My Marlin configs for Fabrikator Mini and CTC i3 Pro B
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

Marlin_main.cpp 261KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530753175327533753475357536753775387539754075417542754375447545754675477548754975507551755275537554755575567557755875597560756175627563756475657566756775687569757075717572757375747575757675777578757975807581758275837584758575867587758875897590759175927593759475957596759775987599760076017602760376047605760676077608760976107611761276137614761576167617761876197620762176227623762476257626762776287629763076317632763376347635763676377638763976407641764276437644764576467647764876497650765176527653765476557656765776587659766076617662766376647665766676677668766976707671767276737674767576767677767876797680768176827683768476857686768776887689769076917692769376947695769676977698769977007701770277037704770577067707770877097710771177127713771477157716771777187719772077217722772377247725772677277728772977307731773277337734773577367737773877397740774177427743774477457746774777487749775077517752775377547755775677577758775977607761776277637764776577667767776877697770777177727773777477757776777777787779778077817782778377847785778677877788778977907791779277937794779577967797779877997800780178027803780478057806780778087809781078117812781378147815781678177818781978207821782278237824782578267827782878297830783178327833783478357836783778387839784078417842784378447845784678477848784978507851785278537854785578567857785878597860786178627863786478657866786778687869787078717872787378747875787678777878787978807881788278837884788578867887788878897890789178927893789478957896789778987899790079017902790379047905790679077908790979107911791279137914791579167917791879197920792179227923792479257926792779287929793079317932793379347935793679377938793979407941794279437944794579467947794879497950795179527953795479557956795779587959796079617962796379647965796679677968796979707971797279737974797579767977797879797980798179827983798479857986798779887989799079917992799379947995799679977998799980008001800280038004800580068007800880098010801180128013801480158016801780188019802080218022802380248025802680278028802980308031803280338034803580368037803880398040804180428043804480458046804780488049805080518052805380548055805680578058805980608061806280638064806580668067806880698070807180728073807480758076807780788079808080818082808380848085808680878088808980908091809280938094809580968097809880998100810181028103810481058106810781088109811081118112811381148115811681178118811981208121812281238124812581268127812881298130813181328133813481358136813781388139814081418142814381448145814681478148814981508151815281538154815581568157815881598160816181628163816481658166816781688169817081718172817381748175817681778178817981808181818281838184818581868187818881898190819181928193819481958196819781988199820082018202820382048205820682078208820982108211821282138214821582168217821882198220822182228223822482258226822782288229823082318232823382348235823682378238823982408241824282438244824582468247824882498250825182528253825482558256825782588259826082618262826382648265826682678268826982708271827282738274827582768277827882798280828182828283828482858286828782888289829082918292829382948295829682978298829983008301830283038304830583068307830883098310831183128313831483158316831783188319832083218322832383248325832683278328832983308331833283338334833583368337833883398340834183428343834483458346834783488349835083518352835383548355835683578358835983608361836283638364836583668367836883698370837183728373837483758376837783788379838083818382838383848385838683878388838983908391839283938394839583968397839883998400840184028403840484058406840784088409841084118412
  1. /**
  2. * Marlin 3D Printer Firmware
  3. * Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
  4. *
  5. * Based on Sprinter and grbl.
  6. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  7. *
  8. * This program is free software: you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation, either version 3 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  20. *
  21. */
  22. /**
  23. *
  24. * About Marlin
  25. *
  26. * This firmware is a mashup between Sprinter and grbl.
  27. * - https://github.com/kliment/Sprinter
  28. * - https://github.com/simen/grbl/tree
  29. *
  30. * It has preliminary support for Matthew Roberts advance algorithm
  31. * - http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  32. */
  33. #include "Marlin.h"
  34. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  35. #include "vector_3.h"
  36. #if ENABLED(AUTO_BED_LEVELING_GRID)
  37. #include "qr_solve.h"
  38. #endif
  39. #endif // AUTO_BED_LEVELING_FEATURE
  40. #if ENABLED(MESH_BED_LEVELING)
  41. #include "mesh_bed_leveling.h"
  42. #endif
  43. #if ENABLED(BEZIER_CURVE_SUPPORT)
  44. #include "planner_bezier.h"
  45. #endif
  46. #include "ultralcd.h"
  47. #include "planner.h"
  48. #include "stepper.h"
  49. #include "endstops.h"
  50. #include "temperature.h"
  51. #include "cardreader.h"
  52. #include "configuration_store.h"
  53. #include "language.h"
  54. #include "pins_arduino.h"
  55. #include "math.h"
  56. #if ENABLED(USE_WATCHDOG)
  57. #include "watchdog.h"
  58. #endif
  59. #if ENABLED(BLINKM)
  60. #include "blinkm.h"
  61. #include "Wire.h"
  62. #endif
  63. #if HAS_SERVOS
  64. #include "servo.h"
  65. #endif
  66. #if HAS_DIGIPOTSS
  67. #include <SPI.h>
  68. #endif
  69. #if ENABLED(DAC_STEPPER_CURRENT)
  70. #include "stepper_dac.h"
  71. #endif
  72. #if ENABLED(EXPERIMENTAL_I2CBUS)
  73. #include "twibus.h"
  74. #endif
  75. /**
  76. * Look here for descriptions of G-codes:
  77. * - http://linuxcnc.org/handbook/gcode/g-code.html
  78. * - http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  79. *
  80. * Help us document these G-codes online:
  81. * - https://github.com/MarlinFirmware/Marlin/wiki/G-Code-in-Marlin
  82. * - http://reprap.org/wiki/G-code
  83. *
  84. * -----------------
  85. * Implemented Codes
  86. * -----------------
  87. *
  88. * "G" Codes
  89. *
  90. * G0 -> G1
  91. * G1 - Coordinated Movement X Y Z E
  92. * G2 - CW ARC
  93. * G3 - CCW ARC
  94. * G4 - Dwell S<seconds> or P<milliseconds>
  95. * G5 - Cubic B-spline with XYZE destination and IJPQ offsets
  96. * G10 - retract filament according to settings of M207
  97. * G11 - retract recover filament according to settings of M208
  98. * G20 - Set input units to inches
  99. * G21 - Set input units to millimeters
  100. * G28 - Home one or more axes
  101. * G29 - Detailed Z probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  102. * G30 - Single Z probe, probes bed at current XY location.
  103. * G31 - Dock sled (Z_PROBE_SLED only)
  104. * G32 - Undock sled (Z_PROBE_SLED only)
  105. * G90 - Use Absolute Coordinates
  106. * G91 - Use Relative Coordinates
  107. * G92 - Set current position to coordinates given
  108. *
  109. * "M" Codes
  110. *
  111. * M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
  112. * M1 - Same as M0
  113. * M17 - Enable/Power all stepper motors
  114. * M18 - Disable all stepper motors; same as M84
  115. * M20 - List SD card
  116. * M21 - Init SD card
  117. * M22 - Release SD card
  118. * M23 - Select SD file (M23 filename.g)
  119. * M24 - Start/resume SD print
  120. * M25 - Pause SD print
  121. * M26 - Set SD position in bytes (M26 S12345)
  122. * M27 - Report SD print status
  123. * M28 - Start SD write (M28 filename.g)
  124. * M29 - Stop SD write
  125. * M30 - Delete file from SD (M30 filename.g)
  126. * M31 - Output time since last M109 or SD card start to serial
  127. * M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  128. * syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  129. * Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
  130. * The '#' is necessary when calling from within sd files, as it stops buffer prereading
  131. * M33 - Get the longname version of a path
  132. * M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  133. * M48 - Measure Z_Probe repeatability. M48 [P # of points] [X position] [Y position] [V_erboseness #] [E_ngage Probe] [L # of legs of travel]
  134. * M75 - Start the print job timer
  135. * M76 - Pause the print job timer
  136. * M77 - Stop the print job timer
  137. * M78 - Show statistical information about the print jobs
  138. * M80 - Turn on Power Supply
  139. * M81 - Turn off Power Supply
  140. * M82 - Set E codes absolute (default)
  141. * M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  142. * M84 - Disable steppers until next move,
  143. * or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  144. * M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  145. * M92 - Set planner.axis_steps_per_mm - same syntax as G92
  146. * M104 - Set extruder target temp
  147. * M105 - Read current temp
  148. * M106 - Fan on
  149. * M107 - Fan off
  150. * M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  151. * Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  152. * IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  153. * M110 - Set the current line number
  154. * M111 - Set debug flags with S<mask>. See flag bits defined in Marlin.h.
  155. * M112 - Emergency stop
  156. * M113 - Get or set the timeout interval for Host Keepalive "busy" messages
  157. * M114 - Output current position to serial port
  158. * M115 - Capabilities string
  159. * M117 - Display a message on the controller screen
  160. * M119 - Output Endstop status to serial port
  161. * M120 - Enable endstop detection
  162. * M121 - Disable endstop detection
  163. * M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  164. * M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  165. * M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  166. * M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  167. * M140 - Set bed target temp
  168. * M145 - Set the heatup state H<hotend> B<bed> F<fan speed> for S<material> (0=PLA, 1=ABS)
  169. * M149 - Set temperature units
  170. * M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  171. * M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  172. * Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  173. * M200 - set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).:D<millimeters>-
  174. * M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  175. * M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  176. * M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  177. * M204 - Set default acceleration: P for Printing moves, R for Retract only (no X, Y, Z) moves and T for Travel (non printing) moves (ex. M204 P800 T3000 R9000) in mm/sec^2
  178. * M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
  179. * M206 - Set additional homing offset
  180. * M207 - Set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
  181. * M208 - Set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  182. * M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  183. * M218 - Set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  184. * M220 - Set speed factor override percentage: S<factor in percent>
  185. * M221 - Set extrude factor override percentage: S<factor in percent>
  186. * M226 - Wait until the specified pin reaches the state required: P<pin number> S<pin state>
  187. * M240 - Trigger a camera to take a photograph
  188. * M250 - Set LCD contrast C<contrast value> (value 0..63)
  189. * M280 - Set servo position absolute. P: servo index, S: angle or microseconds
  190. * M300 - Play beep sound S<frequency Hz> P<duration ms>
  191. * M301 - Set PID parameters P I and D
  192. * M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  193. * M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  194. * M304 - Set bed PID parameters P I and D
  195. * M380 - Activate solenoid on active extruder
  196. * M381 - Disable all solenoids
  197. * M400 - Finish all moves
  198. * M401 - Lower Z probe if present
  199. * M402 - Raise Z probe if present
  200. * M404 - N<dia in mm> Enter the nominal filament width (3mm, 1.75mm ) or will display nominal filament width without parameters
  201. * M405 - Turn on Filament Sensor extrusion control. Optional D<delay in cm> to set delay in centimeters between sensor and extruder
  202. * M406 - Turn off Filament Sensor extrusion control
  203. * M407 - Display measured filament diameter
  204. * M410 - Quickstop. Abort all the planned moves
  205. * M420 - Enable/Disable Mesh Leveling (with current values) S1=enable S0=disable
  206. * M421 - Set a single Z coordinate in the Mesh Leveling grid. X<mm> Y<mm> Z<mm>
  207. * M428 - Set the home_offset logically based on the current_position
  208. * M500 - Store parameters in EEPROM
  209. * M501 - Read parameters from EEPROM (if you need reset them after you changed them temporarily).
  210. * M502 - Revert to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  211. * M503 - Print the current settings (from memory not from EEPROM). Use S0 to leave off headings.
  212. * M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  213. * M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  214. * M665 - Set delta configurations: L<diagonal rod> R<delta radius> S<segments/s>
  215. * M666 - Set delta endstop adjustment
  216. * M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  217. * M851 - Set Z probe's Z offset (mm). Set to a negative value for probes that trigger below the nozzle.
  218. * M907 - Set digital trimpot motor current using axis codes.
  219. * M908 - Control digital trimpot directly.
  220. * M909 - DAC_STEPPER_CURRENT: Print digipot/DAC current value
  221. * M910 - DAC_STEPPER_CURRENT: Commit digipot/DAC value to external EEPROM via I2C
  222. * M350 - Set microstepping mode.
  223. * M351 - Toggle MS1 MS2 pins directly.
  224. *
  225. * ************ SCARA Specific - This can change to suit future G-code regulations
  226. * M360 - SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  227. * M361 - SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  228. * M362 - SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  229. * M363 - SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  230. * M364 - SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
  231. * M365 - SCARA calibration: Scaling factor, X, Y, Z axis
  232. * ************* SCARA End ***************
  233. *
  234. * ************ Custom codes - This can change to suit future G-code regulations
  235. * M100 - Watch Free Memory (For Debugging Only)
  236. * M928 - Start SD logging (M928 filename.g) - ended by M29
  237. * M999 - Restart after being stopped by error
  238. *
  239. * "T" Codes
  240. *
  241. * T0-T3 - Select a tool by index (usually an extruder) [ F<mm/min> ]
  242. *
  243. */
  244. #if ENABLED(M100_FREE_MEMORY_WATCHER)
  245. void gcode_M100();
  246. #endif
  247. #if ENABLED(SDSUPPORT)
  248. CardReader card;
  249. #endif
  250. #if ENABLED(EXPERIMENTAL_I2CBUS)
  251. TWIBus i2c;
  252. #endif
  253. bool Running = true;
  254. uint8_t marlin_debug_flags = DEBUG_NONE;
  255. static float feedrate = 1500.0, saved_feedrate;
  256. float current_position[NUM_AXIS] = { 0.0 };
  257. static float destination[NUM_AXIS] = { 0.0 };
  258. bool axis_known_position[3] = { false };
  259. bool axis_homed[3] = { false };
  260. static long gcode_N, gcode_LastN, Stopped_gcode_LastN = 0;
  261. static char* current_command, *current_command_args;
  262. static int cmd_queue_index_r = 0;
  263. static int cmd_queue_index_w = 0;
  264. static int commands_in_queue = 0;
  265. static char command_queue[BUFSIZE][MAX_CMD_SIZE];
  266. #if ENABLED(INCH_MODE_SUPPORT)
  267. float linear_unit_factor = 1.0;
  268. float volumetric_unit_factor = 1.0;
  269. #endif
  270. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  271. TempUnit input_temp_units = TEMPUNIT_C;
  272. #endif
  273. const float homing_feedrate[] = HOMING_FEEDRATE;
  274. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  275. int feedrate_multiplier = 100; //100->1 200->2
  276. int saved_feedrate_multiplier;
  277. int extruder_multiplier[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(100);
  278. bool volumetric_enabled = false;
  279. float filament_size[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(DEFAULT_NOMINAL_FILAMENT_DIA);
  280. float volumetric_multiplier[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(1.0);
  281. // The distance that XYZ has been offset by G92. Reset by G28.
  282. float position_shift[3] = { 0 };
  283. // This offset is added to the configured home position.
  284. // Set by M206, M428, or menu item. Saved to EEPROM.
  285. float home_offset[3] = { 0 };
  286. // Software Endstops. Default to configured limits.
  287. float sw_endstop_min[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  288. float sw_endstop_max[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  289. #if FAN_COUNT > 0
  290. int fanSpeeds[FAN_COUNT] = { 0 };
  291. #endif
  292. // The active extruder (tool). Set with T<extruder> command.
  293. uint8_t active_extruder = 0;
  294. // Relative Mode. Enable with G91, disable with G90.
  295. static bool relative_mode = false;
  296. bool cancel_heatup = false;
  297. const char errormagic[] PROGMEM = "Error:";
  298. const char echomagic[] PROGMEM = "echo:";
  299. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  300. static int serial_count = 0;
  301. // GCode parameter pointer used by code_seen(), code_value_float(), etc.
  302. static char* seen_pointer;
  303. // Next Immediate GCode Command pointer. NULL if none.
  304. const char* queued_commands_P = NULL;
  305. const int sensitive_pins[] = SENSITIVE_PINS; ///< Sensitive pin list for M42
  306. // Inactivity shutdown
  307. millis_t previous_cmd_ms = 0;
  308. static millis_t max_inactive_time = 0;
  309. static millis_t stepper_inactive_time = (DEFAULT_STEPPER_DEACTIVE_TIME) * 1000UL;
  310. // Print Job Timer
  311. #if ENABLED(PRINTCOUNTER)
  312. PrintCounter print_job_timer = PrintCounter();
  313. #else
  314. Stopwatch print_job_timer = Stopwatch();
  315. #endif
  316. // Buzzer
  317. #if HAS_BUZZER
  318. #if ENABLED(SPEAKER)
  319. Speaker buzzer;
  320. #else
  321. Buzzer buzzer;
  322. #endif
  323. #endif
  324. static uint8_t target_extruder;
  325. #if HAS_BED_PROBE
  326. float zprobe_zoffset = Z_PROBE_OFFSET_FROM_EXTRUDER;
  327. #endif
  328. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  329. int xy_travel_speed = XY_TRAVEL_SPEED;
  330. bool bed_leveling_in_progress = false;
  331. #endif
  332. #if ENABLED(Z_DUAL_ENDSTOPS) && DISABLED(DELTA)
  333. float z_endstop_adj = 0;
  334. #endif
  335. // Extruder offsets
  336. #if HOTENDS > 1
  337. #ifndef HOTEND_OFFSET_X
  338. #define HOTEND_OFFSET_X { 0 } // X offsets for each extruder
  339. #endif
  340. #ifndef HOTEND_OFFSET_Y
  341. #define HOTEND_OFFSET_Y { 0 } // Y offsets for each extruder
  342. #endif
  343. float hotend_offset[][HOTENDS] = {
  344. HOTEND_OFFSET_X,
  345. HOTEND_OFFSET_Y
  346. #if ENABLED(DUAL_X_CARRIAGE)
  347. , { 0 } // Z offsets for each extruder
  348. #endif
  349. };
  350. #endif
  351. #if HAS_Z_SERVO_ENDSTOP
  352. const int z_servo_angle[2] = Z_SERVO_ANGLES;
  353. #endif
  354. #if ENABLED(BARICUDA)
  355. int baricuda_valve_pressure = 0;
  356. int baricuda_e_to_p_pressure = 0;
  357. #endif
  358. #if ENABLED(FWRETRACT)
  359. bool autoretract_enabled = false;
  360. bool retracted[EXTRUDERS] = { false };
  361. bool retracted_swap[EXTRUDERS] = { false };
  362. float retract_length = RETRACT_LENGTH;
  363. float retract_length_swap = RETRACT_LENGTH_SWAP;
  364. float retract_feedrate = RETRACT_FEEDRATE;
  365. float retract_zlift = RETRACT_ZLIFT;
  366. float retract_recover_length = RETRACT_RECOVER_LENGTH;
  367. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  368. float retract_recover_feedrate = RETRACT_RECOVER_FEEDRATE;
  369. #endif // FWRETRACT
  370. #if ENABLED(ULTIPANEL) && HAS_POWER_SWITCH
  371. bool powersupply =
  372. #if ENABLED(PS_DEFAULT_OFF)
  373. false
  374. #else
  375. true
  376. #endif
  377. ;
  378. #endif
  379. #if ENABLED(DELTA)
  380. #define TOWER_1 X_AXIS
  381. #define TOWER_2 Y_AXIS
  382. #define TOWER_3 Z_AXIS
  383. float delta[3] = { 0 };
  384. #define SIN_60 0.8660254037844386
  385. #define COS_60 0.5
  386. float endstop_adj[3] = { 0 };
  387. // these are the default values, can be overriden with M665
  388. float delta_radius = DELTA_RADIUS;
  389. float delta_tower1_x = -SIN_60 * (delta_radius + DELTA_RADIUS_TRIM_TOWER_1); // front left tower
  390. float delta_tower1_y = -COS_60 * (delta_radius + DELTA_RADIUS_TRIM_TOWER_1);
  391. float delta_tower2_x = SIN_60 * (delta_radius + DELTA_RADIUS_TRIM_TOWER_2); // front right tower
  392. float delta_tower2_y = -COS_60 * (delta_radius + DELTA_RADIUS_TRIM_TOWER_2);
  393. float delta_tower3_x = 0; // back middle tower
  394. float delta_tower3_y = (delta_radius + DELTA_RADIUS_TRIM_TOWER_3);
  395. float delta_diagonal_rod = DELTA_DIAGONAL_ROD;
  396. float delta_diagonal_rod_trim_tower_1 = DELTA_DIAGONAL_ROD_TRIM_TOWER_1;
  397. float delta_diagonal_rod_trim_tower_2 = DELTA_DIAGONAL_ROD_TRIM_TOWER_2;
  398. float delta_diagonal_rod_trim_tower_3 = DELTA_DIAGONAL_ROD_TRIM_TOWER_3;
  399. float delta_diagonal_rod_2_tower_1 = sq(delta_diagonal_rod + delta_diagonal_rod_trim_tower_1);
  400. float delta_diagonal_rod_2_tower_2 = sq(delta_diagonal_rod + delta_diagonal_rod_trim_tower_2);
  401. float delta_diagonal_rod_2_tower_3 = sq(delta_diagonal_rod + delta_diagonal_rod_trim_tower_3);
  402. //float delta_diagonal_rod_2 = sq(delta_diagonal_rod);
  403. float delta_segments_per_second = DELTA_SEGMENTS_PER_SECOND;
  404. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  405. int delta_grid_spacing[2] = { 0, 0 };
  406. float bed_level[AUTO_BED_LEVELING_GRID_POINTS][AUTO_BED_LEVELING_GRID_POINTS];
  407. #endif
  408. #else
  409. static bool home_all_axis = true;
  410. #endif
  411. #if ENABLED(SCARA)
  412. float delta_segments_per_second = SCARA_SEGMENTS_PER_SECOND;
  413. static float delta[3] = { 0 };
  414. float axis_scaling[3] = { 1, 1, 1 }; // Build size scaling, default to 1
  415. #endif
  416. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  417. //Variables for Filament Sensor input
  418. float filament_width_nominal = DEFAULT_NOMINAL_FILAMENT_DIA; //Set nominal filament width, can be changed with M404
  419. bool filament_sensor = false; //M405 turns on filament_sensor control, M406 turns it off
  420. float filament_width_meas = DEFAULT_MEASURED_FILAMENT_DIA; //Stores the measured filament diameter
  421. int8_t measurement_delay[MAX_MEASUREMENT_DELAY + 1]; //ring buffer to delay measurement store extruder factor after subtracting 100
  422. int filwidth_delay_index1 = 0; //index into ring buffer
  423. int filwidth_delay_index2 = -1; //index into ring buffer - set to -1 on startup to indicate ring buffer needs to be initialized
  424. int meas_delay_cm = MEASUREMENT_DELAY_CM; //distance delay setting
  425. #endif
  426. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  427. static bool filament_ran_out = false;
  428. #endif
  429. static bool send_ok[BUFSIZE];
  430. #if HAS_SERVOS
  431. Servo servo[NUM_SERVOS];
  432. #define MOVE_SERVO(I, P) servo[I].move(P)
  433. #define DEPLOY_Z_SERVO() MOVE_SERVO(Z_ENDSTOP_SERVO_NR, z_servo_angle[0])
  434. #define STOW_Z_SERVO() MOVE_SERVO(Z_ENDSTOP_SERVO_NR, z_servo_angle[1])
  435. #endif
  436. #ifdef CHDK
  437. millis_t chdkHigh = 0;
  438. boolean chdkActive = false;
  439. #endif
  440. #if ENABLED(PID_ADD_EXTRUSION_RATE)
  441. int lpq_len = 20;
  442. #endif
  443. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  444. // States for managing Marlin and host communication
  445. // Marlin sends messages if blocked or busy
  446. enum MarlinBusyState {
  447. NOT_BUSY, // Not in a handler
  448. IN_HANDLER, // Processing a GCode
  449. IN_PROCESS, // Known to be blocking command input (as in G29)
  450. PAUSED_FOR_USER, // Blocking pending any input
  451. PAUSED_FOR_INPUT // Blocking pending text input (concept)
  452. };
  453. static MarlinBusyState busy_state = NOT_BUSY;
  454. static millis_t next_busy_signal_ms = 0;
  455. uint8_t host_keepalive_interval = DEFAULT_KEEPALIVE_INTERVAL;
  456. #define KEEPALIVE_STATE(n) do{ busy_state = n; }while(0)
  457. #else
  458. #define host_keepalive() ;
  459. #define KEEPALIVE_STATE(n) ;
  460. #endif // HOST_KEEPALIVE_FEATURE
  461. /**
  462. * ***************************************************************************
  463. * ******************************** FUNCTIONS ********************************
  464. * ***************************************************************************
  465. */
  466. void stop();
  467. void get_available_commands();
  468. void process_next_command();
  469. void prepare_move_to_destination();
  470. #if ENABLED(ARC_SUPPORT)
  471. void plan_arc(float target[NUM_AXIS], float* offset, uint8_t clockwise);
  472. #endif
  473. #if ENABLED(BEZIER_CURVE_SUPPORT)
  474. void plan_cubic_move(const float offset[4]);
  475. #endif
  476. void serial_echopair_P(const char* s_P, int v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  477. void serial_echopair_P(const char* s_P, long v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  478. void serial_echopair_P(const char* s_P, float v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  479. void serial_echopair_P(const char* s_P, double v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  480. void serial_echopair_P(const char* s_P, unsigned long v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  481. static void report_current_position();
  482. #if ENABLED(DEBUG_LEVELING_FEATURE)
  483. void print_xyz(const char* prefix, const float x, const float y, const float z) {
  484. SERIAL_ECHO(prefix);
  485. SERIAL_ECHOPAIR(": (", x);
  486. SERIAL_ECHOPAIR(", ", y);
  487. SERIAL_ECHOPAIR(", ", z);
  488. SERIAL_ECHOLNPGM(")");
  489. }
  490. void print_xyz(const char* prefix, const float xyz[]) {
  491. print_xyz(prefix, xyz[X_AXIS], xyz[Y_AXIS], xyz[Z_AXIS]);
  492. }
  493. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  494. void print_xyz(const char* prefix, const vector_3 &xyz) {
  495. print_xyz(prefix, xyz.x, xyz.y, xyz.z);
  496. }
  497. #endif
  498. #define DEBUG_POS(PREFIX,VAR) do{ SERIAL_ECHOPGM(PREFIX); print_xyz(" > " STRINGIFY(VAR), VAR); }while(0)
  499. #endif
  500. #if ENABLED(DELTA) || ENABLED(SCARA)
  501. inline void sync_plan_position_delta() {
  502. #if ENABLED(DEBUG_LEVELING_FEATURE)
  503. if (DEBUGGING(LEVELING)) DEBUG_POS("sync_plan_position_delta", current_position);
  504. #endif
  505. calculate_delta(current_position);
  506. planner.set_position_mm(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
  507. }
  508. #endif
  509. #if ENABLED(SDSUPPORT)
  510. #include "SdFatUtil.h"
  511. int freeMemory() { return SdFatUtil::FreeRam(); }
  512. #else
  513. extern "C" {
  514. extern unsigned int __bss_end;
  515. extern unsigned int __heap_start;
  516. extern void* __brkval;
  517. int freeMemory() {
  518. int free_memory;
  519. if ((int)__brkval == 0)
  520. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  521. else
  522. free_memory = ((int)&free_memory) - ((int)__brkval);
  523. return free_memory;
  524. }
  525. }
  526. #endif //!SDSUPPORT
  527. #if ENABLED(DIGIPOT_I2C)
  528. extern void digipot_i2c_set_current(int channel, float current);
  529. extern void digipot_i2c_init();
  530. #endif
  531. /**
  532. * Inject the next "immediate" command, when possible.
  533. * Return true if any immediate commands remain to inject.
  534. */
  535. static bool drain_queued_commands_P() {
  536. if (queued_commands_P != NULL) {
  537. size_t i = 0;
  538. char c, cmd[30];
  539. strncpy_P(cmd, queued_commands_P, sizeof(cmd) - 1);
  540. cmd[sizeof(cmd) - 1] = '\0';
  541. while ((c = cmd[i]) && c != '\n') i++; // find the end of this gcode command
  542. cmd[i] = '\0';
  543. if (enqueue_and_echo_command(cmd)) { // success?
  544. if (c) // newline char?
  545. queued_commands_P += i + 1; // advance to the next command
  546. else
  547. queued_commands_P = NULL; // nul char? no more commands
  548. }
  549. }
  550. return (queued_commands_P != NULL); // return whether any more remain
  551. }
  552. /**
  553. * Record one or many commands to run from program memory.
  554. * Aborts the current queue, if any.
  555. * Note: drain_queued_commands_P() must be called repeatedly to drain the commands afterwards
  556. */
  557. void enqueue_and_echo_commands_P(const char* pgcode) {
  558. queued_commands_P = pgcode;
  559. drain_queued_commands_P(); // first command executed asap (when possible)
  560. }
  561. void clear_command_queue() {
  562. cmd_queue_index_r = cmd_queue_index_w;
  563. commands_in_queue = 0;
  564. }
  565. /**
  566. * Once a new command is in the ring buffer, call this to commit it
  567. */
  568. inline void _commit_command(bool say_ok) {
  569. send_ok[cmd_queue_index_w] = say_ok;
  570. cmd_queue_index_w = (cmd_queue_index_w + 1) % BUFSIZE;
  571. commands_in_queue++;
  572. }
  573. /**
  574. * Copy a command directly into the main command buffer, from RAM.
  575. * Returns true if successfully adds the command
  576. */
  577. inline bool _enqueuecommand(const char* cmd, bool say_ok=false) {
  578. if (*cmd == ';' || commands_in_queue >= BUFSIZE) return false;
  579. strcpy(command_queue[cmd_queue_index_w], cmd);
  580. _commit_command(say_ok);
  581. return true;
  582. }
  583. void enqueue_and_echo_command_now(const char* cmd) {
  584. while (!enqueue_and_echo_command(cmd)) idle();
  585. }
  586. /**
  587. * Enqueue with Serial Echo
  588. */
  589. bool enqueue_and_echo_command(const char* cmd, bool say_ok/*=false*/) {
  590. if (_enqueuecommand(cmd, say_ok)) {
  591. SERIAL_ECHO_START;
  592. SERIAL_ECHOPGM(MSG_Enqueueing);
  593. SERIAL_ECHO(cmd);
  594. SERIAL_ECHOLNPGM("\"");
  595. return true;
  596. }
  597. return false;
  598. }
  599. void setup_killpin() {
  600. #if HAS_KILL
  601. SET_INPUT(KILL_PIN);
  602. WRITE(KILL_PIN, HIGH);
  603. #endif
  604. }
  605. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  606. void setup_filrunoutpin() {
  607. pinMode(FIL_RUNOUT_PIN, INPUT);
  608. #if ENABLED(ENDSTOPPULLUP_FIL_RUNOUT)
  609. WRITE(FIL_RUNOUT_PIN, HIGH);
  610. #endif
  611. }
  612. #endif
  613. // Set home pin
  614. void setup_homepin(void) {
  615. #if HAS_HOME
  616. SET_INPUT(HOME_PIN);
  617. WRITE(HOME_PIN, HIGH);
  618. #endif
  619. }
  620. void setup_photpin() {
  621. #if HAS_PHOTOGRAPH
  622. OUT_WRITE(PHOTOGRAPH_PIN, LOW);
  623. #endif
  624. }
  625. void setup_powerhold() {
  626. #if HAS_SUICIDE
  627. OUT_WRITE(SUICIDE_PIN, HIGH);
  628. #endif
  629. #if HAS_POWER_SWITCH
  630. #if ENABLED(PS_DEFAULT_OFF)
  631. OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  632. #else
  633. OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE);
  634. #endif
  635. #endif
  636. }
  637. void suicide() {
  638. #if HAS_SUICIDE
  639. OUT_WRITE(SUICIDE_PIN, LOW);
  640. #endif
  641. }
  642. void servo_init() {
  643. #if NUM_SERVOS >= 1 && HAS_SERVO_0
  644. servo[0].attach(SERVO0_PIN);
  645. servo[0].detach(); // Just set up the pin. We don't have a position yet. Don't move to a random position.
  646. #endif
  647. #if NUM_SERVOS >= 2 && HAS_SERVO_1
  648. servo[1].attach(SERVO1_PIN);
  649. servo[1].detach();
  650. #endif
  651. #if NUM_SERVOS >= 3 && HAS_SERVO_2
  652. servo[2].attach(SERVO2_PIN);
  653. servo[2].detach();
  654. #endif
  655. #if NUM_SERVOS >= 4 && HAS_SERVO_3
  656. servo[3].attach(SERVO3_PIN);
  657. servo[3].detach();
  658. #endif
  659. #if HAS_Z_SERVO_ENDSTOP
  660. /**
  661. * Set position of Z Servo Endstop
  662. *
  663. * The servo might be deployed and positioned too low to stow
  664. * when starting up the machine or rebooting the board.
  665. * There's no way to know where the nozzle is positioned until
  666. * homing has been done - no homing with z-probe without init!
  667. *
  668. */
  669. STOW_Z_SERVO();
  670. #endif
  671. #if HAS_BED_PROBE
  672. endstops.enable_z_probe(false);
  673. #endif
  674. }
  675. /**
  676. * Stepper Reset (RigidBoard, et.al.)
  677. */
  678. #if HAS_STEPPER_RESET
  679. void disableStepperDrivers() {
  680. pinMode(STEPPER_RESET_PIN, OUTPUT);
  681. digitalWrite(STEPPER_RESET_PIN, LOW); // drive it down to hold in reset motor driver chips
  682. }
  683. void enableStepperDrivers() { pinMode(STEPPER_RESET_PIN, INPUT); } // set to input, which allows it to be pulled high by pullups
  684. #endif
  685. /**
  686. * Marlin entry-point: Set up before the program loop
  687. * - Set up the kill pin, filament runout, power hold
  688. * - Start the serial port
  689. * - Print startup messages and diagnostics
  690. * - Get EEPROM or default settings
  691. * - Initialize managers for:
  692. * • temperature
  693. * • planner
  694. * • watchdog
  695. * • stepper
  696. * • photo pin
  697. * • servos
  698. * • LCD controller
  699. * • Digipot I2C
  700. * • Z probe sled
  701. * • status LEDs
  702. */
  703. void setup() {
  704. #ifdef DISABLE_JTAG
  705. // Disable JTAG on AT90USB chips to free up pins for IO
  706. MCUCR = 0x80;
  707. MCUCR = 0x80;
  708. #endif
  709. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  710. setup_filrunoutpin();
  711. #endif
  712. setup_killpin();
  713. setup_powerhold();
  714. #if HAS_STEPPER_RESET
  715. disableStepperDrivers();
  716. #endif
  717. MYSERIAL.begin(BAUDRATE);
  718. SERIAL_PROTOCOLLNPGM("start");
  719. SERIAL_ECHO_START;
  720. // Check startup - does nothing if bootloader sets MCUSR to 0
  721. byte mcu = MCUSR;
  722. if (mcu & 1) SERIAL_ECHOLNPGM(MSG_POWERUP);
  723. if (mcu & 2) SERIAL_ECHOLNPGM(MSG_EXTERNAL_RESET);
  724. if (mcu & 4) SERIAL_ECHOLNPGM(MSG_BROWNOUT_RESET);
  725. if (mcu & 8) SERIAL_ECHOLNPGM(MSG_WATCHDOG_RESET);
  726. if (mcu & 32) SERIAL_ECHOLNPGM(MSG_SOFTWARE_RESET);
  727. MCUSR = 0;
  728. SERIAL_ECHOPGM(MSG_MARLIN);
  729. SERIAL_ECHOLNPGM(" " SHORT_BUILD_VERSION);
  730. #ifdef STRING_DISTRIBUTION_DATE
  731. #ifdef STRING_CONFIG_H_AUTHOR
  732. SERIAL_ECHO_START;
  733. SERIAL_ECHOPGM(MSG_CONFIGURATION_VER);
  734. SERIAL_ECHOPGM(STRING_DISTRIBUTION_DATE);
  735. SERIAL_ECHOPGM(MSG_AUTHOR);
  736. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  737. SERIAL_ECHOPGM("Compiled: ");
  738. SERIAL_ECHOLNPGM(__DATE__);
  739. #endif // STRING_CONFIG_H_AUTHOR
  740. #endif // STRING_DISTRIBUTION_DATE
  741. SERIAL_ECHO_START;
  742. SERIAL_ECHOPGM(MSG_FREE_MEMORY);
  743. SERIAL_ECHO(freeMemory());
  744. SERIAL_ECHOPGM(MSG_PLANNER_BUFFER_BYTES);
  745. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  746. // Send "ok" after commands by default
  747. for (int8_t i = 0; i < BUFSIZE; i++) send_ok[i] = true;
  748. // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  749. Config_RetrieveSettings();
  750. thermalManager.init(); // Initialize temperature loop
  751. #if ENABLED(DELTA) || ENABLED(SCARA)
  752. // Vital to init kinematic equivalent for X0 Y0 Z0
  753. sync_plan_position_delta();
  754. #endif
  755. #if ENABLED(USE_WATCHDOG)
  756. watchdog_init();
  757. #endif
  758. stepper.init(); // Initialize stepper, this enables interrupts!
  759. setup_photpin();
  760. servo_init();
  761. #if HAS_CONTROLLERFAN
  762. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  763. #endif
  764. #if HAS_STEPPER_RESET
  765. enableStepperDrivers();
  766. #endif
  767. #if ENABLED(DIGIPOT_I2C)
  768. digipot_i2c_init();
  769. #endif
  770. #if ENABLED(DAC_STEPPER_CURRENT)
  771. dac_init();
  772. #endif
  773. #if ENABLED(Z_PROBE_SLED)
  774. pinMode(SLED_PIN, OUTPUT);
  775. digitalWrite(SLED_PIN, LOW); // turn it off
  776. #endif // Z_PROBE_SLED
  777. setup_homepin();
  778. #ifdef STAT_LED_RED
  779. pinMode(STAT_LED_RED, OUTPUT);
  780. digitalWrite(STAT_LED_RED, LOW); // turn it off
  781. #endif
  782. #ifdef STAT_LED_BLUE
  783. pinMode(STAT_LED_BLUE, OUTPUT);
  784. digitalWrite(STAT_LED_BLUE, LOW); // turn it off
  785. #endif
  786. lcd_init();
  787. #if ENABLED(SHOW_BOOTSCREEN)
  788. #if ENABLED(DOGLCD)
  789. delay(1000);
  790. #elif ENABLED(ULTRA_LCD)
  791. bootscreen();
  792. lcd_init();
  793. #endif
  794. #endif
  795. }
  796. /**
  797. * The main Marlin program loop
  798. *
  799. * - Save or log commands to SD
  800. * - Process available commands (if not saving)
  801. * - Call heater manager
  802. * - Call inactivity manager
  803. * - Call endstop manager
  804. * - Call LCD update
  805. */
  806. void loop() {
  807. if (commands_in_queue < BUFSIZE) get_available_commands();
  808. #if ENABLED(SDSUPPORT)
  809. card.checkautostart(false);
  810. #endif
  811. if (commands_in_queue) {
  812. #if ENABLED(SDSUPPORT)
  813. if (card.saving) {
  814. char* command = command_queue[cmd_queue_index_r];
  815. if (strstr_P(command, PSTR("M29"))) {
  816. // M29 closes the file
  817. card.closefile();
  818. SERIAL_PROTOCOLLNPGM(MSG_FILE_SAVED);
  819. ok_to_send();
  820. }
  821. else {
  822. // Write the string from the read buffer to SD
  823. card.write_command(command);
  824. if (card.logging)
  825. process_next_command(); // The card is saving because it's logging
  826. else
  827. ok_to_send();
  828. }
  829. }
  830. else
  831. process_next_command();
  832. #else
  833. process_next_command();
  834. #endif // SDSUPPORT
  835. commands_in_queue--;
  836. cmd_queue_index_r = (cmd_queue_index_r + 1) % BUFSIZE;
  837. }
  838. endstops.report_state();
  839. idle();
  840. }
  841. void gcode_line_error(const char* err, bool doFlush = true) {
  842. SERIAL_ERROR_START;
  843. serialprintPGM(err);
  844. SERIAL_ERRORLN(gcode_LastN);
  845. //Serial.println(gcode_N);
  846. if (doFlush) FlushSerialRequestResend();
  847. serial_count = 0;
  848. }
  849. inline void get_serial_commands() {
  850. static char serial_line_buffer[MAX_CMD_SIZE];
  851. static boolean serial_comment_mode = false;
  852. // If the command buffer is empty for too long,
  853. // send "wait" to indicate Marlin is still waiting.
