My Marlin configs for Fabrikator Mini and CTC i3 Pro B
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

Marlin_main.cpp 240KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688
  1. /**
  2. * Marlin 3D Printer Firmware
  3. * Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
  4. *
  5. * Based on Sprinter and grbl.
  6. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  7. *
  8. * This program is free software: you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation, either version 3 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  20. *
  21. */
  22. /**
  23. *
  24. * About Marlin
  25. *
  26. * This firmware is a mashup between Sprinter and grbl.
  27. * - https://github.com/kliment/Sprinter
  28. * - https://github.com/simen/grbl/tree
  29. *
  30. * It has preliminary support for Matthew Roberts advance algorithm
  31. * - http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  32. */
  33. #include "Marlin.h"
  34. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  35. #include "vector_3.h"
  36. #if ENABLED(AUTO_BED_LEVELING_GRID)
  37. #include "qr_solve.h"
  38. #endif
  39. #endif // AUTO_BED_LEVELING_FEATURE
  40. #if ENABLED(MESH_BED_LEVELING)
  41. #include "mesh_bed_leveling.h"
  42. #endif
  43. #include "ultralcd.h"
  44. #include "planner.h"
  45. #include "stepper.h"
  46. #include "temperature.h"
  47. #include "cardreader.h"
  48. #include "configuration_store.h"
  49. #include "language.h"
  50. #include "pins_arduino.h"
  51. #include "math.h"
  52. #include "buzzer.h"
  53. #if ENABLED(USE_WATCHDOG)
  54. #include "watchdog.h"
  55. #endif
  56. #if ENABLED(BLINKM)
  57. #include "blinkm.h"
  58. #include "Wire.h"
  59. #endif
  60. #if HAS_SERVOS
  61. #include "servo.h"
  62. #endif
  63. #if HAS_DIGIPOTSS
  64. #include <SPI.h>
  65. #endif
  66. #if ENABLED(DAC_STEPPER_CURRENT)
  67. #include "stepper_dac.h"
  68. #endif
  69. /**
  70. * Look here for descriptions of G-codes:
  71. * - http://linuxcnc.org/handbook/gcode/g-code.html
  72. * - http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  73. *
  74. * Help us document these G-codes online:
  75. * - https://github.com/MarlinFirmware/Marlin/wiki/G-Code-in-Marlin
  76. * - http://reprap.org/wiki/G-code
  77. *
  78. * -----------------
  79. * Implemented Codes
  80. * -----------------
  81. *
  82. * "G" Codes
  83. *
  84. * G0 -> G1
  85. * G1 - Coordinated Movement X Y Z E
  86. * G2 - CW ARC
  87. * G3 - CCW ARC
  88. * G4 - Dwell S<seconds> or P<milliseconds>
  89. * G10 - retract filament according to settings of M207
  90. * G11 - retract recover filament according to settings of M208
  91. * G28 - Home one or more axes
  92. * G29 - Detailed Z probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  93. * G30 - Single Z probe, probes bed at current XY location.
  94. * G31 - Dock sled (Z_PROBE_SLED only)
  95. * G32 - Undock sled (Z_PROBE_SLED only)
  96. * G90 - Use Absolute Coordinates
  97. * G91 - Use Relative Coordinates
  98. * G92 - Set current position to coordinates given
  99. *
  100. * "M" Codes
  101. *
  102. * M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
  103. * M1 - Same as M0
  104. * M17 - Enable/Power all stepper motors
  105. * M18 - Disable all stepper motors; same as M84
  106. * M20 - List SD card
  107. * M21 - Init SD card
  108. * M22 - Release SD card
  109. * M23 - Select SD file (M23 filename.g)
  110. * M24 - Start/resume SD print
  111. * M25 - Pause SD print
  112. * M26 - Set SD position in bytes (M26 S12345)
  113. * M27 - Report SD print status
  114. * M28 - Start SD write (M28 filename.g)
  115. * M29 - Stop SD write
  116. * M30 - Delete file from SD (M30 filename.g)
  117. * M31 - Output time since last M109 or SD card start to serial
  118. * M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  119. * syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  120. * Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
  121. * The '#' is necessary when calling from within sd files, as it stops buffer prereading
  122. * M33 - Get the longname version of a path
  123. * M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  124. * M48 - Measure Z_Probe repeatability. M48 [P # of points] [X position] [Y position] [V_erboseness #] [E_ngage Probe] [L # of legs of travel]
  125. * M80 - Turn on Power Supply
  126. * M81 - Turn off Power Supply
  127. * M82 - Set E codes absolute (default)
  128. * M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  129. * M84 - Disable steppers until next move,
  130. * or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  131. * M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  132. * M92 - Set axis_steps_per_unit - same syntax as G92
  133. * M104 - Set extruder target temp
  134. * M105 - Read current temp
  135. * M106 - Fan on
  136. * M107 - Fan off
  137. * M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  138. * Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  139. * IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  140. * M110 - Set the current line number
  141. * M111 - Set debug flags with S<mask>. See flag bits defined in Marlin.h.
  142. * M112 - Emergency stop
  143. * M114 - Output current position to serial port
  144. * M115 - Capabilities string
  145. * M117 - Display a message on the controller screen
  146. * M119 - Output Endstop status to serial port
  147. * M120 - Enable endstop detection
  148. * M121 - Disable endstop detection
  149. * M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  150. * M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  151. * M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  152. * M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  153. * M140 - Set bed target temp
  154. * M145 - Set the heatup state H<hotend> B<bed> F<fan speed> for S<material> (0=PLA, 1=ABS)
  155. * M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  156. * M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  157. * Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  158. * M200 - set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).:D<millimeters>-
  159. * M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  160. * M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  161. * M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  162. * M204 - Set default acceleration: P for Printing moves, R for Retract only (no X, Y, Z) moves and T for Travel (non printing) moves (ex. M204 P800 T3000 R9000) in mm/sec^2
  163. * M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
  164. * M206 - Set additional homing offset
  165. * M207 - Set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
  166. * M208 - Set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  167. * M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  168. * M218 - Set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  169. * M220 - Set speed factor override percentage: S<factor in percent>
  170. * M221 - Set extrude factor override percentage: S<factor in percent>
  171. * M226 - Wait until the specified pin reaches the state required: P<pin number> S<pin state>
  172. * M240 - Trigger a camera to take a photograph
  173. * M250 - Set LCD contrast C<contrast value> (value 0..63)
  174. * M280 - Set servo position absolute. P: servo index, S: angle or microseconds
  175. * M300 - Play beep sound S<frequency Hz> P<duration ms>
  176. * M301 - Set PID parameters P I and D
  177. * M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  178. * M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  179. * M304 - Set bed PID parameters P I and D
  180. * M380 - Activate solenoid on active extruder
  181. * M381 - Disable all solenoids
  182. * M400 - Finish all moves
  183. * M401 - Lower Z probe if present
  184. * M402 - Raise Z probe if present
  185. * M404 - N<dia in mm> Enter the nominal filament width (3mm, 1.75mm ) or will display nominal filament width without parameters
  186. * M405 - Turn on Filament Sensor extrusion control. Optional D<delay in cm> to set delay in centimeters between sensor and extruder
  187. * M406 - Turn off Filament Sensor extrusion control
  188. * M407 - Display measured filament diameter
  189. * M410 - Quickstop. Abort all the planned moves
  190. * M420 - Enable/Disable Mesh Leveling (with current values) S1=enable S0=disable
  191. * M421 - Set a single Z coordinate in the Mesh Leveling grid. X<mm> Y<mm> Z<mm>
  192. * M428 - Set the home_offset logically based on the current_position
  193. * M500 - Store parameters in EEPROM
  194. * M501 - Read parameters from EEPROM (if you need reset them after you changed them temporarily).
