My Marlin configs for Fabrikator Mini and CTC i3 Pro B
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

Marlin_main.cpp 317KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997799879998000800180028003800480058006800780088009801080118012801380148015801680178018801980208021802280238024802580268027802880298030803180328033803480358036803780388039804080418042804380448045804680478048804980508051805280538054805580568057805880598060806180628063806480658066806780688069807080718072807380748075807680778078807980808081808280838084808580868087808880898090809180928093809480958096809780988099810081018102810381048105810681078108810981108111811281138114811581168117811881198120812181228123812481258126812781288129813081318132813381348135813681378138813981408141814281438144814581468147814881498150815181528153815481558156815781588159816081618162816381648165816681678168816981708171817281738174817581768177817881798180818181828183818481858186818781888189819081918192819381948195819681978198819982008201820282038204820582068207820882098210821182128213821482158216821782188219822082218222822382248225822682278228822982308231823282338234823582368237823882398240824182428243824482458246824782488249825082518252825382548255825682578258825982608261826282638264826582668267826882698270827182728273827482758276827782788279828082818282828382848285828682878288828982908291829282938294829582968297829882998300830183028303830483058306830783088309831083118312831383148315831683178318831983208321832283238324832583268327832883298330833183328333833483358336833783388339834083418342834383448345834683478348834983508351835283538354835583568357835883598360836183628363836483658366836783688369837083718372837383748375837683778378837983808381838283838384838583868387838883898390839183928393839483958396839783988399840084018402840384048405840684078408840984108411841284138414841584168417841884198420842184228423842484258426842784288429843084318432843384348435843684378438843984408441844284438444844584468447844884498450845184528453845484558456845784588459846084618462846384648465846684678468846984708471847284738474847584768477847884798480848184828483848484858486848784888489849084918492849384948495849684978498849985008501850285038504850585068507850885098510851185128513851485158516851785188519852085218522852385248525852685278528852985308531853285338534853585368537853885398540854185428543854485458546854785488549855085518552855385548555855685578558855985608561856285638564856585668567856885698570857185728573857485758576857785788579858085818582858385848585858685878588858985908591859285938594859585968597859885998600860186028603860486058606860786088609861086118612861386148615861686178618861986208621862286238624862586268627862886298630863186328633863486358636863786388639864086418642864386448645864686478648864986508651865286538654865586568657865886598660866186628663866486658666866786688669867086718672867386748675867686778678867986808681868286838684868586868687868886898690869186928693869486958696869786988699870087018702870387048705870687078708870987108711871287138714871587168717871887198720872187228723872487258726872787288729873087318732873387348735873687378738873987408741874287438744874587468747874887498750875187528753875487558756875787588759876087618762876387648765876687678768876987708771877287738774877587768777877887798780878187828783878487858786878787888789879087918792879387948795879687978798879988008801880288038804880588068807880888098810881188128813881488158816881788188819882088218822882388248825882688278828882988308831883288338834883588368837883888398840884188428843884488458846884788488849885088518852885388548855885688578858885988608861886288638864886588668867886888698870887188728873887488758876887788788879888088818882888388848885888688878888888988908891889288938894889588968897889888998900890189028903890489058906890789088909891089118912891389148915891689178918891989208921892289238924892589268927892889298930893189328933893489358936893789388939894089418942894389448945894689478948894989508951895289538954895589568957895889598960896189628963896489658966896789688969897089718972897389748975897689778978897989808981898289838984898589868987898889898990899189928993899489958996899789988999900090019002900390049005900690079008900990109011901290139014901590169017901890199020902190229023902490259026902790289029903090319032903390349035903690379038903990409041904290439044904590469047904890499050905190529053905490559056905790589059906090619062906390649065906690679068906990709071907290739074907590769077907890799080908190829083908490859086908790889089909090919092909390949095909690979098909991009101910291039104910591069107910891099110911191129113911491159116911791189119912091219122912391249125912691279128912991309131913291339134913591369137913891399140914191429143914491459146914791489149915091519152915391549155915691579158915991609161916291639164916591669167916891699170917191729173917491759176917791789179918091819182918391849185918691879188918991909191919291939194919591969197919891999200920192029203920492059206920792089209921092119212921392149215921692179218921992209221922292239224922592269227922892299230923192329233923492359236923792389239924092419242924392449245924692479248924992509251925292539254925592569257925892599260926192629263926492659266926792689269927092719272927392749275927692779278927992809281928292839284928592869287928892899290929192929293929492959296929792989299930093019302930393049305930693079308930993109311931293139314931593169317931893199320932193229323932493259326932793289329933093319332933393349335933693379338933993409341934293439344934593469347934893499350935193529353935493559356935793589359936093619362936393649365936693679368936993709371937293739374937593769377937893799380938193829383938493859386938793889389939093919392939393949395939693979398939994009401940294039404940594069407940894099410941194129413941494159416941794189419942094219422942394249425942694279428942994309431943294339434943594369437943894399440944194429443944494459446944794489449945094519452945394549455945694579458945994609461946294639464946594669467946894699470947194729473947494759476947794789479948094819482948394849485948694879488948994909491949294939494949594969497949894999500950195029503950495059506950795089509951095119512951395149515951695179518951995209521952295239524952595269527952895299530953195329533953495359536953795389539954095419542954395449545954695479548954995509551955295539554955595569557955895599560956195629563956495659566956795689569957095719572957395749575957695779578957995809581958295839584958595869587958895899590959195929593959495959596959795989599960096019602960396049605960696079608960996109611961296139614961596169617961896199620962196229623962496259626962796289629963096319632963396349635963696379638963996409641964296439644964596469647964896499650965196529653965496559656965796589659966096619662966396649665966696679668966996709671967296739674967596769677967896799680968196829683968496859686968796889689969096919692969396949695969696979698969997009701970297039704970597069707970897099710971197129713971497159716971797189719972097219722972397249725972697279728972997309731973297339734973597369737973897399740974197429743974497459746974797489749975097519752975397549755975697579758975997609761976297639764976597669767976897699770977197729773977497759776977797789779978097819782978397849785978697879788978997909791979297939794979597969797979897999800980198029803980498059806980798089809981098119812981398149815981698179818981998209821982298239824982598269827982898299830983198329833983498359836983798389839984098419842984398449845984698479848984998509851985298539854985598569857985898599860986198629863986498659866986798689869987098719872987398749875987698779878987998809881988298839884988598869887988898899890989198929893989498959896989798989899990099019902990399049905990699079908990999109911991299139914991599169917991899199920992199229923992499259926992799289929993099319932993399349935993699379938993999409941994299439944994599469947994899499950995199529953995499559956995799589959996099619962996399649965996699679968996999709971997299739974997599769977997899799980998199829983998499859986998799889989999099919992999399949995999699979998999910000100011000210003100041000510006100071000810009100101001110012100131001410015100161001710018100191002010021100221002310024100251002610027100281002910030100311003210033100341003510036100371003810039100401004110042100431004410045100461004710048100491005010051100521005310054100551005610057100581005910060100611006210063100641006510066100671006810069100701007110072100731007410075100761007710078100791008010081100821008310084100851008610087100881008910090100911009210093100941009510096100971009810099101001010110102101031010410105101061010710108101091011010111101121011310114101151011610117101181011910120101211012210123101241012510126101271012810129101301013110132101331013410135101361013710138101391014010141101421014310144101451014610147101481014910150101511015210153101541015510156101571015810159101601016110162101631016410165101661016710168101691017010171101721017310174101751017610177101781017910180101811018210183101841018510186101871018810189101901019110192101931019410195101961019710198101991020010201
  1. /**
  2. * Marlin 3D Printer Firmware
  3. * Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
  4. *
  5. * Based on Sprinter and grbl.
  6. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  7. *
  8. * This program is free software: you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation, either version 3 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  20. *
  21. */
  22. /**
  23. * About Marlin
  24. *
  25. * This firmware is a mashup between Sprinter and grbl.
  26. * - https://github.com/kliment/Sprinter
  27. * - https://github.com/simen/grbl/tree
  28. *
  29. * It has preliminary support for Matthew Roberts advance algorithm
  30. * - http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  31. */
  32. /**
  33. * -----------------
  34. * G-Codes in Marlin
  35. * -----------------
  36. *
  37. * Helpful G-code references:
  38. * - http://linuxcnc.org/handbook/gcode/g-code.html
  39. * - http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  40. *
  41. * Help to document Marlin's G-codes online:
  42. * - http://reprap.org/wiki/G-code
  43. * - https://github.com/MarlinFirmware/MarlinDocumentation
  44. *
  45. * -----------------
  46. *
  47. * "G" Codes
  48. *
  49. * G0 -> G1
  50. * G1 - Coordinated Movement X Y Z E
  51. * G2 - CW ARC
  52. * G3 - CCW ARC
  53. * G4 - Dwell S<seconds> or P<milliseconds>
  54. * G5 - Cubic B-spline with XYZE destination and IJPQ offsets
  55. * G10 - Retract filament according to settings of M207
  56. * G11 - Retract recover filament according to settings of M208
  57. * G12 - Clean tool
  58. * G20 - Set input units to inches
  59. * G21 - Set input units to millimeters
  60. * G28 - Home one or more axes
  61. * G29 - Detailed Z probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  62. * G30 - Single Z probe, probes bed at X Y location (defaults to current XY location)
  63. * G31 - Dock sled (Z_PROBE_SLED only)
  64. * G32 - Undock sled (Z_PROBE_SLED only)
  65. * G38 - Probe target - similar to G28 except it uses the Z_MIN endstop for all three axes
  66. * G90 - Use Absolute Coordinates
  67. * G91 - Use Relative Coordinates
  68. * G92 - Set current position to coordinates given
  69. *
  70. * "M" Codes
  71. *
  72. * M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
  73. * M1 - Same as M0
  74. * M17 - Enable/Power all stepper motors
  75. * M18 - Disable all stepper motors; same as M84
  76. * M20 - List SD card. (Requires SDSUPPORT)
  77. * M21 - Init SD card. (Requires SDSUPPORT)
  78. * M22 - Release SD card. (Requires SDSUPPORT)
  79. * M23 - Select SD file: "M23 /path/file.gco". (Requires SDSUPPORT)
  80. * M24 - Start/resume SD print. (Requires SDSUPPORT)
  81. * M25 - Pause SD print. (Requires SDSUPPORT)
  82. * M26 - Set SD position in bytes: "M26 S12345". (Requires SDSUPPORT)
  83. * M27 - Report SD print status. (Requires SDSUPPORT)
  84. * M28 - Start SD write: "M28 /path/file.gco". (Requires SDSUPPORT)
  85. * M29 - Stop SD write. (Requires SDSUPPORT)
  86. * M30 - Delete file from SD: "M30 /path/file.gco"
  87. * M31 - Report time since last M109 or SD card start to serial.
  88. * M32 - Select file and start SD print: "M32 [S<bytepos>] !/path/file.gco#". (Requires SDSUPPORT)
  89. * Use P to run other files as sub-programs: "M32 P !filename#"
  90. * The '#' is necessary when calling from within sd files, as it stops buffer prereading
  91. * M33 - Get the longname version of a path. (Requires LONG_FILENAME_HOST_SUPPORT)
  92. * M42 - Change pin status via gcode: M42 P<pin> S<value>. LED pin assumed if P is omitted.
  93. * M43 - Monitor pins & report changes - report active pins
  94. * M48 - Measure Z Probe repeatability: M48 P<points> X<pos> Y<pos> V<level> E<engage> L<legs>. (Requires Z_MIN_PROBE_REPEATABILITY_TEST)
  95. * M75 - Start the print job timer.
  96. * M76 - Pause the print job timer.
  97. * M77 - Stop the print job timer.
  98. * M78 - Show statistical information about the print jobs. (Requires PRINTCOUNTER)
  99. * M80 - Turn on Power Supply. (Requires POWER_SUPPLY)
  100. * M81 - Turn off Power Supply. (Requires POWER_SUPPLY)
  101. * M82 - Set E codes absolute (default).
  102. * M83 - Set E codes relative while in Absolute (G90) mode.
  103. * M84 - Disable steppers until next move, or use S<seconds> to specify an idle
  104. * duration after which steppers should turn off. S0 disables the timeout.
  105. * M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  106. * M92 - Set planner.axis_steps_per_mm for one or more axes.
  107. * M104 - Set extruder target temp.
  108. * M105 - Report current temperatures.
  109. * M106 - Fan on.
  110. * M107 - Fan off.
  111. * M108 - Break out of heating loops (M109, M190, M303). With no controller, breaks out of M0/M1. (Requires EMERGENCY_PARSER)
  112. * M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  113. * Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  114. * If AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  115. * M110 - Set the current line number. (Used by host printing)
  116. * M111 - Set debug flags: "M111 S<flagbits>". See flag bits defined in enum.h.
  117. * M112 - Emergency stop.
  118. * M113 - Get or set the timeout interval for Host Keepalive "busy" messages. (Requires HOST_KEEPALIVE_FEATURE)
  119. * M114 - Report current position.
  120. * M115 - Report capabilities. (Extended capabilities requires EXTENDED_CAPABILITIES_REPORT)
  121. * M117 - Display a message on the controller screen. (Requires an LCD)
  122. * M119 - Report endstops status.
  123. * M120 - Enable endstops detection.
  124. * M121 - Disable endstops detection.
  125. * M126 - Solenoid Air Valve Open. (Requires BARICUDA)
  126. * M127 - Solenoid Air Valve Closed. (Requires BARICUDA)
  127. * M128 - EtoP Open. (Requires BARICUDA)
  128. * M129 - EtoP Closed. (Requires BARICUDA)
  129. * M140 - Set bed target temp. S<temp>
  130. * M145 - Set heatup values for materials on the LCD. H<hotend> B<bed> F<fan speed> for S<material> (0=PLA, 1=ABS)
  131. * M149 - Set temperature units. (Requires TEMPERATURE_UNITS_SUPPORT)
  132. * M150 - Set Status LED Color as R<red> U<green> B<blue>. Values 0-255. (Requires BLINKM or RGB_LED)
  133. * M155 - Auto-report temperatures with interval of S<seconds>. (Requires AUTO_REPORT_TEMPERATURES)
  134. * M163 - Set a single proportion for a mixing extruder. (Requires MIXING_EXTRUDER)
  135. * M164 - Save the mix as a virtual extruder. (Requires MIXING_EXTRUDER and MIXING_VIRTUAL_TOOLS)
  136. * M165 - Set the proportions for a mixing extruder. Use parameters ABCDHI to set the mixing factors. (Requires MIXING_EXTRUDER)
  137. * M190 - Sxxx Wait for bed current temp to reach target temp. ** Waits only when heating! **
  138. * Rxxx Wait for bed current temp to reach target temp. ** Waits for heating or cooling. **
  139. * M200 - Set filament diameter, D<diameter>, setting E axis units to cubic. (Use S0 to revert to linear units.)
  140. * M201 - Set max acceleration in units/s^2 for print moves: "M201 X<accel> Y<accel> Z<accel> E<accel>"
  141. * M202 - Set max acceleration in units/s^2 for travel moves: "M202 X<accel> Y<accel> Z<accel> E<accel>" ** UNUSED IN MARLIN! **
  142. * M203 - Set maximum feedrate: "M203 X<fr> Y<fr> Z<fr> E<fr>" in units/sec.
  143. * M204 - Set default acceleration in units/sec^2: P<printing> R<extruder_only> T<travel>
  144. * M205 - Set advanced settings. Current units apply:
  145. S<print> T<travel> minimum speeds
  146. B<minimum segment time>
  147. X<max X jerk>, Y<max Y jerk>, Z<max Z jerk>, E<max E jerk>
  148. * M206 - Set additional homing offset.
  149. * M207 - Set Retract Length: S<length>, Feedrate: F<units/min>, and Z lift: Z<distance>. (Requires FWRETRACT)
  150. * M208 - Set Recover (unretract) Additional (!) Length: S<length> and Feedrate: F<units/min>. (Requires FWRETRACT)
  151. * M209 - Turn Automatic Retract Detection on/off: S<0|1> (For slicers that don't support G10/11). (Requires FWRETRACT)
  152. Every normal extrude-only move will be classified as retract depending on the direction.
  153. * M211 - Enable, Disable, and/or Report software endstops: S<0|1>
  154. * M218 - Set a tool offset: "M218 T<index> X<offset> Y<offset>". (Requires 2 or more extruders)
  155. * M220 - Set Feedrate Percentage: "M220 S<percent>" (i.e., "FR" on the LCD)
  156. * M221 - Set Flow Percentage: "M221 S<percent>"
  157. * M226 - Wait until a pin is in a given state: "M226 P<pin> S<state>"
  158. * M240 - Trigger a camera to take a photograph. (Requires CHDK or PHOTOGRAPH_PIN)
  159. * M250 - Set LCD contrast: "M250 C<contrast>" (0-63). (Requires LCD support)
  160. * M260 - i2c Send Data (Requires EXPERIMENTAL_I2CBUS)
  161. * M261 - i2c Request Data (Requires EXPERIMENTAL_I2CBUS)
  162. * M280 - Set servo position absolute: "M280 P<index> S<angle|µs>". (Requires servos)
  163. * M300 - Play beep sound S<frequency Hz> P<duration ms>
  164. * M301 - Set PID parameters P I and D. (Requires PIDTEMP)
  165. * M302 - Allow cold extrudes, or set the minimum extrude S<temperature>. (Requires PREVENT_COLD_EXTRUSION)
  166. * M303 - PID relay autotune S<temperature> sets the target temperature. Default 150C. (Requires PIDTEMP)
  167. * M304 - Set bed PID parameters P I and D. (Requires PIDTEMPBED)
  168. * M355 - Turn the Case Light on/off and set its brightness. (Requires CASE_LIGHT_PIN)
  169. * M380 - Activate solenoid on active extruder. (Requires EXT_SOLENOID)
  170. * M381 - Disable all solenoids. (Requires EXT_SOLENOID)
  171. * M400 - Finish all moves.
  172. * M401 - Lower Z probe. (Requires a probe)
  173. * M402 - Raise Z probe. (Requires a probe)
  174. * M404 - Display or set the Nominal Filament Width: "W<diameter>". (Requires FILAMENT_WIDTH_SENSOR)
  175. * M405 - Enable Filament Sensor flow control. "M405 D<delay_cm>". (Requires FILAMENT_WIDTH_SENSOR)
  176. * M406 - Disable Filament Sensor flow control. (Requires FILAMENT_WIDTH_SENSOR)
  177. * M407 - Display measured filament diameter in millimeters. (Requires FILAMENT_WIDTH_SENSOR)
  178. * M410 - Quickstop. Abort all planned moves.
  179. * M420 - Enable/Disable Leveling (with current values) S1=enable S0=disable (Requires MESH_BED_LEVELING or ABL)
  180. * M421 - Set a single Z coordinate in the Mesh Leveling grid. X<units> Y<units> Z<units> (Requires MESH_BED_LEVELING)
  181. * M428 - Set the home_offset based on the current_position. Nearest edge applies.
  182. * M500 - Store parameters in EEPROM. (Requires EEPROM_SETTINGS)
  183. * M501 - Restore parameters from EEPROM. (Requires EEPROM_SETTINGS)
  184. * M502 - Revert to the default "factory settings". ** Does not write them to EEPROM! **
  185. * M503 - Print the current settings (in memory): "M503 S<verbose>". S0 specifies compact output.
  186. * M540 - Enable/disable SD card abort on endstop hit: "M540 S<state>". (Requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  187. * M600 - Pause for filament change: "M600 X<pos> Y<pos> Z<raise> E<first_retract> L<later_retract>". (Requires FILAMENT_CHANGE_FEATURE)
  188. * M665 - Set delta configurations: "M665 L<diagonal rod> R<delta radius> S<segments/s>" (Requires DELTA)
  189. * M666 - Set delta endstop adjustment. (Requires DELTA)
  190. * M605 - Set dual x-carriage movement mode: "M605 S<mode> [X<x_offset>] [R<temp_offset>]". (Requires DUAL_X_CARRIAGE)
  191. * M851 - Set Z probe's Z offset in current units. (Negative = below the nozzle.)
  192. * M907 - Set digital trimpot motor current using axis codes. (Requires a board with digital trimpots)
  193. * M908 - Control digital trimpot directly. (Requires DAC_STEPPER_CURRENT or DIGIPOTSS_PIN)
  194. * M909 - Print digipot/DAC current value. (Requires DAC_STEPPER_CURRENT)
  195. * M910 - Commit digipot/DAC value to external EEPROM via I2C. (Requires DAC_STEPPER_CURRENT)
  196. * M350 - Set microstepping mode. (Requires digital microstepping pins.)
  197. * M351 - Toggle MS1 MS2 pins directly. (Requires digital microstepping pins.)
  198. *
  199. * ************ SCARA Specific - This can change to suit future G-code regulations
  200. * M360 - SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  201. * M361 - SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  202. * M362 - SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  203. * M363 - SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  204. * M364 - SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
  205. * ************* SCARA End ***************
  206. *
  207. * ************ Custom codes - This can change to suit future G-code regulations
  208. * M100 - Watch Free Memory (For Debugging). (Requires M100_FREE_MEMORY_WATCHER)
  209. * M928 - Start SD logging: "M928 filename.gco". Stop with M29. (Requires SDSUPPORT)
  210. * M999 - Restart after being stopped by error
  211. *
  212. * "T" Codes
  213. *
  214. * T0-T3 - Select an extruder (tool) by index: "T<n> F<units/min>"
  215. *
  216. */
  217. #include "Marlin.h"
  218. #include "ultralcd.h"
  219. #include "planner.h"
  220. #include "stepper.h"
  221. #include "endstops.h"
  222. #include "temperature.h"
  223. #include "cardreader.h"
  224. #include "configuration_store.h"
  225. #include "language.h"
  226. #include "pins_arduino.h"
  227. #include "math.h"
  228. #include "nozzle.h"
  229. #include "duration_t.h"
  230. #include "types.h"
  231. #if HAS_ABL
  232. #include "vector_3.h"
  233. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  234. #include "qr_solve.h"
  235. #endif
  236. #elif ENABLED(MESH_BED_LEVELING)
  237. #include "mesh_bed_leveling.h"
  238. #endif
  239. #if ENABLED(BEZIER_CURVE_SUPPORT)
  240. #include "planner_bezier.h"
  241. #endif
  242. #if HAS_BUZZER && DISABLED(LCD_USE_I2C_BUZZER)
  243. #include "buzzer.h"
  244. #endif
  245. #if ENABLED(USE_WATCHDOG)
  246. #include "watchdog.h"
  247. #endif
  248. #if ENABLED(BLINKM)
  249. #include "blinkm.h"
  250. #include "Wire.h"
  251. #endif
  252. #if HAS_SERVOS
  253. #include "servo.h"
  254. #endif
  255. #if HAS_DIGIPOTSS
  256. #include <SPI.h>
  257. #endif
  258. #if ENABLED(DAC_STEPPER_CURRENT)
  259. #include "stepper_dac.h"
  260. #endif
  261. #if ENABLED(EXPERIMENTAL_I2CBUS)
  262. #include "twibus.h"
  263. #endif
  264. #if ENABLED(ENDSTOP_INTERRUPTS_FEATURE)
  265. #include "endstop_interrupts.h"
  266. #endif
  267. #if ENABLED(M100_FREE_MEMORY_WATCHER)
  268. void gcode_M100();
  269. #endif
  270. #if ENABLED(SDSUPPORT)
  271. CardReader card;
  272. #endif
  273. #if ENABLED(EXPERIMENTAL_I2CBUS)
  274. TWIBus i2c;
  275. #endif
  276. #if ENABLED(G38_PROBE_TARGET)
  277. bool G38_move = false,
  278. G38_endstop_hit = false;
  279. #endif
  280. bool Running = true;
  281. uint8_t marlin_debug_flags = DEBUG_NONE;
  282. /**
  283. * Cartesian Current Position
  284. * Used to track the logical position as moves are queued.
  285. * Used by 'line_to_current_position' to do a move after changing it.
  286. * Used by 'SYNC_PLAN_POSITION_KINEMATIC' to update 'planner.position'.
  287. */
  288. float current_position[XYZE] = { 0.0 };
  289. /**
  290. * Cartesian Destination
  291. * A temporary position, usually applied to 'current_position'.
  292. * Set with 'gcode_get_destination' or 'set_destination_to_current'.
  293. * 'line_to_destination' sets 'current_position' to 'destination'.
  294. */
  295. static float destination[XYZE] = { 0.0 };
  296. /**
  297. * axis_homed
  298. * Flags that each linear axis was homed.
  299. * XYZ on cartesian, ABC on delta, ABZ on SCARA.
  300. *
  301. * axis_known_position
  302. * Flags that the position is known in each linear axis. Set when homed.
  303. * Cleared whenever a stepper powers off, potentially losing its position.
  304. */
  305. bool axis_homed[XYZ] = { false }, axis_known_position[XYZ] = { false };
  306. /**
  307. * GCode line number handling. Hosts may opt to include line numbers when
  308. * sending commands to Marlin, and lines will be checked for sequentiality.
  309. * M110 S<int> sets the current line number.
  310. */
  311. static long gcode_N, gcode_LastN, Stopped_gcode_LastN = 0;
  312. /**
  313. * GCode Command Queue
  314. * A simple ring buffer of BUFSIZE command strings.
  315. *
  316. * Commands are copied into this buffer by the command injectors
  317. * (immediate, serial, sd card) and they are processed sequentially by
  318. * the main loop. The process_next_command function parses the next
  319. * command and hands off execution to individual handler functions.
  320. */
  321. static char command_queue[BUFSIZE][MAX_CMD_SIZE];
  322. static uint8_t cmd_queue_index_r = 0, // Ring buffer read position
  323. cmd_queue_index_w = 0, // Ring buffer write position
  324. commands_in_queue = 0; // Count of commands in the queue
  325. /**
  326. * Current GCode Command
  327. * When a GCode handler is running, these will be set
  328. */
  329. static char *current_command, // The command currently being executed
  330. *current_command_args, // The address where arguments begin
  331. *seen_pointer; // Set by code_seen(), used by the code_value functions
  332. /**
  333. * Next Injected Command pointer. NULL if no commands are being injected.
  334. * Used by Marlin internally to ensure that commands initiated from within
  335. * are enqueued ahead of any pending serial or sd card commands.
  336. */
  337. static const char *injected_commands_P = NULL;
  338. #if ENABLED(INCH_MODE_SUPPORT)
  339. float linear_unit_factor = 1.0, volumetric_unit_factor = 1.0;
  340. #endif
  341. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  342. TempUnit input_temp_units = TEMPUNIT_C;
  343. #endif
  344. /**
  345. * Feed rates are often configured with mm/m
  346. * but the planner and stepper like mm/s units.
  347. */
  348. float constexpr homing_feedrate_mm_s[] = {
  349. #if ENABLED(DELTA)
  350. MMM_TO_MMS(HOMING_FEEDRATE_Z), MMM_TO_MMS(HOMING_FEEDRATE_Z),
  351. #else
  352. MMM_TO_MMS(HOMING_FEEDRATE_XY), MMM_TO_MMS(HOMING_FEEDRATE_XY),
  353. #endif
  354. MMM_TO_MMS(HOMING_FEEDRATE_Z), 0
  355. };
  356. static float feedrate_mm_s = MMM_TO_MMS(1500.0), saved_feedrate_mm_s;
  357. int feedrate_percentage = 100, saved_feedrate_percentage,
  358. flow_percentage[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(100);
  359. bool axis_relative_modes[] = AXIS_RELATIVE_MODES,
  360. volumetric_enabled = false;
  361. float filament_size[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(DEFAULT_NOMINAL_FILAMENT_DIA),
  362. volumetric_multiplier[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(1.0);
  363. // The distance that XYZ has been offset by G92. Reset by G28.
  364. float position_shift[XYZ] = { 0 };
  365. // This offset is added to the configured home position.
  366. // Set by M206, M428, or menu item. Saved to EEPROM.
  367. float home_offset[XYZ] = { 0 };
  368. // Software Endstops are based on the configured limits.
  369. #if ENABLED(min_software_endstops) || ENABLED(max_software_endstops)
  370. bool soft_endstops_enabled = true;
  371. #endif
  372. float soft_endstop_min[XYZ] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS },
  373. soft_endstop_max[XYZ] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  374. #if FAN_COUNT > 0
  375. int fanSpeeds[FAN_COUNT] = { 0 };
  376. #endif
  377. // The active extruder (tool). Set with T<extruder> command.
  378. uint8_t active_extruder = 0;
  379. // Relative Mode. Enable with G91, disable with G90.
  380. static bool relative_mode = false;
  381. // For M109 and M190, this flag may be cleared (by M108) to exit the wait loop
  382. volatile bool wait_for_heatup = true;
  383. // For M0/M1, this flag may be cleared (by M108) to exit the wait-for-user loop
  384. #if ENABLED(EMERGENCY_PARSER) || ENABLED(ULTIPANEL)
  385. volatile bool wait_for_user = false;
  386. #endif
  387. const char errormagic[] PROGMEM = "Error:";
  388. const char echomagic[] PROGMEM = "echo:";
  389. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  390. // Number of characters read in the current line of serial input
  391. static int serial_count = 0;
  392. // Inactivity shutdown
  393. millis_t previous_cmd_ms = 0;
  394. static millis_t max_inactive_time = 0;
  395. static millis_t stepper_inactive_time = (DEFAULT_STEPPER_DEACTIVE_TIME) * 1000UL;
  396. // Print Job Timer
  397. #if ENABLED(PRINTCOUNTER)
  398. PrintCounter print_job_timer = PrintCounter();
  399. #else
  400. Stopwatch print_job_timer = Stopwatch();
  401. #endif
  402. // Buzzer - I2C on the LCD or a BEEPER_PIN
  403. #if ENABLED(LCD_USE_I2C_BUZZER)
  404. #define BUZZ(d,f) lcd_buzz(d, f)
  405. #elif PIN_EXISTS(BEEPER)
  406. Buzzer buzzer;
  407. #define BUZZ(d,f) buzzer.tone(d, f)
  408. #else
  409. #define BUZZ(d,f) NOOP
  410. #endif
  411. static uint8_t target_extruder;
  412. #if HAS_BED_PROBE
  413. float zprobe_zoffset = Z_PROBE_OFFSET_FROM_EXTRUDER;
  414. #endif
  415. #define PLANNER_XY_FEEDRATE() (min(planner.max_feedrate_mm_s[X_AXIS], planner.max_feedrate_mm_s[Y_AXIS]))
  416. #if HAS_ABL
  417. float xy_probe_feedrate_mm_s = MMM_TO_MMS(XY_PROBE_SPEED);
  418. #define XY_PROBE_FEEDRATE_MM_S xy_probe_feedrate_mm_s
  419. #elif defined(XY_PROBE_SPEED)
  420. #define XY_PROBE_FEEDRATE_MM_S MMM_TO_MMS(XY_PROBE_SPEED)
  421. #else
  422. #define XY_PROBE_FEEDRATE_MM_S PLANNER_XY_FEEDRATE()
  423. #endif
  424. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  425. #if ENABLED(DELTA)
  426. #define ADJUST_DELTA(V) \
  427. if (planner.abl_enabled) { \
  428. const float zadj = bilinear_z_offset(V); \
  429. delta[A_AXIS] += zadj; \
  430. delta[B_AXIS] += zadj; \
  431. delta[C_AXIS] += zadj; \
  432. }
  433. #else
  434. #define ADJUST_DELTA(V) if (planner.abl_enabled) { delta[Z_AXIS] += bilinear_z_offset(V); }
  435. #endif
  436. #elif IS_KINEMATIC
  437. #define ADJUST_DELTA(V) NOOP
  438. #endif
  439. #if ENABLED(Z_DUAL_ENDSTOPS)
  440. float z_endstop_adj = 0;
  441. #endif
  442. // Extruder offsets
  443. #if HOTENDS > 1
  444. float hotend_offset[XYZ][HOTENDS];
  445. #endif
  446. #if HAS_Z_SERVO_ENDSTOP
  447. const int z_servo_angle[2] = Z_SERVO_ANGLES;
  448. #endif
  449. #if ENABLED(BARICUDA)
  450. int baricuda_valve_pressure = 0;
  451. int baricuda_e_to_p_pressure = 0;
  452. #endif
  453. #if ENABLED(FWRETRACT)
  454. bool autoretract_enabled = false;
  455. bool retracted[EXTRUDERS] = { false };
  456. bool retracted_swap[EXTRUDERS] = { false };
  457. float retract_length = RETRACT_LENGTH;
  458. float retract_length_swap = RETRACT_LENGTH_SWAP;
  459. float retract_feedrate_mm_s = RETRACT_FEEDRATE;
  460. float retract_zlift = RETRACT_ZLIFT;
  461. float retract_recover_length = RETRACT_RECOVER_LENGTH;
  462. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  463. float retract_recover_feedrate_mm_s = RETRACT_RECOVER_FEEDRATE;
  464. #endif // FWRETRACT
  465. #if ENABLED(ULTIPANEL) && HAS_POWER_SWITCH
  466. bool powersupply =
  467. #if ENABLED(PS_DEFAULT_OFF)
  468. false
  469. #else
  470. true
  471. #endif
  472. ;
  473. #endif
  474. #if ENABLED(ULTIPANEL) && HAS_CASE_LIGHT
  475. bool case_light_on =
  476. #if ENABLED(CASE_LIGHT_DEFAULT_ON)
  477. true
  478. #else
  479. false
  480. #endif
  481. ;
  482. #endif
  483. #if ENABLED(DELTA)
  484. #define SIN_60 0.8660254037844386
  485. #define COS_60 0.5
  486. float delta[ABC],
  487. endstop_adj[ABC] = { 0 };
  488. // these are the default values, can be overriden with M665
  489. float delta_radius = DELTA_RADIUS,
  490. delta_tower1_x = -SIN_60 * (delta_radius + DELTA_RADIUS_TRIM_TOWER_1), // front left tower
  491. delta_tower1_y = -COS_60 * (delta_radius + DELTA_RADIUS_TRIM_TOWER_1),
  492. delta_tower2_x = SIN_60 * (delta_radius + DELTA_RADIUS_TRIM_TOWER_2), // front right tower
  493. delta_tower2_y = -COS_60 * (delta_radius + DELTA_RADIUS_TRIM_TOWER_2),
  494. delta_tower3_x = 0, // back middle tower
  495. delta_tower3_y = (delta_radius + DELTA_RADIUS_TRIM_TOWER_3),
  496. delta_diagonal_rod = DELTA_DIAGONAL_ROD,
  497. delta_diagonal_rod_trim_tower_1 = DELTA_DIAGONAL_ROD_TRIM_TOWER_1,
  498. delta_diagonal_rod_trim_tower_2 = DELTA_DIAGONAL_ROD_TRIM_TOWER_2,
  499. delta_diagonal_rod_trim_tower_3 = DELTA_DIAGONAL_ROD_TRIM_TOWER_3,
  500. delta_diagonal_rod_2_tower_1 = sq(delta_diagonal_rod + delta_diagonal_rod_trim_tower_1),
  501. delta_diagonal_rod_2_tower_2 = sq(delta_diagonal_rod + delta_diagonal_rod_trim_tower_2),
  502. delta_diagonal_rod_2_tower_3 = sq(delta_diagonal_rod + delta_diagonal_rod_trim_tower_3),
  503. delta_segments_per_second = DELTA_SEGMENTS_PER_SECOND,
  504. delta_clip_start_height = Z_MAX_POS;
  505. float delta_safe_distance_from_top();
  506. #else
  507. static bool home_all_axis = true;
  508. #endif
  509. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  510. int bilinear_grid_spacing[2] = { 0 }, bilinear_start[2] = { 0 };
  511. float bed_level_grid[ABL_GRID_POINTS_X][ABL_GRID_POINTS_Y];
  512. #endif
  513. #if IS_SCARA
  514. // Float constants for SCARA calculations
  515. const float L1 = SCARA_LINKAGE_1, L2 = SCARA_LINKAGE_2,
  516. L1_2 = sq(float(L1)), L1_2_2 = 2.0 * L1_2,
  517. L2_2 = sq(float(L2));
  518. float delta_segments_per_second = SCARA_SEGMENTS_PER_SECOND,
  519. delta[ABC];
  520. #endif
  521. float cartes[XYZ] = { 0 };
  522. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  523. bool filament_sensor = false; //M405 turns on filament_sensor control, M406 turns it off
  524. float filament_width_nominal = DEFAULT_NOMINAL_FILAMENT_DIA, // Nominal filament width. Change with M404
  525. filament_width_meas = DEFAULT_MEASURED_FILAMENT_DIA; // Measured filament diameter
  526. int8_t measurement_delay[MAX_MEASUREMENT_DELAY + 1]; // Ring buffer to delayed measurement. Store extruder factor after subtracting 100
  527. int filwidth_delay_index[2] = { 0, -1 }; // Indexes into ring buffer
  528. int meas_delay_cm = MEASUREMENT_DELAY_CM; //distance delay setting
  529. #endif
  530. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  531. static bool filament_ran_out = false;
  532. #endif
  533. #if ENABLED(FILAMENT_CHANGE_FEATURE)
  534. FilamentChangeMenuResponse filament_change_menu_response;
  535. #endif
  536. #if ENABLED(MIXING_EXTRUDER)
  537. float mixing_factor[MIXING_STEPPERS]; // Reciprocal of mix proportion. 0.0 = off, otherwise >= 1.0.
  538. #if MIXING_VIRTUAL_TOOLS > 1
  539. float mixing_virtual_tool_mix[MIXING_VIRTUAL_TOOLS][MIXING_STEPPERS];
  540. #endif
  541. #endif
  542. static bool send_ok[BUFSIZE];
  543. #if HAS_SERVOS
  544. Servo servo[NUM_SERVOS];
  545. #define MOVE_SERVO(I, P) servo[I].move(P)
  546. #if HAS_Z_SERVO_ENDSTOP
  547. #define DEPLOY_Z_SERVO() MOVE_SERVO(Z_ENDSTOP_SERVO_NR, z_servo_angle[0])
  548. #define STOW_Z_SERVO() MOVE_SERVO(Z_ENDSTOP_SERVO_NR, z_servo_angle[1])
  549. #endif
  550. #endif
  551. #ifdef CHDK
  552. millis_t chdkHigh = 0;
  553. boolean chdkActive = false;
  554. #endif
  555. #if ENABLED(PID_EXTRUSION_SCALING)
  556. int lpq_len = 20;
  557. #endif
  558. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  559. static MarlinBusyState busy_state = NOT_BUSY;
  560. static millis_t next_busy_signal_ms = 0;
  561. uint8_t host_keepalive_interval = DEFAULT_KEEPALIVE_INTERVAL;
  562. #define KEEPALIVE_STATE(n) do{ busy_state = n; }while(0)
  563. #else
  564. #define host_keepalive() ;
  565. #define KEEPALIVE_STATE(n) ;
  566. #endif // HOST_KEEPALIVE_FEATURE
  567. #define DEFINE_PGM_READ_ANY(type, reader) \
  568. static inline type pgm_read_any(const type *p) \
  569. { return pgm_read_##reader##_near(p); }
  570. DEFINE_PGM_READ_ANY(float, float)
  571. DEFINE_PGM_READ_ANY(signed char, byte)
  572. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  573. static const PROGMEM type array##_P[XYZ] = \
  574. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  575. static inline type array(int axis) \
  576. { return pgm_read_any(&array##_P[axis]); }
  577. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS)
  578. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS)
  579. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS)
  580. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH)
  581. XYZ_CONSTS_FROM_CONFIG(float, home_bump_mm, HOME_BUMP_MM)
  582. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR)
  583. /**
  584. * ***************************************************************************
  585. * ******************************** FUNCTIONS ********************************
  586. * ***************************************************************************
  587. */
  588. void stop();
  589. void get_available_commands();
  590. void process_next_command();
  591. void prepare_move_to_destination();
  592. void get_cartesian_from_steppers();
  593. void set_current_from_steppers_for_axis(const AxisEnum axis);
  594. #if ENABLED(ARC_SUPPORT)
  595. void plan_arc(float target[NUM_AXIS], float* offset, uint8_t clockwise);
  596. #endif
  597. #if ENABLED(BEZIER_CURVE_SUPPORT)
  598. void plan_cubic_move(const float offset[4]);
  599. #endif
  600. void serial_echopair_P(const char* s_P, const char *v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  601. void serial_echopair_P(const char* s_P, char v) { serialprintPGM(s_P); SERIAL_CHAR(v); }
  602. void serial_echopair_P(const char* s_P, int v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  603. void serial_echopair_P(const char* s_P, long v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  604. void serial_echopair_P(const char* s_P, float v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  605. void serial_echopair_P(const char* s_P, double v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  606. void serial_echopair_P(const char* s_P, unsigned long v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  607. void tool_change(const uint8_t tmp_extruder, const float fr_mm_s=0.0, bool no_move=false);
  608. static void report_current_position();
  609. #if ENABLED(DEBUG_LEVELING_FEATURE)
  610. void print_xyz(const char* prefix, const char* suffix, const float x, const float y, const float z) {
  611. serialprintPGM(prefix);
  612. SERIAL_ECHOPAIR("(", x);
  613. SERIAL_ECHOPAIR(", ", y);
  614. SERIAL_ECHOPAIR(", ", z);
  615. SERIAL_ECHOPGM(")");
  616. if (suffix) serialprintPGM(suffix);
  617. else SERIAL_EOL;
  618. }
  619. void print_xyz(const char* prefix, const char* suffix, const float xyz[]) {
  620. print_xyz(prefix, suffix, xyz[X_AXIS], xyz[Y_AXIS], xyz[Z_AXIS]);
  621. }
  622. #if HAS_ABL
  623. void print_xyz(const char* prefix, const char* suffix, const vector_3 &xyz) {
  624. print_xyz(prefix, suffix, xyz.x, xyz.y, xyz.z);
  625. }
  626. #endif
  627. #define DEBUG_POS(SUFFIX,VAR) do { \
  628. print_xyz(PSTR(" " STRINGIFY(VAR) "="), PSTR(" : " SUFFIX "\n"), VAR); } while(0)
  629. #endif
  630. /**
  631. * sync_plan_position
  632. *
  633. * Set the planner/stepper positions directly from current_position with
  634. * no kinematic translation. Used for homing axes and cartesian/core syncing.
  635. */
  636. inline void sync_plan_position() {
  637. #if ENABLED(DEBUG_LEVELING_FEATURE)
  638. if (DEBUGGING(LEVELING)) DEBUG_POS("sync_plan_position", current_position);
  639. #endif
  640. planner.set_position_mm(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  641. }
  642. inline void sync_plan_position_e() { planner.set_e_position_mm(current_position[E_AXIS]); }
  643. #if IS_KINEMATIC
  644. inline void sync_plan_position_kinematic() {
  645. #if ENABLED(DEBUG_LEVELING_FEATURE)
  646. if (DEBUGGING(LEVELING)) DEBUG_POS("sync_plan_position_kinematic", current_position);
  647. #endif
  648. planner.set_position_mm_kinematic(current_position);
  649. }
  650. #define SYNC_PLAN_POSITION_KINEMATIC() sync_plan_position_kinematic()
  651. #else
  652. #define SYNC_PLAN_POSITION_KINEMATIC() sync_plan_position()
  653. #endif
  654. #if ENABLED(SDSUPPORT)
  655. #include "SdFatUtil.h"
  656. int freeMemory() { return SdFatUtil::FreeRam(); }
  657. #else
  658. extern "C" {
  659. extern unsigned int __bss_end;
  660. extern unsigned int __heap_start;
  661. extern void* __brkval;
  662. int freeMemory() {
  663. int free_memory;
  664. if ((int)__brkval == 0)
  665. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  666. else
  667. free_memory = ((int)&free_memory) - ((int)__brkval);
  668. return free_memory;
  669. }
  670. }
  671. #endif //!SDSUPPORT
  672. #if ENABLED(DIGIPOT_I2C)
  673. extern void digipot_i2c_set_current(int channel, float current);
  674. extern void digipot_i2c_init();
  675. #endif
  676. /**
  677. * Inject the next "immediate" command, when possible.
  678. * Return true if any immediate commands remain to inject.
  679. */
  680. static bool drain_injected_commands_P() {
  681. if (injected_commands_P != NULL) {
  682. size_t i = 0;
  683. char c, cmd[30];
  684. strncpy_P(cmd, injected_commands_P, sizeof(cmd) - 1);
  685. cmd[sizeof(cmd) - 1] = '\0';
  686. while ((c = cmd[i]) && c != '\n') i++; // find the end of this gcode command
  687. cmd[i] = '\0';
  688. if (enqueue_and_echo_command(cmd)) { // success?
  689. if (c) // newline char?
  690. injected_commands_P += i + 1; // advance to the next command
  691. else
  692. injected_commands_P = NULL; // nul char? no more commands
  693. }
  694. }
  695. return (injected_commands_P != NULL); // return whether any more remain
  696. }
  697. /**
  698. * Record one or many commands to run from program memory.
  699. * Aborts the current queue, if any.
  700. * Note: drain_injected_commands_P() must be called repeatedly to drain the commands afterwards
  701. */
  702. void enqueue_and_echo_commands_P(const char* pgcode) {
  703. injected_commands_P = pgcode;
  704. drain_injected_commands_P(); // first command executed asap (when possible)
  705. }
  706. void clear_command_queue() {
  707. cmd_queue_index_r = cmd_queue_index_w;
  708. commands_in_queue = 0;
  709. }
  710. /**
  711. * Once a new command is in the ring buffer, call this to commit it
  712. */
  713. inline void _commit_command(bool say_ok) {
  714. send_ok[cmd_queue_index_w] = say_ok;
  715. cmd_queue_index_w = (cmd_queue_index_w + 1) % BUFSIZE;
  716. commands_in_queue++;
  717. }
  718. /**
  719. * Copy a command directly into the main command buffer, from RAM.
  720. * Returns true if successfully adds the command
  721. */
  722. inline bool _enqueuecommand(const char* cmd, bool say_ok=false) {
  723. if (*cmd == ';' || commands_in_queue >= BUFSIZE) return false;
  724. strcpy(command_queue[cmd_queue_index_w], cmd);
  725. _commit_command(say_ok);
  726. return true;
  727. }
  728. void enqueue_and_echo_command_now(const char* cmd) {
  729. while (!enqueue_and_echo_command(cmd)) idle();
  730. }
  731. /**
  732. * Enqueue with Serial Echo
  733. */
  734. bool enqueue_and_echo_command(const char* cmd, bool say_ok/*=false*/) {
  735. if (_enqueuecommand(cmd, say_ok)) {
  736. SERIAL_ECHO_START;
  737. SERIAL_ECHOPAIR(MSG_Enqueueing, cmd);
  738. SERIAL_CHAR('"');
  739. SERIAL_EOL;
  740. return true;
  741. }
  742. return false;
  743. }
  744. void setup_killpin() {
  745. #if HAS_KILL
  746. SET_INPUT(KILL_PIN);
  747. WRITE(KILL_PIN, HIGH);
  748. #endif
  749. }
  750. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  751. void setup_filrunoutpin() {
  752. SET_INPUT(FIL_RUNOUT_PIN);
  753. #if ENABLED(ENDSTOPPULLUP_FIL_RUNOUT)
  754. WRITE(FIL_RUNOUT_PIN, HIGH);
  755. #endif
  756. }
  757. #endif
  758. // Set home pin
  759. void setup_homepin(void) {
  760. #if HAS_HOME
  761. SET_INPUT(HOME_PIN);
  762. WRITE(HOME_PIN, HIGH);
  763. #endif
  764. }
  765. void setup_powerhold() {
  766. #if HAS_SUICIDE
  767. OUT_WRITE(SUICIDE_PIN, HIGH);
  768. #endif
  769. #if HAS_POWER_SWITCH
  770. #if ENABLED(PS_DEFAULT_OFF)
  771. OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  772. #else
  773. OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE);
  774. #endif
  775. #endif
  776. }
  777. void suicide() {
  778. #if HAS_SUICIDE
  779. OUT_WRITE(SUICIDE_PIN, LOW);
  780. #endif
  781. }
  782. void servo_init() {
  783. #if NUM_SERVOS >= 1 && HAS_SERVO_0
  784. servo[0].attach(SERVO0_PIN);
  785. servo[0].detach(); // Just set up the pin. We don't have a position yet. Don't move to a random position.
  786. #endif
  787. #if NUM_SERVOS >= 2 && HAS_SERVO_1
  788. servo[1].attach(SERVO1_PIN);
  789. servo[1].detach();
  790. #endif
  791. #if NUM_SERVOS >= 3 && HAS_SERVO_2
  792. servo[2].attach(SERVO2_PIN);
  793. servo[2].detach();
  794. #endif
  795. #if NUM_SERVOS >= 4 && HAS_SERVO_3
  796. servo[3].attach(SERVO3_PIN);
  797. servo[3].detach();
  798. #endif
  799. #if HAS_Z_SERVO_ENDSTOP
  800. /**
  801. * Set position of Z Servo Endstop
  802. *
  803. * The servo might be deployed and positioned too low to stow
  804. * when starting up the machine or rebooting the board.
  805. * There's no way to know where the nozzle is positioned until
  806. * homing has been done - no homing with z-probe without init!
  807. *
  808. */
  809. STOW_Z_SERVO();
  810. #endif
  811. }
  812. /**
  813. * Stepper Reset (RigidBoard, et.al.)
  814. */
  815. #if HAS_STEPPER_RESET
  816. void disableStepperDrivers() {
  817. OUT_WRITE(STEPPER_RESET_PIN, LOW); // drive it down to hold in reset motor driver chips
  818. }
  819. void enableStepperDrivers() { SET_INPUT(STEPPER_RESET_PIN); } // set to input, which allows it to be pulled high by pullups
  820. #endif
  821. #if ENABLED(EXPERIMENTAL_I2CBUS) && I2C_SLAVE_ADDRESS > 0
  822. void i2c_on_receive(int bytes) { // just echo all bytes received to serial
  823. i2c.receive(bytes);
  824. }
  825. void i2c_on_request() { // just send dummy data for now
  826. i2c.reply("Hello World!\n");
  827. }
  828. #endif
  829. void gcode_line_error(const char* err, bool doFlush = true) {
  830. SERIAL_ERROR_START;
  831. serialprintPGM(err);
  832. SERIAL_ERRORLN(gcode_LastN);
  833. //Serial.println(gcode_N);
  834. if (doFlush) FlushSerialRequestResend();
  835. serial_count = 0;
  836. }
  837. inline void get_serial_commands() {
  838. static char serial_line_buffer[MAX_CMD_SIZE];
  839. static boolean serial_comment_mode = false;
  840. // If the command buffer is empty for too long,
  841. // send "wait" to indicate Marlin is still waiting.
  842. #if defined(NO_TIMEOUTS) && NO_TIMEOUTS > 0
  843. static millis_t last_command_time = 0;
  844. millis_t ms = millis();
  845. if (commands_in_queue == 0 && !MYSERIAL.available() && ELAPSED(ms, last_command_time + NO_TIMEOUTS)) {
  846. SERIAL_ECHOLNPGM(MSG_WAIT);
  847. last_command_time = ms;
  848. }
  849. #endif
  850. /**
  851. * Loop while serial characters are incoming and the queue is not full
  852. */
  853. while (commands_in_queue < BUFSIZE && MYSERIAL.available() > 0) {
  854. char serial_char = MYSERIAL.read();
  855. /**
  856. * If the character ends the line
  857. */
  858. if (serial_char == '\n' || serial_char == '\r') {
  859. serial_comment_mode = false; // end of line == end of comment
  860. if (!serial_count) continue; // skip empty lines
  861. serial_line_buffer[serial_count] = 0; // terminate string
  862. serial_count = 0; //reset buffer
  863. char* command = serial_line_buffer;
  864. while (*command == ' ') command++; // skip any leading spaces
  865. char* npos = (*command == 'N') ? command : NULL; // Require the N parameter to start the line
  866. char* apos = strchr(command, '*');
  867. if (npos) {
  868. boolean M110 = strstr_P(command, PSTR("M110")) != NULL;
  869. if (M110) {
  870. char* n2pos = strchr(command + 4, 'N');
  871. if (n2pos) npos = n2pos;
  872. }
  873. gcode_N = strtol(npos + 1, NULL, 10);
  874. if (gcode_N != gcode_LastN + 1 && !M110) {
  875. gcode_line_error(PSTR(MSG_ERR_LINE_NO));
  876. return;
  877. }
  878. if (apos) {
  879. byte checksum = 0, count = 0;
  880. while (command[count] != '*') checksum ^= command[count++];
  881. if (strtol(apos + 1, NULL, 10) != checksum) {
  882. gcode_line_error(PSTR(MSG_ERR_CHECKSUM_MISMATCH));
  883. return;
  884. }
  885. // if no errors, continue parsing
  886. }
  887. else {
  888. gcode_line_error(PSTR(MSG_ERR_NO_CHECKSUM));
  889. return;
  890. }
  891. gcode_LastN = gcode_N;
  892. // if no errors, continue parsing
  893. }
  894. else if (apos) { // No '*' without 'N'
  895. gcode_line_error(PSTR(MSG_ERR_NO_LINENUMBER_WITH_CHECKSUM), false);
  896. return;
  897. }
  898. // Movement commands alert when stopped
  899. if (IsStopped()) {
  900. char* gpos = strchr(command, 'G');
  901. if (gpos) {
  902. int codenum = strtol(gpos + 1, NULL, 10);
  903. switch (codenum) {
  904. case 0:
  905. case 1:
  906. case 2:
  907. case 3:
  908. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  909. LCD_MESSAGEPGM(MSG_STOPPED);
  910. break;
  911. }
  912. }
  913. }
  914. #if DISABLED(EMERGENCY_PARSER)
  915. // If command was e-stop process now
  916. if (strcmp(command, "M108") == 0) {
  917. wait_for_heatup = false;
  918. #if ENABLED(ULTIPANEL)
  919. wait_for_user = false;
  920. #endif
  921. }
  922. if (strcmp(command, "M112") == 0) kill(PSTR(MSG_KILLED));
  923. if (strcmp(command, "M410") == 0) { quickstop_stepper(); }
  924. #endif
  925. #if defined(NO_TIMEOUTS) && NO_TIMEOUTS > 0
  926. last_command_time = ms;
  927. #endif
  928. // Add the command to the queue
  929. _enqueuecommand(serial_line_buffer, true);
  930. }
  931. else if (serial_count >= MAX_CMD_SIZE - 1) {
  932. // Keep fetching, but ignore normal characters beyond the max length
  933. // The command will be injected when EOL is reached
  934. }
  935. else if (serial_char == '\\') { // Handle escapes
  936. if (MYSERIAL.available() > 0) {
  937. // if we have one more character, copy it over
  938. serial_char = MYSERIAL.read();
  939. if (!serial_comment_mode) serial_line_buffer[serial_count++] = serial_char;
  940. }
  941. // otherwise do nothing
  942. }
  943. else { // it's not a newline, carriage return or escape char
  944. if (serial_char == ';') serial_comment_mode = true;
  945. if (!serial_comment_mode) serial_line_buffer[serial_count++] = serial_char;
  946. }
  947. } // queue has space, serial has data
  948. }
  949. #if ENABLED(SDSUPPORT)
  950. inline void get_sdcard_commands() {
  951. static bool stop_buffering = false,
  952. sd_comment_mode = false;
  953. if (!card.sdprinting) return;
  954. /**
  955. * '#' stops reading from SD to the buffer prematurely, so procedural
  956. * macro calls are possible. If it occurs, stop_buffering is triggered
  957. * and the buffer is run dry; this character _can_ occur in serial com
  958. * due to checksums, however, no checksums are used in SD printing.