  854. #if defined(NO_TIMEOUTS) && NO_TIMEOUTS > 0
  855. static millis_t last_command_time = 0;
  856. millis_t ms = millis();
  857. if (commands_in_queue == 0 && !MYSERIAL.available() && ELAPSED(ms, last_command_time + NO_TIMEOUTS)) {
  858. SERIAL_ECHOLNPGM(MSG_WAIT);
  859. last_command_time = ms;
  860. }
  861. #endif
  862. /**
  863. * Loop while serial characters are incoming and the queue is not full
  864. */
  865. while (commands_in_queue < BUFSIZE && MYSERIAL.available() > 0) {
  866. char serial_char = MYSERIAL.read();
  867. /**
  868. * If the character ends the line
  869. */
  870. if (serial_char == '\n' || serial_char == '\r') {
  871. serial_comment_mode = false; // end of line == end of comment
  872. if (!serial_count) continue; // skip empty lines
  873. serial_line_buffer[serial_count] = 0; // terminate string
  874. serial_count = 0; //reset buffer
  875. char* command = serial_line_buffer;
  876. while (*command == ' ') command++; // skip any leading spaces
  877. char* npos = (*command == 'N') ? command : NULL; // Require the N parameter to start the line
  878. char* apos = strchr(command, '*');
  879. if (npos) {
  880. boolean M110 = strstr_P(command, PSTR("M110")) != NULL;
  881. if (M110) {
  882. char* n2pos = strchr(command + 4, 'N');
  883. if (n2pos) npos = n2pos;
  884. }
  885. gcode_N = strtol(npos + 1, NULL, 10);
  886. if (gcode_N != gcode_LastN + 1 && !M110) {
  887. gcode_line_error(PSTR(MSG_ERR_LINE_NO));
  888. return;
  889. }
  890. if (apos) {
  891. byte checksum = 0, count = 0;
  892. while (command[count] != '*') checksum ^= command[count++];
  893. if (strtol(apos + 1, NULL, 10) != checksum) {
  894. gcode_line_error(PSTR(MSG_ERR_CHECKSUM_MISMATCH));
  895. return;
  896. }
  897. // if no errors, continue parsing
  898. }
  899. else {
  900. gcode_line_error(PSTR(MSG_ERR_NO_CHECKSUM));
  901. return;
  902. }
  903. gcode_LastN = gcode_N;
  904. // if no errors, continue parsing
  905. }
  906. else if (apos) { // No '*' without 'N'
  907. gcode_line_error(PSTR(MSG_ERR_NO_LINENUMBER_WITH_CHECKSUM), false);
  908. return;
  909. }
  910. // Movement commands alert when stopped
  911. if (IsStopped()) {
  912. char* gpos = strchr(command, 'G');
  913. if (gpos) {
  914. int codenum = strtol(gpos + 1, NULL, 10);
  915. switch (codenum) {
  916. case 0:
  917. case 1:
  918. case 2:
  919. case 3:
  920. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  921. LCD_MESSAGEPGM(MSG_STOPPED);
  922. break;
  923. }
  924. }
  925. }
  926. // If command was e-stop process now
  927. if (strcmp(command, "M112") == 0) kill(PSTR(MSG_KILLED));
  928. #if defined(NO_TIMEOUTS) && NO_TIMEOUTS > 0
  929. last_command_time = ms;
  930. #endif
  931. // Add the command to the queue
  932. _enqueuecommand(serial_line_buffer, true);
  933. }
  934. else if (serial_count >= MAX_CMD_SIZE - 1) {
  935. // Keep fetching, but ignore normal characters beyond the max length
  936. // The command will be injected when EOL is reached
  937. }
  938. else if (serial_char == '\\') { // Handle escapes
  939. if (MYSERIAL.available() > 0) {
  940. // if we have one more character, copy it over
  941. serial_char = MYSERIAL.read();
  942. if (!serial_comment_mode) serial_line_buffer[serial_count++] = serial_char;
  943. }
  944. // otherwise do nothing
  945. }
  946. else { // it's not a newline, carriage return or escape char
  947. if (serial_char == ';') serial_comment_mode = true;
  948. if (!serial_comment_mode) serial_line_buffer[serial_count++] = serial_char;
  949. }
  950. } // queue has space, serial has data
  951. }
  952. #if ENABLED(SDSUPPORT)
  953. inline void get_sdcard_commands() {
  954. static bool stop_buffering = false,
  955. sd_comment_mode = false;
  956. if (!card.sdprinting) return;
  957. /**
  958. * '#' stops reading from SD to the buffer prematurely, so procedural
  959. * macro calls are possible. If it occurs, stop_buffering is triggered
  960. * and the buffer is run dry; this character _can_ occur in serial com
  961. * due to checksums, however, no checksums are used in SD printing.
  962. */
  963. if (commands_in_queue == 0) stop_buffering = false;
  964. uint16_t sd_count = 0;
  965. bool card_eof = card.eof();
  966. while (commands_in_queue < BUFSIZE && !card_eof && !stop_buffering) {
  967. int16_t n = card.get();
  968. char sd_char = (char)n;
  969. card_eof = card.eof();
  970. if (card_eof || n == -1
  971. || sd_char == '\n' || sd_char == '\r'
  972. || ((sd_char == '#' || sd_char == ':') && !sd_comment_mode)
  973. ) {
  974. if (card_eof) {
  975. SERIAL_PROTOCOLLNPGM(MSG_FILE_PRINTED);
  976. print_job_timer.stop();
  977. char time[30];
  978. millis_t t = print_job_timer.duration();
  979. int hours = t / 60 / 60, minutes = (t / 60) % 60;
  980. sprintf_P(time, PSTR("%i " MSG_END_HOUR " %i " MSG_END_MINUTE), hours, minutes);
  981. SERIAL_ECHO_START;
  982. SERIAL_ECHOLN(time);
  983. lcd_setstatus(time, true);
  984. card.printingHasFinished();
  985. card.checkautostart(true);
  986. }
  987. else if (n == -1) {
  988. SERIAL_ERROR_START;
  989. SERIAL_ECHOLNPGM(MSG_SD_ERR_READ);
  990. }
  991. if (sd_char == '#') stop_buffering = true;
  992. sd_comment_mode = false; //for new command
  993. if (!sd_count) continue; //skip empty lines
  994. command_queue[cmd_queue_index_w][sd_count] = '\0'; //terminate string
  995. sd_count = 0; //clear buffer
  996. _commit_command(false);
  997. }
  998. else if (sd_count >= MAX_CMD_SIZE - 1) {
  999. /**
  1000. * Keep fetching, but ignore normal characters beyond the max length
  1001. * The command will be injected when EOL is reached
  1002. */
  1003. }
  1004. else {
  1005. if (sd_char == ';') sd_comment_mode = true;
  1006. if (!sd_comment_mode) command_queue[cmd_queue_index_w][sd_count++] = sd_char;
  1007. }
  1008. }
  1009. }
  1010. #endif // SDSUPPORT
  1011. /**
  1012. * Add to the circular command queue the next command from:
  1013. * - The command-injection queue (queued_commands_P)
  1014. * - The active serial input (usually USB)
  1015. * - The SD card file being actively printed
  1016. */
  1017. void get_available_commands() {
  1018. // if any immediate commands remain, don't get other commands yet
  1019. if (drain_queued_commands_P()) return;
  1020. get_serial_commands();
  1021. #if ENABLED(SDSUPPORT)
  1022. get_sdcard_commands();
  1023. #endif
  1024. }
  1025. inline bool code_has_value() {
  1026. int i = 1;
  1027. char c = seen_pointer[i];
  1028. while (c == ' ') c = seen_pointer[++i];
  1029. if (c == '-' || c == '+') c = seen_pointer[++i];
  1030. if (c == '.') c = seen_pointer[++i];
  1031. return NUMERIC(c);
  1032. }
  1033. inline float code_value_float() {
  1034. float ret;
  1035. char* e = strchr(seen_pointer, 'E');
  1036. if (e) {
  1037. *e = 0;
  1038. ret = strtod(seen_pointer + 1, NULL);
  1039. *e = 'E';
  1040. }
  1041. else
  1042. ret = strtod(seen_pointer + 1, NULL);
  1043. return ret;
  1044. }
  1045. inline unsigned long code_value_ulong() { return strtoul(seen_pointer + 1, NULL, 10); }
  1046. inline long code_value_long() { return strtol(seen_pointer + 1, NULL, 10); }
  1047. inline int code_value_int() { return (int)strtol(seen_pointer + 1, NULL, 10); }
  1048. inline uint16_t code_value_ushort() { return (uint16_t)strtoul(seen_pointer + 1, NULL, 10); }
  1049. inline uint8_t code_value_byte() { return (uint8_t)(constrain(strtol(seen_pointer + 1, NULL, 10), 0, 255)); }
  1050. inline bool code_value_bool() { return code_value_byte() > 0; }
  1051. #if ENABLED(INCH_MODE_SUPPORT)
  1052. inline void set_input_linear_units(LinearUnit units) {
  1053. switch (units) {
  1054. case LINEARUNIT_INCH:
  1055. linear_unit_factor = 25.4;
  1056. break;
  1057. case LINEARUNIT_MM:
  1058. default:
  1059. linear_unit_factor = 1.0;
  1060. break;
  1061. }
  1062. volumetric_unit_factor = pow(linear_unit_factor, 3.0);
  1063. }
  1064. inline float axis_unit_factor(int axis) {
  1065. return (axis == E_AXIS && volumetric_enabled ? volumetric_unit_factor : linear_unit_factor);
  1066. }
  1067. inline float code_value_linear_units() { return code_value_float() * linear_unit_factor; }
  1068. inline float code_value_axis_units(int axis) { return code_value_float() * axis_unit_factor(axis); }
  1069. inline float code_value_per_axis_unit(int axis) { return code_value_float() / axis_unit_factor(axis); }
  1070. #else
  1071. inline float code_value_linear_units() { return code_value_float(); }
  1072. inline float code_value_axis_units(int axis) { UNUSED(axis); return code_value_float(); }
  1073. inline float code_value_per_axis_unit(int axis) { UNUSED(axis); return code_value_float(); }
  1074. #endif
  1075. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  1076. inline void set_input_temp_units(TempUnit units) { input_temp_units = units; }
  1077. float code_value_temp_abs() {
  1078. switch (input_temp_units) {
  1079. case TEMPUNIT_C:
  1080. return code_value_float();
  1081. case TEMPUNIT_F:
  1082. return (code_value_float() - 32) / 1.8;
  1083. case TEMPUNIT_K:
  1084. return code_value_float() - 272.15;
  1085. default:
  1086. return code_value_float();
  1087. }
  1088. }
  1089. float code_value_temp_diff() {
  1090. switch (input_temp_units) {
  1091. case TEMPUNIT_C:
  1092. case TEMPUNIT_K:
  1093. return code_value_float();
  1094. case TEMPUNIT_F:
  1095. return code_value_float() / 1.8;
  1096. default:
  1097. return code_value_float();
  1098. }
  1099. }
  1100. #else
  1101. float code_value_temp_abs() { return code_value_float(); }
  1102. float code_value_temp_diff() { return code_value_float(); }
  1103. #endif
  1104. inline millis_t code_value_millis() { return code_value_ulong(); }
  1105. inline millis_t code_value_millis_from_seconds() { return code_value_float() * 1000; }
  1106. bool code_seen(char code) {
  1107. seen_pointer = strchr(current_command_args, code);
  1108. return (seen_pointer != NULL); // Return TRUE if the code-letter was found
  1109. }
  1110. /**
  1111. * Set target_extruder from the T parameter or the active_extruder
  1112. *
  1113. * Returns TRUE if the target is invalid
  1114. */
  1115. bool get_target_extruder_from_command(int code) {
  1116. if (code_seen('T')) {
  1117. uint8_t t = code_value_byte();
  1118. if (t >= EXTRUDERS) {
  1119. SERIAL_ECHO_START;
  1120. SERIAL_CHAR('M');
  1121. SERIAL_ECHO(code);
  1122. SERIAL_ECHOPAIR(" " MSG_INVALID_EXTRUDER " ", t);
  1123. SERIAL_EOL;
  1124. return true;
  1125. }
  1126. target_extruder = t;
  1127. }
  1128. else
  1129. target_extruder = active_extruder;
  1130. return false;
  1131. }
  1132. #define DEFINE_PGM_READ_ANY(type, reader) \
  1133. static inline type pgm_read_any(const type *p) \
  1134. { return pgm_read_##reader##_near(p); }
  1135. DEFINE_PGM_READ_ANY(float, float);
  1136. DEFINE_PGM_READ_ANY(signed char, byte);
  1137. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  1138. static const PROGMEM type array##_P[3] = \
  1139. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  1140. static inline type array(int axis) \
  1141. { return pgm_read_any(&array##_P[axis]); }
  1142. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  1143. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  1144. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  1145. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  1146. XYZ_CONSTS_FROM_CONFIG(float, home_bump_mm, HOME_BUMP_MM);
  1147. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  1148. #if ENABLED(DUAL_X_CARRIAGE)
  1149. #define DXC_FULL_CONTROL_MODE 0
  1150. #define DXC_AUTO_PARK_MODE 1
  1151. #define DXC_DUPLICATION_MODE 2
  1152. static int dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  1153. static float x_home_pos(int extruder) {
  1154. if (extruder == 0)
  1155. return base_home_pos(X_AXIS) + home_offset[X_AXIS];
  1156. else
  1157. /**
  1158. * In dual carriage mode the extruder offset provides an override of the
  1159. * second X-carriage offset when homed - otherwise X2_HOME_POS is used.
  1160. * This allow soft recalibration of the second extruder offset position
  1161. * without firmware reflash (through the M218 command).
  1162. */
  1163. return (hotend_offset[X_AXIS][1] > 0) ? hotend_offset[X_AXIS][1] : X2_HOME_POS;
  1164. }
  1165. static int x_home_dir(int extruder) {
  1166. return (extruder == 0) ? X_HOME_DIR : X2_HOME_DIR;
  1167. }
  1168. static float inactive_extruder_x_pos = X2_MAX_POS; // used in mode 0 & 1
  1169. static bool active_extruder_parked = false; // used in mode 1 & 2
  1170. static float raised_parked_position[NUM_AXIS]; // used in mode 1
  1171. static millis_t delayed_move_time = 0; // used in mode 1
  1172. static float duplicate_extruder_x_offset = DEFAULT_DUPLICATION_X_OFFSET; // used in mode 2
  1173. static float duplicate_extruder_temp_offset = 0; // used in mode 2
  1174. bool extruder_duplication_enabled = false; // used in mode 2
  1175. #endif //DUAL_X_CARRIAGE
  1176. /**
  1177. * Software endstops can be used to monitor the open end of
  1178. * an axis that has a hardware endstop on the other end. Or
  1179. * they can prevent axes from moving past endstops and grinding.
  1180. *
  1181. * To keep doing their job as the coordinate system changes,
  1182. * the software endstop positions must be refreshed to remain
  1183. * at the same positions relative to the machine.
  1184. */
  1185. static void update_software_endstops(AxisEnum axis) {
  1186. float offs = home_offset[axis] + position_shift[axis];
  1187. #if ENABLED(DUAL_X_CARRIAGE)
  1188. if (axis == X_AXIS) {
  1189. float dual_max_x = max(hotend_offset[X_AXIS][1], X2_MAX_POS);
  1190. if (active_extruder != 0) {
  1191. sw_endstop_min[X_AXIS] = X2_MIN_POS + offs;
  1192. sw_endstop_max[X_AXIS] = dual_max_x + offs;
  1193. return;
  1194. }
  1195. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE) {
  1196. sw_endstop_min[X_AXIS] = base_min_pos(X_AXIS) + offs;
  1197. sw_endstop_max[X_AXIS] = min(base_max_pos(X_AXIS), dual_max_x - duplicate_extruder_x_offset) + offs;
  1198. return;
  1199. }
  1200. }
  1201. else
  1202. #endif
  1203. {
  1204. sw_endstop_min[axis] = base_min_pos(axis) + offs;
  1205. sw_endstop_max[axis] = base_max_pos(axis) + offs;
  1206. }
  1207. }
  1208. /**
  1209. * Change the home offset for an axis, update the current
  1210. * position and the software endstops to retain the same
  1211. * relative distance to the new home.
  1212. *
  1213. * Since this changes the current_position, code should
  1214. * call sync_plan_position soon after this.
  1215. */
  1216. static void set_home_offset(AxisEnum axis, float v) {
  1217. current_position[axis] += v - home_offset[axis];
  1218. home_offset[axis] = v;
  1219. update_software_endstops(axis);
  1220. }
  1221. static void set_axis_is_at_home(AxisEnum axis) {
  1222. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1223. if (DEBUGGING(LEVELING)) {
  1224. SERIAL_ECHOPAIR("set_axis_is_at_home(", axis);
  1225. SERIAL_ECHOLNPGM(") >>>");
  1226. }
  1227. #endif
  1228. position_shift[axis] = 0;
  1229. #if ENABLED(DUAL_X_CARRIAGE)
  1230. if (axis == X_AXIS && (active_extruder != 0 || dual_x_carriage_mode == DXC_DUPLICATION_MODE)) {
  1231. if (active_extruder != 0)
  1232. current_position[X_AXIS] = x_home_pos(active_extruder);
  1233. else
  1234. current_position[X_AXIS] = base_home_pos(X_AXIS) + home_offset[X_AXIS];
  1235. update_software_endstops(X_AXIS);
  1236. return;
  1237. }
  1238. #endif
  1239. #if ENABLED(SCARA)
  1240. if (axis == X_AXIS || axis == Y_AXIS) {
  1241. float homeposition[3];
  1242. for (int i = 0; i < 3; i++) homeposition[i] = base_home_pos(i);
  1243. // SERIAL_ECHOPGM("homeposition[x]= "); SERIAL_ECHO(homeposition[0]);
  1244. // SERIAL_ECHOPGM("homeposition[y]= "); SERIAL_ECHOLN(homeposition[1]);
  1245. /**
  1246. * Works out real Homeposition angles using inverse kinematics,
  1247. * and calculates homing offset using forward kinematics
  1248. */
  1249. calculate_delta(homeposition);
  1250. // SERIAL_ECHOPGM("base Theta= "); SERIAL_ECHO(delta[X_AXIS]);
  1251. // SERIAL_ECHOPGM(" base Psi+Theta="); SERIAL_ECHOLN(delta[Y_AXIS]);
  1252. for (int i = 0; i < 2; i++) delta[i] -= home_offset[i];
  1253. // SERIAL_ECHOPGM("addhome X="); SERIAL_ECHO(home_offset[X_AXIS]);
  1254. // SERIAL_ECHOPGM(" addhome Y="); SERIAL_ECHO(home_offset[Y_AXIS]);
  1255. // SERIAL_ECHOPGM(" addhome Theta="); SERIAL_ECHO(delta[X_AXIS]);
  1256. // SERIAL_ECHOPGM(" addhome Psi+Theta="); SERIAL_ECHOLN(delta[Y_AXIS]);
  1257. calculate_SCARA_forward_Transform(delta);
  1258. // SERIAL_ECHOPGM("Delta X="); SERIAL_ECHO(delta[X_AXIS]);
  1259. // SERIAL_ECHOPGM(" Delta Y="); SERIAL_ECHOLN(delta[Y_AXIS]);
  1260. current_position[axis] = delta[axis];
  1261. /**
  1262. * SCARA home positions are based on configuration since the actual
  1263. * limits are determined by the inverse kinematic transform.
  1264. */
  1265. sw_endstop_min[axis] = base_min_pos(axis); // + (delta[axis] - base_home_pos(axis));
  1266. sw_endstop_max[axis] = base_max_pos(axis); // + (delta[axis] - base_home_pos(axis));
  1267. }
  1268. else
  1269. #endif
  1270. {
  1271. current_position[axis] = base_home_pos(axis) + home_offset[axis];
  1272. update_software_endstops(axis);
  1273. #if HAS_BED_PROBE && Z_HOME_DIR < 0
  1274. if (axis == Z_AXIS) {
  1275. current_position[Z_AXIS] -= zprobe_zoffset;
  1276. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1277. if (DEBUGGING(LEVELING)) {
  1278. SERIAL_ECHOPAIR("> zprobe_zoffset==", zprobe_zoffset);
  1279. SERIAL_EOL;
  1280. }
  1281. #endif
  1282. }
  1283. #endif
  1284. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1285. if (DEBUGGING(LEVELING)) {
  1286. SERIAL_ECHOPAIR("> home_offset[axis]==", home_offset[axis]);
  1287. DEBUG_POS("", current_position);
  1288. }
  1289. #endif
  1290. }
  1291. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1292. if (DEBUGGING(LEVELING)) {
  1293. SERIAL_ECHOPAIR("<<< set_axis_is_at_home(", axis);
  1294. SERIAL_ECHOLNPGM(")");
  1295. }
  1296. #endif
  1297. }
  1298. /**
  1299. * Some planner shorthand inline functions
  1300. */
  1301. inline void set_homing_bump_feedrate(AxisEnum axis) {
  1302. const int homing_bump_divisor[] = HOMING_BUMP_DIVISOR;
  1303. int hbd = homing_bump_divisor[axis];
  1304. if (hbd < 1) {
  1305. hbd = 10;
  1306. SERIAL_ECHO_START;
  1307. SERIAL_ECHOLNPGM("Warning: Homing Bump Divisor < 1");
  1308. }
  1309. feedrate = homing_feedrate[axis] / hbd;
  1310. }
  1311. //
  1312. // line_to_current_position
  1313. // Move the planner to the current position from wherever it last moved
  1314. // (or from wherever it has been told it is located).
  1315. //
  1316. inline void line_to_current_position() {
  1317. planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate / 60, active_extruder);
  1318. }
  1319. inline void line_to_z(float zPosition) {
  1320. planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate / 60, active_extruder);
  1321. }
  1322. //
  1323. // line_to_destination
  1324. // Move the planner, not necessarily synced with current_position
  1325. //
  1326. inline void line_to_destination(float mm_m) {
  1327. planner.buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], mm_m / 60, active_extruder);
  1328. }
  1329. inline void line_to_destination() {
  1330. line_to_destination(feedrate);
  1331. }
  1332. /**
  1333. * sync_plan_position
  1334. * Set planner / stepper positions to the cartesian current_position.
  1335. * The stepper code translates these coordinates into step units.
  1336. * Allows translation between steps and units (mm) for cartesian & core robots
  1337. */
  1338. inline void sync_plan_position() {
  1339. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1340. if (DEBUGGING(LEVELING)) DEBUG_POS("sync_plan_position", current_position);
  1341. #endif
  1342. planner.set_position_mm(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1343. }
  1344. inline void sync_plan_position_e() { planner.set_e_position_mm(current_position[E_AXIS]); }
  1345. inline void set_current_to_destination() { memcpy(current_position, destination, sizeof(current_position)); }
  1346. inline void set_destination_to_current() { memcpy(destination, current_position, sizeof(destination)); }
  1347. static void setup_for_endstop_move() {
  1348. saved_feedrate = feedrate;
  1349. saved_feedrate_multiplier = feedrate_multiplier;
  1350. feedrate_multiplier = 100;
  1351. refresh_cmd_timeout();
  1352. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1353. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("setup_for_endstop_move > endstops.enable()");
  1354. #endif
  1355. endstops.enable();
  1356. }
  1357. #if HAS_BED_PROBE
  1358. #if ENABLED(DELTA)
  1359. /**
  1360. * Calculate delta, start a line, and set current_position to destination
  1361. */
  1362. void prepare_move_to_destination_raw() {
  1363. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1364. if (DEBUGGING(LEVELING)) DEBUG_POS("prepare_move_to_destination_raw", destination);
  1365. #endif
  1366. refresh_cmd_timeout();
  1367. calculate_delta(destination);
  1368. planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], destination[E_AXIS], (feedrate / 60) * (feedrate_multiplier / 100.0), active_extruder);
  1369. set_current_to_destination();
  1370. }
  1371. #endif
  1372. /**
  1373. * Plan a move to (X, Y, Z) and set the current_position
  1374. * The final current_position may not be the one that was requested
  1375. */
  1376. static void do_blocking_move_to(float x, float y, float z) {
  1377. float old_feedrate = feedrate;
  1378. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1379. if (DEBUGGING(LEVELING)) print_xyz("do_blocking_move_to", x, y, z);
  1380. #endif
  1381. #if ENABLED(DELTA)
  1382. feedrate =
  1383. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  1384. xy_travel_speed
  1385. #else
  1386. min(planner.max_feedrate[X_AXIS], planner.max_feedrate[Y_AXIS]) * 60
  1387. #endif
  1388. ;
  1389. destination[X_AXIS] = x;
  1390. destination[Y_AXIS] = y;
  1391. destination[Z_AXIS] = z;
  1392. if (x == current_position[X_AXIS] && y == current_position[Y_AXIS])
  1393. prepare_move_to_destination_raw(); // this will also set_current_to_destination
  1394. else
  1395. prepare_move_to_destination(); // this will also set_current_to_destination
  1396. #else
  1397. feedrate = homing_feedrate[Z_AXIS];
  1398. current_position[Z_AXIS] = z;
  1399. line_to_current_position();
  1400. stepper.synchronize();
  1401. feedrate =
  1402. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  1403. xy_travel_speed
  1404. #else
  1405. min(planner.max_feedrate[X_AXIS], planner.max_feedrate[Y_AXIS]) * 60
  1406. #endif
  1407. ;
  1408. current_position[X_AXIS] = x;
  1409. current_position[Y_AXIS] = y;
  1410. line_to_current_position();
  1411. #endif
  1412. stepper.synchronize();
  1413. feedrate = old_feedrate;
  1414. }
  1415. inline void do_blocking_move_to_x(float x) {
  1416. do_blocking_move_to(x, current_position[Y_AXIS], current_position[Z_AXIS]);
  1417. }
  1418. inline void do_blocking_move_to_z(float z) {
  1419. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z);
  1420. }
  1421. #endif //HAS_BED_PROBE
  1422. #if HAS_Z_SERVO_ENDSTOP
  1423. /**
  1424. * Raise Z to a minimum height to make room for a servo to move
  1425. *
  1426. * zprobe_zoffset: Negative of the Z height where the probe engages
  1427. * z_dest: The before / after probing raise distance
  1428. *
  1429. * The zprobe_zoffset is negative for a switch below the nozzle, so
  1430. * multiply by Z_HOME_DIR (-1) to move enough away from the bed.
  1431. */
  1432. void raise_z_for_servo(float z_dest) {
  1433. z_dest += home_offset[Z_AXIS];
  1434. if ((Z_HOME_DIR) < 0 && zprobe_zoffset < 0)
  1435. z_dest -= zprobe_zoffset;
  1436. if (z_dest > current_position[Z_AXIS])
  1437. do_blocking_move_to_z(z_dest); // also updates current_position
  1438. }
  1439. #endif
  1440. #if HAS_BED_PROBE
  1441. inline void raise_z_after_probing() {
  1442. #if Z_RAISE_AFTER_PROBING > 0
  1443. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1444. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("raise_z_after_probing()");
  1445. #endif
  1446. do_blocking_move_to_z(current_position[Z_AXIS] + Z_RAISE_AFTER_PROBING);
  1447. #endif
  1448. }
  1449. #endif
  1450. #if ENABLED(Z_PROBE_SLED)
  1451. #ifndef SLED_DOCKING_OFFSET
  1452. #define SLED_DOCKING_OFFSET 0
  1453. #endif
  1454. /**
  1455. * Method to dock/undock a sled designed by Charles Bell.
  1456. *
  1457. * dock[in] If true, move to MAX_X and engage the electromagnet
  1458. * offset[in] The additional distance to move to adjust docking location
  1459. */
  1460. static void dock_sled(bool dock, int offset = 0) {
  1461. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1462. if (DEBUGGING(LEVELING)) {
  1463. SERIAL_ECHOPAIR("dock_sled(", dock);
  1464. SERIAL_ECHOLNPGM(")");
  1465. }
  1466. #endif
  1467. if (!axis_homed[X_AXIS] || !axis_homed[Y_AXIS] || !axis_homed[Z_AXIS]) {
  1468. axis_unhomed_error(true);
  1469. return;
  1470. }
  1471. if (endstops.z_probe_enabled == !dock) return; // already docked/undocked?
  1472. float oldXpos = current_position[X_AXIS]; // save x position
  1473. if (dock) {
  1474. raise_z_after_probing(); // raise Z
  1475. // Dock sled a bit closer to ensure proper capturing
  1476. do_blocking_move_to_x(X_MAX_POS + SLED_DOCKING_OFFSET + offset - 1);
  1477. digitalWrite(SLED_PIN, LOW); // turn off magnet
  1478. }
  1479. else {
  1480. float z_loc = current_position[Z_AXIS];
  1481. if (z_loc < Z_RAISE_BEFORE_PROBING + 5) z_loc = Z_RAISE_BEFORE_PROBING;
  1482. do_blocking_move_to(X_MAX_POS + SLED_DOCKING_OFFSET + offset, current_position[Y_AXIS], z_loc); // this also updates current_position
  1483. digitalWrite(SLED_PIN, HIGH); // turn on magnet
  1484. }
  1485. do_blocking_move_to_x(oldXpos); // return to position before docking
  1486. }
  1487. #endif // Z_PROBE_SLED
  1488. #if HAS_BED_PROBE
  1489. static void deploy_z_probe() {
  1490. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1491. if (DEBUGGING(LEVELING)) DEBUG_POS("deploy_z_probe", current_position);
  1492. #endif
  1493. if (endstops.z_probe_enabled) return;
  1494. #if ENABLED(Z_PROBE_SLED)
  1495. dock_sled(false);
  1496. #elif HAS_Z_SERVO_ENDSTOP
  1497. // Make room for Z Servo
  1498. raise_z_for_servo(Z_RAISE_BEFORE_PROBING);
  1499. // Engage Z Servo endstop if enabled
  1500. DEPLOY_Z_SERVO();
  1501. #elif ENABLED(Z_PROBE_ALLEN_KEY)
  1502. float old_feedrate = feedrate;
  1503. feedrate = Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE;
  1504. // If endstop is already false, the Z probe is deployed
  1505. #if ENABLED(Z_MIN_PROBE_ENDSTOP)
  1506. bool z_probe_endstop = (READ(Z_MIN_PROBE_PIN) != Z_MIN_PROBE_ENDSTOP_INVERTING);
  1507. if (z_probe_endstop)
  1508. #else
  1509. bool z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
  1510. if (z_min_endstop)
  1511. #endif
  1512. {
  1513. // Move to the start position to initiate deployment
  1514. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_1_X;
  1515. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_1_Y;
  1516. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_1_Z;
  1517. prepare_move_to_destination_raw(); // this will also set_current_to_destination
  1518. // Move to engage deployment
  1519. if (Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE != Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE)
  1520. feedrate = Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE;
  1521. if (Z_PROBE_ALLEN_KEY_DEPLOY_2_X != Z_PROBE_ALLEN_KEY_DEPLOY_1_X)
  1522. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_2_X;
  1523. if (Z_PROBE_ALLEN_KEY_DEPLOY_2_Y != Z_PROBE_ALLEN_KEY_DEPLOY_1_Y)
  1524. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_2_Y;
  1525. if (Z_PROBE_ALLEN_KEY_DEPLOY_2_Z != Z_PROBE_ALLEN_KEY_DEPLOY_1_Z)
  1526. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_2_Z;
  1527. prepare_move_to_destination_raw();
  1528. #ifdef Z_PROBE_ALLEN_KEY_DEPLOY_3_X
  1529. if (Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE != Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE)
  1530. feedrate = Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE;
  1531. // Move to trigger deployment
  1532. if (Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE != Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE)
  1533. feedrate = Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE;
  1534. if (Z_PROBE_ALLEN_KEY_DEPLOY_3_X != Z_PROBE_ALLEN_KEY_DEPLOY_2_X)
  1535. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_3_X;
  1536. if (Z_PROBE_ALLEN_KEY_DEPLOY_3_Y != Z_PROBE_ALLEN_KEY_DEPLOY_2_Y)
  1537. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_3_Y;
  1538. if (Z_PROBE_ALLEN_KEY_DEPLOY_3_Z != Z_PROBE_ALLEN_KEY_DEPLOY_2_Z)
  1539. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_3_Z;
  1540. prepare_move_to_destination_raw();
  1541. #endif
  1542. }
  1543. // Partially Home X,Y for safety
  1544. destination[X_AXIS] *= 0.75;
  1545. destination[Y_AXIS] *= 0.75;
  1546. prepare_move_to_destination_raw(); // this will also set_current_to_destination
  1547. feedrate = old_feedrate;
  1548. stepper.synchronize();
  1549. #if ENABLED(Z_MIN_PROBE_ENDSTOP)
  1550. z_probe_endstop = (READ(Z_MIN_PROBE_PIN) != Z_MIN_PROBE_ENDSTOP_INVERTING);
  1551. if (z_probe_endstop)
  1552. #else
  1553. z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
  1554. if (z_min_endstop)
  1555. #endif
  1556. {
  1557. if (IsRunning()) {
  1558. SERIAL_ERROR_START;
  1559. SERIAL_ERRORLNPGM("Z-Probe failed to engage!");
  1560. LCD_ALERTMESSAGEPGM("Err: ZPROBE");
  1561. }
  1562. stop();
  1563. }
  1564. #elif ENABLED(FIX_MOUNTED_PROBE)
  1565. // Nothing to be done. Just enable_z_probe below...
  1566. #endif
  1567. endstops.enable_z_probe();
  1568. }
  1569. static void stow_z_probe() {
  1570. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1571. if (DEBUGGING(LEVELING)) DEBUG_POS("stow_z_probe", current_position);
  1572. #endif
  1573. if (!endstops.z_probe_enabled) return;
  1574. #if ENABLED(Z_PROBE_SLED)
  1575. dock_sled(true);
  1576. #elif HAS_Z_SERVO_ENDSTOP
  1577. // Make room for the servo
  1578. raise_z_for_servo(Z_RAISE_AFTER_PROBING);
  1579. // Change the Z servo angle
  1580. STOW_Z_SERVO();
  1581. #elif ENABLED(Z_PROBE_ALLEN_KEY)
  1582. float old_feedrate = feedrate;
  1583. // Move up for safety
  1584. feedrate = Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE;
  1585. #if Z_RAISE_AFTER_PROBING > 0
  1586. destination[Z_AXIS] = current_position[Z_AXIS] + Z_RAISE_AFTER_PROBING;
  1587. prepare_move_to_destination_raw(); // this will also set_current_to_destination
  1588. #endif
  1589. // Move to the start position to initiate retraction
  1590. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_STOW_1_X;
  1591. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_STOW_1_Y;
  1592. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_STOW_1_Z;
  1593. prepare_move_to_destination_raw();
  1594. // Move the nozzle down to push the Z probe into retracted position
  1595. if (Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE != Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE)
  1596. feedrate = Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE;
  1597. if (Z_PROBE_ALLEN_KEY_STOW_2_X != Z_PROBE_ALLEN_KEY_STOW_1_X)
  1598. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_STOW_2_X;
  1599. if (Z_PROBE_ALLEN_KEY_STOW_2_Y != Z_PROBE_ALLEN_KEY_STOW_1_Y)
  1600. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_STOW_2_Y;
  1601. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_STOW_2_Z;
  1602. prepare_move_to_destination_raw();
  1603. // Move up for safety
  1604. if (Z_PROBE_ALLEN_KEY_STOW_3_FEEDRATE != Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE)
  1605. feedrate = Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE;
  1606. if (Z_PROBE_ALLEN_KEY_STOW_3_X != Z_PROBE_ALLEN_KEY_STOW_2_X)
  1607. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_STOW_3_X;
  1608. if (Z_PROBE_ALLEN_KEY_STOW_3_Y != Z_PROBE_ALLEN_KEY_STOW_2_Y)
  1609. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_STOW_3_Y;
  1610. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_STOW_3_Z;
  1611. prepare_move_to_destination_raw();
  1612. // Home XY for safety
  1613. feedrate = homing_feedrate[X_AXIS] / 2;
  1614. destination[X_AXIS] = 0;
  1615. destination[Y_AXIS] = 0;
  1616. prepare_move_to_destination_raw(); // this will also set_current_to_destination
  1617. feedrate = old_feedrate;
  1618. stepper.synchronize();
  1619. #if ENABLED(Z_MIN_PROBE_ENDSTOP)
  1620. bool z_probe_endstop = (READ(Z_MIN_PROBE_PIN) != Z_MIN_PROBE_ENDSTOP_INVERTING);
  1621. if (!z_probe_endstop)
  1622. #else
  1623. bool z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
  1624. if (!z_min_endstop)
  1625. #endif
  1626. {
  1627. if (IsRunning()) {
  1628. SERIAL_ERROR_START;
  1629. SERIAL_ERRORLNPGM("Z-Probe failed to retract!");
  1630. LCD_ALERTMESSAGEPGM("Err: ZPROBE");
  1631. }
  1632. stop();
  1633. }
  1634. #elif ENABLED(FIX_MOUNTED_PROBE)
  1635. // Nothing to do here. Just clear endstops.z_probe_enabled
  1636. #endif
  1637. endstops.enable_z_probe(false);
  1638. }
  1639. #endif // HAS_BED_PROBE
  1640. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  1641. #if ENABLED(AUTO_BED_LEVELING_GRID)
  1642. #if DISABLED(DELTA)
  1643. static void set_bed_level_equation_lsq(double* plane_equation_coefficients) {
  1644. //planner.bed_level_matrix.debug("bed level before");
  1645. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1646. planner.bed_level_matrix.set_to_identity();
  1647. if (DEBUGGING(LEVELING)) {
  1648. vector_3 uncorrected_position = planner.adjusted_position();
  1649. DEBUG_POS(">>> set_bed_level_equation_lsq", uncorrected_position);
  1650. DEBUG_POS(">>> set_bed_level_equation_lsq", current_position);
  1651. }
  1652. #endif
  1653. vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
  1654. planner.bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1655. vector_3 corrected_position = planner.adjusted_position();
  1656. current_position[X_AXIS] = corrected_position.x;
  1657. current_position[Y_AXIS] = corrected_position.y;
  1658. current_position[Z_AXIS] = corrected_position.z;
  1659. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1660. if (DEBUGGING(LEVELING)) DEBUG_POS("<<< set_bed_level_equation_lsq", corrected_position);
  1661. #endif
  1662. sync_plan_position();
  1663. }
  1664. #endif // !DELTA
  1665. #else // !AUTO_BED_LEVELING_GRID
  1666. static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
  1667. planner.bed_level_matrix.set_to_identity();
  1668. vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
  1669. vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
  1670. vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
  1671. vector_3 planeNormal = vector_3::cross(pt1 - pt2, pt3 - pt2).get_normal();
  1672. if (planeNormal.z < 0) {
  1673. planeNormal.x = -planeNormal.x;
  1674. planeNormal.y = -planeNormal.y;
  1675. planeNormal.z = -planeNormal.z;
  1676. }
  1677. planner.bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1678. vector_3 corrected_position = planner.adjusted_position();
  1679. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1680. if (DEBUGGING(LEVELING)) {
  1681. vector_3 uncorrected_position = corrected_position;
  1682. DEBUG_POS("set_bed_level_equation_3pts", uncorrected_position);
  1683. }
  1684. #endif
  1685. current_position[X_AXIS] = corrected_position.x;
  1686. current_position[Y_AXIS] = corrected_position.y;
  1687. current_position[Z_AXIS] = corrected_position.z;
  1688. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1689. if (DEBUGGING(LEVELING)) DEBUG_POS("set_bed_level_equation_3pts", corrected_position);
  1690. #endif
  1691. sync_plan_position();
  1692. }
  1693. #endif // !AUTO_BED_LEVELING_GRID
  1694. static void run_z_probe() {
  1695. float old_feedrate = feedrate;
  1696. /**
  1697. * To prevent stepper_inactive_time from running out and
  1698. * EXTRUDER_RUNOUT_PREVENT from extruding
  1699. */
  1700. refresh_cmd_timeout();
  1701. #if ENABLED(DELTA)
  1702. float start_z = current_position[Z_AXIS];
  1703. long start_steps = stepper.position(Z_AXIS);
  1704. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1705. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("run_z_probe (DELTA) 1");
  1706. #endif
  1707. // move down slowly until you find the bed
  1708. feedrate = homing_feedrate[Z_AXIS] / 4;
  1709. destination[Z_AXIS] = -10;
  1710. prepare_move_to_destination_raw(); // this will also set_current_to_destination
  1711. stepper.synchronize();
  1712. endstops.hit_on_purpose(); // clear endstop hit flags
  1713. /**
  1714. * We have to let the planner know where we are right now as it
  1715. * is not where we said to go.
  1716. */
  1717. long stop_steps = stepper.position(Z_AXIS);
  1718. float mm = start_z - float(start_steps - stop_steps) / planner.axis_steps_per_mm[Z_AXIS];
  1719. current_position[Z_AXIS] = mm;
  1720. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1721. if (DEBUGGING(LEVELING)) DEBUG_POS("run_z_probe (DELTA) 2", current_position);
  1722. #endif
  1723. sync_plan_position_delta();
  1724. #else // !DELTA
  1725. planner.bed_level_matrix.set_to_identity();
  1726. feedrate = homing_feedrate[Z_AXIS];
  1727. // Move down until the Z probe (or endstop?) is triggered
  1728. float zPosition = -(Z_MAX_LENGTH + 10);
  1729. line_to_z(zPosition);
  1730. stepper.synchronize();
  1731. // Tell the planner where we ended up - Get this from the stepper handler
  1732. zPosition = stepper.get_axis_position_mm(Z_AXIS);
  1733. planner.set_position_mm(
  1734. current_position[X_AXIS], current_position[Y_AXIS], zPosition,
  1735. current_position[E_AXIS]
  1736. );
  1737. // move up the retract distance
  1738. zPosition += home_bump_mm(Z_AXIS);
  1739. line_to_z(zPosition);
  1740. stepper.synchronize();
  1741. endstops.hit_on_purpose(); // clear endstop hit flags
  1742. // move back down slowly to find bed
  1743. set_homing_bump_feedrate(Z_AXIS);
  1744. zPosition -= home_bump_mm(Z_AXIS) * 2;
  1745. line_to_z(zPosition);
  1746. stepper.synchronize();
  1747. endstops.hit_on_purpose(); // clear endstop hit flags
  1748. // Get the current stepper position after bumping an endstop
  1749. current_position[Z_AXIS] = stepper.get_axis_position_mm(Z_AXIS);
  1750. sync_plan_position();
  1751. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1752. if (DEBUGGING(LEVELING)) DEBUG_POS("run_z_probe", current_position);
  1753. #endif
  1754. #endif // !DELTA
  1755. feedrate = old_feedrate;
  1756. }
  1757. inline void do_blocking_move_to_xy(float x, float y) {
  1758. do_blocking_move_to(x, y, current_position[Z_AXIS]);
  1759. }
  1760. static void clean_up_after_endstop_move() {
  1761. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1762. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("clean_up_after_endstop_move > ENDSTOPS_ONLY_FOR_HOMING > endstops.not_homing()");
  1763. #endif
  1764. endstops.not_homing();
  1765. feedrate = saved_feedrate;
  1766. feedrate_multiplier = saved_feedrate_multiplier;
  1767. refresh_cmd_timeout();
  1768. }
  1769. enum ProbeAction {
  1770. ProbeStay = 0,
  1771. ProbeDeploy = _BV(0),
  1772. ProbeStow = _BV(1),
  1773. ProbeDeployAndStow = (ProbeDeploy | ProbeStow)
  1774. };
  1775. // Probe bed height at position (x,y), returns the measured z value
  1776. static float probe_pt(float x, float y, float z_before, ProbeAction probe_action = ProbeDeployAndStow, int verbose_level = 1) {
  1777. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1778. if (DEBUGGING(LEVELING)) {
  1779. SERIAL_ECHOLNPGM("probe_pt >>>");
  1780. SERIAL_ECHOPAIR("> ProbeAction:", probe_action);
  1781. SERIAL_EOL;
  1782. DEBUG_POS("", current_position);
  1783. }
  1784. #endif
  1785. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1786. if (DEBUGGING(LEVELING)) {
  1787. SERIAL_ECHOPAIR("Z Raise to z_before ", z_before);
  1788. SERIAL_EOL;
  1789. SERIAL_ECHOPAIR("> do_blocking_move_to_z ", z_before);
  1790. SERIAL_EOL;
  1791. }
  1792. #endif
  1793. // Move Z up to the z_before height, then move the Z probe to the given XY
  1794. do_blocking_move_to_z(z_before); // this also updates current_position
  1795. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1796. if (DEBUGGING(LEVELING)) {
  1797. SERIAL_ECHOPAIR("> do_blocking_move_to_xy ", x - (X_PROBE_OFFSET_FROM_EXTRUDER));
  1798. SERIAL_ECHOPAIR(", ", y - (Y_PROBE_OFFSET_FROM_EXTRUDER));
  1799. SERIAL_EOL;
  1800. }
  1801. #endif
  1802. // this also updates current_position
  1803. do_blocking_move_to_xy(x - (X_PROBE_OFFSET_FROM_EXTRUDER), y - (Y_PROBE_OFFSET_FROM_EXTRUDER));
  1804. #if DISABLED(Z_PROBE_SLED) && DISABLED(Z_PROBE_ALLEN_KEY)
  1805. if (probe_action & ProbeDeploy) {
  1806. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1807. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> ProbeDeploy");
  1808. #endif
  1809. deploy_z_probe();
  1810. }
  1811. #endif
  1812. run_z_probe();
  1813. float measured_z = current_position[Z_AXIS];
  1814. #if DISABLED(Z_PROBE_SLED) && DISABLED(Z_PROBE_ALLEN_KEY)
  1815. if (probe_action & ProbeStow) {
  1816. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1817. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> ProbeStow (stow_z_probe will do Z Raise)");
  1818. #endif
  1819. stow_z_probe();
  1820. }
  1821. #endif
  1822. if (verbose_level > 2) {
  1823. SERIAL_PROTOCOLPGM("Bed X: ");
  1824. SERIAL_PROTOCOL_F(x, 3);
  1825. SERIAL_PROTOCOLPGM(" Y: ");
  1826. SERIAL_PROTOCOL_F(y, 3);
  1827. SERIAL_PROTOCOLPGM(" Z: ");
  1828. SERIAL_PROTOCOL_F(measured_z, 3);
  1829. SERIAL_EOL;
  1830. }
  1831. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1832. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< probe_pt");
  1833. #endif
  1834. return measured_z;
  1835. }
  1836. #if ENABLED(DELTA)
  1837. /**
  1838. * All DELTA leveling in the Marlin uses NONLINEAR_BED_LEVELING
  1839. */
  1840. static void extrapolate_one_point(int x, int y, int xdir, int ydir) {
  1841. if (bed_level[x][y] != 0.0) {
  1842. return; // Don't overwrite good values.
