My Marlin configs for Fabrikator Mini and CTC i3 Pro B
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

ubl.h 15KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355
  1. /**
  2. * Marlin 3D Printer Firmware
  3. * Copyright (C) 2016, 2017 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
  4. *
  5. * Based on Sprinter and grbl.
  6. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  7. *
  8. * This program is free software: you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation, either version 3 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  20. *
  21. */
  22. #ifndef UNIFIED_BED_LEVELING_H
  23. #define UNIFIED_BED_LEVELING_H
  24. //#define UBL_DEVEL_DEBUGGING
  25. #include "../bedlevel.h"
  26. #include "../../../module/planner.h"
  27. #include "../../../module/motion.h"
  28. #include "../../../Marlin.h"
  29. #define UBL_VERSION "1.01"
  30. #define UBL_OK false
  31. #define UBL_ERR true
  32. #define USE_NOZZLE_AS_REFERENCE 0
  33. #define USE_PROBE_AS_REFERENCE 1
  34. // ubl_motion.cpp
  35. #if ENABLED(UBL_DEVEL_DEBUGGING)
  36. void debug_current_and_destination(const char * const title);
  37. #else
  38. FORCE_INLINE void debug_current_and_destination(const char * const title) { UNUSED(title); }
  39. #endif
  40. // ubl_G29.cpp
  41. enum MeshPointType { INVALID, REAL, SET_IN_BITMAP };
  42. // External references
  43. char *ftostr43sign(const float&, char);
  44. extern uint8_t ubl_cnt;
  45. ///////////////////////////////////////////////////////////////////////////////////////////////////////
  46. #if ENABLED(ULTRA_LCD)
  47. extern char lcd_status_message[];
  48. void lcd_quick_feedback(const bool clear_buttons);
  49. #endif
  50. #define MESH_X_DIST (float(MESH_MAX_X - (MESH_MIN_X)) / float(GRID_MAX_POINTS_X - 1))
  51. #define MESH_Y_DIST (float(MESH_MAX_Y - (MESH_MIN_Y)) / float(GRID_MAX_POINTS_Y - 1))
  52. class unified_bed_leveling {
  53. private:
  54. static int g29_verbose_level,
  55. g29_phase_value,
  56. g29_repetition_cnt,
  57. g29_storage_slot,
  58. g29_map_type;
  59. static bool g29_c_flag, g29_x_flag, g29_y_flag;
  60. static float g29_x_pos, g29_y_pos,
  61. g29_card_thickness,
  62. g29_constant;
  63. #if HAS_BED_PROBE
  64. static int g29_grid_size;
  65. #endif
  66. #if ENABLED(NEWPANEL)
  67. static void move_z_with_encoder(const float &multiplier);
  68. static float measure_point_with_encoder();
  69. static float measure_business_card_thickness(float);
  70. static void manually_probe_remaining_mesh(const float&, const float&, const float&, const float&, const bool);
  71. static void fine_tune_mesh(const float &rx, const float &ry, const bool do_ubl_mesh_map);
  72. #endif
  73. static bool g29_parameter_parsing();
  74. static void find_mean_mesh_height();
  75. static void shift_mesh_height();
  76. static void probe_entire_mesh(const float &rx, const float &ry, const bool do_ubl_mesh_map, const bool stow_probe, bool do_furthest);
  77. static void tilt_mesh_based_on_3pts(const float &z1, const float &z2, const float &z3);
  78. static void tilt_mesh_based_on_probed_grid(const bool do_ubl_mesh_map);
  79. static void g29_what_command();
  80. static void g29_eeprom_dump();
  81. static void g29_compare_current_mesh_to_stored_mesh();
  82. static bool smart_fill_one(const uint8_t x, const uint8_t y, const int8_t xdir, const int8_t ydir);
  83. static void smart_fill_mesh();
  84. public:
  85. static void echo_name(
  86. #if NUM_SERIAL > 1
  87. const int8_t port = -1
  88. #endif
  89. );
  90. static void report_state(
  91. #if NUM_SERIAL > 1