  959. */
  960. if (commands_in_queue == 0) stop_buffering = false;
  961. uint16_t sd_count = 0;
  962. bool card_eof = card.eof();
  963. while (commands_in_queue < BUFSIZE && !card_eof && !stop_buffering) {
  964. int16_t n = card.get();
  965. char sd_char = (char)n;
  966. card_eof = card.eof();
  967. if (card_eof || n == -1
  968. || sd_char == '\n' || sd_char == '\r'
  969. || ((sd_char == '#' || sd_char == ':') && !sd_comment_mode)
  970. ) {
  971. if (card_eof) {
  972. SERIAL_PROTOCOLLNPGM(MSG_FILE_PRINTED);
  973. card.printingHasFinished();
  974. card.checkautostart(true);
  975. }
  976. else if (n == -1) {
  977. SERIAL_ERROR_START;
  978. SERIAL_ECHOLNPGM(MSG_SD_ERR_READ);
  979. }
  980. if (sd_char == '#') stop_buffering = true;
  981. sd_comment_mode = false; //for new command
  982. if (!sd_count) continue; //skip empty lines
  983. command_queue[cmd_queue_index_w][sd_count] = '\0'; //terminate string
  984. sd_count = 0; //clear buffer
  985. _commit_command(false);
  986. }
  987. else if (sd_count >= MAX_CMD_SIZE - 1) {
  988. /**
  989. * Keep fetching, but ignore normal characters beyond the max length
  990. * The command will be injected when EOL is reached
  991. */
  992. }
  993. else {
  994. if (sd_char == ';') sd_comment_mode = true;
  995. if (!sd_comment_mode) command_queue[cmd_queue_index_w][sd_count++] = sd_char;
  996. }
  997. }
  998. }
  999. #endif // SDSUPPORT
  1000. /**
  1001. * Add to the circular command queue the next command from:
  1002. * - The command-injection queue (injected_commands_P)
  1003. * - The active serial input (usually USB)
  1004. * - The SD card file being actively printed
  1005. */
  1006. void get_available_commands() {
  1007. // if any immediate commands remain, don't get other commands yet
  1008. if (drain_injected_commands_P()) return;
  1009. get_serial_commands();
  1010. #if ENABLED(SDSUPPORT)
  1011. get_sdcard_commands();
  1012. #endif
  1013. }
  1014. inline bool code_has_value() {
  1015. int i = 1;
  1016. char c = seen_pointer[i];
  1017. while (c == ' ') c = seen_pointer[++i];
  1018. if (c == '-' || c == '+') c = seen_pointer[++i];
  1019. if (c == '.') c = seen_pointer[++i];
  1020. return NUMERIC(c);
  1021. }
  1022. inline float code_value_float() {
  1023. float ret;
  1024. char* e = strchr(seen_pointer, 'E');
  1025. if (e) {
  1026. *e = 0;
  1027. ret = strtod(seen_pointer + 1, NULL);
  1028. *e = 'E';
  1029. }
  1030. else
  1031. ret = strtod(seen_pointer + 1, NULL);
  1032. return ret;
  1033. }
  1034. inline unsigned long code_value_ulong() { return strtoul(seen_pointer + 1, NULL, 10); }
  1035. inline long code_value_long() { return strtol(seen_pointer + 1, NULL, 10); }
  1036. inline int code_value_int() { return (int)strtol(seen_pointer + 1, NULL, 10); }
  1037. inline uint16_t code_value_ushort() { return (uint16_t)strtoul(seen_pointer + 1, NULL, 10); }
  1038. inline uint8_t code_value_byte() { return (uint8_t)(constrain(strtol(seen_pointer + 1, NULL, 10), 0, 255)); }
  1039. inline bool code_value_bool() { return !code_has_value() || code_value_byte() > 0; }
  1040. #if ENABLED(INCH_MODE_SUPPORT)
  1041. inline void set_input_linear_units(LinearUnit units) {
  1042. switch (units) {
  1043. case LINEARUNIT_INCH:
  1044. linear_unit_factor = 25.4;
  1045. break;
  1046. case LINEARUNIT_MM:
  1047. default:
  1048. linear_unit_factor = 1.0;
  1049. break;
  1050. }
  1051. volumetric_unit_factor = pow(linear_unit_factor, 3.0);
  1052. }
  1053. inline float axis_unit_factor(int axis) {
  1054. return (axis == E_AXIS && volumetric_enabled ? volumetric_unit_factor : linear_unit_factor);
  1055. }
  1056. inline float code_value_linear_units() { return code_value_float() * linear_unit_factor; }
  1057. inline float code_value_axis_units(int axis) { return code_value_float() * axis_unit_factor(axis); }
  1058. inline float code_value_per_axis_unit(int axis) { return code_value_float() / axis_unit_factor(axis); }
  1059. #else
  1060. inline float code_value_linear_units() { return code_value_float(); }
  1061. inline float code_value_axis_units(int axis) { UNUSED(axis); return code_value_float(); }
  1062. inline float code_value_per_axis_unit(int axis) { UNUSED(axis); return code_value_float(); }
  1063. #endif
  1064. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  1065. inline void set_input_temp_units(TempUnit units) { input_temp_units = units; }
  1066. float code_value_temp_abs() {
  1067. switch (input_temp_units) {
  1068. case TEMPUNIT_C:
  1069. return code_value_float();
  1070. case TEMPUNIT_F:
  1071. return (code_value_float() - 32) * 0.5555555556;
  1072. case TEMPUNIT_K:
  1073. return code_value_float() - 272.15;
  1074. default:
  1075. return code_value_float();
  1076. }
  1077. }
  1078. float code_value_temp_diff() {
  1079. switch (input_temp_units) {
  1080. case TEMPUNIT_C:
  1081. case TEMPUNIT_K:
  1082. return code_value_float();
  1083. case TEMPUNIT_F:
  1084. return code_value_float() * 0.5555555556;
  1085. default:
  1086. return code_value_float();
  1087. }
  1088. }
  1089. #else
  1090. float code_value_temp_abs() { return code_value_float(); }
  1091. float code_value_temp_diff() { return code_value_float(); }
  1092. #endif
  1093. FORCE_INLINE millis_t code_value_millis() { return code_value_ulong(); }
  1094. inline millis_t code_value_millis_from_seconds() { return code_value_float() * 1000; }
  1095. bool code_seen(char code) {
  1096. seen_pointer = strchr(current_command_args, code);
  1097. return (seen_pointer != NULL); // Return TRUE if the code-letter was found
  1098. }
  1099. /**
  1100. * Set target_extruder from the T parameter or the active_extruder
  1101. *
  1102. * Returns TRUE if the target is invalid
  1103. */
  1104. bool get_target_extruder_from_command(int code) {
  1105. if (code_seen('T')) {
  1106. if (code_value_byte() >= EXTRUDERS) {
  1107. SERIAL_ECHO_START;
  1108. SERIAL_CHAR('M');
  1109. SERIAL_ECHO(code);
  1110. SERIAL_ECHOLNPAIR(" " MSG_INVALID_EXTRUDER " ", code_value_byte());
  1111. return true;
  1112. }
  1113. target_extruder = code_value_byte();
  1114. }
  1115. else
  1116. target_extruder = active_extruder;
  1117. return false;
  1118. }
  1119. #if ENABLED(DUAL_X_CARRIAGE) || ENABLED(DUAL_NOZZLE_DUPLICATION_MODE)
  1120. bool extruder_duplication_enabled = false; // Used in Dual X mode 2
  1121. #endif
  1122. #if ENABLED(DUAL_X_CARRIAGE)
  1123. static DualXMode dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  1124. static float x_home_pos(int extruder) {
  1125. if (extruder == 0)
  1126. return LOGICAL_X_POSITION(base_home_pos(X_AXIS));
  1127. else
  1128. /**
  1129. * In dual carriage mode the extruder offset provides an override of the
  1130. * second X-carriage offset when homed - otherwise X2_HOME_POS is used.
  1131. * This allow soft recalibration of the second extruder offset position
  1132. * without firmware reflash (through the M218 command).
  1133. */
  1134. return (hotend_offset[X_AXIS][1] > 0) ? hotend_offset[X_AXIS][1] : X2_HOME_POS;
  1135. }
  1136. static int x_home_dir(int extruder) {
  1137. return (extruder == 0) ? X_HOME_DIR : X2_HOME_DIR;
  1138. }
  1139. static float inactive_extruder_x_pos = X2_MAX_POS; // used in mode 0 & 1
  1140. static bool active_extruder_parked = false; // used in mode 1 & 2
  1141. static float raised_parked_position[NUM_AXIS]; // used in mode 1
  1142. static millis_t delayed_move_time = 0; // used in mode 1
  1143. static float duplicate_extruder_x_offset = DEFAULT_DUPLICATION_X_OFFSET; // used in mode 2
  1144. static float duplicate_extruder_temp_offset = 0; // used in mode 2
  1145. #endif // DUAL_X_CARRIAGE
  1146. /**
  1147. * Software endstops can be used to monitor the open end of
  1148. * an axis that has a hardware endstop on the other end. Or
  1149. * they can prevent axes from moving past endstops and grinding.
  1150. *
  1151. * To keep doing their job as the coordinate system changes,
  1152. * the software endstop positions must be refreshed to remain
  1153. * at the same positions relative to the machine.
  1154. */
  1155. void update_software_endstops(AxisEnum axis) {
  1156. float offs = LOGICAL_POSITION(0, axis);
  1157. #if ENABLED(DUAL_X_CARRIAGE)
  1158. if (axis == X_AXIS) {
  1159. float dual_max_x = max(hotend_offset[X_AXIS][1], X2_MAX_POS);
  1160. if (active_extruder != 0) {
  1161. soft_endstop_min[X_AXIS] = X2_MIN_POS + offs;
  1162. soft_endstop_max[X_AXIS] = dual_max_x + offs;
  1163. return;
  1164. }
  1165. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE) {
  1166. soft_endstop_min[X_AXIS] = base_min_pos(X_AXIS) + offs;
  1167. soft_endstop_max[X_AXIS] = min(base_max_pos(X_AXIS), dual_max_x - duplicate_extruder_x_offset) + offs;
  1168. return;
  1169. }
  1170. }
  1171. else
  1172. #endif
  1173. {
  1174. soft_endstop_min[axis] = base_min_pos(axis) + offs;
  1175. soft_endstop_max[axis] = base_max_pos(axis) + offs;
  1176. }
  1177. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1178. if (DEBUGGING(LEVELING)) {
  1179. SERIAL_ECHOPAIR("For ", axis_codes[axis]);
  1180. SERIAL_ECHOPAIR(" axis:\n home_offset = ", home_offset[axis]);
  1181. SERIAL_ECHOPAIR("\n position_shift = ", position_shift[axis]);
  1182. SERIAL_ECHOPAIR("\n soft_endstop_min = ", soft_endstop_min[axis]);
  1183. SERIAL_ECHOLNPAIR("\n soft_endstop_max = ", soft_endstop_max[axis]);
  1184. }
  1185. #endif
  1186. #if ENABLED(DELTA)
  1187. if (axis == Z_AXIS)
  1188. delta_clip_start_height = soft_endstop_max[axis] - delta_safe_distance_from_top();
  1189. #endif
  1190. }
  1191. /**
  1192. * Change the home offset for an axis, update the current
  1193. * position and the software endstops to retain the same
  1194. * relative distance to the new home.
  1195. *
  1196. * Since this changes the current_position, code should
  1197. * call sync_plan_position soon after this.
  1198. */
  1199. static void set_home_offset(AxisEnum axis, float v) {
  1200. current_position[axis] += v - home_offset[axis];
  1201. home_offset[axis] = v;
  1202. update_software_endstops(axis);
  1203. }
  1204. /**
  1205. * Set an axis' current position to its home position (after homing).
  1206. *
  1207. * For Core and Cartesian robots this applies one-to-one when an
  1208. * individual axis has been homed.
  1209. *
  1210. * DELTA should wait until all homing is done before setting the XYZ
  1211. * current_position to home, because homing is a single operation.
  1212. * In the case where the axis positions are already known and previously
  1213. * homed, DELTA could home to X or Y individually by moving either one
  1214. * to the center. However, homing Z always homes XY and Z.
  1215. *
  1216. * SCARA should wait until all XY homing is done before setting the XY
  1217. * current_position to home, because neither X nor Y is at home until
  1218. * both are at home. Z can however be homed individually.
  1219. *
  1220. */
  1221. static void set_axis_is_at_home(AxisEnum axis) {
  1222. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1223. if (DEBUGGING(LEVELING)) {
  1224. SERIAL_ECHOPAIR(">>> set_axis_is_at_home(", axis_codes[axis]);
  1225. SERIAL_CHAR(')');
  1226. SERIAL_EOL;
  1227. }
  1228. #endif
  1229. axis_known_position[axis] = axis_homed[axis] = true;
  1230. position_shift[axis] = 0;
  1231. update_software_endstops(axis);
  1232. #if ENABLED(DUAL_X_CARRIAGE)
  1233. if (axis == X_AXIS && (active_extruder != 0 || dual_x_carriage_mode == DXC_DUPLICATION_MODE)) {
  1234. if (active_extruder != 0)
  1235. current_position[X_AXIS] = x_home_pos(active_extruder);
  1236. else
  1237. current_position[X_AXIS] = LOGICAL_X_POSITION(base_home_pos(X_AXIS));
  1238. update_software_endstops(X_AXIS);
  1239. return;
  1240. }
  1241. #endif
  1242. #if ENABLED(MORGAN_SCARA)
  1243. /**
  1244. * Morgan SCARA homes XY at the same time
  1245. */
  1246. if (axis == X_AXIS || axis == Y_AXIS) {
  1247. float homeposition[XYZ];
  1248. LOOP_XYZ(i) homeposition[i] = LOGICAL_POSITION(base_home_pos((AxisEnum)i), i);
  1249. // SERIAL_ECHOPAIR("homeposition X:", homeposition[X_AXIS]);
  1250. // SERIAL_ECHOLNPAIR(" Y:", homeposition[Y_AXIS]);
  1251. /**
  1252. * Get Home position SCARA arm angles using inverse kinematics,
  1253. * and calculate homing offset using forward kinematics
  1254. */
  1255. inverse_kinematics(homeposition);
  1256. forward_kinematics_SCARA(delta[A_AXIS], delta[B_AXIS]);
  1257. // SERIAL_ECHOPAIR("Cartesian X:", cartes[X_AXIS]);
  1258. // SERIAL_ECHOLNPAIR(" Y:", cartes[Y_AXIS]);
  1259. current_position[axis] = LOGICAL_POSITION(cartes[axis], axis);
  1260. /**
  1261. * SCARA home positions are based on configuration since the actual
  1262. * limits are determined by the inverse kinematic transform.
  1263. */
  1264. soft_endstop_min[axis] = base_min_pos(axis); // + (cartes[axis] - base_home_pos(axis));
  1265. soft_endstop_max[axis] = base_max_pos(axis); // + (cartes[axis] - base_home_pos(axis));
  1266. }
  1267. else
  1268. #endif
  1269. {
  1270. current_position[axis] = LOGICAL_POSITION(base_home_pos(axis), axis);
  1271. }
  1272. /**
  1273. * Z Probe Z Homing? Account for the probe's Z offset.
  1274. */
  1275. #if HAS_BED_PROBE && Z_HOME_DIR < 0
  1276. if (axis == Z_AXIS) {
  1277. #if HOMING_Z_WITH_PROBE
  1278. current_position[Z_AXIS] -= zprobe_zoffset;
  1279. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1280. if (DEBUGGING(LEVELING)) {
  1281. SERIAL_ECHOLNPGM("*** Z HOMED WITH PROBE (Z_MIN_PROBE_USES_Z_MIN_ENDSTOP_PIN) ***");
  1282. SERIAL_ECHOLNPAIR("> zprobe_zoffset = ", zprobe_zoffset);
  1283. }
  1284. #endif
  1285. #elif ENABLED(DEBUG_LEVELING_FEATURE)
  1286. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("*** Z HOMED TO ENDSTOP (Z_MIN_PROBE_ENDSTOP) ***");
  1287. #endif
  1288. }
  1289. #endif
  1290. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1291. if (DEBUGGING(LEVELING)) {
  1292. SERIAL_ECHOPAIR("> home_offset[", axis_codes[axis]);
  1293. SERIAL_ECHOLNPAIR("] = ", home_offset[axis]);
  1294. DEBUG_POS("", current_position);
  1295. SERIAL_ECHOPAIR("<<< set_axis_is_at_home(", axis_codes[axis]);
  1296. SERIAL_CHAR(')');
  1297. SERIAL_EOL;
  1298. }
  1299. #endif
  1300. }
  1301. /**
  1302. * Some planner shorthand inline functions
  1303. */
  1304. inline float get_homing_bump_feedrate(AxisEnum axis) {
  1305. int constexpr homing_bump_divisor[] = HOMING_BUMP_DIVISOR;
  1306. int hbd = homing_bump_divisor[axis];
  1307. if (hbd < 1) {
  1308. hbd = 10;
  1309. SERIAL_ECHO_START;
  1310. SERIAL_ECHOLNPGM("Warning: Homing Bump Divisor < 1");
  1311. }
  1312. return homing_feedrate_mm_s[axis] / hbd;
  1313. }
  1314. //
  1315. // line_to_current_position
  1316. // Move the planner to the current position from wherever it last moved
  1317. // (or from wherever it has been told it is located).
  1318. //
  1319. inline void line_to_current_position() {
  1320. planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate_mm_s, active_extruder);
  1321. }
  1322. //
  1323. // line_to_destination
  1324. // Move the planner, not necessarily synced with current_position
  1325. //
  1326. inline void line_to_destination(float fr_mm_s) {
  1327. planner.buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], fr_mm_s, active_extruder);
  1328. }
  1329. inline void line_to_destination() { line_to_destination(feedrate_mm_s); }
  1330. inline void set_current_to_destination() { memcpy(current_position, destination, sizeof(current_position)); }
  1331. inline void set_destination_to_current() { memcpy(destination, current_position, sizeof(destination)); }
  1332. #if IS_KINEMATIC
  1333. /**
  1334. * Calculate delta, start a line, and set current_position to destination
  1335. */
  1336. void prepare_uninterpolated_move_to_destination(const float fr_mm_s=0.0) {
  1337. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1338. if (DEBUGGING(LEVELING)) DEBUG_POS("prepare_uninterpolated_move_to_destination", destination);
  1339. #endif
  1340. if ( current_position[X_AXIS] == destination[X_AXIS]
  1341. && current_position[Y_AXIS] == destination[Y_AXIS]
  1342. && current_position[Z_AXIS] == destination[Z_AXIS]
  1343. && current_position[E_AXIS] == destination[E_AXIS]
  1344. ) return;
  1345. refresh_cmd_timeout();
  1346. planner.buffer_line_kinematic(destination, MMS_SCALED(fr_mm_s ? fr_mm_s : feedrate_mm_s), active_extruder);
  1347. set_current_to_destination();
  1348. }
  1349. #endif // IS_KINEMATIC
  1350. /**
  1351. * Plan a move to (X, Y, Z) and set the current_position
  1352. * The final current_position may not be the one that was requested
  1353. */
  1354. void do_blocking_move_to(const float &x, const float &y, const float &z, const float &fr_mm_s /*=0.0*/) {
  1355. float old_feedrate_mm_s = feedrate_mm_s;
  1356. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1357. if (DEBUGGING(LEVELING)) print_xyz(PSTR(">>> do_blocking_move_to"), NULL, x, y, z);
  1358. #endif
  1359. #if ENABLED(DELTA)
  1360. feedrate_mm_s = fr_mm_s ? fr_mm_s : XY_PROBE_FEEDRATE_MM_S;
  1361. set_destination_to_current(); // sync destination at the start
  1362. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1363. if (DEBUGGING(LEVELING)) DEBUG_POS("set_destination_to_current", destination);
  1364. #endif
  1365. // when in the danger zone
  1366. if (current_position[Z_AXIS] > delta_clip_start_height) {
  1367. if (z > delta_clip_start_height) { // staying in the danger zone
  1368. destination[X_AXIS] = x; // move directly (uninterpolated)
  1369. destination[Y_AXIS] = y;
  1370. destination[Z_AXIS] = z;
  1371. prepare_uninterpolated_move_to_destination(); // set_current_to_destination
  1372. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1373. if (DEBUGGING(LEVELING)) DEBUG_POS("danger zone move", current_position);
  1374. #endif
  1375. return;
  1376. }
  1377. else {
  1378. destination[Z_AXIS] = delta_clip_start_height;
  1379. prepare_uninterpolated_move_to_destination(); // set_current_to_destination
  1380. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1381. if (DEBUGGING(LEVELING)) DEBUG_POS("zone border move", current_position);
  1382. #endif
  1383. }
  1384. }
  1385. if (z > current_position[Z_AXIS]) { // raising?
  1386. destination[Z_AXIS] = z;
  1387. prepare_uninterpolated_move_to_destination(); // set_current_to_destination
  1388. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1389. if (DEBUGGING(LEVELING)) DEBUG_POS("z raise move", current_position);
  1390. #endif
  1391. }
  1392. destination[X_AXIS] = x;
  1393. destination[Y_AXIS] = y;
  1394. prepare_move_to_destination(); // set_current_to_destination
  1395. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1396. if (DEBUGGING(LEVELING)) DEBUG_POS("xy move", current_position);
  1397. #endif
  1398. if (z < current_position[Z_AXIS]) { // lowering?
  1399. destination[Z_AXIS] = z;
  1400. prepare_uninterpolated_move_to_destination(); // set_current_to_destination
  1401. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1402. if (DEBUGGING(LEVELING)) DEBUG_POS("z lower move", current_position);
  1403. #endif
  1404. }
  1405. #elif IS_SCARA
  1406. set_destination_to_current();
  1407. // If Z needs to raise, do it before moving XY
  1408. if (destination[Z_AXIS] < z) {
  1409. destination[Z_AXIS] = z;
  1410. prepare_uninterpolated_move_to_destination(fr_mm_s ? fr_mm_s : homing_feedrate_mm_s[Z_AXIS]);
  1411. }
  1412. destination[X_AXIS] = x;
  1413. destination[Y_AXIS] = y;
  1414. prepare_uninterpolated_move_to_destination(fr_mm_s ? fr_mm_s : XY_PROBE_FEEDRATE_MM_S);
  1415. // If Z needs to lower, do it after moving XY
  1416. if (destination[Z_AXIS] > z) {
  1417. destination[Z_AXIS] = z;
  1418. prepare_uninterpolated_move_to_destination(fr_mm_s ? fr_mm_s : homing_feedrate_mm_s[Z_AXIS]);
  1419. }
  1420. #else
  1421. // If Z needs to raise, do it before moving XY
  1422. if (current_position[Z_AXIS] < z) {
  1423. feedrate_mm_s = fr_mm_s ? fr_mm_s : homing_feedrate_mm_s[Z_AXIS];
  1424. current_position[Z_AXIS] = z;
  1425. line_to_current_position();
  1426. }
  1427. feedrate_mm_s = fr_mm_s ? fr_mm_s : XY_PROBE_FEEDRATE_MM_S;
  1428. current_position[X_AXIS] = x;
  1429. current_position[Y_AXIS] = y;
  1430. line_to_current_position();
  1431. // If Z needs to lower, do it after moving XY
  1432. if (current_position[Z_AXIS] > z) {
  1433. feedrate_mm_s = fr_mm_s ? fr_mm_s : homing_feedrate_mm_s[Z_AXIS];
  1434. current_position[Z_AXIS] = z;
  1435. line_to_current_position();
  1436. }
  1437. #endif
  1438. stepper.synchronize();
  1439. feedrate_mm_s = old_feedrate_mm_s;
  1440. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1441. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< do_blocking_move_to");
  1442. #endif
  1443. }
  1444. void do_blocking_move_to_x(const float &x, const float &fr_mm_s/*=0.0*/) {
  1445. do_blocking_move_to(x, current_position[Y_AXIS], current_position[Z_AXIS], fr_mm_s);
  1446. }
  1447. void do_blocking_move_to_z(const float &z, const float &fr_mm_s/*=0.0*/) {
  1448. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z, fr_mm_s);
  1449. }
  1450. void do_blocking_move_to_xy(const float &x, const float &y, const float &fr_mm_s/*=0.0*/) {
  1451. do_blocking_move_to(x, y, current_position[Z_AXIS], fr_mm_s);
  1452. }
  1453. //
  1454. // Prepare to do endstop or probe moves
  1455. // with custom feedrates.
  1456. //
  1457. // - Save current feedrates
  1458. // - Reset the rate multiplier
  1459. // - Reset the command timeout
  1460. // - Enable the endstops (for endstop moves)
  1461. //
  1462. static void setup_for_endstop_or_probe_move() {
  1463. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1464. if (DEBUGGING(LEVELING)) DEBUG_POS("setup_for_endstop_or_probe_move", current_position);
  1465. #endif
  1466. saved_feedrate_mm_s = feedrate_mm_s;
  1467. saved_feedrate_percentage = feedrate_percentage;
  1468. feedrate_percentage = 100;
  1469. refresh_cmd_timeout();
  1470. }
  1471. static void clean_up_after_endstop_or_probe_move() {
  1472. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1473. if (DEBUGGING(LEVELING)) DEBUG_POS("clean_up_after_endstop_or_probe_move", current_position);
  1474. #endif
  1475. feedrate_mm_s = saved_feedrate_mm_s;
  1476. feedrate_percentage = saved_feedrate_percentage;
  1477. refresh_cmd_timeout();
  1478. }
  1479. #if HAS_BED_PROBE
  1480. /**
  1481. * Raise Z to a minimum height to make room for a probe to move
  1482. */
  1483. inline void do_probe_raise(float z_raise) {
  1484. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1485. if (DEBUGGING(LEVELING)) {
  1486. SERIAL_ECHOPAIR("do_probe_raise(", z_raise);
  1487. SERIAL_CHAR(')');
  1488. SERIAL_EOL;
  1489. }
  1490. #endif
  1491. float z_dest = LOGICAL_Z_POSITION(z_raise);
  1492. if (zprobe_zoffset < 0) z_dest -= zprobe_zoffset;
  1493. if (z_dest > current_position[Z_AXIS])
  1494. do_blocking_move_to_z(z_dest);
  1495. }
  1496. #endif //HAS_BED_PROBE
  1497. #if ENABLED(Z_PROBE_ALLEN_KEY) || ENABLED(Z_PROBE_SLED) || HAS_PROBING_PROCEDURE || HOTENDS > 1 || ENABLED(NOZZLE_CLEAN_FEATURE) || ENABLED(NOZZLE_PARK_FEATURE)
  1498. static bool axis_unhomed_error(const bool x, const bool y, const bool z) {
  1499. const bool xx = x && !axis_homed[X_AXIS],
  1500. yy = y && !axis_homed[Y_AXIS],
  1501. zz = z && !axis_homed[Z_AXIS];
  1502. if (xx || yy || zz) {
  1503. SERIAL_ECHO_START;
  1504. SERIAL_ECHOPGM(MSG_HOME " ");
  1505. if (xx) SERIAL_ECHOPGM(MSG_X);
  1506. if (yy) SERIAL_ECHOPGM(MSG_Y);
  1507. if (zz) SERIAL_ECHOPGM(MSG_Z);
  1508. SERIAL_ECHOLNPGM(" " MSG_FIRST);
  1509. #if ENABLED(ULTRA_LCD)
  1510. char message[3 * (LCD_WIDTH) + 1] = ""; // worst case is kana.utf with up to 3*LCD_WIDTH+1
  1511. strcat_P(message, PSTR(MSG_HOME " "));
  1512. if (xx) strcat_P(message, PSTR(MSG_X));
  1513. if (yy) strcat_P(message, PSTR(MSG_Y));
  1514. if (zz) strcat_P(message, PSTR(MSG_Z));
  1515. strcat_P(message, PSTR(" " MSG_FIRST));
  1516. lcd_setstatus(message);
  1517. #endif
  1518. return true;
  1519. }
  1520. return false;
  1521. }
  1522. #endif
  1523. #if ENABLED(Z_PROBE_SLED)
  1524. #ifndef SLED_DOCKING_OFFSET
  1525. #define SLED_DOCKING_OFFSET 0
  1526. #endif
  1527. /**
  1528. * Method to dock/undock a sled designed by Charles Bell.
  1529. *
  1530. * stow[in] If false, move to MAX_X and engage the solenoid
  1531. * If true, move to MAX_X and release the solenoid
  1532. */
  1533. static void dock_sled(bool stow) {
  1534. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1535. if (DEBUGGING(LEVELING)) {
  1536. SERIAL_ECHOPAIR("dock_sled(", stow);
  1537. SERIAL_CHAR(')');
  1538. SERIAL_EOL;
  1539. }
  1540. #endif
  1541. // Dock sled a bit closer to ensure proper capturing
  1542. do_blocking_move_to_x(X_MAX_POS + SLED_DOCKING_OFFSET - ((stow) ? 1 : 0));
  1543. #if PIN_EXISTS(SLED)
  1544. digitalWrite(SLED_PIN, !stow); // switch solenoid
  1545. #endif
  1546. }
  1547. #elif ENABLED(Z_PROBE_ALLEN_KEY)
  1548. void run_deploy_moves_script() {
  1549. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_1_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_1_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_1_Z)
  1550. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_X
  1551. #define Z_PROBE_ALLEN_KEY_DEPLOY_1_X current_position[X_AXIS]
  1552. #endif
  1553. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_Y
  1554. #define Z_PROBE_ALLEN_KEY_DEPLOY_1_Y current_position[Y_AXIS]
  1555. #endif
  1556. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_Z
  1557. #define Z_PROBE_ALLEN_KEY_DEPLOY_1_Z current_position[Z_AXIS]
  1558. #endif
  1559. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE
  1560. #define Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE 0.0
  1561. #endif
  1562. do_blocking_move_to(Z_PROBE_ALLEN_KEY_DEPLOY_1_X, Z_PROBE_ALLEN_KEY_DEPLOY_1_Y, Z_PROBE_ALLEN_KEY_DEPLOY_1_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE));
  1563. #endif
  1564. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_2_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_2_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_2_Z)
  1565. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_X
  1566. #define Z_PROBE_ALLEN_KEY_DEPLOY_2_X current_position[X_AXIS]
  1567. #endif
  1568. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_Y
  1569. #define Z_PROBE_ALLEN_KEY_DEPLOY_2_Y current_position[Y_AXIS]
  1570. #endif
  1571. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_Z
  1572. #define Z_PROBE_ALLEN_KEY_DEPLOY_2_Z current_position[Z_AXIS]
  1573. #endif
  1574. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE
  1575. #define Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE 0.0
  1576. #endif
  1577. do_blocking_move_to(Z_PROBE_ALLEN_KEY_DEPLOY_2_X, Z_PROBE_ALLEN_KEY_DEPLOY_2_Y, Z_PROBE_ALLEN_KEY_DEPLOY_2_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE));
  1578. #endif
  1579. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_3_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_3_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_3_Z)
  1580. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_X
  1581. #define Z_PROBE_ALLEN_KEY_DEPLOY_3_X current_position[X_AXIS]
  1582. #endif
  1583. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_Y
  1584. #define Z_PROBE_ALLEN_KEY_DEPLOY_3_Y current_position[Y_AXIS]
  1585. #endif
  1586. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_Z
  1587. #define Z_PROBE_ALLEN_KEY_DEPLOY_3_Z current_position[Z_AXIS]
  1588. #endif
  1589. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE
  1590. #define Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE 0.0
  1591. #endif
  1592. do_blocking_move_to(Z_PROBE_ALLEN_KEY_DEPLOY_3_X, Z_PROBE_ALLEN_KEY_DEPLOY_3_Y, Z_PROBE_ALLEN_KEY_DEPLOY_3_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE));
  1593. #endif
  1594. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_4_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_4_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_4_Z)
  1595. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_X
  1596. #define Z_PROBE_ALLEN_KEY_DEPLOY_4_X current_position[X_AXIS]
  1597. #endif
  1598. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_Y
  1599. #define Z_PROBE_ALLEN_KEY_DEPLOY_4_Y current_position[Y_AXIS]
  1600. #endif
  1601. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_Z
  1602. #define Z_PROBE_ALLEN_KEY_DEPLOY_4_Z current_position[Z_AXIS]
  1603. #endif
  1604. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_FEEDRATE
  1605. #define Z_PROBE_ALLEN_KEY_DEPLOY_4_FEEDRATE 0.0
  1606. #endif
  1607. do_blocking_move_to(Z_PROBE_ALLEN_KEY_DEPLOY_4_X, Z_PROBE_ALLEN_KEY_DEPLOY_4_Y, Z_PROBE_ALLEN_KEY_DEPLOY_4_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_4_FEEDRATE));
  1608. #endif
  1609. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_5_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_5_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_5_Z)
  1610. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_X
  1611. #define Z_PROBE_ALLEN_KEY_DEPLOY_5_X current_position[X_AXIS]
  1612. #endif
  1613. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_Y
  1614. #define Z_PROBE_ALLEN_KEY_DEPLOY_5_Y current_position[Y_AXIS]
  1615. #endif
  1616. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_Z
  1617. #define Z_PROBE_ALLEN_KEY_DEPLOY_5_Z current_position[Z_AXIS]
  1618. #endif
  1619. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_FEEDRATE
  1620. #define Z_PROBE_ALLEN_KEY_DEPLOY_5_FEEDRATE 0.0
  1621. #endif
  1622. do_blocking_move_to(Z_PROBE_ALLEN_KEY_DEPLOY_5_X, Z_PROBE_ALLEN_KEY_DEPLOY_5_Y, Z_PROBE_ALLEN_KEY_DEPLOY_5_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_5_FEEDRATE));
  1623. #endif
  1624. }
  1625. void run_stow_moves_script() {
  1626. #if defined(Z_PROBE_ALLEN_KEY_STOW_1_X) || defined(Z_PROBE_ALLEN_KEY_STOW_1_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_1_Z)
  1627. #ifndef Z_PROBE_ALLEN_KEY_STOW_1_X
  1628. #define Z_PROBE_ALLEN_KEY_STOW_1_X current_position[X_AXIS]
  1629. #endif
  1630. #ifndef Z_PROBE_ALLEN_KEY_STOW_1_Y
  1631. #define Z_PROBE_ALLEN_KEY_STOW_1_Y current_position[Y_AXIS]
  1632. #endif
  1633. #ifndef Z_PROBE_ALLEN_KEY_STOW_1_Z
  1634. #define Z_PROBE_ALLEN_KEY_STOW_1_Z current_position[Z_AXIS]
  1635. #endif
  1636. #ifndef Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE
  1637. #define Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE 0.0
  1638. #endif
  1639. do_blocking_move_to(Z_PROBE_ALLEN_KEY_STOW_1_X, Z_PROBE_ALLEN_KEY_STOW_1_Y, Z_PROBE_ALLEN_KEY_STOW_1_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE));
  1640. #endif
  1641. #if defined(Z_PROBE_ALLEN_KEY_STOW_2_X) || defined(Z_PROBE_ALLEN_KEY_STOW_2_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_2_Z)
  1642. #ifndef Z_PROBE_ALLEN_KEY_STOW_2_X
  1643. #define Z_PROBE_ALLEN_KEY_STOW_2_X current_position[X_AXIS]
  1644. #endif
  1645. #ifndef Z_PROBE_ALLEN_KEY_STOW_2_Y
  1646. #define Z_PROBE_ALLEN_KEY_STOW_2_Y current_position[Y_AXIS]
  1647. #endif
  1648. #ifndef Z_PROBE_ALLEN_KEY_STOW_2_Z
  1649. #define Z_PROBE_ALLEN_KEY_STOW_2_Z current_position[Z_AXIS]
  1650. #endif
  1651. #ifndef Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE
  1652. #define Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE 0.0
  1653. #endif
  1654. do_blocking_move_to(Z_PROBE_ALLEN_KEY_STOW_2_X, Z_PROBE_ALLEN_KEY_STOW_2_Y, Z_PROBE_ALLEN_KEY_STOW_2_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE));
  1655. #endif
  1656. #if defined(Z_PROBE_ALLEN_KEY_STOW_3_X) || defined(Z_PROBE_ALLEN_KEY_STOW_3_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_3_Z)
  1657. #ifndef Z_PROBE_ALLEN_KEY_STOW_3_X
  1658. #define Z_PROBE_ALLEN_KEY_STOW_3_X current_position[X_AXIS]
  1659. #endif
  1660. #ifndef Z_PROBE_ALLEN_KEY_STOW_3_Y
  1661. #define Z_PROBE_ALLEN_KEY_STOW_3_Y current_position[Y_AXIS]
  1662. #endif
  1663. #ifndef Z_PROBE_ALLEN_KEY_STOW_3_Z
  1664. #define Z_PROBE_ALLEN_KEY_STOW_3_Z current_position[Z_AXIS]
  1665. #endif
  1666. #ifndef Z_PROBE_ALLEN_KEY_STOW_3_FEEDRATE
  1667. #define Z_PROBE_ALLEN_KEY_STOW_3_FEEDRATE 0.0
  1668. #endif
  1669. do_blocking_move_to(Z_PROBE_ALLEN_KEY_STOW_3_X, Z_PROBE_ALLEN_KEY_STOW_3_Y, Z_PROBE_ALLEN_KEY_STOW_3_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_3_FEEDRATE));
  1670. #endif
  1671. #if defined(Z_PROBE_ALLEN_KEY_STOW_4_X) || defined(Z_PROBE_ALLEN_KEY_STOW_4_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_4_Z)
  1672. #ifndef Z_PROBE_ALLEN_KEY_STOW_4_X
  1673. #define Z_PROBE_ALLEN_KEY_STOW_4_X current_position[X_AXIS]
  1674. #endif
  1675. #ifndef Z_PROBE_ALLEN_KEY_STOW_4_Y
  1676. #define Z_PROBE_ALLEN_KEY_STOW_4_Y current_position[Y_AXIS]
  1677. #endif
  1678. #ifndef Z_PROBE_ALLEN_KEY_STOW_4_Z
  1679. #define Z_PROBE_ALLEN_KEY_STOW_4_Z current_position[Z_AXIS]
  1680. #endif
  1681. #ifndef Z_PROBE_ALLEN_KEY_STOW_4_FEEDRATE
  1682. #define Z_PROBE_ALLEN_KEY_STOW_4_FEEDRATE 0.0
  1683. #endif
  1684. do_blocking_move_to(Z_PROBE_ALLEN_KEY_STOW_4_X, Z_PROBE_ALLEN_KEY_STOW_4_Y, Z_PROBE_ALLEN_KEY_STOW_4_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_4_FEEDRATE));
  1685. #endif
  1686. #if defined(Z_PROBE_ALLEN_KEY_STOW_5_X) || defined(Z_PROBE_ALLEN_KEY_STOW_5_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_5_Z)
  1687. #ifndef Z_PROBE_ALLEN_KEY_STOW_5_X
  1688. #define Z_PROBE_ALLEN_KEY_STOW_5_X current_position[X_AXIS]
  1689. #endif
  1690. #ifndef Z_PROBE_ALLEN_KEY_STOW_5_Y
  1691. #define Z_PROBE_ALLEN_KEY_STOW_5_Y current_position[Y_AXIS]
  1692. #endif
  1693. #ifndef Z_PROBE_ALLEN_KEY_STOW_5_Z
  1694. #define Z_PROBE_ALLEN_KEY_STOW_5_Z current_position[Z_AXIS]
  1695. #endif
  1696. #ifndef Z_PROBE_ALLEN_KEY_STOW_5_FEEDRATE
  1697. #define Z_PROBE_ALLEN_KEY_STOW_5_FEEDRATE 0.0
  1698. #endif
  1699. do_blocking_move_to(Z_PROBE_ALLEN_KEY_STOW_5_X, Z_PROBE_ALLEN_KEY_STOW_5_Y, Z_PROBE_ALLEN_KEY_STOW_5_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_5_FEEDRATE));
  1700. #endif
  1701. }
  1702. #endif
  1703. #if HAS_BED_PROBE
  1704. // TRIGGERED_WHEN_STOWED_TEST can easily be extended to servo probes, ... if needed.
  1705. #if ENABLED(PROBE_IS_TRIGGERED_WHEN_STOWED_TEST)
  1706. #if ENABLED(Z_MIN_PROBE_ENDSTOP)
  1707. #define _TRIGGERED_WHEN_STOWED_TEST (READ(Z_MIN_PROBE_PIN) != Z_MIN_PROBE_ENDSTOP_INVERTING)
  1708. #else
  1709. #define _TRIGGERED_WHEN_STOWED_TEST (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING)
  1710. #endif
  1711. #endif
  1712. #define DEPLOY_PROBE() set_probe_deployed(true)
  1713. #define STOW_PROBE() set_probe_deployed(false)
  1714. #if ENABLED(BLTOUCH)
  1715. FORCE_INLINE void set_bltouch_deployed(const bool &deploy) {
  1716. servo[Z_ENDSTOP_SERVO_NR].move(deploy ? BLTOUCH_DEPLOY : BLTOUCH_STOW);
  1717. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1718. if (DEBUGGING(LEVELING)) {
  1719. SERIAL_ECHOPAIR("set_bltouch_deployed(", deploy);
  1720. SERIAL_CHAR(')');
  1721. SERIAL_EOL;
  1722. }
  1723. #endif
  1724. }
  1725. #endif
  1726. // returns false for ok and true for failure
  1727. static bool set_probe_deployed(bool deploy) {
  1728. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1729. if (DEBUGGING(LEVELING)) {
  1730. DEBUG_POS("set_probe_deployed", current_position);
  1731. SERIAL_ECHOLNPAIR("deploy: ", deploy);
  1732. }
  1733. #endif
  1734. if (endstops.z_probe_enabled == deploy) return false;
  1735. // Make room for probe
  1736. do_probe_raise(_Z_CLEARANCE_DEPLOY_PROBE);
  1737. // When deploying make sure BLTOUCH is not already triggered
  1738. #if ENABLED(BLTOUCH)
  1739. if (deploy && TEST_BLTOUCH()) { stop(); return true; }
  1740. #elif ENABLED(Z_PROBE_SLED)
  1741. if (axis_unhomed_error(true, false, false)) { stop(); return true; }
  1742. #elif ENABLED(Z_PROBE_ALLEN_KEY)
  1743. if (axis_unhomed_error(true, true, true )) { stop(); return true; }
  1744. #endif
  1745. float oldXpos = current_position[X_AXIS],
  1746. oldYpos = current_position[Y_AXIS];
  1747. #ifdef _TRIGGERED_WHEN_STOWED_TEST
  1748. // If endstop is already false, the Z probe is deployed
  1749. if (_TRIGGERED_WHEN_STOWED_TEST == deploy) { // closed after the probe specific actions.
  1750. // Would a goto be less ugly?
  1751. //while (!_TRIGGERED_WHEN_STOWED_TEST) idle(); // would offer the opportunity
  1752. // for a triggered when stowed manual probe.
  1753. if (!deploy) endstops.enable_z_probe(false); // Switch off triggered when stowed probes early
  1754. // otherwise an Allen-Key probe can't be stowed.
  1755. #endif
  1756. #if ENABLED(Z_PROBE_SLED)
  1757. dock_sled(!deploy);
  1758. #elif HAS_Z_SERVO_ENDSTOP && DISABLED(BLTOUCH)
  1759. servo[Z_ENDSTOP_SERVO_NR].move(z_servo_angle[deploy ? 0 : 1]);
  1760. #elif ENABLED(Z_PROBE_ALLEN_KEY)
  1761. deploy ? run_deploy_moves_script() : run_stow_moves_script();
  1762. #endif
  1763. #ifdef _TRIGGERED_WHEN_STOWED_TEST
  1764. } // _TRIGGERED_WHEN_STOWED_TEST == deploy
  1765. if (_TRIGGERED_WHEN_STOWED_TEST == deploy) { // State hasn't changed?
  1766. if (IsRunning()) {
  1767. SERIAL_ERROR_START;
  1768. SERIAL_ERRORLNPGM("Z-Probe failed");
  1769. LCD_ALERTMESSAGEPGM("Err: ZPROBE");
  1770. }
  1771. stop();
  1772. return true;
  1773. } // _TRIGGERED_WHEN_STOWED_TEST == deploy
  1774. #endif
  1775. do_blocking_move_to(oldXpos, oldYpos, current_position[Z_AXIS]); // return to position before deploy
  1776. endstops.enable_z_probe(deploy);
  1777. return false;
  1778. }
  1779. static void do_probe_move(float z, float fr_mm_m) {
  1780. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1781. if (DEBUGGING(LEVELING)) DEBUG_POS(">>> do_probe_move", current_position);
  1782. #endif
  1783. // Deploy BLTouch at the start of any probe
  1784. #if ENABLED(BLTOUCH)
  1785. set_bltouch_deployed(true);
  1786. #endif
  1787. // Move down until probe triggered
  1788. do_blocking_move_to_z(LOGICAL_Z_POSITION(z), MMM_TO_MMS(fr_mm_m));
  1789. // Retract BLTouch immediately after a probe
  1790. #if ENABLED(BLTOUCH)
  1791. set_bltouch_deployed(false);
  1792. #endif
  1793. // Clear endstop flags
  1794. endstops.hit_on_purpose();
  1795. // Get Z where the steppers were interrupted
  1796. set_current_from_steppers_for_axis(Z_AXIS);
  1797. // Tell the planner where we actually are
  1798. SYNC_PLAN_POSITION_KINEMATIC();
  1799. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1800. if (DEBUGGING(LEVELING)) DEBUG_POS("<<< do_probe_move", current_position);
  1801. #endif
  1802. }
  1803. // Do a single Z probe and return with current_position[Z_AXIS]
  1804. // at the height where the probe triggered.
  1805. static float run_z_probe() {
  1806. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1807. if (DEBUGGING(LEVELING)) DEBUG_POS(">>> run_z_probe", current_position);
  1808. #endif
  1809. // Prevent stepper_inactive_time from running out and EXTRUDER_RUNOUT_PREVENT from extruding
  1810. refresh_cmd_timeout();
  1811. #if ENABLED(PROBE_DOUBLE_TOUCH)
  1812. // Do a first probe at the fast speed
  1813. do_probe_move(-(Z_MAX_LENGTH) - 10, Z_PROBE_SPEED_FAST);
  1814. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1815. float first_probe_z = current_position[Z_AXIS];
  1816. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPAIR("1st Probe Z:", first_probe_z);
  1817. #endif
  1818. // move up by the bump distance
  1819. do_blocking_move_to_z(current_position[Z_AXIS] + home_bump_mm(Z_AXIS), MMM_TO_MMS(Z_PROBE_SPEED_FAST));
  1820. #else
  1821. // If the nozzle is above the travel height then
  1822. // move down quickly before doing the slow probe
  1823. float z = LOGICAL_Z_POSITION(Z_CLEARANCE_BETWEEN_PROBES);
  1824. if (zprobe_zoffset < 0) z -= zprobe_zoffset;
  1825. if (z < current_position[Z_AXIS])
  1826. do_blocking_move_to_z(z, MMM_TO_MMS(Z_PROBE_SPEED_FAST));
  1827. #endif
  1828. // move down slowly to find bed
  1829. do_probe_move(-(Z_MAX_LENGTH) - 10, Z_PROBE_SPEED_SLOW);
  1830. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1831. if (DEBUGGING(LEVELING)) DEBUG_POS("<<< run_z_probe", current_position);
  1832. #endif
  1833. // Debug: compare probe heights
  1834. #if ENABLED(PROBE_DOUBLE_TOUCH) && ENABLED(DEBUG_LEVELING_FEATURE)
  1835. if (DEBUGGING(LEVELING)) {
  1836. SERIAL_ECHOPAIR("2nd Probe Z:", current_position[Z_AXIS]);
  1837. SERIAL_ECHOLNPAIR(" Discrepancy:", first_probe_z - current_position[Z_AXIS]);
  1838. }
  1839. #endif
  1840. return current_position[Z_AXIS];
  1841. }
  1842. //
  1843. // - Move to the given XY
  1844. // - Deploy the probe, if not already deployed
  1845. // - Probe the bed, get the Z position
  1846. // - Depending on the 'stow' flag
  1847. // - Stow the probe, or
  1848. // - Raise to the BETWEEN height
  1849. // - Return the probed Z position
  1850. //
  1851. static float probe_pt(const float &x, const float &y, bool stow = true, int verbose_level = 1) {
  1852. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1853. if (DEBUGGING(LEVELING)) {
  1854. SERIAL_ECHOPAIR(">>> probe_pt(", x);
  1855. SERIAL_ECHOPAIR(", ", y);
  1856. SERIAL_ECHOPAIR(", ", stow ? "" : "no ");
  1857. SERIAL_ECHOLNPGM("stow)");
  1858. DEBUG_POS("", current_position);
  1859. }
  1860. #endif
  1861. float old_feedrate_mm_s = feedrate_mm_s;
  1862. // Ensure a minimum height before moving the probe
  1863. do_probe_raise(Z_CLEARANCE_BETWEEN_PROBES);
  1864. feedrate_mm_s = XY_PROBE_FEEDRATE_MM_S;
  1865. // Move the probe to the given XY
  1866. do_blocking_move_to_xy(x - (X_PROBE_OFFSET_FROM_EXTRUDER), y - (Y_PROBE_OFFSET_FROM_EXTRUDER));
  1867. if (DEPLOY_PROBE()) return NAN;
  1868. float measured_z = run_z_probe();
  1869. if (!stow)
  1870. do_probe_raise(Z_CLEARANCE_BETWEEN_PROBES);
  1871. else
  1872. if (STOW_PROBE()) return NAN;
  1873. if (verbose_level > 2) {
  1874. SERIAL_PROTOCOLPGM("Bed X: ");
  1875. SERIAL_PROTOCOL_F(x, 3);
  1876. SERIAL_PROTOCOLPGM(" Y: ");
  1877. SERIAL_PROTOCOL_F(y, 3);
  1878. SERIAL_PROTOCOLPGM(" Z: ");
  1879. SERIAL_PROTOCOL_F(measured_z, 3);
  1880. SERIAL_EOL;
  1881. }
  1882. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1883. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< probe_pt");
  1884. #endif
  1885. feedrate_mm_s = old_feedrate_mm_s;
  1886. return measured_z;
  1887. }
  1888. #endif // HAS_BED_PROBE
  1889. #if PLANNER_LEVELING
  1890. /**
  1891. * Turn bed leveling on or off, fixing the current
  1892. * position as-needed.
  1893. *
  1894. * Disable: Current position = physical position
  1895. * Enable: Current position = "unleveled" physical position
  1896. */
  1897. void set_bed_leveling_enabled(bool enable=true) {
  1898. #if ENABLED(MESH_BED_LEVELING)
  1899. if (!enable && mbl.active())
  1900. current_position[Z_AXIS] +=
  1901. mbl.get_z(RAW_CURRENT_POSITION(X_AXIS), RAW_CURRENT_POSITION(Y_AXIS)) - (MESH_HOME_SEARCH_Z);
  1902. mbl.set_active(enable && mbl.has_mesh()); // was set_has_mesh(). Is this not correct?
  1903. #elif HAS_ABL
  1904. if (enable != planner.abl_enabled) {
  1905. planner.abl_enabled = enable;
  1906. if (!enable)
  1907. set_current_from_steppers_for_axis(
  1908. #if ABL_PLANAR
  1909. ALL_AXES
  1910. #else
  1911. Z_AXIS
  1912. #endif
  1913. );
  1914. else
  1915. planner.unapply_leveling(current_position);
  1916. }
  1917. #endif
  1918. }
  1919. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  1920. void set_z_fade_height(const float zfh) {
  1921. planner.z_fade_height = zfh;
  1922. planner.inverse_z_fade_height = RECIPROCAL(zfh);
  1923. if (
  1924. #if ENABLED(MESH_BED_LEVELING)
  1925. mbl.active()
  1926. #else
  1927. planner.abl_enabled
  1928. #endif
  1929. ) {
  1930. set_current_from_steppers_for_axis(
  1931. #if ABL_PLANAR
  1932. ALL_AXES
  1933. #else
  1934. Z_AXIS
  1935. #endif
  1936. );
  1937. }
  1938. }
  1939. #endif // LEVELING_FADE_HEIGHT
  1940. /**
  1941. * Reset calibration results to zero.