  1843. }
  1844. float a = 2 * bed_level[x + xdir][y] - bed_level[x + xdir * 2][y]; // Left to right.
  1845. float b = 2 * bed_level[x][y + ydir] - bed_level[x][y + ydir * 2]; // Front to back.
  1846. float c = 2 * bed_level[x + xdir][y + ydir] - bed_level[x + xdir * 2][y + ydir * 2]; // Diagonal.
  1847. float median = c; // Median is robust (ignores outliers).
  1848. if (a < b) {
  1849. if (b < c) median = b;
  1850. if (c < a) median = a;
  1851. }
  1852. else { // b <= a
  1853. if (c < b) median = b;
  1854. if (a < c) median = a;
  1855. }
  1856. bed_level[x][y] = median;
  1857. }
  1858. /**
  1859. * Fill in the unprobed points (corners of circular print surface)
  1860. * using linear extrapolation, away from the center.
  1861. */
  1862. static void extrapolate_unprobed_bed_level() {
  1863. int half = (AUTO_BED_LEVELING_GRID_POINTS - 1) / 2;
  1864. for (int y = 0; y <= half; y++) {
  1865. for (int x = 0; x <= half; x++) {
  1866. if (x + y < 3) continue;
  1867. extrapolate_one_point(half - x, half - y, x > 1 ? +1 : 0, y > 1 ? +1 : 0);
  1868. extrapolate_one_point(half + x, half - y, x > 1 ? -1 : 0, y > 1 ? +1 : 0);
  1869. extrapolate_one_point(half - x, half + y, x > 1 ? +1 : 0, y > 1 ? -1 : 0);
  1870. extrapolate_one_point(half + x, half + y, x > 1 ? -1 : 0, y > 1 ? -1 : 0);
  1871. }
  1872. }
  1873. }
  1874. /**
  1875. * Print calibration results for plotting or manual frame adjustment.
  1876. */
  1877. static void print_bed_level() {
  1878. for (int y = 0; y < AUTO_BED_LEVELING_GRID_POINTS; y++) {
  1879. for (int x = 0; x < AUTO_BED_LEVELING_GRID_POINTS; x++) {
  1880. SERIAL_PROTOCOL_F(bed_level[x][y], 2);
  1881. SERIAL_PROTOCOLCHAR(' ');
  1882. }
  1883. SERIAL_EOL;
  1884. }
  1885. }
  1886. /**
  1887. * Reset calibration results to zero.
  1888. */
  1889. void reset_bed_level() {
  1890. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1891. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("reset_bed_level");
  1892. #endif
  1893. for (int y = 0; y < AUTO_BED_LEVELING_GRID_POINTS; y++) {
  1894. for (int x = 0; x < AUTO_BED_LEVELING_GRID_POINTS; x++) {
  1895. bed_level[x][y] = 0.0;
  1896. }
  1897. }
  1898. }
  1899. #endif // DELTA
  1900. #endif // AUTO_BED_LEVELING_FEATURE
  1901. #if ENABLED(Z_PROBE_SLED) || ENABLED(Z_SAFE_HOMING) || ENABLED(AUTO_BED_LEVELING_FEATURE)
  1902. static void axis_unhomed_error(bool xyz=false) {
  1903. if (xyz) {
  1904. LCD_MESSAGEPGM(MSG_XYZ_UNHOMED);
  1905. SERIAL_ECHO_START;
  1906. SERIAL_ECHOLNPGM(MSG_XYZ_UNHOMED);
  1907. }
  1908. else {
  1909. LCD_MESSAGEPGM(MSG_YX_UNHOMED);
  1910. SERIAL_ECHO_START;
  1911. SERIAL_ECHOLNPGM(MSG_YX_UNHOMED);
  1912. }
  1913. }
  1914. #endif
  1915. /**
  1916. * Home an individual axis
  1917. */
  1918. #define HOMEAXIS(LETTER) homeaxis(LETTER##_AXIS)
  1919. static void homeaxis(AxisEnum axis) {
  1920. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1921. if (DEBUGGING(LEVELING)) {
  1922. SERIAL_ECHOPAIR(">>> homeaxis(", axis);
  1923. SERIAL_ECHOLNPGM(")");
  1924. }
  1925. #endif
  1926. #define HOMEAXIS_DO(LETTER) \
  1927. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  1928. if (axis == X_AXIS ? HOMEAXIS_DO(X) : axis == Y_AXIS ? HOMEAXIS_DO(Y) : axis == Z_AXIS ? HOMEAXIS_DO(Z) : 0) {
  1929. int axis_home_dir =
  1930. #if ENABLED(DUAL_X_CARRIAGE)
  1931. (axis == X_AXIS) ? x_home_dir(active_extruder) :
  1932. #endif
  1933. home_dir(axis);
  1934. // Set the axis position as setup for the move
  1935. current_position[axis] = 0;
  1936. sync_plan_position();
  1937. // Homing Z towards the bed? Deploy the Z probe or endstop.
  1938. #if HAS_BED_PROBE
  1939. if (axis == Z_AXIS && axis_home_dir < 0) {
  1940. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1941. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM(" > deploy_z_probe()");
  1942. #endif
  1943. deploy_z_probe();
  1944. }
  1945. #endif
  1946. // Set a flag for Z motor locking
  1947. #if ENABLED(Z_DUAL_ENDSTOPS)
  1948. if (axis == Z_AXIS) stepper.set_homing_flag(true);
  1949. #endif
  1950. // Move towards the endstop until an endstop is triggered
  1951. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  1952. feedrate = homing_feedrate[axis];
  1953. line_to_destination();
  1954. stepper.synchronize();
  1955. // Set the axis position as setup for the move
  1956. current_position[axis] = 0;
  1957. sync_plan_position();
  1958. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1959. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> endstops.enable(false)");
  1960. #endif
  1961. endstops.enable(false); // Disable endstops while moving away
  1962. // Move away from the endstop by the axis HOME_BUMP_MM
  1963. destination[axis] = -home_bump_mm(axis) * axis_home_dir;
  1964. line_to_destination();
  1965. stepper.synchronize();
  1966. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1967. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> endstops.enable(true)");
  1968. #endif
  1969. endstops.enable(true); // Enable endstops for next homing move
  1970. // Slow down the feedrate for the next move
  1971. set_homing_bump_feedrate(axis);
  1972. // Move slowly towards the endstop until triggered
  1973. destination[axis] = 2 * home_bump_mm(axis) * axis_home_dir;
  1974. line_to_destination();
  1975. stepper.synchronize();
  1976. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1977. if (DEBUGGING(LEVELING)) DEBUG_POS("> TRIGGER ENDSTOP", current_position);
  1978. #endif
  1979. #if ENABLED(Z_DUAL_ENDSTOPS)
  1980. if (axis == Z_AXIS) {
  1981. float adj = fabs(z_endstop_adj);
  1982. bool lockZ1;
  1983. if (axis_home_dir > 0) {
  1984. adj = -adj;
  1985. lockZ1 = (z_endstop_adj > 0);
  1986. }
  1987. else
  1988. lockZ1 = (z_endstop_adj < 0);
  1989. if (lockZ1) stepper.set_z_lock(true); else stepper.set_z2_lock(true);
  1990. sync_plan_position();
  1991. // Move to the adjusted endstop height
  1992. feedrate = homing_feedrate[axis];
  1993. destination[Z_AXIS] = adj;
  1994. line_to_destination();
  1995. stepper.synchronize();
  1996. if (lockZ1) stepper.set_z_lock(false); else stepper.set_z2_lock(false);
  1997. stepper.set_homing_flag(false);
  1998. } // Z_AXIS
  1999. #endif
  2000. #if ENABLED(DELTA)
  2001. // retrace by the amount specified in endstop_adj
  2002. if (endstop_adj[axis] * axis_home_dir < 0) {
  2003. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2004. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> endstops.enable(false)");
  2005. #endif
  2006. endstops.enable(false); // Disable endstops while moving away
  2007. sync_plan_position();
  2008. destination[axis] = endstop_adj[axis];
  2009. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2010. if (DEBUGGING(LEVELING)) {
  2011. SERIAL_ECHOPAIR("> endstop_adj = ", endstop_adj[axis]);
  2012. DEBUG_POS("", destination);
  2013. }
  2014. #endif
  2015. line_to_destination();
  2016. stepper.synchronize();
  2017. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2018. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> endstops.enable(true)");
  2019. #endif
  2020. endstops.enable(true); // Enable endstops for next homing move
  2021. }
  2022. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2023. else {
  2024. if (DEBUGGING(LEVELING)) {
  2025. SERIAL_ECHOPAIR("> endstop_adj * axis_home_dir = ", endstop_adj[axis] * axis_home_dir);
  2026. SERIAL_EOL;
  2027. }
  2028. }
  2029. #endif
  2030. #endif
  2031. // Set the axis position to its home position (plus home offsets)
  2032. set_axis_is_at_home(axis);
  2033. sync_plan_position();
  2034. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2035. if (DEBUGGING(LEVELING)) DEBUG_POS("> AFTER set_axis_is_at_home", current_position);
  2036. #endif
  2037. destination[axis] = current_position[axis];
  2038. feedrate = 0.0;
  2039. endstops.hit_on_purpose(); // clear endstop hit flags
  2040. axis_known_position[axis] = true;
  2041. axis_homed[axis] = true;
  2042. // Put away the Z probe
  2043. #if HAS_BED_PROBE
  2044. if (axis == Z_AXIS && axis_home_dir < 0) {
  2045. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2046. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM(" > stow_z_probe()");
  2047. #endif
  2048. stow_z_probe();
  2049. }
  2050. #endif
  2051. }
  2052. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2053. if (DEBUGGING(LEVELING)) {
  2054. SERIAL_ECHOPAIR("<<< homeaxis(", axis);
  2055. SERIAL_ECHOLNPGM(")");
  2056. }
  2057. #endif
  2058. }
  2059. #if ENABLED(FWRETRACT)
  2060. void retract(bool retracting, bool swapping = false) {
  2061. if (retracting == retracted[active_extruder]) return;
  2062. float oldFeedrate = feedrate;
  2063. set_destination_to_current();
  2064. if (retracting) {
  2065. feedrate = retract_feedrate * 60;
  2066. current_position[E_AXIS] += (swapping ? retract_length_swap : retract_length) / volumetric_multiplier[active_extruder];
  2067. sync_plan_position_e();
  2068. prepare_move_to_destination();
  2069. if (retract_zlift > 0.01) {
  2070. current_position[Z_AXIS] -= retract_zlift;
  2071. #if ENABLED(DELTA)
  2072. sync_plan_position_delta();
  2073. #else
  2074. sync_plan_position();
  2075. #endif
  2076. prepare_move_to_destination();
  2077. }
  2078. }
  2079. else {
  2080. if (retract_zlift > 0.01) {
  2081. current_position[Z_AXIS] += retract_zlift;
  2082. #if ENABLED(DELTA)
  2083. sync_plan_position_delta();
  2084. #else
  2085. sync_plan_position();
  2086. #endif
  2087. }
  2088. feedrate = retract_recover_feedrate * 60;
  2089. float move_e = swapping ? retract_length_swap + retract_recover_length_swap : retract_length + retract_recover_length;
  2090. current_position[E_AXIS] -= move_e / volumetric_multiplier[active_extruder];
  2091. sync_plan_position_e();
  2092. prepare_move_to_destination();
  2093. }
  2094. feedrate = oldFeedrate;
  2095. retracted[active_extruder] = retracting;
  2096. } // retract()
  2097. #endif // FWRETRACT
  2098. /**
  2099. * ***************************************************************************
  2100. * ***************************** G-CODE HANDLING *****************************
  2101. * ***************************************************************************
  2102. */
  2103. /**
  2104. * Set XYZE destination and feedrate from the current GCode command
  2105. *
  2106. * - Set destination from included axis codes
  2107. * - Set to current for missing axis codes
  2108. * - Set the feedrate, if included
  2109. */
  2110. void gcode_get_destination() {
  2111. for (int i = 0; i < NUM_AXIS; i++) {
  2112. if (code_seen(axis_codes[i]))
  2113. destination[i] = code_value_axis_units(i) + (axis_relative_modes[i] || relative_mode ? current_position[i] : 0);
  2114. else
  2115. destination[i] = current_position[i];
  2116. }
  2117. if (code_seen('F')) {
  2118. float next_feedrate = code_value_linear_units();
  2119. if (next_feedrate > 0.0) feedrate = next_feedrate;
  2120. }
  2121. }
  2122. void unknown_command_error() {
  2123. SERIAL_ECHO_START;
  2124. SERIAL_ECHOPGM(MSG_UNKNOWN_COMMAND);
  2125. SERIAL_ECHO(current_command);
  2126. SERIAL_ECHOPGM("\"\n");
  2127. }
  2128. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  2129. /**
  2130. * Output a "busy" message at regular intervals
  2131. * while the machine is not accepting commands.
  2132. */
  2133. void host_keepalive() {
  2134. millis_t ms = millis();
  2135. if (host_keepalive_interval && busy_state != NOT_BUSY) {
  2136. if (PENDING(ms, next_busy_signal_ms)) return;
  2137. switch (busy_state) {
  2138. case IN_HANDLER:
  2139. case IN_PROCESS:
  2140. SERIAL_ECHO_START;
  2141. SERIAL_ECHOLNPGM(MSG_BUSY_PROCESSING);
  2142. break;
  2143. case PAUSED_FOR_USER:
  2144. SERIAL_ECHO_START;
  2145. SERIAL_ECHOLNPGM(MSG_BUSY_PAUSED_FOR_USER);
  2146. break;
  2147. case PAUSED_FOR_INPUT:
  2148. SERIAL_ECHO_START;
  2149. SERIAL_ECHOLNPGM(MSG_BUSY_PAUSED_FOR_INPUT);
  2150. break;
  2151. default:
  2152. break;
  2153. }
  2154. }
  2155. next_busy_signal_ms = ms + host_keepalive_interval * 1000UL;
  2156. }
  2157. #endif //HOST_KEEPALIVE_FEATURE
  2158. /**
  2159. * G0, G1: Coordinated movement of X Y Z E axes
  2160. */
  2161. inline void gcode_G0_G1() {
  2162. if (IsRunning()) {
  2163. gcode_get_destination(); // For X Y Z E F
  2164. #if ENABLED(FWRETRACT)
  2165. if (autoretract_enabled && !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  2166. float echange = destination[E_AXIS] - current_position[E_AXIS];
  2167. // Is this move an attempt to retract or recover?
  2168. if ((echange < -MIN_RETRACT && !retracted[active_extruder]) || (echange > MIN_RETRACT && retracted[active_extruder])) {
  2169. current_position[E_AXIS] = destination[E_AXIS]; // hide the slicer-generated retract/recover from calculations
  2170. sync_plan_position_e(); // AND from the planner
  2171. retract(!retracted[active_extruder]);
  2172. return;
  2173. }
  2174. }
  2175. #endif //FWRETRACT
  2176. prepare_move_to_destination();
  2177. }
  2178. }
  2179. /**
  2180. * G2: Clockwise Arc
  2181. * G3: Counterclockwise Arc
  2182. */
  2183. #if ENABLED(ARC_SUPPORT)
  2184. inline void gcode_G2_G3(bool clockwise) {
  2185. if (IsRunning()) {
  2186. #if ENABLED(SF_ARC_FIX)
  2187. bool relative_mode_backup = relative_mode;
  2188. relative_mode = true;
  2189. #endif
  2190. gcode_get_destination();
  2191. #if ENABLED(SF_ARC_FIX)
  2192. relative_mode = relative_mode_backup;
  2193. #endif
  2194. // Center of arc as offset from current_position
  2195. float arc_offset[2] = {
  2196. code_seen('I') ? code_value_axis_units(X_AXIS) : 0,
  2197. code_seen('J') ? code_value_axis_units(Y_AXIS) : 0
  2198. };
  2199. // Send an arc to the planner
  2200. plan_arc(destination, arc_offset, clockwise);
  2201. refresh_cmd_timeout();
  2202. }
  2203. }
  2204. #endif
  2205. /**
  2206. * G4: Dwell S<seconds> or P<milliseconds>
  2207. */
  2208. inline void gcode_G4() {
  2209. millis_t codenum = 0;
  2210. if (code_seen('P')) codenum = code_value_millis(); // milliseconds to wait
  2211. if (code_seen('S')) codenum = code_value_millis_from_seconds(); // seconds to wait
  2212. stepper.synchronize();
  2213. refresh_cmd_timeout();
  2214. codenum += previous_cmd_ms; // keep track of when we started waiting
  2215. if (!lcd_hasstatus()) LCD_MESSAGEPGM(MSG_DWELL);
  2216. while (PENDING(millis(), codenum)) idle();
  2217. }
  2218. #if ENABLED(BEZIER_CURVE_SUPPORT)
  2219. /**
  2220. * Parameters interpreted according to:
  2221. * http://linuxcnc.org/docs/2.6/html/gcode/gcode.html#sec:G5-Cubic-Spline
  2222. * However I, J omission is not supported at this point; all
  2223. * parameters can be omitted and default to zero.
  2224. */
  2225. /**
  2226. * G5: Cubic B-spline
  2227. */
  2228. inline void gcode_G5() {
  2229. if (IsRunning()) {
  2230. gcode_get_destination();
  2231. float offset[] = {
  2232. code_seen('I') ? code_value_axis_units(X_AXIS) : 0.0,
  2233. code_seen('J') ? code_value_axis_units(Y_AXIS) : 0.0,
  2234. code_seen('P') ? code_value_axis_units(X_AXIS) : 0.0,
  2235. code_seen('Q') ? code_value_axis_units(Y_AXIS) : 0.0
  2236. };
  2237. plan_cubic_move(offset);
  2238. }
  2239. }
  2240. #endif // BEZIER_CURVE_SUPPORT
  2241. #if ENABLED(FWRETRACT)
  2242. /**
  2243. * G10 - Retract filament according to settings of M207
  2244. * G11 - Recover filament according to settings of M208
  2245. */
  2246. inline void gcode_G10_G11(bool doRetract=false) {
  2247. #if EXTRUDERS > 1
  2248. if (doRetract) {
  2249. retracted_swap[active_extruder] = (code_seen('S') && code_value_bool()); // checks for swap retract argument
  2250. }
  2251. #endif
  2252. retract(doRetract
  2253. #if EXTRUDERS > 1
  2254. , retracted_swap[active_extruder]
  2255. #endif
  2256. );
  2257. }
  2258. #endif //FWRETRACT
  2259. #if ENABLED(INCH_MODE_SUPPORT)
  2260. /**
  2261. * G20: Set input mode to inches
  2262. */
  2263. inline void gcode_G20() {
  2264. set_input_linear_units(LINEARUNIT_INCH);
  2265. }
  2266. /**
  2267. * G21: Set input mode to millimeters
  2268. */
  2269. inline void gcode_G21() {
  2270. set_input_linear_units(LINEARUNIT_MM);
  2271. }
  2272. #endif
  2273. /**
  2274. * G28: Home all axes according to settings
  2275. *
  2276. * Parameters
  2277. *
  2278. * None Home to all axes with no parameters.
  2279. * With QUICK_HOME enabled XY will home together, then Z.
  2280. *
  2281. * Cartesian parameters
  2282. *
  2283. * X Home to the X endstop
  2284. * Y Home to the Y endstop
  2285. * Z Home to the Z endstop
  2286. *
  2287. */
  2288. inline void gcode_G28() {
  2289. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2290. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("gcode_G28 >>>");
  2291. #endif
  2292. // Wait for planner moves to finish!
  2293. stepper.synchronize();
  2294. // For auto bed leveling, clear the level matrix
  2295. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  2296. planner.bed_level_matrix.set_to_identity();
  2297. #if ENABLED(DELTA)
  2298. reset_bed_level();
  2299. #endif
  2300. #endif
  2301. /**
  2302. * For mesh bed leveling deactivate the mesh calculations, will be turned
  2303. * on again when homing all axis
  2304. */
  2305. #if ENABLED(MESH_BED_LEVELING)
  2306. float pre_home_z = MESH_HOME_SEARCH_Z;
  2307. if (mbl.active()) {
  2308. // Save known Z position if already homed
  2309. if (axis_homed[X_AXIS] && axis_homed[Y_AXIS] && axis_homed[Z_AXIS]) {
  2310. pre_home_z = current_position[Z_AXIS];
  2311. pre_home_z += mbl.get_z(current_position[X_AXIS] - home_offset[X_AXIS],
  2312. current_position[Y_AXIS] - home_offset[Y_AXIS]);
  2313. }
  2314. mbl.set_active(false);
  2315. }
  2316. #endif
  2317. setup_for_endstop_move();
  2318. /**
  2319. * Directly after a reset this is all 0. Later we get a hint if we have
  2320. * to raise z or not.
  2321. */
  2322. set_destination_to_current();
  2323. feedrate = 0.0;
  2324. #if ENABLED(DELTA)
  2325. /**
  2326. * A delta can only safely home all axis at the same time
  2327. * all axis have to home at the same time
  2328. */
  2329. // Pretend the current position is 0,0,0
  2330. for (int i = X_AXIS; i <= Z_AXIS; i++) current_position[i] = 0;
  2331. sync_plan_position();
  2332. // Move all carriages up together until the first endstop is hit.
  2333. for (int i = X_AXIS; i <= Z_AXIS; i++) destination[i] = 3 * (Z_MAX_LENGTH);
  2334. feedrate = 1.732 * homing_feedrate[X_AXIS];
  2335. line_to_destination();
  2336. stepper.synchronize();
  2337. endstops.hit_on_purpose(); // clear endstop hit flags
  2338. // Destination reached
  2339. for (int i = X_AXIS; i <= Z_AXIS; i++) current_position[i] = destination[i];
  2340. // take care of back off and rehome now we are all at the top
  2341. HOMEAXIS(X);
  2342. HOMEAXIS(Y);
  2343. HOMEAXIS(Z);
  2344. sync_plan_position_delta();
  2345. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2346. if (DEBUGGING(LEVELING)) DEBUG_POS("(DELTA)", current_position);
  2347. #endif
  2348. #else // NOT DELTA
  2349. bool homeX = code_seen(axis_codes[X_AXIS]),
  2350. homeY = code_seen(axis_codes[Y_AXIS]),
  2351. homeZ = code_seen(axis_codes[Z_AXIS]);
  2352. home_all_axis = (!homeX && !homeY && !homeZ) || (homeX && homeY && homeZ);
  2353. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  2354. if (home_all_axis || homeZ) {
  2355. HOMEAXIS(Z);
  2356. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2357. if (DEBUGGING(LEVELING)) DEBUG_POS("> HOMEAXIS(Z)", current_position);
  2358. #endif
  2359. }
  2360. #elif defined(MIN_Z_HEIGHT_FOR_HOMING) && MIN_Z_HEIGHT_FOR_HOMING > 0
  2361. // Raise Z before homing any other axes and z is not already high enough (never lower z)
  2362. if (current_position[Z_AXIS] <= MIN_Z_HEIGHT_FOR_HOMING) {
  2363. destination[Z_AXIS] = MIN_Z_HEIGHT_FOR_HOMING;
  2364. feedrate = planner.max_feedrate[Z_AXIS] * 60; // feedrate (mm/m) = max_feedrate (mm/s)
  2365. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2366. if (DEBUGGING(LEVELING)) {
  2367. SERIAL_ECHOPAIR("Raise Z (before homing) to ", (MIN_Z_HEIGHT_FOR_HOMING));
  2368. SERIAL_EOL;
  2369. DEBUG_POS("> (home_all_axis || homeZ)", current_position);
  2370. DEBUG_POS("> (home_all_axis || homeZ)", destination);
  2371. }
  2372. #endif
  2373. line_to_destination();
  2374. stepper.synchronize();
  2375. /**
  2376. * Update the current Z position even if it currently not real from
  2377. * Z-home otherwise each call to line_to_destination() will want to
  2378. * move Z-axis by MIN_Z_HEIGHT_FOR_HOMING.
  2379. */
  2380. current_position[Z_AXIS] = destination[Z_AXIS];
  2381. }
  2382. #endif
  2383. #if ENABLED(QUICK_HOME)
  2384. if (home_all_axis || (homeX && homeY)) { // First diagonal move
  2385. current_position[X_AXIS] = current_position[Y_AXIS] = 0;
  2386. #if ENABLED(DUAL_X_CARRIAGE)
  2387. int x_axis_home_dir = x_home_dir(active_extruder);
  2388. extruder_duplication_enabled = false;
  2389. #else
  2390. int x_axis_home_dir = home_dir(X_AXIS);
  2391. #endif
  2392. sync_plan_position();
  2393. float mlx = max_length(X_AXIS), mly = max_length(Y_AXIS),
  2394. mlratio = mlx > mly ? mly / mlx : mlx / mly;
  2395. destination[X_AXIS] = 1.5 * mlx * x_axis_home_dir;
  2396. destination[Y_AXIS] = 1.5 * mly * home_dir(Y_AXIS);
  2397. feedrate = min(homing_feedrate[X_AXIS], homing_feedrate[Y_AXIS]) * sqrt(mlratio * mlratio + 1);
  2398. line_to_destination();
  2399. stepper.synchronize();
  2400. set_axis_is_at_home(X_AXIS);
  2401. set_axis_is_at_home(Y_AXIS);
  2402. sync_plan_position();
  2403. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2404. if (DEBUGGING(LEVELING)) DEBUG_POS("> QUICK_HOME 1", current_position);
  2405. #endif
  2406. destination[X_AXIS] = current_position[X_AXIS];
  2407. destination[Y_AXIS] = current_position[Y_AXIS];
  2408. line_to_destination();
  2409. feedrate = 0.0;
  2410. stepper.synchronize();
  2411. endstops.hit_on_purpose(); // clear endstop hit flags
  2412. current_position[X_AXIS] = destination[X_AXIS];
  2413. current_position[Y_AXIS] = destination[Y_AXIS];
  2414. #if DISABLED(SCARA)
  2415. current_position[Z_AXIS] = destination[Z_AXIS];
  2416. #endif
  2417. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2418. if (DEBUGGING(LEVELING)) DEBUG_POS("> QUICK_HOME 2", current_position);
  2419. #endif
  2420. }
  2421. #endif // QUICK_HOME
  2422. #if ENABLED(HOME_Y_BEFORE_X)
  2423. // Home Y
  2424. if (home_all_axis || homeY) HOMEAXIS(Y);
  2425. #endif
  2426. // Home X
  2427. if (home_all_axis || homeX) {
  2428. #if ENABLED(DUAL_X_CARRIAGE)
  2429. int tmp_extruder = active_extruder;
  2430. extruder_duplication_enabled = false;
  2431. active_extruder = !active_extruder;
  2432. HOMEAXIS(X);
  2433. inactive_extruder_x_pos = current_position[X_AXIS];
  2434. active_extruder = tmp_extruder;
  2435. HOMEAXIS(X);
  2436. // reset state used by the different modes
  2437. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  2438. delayed_move_time = 0;
  2439. active_extruder_parked = true;
  2440. #else
  2441. HOMEAXIS(X);
  2442. #endif
  2443. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2444. if (DEBUGGING(LEVELING)) DEBUG_POS("> homeX", current_position);
  2445. #endif
  2446. }
  2447. #if DISABLED(HOME_Y_BEFORE_X)
  2448. // Home Y
  2449. if (home_all_axis || homeY) {
  2450. HOMEAXIS(Y);
  2451. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2452. if (DEBUGGING(LEVELING)) DEBUG_POS("> homeY", current_position);
  2453. #endif
  2454. }
  2455. #endif
  2456. // Home Z last if homing towards the bed
  2457. #if Z_HOME_DIR < 0
  2458. if (home_all_axis || homeZ) {
  2459. #if ENABLED(Z_SAFE_HOMING)
  2460. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2461. if (DEBUGGING(LEVELING)) {
  2462. SERIAL_ECHOLNPGM("> Z_SAFE_HOMING >>>");
  2463. }
  2464. #endif
  2465. if (home_all_axis) {
  2466. /**
  2467. * At this point we already have Z at MIN_Z_HEIGHT_FOR_HOMING height
  2468. * No need to move Z any more as this height should already be safe
  2469. * enough to reach Z_SAFE_HOMING XY positions.
  2470. * Just make sure the planner is in sync.
  2471. */
  2472. sync_plan_position();
  2473. /**
  2474. * Set the Z probe (or just the nozzle) destination to the safe
  2475. * homing point
  2476. */
  2477. destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - (X_PROBE_OFFSET_FROM_EXTRUDER));
  2478. destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - (Y_PROBE_OFFSET_FROM_EXTRUDER));
  2479. destination[Z_AXIS] = current_position[Z_AXIS]; //z is already at the right height
  2480. feedrate = XY_TRAVEL_SPEED;
  2481. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2482. if (DEBUGGING(LEVELING)) {
  2483. DEBUG_POS("> Z_SAFE_HOMING > home_all_axis", current_position);
  2484. DEBUG_POS("> Z_SAFE_HOMING > home_all_axis", destination);
  2485. }
  2486. #endif
  2487. // Move in the XY plane
  2488. line_to_destination();
  2489. stepper.synchronize();
  2490. /**
  2491. * Update the current positions for XY, Z is still at least at
  2492. * MIN_Z_HEIGHT_FOR_HOMING height, no changes there.
  2493. */
  2494. current_position[X_AXIS] = destination[X_AXIS];
  2495. current_position[Y_AXIS] = destination[Y_AXIS];
  2496. // Home the Z axis
  2497. HOMEAXIS(Z);
  2498. }
  2499. else if (homeZ) { // Don't need to Home Z twice
  2500. // Let's see if X and Y are homed
  2501. if (axis_homed[X_AXIS] && axis_homed[Y_AXIS]) {
  2502. /**
  2503. * Make sure the Z probe is within the physical limits
  2504. * NOTE: This doesn't necessarily ensure the Z probe is also
  2505. * within the bed!
  2506. */
  2507. float cpx = current_position[X_AXIS], cpy = current_position[Y_AXIS];
  2508. if ( cpx >= X_MIN_POS - (X_PROBE_OFFSET_FROM_EXTRUDER)
  2509. && cpx <= X_MAX_POS - (X_PROBE_OFFSET_FROM_EXTRUDER)
  2510. && cpy >= Y_MIN_POS - (Y_PROBE_OFFSET_FROM_EXTRUDER)
  2511. && cpy <= Y_MAX_POS - (Y_PROBE_OFFSET_FROM_EXTRUDER)) {
  2512. // Home the Z axis
  2513. HOMEAXIS(Z);
  2514. }
  2515. else {
  2516. LCD_MESSAGEPGM(MSG_ZPROBE_OUT);
  2517. SERIAL_ECHO_START;
  2518. SERIAL_ECHOLNPGM(MSG_ZPROBE_OUT);
  2519. }
  2520. }
  2521. else {
  2522. axis_unhomed_error();
  2523. }
  2524. } // !home_all_axes && homeZ
  2525. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2526. if (DEBUGGING(LEVELING)) {
  2527. SERIAL_ECHOLNPGM("<<< Z_SAFE_HOMING");
  2528. }
  2529. #endif
  2530. #else // !Z_SAFE_HOMING
  2531. HOMEAXIS(Z);
  2532. #endif // !Z_SAFE_HOMING
  2533. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2534. if (DEBUGGING(LEVELING)) DEBUG_POS("> (home_all_axis || homeZ) > final", current_position);
  2535. #endif
  2536. } // home_all_axis || homeZ
  2537. #endif // Z_HOME_DIR < 0
  2538. sync_plan_position();
  2539. #endif // else DELTA
  2540. #if ENABLED(SCARA)
  2541. sync_plan_position_delta();
  2542. #endif
  2543. #if ENABLED(ENDSTOPS_ONLY_FOR_HOMING)
  2544. endstops.enable(false);
  2545. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2546. if (DEBUGGING(LEVELING)) {
  2547. SERIAL_ECHOLNPGM("ENDSTOPS_ONLY_FOR_HOMING endstops.enable(false)");
  2548. }
  2549. #endif
  2550. #endif
  2551. // Enable mesh leveling again
  2552. #if ENABLED(MESH_BED_LEVELING)
  2553. if (mbl.has_mesh()) {
  2554. if (home_all_axis || (axis_homed[X_AXIS] && axis_homed[Y_AXIS] && homeZ)) {
  2555. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z;
  2556. sync_plan_position();
  2557. mbl.set_active(true);
  2558. #if ENABLED(MESH_G28_REST_ORIGIN)
  2559. current_position[Z_AXIS] = 0.0;
  2560. set_destination_to_current();
  2561. feedrate = homing_feedrate[Z_AXIS];
  2562. line_to_destination();
  2563. stepper.synchronize();
  2564. #else
  2565. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z -
  2566. mbl.get_z(current_position[X_AXIS] - home_offset[X_AXIS],
  2567. current_position[Y_AXIS] - home_offset[Y_AXIS]);
  2568. #endif
  2569. }
  2570. else if ((axis_homed[X_AXIS] && axis_homed[Y_AXIS] && axis_homed[Z_AXIS]) && (homeX || homeY)) {
  2571. current_position[Z_AXIS] = pre_home_z;
  2572. sync_plan_position();
  2573. mbl.set_active(true);
  2574. current_position[Z_AXIS] = pre_home_z -
  2575. mbl.get_z(current_position[X_AXIS] - home_offset[X_AXIS],
  2576. current_position[Y_AXIS] - home_offset[Y_AXIS]);
  2577. }
  2578. }
  2579. #endif
  2580. feedrate = saved_feedrate;
  2581. feedrate_multiplier = saved_feedrate_multiplier;
  2582. refresh_cmd_timeout();
  2583. endstops.hit_on_purpose(); // clear endstop hit flags
  2584. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2585. if (DEBUGGING(LEVELING)) {
  2586. SERIAL_ECHOLNPGM("<<< gcode_G28");
  2587. }
  2588. #endif
  2589. report_current_position();
  2590. }
  2591. #if ENABLED(MESH_BED_LEVELING)
  2592. enum MeshLevelingState { MeshReport, MeshStart, MeshNext, MeshSet, MeshSetZOffset, MeshReset };
  2593. inline void _mbl_goto_xy(float x, float y) {
  2594. saved_feedrate = feedrate;
  2595. feedrate = homing_feedrate[X_AXIS];
  2596. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z
  2597. #if MIN_Z_HEIGHT_FOR_HOMING > 0
  2598. + MIN_Z_HEIGHT_FOR_HOMING
  2599. #endif
  2600. ;
  2601. line_to_current_position();
  2602. current_position[X_AXIS] = x + home_offset[X_AXIS];
  2603. current_position[Y_AXIS] = y + home_offset[Y_AXIS];
  2604. line_to_current_position();
  2605. #if MIN_Z_HEIGHT_FOR_HOMING > 0
  2606. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z;
  2607. line_to_current_position();
  2608. #endif
  2609. feedrate = saved_feedrate;
  2610. stepper.synchronize();
  2611. }
  2612. /**
  2613. * G29: Mesh-based Z probe, probes a grid and produces a
  2614. * mesh to compensate for variable bed height
  2615. *
  2616. * Parameters With MESH_BED_LEVELING:
  2617. *
  2618. * S0 Produce a mesh report
  2619. * S1 Start probing mesh points
  2620. * S2 Probe the next mesh point
  2621. * S3 Xn Yn Zn.nn Manually modify a single point
  2622. * S4 Zn.nn Set z offset. Positive away from bed, negative closer to bed.
  2623. * S5 Reset and disable mesh
  2624. *
  2625. * The S0 report the points as below
  2626. *
  2627. * +----> X-axis 1-n
  2628. * |
  2629. * |
  2630. * v Y-axis 1-n
  2631. *
  2632. */
  2633. inline void gcode_G29() {
  2634. static int probe_point = -1;
  2635. MeshLevelingState state = code_seen('S') ? (MeshLevelingState)code_value_byte() : MeshReport;
  2636. if (state < 0 || state > 5) {
  2637. SERIAL_PROTOCOLLNPGM("S out of range (0-5).");
  2638. return;
  2639. }
  2640. int8_t px, py;
  2641. float z;
  2642. switch (state) {
  2643. case MeshReport:
  2644. if (mbl.has_mesh()) {
  2645. SERIAL_PROTOCOLPGM("State: ");
  2646. if (mbl.active())
  2647. SERIAL_PROTOCOLPGM("On");
  2648. else
  2649. SERIAL_PROTOCOLPGM("Off");
  2650. SERIAL_PROTOCOLPGM("\nNum X,Y: ");
  2651. SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
  2652. SERIAL_PROTOCOLCHAR(',');
  2653. SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  2654. SERIAL_PROTOCOLPGM("\nZ search height: ");
  2655. SERIAL_PROTOCOL(MESH_HOME_SEARCH_Z);
  2656. SERIAL_PROTOCOLPGM("\nZ offset: ");
  2657. SERIAL_PROTOCOL_F(mbl.z_offset, 5);
  2658. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  2659. for (py = 0; py < MESH_NUM_Y_POINTS; py++) {
  2660. for (px = 0; px < MESH_NUM_X_POINTS; px++) {
  2661. SERIAL_PROTOCOLPGM(" ");
  2662. SERIAL_PROTOCOL_F(mbl.z_values[py][px], 5);
  2663. }
  2664. SERIAL_EOL;
  2665. }
  2666. }
  2667. else
  2668. SERIAL_PROTOCOLLNPGM("Mesh bed leveling not active.");
  2669. break;
  2670. case MeshStart:
  2671. mbl.reset();
  2672. probe_point = 0;
  2673. enqueue_and_echo_commands_P(PSTR("G28\nG29 S2"));
  2674. break;
  2675. case MeshNext:
  2676. if (probe_point < 0) {
  2677. SERIAL_PROTOCOLLNPGM("Start mesh probing with \"G29 S1\" first.");
  2678. return;
  2679. }
  2680. // For each G29 S2...
  2681. if (probe_point == 0) {
  2682. // For the intial G29 S2 make Z a positive value (e.g., 4.0)
  2683. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z;
  2684. sync_plan_position();
  2685. }
  2686. else {
  2687. // For G29 S2 after adjusting Z.
  2688. mbl.set_zigzag_z(probe_point - 1, current_position[Z_AXIS]);
  2689. }
  2690. // If there's another point to sample, move there with optional lift.
