6124. #endif
  6125. case 104: // M104
  6126. gcode_M104();
  6127. break;
  6128. case 110: // M110: Set Current Line Number
  6129. gcode_M110();
  6130. break;
  6131. case 111: // M111: Set debug level
  6132. gcode_M111();
  6133. break;
  6134. #if DISABLED(EMERGENCY_PARSER)
  6135. case 108: // M108: Cancel Waiting
  6136. gcode_M108();
  6137. break;
  6138. case 112: // M112: Emergency Stop
  6139. gcode_M112();
  6140. break;
  6141. case 410: // M410 quickstop - Abort all the planned moves.
  6142. gcode_M410();
  6143. break;
  6144. #endif
  6145. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  6146. case 113: // M113: Set Host Keepalive interval
  6147. gcode_M113();
  6148. break;
  6149. #endif
  6150. case 140: // M140: Set bed temp
  6151. gcode_M140();
  6152. break;
  6153. case 105: // M105: Read current temperature
  6154. gcode_M105();
  6155. KEEPALIVE_STATE(NOT_BUSY);
  6156. return; // "ok" already printed
  6157. case 109: // M109: Wait for temperature
  6158. gcode_M109();
  6159. break;
  6160. #if HAS_TEMP_BED
  6161. case 190: // M190: Wait for bed heater to reach target
  6162. gcode_M190();
  6163. break;
  6164. #endif // HAS_TEMP_BED
  6165. #if FAN_COUNT > 0
  6166. case 106: // M106: Fan On
  6167. gcode_M106();
  6168. break;
  6169. case 107: // M107: Fan Off
  6170. gcode_M107();
  6171. break;
  6172. #endif // FAN_COUNT > 0
  6173. #if ENABLED(BARICUDA)
  6174. // PWM for HEATER_1_PIN
  6175. #if HAS_HEATER_1
  6176. case 126: // M126: valve open
  6177. gcode_M126();
  6178. break;
  6179. case 127: // M127: valve closed
  6180. gcode_M127();
  6181. break;
  6182. #endif // HAS_HEATER_1
  6183. // PWM for HEATER_2_PIN
  6184. #if HAS_HEATER_2
  6185. case 128: // M128: valve open
  6186. gcode_M128();
  6187. break;
  6188. case 129: // M129: valve closed
  6189. gcode_M129();
  6190. break;
  6191. #endif // HAS_HEATER_2
  6192. #endif // BARICUDA
  6193. #if HAS_POWER_SWITCH
  6194. case 80: // M80: Turn on Power Supply
  6195. gcode_M80();
  6196. break;
  6197. #endif // HAS_POWER_SWITCH
  6198. case 81: // M81: Turn off Power, including Power Supply, if possible
  6199. gcode_M81();
  6200. break;
  6201. case 82:
  6202. gcode_M82();
  6203. break;
  6204. case 83:
  6205. gcode_M83();
  6206. break;
  6207. case 18: // (for compatibility)
  6208. case 84: // M84
  6209. gcode_M18_M84();
  6210. break;
  6211. case 85: // M85
  6212. gcode_M85();
  6213. break;
  6214. case 92: // M92: Set the steps-per-unit for one or more axes
  6215. gcode_M92();
  6216. break;
  6217. case 115: // M115: Report capabilities
  6218. gcode_M115();
  6219. break;
  6220. case 117: // M117: Set LCD message text, if possible
  6221. gcode_M117();
  6222. break;
  6223. case 114: // M114: Report current position
  6224. gcode_M114();
  6225. break;
  6226. case 120: // M120: Enable endstops
  6227. gcode_M120();
  6228. break;
  6229. case 121: // M121: Disable endstops
  6230. gcode_M121();
  6231. break;
  6232. case 119: // M119: Report endstop states
  6233. gcode_M119();
  6234. break;
  6235. #if ENABLED(ULTIPANEL)
  6236. case 145: // M145: Set material heatup parameters
  6237. gcode_M145();
  6238. break;
  6239. #endif
  6240. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  6241. case 149:
  6242. gcode_M149();
  6243. break;
  6244. #endif
  6245. #if ENABLED(BLINKM)
  6246. case 150: // M150
  6247. gcode_M150();
  6248. break;
  6249. #endif //BLINKM
  6250. #if ENABLED(EXPERIMENTAL_I2CBUS)
  6251. case 155:
  6252. gcode_M155();
  6253. break;
  6254. case 156:
  6255. gcode_M156();
  6256. break;
  6257. #endif //EXPERIMENTAL_I2CBUS
  6258. #if ENABLED(MIXING_EXTRUDER)
  6259. case 163: // M163 S<int> P<float> set weight for a mixing extruder
  6260. gcode_M163();
  6261. break;
  6262. #if MIXING_VIRTUAL_TOOLS > 1
  6263. case 164: // M164 S<int> save current mix as a virtual extruder
  6264. gcode_M164();
  6265. break;
  6266. #endif
  6267. #if ENABLED(DIRECT_MIXING_IN_G1)
  6268. case 165: // M165 [ABCDHI]<float> set multiple mix weights
  6269. gcode_M165();
  6270. break;
  6271. #endif
  6272. #endif
  6273. case 200: // M200 D<diameter> Set filament diameter and set E axis units to cubic. (Use S0 to revert to linear units.)
  6274. gcode_M200();
  6275. break;
  6276. case 201: // M201
  6277. gcode_M201();
  6278. break;
  6279. #if 0 // Not used for Sprinter/grbl gen6
  6280. case 202: // M202
  6281. gcode_M202();
  6282. break;
  6283. #endif
  6284. case 203: // M203 max feedrate units/sec
  6285. gcode_M203();
  6286. break;
  6287. case 204: // M204 acclereration S normal moves T filmanent only moves
  6288. gcode_M204();
  6289. break;
  6290. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  6291. gcode_M205();
  6292. break;
  6293. case 206: // M206 additional homing offset
  6294. gcode_M206();
  6295. break;
  6296. #if ENABLED(DELTA)
  6297. case 665: // M665 set delta configurations L<diagonal_rod> R<delta_radius> S<segments_per_sec>
  6298. gcode_M665();
  6299. break;
  6300. #endif
  6301. #if ENABLED(DELTA) || ENABLED(Z_DUAL_ENDSTOPS)
  6302. case 666: // M666 set delta / dual endstop adjustment
  6303. gcode_M666();
  6304. break;
  6305. #endif
  6306. #if ENABLED(FWRETRACT)
  6307. case 207: // M207 - Set Retract Length: S<length>, Feedrate: F<units/min>, and Z lift: Z<distance>
  6308. gcode_M207();
  6309. break;
  6310. case 208: // M208 - Set Recover (unretract) Additional (!) Length: S<length> and Feedrate: F<units/min>
  6311. gcode_M208();
  6312. break;
  6313. case 209: // M209 - Turn Automatic Retract Detection on/off: S<bool> (For slicers that don't support G10/11). Every normal extrude-only move will be classified as retract depending on the direction.
  6314. gcode_M209();
  6315. break;
  6316. #endif // FWRETRACT
  6317. case 211: // M211 - Enable, Disable, and/or Report software endstops
  6318. gcode_M211();
  6319. break;
  6320. #if HOTENDS > 1
  6321. case 218: // M218 - Set a tool offset: T<index> X<offset> Y<offset>
  6322. gcode_M218();
  6323. break;
  6324. #endif
  6325. case 220: // M220 - Set Feedrate Percentage: S<percent> ("FR" on your LCD)
  6326. gcode_M220();
  6327. break;
  6328. case 221: // M221 - Set Flow Percentage: S<percent>
  6329. gcode_M221();
  6330. break;
  6331. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  6332. gcode_M226();
  6333. break;
  6334. #if HAS_SERVOS
  6335. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  6336. gcode_M280();
  6337. break;
  6338. #endif // HAS_SERVOS
  6339. #if HAS_BUZZER
  6340. case 300: // M300 - Play beep tone
  6341. gcode_M300();
  6342. break;
  6343. #endif // HAS_BUZZER
  6344. #if ENABLED(PIDTEMP)
  6345. case 301: // M301
  6346. gcode_M301();
  6347. break;
  6348. #endif // PIDTEMP
  6349. #if ENABLED(PIDTEMPBED)
  6350. case 304: // M304
  6351. gcode_M304();
  6352. break;
  6353. #endif // PIDTEMPBED
  6354. #if defined(CHDK) || HAS_PHOTOGRAPH
  6355. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  6356. gcode_M240();
  6357. break;
  6358. #endif // CHDK || PHOTOGRAPH_PIN
  6359. #if HAS_LCD_CONTRAST
  6360. case 250: // M250 Set LCD contrast value: C<value> (value 0..63)
  6361. gcode_M250();
  6362. break;
  6363. #endif // HAS_LCD_CONTRAST
  6364. #if ENABLED(PREVENT_COLD_EXTRUSION)
  6365. case 302: // allow cold extrudes, or set the minimum extrude temperature
  6366. gcode_M302();
  6367. break;
  6368. #endif // PREVENT_COLD_EXTRUSION
  6369. case 303: // M303 PID autotune
  6370. gcode_M303();
  6371. break;
  6372. #if ENABLED(MORGAN_SCARA)
  6373. case 360: // M360 SCARA Theta pos1
  6374. if (gcode_M360()) return;
  6375. break;
  6376. case 361: // M361 SCARA Theta pos2
  6377. if (gcode_M361()) return;
  6378. break;
  6379. case 362: // M362 SCARA Psi pos1
  6380. if (gcode_M362()) return;
  6381. break;
  6382. case 363: // M363 SCARA Psi pos2
  6383. if (gcode_M363()) return;
  6384. break;
  6385. case 364: // M364 SCARA Psi pos3 (90 deg to Theta)
  6386. if (gcode_M364()) return;
  6387. break;
  6388. #endif // SCARA
  6389. case 400: // M400 finish all moves
  6390. gcode_M400();
  6391. break;
  6392. #if HAS_BED_PROBE
  6393. case 401:
  6394. gcode_M401();
  6395. break;
  6396. case 402:
  6397. gcode_M402();
  6398. break;
  6399. #endif // HAS_BED_PROBE
  6400. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  6401. case 404: //M404 Enter the nominal filament width (3mm, 1.75mm ) N<3.0> or display nominal filament width
  6402. gcode_M404();
  6403. break;
  6404. case 405: //M405 Turn on filament sensor for control
  6405. gcode_M405();
  6406. break;
  6407. case 406: //M406 Turn off filament sensor for control
  6408. gcode_M406();
  6409. break;
  6410. case 407: //M407 Display measured filament diameter
  6411. gcode_M407();
  6412. break;
  6413. #endif // ENABLED(FILAMENT_WIDTH_SENSOR)
  6414. #if ENABLED(MESH_BED_LEVELING)
  6415. case 420: // M420 Enable/Disable Mesh Bed Leveling
  6416. gcode_M420();
  6417. break;
  6418. case 421: // M421 Set a Mesh Bed Leveling Z coordinate
  6419. gcode_M421();
  6420. break;
  6421. #endif
  6422. case 428: // M428 Apply current_position to home_offset
  6423. gcode_M428();
  6424. break;
  6425. case 500: // M500 Store settings in EEPROM
  6426. gcode_M500();
  6427. break;
  6428. case 501: // M501 Read settings from EEPROM
  6429. gcode_M501();
  6430. break;
  6431. case 502: // M502 Revert to default settings
  6432. gcode_M502();
  6433. break;
  6434. case 503: // M503 print settings currently in memory
  6435. gcode_M503();
  6436. break;
  6437. #if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  6438. case 540:
  6439. gcode_M540();
  6440. break;
  6441. #endif
  6442. #if HAS_BED_PROBE
  6443. case 851: // Set Z Probe Z Offset
  6444. gcode_M851();
  6445. break;
  6446. #endif // HAS_BED_PROBE
  6447. #if ENABLED(FILAMENT_CHANGE_FEATURE)
  6448. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  6449. gcode_M600();
  6450. break;
  6451. #endif // FILAMENT_CHANGE_FEATURE
  6452. #if ENABLED(DUAL_X_CARRIAGE)
  6453. case 605:
  6454. gcode_M605();
  6455. break;
  6456. #endif // DUAL_X_CARRIAGE
  6457. #if ENABLED(LIN_ADVANCE)
  6458. case 905: // M905 Set advance factor.