  1942. */
  1943. void reset_bed_level() {
  1944. #if ENABLED(MESH_BED_LEVELING)
  1945. if (mbl.has_mesh()) {
  1946. set_bed_leveling_enabled(false);
  1947. mbl.reset();
  1948. mbl.set_has_mesh(false);
  1949. }
  1950. #else
  1951. planner.abl_enabled = false;
  1952. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1953. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("reset_bed_level");
  1954. #endif
  1955. #if ABL_PLANAR
  1956. planner.bed_level_matrix.set_to_identity();
  1957. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  1958. for (uint8_t x = 0; x < ABL_GRID_POINTS_X; x++)
  1959. for (uint8_t y = 0; y < ABL_GRID_POINTS_Y; y++)
  1960. bed_level_grid[x][y] = 1000.0;
  1961. #endif
  1962. #endif
  1963. }
  1964. #endif // PLANNER_LEVELING
  1965. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  1966. /**
  1967. * Extrapolate a single point from its neighbors
  1968. */
  1969. static void extrapolate_one_point(uint8_t x, uint8_t y, int8_t xdir, int8_t ydir) {
  1970. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1971. if (DEBUGGING(LEVELING)) {
  1972. SERIAL_ECHOPGM("Extrapolate [");
  1973. if (x < 10) SERIAL_CHAR(' ');
  1974. SERIAL_ECHO((int)x);
  1975. SERIAL_CHAR(xdir ? (xdir > 0 ? '+' : '-') : ' ');
  1976. SERIAL_CHAR(' ');
  1977. if (y < 10) SERIAL_CHAR(' ');
  1978. SERIAL_ECHO((int)y);
  1979. SERIAL_CHAR(ydir ? (ydir > 0 ? '+' : '-') : ' ');
  1980. SERIAL_CHAR(']');
  1981. }
  1982. #endif
  1983. if (bed_level_grid[x][y] < 999.0) {
  1984. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1985. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM(" (done)");
  1986. #endif
  1987. return; // Don't overwrite good values.
  1988. }
  1989. SERIAL_EOL;
  1990. // Get X neighbors, Y neighbors, and XY neighbors
  1991. float a1 = bed_level_grid[x + xdir][y], a2 = bed_level_grid[x + xdir * 2][y],
  1992. b1 = bed_level_grid[x][y + ydir], b2 = bed_level_grid[x][y + ydir * 2],
  1993. c1 = bed_level_grid[x + xdir][y + ydir], c2 = bed_level_grid[x + xdir * 2][y + ydir * 2];
  1994. // Treat far unprobed points as zero, near as equal to far
  1995. if (a2 > 999.0) a2 = 0.0; if (a1 > 999.0) a1 = a2;
  1996. if (b2 > 999.0) b2 = 0.0; if (b1 > 999.0) b1 = b2;
  1997. if (c2 > 999.0) c2 = 0.0; if (c1 > 999.0) c1 = c2;
  1998. float a = 2 * a1 - a2, b = 2 * b1 - b2, c = 2 * c1 - c2;
  1999. // Take the average intstead of the median
  2000. bed_level_grid[x][y] = (a + b + c) / 3.0;
  2001. // Median is robust (ignores outliers).
  2002. // bed_level_grid[x][y] = (a < b) ? ((b < c) ? b : (c < a) ? a : c)
  2003. // : ((c < b) ? b : (a < c) ? a : c);
  2004. }
  2005. //Enable this if your SCARA uses 180° of total area
  2006. //#define EXTRAPOLATE_FROM_EDGE
  2007. #if ENABLED(EXTRAPOLATE_FROM_EDGE)
  2008. #if ABL_GRID_POINTS_X < ABL_GRID_POINTS_Y
  2009. #define HALF_IN_X
  2010. #elif ABL_GRID_POINTS_Y < ABL_GRID_POINTS_X
  2011. #define HALF_IN_Y
  2012. #endif
  2013. #endif
  2014. /**
  2015. * Fill in the unprobed points (corners of circular print surface)
  2016. * using linear extrapolation, away from the center.
  2017. */
  2018. static void extrapolate_unprobed_bed_level() {
  2019. #ifdef HALF_IN_X
  2020. const uint8_t ctrx2 = 0, xlen = ABL_GRID_POINTS_X - 1;
  2021. #else
  2022. const uint8_t ctrx1 = (ABL_GRID_POINTS_X - 1) / 2, // left-of-center
  2023. ctrx2 = ABL_GRID_POINTS_X / 2, // right-of-center
  2024. xlen = ctrx1;
  2025. #endif
  2026. #ifdef HALF_IN_Y
  2027. const uint8_t ctry2 = 0, ylen = ABL_GRID_POINTS_Y - 1;
  2028. #else
  2029. const uint8_t ctry1 = (ABL_GRID_POINTS_Y - 1) / 2, // top-of-center
  2030. ctry2 = ABL_GRID_POINTS_Y / 2, // bottom-of-center
  2031. ylen = ctry1;
  2032. #endif
  2033. for (uint8_t xo = 0; xo <= xlen; xo++)
  2034. for (uint8_t yo = 0; yo <= ylen; yo++) {
  2035. uint8_t x2 = ctrx2 + xo, y2 = ctry2 + yo;
  2036. #ifndef HALF_IN_X
  2037. uint8_t x1 = ctrx1 - xo;
  2038. #endif
  2039. #ifndef HALF_IN_Y
  2040. uint8_t y1 = ctry1 - yo;
  2041. #ifndef HALF_IN_X
  2042. extrapolate_one_point(x1, y1, +1, +1); // left-below + +
  2043. #endif
  2044. extrapolate_one_point(x2, y1, -1, +1); // right-below - +
  2045. #endif
  2046. #ifndef HALF_IN_X
  2047. extrapolate_one_point(x1, y2, +1, -1); // left-above + -
  2048. #endif
  2049. extrapolate_one_point(x2, y2, -1, -1); // right-above - -
  2050. }
  2051. }
  2052. /**
  2053. * Print calibration results for plotting or manual frame adjustment.
  2054. */
  2055. static void print_bed_level() {
  2056. SERIAL_ECHOPGM("Bilinear Leveling Grid:\n ");
  2057. for (uint8_t x = 0; x < ABL_GRID_POINTS_X; x++) {
  2058. SERIAL_PROTOCOLPGM(" ");
  2059. if (x < 10) SERIAL_PROTOCOLCHAR(' ');
  2060. SERIAL_PROTOCOL((int)x);
  2061. }
  2062. SERIAL_EOL;
  2063. for (uint8_t y = 0; y < ABL_GRID_POINTS_Y; y++) {
  2064. if (y < 10) SERIAL_PROTOCOLCHAR(' ');
  2065. SERIAL_PROTOCOL((int)y);
  2066. for (uint8_t x = 0; x < ABL_GRID_POINTS_X; x++) {
  2067. SERIAL_PROTOCOLCHAR(' ');
  2068. float offset = bed_level_grid[x][y];
  2069. if (offset < 999.0) {
  2070. if (offset > 0) SERIAL_CHAR('+');
  2071. SERIAL_PROTOCOL_F(offset, 2);
  2072. }
  2073. else
  2074. SERIAL_PROTOCOLPGM(" ====");
  2075. }
  2076. SERIAL_EOL;
  2077. }
  2078. SERIAL_EOL;
  2079. }
  2080. #endif // AUTO_BED_LEVELING_BILINEAR
  2081. /**
  2082. * Home an individual linear axis
  2083. */
  2084. static void do_homing_move(const AxisEnum axis, float distance, float fr_mm_s=0.0) {
  2085. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2086. if (DEBUGGING(LEVELING)) {
  2087. SERIAL_ECHOPAIR(">>> do_homing_move(", axis_codes[axis]);
  2088. SERIAL_ECHOPAIR(", ", distance);
  2089. SERIAL_ECHOPAIR(", ", fr_mm_s);
  2090. SERIAL_CHAR(')');
  2091. SERIAL_EOL;
  2092. }
  2093. #endif
  2094. #if HOMING_Z_WITH_PROBE && ENABLED(BLTOUCH)
  2095. bool deploy_bltouch = (axis == Z_AXIS && distance < 0);
  2096. if (deploy_bltouch) set_bltouch_deployed(true);
  2097. #endif
  2098. // Tell the planner we're at Z=0
  2099. current_position[axis] = 0;
  2100. #if IS_SCARA
  2101. SYNC_PLAN_POSITION_KINEMATIC();
  2102. current_position[axis] = distance;
  2103. inverse_kinematics(current_position);
  2104. planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], current_position[E_AXIS], fr_mm_s ? fr_mm_s : homing_feedrate_mm_s[axis], active_extruder);
  2105. #else
  2106. sync_plan_position();
  2107. current_position[axis] = distance;
  2108. planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], fr_mm_s ? fr_mm_s : homing_feedrate_mm_s[axis], active_extruder);
  2109. #endif
  2110. stepper.synchronize();
  2111. #if HOMING_Z_WITH_PROBE && ENABLED(BLTOUCH)
  2112. if (deploy_bltouch) set_bltouch_deployed(false);
  2113. #endif
  2114. endstops.hit_on_purpose();
  2115. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2116. if (DEBUGGING(LEVELING)) {
  2117. SERIAL_ECHOPAIR("<<< do_homing_move(", axis_codes[axis]);
  2118. SERIAL_CHAR(')');
  2119. SERIAL_EOL;
  2120. }
  2121. #endif
  2122. }
  2123. /**
  2124. * Home an individual "raw axis" to its endstop.
  2125. * This applies to XYZ on Cartesian and Core robots, and
  2126. * to the individual ABC steppers on DELTA and SCARA.
  2127. *
  2128. * At the end of the procedure the axis is marked as
  2129. * homed and the current position of that axis is updated.
  2130. * Kinematic robots should wait till all axes are homed
  2131. * before updating the current position.
  2132. */
  2133. #define HOMEAXIS(LETTER) homeaxis(LETTER##_AXIS)
  2134. static void homeaxis(AxisEnum axis) {
  2135. #if IS_SCARA
  2136. // Only Z homing (with probe) is permitted
  2137. if (axis != Z_AXIS) { BUZZ(100, 880); return; }
  2138. #else
  2139. #define CAN_HOME(A) \
  2140. (axis == A##_AXIS && ((A##_MIN_PIN > -1 && A##_HOME_DIR < 0) || (A##_MAX_PIN > -1 && A##_HOME_DIR > 0)))
  2141. if (!CAN_HOME(X) && !CAN_HOME(Y) && !CAN_HOME(Z)) return;
  2142. #endif
  2143. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2144. if (DEBUGGING(LEVELING)) {
  2145. SERIAL_ECHOPAIR(">>> homeaxis(", axis_codes[axis]);
  2146. SERIAL_CHAR(')');
  2147. SERIAL_EOL;
  2148. }
  2149. #endif
  2150. int axis_home_dir =
  2151. #if ENABLED(DUAL_X_CARRIAGE)
  2152. (axis == X_AXIS) ? x_home_dir(active_extruder) :
  2153. #endif
  2154. home_dir(axis);
  2155. // Homing Z towards the bed? Deploy the Z probe or endstop.
  2156. #if HOMING_Z_WITH_PROBE
  2157. if (axis == Z_AXIS && DEPLOY_PROBE()) return;
  2158. #endif
  2159. // Set a flag for Z motor locking
  2160. #if ENABLED(Z_DUAL_ENDSTOPS)
  2161. if (axis == Z_AXIS) stepper.set_homing_flag(true);
  2162. #endif
  2163. // Fast move towards endstop until triggered
  2164. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2165. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("Home 1 Fast:");
  2166. #endif
  2167. do_homing_move(axis, 1.5 * max_length(axis) * axis_home_dir);
  2168. // When homing Z with probe respect probe clearance
  2169. const float bump = axis_home_dir * (
  2170. #if HOMING_Z_WITH_PROBE
  2171. (axis == Z_AXIS) ? max(Z_CLEARANCE_BETWEEN_PROBES, home_bump_mm(Z_AXIS)) :
  2172. #endif
  2173. home_bump_mm(axis)
  2174. );
  2175. // If a second homing move is configured...
  2176. if (bump) {
  2177. // Move away from the endstop by the axis HOME_BUMP_MM
  2178. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2179. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("Move Away:");
  2180. #endif
  2181. do_homing_move(axis, -bump);
  2182. // Slow move towards endstop until triggered
  2183. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2184. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("Home 2 Slow:");
  2185. #endif
  2186. do_homing_move(axis, 2 * bump, get_homing_bump_feedrate(axis));
  2187. }
  2188. #if ENABLED(Z_DUAL_ENDSTOPS)
  2189. if (axis == Z_AXIS) {
  2190. float adj = fabs(z_endstop_adj);
  2191. bool lockZ1;
  2192. if (axis_home_dir > 0) {
  2193. adj = -adj;
  2194. lockZ1 = (z_endstop_adj > 0);
  2195. }
  2196. else
  2197. lockZ1 = (z_endstop_adj < 0);
  2198. if (lockZ1) stepper.set_z_lock(true); else stepper.set_z2_lock(true);
  2199. // Move to the adjusted endstop height
  2200. do_homing_move(axis, adj);
  2201. if (lockZ1) stepper.set_z_lock(false); else stepper.set_z2_lock(false);
  2202. stepper.set_homing_flag(false);
  2203. } // Z_AXIS
  2204. #endif
  2205. #if IS_SCARA
  2206. set_axis_is_at_home(axis);
  2207. SYNC_PLAN_POSITION_KINEMATIC();
  2208. #elif ENABLED(DELTA)
  2209. // Delta has already moved all three towers up in G28
  2210. // so here it re-homes each tower in turn.
  2211. // Delta homing treats the axes as normal linear axes.
  2212. // retrace by the amount specified in endstop_adj
  2213. if (endstop_adj[axis] * Z_HOME_DIR < 0) {
  2214. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2215. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("endstop_adj:");
  2216. #endif
  2217. do_homing_move(axis, endstop_adj[axis]);
  2218. }
  2219. #else
  2220. // For cartesian/core machines,
  2221. // set the axis to its home position
  2222. set_axis_is_at_home(axis);
  2223. sync_plan_position();
  2224. destination[axis] = current_position[axis];
  2225. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2226. if (DEBUGGING(LEVELING)) DEBUG_POS("> AFTER set_axis_is_at_home", current_position);
  2227. #endif
  2228. #endif
  2229. // Put away the Z probe
  2230. #if HOMING_Z_WITH_PROBE
  2231. if (axis == Z_AXIS && STOW_PROBE()) return;
  2232. #endif
  2233. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2234. if (DEBUGGING(LEVELING)) {
  2235. SERIAL_ECHOPAIR("<<< homeaxis(", axis_codes[axis]);
  2236. SERIAL_CHAR(')');
  2237. SERIAL_EOL;
  2238. }
  2239. #endif
  2240. } // homeaxis()
  2241. #if ENABLED(FWRETRACT)
  2242. void retract(bool retracting, bool swapping = false) {
  2243. if (retracting == retracted[active_extruder]) return;
  2244. float old_feedrate_mm_s = feedrate_mm_s;
  2245. set_destination_to_current();
  2246. if (retracting) {
  2247. feedrate_mm_s = retract_feedrate_mm_s;
  2248. current_position[E_AXIS] += (swapping ? retract_length_swap : retract_length) / volumetric_multiplier[active_extruder];
  2249. sync_plan_position_e();
  2250. prepare_move_to_destination();
  2251. if (retract_zlift > 0.01) {
  2252. current_position[Z_AXIS] -= retract_zlift;
  2253. SYNC_PLAN_POSITION_KINEMATIC();
  2254. prepare_move_to_destination();
  2255. }
  2256. }
  2257. else {
  2258. if (retract_zlift > 0.01) {
  2259. current_position[Z_AXIS] += retract_zlift;
  2260. SYNC_PLAN_POSITION_KINEMATIC();
  2261. }
  2262. feedrate_mm_s = retract_recover_feedrate_mm_s;
  2263. float move_e = swapping ? retract_length_swap + retract_recover_length_swap : retract_length + retract_recover_length;
  2264. current_position[E_AXIS] -= move_e / volumetric_multiplier[active_extruder];
  2265. sync_plan_position_e();
  2266. prepare_move_to_destination();
  2267. }
  2268. feedrate_mm_s = old_feedrate_mm_s;
  2269. retracted[active_extruder] = retracting;
  2270. } // retract()
  2271. #endif // FWRETRACT
  2272. #if ENABLED(MIXING_EXTRUDER)
  2273. void normalize_mix() {
  2274. float mix_total = 0.0;
  2275. for (int i = 0; i < MIXING_STEPPERS; i++) mix_total += RECIPROCAL(mixing_factor[i]);
  2276. // Scale all values if they don't add up to ~1.0
  2277. if (!NEAR(mix_total, 1.0)) {
  2278. SERIAL_PROTOCOLLNPGM("Warning: Mix factors must add up to 1.0. Scaling.");
  2279. for (int i = 0; i < MIXING_STEPPERS; i++) mixing_factor[i] *= mix_total;
  2280. }
  2281. }
  2282. #if ENABLED(DIRECT_MIXING_IN_G1)
  2283. // Get mixing parameters from the GCode
  2284. // The total "must" be 1.0 (but it will be normalized)
  2285. // If no mix factors are given, the old mix is preserved
  2286. void gcode_get_mix() {
  2287. const char* mixing_codes = "ABCDHI";
  2288. byte mix_bits = 0;
  2289. for (uint8_t i = 0; i < MIXING_STEPPERS; i++) {
  2290. if (code_seen(mixing_codes[i])) {
  2291. SBI(mix_bits, i);
  2292. float v = code_value_float();
  2293. NOLESS(v, 0.0);
  2294. mixing_factor[i] = RECIPROCAL(v);
  2295. }
  2296. }
  2297. // If any mixing factors were included, clear the rest
  2298. // If none were included, preserve the last mix
  2299. if (mix_bits) {
  2300. for (uint8_t i = 0; i < MIXING_STEPPERS; i++)
  2301. if (!TEST(mix_bits, i)) mixing_factor[i] = 0.0;
  2302. normalize_mix();
  2303. }
  2304. }
  2305. #endif
  2306. #endif
  2307. /**
  2308. * ***************************************************************************
  2309. * ***************************** G-CODE HANDLING *****************************
  2310. * ***************************************************************************
  2311. */
  2312. /**
  2313. * Set XYZE destination and feedrate from the current GCode command
  2314. *
  2315. * - Set destination from included axis codes
  2316. * - Set to current for missing axis codes
  2317. * - Set the feedrate, if included
  2318. */
  2319. void gcode_get_destination() {
  2320. LOOP_XYZE(i) {
  2321. if (code_seen(axis_codes[i]))
  2322. destination[i] = code_value_axis_units(i) + (axis_relative_modes[i] || relative_mode ? current_position[i] : 0);
  2323. else
  2324. destination[i] = current_position[i];
  2325. }
  2326. if (code_seen('F') && code_value_linear_units() > 0.0)
  2327. feedrate_mm_s = MMM_TO_MMS(code_value_linear_units());
  2328. #if ENABLED(PRINTCOUNTER)
  2329. if (!DEBUGGING(DRYRUN))
  2330. print_job_timer.incFilamentUsed(destination[E_AXIS] - current_position[E_AXIS]);
  2331. #endif
  2332. // Get ABCDHI mixing factors
  2333. #if ENABLED(MIXING_EXTRUDER) && ENABLED(DIRECT_MIXING_IN_G1)
  2334. gcode_get_mix();
  2335. #endif
  2336. }
  2337. void unknown_command_error() {
  2338. SERIAL_ECHO_START;
  2339. SERIAL_ECHOPAIR(MSG_UNKNOWN_COMMAND, current_command);
  2340. SERIAL_CHAR('"');
  2341. SERIAL_EOL;
  2342. }
  2343. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  2344. /**
  2345. * Output a "busy" message at regular intervals
  2346. * while the machine is not accepting commands.
  2347. */
  2348. void host_keepalive() {
  2349. millis_t ms = millis();
  2350. if (host_keepalive_interval && busy_state != NOT_BUSY) {
  2351. if (PENDING(ms, next_busy_signal_ms)) return;
  2352. switch (busy_state) {
  2353. case IN_HANDLER:
  2354. case IN_PROCESS:
  2355. SERIAL_ECHO_START;
  2356. SERIAL_ECHOLNPGM(MSG_BUSY_PROCESSING);
  2357. break;
  2358. case PAUSED_FOR_USER:
  2359. SERIAL_ECHO_START;
  2360. SERIAL_ECHOLNPGM(MSG_BUSY_PAUSED_FOR_USER);
  2361. break;
  2362. case PAUSED_FOR_INPUT:
  2363. SERIAL_ECHO_START;
  2364. SERIAL_ECHOLNPGM(MSG_BUSY_PAUSED_FOR_INPUT);
  2365. break;
  2366. default:
  2367. break;
  2368. }
  2369. }
  2370. next_busy_signal_ms = ms + host_keepalive_interval * 1000UL;
  2371. }
  2372. #endif //HOST_KEEPALIVE_FEATURE
  2373. bool position_is_reachable(float target[XYZ]
  2374. #if HAS_BED_PROBE
  2375. , bool by_probe=false
  2376. #endif
  2377. ) {
  2378. float dx = RAW_X_POSITION(target[X_AXIS]),
  2379. dy = RAW_Y_POSITION(target[Y_AXIS]);
  2380. #if HAS_BED_PROBE
  2381. if (by_probe) {
  2382. dx -= X_PROBE_OFFSET_FROM_EXTRUDER;
  2383. dy -= Y_PROBE_OFFSET_FROM_EXTRUDER;
  2384. }
  2385. #endif
  2386. #if IS_SCARA
  2387. #if MIDDLE_DEAD_ZONE_R > 0
  2388. const float R2 = HYPOT2(dx - SCARA_OFFSET_X, dy - SCARA_OFFSET_Y);
  2389. return R2 >= sq(float(MIDDLE_DEAD_ZONE_R)) && R2 <= sq(L1 + L2);
  2390. #else
  2391. return HYPOT2(dx - SCARA_OFFSET_X, dy - SCARA_OFFSET_Y) <= sq(L1 + L2);
  2392. #endif
  2393. #elif ENABLED(DELTA)
  2394. return HYPOT2(dx, dy) <= sq(DELTA_PRINTABLE_RADIUS);
  2395. #else
  2396. const float dz = RAW_Z_POSITION(target[Z_AXIS]);
  2397. return dx >= X_MIN_POS - 0.0001 && dx <= X_MAX_POS + 0.0001
  2398. && dy >= Y_MIN_POS - 0.0001 && dy <= Y_MAX_POS + 0.0001
  2399. && dz >= Z_MIN_POS - 0.0001 && dz <= Z_MAX_POS + 0.0001;
  2400. #endif
  2401. }
  2402. /**************************************************
  2403. ***************** GCode Handlers *****************
  2404. **************************************************/
  2405. /**
  2406. * G0, G1: Coordinated movement of X Y Z E axes
  2407. */
  2408. inline void gcode_G0_G1(
  2409. #if IS_SCARA
  2410. bool fast_move=false
  2411. #endif
  2412. ) {
  2413. if (IsRunning()) {
  2414. gcode_get_destination(); // For X Y Z E F
  2415. #if ENABLED(FWRETRACT)
  2416. if (autoretract_enabled && !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  2417. float echange = destination[E_AXIS] - current_position[E_AXIS];
  2418. // Is this move an attempt to retract or recover?
  2419. if ((echange < -MIN_RETRACT && !retracted[active_extruder]) || (echange > MIN_RETRACT && retracted[active_extruder])) {
  2420. current_position[E_AXIS] = destination[E_AXIS]; // hide the slicer-generated retract/recover from calculations
  2421. sync_plan_position_e(); // AND from the planner
  2422. retract(!retracted[active_extruder]);
  2423. return;
  2424. }
  2425. }
  2426. #endif //FWRETRACT
  2427. #if IS_SCARA
  2428. fast_move ? prepare_uninterpolated_move_to_destination() : prepare_move_to_destination();
  2429. #else
  2430. prepare_move_to_destination();
  2431. #endif
  2432. }
  2433. }
  2434. /**
  2435. * G2: Clockwise Arc
  2436. * G3: Counterclockwise Arc
  2437. *
  2438. * This command has two forms: IJ-form and R-form.
  2439. *
  2440. * - I specifies an X offset. J specifies a Y offset.
  2441. * At least one of the IJ parameters is required.
  2442. * X and Y can be omitted to do a complete circle.
  2443. * The given XY is not error-checked. The arc ends
  2444. * based on the angle of the destination.
  2445. * Mixing I or J with R will throw an error.
  2446. *
  2447. * - R specifies the radius. X or Y is required.
  2448. * Omitting both X and Y will throw an error.
  2449. * X or Y must differ from the current XY.
  2450. * Mixing R with I or J will throw an error.
  2451. *
  2452. * Examples:
  2453. *
  2454. * G2 I10 ; CW circle centered at X+10
  2455. * G3 X20 Y12 R14 ; CCW circle with r=14 ending at X20 Y12
  2456. */
  2457. #if ENABLED(ARC_SUPPORT)
  2458. inline void gcode_G2_G3(bool clockwise) {
  2459. if (IsRunning()) {
  2460. #if ENABLED(SF_ARC_FIX)
  2461. bool relative_mode_backup = relative_mode;
  2462. relative_mode = true;
  2463. #endif
  2464. gcode_get_destination();
  2465. #if ENABLED(SF_ARC_FIX)
  2466. relative_mode = relative_mode_backup;
  2467. #endif
  2468. float arc_offset[2] = { 0.0, 0.0 };
  2469. if (code_seen('R')) {
  2470. const float r = code_value_axis_units(X_AXIS),
  2471. x1 = current_position[X_AXIS], y1 = current_position[Y_AXIS],
  2472. x2 = destination[X_AXIS], y2 = destination[Y_AXIS];
  2473. if (r && (x2 != x1 || y2 != y1)) {
  2474. const float e = clockwise ^ (r < 0) ? -1 : 1, // clockwise -1/1, counterclockwise 1/-1
  2475. dx = x2 - x1, dy = y2 - y1, // X and Y differences
  2476. d = HYPOT(dx, dy), // Linear distance between the points
  2477. h = sqrt(sq(r) - sq(d * 0.5)), // Distance to the arc pivot-point
  2478. mx = (x1 + x2) * 0.5, my = (y1 + y2) * 0.5, // Point between the two points
  2479. sx = -dy / d, sy = dx / d, // Slope of the perpendicular bisector
  2480. cx = mx + e * h * sx, cy = my + e * h * sy; // Pivot-point of the arc
  2481. arc_offset[X_AXIS] = cx - x1;
  2482. arc_offset[Y_AXIS] = cy - y1;
  2483. }
  2484. }
  2485. else {
  2486. if (code_seen('I')) arc_offset[X_AXIS] = code_value_axis_units(X_AXIS);
  2487. if (code_seen('J')) arc_offset[Y_AXIS] = code_value_axis_units(Y_AXIS);
  2488. }
  2489. if (arc_offset[0] || arc_offset[1]) {
  2490. // Send an arc to the planner
  2491. plan_arc(destination, arc_offset, clockwise);
  2492. refresh_cmd_timeout();
  2493. }
  2494. else {
  2495. // Bad arguments
  2496. SERIAL_ERROR_START;
  2497. SERIAL_ERRORLNPGM(MSG_ERR_ARC_ARGS);
  2498. }
  2499. }
  2500. }
  2501. #endif
  2502. /**
  2503. * G4: Dwell S<seconds> or P<milliseconds>
  2504. */
  2505. inline void gcode_G4() {
  2506. millis_t dwell_ms = 0;
  2507. if (code_seen('P')) dwell_ms = code_value_millis(); // milliseconds to wait
  2508. if (code_seen('S')) dwell_ms = code_value_millis_from_seconds(); // seconds to wait
  2509. stepper.synchronize();
  2510. refresh_cmd_timeout();
  2511. dwell_ms += previous_cmd_ms; // keep track of when we started waiting
  2512. if (!lcd_hasstatus()) LCD_MESSAGEPGM(MSG_DWELL);
  2513. while (PENDING(millis(), dwell_ms)) idle();
  2514. }
  2515. #if ENABLED(BEZIER_CURVE_SUPPORT)
  2516. /**
  2517. * Parameters interpreted according to:
  2518. * http://linuxcnc.org/docs/2.6/html/gcode/gcode.html#sec:G5-Cubic-Spline
  2519. * However I, J omission is not supported at this point; all
  2520. * parameters can be omitted and default to zero.
  2521. */
  2522. /**
  2523. * G5: Cubic B-spline
  2524. */
  2525. inline void gcode_G5() {
  2526. if (IsRunning()) {
  2527. gcode_get_destination();
  2528. float offset[] = {
  2529. code_seen('I') ? code_value_axis_units(X_AXIS) : 0.0,
  2530. code_seen('J') ? code_value_axis_units(Y_AXIS) : 0.0,
  2531. code_seen('P') ? code_value_axis_units(X_AXIS) : 0.0,
  2532. code_seen('Q') ? code_value_axis_units(Y_AXIS) : 0.0
  2533. };
  2534. plan_cubic_move(offset);
  2535. }
  2536. }
  2537. #endif // BEZIER_CURVE_SUPPORT
  2538. #if ENABLED(FWRETRACT)
  2539. /**
  2540. * G10 - Retract filament according to settings of M207
  2541. * G11 - Recover filament according to settings of M208
  2542. */
  2543. inline void gcode_G10_G11(bool doRetract=false) {
  2544. #if EXTRUDERS > 1
  2545. if (doRetract) {
  2546. retracted_swap[active_extruder] = (code_seen('S') && code_value_bool()); // checks for swap retract argument
  2547. }
  2548. #endif
  2549. retract(doRetract
  2550. #if EXTRUDERS > 1
  2551. , retracted_swap[active_extruder]
  2552. #endif
  2553. );
  2554. }
  2555. #endif //FWRETRACT
  2556. #if ENABLED(NOZZLE_CLEAN_FEATURE)
  2557. /**
  2558. * G12: Clean the nozzle
  2559. */
  2560. inline void gcode_G12() {
  2561. // Don't allow nozzle cleaning without homing first
  2562. if (axis_unhomed_error(true, true, true)) { return; }
  2563. uint8_t const pattern = code_seen('P') ? code_value_ushort() : 0;
  2564. uint8_t const strokes = code_seen('S') ? code_value_ushort() : NOZZLE_CLEAN_STROKES;
  2565. uint8_t const objects = code_seen('T') ? code_value_ushort() : 3;
  2566. Nozzle::clean(pattern, strokes, objects);
  2567. }
  2568. #endif
  2569. #if ENABLED(INCH_MODE_SUPPORT)
  2570. /**
  2571. * G20: Set input mode to inches
  2572. */
  2573. inline void gcode_G20() { set_input_linear_units(LINEARUNIT_INCH); }
  2574. /**
  2575. * G21: Set input mode to millimeters
  2576. */
  2577. inline void gcode_G21() { set_input_linear_units(LINEARUNIT_MM); }
  2578. #endif
  2579. #if ENABLED(NOZZLE_PARK_FEATURE)
  2580. /**
  2581. * G27: Park the nozzle
  2582. */
  2583. inline void gcode_G27() {
  2584. // Don't allow nozzle parking without homing first
  2585. if (axis_unhomed_error(true, true, true)) { return; }
  2586. uint8_t const z_action = code_seen('P') ? code_value_ushort() : 0;
  2587. Nozzle::park(z_action);
  2588. }
  2589. #endif // NOZZLE_PARK_FEATURE
  2590. #if ENABLED(QUICK_HOME)
  2591. static void quick_home_xy() {
  2592. // Pretend the current position is 0,0
  2593. current_position[X_AXIS] = current_position[Y_AXIS] = 0.0;
  2594. sync_plan_position();
  2595. int x_axis_home_dir =
  2596. #if ENABLED(DUAL_X_CARRIAGE)
  2597. x_home_dir(active_extruder)
  2598. #else
  2599. home_dir(X_AXIS)
  2600. #endif
  2601. ;
  2602. float mlx = max_length(X_AXIS),
  2603. mly = max_length(Y_AXIS),
  2604. mlratio = mlx > mly ? mly / mlx : mlx / mly,
  2605. fr_mm_s = min(homing_feedrate_mm_s[X_AXIS], homing_feedrate_mm_s[Y_AXIS]) * sqrt(sq(mlratio) + 1.0);
  2606. do_blocking_move_to_xy(1.5 * mlx * x_axis_home_dir, 1.5 * mly * home_dir(Y_AXIS), fr_mm_s);
  2607. endstops.hit_on_purpose(); // clear endstop hit flags
  2608. current_position[X_AXIS] = current_position[Y_AXIS] = 0.0;
  2609. }
  2610. #endif // QUICK_HOME
  2611. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2612. void log_machine_info() {
  2613. SERIAL_ECHOPGM("Machine Type: ");
  2614. #if ENABLED(DELTA)
  2615. SERIAL_ECHOLNPGM("Delta");
  2616. #elif IS_SCARA
  2617. SERIAL_ECHOLNPGM("SCARA");
  2618. #elif IS_CORE
  2619. SERIAL_ECHOLNPGM("Core");
  2620. #else
  2621. SERIAL_ECHOLNPGM("Cartesian");
  2622. #endif
  2623. SERIAL_ECHOPGM("Probe: ");
  2624. #if ENABLED(FIX_MOUNTED_PROBE)
  2625. SERIAL_ECHOLNPGM("FIX_MOUNTED_PROBE");
  2626. #elif ENABLED(BLTOUCH)
  2627. SERIAL_ECHOLNPGM("BLTOUCH");
  2628. #elif HAS_Z_SERVO_ENDSTOP
  2629. SERIAL_ECHOLNPGM("SERVO PROBE");
  2630. #elif ENABLED(Z_PROBE_SLED)
  2631. SERIAL_ECHOLNPGM("Z_PROBE_SLED");
  2632. #elif ENABLED(Z_PROBE_ALLEN_KEY)
  2633. SERIAL_ECHOLNPGM("Z_PROBE_ALLEN_KEY");
  2634. #else
  2635. SERIAL_ECHOLNPGM("NONE");
  2636. #endif
  2637. #if HAS_BED_PROBE
  2638. SERIAL_ECHOPAIR("Probe Offset X:", X_PROBE_OFFSET_FROM_EXTRUDER);
  2639. SERIAL_ECHOPAIR(" Y:", Y_PROBE_OFFSET_FROM_EXTRUDER);
  2640. SERIAL_ECHOPAIR(" Z:", zprobe_zoffset);
  2641. #if (X_PROBE_OFFSET_FROM_EXTRUDER > 0)
  2642. SERIAL_ECHOPGM(" (Right");
  2643. #elif (X_PROBE_OFFSET_FROM_EXTRUDER < 0)
  2644. SERIAL_ECHOPGM(" (Left");
  2645. #elif (Y_PROBE_OFFSET_FROM_EXTRUDER != 0)
  2646. SERIAL_ECHOPGM(" (Middle");
  2647. #else
  2648. SERIAL_ECHOPGM(" (Aligned With");
  2649. #endif
  2650. #if (Y_PROBE_OFFSET_FROM_EXTRUDER > 0)
  2651. SERIAL_ECHOPGM("-Back");
  2652. #elif (Y_PROBE_OFFSET_FROM_EXTRUDER < 0)
  2653. SERIAL_ECHOPGM("-Front");
  2654. #elif (X_PROBE_OFFSET_FROM_EXTRUDER != 0)
  2655. SERIAL_ECHOPGM("-Center");
  2656. #endif
  2657. if (zprobe_zoffset < 0)
  2658. SERIAL_ECHOPGM(" & Below");
  2659. else if (zprobe_zoffset > 0)
  2660. SERIAL_ECHOPGM(" & Above");
  2661. else
  2662. SERIAL_ECHOPGM(" & Same Z as");
  2663. SERIAL_ECHOLNPGM(" Nozzle)");
  2664. #endif
  2665. #if HAS_ABL
  2666. SERIAL_ECHOPGM("Auto Bed Leveling: ");
  2667. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  2668. SERIAL_ECHOPGM("LINEAR");
  2669. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  2670. SERIAL_ECHOPGM("BILINEAR");
  2671. #elif ENABLED(AUTO_BED_LEVELING_3POINT)
  2672. SERIAL_ECHOPGM("3POINT");
  2673. #endif
  2674. if (planner.abl_enabled) {
  2675. SERIAL_ECHOLNPGM(" (enabled)");
  2676. #if ENABLED(AUTO_BED_LEVELING_LINEAR) || ENABLED(AUTO_BED_LEVELING_3POINT)
  2677. float diff[XYZ] = {
  2678. stepper.get_axis_position_mm(X_AXIS) - current_position[X_AXIS],
  2679. stepper.get_axis_position_mm(Y_AXIS) - current_position[Y_AXIS],
  2680. stepper.get_axis_position_mm(Z_AXIS) - current_position[Z_AXIS]
  2681. };
  2682. SERIAL_ECHOPGM("ABL Adjustment X");
  2683. if (diff[X_AXIS] > 0) SERIAL_CHAR('+');
  2684. SERIAL_ECHO(diff[X_AXIS]);
  2685. SERIAL_ECHOPGM(" Y");
  2686. if (diff[Y_AXIS] > 0) SERIAL_CHAR('+');
  2687. SERIAL_ECHO(diff[Y_AXIS]);
  2688. SERIAL_ECHOPGM(" Z");
  2689. if (diff[Z_AXIS] > 0) SERIAL_CHAR('+');
  2690. SERIAL_ECHO(diff[Z_AXIS]);
  2691. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  2692. SERIAL_ECHOPAIR("ABL Adjustment Z", bilinear_z_offset(current_position));
  2693. #endif
  2694. }
  2695. SERIAL_EOL;
  2696. #elif ENABLED(MESH_BED_LEVELING)
  2697. SERIAL_ECHOPGM("Mesh Bed Leveling");
  2698. if (mbl.active()) {
  2699. SERIAL_ECHOLNPGM(" (enabled)");
  2700. SERIAL_ECHOPAIR("MBL Adjustment Z", mbl.get_z(RAW_CURRENT_POSITION(X_AXIS), RAW_CURRENT_POSITION(Y_AXIS)));
  2701. }
  2702. SERIAL_EOL;
  2703. #endif
  2704. }
  2705. #endif // DEBUG_LEVELING_FEATURE
  2706. #if ENABLED(DELTA)
  2707. /**
  2708. * A delta can only safely home all axes at the same time
  2709. * This is like quick_home_xy() but for 3 towers.
  2710. */
  2711. inline void home_delta() {
  2712. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2713. if (DEBUGGING(LEVELING)) DEBUG_POS(">>> home_delta", current_position);
  2714. #endif
  2715. // Init the current position of all carriages to 0,0,0
  2716. ZERO(current_position);
  2717. sync_plan_position();
  2718. // Move all carriages together linearly until an endstop is hit.
  2719. current_position[X_AXIS] = current_position[Y_AXIS] = current_position[Z_AXIS] = (Z_MAX_LENGTH + 10);
  2720. feedrate_mm_s = homing_feedrate_mm_s[X_AXIS];
  2721. line_to_current_position();
  2722. stepper.synchronize();
  2723. endstops.hit_on_purpose(); // clear endstop hit flags
  2724. // At least one carriage has reached the top.
  2725. // Now re-home each carriage separately.
  2726. HOMEAXIS(A);
  2727. HOMEAXIS(B);
  2728. HOMEAXIS(C);
  2729. // Set all carriages to their home positions
  2730. // Do this here all at once for Delta, because
  2731. // XYZ isn't ABC. Applying this per-tower would
  2732. // give the impression that they are the same.
  2733. LOOP_XYZ(i) set_axis_is_at_home((AxisEnum)i);
  2734. SYNC_PLAN_POSITION_KINEMATIC();
  2735. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2736. if (DEBUGGING(LEVELING)) DEBUG_POS("<<< home_delta", current_position);
  2737. #endif
  2738. }
  2739. #endif // DELTA
  2740. #if ENABLED(Z_SAFE_HOMING)
  2741. inline void home_z_safely() {
  2742. // Disallow Z homing if X or Y are unknown
  2743. if (!axis_known_position[X_AXIS] || !axis_known_position[Y_AXIS]) {
  2744. LCD_MESSAGEPGM(MSG_ERR_Z_HOMING);
  2745. SERIAL_ECHO_START;
  2746. SERIAL_ECHOLNPGM(MSG_ERR_Z_HOMING);
  2747. return;
  2748. }
  2749. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2750. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("Z_SAFE_HOMING >>>");
  2751. #endif
  2752. SYNC_PLAN_POSITION_KINEMATIC();
  2753. /**
  2754. * Move the Z probe (or just the nozzle) to the safe homing point
  2755. */
  2756. destination[X_AXIS] = LOGICAL_X_POSITION(Z_SAFE_HOMING_X_POINT);
  2757. destination[Y_AXIS] = LOGICAL_Y_POSITION(Z_SAFE_HOMING_Y_POINT);
  2758. destination[Z_AXIS] = current_position[Z_AXIS]; // Z is already at the right height
  2759. if (position_is_reachable(
  2760. destination
  2761. #if HOMING_Z_WITH_PROBE
  2762. , true
  2763. #endif
  2764. )
  2765. ) {
  2766. #if HOMING_Z_WITH_PROBE
  2767. destination[X_AXIS] -= X_PROBE_OFFSET_FROM_EXTRUDER;
  2768. destination[Y_AXIS] -= Y_PROBE_OFFSET_FROM_EXTRUDER;
  2769. #endif
  2770. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2771. if (DEBUGGING(LEVELING)) DEBUG_POS("Z_SAFE_HOMING", destination);
  2772. #endif
  2773. do_blocking_move_to_xy(destination[X_AXIS], destination[Y_AXIS]);
  2774. HOMEAXIS(Z);
  2775. }
  2776. else {
  2777. LCD_MESSAGEPGM(MSG_ZPROBE_OUT);
  2778. SERIAL_ECHO_START;
  2779. SERIAL_ECHOLNPGM(MSG_ZPROBE_OUT);
  2780. }
  2781. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2782. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< Z_SAFE_HOMING");
  2783. #endif
  2784. }
  2785. #endif // Z_SAFE_HOMING
  2786. /**
  2787. * G28: Home all axes according to settings
  2788. *
  2789. * Parameters
  2790. *
  2791. * None Home to all axes with no parameters.
  2792. * With QUICK_HOME enabled XY will home together, then Z.
  2793. *
  2794. * Cartesian parameters
  2795. *
  2796. * X Home to the X endstop
  2797. * Y Home to the Y endstop
  2798. * Z Home to the Z endstop
  2799. *
  2800. */
  2801. inline void gcode_G28() {
  2802. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2803. if (DEBUGGING(LEVELING)) {
  2804. SERIAL_ECHOLNPGM(">>> gcode_G28");
  2805. log_machine_info();
  2806. }
  2807. #endif
  2808. // Wait for planner moves to finish!
  2809. stepper.synchronize();
  2810. // For auto bed leveling, clear the level matrix
  2811. #if HAS_ABL
  2812. reset_bed_level();
  2813. #endif
  2814. // Always home with tool 0 active
  2815. #if HOTENDS > 1
  2816. uint8_t old_tool_index = active_extruder;
  2817. tool_change(0, 0, true);
  2818. #endif
  2819. #if ENABLED(DUAL_X_CARRIAGE) || ENABLED(DUAL_NOZZLE_DUPLICATION_MODE)
  2820. extruder_duplication_enabled = false;
  2821. #endif
  2822. /**
  2823. * For mesh bed leveling deactivate the mesh calculations, will be turned
  2824. * on again when homing all axis
  2825. */
  2826. #if ENABLED(MESH_BED_LEVELING)
  2827. float pre_home_z = MESH_HOME_SEARCH_Z;
  2828. if (mbl.active()) {
  2829. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2830. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("MBL was active");
  2831. #endif
  2832. // Save known Z position if already homed
  2833. if (axis_homed[X_AXIS] && axis_homed[Y_AXIS] && axis_homed[Z_AXIS]) {
  2834. pre_home_z = current_position[Z_AXIS];
  2835. pre_home_z += mbl.get_z(RAW_CURRENT_POSITION(X_AXIS), RAW_CURRENT_POSITION(Y_AXIS));
  2836. }
  2837. mbl.set_active(false);
  2838. current_position[Z_AXIS] = pre_home_z;
  2839. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2840. if (DEBUGGING(LEVELING)) DEBUG_POS("Set Z to pre_home_z", current_position);
  2841. #endif
  2842. }
  2843. #endif
  2844. setup_for_endstop_or_probe_move();
  2845. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2846. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> endstops.enable(true)");
  2847. #endif
  2848. endstops.enable(true); // Enable endstops for next homing move
  2849. #if ENABLED(DELTA)
  2850. home_delta();
  2851. #else // NOT DELTA
  2852. bool homeX = code_seen('X'), homeY = code_seen('Y'), homeZ = code_seen('Z');
  2853. home_all_axis = (!homeX && !homeY && !homeZ) || (homeX && homeY && homeZ);
  2854. set_destination_to_current();
  2855. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  2856. if (home_all_axis || homeZ) {
  2857. HOMEAXIS(Z);
  2858. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2859. if (DEBUGGING(LEVELING)) DEBUG_POS("> HOMEAXIS(Z)", current_position);
  2860. #endif
  2861. }
  2862. #else
  2863. if (home_all_axis || homeX || homeY) {
  2864. // Raise Z before homing any other axes and z is not already high enough (never lower z)
  2865. destination[Z_AXIS] = LOGICAL_Z_POSITION(Z_HOMING_HEIGHT);
  2866. if (destination[Z_AXIS] > current_position[Z_AXIS]) {
  2867. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2868. if (DEBUGGING(LEVELING))
  2869. SERIAL_ECHOLNPAIR("Raise Z (before homing) to ", destination[Z_AXIS]);
  2870. #endif
  2871. do_blocking_move_to_z(destination[Z_AXIS]);
  2872. }
  2873. }
  2874. #endif
  2875. #if ENABLED(QUICK_HOME)
  2876. if (home_all_axis || (homeX && homeY)) quick_home_xy();
  2877. #endif
  2878. #if ENABLED(HOME_Y_BEFORE_X)
  2879. // Home Y
  2880. if (home_all_axis || homeY) {
  2881. HOMEAXIS(Y);
  2882. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2883. if (DEBUGGING(LEVELING)) DEBUG_POS("> homeY", current_position);
  2884. #endif
  2885. }
  2886. #endif
  2887. // Home X
  2888. if (home_all_axis || homeX) {
  2889. #if ENABLED(DUAL_X_CARRIAGE)
  2890. int tmp_extruder = active_extruder;
  2891. active_extruder = !active_extruder;
  2892. HOMEAXIS(X);
  2893. inactive_extruder_x_pos = RAW_X_POSITION(current_position[X_AXIS]);
  2894. active_extruder = tmp_extruder;
  2895. HOMEAXIS(X);
  2896. // reset state used by the different modes
  2897. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  2898. delayed_move_time = 0;
  2899. active_extruder_parked = true;
  2900. #else
  2901. HOMEAXIS(X);
  2902. #endif
  2903. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2904. if (DEBUGGING(LEVELING)) DEBUG_POS("> homeX", current_position);
  2905. #endif
  2906. }
  2907. #if DISABLED(HOME_Y_BEFORE_X)
  2908. // Home Y
  2909. if (home_all_axis || homeY) {
  2910. HOMEAXIS(Y);
  2911. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2912. if (DEBUGGING(LEVELING)) DEBUG_POS("> homeY", current_position);
  2913. #endif
  2914. }
  2915. #endif
  2916. // Home Z last if homing towards the bed
  2917. #if Z_HOME_DIR < 0
  2918. if (home_all_axis || homeZ) {
  2919. #if ENABLED(Z_SAFE_HOMING)
  2920. home_z_safely();
  2921. #else
  2922. HOMEAXIS(Z);
  2923. #endif
  2924. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2925. if (DEBUGGING(LEVELING)) DEBUG_POS("> (home_all_axis || homeZ) > final", current_position);
  2926. #endif
  2927. } // home_all_axis || homeZ
  2928. #endif // Z_HOME_DIR < 0
  2929. SYNC_PLAN_POSITION_KINEMATIC();
  2930. #endif // !DELTA (gcode_G28)
  2931. endstops.not_homing();
  2932. #if ENABLED(DELTA) && ENABLED(DELTA_HOME_TO_SAFE_ZONE)
  2933. // move to a height where we can use the full xy-area
  2934. do_blocking_move_to_z(delta_clip_start_height);
  2935. #endif
  2936. // Enable mesh leveling again
  2937. #if ENABLED(MESH_BED_LEVELING)
  2938. if (mbl.has_mesh()) {
  2939. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2940. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("MBL has mesh");
  2941. #endif
  2942. if (home_all_axis || (axis_homed[X_AXIS] && axis_homed[Y_AXIS] && homeZ)) {
  2943. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2944. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("MBL Z homing");
  2945. #endif
  2946. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z
  2947. #if Z_HOME_DIR > 0
  2948. + Z_MAX_POS
  2949. #endif
  2950. ;
  2951. SYNC_PLAN_POSITION_KINEMATIC();
  2952. mbl.set_active(true);
  2953. #if ENABLED(MESH_G28_REST_ORIGIN)
  2954. current_position[Z_AXIS] = 0.0;
  2955. set_destination_to_current();
  2956. line_to_destination(homing_feedrate_mm_s[Z_AXIS]);
  2957. stepper.synchronize();
  2958. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2959. if (DEBUGGING(LEVELING)) DEBUG_POS("MBL Rest Origin", current_position);
  2960. #endif
  2961. #else
  2962. planner.unapply_leveling(current_position);
  2963. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2964. if (DEBUGGING(LEVELING)) DEBUG_POS("MBL adjusted MESH_HOME_SEARCH_Z", current_position);
  2965. #endif
  2966. #endif
  2967. }
  2968. else if ((axis_homed[X_AXIS] && axis_homed[Y_AXIS] && axis_homed[Z_AXIS]) && (homeX || homeY)) {
  2969. current_position[Z_AXIS] = pre_home_z;
  2970. SYNC_PLAN_POSITION_KINEMATIC();
  2971. mbl.set_active(true);
  2972. planner.unapply_leveling(current_position);
  2973. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2974. if (DEBUGGING(LEVELING)) DEBUG_POS("MBL Home X or Y", current_position);
  2975. #endif
  2976. }
  2977. }
  2978. #endif
  2979. clean_up_after_endstop_or_probe_move();
  2980. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2981. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< gcode_G28");
  2982. #endif
  2983. // Restore the active tool after homing
  2984. #if HOTENDS > 1
  2985. tool_change(old_tool_index, 0, true);
  2986. #endif
  2987. report_current_position();
  2988. }
  2989. #if HAS_PROBING_PROCEDURE
  2990. void out_of_range_error(const char* p_edge) {
  2991. SERIAL_PROTOCOLPGM("?Probe ");
  2992. serialprintPGM(p_edge);
  2993. SERIAL_PROTOCOLLNPGM(" position out of range.");
  2994. }
  2995. #endif
  2996. #if ENABLED(MESH_BED_LEVELING)
  2997. inline void _mbl_goto_xy(float x, float y) {
  2998. float old_feedrate_mm_s = feedrate_mm_s;
  2999. feedrate_mm_s = homing_feedrate_mm_s[Z_AXIS];
  3000. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z
  3001. #if Z_CLEARANCE_BETWEEN_PROBES > Z_HOMING_HEIGHT
  3002. + Z_CLEARANCE_BETWEEN_PROBES
  3003. #elif Z_HOMING_HEIGHT > 0
  3004. + Z_HOMING_HEIGHT
  3005. #endif
  3006. ;
  3007. line_to_current_position();
  3008. feedrate_mm_s = MMM_TO_MMS(XY_PROBE_SPEED);
  3009. current_position[X_AXIS] = LOGICAL_X_POSITION(x);
  3010. current_position[Y_AXIS] = LOGICAL_Y_POSITION(y);
  3011. line_to_current_position();
  3012. #if Z_CLEARANCE_BETWEEN_PROBES > 0 || Z_HOMING_HEIGHT > 0
  3013. feedrate_mm_s = homing_feedrate_mm_s[Z_AXIS];
  3014. current_position[Z_AXIS] = LOGICAL_Z_POSITION(MESH_HOME_SEARCH_Z);
  3015. line_to_current_position();
  3016. #endif
  3017. feedrate_mm_s = old_feedrate_mm_s;
  3018. stepper.synchronize();
  3019. }
  3020. /**
  3021. * G29: Mesh-based Z probe, probes a grid and produces a
  3022. * mesh to compensate for variable bed height
  3023. *
  3024. * Parameters With MESH_BED_LEVELING:
  3025. *
  3026. * S0 Produce a mesh report
  3027. * S1 Start probing mesh points
  3028. * S2 Probe the next mesh point
  3029. * S3 Xn Yn Zn.nn Manually modify a single point
  3030. * S4 Zn.nn Set z offset. Positive away from bed, negative closer to bed.
  3031. * S5 Reset and disable mesh
  3032. *
  3033. * The S0 report the points as below
  3034. *
  3035. * +----> X-axis 1-n
  3036. * |
  3037. * |
  3038. * v Y-axis 1-n
  3039. *
  3040. */
  3041. inline void gcode_G29() {
  3042. static int probe_point = -1;
  3043. MeshLevelingState state = code_seen('S') ? (MeshLevelingState)code_value_byte() : MeshReport;
  3044. if (state < 0 || state > 5) {
  3045. SERIAL_PROTOCOLLNPGM("S out of range (0-5).");
  3046. return;
  3047. }
  3048. int8_t px, py;
  3049. switch (state) {
  3050. case MeshReport:
  3051. if (mbl.has_mesh()) {
  3052. SERIAL_PROTOCOLPAIR("State: ", mbl.active() ? MSG_ON : MSG_OFF);
  3053. SERIAL_PROTOCOLLNPGM("\nNum X,Y: " STRINGIFY(MESH_NUM_X_POINTS) "," STRINGIFY(MESH_NUM_Y_POINTS));
  3054. SERIAL_PROTOCOLLNPGM("Z search height: " STRINGIFY(MESH_HOME_SEARCH_Z));
  3055. SERIAL_PROTOCOLPGM("Z offset: "); SERIAL_PROTOCOL_F(mbl.z_offset, 5);
  3056. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  3057. for (py = 0; py < MESH_NUM_Y_POINTS; py++) {
  3058. for (px = 0; px < MESH_NUM_X_POINTS; px++) {
  3059. SERIAL_PROTOCOLPGM(" ");
  3060. SERIAL_PROTOCOL_F(mbl.z_values[py][px], 5);
  3061. }
  3062. SERIAL_EOL;
  3063. }
  3064. }
  3065. else
  3066. SERIAL_PROTOCOLLNPGM("Mesh bed leveling not active.");
  3067. break;
  3068. case MeshStart:
  3069. mbl.reset();
  3070. probe_point = 0;
  3071. enqueue_and_echo_commands_P(PSTR("G28\nG29 S2"));
  3072. break;
  3073. case MeshNext:
  3074. if (probe_point < 0) {
  3075. SERIAL_PROTOCOLLNPGM("Start mesh probing with \"G29 S1\" first.");
  3076. return;
  3077. }
  3078. // For each G29 S2...