  2691. if (probe_point < (MESH_NUM_X_POINTS) * (MESH_NUM_Y_POINTS)) {
  2692. mbl.zigzag(probe_point, px, py);
  2693. _mbl_goto_xy(mbl.get_probe_x(px), mbl.get_probe_y(py));
  2694. probe_point++;
  2695. }
  2696. else {
  2697. // One last "return to the bed" (as originally coded) at completion
  2698. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z
  2699. #if MIN_Z_HEIGHT_FOR_HOMING > 0
  2700. + MIN_Z_HEIGHT_FOR_HOMING
  2701. #endif
  2702. ;
  2703. line_to_current_position();
  2704. stepper.synchronize();
  2705. // After recording the last point, activate the mbl and home
  2706. SERIAL_PROTOCOLLNPGM("Mesh probing done.");
  2707. probe_point = -1;
  2708. mbl.set_has_mesh(true);
  2709. enqueue_and_echo_commands_P(PSTR("G28"));
  2710. }
  2711. break;
  2712. case MeshSet:
  2713. if (code_seen('X')) {
  2714. px = code_value_int() - 1;
  2715. if (px < 0 || px >= MESH_NUM_X_POINTS) {
  2716. SERIAL_PROTOCOLPGM("X out of range (1-" STRINGIFY(MESH_NUM_X_POINTS) ").\n");
  2717. return;
  2718. }
  2719. }
  2720. else {
  2721. SERIAL_PROTOCOLPGM("X not entered.\n");
  2722. return;
  2723. }
  2724. if (code_seen('Y')) {
  2725. py = code_value_int() - 1;
  2726. if (py < 0 || py >= MESH_NUM_Y_POINTS) {
  2727. SERIAL_PROTOCOLPGM("Y out of range (1-" STRINGIFY(MESH_NUM_Y_POINTS) ").\n");
  2728. return;
  2729. }
  2730. }
  2731. else {
  2732. SERIAL_PROTOCOLPGM("Y not entered.\n");
  2733. return;
  2734. }
  2735. if (code_seen('Z')) {
  2736. z = code_value_axis_units(Z_AXIS);
  2737. }
  2738. else {
  2739. SERIAL_PROTOCOLPGM("Z not entered.\n");
  2740. return;
  2741. }
  2742. mbl.z_values[py][px] = z;
  2743. break;
  2744. case MeshSetZOffset:
  2745. if (code_seen('Z')) {
  2746. z = code_value_axis_units(Z_AXIS);
  2747. }
  2748. else {
  2749. SERIAL_PROTOCOLPGM("Z not entered.\n");
  2750. return;
  2751. }
  2752. mbl.z_offset = z;
  2753. break;
  2754. case MeshReset:
  2755. if (mbl.active()) {
  2756. current_position[Z_AXIS] +=
  2757. mbl.get_z(current_position[X_AXIS] - home_offset[X_AXIS],
  2758. current_position[Y_AXIS] - home_offset[Y_AXIS]) - MESH_HOME_SEARCH_Z;
  2759. mbl.reset();
  2760. sync_plan_position();
  2761. }
  2762. else
  2763. mbl.reset();
  2764. } // switch(state)
  2765. report_current_position();
  2766. }
  2767. #elif ENABLED(AUTO_BED_LEVELING_FEATURE)
  2768. void out_of_range_error(const char* p_edge) {
  2769. SERIAL_PROTOCOLPGM("?Probe ");
  2770. serialprintPGM(p_edge);
  2771. SERIAL_PROTOCOLLNPGM(" position out of range.");
  2772. }
  2773. /**
  2774. * G29: Detailed Z probe, probes the bed at 3 or more points.
  2775. * Will fail if the printer has not been homed with G28.
  2776. *
  2777. * Enhanced G29 Auto Bed Leveling Probe Routine
  2778. *
  2779. * Parameters With AUTO_BED_LEVELING_GRID:
  2780. *
  2781. * P Set the size of the grid that will be probed (P x P points).
  2782. * Not supported by non-linear delta printer bed leveling.
  2783. * Example: "G29 P4"
  2784. *
  2785. * S Set the XY travel speed between probe points (in mm/min)
  2786. *
  2787. * D Dry-Run mode. Just evaluate the bed Topology - Don't apply
  2788. * or clean the rotation Matrix. Useful to check the topology
  2789. * after a first run of G29.
  2790. *
  2791. * V Set the verbose level (0-4). Example: "G29 V3"
  2792. *
  2793. * T Generate a Bed Topology Report. Example: "G29 P5 T" for a detailed report.
  2794. * This is useful for manual bed leveling and finding flaws in the bed (to
  2795. * assist with part placement).
  2796. * Not supported by non-linear delta printer bed leveling.
  2797. *
  2798. * F Set the Front limit of the probing grid
  2799. * B Set the Back limit of the probing grid
  2800. * L Set the Left limit of the probing grid
  2801. * R Set the Right limit of the probing grid
  2802. *
  2803. * Global Parameters:
  2804. *
  2805. * E/e By default G29 will engage the Z probe, test the bed, then disengage.
  2806. * Include "E" to engage/disengage the Z probe for each sample.
  2807. * There's no extra effect if you have a fixed Z probe.
  2808. * Usage: "G29 E" or "G29 e"
  2809. *
  2810. */
  2811. inline void gcode_G29() {
  2812. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2813. if (DEBUGGING(LEVELING)) {
  2814. SERIAL_ECHOLNPGM("gcode_G29 >>>");
  2815. DEBUG_POS("", current_position);
  2816. }
  2817. #endif
  2818. // Don't allow auto-leveling without homing first
  2819. if (!axis_homed[X_AXIS] || !axis_homed[Y_AXIS] || !axis_homed[Z_AXIS]) {
  2820. axis_unhomed_error(true);
  2821. return;
  2822. }
  2823. int verbose_level = code_seen('V') ? code_value_int() : 1;
  2824. if (verbose_level < 0 || verbose_level > 4) {
  2825. SERIAL_ECHOLNPGM("?(V)erbose Level is implausible (0-4).");
  2826. return;
  2827. }
  2828. bool dryrun = code_seen('D'),
  2829. deploy_probe_for_each_reading = code_seen('E');
  2830. #if ENABLED(AUTO_BED_LEVELING_GRID)
  2831. #if DISABLED(DELTA)
  2832. bool do_topography_map = verbose_level > 2 || code_seen('T');
  2833. #endif
  2834. if (verbose_level > 0) {
  2835. SERIAL_PROTOCOLPGM("G29 Auto Bed Leveling\n");
  2836. if (dryrun) SERIAL_ECHOLNPGM("Running in DRY-RUN mode");
  2837. }
  2838. int auto_bed_leveling_grid_points = AUTO_BED_LEVELING_GRID_POINTS;
  2839. #if DISABLED(DELTA)
  2840. if (code_seen('P')) auto_bed_leveling_grid_points = code_value_int();
  2841. if (auto_bed_leveling_grid_points < 2) {
  2842. SERIAL_PROTOCOLPGM("?Number of probed (P)oints is implausible (2 minimum).\n");
  2843. return;
  2844. }
  2845. #endif
  2846. xy_travel_speed = code_seen('S') ? (int)code_value_linear_units() : XY_TRAVEL_SPEED;
  2847. int left_probe_bed_position = code_seen('L') ? (int)code_value_axis_units(X_AXIS) : LEFT_PROBE_BED_POSITION,
  2848. right_probe_bed_position = code_seen('R') ? (int)code_value_axis_units(X_AXIS) : RIGHT_PROBE_BED_POSITION,
  2849. front_probe_bed_position = code_seen('F') ? (int)code_value_axis_units(Y_AXIS) : FRONT_PROBE_BED_POSITION,
  2850. back_probe_bed_position = code_seen('B') ? (int)code_value_axis_units(Y_AXIS) : BACK_PROBE_BED_POSITION;
  2851. bool left_out_l = left_probe_bed_position < MIN_PROBE_X,
  2852. left_out = left_out_l || left_probe_bed_position > right_probe_bed_position - (MIN_PROBE_EDGE),
  2853. right_out_r = right_probe_bed_position > MAX_PROBE_X,
  2854. right_out = right_out_r || right_probe_bed_position < left_probe_bed_position + MIN_PROBE_EDGE,
  2855. front_out_f = front_probe_bed_position < MIN_PROBE_Y,
  2856. front_out = front_out_f || front_probe_bed_position > back_probe_bed_position - (MIN_PROBE_EDGE),
  2857. back_out_b = back_probe_bed_position > MAX_PROBE_Y,
  2858. back_out = back_out_b || back_probe_bed_position < front_probe_bed_position + MIN_PROBE_EDGE;
  2859. if (left_out || right_out || front_out || back_out) {
  2860. if (left_out) {
  2861. out_of_range_error(PSTR("(L)eft"));
  2862. left_probe_bed_position = left_out_l ? MIN_PROBE_X : right_probe_bed_position - (MIN_PROBE_EDGE);
  2863. }
  2864. if (right_out) {
  2865. out_of_range_error(PSTR("(R)ight"));
  2866. right_probe_bed_position = right_out_r ? MAX_PROBE_X : left_probe_bed_position + MIN_PROBE_EDGE;
  2867. }
  2868. if (front_out) {
  2869. out_of_range_error(PSTR("(F)ront"));
  2870. front_probe_bed_position = front_out_f ? MIN_PROBE_Y : back_probe_bed_position - (MIN_PROBE_EDGE);
  2871. }
  2872. if (back_out) {
  2873. out_of_range_error(PSTR("(B)ack"));
  2874. back_probe_bed_position = back_out_b ? MAX_PROBE_Y : front_probe_bed_position + MIN_PROBE_EDGE;
  2875. }
  2876. return;
  2877. }
  2878. #endif // AUTO_BED_LEVELING_GRID
  2879. if (!dryrun) {
  2880. #if ENABLED(DEBUG_LEVELING_FEATURE) && DISABLED(DELTA)
  2881. if (DEBUGGING(LEVELING)) {
  2882. vector_3 corrected_position = planner.adjusted_position();
  2883. DEBUG_POS("BEFORE matrix.set_to_identity", corrected_position);
  2884. DEBUG_POS("BEFORE matrix.set_to_identity", current_position);
  2885. }
  2886. #endif
  2887. // make sure the bed_level_rotation_matrix is identity or the planner will get it wrong
  2888. planner.bed_level_matrix.set_to_identity();
  2889. #if ENABLED(DELTA)
  2890. reset_bed_level();
  2891. #else //!DELTA
  2892. //vector_3 corrected_position = planner.adjusted_position();
  2893. //corrected_position.debug("position before G29");
  2894. vector_3 uncorrected_position = planner.adjusted_position();
  2895. //uncorrected_position.debug("position during G29");
  2896. current_position[X_AXIS] = uncorrected_position.x;
  2897. current_position[Y_AXIS] = uncorrected_position.y;
  2898. current_position[Z_AXIS] = uncorrected_position.z;
  2899. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2900. if (DEBUGGING(LEVELING)) DEBUG_POS("AFTER matrix.set_to_identity", uncorrected_position);
  2901. #endif
  2902. sync_plan_position();
  2903. #endif // !DELTA
  2904. }
  2905. #if HAS_BED_PROBE
  2906. deploy_z_probe();
  2907. #endif
  2908. stepper.synchronize();
  2909. setup_for_endstop_move();
  2910. feedrate = homing_feedrate[Z_AXIS];
  2911. bed_leveling_in_progress = true;
  2912. #if ENABLED(AUTO_BED_LEVELING_GRID)
  2913. // probe at the points of a lattice grid
  2914. const int xGridSpacing = (right_probe_bed_position - left_probe_bed_position) / (auto_bed_leveling_grid_points - 1),
  2915. yGridSpacing = (back_probe_bed_position - front_probe_bed_position) / (auto_bed_leveling_grid_points - 1);
  2916. #if ENABLED(DELTA)
  2917. delta_grid_spacing[0] = xGridSpacing;
  2918. delta_grid_spacing[1] = yGridSpacing;
  2919. float zoffset = zprobe_zoffset;
  2920. if (code_seen(axis_codes[Z_AXIS])) zoffset += code_value_axis_units(Z_AXIS);
  2921. #else // !DELTA
  2922. /**
  2923. * solve the plane equation ax + by + d = z
  2924. * A is the matrix with rows [x y 1] for all the probed points
  2925. * B is the vector of the Z positions
  2926. * the normal vector to the plane is formed by the coefficients of the
  2927. * plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  2928. * so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  2929. */
  2930. int abl2 = auto_bed_leveling_grid_points * auto_bed_leveling_grid_points;
  2931. double eqnAMatrix[abl2 * 3], // "A" matrix of the linear system of equations
  2932. eqnBVector[abl2], // "B" vector of Z points
  2933. mean = 0.0;
  2934. int8_t indexIntoAB[auto_bed_leveling_grid_points][auto_bed_leveling_grid_points];
  2935. #endif // !DELTA
  2936. int probePointCounter = 0;
  2937. bool zig = (auto_bed_leveling_grid_points & 1) ? true : false; //always end at [RIGHT_PROBE_BED_POSITION, BACK_PROBE_BED_POSITION]
  2938. for (int yCount = 0; yCount < auto_bed_leveling_grid_points; yCount++) {
  2939. double yProbe = front_probe_bed_position + yGridSpacing * yCount;
  2940. int xStart, xStop, xInc;
  2941. if (zig) {
  2942. xStart = 0;
  2943. xStop = auto_bed_leveling_grid_points;
  2944. xInc = 1;
  2945. }
  2946. else {
  2947. xStart = auto_bed_leveling_grid_points - 1;
  2948. xStop = -1;
  2949. xInc = -1;
  2950. }
  2951. zig = !zig;
  2952. for (int xCount = xStart; xCount != xStop; xCount += xInc) {
  2953. double xProbe = left_probe_bed_position + xGridSpacing * xCount;
  2954. // raise extruder
  2955. float measured_z,
  2956. z_before = probePointCounter ? Z_RAISE_BETWEEN_PROBINGS + current_position[Z_AXIS] : Z_RAISE_BEFORE_PROBING + home_offset[Z_AXIS];
  2957. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2958. if (DEBUGGING(LEVELING)) {
  2959. SERIAL_ECHOPGM("z_before = (");
  2960. if (probePointCounter)
  2961. SERIAL_ECHOPGM("between) ");
  2962. else
  2963. SERIAL_ECHOPGM("before) ");
  2964. SERIAL_ECHOLN(z_before);
  2965. }
  2966. #endif
  2967. #if ENABLED(DELTA)
  2968. // Avoid probing the corners (outside the round or hexagon print surface) on a delta printer.
  2969. float distance_from_center = sqrt(xProbe * xProbe + yProbe * yProbe);
  2970. if (distance_from_center > DELTA_PROBEABLE_RADIUS) continue;
  2971. #endif //DELTA
  2972. ProbeAction act;
  2973. if (deploy_probe_for_each_reading) // G29 E - Stow between probes
  2974. act = ProbeDeployAndStow;
  2975. else if (yCount == 0 && xCount == xStart)
  2976. act = ProbeDeploy;
  2977. else if (yCount == auto_bed_leveling_grid_points - 1 && xCount == xStop - xInc)
  2978. act = ProbeStow;
  2979. else
  2980. act = ProbeStay;
  2981. measured_z = probe_pt(xProbe, yProbe, z_before, act, verbose_level);
  2982. #if DISABLED(DELTA)
  2983. mean += measured_z;
  2984. eqnBVector[probePointCounter] = measured_z;
  2985. eqnAMatrix[probePointCounter + 0 * abl2] = xProbe;
  2986. eqnAMatrix[probePointCounter + 1 * abl2] = yProbe;
  2987. eqnAMatrix[probePointCounter + 2 * abl2] = 1;
  2988. indexIntoAB[xCount][yCount] = probePointCounter;
  2989. #else
  2990. bed_level[xCount][yCount] = measured_z + zoffset;
  2991. #endif
  2992. probePointCounter++;
  2993. idle();
  2994. } //xProbe
  2995. } //yProbe
  2996. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2997. if (DEBUGGING(LEVELING)) DEBUG_POS("> probing complete", current_position);
  2998. #endif
  2999. clean_up_after_endstop_move();
  3000. #if ENABLED(DELTA)
  3001. if (!dryrun) extrapolate_unprobed_bed_level();
  3002. print_bed_level();
  3003. #else // !DELTA
  3004. // solve lsq problem
  3005. double plane_equation_coefficients[3];
  3006. qr_solve(plane_equation_coefficients, abl2, 3, eqnAMatrix, eqnBVector);
  3007. mean /= abl2;
  3008. if (verbose_level) {
  3009. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  3010. SERIAL_PROTOCOL_F(plane_equation_coefficients[0], 8);
  3011. SERIAL_PROTOCOLPGM(" b: ");
  3012. SERIAL_PROTOCOL_F(plane_equation_coefficients[1], 8);
  3013. SERIAL_PROTOCOLPGM(" d: ");
  3014. SERIAL_PROTOCOL_F(plane_equation_coefficients[2], 8);
  3015. SERIAL_EOL;
  3016. if (verbose_level > 2) {
  3017. SERIAL_PROTOCOLPGM("Mean of sampled points: ");
  3018. SERIAL_PROTOCOL_F(mean, 8);
  3019. SERIAL_EOL;
  3020. }
  3021. }
  3022. if (!dryrun) set_bed_level_equation_lsq(plane_equation_coefficients);
  3023. // Show the Topography map if enabled
  3024. if (do_topography_map) {
  3025. SERIAL_PROTOCOLPGM(" \nBed Height Topography: \n");
  3026. SERIAL_PROTOCOLPGM(" +--- BACK --+\n");
  3027. SERIAL_PROTOCOLPGM(" | |\n");
  3028. SERIAL_PROTOCOLPGM(" L | (+) | R\n");
  3029. SERIAL_PROTOCOLPGM(" E | | I\n");
  3030. SERIAL_PROTOCOLPGM(" F | (-) N (+) | G\n");
  3031. SERIAL_PROTOCOLPGM(" T | | H\n");
  3032. SERIAL_PROTOCOLPGM(" | (-) | T\n");
  3033. SERIAL_PROTOCOLPGM(" | |\n");
  3034. SERIAL_PROTOCOLPGM(" O-- FRONT --+\n");
  3035. SERIAL_PROTOCOLPGM(" (0,0)\n");
  3036. float min_diff = 999;
  3037. for (int yy = auto_bed_leveling_grid_points - 1; yy >= 0; yy--) {
  3038. for (int xx = 0; xx < auto_bed_leveling_grid_points; xx++) {
  3039. int ind = indexIntoAB[xx][yy];
  3040. float diff = eqnBVector[ind] - mean;
  3041. float x_tmp = eqnAMatrix[ind + 0 * abl2],
  3042. y_tmp = eqnAMatrix[ind + 1 * abl2],
  3043. z_tmp = 0;
  3044. apply_rotation_xyz(planner.bed_level_matrix, x_tmp, y_tmp, z_tmp);
  3045. NOMORE(min_diff, eqnBVector[ind] - z_tmp);
  3046. if (diff >= 0.0)
  3047. SERIAL_PROTOCOLPGM(" +"); // Include + for column alignment
  3048. else
  3049. SERIAL_PROTOCOLCHAR(' ');
  3050. SERIAL_PROTOCOL_F(diff, 5);
  3051. } // xx
  3052. SERIAL_EOL;
  3053. } // yy
  3054. SERIAL_EOL;
  3055. if (verbose_level > 3) {
  3056. SERIAL_PROTOCOLPGM(" \nCorrected Bed Height vs. Bed Topology: \n");
  3057. for (int yy = auto_bed_leveling_grid_points - 1; yy >= 0; yy--) {
  3058. for (int xx = 0; xx < auto_bed_leveling_grid_points; xx++) {
  3059. int ind = indexIntoAB[xx][yy];
  3060. float x_tmp = eqnAMatrix[ind + 0 * abl2],
  3061. y_tmp = eqnAMatrix[ind + 1 * abl2],
  3062. z_tmp = 0;
  3063. apply_rotation_xyz(planner.bed_level_matrix, x_tmp, y_tmp, z_tmp);
  3064. float diff = eqnBVector[ind] - z_tmp - min_diff;
  3065. if (diff >= 0.0)
  3066. SERIAL_PROTOCOLPGM(" +");
  3067. // Include + for column alignment
  3068. else
  3069. SERIAL_PROTOCOLCHAR(' ');
  3070. SERIAL_PROTOCOL_F(diff, 5);
  3071. } // xx
  3072. SERIAL_EOL;
  3073. } // yy
  3074. SERIAL_EOL;
  3075. }
  3076. } //do_topography_map
  3077. #endif //!DELTA
  3078. #else // !AUTO_BED_LEVELING_GRID
  3079. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3080. if (DEBUGGING(LEVELING)) {
  3081. SERIAL_ECHOLNPGM("> 3-point Leveling");
  3082. }
  3083. #endif
  3084. // Actions for each probe
  3085. ProbeAction p1, p2, p3;
  3086. if (deploy_probe_for_each_reading)
  3087. p1 = p2 = p3 = ProbeDeployAndStow;
  3088. else
  3089. p1 = ProbeDeploy, p2 = ProbeStay, p3 = ProbeStow;
  3090. // Probe at 3 arbitrary points
  3091. float z_at_pt_1 = probe_pt( ABL_PROBE_PT_1_X + home_offset[X_AXIS],
  3092. ABL_PROBE_PT_1_Y + home_offset[Y_AXIS],
  3093. Z_RAISE_BEFORE_PROBING + home_offset[Z_AXIS],
  3094. p1, verbose_level),
  3095. z_at_pt_2 = probe_pt( ABL_PROBE_PT_2_X + home_offset[X_AXIS],
  3096. ABL_PROBE_PT_2_Y + home_offset[Y_AXIS],
  3097. current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS,
  3098. p2, verbose_level),
  3099. z_at_pt_3 = probe_pt( ABL_PROBE_PT_3_X + home_offset[X_AXIS],
  3100. ABL_PROBE_PT_3_Y + home_offset[Y_AXIS],
  3101. current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS,
  3102. p3, verbose_level);
  3103. clean_up_after_endstop_move();
  3104. if (!dryrun) set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
  3105. #endif // !AUTO_BED_LEVELING_GRID
  3106. #if DISABLED(DELTA)
  3107. if (verbose_level > 0)
  3108. planner.bed_level_matrix.debug(" \n\nBed Level Correction Matrix:");
  3109. if (!dryrun) {
  3110. /**
  3111. * Correct the Z height difference from Z probe position and nozzle tip position.
  3112. * The Z height on homing is measured by Z probe, but the Z probe is quite far
  3113. * from the nozzle. When the bed is uneven, this height must be corrected.
  3114. */
  3115. float x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER,
  3116. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER,
  3117. z_tmp = current_position[Z_AXIS],
  3118. real_z = stepper.get_axis_position_mm(Z_AXIS); //get the real Z (since planner.adjusted_position is now correcting the plane)
  3119. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3120. if (DEBUGGING(LEVELING)) {
  3121. SERIAL_ECHOPAIR("> BEFORE apply_rotation_xyz > z_tmp = ", z_tmp);
  3122. SERIAL_EOL;
  3123. SERIAL_ECHOPAIR("> BEFORE apply_rotation_xyz > real_z = ", real_z);
  3124. SERIAL_EOL;
  3125. }
  3126. #endif
  3127. // Apply the correction sending the Z probe offset
  3128. apply_rotation_xyz(planner.bed_level_matrix, x_tmp, y_tmp, z_tmp);
  3129. /*
  3130. * Get the current Z position and send it to the planner.
  3131. *
  3132. * >> (z_tmp - real_z) : The rotated current Z minus the uncorrected Z
  3133. * (most recent planner.set_position_mm/sync_plan_position)
  3134. *
  3135. * >> zprobe_zoffset : Z distance from nozzle to Z probe
  3136. * (set by default, M851, EEPROM, or Menu)
  3137. *
  3138. * >> Z_RAISE_AFTER_PROBING : The distance the Z probe will have lifted
  3139. * after the last probe
  3140. *
  3141. * >> Should home_offset[Z_AXIS] be included?
  3142. *
  3143. *
  3144. * Discussion: home_offset[Z_AXIS] was applied in G28 to set the
  3145. * starting Z. If Z is not tweaked in G29 -and- the Z probe in G29 is
  3146. * not actually "homing" Z... then perhaps it should not be included
  3147. * here. The purpose of home_offset[] is to adjust for inaccurate
  3148. * endstops, not for reasonably accurate probes. If it were added
  3149. * here, it could be seen as a compensating factor for the Z probe.
  3150. */
  3151. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3152. if (DEBUGGING(LEVELING)) {
  3153. SERIAL_ECHOPAIR("> AFTER apply_rotation_xyz > z_tmp = ", z_tmp);
  3154. SERIAL_EOL;
  3155. }
  3156. #endif
  3157. current_position[Z_AXIS] = -zprobe_zoffset + (z_tmp - real_z)
  3158. #if HAS_Z_SERVO_ENDSTOP || ENABLED(Z_PROBE_ALLEN_KEY) || ENABLED(Z_PROBE_SLED)
  3159. + Z_RAISE_AFTER_PROBING
  3160. #endif
  3161. ;
  3162. // current_position[Z_AXIS] += home_offset[Z_AXIS]; // The Z probe determines Z=0, not "Z home"
  3163. sync_plan_position();
  3164. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3165. if (DEBUGGING(LEVELING)) DEBUG_POS("> corrected Z in G29", current_position);
  3166. #endif
  3167. }
  3168. #endif // !DELTA
  3169. #if DISABLED(Z_PROBE_ALLEN_KEY) && DISABLED(Z_PROBE_SLED) && !HAS_Z_SERVO_ENDSTOP
  3170. raise_z_after_probing();
  3171. #endif
  3172. #if ENABLED(Z_PROBE_ALLEN_KEY) || ENABLED(Z_PROBE_SLED) || ENABLED(MECHANICAL_PROBE)
  3173. stow_z_probe();
  3174. #endif
  3175. #ifdef Z_PROBE_END_SCRIPT
  3176. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3177. if (DEBUGGING(LEVELING)) {
  3178. SERIAL_ECHO("Z Probe End Script: ");
  3179. SERIAL_ECHOLNPGM(Z_PROBE_END_SCRIPT);
  3180. }
  3181. #endif
  3182. enqueue_and_echo_commands_P(PSTR(Z_PROBE_END_SCRIPT));
  3183. #if HAS_BED_PROBE
  3184. endstops.enable_z_probe(false);
  3185. #endif
  3186. stepper.synchronize();
  3187. #endif
  3188. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3189. if (DEBUGGING(LEVELING)) {
  3190. SERIAL_ECHOLNPGM("<<< gcode_G29");
  3191. }
  3192. #endif
  3193. bed_leveling_in_progress = false;
  3194. report_current_position();
  3195. KEEPALIVE_STATE(IN_HANDLER);
  3196. }
  3197. #endif //AUTO_BED_LEVELING_FEATURE
  3198. #if HAS_BED_PROBE
  3199. /**
  3200. * G30: Do a single Z probe at the current XY
  3201. */
  3202. inline void gcode_G30() {
  3203. deploy_z_probe();
  3204. stepper.synchronize();
  3205. // TODO: clear the leveling matrix or the planner will be set incorrectly
  3206. setup_for_endstop_move(); // Too late. Must be done before deploying.
  3207. run_z_probe();
  3208. SERIAL_PROTOCOLPGM("Bed X: ");
  3209. SERIAL_PROTOCOL(current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER + 0.0001);
  3210. SERIAL_PROTOCOLPGM(" Y: ");
  3211. SERIAL_PROTOCOL(current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER + 0.0001);
  3212. SERIAL_PROTOCOLPGM(" Z: ");
  3213. SERIAL_PROTOCOL(current_position[Z_AXIS] + 0.0001);
  3214. SERIAL_EOL;
  3215. clean_up_after_endstop_move(); // Too early. must be done after the stowing.
  3216. stow_z_probe();
  3217. report_current_position();
  3218. }
  3219. #endif // HAS_BED_PROBE
  3220. /**
  3221. * G92: Set current position to given X Y Z E
  3222. */
  3223. inline void gcode_G92() {
  3224. bool didE = code_seen(axis_codes[E_AXIS]);
  3225. if (!didE) stepper.synchronize();
  3226. bool didXYZ = false;
  3227. for (int i = 0; i < NUM_AXIS; i++) {
  3228. if (code_seen(axis_codes[i])) {
  3229. float p = current_position[i],
  3230. v = code_value_axis_units(i);
  3231. current_position[i] = v;
  3232. if (i != E_AXIS) {
  3233. position_shift[i] += v - p; // Offset the coordinate space
  3234. update_software_endstops((AxisEnum)i);
  3235. didXYZ = true;
  3236. }
  3237. }
  3238. }
  3239. if (didXYZ) {
  3240. #if ENABLED(DELTA) || ENABLED(SCARA)
  3241. sync_plan_position_delta();
  3242. #else
  3243. sync_plan_position();
  3244. #endif
  3245. }
  3246. else if (didE) {
  3247. sync_plan_position_e();
  3248. }
  3249. }
  3250. #if ENABLED(ULTIPANEL)
  3251. /**
  3252. * M0: // M0 - Unconditional stop - Wait for user button press on LCD
  3253. * M1: // M1 - Conditional stop - Wait for user button press on LCD
  3254. */
  3255. inline void gcode_M0_M1() {
  3256. char* args = current_command_args;
  3257. uint8_t test_value = 12;
  3258. SERIAL_ECHOPAIR("TEST", test_value);
  3259. millis_t codenum = 0;
  3260. bool hasP = false, hasS = false;
  3261. if (code_seen('P')) {
  3262. codenum = code_value_millis(); // milliseconds to wait
  3263. hasP = codenum > 0;
  3264. }
  3265. if (code_seen('S')) {
  3266. codenum = code_value_millis_from_seconds(); // seconds to wait
  3267. hasS = codenum > 0;
  3268. }
  3269. if (!hasP && !hasS && *args != '\0')
  3270. lcd_setstatus(args, true);
  3271. else {
  3272. LCD_MESSAGEPGM(MSG_USERWAIT);
  3273. #if ENABLED(LCD_PROGRESS_BAR) && PROGRESS_MSG_EXPIRE > 0
  3274. dontExpireStatus();
  3275. #endif
  3276. }
  3277. lcd_ignore_click();
  3278. stepper.synchronize();
  3279. refresh_cmd_timeout();
  3280. if (codenum > 0) {
  3281. codenum += previous_cmd_ms; // wait until this time for a click
  3282. KEEPALIVE_STATE(PAUSED_FOR_USER);
  3283. while (PENDING(millis(), codenum) && !lcd_clicked()) idle();
  3284. KEEPALIVE_STATE(IN_HANDLER);
  3285. lcd_ignore_click(false);
  3286. }
  3287. else {
  3288. if (!lcd_detected()) return;
  3289. KEEPALIVE_STATE(PAUSED_FOR_USER);
  3290. while (!lcd_clicked()) idle();
  3291. KEEPALIVE_STATE(IN_HANDLER);
  3292. }
  3293. if (IS_SD_PRINTING)
  3294. LCD_MESSAGEPGM(MSG_RESUMING);
  3295. else
  3296. LCD_MESSAGEPGM(WELCOME_MSG);
  3297. }
  3298. #endif // ULTIPANEL
  3299. /**
  3300. * M17: Enable power on all stepper motors
  3301. */
  3302. inline void gcode_M17() {
  3303. LCD_MESSAGEPGM(MSG_NO_MOVE);
  3304. enable_all_steppers();
  3305. }
  3306. #if ENABLED(SDSUPPORT)
  3307. /**
  3308. * M20: List SD card to serial output
  3309. */
  3310. inline void gcode_M20() {
  3311. SERIAL_PROTOCOLLNPGM(MSG_BEGIN_FILE_LIST);
  3312. card.ls();
  3313. SERIAL_PROTOCOLLNPGM(MSG_END_FILE_LIST);
  3314. }
  3315. /**
  3316. * M21: Init SD Card
  3317. */
  3318. inline void gcode_M21() {
  3319. card.initsd();
  3320. }
  3321. /**
  3322. * M22: Release SD Card
  3323. */
  3324. inline void gcode_M22() {
  3325. card.release();
  3326. }
  3327. /**
  3328. * M23: Open a file
  3329. */
  3330. inline void gcode_M23() {
  3331. card.openFile(current_command_args, true);
  3332. }
  3333. /**
  3334. * M24: Start SD Print
  3335. */
  3336. inline void gcode_M24() {
  3337. card.startFileprint();
  3338. print_job_timer.start();
  3339. }
  3340. /**
  3341. * M25: Pause SD Print
  3342. */
  3343. inline void gcode_M25() {
  3344. card.pauseSDPrint();
  3345. }
  3346. /**
  3347. * M26: Set SD Card file index
  3348. */
  3349. inline void gcode_M26() {
  3350. if (card.cardOK && code_seen('S'))
  3351. card.setIndex(code_value_long());
  3352. }
  3353. /**
  3354. * M27: Get SD Card status
  3355. */
  3356. inline void gcode_M27() {
  3357. card.getStatus();
  3358. }
  3359. /**
  3360. * M28: Start SD Write
  3361. */
  3362. inline void gcode_M28() {
  3363. card.openFile(current_command_args, false);
  3364. }
  3365. /**
  3366. * M29: Stop SD Write
  3367. * Processed in write to file routine above
  3368. */
  3369. inline void gcode_M29() {
  3370. // card.saving = false;
  3371. }
  3372. /**
  3373. * M30 <filename>: Delete SD Card file
  3374. */
  3375. inline void gcode_M30() {
  3376. if (card.cardOK) {
  3377. card.closefile();
  3378. card.removeFile(current_command_args);
  3379. }
  3380. }
  3381. #endif //SDSUPPORT
  3382. /**
  3383. * M31: Get the time since the start of SD Print (or last M109)
  3384. */
  3385. inline void gcode_M31() {
  3386. millis_t t = print_job_timer.duration();
  3387. int min = t / 60, sec = t % 60;
  3388. char time[30];
  3389. sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
  3390. SERIAL_ECHO_START;
  3391. SERIAL_ECHOLN(time);
  3392. lcd_setstatus(time);
  3393. thermalManager.autotempShutdown();
  3394. }
  3395. #if ENABLED(SDSUPPORT)
  3396. /**
  3397. * M32: Select file and start SD Print
  3398. */
  3399. inline void gcode_M32() {
  3400. if (card.sdprinting)
  3401. stepper.synchronize();
  3402. char* namestartpos = strchr(current_command_args, '!'); // Find ! to indicate filename string start.
  3403. if (!namestartpos)
  3404. namestartpos = current_command_args; // Default name position, 4 letters after the M
  3405. else
  3406. namestartpos++; //to skip the '!'
  3407. bool call_procedure = code_seen('P') && (seen_pointer < namestartpos);
  3408. if (card.cardOK) {
  3409. card.openFile(namestartpos, true, call_procedure);
  3410. if (code_seen('S') && seen_pointer < namestartpos) // "S" (must occur _before_ the filename!)
  3411. card.setIndex(code_value_long());
  3412. card.startFileprint();
  3413. // Procedure calls count as normal print time.
  3414. if (!call_procedure) print_job_timer.start();
  3415. }
  3416. }
  3417. #if ENABLED(LONG_FILENAME_HOST_SUPPORT)
  3418. /**
  3419. * M33: Get the long full path of a file or folder
  3420. *
  3421. * Parameters:
  3422. * <dospath> Case-insensitive DOS-style path to a file or folder
  3423. *
  3424. * Example:
  3425. * M33 miscel~1/armchair/armcha~1.gco
  3426. *
  3427. * Output:
  3428. * /Miscellaneous/Armchair/Armchair.gcode
  3429. */
  3430. inline void gcode_M33() {
  3431. card.printLongPath(current_command_args);
  3432. }
  3433. #endif
  3434. /**
  3435. * M928: Start SD Write
  3436. */
  3437. inline void gcode_M928() {
  3438. card.openLogFile(current_command_args);
  3439. }
  3440. #endif // SDSUPPORT
  3441. /**
  3442. * M42: Change pin status via GCode
  3443. *
  3444. * P<pin> Pin number (LED if omitted)
  3445. * S<byte> Pin status from 0 - 255
  3446. */
  3447. inline void gcode_M42() {
  3448. if (code_seen('S')) {
  3449. int pin_status = code_value_int();
  3450. if (pin_status < 0 || pin_status > 255) return;
  3451. int pin_number = code_seen('P') ? code_value_int() : LED_PIN;
  3452. if (pin_number < 0) return;
  3453. for (uint8_t i = 0; i < COUNT(sensitive_pins); i++)
  3454. if (pin_number == sensitive_pins[i]) return;
  3455. pinMode(pin_number, OUTPUT);
  3456. digitalWrite(pin_number, pin_status);
  3457. analogWrite(pin_number, pin_status);
  3458. #if FAN_COUNT > 0
  3459. switch (pin_number) {
  3460. #if HAS_FAN0
  3461. case FAN_PIN: fanSpeeds[0] = pin_status; break;
  3462. #endif
  3463. #if HAS_FAN1
  3464. case FAN1_PIN: fanSpeeds[1] = pin_status; break;
  3465. #endif
  3466. #if HAS_FAN2
  3467. case FAN2_PIN: fanSpeeds[2] = pin_status; break;
  3468. #endif
  3469. }
  3470. #endif
  3471. } // code_seen('S')
  3472. }
  3473. #if ENABLED(AUTO_BED_LEVELING_FEATURE) && ENABLED(Z_MIN_PROBE_REPEATABILITY_TEST)
  3474. /**
  3475. * This is redundant since the SanityCheck.h already checks for a valid
  3476. * Z_MIN_PROBE_PIN, but here for clarity.
  3477. */
  3478. #if ENABLED(Z_MIN_PROBE_ENDSTOP)
  3479. #if !HAS_Z_MIN_PROBE_PIN
  3480. #error "You must define Z_MIN_PROBE_PIN to enable Z probe repeatability calculation."
  3481. #endif
  3482. #elif !HAS_Z_MIN
  3483. #error "You must define Z_MIN_PIN to enable Z probe repeatability calculation."
  3484. #endif
  3485. /**
  3486. * M48: Z probe repeatability measurement function.
  3487. *
  3488. * Usage:
  3489. * M48 <P#> <X#> <Y#> <V#> <E> <L#>
  3490. * P = Number of sampled points (4-50, default 10)
  3491. * X = Sample X position
  3492. * Y = Sample Y position
  3493. * V = Verbose level (0-4, default=1)
  3494. * E = Engage Z probe for each reading
  3495. * L = Number of legs of movement before probe
  3496. * S = Schizoid (Or Star if you prefer)
  3497. *
  3498. * This function assumes the bed has been homed. Specifically, that a G28 command
  3499. * as been issued prior to invoking the M48 Z probe repeatability measurement function.
  3500. * Any information generated by a prior G29 Bed leveling command will be lost and need to be
  3501. * regenerated.
  3502. */
  3503. inline void gcode_M48() {
  3504. if (!axis_homed[X_AXIS] || !axis_homed[Y_AXIS] || !axis_homed[Z_AXIS]) {
  3505. axis_unhomed_error(true);
  3506. return;
  3507. }
  3508. int8_t verbose_level = code_seen('V') ? code_value_byte() : 1;
  3509. if (verbose_level < 0 || verbose_level > 4) {
  3510. SERIAL_PROTOCOLPGM("?Verbose Level not plausible (0-4).\n");
  3511. return;
  3512. }
  3513. if (verbose_level > 0)
  3514. SERIAL_PROTOCOLPGM("M48 Z-Probe Repeatability test\n");
  3515. int8_t n_samples = code_seen('P') ? code_value_byte() : 10;
  3516. if (n_samples < 4 || n_samples > 50) {
  3517. SERIAL_PROTOCOLPGM("?Sample size not plausible (4-50).\n");
  3518. return;
  3519. }
  3520. float X_current = current_position[X_AXIS],
  3521. Y_current = current_position[Y_AXIS],
  3522. Z_start_location = current_position[Z_AXIS] + Z_RAISE_BEFORE_PROBING;
  3523. bool deploy_probe_for_each_reading = code_seen('E');
  3524. float X_probe_location = code_seen('X') ? code_value_axis_units(X_AXIS) : X_current + X_PROBE_OFFSET_FROM_EXTRUDER;
  3525. #if DISABLED(DELTA)
  3526. if (X_probe_location < MIN_PROBE_X || X_probe_location > MAX_PROBE_X) {
  3527. out_of_range_error(PSTR("X"));
  3528. return;
  3529. }
  3530. #endif
  3531. float Y_probe_location = code_seen('Y') ? code_value_axis_units(Y_AXIS) : Y_current + Y_PROBE_OFFSET_FROM_EXTRUDER;
  3532. #if DISABLED(DELTA)
  3533. if (Y_probe_location < MIN_PROBE_Y || Y_probe_location > MAX_PROBE_Y) {
  3534. out_of_range_error(PSTR("Y"));
  3535. return;
  3536. }
  3537. #else
  3538. if (sqrt(X_probe_location * X_probe_location + Y_probe_location * Y_probe_location) > DELTA_PROBEABLE_RADIUS) {
  3539. SERIAL_PROTOCOLPGM("? (X,Y) location outside of probeable radius.\n");
  3540. return;
  3541. }
  3542. #endif
  3543. bool seen_L = code_seen('L');
  3544. uint8_t n_legs = seen_L ? code_value_byte() : 0;
  3545. if (n_legs < 0 || n_legs > 15) {
  3546. SERIAL_PROTOCOLPGM("?Number of legs in movement not plausible (0-15).\n");
  3547. return;
  3548. }
  3549. if (n_legs == 1) n_legs = 2;
  3550. bool schizoid_flag = code_seen('S');
  3551. if (schizoid_flag && !seen_L) n_legs = 7;
  3552. /**
  3553. * Now get everything to the specified probe point So we can safely do a
  3554. * probe to get us close to the bed. If the Z-Axis is far from the bed,
  3555. * we don't want to use that as a starting point for each probe.
  3556. */
  3557. if (verbose_level > 2)
  3558. SERIAL_PROTOCOLPGM("Positioning the probe...\n");
  3559. #if ENABLED(DELTA)
  3560. // we don't do bed level correction in M48 because we want the raw data when we probe
  3561. reset_bed_level();
  3562. #else
  3563. // we don't do bed level correction in M48 because we want the raw data when we probe
  3564. planner.bed_level_matrix.set_to_identity();
  3565. #endif
  3566. if (Z_start_location < Z_RAISE_BEFORE_PROBING * 2.0)
  3567. do_blocking_move_to_z(Z_start_location);
  3568. do_blocking_move_to_xy(X_probe_location - (X_PROBE_OFFSET_FROM_EXTRUDER), Y_probe_location - (Y_PROBE_OFFSET_FROM_EXTRUDER));
  3569. /**
  3570. * OK, do the initial probe to get us close to the bed.