  195. * M502 - Revert to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  196. * M503 - Print the current settings (from memory not from EEPROM). Use S0 to leave off headings.
  197. * M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  198. * M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  199. * M665 - Set delta configurations: L<diagonal rod> R<delta radius> S<segments/s>
  200. * M666 - Set delta endstop adjustment
  201. * M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  202. * M907 - Set digital trimpot motor current using axis codes.
  203. * M908 - Control digital trimpot directly.
  204. * M909 - DAC_STEPPER_CURRENT: Print digipot/DAC current value
  205. * M910 - DAC_STEPPER_CURRENT: Commit digipot/DAC value to external EEPROM via I2C
  206. * M350 - Set microstepping mode.
  207. * M351 - Toggle MS1 MS2 pins directly.
  208. *
  209. * ************ SCARA Specific - This can change to suit future G-code regulations
  210. * M360 - SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  211. * M361 - SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  212. * M362 - SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  213. * M363 - SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  214. * M364 - SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
  215. * M365 - SCARA calibration: Scaling factor, X, Y, Z axis
  216. * ************* SCARA End ***************
  217. *
  218. * ************ Custom codes - This can change to suit future G-code regulations
  219. * M100 - Watch Free Memory (For Debugging Only)
  220. * M851 - Set Z probe's Z offset (mm above extruder -- The value will always be negative)
  221. * M928 - Start SD logging (M928 filename.g) - ended by M29
  222. * M999 - Restart after being stopped by error
  223. *
  224. * "T" Codes
  225. *
  226. * T0-T3 - Select a tool by index (usually an extruder) [ F<mm/min> ]
  227. *
  228. */
  229. #if ENABLED(M100_FREE_MEMORY_WATCHER)
  230. void gcode_M100();
  231. #endif
  232. #if ENABLED(SDSUPPORT)
  233. CardReader card;
  234. #endif
  235. bool Running = true;
  236. uint8_t marlin_debug_flags = DEBUG_NONE;
  237. static float feedrate = 1500.0, saved_feedrate;
  238. float current_position[NUM_AXIS] = { 0.0 };
  239. static float destination[NUM_AXIS] = { 0.0 };
  240. bool axis_known_position[3] = { false };
  241. bool axis_homed[3] = { false };
  242. static long gcode_N, gcode_LastN, Stopped_gcode_LastN = 0;
  243. static char* current_command, *current_command_args;
  244. static int cmd_queue_index_r = 0;
  245. static int cmd_queue_index_w = 0;
  246. static int commands_in_queue = 0;
  247. static char command_queue[BUFSIZE][MAX_CMD_SIZE];
  248. const float homing_feedrate[] = HOMING_FEEDRATE;
  249. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  250. int feedrate_multiplier = 100; //100->1 200->2
  251. int saved_feedrate_multiplier;
  252. int extruder_multiplier[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(100);
  253. bool volumetric_enabled = false;
  254. float filament_size[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(DEFAULT_NOMINAL_FILAMENT_DIA);
  255. float volumetric_multiplier[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(1.0);
  256. float home_offset[3] = { 0 };
  257. float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  258. float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  259. #if FAN_COUNT > 0
  260. int fanSpeeds[FAN_COUNT] = { 0 };
  261. #endif
  262. uint8_t active_extruder = 0;
  263. bool cancel_heatup = false;
  264. const char errormagic[] PROGMEM = "Error:";
  265. const char echomagic[] PROGMEM = "echo:";
  266. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  267. static bool relative_mode = false; //Determines Absolute or Relative Coordinates
  268. static int serial_count = 0;
  269. static char* seen_pointer; ///< A pointer to find chars in the command string (X, Y, Z, E, etc.)