  6459. gcode_M905();
  6460. break;
  6461. #endif
  6462. case 907: // M907 Set digital trimpot motor current using axis codes.
  6463. gcode_M907();
  6464. break;
  6465. #if HAS_DIGIPOTSS || ENABLED(DAC_STEPPER_CURRENT)
  6466. case 908: // M908 Control digital trimpot directly.
  6467. gcode_M908();
  6468. break;
  6469. #if ENABLED(DAC_STEPPER_CURRENT) // As with Printrbot RevF
  6470. case 909: // M909 Print digipot/DAC current value
  6471. gcode_M909();
  6472. break;
  6473. case 910: // M910 Commit digipot/DAC value to external EEPROM
  6474. gcode_M910();
  6475. break;
  6476. #endif
  6477. #endif // HAS_DIGIPOTSS || DAC_STEPPER_CURRENT
  6478. #if HAS_MICROSTEPS
  6479. case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  6480. gcode_M350();
  6481. break;
  6482. case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  6483. gcode_M351();
  6484. break;
  6485. #endif // HAS_MICROSTEPS
  6486. case 999: // M999: Restart after being Stopped
  6487. gcode_M999();
  6488. break;
  6489. }
  6490. break;
  6491. case 'T':
  6492. gcode_T(codenum);
  6493. break;
  6494. default: code_is_good = false;
  6495. }
  6496. KEEPALIVE_STATE(NOT_BUSY);
  6497. ExitUnknownCommand:
  6498. // Still unknown command? Throw an error
  6499. if (!code_is_good) unknown_command_error();
  6500. ok_to_send();
  6501. }
  6502. /**
  6503. * Send a "Resend: nnn" message to the host to
  6504. * indicate that a command needs to be re-sent.
  6505. */
  6506. void FlushSerialRequestResend() {
  6507. //char command_queue[cmd_queue_index_r][100]="Resend:";
  6508. MYSERIAL.flush();
  6509. SERIAL_PROTOCOLPGM(MSG_RESEND);
  6510. SERIAL_PROTOCOLLN(gcode_LastN + 1);
  6511. ok_to_send();
  6512. }
  6513. /**
  6514. * Send an "ok" message to the host, indicating
  6515. * that a command was successfully processed.
  6516. *
  6517. * If ADVANCED_OK is enabled also include:
  6518. * N<int> Line number of the command, if any
  6519. * P<int> Planner space remaining
  6520. * B<int> Block queue space remaining
  6521. */
  6522. void ok_to_send() {
  6523. refresh_cmd_timeout();
  6524. if (!send_ok[cmd_queue_index_r]) return;
  6525. SERIAL_PROTOCOLPGM(MSG_OK);
  6526. #if ENABLED(ADVANCED_OK)
  6527. char* p = command_queue[cmd_queue_index_r];
  6528. if (*p == 'N') {
  6529. SERIAL_PROTOCOL(' ');
  6530. SERIAL_ECHO(*p++);
  6531. while (NUMERIC_SIGNED(*p))
  6532. SERIAL_ECHO(*p++);
  6533. }
  6534. SERIAL_PROTOCOLPGM(" P"); SERIAL_PROTOCOL(int(BLOCK_BUFFER_SIZE - planner.movesplanned() - 1));
  6535. SERIAL_PROTOCOLPGM(" B"); SERIAL_PROTOCOL(BUFSIZE - commands_in_queue);
  6536. #endif
  6537. SERIAL_EOL;
  6538. }
  6539. #if ENABLED(min_software_endstops) || ENABLED(max_software_endstops)
  6540. /**
  6541. * Constrain the given coordinates to the software endstops.
  6542. */
  6543. void clamp_to_software_endstops(float target[XYZ]) {
  6544. #if ENABLED(min_software_endstops)
  6545. NOLESS(target[X_AXIS], soft_endstop_min[X_AXIS]);
  6546. NOLESS(target[Y_AXIS], soft_endstop_min[Y_AXIS]);
  6547. NOLESS(target[Z_AXIS], soft_endstop_min[Z_AXIS]);
  6548. #endif
  6549. #if ENABLED(max_software_endstops)
  6550. NOMORE(target[X_AXIS], soft_endstop_max[X_AXIS]);
  6551. NOMORE(target[Y_AXIS], soft_endstop_max[Y_AXIS]);
  6552. NOMORE(target[Z_AXIS], soft_endstop_max[Z_AXIS]);
  6553. #endif
  6554. }
  6555. #endif
  6556. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  6557. // Get the Z adjustment for non-linear bed leveling
  6558. float bilinear_z_offset(float cartesian[XYZ]) {
  6559. int half_x = (ABL_GRID_POINTS_X - 1) / 2,
  6560. half_y = (ABL_GRID_POINTS_Y - 1) / 2;
  6561. float hx2 = half_x - 0.001, hx1 = -hx2,
  6562. hy2 = half_y - 0.001, hy1 = -hy2,
  6563. grid_x = max(hx1, min(hx2, RAW_X_POSITION(cartesian[X_AXIS]) / bilinear_grid_spacing[X_AXIS])),
  6564. grid_y = max(hy1, min(hy2, RAW_Y_POSITION(cartesian[Y_AXIS]) / bilinear_grid_spacing[Y_AXIS]));
  6565. int floor_x = floor(grid_x), floor_y = floor(grid_y);
  6566. float ratio_x = grid_x - floor_x, ratio_y = grid_y - floor_y,
  6567. z1 = bed_level_grid[floor_x + half_x][floor_y + half_y],
  6568. z2 = bed_level_grid[floor_x + half_x][floor_y + half_y + 1],
  6569. z3 = bed_level_grid[floor_x + half_x + 1][floor_y + half_y],
  6570. z4 = bed_level_grid[floor_x + half_x + 1][floor_y + half_y + 1],
  6571. left = (1 - ratio_y) * z1 + ratio_y * z2,
  6572. right = (1 - ratio_y) * z3 + ratio_y * z4;
  6573. /*
  6574. SERIAL_ECHOPAIR("grid_x=", grid_x);
  6575. SERIAL_ECHOPAIR(" grid_y=", grid_y);
  6576. SERIAL_ECHOPAIR(" floor_x=", floor_x);
  6577. SERIAL_ECHOPAIR(" floor_y=", floor_y);
  6578. SERIAL_ECHOPAIR(" ratio_x=", ratio_x);
  6579. SERIAL_ECHOPAIR(" ratio_y=", ratio_y);
  6580. SERIAL_ECHOPAIR(" z1=", z1);
  6581. SERIAL_ECHOPAIR(" z2=", z2);
  6582. SERIAL_ECHOPAIR(" z3=", z3);
  6583. SERIAL_ECHOPAIR(" z4=", z4);
  6584. SERIAL_ECHOPAIR(" left=", left);
  6585. SERIAL_ECHOPAIR(" right=", right);
  6586. SERIAL_ECHOPAIR(" offset=", (1 - ratio_x) * left + ratio_x * right);
  6587. //*/
  6588. return (1 - ratio_x) * left + ratio_x * right;
  6589. }
  6590. #endif // AUTO_BED_LEVELING_BILINEAR
  6591. #if ENABLED(DELTA)
  6592. /**
  6593. * Recalculate factors used for delta kinematics whenever
  6594. * settings have been changed (e.g., by M665).
  6595. */
  6596. void recalc_delta_settings(float radius, float diagonal_rod) {
  6597. delta_tower1_x = -SIN_60 * (radius + DELTA_RADIUS_TRIM_TOWER_1); // front left tower
  6598. delta_tower1_y = -COS_60 * (radius + DELTA_RADIUS_TRIM_TOWER_1);
  6599. delta_tower2_x = SIN_60 * (radius + DELTA_RADIUS_TRIM_TOWER_2); // front right tower
  6600. delta_tower2_y = -COS_60 * (radius + DELTA_RADIUS_TRIM_TOWER_2);
  6601. delta_tower3_x = 0.0; // back middle tower
  6602. delta_tower3_y = (radius + DELTA_RADIUS_TRIM_TOWER_3);
  6603. delta_diagonal_rod_2_tower_1 = sq(diagonal_rod + delta_diagonal_rod_trim_tower_1);
  6604. delta_diagonal_rod_2_tower_2 = sq(diagonal_rod + delta_diagonal_rod_trim_tower_2);
  6605. delta_diagonal_rod_2_tower_3 = sq(diagonal_rod + delta_diagonal_rod_trim_tower_3);
  6606. }
  6607. #if ENABLED(DELTA_FAST_SQRT)
  6608. /**
  6609. * Fast inverse sqrt from Quake III Arena
  6610. * See: https://en.wikipedia.org/wiki/Fast_inverse_square_root
  6611. */
  6612. float Q_rsqrt(float number) {
  6613. long i;
  6614. float x2, y;
  6615. const float threehalfs = 1.5f;
  6616. x2 = number * 0.5f;
  6617. y = number;
  6618. i = * ( long * ) &y; // evil floating point bit level hacking
  6619. i = 0x5f3759df - ( i >> 1 ); // what the f***?