  3079. if (probe_point == 0) {
  3080. // For the initial G29 S2 make Z a positive value (e.g., 4.0)
  3081. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z
  3082. #if Z_HOME_DIR > 0
  3083. + Z_MAX_POS
  3084. #endif
  3085. ;
  3086. SYNC_PLAN_POSITION_KINEMATIC();
  3087. }
  3088. else {
  3089. // For G29 S2 after adjusting Z.
  3090. mbl.set_zigzag_z(probe_point - 1, current_position[Z_AXIS]);
  3091. }
  3092. // If there's another point to sample, move there with optional lift.
  3093. if (probe_point < (MESH_NUM_X_POINTS) * (MESH_NUM_Y_POINTS)) {
  3094. mbl.zigzag(probe_point, px, py);
  3095. _mbl_goto_xy(mbl.get_probe_x(px), mbl.get_probe_y(py));
  3096. probe_point++;
  3097. }
  3098. else {
  3099. // One last "return to the bed" (as originally coded) at completion
  3100. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z
  3101. #if Z_CLEARANCE_BETWEEN_PROBES > Z_HOMING_HEIGHT
  3102. + Z_CLEARANCE_BETWEEN_PROBES
  3103. #elif Z_HOMING_HEIGHT > 0
  3104. + Z_HOMING_HEIGHT
  3105. #endif
  3106. ;
  3107. line_to_current_position();
  3108. stepper.synchronize();
  3109. // After recording the last point, activate the mbl and home
  3110. SERIAL_PROTOCOLLNPGM("Mesh probing done.");
  3111. probe_point = -1;
  3112. mbl.set_has_mesh(true);
  3113. enqueue_and_echo_commands_P(PSTR("G28"));
  3114. }
  3115. break;
  3116. case MeshSet:
  3117. if (code_seen('X')) {
  3118. px = code_value_int() - 1;
  3119. if (px < 0 || px >= MESH_NUM_X_POINTS) {
  3120. SERIAL_PROTOCOLLNPGM("X out of range (1-" STRINGIFY(MESH_NUM_X_POINTS) ").");
  3121. return;
  3122. }
  3123. }
  3124. else {
  3125. SERIAL_CHAR('X'); SERIAL_PROTOCOLLNPGM(" not entered.");
  3126. return;
  3127. }
  3128. if (code_seen('Y')) {
  3129. py = code_value_int() - 1;
  3130. if (py < 0 || py >= MESH_NUM_Y_POINTS) {
  3131. SERIAL_PROTOCOLLNPGM("Y out of range (1-" STRINGIFY(MESH_NUM_Y_POINTS) ").");
  3132. return;
  3133. }
  3134. }
  3135. else {
  3136. SERIAL_CHAR('Y'); SERIAL_PROTOCOLLNPGM(" not entered.");
  3137. return;
  3138. }
  3139. if (code_seen('Z')) {
  3140. mbl.z_values[py][px] = code_value_axis_units(Z_AXIS);
  3141. }
  3142. else {
  3143. SERIAL_CHAR('Z'); SERIAL_PROTOCOLLNPGM(" not entered.");
  3144. return;
  3145. }
  3146. break;
  3147. case MeshSetZOffset:
  3148. if (code_seen('Z')) {
  3149. mbl.z_offset = code_value_axis_units(Z_AXIS);
  3150. }
  3151. else {
  3152. SERIAL_CHAR('Z'); SERIAL_PROTOCOLLNPGM(" not entered.");
  3153. return;
  3154. }
  3155. break;
  3156. case MeshReset:
  3157. if (mbl.active()) {
  3158. current_position[Z_AXIS] +=
  3159. mbl.get_z(RAW_CURRENT_POSITION(X_AXIS), RAW_CURRENT_POSITION(Y_AXIS)) - MESH_HOME_SEARCH_Z;
  3160. mbl.reset();
  3161. SYNC_PLAN_POSITION_KINEMATIC();
  3162. }
  3163. else
  3164. mbl.reset();
  3165. } // switch(state)
  3166. report_current_position();
  3167. }
  3168. #elif HAS_ABL
  3169. /**
  3170. * G29: Detailed Z probe, probes the bed at 3 or more points.
  3171. * Will fail if the printer has not been homed with G28.
  3172. *
  3173. * Enhanced G29 Auto Bed Leveling Probe Routine
  3174. *
  3175. * Parameters With ABL_GRID:
  3176. *
  3177. * P Set the size of the grid that will be probed (P x P points).
  3178. * Not supported by non-linear delta printer bed leveling.
  3179. * Example: "G29 P4"
  3180. *
  3181. * S Set the XY travel speed between probe points (in units/min)
  3182. *
  3183. * D Dry-Run mode. Just evaluate the bed Topology - Don't apply
  3184. * or clean the rotation Matrix. Useful to check the topology
  3185. * after a first run of G29.
  3186. *
  3187. * V Set the verbose level (0-4). Example: "G29 V3"
  3188. *
  3189. * T Generate a Bed Topology Report. Example: "G29 P5 T" for a detailed report.
  3190. * This is useful for manual bed leveling and finding flaws in the bed (to
  3191. * assist with part placement).
  3192. * Not supported by non-linear delta printer bed leveling.
  3193. *
  3194. * F Set the Front limit of the probing grid
  3195. * B Set the Back limit of the probing grid
  3196. * L Set the Left limit of the probing grid
  3197. * R Set the Right limit of the probing grid
  3198. *
  3199. * Global Parameters:
  3200. *
  3201. * E/e By default G29 will engage the Z probe, test the bed, then disengage.
  3202. * Include "E" to engage/disengage the Z probe for each sample.
  3203. * There's no extra effect if you have a fixed Z probe.
  3204. * Usage: "G29 E" or "G29 e"
  3205. *
  3206. */
  3207. inline void gcode_G29() {
  3208. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3209. bool query = code_seen('Q');
  3210. uint8_t old_debug_flags = marlin_debug_flags;
  3211. if (query) marlin_debug_flags |= DEBUG_LEVELING;
  3212. if (DEBUGGING(LEVELING)) {
  3213. DEBUG_POS(">>> gcode_G29", current_position);
  3214. log_machine_info();
  3215. }
  3216. marlin_debug_flags = old_debug_flags;
  3217. if (query) return;
  3218. #endif
  3219. // Don't allow auto-leveling without homing first
  3220. if (axis_unhomed_error(true, true, true)) return;
  3221. int verbose_level = code_seen('V') ? code_value_int() : 1;
  3222. if (verbose_level < 0 || verbose_level > 4) {
  3223. SERIAL_PROTOCOLLNPGM("?(V)erbose Level is implausible (0-4).");
  3224. return;
  3225. }
  3226. bool dryrun = code_seen('D'),
  3227. stow_probe_after_each = code_seen('E');
  3228. #if ABL_GRID
  3229. if (verbose_level > 0) {
  3230. SERIAL_PROTOCOLLNPGM("G29 Auto Bed Leveling");
  3231. if (dryrun) SERIAL_PROTOCOLLNPGM("Running in DRY-RUN mode");
  3232. }
  3233. #if ABL_PLANAR
  3234. bool do_topography_map = verbose_level > 2 || code_seen('T');
  3235. // X and Y specify points in each direction, overriding the default
  3236. // These values may be saved with the completed mesh
  3237. int abl_grid_points_x = code_seen('X') ? code_value_int() : ABL_GRID_POINTS_X,
  3238. abl_grid_points_y = code_seen('Y') ? code_value_int() : ABL_GRID_POINTS_Y;
  3239. if (code_seen('P')) abl_grid_points_x = abl_grid_points_y = code_value_int();
  3240. if (abl_grid_points_x < 2 || abl_grid_points_y < 2) {
  3241. SERIAL_PROTOCOLLNPGM("?Number of probe points is implausible (2 minimum).");
  3242. return;
  3243. }
  3244. #else
  3245. const int abl_grid_points_x = ABL_GRID_POINTS_X, abl_grid_points_y = ABL_GRID_POINTS_Y;
  3246. #endif
  3247. xy_probe_feedrate_mm_s = MMM_TO_MMS(code_seen('S') ? code_value_linear_units() : XY_PROBE_SPEED);
  3248. int left_probe_bed_position = code_seen('L') ? (int)code_value_axis_units(X_AXIS) : LOGICAL_X_POSITION(LEFT_PROBE_BED_POSITION),
  3249. right_probe_bed_position = code_seen('R') ? (int)code_value_axis_units(X_AXIS) : LOGICAL_X_POSITION(RIGHT_PROBE_BED_POSITION),
  3250. front_probe_bed_position = code_seen('F') ? (int)code_value_axis_units(Y_AXIS) : LOGICAL_Y_POSITION(FRONT_PROBE_BED_POSITION),
  3251. back_probe_bed_position = code_seen('B') ? (int)code_value_axis_units(Y_AXIS) : LOGICAL_Y_POSITION(BACK_PROBE_BED_POSITION);
  3252. bool left_out_l = left_probe_bed_position < LOGICAL_X_POSITION(MIN_PROBE_X),
  3253. left_out = left_out_l || left_probe_bed_position > right_probe_bed_position - (MIN_PROBE_EDGE),
  3254. right_out_r = right_probe_bed_position > LOGICAL_X_POSITION(MAX_PROBE_X),
  3255. right_out = right_out_r || right_probe_bed_position < left_probe_bed_position + MIN_PROBE_EDGE,
  3256. front_out_f = front_probe_bed_position < LOGICAL_Y_POSITION(MIN_PROBE_Y),
  3257. front_out = front_out_f || front_probe_bed_position > back_probe_bed_position - (MIN_PROBE_EDGE),
  3258. back_out_b = back_probe_bed_position > LOGICAL_Y_POSITION(MAX_PROBE_Y),
  3259. back_out = back_out_b || back_probe_bed_position < front_probe_bed_position + MIN_PROBE_EDGE;
  3260. if (left_out || right_out || front_out || back_out) {
  3261. if (left_out) {
  3262. out_of_range_error(PSTR("(L)eft"));
  3263. left_probe_bed_position = left_out_l ? LOGICAL_X_POSITION(MIN_PROBE_X) : right_probe_bed_position - (MIN_PROBE_EDGE);
  3264. }
  3265. if (right_out) {
  3266. out_of_range_error(PSTR("(R)ight"));
  3267. right_probe_bed_position = right_out_r ? LOGICAL_Y_POSITION(MAX_PROBE_X) : left_probe_bed_position + MIN_PROBE_EDGE;
  3268. }
  3269. if (front_out) {
  3270. out_of_range_error(PSTR("(F)ront"));
  3271. front_probe_bed_position = front_out_f ? LOGICAL_Y_POSITION(MIN_PROBE_Y) : back_probe_bed_position - (MIN_PROBE_EDGE);
  3272. }
  3273. if (back_out) {
  3274. out_of_range_error(PSTR("(B)ack"));
  3275. back_probe_bed_position = back_out_b ? LOGICAL_Y_POSITION(MAX_PROBE_Y) : front_probe_bed_position + MIN_PROBE_EDGE;
  3276. }
  3277. return;
  3278. }
  3279. #endif // ABL_GRID
  3280. stepper.synchronize();
  3281. // Disable auto bed leveling during G29
  3282. bool abl_should_enable = planner.abl_enabled;
  3283. planner.abl_enabled = false;
  3284. if (!dryrun) {
  3285. // Re-orient the current position without leveling
  3286. // based on where the steppers are positioned.
  3287. set_current_from_steppers_for_axis(ALL_AXES);
  3288. // Sync the planner to where the steppers stopped
  3289. SYNC_PLAN_POSITION_KINEMATIC();
  3290. }
  3291. setup_for_endstop_or_probe_move();
  3292. // Deploy the probe. Probe will raise if needed.
  3293. if (DEPLOY_PROBE()) {
  3294. planner.abl_enabled = abl_should_enable;
  3295. return;
  3296. }
  3297. float xProbe = 0, yProbe = 0, measured_z = 0;
  3298. #if ABL_GRID
  3299. // probe at the points of a lattice grid
  3300. const float xGridSpacing = (right_probe_bed_position - left_probe_bed_position) / (abl_grid_points_x - 1),
  3301. yGridSpacing = (back_probe_bed_position - front_probe_bed_position) / (abl_grid_points_y - 1);
  3302. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  3303. float zoffset = zprobe_zoffset;
  3304. if (code_seen('Z')) zoffset += code_value_axis_units(Z_AXIS);
  3305. if ( xGridSpacing != bilinear_grid_spacing[X_AXIS]
  3306. || yGridSpacing != bilinear_grid_spacing[Y_AXIS]
  3307. || left_probe_bed_position != bilinear_start[X_AXIS]
  3308. || front_probe_bed_position != bilinear_start[Y_AXIS]
  3309. ) {
  3310. reset_bed_level();
  3311. bilinear_grid_spacing[X_AXIS] = xGridSpacing;
  3312. bilinear_grid_spacing[Y_AXIS] = yGridSpacing;
  3313. bilinear_start[X_AXIS] = RAW_X_POSITION(left_probe_bed_position);
  3314. bilinear_start[Y_AXIS] = RAW_Y_POSITION(front_probe_bed_position);
  3315. // Can't re-enable (on error) until the new grid is written
  3316. abl_should_enable = false;
  3317. }
  3318. #elif ENABLED(AUTO_BED_LEVELING_LINEAR)
  3319. /**
  3320. * solve the plane equation ax + by + d = z
  3321. * A is the matrix with rows [x y 1] for all the probed points
  3322. * B is the vector of the Z positions
  3323. * the normal vector to the plane is formed by the coefficients of the
  3324. * plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  3325. * so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  3326. */
  3327. int abl2 = abl_grid_points_x * abl_grid_points_y,
  3328. indexIntoAB[abl_grid_points_x][abl_grid_points_y],
  3329. probePointCounter = -1;
  3330. float eqnAMatrix[abl2 * 3], // "A" matrix of the linear system of equations
  3331. eqnBVector[abl2], // "B" vector of Z points
  3332. mean = 0.0;
  3333. #endif // AUTO_BED_LEVELING_LINEAR
  3334. #if ENABLED(PROBE_Y_FIRST)
  3335. #define PR_OUTER_VAR xCount
  3336. #define PR_OUTER_END abl_grid_points_x
  3337. #define PR_INNER_VAR yCount
  3338. #define PR_INNER_END abl_grid_points_y
  3339. #else
  3340. #define PR_OUTER_VAR yCount
  3341. #define PR_OUTER_END abl_grid_points_y
  3342. #define PR_INNER_VAR xCount
  3343. #define PR_INNER_END abl_grid_points_x
  3344. #endif
  3345. bool zig = PR_OUTER_END & 1; // Always end at RIGHT and BACK_PROBE_BED_POSITION
  3346. // Outer loop is Y with PROBE_Y_FIRST disabled
  3347. for (uint8_t PR_OUTER_VAR = 0; PR_OUTER_VAR < PR_OUTER_END; PR_OUTER_VAR++) {
  3348. int8_t inStart, inStop, inInc;
  3349. if (zig) { // away from origin
  3350. inStart = 0;
  3351. inStop = PR_INNER_END;
  3352. inInc = 1;
  3353. }
  3354. else { // towards origin
  3355. inStart = PR_INNER_END - 1;
  3356. inStop = -1;
  3357. inInc = -1;
  3358. }
  3359. zig = !zig; // zag
  3360. // Inner loop is Y with PROBE_Y_FIRST enabled
  3361. for (int8_t PR_INNER_VAR = inStart; PR_INNER_VAR != inStop; PR_INNER_VAR += inInc) {
  3362. float xBase = left_probe_bed_position + xGridSpacing * xCount,
  3363. yBase = front_probe_bed_position + yGridSpacing * yCount;
  3364. xProbe = floor(xBase + (xBase < 0 ? 0 : 0.5));
  3365. yProbe = floor(yBase + (yBase < 0 ? 0 : 0.5));
  3366. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  3367. indexIntoAB[xCount][yCount] = ++probePointCounter;
  3368. #endif
  3369. #if IS_KINEMATIC
  3370. // Avoid probing outside the round or hexagonal area
  3371. float pos[XYZ] = { xProbe, yProbe, 0 };
  3372. if (!position_is_reachable(pos, true)) continue;
  3373. #endif
  3374. measured_z = probe_pt(xProbe, yProbe, stow_probe_after_each, verbose_level);
  3375. if (measured_z == NAN) {
  3376. planner.abl_enabled = abl_should_enable;
  3377. return;
  3378. }
  3379. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  3380. mean += measured_z;
  3381. eqnBVector[probePointCounter] = measured_z;
  3382. eqnAMatrix[probePointCounter + 0 * abl2] = xProbe;
  3383. eqnAMatrix[probePointCounter + 1 * abl2] = yProbe;
  3384. eqnAMatrix[probePointCounter + 2 * abl2] = 1;
  3385. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  3386. bed_level_grid[xCount][yCount] = measured_z + zoffset;
  3387. #endif
  3388. idle();
  3389. } //xProbe
  3390. } //yProbe
  3391. #elif ENABLED(AUTO_BED_LEVELING_3POINT)
  3392. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3393. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> 3-point Leveling");
  3394. #endif
  3395. // Probe at 3 arbitrary points
  3396. vector_3 points[3] = {
  3397. vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, 0),
  3398. vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, 0),
  3399. vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, 0)
  3400. };
  3401. for (uint8_t i = 0; i < 3; ++i) {
  3402. // Retain the last probe position
  3403. xProbe = LOGICAL_X_POSITION(points[i].x);
  3404. yProbe = LOGICAL_Y_POSITION(points[i].y);
  3405. measured_z = points[i].z = probe_pt(xProbe, yProbe, stow_probe_after_each, verbose_level);
  3406. }
  3407. if (measured_z == NAN) {
  3408. planner.abl_enabled = abl_should_enable;
  3409. return;
  3410. }
  3411. if (!dryrun) {
  3412. vector_3 planeNormal = vector_3::cross(points[0] - points[1], points[2] - points[1]).get_normal();
  3413. if (planeNormal.z < 0) {
  3414. planeNormal.x *= -1;
  3415. planeNormal.y *= -1;
  3416. planeNormal.z *= -1;
  3417. }
  3418. planner.bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  3419. // Can't re-enable (on error) until the new grid is written
  3420. abl_should_enable = false;
  3421. }
  3422. #endif // AUTO_BED_LEVELING_3POINT
  3423. // Raise to _Z_CLEARANCE_DEPLOY_PROBE. Stow the probe.
  3424. if (STOW_PROBE()) {
  3425. planner.abl_enabled = abl_should_enable;
  3426. return;
  3427. }
  3428. //
  3429. // Unless this is a dry run, auto bed leveling will
  3430. // definitely be enabled after this point
  3431. //
  3432. // Restore state after probing
  3433. clean_up_after_endstop_or_probe_move();
  3434. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3435. if (DEBUGGING(LEVELING)) DEBUG_POS("> probing complete", current_position);
  3436. #endif
  3437. // Calculate leveling, print reports, correct the position
  3438. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  3439. if (!dryrun) extrapolate_unprobed_bed_level();
  3440. print_bed_level();
  3441. #elif ENABLED(AUTO_BED_LEVELING_LINEAR)
  3442. // For LINEAR leveling calculate matrix, print reports, correct the position
  3443. // solve lsq problem
  3444. float plane_equation_coefficients[3];
  3445. qr_solve(plane_equation_coefficients, abl2, 3, eqnAMatrix, eqnBVector);
  3446. mean /= abl2;
  3447. if (verbose_level) {
  3448. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  3449. SERIAL_PROTOCOL_F(plane_equation_coefficients[0], 8);
  3450. SERIAL_PROTOCOLPGM(" b: ");
  3451. SERIAL_PROTOCOL_F(plane_equation_coefficients[1], 8);
  3452. SERIAL_PROTOCOLPGM(" d: ");
  3453. SERIAL_PROTOCOL_F(plane_equation_coefficients[2], 8);
  3454. SERIAL_EOL;
  3455. if (verbose_level > 2) {
  3456. SERIAL_PROTOCOLPGM("Mean of sampled points: ");
  3457. SERIAL_PROTOCOL_F(mean, 8);
  3458. SERIAL_EOL;
  3459. }
  3460. }
  3461. // Create the matrix but don't correct the position yet
  3462. if (!dryrun) {
  3463. planner.bed_level_matrix = matrix_3x3::create_look_at(
  3464. vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1)
  3465. );
  3466. }
  3467. // Show the Topography map if enabled
  3468. if (do_topography_map) {
  3469. SERIAL_PROTOCOLLNPGM("\nBed Height Topography:\n"
  3470. " +--- BACK --+\n"
  3471. " | |\n"
  3472. " L | (+) | R\n"
  3473. " E | | I\n"
  3474. " F | (-) N (+) | G\n"
  3475. " T | | H\n"
  3476. " | (-) | T\n"
  3477. " | |\n"
  3478. " O-- FRONT --+\n"
  3479. " (0,0)");
  3480. float min_diff = 999;
  3481. for (int8_t yy = abl_grid_points_y - 1; yy >= 0; yy--) {
  3482. for (uint8_t xx = 0; xx < abl_grid_points_x; xx++) {
  3483. int ind = indexIntoAB[xx][yy];
  3484. float diff = eqnBVector[ind] - mean,
  3485. x_tmp = eqnAMatrix[ind + 0 * abl2],
  3486. y_tmp = eqnAMatrix[ind + 1 * abl2],
  3487. z_tmp = 0;
  3488. apply_rotation_xyz(planner.bed_level_matrix, x_tmp, y_tmp, z_tmp);
  3489. NOMORE(min_diff, eqnBVector[ind] - z_tmp);
  3490. if (diff >= 0.0)
  3491. SERIAL_PROTOCOLPGM(" +"); // Include + for column alignment
  3492. else
  3493. SERIAL_PROTOCOLCHAR(' ');
  3494. SERIAL_PROTOCOL_F(diff, 5);
  3495. } // xx
  3496. SERIAL_EOL;
  3497. } // yy
  3498. SERIAL_EOL;
  3499. if (verbose_level > 3) {
  3500. SERIAL_PROTOCOLLNPGM("\nCorrected Bed Height vs. Bed Topology:");
  3501. for (int8_t yy = abl_grid_points_y - 1; yy >= 0; yy--) {
  3502. for (uint8_t xx = 0; xx < abl_grid_points_x; xx++) {
  3503. int ind = indexIntoAB[xx][yy];
  3504. float x_tmp = eqnAMatrix[ind + 0 * abl2],
  3505. y_tmp = eqnAMatrix[ind + 1 * abl2],
  3506. z_tmp = 0;
  3507. apply_rotation_xyz(planner.bed_level_matrix, x_tmp, y_tmp, z_tmp);
  3508. float diff = eqnBVector[ind] - z_tmp - min_diff;
  3509. if (diff >= 0.0)
  3510. SERIAL_PROTOCOLPGM(" +");
  3511. // Include + for column alignment
  3512. else
  3513. SERIAL_PROTOCOLCHAR(' ');
  3514. SERIAL_PROTOCOL_F(diff, 5);
  3515. } // xx
  3516. SERIAL_EOL;
  3517. } // yy
  3518. SERIAL_EOL;
  3519. }
  3520. } //do_topography_map
  3521. #endif // AUTO_BED_LEVELING_LINEAR
  3522. #if ABL_PLANAR
  3523. // For LINEAR and 3POINT leveling correct the current position
  3524. if (verbose_level > 0)
  3525. planner.bed_level_matrix.debug("\n\nBed Level Correction Matrix:");
  3526. if (!dryrun) {
  3527. //
  3528. // Correct the current XYZ position based on the tilted plane.
  3529. //
  3530. // 1. Get the distance from the current position to the reference point.
  3531. float x_dist = RAW_CURRENT_POSITION(X_AXIS) - X_TILT_FULCRUM,
  3532. y_dist = RAW_CURRENT_POSITION(Y_AXIS) - Y_TILT_FULCRUM,
  3533. z_real = current_position[Z_AXIS],
  3534. z_zero = 0;
  3535. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3536. if (DEBUGGING(LEVELING)) DEBUG_POS("G29 uncorrected XYZ", current_position);
  3537. #endif
  3538. matrix_3x3 inverse = matrix_3x3::transpose(planner.bed_level_matrix);
  3539. // 2. Apply the inverse matrix to the distance
  3540. // from the reference point to X, Y, and zero.
  3541. apply_rotation_xyz(inverse, x_dist, y_dist, z_zero);
  3542. // 3. Get the matrix-based corrected Z.
  3543. // (Even if not used, get it for comparison.)
  3544. float new_z = z_real + z_zero;
  3545. // 4. Use the last measured distance to the bed, if possible
  3546. if ( NEAR(current_position[X_AXIS], xProbe - (X_PROBE_OFFSET_FROM_EXTRUDER))
  3547. && NEAR(current_position[Y_AXIS], yProbe - (Y_PROBE_OFFSET_FROM_EXTRUDER))
  3548. ) {
  3549. float simple_z = z_real - (measured_z - (-zprobe_zoffset));
  3550. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3551. if (DEBUGGING(LEVELING)) {
  3552. SERIAL_ECHOPAIR("Z from Probe:", simple_z);
  3553. SERIAL_ECHOPAIR(" Matrix:", new_z);
  3554. SERIAL_ECHOLNPAIR(" Discrepancy:", simple_z - new_z);
  3555. }
  3556. #endif
  3557. new_z = simple_z;
  3558. }
  3559. // 5. The rotated XY and corrected Z are now current_position
  3560. current_position[X_AXIS] = LOGICAL_X_POSITION(x_dist) + X_TILT_FULCRUM;
  3561. current_position[Y_AXIS] = LOGICAL_Y_POSITION(y_dist) + Y_TILT_FULCRUM;
  3562. current_position[Z_AXIS] = new_z;
  3563. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3564. if (DEBUGGING(LEVELING)) DEBUG_POS("G29 corrected XYZ", current_position);
  3565. #endif
  3566. }
  3567. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  3568. if (!dryrun) {
  3569. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3570. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPAIR("G29 uncorrected Z:", current_position[Z_AXIS]);
  3571. #endif
  3572. // Unapply the offset because it is going to be immediately applied
  3573. // and cause compensation movement in Z
  3574. current_position[Z_AXIS] -= bilinear_z_offset(current_position);
  3575. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3576. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPAIR(" corrected Z:", current_position[Z_AXIS]);
  3577. #endif
  3578. }
  3579. #endif // ABL_PLANAR
  3580. #ifdef Z_PROBE_END_SCRIPT
  3581. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3582. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPAIR("Z Probe End Script: ", Z_PROBE_END_SCRIPT);
  3583. #endif
  3584. enqueue_and_echo_commands_P(PSTR(Z_PROBE_END_SCRIPT));
  3585. stepper.synchronize();
  3586. #endif
  3587. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3588. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< gcode_G29");
  3589. #endif
  3590. report_current_position();
  3591. KEEPALIVE_STATE(IN_HANDLER);
  3592. // Auto Bed Leveling is complete! Enable if possible.
  3593. planner.abl_enabled = dryrun ? abl_should_enable : true;
  3594. if (planner.abl_enabled)
  3595. SYNC_PLAN_POSITION_KINEMATIC();
  3596. }
  3597. #endif // HAS_ABL
  3598. #if HAS_BED_PROBE
  3599. /**
  3600. * G30: Do a single Z probe at the current XY
  3601. * Usage:
  3602. * G30 <X#> <Y#> <S#>
  3603. * X = Probe X position (default=current probe position)
  3604. * Y = Probe Y position (default=current probe position)
  3605. * S = Stows the probe if 1 (default=1)
  3606. */
  3607. inline void gcode_G30() {
  3608. float X_probe_location = code_seen('X') ? code_value_axis_units(X_AXIS) : current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER,
  3609. Y_probe_location = code_seen('Y') ? code_value_axis_units(Y_AXIS) : current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER;
  3610. float pos[XYZ] = { X_probe_location, Y_probe_location, LOGICAL_Z_POSITION(0) };
  3611. if (!position_is_reachable(pos, true)) return;
  3612. bool stow = code_seen('S') ? code_value_bool() : true;
  3613. // Disable leveling so the planner won't mess with us
  3614. #if PLANNER_LEVELING
  3615. set_bed_leveling_enabled(false);
  3616. #endif
  3617. setup_for_endstop_or_probe_move();
  3618. float measured_z = probe_pt(X_probe_location, Y_probe_location, stow, 1);
  3619. SERIAL_PROTOCOLPGM("Bed X: ");
  3620. SERIAL_PROTOCOL(X_probe_location + 0.0001);
  3621. SERIAL_PROTOCOLPGM(" Y: ");
  3622. SERIAL_PROTOCOL(Y_probe_location + 0.0001);
  3623. SERIAL_PROTOCOLPGM(" Z: ");
  3624. SERIAL_PROTOCOLLN(measured_z + 0.0001);
  3625. clean_up_after_endstop_or_probe_move();
  3626. report_current_position();
  3627. }
  3628. #if ENABLED(Z_PROBE_SLED)
  3629. /**
  3630. * G31: Deploy the Z probe
  3631. */
  3632. inline void gcode_G31() { DEPLOY_PROBE(); }
  3633. /**
  3634. * G32: Stow the Z probe
  3635. */
  3636. inline void gcode_G32() { STOW_PROBE(); }
  3637. #endif // Z_PROBE_SLED
  3638. #endif // HAS_BED_PROBE
  3639. #if ENABLED(G38_PROBE_TARGET)
  3640. static bool G38_run_probe() {
  3641. bool G38_pass_fail = false;
  3642. // Get direction of move and retract
  3643. float retract_mm[XYZ];
  3644. LOOP_XYZ(i) {
  3645. float dist = destination[i] - current_position[i];
  3646. retract_mm[i] = fabs(dist) < G38_MINIMUM_MOVE ? 0 : home_bump_mm((AxisEnum)i) * (dist > 0 ? -1 : 1);
  3647. }
  3648. stepper.synchronize(); // wait until the machine is idle
  3649. // Move until destination reached or target hit
  3650. endstops.enable(true);
  3651. G38_move = true;
  3652. G38_endstop_hit = false;
  3653. prepare_move_to_destination();
  3654. stepper.synchronize();
  3655. G38_move = false;
  3656. endstops.hit_on_purpose();
  3657. set_current_from_steppers_for_axis(ALL_AXES);
  3658. SYNC_PLAN_POSITION_KINEMATIC();
  3659. // Only do remaining moves if target was hit
  3660. if (G38_endstop_hit) {
  3661. G38_pass_fail = true;
  3662. // Move away by the retract distance
  3663. set_destination_to_current();
  3664. LOOP_XYZ(i) destination[i] += retract_mm[i];
  3665. endstops.enable(false);
  3666. prepare_move_to_destination();
  3667. stepper.synchronize();
  3668. feedrate_mm_s /= 4;
  3669. // Bump the target more slowly
  3670. LOOP_XYZ(i) destination[i] -= retract_mm[i] * 2;
  3671. endstops.enable(true);
  3672. G38_move = true;
  3673. prepare_move_to_destination();
  3674. stepper.synchronize();
  3675. G38_move = false;
  3676. set_current_from_steppers_for_axis(ALL_AXES);
  3677. SYNC_PLAN_POSITION_KINEMATIC();
  3678. }
  3679. endstops.hit_on_purpose();
  3680. endstops.not_homing();
  3681. return G38_pass_fail;
  3682. }
  3683. /**
  3684. * G38.2 - probe toward workpiece, stop on contact, signal error if failure
  3685. * G38.3 - probe toward workpiece, stop on contact
  3686. *
  3687. * Like G28 except uses Z min endstop for all axes
  3688. */
  3689. inline void gcode_G38(bool is_38_2) {
  3690. // Get X Y Z E F
  3691. gcode_get_destination();
  3692. setup_for_endstop_or_probe_move();
  3693. // If any axis has enough movement, do the move
  3694. LOOP_XYZ(i)
  3695. if (fabs(destination[i] - current_position[i]) >= G38_MINIMUM_MOVE) {
  3696. if (!code_seen('F')) feedrate_mm_s = homing_feedrate_mm_s[i];
  3697. // If G38.2 fails throw an error
  3698. if (!G38_run_probe() && is_38_2) {
  3699. SERIAL_ERROR_START;
  3700. SERIAL_ERRORLNPGM("Failed to reach target");
  3701. }
  3702. break;
  3703. }
  3704. clean_up_after_endstop_or_probe_move();
  3705. }
  3706. #endif // G38_PROBE_TARGET
  3707. /**
  3708. * G92: Set current position to given X Y Z E
  3709. */
  3710. inline void gcode_G92() {
  3711. bool didXYZ = false,
  3712. didE = code_seen('E');
  3713. if (!didE) stepper.synchronize();
  3714. LOOP_XYZE(i) {
  3715. if (code_seen(axis_codes[i])) {
  3716. #if IS_SCARA
  3717. current_position[i] = code_value_axis_units(i);
  3718. if (i != E_AXIS) didXYZ = true;
  3719. #else
  3720. float p = current_position[i],
  3721. v = code_value_axis_units(i);
  3722. current_position[i] = v;
  3723. if (i != E_AXIS) {
  3724. didXYZ = true;
  3725. position_shift[i] += v - p; // Offset the coordinate space
  3726. update_software_endstops((AxisEnum)i);
  3727. }
  3728. #endif
  3729. }
  3730. }
  3731. if (didXYZ)
  3732. SYNC_PLAN_POSITION_KINEMATIC();
  3733. else if (didE)
  3734. sync_plan_position_e();
  3735. report_current_position();
  3736. }
  3737. #if ENABLED(EMERGENCY_PARSER) || ENABLED(ULTIPANEL)
  3738. /**
  3739. * M0: Unconditional stop - Wait for user button press on LCD
  3740. * M1: Conditional stop - Wait for user button press on LCD
  3741. */
  3742. inline void gcode_M0_M1() {
  3743. char* args = current_command_args;
  3744. millis_t codenum = 0;
  3745. bool hasP = false, hasS = false;
  3746. if (code_seen('P')) {
  3747. codenum = code_value_millis(); // milliseconds to wait
  3748. hasP = codenum > 0;
  3749. }
  3750. if (code_seen('S')) {
  3751. codenum = code_value_millis_from_seconds(); // seconds to wait
  3752. hasS = codenum > 0;
  3753. }
  3754. #if ENABLED(ULTIPANEL)
  3755. if (!hasP && !hasS && *args != '\0')
  3756. lcd_setstatus(args, true);
  3757. else {
  3758. LCD_MESSAGEPGM(MSG_USERWAIT);
  3759. #if ENABLED(LCD_PROGRESS_BAR) && PROGRESS_MSG_EXPIRE > 0
  3760. dontExpireStatus();
  3761. #endif
  3762. }
  3763. #else
  3764. if (!hasP && !hasS && *args != '\0') {
  3765. SERIAL_ECHO_START;
  3766. SERIAL_ECHOLN(args);
  3767. }
  3768. #endif
  3769. wait_for_user = true;
  3770. KEEPALIVE_STATE(PAUSED_FOR_USER);
  3771. stepper.synchronize();
  3772. refresh_cmd_timeout();
  3773. if (codenum > 0) {
  3774. codenum += previous_cmd_ms; // wait until this time for a click
  3775. while (PENDING(millis(), codenum) && wait_for_user) idle();
  3776. }
  3777. else {
  3778. #if ENABLED(ULTIPANEL)
  3779. if (lcd_detected()) {
  3780. while (wait_for_user) idle();
  3781. IS_SD_PRINTING ? LCD_MESSAGEPGM(MSG_RESUMING) : LCD_MESSAGEPGM(WELCOME_MSG);
  3782. }
  3783. #else
  3784. while (wait_for_user) idle();
  3785. #endif
  3786. }
  3787. wait_for_user = false;
  3788. KEEPALIVE_STATE(IN_HANDLER);
  3789. }
  3790. #endif // EMERGENCY_PARSER || ULTIPANEL
  3791. /**
  3792. * M17: Enable power on all stepper motors
  3793. */
  3794. inline void gcode_M17() {
  3795. LCD_MESSAGEPGM(MSG_NO_MOVE);
  3796. enable_all_steppers();
  3797. }
  3798. #if ENABLED(SDSUPPORT)
  3799. /**
  3800. * M20: List SD card to serial output
  3801. */
  3802. inline void gcode_M20() {
  3803. SERIAL_PROTOCOLLNPGM(MSG_BEGIN_FILE_LIST);
  3804. card.ls();
  3805. SERIAL_PROTOCOLLNPGM(MSG_END_FILE_LIST);
  3806. }
  3807. /**
  3808. * M21: Init SD Card
  3809. */
  3810. inline void gcode_M21() { card.initsd(); }
  3811. /**
  3812. * M22: Release SD Card
  3813. */
  3814. inline void gcode_M22() { card.release(); }
  3815. /**
  3816. * M23: Open a file
  3817. */
  3818. inline void gcode_M23() { card.openFile(current_command_args, true); }
  3819. /**
  3820. * M24: Start SD Print
  3821. */
  3822. inline void gcode_M24() {
  3823. card.startFileprint();
  3824. print_job_timer.start();
  3825. }
  3826. /**
  3827. * M25: Pause SD Print
  3828. */
  3829. inline void gcode_M25() { card.pauseSDPrint(); }
  3830. /**
  3831. * M26: Set SD Card file index
  3832. */
  3833. inline void gcode_M26() {
  3834. if (card.cardOK && code_seen('S'))
  3835. card.setIndex(code_value_long());
  3836. }
  3837. /**
  3838. * M27: Get SD Card status
  3839. */
  3840. inline void gcode_M27() { card.getStatus(); }
  3841. /**
  3842. * M28: Start SD Write
  3843. */
  3844. inline void gcode_M28() { card.openFile(current_command_args, false); }
  3845. /**
  3846. * M29: Stop SD Write
  3847. * Processed in write to file routine above
  3848. */
  3849. inline void gcode_M29() {
  3850. // card.saving = false;
  3851. }
  3852. /**
  3853. * M30 <filename>: Delete SD Card file
  3854. */
  3855. inline void gcode_M30() {
  3856. if (card.cardOK) {
  3857. card.closefile();
  3858. card.removeFile(current_command_args);
  3859. }
  3860. }
  3861. #endif // SDSUPPORT
  3862. /**
  3863. * M31: Get the time since the start of SD Print (or last M109)
  3864. */
  3865. inline void gcode_M31() {
  3866. char buffer[21];
  3867. duration_t elapsed = print_job_timer.duration();
  3868. elapsed.toString(buffer);
  3869. lcd_setstatus(buffer);
  3870. SERIAL_ECHO_START;
  3871. SERIAL_ECHOLNPAIR("Print time: ", buffer);
  3872. #if ENABLED(AUTOTEMP)
  3873. thermalManager.autotempShutdown();
  3874. #endif
  3875. }
  3876. #if ENABLED(SDSUPPORT)
  3877. /**
  3878. * M32: Select file and start SD Print
  3879. */
  3880. inline void gcode_M32() {
  3881. if (card.sdprinting)
  3882. stepper.synchronize();
  3883. char* namestartpos = strchr(current_command_args, '!'); // Find ! to indicate filename string start.
  3884. if (!namestartpos)
  3885. namestartpos = current_command_args; // Default name position, 4 letters after the M
  3886. else
  3887. namestartpos++; //to skip the '!'
  3888. bool call_procedure = code_seen('P') && (seen_pointer < namestartpos);
  3889. if (card.cardOK) {
  3890. card.openFile(namestartpos, true, call_procedure);
  3891. if (code_seen('S') && seen_pointer < namestartpos) // "S" (must occur _before_ the filename!)
  3892. card.setIndex(code_value_long());
  3893. card.startFileprint();
  3894. // Procedure calls count as normal print time.
  3895. if (!call_procedure) print_job_timer.start();
  3896. }
  3897. }
  3898. #if ENABLED(LONG_FILENAME_HOST_SUPPORT)
  3899. /**
  3900. * M33: Get the long full path of a file or folder
  3901. *
  3902. * Parameters:
  3903. * <dospath> Case-insensitive DOS-style path to a file or folder
  3904. *
  3905. * Example:
  3906. * M33 miscel~1/armchair/armcha~1.gco
  3907. *
  3908. * Output:
  3909. * /Miscellaneous/Armchair/Armchair.gcode
  3910. */
  3911. inline void gcode_M33() {
  3912. card.printLongPath(current_command_args);
  3913. }
  3914. #endif
  3915. /**
  3916. * M928: Start SD Write
  3917. */
  3918. inline void gcode_M928() {
  3919. card.openLogFile(current_command_args);
  3920. }
  3921. #endif // SDSUPPORT
  3922. /**
  3923. * Sensitive pin test for M42, M226
  3924. */
  3925. static bool pin_is_protected(uint8_t pin) {
  3926. static const int sensitive_pins[] = SENSITIVE_PINS;
  3927. for (uint8_t i = 0; i < COUNT(sensitive_pins); i++)
  3928. if (sensitive_pins[i] == pin) return true;
  3929. return false;
  3930. }
  3931. /**
  3932. * M42: Change pin status via GCode
  3933. *
  3934. * P<pin> Pin number (LED if omitted)
  3935. * S<byte> Pin status from 0 - 255
  3936. */
  3937. inline void gcode_M42() {
  3938. if (!code_seen('S')) return;
  3939. int pin_status = code_value_int();
  3940. if (pin_status < 0 || pin_status > 255) return;
  3941. int pin_number = code_seen('P') ? code_value_int() : LED_PIN;
  3942. if (pin_number < 0) return;
  3943. if (pin_is_protected(pin_number)) {
  3944. SERIAL_ERROR_START;
  3945. SERIAL_ERRORLNPGM(MSG_ERR_PROTECTED_PIN);
  3946. return;
  3947. }
  3948. pinMode(pin_number, OUTPUT);
  3949. digitalWrite(pin_number, pin_status);
  3950. analogWrite(pin_number, pin_status);
  3951. #if FAN_COUNT > 0
  3952. switch (pin_number) {
  3953. #if HAS_FAN0
  3954. case FAN_PIN: fanSpeeds[0] = pin_status; break;
  3955. #endif
  3956. #if HAS_FAN1
  3957. case FAN1_PIN: fanSpeeds[1] = pin_status; break;
  3958. #endif
  3959. #if HAS_FAN2
  3960. case FAN2_PIN: fanSpeeds[2] = pin_status; break;
  3961. #endif
  3962. }
  3963. #endif
  3964. }
  3965. #if ENABLED(PINS_DEBUGGING)
  3966. #include "pinsDebug.h"
  3967. /**
  3968. * M43: Pin report and debug
  3969. *
  3970. * E<bool> Enable / disable background endstop monitoring
  3971. * - Machine continues to operate
  3972. * - Reports changes to endstops
  3973. * - Toggles LED when an endstop changes
  3974. *
  3975. * or
  3976. *
  3977. * P<pin> Pin to read or watch. If omitted, read/watch all pins.
  3978. * W<bool> Watch pins -reporting changes- until reset, click, or M108.
  3979. * I<bool> Flag to ignore Marlin's pin protection.
  3980. *
  3981. */
  3982. inline void gcode_M43() {
  3983. // Enable or disable endstop monitoring
  3984. if (code_seen('E')) {
  3985. endstop_monitor_flag = code_value_bool();
  3986. SERIAL_PROTOCOLPGM("endstop monitor ");
  3987. SERIAL_PROTOCOL(endstop_monitor_flag ? "en" : "dis");
  3988. SERIAL_PROTOCOLLNPGM("abled");
  3989. return;
  3990. }
  3991. // Get the range of pins to test or watch
  3992. int first_pin = 0, last_pin = NUM_DIGITAL_PINS - 1;
  3993. if (code_seen('P')) {
  3994. first_pin = last_pin = code_value_byte();
  3995. if (first_pin > NUM_DIGITAL_PINS - 1) return;
  3996. }
  3997. bool ignore_protection = code_seen('I') ? code_value_bool() : false;
  3998. // Watch until click, M108, or reset
  3999. if (code_seen('W') && code_value_bool()) { // watch digital pins
  4000. byte pin_state[last_pin - first_pin + 1];
  4001. for (int8_t pin = first_pin; pin <= last_pin; pin++) {
  4002. if (pin_is_protected(pin) && !ignore_protection) continue;
  4003. pinMode(pin, INPUT_PULLUP);
  4004. // if (IS_ANALOG(pin))
  4005. // pin_state[pin - first_pin] = analogRead(pin - analogInputToDigitalPin(0)); // int16_t pin_state[...]
  4006. // else
  4007. pin_state[pin - first_pin] = digitalRead(pin);
  4008. }
  4009. #if ENABLED(EMERGENCY_PARSER) || ENABLED(ULTIPANEL)
  4010. wait_for_user = true;
  4011. #endif
  4012. for(;;) {
  4013. for (int8_t pin = first_pin; pin <= last_pin; pin++) {
  4014. if (pin_is_protected(pin)) continue;
  4015. byte val;
  4016. // if (IS_ANALOG(pin))
  4017. // val = analogRead(pin - analogInputToDigitalPin(0)); // int16_t val
  4018. // else
  4019. val = digitalRead(pin);
  4020. if (val != pin_state[pin - first_pin]) {
  4021. report_pin_state(pin);
  4022. pin_state[pin - first_pin] = val;
  4023. }
  4024. }
  4025. #if ENABLED(EMERGENCY_PARSER) || ENABLED(ULTIPANEL)
  4026. if (!wait_for_user) break;
  4027. #endif
  4028. safe_delay(500);
  4029. }
  4030. return;
  4031. }
  4032. // Report current state of selected pin(s)
  4033. for (uint8_t pin = first_pin; pin <= last_pin; pin++)
  4034. report_pin_state_extended(pin, ignore_protection);
  4035. }
  4036. #endif // PINS_DEBUGGING
  4037. #if ENABLED(Z_MIN_PROBE_REPEATABILITY_TEST)
  4038. /**
  4039. * M48: Z probe repeatability measurement function.
  4040. *
  4041. * Usage:
  4042. * M48 <P#> <X#> <Y#> <V#> <E> <L#>
  4043. * P = Number of sampled points (4-50, default 10)
  4044. * X = Sample X position
  4045. * Y = Sample Y position
  4046. * V = Verbose level (0-4, default=1)
  4047. * E = Engage Z probe for each reading
  4048. * L = Number of legs of movement before probe
  4049. * S = Schizoid (Or Star if you prefer)
  4050. *
  4051. * This function assumes the bed has been homed. Specifically, that a G28 command
  4052. * as been issued prior to invoking the M48 Z probe repeatability measurement function.
  4053. * Any information generated by a prior G29 Bed leveling command will be lost and need to be
  4054. * regenerated.
  4055. */
  4056. inline void gcode_M48() {
  4057. if (axis_unhomed_error(true, true, true)) return;
  4058. int8_t verbose_level = code_seen('V') ? code_value_byte() : 1;
  4059. if (verbose_level < 0 || verbose_level > 4) {
  4060. SERIAL_PROTOCOLLNPGM("?Verbose Level not plausible (0-4).");
  4061. return;
  4062. }
  4063. if (verbose_level > 0)
  4064. SERIAL_PROTOCOLLNPGM("M48 Z-Probe Repeatability Test");
  4065. int8_t n_samples = code_seen('P') ? code_value_byte() : 10;
  4066. if (n_samples < 4 || n_samples > 50) {
  4067. SERIAL_PROTOCOLLNPGM("?Sample size not plausible (4-50).");
  4068. return;
  4069. }
  4070. float X_current = current_position[X_AXIS],
  4071. Y_current = current_position[Y_AXIS];
  4072. bool stow_probe_after_each = code_seen('E');
  4073. float X_probe_location = code_seen('X') ? code_value_axis_units(X_AXIS) : X_current + X_PROBE_OFFSET_FROM_EXTRUDER;
  4074. #if DISABLED(DELTA)
  4075. if (X_probe_location < LOGICAL_X_POSITION(MIN_PROBE_X) || X_probe_location > LOGICAL_X_POSITION(MAX_PROBE_X)) {
  4076. out_of_range_error(PSTR("X"));
  4077. return;
  4078. }
  4079. #endif
  4080. float Y_probe_location = code_seen('Y') ? code_value_axis_units(Y_AXIS) : Y_current + Y_PROBE_OFFSET_FROM_EXTRUDER;
  4081. #if DISABLED(DELTA)
  4082. if (Y_probe_location < LOGICAL_Y_POSITION(MIN_PROBE_Y) || Y_probe_location > LOGICAL_Y_POSITION(MAX_PROBE_Y)) {
  4083. out_of_range_error(PSTR("Y"));
  4084. return;
  4085. }
  4086. #else
  4087. float pos[XYZ] = { X_probe_location, Y_probe_location, 0 };
  4088. if (!position_is_reachable(pos, true)) {
  4089. SERIAL_PROTOCOLLNPGM("? (X,Y) location outside of probeable radius.");
  4090. return;
  4091. }
  4092. #endif
  4093. bool seen_L = code_seen('L');
  4094. uint8_t n_legs = seen_L ? code_value_byte() : 0;
  4095. if (n_legs > 15) {
  4096. SERIAL_PROTOCOLLNPGM("?Number of legs in movement not plausible (0-15).");
  4097. return;
  4098. }
  4099. if (n_legs == 1) n_legs = 2;
  4100. bool schizoid_flag = code_seen('S');
  4101. if (schizoid_flag && !seen_L) n_legs = 7;
  4102. /**
  4103. * Now get everything to the specified probe point So we can safely do a
  4104. * probe to get us close to the bed. If the Z-Axis is far from the bed,
  4105. * we don't want to use that as a starting point for each probe.
  4106. */
  4107. if (verbose_level > 2)
  4108. SERIAL_PROTOCOLLNPGM("Positioning the probe...");
  4109. // Disable bed level correction in M48 because we want the raw data when we probe
  4110. #if HAS_ABL
  4111. reset_bed_level();
  4112. #endif
  4113. setup_for_endstop_or_probe_move();
  4114. // Move to the first point, deploy, and probe
  4115. probe_pt(X_probe_location, Y_probe_location, stow_probe_after_each, verbose_level);
  4116. randomSeed(millis());
  4117. double mean = 0.0, sigma = 0.0, min = 99999.9, max = -99999.9, sample_set[n_samples];
  4118. for (uint8_t n = 0; n < n_samples; n++) {
  4119. if (n_legs) {
  4120. int dir = (random(0, 10) > 5.0) ? -1 : 1; // clockwise or counter clockwise
  4121. float angle = random(0.0, 360.0),
  4122. radius = random(
  4123. #if ENABLED(DELTA)
  4124. DELTA_PROBEABLE_RADIUS / 8, DELTA_PROBEABLE_RADIUS / 3
  4125. #else
  4126. 5, X_MAX_LENGTH / 8
  4127. #endif
  4128. );
  4129. if (verbose_level > 3) {
  4130. SERIAL_ECHOPAIR("Starting radius: ", radius);
  4131. SERIAL_ECHOPAIR(" angle: ", angle);
  4132. SERIAL_ECHOPGM(" Direction: ");
  4133. if (dir > 0) SERIAL_ECHOPGM("Counter-");
  4134. SERIAL_ECHOLNPGM("Clockwise");
  4135. }
  4136. for (uint8_t l = 0; l < n_legs - 1; l++) {
  4137. double delta_angle;
  4138. if (schizoid_flag)
  4139. // The points of a 5 point star are 72 degrees apart. We need to
  4140. // skip a point and go to the next one on the star.
  4141. delta_angle = dir * 2.0 * 72.0;
  4142. else
  4143. // If we do this line, we are just trying to move further
  4144. // around the circle.
  4145. delta_angle = dir * (float) random(25, 45);
  4146. angle += delta_angle;
  4147. while (angle > 360.0) // We probably do not need to keep the angle between 0 and 2*PI, but the
  4148. angle -= 360.0; // Arduino documentation says the trig functions should not be given values
  4149. while (angle < 0.0) // outside of this range. It looks like they behave correctly with
  4150. angle += 360.0; // numbers outside of the range, but just to be safe we clamp them.
  4151. X_current = X_probe_location - (X_PROBE_OFFSET_FROM_EXTRUDER) + cos(RADIANS(angle)) * radius;
  4152. Y_current = Y_probe_location - (Y_PROBE_OFFSET_FROM_EXTRUDER) + sin(RADIANS(angle)) * radius;
  4153. #if DISABLED(DELTA)
  4154. X_current = constrain(X_current, X_MIN_POS, X_MAX_POS);
  4155. Y_current = constrain(Y_current, Y_MIN_POS, Y_MAX_POS);
  4156. #else
  4157. // If we have gone out too far, we can do a simple fix and scale the numbers
  4158. // back in closer to the origin.