  270. const char* queued_commands_P = NULL; /* pointer to the current line in the active sequence of commands, or NULL when none */
  271. const int sensitive_pins[] = SENSITIVE_PINS; ///< Sensitive pin list for M42
  272. // Inactivity shutdown
  273. millis_t previous_cmd_ms = 0;
  274. static millis_t max_inactive_time = 0;
  275. static millis_t stepper_inactive_time = (DEFAULT_STEPPER_DEACTIVE_TIME) * 1000L;
  276. millis_t print_job_start_ms = 0; ///< Print job start time
  277. millis_t print_job_stop_ms = 0; ///< Print job stop time
  278. static uint8_t target_extruder;
  279. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  280. int xy_travel_speed = XY_TRAVEL_SPEED;
  281. float zprobe_zoffset = Z_PROBE_OFFSET_FROM_EXTRUDER;
  282. #endif
  283. #if ENABLED(Z_DUAL_ENDSTOPS) && DISABLED(DELTA)
  284. float z_endstop_adj = 0;
  285. #endif
  286. // Extruder offsets
  287. #if EXTRUDERS > 1
  288. #ifndef EXTRUDER_OFFSET_X
  289. #define EXTRUDER_OFFSET_X { 0 }
  290. #endif
  291. #ifndef EXTRUDER_OFFSET_Y
  292. #define EXTRUDER_OFFSET_Y { 0 }
  293. #endif
  294. float extruder_offset[][EXTRUDERS] = {
  295. EXTRUDER_OFFSET_X,
  296. EXTRUDER_OFFSET_Y
  297. #if ENABLED(DUAL_X_CARRIAGE)
  298. , { 0 } // supports offsets in XYZ plane
  299. #endif
  300. };
  301. #endif
  302. #if HAS_SERVO_ENDSTOPS
  303. const int servo_endstop_id[] = SERVO_ENDSTOP_IDS;
  304. const int servo_endstop_angle[][2] = SERVO_ENDSTOP_ANGLES;
  305. #endif
  306. #if ENABLED(BARICUDA)
  307. int ValvePressure = 0;
  308. int EtoPPressure = 0;
  309. #endif
  310. #if ENABLED(FWRETRACT)
  311. bool autoretract_enabled = false;
  312. bool retracted[EXTRUDERS] = { false };
  313. bool retracted_swap[EXTRUDERS] = { false };
  314. float retract_length = RETRACT_LENGTH;
  315. float retract_length_swap = RETRACT_LENGTH_SWAP;
  316. float retract_feedrate = RETRACT_FEEDRATE;
  317. float retract_zlift = RETRACT_ZLIFT;
  318. float retract_recover_length = RETRACT_RECOVER_LENGTH;
  319. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  320. float retract_recover_feedrate = RETRACT_RECOVER_FEEDRATE;
  321. #endif // FWRETRACT
  322. #if ENABLED(ULTIPANEL) && HAS_POWER_SWITCH
  323. bool powersupply =
  324. #if ENABLED(PS_DEFAULT_OFF)
  325. false
  326. #else
  327. true
  328. #endif
  329. ;
  330. #endif
  331. #if ENABLED(DELTA)
  332. #define TOWER_1 X_AXIS
  333. #define TOWER_2 Y_AXIS
  334. #define TOWER_3 Z_AXIS
  335. float delta[3] = { 0 };
  336. #define SIN_60 0.8660254037844386
  337. #define COS_60 0.5
  338. float endstop_adj[3] = { 0 };
  339. // these are the default values, can be overriden with M665
  340. float delta_radius = DELTA_RADIUS;
  341. float delta_tower1_x = -SIN_60 * (delta_radius + DELTA_RADIUS_TRIM_TOWER_1); // front left tower
  342. float delta_tower1_y = -COS_60 * (delta_radius + DELTA_RADIUS_TRIM_TOWER_1);
  343. float delta_tower2_x = SIN_60 * (delta_radius + DELTA_RADIUS_TRIM_TOWER_2); // front right tower
  344. float delta_tower2_y = -COS_60 * (delta_radius + DELTA_RADIUS_TRIM_TOWER_2);
  345. float delta_tower3_x = 0; // back middle tower
  346. float delta_tower3_y = (delta_radius + DELTA_RADIUS_TRIM_TOWER_3);
  347. float delta_diagonal_rod = DELTA_DIAGONAL_ROD;
  348. float delta_diagonal_rod_trim_tower_1 = DELTA_DIAGONAL_ROD_TRIM_TOWER_1;
  349. float delta_diagonal_rod_trim_tower_2 = DELTA_DIAGONAL_ROD_TRIM_TOWER_2;
  350. float delta_diagonal_rod_trim_tower_3 = DELTA_DIAGONAL_ROD_TRIM_TOWER_3;
  351. float delta_diagonal_rod_2_tower_1 = sq(delta_diagonal_rod + delta_diagonal_rod_trim_tower_1);
  352. float delta_diagonal_rod_2_tower_2 = sq(delta_diagonal_rod + delta_diagonal_rod_trim_tower_2);
  353. float delta_diagonal_rod_2_tower_3 = sq(delta_diagonal_rod + delta_diagonal_rod_trim_tower_3);
  354. //float delta_diagonal_rod_2 = sq(delta_diagonal_rod);
  355. float delta_segments_per_second = DELTA_SEGMENTS_PER_SECOND;
  356. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  357. int delta_grid_spacing[2] = { 0, 0 };
  358. float bed_level[AUTO_BED_LEVELING_GRID_POINTS][AUTO_BED_LEVELING_GRID_POINTS];
  359. #endif
  360. #else
  361. static bool home_all_axis = true;
  362. #endif
  363. #if ENABLED(SCARA)
  364. float delta_segments_per_second = SCARA_SEGMENTS_PER_SECOND;
  365. static float delta[3] = { 0 };
  366. float axis_scaling[3] = { 1, 1, 1 }; // Build size scaling, default to 1
  367. #endif
  368. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  369. //Variables for Filament Sensor input
  370. float filament_width_nominal = DEFAULT_NOMINAL_FILAMENT_DIA; //Set nominal filament width, can be changed with M404
  371. bool filament_sensor = false; //M405 turns on filament_sensor control, M406 turns it off
  372. float filament_width_meas = DEFAULT_MEASURED_FILAMENT_DIA; //Stores the measured filament diameter
  373. int8_t measurement_delay[MAX_MEASUREMENT_DELAY + 1]; //ring buffer to delay measurement store extruder factor after subtracting 100
  374. int filwidth_delay_index1 = 0; //index into ring buffer
  375. int filwidth_delay_index2 = -1; //index into ring buffer - set to -1 on startup to indicate ring buffer needs to be initialized
  376. int meas_delay_cm = MEASUREMENT_DELAY_CM; //distance delay setting
  377. #endif
  378. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  379. static bool filrunoutEnqueued = false;
  380. #endif
  381. static bool send_ok[BUFSIZE];
  382. #if HAS_SERVOS
  383. Servo servo[NUM_SERVOS];
  384. #endif
  385. #ifdef CHDK
  386. unsigned long chdkHigh = 0;
  387. boolean chdkActive = false;
  388. #endif
  389. #if ENABLED(PID_ADD_EXTRUSION_RATE)
  390. int lpq_len = 20;
  391. #endif
  392. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  393. // States for managing Marlin and host communication
  394. // Marlin sends messages if blocked or busy
  395. enum MarlinBusyState {
  396. NOT_BUSY, // Not in a handler
  397. IN_HANDLER, // Processing a GCode
  398. IN_PROCESS, // Known to be blocking command input (as in G29)
  399. PAUSED_FOR_USER, // Blocking pending any input
  400. PAUSED_FOR_INPUT // Blocking pending text input (concept)
  401. };
  402. static MarlinBusyState busy_state = NOT_BUSY;
  403. static millis_t next_busy_signal_ms = -1;
  404. #define KEEPALIVE_STATE(n) do{ busy_state = n; }while(0)
  405. #else
  406. #define host_keepalive() ;
  407. #define KEEPALIVE_STATE(n) ;
  408. #endif // HOST_KEEPALIVE_FEATURE
  409. /**
  410. * ***************************************************************************
  411. * ******************************** FUNCTIONS ********************************
  412. * ***************************************************************************
  413. */
  414. void get_available_commands();
  415. void process_next_command();
  416. void plan_arc(float target[NUM_AXIS], float* offset, uint8_t clockwise);
  417. bool setTargetedHotend(int code);
  418. void serial_echopair_P(const char* s_P, int v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  419. void serial_echopair_P(const char* s_P, long v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  420. void serial_echopair_P(const char* s_P, float v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  421. void serial_echopair_P(const char* s_P, double v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  422. void serial_echopair_P(const char* s_P, unsigned long v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  423. void gcode_M114();
  424. #if ENABLED(PREVENT_DANGEROUS_EXTRUDE)
  425. float extrude_min_temp = EXTRUDE_MINTEMP;
  426. #endif
  427. #if ENABLED(HAS_Z_MIN_PROBE)
  428. extern volatile bool z_probe_is_active;
  429. #endif
  430. #if ENABLED(SDSUPPORT)
  431. #include "SdFatUtil.h"
  432. int freeMemory() { return SdFatUtil::FreeRam(); }
  433. #else
  434. extern "C" {
  435. extern unsigned int __bss_end;
  436. extern unsigned int __heap_start;
  437. extern void* __brkval;
  438. int freeMemory() {
  439. int free_memory;
  440. if ((int)__brkval == 0)
  441. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  442. else
  443. free_memory = ((int)&free_memory) - ((int)__brkval);
  444. return free_memory;
  445. }
  446. }
  447. #endif //!SDSUPPORT
  448. /**
  449. * Inject the next "immediate" command, when possible.