  6620. y = * ( float * ) &i;
  6621. y = y * ( threehalfs - ( x2 * y * y ) ); // 1st iteration
  6622. // y = y * ( threehalfs - ( x2 * y * y ) ); // 2nd iteration, this can be removed
  6623. return y;
  6624. }
  6625. #define _SQRT(n) (1.0f / Q_rsqrt(n))
  6626. #else
  6627. #define _SQRT(n) sqrt(n)
  6628. #endif
  6629. /**
  6630. * Delta Inverse Kinematics
  6631. *
  6632. * Calculate the tower positions for a given logical
  6633. * position, storing the result in the delta[] array.
  6634. *
  6635. * This is an expensive calculation, requiring 3 square
  6636. * roots per segmented linear move, and strains the limits
  6637. * of a Mega2560 with a Graphical Display.
  6638. *
  6639. * Suggested optimizations include:
  6640. *
  6641. * - Disable the home_offset (M206) and/or position_shift (G92)
  6642. * features to remove up to 12 float additions.
  6643. *
  6644. * - Use a fast-inverse-sqrt function and add the reciprocal.
  6645. * (see above)
  6646. */
  6647. // Macro to obtain the Z position of an individual tower
  6648. #define DELTA_Z(T) raw[Z_AXIS] + _SQRT( \
  6649. delta_diagonal_rod_2_tower_##T - HYPOT2( \
  6650. delta_tower##T##_x - raw[X_AXIS], \
  6651. delta_tower##T##_y - raw[Y_AXIS] \
  6652. ) \
  6653. )
  6654. #define DELTA_RAW_IK() do { \
  6655. delta[A_AXIS] = DELTA_Z(1); \
  6656. delta[B_AXIS] = DELTA_Z(2); \
  6657. delta[C_AXIS] = DELTA_Z(3); \
  6658. } while(0)
  6659. #define DELTA_LOGICAL_IK() do { \
  6660. const float raw[XYZ] = { \
  6661. RAW_X_POSITION(logical[X_AXIS]), \
  6662. RAW_Y_POSITION(logical[Y_AXIS]), \
  6663. RAW_Z_POSITION(logical[Z_AXIS]) \
  6664. }; \
  6665. DELTA_RAW_IK(); \
  6666. } while(0)
  6667. #define DELTA_DEBUG() do { \
  6668. SERIAL_ECHOPAIR("cartesian X:", raw[X_AXIS]); \
  6669. SERIAL_ECHOPAIR(" Y:", raw[Y_AXIS]); \
  6670. SERIAL_ECHOLNPAIR(" Z:", raw[Z_AXIS]); \
  6671. SERIAL_ECHOPAIR("delta A:", delta[A_AXIS]); \
  6672. SERIAL_ECHOPAIR(" B:", delta[B_AXIS]); \
  6673. SERIAL_ECHOLNPAIR(" C:", delta[C_AXIS]); \
  6674. } while(0)
  6675. void inverse_kinematics(const float logical[XYZ]) {
  6676. DELTA_LOGICAL_IK();
  6677. // DELTA_DEBUG();
  6678. }
  6679. /**
  6680. * Calculate the highest Z position where the
  6681. * effector has the full range of XY motion.
  6682. */
  6683. float delta_safe_distance_from_top() {
  6684. float cartesian[XYZ] = {
  6685. LOGICAL_X_POSITION(0),
  6686. LOGICAL_Y_POSITION(0),
  6687. LOGICAL_Z_POSITION(0)
  6688. };
  6689. inverse_kinematics(cartesian);
  6690. float distance = delta[A_AXIS];
  6691. cartesian[Y_AXIS] = LOGICAL_Y_POSITION(DELTA_PRINTABLE_RADIUS);
  6692. inverse_kinematics(cartesian);
  6693. return abs(distance - delta[A_AXIS]);
  6694. }
  6695. /**
  6696. * Delta Forward Kinematics
  6697. *
  6698. * See the Wikipedia article "Trilateration"
  6699. * https://en.wikipedia.org/wiki/Trilateration
  6700. *
  6701. * Establish a new coordinate system in the plane of the
  6702. * three carriage points. This system has its origin at
  6703. * tower1, with tower2 on the X axis. Tower3 is in the X-Y
  6704. * plane with a Z component of zero.
  6705. * We will define unit vectors in this coordinate system
  6706. * in our original coordinate system. Then when we calculate
  6707. * the Xnew, Ynew and Znew values, we can translate back into
  6708. * the original system by moving along those unit vectors
  6709. * by the corresponding values.
  6710. *
  6711. * Variable names matched to Marlin, c-version, and avoid the
  6712. * use of any vector library.
  6713. *
  6714. * by Andreas Hardtung 2016-06-07
  6715. * based on a Java function from "Delta Robot Kinematics V3"
  6716. * by Steve Graves
  6717. *
  6718. * The result is stored in the cartes[] array.
  6719. */
  6720. void forward_kinematics_DELTA(float z1, float z2, float z3) {
  6721. // Create a vector in old coordinates along x axis of new coordinate
  6722. float p12[3] = { delta_tower2_x - delta_tower1_x, delta_tower2_y - delta_tower1_y, z2 - z1 };
  6723. // Get the Magnitude of vector.
  6724. float d = sqrt( sq(p12[0]) + sq(p12[1]) + sq(p12[2]) );
  6725. // Create unit vector by dividing by magnitude.
  6726. float ex[3] = { p12[0] / d, p12[1] / d, p12[2] / d };
  6727. // Get the vector from the origin of the new system to the third point.
  6728. float p13[3] = { delta_tower3_x - delta_tower1_x, delta_tower3_y - delta_tower1_y, z3 - z1 };
  6729. // Use the dot product to find the component of this vector on the X axis.
  6730. float i = ex[0] * p13[0] + ex[1] * p13[1] + ex[2] * p13[2];
  6731. // Create a vector along the x axis that represents the x component of p13.
  6732. float iex[3] = { ex[0] * i, ex[1] * i, ex[2] * i };
  6733. // Subtract the X component from the original vector leaving only Y. We use the
  6734. // variable that will be the unit vector after we scale it.
  6735. float ey[3] = { p13[0] - iex[0], p13[1] - iex[1], p13[2] - iex[2] };
  6736. // The magnitude of Y component
  6737. float j = sqrt( sq(ey[0]) + sq(ey[1]) + sq(ey[2]) );
  6738. // Convert to a unit vector
  6739. ey[0] /= j; ey[1] /= j; ey[2] /= j;
  6740. // The cross product of the unit x and y is the unit z
  6741. // float[] ez = vectorCrossProd(ex, ey);
  6742. float ez[3] = {
  6743. ex[1] * ey[2] - ex[2] * ey[1],
  6744. ex[2] * ey[0] - ex[0] * ey[2],
  6745. ex[0] * ey[1] - ex[1] * ey[0]
  6746. };
  6747. // We now have the d, i and j values defined in Wikipedia.
  6748. // Plug them into the equations defined in Wikipedia for Xnew, Ynew and Znew
  6749. float Xnew = (delta_diagonal_rod_2_tower_1 - delta_diagonal_rod_2_tower_2 + sq(d)) / (d * 2),
  6750. Ynew = ((delta_diagonal_rod_2_tower_1 - delta_diagonal_rod_2_tower_3 + HYPOT2(i, j)) / 2 - i * Xnew) / j,
  6751. Znew = sqrt(delta_diagonal_rod_2_tower_1 - HYPOT2(Xnew, Ynew));
  6752. // Start from the origin of the old coordinates and add vectors in the
  6753. // old coords that represent the Xnew, Ynew and Znew to find the point
  6754. // in the old system.
  6755. cartes[X_AXIS] = delta_tower1_x + ex[0] * Xnew + ey[0] * Ynew - ez[0] * Znew;
  6756. cartes[Y_AXIS] = delta_tower1_y + ex[1] * Xnew + ey[1] * Ynew - ez[1] * Znew;
  6757. cartes[Z_AXIS] = z1 + ex[2] * Xnew + ey[2] * Ynew - ez[2] * Znew;
  6758. };
  6759. void forward_kinematics_DELTA(float point[ABC]) {
  6760. forward_kinematics_DELTA(point[A_AXIS], point[B_AXIS], point[C_AXIS]);
  6761. }
  6762. #endif // DELTA
  6763. /**
  6764. * Get the stepper positions in the cartes[] array.
  6765. * Forward kinematics are applied for DELTA and SCARA.
  6766. *
  6767. * The result is in the current coordinate space with
  6768. * leveling applied. The coordinates need to be run through
  6769. * unapply_leveling to obtain the "ideal" coordinates
  6770. * suitable for current_position, etc.
  6771. */
  6772. void get_cartesian_from_steppers() {
  6773. #if ENABLED(DELTA)
  6774. forward_kinematics_DELTA(
  6775. stepper.get_axis_position_mm(A_AXIS),
  6776. stepper.get_axis_position_mm(B_AXIS),
  6777. stepper.get_axis_position_mm(C_AXIS)
  6778. );
  6779. cartes[X_AXIS] += LOGICAL_X_POSITION(0);
  6780. cartes[Y_AXIS] += LOGICAL_Y_POSITION(0);
  6781. cartes[Z_AXIS] += LOGICAL_Z_POSITION(0);
  6782. #elif IS_SCARA
  6783. forward_kinematics_SCARA(
  6784. stepper.get_axis_position_degrees(A_AXIS),
  6785. stepper.get_axis_position_degrees(B_AXIS)
  6786. );
  6787. cartes[X_AXIS] += LOGICAL_X_POSITION(0);
  6788. cartes[Y_AXIS] += LOGICAL_Y_POSITION(0);
  6789. cartes[Z_AXIS] = stepper.get_axis_position_mm(Z_AXIS);
  6790. #else
  6791. cartes[X_AXIS] = stepper.get_axis_position_mm(X_AXIS);
  6792. cartes[Y_AXIS] = stepper.get_axis_position_mm(Y_AXIS);
  6793. cartes[Z_AXIS] = stepper.get_axis_position_mm(Z_AXIS);
  6794. #endif
  6795. }
  6796. /**
  6797. * Set the current_position for an axis based on
  6798. * the stepper positions, removing any leveling that
  6799. * may have been applied.