  4159. while (HYPOT(X_current, Y_current) > DELTA_PROBEABLE_RADIUS) {
  4160. X_current /= 1.25;
  4161. Y_current /= 1.25;
  4162. if (verbose_level > 3) {
  4163. SERIAL_ECHOPAIR("Pulling point towards center:", X_current);
  4164. SERIAL_ECHOLNPAIR(", ", Y_current);
  4165. }
  4166. }
  4167. #endif
  4168. if (verbose_level > 3) {
  4169. SERIAL_PROTOCOLPGM("Going to:");
  4170. SERIAL_ECHOPAIR(" X", X_current);
  4171. SERIAL_ECHOPAIR(" Y", Y_current);
  4172. SERIAL_ECHOLNPAIR(" Z", current_position[Z_AXIS]);
  4173. }
  4174. do_blocking_move_to_xy(X_current, Y_current);
  4175. } // n_legs loop
  4176. } // n_legs
  4177. // Probe a single point
  4178. sample_set[n] = probe_pt(X_probe_location, Y_probe_location, stow_probe_after_each, 0);
  4179. /**
  4180. * Get the current mean for the data points we have so far
  4181. */
  4182. double sum = 0.0;
  4183. for (uint8_t j = 0; j <= n; j++) sum += sample_set[j];
  4184. mean = sum / (n + 1);
  4185. NOMORE(min, sample_set[n]);
  4186. NOLESS(max, sample_set[n]);
  4187. /**
  4188. * Now, use that mean to calculate the standard deviation for the
  4189. * data points we have so far
  4190. */
  4191. sum = 0.0;
  4192. for (uint8_t j = 0; j <= n; j++)
  4193. sum += sq(sample_set[j] - mean);
  4194. sigma = sqrt(sum / (n + 1));
  4195. if (verbose_level > 0) {
  4196. if (verbose_level > 1) {
  4197. SERIAL_PROTOCOL(n + 1);
  4198. SERIAL_PROTOCOLPGM(" of ");
  4199. SERIAL_PROTOCOL((int)n_samples);
  4200. SERIAL_PROTOCOLPGM(": z: ");
  4201. SERIAL_PROTOCOL_F(sample_set[n], 3);
  4202. if (verbose_level > 2) {
  4203. SERIAL_PROTOCOLPGM(" mean: ");
  4204. SERIAL_PROTOCOL_F(mean, 4);
  4205. SERIAL_PROTOCOLPGM(" sigma: ");
  4206. SERIAL_PROTOCOL_F(sigma, 6);
  4207. SERIAL_PROTOCOLPGM(" min: ");
  4208. SERIAL_PROTOCOL_F(min, 3);
  4209. SERIAL_PROTOCOLPGM(" max: ");
  4210. SERIAL_PROTOCOL_F(max, 3);
  4211. SERIAL_PROTOCOLPGM(" range: ");
  4212. SERIAL_PROTOCOL_F(max-min, 3);
  4213. }
  4214. }
  4215. SERIAL_EOL;
  4216. }
  4217. } // End of probe loop
  4218. if (STOW_PROBE()) return;
  4219. SERIAL_PROTOCOLPGM("Finished!");
  4220. SERIAL_EOL;
  4221. if (verbose_level > 0) {
  4222. SERIAL_PROTOCOLPGM("Mean: ");
  4223. SERIAL_PROTOCOL_F(mean, 6);
  4224. SERIAL_PROTOCOLPGM(" Min: ");
  4225. SERIAL_PROTOCOL_F(min, 3);
  4226. SERIAL_PROTOCOLPGM(" Max: ");
  4227. SERIAL_PROTOCOL_F(max, 3);
  4228. SERIAL_PROTOCOLPGM(" Range: ");
  4229. SERIAL_PROTOCOL_F(max-min, 3);
  4230. SERIAL_EOL;
  4231. }
  4232. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  4233. SERIAL_PROTOCOL_F(sigma, 6);
  4234. SERIAL_EOL;
  4235. SERIAL_EOL;
  4236. clean_up_after_endstop_or_probe_move();
  4237. report_current_position();
  4238. }
  4239. #endif // Z_MIN_PROBE_REPEATABILITY_TEST
  4240. /**
  4241. * M75: Start print timer
  4242. */
  4243. inline void gcode_M75() { print_job_timer.start(); }
  4244. /**
  4245. * M76: Pause print timer
  4246. */
  4247. inline void gcode_M76() { print_job_timer.pause(); }
  4248. /**
  4249. * M77: Stop print timer
  4250. */
  4251. inline void gcode_M77() { print_job_timer.stop(); }
  4252. #if ENABLED(PRINTCOUNTER)
  4253. /**
  4254. * M78: Show print statistics
  4255. */
  4256. inline void gcode_M78() {
  4257. // "M78 S78" will reset the statistics
  4258. if (code_seen('S') && code_value_int() == 78)
  4259. print_job_timer.initStats();
  4260. else
  4261. print_job_timer.showStats();
  4262. }
  4263. #endif
  4264. /**
  4265. * M104: Set hot end temperature
  4266. */
  4267. inline void gcode_M104() {
  4268. if (get_target_extruder_from_command(104)) return;
  4269. if (DEBUGGING(DRYRUN)) return;
  4270. #if ENABLED(SINGLENOZZLE)
  4271. if (target_extruder != active_extruder) return;
  4272. #endif
  4273. if (code_seen('S')) {
  4274. thermalManager.setTargetHotend(code_value_temp_abs(), target_extruder);
  4275. #if ENABLED(DUAL_X_CARRIAGE)
  4276. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && target_extruder == 0)
  4277. thermalManager.setTargetHotend(code_value_temp_abs() == 0.0 ? 0.0 : code_value_temp_abs() + duplicate_extruder_temp_offset, 1);
  4278. #endif
  4279. #if ENABLED(PRINTJOB_TIMER_AUTOSTART)
  4280. /**
  4281. * Stop the timer at the end of print, starting is managed by
  4282. * 'heat and wait' M109.
  4283. * We use half EXTRUDE_MINTEMP here to allow nozzles to be put into hot
  4284. * stand by mode, for instance in a dual extruder setup, without affecting
  4285. * the running print timer.
  4286. */
  4287. if (code_value_temp_abs() <= (EXTRUDE_MINTEMP)/2) {
  4288. print_job_timer.stop();
  4289. LCD_MESSAGEPGM(WELCOME_MSG);
  4290. }
  4291. #endif
  4292. if (code_value_temp_abs() > thermalManager.degHotend(target_extruder)) LCD_MESSAGEPGM(MSG_HEATING);
  4293. }
  4294. #if ENABLED(AUTOTEMP)
  4295. planner.autotemp_M104_M109();
  4296. #endif
  4297. }
  4298. #if HAS_TEMP_HOTEND || HAS_TEMP_BED
  4299. void print_heaterstates() {
  4300. #if HAS_TEMP_HOTEND
  4301. SERIAL_PROTOCOLPGM(" T:");
  4302. SERIAL_PROTOCOL_F(thermalManager.degHotend(target_extruder), 1);
  4303. SERIAL_PROTOCOLPGM(" /");
  4304. SERIAL_PROTOCOL_F(thermalManager.degTargetHotend(target_extruder), 1);
  4305. #if ENABLED(SHOW_TEMP_ADC_VALUES)
  4306. SERIAL_PROTOCOLPAIR(" (", thermalManager.current_temperature_raw[target_extruder] / OVERSAMPLENR);
  4307. SERIAL_CHAR(')');
  4308. #endif
  4309. #endif
  4310. #if HAS_TEMP_BED
  4311. SERIAL_PROTOCOLPGM(" B:");
  4312. SERIAL_PROTOCOL_F(thermalManager.degBed(), 1);
  4313. SERIAL_PROTOCOLPGM(" /");
  4314. SERIAL_PROTOCOL_F(thermalManager.degTargetBed(), 1);
  4315. #if ENABLED(SHOW_TEMP_ADC_VALUES)
  4316. SERIAL_PROTOCOLPAIR(" (", thermalManager.current_temperature_bed_raw / OVERSAMPLENR);
  4317. SERIAL_CHAR(')');
  4318. #endif
  4319. #endif
  4320. #if HOTENDS > 1
  4321. HOTEND_LOOP() {
  4322. SERIAL_PROTOCOLPAIR(" T", e);
  4323. SERIAL_PROTOCOLCHAR(':');
  4324. SERIAL_PROTOCOL_F(thermalManager.degHotend(e), 1);
  4325. SERIAL_PROTOCOLPGM(" /");
  4326. SERIAL_PROTOCOL_F(thermalManager.degTargetHotend(e), 1);
  4327. #if ENABLED(SHOW_TEMP_ADC_VALUES)
  4328. SERIAL_PROTOCOLPAIR(" (", thermalManager.current_temperature_raw[e] / OVERSAMPLENR);
  4329. SERIAL_CHAR(')');
  4330. #endif
  4331. }
  4332. #endif
  4333. SERIAL_PROTOCOLPGM(" @:");
  4334. SERIAL_PROTOCOL(thermalManager.getHeaterPower(target_extruder));
  4335. #if HAS_TEMP_BED
  4336. SERIAL_PROTOCOLPGM(" B@:");
  4337. SERIAL_PROTOCOL(thermalManager.getHeaterPower(-1));
  4338. #endif
  4339. #if HOTENDS > 1
  4340. HOTEND_LOOP() {
  4341. SERIAL_PROTOCOLPAIR(" @", e);
  4342. SERIAL_PROTOCOLCHAR(':');
  4343. SERIAL_PROTOCOL(thermalManager.getHeaterPower(e));
  4344. }
  4345. #endif
  4346. }
  4347. #endif
  4348. /**
  4349. * M105: Read hot end and bed temperature
  4350. */
  4351. inline void gcode_M105() {
  4352. if (get_target_extruder_from_command(105)) return;
  4353. #if HAS_TEMP_HOTEND || HAS_TEMP_BED
  4354. SERIAL_PROTOCOLPGM(MSG_OK);
  4355. print_heaterstates();
  4356. #else // !HAS_TEMP_HOTEND && !HAS_TEMP_BED
  4357. SERIAL_ERROR_START;
  4358. SERIAL_ERRORLNPGM(MSG_ERR_NO_THERMISTORS);
  4359. #endif
  4360. SERIAL_EOL;
  4361. }
  4362. #if ENABLED(AUTO_REPORT_TEMPERATURES) && (HAS_TEMP_HOTEND || HAS_TEMP_BED)
  4363. static uint8_t auto_report_temp_interval;
  4364. static millis_t next_temp_report_ms;
  4365. /**
  4366. * M155: Set temperature auto-report interval. M155 S<seconds>
  4367. */
  4368. inline void gcode_M155() {
  4369. if (code_seen('S')) {
  4370. auto_report_temp_interval = code_value_byte();
  4371. NOMORE(auto_report_temp_interval, 60);
  4372. next_temp_report_ms = millis() + 1000UL * auto_report_temp_interval;
  4373. }
  4374. }
  4375. inline void auto_report_temperatures() {
  4376. if (auto_report_temp_interval && ELAPSED(millis(), next_temp_report_ms)) {
  4377. next_temp_report_ms = millis() + 1000UL * auto_report_temp_interval;
  4378. print_heaterstates();
  4379. }
  4380. }
  4381. #endif // AUTO_REPORT_TEMPERATURES
  4382. #if FAN_COUNT > 0
  4383. /**
  4384. * M106: Set Fan Speed
  4385. *
  4386. * S<int> Speed between 0-255
  4387. * P<index> Fan index, if more than one fan
  4388. */
  4389. inline void gcode_M106() {
  4390. uint16_t s = code_seen('S') ? code_value_ushort() : 255,
  4391. p = code_seen('P') ? code_value_ushort() : 0;
  4392. NOMORE(s, 255);
  4393. if (p < FAN_COUNT) fanSpeeds[p] = s;
  4394. }
  4395. /**
  4396. * M107: Fan Off
  4397. */
  4398. inline void gcode_M107() {
  4399. uint16_t p = code_seen('P') ? code_value_ushort() : 0;
  4400. if (p < FAN_COUNT) fanSpeeds[p] = 0;
  4401. }
  4402. #endif // FAN_COUNT > 0
  4403. #if DISABLED(EMERGENCY_PARSER)
  4404. /**
  4405. * M108: Stop the waiting for heaters in M109, M190, M303. Does not affect the target temperature.
  4406. */
  4407. inline void gcode_M108() { wait_for_heatup = false; }
  4408. /**
  4409. * M112: Emergency Stop
  4410. */
  4411. inline void gcode_M112() { kill(PSTR(MSG_KILLED)); }
  4412. /**
  4413. * M410: Quickstop - Abort all planned moves
  4414. *
  4415. * This will stop the carriages mid-move, so most likely they
  4416. * will be out of sync with the stepper position after this.
  4417. */
  4418. inline void gcode_M410() { quickstop_stepper(); }
  4419. #endif
  4420. #ifndef MIN_COOLING_SLOPE_DEG
  4421. #define MIN_COOLING_SLOPE_DEG 1.50
  4422. #endif
  4423. #ifndef MIN_COOLING_SLOPE_TIME
  4424. #define MIN_COOLING_SLOPE_TIME 60
  4425. #endif
  4426. /**
  4427. * M109: Sxxx Wait for extruder(s) to reach temperature. Waits only when heating.
  4428. * Rxxx Wait for extruder(s) to reach temperature. Waits when heating and cooling.
  4429. */
  4430. inline void gcode_M109() {
  4431. if (get_target_extruder_from_command(109)) return;
  4432. if (DEBUGGING(DRYRUN)) return;
  4433. #if ENABLED(SINGLENOZZLE)
  4434. if (target_extruder != active_extruder) return;
  4435. #endif
  4436. bool no_wait_for_cooling = code_seen('S');
  4437. if (no_wait_for_cooling || code_seen('R')) {
  4438. thermalManager.setTargetHotend(code_value_temp_abs(), target_extruder);
  4439. #if ENABLED(DUAL_X_CARRIAGE)
  4440. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && target_extruder == 0)
  4441. thermalManager.setTargetHotend(code_value_temp_abs() == 0.0 ? 0.0 : code_value_temp_abs() + duplicate_extruder_temp_offset, 1);
  4442. #endif
  4443. #if ENABLED(PRINTJOB_TIMER_AUTOSTART)
  4444. /**
  4445. * We use half EXTRUDE_MINTEMP here to allow nozzles to be put into hot
  4446. * stand by mode, for instance in a dual extruder setup, without affecting
  4447. * the running print timer.
  4448. */
  4449. if (code_value_temp_abs() <= (EXTRUDE_MINTEMP)/2) {
  4450. print_job_timer.stop();
  4451. LCD_MESSAGEPGM(WELCOME_MSG);
  4452. }
  4453. /**
  4454. * We do not check if the timer is already running because this check will
  4455. * be done for us inside the Stopwatch::start() method thus a running timer
  4456. * will not restart.
  4457. */
  4458. else print_job_timer.start();
  4459. #endif
  4460. if (thermalManager.isHeatingHotend(target_extruder)) LCD_MESSAGEPGM(MSG_HEATING);
  4461. }
  4462. #if ENABLED(AUTOTEMP)
  4463. planner.autotemp_M104_M109();
  4464. #endif
  4465. #if TEMP_RESIDENCY_TIME > 0
  4466. millis_t residency_start_ms = 0;
  4467. // Loop until the temperature has stabilized
  4468. #define TEMP_CONDITIONS (!residency_start_ms || PENDING(now, residency_start_ms + (TEMP_RESIDENCY_TIME) * 1000UL))
  4469. #else
  4470. // Loop until the temperature is very close target
  4471. #define TEMP_CONDITIONS (wants_to_cool ? thermalManager.isCoolingHotend(target_extruder) : thermalManager.isHeatingHotend(target_extruder))
  4472. #endif //TEMP_RESIDENCY_TIME > 0
  4473. float theTarget = -1.0, old_temp = 9999.0;
  4474. bool wants_to_cool = false;
  4475. wait_for_heatup = true;
  4476. millis_t now, next_temp_ms = 0, next_cool_check_ms = 0;
  4477. KEEPALIVE_STATE(NOT_BUSY);
  4478. do {
  4479. // Target temperature might be changed during the loop
  4480. if (theTarget != thermalManager.degTargetHotend(target_extruder)) {
  4481. wants_to_cool = thermalManager.isCoolingHotend(target_extruder);
  4482. theTarget = thermalManager.degTargetHotend(target_extruder);
  4483. // Exit if S<lower>, continue if S<higher>, R<lower>, or R<higher>
  4484. if (no_wait_for_cooling && wants_to_cool) break;
  4485. }
  4486. now = millis();
  4487. if (ELAPSED(now, next_temp_ms)) { //Print temp & remaining time every 1s while waiting
  4488. next_temp_ms = now + 1000UL;
  4489. print_heaterstates();
  4490. #if TEMP_RESIDENCY_TIME > 0
  4491. SERIAL_PROTOCOLPGM(" W:");
  4492. if (residency_start_ms) {
  4493. long rem = (((TEMP_RESIDENCY_TIME) * 1000UL) - (now - residency_start_ms)) / 1000UL;
  4494. SERIAL_PROTOCOLLN(rem);
  4495. }
  4496. else {
  4497. SERIAL_PROTOCOLLNPGM("?");
  4498. }
  4499. #else
  4500. SERIAL_EOL;
  4501. #endif
  4502. }
  4503. idle();
  4504. refresh_cmd_timeout(); // to prevent stepper_inactive_time from running out
  4505. float temp = thermalManager.degHotend(target_extruder);
  4506. #if TEMP_RESIDENCY_TIME > 0
  4507. float temp_diff = fabs(theTarget - temp);
  4508. if (!residency_start_ms) {
  4509. // Start the TEMP_RESIDENCY_TIME timer when we reach target temp for the first time.
  4510. if (temp_diff < TEMP_WINDOW) residency_start_ms = now;
  4511. }
  4512. else if (temp_diff > TEMP_HYSTERESIS) {
  4513. // Restart the timer whenever the temperature falls outside the hysteresis.
  4514. residency_start_ms = now;
  4515. }
  4516. #endif //TEMP_RESIDENCY_TIME > 0
  4517. // Prevent a wait-forever situation if R is misused i.e. M109 R0
  4518. if (wants_to_cool) {
  4519. // break after MIN_COOLING_SLOPE_TIME seconds
  4520. // if the temperature did not drop at least MIN_COOLING_SLOPE_DEG
  4521. if (!next_cool_check_ms || ELAPSED(now, next_cool_check_ms)) {
  4522. if (old_temp - temp < MIN_COOLING_SLOPE_DEG) break;
  4523. next_cool_check_ms = now + 1000UL * MIN_COOLING_SLOPE_TIME;
  4524. old_temp = temp;
  4525. }
  4526. }
  4527. } while (wait_for_heatup && TEMP_CONDITIONS);
  4528. if (wait_for_heatup) LCD_MESSAGEPGM(MSG_HEATING_COMPLETE);
  4529. KEEPALIVE_STATE(IN_HANDLER);
  4530. }
  4531. #if HAS_TEMP_BED
  4532. #ifndef MIN_COOLING_SLOPE_DEG_BED
  4533. #define MIN_COOLING_SLOPE_DEG_BED 1.50
  4534. #endif
  4535. #ifndef MIN_COOLING_SLOPE_TIME_BED
  4536. #define MIN_COOLING_SLOPE_TIME_BED 60
  4537. #endif
  4538. /**
  4539. * M190: Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  4540. * Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  4541. */
  4542. inline void gcode_M190() {
  4543. if (DEBUGGING(DRYRUN)) return;
  4544. LCD_MESSAGEPGM(MSG_BED_HEATING);
  4545. bool no_wait_for_cooling = code_seen('S');
  4546. if (no_wait_for_cooling || code_seen('R')) {
  4547. thermalManager.setTargetBed(code_value_temp_abs());
  4548. #if ENABLED(PRINTJOB_TIMER_AUTOSTART)
  4549. if (code_value_temp_abs() > BED_MINTEMP) {
  4550. /**
  4551. * We start the timer when 'heating and waiting' command arrives, LCD
  4552. * functions never wait. Cooling down managed by extruders.
  4553. *
  4554. * We do not check if the timer is already running because this check will
  4555. * be done for us inside the Stopwatch::start() method thus a running timer
  4556. * will not restart.
  4557. */
  4558. print_job_timer.start();
  4559. }
  4560. #endif
  4561. }
  4562. #if TEMP_BED_RESIDENCY_TIME > 0
  4563. millis_t residency_start_ms = 0;
  4564. // Loop until the temperature has stabilized
  4565. #define TEMP_BED_CONDITIONS (!residency_start_ms || PENDING(now, residency_start_ms + (TEMP_BED_RESIDENCY_TIME) * 1000UL))
  4566. #else
  4567. // Loop until the temperature is very close target
  4568. #define TEMP_BED_CONDITIONS (wants_to_cool ? thermalManager.isCoolingBed() : thermalManager.isHeatingBed())
  4569. #endif //TEMP_BED_RESIDENCY_TIME > 0
  4570. float theTarget = -1.0, old_temp = 9999.0;
  4571. bool wants_to_cool = false;
  4572. wait_for_heatup = true;
  4573. millis_t now, next_temp_ms = 0, next_cool_check_ms = 0;
  4574. KEEPALIVE_STATE(NOT_BUSY);
  4575. target_extruder = active_extruder; // for print_heaterstates
  4576. do {
  4577. // Target temperature might be changed during the loop
  4578. if (theTarget != thermalManager.degTargetBed()) {
  4579. wants_to_cool = thermalManager.isCoolingBed();
  4580. theTarget = thermalManager.degTargetBed();
  4581. // Exit if S<lower>, continue if S<higher>, R<lower>, or R<higher>
  4582. if (no_wait_for_cooling && wants_to_cool) break;
  4583. }
  4584. now = millis();
  4585. if (ELAPSED(now, next_temp_ms)) { //Print Temp Reading every 1 second while heating up.
  4586. next_temp_ms = now + 1000UL;
  4587. print_heaterstates();
  4588. #if TEMP_BED_RESIDENCY_TIME > 0
  4589. SERIAL_PROTOCOLPGM(" W:");
  4590. if (residency_start_ms) {
  4591. long rem = (((TEMP_BED_RESIDENCY_TIME) * 1000UL) - (now - residency_start_ms)) / 1000UL;
  4592. SERIAL_PROTOCOLLN(rem);
  4593. }
  4594. else {
  4595. SERIAL_PROTOCOLLNPGM("?");
  4596. }
  4597. #else
  4598. SERIAL_EOL;
  4599. #endif
  4600. }
  4601. idle();
  4602. refresh_cmd_timeout(); // to prevent stepper_inactive_time from running out
  4603. float temp = thermalManager.degBed();
  4604. #if TEMP_BED_RESIDENCY_TIME > 0
  4605. float temp_diff = fabs(theTarget - temp);
  4606. if (!residency_start_ms) {
  4607. // Start the TEMP_BED_RESIDENCY_TIME timer when we reach target temp for the first time.
  4608. if (temp_diff < TEMP_BED_WINDOW) residency_start_ms = now;
  4609. }
  4610. else if (temp_diff > TEMP_BED_HYSTERESIS) {
  4611. // Restart the timer whenever the temperature falls outside the hysteresis.
  4612. residency_start_ms = now;
  4613. }
  4614. #endif //TEMP_BED_RESIDENCY_TIME > 0
  4615. // Prevent a wait-forever situation if R is misused i.e. M190 R0
  4616. if (wants_to_cool) {
  4617. // break after MIN_COOLING_SLOPE_TIME_BED seconds
  4618. // if the temperature did not drop at least MIN_COOLING_SLOPE_DEG_BED
  4619. if (!next_cool_check_ms || ELAPSED(now, next_cool_check_ms)) {
  4620. if (old_temp - temp < MIN_COOLING_SLOPE_DEG_BED) break;
  4621. next_cool_check_ms = now + 1000UL * MIN_COOLING_SLOPE_TIME_BED;
  4622. old_temp = temp;
  4623. }
  4624. }
  4625. } while (wait_for_heatup && TEMP_BED_CONDITIONS);
  4626. if (wait_for_heatup) LCD_MESSAGEPGM(MSG_BED_DONE);
  4627. KEEPALIVE_STATE(IN_HANDLER);
  4628. }
  4629. #endif // HAS_TEMP_BED
  4630. /**
  4631. * M110: Set Current Line Number
  4632. */
  4633. inline void gcode_M110() {
  4634. if (code_seen('N')) gcode_N = code_value_long();
  4635. }
  4636. /**
  4637. * M111: Set the debug level
  4638. */
  4639. inline void gcode_M111() {
  4640. marlin_debug_flags = code_seen('S') ? code_value_byte() : (uint8_t) DEBUG_NONE;
  4641. const static char str_debug_1[] PROGMEM = MSG_DEBUG_ECHO;
  4642. const static char str_debug_2[] PROGMEM = MSG_DEBUG_INFO;
  4643. const static char str_debug_4[] PROGMEM = MSG_DEBUG_ERRORS;
  4644. const static char str_debug_8[] PROGMEM = MSG_DEBUG_DRYRUN;
  4645. const static char str_debug_16[] PROGMEM = MSG_DEBUG_COMMUNICATION;
  4646. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4647. const static char str_debug_32[] PROGMEM = MSG_DEBUG_LEVELING;
  4648. #endif
  4649. const static char* const debug_strings[] PROGMEM = {
  4650. str_debug_1, str_debug_2, str_debug_4, str_debug_8, str_debug_16,
  4651. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4652. str_debug_32
  4653. #endif
  4654. };
  4655. SERIAL_ECHO_START;
  4656. SERIAL_ECHOPGM(MSG_DEBUG_PREFIX);
  4657. if (marlin_debug_flags) {
  4658. uint8_t comma = 0;
  4659. for (uint8_t i = 0; i < COUNT(debug_strings); i++) {
  4660. if (TEST(marlin_debug_flags, i)) {
  4661. if (comma++) SERIAL_CHAR(',');
  4662. serialprintPGM((char*)pgm_read_word(&(debug_strings[i])));
  4663. }
  4664. }
  4665. }
  4666. else {
  4667. SERIAL_ECHOPGM(MSG_DEBUG_OFF);
  4668. }
  4669. SERIAL_EOL;
  4670. }
  4671. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  4672. /**
  4673. * M113: Get or set Host Keepalive interval (0 to disable)
  4674. *
  4675. * S<seconds> Optional. Set the keepalive interval.
  4676. */
  4677. inline void gcode_M113() {
  4678. if (code_seen('S')) {
  4679. host_keepalive_interval = code_value_byte();
  4680. NOMORE(host_keepalive_interval, 60);
  4681. }
  4682. else {
  4683. SERIAL_ECHO_START;
  4684. SERIAL_ECHOLNPAIR("M113 S", (unsigned long)host_keepalive_interval);
  4685. }
  4686. }
  4687. #endif
  4688. #if ENABLED(BARICUDA)
  4689. #if HAS_HEATER_1
  4690. /**
  4691. * M126: Heater 1 valve open
  4692. */
  4693. inline void gcode_M126() { baricuda_valve_pressure = code_seen('S') ? code_value_byte() : 255; }
  4694. /**
  4695. * M127: Heater 1 valve close
  4696. */
  4697. inline void gcode_M127() { baricuda_valve_pressure = 0; }
  4698. #endif
  4699. #if HAS_HEATER_2
  4700. /**
  4701. * M128: Heater 2 valve open
  4702. */
  4703. inline void gcode_M128() { baricuda_e_to_p_pressure = code_seen('S') ? code_value_byte() : 255; }
  4704. /**
  4705. * M129: Heater 2 valve close
  4706. */
  4707. inline void gcode_M129() { baricuda_e_to_p_pressure = 0; }
  4708. #endif
  4709. #endif //BARICUDA
  4710. /**
  4711. * M140: Set bed temperature
  4712. */
  4713. inline void gcode_M140() {
  4714. if (DEBUGGING(DRYRUN)) return;
  4715. if (code_seen('S')) thermalManager.setTargetBed(code_value_temp_abs());
  4716. }
  4717. #if ENABLED(ULTIPANEL)
  4718. /**
  4719. * M145: Set the heatup state for a material in the LCD menu
  4720. * S<material> (0=PLA, 1=ABS)
  4721. * H<hotend temp>
  4722. * B<bed temp>
  4723. * F<fan speed>
  4724. */
  4725. inline void gcode_M145() {
  4726. uint8_t material = code_seen('S') ? (uint8_t)code_value_int() : 0;
  4727. if (material >= COUNT(lcd_preheat_hotend_temp)) {
  4728. SERIAL_ERROR_START;
  4729. SERIAL_ERRORLNPGM(MSG_ERR_MATERIAL_INDEX);
  4730. }
  4731. else {
  4732. int v;
  4733. if (code_seen('H')) {
  4734. v = code_value_int();
  4735. lcd_preheat_hotend_temp[material] = constrain(v, EXTRUDE_MINTEMP, HEATER_0_MAXTEMP - 15);
  4736. }
  4737. if (code_seen('F')) {
  4738. v = code_value_int();
  4739. lcd_preheat_fan_speed[material] = constrain(v, 0, 255);
  4740. }
  4741. #if TEMP_SENSOR_BED != 0
  4742. if (code_seen('B')) {
  4743. v = code_value_int();
  4744. lcd_preheat_bed_temp[material] = constrain(v, BED_MINTEMP, BED_MAXTEMP - 15);
  4745. }
  4746. #endif
  4747. }
  4748. }
  4749. #endif // ULTIPANEL
  4750. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  4751. /**
  4752. * M149: Set temperature units
  4753. */
  4754. inline void gcode_M149() {
  4755. if (code_seen('C')) set_input_temp_units(TEMPUNIT_C);
  4756. else if (code_seen('K')) set_input_temp_units(TEMPUNIT_K);
  4757. else if (code_seen('F')) set_input_temp_units(TEMPUNIT_F);
  4758. }
  4759. #endif
  4760. #if HAS_POWER_SWITCH
  4761. /**
  4762. * M80: Turn on Power Supply
  4763. */
  4764. inline void gcode_M80() {
  4765. OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE); //GND
  4766. /**
  4767. * If you have a switch on suicide pin, this is useful
  4768. * if you want to start another print with suicide feature after
  4769. * a print without suicide...
  4770. */
  4771. #if HAS_SUICIDE
  4772. OUT_WRITE(SUICIDE_PIN, HIGH);
  4773. #endif
  4774. #if ENABLED(ULTIPANEL)
  4775. powersupply = true;
  4776. LCD_MESSAGEPGM(WELCOME_MSG);
  4777. lcd_update();
  4778. #endif
  4779. }
  4780. #endif // HAS_POWER_SWITCH
  4781. /**
  4782. * M81: Turn off Power, including Power Supply, if there is one.
  4783. *
  4784. * This code should ALWAYS be available for EMERGENCY SHUTDOWN!
  4785. */
  4786. inline void gcode_M81() {
  4787. thermalManager.disable_all_heaters();
  4788. stepper.finish_and_disable();
  4789. #if FAN_COUNT > 0
  4790. #if FAN_COUNT > 1
  4791. for (uint8_t i = 0; i < FAN_COUNT; i++) fanSpeeds[i] = 0;
  4792. #else
  4793. fanSpeeds[0] = 0;
  4794. #endif
  4795. #endif
  4796. delay(1000); // Wait 1 second before switching off
  4797. #if HAS_SUICIDE
  4798. stepper.synchronize();
  4799. suicide();
  4800. #elif HAS_POWER_SWITCH
  4801. OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  4802. #endif
  4803. #if ENABLED(ULTIPANEL)
  4804. #if HAS_POWER_SWITCH
  4805. powersupply = false;
  4806. #endif
  4807. LCD_MESSAGEPGM(MACHINE_NAME " " MSG_OFF ".");
  4808. lcd_update();
  4809. #endif
  4810. }
  4811. /**
  4812. * M82: Set E codes absolute (default)
  4813. */
  4814. inline void gcode_M82() { axis_relative_modes[E_AXIS] = false; }
  4815. /**
  4816. * M83: Set E codes relative while in Absolute Coordinates (G90) mode
  4817. */
  4818. inline void gcode_M83() { axis_relative_modes[E_AXIS] = true; }
  4819. /**
  4820. * M18, M84: Disable all stepper motors
  4821. */
  4822. inline void gcode_M18_M84() {
  4823. if (code_seen('S')) {
  4824. stepper_inactive_time = code_value_millis_from_seconds();
  4825. }
  4826. else {
  4827. bool all_axis = !((code_seen('X')) || (code_seen('Y')) || (code_seen('Z')) || (code_seen('E')));
  4828. if (all_axis) {
  4829. stepper.finish_and_disable();
  4830. }
  4831. else {
  4832. stepper.synchronize();
  4833. if (code_seen('X')) disable_x();
  4834. if (code_seen('Y')) disable_y();
  4835. if (code_seen('Z')) disable_z();
  4836. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  4837. if (code_seen('E')) {
  4838. disable_e0();
  4839. disable_e1();
  4840. disable_e2();
  4841. disable_e3();
  4842. }
  4843. #endif
  4844. }
  4845. }
  4846. }
  4847. /**
  4848. * M85: Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  4849. */
  4850. inline void gcode_M85() {
  4851. if (code_seen('S')) max_inactive_time = code_value_millis_from_seconds();
  4852. }
  4853. /**
  4854. * M92: Set axis steps-per-unit for one or more axes, X, Y, Z, and E.
  4855. * (Follows the same syntax as G92)
  4856. */
  4857. inline void gcode_M92() {
  4858. LOOP_XYZE(i) {
  4859. if (code_seen(axis_codes[i])) {
  4860. if (i == E_AXIS) {
  4861. float value = code_value_per_axis_unit(i);
  4862. if (value < 20.0) {
  4863. float factor = planner.axis_steps_per_mm[i] / value; // increase e constants if M92 E14 is given for netfab.
  4864. planner.max_jerk[E_AXIS] *= factor;
  4865. planner.max_feedrate_mm_s[E_AXIS] *= factor;
  4866. planner.max_acceleration_steps_per_s2[E_AXIS] *= factor;
  4867. }
  4868. planner.axis_steps_per_mm[E_AXIS] = value;
  4869. }
  4870. else {
  4871. planner.axis_steps_per_mm[i] = code_value_per_axis_unit(i);
  4872. }
  4873. }
  4874. }
  4875. planner.refresh_positioning();
  4876. }
  4877. /**
  4878. * Output the current position to serial
  4879. */
  4880. static void report_current_position() {
  4881. SERIAL_PROTOCOLPGM("X:");
  4882. SERIAL_PROTOCOL(current_position[X_AXIS]);
  4883. SERIAL_PROTOCOLPGM(" Y:");
  4884. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  4885. SERIAL_PROTOCOLPGM(" Z:");
  4886. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  4887. SERIAL_PROTOCOLPGM(" E:");
  4888. SERIAL_PROTOCOL(current_position[E_AXIS]);
  4889. stepper.report_positions();
  4890. #if IS_SCARA
  4891. SERIAL_PROTOCOLPAIR("SCARA Theta:", stepper.get_axis_position_degrees(A_AXIS));
  4892. SERIAL_PROTOCOLLNPAIR(" Psi+Theta:", stepper.get_axis_position_degrees(B_AXIS));
  4893. SERIAL_EOL;
  4894. #endif
  4895. }
  4896. /**
  4897. * M114: Output current position to serial port
  4898. */
  4899. inline void gcode_M114() { report_current_position(); }
  4900. /**
  4901. * M115: Capabilities string
  4902. */
  4903. inline void gcode_M115() {
  4904. SERIAL_PROTOCOLLNPGM(MSG_M115_REPORT);
  4905. #if ENABLED(EXTENDED_CAPABILITIES_REPORT)
  4906. // EEPROM (M500, M501)
  4907. SERIAL_PROTOCOLPGM("Cap:");
  4908. #if ENABLED(EEPROM_SETTINGS)
  4909. SERIAL_PROTOCOLLNPGM("EEPROM:1");
  4910. #else
  4911. SERIAL_PROTOCOLLNPGM("EEPROM:0");
  4912. #endif
  4913. // AUTOREPORT_TEMP (M155)
  4914. SERIAL_PROTOCOLPGM("Cap:");
  4915. #if ENABLED(AUTO_REPORT_TEMPERATURES)
  4916. SERIAL_PROTOCOLLNPGM("AUTOREPORT_TEMP:1");
  4917. #else
  4918. SERIAL_PROTOCOLLNPGM("AUTOREPORT_TEMP:0");
  4919. #endif
  4920. // PROGRESS (M530 S L, M531 <file>, M532 X L)
  4921. SERIAL_PROTOCOLPGM("Cap:");
  4922. SERIAL_PROTOCOLLNPGM("PROGRESS:0");
  4923. // AUTOLEVEL (G29)
  4924. SERIAL_PROTOCOLPGM("Cap:");
  4925. #if HAS_ABL
  4926. SERIAL_PROTOCOLLNPGM("AUTOLEVEL:1");
  4927. #else
  4928. SERIAL_PROTOCOLLNPGM("AUTOLEVEL:0");
  4929. #endif
  4930. // Z_PROBE (G30)
  4931. SERIAL_PROTOCOLPGM("Cap:");
  4932. #if HAS_BED_PROBE
  4933. SERIAL_PROTOCOLLNPGM("Z_PROBE:1");
  4934. #else
  4935. SERIAL_PROTOCOLLNPGM("Z_PROBE:0");
  4936. #endif
  4937. // SOFTWARE_POWER (G30)
  4938. SERIAL_PROTOCOLPGM("Cap:");
  4939. #if HAS_POWER_SWITCH
  4940. SERIAL_PROTOCOLLNPGM("SOFTWARE_POWER:1");
  4941. #else
  4942. SERIAL_PROTOCOLLNPGM("SOFTWARE_POWER:0");
  4943. #endif
  4944. // TOGGLE_LIGHTS (M355)
  4945. SERIAL_PROTOCOLPGM("Cap:");
  4946. #if HAS_CASE_LIGHT
  4947. SERIAL_PROTOCOLLNPGM("TOGGLE_LIGHTS:1");
  4948. #else
  4949. SERIAL_PROTOCOLLNPGM("TOGGLE_LIGHTS:0");
  4950. #endif
  4951. // EMERGENCY_PARSER (M108, M112, M410)
  4952. SERIAL_PROTOCOLPGM("Cap:");
  4953. #if ENABLED(EMERGENCY_PARSER)
  4954. SERIAL_PROTOCOLLNPGM("EMERGENCY_PARSER:1");
  4955. #else
  4956. SERIAL_PROTOCOLLNPGM("EMERGENCY_PARSER:0");
  4957. #endif
  4958. #endif // EXTENDED_CAPABILITIES_REPORT
  4959. }
  4960. /**
  4961. * M117: Set LCD Status Message
  4962. */
  4963. inline void gcode_M117() {
  4964. lcd_setstatus(current_command_args);
  4965. }
  4966. /**
  4967. * M119: Output endstop states to serial output
  4968. */
  4969. inline void gcode_M119() { endstops.M119(); }
  4970. /**
  4971. * M120: Enable endstops and set non-homing endstop state to "enabled"
  4972. */
  4973. inline void gcode_M120() { endstops.enable_globally(true); }
  4974. /**
  4975. * M121: Disable endstops and set non-homing endstop state to "disabled"
  4976. */
  4977. inline void gcode_M121() { endstops.enable_globally(false); }
  4978. #if ENABLED(HAVE_TMC2130DRIVER)
  4979. /**
  4980. * M122: Output Trinamic TMC2130 status to serial output. Very bad formatting.
  4981. */
  4982. static void tmc2130_report(Trinamic_TMC2130 &stepr, const char *name) {
  4983. stepr.read_STAT();
  4984. SERIAL_PROTOCOL(name);
  4985. SERIAL_PROTOCOL(": ");
  4986. stepr.isReset() ? SERIAL_PROTOCOLPGM("RESET ") : SERIAL_PROTOCOLPGM("----- ");
  4987. stepr.isError() ? SERIAL_PROTOCOLPGM("ERROR ") : SERIAL_PROTOCOLPGM("----- ");
  4988. stepr.isStallguard() ? SERIAL_PROTOCOLPGM("SLGRD ") : SERIAL_PROTOCOLPGM("----- ");
  4989. stepr.isStandstill() ? SERIAL_PROTOCOLPGM("STILL ") : SERIAL_PROTOCOLPGM("----- ");
  4990. SERIAL_PROTOCOLLN(stepr.debug());
  4991. }
  4992. inline void gcode_M122() {
  4993. SERIAL_PROTOCOLLNPGM("Reporting TMC2130 status");
  4994. #if ENABLED(X_IS_TMC2130)
  4995. tmc2130_report(stepperX, "X");
  4996. #endif
  4997. #if ENABLED(X2_IS_TMC2130)
  4998. tmc2130_report(stepperX2, "X2");
  4999. #endif
  5000. #if ENABLED(Y_IS_TMC2130)
  5001. tmc2130_report(stepperY, "Y");
  5002. #endif
  5003. #if ENABLED(Y2_IS_TMC2130)
  5004. tmc2130_report(stepperY2, "Y2");
  5005. #endif
  5006. #if ENABLED(Z_IS_TMC2130)
  5007. tmc2130_report(stepperZ, "Z");
  5008. #endif
  5009. #if ENABLED(Z2_IS_TMC2130)
  5010. tmc2130_report(stepperZ2, "Z2");
  5011. #endif
  5012. #if ENABLED(E0_IS_TMC2130)
  5013. tmc2130_report(stepperE0, "E0");
  5014. #endif
  5015. #if ENABLED(E1_IS_TMC2130)
  5016. tmc2130_report(stepperE1, "E1");
  5017. #endif
  5018. #if ENABLED(E2_IS_TMC2130)
  5019. tmc2130_report(stepperE2, "E2");
  5020. #endif
  5021. #if ENABLED(E3_IS_TMC2130)
  5022. tmc2130_report(stepperE3, "E3");
  5023. #endif
  5024. }
  5025. #endif // HAVE_TMC2130DRIVER
  5026. #if ENABLED(BLINKM) || ENABLED(RGB_LED)
  5027. void set_led_color(const uint8_t r, const uint8_t g, const uint8_t b) {
  5028. #if ENABLED(BLINKM)
  5029. // This variant uses i2c to send the RGB components to the device.
  5030. SendColors(
  5031. code_seen('R') ? code_value_byte() : 0,
  5032. code_seen('U') ? code_value_byte() : 0,
  5033. code_seen('B') ? code_value_byte() : 0
  5034. );
  5035. #else
  5036. // This variant uses 3 separate pins for the RGB components.
  5037. // If the pins can do PWM then their intensity will be set.
  5038. digitalWrite(RGB_LED_R_PIN, r ? HIGH : LOW);
  5039. digitalWrite(RGB_LED_G_PIN, g ? HIGH : LOW);
  5040. digitalWrite(RGB_LED_B_PIN, b ? HIGH : LOW);
  5041. analogWrite(RGB_LED_R_PIN, r);
  5042. analogWrite(RGB_LED_G_PIN, g);
  5043. analogWrite(RGB_LED_B_PIN, b);
  5044. #endif
  5045. }
  5046. /**
  5047. * M150: Set Status LED Color - Use R-U-B for R-G-B
  5048. *
  5049. * Always sets all 3 components. If a component is left out, set to 0.
  5050. *
  5051. * Examples:
  5052. *
  5053. * M150 R255 ; Turn LED red
  5054. * M150 R255 U127 ; Turn LED orange (PWM only)
  5055. * M150 ; Turn LED off
  5056. * M150 R U B ; Turn LED white
  5057. *
  5058. */
  5059. inline void gcode_M150() {
  5060. set_led_color(
  5061. code_seen('R') ? (code_has_value() ? code_value_byte() : 255) : 0,
  5062. code_seen('U') ? (code_has_value() ? code_value_byte() : 255) : 0,
  5063. code_seen('B') ? (code_has_value() ? code_value_byte() : 255) : 0
  5064. );
  5065. }
  5066. #endif // BLINKM || RGB_LED
  5067. /**
  5068. * M200: Set filament diameter and set E axis units to cubic units
  5069. *
  5070. * T<extruder> - Optional extruder number. Current extruder if omitted.
  5071. * D<linear> - Diameter of the filament. Use "D0" to switch back to linear units on the E axis.
  5072. */
  5073. inline void gcode_M200() {
  5074. if (get_target_extruder_from_command(200)) return;
  5075. if (code_seen('D')) {
  5076. // setting any extruder filament size disables volumetric on the assumption that
  5077. // slicers either generate in extruder values as cubic mm or as as filament feeds
  5078. // for all extruders
  5079. volumetric_enabled = (code_value_linear_units() != 0.0);
  5080. if (volumetric_enabled) {
  5081. filament_size[target_extruder] = code_value_linear_units();
  5082. // make sure all extruders have some sane value for the filament size
  5083. for (uint8_t i = 0; i < COUNT(filament_size); i++)
  5084. if (! filament_size[i]) filament_size[i] = DEFAULT_NOMINAL_FILAMENT_DIA;
  5085. }
  5086. }
  5087. else {
  5088. //reserved for setting filament diameter via UFID or filament measuring device
  5089. return;
  5090. }
  5091. calculate_volumetric_multipliers();
  5092. }
  5093. /**
  5094. * M201: Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  5095. */
  5096. inline void gcode_M201() {
  5097. LOOP_XYZE(i) {
  5098. if (code_seen(axis_codes[i])) {
  5099. planner.max_acceleration_mm_per_s2[i] = code_value_axis_units(i);
  5100. }
  5101. }
  5102. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  5103. planner.reset_acceleration_rates();
  5104. }
  5105. #if 0 // Not used for Sprinter/grbl gen6
  5106. inline void gcode_M202() {
  5107. LOOP_XYZE(i) {
  5108. if (code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value_axis_units(i) * planner.axis_steps_per_mm[i];
  5109. }
  5110. }
  5111. #endif
  5112. /**
  5113. * M203: Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in units/sec
  5114. */
  5115. inline void gcode_M203() {
  5116. LOOP_XYZE(i)
  5117. if (code_seen(axis_codes[i]))
  5118. planner.max_feedrate_mm_s[i] = code_value_axis_units(i);
  5119. }
  5120. /**
  5121. * M204: Set Accelerations in units/sec^2 (M204 P1200 R3000 T3000)
  5122. *
  5123. * P = Printing moves
  5124. * R = Retract only (no X, Y, Z) moves
  5125. * T = Travel (non printing) moves
  5126. *
  5127. * Also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  5128. */
  5129. inline void gcode_M204() {
  5130. if (code_seen('S')) { // Kept for legacy compatibility. Should NOT BE USED for new developments.
  5131. planner.travel_acceleration = planner.acceleration = code_value_linear_units();
  5132. SERIAL_ECHOLNPAIR("Setting Print and Travel Acceleration: ", planner.acceleration);
  5133. }
  5134. if (code_seen('P')) {
  5135. planner.acceleration = code_value_linear_units();
  5136. SERIAL_ECHOLNPAIR("Setting Print Acceleration: ", planner.acceleration);
  5137. }
  5138. if (code_seen('R')) {
  5139. planner.retract_acceleration = code_value_linear_units();
  5140. SERIAL_ECHOLNPAIR("Setting Retract Acceleration: ", planner.retract_acceleration);
  5141. }
  5142. if (code_seen('T')) {
  5143. planner.travel_acceleration = code_value_linear_units();
  5144. SERIAL_ECHOLNPAIR("Setting Travel Acceleration: ", planner.travel_acceleration);
  5145. }
  5146. }
  5147. /**
  5148. * M205: Set Advanced Settings
  5149. *
  5150. * S = Min Feed Rate (units/s)
  5151. * T = Min Travel Feed Rate (units/s)
  5152. * B = Min Segment Time (µs)
  5153. * X = Max X Jerk (units/sec^2)
  5154. * Y = Max Y Jerk (units/sec^2)
  5155. * Z = Max Z Jerk (units/sec^2)
  5156. * E = Max E Jerk (units/sec^2)
  5157. */
  5158. inline void gcode_M205() {
  5159. if (code_seen('S')) planner.min_feedrate_mm_s = code_value_linear_units();
  5160. if (code_seen('T')) planner.min_travel_feedrate_mm_s = code_value_linear_units();
  5161. if (code_seen('B')) planner.min_segment_time = code_value_millis();
  5162. if (code_seen('X')) planner.max_jerk[X_AXIS] = code_value_axis_units(X_AXIS);
  5163. if (code_seen('Y')) planner.max_jerk[Y_AXIS] = code_value_axis_units(Y_AXIS);
  5164. if (code_seen('Z')) planner.max_jerk[Z_AXIS] = code_value_axis_units(Z_AXIS);
  5165. if (code_seen('E')) planner.max_jerk[E_AXIS] = code_value_axis_units(E_AXIS);
  5166. }
  5167. /**
  5168. * M206: Set Additional Homing Offset (X Y Z). SCARA aliases T=X, P=Y
  5169. */
  5170. inline void gcode_M206() {
  5171. LOOP_XYZ(i)
  5172. if (code_seen(axis_codes[i]))
  5173. set_home_offset((AxisEnum)i, code_value_axis_units(i));
  5174. #if ENABLED(MORGAN_SCARA)
  5175. if (code_seen('T')) set_home_offset(A_AXIS, code_value_axis_units(A_AXIS)); // Theta
  5176. if (code_seen('P')) set_home_offset(B_AXIS, code_value_axis_units(B_AXIS)); // Psi
  5177. #endif
  5178. SYNC_PLAN_POSITION_KINEMATIC();
  5179. report_current_position();
  5180. }
  5181. #if ENABLED(DELTA)
  5182. /**
  5183. * M665: Set delta configurations
  5184. *
  5185. * L = diagonal rod
  5186. * R = delta radius
  5187. * S = segments per second
  5188. * A = Alpha (Tower 1) diagonal rod trim
  5189. * B = Beta (Tower 2) diagonal rod trim
  5190. * C = Gamma (Tower 3) diagonal rod trim
  5191. */
  5192. inline void gcode_M665() {
  5193. if (code_seen('L')) delta_diagonal_rod = code_value_linear_units();
  5194. if (code_seen('R')) delta_radius = code_value_linear_units();
  5195. if (code_seen('S')) delta_segments_per_second = code_value_float();
  5196. if (code_seen('A')) delta_diagonal_rod_trim_tower_1 = code_value_linear_units();
  5197. if (code_seen('B')) delta_diagonal_rod_trim_tower_2 = code_value_linear_units();
  5198. if (code_seen('C')) delta_diagonal_rod_trim_tower_3 = code_value_linear_units();
  5199. recalc_delta_settings(delta_radius, delta_diagonal_rod);
  5200. }
  5201. /**
  5202. * M666: Set delta endstop adjustment
  5203. */
  5204. inline void gcode_M666() {
  5205. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5206. if (DEBUGGING(LEVELING)) {
  5207. SERIAL_ECHOLNPGM(">>> gcode_M666");
  5208. }
  5209. #endif
  5210. LOOP_XYZ(i) {
  5211. if (code_seen(axis_codes[i])) {
  5212. endstop_adj[i] = code_value_axis_units(i);
  5213. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5214. if (DEBUGGING(LEVELING)) {
  5215. SERIAL_ECHOPAIR("endstop_adj[", axis_codes[i]);
  5216. SERIAL_ECHOLNPAIR("] = ", endstop_adj[i]);
  5217. }
  5218. #endif
  5219. }
  5220. }
  5221. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5222. if (DEBUGGING(LEVELING)) {
  5223. SERIAL_ECHOLNPGM("<<< gcode_M666");
  5224. }
  5225. #endif
  5226. }
  5227. #elif ENABLED(Z_DUAL_ENDSTOPS) // !DELTA && ENABLED(Z_DUAL_ENDSTOPS)
  5228. /**
  5229. * M666: For Z Dual Endstop setup, set z axis offset to the z2 axis.
  5230. */
  5231. inline void gcode_M666() {
  5232. if (code_seen('Z')) z_endstop_adj = code_value_axis_units(Z_AXIS);
  5233. SERIAL_ECHOLNPAIR("Z Endstop Adjustment set to (mm):", z_endstop_adj);
  5234. }
  5235. #endif // !DELTA && Z_DUAL_ENDSTOPS
  5236. #if ENABLED(FWRETRACT)
  5237. /**
  5238. * M207: Set firmware retraction values
  5239. *
  5240. * S[+units] retract_length
  5241. * W[+units] retract_length_swap (multi-extruder)
  5242. * F[units/min] retract_feedrate_mm_s
  5243. * Z[units] retract_zlift
  5244. */
  5245. inline void gcode_M207() {
  5246. if (code_seen('S')) retract_length = code_value_axis_units(E_AXIS);
  5247. if (code_seen('F')) retract_feedrate_mm_s = MMM_TO_MMS(code_value_axis_units(E_AXIS));
  5248. if (code_seen('Z')) retract_zlift = code_value_axis_units(Z_AXIS);
  5249. #if EXTRUDERS > 1
  5250. if (code_seen('W')) retract_length_swap = code_value_axis_units(E_AXIS);
  5251. #endif
  5252. }
  5253. /**
  5254. * M208: Set firmware un-retraction values
  5255. *
  5256. * S[+units] retract_recover_length (in addition to M207 S*)
  5257. * W[+units] retract_recover_length_swap (multi-extruder)
  5258. * F[units/min] retract_recover_feedrate_mm_s
  5259. */
  5260. inline void gcode_M208() {
  5261. if (code_seen('S')) retract_recover_length = code_value_axis_units(E_AXIS);
  5262. if (code_seen('F')) retract_recover_feedrate_mm_s = MMM_TO_MMS(code_value_axis_units(E_AXIS));
  5263. #if EXTRUDERS > 1
  5264. if (code_seen('W')) retract_recover_length_swap = code_value_axis_units(E_AXIS);
  5265. #endif
  5266. }
  5267. /**
  5268. * M209: Enable automatic retract (M209 S1)
  5269. * For slicers that don't support G10/11, reversed extrude-only
  5270. * moves will be classified as retraction.