  450. * Return true if any immediate commands remain to inject.
  451. */
  452. static bool drain_queued_commands_P() {
  453. if (queued_commands_P != NULL) {
  454. size_t i = 0;
  455. char c, cmd[30];
  456. strncpy_P(cmd, queued_commands_P, sizeof(cmd) - 1);
  457. cmd[sizeof(cmd) - 1] = '\0';
  458. while ((c = cmd[i]) && c != '\n') i++; // find the end of this gcode command
  459. cmd[i] = '\0';
  460. if (enqueue_and_echo_command(cmd)) { // success?
  461. if (c) // newline char?
  462. queued_commands_P += i + 1; // advance to the next command
  463. else
  464. queued_commands_P = NULL; // nul char? no more commands
  465. }
  466. }
  467. return (queued_commands_P != NULL); // return whether any more remain
  468. }
  469. /**
  470. * Record one or many commands to run from program memory.
  471. * Aborts the current queue, if any.
  472. * Note: drain_queued_commands_P() must be called repeatedly to drain the commands afterwards
  473. */
  474. void enqueue_and_echo_commands_P(const char* pgcode) {
  475. queued_commands_P = pgcode;
  476. drain_queued_commands_P(); // first command executed asap (when possible)
  477. }
  478. /**
  479. * Once a new command is in the ring buffer, call this to commit it
  480. */
  481. inline void _commit_command(bool say_ok) {
  482. send_ok[cmd_queue_index_w] = say_ok;
  483. cmd_queue_index_w = (cmd_queue_index_w + 1) % BUFSIZE;
  484. commands_in_queue++;
  485. }
  486. /**
  487. * Copy a command directly into the main command buffer, from RAM.
  488. * Returns true if successfully adds the command
  489. */
  490. inline bool _enqueuecommand(const char* cmd, bool say_ok=false) {
  491. if (*cmd == ';' || commands_in_queue >= BUFSIZE) return false;
  492. strcpy(command_queue[cmd_queue_index_w], cmd);
  493. _commit_command(say_ok);
  494. return true;
  495. }
  496. void enqueue_and_echo_command_now(const char* cmd) {
  497. while (!enqueue_and_echo_command(cmd)) idle();
  498. }
  499. /**
  500. * Enqueue with Serial Echo
  501. */
  502. bool enqueue_and_echo_command(const char* cmd, bool say_ok/*=false*/) {
  503. if (_enqueuecommand(cmd, say_ok)) {
  504. SERIAL_ECHO_START;
  505. SERIAL_ECHOPGM(MSG_Enqueueing);
  506. SERIAL_ECHO(cmd);
  507. SERIAL_ECHOLNPGM("\"");
  508. return true;
  509. }
  510. return false;
  511. }
  512. void setup_killpin() {
  513. #if HAS_KILL
  514. SET_INPUT(KILL_PIN);
  515. WRITE(KILL_PIN, HIGH);
  516. #endif
  517. }
  518. void setup_filrunoutpin() {
  519. #if HAS_FILRUNOUT
  520. pinMode(FILRUNOUT_PIN, INPUT);
  521. #if ENABLED(ENDSTOPPULLUP_FIL_RUNOUT)
  522. WRITE(FILRUNOUT_PIN, HIGH);
  523. #endif
  524. #endif
  525. }
  526. // Set home pin
  527. void setup_homepin(void) {
  528. #if HAS_HOME
  529. SET_INPUT(HOME_PIN);
  530. WRITE(HOME_PIN, HIGH);
  531. #endif
  532. }
  533. void setup_photpin() {
  534. #if HAS_PHOTOGRAPH
  535. OUT_WRITE(PHOTOGRAPH_PIN, LOW);
  536. #endif
  537. }
  538. void setup_powerhold() {
  539. #if HAS_SUICIDE
  540. OUT_WRITE(SUICIDE_PIN, HIGH);
  541. #endif
  542. #if HAS_POWER_SWITCH
  543. #if ENABLED(PS_DEFAULT_OFF)
  544. OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  545. #else
  546. OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE);
  547. #endif
  548. #endif
  549. }
  550. void suicide() {
  551. #if HAS_SUICIDE
  552. OUT_WRITE(SUICIDE_PIN, LOW);
  553. #endif
  554. }
  555. void servo_init() {
  556. #if NUM_SERVOS >= 1 && HAS_SERVO_0
  557. servo[0].attach(SERVO0_PIN);
  558. servo[0].detach(); // Just set up the pin. We don't have a position yet. Don't move to a random position.
  559. #endif
  560. #if NUM_SERVOS >= 2 && HAS_SERVO_1
  561. servo[1].attach(SERVO1_PIN);
  562. servo[1].detach();
  563. #endif
  564. #if NUM_SERVOS >= 3 && HAS_SERVO_2
  565. servo[2].attach(SERVO2_PIN);
  566. servo[2].detach();
  567. #endif
  568. #if NUM_SERVOS >= 4 && HAS_SERVO_3
  569. servo[3].attach(SERVO3_PIN);
  570. servo[3].detach();
  571. #endif
  572. #if HAS_SERVO_ENDSTOPS
  573. z_probe_is_active = false;
  574. /**
  575. * Set position of all defined Servo Endstops
  576. *
  577. * ** UNSAFE! - NEEDS UPDATE! **
  578. *
  579. * The servo might be deployed and positioned too low to stow
  580. * when starting up the machine or rebooting the board.
  581. * There's no way to know where the nozzle is positioned until
  582. * homing has been done - no homing with z-probe without init!