  3571. * Then retrace the right amount and use that in subsequent probes
  3572. */
  3573. setup_for_endstop_move();
  3574. // Height before each probe (except the first)
  3575. float z_between = home_offset[Z_AXIS] + (deploy_probe_for_each_reading ? Z_RAISE_BEFORE_PROBING : Z_RAISE_BETWEEN_PROBINGS);
  3576. // Deploy the probe and probe the first point
  3577. probe_pt(X_probe_location, Y_probe_location,
  3578. home_offset[Z_AXIS] + Z_RAISE_BEFORE_PROBING,
  3579. deploy_probe_for_each_reading ? ProbeDeployAndStow : ProbeDeploy,
  3580. verbose_level);
  3581. randomSeed(millis());
  3582. double mean, sigma, sample_set[n_samples];
  3583. for (uint8_t n = 0; n < n_samples; n++) {
  3584. if (n_legs) {
  3585. int dir = (random(0, 10) > 5.0) ? -1 : 1; // clockwise or counter clockwise
  3586. float angle = random(0.0, 360.0),
  3587. radius = random(
  3588. #if ENABLED(DELTA)
  3589. DELTA_PROBEABLE_RADIUS / 8, DELTA_PROBEABLE_RADIUS / 3
  3590. #else
  3591. 5, X_MAX_LENGTH / 8
  3592. #endif
  3593. );
  3594. if (verbose_level > 3) {
  3595. SERIAL_ECHOPAIR("Starting radius: ", radius);
  3596. SERIAL_ECHOPAIR(" angle: ", angle);
  3597. delay(100);
  3598. if (dir > 0)
  3599. SERIAL_ECHO(" Direction: Counter Clockwise \n");
  3600. else
  3601. SERIAL_ECHO(" Direction: Clockwise \n");
  3602. delay(100);
  3603. }
  3604. for (uint8_t l = 0; l < n_legs - 1; l++) {
  3605. double delta_angle;
  3606. if (schizoid_flag)
  3607. // The points of a 5 point star are 72 degrees apart. We need to
  3608. // skip a point and go to the next one on the star.
  3609. delta_angle = dir * 2.0 * 72.0;
  3610. else
  3611. // If we do this line, we are just trying to move further
  3612. // around the circle.
  3613. delta_angle = dir * (float) random(25, 45);
  3614. angle += delta_angle;
  3615. while (angle > 360.0) // We probably do not need to keep the angle between 0 and 2*PI, but the
  3616. angle -= 360.0; // Arduino documentation says the trig functions should not be given values
  3617. while (angle < 0.0) // outside of this range. It looks like they behave correctly with
  3618. angle += 360.0; // numbers outside of the range, but just to be safe we clamp them.
  3619. X_current = X_probe_location - (X_PROBE_OFFSET_FROM_EXTRUDER) + cos(RADIANS(angle)) * radius;
  3620. Y_current = Y_probe_location - (Y_PROBE_OFFSET_FROM_EXTRUDER) + sin(RADIANS(angle)) * radius;
  3621. #if DISABLED(DELTA)
  3622. X_current = constrain(X_current, X_MIN_POS, X_MAX_POS);
  3623. Y_current = constrain(Y_current, Y_MIN_POS, Y_MAX_POS);
  3624. #else
  3625. // If we have gone out too far, we can do a simple fix and scale the numbers
  3626. // back in closer to the origin.
  3627. while (sqrt(X_current * X_current + Y_current * Y_current) > DELTA_PROBEABLE_RADIUS) {
  3628. X_current /= 1.25;
  3629. Y_current /= 1.25;
  3630. if (verbose_level > 3) {
  3631. SERIAL_ECHOPAIR("Pulling point towards center:", X_current);
  3632. SERIAL_ECHOPAIR(", ", Y_current);
  3633. SERIAL_EOL;
  3634. delay(50);
  3635. }
  3636. }
  3637. #endif
  3638. if (verbose_level > 3) {
  3639. SERIAL_PROTOCOL("Going to:");
  3640. SERIAL_ECHOPAIR("x: ", X_current);
  3641. SERIAL_ECHOPAIR("y: ", Y_current);
  3642. SERIAL_ECHOPAIR(" z: ", current_position[Z_AXIS]);
  3643. SERIAL_EOL;
  3644. delay(55);
  3645. }
  3646. do_blocking_move_to_xy(X_current, Y_current);
  3647. } // n_legs loop
  3648. } // n_legs
  3649. // The last probe will differ
  3650. bool last_probe = (n == n_samples - 1);
  3651. // Probe a single point
  3652. sample_set[n] = probe_pt(
  3653. X_probe_location, Y_probe_location,
  3654. z_between,
  3655. deploy_probe_for_each_reading ? ProbeDeployAndStow : last_probe ? ProbeStow : ProbeStay,
  3656. verbose_level
  3657. );
  3658. /**
  3659. * Get the current mean for the data points we have so far
  3660. */
  3661. double sum = 0.0;
  3662. for (uint8_t j = 0; j <= n; j++) sum += sample_set[j];
  3663. mean = sum / (n + 1);
  3664. /**
  3665. * Now, use that mean to calculate the standard deviation for the
  3666. * data points we have so far
  3667. */
  3668. sum = 0.0;
  3669. for (uint8_t j = 0; j <= n; j++) {
  3670. float ss = sample_set[j] - mean;
  3671. sum += ss * ss;
  3672. }
  3673. sigma = sqrt(sum / (n + 1));
  3674. if (verbose_level > 0) {
  3675. if (verbose_level > 1) {
  3676. SERIAL_PROTOCOL(n + 1);
  3677. SERIAL_PROTOCOLPGM(" of ");
  3678. SERIAL_PROTOCOL((int)n_samples);
  3679. SERIAL_PROTOCOLPGM(" z: ");
  3680. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
  3681. delay(50);
  3682. if (verbose_level > 2) {
  3683. SERIAL_PROTOCOLPGM(" mean: ");
  3684. SERIAL_PROTOCOL_F(mean, 6);
  3685. SERIAL_PROTOCOLPGM(" sigma: ");
  3686. SERIAL_PROTOCOL_F(sigma, 6);
  3687. }
  3688. }
  3689. SERIAL_EOL;
  3690. }
  3691. // Raise before the next loop for the legs,
  3692. // or do the final raise after the last probe
  3693. if (n_legs || last_probe) {
  3694. do_blocking_move_to_z(last_probe ? home_offset[Z_AXIS] + Z_RAISE_AFTER_PROBING : z_between);
  3695. if (!last_probe) delay(500);
  3696. }
  3697. } // End of probe loop
  3698. if (verbose_level > 0) {
  3699. SERIAL_PROTOCOLPGM("Mean: ");
  3700. SERIAL_PROTOCOL_F(mean, 6);
  3701. SERIAL_EOL;
  3702. }
  3703. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  3704. SERIAL_PROTOCOL_F(sigma, 6);
  3705. SERIAL_EOL; SERIAL_EOL;
  3706. clean_up_after_endstop_move();
  3707. report_current_position();
  3708. }
  3709. #endif // AUTO_BED_LEVELING_FEATURE && Z_MIN_PROBE_REPEATABILITY_TEST
  3710. /**
  3711. * M75: Start print timer
  3712. */
  3713. inline void gcode_M75() { print_job_timer.start(); }
  3714. /**
  3715. * M76: Pause print timer
  3716. */
  3717. inline void gcode_M76() { print_job_timer.pause(); }
  3718. /**
  3719. * M77: Stop print timer
  3720. */
  3721. inline void gcode_M77() { print_job_timer.stop(); }
  3722. #if ENABLED(PRINTCOUNTER)
  3723. /*+
  3724. * M78: Show print statistics
  3725. */
  3726. inline void gcode_M78() {
  3727. // "M78 S78" will reset the statistics
  3728. if (code_seen('S') && code_value_int() == 78)
  3729. print_job_timer.initStats();
  3730. else print_job_timer.showStats();
  3731. }
  3732. #endif
  3733. /**
  3734. * M104: Set hot end temperature
  3735. */
  3736. inline void gcode_M104() {
  3737. if (get_target_extruder_from_command(104)) return;
  3738. if (DEBUGGING(DRYRUN)) return;
  3739. #if ENABLED(SINGLENOZZLE)
  3740. if (target_extruder != active_extruder) return;
  3741. #endif
  3742. if (code_seen('S')) {
  3743. float temp = code_value_temp_abs();
  3744. thermalManager.setTargetHotend(temp, target_extruder);
  3745. #if ENABLED(DUAL_X_CARRIAGE)
  3746. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && target_extruder == 0)
  3747. thermalManager.setTargetHotend(temp == 0.0 ? 0.0 : temp + duplicate_extruder_temp_offset, 1);
  3748. #endif
  3749. #if ENABLED(PRINTJOB_TIMER_AUTOSTART)
  3750. /**
  3751. * We use half EXTRUDE_MINTEMP here to allow nozzles to be put into hot
  3752. * stand by mode, for instance in a dual extruder setup, without affecting
  3753. * the running print timer.
  3754. */
  3755. if (temp <= (EXTRUDE_MINTEMP)/2) {
  3756. print_job_timer.stop();
  3757. LCD_MESSAGEPGM(WELCOME_MSG);
  3758. }
  3759. /**
  3760. * We do not check if the timer is already running because this check will
  3761. * be done for us inside the Stopwatch::start() method thus a running timer
  3762. * will not restart.
  3763. */
  3764. else print_job_timer.start();
  3765. #endif
  3766. if (temp > thermalManager.degHotend(target_extruder)) LCD_MESSAGEPGM(MSG_HEATING);
  3767. }
  3768. }
  3769. #if HAS_TEMP_HOTEND || HAS_TEMP_BED
  3770. void print_heaterstates() {
  3771. #if HAS_TEMP_HOTEND
  3772. SERIAL_PROTOCOLPGM(" T:");
  3773. SERIAL_PROTOCOL_F(thermalManager.degHotend(target_extruder), 1);
  3774. SERIAL_PROTOCOLPGM(" /");
  3775. SERIAL_PROTOCOL_F(thermalManager.degTargetHotend(target_extruder), 1);
  3776. #endif
  3777. #if HAS_TEMP_BED
  3778. SERIAL_PROTOCOLPGM(" B:");
  3779. SERIAL_PROTOCOL_F(thermalManager.degBed(), 1);
  3780. SERIAL_PROTOCOLPGM(" /");
  3781. SERIAL_PROTOCOL_F(thermalManager.degTargetBed(), 1);
  3782. #endif
  3783. #if HOTENDS > 1
  3784. for (int8_t e = 0; e < HOTENDS; ++e) {
  3785. SERIAL_PROTOCOLPGM(" T");
  3786. SERIAL_PROTOCOL(e);
  3787. SERIAL_PROTOCOLCHAR(':');
  3788. SERIAL_PROTOCOL_F(thermalManager.degHotend(e), 1);
  3789. SERIAL_PROTOCOLPGM(" /");
  3790. SERIAL_PROTOCOL_F(thermalManager.degTargetHotend(e), 1);
  3791. }
  3792. #endif
  3793. #if HAS_TEMP_BED
  3794. SERIAL_PROTOCOLPGM(" B@:");
  3795. #ifdef BED_WATTS
  3796. SERIAL_PROTOCOL(((BED_WATTS) * thermalManager.getHeaterPower(-1)) / 127);
  3797. SERIAL_PROTOCOLCHAR('W');
  3798. #else
  3799. SERIAL_PROTOCOL(thermalManager.getHeaterPower(-1));
  3800. #endif
  3801. #endif
  3802. SERIAL_PROTOCOLPGM(" @:");
  3803. #ifdef EXTRUDER_WATTS
  3804. SERIAL_PROTOCOL(((EXTRUDER_WATTS) * thermalManager.getHeaterPower(target_extruder)) / 127);
  3805. SERIAL_PROTOCOLCHAR('W');
  3806. #else
  3807. SERIAL_PROTOCOL(thermalManager.getHeaterPower(target_extruder));
  3808. #endif
  3809. #if HOTENDS > 1
  3810. for (int8_t e = 0; e < HOTENDS; ++e) {
  3811. SERIAL_PROTOCOLPGM(" @");
  3812. SERIAL_PROTOCOL(e);
  3813. SERIAL_PROTOCOLCHAR(':');
  3814. #ifdef EXTRUDER_WATTS
  3815. SERIAL_PROTOCOL(((EXTRUDER_WATTS) * thermalManager.getHeaterPower(e)) / 127);
  3816. SERIAL_PROTOCOLCHAR('W');
  3817. #else
  3818. SERIAL_PROTOCOL(thermalManager.getHeaterPower(e));
  3819. #endif
  3820. }
  3821. #endif
  3822. #if ENABLED(SHOW_TEMP_ADC_VALUES)
  3823. #if HAS_TEMP_BED
  3824. SERIAL_PROTOCOLPGM(" ADC B:");
  3825. SERIAL_PROTOCOL_F(thermalManager.degBed(), 1);
  3826. SERIAL_PROTOCOLPGM("C->");
  3827. SERIAL_PROTOCOL_F(thermalManager.rawBedTemp() / OVERSAMPLENR, 0);
  3828. #endif
  3829. for (int8_t cur_hotend = 0; cur_hotend < HOTENDS; ++cur_hotend) {
  3830. SERIAL_PROTOCOLPGM(" T");
  3831. SERIAL_PROTOCOL(cur_hotend);
  3832. SERIAL_PROTOCOLCHAR(':');
  3833. SERIAL_PROTOCOL_F(thermalManager.degHotend(cur_hotend), 1);
  3834. SERIAL_PROTOCOLPGM("C->");
  3835. SERIAL_PROTOCOL_F(thermalManager.rawHotendTemp(cur_hotend) / OVERSAMPLENR, 0);
  3836. }
  3837. #endif
  3838. }
  3839. #endif
  3840. /**
  3841. * M105: Read hot end and bed temperature
  3842. */
  3843. inline void gcode_M105() {
  3844. if (get_target_extruder_from_command(105)) return;
  3845. #if HAS_TEMP_HOTEND || HAS_TEMP_BED
  3846. SERIAL_PROTOCOLPGM(MSG_OK);
  3847. print_heaterstates();
  3848. #else // !HAS_TEMP_HOTEND && !HAS_TEMP_BED
  3849. SERIAL_ERROR_START;
  3850. SERIAL_ERRORLNPGM(MSG_ERR_NO_THERMISTORS);
  3851. #endif
  3852. SERIAL_EOL;
  3853. }
  3854. #if FAN_COUNT > 0
  3855. /**
  3856. * M106: Set Fan Speed
  3857. *
  3858. * S<int> Speed between 0-255
  3859. * P<index> Fan index, if more than one fan
  3860. */
  3861. inline void gcode_M106() {
  3862. uint16_t s = code_seen('S') ? code_value_ushort() : 255,
  3863. p = code_seen('P') ? code_value_ushort() : 0;
  3864. NOMORE(s, 255);
  3865. if (p < FAN_COUNT) fanSpeeds[p] = s;
  3866. }
  3867. /**
  3868. * M107: Fan Off
  3869. */
  3870. inline void gcode_M107() {
  3871. uint16_t p = code_seen('P') ? code_value_ushort() : 0;
  3872. if (p < FAN_COUNT) fanSpeeds[p] = 0;
  3873. }
  3874. #endif // FAN_COUNT > 0
  3875. /**
  3876. * M109: Sxxx Wait for extruder(s) to reach temperature. Waits only when heating.
  3877. * Rxxx Wait for extruder(s) to reach temperature. Waits when heating and cooling.
  3878. */
  3879. inline void gcode_M109() {
  3880. if (get_target_extruder_from_command(109)) return;
  3881. if (DEBUGGING(DRYRUN)) return;
  3882. #if ENABLED(SINGLENOZZLE)
  3883. if (target_extruder != active_extruder) return;
  3884. #endif
  3885. bool no_wait_for_cooling = code_seen('S');
  3886. if (no_wait_for_cooling || code_seen('R')) {
  3887. float temp = code_value_temp_abs();
  3888. thermalManager.setTargetHotend(temp, target_extruder);
  3889. #if ENABLED(DUAL_X_CARRIAGE)
  3890. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && target_extruder == 0)
  3891. thermalManager.setTargetHotend(temp == 0.0 ? 0.0 : temp + duplicate_extruder_temp_offset, 1);
  3892. #endif
  3893. #if ENABLED(PRINTJOB_TIMER_AUTOSTART)
  3894. /**
  3895. * We use half EXTRUDE_MINTEMP here to allow nozzles to be put into hot
  3896. * stand by mode, for instance in a dual extruder setup, without affecting
  3897. * the running print timer.
  3898. */
  3899. if (temp <= (EXTRUDE_MINTEMP)/2) {
  3900. print_job_timer.stop();
  3901. LCD_MESSAGEPGM(WELCOME_MSG);
  3902. }
  3903. /**
  3904. * We do not check if the timer is already running because this check will
  3905. * be done for us inside the Stopwatch::start() method thus a running timer
  3906. * will not restart.
  3907. */
  3908. else print_job_timer.start();
  3909. #endif
  3910. if (temp > thermalManager.degHotend(target_extruder)) LCD_MESSAGEPGM(MSG_HEATING);
  3911. }
  3912. #if ENABLED(AUTOTEMP)
  3913. planner.autotemp_M109();
  3914. #endif
  3915. #if TEMP_RESIDENCY_TIME > 0
  3916. millis_t residency_start_ms = 0;
  3917. // Loop until the temperature has stabilized
  3918. #define TEMP_CONDITIONS (!residency_start_ms || PENDING(now, residency_start_ms + (TEMP_RESIDENCY_TIME) * 1000UL))
  3919. #else
  3920. // Loop until the temperature is very close target
  3921. #define TEMP_CONDITIONS (wants_to_cool ? thermalManager.isCoolingHotend(target_extruder) : thermalManager.isHeatingHotend(target_extruder))
  3922. #endif //TEMP_RESIDENCY_TIME > 0
  3923. float theTarget = -1;
  3924. bool wants_to_cool;
  3925. cancel_heatup = false;
  3926. millis_t now, next_temp_ms = 0;
  3927. KEEPALIVE_STATE(NOT_BUSY);
  3928. do {
  3929. // Target temperature might be changed during the loop
  3930. if (theTarget != thermalManager.degTargetHotend(target_extruder)) {
  3931. wants_to_cool = thermalManager.isCoolingHotend(target_extruder);
  3932. theTarget = thermalManager.degTargetHotend(target_extruder);
  3933. // Exit if S<lower>, continue if S<higher>, R<lower>, or R<higher>
  3934. if (no_wait_for_cooling && wants_to_cool) break;
  3935. // Prevent a wait-forever situation if R is misused i.e. M109 R0
  3936. // Try to calculate a ballpark safe margin by halving EXTRUDE_MINTEMP
  3937. if (wants_to_cool && theTarget < (EXTRUDE_MINTEMP)/2) break;
  3938. }
  3939. now = millis();
  3940. if (ELAPSED(now, next_temp_ms)) { //Print temp & remaining time every 1s while waiting
  3941. next_temp_ms = now + 1000UL;
  3942. print_heaterstates();
  3943. #if TEMP_RESIDENCY_TIME > 0
  3944. SERIAL_PROTOCOLPGM(" W:");
  3945. if (residency_start_ms) {
  3946. long rem = (((TEMP_RESIDENCY_TIME) * 1000UL) - (now - residency_start_ms)) / 1000UL;
  3947. SERIAL_PROTOCOLLN(rem);
  3948. }
  3949. else {
  3950. SERIAL_PROTOCOLLNPGM("?");
  3951. }
  3952. #else
  3953. SERIAL_EOL;
  3954. #endif
  3955. }
  3956. idle();
  3957. refresh_cmd_timeout(); // to prevent stepper_inactive_time from running out
  3958. #if TEMP_RESIDENCY_TIME > 0
  3959. float temp_diff = fabs(theTarget - thermalManager.degHotend(target_extruder));
  3960. if (!residency_start_ms) {
  3961. // Start the TEMP_RESIDENCY_TIME timer when we reach target temp for the first time.
  3962. if (temp_diff < TEMP_WINDOW) residency_start_ms = now;
  3963. }
  3964. else if (temp_diff > TEMP_HYSTERESIS) {
  3965. // Restart the timer whenever the temperature falls outside the hysteresis.
  3966. residency_start_ms = now;
  3967. }
  3968. #endif //TEMP_RESIDENCY_TIME > 0
  3969. } while (!cancel_heatup && TEMP_CONDITIONS);
  3970. LCD_MESSAGEPGM(MSG_HEATING_COMPLETE);
  3971. KEEPALIVE_STATE(IN_HANDLER);
  3972. }
  3973. #if HAS_TEMP_BED
  3974. /**
  3975. * M190: Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  3976. * Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  3977. */
  3978. inline void gcode_M190() {
  3979. if (DEBUGGING(DRYRUN)) return;
  3980. LCD_MESSAGEPGM(MSG_BED_HEATING);
  3981. bool no_wait_for_cooling = code_seen('S');
  3982. if (no_wait_for_cooling || code_seen('R')) thermalManager.setTargetBed(code_value_temp_abs());
  3983. #if TEMP_BED_RESIDENCY_TIME > 0
  3984. millis_t residency_start_ms = 0;
  3985. // Loop until the temperature has stabilized
  3986. #define TEMP_BED_CONDITIONS (!residency_start_ms || PENDING(now, residency_start_ms + (TEMP_BED_RESIDENCY_TIME) * 1000UL))
  3987. #else
  3988. // Loop until the temperature is very close target
  3989. #define TEMP_BED_CONDITIONS (wants_to_cool ? thermalManager.isCoolingBed() : thermalManager.isHeatingBed())
  3990. #endif //TEMP_BED_RESIDENCY_TIME > 0
  3991. float theTarget = -1;
  3992. bool wants_to_cool;
  3993. cancel_heatup = false;
  3994. millis_t now, next_temp_ms = 0;
  3995. KEEPALIVE_STATE(NOT_BUSY);
  3996. do {
  3997. // Target temperature might be changed during the loop
  3998. if (theTarget != thermalManager.degTargetBed()) {
  3999. wants_to_cool = thermalManager.isCoolingBed();
  4000. theTarget = thermalManager.degTargetBed();
  4001. // Exit if S<lower>, continue if S<higher>, R<lower>, or R<higher>
  4002. if (no_wait_for_cooling && wants_to_cool) break;
  4003. // Prevent a wait-forever situation if R is misused i.e. M190 R0
  4004. // Simply don't wait to cool a bed under 30C
  4005. if (wants_to_cool && theTarget < 30) break;
  4006. }
  4007. now = millis();
  4008. if (ELAPSED(now, next_temp_ms)) { //Print Temp Reading every 1 second while heating up.
  4009. next_temp_ms = now + 1000UL;
  4010. print_heaterstates();
  4011. #if TEMP_BED_RESIDENCY_TIME > 0
  4012. SERIAL_PROTOCOLPGM(" W:");
  4013. if (residency_start_ms) {
  4014. long rem = (((TEMP_BED_RESIDENCY_TIME) * 1000UL) - (now - residency_start_ms)) / 1000UL;
  4015. SERIAL_PROTOCOLLN(rem);
  4016. }
  4017. else {
  4018. SERIAL_PROTOCOLLNPGM("?");
  4019. }
  4020. #else
  4021. SERIAL_EOL;
  4022. #endif
  4023. }
  4024. idle();
  4025. refresh_cmd_timeout(); // to prevent stepper_inactive_time from running out
  4026. #if TEMP_BED_RESIDENCY_TIME > 0
  4027. float temp_diff = fabs(theTarget - thermalManager.degBed());
  4028. if (!residency_start_ms) {
  4029. // Start the TEMP_BED_RESIDENCY_TIME timer when we reach target temp for the first time.
  4030. if (temp_diff < TEMP_BED_WINDOW) residency_start_ms = now;
  4031. }
  4032. else if (temp_diff > TEMP_BED_HYSTERESIS) {
  4033. // Restart the timer whenever the temperature falls outside the hysteresis.
  4034. residency_start_ms = now;
  4035. }
  4036. #endif //TEMP_BED_RESIDENCY_TIME > 0
  4037. } while (!cancel_heatup && TEMP_BED_CONDITIONS);
  4038. LCD_MESSAGEPGM(MSG_BED_DONE);
  4039. KEEPALIVE_STATE(IN_HANDLER);
  4040. }
  4041. #endif // HAS_TEMP_BED
  4042. /**
  4043. * M110: Set Current Line Number
  4044. */
  4045. inline void gcode_M110() {
  4046. if (code_seen('N')) gcode_N = code_value_long();
  4047. }
  4048. /**
  4049. * M111: Set the debug level
  4050. */
  4051. inline void gcode_M111() {
  4052. marlin_debug_flags = code_seen('S') ? code_value_byte() : (uint8_t) DEBUG_NONE;
  4053. const static char str_debug_1[] PROGMEM = MSG_DEBUG_ECHO;
  4054. const static char str_debug_2[] PROGMEM = MSG_DEBUG_INFO;
  4055. const static char str_debug_4[] PROGMEM = MSG_DEBUG_ERRORS;
  4056. const static char str_debug_8[] PROGMEM = MSG_DEBUG_DRYRUN;
  4057. const static char str_debug_16[] PROGMEM = MSG_DEBUG_COMMUNICATION;
  4058. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4059. const static char str_debug_32[] PROGMEM = MSG_DEBUG_LEVELING;
  4060. #endif
  4061. const static char* const debug_strings[] PROGMEM = {
  4062. str_debug_1, str_debug_2, str_debug_4, str_debug_8, str_debug_16,
  4063. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4064. str_debug_32
  4065. #endif
  4066. };
  4067. SERIAL_ECHO_START;
  4068. SERIAL_ECHOPGM(MSG_DEBUG_PREFIX);
  4069. if (marlin_debug_flags) {
  4070. uint8_t comma = 0;
  4071. for (uint8_t i = 0; i < COUNT(debug_strings); i++) {
  4072. if (TEST(marlin_debug_flags, i)) {
  4073. if (comma++) SERIAL_CHAR(',');
  4074. serialprintPGM((char*)pgm_read_word(&(debug_strings[i])));
  4075. }
  4076. }
  4077. }
  4078. else {
  4079. SERIAL_ECHOPGM(MSG_DEBUG_OFF);
  4080. }
  4081. SERIAL_EOL;
  4082. }
  4083. /**
  4084. * M112: Emergency Stop
  4085. */
  4086. inline void gcode_M112() { kill(PSTR(MSG_KILLED)); }
  4087. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  4088. /**
  4089. * M113: Get or set Host Keepalive interval (0 to disable)
  4090. *
  4091. * S<seconds> Optional. Set the keepalive interval.
  4092. */
  4093. inline void gcode_M113() {
  4094. if (code_seen('S')) {
  4095. host_keepalive_interval = code_value_byte();
  4096. NOMORE(host_keepalive_interval, 60);
  4097. }
  4098. else {
  4099. SERIAL_ECHO_START;
  4100. SERIAL_ECHOPAIR("M113 S", (unsigned long)host_keepalive_interval);
  4101. SERIAL_EOL;
  4102. }
  4103. }
  4104. #endif
  4105. #if ENABLED(BARICUDA)
  4106. #if HAS_HEATER_1
  4107. /**
  4108. * M126: Heater 1 valve open
  4109. */
  4110. inline void gcode_M126() { baricuda_valve_pressure = code_seen('S') ? code_value_byte() : 255; }
  4111. /**
  4112. * M127: Heater 1 valve close
  4113. */
  4114. inline void gcode_M127() { baricuda_valve_pressure = 0; }
  4115. #endif
  4116. #if HAS_HEATER_2
  4117. /**
  4118. * M128: Heater 2 valve open
  4119. */
  4120. inline void gcode_M128() { baricuda_e_to_p_pressure = code_seen('S') ? code_value_byte() : 255; }
  4121. /**
  4122. * M129: Heater 2 valve close
  4123. */
  4124. inline void gcode_M129() { baricuda_e_to_p_pressure = 0; }
  4125. #endif
  4126. #endif //BARICUDA
  4127. /**
  4128. * M140: Set bed temperature
  4129. */
  4130. inline void gcode_M140() {
  4131. if (DEBUGGING(DRYRUN)) return;
  4132. if (code_seen('S')) thermalManager.setTargetBed(code_value_temp_abs());
  4133. }
  4134. #if ENABLED(ULTIPANEL)
  4135. /**
  4136. * M145: Set the heatup state for a material in the LCD menu
  4137. * S<material> (0=PLA, 1=ABS)
  4138. * H<hotend temp>
  4139. * B<bed temp>
  4140. * F<fan speed>
  4141. */
  4142. inline void gcode_M145() {
  4143. int8_t material = code_seen('S') ? (int8_t)code_value_int() : 0;
  4144. if (material < 0 || material > 1) {
  4145. SERIAL_ERROR_START;
  4146. SERIAL_ERRORLNPGM(MSG_ERR_MATERIAL_INDEX);
  4147. }
  4148. else {
  4149. int v;
  4150. switch (material) {
  4151. case 0:
  4152. if (code_seen('H')) {
  4153. v = code_value_int();
  4154. plaPreheatHotendTemp = constrain(v, EXTRUDE_MINTEMP, HEATER_0_MAXTEMP - 15);
  4155. }
  4156. if (code_seen('F')) {
  4157. v = code_value_int();
  4158. plaPreheatFanSpeed = constrain(v, 0, 255);
  4159. }
  4160. #if TEMP_SENSOR_BED != 0
  4161. if (code_seen('B')) {
  4162. v = code_value_int();
  4163. plaPreheatHPBTemp = constrain(v, BED_MINTEMP, BED_MAXTEMP - 15);
  4164. }
  4165. #endif
  4166. break;
  4167. case 1:
  4168. if (code_seen('H')) {
  4169. v = code_value_int();
  4170. absPreheatHotendTemp = constrain(v, EXTRUDE_MINTEMP, HEATER_0_MAXTEMP - 15);
  4171. }
  4172. if (code_seen('F')) {
  4173. v = code_value_int();
  4174. absPreheatFanSpeed = constrain(v, 0, 255);
  4175. }
  4176. #if TEMP_SENSOR_BED != 0
  4177. if (code_seen('B')) {
  4178. v = code_value_int();
  4179. absPreheatHPBTemp = constrain(v, BED_MINTEMP, BED_MAXTEMP - 15);
  4180. }
  4181. #endif
  4182. break;
  4183. }
  4184. }
  4185. }
  4186. #endif
  4187. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  4188. /**
  4189. * M149: Set temperature units
  4190. */
  4191. inline void gcode_M149() {
  4192. if (code_seen('C')) {
  4193. set_input_temp_units(TEMPUNIT_C);
  4194. } else if (code_seen('K')) {
  4195. set_input_temp_units(TEMPUNIT_K);
  4196. } else if (code_seen('F')) {
  4197. set_input_temp_units(TEMPUNIT_F);
  4198. }
  4199. }
  4200. #endif
  4201. #if HAS_POWER_SWITCH
  4202. /**
  4203. * M80: Turn on Power Supply
  4204. */
  4205. inline void gcode_M80() {
  4206. OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE); //GND
  4207. /**
  4208. * If you have a switch on suicide pin, this is useful
  4209. * if you want to start another print with suicide feature after
  4210. * a print without suicide...
  4211. */
  4212. #if HAS_SUICIDE
  4213. OUT_WRITE(SUICIDE_PIN, HIGH);
  4214. #endif
  4215. #if ENABLED(ULTIPANEL)
  4216. powersupply = true;
  4217. LCD_MESSAGEPGM(WELCOME_MSG);
  4218. lcd_update();
  4219. #endif
  4220. }
  4221. #endif // HAS_POWER_SWITCH
  4222. /**
  4223. * M81: Turn off Power, including Power Supply, if there is one.
  4224. *
  4225. * This code should ALWAYS be available for EMERGENCY SHUTDOWN!
  4226. */
  4227. inline void gcode_M81() {
  4228. thermalManager.disable_all_heaters();
  4229. stepper.finish_and_disable();
  4230. #if FAN_COUNT > 0
  4231. #if FAN_COUNT > 1
  4232. for (uint8_t i = 0; i < FAN_COUNT; i++) fanSpeeds[i] = 0;
  4233. #else
  4234. fanSpeeds[0] = 0;
  4235. #endif
  4236. #endif
  4237. delay(1000); // Wait 1 second before switching off
  4238. #if HAS_SUICIDE
  4239. stepper.synchronize();
  4240. suicide();
  4241. #elif HAS_POWER_SWITCH
  4242. OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  4243. #endif
  4244. #if ENABLED(ULTIPANEL)
  4245. #if HAS_POWER_SWITCH
  4246. powersupply = false;
  4247. #endif
  4248. LCD_MESSAGEPGM(MACHINE_NAME " " MSG_OFF ".");
  4249. lcd_update();
  4250. #endif
  4251. }
  4252. /**
  4253. * M82: Set E codes absolute (default)
  4254. */
  4255. inline void gcode_M82() { axis_relative_modes[E_AXIS] = false; }
  4256. /**
  4257. * M83: Set E codes relative while in Absolute Coordinates (G90) mode
  4258. */
  4259. inline void gcode_M83() { axis_relative_modes[E_AXIS] = true; }
  4260. /**
  4261. * M18, M84: Disable all stepper motors
  4262. */
  4263. inline void gcode_M18_M84() {
  4264. if (code_seen('S')) {
  4265. stepper_inactive_time = code_value_millis_from_seconds();
  4266. }
  4267. else {
  4268. bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS])) || (code_seen(axis_codes[E_AXIS])));
  4269. if (all_axis) {
  4270. stepper.finish_and_disable();
  4271. }
  4272. else {
  4273. stepper.synchronize();
  4274. if (code_seen('X')) disable_x();
  4275. if (code_seen('Y')) disable_y();
  4276. if (code_seen('Z')) disable_z();
  4277. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  4278. if (code_seen('E')) {
  4279. disable_e0();
  4280. disable_e1();
  4281. disable_e2();
  4282. disable_e3();
  4283. }
  4284. #endif
  4285. }
  4286. }
  4287. }
  4288. /**
  4289. * M85: Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  4290. */
  4291. inline void gcode_M85() {
  4292. if (code_seen('S')) max_inactive_time = code_value_millis_from_seconds();
  4293. }
  4294. /**
  4295. * M92: Set axis steps-per-unit for one or more axes, X, Y, Z, and E.
  4296. * (Follows the same syntax as G92)
  4297. */
  4298. inline void gcode_M92() {
  4299. for (int8_t i = 0; i < NUM_AXIS; i++) {
  4300. if (code_seen(axis_codes[i])) {
  4301. if (i == E_AXIS) {
  4302. float value = code_value_per_axis_unit(i);
  4303. if (value < 20.0) {
  4304. float factor = planner.axis_steps_per_mm[i] / value; // increase e constants if M92 E14 is given for netfab.
  4305. planner.max_e_jerk *= factor;
  4306. planner.max_feedrate[i] *= factor;
  4307. planner.max_acceleration_steps_per_s2[i] *= factor;
  4308. }
  4309. planner.axis_steps_per_mm[i] = value;
  4310. }
  4311. else {
  4312. planner.axis_steps_per_mm[i] = code_value_per_axis_unit(i);
  4313. }
  4314. }
  4315. }
  4316. }
  4317. /**
  4318. * Output the current position to serial
  4319. */
  4320. static void report_current_position() {
  4321. SERIAL_PROTOCOLPGM("X:");
  4322. SERIAL_PROTOCOL(current_position[X_AXIS]);
  4323. SERIAL_PROTOCOLPGM(" Y:");
  4324. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  4325. SERIAL_PROTOCOLPGM(" Z:");
  4326. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  4327. SERIAL_PROTOCOLPGM(" E:");
  4328. SERIAL_PROTOCOL(current_position[E_AXIS]);
  4329. stepper.report_positions();
  4330. #if ENABLED(SCARA)
  4331. SERIAL_PROTOCOLPGM("SCARA Theta:");
  4332. SERIAL_PROTOCOL(delta[X_AXIS]);
  4333. SERIAL_PROTOCOLPGM(" Psi+Theta:");
  4334. SERIAL_PROTOCOL(delta[Y_AXIS]);
  4335. SERIAL_EOL;
  4336. SERIAL_PROTOCOLPGM("SCARA Cal - Theta:");
  4337. SERIAL_PROTOCOL(delta[X_AXIS] + home_offset[X_AXIS]);
  4338. SERIAL_PROTOCOLPGM(" Psi+Theta (90):");
  4339. SERIAL_PROTOCOL(delta[Y_AXIS] - delta[X_AXIS] - 90 + home_offset[Y_AXIS]);
  4340. SERIAL_EOL;
  4341. SERIAL_PROTOCOLPGM("SCARA step Cal - Theta:");
  4342. SERIAL_PROTOCOL(delta[X_AXIS] / 90 * planner.axis_steps_per_mm[X_AXIS]);
  4343. SERIAL_PROTOCOLPGM(" Psi+Theta:");
  4344. SERIAL_PROTOCOL((delta[Y_AXIS] - delta[X_AXIS]) / 90 * planner.axis_steps_per_mm[Y_AXIS]);
  4345. SERIAL_EOL; SERIAL_EOL;
  4346. #endif
  4347. }
  4348. /**
  4349. * M114: Output current position to serial port
  4350. */
  4351. inline void gcode_M114() { report_current_position(); }
  4352. /**
  4353. * M115: Capabilities string
  4354. */
  4355. inline void gcode_M115() {
  4356. SERIAL_PROTOCOLPGM(MSG_M115_REPORT);
  4357. }
  4358. /**
  4359. * M117: Set LCD Status Message
  4360. */
  4361. inline void gcode_M117() {
  4362. lcd_setstatus(current_command_args);
  4363. }
  4364. /**
  4365. * M119: Output endstop states to serial output
  4366. */
  4367. inline void gcode_M119() { endstops.M119(); }
  4368. /**
  4369. * M120: Enable endstops and set non-homing endstop state to "enabled"
  4370. */
  4371. inline void gcode_M120() { endstops.enable_globally(true); }
  4372. /**
  4373. * M121: Disable endstops and set non-homing endstop state to "disabled"
  4374. */
  4375. inline void gcode_M121() { endstops.enable_globally(false); }
  4376. #if ENABLED(BLINKM)
  4377. /**
  4378. * M150: Set Status LED Color - Use R-U-B for R-G-B
  4379. */
  4380. inline void gcode_M150() {
  4381. SendColors(
  4382. code_seen('R') ? code_value_byte() : 0,
  4383. code_seen('U') ? code_value_byte() : 0,
  4384. code_seen('B') ? code_value_byte() : 0
  4385. );
  4386. }
  4387. #endif // BLINKM
  4388. #if ENABLED(EXPERIMENTAL_I2CBUS)
  4389. /**
  4390. * M155: Send data to a I2C slave device
  4391. *
  4392. * This is a PoC, the formating and arguments for the GCODE will
  4393. * change to be more compatible, the current proposal is:
  4394. *
  4395. * M155 A<slave device address base 10> ; Sets the I2C slave address the data will be sent to
  4396. *
  4397. * M155 B<byte-1 value in base 10>
  4398. * M155 B<byte-2 value in base 10>
  4399. * M155 B<byte-3 value in base 10>
  4400. *
  4401. * M155 S1 ; Send the buffered data and reset the buffer
  4402. * M155 R1 ; Reset the buffer without sending data
  4403. *
  4404. */
  4405. inline void gcode_M155() {
  4406. // Set the target address
  4407. if (code_seen('A'))
  4408. i2c.address(code_value_byte());
  4409. // Add a new byte to the buffer
  4410. else if (code_seen('B'))
  4411. i2c.addbyte(code_value_int());
  4412. // Flush the buffer to the bus
  4413. else if (code_seen('S')) i2c.send();
  4414. // Reset and rewind the buffer
  4415. else if (code_seen('R')) i2c.reset();
  4416. }
  4417. /**
  4418. * M156: Request X bytes from I2C slave device
  4419. *
  4420. * Usage: M156 A<slave device address base 10> B<number of bytes>
  4421. */
  4422. inline void gcode_M156() {
  4423. uint8_t addr = code_seen('A') ? code_value_byte() : 0;
  4424. int bytes = code_seen('B') ? code_value_int() : 1;
  4425. if (addr && bytes > 0 && bytes <= 32) {
  4426. i2c.address(addr);
  4427. i2c.reqbytes(bytes);
  4428. }
  4429. else {
  4430. SERIAL_ERROR_START;
  4431. SERIAL_ERRORLN("Bad i2c request");
  4432. }
  4433. }
  4434. #endif //EXPERIMENTAL_I2CBUS
  4435. /**
  4436. * M200: Set filament diameter and set E axis units to cubic units
  4437. *
  4438. * T<extruder> - Optional extruder number. Current extruder if omitted.
  4439. * D<mm> - Diameter of the filament. Use "D0" to switch back to linear units on the E axis.
  4440. */
  4441. inline void gcode_M200() {
  4442. if (get_target_extruder_from_command(200)) return;
  4443. if (code_seen('D')) {
  4444. float diameter = code_value_linear_units();
  4445. // setting any extruder filament size disables volumetric on the assumption that
  4446. // slicers either generate in extruder values as cubic mm or as as filament feeds
  4447. // for all extruders
  4448. volumetric_enabled = (diameter != 0.0);
  4449. if (volumetric_enabled) {
  4450. filament_size[target_extruder] = diameter;
  4451. // make sure all extruders have some sane value for the filament size
  4452. for (int i = 0; i < EXTRUDERS; i++)
  4453. if (! filament_size[i]) filament_size[i] = DEFAULT_NOMINAL_FILAMENT_DIA;
  4454. }
  4455. }
  4456. else {
  4457. //reserved for setting filament diameter via UFID or filament measuring device
  4458. return;
  4459. }
  4460. calculate_volumetric_multipliers();
  4461. }
  4462. /**
  4463. * M201: Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  4464. */
  4465. inline void gcode_M201() {
  4466. for (int8_t i = 0; i < NUM_AXIS; i++) {
  4467. if (code_seen(axis_codes[i])) {
  4468. planner.max_acceleration_mm_per_s2[i] = code_value_axis_units(i);
  4469. }
  4470. }
  4471. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  4472. planner.reset_acceleration_rates();
  4473. }
  4474. #if 0 // Not used for Sprinter/grbl gen6
  4475. inline void gcode_M202() {
  4476. for (int8_t i = 0; i < NUM_AXIS; i++) {
  4477. if (code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value_axis_units(i) * planner.axis_steps_per_mm[i];
  4478. }
  4479. }
  4480. #endif
  4481. /**
  4482. * M203: Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  4483. */
  4484. inline void gcode_M203() {
  4485. for (int8_t i = 0; i < NUM_AXIS; i++) {
  4486. if (code_seen(axis_codes[i])) {
  4487. planner.max_feedrate[i] = code_value_axis_units(i);
  4488. }
  4489. }
  4490. }
  4491. /**
  4492. * M204: Set Accelerations in mm/sec^2 (M204 P1200 R3000 T3000)
  4493. *
  4494. * P = Printing moves
  4495. * R = Retract only (no X, Y, Z) moves
  4496. * T = Travel (non printing) moves
  4497. *
  4498. * Also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  4499. */
  4500. inline void gcode_M204() {
  4501. if (code_seen('S')) { // Kept for legacy compatibility. Should NOT BE USED for new developments.