  5271. */
  5272. inline void gcode_M209() {
  5273. if (code_seen('S')) {
  5274. autoretract_enabled = code_value_bool();
  5275. for (int i = 0; i < EXTRUDERS; i++) retracted[i] = false;
  5276. }
  5277. }
  5278. #endif // FWRETRACT
  5279. /**
  5280. * M211: Enable, Disable, and/or Report software endstops
  5281. *
  5282. * Usage: M211 S1 to enable, M211 S0 to disable, M211 alone for report
  5283. */
  5284. inline void gcode_M211() {
  5285. SERIAL_ECHO_START;
  5286. #if ENABLED(min_software_endstops) || ENABLED(max_software_endstops)
  5287. if (code_seen('S')) soft_endstops_enabled = code_value_bool();
  5288. #endif
  5289. #if ENABLED(min_software_endstops) || ENABLED(max_software_endstops)
  5290. SERIAL_ECHOPGM(MSG_SOFT_ENDSTOPS);
  5291. serialprintPGM(soft_endstops_enabled ? PSTR(MSG_ON) : PSTR(MSG_OFF));
  5292. #else
  5293. SERIAL_ECHOPGM(MSG_SOFT_ENDSTOPS);
  5294. SERIAL_ECHOPGM(MSG_OFF);
  5295. #endif
  5296. SERIAL_ECHOPGM(MSG_SOFT_MIN);
  5297. SERIAL_ECHOPAIR( MSG_X, soft_endstop_min[X_AXIS]);
  5298. SERIAL_ECHOPAIR(" " MSG_Y, soft_endstop_min[Y_AXIS]);
  5299. SERIAL_ECHOPAIR(" " MSG_Z, soft_endstop_min[Z_AXIS]);
  5300. SERIAL_ECHOPGM(MSG_SOFT_MAX);
  5301. SERIAL_ECHOPAIR( MSG_X, soft_endstop_max[X_AXIS]);
  5302. SERIAL_ECHOPAIR(" " MSG_Y, soft_endstop_max[Y_AXIS]);
  5303. SERIAL_ECHOLNPAIR(" " MSG_Z, soft_endstop_max[Z_AXIS]);
  5304. }
  5305. #if HOTENDS > 1
  5306. /**
  5307. * M218 - set hotend offset (in linear units)
  5308. *
  5309. * T<tool>
  5310. * X<xoffset>
  5311. * Y<yoffset>
  5312. * Z<zoffset> - Available with DUAL_X_CARRIAGE and SWITCHING_EXTRUDER
  5313. */
  5314. inline void gcode_M218() {
  5315. if (get_target_extruder_from_command(218) || target_extruder == 0) return;
  5316. if (code_seen('X')) hotend_offset[X_AXIS][target_extruder] = code_value_axis_units(X_AXIS);
  5317. if (code_seen('Y')) hotend_offset[Y_AXIS][target_extruder] = code_value_axis_units(Y_AXIS);
  5318. #if ENABLED(DUAL_X_CARRIAGE) || ENABLED(SWITCHING_EXTRUDER)
  5319. if (code_seen('Z')) hotend_offset[Z_AXIS][target_extruder] = code_value_axis_units(Z_AXIS);
  5320. #endif
  5321. SERIAL_ECHO_START;
  5322. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  5323. HOTEND_LOOP() {
  5324. SERIAL_CHAR(' ');
  5325. SERIAL_ECHO(hotend_offset[X_AXIS][e]);
  5326. SERIAL_CHAR(',');
  5327. SERIAL_ECHO(hotend_offset[Y_AXIS][e]);
  5328. #if ENABLED(DUAL_X_CARRIAGE) || ENABLED(SWITCHING_EXTRUDER)
  5329. SERIAL_CHAR(',');
  5330. SERIAL_ECHO(hotend_offset[Z_AXIS][e]);
  5331. #endif
  5332. }
  5333. SERIAL_EOL;
  5334. }
  5335. #endif // HOTENDS > 1
  5336. /**
  5337. * M220: Set speed percentage factor, aka "Feed Rate" (M220 S95)
  5338. */
  5339. inline void gcode_M220() {
  5340. if (code_seen('S')) feedrate_percentage = code_value_int();
  5341. }
  5342. /**
  5343. * M221: Set extrusion percentage (M221 T0 S95)
  5344. */
  5345. inline void gcode_M221() {
  5346. if (get_target_extruder_from_command(221)) return;
  5347. if (code_seen('S'))
  5348. flow_percentage[target_extruder] = code_value_int();
  5349. }
  5350. /**
  5351. * M226: Wait until the specified pin reaches the state required (M226 P<pin> S<state>)
  5352. */
  5353. inline void gcode_M226() {
  5354. if (code_seen('P')) {
  5355. int pin_number = code_value_int(),
  5356. pin_state = code_seen('S') ? code_value_int() : -1; // required pin state - default is inverted
  5357. if (pin_state >= -1 && pin_state <= 1 && pin_number > -1 && !pin_is_protected(pin_number)) {
  5358. int target = LOW;
  5359. stepper.synchronize();
  5360. pinMode(pin_number, INPUT);
  5361. switch (pin_state) {
  5362. case 1:
  5363. target = HIGH;
  5364. break;
  5365. case 0:
  5366. target = LOW;
  5367. break;
  5368. case -1:
  5369. target = !digitalRead(pin_number);
  5370. break;
  5371. }
  5372. while (digitalRead(pin_number) != target) idle();
  5373. } // pin_state -1 0 1 && pin_number > -1
  5374. } // code_seen('P')
  5375. }
  5376. #if ENABLED(EXPERIMENTAL_I2CBUS)
  5377. /**
  5378. * M260: Send data to a I2C slave device
  5379. *
  5380. * This is a PoC, the formating and arguments for the GCODE will
  5381. * change to be more compatible, the current proposal is:
  5382. *
  5383. * M260 A<slave device address base 10> ; Sets the I2C slave address the data will be sent to
  5384. *
  5385. * M260 B<byte-1 value in base 10>
  5386. * M260 B<byte-2 value in base 10>
  5387. * M260 B<byte-3 value in base 10>
  5388. *
  5389. * M260 S1 ; Send the buffered data and reset the buffer
  5390. * M260 R1 ; Reset the buffer without sending data
  5391. *
  5392. */
  5393. inline void gcode_M260() {
  5394. // Set the target address
  5395. if (code_seen('A')) i2c.address(code_value_byte());
  5396. // Add a new byte to the buffer
  5397. if (code_seen('B')) i2c.addbyte(code_value_byte());
  5398. // Flush the buffer to the bus
  5399. if (code_seen('S')) i2c.send();
  5400. // Reset and rewind the buffer
  5401. else if (code_seen('R')) i2c.reset();
  5402. }
  5403. /**
  5404. * M261: Request X bytes from I2C slave device
  5405. *
  5406. * Usage: M261 A<slave device address base 10> B<number of bytes>
  5407. */
  5408. inline void gcode_M261() {
  5409. if (code_seen('A')) i2c.address(code_value_byte());
  5410. uint8_t bytes = code_seen('B') ? code_value_byte() : 1;
  5411. if (i2c.addr && bytes && bytes <= TWIBUS_BUFFER_SIZE) {
  5412. i2c.relay(bytes);
  5413. }
  5414. else {
  5415. SERIAL_ERROR_START;
  5416. SERIAL_ERRORLN("Bad i2c request");
  5417. }
  5418. }
  5419. #endif // EXPERIMENTAL_I2CBUS
  5420. #if HAS_SERVOS
  5421. /**
  5422. * M280: Get or set servo position. P<index> [S<angle>]
  5423. */
  5424. inline void gcode_M280() {
  5425. if (!code_seen('P')) return;
  5426. int servo_index = code_value_int();
  5427. if (servo_index >= 0 && servo_index < NUM_SERVOS) {
  5428. if (code_seen('S'))
  5429. MOVE_SERVO(servo_index, code_value_int());
  5430. else {
  5431. SERIAL_ECHO_START;
  5432. SERIAL_ECHOPAIR(" Servo ", servo_index);
  5433. SERIAL_ECHOLNPAIR(": ", servo[servo_index].read());
  5434. }
  5435. }
  5436. else {
  5437. SERIAL_ERROR_START;
  5438. SERIAL_ECHOPAIR("Servo ", servo_index);
  5439. SERIAL_ECHOLNPGM(" out of range");
  5440. }
  5441. }
  5442. #endif // HAS_SERVOS
  5443. #if HAS_BUZZER
  5444. /**
  5445. * M300: Play beep sound S<frequency Hz> P<duration ms>
  5446. */
  5447. inline void gcode_M300() {
  5448. uint16_t const frequency = code_seen('S') ? code_value_ushort() : 260;
  5449. uint16_t duration = code_seen('P') ? code_value_ushort() : 1000;
  5450. // Limits the tone duration to 0-5 seconds.
  5451. NOMORE(duration, 5000);
  5452. BUZZ(duration, frequency);
  5453. }
  5454. #endif // HAS_BUZZER
  5455. #if ENABLED(PIDTEMP)
  5456. /**
  5457. * M301: Set PID parameters P I D (and optionally C, L)
  5458. *
  5459. * P[float] Kp term
  5460. * I[float] Ki term (unscaled)
  5461. * D[float] Kd term (unscaled)
  5462. *
  5463. * With PID_EXTRUSION_SCALING:
  5464. *
  5465. * C[float] Kc term
  5466. * L[float] LPQ length
  5467. */
  5468. inline void gcode_M301() {
  5469. // multi-extruder PID patch: M301 updates or prints a single extruder's PID values
  5470. // default behaviour (omitting E parameter) is to update for extruder 0 only
  5471. int e = code_seen('E') ? code_value_int() : 0; // extruder being updated
  5472. if (e < HOTENDS) { // catch bad input value
  5473. if (code_seen('P')) PID_PARAM(Kp, e) = code_value_float();
  5474. if (code_seen('I')) PID_PARAM(Ki, e) = scalePID_i(code_value_float());
  5475. if (code_seen('D')) PID_PARAM(Kd, e) = scalePID_d(code_value_float());
  5476. #if ENABLED(PID_EXTRUSION_SCALING)
  5477. if (code_seen('C')) PID_PARAM(Kc, e) = code_value_float();
  5478. if (code_seen('L')) lpq_len = code_value_float();
  5479. NOMORE(lpq_len, LPQ_MAX_LEN);
  5480. #endif
  5481. thermalManager.updatePID();
  5482. SERIAL_ECHO_START;
  5483. #if ENABLED(PID_PARAMS_PER_HOTEND)
  5484. SERIAL_ECHOPAIR(" e:", e); // specify extruder in serial output
  5485. #endif // PID_PARAMS_PER_HOTEND
  5486. SERIAL_ECHOPAIR(" p:", PID_PARAM(Kp, e));
  5487. SERIAL_ECHOPAIR(" i:", unscalePID_i(PID_PARAM(Ki, e)));
  5488. SERIAL_ECHOPAIR(" d:", unscalePID_d(PID_PARAM(Kd, e)));
  5489. #if ENABLED(PID_EXTRUSION_SCALING)
  5490. //Kc does not have scaling applied above, or in resetting defaults
  5491. SERIAL_ECHOPAIR(" c:", PID_PARAM(Kc, e));
  5492. #endif
  5493. SERIAL_EOL;
  5494. }
  5495. else {
  5496. SERIAL_ERROR_START;
  5497. SERIAL_ERRORLN(MSG_INVALID_EXTRUDER);
  5498. }
  5499. }
  5500. #endif // PIDTEMP
  5501. #if ENABLED(PIDTEMPBED)
  5502. inline void gcode_M304() {
  5503. if (code_seen('P')) thermalManager.bedKp = code_value_float();
  5504. if (code_seen('I')) thermalManager.bedKi = scalePID_i(code_value_float());
  5505. if (code_seen('D')) thermalManager.bedKd = scalePID_d(code_value_float());
  5506. thermalManager.updatePID();
  5507. SERIAL_ECHO_START;
  5508. SERIAL_ECHOPAIR(" p:", thermalManager.bedKp);
  5509. SERIAL_ECHOPAIR(" i:", unscalePID_i(thermalManager.bedKi));
  5510. SERIAL_ECHOLNPAIR(" d:", unscalePID_d(thermalManager.bedKd));
  5511. }
  5512. #endif // PIDTEMPBED
  5513. #if defined(CHDK) || HAS_PHOTOGRAPH
  5514. /**
  5515. * M240: Trigger a camera by emulating a Canon RC-1
  5516. * See http://www.doc-diy.net/photo/rc-1_hacked/
  5517. */
  5518. inline void gcode_M240() {
  5519. #ifdef CHDK
  5520. OUT_WRITE(CHDK, HIGH);
  5521. chdkHigh = millis();
  5522. chdkActive = true;
  5523. #elif HAS_PHOTOGRAPH
  5524. const uint8_t NUM_PULSES = 16;
  5525. const float PULSE_LENGTH = 0.01524;
  5526. for (int i = 0; i < NUM_PULSES; i++) {
  5527. WRITE(PHOTOGRAPH_PIN, HIGH);
  5528. _delay_ms(PULSE_LENGTH);
  5529. WRITE(PHOTOGRAPH_PIN, LOW);
  5530. _delay_ms(PULSE_LENGTH);
  5531. }
  5532. delay(7.33);
  5533. for (int i = 0; i < NUM_PULSES; i++) {
  5534. WRITE(PHOTOGRAPH_PIN, HIGH);
  5535. _delay_ms(PULSE_LENGTH);
  5536. WRITE(PHOTOGRAPH_PIN, LOW);
  5537. _delay_ms(PULSE_LENGTH);
  5538. }
  5539. #endif // !CHDK && HAS_PHOTOGRAPH
  5540. }
  5541. #endif // CHDK || PHOTOGRAPH_PIN
  5542. #if HAS_LCD_CONTRAST
  5543. /**
  5544. * M250: Read and optionally set the LCD contrast
  5545. */
  5546. inline void gcode_M250() {
  5547. if (code_seen('C')) set_lcd_contrast(code_value_int());
  5548. SERIAL_PROTOCOLPGM("lcd contrast value: ");
  5549. SERIAL_PROTOCOL(lcd_contrast);
  5550. SERIAL_EOL;
  5551. }
  5552. #endif // HAS_LCD_CONTRAST
  5553. #if ENABLED(PREVENT_COLD_EXTRUSION)
  5554. /**
  5555. * M302: Allow cold extrudes, or set the minimum extrude temperature
  5556. *
  5557. * S<temperature> sets the minimum extrude temperature
  5558. * P<bool> enables (1) or disables (0) cold extrusion
  5559. *
  5560. * Examples:
  5561. *
  5562. * M302 ; report current cold extrusion state
  5563. * M302 P0 ; enable cold extrusion checking
  5564. * M302 P1 ; disables cold extrusion checking
  5565. * M302 S0 ; always allow extrusion (disables checking)
  5566. * M302 S170 ; only allow extrusion above 170
  5567. * M302 S170 P1 ; set min extrude temp to 170 but leave disabled
  5568. */
  5569. inline void gcode_M302() {
  5570. bool seen_S = code_seen('S');
  5571. if (seen_S) {
  5572. thermalManager.extrude_min_temp = code_value_temp_abs();
  5573. thermalManager.allow_cold_extrude = (thermalManager.extrude_min_temp == 0);
  5574. }
  5575. if (code_seen('P'))
  5576. thermalManager.allow_cold_extrude = (thermalManager.extrude_min_temp == 0) || code_value_bool();
  5577. else if (!seen_S) {
  5578. // Report current state
  5579. SERIAL_ECHO_START;
  5580. SERIAL_ECHOPAIR("Cold extrudes are ", (thermalManager.allow_cold_extrude ? "en" : "dis"));
  5581. SERIAL_ECHOPAIR("abled (min temp ", int(thermalManager.extrude_min_temp + 0.5));
  5582. SERIAL_ECHOLNPGM("C)");
  5583. }
  5584. }
  5585. #endif // PREVENT_COLD_EXTRUSION
  5586. /**
  5587. * M303: PID relay autotune
  5588. *
  5589. * S<temperature> sets the target temperature. (default 150C)
  5590. * E<extruder> (-1 for the bed) (default 0)
  5591. * C<cycles>
  5592. * U<bool> with a non-zero value will apply the result to current settings
  5593. */
  5594. inline void gcode_M303() {
  5595. #if HAS_PID_HEATING
  5596. int e = code_seen('E') ? code_value_int() : 0;
  5597. int c = code_seen('C') ? code_value_int() : 5;
  5598. bool u = code_seen('U') && code_value_bool();
  5599. float temp = code_seen('S') ? code_value_temp_abs() : (e < 0 ? 70.0 : 150.0);
  5600. if (e >= 0 && e < HOTENDS)
  5601. target_extruder = e;
  5602. KEEPALIVE_STATE(NOT_BUSY); // don't send "busy: processing" messages during autotune output
  5603. thermalManager.PID_autotune(temp, e, c, u);
  5604. KEEPALIVE_STATE(IN_HANDLER);
  5605. #else
  5606. SERIAL_ERROR_START;
  5607. SERIAL_ERRORLNPGM(MSG_ERR_M303_DISABLED);
  5608. #endif
  5609. }
  5610. #if ENABLED(MORGAN_SCARA)
  5611. bool SCARA_move_to_cal(uint8_t delta_a, uint8_t delta_b) {
  5612. if (IsRunning()) {
  5613. forward_kinematics_SCARA(delta_a, delta_b);
  5614. destination[X_AXIS] = LOGICAL_X_POSITION(cartes[X_AXIS]);
  5615. destination[Y_AXIS] = LOGICAL_Y_POSITION(cartes[Y_AXIS]);
  5616. destination[Z_AXIS] = current_position[Z_AXIS];
  5617. prepare_move_to_destination();
  5618. return true;
  5619. }
  5620. return false;
  5621. }
  5622. /**
  5623. * M360: SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  5624. */
  5625. inline bool gcode_M360() {
  5626. SERIAL_ECHOLNPGM(" Cal: Theta 0");
  5627. return SCARA_move_to_cal(0, 120);
  5628. }
  5629. /**
  5630. * M361: SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  5631. */
  5632. inline bool gcode_M361() {
  5633. SERIAL_ECHOLNPGM(" Cal: Theta 90");
  5634. return SCARA_move_to_cal(90, 130);
  5635. }
  5636. /**
  5637. * M362: SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  5638. */
  5639. inline bool gcode_M362() {
  5640. SERIAL_ECHOLNPGM(" Cal: Psi 0");
  5641. return SCARA_move_to_cal(60, 180);
  5642. }
  5643. /**
  5644. * M363: SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  5645. */
  5646. inline bool gcode_M363() {
  5647. SERIAL_ECHOLNPGM(" Cal: Psi 90");
  5648. return SCARA_move_to_cal(50, 90);
  5649. }
  5650. /**
  5651. * M364: SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
  5652. */
  5653. inline bool gcode_M364() {
  5654. SERIAL_ECHOLNPGM(" Cal: Theta-Psi 90");
  5655. return SCARA_move_to_cal(45, 135);
  5656. }
  5657. #endif // SCARA
  5658. #if ENABLED(EXT_SOLENOID)
  5659. void enable_solenoid(uint8_t num) {
  5660. switch (num) {
  5661. case 0:
  5662. OUT_WRITE(SOL0_PIN, HIGH);
  5663. break;
  5664. #if HAS_SOLENOID_1
  5665. case 1:
  5666. OUT_WRITE(SOL1_PIN, HIGH);
  5667. break;
  5668. #endif
  5669. #if HAS_SOLENOID_2
  5670. case 2:
  5671. OUT_WRITE(SOL2_PIN, HIGH);
  5672. break;
  5673. #endif
  5674. #if HAS_SOLENOID_3
  5675. case 3:
  5676. OUT_WRITE(SOL3_PIN, HIGH);
  5677. break;
  5678. #endif
  5679. default:
  5680. SERIAL_ECHO_START;
  5681. SERIAL_ECHOLNPGM(MSG_INVALID_SOLENOID);
  5682. break;
  5683. }
  5684. }
  5685. void enable_solenoid_on_active_extruder() { enable_solenoid(active_extruder); }
  5686. void disable_all_solenoids() {
  5687. OUT_WRITE(SOL0_PIN, LOW);
  5688. OUT_WRITE(SOL1_PIN, LOW);
  5689. OUT_WRITE(SOL2_PIN, LOW);
  5690. OUT_WRITE(SOL3_PIN, LOW);
  5691. }
  5692. /**
  5693. * M380: Enable solenoid on the active extruder
  5694. */
  5695. inline void gcode_M380() { enable_solenoid_on_active_extruder(); }
  5696. /**
  5697. * M381: Disable all solenoids
  5698. */
  5699. inline void gcode_M381() { disable_all_solenoids(); }
  5700. #endif // EXT_SOLENOID
  5701. /**
  5702. * M400: Finish all moves
  5703. */
  5704. inline void gcode_M400() { stepper.synchronize(); }
  5705. #if HAS_BED_PROBE
  5706. /**
  5707. * M401: Engage Z Servo endstop if available
  5708. */
  5709. inline void gcode_M401() { DEPLOY_PROBE(); }
  5710. /**
  5711. * M402: Retract Z Servo endstop if enabled
  5712. */
  5713. inline void gcode_M402() { STOW_PROBE(); }
  5714. #endif // HAS_BED_PROBE
  5715. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  5716. /**
  5717. * M404: Display or set (in current units) the nominal filament width (3mm, 1.75mm ) W<3.0>
  5718. */
  5719. inline void gcode_M404() {
  5720. if (code_seen('W')) {
  5721. filament_width_nominal = code_value_linear_units();
  5722. }
  5723. else {
  5724. SERIAL_PROTOCOLPGM("Filament dia (nominal mm):");
  5725. SERIAL_PROTOCOLLN(filament_width_nominal);
  5726. }
  5727. }
  5728. /**
  5729. * M405: Turn on filament sensor for control
  5730. */
  5731. inline void gcode_M405() {
  5732. // This is technically a linear measurement, but since it's quantized to centimeters and is a different unit than
  5733. // everything else, it uses code_value_int() instead of code_value_linear_units().
  5734. if (code_seen('D')) meas_delay_cm = code_value_int();
  5735. NOMORE(meas_delay_cm, MAX_MEASUREMENT_DELAY);
  5736. if (filwidth_delay_index[1] == -1) { // Initialize the ring buffer if not done since startup
  5737. int temp_ratio = thermalManager.widthFil_to_size_ratio();
  5738. for (uint8_t i = 0; i < COUNT(measurement_delay); ++i)
  5739. measurement_delay[i] = temp_ratio - 100; // Subtract 100 to scale within a signed byte
  5740. filwidth_delay_index[0] = filwidth_delay_index[1] = 0;
  5741. }
  5742. filament_sensor = true;
  5743. //SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  5744. //SERIAL_PROTOCOL(filament_width_meas);
  5745. //SERIAL_PROTOCOLPGM("Extrusion ratio(%):");
  5746. //SERIAL_PROTOCOL(flow_percentage[active_extruder]);
  5747. }
  5748. /**
  5749. * M406: Turn off filament sensor for control
  5750. */
  5751. inline void gcode_M406() { filament_sensor = false; }
  5752. /**
  5753. * M407: Get measured filament diameter on serial output
  5754. */
  5755. inline void gcode_M407() {
  5756. SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  5757. SERIAL_PROTOCOLLN(filament_width_meas);
  5758. }
  5759. #endif // FILAMENT_WIDTH_SENSOR
  5760. void quickstop_stepper() {
  5761. stepper.quick_stop();
  5762. stepper.synchronize();
  5763. set_current_from_steppers_for_axis(ALL_AXES);
  5764. SYNC_PLAN_POSITION_KINEMATIC();
  5765. }
  5766. #if PLANNER_LEVELING
  5767. /**
  5768. * M420: Enable/Disable Bed Leveling and/or set the Z fade height.
  5769. *
  5770. * S[bool] Turns leveling on or off
  5771. * Z[height] Sets the Z fade height (0 or none to disable)
  5772. */
  5773. inline void gcode_M420() {
  5774. if (code_seen('S')) set_bed_leveling_enabled(code_value_bool());
  5775. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  5776. if (code_seen('Z')) set_z_fade_height(code_value_linear_units());
  5777. #endif
  5778. }
  5779. #endif
  5780. #if ENABLED(MESH_BED_LEVELING)
  5781. /**
  5782. * M421: Set a single Mesh Bed Leveling Z coordinate
  5783. * Use either 'M421 X<linear> Y<linear> Z<linear>' or 'M421 I<xindex> J<yindex> Z<linear>'
  5784. */
  5785. inline void gcode_M421() {
  5786. int8_t px = 0, py = 0;
  5787. float z = 0;
  5788. bool hasX, hasY, hasZ, hasI, hasJ;
  5789. if ((hasX = code_seen('X'))) px = mbl.probe_index_x(code_value_axis_units(X_AXIS));
  5790. if ((hasY = code_seen('Y'))) py = mbl.probe_index_y(code_value_axis_units(Y_AXIS));
  5791. if ((hasI = code_seen('I'))) px = code_value_axis_units(X_AXIS);
  5792. if ((hasJ = code_seen('J'))) py = code_value_axis_units(Y_AXIS);
  5793. if ((hasZ = code_seen('Z'))) z = code_value_axis_units(Z_AXIS);
  5794. if (hasX && hasY && hasZ) {
  5795. if (px >= 0 && py >= 0)
  5796. mbl.set_z(px, py, z);
  5797. else {
  5798. SERIAL_ERROR_START;
  5799. SERIAL_ERRORLNPGM(MSG_ERR_MESH_XY);
  5800. }
  5801. }
  5802. else if (hasI && hasJ && hasZ) {
  5803. if (px >= 0 && px < MESH_NUM_X_POINTS && py >= 0 && py < MESH_NUM_Y_POINTS)
  5804. mbl.set_z(px, py, z);
  5805. else {
  5806. SERIAL_ERROR_START;
  5807. SERIAL_ERRORLNPGM(MSG_ERR_MESH_XY);
  5808. }
  5809. }
  5810. else {
  5811. SERIAL_ERROR_START;
  5812. SERIAL_ERRORLNPGM(MSG_ERR_M421_PARAMETERS);
  5813. }
  5814. }
  5815. #endif
  5816. /**
  5817. * M428: Set home_offset based on the distance between the
  5818. * current_position and the nearest "reference point."
  5819. * If an axis is past center its endstop position
  5820. * is the reference-point. Otherwise it uses 0. This allows
  5821. * the Z offset to be set near the bed when using a max endstop.
  5822. *
  5823. * M428 can't be used more than 2cm away from 0 or an endstop.
  5824. *
  5825. * Use M206 to set these values directly.
  5826. */
  5827. inline void gcode_M428() {
  5828. bool err = false;
  5829. LOOP_XYZ(i) {
  5830. if (axis_homed[i]) {
  5831. float base = (current_position[i] > (soft_endstop_min[i] + soft_endstop_max[i]) * 0.5) ? base_home_pos((AxisEnum)i) : 0,
  5832. diff = current_position[i] - LOGICAL_POSITION(base, i);
  5833. if (diff > -20 && diff < 20) {
  5834. set_home_offset((AxisEnum)i, home_offset[i] - diff);
  5835. }
  5836. else {
  5837. SERIAL_ERROR_START;
  5838. SERIAL_ERRORLNPGM(MSG_ERR_M428_TOO_FAR);
  5839. LCD_ALERTMESSAGEPGM("Err: Too far!");
  5840. BUZZ(200, 40);
  5841. err = true;
  5842. break;
  5843. }
  5844. }
  5845. }
  5846. if (!err) {
  5847. SYNC_PLAN_POSITION_KINEMATIC();
  5848. report_current_position();
  5849. LCD_MESSAGEPGM(MSG_HOME_OFFSETS_APPLIED);
  5850. BUZZ(200, 659);
  5851. BUZZ(200, 698);
  5852. }
  5853. }
  5854. /**
  5855. * M500: Store settings in EEPROM
  5856. */
  5857. inline void gcode_M500() {
  5858. Config_StoreSettings();
  5859. }
  5860. /**
  5861. * M501: Read settings from EEPROM
  5862. */
  5863. inline void gcode_M501() {
  5864. Config_RetrieveSettings();
  5865. }
  5866. /**
  5867. * M502: Revert to default settings
  5868. */
  5869. inline void gcode_M502() {
  5870. Config_ResetDefault();
  5871. }
  5872. /**
  5873. * M503: print settings currently in memory
  5874. */
  5875. inline void gcode_M503() {
  5876. Config_PrintSettings(code_seen('S') && !code_value_bool());
  5877. }
  5878. #if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  5879. /**
  5880. * M540: Set whether SD card print should abort on endstop hit (M540 S<0|1>)
  5881. */
  5882. inline void gcode_M540() {
  5883. if (code_seen('S')) stepper.abort_on_endstop_hit = code_value_bool();
  5884. }
  5885. #endif // ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  5886. #if HAS_BED_PROBE
  5887. inline void gcode_M851() {
  5888. SERIAL_ECHO_START;
  5889. SERIAL_ECHOPGM(MSG_ZPROBE_ZOFFSET);
  5890. SERIAL_CHAR(' ');
  5891. if (code_seen('Z')) {
  5892. float value = code_value_axis_units(Z_AXIS);
  5893. if (Z_PROBE_OFFSET_RANGE_MIN <= value && value <= Z_PROBE_OFFSET_RANGE_MAX) {
  5894. zprobe_zoffset = value;
  5895. SERIAL_ECHO(zprobe_zoffset);
  5896. }
  5897. else {
  5898. SERIAL_ECHOPAIR(MSG_Z_MIN, Z_PROBE_OFFSET_RANGE_MIN);
  5899. SERIAL_CHAR(' ');
  5900. SERIAL_ECHOPAIR(MSG_Z_MAX, Z_PROBE_OFFSET_RANGE_MAX);
  5901. }
  5902. }
  5903. else {
  5904. SERIAL_ECHOPAIR(": ", zprobe_zoffset);
  5905. }
  5906. SERIAL_EOL;
  5907. }
  5908. #endif // HAS_BED_PROBE
  5909. #if ENABLED(FILAMENT_CHANGE_FEATURE)
  5910. /**
  5911. * M600: Pause for filament change
  5912. *
  5913. * E[distance] - Retract the filament this far (negative value)
  5914. * Z[distance] - Move the Z axis by this distance
  5915. * X[position] - Move to this X position, with Y
  5916. * Y[position] - Move to this Y position, with X
  5917. * L[distance] - Retract distance for removal (manual reload)
  5918. *
  5919. * Default values are used for omitted arguments.
  5920. *
  5921. */
  5922. inline void gcode_M600() {
  5923. if (thermalManager.tooColdToExtrude(active_extruder)) {
  5924. SERIAL_ERROR_START;
  5925. SERIAL_ERRORLNPGM(MSG_TOO_COLD_FOR_M600);
  5926. return;
  5927. }
  5928. // Show initial message and wait for synchronize steppers
  5929. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_INIT);
  5930. stepper.synchronize();
  5931. float lastpos[NUM_AXIS];
  5932. // Save current position of all axes
  5933. LOOP_XYZE(i)
  5934. lastpos[i] = destination[i] = current_position[i];
  5935. // Define runplan for move axes
  5936. #if IS_KINEMATIC
  5937. #define RUNPLAN(RATE_MM_S) planner.buffer_line_kinematic(destination, RATE_MM_S, active_extruder);
  5938. #else
  5939. #define RUNPLAN(RATE_MM_S) line_to_destination(RATE_MM_S);
  5940. #endif
  5941. KEEPALIVE_STATE(IN_HANDLER);
  5942. // Initial retract before move to filament change position
  5943. if (code_seen('E')) destination[E_AXIS] += code_value_axis_units(E_AXIS);
  5944. #if defined(FILAMENT_CHANGE_RETRACT_LENGTH) && FILAMENT_CHANGE_RETRACT_LENGTH > 0
  5945. else destination[E_AXIS] -= FILAMENT_CHANGE_RETRACT_LENGTH;
  5946. #endif
  5947. RUNPLAN(FILAMENT_CHANGE_RETRACT_FEEDRATE);
  5948. // Lift Z axis
  5949. float z_lift = code_seen('Z') ? code_value_axis_units(Z_AXIS) :
  5950. #if defined(FILAMENT_CHANGE_Z_ADD) && FILAMENT_CHANGE_Z_ADD > 0
  5951. FILAMENT_CHANGE_Z_ADD
  5952. #else
  5953. 0
  5954. #endif
  5955. ;
  5956. if (z_lift > 0) {
  5957. destination[Z_AXIS] += z_lift;
  5958. NOMORE(destination[Z_AXIS], Z_MAX_POS);
  5959. RUNPLAN(FILAMENT_CHANGE_Z_FEEDRATE);
  5960. }
  5961. // Move XY axes to filament exchange position
  5962. if (code_seen('X')) destination[X_AXIS] = code_value_axis_units(X_AXIS);
  5963. #ifdef FILAMENT_CHANGE_X_POS
  5964. else destination[X_AXIS] = FILAMENT_CHANGE_X_POS;
  5965. #endif
  5966. if (code_seen('Y')) destination[Y_AXIS] = code_value_axis_units(Y_AXIS);
  5967. #ifdef FILAMENT_CHANGE_Y_POS
  5968. else destination[Y_AXIS] = FILAMENT_CHANGE_Y_POS;
  5969. #endif
  5970. RUNPLAN(FILAMENT_CHANGE_XY_FEEDRATE);
  5971. stepper.synchronize();
  5972. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_UNLOAD);
  5973. // Unload filament
  5974. if (code_seen('L')) destination[E_AXIS] += code_value_axis_units(E_AXIS);
  5975. #if defined(FILAMENT_CHANGE_UNLOAD_LENGTH) && FILAMENT_CHANGE_UNLOAD_LENGTH > 0
  5976. else destination[E_AXIS] -= FILAMENT_CHANGE_UNLOAD_LENGTH;
  5977. #endif
  5978. RUNPLAN(FILAMENT_CHANGE_UNLOAD_FEEDRATE);
  5979. // Synchronize steppers and then disable extruders steppers for manual filament changing
  5980. stepper.synchronize();
  5981. disable_e0();
  5982. disable_e1();
  5983. disable_e2();
  5984. disable_e3();
  5985. delay(100);
  5986. #if HAS_BUZZER
  5987. millis_t next_buzz = 0;
  5988. #endif
  5989. // Wait for filament insert by user and press button
  5990. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_INSERT);
  5991. // LCD click or M108 will clear this
  5992. wait_for_user = true;
  5993. while (wait_for_user) {
  5994. #if HAS_BUZZER
  5995. millis_t ms = millis();
  5996. if (ms >= next_buzz) {
  5997. BUZZ(300, 2000);
  5998. next_buzz = ms + 2500; // Beep every 2.5s while waiting
  5999. }
  6000. #endif
  6001. idle(true);
  6002. }
  6003. // Show load message
  6004. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_LOAD);
  6005. // Load filament
  6006. if (code_seen('L')) destination[E_AXIS] -= code_value_axis_units(E_AXIS);
  6007. #if defined(FILAMENT_CHANGE_LOAD_LENGTH) && FILAMENT_CHANGE_LOAD_LENGTH > 0
  6008. else destination[E_AXIS] += FILAMENT_CHANGE_LOAD_LENGTH;
  6009. #endif
  6010. RUNPLAN(FILAMENT_CHANGE_LOAD_FEEDRATE);
  6011. stepper.synchronize();
  6012. #if defined(FILAMENT_CHANGE_EXTRUDE_LENGTH) && FILAMENT_CHANGE_EXTRUDE_LENGTH > 0
  6013. do {
  6014. // Extrude filament to get into hotend
  6015. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_EXTRUDE);
  6016. destination[E_AXIS] += FILAMENT_CHANGE_EXTRUDE_LENGTH;
  6017. RUNPLAN(FILAMENT_CHANGE_EXTRUDE_FEEDRATE);
  6018. stepper.synchronize();
  6019. // Ask user if more filament should be extruded
  6020. KEEPALIVE_STATE(PAUSED_FOR_USER);
  6021. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_OPTION);
  6022. while (filament_change_menu_response == FILAMENT_CHANGE_RESPONSE_WAIT_FOR) idle(true);
  6023. KEEPALIVE_STATE(IN_HANDLER);
  6024. } while (filament_change_menu_response != FILAMENT_CHANGE_RESPONSE_RESUME_PRINT);
  6025. #endif
  6026. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_RESUME);
  6027. KEEPALIVE_STATE(IN_HANDLER);
  6028. // Set extruder to saved position
  6029. destination[E_AXIS] = current_position[E_AXIS] = lastpos[E_AXIS];
  6030. planner.set_e_position_mm(current_position[E_AXIS]);
  6031. #if IS_KINEMATIC
  6032. // Move XYZ to starting position
  6033. planner.buffer_line_kinematic(lastpos, FILAMENT_CHANGE_XY_FEEDRATE, active_extruder);
  6034. #else
  6035. // Move XY to starting position, then Z
  6036. destination[X_AXIS] = lastpos[X_AXIS];
  6037. destination[Y_AXIS] = lastpos[Y_AXIS];
  6038. RUNPLAN(FILAMENT_CHANGE_XY_FEEDRATE);
  6039. destination[Z_AXIS] = lastpos[Z_AXIS];
  6040. RUNPLAN(FILAMENT_CHANGE_Z_FEEDRATE);
  6041. #endif
  6042. stepper.synchronize();
  6043. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  6044. filament_ran_out = false;
  6045. #endif
  6046. // Show status screen
  6047. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_STATUS);
  6048. }
  6049. #endif // FILAMENT_CHANGE_FEATURE
  6050. #if ENABLED(DUAL_X_CARRIAGE)
  6051. /**
  6052. * M605: Set dual x-carriage movement mode
  6053. *
  6054. * M605 S0: Full control mode. The slicer has full control over x-carriage movement
  6055. * M605 S1: Auto-park mode. The inactive head will auto park/unpark without slicer involvement
  6056. * M605 S2 [Xnnn] [Rmmm]: Duplication mode. The second extruder will duplicate the first with nnn
  6057. * units x-offset and an optional differential hotend temperature of
  6058. * mmm degrees. E.g., with "M605 S2 X100 R2" the second extruder will duplicate
  6059. * the first with a spacing of 100mm in the x direction and 2 degrees hotter.
  6060. *
  6061. * Note: the X axis should be homed after changing dual x-carriage mode.
  6062. */
  6063. inline void gcode_M605() {
  6064. stepper.synchronize();
  6065. if (code_seen('S')) dual_x_carriage_mode = (DualXMode)code_value_byte();
  6066. switch (dual_x_carriage_mode) {
  6067. case DXC_FULL_CONTROL_MODE:
  6068. case DXC_AUTO_PARK_MODE:
  6069. break;
  6070. case DXC_DUPLICATION_MODE:
  6071. if (code_seen('X')) duplicate_extruder_x_offset = max(code_value_axis_units(X_AXIS), X2_MIN_POS - x_home_pos(0));
  6072. if (code_seen('R')) duplicate_extruder_temp_offset = code_value_temp_diff();
  6073. SERIAL_ECHO_START;
  6074. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  6075. SERIAL_CHAR(' ');
  6076. SERIAL_ECHO(hotend_offset[X_AXIS][0]);
  6077. SERIAL_CHAR(',');
  6078. SERIAL_ECHO(hotend_offset[Y_AXIS][0]);
  6079. SERIAL_CHAR(' ');
  6080. SERIAL_ECHO(duplicate_extruder_x_offset);
  6081. SERIAL_CHAR(',');
  6082. SERIAL_ECHOLN(hotend_offset[Y_AXIS][1]);
  6083. break;
  6084. default:
  6085. dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  6086. break;
  6087. }
  6088. active_extruder_parked = false;
  6089. extruder_duplication_enabled = false;
  6090. delayed_move_time = 0;
  6091. }
  6092. #elif ENABLED(DUAL_NOZZLE_DUPLICATION_MODE)
  6093. inline void gcode_M605() {
  6094. stepper.synchronize();
  6095. extruder_duplication_enabled = code_seen('S') && code_value_int() == 2;
  6096. SERIAL_ECHO_START;
  6097. SERIAL_ECHOLNPAIR(MSG_DUPLICATION_MODE, extruder_duplication_enabled ? MSG_ON : MSG_OFF);
  6098. }
  6099. #endif // M605
  6100. #if ENABLED(LIN_ADVANCE)
  6101. /**
  6102. * M905: Set advance factor
  6103. */
  6104. inline void gcode_M905() {
  6105. stepper.synchronize();
  6106. planner.advance_M905(code_seen('K') ? code_value_float() : -1.0);
  6107. }
  6108. #endif
  6109. /**
  6110. * M907: Set digital trimpot motor current using axis codes X, Y, Z, E, B, S
  6111. */
  6112. inline void gcode_M907() {
  6113. #if HAS_DIGIPOTSS
  6114. LOOP_XYZE(i)
  6115. if (code_seen(axis_codes[i])) stepper.digipot_current(i, code_value_int());
  6116. if (code_seen('B')) stepper.digipot_current(4, code_value_int());
  6117. if (code_seen('S')) for (int i = 0; i <= 4; i++) stepper.digipot_current(i, code_value_int());
  6118. #elif HAS_MOTOR_CURRENT_PWM
  6119. #if PIN_EXISTS(MOTOR_CURRENT_PWM_XY)
  6120. if (code_seen('X')) stepper.digipot_current(0, code_value_int());
  6121. #endif
  6122. #if PIN_EXISTS(MOTOR_CURRENT_PWM_Z)
  6123. if (code_seen('Z')) stepper.digipot_current(1, code_value_int());
  6124. #endif
  6125. #if PIN_EXISTS(MOTOR_CURRENT_PWM_E)
  6126. if (code_seen('E')) stepper.digipot_current(2, code_value_int());
  6127. #endif
  6128. #endif
  6129. #if ENABLED(DIGIPOT_I2C)
  6130. // this one uses actual amps in floating point
  6131. LOOP_XYZE(i) if (code_seen(axis_codes[i])) digipot_i2c_set_current(i, code_value_float());
  6132. // for each additional extruder (named B,C,D,E..., channels 4,5,6,7...)
  6133. for (int i = NUM_AXIS; i < DIGIPOT_I2C_NUM_CHANNELS; i++) if (code_seen('B' + i - (NUM_AXIS))) digipot_i2c_set_current(i, code_value_float());
  6134. #endif
  6135. #if ENABLED(DAC_STEPPER_CURRENT)
  6136. if (code_seen('S')) {
  6137. float dac_percent = code_value_float();
  6138. for (uint8_t i = 0; i <= 4; i++) dac_current_percent(i, dac_percent);
  6139. }
  6140. LOOP_XYZE(i) if (code_seen(axis_codes[i])) dac_current_percent(i, code_value_float());
  6141. #endif
  6142. }
  6143. #if HAS_DIGIPOTSS || ENABLED(DAC_STEPPER_CURRENT)
  6144. /**
  6145. * M908: Control digital trimpot directly (M908 P<pin> S<current>)
  6146. */
  6147. inline void gcode_M908() {
  6148. #if HAS_DIGIPOTSS
  6149. stepper.digitalPotWrite(
  6150. code_seen('P') ? code_value_int() : 0,
  6151. code_seen('S') ? code_value_int() : 0
  6152. );
  6153. #endif
  6154. #ifdef DAC_STEPPER_CURRENT
  6155. dac_current_raw(
  6156. code_seen('P') ? code_value_byte() : -1,
  6157. code_seen('S') ? code_value_ushort() : 0
  6158. );
  6159. #endif
  6160. }
  6161. #if ENABLED(DAC_STEPPER_CURRENT) // As with Printrbot RevF
  6162. inline void gcode_M909() { dac_print_values(); }
  6163. inline void gcode_M910() { dac_commit_eeprom(); }
  6164. #endif
  6165. #endif // HAS_DIGIPOTSS || DAC_STEPPER_CURRENT
  6166. #if HAS_MICROSTEPS
  6167. // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  6168. inline void gcode_M350() {
  6169. if (code_seen('S')) for (int i = 0; i <= 4; i++) stepper.microstep_mode(i, code_value_byte());
  6170. LOOP_XYZE(i) if (code_seen(axis_codes[i])) stepper.microstep_mode(i, code_value_byte());
  6171. if (code_seen('B')) stepper.microstep_mode(4, code_value_byte());
  6172. stepper.microstep_readings();
  6173. }
  6174. /**
  6175. * M351: Toggle MS1 MS2 pins directly with axis codes X Y Z E B
  6176. * S# determines MS1 or MS2, X# sets the pin high/low.
  6177. */
  6178. inline void gcode_M351() {
  6179. if (code_seen('S')) switch (code_value_byte()) {
  6180. case 1:
  6181. LOOP_XYZE(i) if (code_seen(axis_codes[i])) stepper.microstep_ms(i, code_value_byte(), -1);
  6182. if (code_seen('B')) stepper.microstep_ms(4, code_value_byte(), -1);
  6183. break;
  6184. case 2:
  6185. LOOP_XYZE(i) if (code_seen(axis_codes[i])) stepper.microstep_ms(i, -1, code_value_byte());
  6186. if (code_seen('B')) stepper.microstep_ms(4, -1, code_value_byte());
  6187. break;
  6188. }
  6189. stepper.microstep_readings();
  6190. }
  6191. #endif // HAS_MICROSTEPS
  6192. #if HAS_CASE_LIGHT
  6193. uint8_t case_light_brightness = 255;
  6194. void update_case_light() {
  6195. digitalWrite(CASE_LIGHT_PIN, case_light_on != INVERT_CASE_LIGHT ? HIGH : LOW);
  6196. analogWrite(CASE_LIGHT_PIN, case_light_on != INVERT_CASE_LIGHT ? case_light_brightness : 0);
  6197. }
  6198. /**
  6199. * M355: Turn case lights on/off and set brightness
  6200. *
  6201. * S<bool> Turn case light on or off
  6202. * P<byte> Set case light brightness (PWM pin required)
  6203. */
  6204. inline void gcode_M355() {
  6205. if (code_seen('P')) case_light_brightness = code_value_byte();
  6206. if (code_seen('S')) case_light_on = code_value_bool();
  6207. update_case_light();
  6208. SERIAL_ECHO_START;
  6209. SERIAL_ECHOPGM("Case lights ");
  6210. case_light_on ? SERIAL_ECHOLNPGM("on") : SERIAL_ECHOLNPGM("off");
  6211. }
  6212. #endif // HAS_CASE_LIGHT
  6213. #if ENABLED(MIXING_EXTRUDER)
  6214. /**
  6215. * M163: Set a single mix factor for a mixing extruder
  6216. * This is called "weight" by some systems.
  6217. *
  6218. * S[index] The channel index to set
  6219. * P[float] The mix value
  6220. *
  6221. */
  6222. inline void gcode_M163() {
  6223. int mix_index = code_seen('S') ? code_value_int() : 0;
  6224. if (mix_index < MIXING_STEPPERS) {
  6225. float mix_value = code_seen('P') ? code_value_float() : 0.0;
  6226. NOLESS(mix_value, 0.0);
  6227. mixing_factor[mix_index] = RECIPROCAL(mix_value);
  6228. }
  6229. }
  6230. #if MIXING_VIRTUAL_TOOLS > 1
  6231. /**
  6232. * M164: Store the current mix factors as a virtual tool.
  6233. *
  6234. * S[index] The virtual tool to store
  6235. *
  6236. */
  6237. inline void gcode_M164() {
  6238. int tool_index = code_seen('S') ? code_value_int() : 0;
  6239. if (tool_index < MIXING_VIRTUAL_TOOLS) {
  6240. normalize_mix();
  6241. for (uint8_t i = 0; i < MIXING_STEPPERS; i++)
  6242. mixing_virtual_tool_mix[tool_index][i] = mixing_factor[i];
  6243. }
  6244. }
  6245. #endif
  6246. #if ENABLED(DIRECT_MIXING_IN_G1)
  6247. /**
  6248. * M165: Set multiple mix factors for a mixing extruder.
  6249. * Factors that are left out will be set to 0.
  6250. * All factors together must add up to 1.0.
  6251. *
  6252. * A[factor] Mix factor for extruder stepper 1
  6253. * B[factor] Mix factor for extruder stepper 2
  6254. * C[factor] Mix factor for extruder stepper 3
  6255. * D[factor] Mix factor for extruder stepper 4
  6256. * H[factor] Mix factor for extruder stepper 5
  6257. * I[factor] Mix factor for extruder stepper 6
  6258. *
  6259. */
  6260. inline void gcode_M165() { gcode_get_mix(); }
  6261. #endif
  6262. #endif // MIXING_EXTRUDER
  6263. /**
  6264. * M999: Restart after being stopped
  6265. *
  6266. * Default behaviour is to flush the serial buffer and request
  6267. * a resend to the host starting on the last N line received.
  6268. *
  6269. * Sending "M999 S1" will resume printing without flushing the
  6270. * existing command buffer.
  6271. *
  6272. */
  6273. inline void gcode_M999() {
  6274. Running = true;
  6275. lcd_reset_alert_level();
  6276. if (code_seen('S') && code_value_bool()) return;
  6277. // gcode_LastN = Stopped_gcode_LastN;
  6278. FlushSerialRequestResend();
  6279. }
  6280. #if ENABLED(SWITCHING_EXTRUDER)
  6281. inline void move_extruder_servo(uint8_t e) {
  6282. const int angles[2] = SWITCHING_EXTRUDER_SERVO_ANGLES;
  6283. MOVE_SERVO(SWITCHING_EXTRUDER_SERVO_NR, angles[e]);
  6284. }
  6285. #endif
  6286. inline void invalid_extruder_error(const uint8_t &e) {
  6287. SERIAL_ECHO_START;
  6288. SERIAL_CHAR('T');
  6289. SERIAL_PROTOCOL_F(e, DEC);
  6290. SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
  6291. }
  6292. /**
  6293. * Perform a tool-change, which may result in moving the
  6294. * previous tool out of the way and the new tool into place.
  6295. */
  6296. void tool_change(const uint8_t tmp_extruder, const float fr_mm_s/*=0.0*/, bool no_move/*=false*/) {
  6297. #if ENABLED(MIXING_EXTRUDER) && MIXING_VIRTUAL_TOOLS > 1
  6298. if (tmp_extruder >= MIXING_VIRTUAL_TOOLS) {
  6299. invalid_extruder_error(tmp_extruder);
  6300. return;
  6301. }
  6302. // T0-Tnnn: Switch virtual tool by changing the mix
  6303. for (uint8_t j = 0; j < MIXING_STEPPERS; j++)
  6304. mixing_factor[j] = mixing_virtual_tool_mix[tmp_extruder][j];
  6305. #else //!MIXING_EXTRUDER || MIXING_VIRTUAL_TOOLS <= 1
  6306. #if HOTENDS > 1
  6307. if (tmp_extruder >= EXTRUDERS) {
  6308. invalid_extruder_error(tmp_extruder);
  6309. return;
  6310. }
  6311. float old_feedrate_mm_s = feedrate_mm_s;
  6312. feedrate_mm_s = fr_mm_s > 0.0 ? (old_feedrate_mm_s = fr_mm_s) : XY_PROBE_FEEDRATE_MM_S;
  6313. if (tmp_extruder != active_extruder) {
  6314. if (!no_move && axis_unhomed_error(true, true, true)) {
  6315. SERIAL_ECHOLNPGM("No move on toolchange");
  6316. no_move = true;
  6317. }
  6318. // Save current position to destination, for use later
  6319. set_destination_to_current();
  6320. #if ENABLED(DUAL_X_CARRIAGE)
  6321. #if ENABLED(DEBUG_LEVELING_FEATURE)
  6322. if (DEBUGGING(LEVELING)) {
  6323. SERIAL_ECHOPGM("Dual X Carriage Mode ");
  6324. switch (dual_x_carriage_mode) {
  6325. case DXC_FULL_CONTROL_MODE: SERIAL_ECHOLNPGM("DXC_FULL_CONTROL_MODE"); break;
  6326. case DXC_AUTO_PARK_MODE: SERIAL_ECHOLNPGM("DXC_AUTO_PARK_MODE"); break;
  6327. case DXC_DUPLICATION_MODE: SERIAL_ECHOLNPGM("DXC_DUPLICATION_MODE"); break;
  6328. }
  6329. }
  6330. #endif
  6331. if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE && IsRunning() &&
  6332. (delayed_move_time || current_position[X_AXIS] != x_home_pos(active_extruder))
  6333. ) {
  6334. #if ENABLED(DEBUG_LEVELING_FEATURE)
  6335. if (DEBUGGING(LEVELING)) {
  6336. SERIAL_ECHOPAIR("Raise to ", current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT); SERIAL_EOL;
  6337. SERIAL_ECHOPAIR("MoveX to ", x_home_pos(active_extruder)); SERIAL_EOL;
  6338. SERIAL_ECHOPAIR("Lower to ", current_position[Z_AXIS]); SERIAL_EOL;
  6339. }
  6340. #endif
  6341. // Park old head: 1) raise 2) move to park position 3) lower
  6342. for (uint8_t i = 0; i < 3; i++)
  6343. planner.buffer_line(
  6344. i == 0 ? current_position[X_AXIS] : x_home_pos(active_extruder),
  6345. current_position[Y_AXIS],
  6346. current_position[Z_AXIS] + (i == 2 ? 0 : TOOLCHANGE_PARK_ZLIFT),
  6347. current_position[E_AXIS],
  6348. planner.max_feedrate_mm_s[i == 1 ? X_AXIS : Z_AXIS],
  6349. active_extruder
  6350. );
  6351. stepper.synchronize();
  6352. }
  6353. // apply Y & Z extruder offset (x offset is already used in determining home pos)
  6354. current_position[Y_AXIS] -= hotend_offset[Y_AXIS][active_extruder] - hotend_offset[Y_AXIS][tmp_extruder];
  6355. current_position[Z_AXIS] -= hotend_offset[Z_AXIS][active_extruder] - hotend_offset[Z_AXIS][tmp_extruder];
  6356. active_extruder = tmp_extruder;
  6357. // This function resets the max/min values - the current position may be overwritten below.
  6358. set_axis_is_at_home(X_AXIS);
  6359. #if ENABLED(DEBUG_LEVELING_FEATURE)
  6360. if (DEBUGGING(LEVELING)) DEBUG_POS("New Extruder", current_position);
  6361. #endif
  6362. switch (dual_x_carriage_mode) {
  6363. case DXC_FULL_CONTROL_MODE:
  6364. current_position[X_AXIS] = LOGICAL_X_POSITION(inactive_extruder_x_pos);
  6365. inactive_extruder_x_pos = RAW_X_POSITION(destination[X_AXIS]);
  6366. break;
  6367. case DXC_AUTO_PARK_MODE:
  6368. // record raised toolhead position for use by unpark
  6369. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  6370. raised_parked_position[Z_AXIS] += TOOLCHANGE_UNPARK_ZLIFT;
  6371. #if ENABLED(max_software_endstops)
  6372. NOMORE(raised_parked_position[Z_AXIS], soft_endstop_max[Z_AXIS]);
  6373. #endif
  6374. active_extruder_parked = true;
  6375. delayed_move_time = 0;
  6376. break;
  6377. case DXC_DUPLICATION_MODE:
  6378. active_extruder_parked = (active_extruder == 0); // this triggers the second extruder to move into the duplication position
  6379. if (active_extruder_parked)
  6380. current_position[X_AXIS] = LOGICAL_X_POSITION(inactive_extruder_x_pos);
  6381. else
  6382. current_position[X_AXIS] = destination[X_AXIS] + duplicate_extruder_x_offset;
  6383. inactive_extruder_x_pos = RAW_X_POSITION(destination[X_AXIS]);
  6384. extruder_duplication_enabled = false;
  6385. break;
  6386. }
  6387. #if ENABLED(DEBUG_LEVELING_FEATURE)
  6388. if (DEBUGGING(LEVELING)) {
  6389. SERIAL_ECHOLNPAIR("Active extruder parked: ", active_extruder_parked ? "yes" : "no");
  6390. DEBUG_POS("New extruder (parked)", current_position);
  6391. }
  6392. #endif
  6393. // No extra case for HAS_ABL in DUAL_X_CARRIAGE. Does that mean they don't work together?