  583. *
  584. */
  585. for (int i = 0; i < 3; i++)
  586. if (servo_endstop_id[i] >= 0)
  587. servo[servo_endstop_id[i]].move(servo_endstop_angle[i][1]);
  588. #endif // HAS_SERVO_ENDSTOPS
  589. }
  590. /**
  591. * Stepper Reset (RigidBoard, et.al.)
  592. */
  593. #if HAS_STEPPER_RESET
  594. void disableStepperDrivers() {
  595. pinMode(STEPPER_RESET_PIN, OUTPUT);
  596. digitalWrite(STEPPER_RESET_PIN, LOW); // drive it down to hold in reset motor driver chips
  597. }
  598. void enableStepperDrivers() { pinMode(STEPPER_RESET_PIN, INPUT); } // set to input, which allows it to be pulled high by pullups
  599. #endif
  600. /**
  601. * Marlin entry-point: Set up before the program loop
  602. * - Set up the kill pin, filament runout, power hold
  603. * - Start the serial port
  604. * - Print startup messages and diagnostics
  605. * - Get EEPROM or default settings
  606. * - Initialize managers for:
  607. * • temperature
  608. * • planner
  609. * • watchdog
  610. * • stepper
  611. * • photo pin
  612. * • servos
  613. * • LCD controller
  614. * • Digipot I2C
  615. * • Z probe sled
  616. * • status LEDs
  617. */
  618. void setup() {
  619. #ifdef DISABLE_JTAG
  620. // Disable JTAG on AT90USB chips to free up pins for IO
  621. MCUCR = 0x80;
  622. MCUCR = 0x80;
  623. #endif
  624. setup_killpin();
  625. setup_filrunoutpin();
  626. setup_powerhold();
  627. #if HAS_STEPPER_RESET
  628. disableStepperDrivers();
  629. #endif
  630. MYSERIAL.begin(BAUDRATE);
  631. SERIAL_PROTOCOLLNPGM("start");
  632. SERIAL_ECHO_START;
  633. // Check startup - does nothing if bootloader sets MCUSR to 0
  634. byte mcu = MCUSR;
  635. if (mcu & 1) SERIAL_ECHOLNPGM(MSG_POWERUP);
  636. if (mcu & 2) SERIAL_ECHOLNPGM(MSG_EXTERNAL_RESET);
  637. if (mcu & 4) SERIAL_ECHOLNPGM(MSG_BROWNOUT_RESET);
  638. if (mcu & 8) SERIAL_ECHOLNPGM(MSG_WATCHDOG_RESET);
  639. if (mcu & 32) SERIAL_ECHOLNPGM(MSG_SOFTWARE_RESET);
  640. MCUSR = 0;
  641. SERIAL_ECHOPGM(MSG_MARLIN);
  642. SERIAL_ECHOLNPGM(" " SHORT_BUILD_VERSION);
  643. #ifdef STRING_DISTRIBUTION_DATE
  644. #ifdef STRING_CONFIG_H_AUTHOR
  645. SERIAL_ECHO_START;
  646. SERIAL_ECHOPGM(MSG_CONFIGURATION_VER);
  647. SERIAL_ECHOPGM(STRING_DISTRIBUTION_DATE);
  648. SERIAL_ECHOPGM(MSG_AUTHOR);
  649. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  650. SERIAL_ECHOPGM("Compiled: ");
  651. SERIAL_ECHOLNPGM(__DATE__);
  652. #endif // STRING_CONFIG_H_AUTHOR
  653. #endif // STRING_DISTRIBUTION_DATE
  654. SERIAL_ECHO_START;
  655. SERIAL_ECHOPGM(MSG_FREE_MEMORY);
  656. SERIAL_ECHO(freeMemory());
  657. SERIAL_ECHOPGM(MSG_PLANNER_BUFFER_BYTES);
  658. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  659. // Send "ok" after commands by default
  660. for (int8_t i = 0; i < BUFSIZE; i++) send_ok[i] = true;
  661. // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  662. Config_RetrieveSettings();
  663. lcd_init();
  664. tp_init(); // Initialize temperature loop
  665. plan_init(); // Initialize planner;
  666. #if ENABLED(USE_WATCHDOG)
  667. watchdog_init();
  668. #endif
  669. st_init(); // Initialize stepper, this enables interrupts!
  670. setup_photpin();
  671. servo_init();
  672. #if HAS_CONTROLLERFAN
  673. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  674. #endif
  675. #if HAS_STEPPER_RESET
  676. enableStepperDrivers();
  677. #endif
  678. #if ENABLED(DIGIPOT_I2C)
  679. digipot_i2c_init();
  680. #endif
  681. #if ENABLED(Z_PROBE_SLED)
  682. pinMode(SLED_PIN, OUTPUT);
  683. digitalWrite(SLED_PIN, LOW); // turn it off
  684. #endif // Z_PROBE_SLED
  685. setup_homepin();
  686. #ifdef STAT_LED_RED
  687. pinMode(STAT_LED_RED, OUTPUT);
  688. digitalWrite(STAT_LED_RED, LOW); // turn it off
  689. #endif
  690. #ifdef STAT_LED_BLUE
  691. pinMode(STAT_LED_BLUE, OUTPUT);
  692. digitalWrite(STAT_LED_BLUE, LOW); // turn it off
  693. #endif
  694. }
  695. /**
  696. * The main Marlin program loop
  697. *
  698. * - Save or log commands to SD
  699. * - Process available commands (if not saving)
  700. * - Call heater manager
  701. * - Call inactivity manager
  702. * - Call endstop manager
  703. * - Call LCD update
  704. */
  705. void loop() {
  706. if (commands_in_queue < BUFSIZE) get_available_commands();
  707. #if ENABLED(SDSUPPORT)
  708. card.checkautostart(false);
  709. #endif
  710. if (commands_in_queue) {
  711. #if ENABLED(SDSUPPORT)
  712. if (card.saving) {
  713. char* command = command_queue[cmd_queue_index_r];
  714. if (strstr_P(command, PSTR("M29"))) {
  715. // M29 closes the file
  716. card.closefile();
  717. SERIAL_PROTOCOLLNPGM(MSG_FILE_SAVED);
  718. ok_to_send();
  719. }
  720. else {
  721. // Write the string from the read buffer to SD
  722. card.write_command(command);
  723. if (card.logging)
  724. process_next_command(); // The card is saving because it's logging
  725. else
  726. ok_to_send();
  727. }
  728. }
  729. else
  730. process_next_command();
  731. #else
  732. process_next_command();
  733. #endif // SDSUPPORT
  734. commands_in_queue--;
  735. cmd_queue_index_r = (cmd_queue_index_r + 1) % BUFSIZE;
  736. }
  737. checkHitEndstops();
  738. idle();
  739. }
  740. void gcode_line_error(const char* err, bool doFlush = true) {
  741. SERIAL_ERROR_START;
  742. serialprintPGM(err);
  743. SERIAL_ERRORLN(gcode_LastN);
  744. //Serial.println(gcode_N);
  745. if (doFlush) FlushSerialRequestResend();
  746. serial_count = 0;
  747. }
  748. inline void get_serial_commands() {
  749. static char serial_line_buffer[MAX_CMD_SIZE];
  750. static boolean serial_comment_mode = false;
  751. // If the command buffer is empty for too long,
  752. // send "wait" to indicate Marlin is still waiting.