  4502. planner.travel_acceleration = planner.acceleration = code_value_linear_units();
  4503. SERIAL_ECHOPAIR("Setting Print and Travel Acceleration: ", planner.acceleration);
  4504. SERIAL_EOL;
  4505. }
  4506. if (code_seen('P')) {
  4507. planner.acceleration = code_value_linear_units();
  4508. SERIAL_ECHOPAIR("Setting Print Acceleration: ", planner.acceleration);
  4509. SERIAL_EOL;
  4510. }
  4511. if (code_seen('R')) {
  4512. planner.retract_acceleration = code_value_linear_units();
  4513. SERIAL_ECHOPAIR("Setting Retract Acceleration: ", planner.retract_acceleration);
  4514. SERIAL_EOL;
  4515. }
  4516. if (code_seen('T')) {
  4517. planner.travel_acceleration = code_value_linear_units();
  4518. SERIAL_ECHOPAIR("Setting Travel Acceleration: ", planner.travel_acceleration);
  4519. SERIAL_EOL;
  4520. }
  4521. }
  4522. /**
  4523. * M205: Set Advanced Settings
  4524. *
  4525. * S = Min Feed Rate (mm/s)
  4526. * T = Min Travel Feed Rate (mm/s)
  4527. * B = Min Segment Time (µs)
  4528. * X = Max XY Jerk (mm/s/s)
  4529. * Z = Max Z Jerk (mm/s/s)
  4530. * E = Max E Jerk (mm/s/s)
  4531. */
  4532. inline void gcode_M205() {
  4533. if (code_seen('S')) planner.min_feedrate = code_value_linear_units();
  4534. if (code_seen('T')) planner.min_travel_feedrate = code_value_linear_units();
  4535. if (code_seen('B')) planner.min_segment_time = code_value_millis();
  4536. if (code_seen('X')) planner.max_xy_jerk = code_value_linear_units();
  4537. if (code_seen('Z')) planner.max_z_jerk = code_value_axis_units(Z_AXIS);
  4538. if (code_seen('E')) planner.max_e_jerk = code_value_axis_units(E_AXIS);
  4539. }
  4540. /**
  4541. * M206: Set Additional Homing Offset (X Y Z). SCARA aliases T=X, P=Y
  4542. */
  4543. inline void gcode_M206() {
  4544. for (int8_t i = X_AXIS; i <= Z_AXIS; i++)
  4545. if (code_seen(axis_codes[i]))
  4546. set_home_offset((AxisEnum)i, code_value_axis_units(i));
  4547. #if ENABLED(SCARA)
  4548. if (code_seen('T')) set_home_offset(X_AXIS, code_value_axis_units(X_AXIS)); // Theta
  4549. if (code_seen('P')) set_home_offset(Y_AXIS, code_value_axis_units(Y_AXIS)); // Psi
  4550. #endif
  4551. sync_plan_position();
  4552. report_current_position();
  4553. }
  4554. #if ENABLED(DELTA)
  4555. /**
  4556. * M665: Set delta configurations
  4557. *
  4558. * L = diagonal rod
  4559. * R = delta radius
  4560. * S = segments per second
  4561. * A = Alpha (Tower 1) diagonal rod trim
  4562. * B = Beta (Tower 2) diagonal rod trim
  4563. * C = Gamma (Tower 3) diagonal rod trim
  4564. */
  4565. inline void gcode_M665() {
  4566. if (code_seen('L')) delta_diagonal_rod = code_value_linear_units();
  4567. if (code_seen('R')) delta_radius = code_value_linear_units();
  4568. if (code_seen('S')) delta_segments_per_second = code_value_float();
  4569. if (code_seen('A')) delta_diagonal_rod_trim_tower_1 = code_value_linear_units();
  4570. if (code_seen('B')) delta_diagonal_rod_trim_tower_2 = code_value_linear_units();
  4571. if (code_seen('C')) delta_diagonal_rod_trim_tower_3 = code_value_linear_units();
  4572. recalc_delta_settings(delta_radius, delta_diagonal_rod);
  4573. }
  4574. /**
  4575. * M666: Set delta endstop adjustment
  4576. */
  4577. inline void gcode_M666() {
  4578. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4579. if (DEBUGGING(LEVELING)) {
  4580. SERIAL_ECHOLNPGM(">>> gcode_M666");
  4581. }
  4582. #endif
  4583. for (int8_t i = X_AXIS; i <= Z_AXIS; i++) {
  4584. if (code_seen(axis_codes[i])) {
  4585. endstop_adj[i] = code_value_axis_units(i);
  4586. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4587. if (DEBUGGING(LEVELING)) {
  4588. SERIAL_ECHOPGM("endstop_adj[");
  4589. SERIAL_ECHO(axis_codes[i]);
  4590. SERIAL_ECHOPAIR("] = ", endstop_adj[i]);
  4591. SERIAL_EOL;
  4592. }
  4593. #endif
  4594. }
  4595. }
  4596. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4597. if (DEBUGGING(LEVELING)) {
  4598. SERIAL_ECHOLNPGM("<<< gcode_M666");
  4599. }
  4600. #endif
  4601. }
  4602. #elif ENABLED(Z_DUAL_ENDSTOPS) // !DELTA && ENABLED(Z_DUAL_ENDSTOPS)
  4603. /**
  4604. * M666: For Z Dual Endstop setup, set z axis offset to the z2 axis.
  4605. */
  4606. inline void gcode_M666() {
  4607. if (code_seen('Z')) z_endstop_adj = code_value_axis_units(Z_AXIS);
  4608. SERIAL_ECHOPAIR("Z Endstop Adjustment set to (mm):", z_endstop_adj);
  4609. SERIAL_EOL;
  4610. }
  4611. #endif // !DELTA && Z_DUAL_ENDSTOPS
  4612. #if ENABLED(FWRETRACT)
  4613. /**
  4614. * M207: Set firmware retraction values
  4615. *
  4616. * S[+mm] retract_length
  4617. * W[+mm] retract_length_swap (multi-extruder)
  4618. * F[mm/min] retract_feedrate
  4619. * Z[mm] retract_zlift
  4620. */
  4621. inline void gcode_M207() {
  4622. if (code_seen('S')) retract_length = code_value_axis_units(E_AXIS);
  4623. if (code_seen('F')) retract_feedrate = code_value_axis_units(E_AXIS) / 60;
  4624. if (code_seen('Z')) retract_zlift = code_value_axis_units(Z_AXIS);
  4625. #if EXTRUDERS > 1
  4626. if (code_seen('W')) retract_length_swap = code_value_axis_units(E_AXIS);
  4627. #endif
  4628. }
  4629. /**
  4630. * M208: Set firmware un-retraction values
  4631. *
  4632. * S[+mm] retract_recover_length (in addition to M207 S*)
  4633. * W[+mm] retract_recover_length_swap (multi-extruder)
  4634. * F[mm/min] retract_recover_feedrate
  4635. */
  4636. inline void gcode_M208() {
  4637. if (code_seen('S')) retract_recover_length = code_value_axis_units(E_AXIS);
  4638. if (code_seen('F')) retract_recover_feedrate = code_value_axis_units(E_AXIS) / 60;
  4639. #if EXTRUDERS > 1
  4640. if (code_seen('W')) retract_recover_length_swap = code_value_axis_units(E_AXIS);
  4641. #endif
  4642. }
  4643. /**
  4644. * M209: Enable automatic retract (M209 S1)
  4645. * detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  4646. */
  4647. inline void gcode_M209() {
  4648. if (code_seen('S')) {
  4649. int t = code_value_int();
  4650. switch (t) {
  4651. case 0:
  4652. autoretract_enabled = false;
  4653. break;
  4654. case 1:
  4655. autoretract_enabled = true;
  4656. break;
  4657. default:
  4658. unknown_command_error();
  4659. return;
  4660. }
  4661. for (int i = 0; i < EXTRUDERS; i++) retracted[i] = false;
  4662. }
  4663. }
  4664. #endif // FWRETRACT
  4665. #if HOTENDS > 1
  4666. /**
  4667. * M218 - set hotend offset (in mm)
  4668. *
  4669. * T<tool>
  4670. * X<xoffset>
  4671. * Y<yoffset>
  4672. * Z<zoffset> - Available with DUAL_X_CARRIAGE
  4673. */
  4674. inline void gcode_M218() {
  4675. if (get_target_extruder_from_command(218)) return;
  4676. if (code_seen('X')) hotend_offset[X_AXIS][target_extruder] = code_value_axis_units(X_AXIS);
  4677. if (code_seen('Y')) hotend_offset[Y_AXIS][target_extruder] = code_value_axis_units(Y_AXIS);
  4678. #if ENABLED(DUAL_X_CARRIAGE)
  4679. if (code_seen('Z')) hotend_offset[Z_AXIS][target_extruder] = code_value_axis_units(Z_AXIS);
  4680. #endif
  4681. SERIAL_ECHO_START;
  4682. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  4683. for (int e = 0; e < HOTENDS; e++) {
  4684. SERIAL_CHAR(' ');
  4685. SERIAL_ECHO(hotend_offset[X_AXIS][e]);
  4686. SERIAL_CHAR(',');
  4687. SERIAL_ECHO(hotend_offset[Y_AXIS][e]);
  4688. #if ENABLED(DUAL_X_CARRIAGE)
  4689. SERIAL_CHAR(',');
  4690. SERIAL_ECHO(hotend_offset[Z_AXIS][e]);
  4691. #endif
  4692. }
  4693. SERIAL_EOL;
  4694. }
  4695. #endif // HOTENDS > 1
  4696. /**
  4697. * M220: Set speed percentage factor, aka "Feed Rate" (M220 S95)
  4698. */
  4699. inline void gcode_M220() {
  4700. if (code_seen('S')) feedrate_multiplier = code_value_int();
  4701. }
  4702. /**
  4703. * M221: Set extrusion percentage (M221 T0 S95)
  4704. */
  4705. inline void gcode_M221() {
  4706. if (code_seen('S')) {
  4707. int sval = code_value_int();
  4708. if (get_target_extruder_from_command(221)) return;
  4709. extruder_multiplier[target_extruder] = sval;
  4710. }
  4711. }
  4712. /**
  4713. * M226: Wait until the specified pin reaches the state required (M226 P<pin> S<state>)
  4714. */
  4715. inline void gcode_M226() {
  4716. if (code_seen('P')) {
  4717. int pin_number = code_value_int();
  4718. int pin_state = code_seen('S') ? code_value_int() : -1; // required pin state - default is inverted
  4719. if (pin_state >= -1 && pin_state <= 1) {
  4720. for (uint8_t i = 0; i < COUNT(sensitive_pins); i++) {
  4721. if (sensitive_pins[i] == pin_number) {
  4722. pin_number = -1;
  4723. break;
  4724. }
  4725. }
  4726. if (pin_number > -1) {
  4727. int target = LOW;
  4728. stepper.synchronize();
  4729. pinMode(pin_number, INPUT);
  4730. switch (pin_state) {
  4731. case 1:
  4732. target = HIGH;
  4733. break;
  4734. case 0:
  4735. target = LOW;
  4736. break;
  4737. case -1:
  4738. target = !digitalRead(pin_number);
  4739. break;
  4740. }
  4741. while (digitalRead(pin_number) != target) idle();
  4742. } // pin_number > -1
  4743. } // pin_state -1 0 1
  4744. } // code_seen('P')
  4745. }
  4746. #if HAS_SERVOS
  4747. /**
  4748. * M280: Get or set servo position. P<index> S<angle>
  4749. */
  4750. inline void gcode_M280() {
  4751. int servo_index = code_seen('P') ? code_value_int() : -1;
  4752. int servo_position = 0;
  4753. if (code_seen('S')) {
  4754. servo_position = code_value_int();
  4755. if (servo_index >= 0 && servo_index < NUM_SERVOS)
  4756. MOVE_SERVO(servo_index, servo_position);
  4757. else {
  4758. SERIAL_ERROR_START;
  4759. SERIAL_ERROR("Servo ");
  4760. SERIAL_ERROR(servo_index);
  4761. SERIAL_ERRORLN(" out of range");
  4762. }
  4763. }
  4764. else if (servo_index >= 0) {
  4765. SERIAL_ECHO_START;
  4766. SERIAL_ECHO(" Servo ");
  4767. SERIAL_ECHO(servo_index);
  4768. SERIAL_ECHO(": ");
  4769. SERIAL_ECHOLN(servo[servo_index].read());
  4770. }
  4771. }
  4772. #endif // HAS_SERVOS
  4773. #if HAS_BUZZER
  4774. /**
  4775. * M300: Play beep sound S<frequency Hz> P<duration ms>
  4776. */
  4777. inline void gcode_M300() {
  4778. uint16_t const frequency = code_seen('S') ? code_value_ushort() : 260;
  4779. uint16_t duration = code_seen('P') ? code_value_ushort() : 1000;
  4780. // Limits the tone duration to 0-5 seconds.
  4781. NOMORE(duration, 5000);
  4782. buzzer.tone(duration, frequency);
  4783. }
  4784. #endif // HAS_BUZZER
  4785. #if ENABLED(PIDTEMP)
  4786. /**
  4787. * M301: Set PID parameters P I D (and optionally C, L)
  4788. *
  4789. * P[float] Kp term
  4790. * I[float] Ki term (unscaled)
  4791. * D[float] Kd term (unscaled)
  4792. *
  4793. * With PID_ADD_EXTRUSION_RATE:
  4794. *
  4795. * C[float] Kc term
  4796. * L[float] LPQ length
  4797. */
  4798. inline void gcode_M301() {
  4799. // multi-extruder PID patch: M301 updates or prints a single extruder's PID values
  4800. // default behaviour (omitting E parameter) is to update for extruder 0 only
  4801. int e = code_seen('E') ? code_value_int() : 0; // extruder being updated
  4802. if (e < HOTENDS) { // catch bad input value
  4803. if (code_seen('P')) PID_PARAM(Kp, e) = code_value_float();
  4804. if (code_seen('I')) PID_PARAM(Ki, e) = scalePID_i(code_value_float());
  4805. if (code_seen('D')) PID_PARAM(Kd, e) = scalePID_d(code_value_float());
  4806. #if ENABLED(PID_ADD_EXTRUSION_RATE)
  4807. if (code_seen('C')) PID_PARAM(Kc, e) = code_value_float();
  4808. if (code_seen('L')) lpq_len = code_value_float();
  4809. NOMORE(lpq_len, LPQ_MAX_LEN);
  4810. #endif
  4811. thermalManager.updatePID();
  4812. SERIAL_ECHO_START;
  4813. #if ENABLED(PID_PARAMS_PER_HOTEND)
  4814. SERIAL_ECHO(" e:"); // specify extruder in serial output
  4815. SERIAL_ECHO(e);
  4816. #endif // PID_PARAMS_PER_HOTEND
  4817. SERIAL_ECHO(" p:");
  4818. SERIAL_ECHO(PID_PARAM(Kp, e));
  4819. SERIAL_ECHO(" i:");
  4820. SERIAL_ECHO(unscalePID_i(PID_PARAM(Ki, e)));
  4821. SERIAL_ECHO(" d:");
  4822. SERIAL_ECHO(unscalePID_d(PID_PARAM(Kd, e)));
  4823. #if ENABLED(PID_ADD_EXTRUSION_RATE)
  4824. SERIAL_ECHO(" c:");
  4825. //Kc does not have scaling applied above, or in resetting defaults
  4826. SERIAL_ECHO(PID_PARAM(Kc, e));
  4827. #endif
  4828. SERIAL_EOL;
  4829. }
  4830. else {
  4831. SERIAL_ERROR_START;
  4832. SERIAL_ERRORLN(MSG_INVALID_EXTRUDER);
  4833. }
  4834. }
  4835. #endif // PIDTEMP
  4836. #if ENABLED(PIDTEMPBED)
  4837. inline void gcode_M304() {
  4838. if (code_seen('P')) thermalManager.bedKp = code_value_float();
  4839. if (code_seen('I')) thermalManager.bedKi = scalePID_i(code_value_float());
  4840. if (code_seen('D')) thermalManager.bedKd = scalePID_d(code_value_float());
  4841. thermalManager.updatePID();
  4842. SERIAL_ECHO_START;
  4843. SERIAL_ECHO(" p:");
  4844. SERIAL_ECHO(thermalManager.bedKp);
  4845. SERIAL_ECHO(" i:");
  4846. SERIAL_ECHO(unscalePID_i(thermalManager.bedKi));
  4847. SERIAL_ECHO(" d:");
  4848. SERIAL_ECHOLN(unscalePID_d(thermalManager.bedKd));
  4849. }
  4850. #endif // PIDTEMPBED
  4851. #if defined(CHDK) || HAS_PHOTOGRAPH
  4852. /**
  4853. * M240: Trigger a camera by emulating a Canon RC-1
  4854. * See http://www.doc-diy.net/photo/rc-1_hacked/
  4855. */
  4856. inline void gcode_M240() {
  4857. #ifdef CHDK
  4858. OUT_WRITE(CHDK, HIGH);
  4859. chdkHigh = millis();
  4860. chdkActive = true;
  4861. #elif HAS_PHOTOGRAPH
  4862. const uint8_t NUM_PULSES = 16;
  4863. const float PULSE_LENGTH = 0.01524;
  4864. for (int i = 0; i < NUM_PULSES; i++) {
  4865. WRITE(PHOTOGRAPH_PIN, HIGH);
  4866. _delay_ms(PULSE_LENGTH);
  4867. WRITE(PHOTOGRAPH_PIN, LOW);
  4868. _delay_ms(PULSE_LENGTH);
  4869. }
  4870. delay(7.33);
  4871. for (int i = 0; i < NUM_PULSES; i++) {
  4872. WRITE(PHOTOGRAPH_PIN, HIGH);
  4873. _delay_ms(PULSE_LENGTH);
  4874. WRITE(PHOTOGRAPH_PIN, LOW);
  4875. _delay_ms(PULSE_LENGTH);
  4876. }
  4877. #endif // !CHDK && HAS_PHOTOGRAPH
  4878. }
  4879. #endif // CHDK || PHOTOGRAPH_PIN
  4880. #if HAS_LCD_CONTRAST
  4881. /**
  4882. * M250: Read and optionally set the LCD contrast
  4883. */
  4884. inline void gcode_M250() {
  4885. if (code_seen('C')) set_lcd_contrast(code_value_int());
  4886. SERIAL_PROTOCOLPGM("lcd contrast value: ");
  4887. SERIAL_PROTOCOL(lcd_contrast);
  4888. SERIAL_EOL;
  4889. }
  4890. #endif // HAS_LCD_CONTRAST
  4891. #if ENABLED(PREVENT_DANGEROUS_EXTRUDE)
  4892. /**
  4893. * M302: Allow cold extrudes, or set the minimum extrude S<temperature>.
  4894. */
  4895. inline void gcode_M302() {
  4896. thermalManager.extrude_min_temp = code_seen('S') ? code_value_temp_abs() : 0;
  4897. }
  4898. #endif // PREVENT_DANGEROUS_EXTRUDE
  4899. /**
  4900. * M303: PID relay autotune
  4901. *
  4902. * S<temperature> sets the target temperature. (default 150C)
  4903. * E<extruder> (-1 for the bed) (default 0)
  4904. * C<cycles>
  4905. * U<bool> with a non-zero value will apply the result to current settings
  4906. */
  4907. inline void gcode_M303() {
  4908. #if HAS_PID_HEATING
  4909. int e = code_seen('E') ? code_value_int() : 0;
  4910. int c = code_seen('C') ? code_value_int() : 5;
  4911. bool u = code_seen('U') && code_value_bool();
  4912. float temp = code_seen('S') ? code_value_temp_abs() : (e < 0 ? 70.0 : 150.0);
  4913. if (e >= 0 && e < HOTENDS)
  4914. target_extruder = e;
  4915. KEEPALIVE_STATE(NOT_BUSY); // don't send "busy: processing" messages during autotune output
  4916. thermalManager.PID_autotune(temp, e, c, u);
  4917. KEEPALIVE_STATE(IN_HANDLER);
  4918. #else
  4919. SERIAL_ERROR_START;
  4920. SERIAL_ERRORLNPGM(MSG_ERR_M303_DISABLED);
  4921. #endif
  4922. }
  4923. #if ENABLED(SCARA)
  4924. bool SCARA_move_to_cal(uint8_t delta_x, uint8_t delta_y) {
  4925. //SoftEndsEnabled = false; // Ignore soft endstops during calibration
  4926. //SERIAL_ECHOLN(" Soft endstops disabled ");
  4927. if (IsRunning()) {
  4928. //gcode_get_destination(); // For X Y Z E F
  4929. delta[X_AXIS] = delta_x;
  4930. delta[Y_AXIS] = delta_y;
  4931. calculate_SCARA_forward_Transform(delta);
  4932. destination[X_AXIS] = delta[X_AXIS] / axis_scaling[X_AXIS];
  4933. destination[Y_AXIS] = delta[Y_AXIS] / axis_scaling[Y_AXIS];
  4934. prepare_move_to_destination();
  4935. //ok_to_send();
  4936. return true;
  4937. }
  4938. return false;
  4939. }
  4940. /**
  4941. * M360: SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  4942. */
  4943. inline bool gcode_M360() {
  4944. SERIAL_ECHOLN(" Cal: Theta 0 ");
  4945. return SCARA_move_to_cal(0, 120);
  4946. }
  4947. /**
  4948. * M361: SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  4949. */
  4950. inline bool gcode_M361() {
  4951. SERIAL_ECHOLN(" Cal: Theta 90 ");
  4952. return SCARA_move_to_cal(90, 130);
  4953. }
  4954. /**
  4955. * M362: SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  4956. */
  4957. inline bool gcode_M362() {
  4958. SERIAL_ECHOLN(" Cal: Psi 0 ");
  4959. return SCARA_move_to_cal(60, 180);
  4960. }
  4961. /**
  4962. * M363: SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  4963. */
  4964. inline bool gcode_M363() {
  4965. SERIAL_ECHOLN(" Cal: Psi 90 ");
  4966. return SCARA_move_to_cal(50, 90);
  4967. }
  4968. /**
  4969. * M364: SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
  4970. */
  4971. inline bool gcode_M364() {
  4972. SERIAL_ECHOLN(" Cal: Theta-Psi 90 ");
  4973. return SCARA_move_to_cal(45, 135);
  4974. }
  4975. /**
  4976. * M365: SCARA calibration: Scaling factor, X, Y, Z axis
  4977. */
  4978. inline void gcode_M365() {
  4979. for (int8_t i = X_AXIS; i <= Z_AXIS; i++) {
  4980. if (code_seen(axis_codes[i])) {
  4981. axis_scaling[i] = code_value_float();
  4982. }
  4983. }
  4984. }
  4985. #endif // SCARA
  4986. #if ENABLED(EXT_SOLENOID)
  4987. void enable_solenoid(uint8_t num) {
  4988. switch (num) {
  4989. case 0:
  4990. OUT_WRITE(SOL0_PIN, HIGH);
  4991. break;
  4992. #if HAS_SOLENOID_1
  4993. case 1:
  4994. OUT_WRITE(SOL1_PIN, HIGH);
  4995. break;
  4996. #endif
  4997. #if HAS_SOLENOID_2
  4998. case 2:
  4999. OUT_WRITE(SOL2_PIN, HIGH);
  5000. break;
  5001. #endif
  5002. #if HAS_SOLENOID_3
  5003. case 3:
  5004. OUT_WRITE(SOL3_PIN, HIGH);
  5005. break;
  5006. #endif
  5007. default:
  5008. SERIAL_ECHO_START;
  5009. SERIAL_ECHOLNPGM(MSG_INVALID_SOLENOID);
  5010. break;
  5011. }
  5012. }
  5013. void enable_solenoid_on_active_extruder() { enable_solenoid(active_extruder); }
  5014. void disable_all_solenoids() {
  5015. OUT_WRITE(SOL0_PIN, LOW);
  5016. OUT_WRITE(SOL1_PIN, LOW);
  5017. OUT_WRITE(SOL2_PIN, LOW);
  5018. OUT_WRITE(SOL3_PIN, LOW);
  5019. }
  5020. /**
  5021. * M380: Enable solenoid on the active extruder
  5022. */
  5023. inline void gcode_M380() { enable_solenoid_on_active_extruder(); }
  5024. /**
  5025. * M381: Disable all solenoids
  5026. */
  5027. inline void gcode_M381() { disable_all_solenoids(); }
  5028. #endif // EXT_SOLENOID
  5029. /**
  5030. * M400: Finish all moves
  5031. */
  5032. inline void gcode_M400() { stepper.synchronize(); }
  5033. #if ENABLED(AUTO_BED_LEVELING_FEATURE) && DISABLED(Z_PROBE_SLED) && (HAS_Z_SERVO_ENDSTOP || ENABLED(Z_PROBE_ALLEN_KEY))
  5034. /**
  5035. * M401: Engage Z Servo endstop if available
  5036. */
  5037. inline void gcode_M401() {
  5038. deploy_z_probe();
  5039. }
  5040. /**
  5041. * M402: Retract Z Servo endstop if enabled
  5042. */
  5043. inline void gcode_M402() {
  5044. stow_z_probe();
  5045. }
  5046. #endif // AUTO_BED_LEVELING_FEATURE && (HAS_Z_SERVO_ENDSTOP || Z_PROBE_ALLEN_KEY) && !Z_PROBE_SLED
  5047. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  5048. /**
  5049. * M404: Display or set the nominal filament width (3mm, 1.75mm ) W<3.0>
  5050. */
  5051. inline void gcode_M404() {
  5052. if (code_seen('W')) {
  5053. filament_width_nominal = code_value_linear_units();
  5054. }
  5055. else {
  5056. SERIAL_PROTOCOLPGM("Filament dia (nominal mm):");
  5057. SERIAL_PROTOCOLLN(filament_width_nominal);
  5058. }
  5059. }
  5060. /**
  5061. * M405: Turn on filament sensor for control
  5062. */
  5063. inline void gcode_M405() {
  5064. // This is technically a linear measurement, but since it's quantized to centimeters and is a different unit than
  5065. // everything else, it uses code_value_int() instead of code_value_linear_units().
  5066. if (code_seen('D')) meas_delay_cm = code_value_int();
  5067. NOMORE(meas_delay_cm, MAX_MEASUREMENT_DELAY);
  5068. if (filwidth_delay_index2 == -1) { // Initialize the ring buffer if not done since startup
  5069. int temp_ratio = thermalManager.widthFil_to_size_ratio();
  5070. for (uint8_t i = 0; i < COUNT(measurement_delay); ++i)
  5071. measurement_delay[i] = temp_ratio - 100; // Subtract 100 to scale within a signed byte
  5072. filwidth_delay_index1 = filwidth_delay_index2 = 0;
  5073. }
  5074. filament_sensor = true;
  5075. //SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  5076. //SERIAL_PROTOCOL(filament_width_meas);
  5077. //SERIAL_PROTOCOLPGM("Extrusion ratio(%):");
  5078. //SERIAL_PROTOCOL(extruder_multiplier[active_extruder]);
  5079. }
  5080. /**
  5081. * M406: Turn off filament sensor for control
  5082. */
  5083. inline void gcode_M406() { filament_sensor = false; }
  5084. /**
  5085. * M407: Get measured filament diameter on serial output
  5086. */
  5087. inline void gcode_M407() {
  5088. SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  5089. SERIAL_PROTOCOLLN(filament_width_meas);
  5090. }
  5091. #endif // FILAMENT_WIDTH_SENSOR
  5092. #if DISABLED(DELTA) && DISABLED(SCARA)
  5093. void set_current_position_from_planner() {
  5094. stepper.synchronize();
  5095. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  5096. vector_3 pos = planner.adjusted_position(); // values directly from steppers...
  5097. current_position[X_AXIS] = pos.x;
  5098. current_position[Y_AXIS] = pos.y;
  5099. current_position[Z_AXIS] = pos.z;
  5100. #else
  5101. current_position[X_AXIS] = stepper.get_axis_position_mm(X_AXIS);
  5102. current_position[Y_AXIS] = stepper.get_axis_position_mm(Y_AXIS);
  5103. current_position[Z_AXIS] = stepper.get_axis_position_mm(Z_AXIS);
  5104. #endif
  5105. sync_plan_position(); // ...re-apply to planner position
  5106. }
  5107. #endif
  5108. /**
  5109. * M410: Quickstop - Abort all planned moves
  5110. *
  5111. * This will stop the carriages mid-move, so most likely they
  5112. * will be out of sync with the stepper position after this.
  5113. */
  5114. inline void gcode_M410() {
  5115. stepper.quick_stop();
  5116. #if DISABLED(DELTA) && DISABLED(SCARA)
  5117. set_current_position_from_planner();
  5118. #endif
  5119. }
  5120. #if ENABLED(MESH_BED_LEVELING)
  5121. /**
  5122. * M420: Enable/Disable Mesh Bed Leveling
  5123. */
  5124. inline void gcode_M420() { if (code_seen('S') && code_has_value()) mbl.set_has_mesh(code_value_bool()); }
  5125. /**
  5126. * M421: Set a single Mesh Bed Leveling Z coordinate
  5127. * Use either 'M421 X<mm> Y<mm> Z<mm>' or 'M421 I<xindex> J<yindex> Z<mm>'
  5128. */
  5129. inline void gcode_M421() {
  5130. int8_t px, py;
  5131. float z = 0;
  5132. bool hasX, hasY, hasZ, hasI, hasJ;
  5133. if ((hasX = code_seen('X'))) px = mbl.probe_index_x(code_value_axis_units(X_AXIS));
  5134. if ((hasY = code_seen('Y'))) py = mbl.probe_index_y(code_value_axis_units(Y_AXIS));
  5135. if ((hasI = code_seen('I'))) px = code_value_axis_units(X_AXIS);
  5136. if ((hasJ = code_seen('J'))) py = code_value_axis_units(Y_AXIS);
  5137. if ((hasZ = code_seen('Z'))) z = code_value_axis_units(Z_AXIS);
  5138. if (hasX && hasY && hasZ) {
  5139. if (px >= 0 && py >= 0)
  5140. mbl.set_z(px, py, z);
  5141. else {
  5142. SERIAL_ERROR_START;
  5143. SERIAL_ERRORLNPGM(MSG_ERR_MESH_XY);
  5144. }
  5145. }
  5146. else if (hasI && hasJ && hasZ) {
  5147. if (px >= 0 && px < MESH_NUM_X_POINTS && py >= 0 && py < MESH_NUM_Y_POINTS)
  5148. mbl.set_z(px, py, z);
  5149. else {
  5150. SERIAL_ERROR_START;
  5151. SERIAL_ERRORLNPGM(MSG_ERR_MESH_XY);
  5152. }
  5153. }
  5154. else {
  5155. SERIAL_ERROR_START;
  5156. SERIAL_ERRORLNPGM(MSG_ERR_M421_PARAMETERS);
  5157. }
  5158. }
  5159. #endif
  5160. /**
  5161. * M428: Set home_offset based on the distance between the
  5162. * current_position and the nearest "reference point."
  5163. * If an axis is past center its endstop position
  5164. * is the reference-point. Otherwise it uses 0. This allows
  5165. * the Z offset to be set near the bed when using a max endstop.
  5166. *
  5167. * M428 can't be used more than 2cm away from 0 or an endstop.
  5168. *
  5169. * Use M206 to set these values directly.
  5170. */
  5171. inline void gcode_M428() {
  5172. bool err = false;
  5173. for (int8_t i = X_AXIS; i <= Z_AXIS; i++) {
  5174. if (axis_homed[i]) {
  5175. float base = (current_position[i] > (sw_endstop_min[i] + sw_endstop_max[i]) / 2) ? base_home_pos(i) : 0,
  5176. diff = current_position[i] - base;
  5177. if (diff > -20 && diff < 20) {
  5178. set_home_offset((AxisEnum)i, home_offset[i] - diff);
  5179. }
  5180. else {
  5181. SERIAL_ERROR_START;
  5182. SERIAL_ERRORLNPGM(MSG_ERR_M428_TOO_FAR);
  5183. LCD_ALERTMESSAGEPGM("Err: Too far!");
  5184. #if HAS_BUZZER
  5185. buzzer.tone(200, 40);
  5186. #endif
  5187. err = true;
  5188. break;
  5189. }
  5190. }
  5191. }
  5192. if (!err) {
  5193. #if ENABLED(DELTA) || ENABLED(SCARA)
  5194. sync_plan_position_delta();
  5195. #else
  5196. sync_plan_position();
  5197. #endif
  5198. report_current_position();
  5199. LCD_MESSAGEPGM(MSG_HOME_OFFSETS_APPLIED);
  5200. #if HAS_BUZZER
  5201. buzzer.tone(200, 659);
  5202. buzzer.tone(200, 698);
  5203. #endif
  5204. }
  5205. }
  5206. /**
  5207. * M500: Store settings in EEPROM
  5208. */
  5209. inline void gcode_M500() {
  5210. Config_StoreSettings();
  5211. }
  5212. /**
  5213. * M501: Read settings from EEPROM
  5214. */
  5215. inline void gcode_M501() {
  5216. Config_RetrieveSettings();
  5217. }
  5218. /**
  5219. * M502: Revert to default settings
  5220. */
  5221. inline void gcode_M502() {
  5222. Config_ResetDefault();
  5223. }
  5224. /**
  5225. * M503: print settings currently in memory
  5226. */
  5227. inline void gcode_M503() {
  5228. Config_PrintSettings(code_seen('S') && !code_value_bool());
  5229. }
  5230. #if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  5231. /**
  5232. * M540: Set whether SD card print should abort on endstop hit (M540 S<0|1>)
  5233. */
  5234. inline void gcode_M540() {
  5235. if (code_seen('S')) stepper.abort_on_endstop_hit = code_value_bool();
  5236. }
  5237. #endif // ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  5238. #if HAS_BED_PROBE
  5239. inline void gcode_M851() {
  5240. SERIAL_ECHO_START;
  5241. SERIAL_ECHOPGM(MSG_ZPROBE_ZOFFSET);
  5242. SERIAL_CHAR(' ');
  5243. if (code_seen('Z')) {
  5244. float value = code_value_axis_units(Z_AXIS);
  5245. if (Z_PROBE_OFFSET_RANGE_MIN <= value && value <= Z_PROBE_OFFSET_RANGE_MAX) {
  5246. zprobe_zoffset = value;
  5247. SERIAL_ECHO(zprobe_zoffset);
  5248. }
  5249. else {
  5250. SERIAL_ECHOPGM(MSG_Z_MIN);
  5251. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
  5252. SERIAL_ECHOPGM(MSG_Z_MAX);
  5253. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
  5254. }
  5255. }
  5256. else {
  5257. SERIAL_ECHOPAIR(": ", zprobe_zoffset);
  5258. }
  5259. SERIAL_EOL;
  5260. }
  5261. #endif // HAS_BED_PROBE
  5262. #if ENABLED(FILAMENTCHANGEENABLE)
  5263. /**
  5264. * M600: Pause for filament change
  5265. *
  5266. * E[distance] - Retract the filament this far (negative value)
  5267. * Z[distance] - Move the Z axis by this distance
  5268. * X[position] - Move to this X position, with Y
  5269. * Y[position] - Move to this Y position, with X
  5270. * L[distance] - Retract distance for removal (manual reload)
  5271. *
  5272. * Default values are used for omitted arguments.
  5273. *
  5274. */
  5275. inline void gcode_M600() {
  5276. if (thermalManager.tooColdToExtrude(active_extruder)) {
  5277. SERIAL_ERROR_START;
  5278. SERIAL_ERRORLNPGM(MSG_TOO_COLD_FOR_M600);
  5279. return;
  5280. }
  5281. float lastpos[NUM_AXIS];
  5282. #if ENABLED(DELTA)
  5283. float fr60 = feedrate / 60;
  5284. #endif
  5285. for (int i = 0; i < NUM_AXIS; i++)
  5286. lastpos[i] = destination[i] = current_position[i];
  5287. #if ENABLED(DELTA)
  5288. #define RUNPLAN calculate_delta(destination); \
  5289. planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], destination[E_AXIS], fr60, active_extruder);
  5290. #else
  5291. #define RUNPLAN line_to_destination();
  5292. #endif
  5293. //retract by E
  5294. if (code_seen('E')) destination[E_AXIS] += code_value_axis_units(E_AXIS);
  5295. #ifdef FILAMENTCHANGE_FIRSTRETRACT
  5296. else destination[E_AXIS] += FILAMENTCHANGE_FIRSTRETRACT;
  5297. #endif
  5298. RUNPLAN;
  5299. //lift Z
  5300. if (code_seen('Z')) destination[Z_AXIS] += code_value_axis_units(Z_AXIS);
  5301. #ifdef FILAMENTCHANGE_ZADD
  5302. else destination[Z_AXIS] += FILAMENTCHANGE_ZADD;
  5303. #endif
  5304. RUNPLAN;
  5305. //move xy
  5306. if (code_seen('X')) destination[X_AXIS] = code_value_axis_units(X_AXIS);
  5307. #ifdef FILAMENTCHANGE_XPOS
  5308. else destination[X_AXIS] = FILAMENTCHANGE_XPOS;
  5309. #endif
  5310. if (code_seen('Y')) destination[Y_AXIS] = code_value_axis_units(Y_AXIS);
  5311. #ifdef FILAMENTCHANGE_YPOS
  5312. else destination[Y_AXIS] = FILAMENTCHANGE_YPOS;
  5313. #endif
  5314. RUNPLAN;
  5315. if (code_seen('L')) destination[E_AXIS] += code_value_axis_units(E_AXIS);
  5316. #ifdef FILAMENTCHANGE_FINALRETRACT
  5317. else destination[E_AXIS] += FILAMENTCHANGE_FINALRETRACT;
  5318. #endif
  5319. RUNPLAN;
  5320. //finish moves
  5321. stepper.synchronize();
  5322. //disable extruder steppers so filament can be removed
  5323. disable_e0();
  5324. disable_e1();
  5325. disable_e2();
  5326. disable_e3();
  5327. delay(100);
  5328. LCD_ALERTMESSAGEPGM(MSG_FILAMENTCHANGE);
  5329. #if DISABLED(AUTO_FILAMENT_CHANGE)
  5330. millis_t next_tick = 0;
  5331. #endif
  5332. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5333. while (!lcd_clicked()) {
  5334. #if DISABLED(AUTO_FILAMENT_CHANGE)
  5335. millis_t ms = millis();
  5336. if (ELAPSED(ms, next_tick)) {
  5337. lcd_quick_feedback();
  5338. next_tick = ms + 2500UL; // feedback every 2.5s while waiting
  5339. }
  5340. idle(true);
  5341. #else
  5342. current_position[E_AXIS] += AUTO_FILAMENT_CHANGE_LENGTH;
  5343. destination[E_AXIS] = current_position[E_AXIS];
  5344. line_to_destination(AUTO_FILAMENT_CHANGE_FEEDRATE);
  5345. stepper.synchronize();
  5346. #endif
  5347. } // while(!lcd_clicked)
  5348. KEEPALIVE_STATE(IN_HANDLER);
  5349. lcd_quick_feedback(); // click sound feedback
  5350. #if ENABLED(AUTO_FILAMENT_CHANGE)
  5351. current_position[E_AXIS] = 0;
  5352. stepper.synchronize();
  5353. #endif
  5354. //return to normal
  5355. if (code_seen('L')) destination[E_AXIS] -= code_value_axis_units(E_AXIS);
  5356. #ifdef FILAMENTCHANGE_FINALRETRACT
  5357. else destination[E_AXIS] -= FILAMENTCHANGE_FINALRETRACT;
  5358. #endif
  5359. current_position[E_AXIS] = destination[E_AXIS]; //the long retract of L is compensated by manual filament feeding
  5360. sync_plan_position_e();
  5361. RUNPLAN; //should do nothing
  5362. lcd_reset_alert_level();
  5363. #if ENABLED(DELTA)
  5364. // Move XYZ to starting position, then E
  5365. calculate_delta(lastpos);
  5366. planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], destination[E_AXIS], fr60, active_extruder);
  5367. planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], lastpos[E_AXIS], fr60, active_extruder);
  5368. #else
  5369. // Move XY to starting position, then Z, then E
  5370. destination[X_AXIS] = lastpos[X_AXIS];
  5371. destination[Y_AXIS] = lastpos[Y_AXIS];
  5372. line_to_destination();
  5373. destination[Z_AXIS] = lastpos[Z_AXIS];
  5374. line_to_destination();
  5375. destination[E_AXIS] = lastpos[E_AXIS];
  5376. line_to_destination();
  5377. #endif
  5378. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  5379. filament_ran_out = false;
  5380. #endif
  5381. }
  5382. #endif // FILAMENTCHANGEENABLE
  5383. #if ENABLED(DUAL_X_CARRIAGE)
  5384. /**
  5385. * M605: Set dual x-carriage movement mode
  5386. *
  5387. * M605 S0: Full control mode. The slicer has full control over x-carriage movement
  5388. * M605 S1: Auto-park mode. The inactive head will auto park/unpark without slicer involvement
  5389. * M605 S2 [Xnnn] [Rmmm]: Duplication mode. The second extruder will duplicate the first with nnn
  5390. * millimeters x-offset and an optional differential hotend temperature of
  5391. * mmm degrees. E.g., with "M605 S2 X100 R2" the second extruder will duplicate
  5392. * the first with a spacing of 100mm in the x direction and 2 degrees hotter.