  92. const int8_t port = -1
  93. #endif
  94. );
  95. static void save_ubl_active_state_and_disable();
  96. static void restore_ubl_active_state_and_leave();
  97. static void display_map(const int);
  98. static mesh_index_pair find_closest_mesh_point_of_type(const MeshPointType, const float&, const float&, const bool, uint16_t[16]);
  99. static mesh_index_pair find_furthest_invalid_mesh_point();
  100. static void reset();
  101. static void invalidate();
  102. static void set_all_mesh_points_to_value(const float);
  103. static bool sanity_check();
  104. static void G29() _O0; // O0 for no optimization
  105. static void smart_fill_wlsf(const float &) _O2; // O2 gives smaller code than Os on A2560
  106. static int8_t storage_slot;
  107. static float z_values[GRID_MAX_POINTS_X][GRID_MAX_POINTS_Y];
  108. // 15 is the maximum nubmer of grid points supported + 1 safety margin for now,
  109. // until determinism prevails
  110. constexpr static float _mesh_index_to_xpos[16] PROGMEM = {
  111. MESH_MIN_X + 0 * (MESH_X_DIST), MESH_MIN_X + 1 * (MESH_X_DIST),
  112. MESH_MIN_X + 2 * (MESH_X_DIST), MESH_MIN_X + 3 * (MESH_X_DIST),
  113. MESH_MIN_X + 4 * (MESH_X_DIST), MESH_MIN_X + 5 * (MESH_X_DIST),
  114. MESH_MIN_X + 6 * (MESH_X_DIST), MESH_MIN_X + 7 * (MESH_X_DIST),
  115. MESH_MIN_X + 8 * (MESH_X_DIST), MESH_MIN_X + 9 * (MESH_X_DIST),
  116. MESH_MIN_X + 10 * (MESH_X_DIST), MESH_MIN_X + 11 * (MESH_X_DIST),
  117. MESH_MIN_X + 12 * (MESH_X_DIST), MESH_MIN_X + 13 * (MESH_X_DIST),
  118. MESH_MIN_X + 14 * (MESH_X_DIST), MESH_MIN_X + 15 * (MESH_X_DIST)
  119. };
  120. constexpr static float _mesh_index_to_ypos[16] PROGMEM = {
  121. MESH_MIN_Y + 0 * (MESH_Y_DIST), MESH_MIN_Y + 1 * (MESH_Y_DIST),
  122. MESH_MIN_Y + 2 * (MESH_Y_DIST), MESH_MIN_Y + 3 * (MESH_Y_DIST),
  123. MESH_MIN_Y + 4 * (MESH_Y_DIST), MESH_MIN_Y + 5 * (MESH_Y_DIST),
  124. MESH_MIN_Y + 6 * (MESH_Y_DIST), MESH_MIN_Y + 7 * (MESH_Y_DIST),
  125. MESH_MIN_Y + 8 * (MESH_Y_DIST), MESH_MIN_Y + 9 * (MESH_Y_DIST),
  126. MESH_MIN_Y + 10 * (MESH_Y_DIST), MESH_MIN_Y + 11 * (MESH_Y_DIST),
  127. MESH_MIN_Y + 12 * (MESH_Y_DIST), MESH_MIN_Y + 13 * (MESH_Y_DIST),
  128. MESH_MIN_Y + 14 * (MESH_Y_DIST), MESH_MIN_Y + 15 * (MESH_Y_DIST)
  129. };
  130. #if ENABLED(ULTIPANEL)
  131. static bool lcd_map_control;
  132. #endif
  133. static volatile int encoder_diff; // Volatile because it's changed at interrupt time.
  134. unified_bed_leveling();
  135. FORCE_INLINE static void set_z(const int8_t px, const int8_t py, const float &z) { z_values[px][py] = z; }
  136. static int8_t get_cell_index_x(const float &x) {
  137. const int8_t cx = (x - (MESH_MIN_X)) * (1.0 / (MESH_X_DIST));
  138. return constrain(cx, 0, (GRID_MAX_POINTS_X) - 1); // -1 is appropriate if we want all movement to the X_MAX
  139. } // position. But with this defined this way, it is possible
  140. // to extrapolate off of this point even further out. Probably
  141. // that is OK because something else should be keeping that from
  142. // happening and should not be worried about at this level.
  143. static int8_t get_cell_index_y(const float &y) {
  144. const int8_t cy = (y - (MESH_MIN_Y)) * (1.0 / (MESH_Y_DIST));
  145. return constrain(cy, 0, (GRID_MAX_POINTS_Y) - 1); // -1 is appropriate if we want all movement to the Y_MAX
  146. } // position. But with this defined this way, it is possible
  147. // to extrapolate off of this point even further out. Probably
  148. // that is OK because something else should be keeping that from
  149. // happening and should not be worried about at this level.