  753. #if defined(NO_TIMEOUTS) && NO_TIMEOUTS > 0
  754. static millis_t last_command_time = 0;
  755. millis_t ms = millis();
  756. if (commands_in_queue == 0 && !MYSERIAL.available() && ms > last_command_time + NO_TIMEOUTS) {
  757. SERIAL_ECHOLNPGM(MSG_WAIT);
  758. last_command_time = ms;
  759. }
  760. #endif
  761. /**
  762. * Loop while serial characters are incoming and the queue is not full
  763. */
  764. while (commands_in_queue < BUFSIZE && MYSERIAL.available() > 0) {
  765. char serial_char = MYSERIAL.read();
  766. /**
  767. * If the character ends the line
  768. */
  769. if (serial_char == '\n' || serial_char == '\r') {
  770. serial_comment_mode = false; // end of line == end of comment
  771. if (!serial_count) continue; // skip empty lines
  772. serial_line_buffer[serial_count] = 0; // terminate string
  773. serial_count = 0; //reset buffer
  774. char* command = serial_line_buffer;
  775. while (*command == ' ') command++; // skip any leading spaces
  776. char* npos = (*command == 'N') ? command : NULL; // Require the N parameter to start the line
  777. char* apos = strchr(command, '*');
  778. if (npos) {
  779. boolean M110 = strstr_P(command, PSTR("M110")) != NULL;
  780. if (M110) {
  781. char* n2pos = strchr(command + 4, 'N');
  782. if (n2pos) npos = n2pos;
  783. }
  784. gcode_N = strtol(npos + 1, NULL, 10);
  785. if (gcode_N != gcode_LastN + 1 && !M110) {
  786. gcode_line_error(PSTR(MSG_ERR_LINE_NO));
  787. return;
  788. }
  789. if (apos) {
  790. byte checksum = 0, count = 0;
  791. while (command[count] != '*') checksum ^= command[count++];
  792. if (strtol(apos + 1, NULL, 10) != checksum) {
  793. gcode_line_error(PSTR(MSG_ERR_CHECKSUM_MISMATCH));
  794. return;
  795. }
  796. // if no errors, continue parsing
  797. }
  798. else {
  799. gcode_line_error(PSTR(MSG_ERR_NO_CHECKSUM));
  800. return;
  801. }
  802. gcode_LastN = gcode_N;
  803. // if no errors, continue parsing
  804. }
  805. else if (apos) { // No '*' without 'N'
  806. gcode_line_error(PSTR(MSG_ERR_NO_LINENUMBER_WITH_CHECKSUM), false);
  807. return;
  808. }
  809. // Movement commands alert when stopped
  810. if (IsStopped()) {
  811. char* gpos = strchr(command, 'G');
  812. if (gpos) {
  813. int codenum = strtol(gpos + 1, NULL, 10);
  814. switch (codenum) {
  815. case 0:
  816. case 1:
  817. case 2:
  818. case 3:
  819. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  820. LCD_MESSAGEPGM(MSG_STOPPED);
  821. break;
  822. }
  823. }
  824. }
  825. // If command was e-stop process now
  826. if (strcmp(command, "M112") == 0) kill(PSTR(MSG_KILLED));
  827. #if defined(NO_TIMEOUTS) && NO_TIMEOUTS > 0
  828. last_command_time = ms;
  829. #endif
  830. // Add the command to the queue
  831. _enqueuecommand(serial_line_buffer, true);
  832. }
  833. else if (serial_count >= MAX_CMD_SIZE - 1) {
  834. // Keep fetching, but ignore normal characters beyond the max length
  835. // The command will be injected when EOL is reached
  836. }
  837. else if (serial_char == '\\') { // Handle escapes
  838. if (MYSERIAL.available() > 0) {
  839. // if we have one more character, copy it over
  840. serial_char = MYSERIAL.read();
  841. if (!serial_comment_mode) serial_line_buffer[serial_count++] = serial_char;
  842. }
  843. // otherwise do nothing
  844. }
  845. else { // it's not a newline, carriage return or escape char
  846. if (serial_char == ';') serial_comment_mode = true;
  847. if (!serial_comment_mode) serial_line_buffer[serial_count++] = serial_char;
  848. }
  849. } // queue has space, serial has data
  850. }
  851. #if ENABLED(SDSUPPORT)
  852. inline void get_sdcard_commands() {
  853. static bool stop_buffering = false,
  854. sd_comment_mode = false;
  855. if (!card.sdprinting) return;
  856. /**
  857. * '#' stops reading from SD to the buffer prematurely, so procedural
  858. * macro calls are possible. If it occurs, stop_buffering is triggered
  859. * and the buffer is run dry; this character _can_ occur in serial com
  860. * due to checksums, however, no checksums are used in SD printing.