  6800. */
  6801. void set_current_from_steppers_for_axis(const AxisEnum axis) {
  6802. get_cartesian_from_steppers();
  6803. #if PLANNER_LEVELING
  6804. planner.unapply_leveling(cartes);
  6805. #endif
  6806. if (axis == ALL_AXES)
  6807. memcpy(current_position, cartes, sizeof(cartes));
  6808. else
  6809. current_position[axis] = cartes[axis];
  6810. }
  6811. #if ENABLED(MESH_BED_LEVELING)
  6812. /**
  6813. * Prepare a mesh-leveled linear move in a Cartesian setup,
  6814. * splitting the move where it crosses mesh borders.
  6815. */
  6816. void mesh_line_to_destination(float fr_mm_s, uint8_t x_splits = 0xff, uint8_t y_splits = 0xff) {
  6817. int cx1 = mbl.cell_index_x(RAW_CURRENT_POSITION(X_AXIS)),
  6818. cy1 = mbl.cell_index_y(RAW_CURRENT_POSITION(Y_AXIS)),
  6819. cx2 = mbl.cell_index_x(RAW_X_POSITION(destination[X_AXIS])),
  6820. cy2 = mbl.cell_index_y(RAW_Y_POSITION(destination[Y_AXIS]));
  6821. NOMORE(cx1, MESH_NUM_X_POINTS - 2);
  6822. NOMORE(cy1, MESH_NUM_Y_POINTS - 2);
  6823. NOMORE(cx2, MESH_NUM_X_POINTS - 2);
  6824. NOMORE(cy2, MESH_NUM_Y_POINTS - 2);
  6825. if (cx1 == cx2 && cy1 == cy2) {
  6826. // Start and end on same mesh square
  6827. line_to_destination(fr_mm_s);
  6828. set_current_to_destination();
  6829. return;
  6830. }
  6831. #define MBL_SEGMENT_END(A) (current_position[A ##_AXIS] + (destination[A ##_AXIS] - current_position[A ##_AXIS]) * normalized_dist)
  6832. float normalized_dist, end[NUM_AXIS];
  6833. // Split at the left/front border of the right/top square
  6834. int8_t gcx = max(cx1, cx2), gcy = max(cy1, cy2);
  6835. if (cx2 != cx1 && TEST(x_splits, gcx)) {
  6836. memcpy(end, destination, sizeof(end));
  6837. destination[X_AXIS] = LOGICAL_X_POSITION(mbl.get_probe_x(gcx));
  6838. normalized_dist = (destination[X_AXIS] - current_position[X_AXIS]) / (end[X_AXIS] - current_position[X_AXIS]);
  6839. destination[Y_AXIS] = MBL_SEGMENT_END(Y);
  6840. CBI(x_splits, gcx);
  6841. }
  6842. else if (cy2 != cy1 && TEST(y_splits, gcy)) {
  6843. memcpy(end, destination, sizeof(end));
  6844. destination[Y_AXIS] = LOGICAL_Y_POSITION(mbl.get_probe_y(gcy));
  6845. normalized_dist = (destination[Y_AXIS] - current_position[Y_AXIS]) / (end[Y_AXIS] - current_position[Y_AXIS]);
  6846. destination[X_AXIS] = MBL_SEGMENT_END(X);
  6847. CBI(y_splits, gcy);
  6848. }
  6849. else {
  6850. // Already split on a border
  6851. line_to_destination(fr_mm_s);
  6852. set_current_to_destination();
  6853. return;
  6854. }
  6855. destination[Z_AXIS] = MBL_SEGMENT_END(Z);
  6856. destination[E_AXIS] = MBL_SEGMENT_END(E);
  6857. // Do the split and look for more borders
  6858. mesh_line_to_destination(fr_mm_s, x_splits, y_splits);
  6859. // Restore destination from stack
  6860. memcpy(destination, end, sizeof(end));
  6861. mesh_line_to_destination(fr_mm_s, x_splits, y_splits);
  6862. }
  6863. #endif // MESH_BED_LEVELING
  6864. #if IS_KINEMATIC
  6865. /**
  6866. * Prepare a linear move in a DELTA or SCARA setup.
  6867. *
  6868. * This calls planner.buffer_line several times, adding
  6869. * small incremental moves for DELTA or SCARA.
  6870. */
  6871. inline bool prepare_kinematic_move_to(float ltarget[NUM_AXIS]) {
  6872. // Get the top feedrate of the move in the XY plane
  6873. float _feedrate_mm_s = MMS_SCALED(feedrate_mm_s);
  6874. // If the move is only in Z/E don't split up the move
  6875. if (ltarget[X_AXIS] == current_position[X_AXIS] && ltarget[Y_AXIS] == current_position[Y_AXIS]) {
  6876. inverse_kinematics(ltarget);
  6877. planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], ltarget[E_AXIS], _feedrate_mm_s, active_extruder);
  6878. return true;
  6879. }
  6880. // Get the cartesian distances moved in XYZE
  6881. float difference[NUM_AXIS];
  6882. LOOP_XYZE(i) difference[i] = ltarget[i] - current_position[i];
  6883. // Get the linear distance in XYZ
  6884. float cartesian_mm = sqrt(sq(difference[X_AXIS]) + sq(difference[Y_AXIS]) + sq(difference[Z_AXIS]));
  6885. // If the move is very short, check the E move distance
  6886. if (UNEAR_ZERO(cartesian_mm)) cartesian_mm = abs(difference[E_AXIS]);
  6887. // No E move either? Game over.
  6888. if (UNEAR_ZERO(cartesian_mm)) return false;
  6889. // Minimum number of seconds to move the given distance
  6890. float seconds = cartesian_mm / _feedrate_mm_s;
  6891. // The number of segments-per-second times the duration
  6892. // gives the number of segments
  6893. uint16_t segments = delta_segments_per_second * seconds;
  6894. // For SCARA minimum segment size is 0.5mm
  6895. #if IS_SCARA
  6896. NOMORE(segments, cartesian_mm * 2);
  6897. #endif
  6898. // At least one segment is required
  6899. NOLESS(segments, 1);
  6900. // The approximate length of each segment
  6901. float segment_distance[XYZE] = {
  6902. difference[X_AXIS] / segments,
  6903. difference[Y_AXIS] / segments,
  6904. difference[Z_AXIS] / segments,
  6905. difference[E_AXIS] / segments
  6906. };
  6907. // SERIAL_ECHOPAIR("mm=", cartesian_mm);
  6908. // SERIAL_ECHOPAIR(" seconds=", seconds);
  6909. // SERIAL_ECHOLNPAIR(" segments=", segments);
  6910. // Drop one segment so the last move is to the exact target.
  6911. // If there's only 1 segment, loops will be skipped entirely.
  6912. --segments;
  6913. // Using "raw" coordinates saves 6 float subtractions
  6914. // per segment, saving valuable CPU cycles
  6915. #if ENABLED(USE_RAW_KINEMATICS)
  6916. // Get the raw current position as starting point
  6917. float raw[XYZE] = {
  6918. RAW_CURRENT_POSITION(X_AXIS),
  6919. RAW_CURRENT_POSITION(Y_AXIS),
  6920. RAW_CURRENT_POSITION(Z_AXIS),
  6921. current_position[E_AXIS]
  6922. };
  6923. #define DELTA_VAR raw
  6924. // Delta can inline its kinematics
  6925. #if ENABLED(DELTA)
  6926. #define DELTA_IK() DELTA_RAW_IK()
  6927. #else
  6928. #define DELTA_IK() inverse_kinematics(raw)
  6929. #endif
  6930. #else
  6931. // Get the logical current position as starting point
  6932. float logical[XYZE];
  6933. memcpy(logical, current_position, sizeof(logical));
  6934. #define DELTA_VAR logical
  6935. // Delta can inline its kinematics
  6936. #if ENABLED(DELTA)
  6937. #define DELTA_IK() DELTA_LOGICAL_IK()
  6938. #else
  6939. #define DELTA_IK() inverse_kinematics(logical)
  6940. #endif
  6941. #endif
  6942. #if ENABLED(USE_DELTA_IK_INTERPOLATION)
  6943. // Only interpolate XYZ. Advance E normally.
  6944. #define DELTA_NEXT(ADDEND) LOOP_XYZ(i) DELTA_VAR[i] += ADDEND;
  6945. // Get the starting delta if interpolation is possible
  6946. if (segments >= 2) DELTA_IK();
  6947. // Loop using decrement
  6948. for (uint16_t s = segments + 1; --s;) {
  6949. // Are there at least 2 moves left?
  6950. if (s >= 2) {
  6951. // Save the previous delta for interpolation
  6952. float prev_delta[ABC] = { delta[A_AXIS], delta[B_AXIS], delta[C_AXIS] };
  6953. // Get the delta 2 segments ahead (rather than the next)
  6954. DELTA_NEXT(segment_distance[i] + segment_distance[i]);
  6955. // Advance E normally
  6956. DELTA_VAR[E_AXIS] += segment_distance[E_AXIS];
  6957. // Get the exact delta for the move after this
  6958. DELTA_IK();
  6959. // Move to the interpolated delta position first
  6960. planner.buffer_line(
  6961. (prev_delta[A_AXIS] + delta[A_AXIS]) * 0.5,
  6962. (prev_delta[B_AXIS] + delta[B_AXIS]) * 0.5,
  6963. (prev_delta[C_AXIS] + delta[C_AXIS]) * 0.5,
  6964. DELTA_VAR[E_AXIS], _feedrate_mm_s, active_extruder
  6965. );
  6966. // Advance E once more for the next move
  6967. DELTA_VAR[E_AXIS] += segment_distance[E_AXIS];
  6968. // Do an extra decrement of the loop
  6969. --s;
  6970. }
  6971. else {
  6972. // Get the last segment delta. (Used when segments is odd)
  6973. DELTA_NEXT(segment_distance[i]);
  6974. DELTA_VAR[E_AXIS] += segment_distance[E_AXIS];
  6975. DELTA_IK();
  6976. }
  6977. // Move to the non-interpolated position
  6978. planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], DELTA_VAR[E_AXIS], _feedrate_mm_s, active_extruder);
  6979. }
  6980. #else
  6981. #define DELTA_NEXT(ADDEND) LOOP_XYZE(i) DELTA_VAR[i] += ADDEND;
  6982. // For non-interpolated delta calculate every segment
  6983. for (uint16_t s = segments + 1; --s;) {
  6984. DELTA_NEXT(segment_distance[i]);
  6985. DELTA_IK();
  6986. planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], DELTA_VAR[E_AXIS], _feedrate_mm_s, active_extruder);
  6987. }
  6988. #endif
  6989. // Since segment_distance is only approximate,
  6990. // the final move must be to the exact destination.