  150. static int8_t find_closest_x_index(const float &x) {
  151. const int8_t px = (x - (MESH_MIN_X) + (MESH_X_DIST) * 0.5) * (1.0 / (MESH_X_DIST));
  152. return WITHIN(px, 0, GRID_MAX_POINTS_X - 1) ? px : -1;
  153. }
  154. static int8_t find_closest_y_index(const float &y) {
  155. const int8_t py = (y - (MESH_MIN_Y) + (MESH_Y_DIST) * 0.5) * (1.0 / (MESH_Y_DIST));
  156. return WITHIN(py, 0, GRID_MAX_POINTS_Y - 1) ? py : -1;
  157. }
  158. /**
  159. * z2 --|
  160. * z0 | |
  161. * | | + (z2-z1)
  162. * z1 | | |
  163. * ---+-------------+--------+-- --|
  164. * a1 a0 a2
  165. * |<---delta_a---------->|
  166. *
  167. * calc_z0 is the basis for all the Mesh Based correction. It is used to
  168. * find the expected Z Height at a position between two known Z-Height locations.
  169. *
  170. * It is fairly expensive with its 4 floating point additions and 2 floating point
  171. * multiplications.
  172. */
  173. FORCE_INLINE static float calc_z0(const float &a0, const float &a1, const float &z1, const float &a2, const float &z2) {
  174. return z1 + (z2 - z1) * (a0 - a1) / (a2 - a1);
  175. }
  176. /**
  177. * z_correction_for_x_on_horizontal_mesh_line is an optimization for
  178. * the case where the printer is making a vertical line that only crosses horizontal mesh lines.
  179. */
  180. inline static float z_correction_for_x_on_horizontal_mesh_line(const float &rx0, const int x1_i, const int yi) {
  181. if (!WITHIN(x1_i, 0, GRID_MAX_POINTS_X - 1) || !WITHIN(yi, 0, GRID_MAX_POINTS_Y - 1)) {
  182. #if ENABLED(DEBUG_LEVELING_FEATURE)
  183. if (DEBUGGING(LEVELING)) {
  184. serialprintPGM( !WITHIN(x1_i, 0, GRID_MAX_POINTS_X - 1) ? PSTR("x1_i") : PSTR("yi") );
  185. SERIAL_ECHOPAIR(" out of bounds in z_correction_for_x_on_horizontal_mesh_line(rx0=", rx0);
  186. SERIAL_ECHOPAIR(",x1_i=", x1_i);
  187. SERIAL_ECHOPAIR(",yi=", yi);
  188. SERIAL_CHAR(')');
  189. SERIAL_EOL();
  190. }
  191. #endif
  192. return NAN;
  193. }
  194. const float xratio = (rx0 - mesh_index_to_xpos(x1_i)) * (1.0 / (MESH_X_DIST)),
  195. z1 = z_values[x1_i][yi];
  196. return z1 + xratio * (z_values[min(x1_i, GRID_MAX_POINTS_X - 2) + 1][yi] - z1); // Don't allow x1_i+1 to be past the end of the array
  197. // If it is, it is clamped to the last element of the
  198. // z_values[][] array and no correction is applied.
  199. }
  200. //
  201. // See comments above for z_correction_for_x_on_horizontal_mesh_line
  202. //
  203. inline static float z_correction_for_y_on_vertical_mesh_line(const float &ry0, const int xi, const int y1_i) {
  204. if (!WITHIN(xi, 0, GRID_MAX_POINTS_X - 1) || !WITHIN(y1_i, 0, GRID_MAX_POINTS_Y - 1)) {
  205. #if ENABLED(DEBUG_LEVELING_FEATURE)
  206. if (DEBUGGING(LEVELING)) {
  207. serialprintPGM( !WITHIN(xi, 0, GRID_MAX_POINTS_X - 1) ? PSTR("xi") : PSTR("y1_i") );
  208. SERIAL_ECHOPAIR(" out of bounds in z_correction_for_y_on_vertical_mesh_line(ry0=", ry0);
  209. SERIAL_ECHOPAIR(", xi=", xi);
  210. SERIAL_ECHOPAIR(", y1_i=", y1_i);
  211. SERIAL_CHAR(')');
  212. SERIAL_EOL();
  213. }
  214. #endif
  215. return NAN;
  216. }
  217. const float yratio = (ry0 - mesh_index_to_ypos(y1_i)) * (1.0 / (MESH_Y_DIST)),
  218. z1 = z_values[xi][y1_i];
  219. return z1 + yratio * (z_values[xi][min(y1_i, GRID_MAX_POINTS_Y - 2) + 1] - z1); // Don't allow y1_i+1 to be past the end of the array
  220. // If it is, it is clamped to the last element of the
  221. // z_values[][] array and no correction is applied.