  5393. *
  5394. * Note: the X axis should be homed after changing dual x-carriage mode.
  5395. */
  5396. inline void gcode_M605() {
  5397. stepper.synchronize();
  5398. if (code_seen('S')) dual_x_carriage_mode = code_value_byte();
  5399. switch (dual_x_carriage_mode) {
  5400. case DXC_DUPLICATION_MODE:
  5401. if (code_seen('X')) duplicate_extruder_x_offset = max(code_value_axis_units(X_AXIS), X2_MIN_POS - x_home_pos(0));
  5402. if (code_seen('R')) duplicate_extruder_temp_offset = code_value_temp_diff();
  5403. SERIAL_ECHO_START;
  5404. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  5405. SERIAL_CHAR(' ');
  5406. SERIAL_ECHO(hotend_offset[X_AXIS][0]);
  5407. SERIAL_CHAR(',');
  5408. SERIAL_ECHO(hotend_offset[Y_AXIS][0]);
  5409. SERIAL_CHAR(' ');
  5410. SERIAL_ECHO(duplicate_extruder_x_offset);
  5411. SERIAL_CHAR(',');
  5412. SERIAL_ECHOLN(hotend_offset[Y_AXIS][1]);
  5413. break;
  5414. case DXC_FULL_CONTROL_MODE:
  5415. case DXC_AUTO_PARK_MODE:
  5416. break;
  5417. default:
  5418. dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  5419. break;
  5420. }
  5421. active_extruder_parked = false;
  5422. extruder_duplication_enabled = false;
  5423. delayed_move_time = 0;
  5424. }
  5425. #endif // DUAL_X_CARRIAGE
  5426. #if ENABLED(LIN_ADVANCE)
  5427. /**
  5428. * M905: Set advance factor
  5429. */
  5430. inline void gcode_M905() {
  5431. stepper.synchronize();
  5432. stepper.advance_M905(code_seen('K') ? code_value_float() : -1.0);
  5433. }
  5434. #endif
  5435. /**
  5436. * M907: Set digital trimpot motor current using axis codes X, Y, Z, E, B, S
  5437. */
  5438. inline void gcode_M907() {
  5439. #if HAS_DIGIPOTSS
  5440. for (int i = 0; i < NUM_AXIS; i++)
  5441. if (code_seen(axis_codes[i])) stepper.digipot_current(i, code_value_int());
  5442. if (code_seen('B')) stepper.digipot_current(4, code_value_int());
  5443. if (code_seen('S')) for (int i = 0; i <= 4; i++) stepper.digipot_current(i, code_value_int());
  5444. #endif
  5445. #if PIN_EXISTS(MOTOR_CURRENT_PWM_XY)
  5446. if (code_seen('X')) stepper.digipot_current(0, code_value_int());
  5447. #endif
  5448. #if PIN_EXISTS(MOTOR_CURRENT_PWM_Z)
  5449. if (code_seen('Z')) stepper.digipot_current(1, code_value_int());
  5450. #endif
  5451. #if PIN_EXISTS(MOTOR_CURRENT_PWM_E)
  5452. if (code_seen('E')) stepper.digipot_current(2, code_value_int());
  5453. #endif
  5454. #if ENABLED(DIGIPOT_I2C)
  5455. // this one uses actual amps in floating point
  5456. for (int i = 0; i < NUM_AXIS; i++) if (code_seen(axis_codes[i])) digipot_i2c_set_current(i, code_value_float());
  5457. // for each additional extruder (named B,C,D,E..., channels 4,5,6,7...)
  5458. for (int i = NUM_AXIS; i < DIGIPOT_I2C_NUM_CHANNELS; i++) if (code_seen('B' + i - (NUM_AXIS))) digipot_i2c_set_current(i, code_value_float());
  5459. #endif
  5460. #if ENABLED(DAC_STEPPER_CURRENT)
  5461. if (code_seen('S')) {
  5462. float dac_percent = code_value_float();
  5463. for (uint8_t i = 0; i <= 4; i++) dac_current_percent(i, dac_percent);
  5464. }
  5465. for (uint8_t i = 0; i < NUM_AXIS; i++) if (code_seen(axis_codes[i])) dac_current_percent(i, code_value_float());
  5466. #endif
  5467. }
  5468. #if HAS_DIGIPOTSS || ENABLED(DAC_STEPPER_CURRENT)
  5469. /**
  5470. * M908: Control digital trimpot directly (M908 P<pin> S<current>)
  5471. */
  5472. inline void gcode_M908() {
  5473. #if HAS_DIGIPOTSS
  5474. stepper.digitalPotWrite(
  5475. code_seen('P') ? code_value_int() : 0,
  5476. code_seen('S') ? code_value_int() : 0
  5477. );
  5478. #endif
  5479. #ifdef DAC_STEPPER_CURRENT
  5480. dac_current_raw(
  5481. code_seen('P') ? code_value_byte() : -1,
  5482. code_seen('S') ? code_value_ushort() : 0
  5483. );
  5484. #endif
  5485. }
  5486. #if ENABLED(DAC_STEPPER_CURRENT) // As with Printrbot RevF
  5487. inline void gcode_M909() { dac_print_values(); }
  5488. inline void gcode_M910() { dac_commit_eeprom(); }
  5489. #endif
  5490. #endif // HAS_DIGIPOTSS || DAC_STEPPER_CURRENT
  5491. #if HAS_MICROSTEPS
  5492. // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  5493. inline void gcode_M350() {
  5494. if (code_seen('S')) for (int i = 0; i <= 4; i++) stepper.microstep_mode(i, code_value_byte());
  5495. for (int i = 0; i < NUM_AXIS; i++) if (code_seen(axis_codes[i])) stepper.microstep_mode(i, code_value_byte());
  5496. if (code_seen('B')) stepper.microstep_mode(4, code_value_byte());
  5497. stepper.microstep_readings();
  5498. }
  5499. /**
  5500. * M351: Toggle MS1 MS2 pins directly with axis codes X Y Z E B
  5501. * S# determines MS1 or MS2, X# sets the pin high/low.
  5502. */
  5503. inline void gcode_M351() {
  5504. if (code_seen('S')) switch (code_value_byte()) {
  5505. case 1:
  5506. for (int i = 0; i < NUM_AXIS; i++) if (code_seen(axis_codes[i])) stepper.microstep_ms(i, code_value_byte(), -1);
  5507. if (code_seen('B')) stepper.microstep_ms(4, code_value_byte(), -1);
  5508. break;
  5509. case 2:
  5510. for (int i = 0; i < NUM_AXIS; i++) if (code_seen(axis_codes[i])) stepper.microstep_ms(i, -1, code_value_byte());
  5511. if (code_seen('B')) stepper.microstep_ms(4, -1, code_value_byte());
  5512. break;
  5513. }
  5514. stepper.microstep_readings();
  5515. }
  5516. #endif // HAS_MICROSTEPS
  5517. /**
  5518. * M999: Restart after being stopped
  5519. *
  5520. * Default behaviour is to flush the serial buffer and request
  5521. * a resend to the host starting on the last N line received.
  5522. *
  5523. * Sending "M999 S1" will resume printing without flushing the
  5524. * existing command buffer.
  5525. *
  5526. */
  5527. inline void gcode_M999() {
  5528. Running = true;
  5529. lcd_reset_alert_level();
  5530. if (code_seen('S') && code_value_bool()) return;
  5531. // gcode_LastN = Stopped_gcode_LastN;
  5532. FlushSerialRequestResend();
  5533. }
  5534. /**
  5535. * T0-T3: Switch tool, usually switching extruders
  5536. *
  5537. * F[mm/min] Set the movement feedrate
  5538. * S1 Don't move the tool in XY after change
  5539. */
  5540. inline void gcode_T(uint8_t tmp_extruder) {
  5541. if (tmp_extruder >= EXTRUDERS) {
  5542. SERIAL_ECHO_START;
  5543. SERIAL_CHAR('T');
  5544. SERIAL_PROTOCOL_F(tmp_extruder, DEC);
  5545. SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
  5546. return;
  5547. }
  5548. #if HOTENDS > 1
  5549. float stored_feedrate = feedrate;
  5550. if (code_seen('F')) {
  5551. float next_feedrate = code_value_axis_units(X_AXIS);
  5552. if (next_feedrate > 0.0) stored_feedrate = feedrate = next_feedrate;
  5553. }
  5554. else {
  5555. feedrate =
  5556. #ifdef XY_TRAVEL_SPEED
  5557. XY_TRAVEL_SPEED
  5558. #else
  5559. min(planner.max_feedrate[X_AXIS], planner.max_feedrate[Y_AXIS]) * 60
  5560. #endif
  5561. ;
  5562. }
  5563. if (tmp_extruder != active_extruder) {
  5564. bool no_move = code_seen('S') && code_value_bool();
  5565. // Save current position to return to after applying extruder offset
  5566. if (!no_move) set_destination_to_current();
  5567. #if ENABLED(DUAL_X_CARRIAGE)
  5568. if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE && IsRunning() &&
  5569. (delayed_move_time || current_position[X_AXIS] != x_home_pos(active_extruder))) {
  5570. // Park old head: 1) raise 2) move to park position 3) lower
  5571. planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
  5572. current_position[E_AXIS], planner.max_feedrate[Z_AXIS], active_extruder);
  5573. planner.buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
  5574. current_position[E_AXIS], planner.max_feedrate[X_AXIS], active_extruder);
  5575. planner.buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS],
  5576. current_position[E_AXIS], planner.max_feedrate[Z_AXIS], active_extruder);
  5577. stepper.synchronize();
  5578. }
  5579. // apply Y & Z extruder offset (x offset is already used in determining home pos)
  5580. current_position[Y_AXIS] -= hotend_offset[Y_AXIS][active_extruder] - hotend_offset[Y_AXIS][tmp_extruder];
  5581. current_position[Z_AXIS] -= hotend_offset[Z_AXIS][active_extruder] - hotend_offset[Z_AXIS][tmp_extruder];
  5582. active_extruder = tmp_extruder;
  5583. // This function resets the max/min values - the current position may be overwritten below.
  5584. set_axis_is_at_home(X_AXIS);
  5585. if (dual_x_carriage_mode == DXC_FULL_CONTROL_MODE) {
  5586. current_position[X_AXIS] = inactive_extruder_x_pos;
  5587. inactive_extruder_x_pos = destination[X_AXIS];
  5588. }
  5589. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE) {
  5590. active_extruder_parked = (active_extruder == 0); // this triggers the second extruder to move into the duplication position
  5591. if (active_extruder_parked)
  5592. current_position[X_AXIS] = inactive_extruder_x_pos;
  5593. else
  5594. current_position[X_AXIS] = destination[X_AXIS] + duplicate_extruder_x_offset;
  5595. inactive_extruder_x_pos = destination[X_AXIS];
  5596. extruder_duplication_enabled = false;
  5597. }
  5598. else {
  5599. // record raised toolhead position for use by unpark
  5600. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  5601. raised_parked_position[Z_AXIS] += TOOLCHANGE_UNPARK_ZLIFT;
  5602. active_extruder_parked = true;
  5603. delayed_move_time = 0;
  5604. }
  5605. // No extra case for AUTO_BED_LEVELING_FEATURE in DUAL_X_CARRIAGE. Does that mean they don't work together?
  5606. #else // !DUAL_X_CARRIAGE
  5607. //
  5608. // Set current_position to the position of the new nozzle.
  5609. // Offsets are based on linear distance, so we need to get
  5610. // the resulting position in coordinate space.
  5611. //
  5612. // - With grid or 3-point leveling, offset XYZ by a tilted vector
  5613. // - With mesh leveling, update Z for the new position
  5614. // - Otherwise, just use the raw linear distance
  5615. //
  5616. // Software endstops are altered here too. Consider a case where:
  5617. // E0 at X=0 ... E1 at X=10
  5618. // When we switch to E1 now X=10, but E1 can't move left.
  5619. // To express this we apply the change in XY to the software endstops.
  5620. // E1 can move farther right than E0, so the right limit is extended.
  5621. //
  5622. // Note that we don't adjust the Z software endstops. Why not?
  5623. // Consider a case where Z=0 (here) and switching to E1 makes Z=1
  5624. // because the bed is 1mm lower at the new position. As long as
  5625. // the first nozzle is out of the way, the carriage should be
  5626. // allowed to move 1mm lower. This technically "breaks" the
  5627. // Z software endstop. But this is technically correct (and
  5628. // there is no viable alternative).
  5629. //
  5630. float xydiff[2] = {
  5631. hotend_offset[X_AXIS][tmp_extruder] - hotend_offset[X_AXIS][active_extruder],
  5632. hotend_offset[Y_AXIS][tmp_extruder] - hotend_offset[Y_AXIS][active_extruder]
  5633. };
  5634. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  5635. // Offset extruder, make sure to apply the bed level rotation matrix
  5636. vector_3 tmp_offset_vec = vector_3(hotend_offset[X_AXIS][tmp_extruder],
  5637. hotend_offset[Y_AXIS][tmp_extruder],
  5638. 0),
  5639. act_offset_vec = vector_3(hotend_offset[X_AXIS][active_extruder],
  5640. hotend_offset[Y_AXIS][active_extruder],
  5641. 0),
  5642. offset_vec = tmp_offset_vec - act_offset_vec;
  5643. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5644. if (DEBUGGING(LEVELING)) {
  5645. SERIAL_ECHOLNPGM(">>> gcode_T");
  5646. tmp_offset_vec.debug("tmp_offset_vec");
  5647. act_offset_vec.debug("act_offset_vec");
  5648. offset_vec.debug("offset_vec (BEFORE)");
  5649. DEBUG_POS("BEFORE rotation", current_position);
  5650. }
  5651. #endif
  5652. offset_vec.apply_rotation(planner.bed_level_matrix.transpose(planner.bed_level_matrix));
  5653. // Adjust the current position
  5654. current_position[X_AXIS] += offset_vec.x;
  5655. current_position[Y_AXIS] += offset_vec.y;
  5656. current_position[Z_AXIS] += offset_vec.z;
  5657. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5658. if (DEBUGGING(LEVELING)) {
  5659. offset_vec.debug("offset_vec (AFTER)");
  5660. DEBUG_POS("AFTER rotation", current_position);
  5661. SERIAL_ECHOLNPGM("<<< gcode_T");
  5662. }
  5663. #endif
  5664. #elif ENABLED(MESH_BED_LEVELING)
  5665. if (mbl.active()) {
  5666. float xpos = current_position[X_AXIS] - home_offset[X_AXIS],
  5667. ypos = current_position[Y_AXIS] - home_offset[Y_AXIS];
  5668. current_position[Z_AXIS] += mbl.get_z(xpos + xydiff[X_AXIS], ypos + xydiff[Y_AXIS]) - mbl.get_z(xpos, ypos);
  5669. }
  5670. #else // no bed leveling
  5671. // The newly-selected extruder XY is actually at...
  5672. current_position[X_AXIS] += xydiff[X_AXIS];
  5673. current_position[Y_AXIS] += xydiff[Y_AXIS];
  5674. #endif // no bed leveling
  5675. for (uint8_t i = X_AXIS; i <= Y_AXIS; i++) {
  5676. position_shift[i] += xydiff[i];
  5677. update_software_endstops((AxisEnum)i);
  5678. }
  5679. // Set the new active extruder
  5680. active_extruder = tmp_extruder;
  5681. #endif // !DUAL_X_CARRIAGE
  5682. // Tell the planner the new "current position"
  5683. #if ENABLED(DELTA)
  5684. sync_plan_position_delta();
  5685. #else
  5686. sync_plan_position();
  5687. #endif
  5688. // Move to the "old position" (move the extruder into place)
  5689. if (!no_move && IsRunning()) prepare_move_to_destination();
  5690. } // (tmp_extruder != active_extruder)
  5691. #if ENABLED(EXT_SOLENOID)
  5692. stepper.synchronize();
  5693. disable_all_solenoids();
  5694. enable_solenoid_on_active_extruder();
  5695. #endif // EXT_SOLENOID
  5696. feedrate = stored_feedrate;
  5697. #else // !HOTENDS > 1
  5698. // Set the new active extruder
  5699. active_extruder = tmp_extruder;
  5700. #endif
  5701. SERIAL_ECHO_START;
  5702. SERIAL_ECHO(MSG_ACTIVE_EXTRUDER);
  5703. SERIAL_PROTOCOLLN((int)active_extruder);
  5704. }
  5705. /**
  5706. * Process a single command and dispatch it to its handler
  5707. * This is called from the main loop()
  5708. */
  5709. void process_next_command() {
  5710. current_command = command_queue[cmd_queue_index_r];
  5711. if (DEBUGGING(ECHO)) {
  5712. SERIAL_ECHO_START;
  5713. SERIAL_ECHOLN(current_command);
  5714. }
  5715. // Sanitize the current command:
  5716. // - Skip leading spaces
  5717. // - Bypass N[-0-9][0-9]*[ ]*
  5718. // - Overwrite * with nul to mark the end
  5719. while (*current_command == ' ') ++current_command;
  5720. if (*current_command == 'N' && NUMERIC_SIGNED(current_command[1])) {
  5721. current_command += 2; // skip N[-0-9]
  5722. while (NUMERIC(*current_command)) ++current_command; // skip [0-9]*
  5723. while (*current_command == ' ') ++current_command; // skip [ ]*
  5724. }
  5725. char* starpos = strchr(current_command, '*'); // * should always be the last parameter
  5726. if (starpos) while (*starpos == ' ' || *starpos == '*') *starpos-- = '\0'; // nullify '*' and ' '
  5727. char *cmd_ptr = current_command;
  5728. // Get the command code, which must be G, M, or T
  5729. char command_code = *cmd_ptr++;
  5730. // Skip spaces to get the numeric part
  5731. while (*cmd_ptr == ' ') cmd_ptr++;
  5732. uint16_t codenum = 0; // define ahead of goto
  5733. // Bail early if there's no code
  5734. bool code_is_good = NUMERIC(*cmd_ptr);
  5735. if (!code_is_good) goto ExitUnknownCommand;
  5736. // Get and skip the code number
  5737. do {
  5738. codenum = (codenum * 10) + (*cmd_ptr - '0');
  5739. cmd_ptr++;
  5740. } while (NUMERIC(*cmd_ptr));
  5741. // Skip all spaces to get to the first argument, or nul
  5742. while (*cmd_ptr == ' ') cmd_ptr++;
  5743. // The command's arguments (if any) start here, for sure!
  5744. current_command_args = cmd_ptr;
  5745. KEEPALIVE_STATE(IN_HANDLER);
  5746. // Handle a known G, M, or T
  5747. switch (command_code) {
  5748. case 'G': switch (codenum) {
  5749. // G0, G1
  5750. case 0:
  5751. case 1:
  5752. gcode_G0_G1();
  5753. break;
  5754. // G2, G3
  5755. #if ENABLED(ARC_SUPPORT) && DISABLED(SCARA)
  5756. case 2: // G2 - CW ARC
  5757. case 3: // G3 - CCW ARC
  5758. gcode_G2_G3(codenum == 2);
  5759. break;
  5760. #endif
  5761. // G4 Dwell
  5762. case 4:
  5763. gcode_G4();
  5764. break;
  5765. #if ENABLED(BEZIER_CURVE_SUPPORT)
  5766. // G5
  5767. case 5: // G5 - Cubic B_spline
  5768. gcode_G5();
  5769. break;
  5770. #endif // BEZIER_CURVE_SUPPORT
  5771. #if ENABLED(FWRETRACT)
  5772. case 10: // G10: retract
  5773. case 11: // G11: retract_recover
  5774. gcode_G10_G11(codenum == 10);
  5775. break;
  5776. #endif // FWRETRACT
  5777. #if ENABLED(INCH_MODE_SUPPORT)
  5778. case 20: //G20: Inch Mode
  5779. gcode_G20();
  5780. break;
  5781. case 21: //G21: MM Mode
  5782. gcode_G21();
  5783. break;
  5784. #endif
  5785. case 28: // G28: Home all axes, one at a time
  5786. gcode_G28();
  5787. break;
  5788. #if ENABLED(AUTO_BED_LEVELING_FEATURE) || ENABLED(MESH_BED_LEVELING)
  5789. case 29: // G29 Detailed Z probe, probes the bed at 3 or more points.
  5790. gcode_G29();
  5791. break;
  5792. #endif
  5793. #if HAS_BED_PROBE
  5794. case 30: // G30 Single Z probe
  5795. gcode_G30();
  5796. break;
  5797. #if ENABLED(Z_PROBE_SLED)
  5798. case 31: // G31: dock the sled
  5799. stow_z_probe();
  5800. break;
  5801. case 32: // G32: undock the sled
  5802. deploy_z_probe();
  5803. break;
  5804. #endif // Z_PROBE_SLED
  5805. #endif // HAS_BED_PROBE
  5806. case 90: // G90
  5807. relative_mode = false;
  5808. break;
  5809. case 91: // G91
  5810. relative_mode = true;
  5811. break;
  5812. case 92: // G92
  5813. gcode_G92();
  5814. break;
  5815. }
  5816. break;
  5817. case 'M': switch (codenum) {
  5818. #if ENABLED(ULTIPANEL)
  5819. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  5820. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  5821. gcode_M0_M1();
  5822. break;
  5823. #endif // ULTIPANEL
  5824. case 17:
  5825. gcode_M17();
  5826. break;
  5827. #if ENABLED(SDSUPPORT)
  5828. case 20: // M20 - list SD card
  5829. gcode_M20(); break;
  5830. case 21: // M21 - init SD card
  5831. gcode_M21(); break;
  5832. case 22: //M22 - release SD card
  5833. gcode_M22(); break;
  5834. case 23: //M23 - Select file
  5835. gcode_M23(); break;
  5836. case 24: //M24 - Start SD print
  5837. gcode_M24(); break;
  5838. case 25: //M25 - Pause SD print
  5839. gcode_M25(); break;
  5840. case 26: //M26 - Set SD index
  5841. gcode_M26(); break;
  5842. case 27: //M27 - Get SD status
  5843. gcode_M27(); break;
  5844. case 28: //M28 - Start SD write
  5845. gcode_M28(); break;
  5846. case 29: //M29 - Stop SD write
  5847. gcode_M29(); break;
  5848. case 30: //M30 <filename> Delete File
  5849. gcode_M30(); break;
  5850. case 32: //M32 - Select file and start SD print
  5851. gcode_M32(); break;
  5852. #if ENABLED(LONG_FILENAME_HOST_SUPPORT)
  5853. case 33: //M33 - Get the long full path to a file or folder
  5854. gcode_M33(); break;
  5855. #endif // LONG_FILENAME_HOST_SUPPORT
  5856. case 928: //M928 - Start SD write
  5857. gcode_M928(); break;
  5858. #endif //SDSUPPORT
  5859. case 31: //M31 take time since the start of the SD print or an M109 command
  5860. gcode_M31();
  5861. break;
  5862. case 42: //M42 -Change pin status via gcode
  5863. gcode_M42();
  5864. break;
  5865. #if ENABLED(AUTO_BED_LEVELING_FEATURE) && ENABLED(Z_MIN_PROBE_REPEATABILITY_TEST)
  5866. case 48: // M48 Z probe repeatability
  5867. gcode_M48();
  5868. break;
  5869. #endif // AUTO_BED_LEVELING_FEATURE && Z_MIN_PROBE_REPEATABILITY_TEST
  5870. case 75: // Start print timer
  5871. gcode_M75();
  5872. break;
  5873. case 76: // Pause print timer
  5874. gcode_M76();
  5875. break;
  5876. case 77: // Stop print timer
  5877. gcode_M77();
  5878. break;
  5879. #if ENABLED(PRINTCOUNTER)
  5880. case 78: // Show print statistics
  5881. gcode_M78();
  5882. break;
  5883. #endif
  5884. #if ENABLED(M100_FREE_MEMORY_WATCHER)
  5885. case 100:
  5886. gcode_M100();
  5887. break;
  5888. #endif
  5889. case 104: // M104
  5890. gcode_M104();
  5891. break;
  5892. case 110: // M110: Set Current Line Number
  5893. gcode_M110();
  5894. break;
  5895. case 111: // M111: Set debug level
  5896. gcode_M111();
  5897. break;
  5898. case 112: // M112: Emergency Stop
  5899. gcode_M112();
  5900. break;
  5901. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  5902. case 113: // M113: Set Host Keepalive interval
  5903. gcode_M113();
  5904. break;
  5905. #endif
  5906. case 140: // M140: Set bed temp
  5907. gcode_M140();
  5908. break;
  5909. case 105: // M105: Read current temperature
  5910. gcode_M105();
  5911. KEEPALIVE_STATE(NOT_BUSY);
  5912. return; // "ok" already printed
  5913. case 109: // M109: Wait for temperature
  5914. gcode_M109();
  5915. break;
  5916. #if HAS_TEMP_BED
  5917. case 190: // M190: Wait for bed heater to reach target
  5918. gcode_M190();
  5919. break;
  5920. #endif // HAS_TEMP_BED
  5921. #if FAN_COUNT > 0
  5922. case 106: // M106: Fan On
  5923. gcode_M106();
  5924. break;
  5925. case 107: // M107: Fan Off
  5926. gcode_M107();
  5927. break;
  5928. #endif // FAN_COUNT > 0
  5929. #if ENABLED(BARICUDA)
  5930. // PWM for HEATER_1_PIN
  5931. #if HAS_HEATER_1
  5932. case 126: // M126: valve open
  5933. gcode_M126();
  5934. break;
  5935. case 127: // M127: valve closed
  5936. gcode_M127();
  5937. break;
  5938. #endif // HAS_HEATER_1
  5939. // PWM for HEATER_2_PIN
  5940. #if HAS_HEATER_2
  5941. case 128: // M128: valve open
  5942. gcode_M128();
  5943. break;
  5944. case 129: // M129: valve closed
  5945. gcode_M129();
  5946. break;
  5947. #endif // HAS_HEATER_2
  5948. #endif // BARICUDA
  5949. #if HAS_POWER_SWITCH
  5950. case 80: // M80: Turn on Power Supply
  5951. gcode_M80();
  5952. break;
  5953. #endif // HAS_POWER_SWITCH
  5954. case 81: // M81: Turn off Power, including Power Supply, if possible
  5955. gcode_M81();
  5956. break;
  5957. case 82:
  5958. gcode_M82();
  5959. break;
  5960. case 83:
  5961. gcode_M83();
  5962. break;
  5963. case 18: // (for compatibility)
  5964. case 84: // M84
  5965. gcode_M18_M84();
  5966. break;
  5967. case 85: // M85
  5968. gcode_M85();
  5969. break;
  5970. case 92: // M92: Set the steps-per-unit for one or more axes
  5971. gcode_M92();
  5972. break;
  5973. case 115: // M115: Report capabilities
  5974. gcode_M115();
  5975. break;
  5976. case 117: // M117: Set LCD message text, if possible
  5977. gcode_M117();
  5978. break;
  5979. case 114: // M114: Report current position
  5980. gcode_M114();
  5981. break;
  5982. case 120: // M120: Enable endstops
  5983. gcode_M120();
  5984. break;
  5985. case 121: // M121: Disable endstops
  5986. gcode_M121();
  5987. break;
  5988. case 119: // M119: Report endstop states
  5989. gcode_M119();
  5990. break;
  5991. #if ENABLED(ULTIPANEL)
  5992. case 145: // M145: Set material heatup parameters
  5993. gcode_M145();
  5994. break;
  5995. #endif
  5996. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  5997. case 149:
  5998. gcode_M149();
  5999. break;
  6000. #endif
  6001. #if ENABLED(BLINKM)
  6002. case 150: // M150
  6003. gcode_M150();
  6004. break;
  6005. #endif //BLINKM
  6006. #if ENABLED(EXPERIMENTAL_I2CBUS)
  6007. case 155:
  6008. gcode_M155();
  6009. break;
  6010. case 156:
  6011. gcode_M156();
  6012. break;
  6013. #endif //EXPERIMENTAL_I2CBUS
  6014. case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  6015. gcode_M200();
  6016. break;
  6017. case 201: // M201
  6018. gcode_M201();
  6019. break;
  6020. #if 0 // Not used for Sprinter/grbl gen6
  6021. case 202: // M202
  6022. gcode_M202();
  6023. break;
  6024. #endif
  6025. case 203: // M203 max feedrate mm/sec
  6026. gcode_M203();
  6027. break;
  6028. case 204: // M204 acclereration S normal moves T filmanent only moves
  6029. gcode_M204();
  6030. break;
  6031. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  6032. gcode_M205();
  6033. break;
  6034. case 206: // M206 additional homing offset
  6035. gcode_M206();
  6036. break;
  6037. #if ENABLED(DELTA)
  6038. case 665: // M665 set delta configurations L<diagonal_rod> R<delta_radius> S<segments_per_sec>
  6039. gcode_M665();
  6040. break;
  6041. #endif
  6042. #if ENABLED(DELTA) || ENABLED(Z_DUAL_ENDSTOPS)
  6043. case 666: // M666 set delta / dual endstop adjustment
  6044. gcode_M666();
  6045. break;
  6046. #endif
  6047. #if ENABLED(FWRETRACT)
  6048. case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
  6049. gcode_M207();
  6050. break;
  6051. case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  6052. gcode_M208();
  6053. break;
  6054. case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  6055. gcode_M209();
  6056. break;
  6057. #endif // FWRETRACT
  6058. #if HOTENDS > 1
  6059. case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  6060. gcode_M218();
  6061. break;
  6062. #endif
  6063. case 220: // M220 S<factor in percent>- set speed factor override percentage
  6064. gcode_M220();
  6065. break;
  6066. case 221: // M221 S<factor in percent>- set extrude factor override percentage
  6067. gcode_M221();
  6068. break;
  6069. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  6070. gcode_M226();
  6071. break;
  6072. #if HAS_SERVOS
  6073. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  6074. gcode_M280();
  6075. break;
  6076. #endif // HAS_SERVOS
  6077. #if HAS_BUZZER
  6078. case 300: // M300 - Play beep tone
  6079. gcode_M300();
  6080. break;
  6081. #endif // HAS_BUZZER
  6082. #if ENABLED(PIDTEMP)
  6083. case 301: // M301
  6084. gcode_M301();
  6085. break;
  6086. #endif // PIDTEMP
  6087. #if ENABLED(PIDTEMPBED)
  6088. case 304: // M304
  6089. gcode_M304();
  6090. break;
  6091. #endif // PIDTEMPBED
  6092. #if defined(CHDK) || HAS_PHOTOGRAPH
  6093. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  6094. gcode_M240();
  6095. break;
  6096. #endif // CHDK || PHOTOGRAPH_PIN
  6097. #if HAS_LCD_CONTRAST
  6098. case 250: // M250 Set LCD contrast value: C<value> (value 0..63)
  6099. gcode_M250();
  6100. break;
  6101. #endif // HAS_LCD_CONTRAST
  6102. #if ENABLED(PREVENT_DANGEROUS_EXTRUDE)
  6103. case 302: // allow cold extrudes, or set the minimum extrude temperature
  6104. gcode_M302();
  6105. break;
  6106. #endif // PREVENT_DANGEROUS_EXTRUDE
  6107. case 303: // M303 PID autotune
  6108. gcode_M303();
  6109. break;
  6110. #if ENABLED(SCARA)
  6111. case 360: // M360 SCARA Theta pos1
  6112. if (gcode_M360()) return;
  6113. break;
  6114. case 361: // M361 SCARA Theta pos2
  6115. if (gcode_M361()) return;
  6116. break;
  6117. case 362: // M362 SCARA Psi pos1
  6118. if (gcode_M362()) return;
  6119. break;
  6120. case 363: // M363 SCARA Psi pos2
  6121. if (gcode_M363()) return;
  6122. break;
  6123. case 364: // M364 SCARA Psi pos3 (90 deg to Theta)
  6124. if (gcode_M364()) return;
  6125. break;
  6126. case 365: // M365 Set SCARA scaling for X Y Z
  6127. gcode_M365();
  6128. break;
  6129. #endif // SCARA
  6130. case 400: // M400 finish all moves
  6131. gcode_M400();
  6132. break;
  6133. #if ENABLED(AUTO_BED_LEVELING_FEATURE) && (HAS_Z_SERVO_ENDSTOP || ENABLED(Z_PROBE_ALLEN_KEY)) && DISABLED(Z_PROBE_SLED)
  6134. case 401:
  6135. gcode_M401();
  6136. break;
  6137. case 402:
  6138. gcode_M402();
  6139. break;
  6140. #endif // AUTO_BED_LEVELING_FEATURE && (HAS_Z_SERVO_ENDSTOP || Z_PROBE_ALLEN_KEY) && !Z_PROBE_SLED
  6141. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  6142. case 404: //M404 Enter the nominal filament width (3mm, 1.75mm ) N<3.0> or display nominal filament width
  6143. gcode_M404();
  6144. break;
  6145. case 405: //M405 Turn on filament sensor for control
  6146. gcode_M405();
  6147. break;
  6148. case 406: //M406 Turn off filament sensor for control
  6149. gcode_M406();
  6150. break;
  6151. case 407: //M407 Display measured filament diameter
  6152. gcode_M407();
  6153. break;
  6154. #endif // ENABLED(FILAMENT_WIDTH_SENSOR)
  6155. case 410: // M410 quickstop - Abort all the planned moves.
  6156. gcode_M410();
  6157. break;
  6158. #if ENABLED(MESH_BED_LEVELING)
  6159. case 420: // M420 Enable/Disable Mesh Bed Leveling
  6160. gcode_M420();
  6161. break;
  6162. case 421: // M421 Set a Mesh Bed Leveling Z coordinate
  6163. gcode_M421();
  6164. break;
  6165. #endif
  6166. case 428: // M428 Apply current_position to home_offset
  6167. gcode_M428();
  6168. break;
  6169. case 500: // M500 Store settings in EEPROM
  6170. gcode_M500();
  6171. break;
  6172. case 501: // M501 Read settings from EEPROM
  6173. gcode_M501();
  6174. break;
  6175. case 502: // M502 Revert to default settings
  6176. gcode_M502();
  6177. break;
  6178. case 503: // M503 print settings currently in memory
  6179. gcode_M503();
  6180. break;
  6181. #if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  6182. case 540:
  6183. gcode_M540();
  6184. break;
  6185. #endif
  6186. #if HAS_BED_PROBE
  6187. case 851:
  6188. gcode_M851();
  6189. break;
  6190. #endif // HAS_BED_PROBE
  6191. #if ENABLED(FILAMENTCHANGEENABLE)
  6192. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  6193. gcode_M600();
  6194. break;
  6195. #endif // FILAMENTCHANGEENABLE
  6196. #if ENABLED(DUAL_X_CARRIAGE)
  6197. case 605:
  6198. gcode_M605();
  6199. break;
  6200. #endif // DUAL_X_CARRIAGE
  6201. #if ENABLED(LIN_ADVANCE)
  6202. case 905: // M905 Set advance factor.
  6203. gcode_M905();
  6204. break;
  6205. #endif
  6206. case 907: // M907 Set digital trimpot motor current using axis codes.
  6207. gcode_M907();
  6208. break;
  6209. #if HAS_DIGIPOTSS || ENABLED(DAC_STEPPER_CURRENT)
  6210. case 908: // M908 Control digital trimpot directly.
  6211. gcode_M908();
  6212. break;
  6213. #if ENABLED(DAC_STEPPER_CURRENT) // As with Printrbot RevF
  6214. case 909: // M909 Print digipot/DAC current value
  6215. gcode_M909();
  6216. break;
  6217. case 910: // M910 Commit digipot/DAC value to external EEPROM
  6218. gcode_M910();
  6219. break;
  6220. #endif
  6221. #endif // HAS_DIGIPOTSS || DAC_STEPPER_CURRENT
  6222. #if HAS_MICROSTEPS
  6223. case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  6224. gcode_M350();
  6225. break;
  6226. case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  6227. gcode_M351();
  6228. break;
  6229. #endif // HAS_MICROSTEPS
  6230. case 999: // M999: Restart after being Stopped
  6231. gcode_M999();
  6232. break;
  6233. }
  6234. break;
  6235. case 'T':
  6236. gcode_T(codenum);
  6237. break;
  6238. default: code_is_good = false;
  6239. }
  6240. KEEPALIVE_STATE(NOT_BUSY);
  6241. ExitUnknownCommand:
  6242. // Still unknown command? Throw an error
  6243. if (!code_is_good) unknown_command_error();
  6244. ok_to_send();
  6245. }
  6246. void FlushSerialRequestResend() {
  6247. //char command_queue[cmd_queue_index_r][100]="Resend:";
  6248. MYSERIAL.flush();
  6249. SERIAL_PROTOCOLPGM(MSG_RESEND);
  6250. SERIAL_PROTOCOLLN(gcode_LastN + 1);
  6251. ok_to_send();
  6252. }
  6253. void ok_to_send() {
  6254. refresh_cmd_timeout();
  6255. if (!send_ok[cmd_queue_index_r]) return;
  6256. SERIAL_PROTOCOLPGM(MSG_OK);
  6257. #if ENABLED(ADVANCED_OK)
  6258. char* p = command_queue[cmd_queue_index_r];
  6259. if (*p == 'N') {
  6260. SERIAL_PROTOCOL(' ');
  6261. SERIAL_ECHO(*p++);
  6262. while (NUMERIC_SIGNED(*p))
  6263. SERIAL_ECHO(*p++);
  6264. }
  6265. SERIAL_PROTOCOLPGM(" P"); SERIAL_PROTOCOL(int(BLOCK_BUFFER_SIZE - planner.movesplanned() - 1));
  6266. SERIAL_PROTOCOLPGM(" B"); SERIAL_PROTOCOL(BUFSIZE - commands_in_queue);
  6267. #endif
  6268. SERIAL_EOL;
  6269. }
  6270. void clamp_to_software_endstops(float target[3]) {
  6271. if (min_software_endstops) {
  6272. NOLESS(target[X_AXIS], sw_endstop_min[X_AXIS]);
  6273. NOLESS(target[Y_AXIS], sw_endstop_min[Y_AXIS]);
  6274. NOLESS(target[Z_AXIS], sw_endstop_min[Z_AXIS]);
  6275. }
  6276. if (max_software_endstops) {
  6277. NOMORE(target[X_AXIS], sw_endstop_max[X_AXIS]);
  6278. NOMORE(target[Y_AXIS], sw_endstop_max[Y_AXIS]);
  6279. NOMORE(target[Z_AXIS], sw_endstop_max[Z_AXIS]);
  6280. }
  6281. }
  6282. #if ENABLED(DELTA)
  6283. void recalc_delta_settings(float radius, float diagonal_rod) {
  6284. delta_tower1_x = -SIN_60 * (radius + DELTA_RADIUS_TRIM_TOWER_1); // front left tower
  6285. delta_tower1_y = -COS_60 * (radius + DELTA_RADIUS_TRIM_TOWER_1);
  6286. delta_tower2_x = SIN_60 * (radius + DELTA_RADIUS_TRIM_TOWER_2); // front right tower
  6287. delta_tower2_y = -COS_60 * (radius + DELTA_RADIUS_TRIM_TOWER_2);
  6288. delta_tower3_x = 0.0; // back middle tower
  6289. delta_tower3_y = (radius + DELTA_RADIUS_TRIM_TOWER_3);
  6290. delta_diagonal_rod_2_tower_1 = sq(diagonal_rod + delta_diagonal_rod_trim_tower_1);
  6291. delta_diagonal_rod_2_tower_2 = sq(diagonal_rod + delta_diagonal_rod_trim_tower_2);
  6292. delta_diagonal_rod_2_tower_3 = sq(diagonal_rod + delta_diagonal_rod_trim_tower_3);
  6293. }
  6294. void calculate_delta(float cartesian[3]) {
  6295. delta[TOWER_1] = sqrt(delta_diagonal_rod_2_tower_1
  6296. - sq(delta_tower1_x - cartesian[X_AXIS])
  6297. - sq(delta_tower1_y - cartesian[Y_AXIS])
  6298. ) + cartesian[Z_AXIS];
  6299. delta[TOWER_2] = sqrt(delta_diagonal_rod_2_tower_2
  6300. - sq(delta_tower2_x - cartesian[X_AXIS])
  6301. - sq(delta_tower2_y - cartesian[Y_AXIS])
  6302. ) + cartesian[Z_AXIS];
  6303. delta[TOWER_3] = sqrt(delta_diagonal_rod_2_tower_3
  6304. - sq(delta_tower3_x - cartesian[X_AXIS])
  6305. - sq(delta_tower3_y - cartesian[Y_AXIS])
  6306. ) + cartesian[Z_AXIS];
  6307. /**
  6308. SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);
  6309. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]);
  6310. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]);
  6311. SERIAL_ECHOPGM("delta a="); SERIAL_ECHO(delta[TOWER_1]);
  6312. SERIAL_ECHOPGM(" b="); SERIAL_ECHO(delta[TOWER_2]);
  6313. SERIAL_ECHOPGM(" c="); SERIAL_ECHOLN(delta[TOWER_3]);
  6314. */
  6315. }
  6316. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  6317. // Adjust print surface height by linear interpolation over the bed_level array.
  6318. void adjust_delta(float cartesian[3]) {
  6319. if (delta_grid_spacing[0] == 0 || delta_grid_spacing[1] == 0) return; // G29 not done!