  6991. inverse_kinematics(ltarget);
  6992. planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], ltarget[E_AXIS], _feedrate_mm_s, active_extruder);
  6993. return true;
  6994. }
  6995. #else
  6996. /**
  6997. * Prepare a linear move in a Cartesian setup.
  6998. * If Mesh Bed Leveling is enabled, perform a mesh move.
  6999. */
  7000. inline bool prepare_move_to_destination_cartesian() {
  7001. // Do not use feedrate_percentage for E or Z only moves
  7002. if (current_position[X_AXIS] == destination[X_AXIS] && current_position[Y_AXIS] == destination[Y_AXIS]) {
  7003. line_to_destination();
  7004. }
  7005. else {
  7006. #if ENABLED(MESH_BED_LEVELING)
  7007. if (mbl.active()) {
  7008. mesh_line_to_destination(MMS_SCALED(feedrate_mm_s));
  7009. return false;
  7010. }
  7011. else
  7012. #endif
  7013. line_to_destination(MMS_SCALED(feedrate_mm_s));
  7014. }
  7015. return true;
  7016. }
  7017. #endif // !IS_KINEMATIC
  7018. #if ENABLED(DUAL_X_CARRIAGE)
  7019. /**
  7020. * Prepare a linear move in a dual X axis setup
  7021. */
  7022. inline bool prepare_move_to_destination_dualx() {
  7023. if (active_extruder_parked) {
  7024. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && active_extruder == 0) {
  7025. // move duplicate extruder into correct duplication position.
  7026. planner.set_position_mm(
  7027. LOGICAL_X_POSITION(inactive_extruder_x_pos),
  7028. current_position[Y_AXIS],
  7029. current_position[Z_AXIS],
  7030. current_position[E_AXIS]
  7031. );
  7032. planner.buffer_line(current_position[X_AXIS] + duplicate_extruder_x_offset,
  7033. current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], planner.max_feedrate_mm_s[X_AXIS], 1);
  7034. SYNC_PLAN_POSITION_KINEMATIC();
  7035. stepper.synchronize();
  7036. extruder_duplication_enabled = true;
  7037. active_extruder_parked = false;
  7038. }
  7039. else if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE) { // handle unparking of head
  7040. if (current_position[E_AXIS] == destination[E_AXIS]) {
  7041. // This is a travel move (with no extrusion)
  7042. // Skip it, but keep track of the current position
  7043. // (so it can be used as the start of the next non-travel move)
  7044. if (delayed_move_time != 0xFFFFFFFFUL) {
  7045. set_current_to_destination();
  7046. NOLESS(raised_parked_position[Z_AXIS], destination[Z_AXIS]);
  7047. delayed_move_time = millis();
  7048. return false;
  7049. }
  7050. }
  7051. delayed_move_time = 0;
  7052. // unpark extruder: 1) raise, 2) move into starting XY position, 3) lower
  7053. planner.buffer_line(raised_parked_position[X_AXIS], raised_parked_position[Y_AXIS], raised_parked_position[Z_AXIS], current_position[E_AXIS], planner.max_feedrate_mm_s[Z_AXIS], active_extruder);
  7054. planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], raised_parked_position[Z_AXIS], current_position[E_AXIS], PLANNER_XY_FEEDRATE(), active_extruder);
  7055. planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], planner.max_feedrate_mm_s[Z_AXIS], active_extruder);
  7056. active_extruder_parked = false;
  7057. }
  7058. }
  7059. return true;
  7060. }
  7061. #endif // DUAL_X_CARRIAGE
  7062. /**
  7063. * Prepare a single move and get ready for the next one
  7064. *
  7065. * This may result in several calls to planner.buffer_line to
  7066. * do smaller moves for DELTA, SCARA, mesh moves, etc.
  7067. */
  7068. void prepare_move_to_destination() {
  7069. clamp_to_software_endstops(destination);
  7070. refresh_cmd_timeout();
  7071. #if ENABLED(PREVENT_COLD_EXTRUSION)
  7072. if (!DEBUGGING(DRYRUN)) {
  7073. if (destination[E_AXIS] != current_position[E_AXIS]) {
  7074. if (thermalManager.tooColdToExtrude(active_extruder)) {
  7075. current_position[E_AXIS] = destination[E_AXIS]; // Behave as if the move really took place, but ignore E part
  7076. SERIAL_ECHO_START;
  7077. SERIAL_ECHOLNPGM(MSG_ERR_COLD_EXTRUDE_STOP);
  7078. }
  7079. #if ENABLED(PREVENT_LENGTHY_EXTRUDE)
  7080. if (labs(destination[E_AXIS] - current_position[E_AXIS]) > EXTRUDE_MAXLENGTH) {
  7081. current_position[E_AXIS] = destination[E_AXIS]; // Behave as if the move really took place, but ignore E part
  7082. SERIAL_ECHO_START;
  7083. SERIAL_ECHOLNPGM(MSG_ERR_LONG_EXTRUDE_STOP);
  7084. }
  7085. #endif
  7086. }
  7087. }
  7088. #endif
  7089. #if IS_KINEMATIC
  7090. if (!prepare_kinematic_move_to(destination)) return;
  7091. #else
  7092. #if ENABLED(DUAL_X_CARRIAGE)
  7093. if (!prepare_move_to_destination_dualx()) return;
  7094. #endif
  7095. if (!prepare_move_to_destination_cartesian()) return;
  7096. #endif
  7097. set_current_to_destination();
  7098. }
  7099. #if ENABLED(ARC_SUPPORT)
  7100. /**
  7101. * Plan an arc in 2 dimensions
  7102. *
  7103. * The arc is approximated by generating many small linear segments.
  7104. * The length of each segment is configured in MM_PER_ARC_SEGMENT (Default 1mm)
  7105. * Arcs should only be made relatively large (over 5mm), as larger arcs with
  7106. * larger segments will tend to be more efficient. Your slicer should have
  7107. * options for G2/G3 arc generation. In future these options may be GCode tunable.
  7108. */
  7109. void plan_arc(
  7110. float logical[NUM_AXIS], // Destination position
  7111. float* offset, // Center of rotation relative to current_position
  7112. uint8_t clockwise // Clockwise?
  7113. ) {
  7114. float radius = HYPOT(offset[X_AXIS], offset[Y_AXIS]),
  7115. center_X = current_position[X_AXIS] + offset[X_AXIS],
  7116. center_Y = current_position[Y_AXIS] + offset[Y_AXIS],
  7117. linear_travel = logical[Z_AXIS] - current_position[Z_AXIS],
  7118. extruder_travel = logical[E_AXIS] - current_position[E_AXIS],
  7119. r_X = -offset[X_AXIS], // Radius vector from center to current location
  7120. r_Y = -offset[Y_AXIS],
  7121. rt_X = logical[X_AXIS] - center_X,
  7122. rt_Y = logical[Y_AXIS] - center_Y;
  7123. // CCW angle of rotation between position and target from the circle center. Only one atan2() trig computation required.
  7124. float angular_travel = atan2(r_X * rt_Y - r_Y * rt_X, r_X * rt_X + r_Y * rt_Y);
  7125. if (angular_travel < 0) angular_travel += RADIANS(360);
  7126. if (clockwise) angular_travel -= RADIANS(360);
  7127. // Make a circle if the angular rotation is 0
  7128. if (angular_travel == 0 && current_position[X_AXIS] == logical[X_AXIS] && current_position[Y_AXIS] == logical[Y_AXIS])
  7129. angular_travel += RADIANS(360);
  7130. float mm_of_travel = HYPOT(angular_travel * radius, fabs(linear_travel));
  7131. if (mm_of_travel < 0.001) return;
  7132. uint16_t segments = floor(mm_of_travel / (MM_PER_ARC_SEGMENT));
  7133. if (segments == 0) segments = 1;
  7134. float theta_per_segment = angular_travel / segments;
  7135. float linear_per_segment = linear_travel / segments;
  7136. float extruder_per_segment = extruder_travel / segments;
  7137. /**
  7138. * Vector rotation by transformation matrix: r is the original vector, r_T is the rotated vector,
  7139. * and phi is the angle of rotation. Based on the solution approach by Jens Geisler.
  7140. * r_T = [cos(phi) -sin(phi);
  7141. * sin(phi) cos(phi] * r ;
  7142. *
  7143. * For arc generation, the center of the circle is the axis of rotation and the radius vector is
  7144. * defined from the circle center to the initial position. Each line segment is formed by successive
  7145. * vector rotations. This requires only two cos() and sin() computations to form the rotation
  7146. * matrix for the duration of the entire arc. Error may accumulate from numerical round-off, since
  7147. * all double numbers are single precision on the Arduino. (True double precision will not have
  7148. * round off issues for CNC applications.) Single precision error can accumulate to be greater than
  7149. * tool precision in some cases. Therefore, arc path correction is implemented.
  7150. *
  7151. * Small angle approximation may be used to reduce computation overhead further. This approximation
  7152. * holds for everything, but very small circles and large MM_PER_ARC_SEGMENT values. In other words,
  7153. * theta_per_segment would need to be greater than 0.1 rad and N_ARC_CORRECTION would need to be large
  7154. * to cause an appreciable drift error. N_ARC_CORRECTION~=25 is more than small enough to correct for
  7155. * numerical drift error. N_ARC_CORRECTION may be on the order a hundred(s) before error becomes an
  7156. * issue for CNC machines with the single precision Arduino calculations.
  7157. *
  7158. * This approximation also allows plan_arc to immediately insert a line segment into the planner
  7159. * without the initial overhead of computing cos() or sin(). By the time the arc needs to be applied
  7160. * a correction, the planner should have caught up to the lag caused by the initial plan_arc overhead.
  7161. * This is important when there are successive arc motions.