  6394. #else // !DUAL_X_CARRIAGE
  6395. #if ENABLED(SWITCHING_EXTRUDER)
  6396. // <0 if the new nozzle is higher, >0 if lower. A bigger raise when lower.
  6397. float z_diff = hotend_offset[Z_AXIS][active_extruder] - hotend_offset[Z_AXIS][tmp_extruder],
  6398. z_raise = 0.3 + (z_diff > 0.0 ? z_diff : 0.0);
  6399. set_destination_to_current();
  6400. // Always raise by some amount
  6401. destination[Z_AXIS] += z_raise;
  6402. planner.buffer_line_kinematic(destination, planner.max_feedrate_mm_s[Z_AXIS], active_extruder);
  6403. stepper.synchronize();
  6404. move_extruder_servo(active_extruder);
  6405. delay(500);
  6406. // Move back down, if needed
  6407. if (z_raise != z_diff) {
  6408. destination[Z_AXIS] = current_position[Z_AXIS] + z_diff;
  6409. planner.buffer_line_kinematic(destination, planner.max_feedrate_mm_s[Z_AXIS], active_extruder);
  6410. stepper.synchronize();
  6411. }
  6412. #endif
  6413. /**
  6414. * Set current_position to the position of the new nozzle.
  6415. * Offsets are based on linear distance, so we need to get
  6416. * the resulting position in coordinate space.
  6417. *
  6418. * - With grid or 3-point leveling, offset XYZ by a tilted vector
  6419. * - With mesh leveling, update Z for the new position
  6420. * - Otherwise, just use the raw linear distance
  6421. *
  6422. * Software endstops are altered here too. Consider a case where:
  6423. * E0 at X=0 ... E1 at X=10
  6424. * When we switch to E1 now X=10, but E1 can't move left.
  6425. * To express this we apply the change in XY to the software endstops.
  6426. * E1 can move farther right than E0, so the right limit is extended.
  6427. *
  6428. * Note that we don't adjust the Z software endstops. Why not?
  6429. * Consider a case where Z=0 (here) and switching to E1 makes Z=1
  6430. * because the bed is 1mm lower at the new position. As long as
  6431. * the first nozzle is out of the way, the carriage should be
  6432. * allowed to move 1mm lower. This technically "breaks" the
  6433. * Z software endstop. But this is technically correct (and
  6434. * there is no viable alternative).
  6435. */
  6436. #if ABL_PLANAR
  6437. // Offset extruder, make sure to apply the bed level rotation matrix
  6438. vector_3 tmp_offset_vec = vector_3(hotend_offset[X_AXIS][tmp_extruder],
  6439. hotend_offset[Y_AXIS][tmp_extruder],
  6440. 0),
  6441. act_offset_vec = vector_3(hotend_offset[X_AXIS][active_extruder],
  6442. hotend_offset[Y_AXIS][active_extruder],
  6443. 0),
  6444. offset_vec = tmp_offset_vec - act_offset_vec;
  6445. #if ENABLED(DEBUG_LEVELING_FEATURE)
  6446. if (DEBUGGING(LEVELING)) {
  6447. tmp_offset_vec.debug("tmp_offset_vec");
  6448. act_offset_vec.debug("act_offset_vec");
  6449. offset_vec.debug("offset_vec (BEFORE)");
  6450. }
  6451. #endif
  6452. offset_vec.apply_rotation(planner.bed_level_matrix.transpose(planner.bed_level_matrix));
  6453. #if ENABLED(DEBUG_LEVELING_FEATURE)
  6454. if (DEBUGGING(LEVELING)) offset_vec.debug("offset_vec (AFTER)");
  6455. #endif
  6456. // Adjustments to the current position
  6457. float xydiff[2] = { offset_vec.x, offset_vec.y };
  6458. current_position[Z_AXIS] += offset_vec.z;
  6459. #else // !ABL_PLANAR
  6460. float xydiff[2] = {
  6461. hotend_offset[X_AXIS][tmp_extruder] - hotend_offset[X_AXIS][active_extruder],
  6462. hotend_offset[Y_AXIS][tmp_extruder] - hotend_offset[Y_AXIS][active_extruder]
  6463. };
  6464. #if ENABLED(MESH_BED_LEVELING)
  6465. if (mbl.active()) {
  6466. #if ENABLED(DEBUG_LEVELING_FEATURE)
  6467. if (DEBUGGING(LEVELING)) SERIAL_ECHOPAIR("Z before MBL: ", current_position[Z_AXIS]);
  6468. #endif
  6469. float xpos = RAW_CURRENT_POSITION(X_AXIS),
  6470. ypos = RAW_CURRENT_POSITION(Y_AXIS);
  6471. current_position[Z_AXIS] += mbl.get_z(xpos + xydiff[X_AXIS], ypos + xydiff[Y_AXIS]) - mbl.get_z(xpos, ypos);
  6472. #if ENABLED(DEBUG_LEVELING_FEATURE)
  6473. if (DEBUGGING(LEVELING))
  6474. SERIAL_ECHOLNPAIR(" after: ", current_position[Z_AXIS]);
  6475. #endif
  6476. }
  6477. #endif // MESH_BED_LEVELING
  6478. #endif // !HAS_ABL
  6479. #if ENABLED(DEBUG_LEVELING_FEATURE)
  6480. if (DEBUGGING(LEVELING)) {
  6481. SERIAL_ECHOPAIR("Offset Tool XY by { ", xydiff[X_AXIS]);
  6482. SERIAL_ECHOPAIR(", ", xydiff[Y_AXIS]);
  6483. SERIAL_ECHOLNPGM(" }");
  6484. }
  6485. #endif
  6486. // The newly-selected extruder XY is actually at...
  6487. current_position[X_AXIS] += xydiff[X_AXIS];
  6488. current_position[Y_AXIS] += xydiff[Y_AXIS];
  6489. for (uint8_t i = X_AXIS; i <= Y_AXIS; i++) {
  6490. position_shift[i] += xydiff[i];
  6491. update_software_endstops((AxisEnum)i);
  6492. }
  6493. // Set the new active extruder
  6494. active_extruder = tmp_extruder;
  6495. #endif // !DUAL_X_CARRIAGE
  6496. #if ENABLED(DEBUG_LEVELING_FEATURE)
  6497. if (DEBUGGING(LEVELING)) DEBUG_POS("Sync After Toolchange", current_position);
  6498. #endif
  6499. // Tell the planner the new "current position"
  6500. SYNC_PLAN_POSITION_KINEMATIC();
  6501. // Move to the "old position" (move the extruder into place)
  6502. if (!no_move && IsRunning()) {
  6503. #if ENABLED(DEBUG_LEVELING_FEATURE)
  6504. if (DEBUGGING(LEVELING)) DEBUG_POS("Move back", destination);
  6505. #endif
  6506. prepare_move_to_destination();
  6507. }
  6508. } // (tmp_extruder != active_extruder)
  6509. stepper.synchronize();
  6510. #if ENABLED(EXT_SOLENOID)
  6511. disable_all_solenoids();
  6512. enable_solenoid_on_active_extruder();
  6513. #endif // EXT_SOLENOID
  6514. feedrate_mm_s = old_feedrate_mm_s;
  6515. #else // HOTENDS <= 1
  6516. // Set the new active extruder
  6517. active_extruder = tmp_extruder;
  6518. UNUSED(fr_mm_s);
  6519. UNUSED(no_move);
  6520. #endif // HOTENDS <= 1
  6521. SERIAL_ECHO_START;
  6522. SERIAL_ECHOLNPAIR(MSG_ACTIVE_EXTRUDER, (int)active_extruder);
  6523. #endif //!MIXING_EXTRUDER || MIXING_VIRTUAL_TOOLS <= 1
  6524. }
  6525. /**
  6526. * T0-T3: Switch tool, usually switching extruders
  6527. *
  6528. * F[units/min] Set the movement feedrate
  6529. * S1 Don't move the tool in XY after change
  6530. */
  6531. inline void gcode_T(uint8_t tmp_extruder) {
  6532. #if ENABLED(DEBUG_LEVELING_FEATURE)
  6533. if (DEBUGGING(LEVELING)) {
  6534. SERIAL_ECHOPAIR(">>> gcode_T(", tmp_extruder);
  6535. SERIAL_CHAR(')');
  6536. SERIAL_EOL;
  6537. DEBUG_POS("BEFORE", current_position);
  6538. }
  6539. #endif
  6540. #if HOTENDS == 1 || (ENABLED(MIXING_EXTRUDER) && MIXING_VIRTUAL_TOOLS > 1)
  6541. tool_change(tmp_extruder);
  6542. #elif HOTENDS > 1
  6543. tool_change(
  6544. tmp_extruder,
  6545. code_seen('F') ? MMM_TO_MMS(code_value_axis_units(X_AXIS)) : 0.0,
  6546. (tmp_extruder == active_extruder) || (code_seen('S') && code_value_bool())
  6547. );
  6548. #endif
  6549. #if ENABLED(DEBUG_LEVELING_FEATURE)
  6550. if (DEBUGGING(LEVELING)) {
  6551. DEBUG_POS("AFTER", current_position);
  6552. SERIAL_ECHOLNPGM("<<< gcode_T");
  6553. }
  6554. #endif
  6555. }
  6556. /**
  6557. * Process a single command and dispatch it to its handler
  6558. * This is called from the main loop()
  6559. */
  6560. void process_next_command() {
  6561. current_command = command_queue[cmd_queue_index_r];
  6562. if (DEBUGGING(ECHO)) {
  6563. SERIAL_ECHO_START;
  6564. SERIAL_ECHOLN(current_command);
  6565. }
  6566. // Sanitize the current command:
  6567. // - Skip leading spaces
  6568. // - Bypass N[-0-9][0-9]*[ ]*
  6569. // - Overwrite * with nul to mark the end
  6570. while (*current_command == ' ') ++current_command;
  6571. if (*current_command == 'N' && NUMERIC_SIGNED(current_command[1])) {
  6572. current_command += 2; // skip N[-0-9]
  6573. while (NUMERIC(*current_command)) ++current_command; // skip [0-9]*
  6574. while (*current_command == ' ') ++current_command; // skip [ ]*
  6575. }
  6576. char* starpos = strchr(current_command, '*'); // * should always be the last parameter
  6577. if (starpos) while (*starpos == ' ' || *starpos == '*') *starpos-- = '\0'; // nullify '*' and ' '
  6578. char *cmd_ptr = current_command;
  6579. // Get the command code, which must be G, M, or T
  6580. char command_code = *cmd_ptr++;
  6581. // Skip spaces to get the numeric part
  6582. while (*cmd_ptr == ' ') cmd_ptr++;
  6583. // Allow for decimal point in command
  6584. #if ENABLED(G38_PROBE_TARGET)
  6585. uint8_t subcode = 0;
  6586. #endif
  6587. uint16_t codenum = 0; // define ahead of goto
  6588. // Bail early if there's no code
  6589. bool code_is_good = NUMERIC(*cmd_ptr);
  6590. if (!code_is_good) goto ExitUnknownCommand;
  6591. // Get and skip the code number
  6592. do {
  6593. codenum = (codenum * 10) + (*cmd_ptr - '0');
  6594. cmd_ptr++;
  6595. } while (NUMERIC(*cmd_ptr));
  6596. // Allow for decimal point in command
  6597. #if ENABLED(G38_PROBE_TARGET)
  6598. if (*cmd_ptr == '.') {
  6599. cmd_ptr++;
  6600. while (NUMERIC(*cmd_ptr))
  6601. subcode = (subcode * 10) + (*cmd_ptr++ - '0');
  6602. }
  6603. #endif
  6604. // Skip all spaces to get to the first argument, or nul
  6605. while (*cmd_ptr == ' ') cmd_ptr++;
  6606. // The command's arguments (if any) start here, for sure!
  6607. current_command_args = cmd_ptr;
  6608. KEEPALIVE_STATE(IN_HANDLER);
  6609. // Handle a known G, M, or T
  6610. switch (command_code) {
  6611. case 'G': switch (codenum) {
  6612. // G0, G1
  6613. case 0:
  6614. case 1:
  6615. #if IS_SCARA
  6616. gcode_G0_G1(codenum == 0);
  6617. #else
  6618. gcode_G0_G1();
  6619. #endif
  6620. break;
  6621. // G2, G3
  6622. #if ENABLED(ARC_SUPPORT) && DISABLED(SCARA)
  6623. case 2: // G2 - CW ARC
  6624. case 3: // G3 - CCW ARC
  6625. gcode_G2_G3(codenum == 2);
  6626. break;
  6627. #endif
  6628. // G4 Dwell
  6629. case 4:
  6630. gcode_G4();
  6631. break;
  6632. #if ENABLED(BEZIER_CURVE_SUPPORT)
  6633. // G5
  6634. case 5: // G5 - Cubic B_spline
  6635. gcode_G5();
  6636. break;
  6637. #endif // BEZIER_CURVE_SUPPORT
  6638. #if ENABLED(FWRETRACT)
  6639. case 10: // G10: retract
  6640. case 11: // G11: retract_recover
  6641. gcode_G10_G11(codenum == 10);
  6642. break;
  6643. #endif // FWRETRACT
  6644. #if ENABLED(NOZZLE_CLEAN_FEATURE)
  6645. case 12:
  6646. gcode_G12(); // G12: Nozzle Clean
  6647. break;
  6648. #endif // NOZZLE_CLEAN_FEATURE
  6649. #if ENABLED(INCH_MODE_SUPPORT)
  6650. case 20: //G20: Inch Mode
  6651. gcode_G20();
  6652. break;
  6653. case 21: //G21: MM Mode
  6654. gcode_G21();
  6655. break;
  6656. #endif // INCH_MODE_SUPPORT
  6657. #if ENABLED(NOZZLE_PARK_FEATURE)
  6658. case 27: // G27: Nozzle Park
  6659. gcode_G27();
  6660. break;
  6661. #endif // NOZZLE_PARK_FEATURE
  6662. case 28: // G28: Home all axes, one at a time
  6663. gcode_G28();
  6664. break;
  6665. #if PLANNER_LEVELING
  6666. case 29: // G29 Detailed Z probe, probes the bed at 3 or more points.
  6667. gcode_G29();
  6668. break;
  6669. #endif // PLANNER_LEVELING
  6670. #if HAS_BED_PROBE
  6671. case 30: // G30 Single Z probe
  6672. gcode_G30();
  6673. break;
  6674. #if ENABLED(Z_PROBE_SLED)
  6675. case 31: // G31: dock the sled
  6676. gcode_G31();
  6677. break;
  6678. case 32: // G32: undock the sled
  6679. gcode_G32();
  6680. break;
  6681. #endif // Z_PROBE_SLED
  6682. #endif // HAS_BED_PROBE
  6683. #if ENABLED(G38_PROBE_TARGET)
  6684. case 38: // G38.2 & G38.3
  6685. if (subcode == 2 || subcode == 3)
  6686. gcode_G38(subcode == 2);
  6687. break;
  6688. #endif
  6689. case 90: // G90
  6690. relative_mode = false;
  6691. break;
  6692. case 91: // G91
  6693. relative_mode = true;
  6694. break;
  6695. case 92: // G92
  6696. gcode_G92();
  6697. break;
  6698. }
  6699. break;
  6700. case 'M': switch (codenum) {
  6701. #if ENABLED(ULTIPANEL) || ENABLED(EMERGENCY_PARSER)
  6702. case 0: // M0: Unconditional stop - Wait for user button press on LCD
  6703. case 1: // M1: Conditional stop - Wait for user button press on LCD
  6704. gcode_M0_M1();
  6705. break;
  6706. #endif // ULTIPANEL
  6707. case 17: // M17: Enable all stepper motors
  6708. gcode_M17();
  6709. break;
  6710. #if ENABLED(SDSUPPORT)
  6711. case 20: // M20: list SD card
  6712. gcode_M20(); break;
  6713. case 21: // M21: init SD card
  6714. gcode_M21(); break;
  6715. case 22: // M22: release SD card
  6716. gcode_M22(); break;
  6717. case 23: // M23: Select file
  6718. gcode_M23(); break;
  6719. case 24: // M24: Start SD print
  6720. gcode_M24(); break;
  6721. case 25: // M25: Pause SD print
  6722. gcode_M25(); break;
  6723. case 26: // M26: Set SD index
  6724. gcode_M26(); break;
  6725. case 27: // M27: Get SD status
  6726. gcode_M27(); break;
  6727. case 28: // M28: Start SD write
  6728. gcode_M28(); break;
  6729. case 29: // M29: Stop SD write
  6730. gcode_M29(); break;
  6731. case 30: // M30 <filename> Delete File
  6732. gcode_M30(); break;
  6733. case 32: // M32: Select file and start SD print
  6734. gcode_M32(); break;
  6735. #if ENABLED(LONG_FILENAME_HOST_SUPPORT)
  6736. case 33: // M33: Get the long full path to a file or folder
  6737. gcode_M33(); break;
  6738. #endif
  6739. case 928: // M928: Start SD write
  6740. gcode_M928(); break;
  6741. #endif //SDSUPPORT
  6742. case 31: // M31: Report time since the start of SD print or last M109
  6743. gcode_M31(); break;
  6744. case 42: // M42: Change pin state
  6745. gcode_M42(); break;
  6746. #if ENABLED(PINS_DEBUGGING)
  6747. case 43: // M43: Read pin state
  6748. gcode_M43(); break;
  6749. #endif
  6750. #if ENABLED(Z_MIN_PROBE_REPEATABILITY_TEST)
  6751. case 48: // M48: Z probe repeatability test
  6752. gcode_M48();
  6753. break;
  6754. #endif // Z_MIN_PROBE_REPEATABILITY_TEST
  6755. case 75: // M75: Start print timer
  6756. gcode_M75(); break;
  6757. case 76: // M76: Pause print timer
  6758. gcode_M76(); break;
  6759. case 77: // M77: Stop print timer
  6760. gcode_M77(); break;
  6761. #if ENABLED(PRINTCOUNTER)
  6762. case 78: // M78: Show print statistics
  6763. gcode_M78(); break;
  6764. #endif
  6765. #if ENABLED(M100_FREE_MEMORY_WATCHER)
  6766. case 100: // M100: Free Memory Report
  6767. gcode_M100();
  6768. break;
  6769. #endif
  6770. case 104: // M104: Set hot end temperature
  6771. gcode_M104();
  6772. break;
  6773. case 110: // M110: Set Current Line Number
  6774. gcode_M110();
  6775. break;
  6776. case 111: // M111: Set debug level
  6777. gcode_M111();
  6778. break;
  6779. #if DISABLED(EMERGENCY_PARSER)
  6780. case 108: // M108: Cancel Waiting
  6781. gcode_M108();
  6782. break;
  6783. case 112: // M112: Emergency Stop
  6784. gcode_M112();
  6785. break;
  6786. case 410: // M410 quickstop - Abort all the planned moves.
  6787. gcode_M410();
  6788. break;
  6789. #endif
  6790. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  6791. case 113: // M113: Set Host Keepalive interval
  6792. gcode_M113();
  6793. break;
  6794. #endif
  6795. case 140: // M140: Set bed temperature
  6796. gcode_M140();
  6797. break;
  6798. case 105: // M105: Report current temperature
  6799. gcode_M105();
  6800. KEEPALIVE_STATE(NOT_BUSY);
  6801. return; // "ok" already printed
  6802. #if ENABLED(AUTO_REPORT_TEMPERATURES) && (HAS_TEMP_HOTEND || HAS_TEMP_BED)
  6803. case 155: // M155: Set temperature auto-report interval
  6804. gcode_M155();
  6805. break;
  6806. #endif
  6807. case 109: // M109: Wait for hotend temperature to reach target
  6808. gcode_M109();
  6809. break;
  6810. #if HAS_TEMP_BED
  6811. case 190: // M190: Wait for bed temperature to reach target
  6812. gcode_M190();
  6813. break;
  6814. #endif // HAS_TEMP_BED
  6815. #if FAN_COUNT > 0
  6816. case 106: // M106: Fan On
  6817. gcode_M106();
  6818. break;
  6819. case 107: // M107: Fan Off
  6820. gcode_M107();
  6821. break;
  6822. #endif // FAN_COUNT > 0
  6823. #if ENABLED(BARICUDA)
  6824. // PWM for HEATER_1_PIN
  6825. #if HAS_HEATER_1
  6826. case 126: // M126: valve open
  6827. gcode_M126();
  6828. break;
  6829. case 127: // M127: valve closed
  6830. gcode_M127();
  6831. break;
  6832. #endif // HAS_HEATER_1
  6833. // PWM for HEATER_2_PIN
  6834. #if HAS_HEATER_2
  6835. case 128: // M128: valve open
  6836. gcode_M128();
  6837. break;
  6838. case 129: // M129: valve closed
  6839. gcode_M129();
  6840. break;
  6841. #endif // HAS_HEATER_2
  6842. #endif // BARICUDA
  6843. #if HAS_POWER_SWITCH
  6844. case 80: // M80: Turn on Power Supply
  6845. gcode_M80();
  6846. break;
  6847. #endif // HAS_POWER_SWITCH
  6848. case 81: // M81: Turn off Power, including Power Supply, if possible
  6849. gcode_M81();
  6850. break;
  6851. case 82: // M83: Set E axis normal mode (same as other axes)
  6852. gcode_M82();
  6853. break;
  6854. case 83: // M83: Set E axis relative mode
  6855. gcode_M83();
  6856. break;
  6857. case 18: // M18 => M84
  6858. case 84: // M84: Disable all steppers or set timeout
  6859. gcode_M18_M84();
  6860. break;
  6861. case 85: // M85: Set inactivity stepper shutdown timeout
  6862. gcode_M85();
  6863. break;
  6864. case 92: // M92: Set the steps-per-unit for one or more axes
  6865. gcode_M92();
  6866. break;
  6867. case 114: // M114: Report current position
  6868. gcode_M114();
  6869. break;
  6870. case 115: // M115: Report capabilities
  6871. gcode_M115();
  6872. break;
  6873. case 117: // M117: Set LCD message text, if possible
  6874. gcode_M117();
  6875. break;
  6876. case 119: // M119: Report endstop states
  6877. gcode_M119();
  6878. break;
  6879. case 120: // M120: Enable endstops
  6880. gcode_M120();
  6881. break;
  6882. case 121: // M121: Disable endstops
  6883. gcode_M121();
  6884. break;
  6885. #if ENABLED(HAVE_TMC2130DRIVER)
  6886. case 122: // M122: Diagnose, used to debug TMC2130
  6887. gcode_M122();
  6888. break;
  6889. #endif
  6890. #if ENABLED(ULTIPANEL)
  6891. case 145: // M145: Set material heatup parameters
  6892. gcode_M145();
  6893. break;
  6894. #endif
  6895. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  6896. case 149: // M149: Set temperature units
  6897. gcode_M149();
  6898. break;
  6899. #endif
  6900. #if ENABLED(BLINKM) || ENABLED(RGB_LED)
  6901. case 150: // M150: Set Status LED Color
  6902. gcode_M150();
  6903. break;
  6904. #endif // BLINKM
  6905. #if ENABLED(MIXING_EXTRUDER)
  6906. case 163: // M163: Set a component weight for mixing extruder
  6907. gcode_M163();
  6908. break;
  6909. #if MIXING_VIRTUAL_TOOLS > 1
  6910. case 164: // M164: Save current mix as a virtual extruder
  6911. gcode_M164();
  6912. break;
  6913. #endif
  6914. #if ENABLED(DIRECT_MIXING_IN_G1)
  6915. case 165: // M165: Set multiple mix weights
  6916. gcode_M165();
  6917. break;
  6918. #endif
  6919. #endif
  6920. case 200: // M200: Set filament diameter, E to cubic units
  6921. gcode_M200();
  6922. break;
  6923. case 201: // M201: Set max acceleration for print moves (units/s^2)
  6924. gcode_M201();
  6925. break;
  6926. #if 0 // Not used for Sprinter/grbl gen6
  6927. case 202: // M202
  6928. gcode_M202();
  6929. break;
  6930. #endif
  6931. case 203: // M203: Set max feedrate (units/sec)
  6932. gcode_M203();
  6933. break;
  6934. case 204: // M204: Set acceleration
  6935. gcode_M204();
  6936. break;
  6937. case 205: //M205: Set advanced settings
  6938. gcode_M205();
  6939. break;
  6940. case 206: // M206: Set home offsets
  6941. gcode_M206();
  6942. break;
  6943. #if ENABLED(DELTA)
  6944. case 665: // M665: Set delta configurations
  6945. gcode_M665();
  6946. break;
  6947. #endif
  6948. #if ENABLED(DELTA) || ENABLED(Z_DUAL_ENDSTOPS)
  6949. case 666: // M666: Set delta or dual endstop adjustment
  6950. gcode_M666();
  6951. break;
  6952. #endif
  6953. #if ENABLED(FWRETRACT)
  6954. case 207: // M207: Set Retract Length, Feedrate, and Z lift
  6955. gcode_M207();
  6956. break;
  6957. case 208: // M208: Set Recover (unretract) Additional Length and Feedrate
  6958. gcode_M208();
  6959. break;
  6960. case 209: // M209: Turn Automatic Retract Detection on/off
  6961. gcode_M209();
  6962. break;
  6963. #endif // FWRETRACT
  6964. case 211: // M211: Enable, Disable, and/or Report software endstops
  6965. gcode_M211();
  6966. break;
  6967. #if HOTENDS > 1
  6968. case 218: // M218: Set a tool offset
  6969. gcode_M218();
  6970. break;
  6971. #endif
  6972. case 220: // M220: Set Feedrate Percentage: S<percent> ("FR" on your LCD)
  6973. gcode_M220();
  6974. break;
  6975. case 221: // M221: Set Flow Percentage
  6976. gcode_M221();
  6977. break;
  6978. case 226: // M226: Wait until a pin reaches a state
  6979. gcode_M226();
  6980. break;
  6981. #if HAS_SERVOS
  6982. case 280: // M280: Set servo position absolute
  6983. gcode_M280();
  6984. break;
  6985. #endif // HAS_SERVOS
  6986. #if HAS_BUZZER
  6987. case 300: // M300: Play beep tone
  6988. gcode_M300();
  6989. break;
  6990. #endif // HAS_BUZZER
  6991. #if ENABLED(PIDTEMP)
  6992. case 301: // M301: Set hotend PID parameters
  6993. gcode_M301();
  6994. break;
  6995. #endif // PIDTEMP
  6996. #if ENABLED(PIDTEMPBED)
  6997. case 304: // M304: Set bed PID parameters
  6998. gcode_M304();
  6999. break;
  7000. #endif // PIDTEMPBED
  7001. #if defined(CHDK) || HAS_PHOTOGRAPH
  7002. case 240: // M240: Trigger a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  7003. gcode_M240();
  7004. break;
  7005. #endif // CHDK || PHOTOGRAPH_PIN
  7006. #if HAS_LCD_CONTRAST
  7007. case 250: // M250: Set LCD contrast
  7008. gcode_M250();
  7009. break;
  7010. #endif // HAS_LCD_CONTRAST
  7011. #if ENABLED(EXPERIMENTAL_I2CBUS)
  7012. case 260: // M260: Send data to an i2c slave
  7013. gcode_M260();
  7014. break;
  7015. case 261: // M261: Request data from an i2c slave
  7016. gcode_M261();
  7017. break;
  7018. #endif // EXPERIMENTAL_I2CBUS
  7019. #if ENABLED(PREVENT_COLD_EXTRUSION)
  7020. case 302: // M302: Allow cold extrudes (set the minimum extrude temperature)
  7021. gcode_M302();
  7022. break;
  7023. #endif // PREVENT_COLD_EXTRUSION
  7024. case 303: // M303: PID autotune
  7025. gcode_M303();
  7026. break;
  7027. #if ENABLED(MORGAN_SCARA)
  7028. case 360: // M360: SCARA Theta pos1
  7029. if (gcode_M360()) return;
  7030. break;
  7031. case 361: // M361: SCARA Theta pos2
  7032. if (gcode_M361()) return;
  7033. break;
  7034. case 362: // M362: SCARA Psi pos1
  7035. if (gcode_M362()) return;
  7036. break;
  7037. case 363: // M363: SCARA Psi pos2
  7038. if (gcode_M363()) return;
  7039. break;
  7040. case 364: // M364: SCARA Psi pos3 (90 deg to Theta)
  7041. if (gcode_M364()) return;
  7042. break;
  7043. #endif // SCARA
  7044. case 400: // M400: Finish all moves
  7045. gcode_M400();
  7046. break;
  7047. #if HAS_BED_PROBE
  7048. case 401: // M401: Deploy probe
  7049. gcode_M401();
  7050. break;
  7051. case 402: // M402: Stow probe
  7052. gcode_M402();
  7053. break;
  7054. #endif // HAS_BED_PROBE
  7055. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  7056. case 404: // M404: Enter the nominal filament width (3mm, 1.75mm ) N<3.0> or display nominal filament width
  7057. gcode_M404();
  7058. break;
  7059. case 405: // M405: Turn on filament sensor for control
  7060. gcode_M405();
  7061. break;
  7062. case 406: // M406: Turn off filament sensor for control
  7063. gcode_M406();
  7064. break;
  7065. case 407: // M407: Display measured filament diameter
  7066. gcode_M407();
  7067. break;
  7068. #endif // ENABLED(FILAMENT_WIDTH_SENSOR)
  7069. #if PLANNER_LEVELING
  7070. case 420: // M420: Enable/Disable Bed Leveling
  7071. gcode_M420();
  7072. break;
  7073. #endif
  7074. #if ENABLED(MESH_BED_LEVELING)
  7075. case 421: // M421: Set a Mesh Bed Leveling Z coordinate
  7076. gcode_M421();
  7077. break;
  7078. #endif
  7079. case 428: // M428: Apply current_position to home_offset
  7080. gcode_M428();
  7081. break;
  7082. case 500: // M500: Store settings in EEPROM
  7083. gcode_M500();
  7084. break;
  7085. case 501: // M501: Read settings from EEPROM
  7086. gcode_M501();
  7087. break;
  7088. case 502: // M502: Revert to default settings
  7089. gcode_M502();
  7090. break;
  7091. case 503: // M503: print settings currently in memory
  7092. gcode_M503();
  7093. break;
  7094. #if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  7095. case 540: // M540: Set abort on endstop hit for SD printing
  7096. gcode_M540();
  7097. break;
  7098. #endif
  7099. #if HAS_BED_PROBE
  7100. case 851: // M851: Set Z Probe Z Offset
  7101. gcode_M851();
  7102. break;
  7103. #endif // HAS_BED_PROBE
  7104. #if ENABLED(FILAMENT_CHANGE_FEATURE)
  7105. case 600: // M600: Pause for filament change
  7106. gcode_M600();
  7107. break;
  7108. #endif // FILAMENT_CHANGE_FEATURE
  7109. #if ENABLED(DUAL_X_CARRIAGE)
  7110. case 605: // M605: Set Dual X Carriage movement mode
  7111. gcode_M605();
  7112. break;
  7113. #endif // DUAL_X_CARRIAGE
  7114. #if ENABLED(LIN_ADVANCE)
  7115. case 905: // M905: Set advance K factor.
  7116. gcode_M905();
  7117. break;
  7118. #endif
  7119. case 907: // M907: Set digital trimpot motor current using axis codes.
  7120. gcode_M907();
  7121. break;
  7122. #if HAS_DIGIPOTSS || ENABLED(DAC_STEPPER_CURRENT)
  7123. case 908: // M908: Control digital trimpot directly.
  7124. gcode_M908();
  7125. break;
  7126. #if ENABLED(DAC_STEPPER_CURRENT) // As with Printrbot RevF
  7127. case 909: // M909: Print digipot/DAC current value
  7128. gcode_M909();
  7129. break;
  7130. case 910: // M910: Commit digipot/DAC value to external EEPROM
  7131. gcode_M910();
  7132. break;
  7133. #endif
  7134. #endif // HAS_DIGIPOTSS || DAC_STEPPER_CURRENT
  7135. #if HAS_MICROSTEPS
  7136. case 350: // M350: Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  7137. gcode_M350();
  7138. break;
  7139. case 351: // M351: Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  7140. gcode_M351();
  7141. break;
  7142. #endif // HAS_MICROSTEPS
  7143. #if HAS_CASE_LIGHT
  7144. case 355: // M355 Turn case lights on/off
  7145. gcode_M355();
  7146. break;
  7147. #endif // HAS_CASE_LIGHT
  7148. case 999: // M999: Restart after being Stopped
  7149. gcode_M999();
  7150. break;
  7151. }
  7152. break;
  7153. case 'T':
  7154. gcode_T(codenum);
  7155. break;
  7156. default: code_is_good = false;
  7157. }
  7158. KEEPALIVE_STATE(NOT_BUSY);
  7159. ExitUnknownCommand:
  7160. // Still unknown command? Throw an error
  7161. if (!code_is_good) unknown_command_error();
  7162. ok_to_send();
  7163. }
  7164. /**
  7165. * Send a "Resend: nnn" message to the host to
  7166. * indicate that a command needs to be re-sent.
  7167. */
  7168. void FlushSerialRequestResend() {
  7169. //char command_queue[cmd_queue_index_r][100]="Resend:";
  7170. MYSERIAL.flush();
  7171. SERIAL_PROTOCOLPGM(MSG_RESEND);
  7172. SERIAL_PROTOCOLLN(gcode_LastN + 1);
  7173. ok_to_send();
  7174. }
  7175. /**
  7176. * Send an "ok" message to the host, indicating
  7177. * that a command was successfully processed.
  7178. *
  7179. * If ADVANCED_OK is enabled also include:
  7180. * N<int> Line number of the command, if any
  7181. * P<int> Planner space remaining
  7182. * B<int> Block queue space remaining
  7183. */
  7184. void ok_to_send() {
  7185. refresh_cmd_timeout();
  7186. if (!send_ok[cmd_queue_index_r]) return;
  7187. SERIAL_PROTOCOLPGM(MSG_OK);
  7188. #if ENABLED(ADVANCED_OK)
  7189. char* p = command_queue[cmd_queue_index_r];
  7190. if (*p == 'N') {
  7191. SERIAL_PROTOCOL(' ');
  7192. SERIAL_ECHO(*p++);
  7193. while (NUMERIC_SIGNED(*p))
  7194. SERIAL_ECHO(*p++);
  7195. }
  7196. SERIAL_PROTOCOLPGM(" P"); SERIAL_PROTOCOL(int(BLOCK_BUFFER_SIZE - planner.movesplanned() - 1));
  7197. SERIAL_PROTOCOLPGM(" B"); SERIAL_PROTOCOL(BUFSIZE - commands_in_queue);
  7198. #endif
  7199. SERIAL_EOL;
  7200. }
  7201. #if ENABLED(min_software_endstops) || ENABLED(max_software_endstops)
  7202. /**
  7203. * Constrain the given coordinates to the software endstops.
  7204. */
  7205. void clamp_to_software_endstops(float target[XYZ]) {
  7206. #if ENABLED(min_software_endstops)
  7207. NOLESS(target[X_AXIS], soft_endstop_min[X_AXIS]);
  7208. NOLESS(target[Y_AXIS], soft_endstop_min[Y_AXIS]);
  7209. NOLESS(target[Z_AXIS], soft_endstop_min[Z_AXIS]);
  7210. #endif
  7211. #if ENABLED(max_software_endstops)
  7212. NOMORE(target[X_AXIS], soft_endstop_max[X_AXIS]);
  7213. NOMORE(target[Y_AXIS], soft_endstop_max[Y_AXIS]);
  7214. NOMORE(target[Z_AXIS], soft_endstop_max[Z_AXIS]);
  7215. #endif
  7216. }
  7217. #endif
  7218. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  7219. // Get the Z adjustment for non-linear bed leveling
  7220. float bilinear_z_offset(float cartesian[XYZ]) {
  7221. // XY relative to the probed area
  7222. const float x = RAW_X_POSITION(cartesian[X_AXIS]) - bilinear_start[X_AXIS],
  7223. y = RAW_Y_POSITION(cartesian[Y_AXIS]) - bilinear_start[Y_AXIS];
  7224. // Convert to grid box units
  7225. float ratio_x = x / bilinear_grid_spacing[X_AXIS],
  7226. ratio_y = y / bilinear_grid_spacing[Y_AXIS];
  7227. // Whole units for the grid line indices. Constrained within bounds.
  7228. const int gridx = constrain(floor(ratio_x), 0, ABL_GRID_POINTS_X - 1),
  7229. gridy = constrain(floor(ratio_y), 0, ABL_GRID_POINTS_Y - 1),
  7230. nextx = min(gridx + 1, ABL_GRID_POINTS_X - 1),
  7231. nexty = min(gridy + 1, ABL_GRID_POINTS_Y - 1);
  7232. // Subtract whole to get the ratio within the grid box
  7233. ratio_x -= gridx; ratio_y -= gridy;
  7234. // Never less than 0.0. (Over 1.0 is fine due to previous contraints.)
  7235. NOLESS(ratio_x, 0); NOLESS(ratio_y, 0);
  7236. // Z at the box corners
  7237. const float z1 = bed_level_grid[gridx][gridy], // left-front
  7238. z2 = bed_level_grid[gridx][nexty], // left-back
  7239. z3 = bed_level_grid[nextx][gridy], // right-front
  7240. z4 = bed_level_grid[nextx][nexty], // right-back
  7241. // Bilinear interpolate
  7242. L = z1 + (z2 - z1) * ratio_y, // Linear interp. LF -> LB
  7243. R = z3 + (z4 - z3) * ratio_y, // Linear interp. RF -> RB
  7244. offset = L + ratio_x * (R - L);
  7245. /*
  7246. static float last_offset = 0;
  7247. if (fabs(last_offset - offset) > 0.2) {
  7248. SERIAL_ECHOPGM("Sudden Shift at ");
  7249. SERIAL_ECHOPAIR("x=", x);
  7250. SERIAL_ECHOPAIR(" / ", bilinear_grid_spacing[X_AXIS]);
  7251. SERIAL_ECHOLNPAIR(" -> gridx=", gridx);
  7252. SERIAL_ECHOPAIR(" y=", y);
  7253. SERIAL_ECHOPAIR(" / ", bilinear_grid_spacing[Y_AXIS]);
  7254. SERIAL_ECHOLNPAIR(" -> gridy=", gridy);
  7255. SERIAL_ECHOPAIR(" ratio_x=", ratio_x);
  7256. SERIAL_ECHOLNPAIR(" ratio_y=", ratio_y);
  7257. SERIAL_ECHOPAIR(" z1=", z1);
  7258. SERIAL_ECHOPAIR(" z2=", z2);
  7259. SERIAL_ECHOPAIR(" z3=", z3);
  7260. SERIAL_ECHOLNPAIR(" z4=", z4);
  7261. SERIAL_ECHOPAIR(" L=", L);
  7262. SERIAL_ECHOPAIR(" R=", R);
  7263. SERIAL_ECHOLNPAIR(" offset=", offset);
  7264. }
  7265. last_offset = offset;
  7266. //*/
  7267. return offset;
  7268. }
  7269. #endif // AUTO_BED_LEVELING_BILINEAR
  7270. #if ENABLED(DELTA)
  7271. /**
  7272. * Recalculate factors used for delta kinematics whenever
  7273. * settings have been changed (e.g., by M665).
  7274. */
  7275. void recalc_delta_settings(float radius, float diagonal_rod) {
  7276. delta_tower1_x = -SIN_60 * (radius + DELTA_RADIUS_TRIM_TOWER_1); // front left tower
  7277. delta_tower1_y = -COS_60 * (radius + DELTA_RADIUS_TRIM_TOWER_1);
  7278. delta_tower2_x = SIN_60 * (radius + DELTA_RADIUS_TRIM_TOWER_2); // front right tower
  7279. delta_tower2_y = -COS_60 * (radius + DELTA_RADIUS_TRIM_TOWER_2);
  7280. delta_tower3_x = 0.0; // back middle tower
  7281. delta_tower3_y = (radius + DELTA_RADIUS_TRIM_TOWER_3);
  7282. delta_diagonal_rod_2_tower_1 = sq(diagonal_rod + delta_diagonal_rod_trim_tower_1);
  7283. delta_diagonal_rod_2_tower_2 = sq(diagonal_rod + delta_diagonal_rod_trim_tower_2);
  7284. delta_diagonal_rod_2_tower_3 = sq(diagonal_rod + delta_diagonal_rod_trim_tower_3);
  7285. }
  7286. #if ENABLED(DELTA_FAST_SQRT)
  7287. /**
  7288. * Fast inverse sqrt from Quake III Arena
  7289. * See: https://en.wikipedia.org/wiki/Fast_inverse_square_root
  7290. */
  7291. float Q_rsqrt(float number) {
  7292. long i;
  7293. float x2, y;
  7294. const float threehalfs = 1.5f;
  7295. x2 = number * 0.5f;
  7296. y = number;
  7297. i = * ( long * ) &y; // evil floating point bit level hacking
  7298. i = 0x5f3759df - ( i >> 1 ); // what the f***?
  7299. y = * ( float * ) &i;
  7300. y = y * ( threehalfs - ( x2 * y * y ) ); // 1st iteration
  7301. // y = y * ( threehalfs - ( x2 * y * y ) ); // 2nd iteration, this can be removed
  7302. return y;
  7303. }
  7304. #define _SQRT(n) (1.0f / Q_rsqrt(n))
  7305. #else
  7306. #define _SQRT(n) sqrt(n)
  7307. #endif
  7308. /**
  7309. * Delta Inverse Kinematics
  7310. *
  7311. * Calculate the tower positions for a given logical
  7312. * position, storing the result in the delta[] array.
  7313. *
  7314. * This is an expensive calculation, requiring 3 square
  7315. * roots per segmented linear move, and strains the limits
  7316. * of a Mega2560 with a Graphical Display.
  7317. *
  7318. * Suggested optimizations include:
  7319. *
  7320. * - Disable the home_offset (M206) and/or position_shift (G92)
  7321. * features to remove up to 12 float additions.
  7322. *
  7323. * - Use a fast-inverse-sqrt function and add the reciprocal.
  7324. * (see above)
  7325. */
  7326. // Macro to obtain the Z position of an individual tower
  7327. #define DELTA_Z(T) raw[Z_AXIS] + _SQRT( \
  7328. delta_diagonal_rod_2_tower_##T - HYPOT2( \
  7329. delta_tower##T##_x - raw[X_AXIS], \
  7330. delta_tower##T##_y - raw[Y_AXIS] \
  7331. ) \
  7332. )
  7333. #define DELTA_RAW_IK() do { \
  7334. delta[A_AXIS] = DELTA_Z(1); \
  7335. delta[B_AXIS] = DELTA_Z(2); \
  7336. delta[C_AXIS] = DELTA_Z(3); \
  7337. } while(0)
  7338. #define DELTA_LOGICAL_IK() do { \
  7339. const float raw[XYZ] = { \
  7340. RAW_X_POSITION(logical[X_AXIS]), \
  7341. RAW_Y_POSITION(logical[Y_AXIS]), \
  7342. RAW_Z_POSITION(logical[Z_AXIS]) \
  7343. }; \
  7344. DELTA_RAW_IK(); \
  7345. } while(0)
  7346. #define DELTA_DEBUG() do { \
  7347. SERIAL_ECHOPAIR("cartesian X:", raw[X_AXIS]); \
  7348. SERIAL_ECHOPAIR(" Y:", raw[Y_AXIS]); \
  7349. SERIAL_ECHOLNPAIR(" Z:", raw[Z_AXIS]); \
  7350. SERIAL_ECHOPAIR("delta A:", delta[A_AXIS]); \
  7351. SERIAL_ECHOPAIR(" B:", delta[B_AXIS]); \
  7352. SERIAL_ECHOLNPAIR(" C:", delta[C_AXIS]); \
  7353. } while(0)
  7354. void inverse_kinematics(const float logical[XYZ]) {
  7355. DELTA_LOGICAL_IK();
  7356. // DELTA_DEBUG();
  7357. }
  7358. /**
  7359. * Calculate the highest Z position where the
  7360. * effector has the full range of XY motion.
  7361. */
  7362. float delta_safe_distance_from_top() {
  7363. float cartesian[XYZ] = {
  7364. LOGICAL_X_POSITION(0),
  7365. LOGICAL_Y_POSITION(0),
  7366. LOGICAL_Z_POSITION(0)
  7367. };
  7368. inverse_kinematics(cartesian);
  7369. float distance = delta[A_AXIS];
  7370. cartesian[Y_AXIS] = LOGICAL_Y_POSITION(DELTA_PRINTABLE_RADIUS);
  7371. inverse_kinematics(cartesian);
  7372. return abs(distance - delta[A_AXIS]);
  7373. }
  7374. /**
  7375. * Delta Forward Kinematics
  7376. *
  7377. * See the Wikipedia article "Trilateration"
  7378. * https://en.wikipedia.org/wiki/Trilateration
  7379. *
  7380. * Establish a new coordinate system in the plane of the
  7381. * three carriage points. This system has its origin at
  7382. * tower1, with tower2 on the X axis. Tower3 is in the X-Y
  7383. * plane with a Z component of zero.
  7384. * We will define unit vectors in this coordinate system
  7385. * in our original coordinate system. Then when we calculate
  7386. * the Xnew, Ynew and Znew values, we can translate back into
  7387. * the original system by moving along those unit vectors
  7388. * by the corresponding values.
  7389. *
  7390. * Variable names matched to Marlin, c-version, and avoid the
  7391. * use of any vector library.
  7392. *
  7393. * by Andreas Hardtung 2016-06-07
  7394. * based on a Java function from "Delta Robot Kinematics V3"
  7395. * by Steve Graves
  7396. *
  7397. * The result is stored in the cartes[] array.
  7398. */
  7399. void forward_kinematics_DELTA(float z1, float z2, float z3) {
  7400. // Create a vector in old coordinates along x axis of new coordinate
  7401. float p12[3] = { delta_tower2_x - delta_tower1_x, delta_tower2_y - delta_tower1_y, z2 - z1 };
  7402. // Get the Magnitude of vector.
  7403. float d = sqrt( sq(p12[0]) + sq(p12[1]) + sq(p12[2]) );
  7404. // Create unit vector by dividing by magnitude.
  7405. float ex[3] = { p12[0] / d, p12[1] / d, p12[2] / d };
  7406. // Get the vector from the origin of the new system to the third point.
  7407. float p13[3] = { delta_tower3_x - delta_tower1_x, delta_tower3_y - delta_tower1_y, z3 - z1 };
  7408. // Use the dot product to find the component of this vector on the X axis.
  7409. float i = ex[0] * p13[0] + ex[1] * p13[1] + ex[2] * p13[2];
  7410. // Create a vector along the x axis that represents the x component of p13.
  7411. float iex[3] = { ex[0] * i, ex[1] * i, ex[2] * i };
  7412. // Subtract the X component from the original vector leaving only Y. We use the
  7413. // variable that will be the unit vector after we scale it.
  7414. float ey[3] = { p13[0] - iex[0], p13[1] - iex[1], p13[2] - iex[2] };
  7415. // The magnitude of Y component
  7416. float j = sqrt( sq(ey[0]) + sq(ey[1]) + sq(ey[2]) );
  7417. // Convert to a unit vector
  7418. ey[0] /= j; ey[1] /= j; ey[2] /= j;
  7419. // The cross product of the unit x and y is the unit z
  7420. // float[] ez = vectorCrossProd(ex, ey);
  7421. float ez[3] = {
  7422. ex[1] * ey[2] - ex[2] * ey[1],
  7423. ex[2] * ey[0] - ex[0] * ey[2],
  7424. ex[0] * ey[1] - ex[1] * ey[0]
  7425. };
  7426. // We now have the d, i and j values defined in Wikipedia.
  7427. // Plug them into the equations defined in Wikipedia for Xnew, Ynew and Znew
  7428. float Xnew = (delta_diagonal_rod_2_tower_1 - delta_diagonal_rod_2_tower_2 + sq(d)) / (d * 2),
  7429. Ynew = ((delta_diagonal_rod_2_tower_1 - delta_diagonal_rod_2_tower_3 + HYPOT2(i, j)) / 2 - i * Xnew) / j,
  7430. Znew = sqrt(delta_diagonal_rod_2_tower_1 - HYPOT2(Xnew, Ynew));
  7431. // Start from the origin of the old coordinates and add vectors in the
  7432. // old coords that represent the Xnew, Ynew and Znew to find the point
  7433. // in the old system.
  7434. cartes[X_AXIS] = delta_tower1_x + ex[0] * Xnew + ey[0] * Ynew - ez[0] * Znew;
  7435. cartes[Y_AXIS] = delta_tower1_y + ex[1] * Xnew + ey[1] * Ynew - ez[1] * Znew;
  7436. cartes[Z_AXIS] = z1 + ex[2] * Xnew + ey[2] * Ynew - ez[2] * Znew;
  7437. }
  7438. void forward_kinematics_DELTA(float point[ABC]) {
  7439. forward_kinematics_DELTA(point[A_AXIS], point[B_AXIS], point[C_AXIS]);
  7440. }
  7441. #endif // DELTA
  7442. /**
  7443. * Get the stepper positions in the cartes[] array.
  7444. * Forward kinematics are applied for DELTA and SCARA.
  7445. *
  7446. * The result is in the current coordinate space with
  7447. * leveling applied. The coordinates need to be run through
  7448. * unapply_leveling to obtain the "ideal" coordinates
  7449. * suitable for current_position, etc.
  7450. */
  7451. void get_cartesian_from_steppers() {
  7452. #if ENABLED(DELTA)
  7453. forward_kinematics_DELTA(
  7454. stepper.get_axis_position_mm(A_AXIS),
  7455. stepper.get_axis_position_mm(B_AXIS),
  7456. stepper.get_axis_position_mm(C_AXIS)
  7457. );
  7458. cartes[X_AXIS] += LOGICAL_X_POSITION(0);
  7459. cartes[Y_AXIS] += LOGICAL_Y_POSITION(0);
  7460. cartes[Z_AXIS] += LOGICAL_Z_POSITION(0);
  7461. #elif IS_SCARA
  7462. forward_kinematics_SCARA(
  7463. stepper.get_axis_position_degrees(A_AXIS),
  7464. stepper.get_axis_position_degrees(B_AXIS)
  7465. );
  7466. cartes[X_AXIS] += LOGICAL_X_POSITION(0);
  7467. cartes[Y_AXIS] += LOGICAL_Y_POSITION(0);
  7468. cartes[Z_AXIS] = stepper.get_axis_position_mm(Z_AXIS);
  7469. #else
  7470. cartes[X_AXIS] = stepper.get_axis_position_mm(X_AXIS);
  7471. cartes[Y_AXIS] = stepper.get_axis_position_mm(Y_AXIS);
  7472. cartes[Z_AXIS] = stepper.get_axis_position_mm(Z_AXIS);
  7473. #endif
  7474. }
  7475. /**
  7476. * Set the current_position for an axis based on
  7477. * the stepper positions, removing any leveling that
  7478. * may have been applied.
  7479. */
  7480. void set_current_from_steppers_for_axis(const AxisEnum axis) {
  7481. get_cartesian_from_steppers();
  7482. #if PLANNER_LEVELING
  7483. planner.unapply_leveling(cartes);
  7484. #endif
  7485. if (axis == ALL_AXES)
  7486. memcpy(current_position, cartes, sizeof(cartes));
  7487. else
  7488. current_position[axis] = cartes[axis];
  7489. }
  7490. #if ENABLED(MESH_BED_LEVELING)
  7491. /**
  7492. * Prepare a mesh-leveled linear move in a Cartesian setup,
  7493. * splitting the move where it crosses mesh borders.
  7494. */
  7495. void mesh_line_to_destination(float fr_mm_s, uint8_t x_splits = 0xff, uint8_t y_splits = 0xff) {
  7496. int cx1 = mbl.cell_index_x(RAW_CURRENT_POSITION(X_AXIS)),
  7497. cy1 = mbl.cell_index_y(RAW_CURRENT_POSITION(Y_AXIS)),
  7498. cx2 = mbl.cell_index_x(RAW_X_POSITION(destination[X_AXIS])),
  7499. cy2 = mbl.cell_index_y(RAW_Y_POSITION(destination[Y_AXIS]));
  7500. NOMORE(cx1, MESH_NUM_X_POINTS - 2);
  7501. NOMORE(cy1, MESH_NUM_Y_POINTS - 2);
  7502. NOMORE(cx2, MESH_NUM_X_POINTS - 2);
  7503. NOMORE(cy2, MESH_NUM_Y_POINTS - 2);
  7504. if (cx1 == cx2 && cy1 == cy2) {
  7505. // Start and end on same mesh square
  7506. line_to_destination(fr_mm_s);
  7507. set_current_to_destination();
  7508. return;
  7509. }
  7510. #define MBL_SEGMENT_END(A) (current_position[A ##_AXIS] + (destination[A ##_AXIS] - current_position[A ##_AXIS]) * normalized_dist)
  7511. float normalized_dist, end[XYZE];
  7512. // Split at the left/front border of the right/top square
  7513. int8_t gcx = max(cx1, cx2), gcy = max(cy1, cy2);
  7514. if (cx2 != cx1 && TEST(x_splits, gcx)) {
  7515. memcpy(end, destination, sizeof(end));
  7516. destination[X_AXIS] = LOGICAL_X_POSITION(mbl.get_probe_x(gcx));
  7517. normalized_dist = (destination[X_AXIS] - current_position[X_AXIS]) / (end[X_AXIS] - current_position[X_AXIS]);
  7518. destination[Y_AXIS] = MBL_SEGMENT_END(Y);
  7519. CBI(x_splits, gcx);
  7520. }
  7521. else if (cy2 != cy1 && TEST(y_splits, gcy)) {
  7522. memcpy(end, destination, sizeof(end));
  7523. destination[Y_AXIS] = LOGICAL_Y_POSITION(mbl.get_probe_y(gcy));
  7524. normalized_dist = (destination[Y_AXIS] - current_position[Y_AXIS]) / (end[Y_AXIS] - current_position[Y_AXIS]);
  7525. destination[X_AXIS] = MBL_SEGMENT_END(X);
  7526. CBI(y_splits, gcy);
  7527. }
  7528. else {
  7529. // Already split on a border
  7530. line_to_destination(fr_mm_s);
  7531. set_current_to_destination();
  7532. return;
  7533. }
  7534. destination[Z_AXIS] = MBL_SEGMENT_END(Z);
  7535. destination[E_AXIS] = MBL_SEGMENT_END(E);
  7536. // Do the split and look for more borders
  7537. mesh_line_to_destination(fr_mm_s, x_splits, y_splits);
  7538. // Restore destination from stack
  7539. memcpy(destination, end, sizeof(end));
  7540. mesh_line_to_destination(fr_mm_s, x_splits, y_splits);
  7541. }
  7542. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR) && !IS_KINEMATIC
  7543. #define CELL_INDEX(A,V) ((RAW_##A##_POSITION(V) - bilinear_start[A##_AXIS]) / bilinear_grid_spacing[A##_AXIS])
  7544. /**
  7545. * Prepare a bilinear-leveled linear move on Cartesian,
  7546. * splitting the move where it crosses grid borders.