  861. */
  862. if (commands_in_queue == 0) stop_buffering = false;
  863. uint16_t sd_count = 0;
  864. bool card_eof = card.eof();
  865. while (commands_in_queue < BUFSIZE && !card_eof && !stop_buffering) {
  866. int16_t n = card.get();
  867. char sd_char = (char)n;
  868. card_eof = card.eof();
  869. if (card_eof || n == -1
  870. || sd_char == '\n' || sd_char == '\r'
  871. || ((sd_char == '#' || sd_char == ':') && !sd_comment_mode)
  872. ) {
  873. if (card_eof) {
  874. SERIAL_PROTOCOLLNPGM(MSG_FILE_PRINTED);
  875. print_job_stop(true);
  876. char time[30];
  877. millis_t t = print_job_timer();
  878. int hours = t / 60 / 60, minutes = (t / 60) % 60;
  879. sprintf_P(time, PSTR("%i " MSG_END_HOUR " %i " MSG_END_MINUTE), hours, minutes);
  880. SERIAL_ECHO_START;
  881. SERIAL_ECHOLN(time);
  882. lcd_setstatus(time, true);
  883. card.printingHasFinished();
  884. card.checkautostart(true);
  885. }
  886. if (sd_char == '#') stop_buffering = true;
  887. sd_comment_mode = false; //for new command
  888. if (!sd_count) continue; //skip empty lines
  889. command_queue[cmd_queue_index_w][sd_count] = '\0'; //terminate string
  890. sd_count = 0; //clear buffer
  891. _commit_command(false);
  892. }
  893. else if (sd_count >= MAX_CMD_SIZE - 1) {
  894. /**
  895. * Keep fetching, but ignore normal characters beyond the max length
  896. * The command will be injected when EOL is reached
  897. */
  898. }
  899. else {
  900. if (sd_char == ';') sd_comment_mode = true;
  901. if (!sd_comment_mode) command_queue[cmd_queue_index_w][sd_count++] = sd_char;
  902. }
  903. }
  904. }
  905. #endif // SDSUPPORT
  906. /**
  907. * Add to the circular command queue the next command from:
  908. * - The command-injection queue (queued_commands_P)
  909. * - The active serial input (usually USB)
  910. * - The SD card file being actively printed
  911. */
  912. void get_available_commands() {
  913. // if any immediate commands remain, don't get other commands yet
  914. if (drain_queued_commands_P()) return;
  915. get_serial_commands();
  916. #if ENABLED(SDSUPPORT)
  917. get_sdcard_commands();
  918. #endif
  919. }
  920. bool code_has_value() {
  921. int i = 1;
  922. char c = seen_pointer[i];
  923. while (c == ' ') c = seen_pointer[++i];
  924. if (c == '-' || c == '+') c = seen_pointer[++i];
  925. if (c == '.') c = seen_pointer[++i];
  926. return NUMERIC(c);
  927. }
  928. float code_value() {
  929. float ret;
  930. char* e = strchr(seen_pointer, 'E');
  931. if (e) {
  932. *e = 0;
  933. ret = strtod(seen_pointer + 1, NULL);
  934. *e = 'E';
  935. }
  936. else
  937. ret = strtod(seen_pointer + 1, NULL);
  938. return ret;
  939. }
  940. long code_value_long() { return strtol(seen_pointer + 1, NULL, 10); }
  941. int16_t code_value_short() { return (int16_t)strtol(seen_pointer + 1, NULL, 10); }
  942. bool code_seen(char code) {
  943. seen_pointer = strchr(current_command_args, code);
  944. return (seen_pointer != NULL); // Return TRUE if the code-letter was found
  945. }
  946. #define DEFINE_PGM_READ_ANY(type, reader) \
  947. static inline type pgm_read_any(const type *p) \
  948. { return pgm_read_##reader##_near(p); }
  949. DEFINE_PGM_READ_ANY(float, float);
  950. DEFINE_PGM_READ_ANY(signed char, byte);
  951. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  952. static const PROGMEM type array##_P[3] = \
  953. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  954. static inline type array(int axis) \
  955. { return pgm_read_any(&array##_P[axis]); }
  956. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  957. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  958. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  959. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  960. XYZ_CONSTS_FROM_CONFIG(float, home_bump_mm, HOME_BUMP_MM);
  961. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  962. #if ENABLED(DUAL_X_CARRIAGE)
  963. #define DXC_FULL_CONTROL_MODE 0
  964. #define DXC_AUTO_PARK_MODE 1
  965. #define DXC_DUPLICATION_MODE 2
  966. static int dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  967. static float x_home_pos(int extruder) {
  968. if (extruder == 0)
  969. return base_home_pos(X_AXIS) + home_offset[X_AXIS];
  970. else
  971. /**
  972. * In dual carriage mode the extruder offset provides an override of the
  973. * second X-carriage offset when homed - otherwise X2_HOME_POS is used.
  974. * This allow soft recalibration of the second extruder offset position
  975. * without firmware reflash (through the M218 command).
  976. */
  977. return (extruder_offset[X_AXIS][1] > 0) ? extruder_offset[X_AXIS][1] : X2_HOME_POS;
  978. }
  979. static int x_home_dir(int extruder) {
  980. return (extruder == 0) ? X_HOME_DIR : X2_HOME_DIR;
  981. }
  982. static float inactive_extruder_x_pos = X2_MAX_POS; // used in mode 0 & 1
  983. static bool active_extruder_parked = false; // used in mode 1 & 2
  984. static float raised_parked_position[NUM_AXIS]; // used in mode 1
  985. static millis_t delayed_move_time = 0; // used in mode 1
  986. static float duplicate_extruder_x_offset = DEFAULT_DUPLICATION_X_OFFSET; // used in mode 2
  987. static float duplicate_extruder_temp_offset = 0; // used in mode 2
  988. bool extruder_duplication_enabled = false; // used in mode 2
  989. #endif //DUAL_X_CARRIAGE
  990. #if ENABLED(DEBUG_LEVELING_FEATURE)
  991. void print_xyz(const char* prefix, const float x, const float y, const float z) {
  992. SERIAL_ECHO(prefix);
  993. SERIAL_ECHOPAIR(": (", x);
  994. SERIAL_ECHOPAIR(", ", y);
  995. SERIAL_ECHOPAIR(", ", z);
  996. SERIAL_ECHOLNPGM(")");
  997. }
  998. void print_xyz(const char* prefix, const float xyz[]) {
  999. print_xyz(prefix, xyz[X_AXIS], xyz[Y_AXIS], xyz[Z_AXIS]);
  1000. }
  1001. #define DEBUG_POS(PREFIX,VAR) do{ SERIAL_ECHOPGM(PREFIX); print_xyz(" > " STRINGIFY(VAR), VAR); }while(0)
  1002. #endif
  1003. static void set_axis_is_at_home(AxisEnum axis) {
  1004. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1005. if (DEBUGGING(LEVELING)) {
  1006. SERIAL_ECHOPAIR("set_axis_is_at_home(", (unsigned long)axis);
  1007. SERIAL_ECHOLNPGM(") >>>");
  1008. }
  1009. #endif
  1010. #if ENABLED(DUAL_X_CARRIAGE)
  1011. if (axis == X_AXIS) {
  1012. if (active_extruder != 0) {
  1013. current_position[X_AXIS] = x_home_pos(active_extruder);