  7162. */
  7163. // Vector rotation matrix values
  7164. float cos_T = 1 - 0.5 * sq(theta_per_segment); // Small angle approximation
  7165. float sin_T = theta_per_segment;
  7166. float arc_target[NUM_AXIS];
  7167. float sin_Ti, cos_Ti, r_new_Y;
  7168. uint16_t i;
  7169. int8_t count = 0;
  7170. // Initialize the linear axis
  7171. arc_target[Z_AXIS] = current_position[Z_AXIS];
  7172. // Initialize the extruder axis
  7173. arc_target[E_AXIS] = current_position[E_AXIS];
  7174. float fr_mm_s = MMS_SCALED(feedrate_mm_s);
  7175. millis_t next_idle_ms = millis() + 200UL;
  7176. for (i = 1; i < segments; i++) { // Iterate (segments-1) times
  7177. thermalManager.manage_heater();
  7178. millis_t now = millis();
  7179. if (ELAPSED(now, next_idle_ms)) {
  7180. next_idle_ms = now + 200UL;
  7181. idle();
  7182. }
  7183. if (++count < N_ARC_CORRECTION) {
  7184. // Apply vector rotation matrix to previous r_X / 1
  7185. r_new_Y = r_X * sin_T + r_Y * cos_T;
  7186. r_X = r_X * cos_T - r_Y * sin_T;
  7187. r_Y = r_new_Y;
  7188. }
  7189. else {
  7190. // Arc correction to radius vector. Computed only every N_ARC_CORRECTION increments.
  7191. // Compute exact location by applying transformation matrix from initial radius vector(=-offset).
  7192. // To reduce stuttering, the sin and cos could be computed at different times.
  7193. // For now, compute both at the same time.
  7194. cos_Ti = cos(i * theta_per_segment);
  7195. sin_Ti = sin(i * theta_per_segment);
  7196. r_X = -offset[X_AXIS] * cos_Ti + offset[Y_AXIS] * sin_Ti;
  7197. r_Y = -offset[X_AXIS] * sin_Ti - offset[Y_AXIS] * cos_Ti;
  7198. count = 0;
  7199. }
  7200. // Update arc_target location
  7201. arc_target[X_AXIS] = center_X + r_X;
  7202. arc_target[Y_AXIS] = center_Y + r_Y;
  7203. arc_target[Z_AXIS] += linear_per_segment;
  7204. arc_target[E_AXIS] += extruder_per_segment;
  7205. clamp_to_software_endstops(arc_target);
  7206. #if IS_KINEMATIC
  7207. inverse_kinematics(arc_target);
  7208. planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], arc_target[E_AXIS], fr_mm_s, active_extruder);
  7209. #else
  7210. planner.buffer_line(arc_target[X_AXIS], arc_target[Y_AXIS], arc_target[Z_AXIS], arc_target[E_AXIS], fr_mm_s, active_extruder);
  7211. #endif
  7212. }
  7213. // Ensure last segment arrives at target location.
  7214. #if IS_KINEMATIC
  7215. inverse_kinematics(logical);
  7216. planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], logical[E_AXIS], fr_mm_s, active_extruder);
  7217. #else
  7218. planner.buffer_line(logical[X_AXIS], logical[Y_AXIS], logical[Z_AXIS], logical[E_AXIS], fr_mm_s, active_extruder);
  7219. #endif
  7220. // As far as the parser is concerned, the position is now == target. In reality the
  7221. // motion control system might still be processing the action and the real tool position
  7222. // in any intermediate location.
  7223. set_current_to_destination();
  7224. }
  7225. #endif
  7226. #if ENABLED(BEZIER_CURVE_SUPPORT)
  7227. void plan_cubic_move(const float offset[4]) {
  7228. cubic_b_spline(current_position, destination, offset, MMS_SCALED(feedrate_mm_s), active_extruder);
  7229. // As far as the parser is concerned, the position is now == destination. In reality the
  7230. // motion control system might still be processing the action and the real tool position
  7231. // in any intermediate location.
  7232. set_current_to_destination();
  7233. }
  7234. #endif // BEZIER_CURVE_SUPPORT
  7235. #if HAS_CONTROLLERFAN
  7236. void controllerFan() {
  7237. static millis_t lastMotorOn = 0; // Last time a motor was turned on
  7238. static millis_t nextMotorCheck = 0; // Last time the state was checked
  7239. millis_t ms = millis();
  7240. if (ELAPSED(ms, nextMotorCheck)) {
  7241. nextMotorCheck = ms + 2500UL; // Not a time critical function, so only check every 2.5s
  7242. if (X_ENABLE_READ == X_ENABLE_ON || Y_ENABLE_READ == Y_ENABLE_ON || Z_ENABLE_READ == Z_ENABLE_ON || thermalManager.soft_pwm_bed > 0
  7243. || E0_ENABLE_READ == E_ENABLE_ON // If any of the drivers are enabled...
  7244. #if E_STEPPERS > 1
  7245. || E1_ENABLE_READ == E_ENABLE_ON
  7246. #if HAS_X2_ENABLE
  7247. || X2_ENABLE_READ == X_ENABLE_ON
  7248. #endif
  7249. #if E_STEPPERS > 2
  7250. || E2_ENABLE_READ == E_ENABLE_ON
  7251. #if E_STEPPERS > 3
  7252. || E3_ENABLE_READ == E_ENABLE_ON
  7253. #endif
  7254. #endif
  7255. #endif
  7256. ) {
  7257. lastMotorOn = ms; //... set time to NOW so the fan will turn on
  7258. }
  7259. // Fan off if no steppers have been enabled for CONTROLLERFAN_SECS seconds
  7260. uint8_t speed = (!lastMotorOn || ELAPSED(ms, lastMotorOn + (CONTROLLERFAN_SECS) * 1000UL)) ? 0 : CONTROLLERFAN_SPEED;
  7261. // allows digital or PWM fan output to be used (see M42 handling)
  7262. digitalWrite(CONTROLLERFAN_PIN, speed);
  7263. analogWrite(CONTROLLERFAN_PIN, speed);
  7264. }
  7265. }
  7266. #endif // HAS_CONTROLLERFAN
  7267. #if ENABLED(MORGAN_SCARA)
  7268. /**
  7269. * Morgan SCARA Forward Kinematics. Results in cartes[].
  7270. * Maths and first version by QHARLEY.
  7271. * Integrated into Marlin and slightly restructured by Joachim Cerny.
  7272. */
  7273. void forward_kinematics_SCARA(const float &a, const float &b) {
  7274. float a_sin = sin(RADIANS(a)) * L1,
  7275. a_cos = cos(RADIANS(a)) * L1,
  7276. b_sin = sin(RADIANS(b)) * L2,
  7277. b_cos = cos(RADIANS(b)) * L2;
  7278. cartes[X_AXIS] = a_cos + b_cos + SCARA_OFFSET_X; //theta
  7279. cartes[Y_AXIS] = a_sin + b_sin + SCARA_OFFSET_Y; //theta+phi
  7280. /*
  7281. SERIAL_ECHOPAIR("SCARA FK Angle a=", a);
  7282. SERIAL_ECHOPAIR(" b=", b);
  7283. SERIAL_ECHOPAIR(" a_sin=", a_sin);
  7284. SERIAL_ECHOPAIR(" a_cos=", a_cos);
  7285. SERIAL_ECHOPAIR(" b_sin=", b_sin);
  7286. SERIAL_ECHOLNPAIR(" b_cos=", b_cos);
  7287. SERIAL_ECHOPAIR(" cartes[X_AXIS]=", cartes[X_AXIS]);
  7288. SERIAL_ECHOLNPAIR(" cartes[Y_AXIS]=", cartes[Y_AXIS]);
  7289. //*/
  7290. }
  7291. /**
  7292. * Morgan SCARA Inverse Kinematics. Results in delta[].
  7293. *
  7294. * See http://forums.reprap.org/read.php?185,283327
  7295. *
  7296. * Maths and first version by QHARLEY.
  7297. * Integrated into Marlin and slightly restructured by Joachim Cerny.
  7298. */
  7299. void inverse_kinematics(const float logical[XYZ]) {
  7300. static float C2, S2, SK1, SK2, THETA, PSI;
  7301. float sx = RAW_X_POSITION(logical[X_AXIS]) - SCARA_OFFSET_X, // Translate SCARA to standard X Y
  7302. sy = RAW_Y_POSITION(logical[Y_AXIS]) - SCARA_OFFSET_Y; // With scaling factor.