  7547. */
  7548. void bilinear_line_to_destination(float fr_mm_s, uint16_t x_splits = 0xFFFF, uint16_t y_splits = 0xFFFF) {
  7549. int cx1 = CELL_INDEX(X, current_position[X_AXIS]),
  7550. cy1 = CELL_INDEX(Y, current_position[Y_AXIS]),
  7551. cx2 = CELL_INDEX(X, destination[X_AXIS]),
  7552. cy2 = CELL_INDEX(Y, destination[Y_AXIS]);
  7553. cx1 = constrain(cx1, 0, ABL_GRID_POINTS_X - 2);
  7554. cy1 = constrain(cy1, 0, ABL_GRID_POINTS_Y - 2);
  7555. cx2 = constrain(cx2, 0, ABL_GRID_POINTS_X - 2);
  7556. cy2 = constrain(cy2, 0, ABL_GRID_POINTS_Y - 2);
  7557. if (cx1 == cx2 && cy1 == cy2) {
  7558. // Start and end on same mesh square
  7559. line_to_destination(fr_mm_s);
  7560. set_current_to_destination();
  7561. return;
  7562. }
  7563. #define LINE_SEGMENT_END(A) (current_position[A ##_AXIS] + (destination[A ##_AXIS] - current_position[A ##_AXIS]) * normalized_dist)
  7564. float normalized_dist, end[XYZE];
  7565. // Split at the left/front border of the right/top square
  7566. int8_t gcx = max(cx1, cx2), gcy = max(cy1, cy2);
  7567. if (cx2 != cx1 && TEST(x_splits, gcx)) {
  7568. memcpy(end, destination, sizeof(end));
  7569. destination[X_AXIS] = LOGICAL_X_POSITION(bilinear_start[X_AXIS] + bilinear_grid_spacing[X_AXIS] * gcx);
  7570. normalized_dist = (destination[X_AXIS] - current_position[X_AXIS]) / (end[X_AXIS] - current_position[X_AXIS]);
  7571. destination[Y_AXIS] = LINE_SEGMENT_END(Y);
  7572. CBI(x_splits, gcx);
  7573. }
  7574. else if (cy2 != cy1 && TEST(y_splits, gcy)) {
  7575. memcpy(end, destination, sizeof(end));
  7576. destination[Y_AXIS] = LOGICAL_Y_POSITION(bilinear_start[Y_AXIS] + bilinear_grid_spacing[Y_AXIS] * gcy);
  7577. normalized_dist = (destination[Y_AXIS] - current_position[Y_AXIS]) / (end[Y_AXIS] - current_position[Y_AXIS]);
  7578. destination[X_AXIS] = LINE_SEGMENT_END(X);
  7579. CBI(y_splits, gcy);
  7580. }
  7581. else {
  7582. // Already split on a border
  7583. line_to_destination(fr_mm_s);
  7584. set_current_to_destination();
  7585. return;
  7586. }
  7587. destination[Z_AXIS] = LINE_SEGMENT_END(Z);
  7588. destination[E_AXIS] = LINE_SEGMENT_END(E);
  7589. // Do the split and look for more borders
  7590. bilinear_line_to_destination(fr_mm_s, x_splits, y_splits);
  7591. // Restore destination from stack
  7592. memcpy(destination, end, sizeof(end));
  7593. bilinear_line_to_destination(fr_mm_s, x_splits, y_splits);
  7594. }
  7595. #endif // AUTO_BED_LEVELING_BILINEAR
  7596. #if IS_KINEMATIC
  7597. /**
  7598. * Prepare a linear move in a DELTA or SCARA setup.
  7599. *
  7600. * This calls planner.buffer_line several times, adding
  7601. * small incremental moves for DELTA or SCARA.
  7602. */
  7603. inline bool prepare_kinematic_move_to(float ltarget[NUM_AXIS]) {
  7604. // Get the top feedrate of the move in the XY plane
  7605. float _feedrate_mm_s = MMS_SCALED(feedrate_mm_s);
  7606. // If the move is only in Z/E don't split up the move
  7607. if (ltarget[X_AXIS] == current_position[X_AXIS] && ltarget[Y_AXIS] == current_position[Y_AXIS]) {
  7608. planner.buffer_line_kinematic(ltarget, _feedrate_mm_s, active_extruder);
  7609. return true;
  7610. }
  7611. // Get the cartesian distances moved in XYZE
  7612. float difference[NUM_AXIS];
  7613. LOOP_XYZE(i) difference[i] = ltarget[i] - current_position[i];
  7614. // Get the linear distance in XYZ
  7615. float cartesian_mm = sqrt(sq(difference[X_AXIS]) + sq(difference[Y_AXIS]) + sq(difference[Z_AXIS]));
  7616. // If the move is very short, check the E move distance
  7617. if (UNEAR_ZERO(cartesian_mm)) cartesian_mm = abs(difference[E_AXIS]);
  7618. // No E move either? Game over.
  7619. if (UNEAR_ZERO(cartesian_mm)) return false;
  7620. // Minimum number of seconds to move the given distance
  7621. float seconds = cartesian_mm / _feedrate_mm_s;
  7622. // The number of segments-per-second times the duration
  7623. // gives the number of segments
  7624. uint16_t segments = delta_segments_per_second * seconds;
  7625. // For SCARA minimum segment size is 0.5mm
  7626. #if IS_SCARA
  7627. NOMORE(segments, cartesian_mm * 2);
  7628. #endif
  7629. // At least one segment is required
  7630. NOLESS(segments, 1);
  7631. // The approximate length of each segment
  7632. float segment_distance[XYZE] = {
  7633. difference[X_AXIS] / segments,
  7634. difference[Y_AXIS] / segments,
  7635. difference[Z_AXIS] / segments,
  7636. difference[E_AXIS] / segments
  7637. };
  7638. // SERIAL_ECHOPAIR("mm=", cartesian_mm);
  7639. // SERIAL_ECHOPAIR(" seconds=", seconds);
  7640. // SERIAL_ECHOLNPAIR(" segments=", segments);
  7641. // Drop one segment so the last move is to the exact target.
  7642. // If there's only 1 segment, loops will be skipped entirely.
  7643. --segments;
  7644. // Using "raw" coordinates saves 6 float subtractions
  7645. // per segment, saving valuable CPU cycles
  7646. #if ENABLED(USE_RAW_KINEMATICS)
  7647. // Get the raw current position as starting point
  7648. float raw[XYZE] = {
  7649. RAW_CURRENT_POSITION(X_AXIS),
  7650. RAW_CURRENT_POSITION(Y_AXIS),
  7651. RAW_CURRENT_POSITION(Z_AXIS),
  7652. current_position[E_AXIS]
  7653. };
  7654. #define DELTA_VAR raw
  7655. // Delta can inline its kinematics
  7656. #if ENABLED(DELTA)
  7657. #define DELTA_IK() DELTA_RAW_IK()
  7658. #else
  7659. #define DELTA_IK() inverse_kinematics(raw)
  7660. #endif
  7661. #else
  7662. // Get the logical current position as starting point
  7663. float logical[XYZE];
  7664. memcpy(logical, current_position, sizeof(logical));
  7665. #define DELTA_VAR logical
  7666. // Delta can inline its kinematics
  7667. #if ENABLED(DELTA)
  7668. #define DELTA_IK() DELTA_LOGICAL_IK()
  7669. #else
  7670. #define DELTA_IK() inverse_kinematics(logical)
  7671. #endif
  7672. #endif
  7673. #if ENABLED(USE_DELTA_IK_INTERPOLATION)
  7674. // Only interpolate XYZ. Advance E normally.
  7675. #define DELTA_NEXT(ADDEND) LOOP_XYZ(i) DELTA_VAR[i] += ADDEND;
  7676. // Get the starting delta if interpolation is possible
  7677. if (segments >= 2) {
  7678. DELTA_IK();
  7679. ADJUST_DELTA(DELTA_VAR); // Adjust Z if bed leveling is enabled
  7680. }
  7681. // Loop using decrement
  7682. for (uint16_t s = segments + 1; --s;) {
  7683. // Are there at least 2 moves left?
  7684. if (s >= 2) {
  7685. // Save the previous delta for interpolation
  7686. float prev_delta[ABC] = { delta[A_AXIS], delta[B_AXIS], delta[C_AXIS] };
  7687. // Get the delta 2 segments ahead (rather than the next)
  7688. DELTA_NEXT(segment_distance[i] + segment_distance[i]);
  7689. // Advance E normally
  7690. DELTA_VAR[E_AXIS] += segment_distance[E_AXIS];
  7691. // Get the exact delta for the move after this
  7692. DELTA_IK();
  7693. ADJUST_DELTA(DELTA_VAR); // Adjust Z if bed leveling is enabled
  7694. // Move to the interpolated delta position first
  7695. planner.buffer_line(
  7696. (prev_delta[A_AXIS] + delta[A_AXIS]) * 0.5,
  7697. (prev_delta[B_AXIS] + delta[B_AXIS]) * 0.5,
  7698. (prev_delta[C_AXIS] + delta[C_AXIS]) * 0.5,
  7699. DELTA_VAR[E_AXIS], _feedrate_mm_s, active_extruder
  7700. );
  7701. // Advance E once more for the next move
  7702. DELTA_VAR[E_AXIS] += segment_distance[E_AXIS];
  7703. // Do an extra decrement of the loop
  7704. --s;
  7705. }
  7706. else {
  7707. // Get the last segment delta. (Used when segments is odd)
  7708. DELTA_NEXT(segment_distance[i]);
  7709. DELTA_VAR[E_AXIS] += segment_distance[E_AXIS];
  7710. DELTA_IK();
  7711. ADJUST_DELTA(DELTA_VAR); // Adjust Z if bed leveling is enabled
  7712. }
  7713. // Move to the non-interpolated position
  7714. planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], DELTA_VAR[E_AXIS], _feedrate_mm_s, active_extruder);
  7715. }
  7716. #else
  7717. #define DELTA_NEXT(ADDEND) LOOP_XYZE(i) DELTA_VAR[i] += ADDEND;
  7718. // For non-interpolated delta calculate every segment
  7719. for (uint16_t s = segments + 1; --s;) {
  7720. DELTA_NEXT(segment_distance[i]);
  7721. planner.buffer_line_kinematic(DELTA_VAR, _feedrate_mm_s, active_extruder);
  7722. }
  7723. #endif
  7724. // Since segment_distance is only approximate,
  7725. // the final move must be to the exact destination.
  7726. planner.buffer_line_kinematic(ltarget, _feedrate_mm_s, active_extruder);
  7727. return true;
  7728. }
  7729. #else // !IS_KINEMATIC
  7730. /**
  7731. * Prepare a linear move in a Cartesian setup.
  7732. * If Mesh Bed Leveling is enabled, perform a mesh move.
  7733. */
  7734. inline bool prepare_move_to_destination_cartesian() {
  7735. // Do not use feedrate_percentage for E or Z only moves
  7736. if (current_position[X_AXIS] == destination[X_AXIS] && current_position[Y_AXIS] == destination[Y_AXIS]) {
  7737. line_to_destination();
  7738. }
  7739. else {
  7740. #if ENABLED(MESH_BED_LEVELING)
  7741. if (mbl.active()) {
  7742. mesh_line_to_destination(MMS_SCALED(feedrate_mm_s));
  7743. return false;
  7744. }
  7745. else
  7746. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  7747. if (planner.abl_enabled) {
  7748. bilinear_line_to_destination(MMS_SCALED(feedrate_mm_s));
  7749. return false;
  7750. }
  7751. else
  7752. #endif
  7753. line_to_destination(MMS_SCALED(feedrate_mm_s));
  7754. }
  7755. return true;
  7756. }
  7757. #endif // !IS_KINEMATIC
  7758. #if ENABLED(DUAL_X_CARRIAGE)
  7759. /**
  7760. * Prepare a linear move in a dual X axis setup
  7761. */
  7762. inline bool prepare_move_to_destination_dualx() {
  7763. if (active_extruder_parked) {
  7764. switch (dual_x_carriage_mode) {
  7765. case DXC_FULL_CONTROL_MODE:
  7766. break;
  7767. case DXC_DUPLICATION_MODE:
  7768. if (active_extruder == 0) {
  7769. // move duplicate extruder into correct duplication position.
  7770. planner.set_position_mm(
  7771. LOGICAL_X_POSITION(inactive_extruder_x_pos),
  7772. current_position[Y_AXIS],
  7773. current_position[Z_AXIS],
  7774. current_position[E_AXIS]
  7775. );
  7776. planner.buffer_line(current_position[X_AXIS] + duplicate_extruder_x_offset,
  7777. current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], planner.max_feedrate_mm_s[X_AXIS], 1);
  7778. SYNC_PLAN_POSITION_KINEMATIC();
  7779. stepper.synchronize();
  7780. extruder_duplication_enabled = true;
  7781. active_extruder_parked = false;
  7782. }
  7783. break;
  7784. case DXC_AUTO_PARK_MODE:
  7785. if (current_position[E_AXIS] == destination[E_AXIS]) {
  7786. // This is a travel move (with no extrusion)
  7787. // Skip it, but keep track of the current position
  7788. // (so it can be used as the start of the next non-travel move)
  7789. if (delayed_move_time != 0xFFFFFFFFUL) {
  7790. set_current_to_destination();
  7791. NOLESS(raised_parked_position[Z_AXIS], destination[Z_AXIS]);
  7792. delayed_move_time = millis();
  7793. return false;
  7794. }
  7795. }
  7796. delayed_move_time = 0;
  7797. // unpark extruder: 1) raise, 2) move into starting XY position, 3) lower
  7798. planner.buffer_line(raised_parked_position[X_AXIS], raised_parked_position[Y_AXIS], raised_parked_position[Z_AXIS], current_position[E_AXIS], planner.max_feedrate_mm_s[Z_AXIS], active_extruder);
  7799. planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], raised_parked_position[Z_AXIS], current_position[E_AXIS], PLANNER_XY_FEEDRATE(), active_extruder);
  7800. planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], planner.max_feedrate_mm_s[Z_AXIS], active_extruder);
  7801. active_extruder_parked = false;
  7802. break;
  7803. }
  7804. }
  7805. return true;
  7806. }
  7807. #endif // DUAL_X_CARRIAGE
  7808. /**
  7809. * Prepare a single move and get ready for the next one
  7810. *
  7811. * This may result in several calls to planner.buffer_line to
  7812. * do smaller moves for DELTA, SCARA, mesh moves, etc.
  7813. */
  7814. void prepare_move_to_destination() {
  7815. clamp_to_software_endstops(destination);
  7816. refresh_cmd_timeout();
  7817. #if ENABLED(PREVENT_COLD_EXTRUSION)
  7818. if (!DEBUGGING(DRYRUN)) {
  7819. if (destination[E_AXIS] != current_position[E_AXIS]) {
  7820. if (thermalManager.tooColdToExtrude(active_extruder)) {
  7821. current_position[E_AXIS] = destination[E_AXIS]; // Behave as if the move really took place, but ignore E part
  7822. SERIAL_ECHO_START;
  7823. SERIAL_ECHOLNPGM(MSG_ERR_COLD_EXTRUDE_STOP);
  7824. }
  7825. #if ENABLED(PREVENT_LENGTHY_EXTRUDE)
  7826. if (labs(destination[E_AXIS] - current_position[E_AXIS]) > EXTRUDE_MAXLENGTH) {
  7827. current_position[E_AXIS] = destination[E_AXIS]; // Behave as if the move really took place, but ignore E part
  7828. SERIAL_ECHO_START;
  7829. SERIAL_ECHOLNPGM(MSG_ERR_LONG_EXTRUDE_STOP);
  7830. }
  7831. #endif
  7832. }
  7833. }
  7834. #endif
  7835. #if IS_KINEMATIC
  7836. if (!prepare_kinematic_move_to(destination)) return;
  7837. #else
  7838. #if ENABLED(DUAL_X_CARRIAGE)
  7839. if (!prepare_move_to_destination_dualx()) return;
  7840. #endif
  7841. if (!prepare_move_to_destination_cartesian()) return;
  7842. #endif
  7843. set_current_to_destination();
  7844. }
  7845. #if ENABLED(ARC_SUPPORT)
  7846. /**
  7847. * Plan an arc in 2 dimensions
  7848. *
  7849. * The arc is approximated by generating many small linear segments.
  7850. * The length of each segment is configured in MM_PER_ARC_SEGMENT (Default 1mm)
  7851. * Arcs should only be made relatively large (over 5mm), as larger arcs with
  7852. * larger segments will tend to be more efficient. Your slicer should have
  7853. * options for G2/G3 arc generation. In future these options may be GCode tunable.
  7854. */
  7855. void plan_arc(
  7856. float logical[NUM_AXIS], // Destination position
  7857. float* offset, // Center of rotation relative to current_position
  7858. uint8_t clockwise // Clockwise?
  7859. ) {
  7860. float radius = HYPOT(offset[X_AXIS], offset[Y_AXIS]),
  7861. center_X = current_position[X_AXIS] + offset[X_AXIS],
  7862. center_Y = current_position[Y_AXIS] + offset[Y_AXIS],
  7863. linear_travel = logical[Z_AXIS] - current_position[Z_AXIS],
  7864. extruder_travel = logical[E_AXIS] - current_position[E_AXIS],
  7865. r_X = -offset[X_AXIS], // Radius vector from center to current location
  7866. r_Y = -offset[Y_AXIS],
  7867. rt_X = logical[X_AXIS] - center_X,
  7868. rt_Y = logical[Y_AXIS] - center_Y;
  7869. // CCW angle of rotation between position and target from the circle center. Only one atan2() trig computation required.
  7870. float angular_travel = atan2(r_X * rt_Y - r_Y * rt_X, r_X * rt_X + r_Y * rt_Y);
  7871. if (angular_travel < 0) angular_travel += RADIANS(360);
  7872. if (clockwise) angular_travel -= RADIANS(360);
  7873. // Make a circle if the angular rotation is 0
  7874. if (angular_travel == 0 && current_position[X_AXIS] == logical[X_AXIS] && current_position[Y_AXIS] == logical[Y_AXIS])
  7875. angular_travel += RADIANS(360);
  7876. float mm_of_travel = HYPOT(angular_travel * radius, fabs(linear_travel));
  7877. if (mm_of_travel < 0.001) return;
  7878. uint16_t segments = floor(mm_of_travel / (MM_PER_ARC_SEGMENT));
  7879. if (segments == 0) segments = 1;
  7880. /**
  7881. * Vector rotation by transformation matrix: r is the original vector, r_T is the rotated vector,
  7882. * and phi is the angle of rotation. Based on the solution approach by Jens Geisler.
  7883. * r_T = [cos(phi) -sin(phi);
  7884. * sin(phi) cos(phi)] * r ;
  7885. *
  7886. * For arc generation, the center of the circle is the axis of rotation and the radius vector is
  7887. * defined from the circle center to the initial position. Each line segment is formed by successive
  7888. * vector rotations. This requires only two cos() and sin() computations to form the rotation
  7889. * matrix for the duration of the entire arc. Error may accumulate from numerical round-off, since
  7890. * all double numbers are single precision on the Arduino. (True double precision will not have
  7891. * round off issues for CNC applications.) Single precision error can accumulate to be greater than
  7892. * tool precision in some cases. Therefore, arc path correction is implemented.
  7893. *
  7894. * Small angle approximation may be used to reduce computation overhead further. This approximation
  7895. * holds for everything, but very small circles and large MM_PER_ARC_SEGMENT values. In other words,
  7896. * theta_per_segment would need to be greater than 0.1 rad and N_ARC_CORRECTION would need to be large
  7897. * to cause an appreciable drift error. N_ARC_CORRECTION~=25 is more than small enough to correct for
  7898. * numerical drift error. N_ARC_CORRECTION may be on the order a hundred(s) before error becomes an
  7899. * issue for CNC machines with the single precision Arduino calculations.
  7900. *
  7901. * This approximation also allows plan_arc to immediately insert a line segment into the planner
  7902. * without the initial overhead of computing cos() or sin(). By the time the arc needs to be applied
  7903. * a correction, the planner should have caught up to the lag caused by the initial plan_arc overhead.
  7904. * This is important when there are successive arc motions.
  7905. */
  7906. // Vector rotation matrix values
  7907. float arc_target[XYZE],
  7908. theta_per_segment = angular_travel / segments,
  7909. linear_per_segment = linear_travel / segments,
  7910. extruder_per_segment = extruder_travel / segments,
  7911. sin_T = theta_per_segment,
  7912. cos_T = 1 - 0.5 * sq(theta_per_segment); // Small angle approximation
  7913. // Initialize the linear axis
  7914. arc_target[Z_AXIS] = current_position[Z_AXIS];
  7915. // Initialize the extruder axis
  7916. arc_target[E_AXIS] = current_position[E_AXIS];
  7917. float fr_mm_s = MMS_SCALED(feedrate_mm_s);
  7918. millis_t next_idle_ms = millis() + 200UL;
  7919. int8_t count = 0;
  7920. for (uint16_t i = 1; i < segments; i++) { // Iterate (segments-1) times
  7921. thermalManager.manage_heater();
  7922. if (ELAPSED(millis(), next_idle_ms)) {
  7923. next_idle_ms = millis() + 200UL;
  7924. idle();
  7925. }
  7926. if (++count < N_ARC_CORRECTION) {
  7927. // Apply vector rotation matrix to previous r_X / 1
  7928. float r_new_Y = r_X * sin_T + r_Y * cos_T;
  7929. r_X = r_X * cos_T - r_Y * sin_T;
  7930. r_Y = r_new_Y;
  7931. }
  7932. else {
  7933. // Arc correction to radius vector. Computed only every N_ARC_CORRECTION increments.
  7934. // Compute exact location by applying transformation matrix from initial radius vector(=-offset).
  7935. // To reduce stuttering, the sin and cos could be computed at different times.
  7936. // For now, compute both at the same time.
  7937. float cos_Ti = cos(i * theta_per_segment),
  7938. sin_Ti = sin(i * theta_per_segment);
  7939. r_X = -offset[X_AXIS] * cos_Ti + offset[Y_AXIS] * sin_Ti;
  7940. r_Y = -offset[X_AXIS] * sin_Ti - offset[Y_AXIS] * cos_Ti;
  7941. count = 0;
  7942. }
  7943. // Update arc_target location
  7944. arc_target[X_AXIS] = center_X + r_X;
  7945. arc_target[Y_AXIS] = center_Y + r_Y;
  7946. arc_target[Z_AXIS] += linear_per_segment;
  7947. arc_target[E_AXIS] += extruder_per_segment;
  7948. clamp_to_software_endstops(arc_target);
  7949. planner.buffer_line_kinematic(arc_target, fr_mm_s, active_extruder);
  7950. }
  7951. // Ensure last segment arrives at target location.
  7952. planner.buffer_line_kinematic(logical, fr_mm_s, active_extruder);
  7953. // As far as the parser is concerned, the position is now == target. In reality the
  7954. // motion control system might still be processing the action and the real tool position
  7955. // in any intermediate location.
  7956. set_current_to_destination();
  7957. }
  7958. #endif
  7959. #if ENABLED(BEZIER_CURVE_SUPPORT)
  7960. void plan_cubic_move(const float offset[4]) {
  7961. cubic_b_spline(current_position, destination, offset, MMS_SCALED(feedrate_mm_s), active_extruder);
  7962. // As far as the parser is concerned, the position is now == destination. In reality the
  7963. // motion control system might still be processing the action and the real tool position
  7964. // in any intermediate location.
  7965. set_current_to_destination();
  7966. }
  7967. #endif // BEZIER_CURVE_SUPPORT
  7968. #if HAS_CONTROLLERFAN
  7969. void controllerFan() {
  7970. static millis_t lastMotorOn = 0; // Last time a motor was turned on
  7971. static millis_t nextMotorCheck = 0; // Last time the state was checked
  7972. millis_t ms = millis();
  7973. if (ELAPSED(ms, nextMotorCheck)) {
  7974. nextMotorCheck = ms + 2500UL; // Not a time critical function, so only check every 2.5s
  7975. if (X_ENABLE_READ == X_ENABLE_ON || Y_ENABLE_READ == Y_ENABLE_ON || Z_ENABLE_READ == Z_ENABLE_ON || thermalManager.soft_pwm_bed > 0
  7976. || E0_ENABLE_READ == E_ENABLE_ON // If any of the drivers are enabled...
  7977. #if E_STEPPERS > 1
  7978. || E1_ENABLE_READ == E_ENABLE_ON
  7979. #if HAS_X2_ENABLE
  7980. || X2_ENABLE_READ == X_ENABLE_ON
  7981. #endif
  7982. #if E_STEPPERS > 2
  7983. || E2_ENABLE_READ == E_ENABLE_ON
  7984. #if E_STEPPERS > 3
  7985. || E3_ENABLE_READ == E_ENABLE_ON
  7986. #endif
  7987. #endif
  7988. #endif
  7989. ) {
  7990. lastMotorOn = ms; //... set time to NOW so the fan will turn on
  7991. }
  7992. // Fan off if no steppers have been enabled for CONTROLLERFAN_SECS seconds
  7993. uint8_t speed = (!lastMotorOn || ELAPSED(ms, lastMotorOn + (CONTROLLERFAN_SECS) * 1000UL)) ? 0 : CONTROLLERFAN_SPEED;
  7994. // allows digital or PWM fan output to be used (see M42 handling)
  7995. digitalWrite(CONTROLLERFAN_PIN, speed);
  7996. analogWrite(CONTROLLERFAN_PIN, speed);
  7997. }
  7998. }
  7999. #endif // HAS_CONTROLLERFAN
  8000. #if ENABLED(MORGAN_SCARA)
  8001. /**
  8002. * Morgan SCARA Forward Kinematics. Results in cartes[].
  8003. * Maths and first version by QHARLEY.
  8004. * Integrated into Marlin and slightly restructured by Joachim Cerny.
  8005. */
  8006. void forward_kinematics_SCARA(const float &a, const float &b) {
  8007. float a_sin = sin(RADIANS(a)) * L1,
  8008. a_cos = cos(RADIANS(a)) * L1,
  8009. b_sin = sin(RADIANS(b)) * L2,
  8010. b_cos = cos(RADIANS(b)) * L2;
  8011. cartes[X_AXIS] = a_cos + b_cos + SCARA_OFFSET_X; //theta
  8012. cartes[Y_AXIS] = a_sin + b_sin + SCARA_OFFSET_Y; //theta+phi
  8013. /*
  8014. SERIAL_ECHOPAIR("SCARA FK Angle a=", a);
  8015. SERIAL_ECHOPAIR(" b=", b);
  8016. SERIAL_ECHOPAIR(" a_sin=", a_sin);
  8017. SERIAL_ECHOPAIR(" a_cos=", a_cos);
  8018. SERIAL_ECHOPAIR(" b_sin=", b_sin);
  8019. SERIAL_ECHOLNPAIR(" b_cos=", b_cos);
  8020. SERIAL_ECHOPAIR(" cartes[X_AXIS]=", cartes[X_AXIS]);
  8021. SERIAL_ECHOLNPAIR(" cartes[Y_AXIS]=", cartes[Y_AXIS]);
  8022. //*/
  8023. }
  8024. /**
  8025. * Morgan SCARA Inverse Kinematics. Results in delta[].
  8026. *
  8027. * See http://forums.reprap.org/read.php?185,283327
  8028. *
  8029. * Maths and first version by QHARLEY.
  8030. * Integrated into Marlin and slightly restructured by Joachim Cerny.
  8031. */
  8032. void inverse_kinematics(const float logical[XYZ]) {
  8033. static float C2, S2, SK1, SK2, THETA, PSI;
  8034. float sx = RAW_X_POSITION(logical[X_AXIS]) - SCARA_OFFSET_X, // Translate SCARA to standard X Y
  8035. sy = RAW_Y_POSITION(logical[Y_AXIS]) - SCARA_OFFSET_Y; // With scaling factor.
  8036. if (L1 == L2)
  8037. C2 = HYPOT2(sx, sy) / L1_2_2 - 1;
  8038. else
  8039. C2 = (HYPOT2(sx, sy) - (L1_2 + L2_2)) / (2.0 * L1 * L2);
  8040. S2 = sqrt(sq(C2) - 1);
  8041. // Unrotated Arm1 plus rotated Arm2 gives the distance from Center to End
  8042. SK1 = L1 + L2 * C2;
  8043. // Rotated Arm2 gives the distance from Arm1 to Arm2
  8044. SK2 = L2 * S2;
  8045. // Angle of Arm1 is the difference between Center-to-End angle and the Center-to-Elbow
  8046. THETA = atan2(SK1, SK2) - atan2(sx, sy);
  8047. // Angle of Arm2
  8048. PSI = atan2(S2, C2);
  8049. delta[A_AXIS] = DEGREES(THETA); // theta is support arm angle
  8050. delta[B_AXIS] = DEGREES(THETA + PSI); // equal to sub arm angle (inverted motor)
  8051. delta[C_AXIS] = logical[Z_AXIS];
  8052. /*
  8053. DEBUG_POS("SCARA IK", logical);
  8054. DEBUG_POS("SCARA IK", delta);
  8055. SERIAL_ECHOPAIR(" SCARA (x,y) ", sx);
  8056. SERIAL_ECHOPAIR(",", sy);
  8057. SERIAL_ECHOPAIR(" C2=", C2);
  8058. SERIAL_ECHOPAIR(" S2=", S2);
  8059. SERIAL_ECHOPAIR(" Theta=", THETA);
  8060. SERIAL_ECHOLNPAIR(" Phi=", PHI);
  8061. //*/
  8062. }
  8063. #endif // MORGAN_SCARA
  8064. #if ENABLED(TEMP_STAT_LEDS)
  8065. static bool red_led = false;
  8066. static millis_t next_status_led_update_ms = 0;
  8067. void handle_status_leds(void) {
  8068. if (ELAPSED(millis(), next_status_led_update_ms)) {
  8069. next_status_led_update_ms += 500; // Update every 0.5s
  8070. float max_temp = 0.0;
  8071. #if HAS_TEMP_BED
  8072. max_temp = MAX3(max_temp, thermalManager.degTargetBed(), thermalManager.degBed());
  8073. #endif
  8074. HOTEND_LOOP() {
  8075. max_temp = MAX3(max_temp, thermalManager.degHotend(e), thermalManager.degTargetHotend(e));
  8076. }
  8077. bool new_led = (max_temp > 55.0) ? true : (max_temp < 54.0) ? false : red_led;
  8078. if (new_led != red_led) {
  8079. red_led = new_led;
  8080. #if PIN_EXISTS(STAT_LED_RED)
  8081. WRITE(STAT_LED_RED_PIN, new_led ? HIGH : LOW);
  8082. #if PIN_EXISTS(STAT_LED_BLUE)
  8083. WRITE(STAT_LED_BLUE_PIN, new_led ? LOW : HIGH);
  8084. #endif
  8085. #else
  8086. WRITE(STAT_LED_BLUE_PIN, new_led ? HIGH : LOW);
  8087. #endif
  8088. }
  8089. }
  8090. }
  8091. #endif
  8092. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  8093. void handle_filament_runout() {
  8094. if (!filament_ran_out) {
  8095. filament_ran_out = true;
  8096. enqueue_and_echo_commands_P(PSTR(FILAMENT_RUNOUT_SCRIPT));
  8097. stepper.synchronize();
  8098. }
  8099. }
  8100. #endif // FILAMENT_RUNOUT_SENSOR
  8101. #if ENABLED(FAST_PWM_FAN)
  8102. void setPwmFrequency(uint8_t pin, int val) {
  8103. val &= 0x07;
  8104. switch (digitalPinToTimer(pin)) {
  8105. #if defined(TCCR0A)
  8106. case TIMER0A:
  8107. case TIMER0B:
  8108. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  8109. // TCCR0B |= val;
  8110. break;
  8111. #endif
  8112. #if defined(TCCR1A)
  8113. case TIMER1A:
  8114. case TIMER1B:
  8115. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  8116. // TCCR1B |= val;
  8117. break;
  8118. #endif
  8119. #if defined(TCCR2)
  8120. case TIMER2:
  8121. case TIMER2:
  8122. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  8123. TCCR2 |= val;
  8124. break;
  8125. #endif
  8126. #if defined(TCCR2A)
  8127. case TIMER2A:
  8128. case TIMER2B:
  8129. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  8130. TCCR2B |= val;
  8131. break;
  8132. #endif
  8133. #if defined(TCCR3A)
  8134. case TIMER3A:
  8135. case TIMER3B:
  8136. case TIMER3C:
  8137. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  8138. TCCR3B |= val;
  8139. break;
  8140. #endif
  8141. #if defined(TCCR4A)
  8142. case TIMER4A:
  8143. case TIMER4B:
  8144. case TIMER4C:
  8145. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  8146. TCCR4B |= val;
  8147. break;
  8148. #endif
  8149. #if defined(TCCR5A)
  8150. case TIMER5A:
  8151. case TIMER5B:
  8152. case TIMER5C:
  8153. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  8154. TCCR5B |= val;
  8155. break;
  8156. #endif
  8157. }
  8158. }
  8159. #endif // FAST_PWM_FAN
  8160. float calculate_volumetric_multiplier(float diameter) {
  8161. if (!volumetric_enabled || diameter == 0) return 1.0;
  8162. return 1.0 / (M_PI * diameter * 0.5 * diameter * 0.5);
  8163. }
  8164. void calculate_volumetric_multipliers() {
  8165. for (uint8_t i = 0; i < COUNT(filament_size); i++)
  8166. volumetric_multiplier[i] = calculate_volumetric_multiplier(filament_size[i]);
  8167. }
  8168. void enable_all_steppers() {
  8169. enable_x();
  8170. enable_y();
  8171. enable_z();
  8172. enable_e0();
  8173. enable_e1();
  8174. enable_e2();
  8175. enable_e3();
  8176. }
  8177. void disable_all_steppers() {
  8178. disable_x();
  8179. disable_y();
  8180. disable_z();
  8181. disable_e0();
  8182. disable_e1();
  8183. disable_e2();
  8184. disable_e3();
  8185. }
  8186. /**
  8187. * Manage several activities:
  8188. * - Check for Filament Runout
  8189. * - Keep the command buffer full
  8190. * - Check for maximum inactive time between commands
  8191. * - Check for maximum inactive time between stepper commands
  8192. * - Check if pin CHDK needs to go LOW
  8193. * - Check for KILL button held down
  8194. * - Check for HOME button held down
  8195. * - Check if cooling fan needs to be switched on
  8196. * - Check if an idle but hot extruder needs filament extruded (EXTRUDER_RUNOUT_PREVENT)
  8197. */
  8198. void manage_inactivity(bool ignore_stepper_queue/*=false*/) {
  8199. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  8200. if ((IS_SD_PRINTING || print_job_timer.isRunning()) && (READ(FIL_RUNOUT_PIN) == FIL_RUNOUT_INVERTING))
  8201. handle_filament_runout();
  8202. #endif
  8203. if (commands_in_queue < BUFSIZE) get_available_commands();
  8204. millis_t ms = millis();
  8205. if (max_inactive_time && ELAPSED(ms, previous_cmd_ms + max_inactive_time)) kill(PSTR(MSG_KILLED));
  8206. if (stepper_inactive_time && ELAPSED(ms, previous_cmd_ms + stepper_inactive_time)
  8207. && !ignore_stepper_queue && !planner.blocks_queued()) {
  8208. #if ENABLED(DISABLE_INACTIVE_X)
  8209. disable_x();
  8210. #endif
  8211. #if ENABLED(DISABLE_INACTIVE_Y)
  8212. disable_y();
  8213. #endif
  8214. #if ENABLED(DISABLE_INACTIVE_Z)
  8215. disable_z();
  8216. #endif
  8217. #if ENABLED(DISABLE_INACTIVE_E)
  8218. disable_e0();
  8219. disable_e1();
  8220. disable_e2();
  8221. disable_e3();
  8222. #endif
  8223. }
  8224. #ifdef CHDK // Check if pin should be set to LOW after M240 set it to HIGH
  8225. if (chdkActive && PENDING(ms, chdkHigh + CHDK_DELAY)) {
  8226. chdkActive = false;
  8227. WRITE(CHDK, LOW);
  8228. }
  8229. #endif
  8230. #if HAS_KILL
  8231. // Check if the kill button was pressed and wait just in case it was an accidental
  8232. // key kill key press
  8233. // -------------------------------------------------------------------------------
  8234. static int killCount = 0; // make the inactivity button a bit less responsive
  8235. const int KILL_DELAY = 750;
  8236. if (!READ(KILL_PIN))
  8237. killCount++;
  8238. else if (killCount > 0)
  8239. killCount--;
  8240. // Exceeded threshold and we can confirm that it was not accidental
  8241. // KILL the machine
  8242. // ----------------------------------------------------------------
  8243. if (killCount >= KILL_DELAY) kill(PSTR(MSG_KILLED));
  8244. #endif
  8245. #if HAS_HOME
  8246. // Check to see if we have to home, use poor man's debouncer
  8247. // ---------------------------------------------------------
  8248. static int homeDebounceCount = 0; // poor man's debouncing count
  8249. const int HOME_DEBOUNCE_DELAY = 2500;
  8250. if (!READ(HOME_PIN)) {
  8251. if (!homeDebounceCount) {
  8252. enqueue_and_echo_commands_P(PSTR("G28"));
  8253. LCD_MESSAGEPGM(MSG_AUTO_HOME);
  8254. }
  8255. if (homeDebounceCount < HOME_DEBOUNCE_DELAY)
  8256. homeDebounceCount++;
  8257. else
  8258. homeDebounceCount = 0;
  8259. }
  8260. #endif
  8261. #if HAS_CONTROLLERFAN
  8262. controllerFan(); // Check if fan should be turned on to cool stepper drivers down
  8263. #endif
  8264. #if ENABLED(EXTRUDER_RUNOUT_PREVENT)
  8265. if (ELAPSED(ms, previous_cmd_ms + (EXTRUDER_RUNOUT_SECONDS) * 1000UL)
  8266. && thermalManager.degHotend(active_extruder) > EXTRUDER_RUNOUT_MINTEMP) {
  8267. bool oldstatus;
  8268. #if ENABLED(SWITCHING_EXTRUDER)
  8269. oldstatus = E0_ENABLE_READ;
  8270. enable_e0();
  8271. #else // !SWITCHING_EXTRUDER
  8272. switch (active_extruder) {
  8273. case 0:
  8274. oldstatus = E0_ENABLE_READ;
  8275. enable_e0();
  8276. break;
  8277. #if E_STEPPERS > 1
  8278. case 1:
  8279. oldstatus = E1_ENABLE_READ;
  8280. enable_e1();
  8281. break;
  8282. #if E_STEPPERS > 2
  8283. case 2:
  8284. oldstatus = E2_ENABLE_READ;
  8285. enable_e2();
  8286. break;
  8287. #if E_STEPPERS > 3
  8288. case 3:
  8289. oldstatus = E3_ENABLE_READ;
  8290. enable_e3();
  8291. break;
  8292. #endif
  8293. #endif
  8294. #endif
  8295. }
  8296. #endif // !SWITCHING_EXTRUDER
  8297. previous_cmd_ms = ms; // refresh_cmd_timeout()
  8298. #if IS_KINEMATIC
  8299. inverse_kinematics(current_position);
  8300. ADJUST_DELTA(current_position);
  8301. planner.buffer_line(
  8302. delta[A_AXIS], delta[B_AXIS], delta[C_AXIS],
  8303. current_position[E_AXIS] + EXTRUDER_RUNOUT_EXTRUDE,
  8304. MMM_TO_MMS(EXTRUDER_RUNOUT_SPEED), active_extruder
  8305. );
  8306. #else
  8307. planner.buffer_line(
  8308. current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS],
  8309. current_position[E_AXIS] + EXTRUDER_RUNOUT_EXTRUDE,
  8310. MMM_TO_MMS(EXTRUDER_RUNOUT_SPEED), active_extruder
  8311. );
  8312. #endif
  8313. stepper.synchronize();
  8314. planner.set_e_position_mm(current_position[E_AXIS]);
  8315. #if ENABLED(SWITCHING_EXTRUDER)
  8316. E0_ENABLE_WRITE(oldstatus);
  8317. #else
  8318. switch (active_extruder) {
  8319. case 0:
  8320. E0_ENABLE_WRITE(oldstatus);
  8321. break;
  8322. #if E_STEPPERS > 1
  8323. case 1:
  8324. E1_ENABLE_WRITE(oldstatus);
  8325. break;
  8326. #if E_STEPPERS > 2
  8327. case 2:
  8328. E2_ENABLE_WRITE(oldstatus);
  8329. break;
  8330. #if E_STEPPERS > 3
  8331. case 3:
  8332. E3_ENABLE_WRITE(oldstatus);
  8333. break;
  8334. #endif
  8335. #endif
  8336. #endif
  8337. }
  8338. #endif // !SWITCHING_EXTRUDER
  8339. }
  8340. #endif // EXTRUDER_RUNOUT_PREVENT
  8341. #if ENABLED(DUAL_X_CARRIAGE)
  8342. // handle delayed move timeout
  8343. if (delayed_move_time && ELAPSED(ms, delayed_move_time + 1000UL) && IsRunning()) {
  8344. // travel moves have been received so enact them
  8345. delayed_move_time = 0xFFFFFFFFUL; // force moves to be done
  8346. set_destination_to_current();
  8347. prepare_move_to_destination();
  8348. }
  8349. #endif
  8350. #if ENABLED(TEMP_STAT_LEDS)
  8351. handle_status_leds();
  8352. #endif
  8353. planner.check_axes_activity();
  8354. }
  8355. /**
  8356. * Standard idle routine keeps the machine alive
  8357. */
  8358. void idle(
  8359. #if ENABLED(FILAMENT_CHANGE_FEATURE)
  8360. bool no_stepper_sleep/*=false*/
  8361. #endif
  8362. ) {
  8363. lcd_update();
  8364. host_keepalive();
  8365. #if ENABLED(AUTO_REPORT_TEMPERATURES) && (HAS_TEMP_HOTEND || HAS_TEMP_BED)
  8366. auto_report_temperatures();
  8367. #endif
  8368. manage_inactivity(
  8369. #if ENABLED(FILAMENT_CHANGE_FEATURE)
  8370. no_stepper_sleep
  8371. #endif
  8372. );
  8373. thermalManager.manage_heater();
  8374. #if ENABLED(PRINTCOUNTER)
  8375. print_job_timer.tick();
  8376. #endif
  8377. #if HAS_BUZZER && DISABLED(LCD_USE_I2C_BUZZER)
  8378. buzzer.tick();
  8379. #endif
  8380. }
  8381. /**
  8382. * Kill all activity and lock the machine.
  8383. * After this the machine will need to be reset.
  8384. */
  8385. void kill(const char* lcd_msg) {
  8386. SERIAL_ERROR_START;
  8387. SERIAL_ERRORLNPGM(MSG_ERR_KILLED);
  8388. #if ENABLED(ULTRA_LCD)
  8389. kill_screen(lcd_msg);
  8390. #else
  8391. UNUSED(lcd_msg);
  8392. #endif
  8393. delay(500); // Wait a short time
  8394. cli(); // Stop interrupts
  8395. thermalManager.disable_all_heaters();
  8396. disable_all_steppers();
  8397. #if HAS_POWER_SWITCH
  8398. pinMode(PS_ON_PIN, INPUT);
  8399. #endif
  8400. suicide();
  8401. while (1) {
  8402. #if ENABLED(USE_WATCHDOG)
  8403. watchdog_reset();
  8404. #endif
  8405. } // Wait for reset
  8406. }
  8407. /**
  8408. * Turn off heaters and stop the print in progress
  8409. * After a stop the machine may be resumed with M999
  8410. */
  8411. void stop() {
  8412. thermalManager.disable_all_heaters();
  8413. if (IsRunning()) {
  8414. Running = false;
  8415. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  8416. SERIAL_ERROR_START;
  8417. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  8418. LCD_MESSAGEPGM(MSG_STOPPED);
  8419. }
  8420. }
  8421. /**
  8422. * Marlin entry-point: Set up before the program loop
  8423. * - Set up the kill pin, filament runout, power hold
  8424. * - Start the serial port
  8425. * - Print startup messages and diagnostics
  8426. * - Get EEPROM or default settings
  8427. * - Initialize managers for:
  8428. * • temperature
  8429. * • planner
  8430. * • watchdog
  8431. * • stepper
  8432. * • photo pin
  8433. * • servos
  8434. * • LCD controller
  8435. * • Digipot I2C
  8436. * • Z probe sled
  8437. * • status LEDs
  8438. */
  8439. void setup() {
  8440. #ifdef DISABLE_JTAG
  8441. // Disable JTAG on AT90USB chips to free up pins for IO
  8442. MCUCR = 0x80;
  8443. MCUCR = 0x80;
  8444. #endif
  8445. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  8446. setup_filrunoutpin();
  8447. #endif
  8448. setup_killpin();
  8449. setup_powerhold();
  8450. #if HAS_STEPPER_RESET
  8451. disableStepperDrivers();
  8452. #endif
  8453. MYSERIAL.begin(BAUDRATE);
  8454. SERIAL_PROTOCOLLNPGM("start");
  8455. SERIAL_ECHO_START;
  8456. // Check startup - does nothing if bootloader sets MCUSR to 0
  8457. byte mcu = MCUSR;
  8458. if (mcu & 1) SERIAL_ECHOLNPGM(MSG_POWERUP);
  8459. if (mcu & 2) SERIAL_ECHOLNPGM(MSG_EXTERNAL_RESET);
  8460. if (mcu & 4) SERIAL_ECHOLNPGM(MSG_BROWNOUT_RESET);
  8461. if (mcu & 8) SERIAL_ECHOLNPGM(MSG_WATCHDOG_RESET);
  8462. if (mcu & 32) SERIAL_ECHOLNPGM(MSG_SOFTWARE_RESET);
  8463. MCUSR = 0;
  8464. SERIAL_ECHOPGM(MSG_MARLIN);
  8465. SERIAL_CHAR(' ');
  8466. SERIAL_ECHOLNPGM(SHORT_BUILD_VERSION);
  8467. SERIAL_EOL;
  8468. #if defined(STRING_DISTRIBUTION_DATE) && defined(STRING_CONFIG_H_AUTHOR)
  8469. SERIAL_ECHO_START;
  8470. SERIAL_ECHOPGM(MSG_CONFIGURATION_VER);
  8471. SERIAL_ECHOPGM(STRING_DISTRIBUTION_DATE);
  8472. SERIAL_ECHOLNPGM(MSG_AUTHOR STRING_CONFIG_H_AUTHOR);
  8473. SERIAL_ECHOLNPGM("Compiled: " __DATE__);
  8474. #endif
  8475. SERIAL_ECHO_START;
  8476. SERIAL_ECHOPAIR(MSG_FREE_MEMORY, freeMemory());
  8477. SERIAL_ECHOLNPAIR(MSG_PLANNER_BUFFER_BYTES, (int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  8478. // Send "ok" after commands by default
  8479. for (int8_t i = 0; i < BUFSIZE; i++) send_ok[i] = true;
  8480. // Load data from EEPROM if available (or use defaults)
  8481. // This also updates variables in the planner, elsewhere
  8482. Config_RetrieveSettings();
  8483. // Initialize current position based on home_offset
  8484. memcpy(current_position, home_offset, sizeof(home_offset));
  8485. // Vital to init stepper/planner equivalent for current_position
  8486. SYNC_PLAN_POSITION_KINEMATIC();
  8487. thermalManager.init(); // Initialize temperature loop
  8488. #if ENABLED(USE_WATCHDOG)
  8489. watchdog_init();
  8490. #endif
  8491. stepper.init(); // Initialize stepper, this enables interrupts!
  8492. servo_init();
  8493. #if HAS_PHOTOGRAPH
  8494. OUT_WRITE(PHOTOGRAPH_PIN, LOW);
  8495. #endif
  8496. #if HAS_CASE_LIGHT
  8497. update_case_light();
  8498. #endif
  8499. #if HAS_BED_PROBE
  8500. endstops.enable_z_probe(false);
  8501. #endif
  8502. #if HAS_CONTROLLERFAN
  8503. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  8504. #endif
  8505. #if HAS_STEPPER_RESET
  8506. enableStepperDrivers();
  8507. #endif
  8508. #if ENABLED(DIGIPOT_I2C)
  8509. digipot_i2c_init();
  8510. #endif
  8511. #if ENABLED(DAC_STEPPER_CURRENT)
  8512. dac_init();
  8513. #endif
  8514. #if ENABLED(Z_PROBE_SLED) && PIN_EXISTS(SLED)
  8515. OUT_WRITE(SLED_PIN, LOW); // turn it off
  8516. #endif // Z_PROBE_SLED
  8517. setup_homepin();
  8518. #if PIN_EXISTS(STAT_LED_RED)
  8519. OUT_WRITE(STAT_LED_RED_PIN, LOW); // turn it off
  8520. #endif
  8521. #if PIN_EXISTS(STAT_LED_BLUE)
  8522. OUT_WRITE(STAT_LED_BLUE_PIN, LOW); // turn it off
  8523. #endif
  8524. #if ENABLED(RGB_LED)
  8525. pinMode(RGB_LED_R_PIN, OUTPUT);
  8526. pinMode(RGB_LED_G_PIN, OUTPUT);
  8527. pinMode(RGB_LED_B_PIN, OUTPUT);
  8528. #endif
  8529. lcd_init();
  8530. #if ENABLED(SHOW_BOOTSCREEN)
  8531. #if ENABLED(DOGLCD)
  8532. safe_delay(BOOTSCREEN_TIMEOUT);
  8533. #elif ENABLED(ULTRA_LCD)
  8534. bootscreen();
  8535. #if DISABLED(SDSUPPORT)
  8536. lcd_init();
  8537. #endif
  8538. #endif
  8539. #endif
  8540. #if ENABLED(MIXING_EXTRUDER) && MIXING_VIRTUAL_TOOLS > 1
  8541. // Initialize mixing to 100% color 1
  8542. for (uint8_t i = 0; i < MIXING_STEPPERS; i++)
  8543. mixing_factor[i] = (i == 0) ? 1.0 : 0.0;
  8544. for (uint8_t t = 0; t < MIXING_VIRTUAL_TOOLS; t++)
  8545. for (uint8_t i = 0; i < MIXING_STEPPERS; i++)
  8546. mixing_virtual_tool_mix[t][i] = mixing_factor[i];
  8547. #endif
  8548. #if ENABLED(EXPERIMENTAL_I2CBUS) && I2C_SLAVE_ADDRESS > 0
  8549. i2c.onReceive(i2c_on_receive);
  8550. i2c.onRequest(i2c_on_request);
  8551. #endif
  8552. #if ENABLED(ENDSTOP_INTERRUPTS_FEATURE)
  8553. setup_endstop_interrupts();
  8554. #endif
  8555. }
  8556. /**
  8557. * The main Marlin program loop
  8558. *
  8559. * - Save or log commands to SD
  8560. * - Process available commands (if not saving)
  8561. * - Call heater manager
  8562. * - Call inactivity manager
  8563. * - Call endstop manager
  8564. * - Call LCD update
  8565. */
  8566. void loop() {
  8567. if (commands_in_queue < BUFSIZE) get_available_commands();
  8568. #if ENABLED(SDSUPPORT)
  8569. card.checkautostart(false);
  8570. #endif
  8571. if (commands_in_queue) {
  8572. #if ENABLED(SDSUPPORT)
  8573. if (card.saving) {
  8574. char* command = command_queue[cmd_queue_index_r];
  8575. if (strstr_P(command, PSTR("M29"))) {
  8576. // M29 closes the file
  8577. card.closefile();
  8578. SERIAL_PROTOCOLLNPGM(MSG_FILE_SAVED);
  8579. ok_to_send();
  8580. }
  8581. else {
  8582. // Write the string from the read buffer to SD
  8583. card.write_command(command);
  8584. if (card.logging)
  8585. process_next_command(); // The card is saving because it's logging
  8586. else
  8587. ok_to_send();
  8588. }
  8589. }
  8590. else
  8591. process_next_command();
  8592. #else
  8593. process_next_command();
  8594. #endif // SDSUPPORT
  8595. // The queue may be reset by a command handler or by code invoked by idle() within a handler
  8596. if (commands_in_queue) {
  8597. --commands_in_queue;
  8598. cmd_queue_index_r = (cmd_queue_index_r + 1) % BUFSIZE;
  8599. }
  8600. }
  8601. endstops.report_state();
  8602. idle();
  8603. }