  222. }
  223. /**
  224. * This is the generic Z-Correction. It works anywhere within a Mesh Cell. It first
  225. * does a linear interpolation along both of the bounding X-Mesh-Lines to find the
  226. * Z-Height at both ends. Then it does a linear interpolation of these heights based
  227. * on the Y position within the cell.
  228. */
  229. static float get_z_correction(const float &rx0, const float &ry0) {
  230. const int8_t cx = get_cell_index_x(rx0),
  231. cy = get_cell_index_y(ry0); // return values are clamped
  232. const float z1 = calc_z0(rx0,
  233. mesh_index_to_xpos(cx), z_values[cx][cy],
  234. mesh_index_to_xpos(cx + 1), z_values[min(cx, GRID_MAX_POINTS_X - 2) + 1][cy]);
  235. const float z2 = calc_z0(rx0,
  236. mesh_index_to_xpos(cx), z_values[cx][min(cy, GRID_MAX_POINTS_Y - 2) + 1],
  237. mesh_index_to_xpos(cx + 1), z_values[min(cx, GRID_MAX_POINTS_X - 2) + 1][min(cy, GRID_MAX_POINTS_Y - 2) + 1]);
  238. float z0 = calc_z0(ry0,
  239. mesh_index_to_ypos(cy), z1,
  240. mesh_index_to_ypos(cy + 1), z2);
  241. #if ENABLED(DEBUG_LEVELING_FEATURE)
  242. if (DEBUGGING(MESH_ADJUST)) {
  243. SERIAL_ECHOPAIR(" raw get_z_correction(", rx0);
  244. SERIAL_CHAR(',');
  245. SERIAL_ECHO(ry0);
  246. SERIAL_ECHOPGM(") = ");
  247. SERIAL_ECHO_F(z0, 6);
  248. }
  249. #endif
  250. #if ENABLED(DEBUG_LEVELING_FEATURE)
  251. if (DEBUGGING(MESH_ADJUST)) {
  252. SERIAL_ECHOPGM(" >>>---> ");
  253. SERIAL_ECHO_F(z0, 6);
  254. SERIAL_EOL();
  255. }
  256. #endif
  257. if (isnan(z0)) { // if part of the Mesh is undefined, it will show up as NAN
  258. z0 = 0.0; // in ubl.z_values[][] and propagate through the
  259. // calculations. If our correction is NAN, we throw it out
  260. // because part of the Mesh is undefined and we don't have the
  261. // information we need to complete the height correction.
  262. #if ENABLED(DEBUG_LEVELING_FEATURE)
  263. if (DEBUGGING(MESH_ADJUST)) {
  264. SERIAL_ECHOPAIR("??? Yikes! NAN in get_z_correction(", rx0);
  265. SERIAL_CHAR(',');
  266. SERIAL_ECHO(ry0);
  267. SERIAL_CHAR(')');
  268. SERIAL_EOL();
  269. }
  270. #endif
  271. }
  272. return z0;
  273. }
  274. FORCE_INLINE static float mesh_index_to_xpos(const uint8_t i) {
  275. return i < GRID_MAX_POINTS_X ? pgm_read_float(&_mesh_index_to_xpos[i]) : MESH_MIN_X + i * (MESH_X_DIST);
  276. }
  277. FORCE_INLINE static float mesh_index_to_ypos(const uint8_t i) {
  278. return i < GRID_MAX_POINTS_Y ? pgm_read_float(&_mesh_index_to_ypos[i]) : MESH_MIN_Y + i * (MESH_Y_DIST);
  279. }
  280. #if UBL_SEGMENTED
  281. static bool prepare_segmented_line_to(const float (&rtarget)[XYZE], const float &feedrate);
  282. #else
  283. static void line_to_destination_cartesian(const float &fr, const uint8_t e);
  284. #endif
  285. #define _CMPZ(a,b) (z_values[a][b] == z_values[a][b+1])
  286. #define CMPZ(a) (_CMPZ(a, 0) && _CMPZ(a, 1))
  287. #define ZZER(a) (z_values[a][0] == 0)
  288. FORCE_INLINE bool mesh_is_valid() {
  289. return !(
  290. ( CMPZ(0) && CMPZ(1) && CMPZ(2) // adjacent z values all equal?
  291. && ZZER(0) && ZZER(1) && ZZER(2) // all zero at the edge?
  292. )
  293. || isnan(z_values[0][0])
  294. );
  295. }
  296. }; // class unified_bed_leveling
  297. extern unified_bed_leveling ubl;
  298. #endif // UNIFIED_BED_LEVELING_H