  7303. if (L1 == L2)
  7304. C2 = HYPOT2(sx, sy) / L1_2_2 - 1;
  7305. else
  7306. C2 = (HYPOT2(sx, sy) - (L1_2 + L2_2)) / (2.0 * L1 * L2);
  7307. S2 = sqrt(sq(C2) - 1);
  7308. // Unrotated Arm1 plus rotated Arm2 gives the distance from Center to End
  7309. SK1 = L1 + L2 * C2;
  7310. // Rotated Arm2 gives the distance from Arm1 to Arm2
  7311. SK2 = L2 * S2;
  7312. // Angle of Arm1 is the difference between Center-to-End angle and the Center-to-Elbow
  7313. THETA = atan2(SK1, SK2) - atan2(sx, sy);
  7314. // Angle of Arm2
  7315. PSI = atan2(S2, C2);
  7316. delta[A_AXIS] = DEGREES(THETA); // theta is support arm angle
  7317. delta[B_AXIS] = DEGREES(THETA + PSI); // equal to sub arm angle (inverted motor)
  7318. delta[C_AXIS] = logical[Z_AXIS];
  7319. /*
  7320. DEBUG_POS("SCARA IK", logical);
  7321. DEBUG_POS("SCARA IK", delta);
  7322. SERIAL_ECHOPAIR(" SCARA (x,y) ", sx);
  7323. SERIAL_ECHOPAIR(",", sy);
  7324. SERIAL_ECHOPAIR(" C2=", C2);
  7325. SERIAL_ECHOPAIR(" S2=", S2);
  7326. SERIAL_ECHOPAIR(" Theta=", THETA);
  7327. SERIAL_ECHOLNPAIR(" Phi=", PHI);
  7328. //*/
  7329. }
  7330. #endif // MORGAN_SCARA
  7331. #if ENABLED(TEMP_STAT_LEDS)
  7332. static bool red_led = false;
  7333. static millis_t next_status_led_update_ms = 0;
  7334. void handle_status_leds(void) {
  7335. if (ELAPSED(millis(), next_status_led_update_ms)) {
  7336. next_status_led_update_ms += 500; // Update every 0.5s
  7337. float max_temp = 0.0;
  7338. #if HAS_TEMP_BED
  7339. max_temp = MAX3(max_temp, thermalManager.degTargetBed(), thermalManager.degBed());
  7340. #endif
  7341. HOTEND_LOOP() {
  7342. max_temp = MAX3(max_temp, thermalManager.degHotend(e), thermalManager.degTargetHotend(e));
  7343. }
  7344. bool new_led = (max_temp > 55.0) ? true : (max_temp < 54.0) ? false : red_led;
  7345. if (new_led != red_led) {
  7346. red_led = new_led;
  7347. WRITE(STAT_LED_RED_PIN, new_led ? HIGH : LOW);
  7348. WRITE(STAT_LED_BLUE_PIN, new_led ? LOW : HIGH);
  7349. }
  7350. }
  7351. }
  7352. #endif
  7353. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  7354. void handle_filament_runout() {
  7355. if (!filament_ran_out) {
  7356. filament_ran_out = true;
  7357. enqueue_and_echo_commands_P(PSTR(FILAMENT_RUNOUT_SCRIPT));
  7358. stepper.synchronize();
  7359. }
  7360. }
  7361. #endif // FILAMENT_RUNOUT_SENSOR
  7362. #if ENABLED(FAST_PWM_FAN)
  7363. void setPwmFrequency(uint8_t pin, int val) {
  7364. val &= 0x07;
  7365. switch (digitalPinToTimer(pin)) {
  7366. #if defined(TCCR0A)
  7367. case TIMER0A:
  7368. case TIMER0B:
  7369. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  7370. // TCCR0B |= val;
  7371. break;
  7372. #endif
  7373. #if defined(TCCR1A)
  7374. case TIMER1A:
  7375. case TIMER1B:
  7376. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  7377. // TCCR1B |= val;
  7378. break;
  7379. #endif
  7380. #if defined(TCCR2)
  7381. case TIMER2:
  7382. case TIMER2:
  7383. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  7384. TCCR2 |= val;
  7385. break;
  7386. #endif
  7387. #if defined(TCCR2A)
  7388. case TIMER2A:
  7389. case TIMER2B:
  7390. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  7391. TCCR2B |= val;
  7392. break;
  7393. #endif
  7394. #if defined(TCCR3A)
  7395. case TIMER3A:
  7396. case TIMER3B:
  7397. case TIMER3C:
  7398. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  7399. TCCR3B |= val;
  7400. break;
  7401. #endif
  7402. #if defined(TCCR4A)
  7403. case TIMER4A:
  7404. case TIMER4B:
  7405. case TIMER4C:
  7406. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  7407. TCCR4B |= val;
  7408. break;
  7409. #endif
  7410. #if defined(TCCR5A)
  7411. case TIMER5A:
  7412. case TIMER5B:
  7413. case TIMER5C:
  7414. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  7415. TCCR5B |= val;
  7416. break;
  7417. #endif
  7418. }
  7419. }
  7420. #endif // FAST_PWM_FAN
  7421. float calculate_volumetric_multiplier(float diameter) {
  7422. if (!volumetric_enabled || diameter == 0) return 1.0;
  7423. float d2 = diameter * 0.5;
  7424. return 1.0 / (M_PI * d2 * d2);
  7425. }
  7426. void calculate_volumetric_multipliers() {
  7427. for (uint8_t i = 0; i < COUNT(filament_size); i++)
  7428. volumetric_multiplier[i] = calculate_volumetric_multiplier(filament_size[i]);
  7429. }
  7430. void enable_all_steppers() {
  7431. enable_x();
  7432. enable_y();
  7433. enable_z();
  7434. enable_e0();
  7435. enable_e1();
  7436. enable_e2();
  7437. enable_e3();
  7438. }
  7439. void disable_all_steppers() {
  7440. disable_x();
  7441. disable_y();
  7442. disable_z();
  7443. disable_e0();
  7444. disable_e1();
  7445. disable_e2();
  7446. disable_e3();
  7447. }
  7448. /**
  7449. * Manage several activities:
  7450. * - Check for Filament Runout
  7451. * - Keep the command buffer full
  7452. * - Check for maximum inactive time between commands
  7453. * - Check for maximum inactive time between stepper commands
  7454. * - Check if pin CHDK needs to go LOW
  7455. * - Check for KILL button held down
  7456. * - Check for HOME button held down
  7457. * - Check if cooling fan needs to be switched on
  7458. * - Check if an idle but hot extruder needs filament extruded (EXTRUDER_RUNOUT_PREVENT)
  7459. */
  7460. void manage_inactivity(bool ignore_stepper_queue/*=false*/) {
  7461. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  7462. if ((IS_SD_PRINTING || print_job_timer.isRunning()) && !(READ(FIL_RUNOUT_PIN) ^ FIL_RUNOUT_INVERTING))
  7463. handle_filament_runout();
  7464. #endif
  7465. if (commands_in_queue < BUFSIZE) get_available_commands();
  7466. millis_t ms = millis();
  7467. if (max_inactive_time && ELAPSED(ms, previous_cmd_ms + max_inactive_time)) kill(PSTR(MSG_KILLED));
  7468. if (stepper_inactive_time && ELAPSED(ms, previous_cmd_ms + stepper_inactive_time)
  7469. && !ignore_stepper_queue && !planner.blocks_queued()) {
  7470. #if ENABLED(DISABLE_INACTIVE_X)
  7471. disable_x();
  7472. #endif
  7473. #if ENABLED(DISABLE_INACTIVE_Y)
  7474. disable_y();
  7475. #endif
  7476. #if ENABLED(DISABLE_INACTIVE_Z)
  7477. disable_z();
  7478. #endif
  7479. #if ENABLED(DISABLE_INACTIVE_E)
  7480. disable_e0();
  7481. disable_e1();
  7482. disable_e2();
  7483. disable_e3();
  7484. #endif
  7485. }
  7486. #ifdef CHDK // Check if pin should be set to LOW after M240 set it to HIGH
  7487. if (chdkActive && PENDING(ms, chdkHigh + CHDK_DELAY)) {
  7488. chdkActive = false;
  7489. WRITE(CHDK, LOW);
  7490. }
  7491. #endif
  7492. #if HAS_KILL
  7493. // Check if the kill button was pressed and wait just in case it was an accidental
  7494. // key kill key press
  7495. // -------------------------------------------------------------------------------
  7496. static int killCount = 0; // make the inactivity button a bit less responsive
  7497. const int KILL_DELAY = 750;
  7498. if (!READ(KILL_PIN))
  7499. killCount++;
  7500. else if (killCount > 0)
  7501. killCount--;
  7502. // Exceeded threshold and we can confirm that it was not accidental
  7503. // KILL the machine
  7504. // ----------------------------------------------------------------
  7505. if (killCount >= KILL_DELAY) kill(PSTR(MSG_KILLED));
  7506. #endif
  7507. #if HAS_HOME
  7508. // Check to see if we have to home, use poor man's debouncer
  7509. // ---------------------------------------------------------
  7510. static int homeDebounceCount = 0; // poor man's debouncing count
  7511. const int HOME_DEBOUNCE_DELAY = 2500;
  7512. if (!READ(HOME_PIN)) {
  7513. if (!homeDebounceCount) {
  7514. enqueue_and_echo_commands_P(PSTR("G28"));
  7515. LCD_MESSAGEPGM(MSG_AUTO_HOME);
  7516. }
  7517. if (homeDebounceCount < HOME_DEBOUNCE_DELAY)
  7518. homeDebounceCount++;
  7519. else
  7520. homeDebounceCount = 0;
  7521. }
  7522. #endif
  7523. #if HAS_CONTROLLERFAN
  7524. controllerFan(); // Check if fan should be turned on to cool stepper drivers down
  7525. #endif
  7526. #if ENABLED(EXTRUDER_RUNOUT_PREVENT)
  7527. if (ELAPSED(ms, previous_cmd_ms + (EXTRUDER_RUNOUT_SECONDS) * 1000UL)
  7528. && thermalManager.degHotend(active_extruder) > EXTRUDER_RUNOUT_MINTEMP) {
  7529. bool oldstatus;
  7530. #if ENABLED(SWITCHING_EXTRUDER)
  7531. oldstatus = E0_ENABLE_READ;
  7532. enable_e0();
  7533. #else // !SWITCHING_EXTRUDER
  7534. switch (active_extruder) {
  7535. case 0:
  7536. oldstatus = E0_ENABLE_READ;
  7537. enable_e0();
  7538. break;
  7539. #if E_STEPPERS > 1
  7540. case 1:
  7541. oldstatus = E1_ENABLE_READ;
  7542. enable_e1();
  7543. break;
  7544. #if E_STEPPERS > 2
  7545. case 2:
  7546. oldstatus = E2_ENABLE_READ;
  7547. enable_e2();
  7548. break;
  7549. #if E_STEPPERS > 3
  7550. case 3:
  7551. oldstatus = E3_ENABLE_READ;
  7552. enable_e3();
  7553. break;
  7554. #endif
  7555. #endif
  7556. #endif
  7557. }
  7558. #endif // !SWITCHING_EXTRUDER
  7559. previous_cmd_ms = ms; // refresh_cmd_timeout()
  7560. planner.buffer_line(
  7561. current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS],
  7562. current_position[E_AXIS] + EXTRUDER_RUNOUT_EXTRUDE,
  7563. MMM_TO_MMS(EXTRUDER_RUNOUT_SPEED), active_extruder
  7564. );
  7565. stepper.synchronize();
  7566. planner.set_e_position_mm(current_position[E_AXIS]);
  7567. #if ENABLED(SWITCHING_EXTRUDER)
  7568. E0_ENABLE_WRITE(oldstatus);
  7569. #else
  7570. switch (active_extruder) {
  7571. case 0:
  7572. E0_ENABLE_WRITE(oldstatus);
  7573. break;
  7574. #if E_STEPPERS > 1
  7575. case 1:
  7576. E1_ENABLE_WRITE(oldstatus);
  7577. break;
  7578. #if E_STEPPERS > 2
  7579. case 2:
  7580. E2_ENABLE_WRITE(oldstatus);
  7581. break;
  7582. #if E_STEPPERS > 3
  7583. case 3:
  7584. E3_ENABLE_WRITE(oldstatus);
  7585. break;
  7586. #endif
  7587. #endif
  7588. #endif
  7589. }
  7590. #endif // !SWITCHING_EXTRUDER
  7591. }
  7592. #endif // EXTRUDER_RUNOUT_PREVENT
  7593. #if ENABLED(DUAL_X_CARRIAGE)
  7594. // handle delayed move timeout
  7595. if (delayed_move_time && ELAPSED(ms, delayed_move_time + 1000UL) && IsRunning()) {
  7596. // travel moves have been received so enact them
  7597. delayed_move_time = 0xFFFFFFFFUL; // force moves to be done
  7598. set_destination_to_current();
  7599. prepare_move_to_destination();
  7600. }
  7601. #endif
  7602. #if ENABLED(TEMP_STAT_LEDS)
  7603. handle_status_leds();
  7604. #endif
  7605. planner.check_axes_activity();
  7606. }
  7607. /**
  7608. * Standard idle routine keeps the machine alive
  7609. */
  7610. void idle(
  7611. #if ENABLED(FILAMENT_CHANGE_FEATURE)
  7612. bool no_stepper_sleep/*=false*/
  7613. #endif
  7614. ) {
  7615. lcd_update();
  7616. host_keepalive();
  7617. manage_inactivity(
  7618. #if ENABLED(FILAMENT_CHANGE_FEATURE)
  7619. no_stepper_sleep
  7620. #endif
  7621. );
  7622. thermalManager.manage_heater();
  7623. #if ENABLED(PRINTCOUNTER)
  7624. print_job_timer.tick();
  7625. #endif
  7626. #if HAS_BUZZER && PIN_EXISTS(BEEPER)
  7627. buzzer.tick();
  7628. #endif
  7629. }
  7630. /**
  7631. * Kill all activity and lock the machine.