  6320. int half = (AUTO_BED_LEVELING_GRID_POINTS - 1) / 2;
  6321. float h1 = 0.001 - half, h2 = half - 0.001,
  6322. grid_x = max(h1, min(h2, cartesian[X_AXIS] / delta_grid_spacing[0])),
  6323. grid_y = max(h1, min(h2, cartesian[Y_AXIS] / delta_grid_spacing[1]));
  6324. int floor_x = floor(grid_x), floor_y = floor(grid_y);
  6325. float ratio_x = grid_x - floor_x, ratio_y = grid_y - floor_y,
  6326. z1 = bed_level[floor_x + half][floor_y + half],
  6327. z2 = bed_level[floor_x + half][floor_y + half + 1],
  6328. z3 = bed_level[floor_x + half + 1][floor_y + half],
  6329. z4 = bed_level[floor_x + half + 1][floor_y + half + 1],
  6330. left = (1 - ratio_y) * z1 + ratio_y * z2,
  6331. right = (1 - ratio_y) * z3 + ratio_y * z4,
  6332. offset = (1 - ratio_x) * left + ratio_x * right;
  6333. delta[X_AXIS] += offset;
  6334. delta[Y_AXIS] += offset;
  6335. delta[Z_AXIS] += offset;
  6336. /**
  6337. SERIAL_ECHOPGM("grid_x="); SERIAL_ECHO(grid_x);
  6338. SERIAL_ECHOPGM(" grid_y="); SERIAL_ECHO(grid_y);
  6339. SERIAL_ECHOPGM(" floor_x="); SERIAL_ECHO(floor_x);
  6340. SERIAL_ECHOPGM(" floor_y="); SERIAL_ECHO(floor_y);
  6341. SERIAL_ECHOPGM(" ratio_x="); SERIAL_ECHO(ratio_x);
  6342. SERIAL_ECHOPGM(" ratio_y="); SERIAL_ECHO(ratio_y);
  6343. SERIAL_ECHOPGM(" z1="); SERIAL_ECHO(z1);
  6344. SERIAL_ECHOPGM(" z2="); SERIAL_ECHO(z2);
  6345. SERIAL_ECHOPGM(" z3="); SERIAL_ECHO(z3);
  6346. SERIAL_ECHOPGM(" z4="); SERIAL_ECHO(z4);
  6347. SERIAL_ECHOPGM(" left="); SERIAL_ECHO(left);
  6348. SERIAL_ECHOPGM(" right="); SERIAL_ECHO(right);
  6349. SERIAL_ECHOPGM(" offset="); SERIAL_ECHOLN(offset);
  6350. */
  6351. }
  6352. #endif // AUTO_BED_LEVELING_FEATURE
  6353. #endif // DELTA
  6354. #if ENABLED(MESH_BED_LEVELING)
  6355. // This function is used to split lines on mesh borders so each segment is only part of one mesh area
  6356. void mesh_buffer_line(float x, float y, float z, const float e, float feed_rate, const uint8_t& extruder, uint8_t x_splits = 0xff, uint8_t y_splits = 0xff) {
  6357. if (!mbl.active()) {
  6358. planner.buffer_line(x, y, z, e, feed_rate, extruder);
  6359. set_current_to_destination();
  6360. return;
  6361. }
  6362. int pcx = mbl.cell_index_x(current_position[X_AXIS] - home_offset[X_AXIS]);
  6363. int pcy = mbl.cell_index_y(current_position[Y_AXIS] - home_offset[Y_AXIS]);
  6364. int cx = mbl.cell_index_x(x - home_offset[X_AXIS]);
  6365. int cy = mbl.cell_index_y(y - home_offset[Y_AXIS]);
  6366. NOMORE(pcx, MESH_NUM_X_POINTS - 2);
  6367. NOMORE(pcy, MESH_NUM_Y_POINTS - 2);
  6368. NOMORE(cx, MESH_NUM_X_POINTS - 2);
  6369. NOMORE(cy, MESH_NUM_Y_POINTS - 2);
  6370. if (pcx == cx && pcy == cy) {
  6371. // Start and end on same mesh square
  6372. planner.buffer_line(x, y, z, e, feed_rate, extruder);
  6373. set_current_to_destination();
  6374. return;
  6375. }
  6376. float nx, ny, nz, ne, normalized_dist;
  6377. if (cx > pcx && TEST(x_splits, cx)) {
  6378. nx = mbl.get_probe_x(cx) + home_offset[X_AXIS];
  6379. normalized_dist = (nx - current_position[X_AXIS]) / (x - current_position[X_AXIS]);
  6380. ny = current_position[Y_AXIS] + (y - current_position[Y_AXIS]) * normalized_dist;
  6381. nz = current_position[Z_AXIS] + (z - current_position[Z_AXIS]) * normalized_dist;
  6382. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  6383. CBI(x_splits, cx);
  6384. }
  6385. else if (cx < pcx && TEST(x_splits, pcx)) {
  6386. nx = mbl.get_probe_x(pcx) + home_offset[X_AXIS];
  6387. normalized_dist = (nx - current_position[X_AXIS]) / (x - current_position[X_AXIS]);
  6388. ny = current_position[Y_AXIS] + (y - current_position[Y_AXIS]) * normalized_dist;
  6389. nz = current_position[Z_AXIS] + (z - current_position[Z_AXIS]) * normalized_dist;
  6390. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  6391. CBI(x_splits, pcx);
  6392. }
  6393. else if (cy > pcy && TEST(y_splits, cy)) {
  6394. ny = mbl.get_probe_y(cy) + home_offset[Y_AXIS];
  6395. normalized_dist = (ny - current_position[Y_AXIS]) / (y - current_position[Y_AXIS]);
  6396. nx = current_position[X_AXIS] + (x - current_position[X_AXIS]) * normalized_dist;
  6397. nz = current_position[Z_AXIS] + (z - current_position[Z_AXIS]) * normalized_dist;
  6398. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  6399. CBI(y_splits, cy);
  6400. }
  6401. else if (cy < pcy && TEST(y_splits, pcy)) {
  6402. ny = mbl.get_probe_y(pcy) + home_offset[Y_AXIS];
  6403. normalized_dist = (ny - current_position[Y_AXIS]) / (y - current_position[Y_AXIS]);
  6404. nx = current_position[X_AXIS] + (x - current_position[X_AXIS]) * normalized_dist;
  6405. nz = current_position[Z_AXIS] + (z - current_position[Z_AXIS]) * normalized_dist;
  6406. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  6407. CBI(y_splits, pcy);
  6408. }
  6409. else {
  6410. // Already split on a border
  6411. planner.buffer_line(x, y, z, e, feed_rate, extruder);
  6412. set_current_to_destination();
  6413. return;
  6414. }
  6415. // Do the split and look for more borders
  6416. destination[X_AXIS] = nx;
  6417. destination[Y_AXIS] = ny;
  6418. destination[Z_AXIS] = nz;
  6419. destination[E_AXIS] = ne;
  6420. mesh_buffer_line(nx, ny, nz, ne, feed_rate, extruder, x_splits, y_splits);
  6421. destination[X_AXIS] = x;
  6422. destination[Y_AXIS] = y;
  6423. destination[Z_AXIS] = z;
  6424. destination[E_AXIS] = e;
  6425. mesh_buffer_line(x, y, z, e, feed_rate, extruder, x_splits, y_splits);
  6426. }
  6427. #endif // MESH_BED_LEVELING
  6428. #if ENABLED(DELTA) || ENABLED(SCARA)
  6429. inline bool prepare_delta_move_to(float target[NUM_AXIS]) {
  6430. float difference[NUM_AXIS];
  6431. for (int8_t i = 0; i < NUM_AXIS; i++) difference[i] = target[i] - current_position[i];
  6432. float cartesian_mm = sqrt(sq(difference[X_AXIS]) + sq(difference[Y_AXIS]) + sq(difference[Z_AXIS]));
  6433. if (cartesian_mm < 0.000001) cartesian_mm = abs(difference[E_AXIS]);
  6434. if (cartesian_mm < 0.000001) return false;
  6435. float _feedrate = feedrate * feedrate_multiplier / 6000.0;
  6436. float seconds = cartesian_mm / _feedrate;
  6437. int steps = max(1, int(delta_segments_per_second * seconds));
  6438. float inv_steps = 1.0/steps;
  6439. // SERIAL_ECHOPGM("mm="); SERIAL_ECHO(cartesian_mm);
  6440. // SERIAL_ECHOPGM(" seconds="); SERIAL_ECHO(seconds);
  6441. // SERIAL_ECHOPGM(" steps="); SERIAL_ECHOLN(steps);
  6442. for (int s = 1; s <= steps; s++) {
  6443. float fraction = float(s) * inv_steps;
  6444. for (int8_t i = 0; i < NUM_AXIS; i++)
  6445. target[i] = current_position[i] + difference[i] * fraction;
  6446. calculate_delta(target);
  6447. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  6448. if (!bed_leveling_in_progress) adjust_delta(target);
  6449. #endif
  6450. //DEBUG_POS("prepare_delta_move_to", target);
  6451. //DEBUG_POS("prepare_delta_move_to", delta);
  6452. planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], target[E_AXIS], _feedrate, active_extruder);
  6453. }
  6454. return true;
  6455. }
  6456. #endif // DELTA || SCARA
  6457. #if ENABLED(SCARA)
  6458. inline bool prepare_scara_move_to(float target[NUM_AXIS]) { return prepare_delta_move_to(target); }
  6459. #endif
  6460. #if ENABLED(DUAL_X_CARRIAGE)
  6461. inline bool prepare_move_dual_x_carriage() {
  6462. if (active_extruder_parked) {
  6463. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && active_extruder == 0) {
  6464. // move duplicate extruder into correct duplication position.
  6465. planner.set_position_mm(inactive_extruder_x_pos, current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  6466. planner.buffer_line(current_position[X_AXIS] + duplicate_extruder_x_offset,
  6467. current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], planner.max_feedrate[X_AXIS], 1);
  6468. sync_plan_position();
  6469. stepper.synchronize();
  6470. extruder_duplication_enabled = true;
  6471. active_extruder_parked = false;
  6472. }
  6473. else if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE) { // handle unparking of head
  6474. if (current_position[E_AXIS] == destination[E_AXIS]) {
  6475. // This is a travel move (with no extrusion)
  6476. // Skip it, but keep track of the current position
  6477. // (so it can be used as the start of the next non-travel move)
  6478. if (delayed_move_time != 0xFFFFFFFFUL) {
  6479. set_current_to_destination();
  6480. NOLESS(raised_parked_position[Z_AXIS], destination[Z_AXIS]);
  6481. delayed_move_time = millis();
  6482. return false;
  6483. }
  6484. }
  6485. delayed_move_time = 0;
  6486. // unpark extruder: 1) raise, 2) move into starting XY position, 3) lower
  6487. planner.buffer_line(raised_parked_position[X_AXIS], raised_parked_position[Y_AXIS], raised_parked_position[Z_AXIS], current_position[E_AXIS], planner.max_feedrate[Z_AXIS], active_extruder);
  6488. planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], raised_parked_position[Z_AXIS], current_position[E_AXIS], min(planner.max_feedrate[X_AXIS], planner.max_feedrate[Y_AXIS]), active_extruder);
  6489. planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], planner.max_feedrate[Z_AXIS], active_extruder);
  6490. active_extruder_parked = false;
  6491. }
  6492. }
  6493. return true;
  6494. }
  6495. #endif // DUAL_X_CARRIAGE
  6496. #if DISABLED(DELTA) && DISABLED(SCARA)
  6497. inline bool prepare_cartesian_move_to_destination() {
  6498. // Do not use feedrate_multiplier for E or Z only moves
  6499. if (current_position[X_AXIS] == destination[X_AXIS] && current_position[Y_AXIS] == destination[Y_AXIS]) {
  6500. line_to_destination();
  6501. }
  6502. else {
  6503. #if ENABLED(MESH_BED_LEVELING)
  6504. mesh_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], (feedrate / 60) * (feedrate_multiplier / 100.0), active_extruder);
  6505. return false;
  6506. #else
  6507. line_to_destination(feedrate * feedrate_multiplier / 100.0);
  6508. #endif
  6509. }
  6510. return true;
  6511. }
  6512. #endif // !DELTA && !SCARA
  6513. #if ENABLED(PREVENT_DANGEROUS_EXTRUDE)
  6514. inline void prevent_dangerous_extrude(float& curr_e, float& dest_e) {
  6515. if (DEBUGGING(DRYRUN)) return;
  6516. float de = dest_e - curr_e;
  6517. if (de) {
  6518. if (thermalManager.tooColdToExtrude(active_extruder)) {
  6519. curr_e = dest_e; // Behave as if the move really took place, but ignore E part
  6520. SERIAL_ECHO_START;
  6521. SERIAL_ECHOLNPGM(MSG_ERR_COLD_EXTRUDE_STOP);
  6522. }
  6523. #if ENABLED(PREVENT_LENGTHY_EXTRUDE)
  6524. if (labs(de) > EXTRUDE_MAXLENGTH) {
  6525. curr_e = dest_e; // Behave as if the move really took place, but ignore E part
  6526. SERIAL_ECHO_START;
  6527. SERIAL_ECHOLNPGM(MSG_ERR_LONG_EXTRUDE_STOP);
  6528. }
  6529. #endif
  6530. }
  6531. }
  6532. #endif // PREVENT_DANGEROUS_EXTRUDE
  6533. /**
  6534. * Prepare a single move and get ready for the next one
  6535. *
  6536. * (This may call planner.buffer_line several times to put
  6537. * smaller moves into the planner for DELTA or SCARA.)
  6538. */
  6539. void prepare_move_to_destination() {
  6540. clamp_to_software_endstops(destination);
  6541. refresh_cmd_timeout();
  6542. #if ENABLED(PREVENT_DANGEROUS_EXTRUDE)
  6543. prevent_dangerous_extrude(current_position[E_AXIS], destination[E_AXIS]);
  6544. #endif
  6545. #if ENABLED(SCARA)
  6546. if (!prepare_scara_move_to(destination)) return;
  6547. #elif ENABLED(DELTA)
  6548. if (!prepare_delta_move_to(destination)) return;
  6549. #else
  6550. #if ENABLED(DUAL_X_CARRIAGE)
  6551. if (!prepare_move_dual_x_carriage()) return;
  6552. #endif
  6553. if (!prepare_cartesian_move_to_destination()) return;
  6554. #endif
  6555. set_current_to_destination();
  6556. }
  6557. #if ENABLED(ARC_SUPPORT)
  6558. /**
  6559. * Plan an arc in 2 dimensions
  6560. *
  6561. * The arc is approximated by generating many small linear segments.
  6562. * The length of each segment is configured in MM_PER_ARC_SEGMENT (Default 1mm)
  6563. * Arcs should only be made relatively large (over 5mm), as larger arcs with
  6564. * larger segments will tend to be more efficient. Your slicer should have
  6565. * options for G2/G3 arc generation. In future these options may be GCode tunable.
  6566. */
  6567. void plan_arc(
  6568. float target[NUM_AXIS], // Destination position
  6569. float* offset, // Center of rotation relative to current_position
  6570. uint8_t clockwise // Clockwise?
  6571. ) {
  6572. float radius = hypot(offset[X_AXIS], offset[Y_AXIS]),
  6573. center_X = current_position[X_AXIS] + offset[X_AXIS],
  6574. center_Y = current_position[Y_AXIS] + offset[Y_AXIS],
  6575. linear_travel = target[Z_AXIS] - current_position[Z_AXIS],
  6576. extruder_travel = target[E_AXIS] - current_position[E_AXIS],
  6577. r_X = -offset[X_AXIS], // Radius vector from center to current location
  6578. r_Y = -offset[Y_AXIS],
  6579. rt_X = target[X_AXIS] - center_X,
  6580. rt_Y = target[Y_AXIS] - center_Y;
  6581. // CCW angle of rotation between position and target from the circle center. Only one atan2() trig computation required.
  6582. float angular_travel = atan2(r_X * rt_Y - r_Y * rt_X, r_X * rt_X + r_Y * rt_Y);
  6583. if (angular_travel < 0) angular_travel += RADIANS(360);
  6584. if (clockwise) angular_travel -= RADIANS(360);
  6585. // Make a circle if the angular rotation is 0
  6586. if (angular_travel == 0 && current_position[X_AXIS] == target[X_AXIS] && current_position[Y_AXIS] == target[Y_AXIS])
  6587. angular_travel += RADIANS(360);
  6588. float mm_of_travel = hypot(angular_travel * radius, fabs(linear_travel));
  6589. if (mm_of_travel < 0.001) return;
  6590. uint16_t segments = floor(mm_of_travel / (MM_PER_ARC_SEGMENT));
  6591. if (segments == 0) segments = 1;
  6592. float theta_per_segment = angular_travel / segments;
  6593. float linear_per_segment = linear_travel / segments;
  6594. float extruder_per_segment = extruder_travel / segments;
  6595. /**
  6596. * Vector rotation by transformation matrix: r is the original vector, r_T is the rotated vector,
  6597. * and phi is the angle of rotation. Based on the solution approach by Jens Geisler.
  6598. * r_T = [cos(phi) -sin(phi);
  6599. * sin(phi) cos(phi] * r ;
  6600. *
  6601. * For arc generation, the center of the circle is the axis of rotation and the radius vector is
  6602. * defined from the circle center to the initial position. Each line segment is formed by successive
  6603. * vector rotations. This requires only two cos() and sin() computations to form the rotation
  6604. * matrix for the duration of the entire arc. Error may accumulate from numerical round-off, since
  6605. * all double numbers are single precision on the Arduino. (True double precision will not have
  6606. * round off issues for CNC applications.) Single precision error can accumulate to be greater than
  6607. * tool precision in some cases. Therefore, arc path correction is implemented.
  6608. *
  6609. * Small angle approximation may be used to reduce computation overhead further. This approximation
  6610. * holds for everything, but very small circles and large MM_PER_ARC_SEGMENT values. In other words,
  6611. * theta_per_segment would need to be greater than 0.1 rad and N_ARC_CORRECTION would need to be large
  6612. * to cause an appreciable drift error. N_ARC_CORRECTION~=25 is more than small enough to correct for
  6613. * numerical drift error. N_ARC_CORRECTION may be on the order a hundred(s) before error becomes an
  6614. * issue for CNC machines with the single precision Arduino calculations.
  6615. *
  6616. * This approximation also allows plan_arc to immediately insert a line segment into the planner
  6617. * without the initial overhead of computing cos() or sin(). By the time the arc needs to be applied
  6618. * a correction, the planner should have caught up to the lag caused by the initial plan_arc overhead.
  6619. * This is important when there are successive arc motions.
  6620. */
  6621. // Vector rotation matrix values
  6622. float cos_T = 1 - 0.5 * theta_per_segment * theta_per_segment; // Small angle approximation
  6623. float sin_T = theta_per_segment;
  6624. float arc_target[NUM_AXIS];
  6625. float sin_Ti, cos_Ti, r_new_Y;
  6626. uint16_t i;
  6627. int8_t count = 0;
  6628. // Initialize the linear axis
  6629. arc_target[Z_AXIS] = current_position[Z_AXIS];
  6630. // Initialize the extruder axis
  6631. arc_target[E_AXIS] = current_position[E_AXIS];
  6632. float feed_rate = feedrate * feedrate_multiplier / 60 / 100.0;
  6633. millis_t next_idle_ms = millis() + 200UL;
  6634. for (i = 1; i < segments; i++) { // Iterate (segments-1) times
  6635. thermalManager.manage_heater();
  6636. millis_t now = millis();
  6637. if (ELAPSED(now, next_idle_ms)) {
  6638. next_idle_ms = now + 200UL;
  6639. idle();
  6640. }
  6641. if (++count < N_ARC_CORRECTION) {
  6642. // Apply vector rotation matrix to previous r_X / 1
  6643. r_new_Y = r_X * sin_T + r_Y * cos_T;
  6644. r_X = r_X * cos_T - r_Y * sin_T;
  6645. r_Y = r_new_Y;
  6646. }
  6647. else {
  6648. // Arc correction to radius vector. Computed only every N_ARC_CORRECTION increments.
  6649. // Compute exact location by applying transformation matrix from initial radius vector(=-offset).
  6650. // To reduce stuttering, the sin and cos could be computed at different times.
  6651. // For now, compute both at the same time.
  6652. cos_Ti = cos(i * theta_per_segment);
  6653. sin_Ti = sin(i * theta_per_segment);
  6654. r_X = -offset[X_AXIS] * cos_Ti + offset[Y_AXIS] * sin_Ti;
  6655. r_Y = -offset[X_AXIS] * sin_Ti - offset[Y_AXIS] * cos_Ti;
  6656. count = 0;
  6657. }
  6658. // Update arc_target location
  6659. arc_target[X_AXIS] = center_X + r_X;
  6660. arc_target[Y_AXIS] = center_Y + r_Y;
  6661. arc_target[Z_AXIS] += linear_per_segment;
  6662. arc_target[E_AXIS] += extruder_per_segment;
  6663. clamp_to_software_endstops(arc_target);
  6664. #if ENABLED(DELTA) || ENABLED(SCARA)
  6665. calculate_delta(arc_target);
  6666. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  6667. adjust_delta(arc_target);
  6668. #endif
  6669. planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], arc_target[E_AXIS], feed_rate, active_extruder);
  6670. #else
  6671. planner.buffer_line(arc_target[X_AXIS], arc_target[Y_AXIS], arc_target[Z_AXIS], arc_target[E_AXIS], feed_rate, active_extruder);
  6672. #endif
  6673. }
  6674. // Ensure last segment arrives at target location.
  6675. #if ENABLED(DELTA) || ENABLED(SCARA)
  6676. calculate_delta(target);
  6677. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  6678. adjust_delta(target);
  6679. #endif
  6680. planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], target[E_AXIS], feed_rate, active_extruder);
  6681. #else
  6682. planner.buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feed_rate, active_extruder);
  6683. #endif
  6684. // As far as the parser is concerned, the position is now == target. In reality the
  6685. // motion control system might still be processing the action and the real tool position
  6686. // in any intermediate location.
  6687. set_current_to_destination();
  6688. }
  6689. #endif
  6690. #if ENABLED(BEZIER_CURVE_SUPPORT)
  6691. void plan_cubic_move(const float offset[4]) {
  6692. cubic_b_spline(current_position, destination, offset, feedrate * feedrate_multiplier / 60 / 100.0, active_extruder);
  6693. // As far as the parser is concerned, the position is now == target. In reality the
  6694. // motion control system might still be processing the action and the real tool position
  6695. // in any intermediate location.
  6696. set_current_to_destination();
  6697. }
  6698. #endif // BEZIER_CURVE_SUPPORT
  6699. #if HAS_CONTROLLERFAN
  6700. void controllerFan() {
  6701. static millis_t lastMotorOn = 0; // Last time a motor was turned on
  6702. static millis_t nextMotorCheck = 0; // Last time the state was checked
  6703. millis_t ms = millis();
  6704. if (ELAPSED(ms, nextMotorCheck)) {
  6705. nextMotorCheck = ms + 2500UL; // Not a time critical function, so only check every 2.5s
  6706. if (X_ENABLE_READ == X_ENABLE_ON || Y_ENABLE_READ == Y_ENABLE_ON || Z_ENABLE_READ == Z_ENABLE_ON || thermalManager.soft_pwm_bed > 0
  6707. || E0_ENABLE_READ == E_ENABLE_ON // If any of the drivers are enabled...
  6708. #if EXTRUDERS > 1
  6709. || E1_ENABLE_READ == E_ENABLE_ON
  6710. #if HAS_X2_ENABLE
  6711. || X2_ENABLE_READ == X_ENABLE_ON
  6712. #endif
  6713. #if EXTRUDERS > 2
  6714. || E2_ENABLE_READ == E_ENABLE_ON
  6715. #if EXTRUDERS > 3
  6716. || E3_ENABLE_READ == E_ENABLE_ON
  6717. #endif
  6718. #endif
  6719. #endif
  6720. ) {
  6721. lastMotorOn = ms; //... set time to NOW so the fan will turn on
  6722. }
  6723. // Fan off if no steppers have been enabled for CONTROLLERFAN_SECS seconds
  6724. uint8_t speed = (!lastMotorOn || ELAPSED(ms, lastMotorOn + (CONTROLLERFAN_SECS) * 1000UL)) ? 0 : CONTROLLERFAN_SPEED;
  6725. // allows digital or PWM fan output to be used (see M42 handling)
  6726. digitalWrite(CONTROLLERFAN_PIN, speed);
  6727. analogWrite(CONTROLLERFAN_PIN, speed);
  6728. }
  6729. }
  6730. #endif // HAS_CONTROLLERFAN
  6731. #if ENABLED(SCARA)
  6732. void calculate_SCARA_forward_Transform(float f_scara[3]) {
  6733. // Perform forward kinematics, and place results in delta[3]
  6734. // The maths and first version has been done by QHARLEY . Integrated into masterbranch 06/2014 and slightly restructured by Joachim Cerny in June 2014
  6735. float x_sin, x_cos, y_sin, y_cos;
  6736. //SERIAL_ECHOPGM("f_delta x="); SERIAL_ECHO(f_scara[X_AXIS]);
  6737. //SERIAL_ECHOPGM(" y="); SERIAL_ECHO(f_scara[Y_AXIS]);
  6738. x_sin = sin(f_scara[X_AXIS] / SCARA_RAD2DEG) * Linkage_1;
  6739. x_cos = cos(f_scara[X_AXIS] / SCARA_RAD2DEG) * Linkage_1;
  6740. y_sin = sin(f_scara[Y_AXIS] / SCARA_RAD2DEG) * Linkage_2;
  6741. y_cos = cos(f_scara[Y_AXIS] / SCARA_RAD2DEG) * Linkage_2;
  6742. //SERIAL_ECHOPGM(" x_sin="); SERIAL_ECHO(x_sin);
  6743. //SERIAL_ECHOPGM(" x_cos="); SERIAL_ECHO(x_cos);
  6744. //SERIAL_ECHOPGM(" y_sin="); SERIAL_ECHO(y_sin);
  6745. //SERIAL_ECHOPGM(" y_cos="); SERIAL_ECHOLN(y_cos);
  6746. delta[X_AXIS] = x_cos + y_cos + SCARA_offset_x; //theta
  6747. delta[Y_AXIS] = x_sin + y_sin + SCARA_offset_y; //theta+phi
  6748. //SERIAL_ECHOPGM(" delta[X_AXIS]="); SERIAL_ECHO(delta[X_AXIS]);
  6749. //SERIAL_ECHOPGM(" delta[Y_AXIS]="); SERIAL_ECHOLN(delta[Y_AXIS]);
  6750. }
  6751. void calculate_delta(float cartesian[3]) {
  6752. //reverse kinematics.
  6753. // Perform reversed kinematics, and place results in delta[3]
  6754. // The maths and first version has been done by QHARLEY . Integrated into masterbranch 06/2014 and slightly restructured by Joachim Cerny in June 2014
  6755. float SCARA_pos[2];
  6756. static float SCARA_C2, SCARA_S2, SCARA_K1, SCARA_K2, SCARA_theta, SCARA_psi;
  6757. SCARA_pos[X_AXIS] = cartesian[X_AXIS] * axis_scaling[X_AXIS] - SCARA_offset_x; //Translate SCARA to standard X Y
  6758. SCARA_pos[Y_AXIS] = cartesian[Y_AXIS] * axis_scaling[Y_AXIS] - SCARA_offset_y; // With scaling factor.
  6759. #if (Linkage_1 == Linkage_2)
  6760. SCARA_C2 = ((sq(SCARA_pos[X_AXIS]) + sq(SCARA_pos[Y_AXIS])) / (2 * (float)L1_2)) - 1;
  6761. #else
  6762. SCARA_C2 = (sq(SCARA_pos[X_AXIS]) + sq(SCARA_pos[Y_AXIS]) - (float)L1_2 - (float)L2_2) / 45000;
  6763. #endif
  6764. SCARA_S2 = sqrt(1 - sq(SCARA_C2));
  6765. SCARA_K1 = Linkage_1 + Linkage_2 * SCARA_C2;
  6766. SCARA_K2 = Linkage_2 * SCARA_S2;
  6767. SCARA_theta = (atan2(SCARA_pos[X_AXIS], SCARA_pos[Y_AXIS]) - atan2(SCARA_K1, SCARA_K2)) * -1;
  6768. SCARA_psi = atan2(SCARA_S2, SCARA_C2);
  6769. delta[X_AXIS] = SCARA_theta * SCARA_RAD2DEG; // Multiply by 180/Pi - theta is support arm angle
  6770. delta[Y_AXIS] = (SCARA_theta + SCARA_psi) * SCARA_RAD2DEG; // - equal to sub arm angle (inverted motor)
  6771. delta[Z_AXIS] = cartesian[Z_AXIS];
  6772. /**
  6773. SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);
  6774. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]);
  6775. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]);
  6776. SERIAL_ECHOPGM("scara x="); SERIAL_ECHO(SCARA_pos[X_AXIS]);
  6777. SERIAL_ECHOPGM(" y="); SERIAL_ECHOLN(SCARA_pos[Y_AXIS]);
  6778. SERIAL_ECHOPGM("delta x="); SERIAL_ECHO(delta[X_AXIS]);
  6779. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(delta[Y_AXIS]);
  6780. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(delta[Z_AXIS]);
  6781. SERIAL_ECHOPGM("C2="); SERIAL_ECHO(SCARA_C2);
  6782. SERIAL_ECHOPGM(" S2="); SERIAL_ECHO(SCARA_S2);
  6783. SERIAL_ECHOPGM(" Theta="); SERIAL_ECHO(SCARA_theta);
  6784. SERIAL_ECHOPGM(" Psi="); SERIAL_ECHOLN(SCARA_psi);
  6785. SERIAL_EOL;
  6786. */
  6787. }
  6788. #endif // SCARA
  6789. #if ENABLED(TEMP_STAT_LEDS)
  6790. static bool red_led = false;
  6791. static millis_t next_status_led_update_ms = 0;
  6792. void handle_status_leds(void) {
  6793. float max_temp = 0.0;
  6794. if (ELAPSED(millis(), next_status_led_update_ms)) {
  6795. next_status_led_update_ms += 500; // Update every 0.5s
  6796. for (int8_t cur_hotend = 0; cur_hotend < HOTENDS; ++cur_hotend)
  6797. max_temp = max(max(max_temp, thermalManager.degHotend(cur_hotend)), thermalManager.degTargetHotend(cur_hotend));
  6798. #if HAS_TEMP_BED
  6799. max_temp = max(max(max_temp, thermalManager.degTargetBed()), thermalManager.degBed());
  6800. #endif
  6801. bool new_led = (max_temp > 55.0) ? true : (max_temp < 54.0) ? false : red_led;
  6802. if (new_led != red_led) {
  6803. red_led = new_led;
  6804. digitalWrite(STAT_LED_RED, new_led ? HIGH : LOW);
  6805. digitalWrite(STAT_LED_BLUE, new_led ? LOW : HIGH);
  6806. }
  6807. }
  6808. }
  6809. #endif
  6810. void enable_all_steppers() {
  6811. enable_x();
  6812. enable_y();
  6813. enable_z();
  6814. enable_e0();
  6815. enable_e1();
  6816. enable_e2();
  6817. enable_e3();
  6818. }
  6819. void disable_all_steppers() {
  6820. disable_x();
  6821. disable_y();
  6822. disable_z();
  6823. disable_e0();
  6824. disable_e1();
  6825. disable_e2();
  6826. disable_e3();
  6827. }
  6828. /**
  6829. * Standard idle routine keeps the machine alive
  6830. */
  6831. void idle(
  6832. #if ENABLED(FILAMENTCHANGEENABLE)
  6833. bool no_stepper_sleep/*=false*/
  6834. #endif
  6835. ) {
  6836. lcd_update();
  6837. host_keepalive();
  6838. manage_inactivity(
  6839. #if ENABLED(FILAMENTCHANGEENABLE)
  6840. no_stepper_sleep
  6841. #endif
  6842. );
  6843. thermalManager.manage_heater();
  6844. #if ENABLED(PRINTCOUNTER)
  6845. print_job_timer.tick();
  6846. #endif
  6847. #if HAS_BUZZER
  6848. buzzer.tick();
  6849. #endif
  6850. }
  6851. /**
  6852. * Manage several activities:
  6853. * - Check for Filament Runout
  6854. * - Keep the command buffer full
  6855. * - Check for maximum inactive time between commands
  6856. * - Check for maximum inactive time between stepper commands
  6857. * - Check if pin CHDK needs to go LOW
  6858. * - Check for KILL button held down
  6859. * - Check for HOME button held down
  6860. * - Check if cooling fan needs to be switched on
  6861. * - Check if an idle but hot extruder needs filament extruded (EXTRUDER_RUNOUT_PREVENT)
  6862. */
  6863. void manage_inactivity(bool ignore_stepper_queue/*=false*/) {
  6864. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  6865. if (IS_SD_PRINTING && !(READ(FIL_RUNOUT_PIN) ^ FIL_RUNOUT_INVERTING))
  6866. handle_filament_runout();
  6867. #endif
  6868. if (commands_in_queue < BUFSIZE) get_available_commands();
  6869. millis_t ms = millis();
  6870. if (max_inactive_time && ELAPSED(ms, previous_cmd_ms + max_inactive_time)) kill(PSTR(MSG_KILLED));
  6871. if (stepper_inactive_time && ELAPSED(ms, previous_cmd_ms + stepper_inactive_time)
  6872. && !ignore_stepper_queue && !planner.blocks_queued()) {
  6873. #if ENABLED(DISABLE_INACTIVE_X)
  6874. disable_x();
  6875. #endif
  6876. #if ENABLED(DISABLE_INACTIVE_Y)
  6877. disable_y();
  6878. #endif
  6879. #if ENABLED(DISABLE_INACTIVE_Z)
  6880. disable_z();
  6881. #endif
  6882. #if ENABLED(DISABLE_INACTIVE_E)
  6883. disable_e0();
  6884. disable_e1();
  6885. disable_e2();
  6886. disable_e3();
  6887. #endif
  6888. }
  6889. #ifdef CHDK // Check if pin should be set to LOW after M240 set it to HIGH
  6890. if (chdkActive && PENDING(ms, chdkHigh + CHDK_DELAY)) {
  6891. chdkActive = false;
  6892. WRITE(CHDK, LOW);
  6893. }
  6894. #endif
  6895. #if HAS_KILL
  6896. // Check if the kill button was pressed and wait just in case it was an accidental
  6897. // key kill key press
  6898. // -------------------------------------------------------------------------------
  6899. static int killCount = 0; // make the inactivity button a bit less responsive
  6900. const int KILL_DELAY = 750;
  6901. if (!READ(KILL_PIN))
  6902. killCount++;
  6903. else if (killCount > 0)
  6904. killCount--;
  6905. // Exceeded threshold and we can confirm that it was not accidental
  6906. // KILL the machine
  6907. // ----------------------------------------------------------------
  6908. if (killCount >= KILL_DELAY) kill(PSTR(MSG_KILLED));
  6909. #endif
  6910. #if HAS_HOME
  6911. // Check to see if we have to home, use poor man's debouncer
  6912. // ---------------------------------------------------------
  6913. static int homeDebounceCount = 0; // poor man's debouncing count
  6914. const int HOME_DEBOUNCE_DELAY = 2500;
  6915. if (!READ(HOME_PIN)) {
  6916. if (!homeDebounceCount) {
  6917. enqueue_and_echo_commands_P(PSTR("G28"));
  6918. LCD_MESSAGEPGM(MSG_AUTO_HOME);
  6919. }
  6920. if (homeDebounceCount < HOME_DEBOUNCE_DELAY)
  6921. homeDebounceCount++;
  6922. else
  6923. homeDebounceCount = 0;
  6924. }
  6925. #endif
  6926. #if HAS_CONTROLLERFAN
  6927. controllerFan(); // Check if fan should be turned on to cool stepper drivers down
  6928. #endif
  6929. #if ENABLED(EXTRUDER_RUNOUT_PREVENT)
  6930. if (ELAPSED(ms, previous_cmd_ms + (EXTRUDER_RUNOUT_SECONDS) * 1000UL))
  6931. if (thermalManager.degHotend(active_extruder) > EXTRUDER_RUNOUT_MINTEMP) {
  6932. bool oldstatus;
  6933. switch (active_extruder) {
  6934. case 0:
  6935. oldstatus = E0_ENABLE_READ;
  6936. enable_e0();
  6937. break;
  6938. #if EXTRUDERS > 1
  6939. case 1:
  6940. oldstatus = E1_ENABLE_READ;
  6941. enable_e1();
  6942. break;
  6943. #if EXTRUDERS > 2
  6944. case 2:
  6945. oldstatus = E2_ENABLE_READ;
  6946. enable_e2();
  6947. break;
  6948. #if EXTRUDERS > 3
  6949. case 3:
  6950. oldstatus = E3_ENABLE_READ;
  6951. enable_e3();
  6952. break;
  6953. #endif
  6954. #endif
  6955. #endif
  6956. }
  6957. float oldepos = current_position[E_AXIS], oldedes = destination[E_AXIS];
  6958. planner.buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
  6959. destination[E_AXIS] + (EXTRUDER_RUNOUT_EXTRUDE) * (EXTRUDER_RUNOUT_ESTEPS) / planner.axis_steps_per_mm[E_AXIS],
  6960. (EXTRUDER_RUNOUT_SPEED) / 60. * (EXTRUDER_RUNOUT_ESTEPS) / planner.axis_steps_per_mm[E_AXIS], active_extruder);
  6961. current_position[E_AXIS] = oldepos;
  6962. destination[E_AXIS] = oldedes;
  6963. planner.set_e_position_mm(oldepos);
  6964. previous_cmd_ms = ms; // refresh_cmd_timeout()
  6965. stepper.synchronize();
  6966. switch (active_extruder) {
  6967. case 0:
  6968. E0_ENABLE_WRITE(oldstatus);
  6969. break;
  6970. #if EXTRUDERS > 1
  6971. case 1:
  6972. E1_ENABLE_WRITE(oldstatus);
  6973. break;
  6974. #if EXTRUDERS > 2
  6975. case 2:
  6976. E2_ENABLE_WRITE(oldstatus);
  6977. break;
  6978. #if EXTRUDERS > 3
  6979. case 3:
  6980. E3_ENABLE_WRITE(oldstatus);
  6981. break;
  6982. #endif
  6983. #endif
  6984. #endif
  6985. }
  6986. }
  6987. #endif
  6988. #if ENABLED(DUAL_X_CARRIAGE)
  6989. // handle delayed move timeout
  6990. if (delayed_move_time && ELAPSED(ms, delayed_move_time + 1000UL) && IsRunning()) {
  6991. // travel moves have been received so enact them
  6992. delayed_move_time = 0xFFFFFFFFUL; // force moves to be done
  6993. set_destination_to_current();
  6994. prepare_move_to_destination();
  6995. }
  6996. #endif
  6997. #if ENABLED(TEMP_STAT_LEDS)
  6998. handle_status_leds();
  6999. #endif
  7000. planner.check_axes_activity();
  7001. }
  7002. void kill(const char* lcd_msg) {
  7003. #if ENABLED(ULTRA_LCD)
  7004. lcd_init();
  7005. lcd_setalertstatuspgm(lcd_msg);
  7006. #else
  7007. UNUSED(lcd_msg);
  7008. #endif
  7009. cli(); // Stop interrupts
  7010. thermalManager.disable_all_heaters();
  7011. disable_all_steppers();
  7012. #if HAS_POWER_SWITCH
  7013. pinMode(PS_ON_PIN, INPUT);
  7014. #endif
  7015. SERIAL_ERROR_START;
  7016. SERIAL_ERRORLNPGM(MSG_ERR_KILLED);
  7017. // FMC small patch to update the LCD before ending
  7018. sei(); // enable interrupts
  7019. for (int i = 5; i--; lcd_update()) delay(200); // Wait a short time
  7020. cli(); // disable interrupts
  7021. suicide();
  7022. while (1) {
  7023. #if ENABLED(USE_WATCHDOG)
  7024. watchdog_reset();
  7025. #endif
  7026. } // Wait for reset
  7027. }
  7028. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  7029. void handle_filament_runout() {
  7030. if (!filament_ran_out) {
  7031. filament_ran_out = true;
  7032. enqueue_and_echo_commands_P(PSTR(FILAMENT_RUNOUT_SCRIPT));
  7033. stepper.synchronize();
  7034. }
  7035. }
  7036. #endif // FILAMENT_RUNOUT_SENSOR
  7037. #if ENABLED(FAST_PWM_FAN)
  7038. void setPwmFrequency(uint8_t pin, int val) {
  7039. val &= 0x07;
  7040. switch (digitalPinToTimer(pin)) {
  7041. #if defined(TCCR0A)
  7042. case TIMER0A:
  7043. case TIMER0B:
  7044. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  7045. // TCCR0B |= val;
  7046. break;
  7047. #endif
  7048. #if defined(TCCR1A)
  7049. case TIMER1A:
  7050. case TIMER1B:
  7051. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  7052. // TCCR1B |= val;
  7053. break;
  7054. #endif
  7055. #if defined(TCCR2)
  7056. case TIMER2:
  7057. case TIMER2:
  7058. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  7059. TCCR2 |= val;
  7060. break;
  7061. #endif
  7062. #if defined(TCCR2A)
  7063. case TIMER2A:
  7064. case TIMER2B:
  7065. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  7066. TCCR2B |= val;
  7067. break;
  7068. #endif
  7069. #if defined(TCCR3A)
  7070. case TIMER3A:
  7071. case TIMER3B:
  7072. case TIMER3C:
  7073. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  7074. TCCR3B |= val;
  7075. break;
  7076. #endif
  7077. #if defined(TCCR4A)
  7078. case TIMER4A:
  7079. case TIMER4B:
  7080. case TIMER4C:
  7081. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  7082. TCCR4B |= val;
  7083. break;
  7084. #endif
  7085. #if defined(TCCR5A)
  7086. case TIMER5A:
  7087. case TIMER5B:
  7088. case TIMER5C:
  7089. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  7090. TCCR5B |= val;
  7091. break;
  7092. #endif
  7093. }
  7094. }
  7095. #endif // FAST_PWM_FAN
  7096. void stop() {
  7097. thermalManager.disable_all_heaters();
  7098. if (IsRunning()) {
  7099. Running = false;
  7100. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  7101. SERIAL_ERROR_START;
  7102. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  7103. LCD_MESSAGEPGM(MSG_STOPPED);
  7104. }
  7105. }
  7106. float calculate_volumetric_multiplier(float diameter) {
  7107. if (!volumetric_enabled || diameter == 0) return 1.0;
  7108. float d2 = diameter * 0.5;
  7109. return 1.0 / (M_PI * d2 * d2);
  7110. }
  7111. void calculate_volumetric_multipliers() {
  7112. for (int i = 0; i < EXTRUDERS; i++)
  7113. volumetric_multiplier[i] = calculate_volumetric_multiplier(filament_size[i]);
  7114. }