  7632. * After this the machine will need to be reset.
  7633. */
  7634. void kill(const char* lcd_msg) {
  7635. SERIAL_ERROR_START;
  7636. SERIAL_ERRORLNPGM(MSG_ERR_KILLED);
  7637. #if ENABLED(ULTRA_LCD)
  7638. kill_screen(lcd_msg);
  7639. #else
  7640. UNUSED(lcd_msg);
  7641. #endif
  7642. delay(500); // Wait a short time
  7643. cli(); // Stop interrupts
  7644. thermalManager.disable_all_heaters();
  7645. disable_all_steppers();
  7646. #if HAS_POWER_SWITCH
  7647. pinMode(PS_ON_PIN, INPUT);
  7648. #endif
  7649. suicide();
  7650. while (1) {
  7651. #if ENABLED(USE_WATCHDOG)
  7652. watchdog_reset();
  7653. #endif
  7654. } // Wait for reset
  7655. }
  7656. /**
  7657. * Turn off heaters and stop the print in progress
  7658. * After a stop the machine may be resumed with M999
  7659. */
  7660. void stop() {
  7661. thermalManager.disable_all_heaters();
  7662. if (IsRunning()) {
  7663. Running = false;
  7664. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  7665. SERIAL_ERROR_START;
  7666. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  7667. LCD_MESSAGEPGM(MSG_STOPPED);
  7668. }
  7669. }
  7670. /**
  7671. * Marlin entry-point: Set up before the program loop
  7672. * - Set up the kill pin, filament runout, power hold
  7673. * - Start the serial port
  7674. * - Print startup messages and diagnostics
  7675. * - Get EEPROM or default settings
  7676. * - Initialize managers for:
  7677. * • temperature
  7678. * • planner
  7679. * • watchdog
  7680. * • stepper
  7681. * • photo pin
  7682. * • servos
  7683. * • LCD controller
  7684. * • Digipot I2C
  7685. * • Z probe sled
  7686. * • status LEDs
  7687. */
  7688. void setup() {
  7689. #ifdef DISABLE_JTAG
  7690. // Disable JTAG on AT90USB chips to free up pins for IO
  7691. MCUCR = 0x80;
  7692. MCUCR = 0x80;
  7693. #endif
  7694. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  7695. setup_filrunoutpin();
  7696. #endif
  7697. setup_killpin();
  7698. setup_powerhold();
  7699. #if HAS_STEPPER_RESET
  7700. disableStepperDrivers();
  7701. #endif
  7702. MYSERIAL.begin(BAUDRATE);
  7703. SERIAL_PROTOCOLLNPGM("start");
  7704. SERIAL_ECHO_START;
  7705. // Check startup - does nothing if bootloader sets MCUSR to 0
  7706. byte mcu = MCUSR;
  7707. if (mcu & 1) SERIAL_ECHOLNPGM(MSG_POWERUP);
  7708. if (mcu & 2) SERIAL_ECHOLNPGM(MSG_EXTERNAL_RESET);
  7709. if (mcu & 4) SERIAL_ECHOLNPGM(MSG_BROWNOUT_RESET);
  7710. if (mcu & 8) SERIAL_ECHOLNPGM(MSG_WATCHDOG_RESET);
  7711. if (mcu & 32) SERIAL_ECHOLNPGM(MSG_SOFTWARE_RESET);
  7712. MCUSR = 0;
  7713. SERIAL_ECHOPGM(MSG_MARLIN);
  7714. SERIAL_CHAR(' ');
  7715. SERIAL_ECHOLNPGM(SHORT_BUILD_VERSION);
  7716. SERIAL_EOL;
  7717. #if defined(STRING_DISTRIBUTION_DATE) && defined(STRING_CONFIG_H_AUTHOR)
  7718. SERIAL_ECHO_START;
  7719. SERIAL_ECHOPGM(MSG_CONFIGURATION_VER);
  7720. SERIAL_ECHOPGM(STRING_DISTRIBUTION_DATE);
  7721. SERIAL_ECHOLNPGM(MSG_AUTHOR STRING_CONFIG_H_AUTHOR);
  7722. SERIAL_ECHOLNPGM("Compiled: " __DATE__);
  7723. #endif
  7724. SERIAL_ECHO_START;
  7725. SERIAL_ECHOPAIR(MSG_FREE_MEMORY, freeMemory());
  7726. SERIAL_ECHOLNPAIR(MSG_PLANNER_BUFFER_BYTES, (int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  7727. // Send "ok" after commands by default
  7728. for (int8_t i = 0; i < BUFSIZE; i++) send_ok[i] = true;
  7729. // Load data from EEPROM if available (or use defaults)
  7730. // This also updates variables in the planner, elsewhere
  7731. Config_RetrieveSettings();
  7732. // Initialize current position based on home_offset
  7733. memcpy(current_position, home_offset, sizeof(home_offset));
  7734. // Vital to init stepper/planner equivalent for current_position
  7735. SYNC_PLAN_POSITION_KINEMATIC();
  7736. thermalManager.init(); // Initialize temperature loop
  7737. #if ENABLED(USE_WATCHDOG)
  7738. watchdog_init();
  7739. #endif
  7740. stepper.init(); // Initialize stepper, this enables interrupts!
  7741. setup_photpin();
  7742. servo_init();
  7743. #if HAS_BED_PROBE
  7744. endstops.enable_z_probe(false);
  7745. #endif
  7746. #if HAS_CONTROLLERFAN
  7747. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  7748. #endif
  7749. #if HAS_STEPPER_RESET
  7750. enableStepperDrivers();
  7751. #endif
  7752. #if ENABLED(DIGIPOT_I2C)
  7753. digipot_i2c_init();
  7754. #endif
  7755. #if ENABLED(DAC_STEPPER_CURRENT)
  7756. dac_init();
  7757. #endif
  7758. #if ENABLED(Z_PROBE_SLED) && PIN_EXISTS(SLED)
  7759. OUT_WRITE(SLED_PIN, LOW); // turn it off
  7760. #endif // Z_PROBE_SLED
  7761. setup_homepin();
  7762. #if PIN_EXISTS(STAT_LED_RED)
  7763. OUT_WRITE(STAT_LED_RED_PIN, LOW); // turn it off
  7764. #endif
  7765. #if PIN_EXISTS(STAT_LED_BLUE)
  7766. OUT_WRITE(STAT_LED_BLUE_PIN, LOW); // turn it off
  7767. #endif
  7768. lcd_init();
  7769. #if ENABLED(SHOW_BOOTSCREEN)
  7770. #if ENABLED(DOGLCD)
  7771. safe_delay(BOOTSCREEN_TIMEOUT);
  7772. #elif ENABLED(ULTRA_LCD)
  7773. bootscreen();
  7774. lcd_init();
  7775. #endif
  7776. #endif
  7777. #if ENABLED(MIXING_EXTRUDER) && MIXING_VIRTUAL_TOOLS > 1
  7778. // Initialize mixing to 100% color 1
  7779. for (uint8_t i = 0; i < MIXING_STEPPERS; i++)
  7780. mixing_factor[i] = (i == 0) ? 1 : 0;
  7781. for (uint8_t t = 0; t < MIXING_VIRTUAL_TOOLS; t++)
  7782. for (uint8_t i = 0; i < MIXING_STEPPERS; i++)
  7783. mixing_virtual_tool_mix[t][i] = mixing_factor[i];
  7784. #endif
  7785. #if ENABLED(EXPERIMENTAL_I2CBUS) && I2C_SLAVE_ADDRESS > 0
  7786. i2c.onReceive(i2c_on_receive);
  7787. i2c.onRequest(i2c_on_request);
  7788. #endif
  7789. }
  7790. /**
  7791. * The main Marlin program loop
  7792. *
  7793. * - Save or log commands to SD
  7794. * - Process available commands (if not saving)
  7795. * - Call heater manager
  7796. * - Call inactivity manager
  7797. * - Call endstop manager
  7798. * - Call LCD update
  7799. */
  7800. void loop() {
  7801. if (commands_in_queue < BUFSIZE) get_available_commands();
  7802. #if ENABLED(SDSUPPORT)
  7803. card.checkautostart(false);
  7804. #endif
  7805. if (commands_in_queue) {
  7806. #if ENABLED(SDSUPPORT)
  7807. if (card.saving) {
  7808. char* command = command_queue[cmd_queue_index_r];
  7809. if (strstr_P(command, PSTR("M29"))) {
  7810. // M29 closes the file
  7811. card.closefile();
  7812. SERIAL_PROTOCOLLNPGM(MSG_FILE_SAVED);
  7813. ok_to_send();
  7814. }
  7815. else {
  7816. // Write the string from the read buffer to SD
  7817. card.write_command(command);
  7818. if (card.logging)
  7819. process_next_command(); // The card is saving because it's logging
  7820. else
  7821. ok_to_send();
  7822. }
  7823. }
  7824. else
  7825. process_next_command();
  7826. #else
  7827. process_next_command();
  7828. #endif // SDSUPPORT
  7829. // The queue may be reset by a command handler or by code invoked by idle() within a handler
  7830. if (commands_in_queue) {
  7831. --commands_in_queue;
  7832. cmd_queue_index_r = (cmd_queue_index_r + 1) % BUFSIZE;
  7833. }
  7834. }
  7835. endstops.report_state();
  7836. idle();
  7837. }