  1014. min_pos[X_AXIS] = X2_MIN_POS;
  1015. max_pos[X_AXIS] = max(extruder_offset[X_AXIS][1], X2_MAX_POS);
  1016. return;
  1017. }
  1018. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE) {
  1019. float xoff = home_offset[X_AXIS];
  1020. current_position[X_AXIS] = base_home_pos(X_AXIS) + xoff;
  1021. min_pos[X_AXIS] = base_min_pos(X_AXIS) + xoff;
  1022. max_pos[X_AXIS] = min(base_max_pos(X_AXIS) + xoff, max(extruder_offset[X_AXIS][1], X2_MAX_POS) - duplicate_extruder_x_offset);
  1023. return;
  1024. }
  1025. }
  1026. #endif
  1027. #if ENABLED(SCARA)
  1028. if (axis == X_AXIS || axis == Y_AXIS) {
  1029. float homeposition[3];
  1030. for (int i = 0; i < 3; i++) homeposition[i] = base_home_pos(i);
  1031. // SERIAL_ECHOPGM("homeposition[x]= "); SERIAL_ECHO(homeposition[0]);
  1032. // SERIAL_ECHOPGM("homeposition[y]= "); SERIAL_ECHOLN(homeposition[1]);
  1033. /**
  1034. * Works out real Homeposition angles using inverse kinematics,
  1035. * and calculates homing offset using forward kinematics
  1036. */
  1037. calculate_delta(homeposition);
  1038. // SERIAL_ECHOPGM("base Theta= "); SERIAL_ECHO(delta[X_AXIS]);
  1039. // SERIAL_ECHOPGM(" base Psi+Theta="); SERIAL_ECHOLN(delta[Y_AXIS]);
  1040. for (int i = 0; i < 2; i++) delta[i] -= home_offset[i];
  1041. // SERIAL_ECHOPGM("addhome X="); SERIAL_ECHO(home_offset[X_AXIS]);
  1042. // SERIAL_ECHOPGM(" addhome Y="); SERIAL_ECHO(home_offset[Y_AXIS]);
  1043. // SERIAL_ECHOPGM(" addhome Theta="); SERIAL_ECHO(delta[X_AXIS]);
  1044. // SERIAL_ECHOPGM(" addhome Psi+Theta="); SERIAL_ECHOLN(delta[Y_AXIS]);
  1045. calculate_SCARA_forward_Transform(delta);
  1046. // SERIAL_ECHOPGM("Delta X="); SERIAL_ECHO(delta[X_AXIS]);
  1047. // SERIAL_ECHOPGM(" Delta Y="); SERIAL_ECHOLN(delta[Y_AXIS]);
  1048. current_position[axis] = delta[axis];
  1049. /**
  1050. * SCARA home positions are based on configuration since the actual
  1051. * limits are determined by the inverse kinematic transform.
  1052. */
  1053. min_pos[axis] = base_min_pos(axis); // + (delta[axis] - base_home_pos(axis));
  1054. max_pos[axis] = base_max_pos(axis); // + (delta[axis] - base_home_pos(axis));
  1055. }
  1056. else
  1057. #endif
  1058. {
  1059. current_position[axis] = base_home_pos(axis) + home_offset[axis];
  1060. min_pos[axis] = base_min_pos(axis) + home_offset[axis];
  1061. max_pos[axis] = base_max_pos(axis) + home_offset[axis];
  1062. #if ENABLED(AUTO_BED_LEVELING_FEATURE) && Z_HOME_DIR < 0
  1063. if (axis == Z_AXIS) {
  1064. current_position[Z_AXIS] -= zprobe_zoffset;
  1065. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1066. if (DEBUGGING(LEVELING)) SERIAL_ECHOPAIR("> zprobe_zoffset==", zprobe_zoffset);
  1067. #endif
  1068. }
  1069. #endif
  1070. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1071. if (DEBUGGING(LEVELING)) {
  1072. SERIAL_ECHOPAIR("> home_offset[axis]==", home_offset[axis]);
  1073. DEBUG_POS("", current_position);
  1074. }
  1075. #endif
  1076. }
  1077. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1078. if (DEBUGGING(LEVELING)) {
  1079. SERIAL_ECHOPAIR("<<< set_axis_is_at_home(", (unsigned long)axis);
  1080. SERIAL_ECHOLNPGM(")");
  1081. }
  1082. #endif
  1083. }
  1084. /**
  1085. * Some planner shorthand inline functions
  1086. */
  1087. inline void set_homing_bump_feedrate(AxisEnum axis) {
  1088. const int homing_bump_divisor[] = HOMING_BUMP_DIVISOR;
  1089. int hbd = homing_bump_divisor[axis];
  1090. if (hbd < 1) {
  1091. hbd = 10;
  1092. SERIAL_ECHO_START;
  1093. SERIAL_ECHOLNPGM("Warning: Homing Bump Divisor < 1");
  1094. }
  1095. feedrate = homing_feedrate[axis] / hbd;
  1096. }
  1097. inline void line_to_current_position() {
  1098. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate / 60, active_extruder);
  1099. }
  1100. inline void line_to_z(float zPosition) {
  1101. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate / 60, active_extruder);
  1102. }
  1103. inline void line_to_destination(float mm_m) {
  1104. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], mm_m / 60, active_extruder);
  1105. }
  1106. inline void line_to_destination() {
  1107. line_to_destination(feedrate);
  1108. }
  1109. inline void sync_plan_position() {
  1110. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1111. }
  1112. #if ENABLED(DELTA) || ENABLED(SCARA)
  1113. inline void sync_plan_position_delta() {
  1114. calculate_delta(current_position);
  1115. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
  1116. }
  1117. #endif
  1118. inline void set_current_to_destination() { memcpy(current_position, destination, sizeof(current_position)); }
  1119. inline void set_destination_to_current() { memcpy(destination, current_position, sizeof(destination)); }
  1120. static void setup_for_endstop_move() {
  1121. saved_feedrate = feedrate;
  1122. saved_feedrate_multiplier = feedrate_multiplier;
  1123. feedrate_multiplier = 100;
  1124. refresh_cmd_timeout();
  1125. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1126. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("setup_for_endstop_move > enable_endstops(true)");
  1127. #endif
  1128. enable_endstops(true);
  1129. }
  1130. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  1131. #if ENABLED(DELTA)
  1132. /**
  1133. * Calculate delta, start a line, and set current_position to destination
  1134. */
  1135. void prepare_move_raw() {
  1136. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1137. if (DEBUGGING(LEVELING)) DEBUG_POS("prepare_move_raw", destination);
  1138. #endif
  1139. refresh_cmd_timeout();
  1140. calculate_delta(destination);
  1141. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], destination[E_AXIS], (feedrate / 60) * (feedrate_multiplier / 100.0), active_extruder);
  1142. set_current_to_destination();
  1143. }
  1144. #endif
  1145. #if ENABLED(AUTO_BED_LEVELING_GRID)
  1146. #if DISABLED(DELTA)
  1147. static void set_bed_level_equation_lsq(double* plane_equation_coefficients) {
  1148. vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
  1149. planeNormal.debug("planeNormal");
  1150. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1151. //bedLevel.debug("bedLevel");
  1152. //plan_bed_level_matrix.debug("bed level before");
  1153. //vector_3 uncorrected_position = plan_get_position_mm();
  1154. //uncorrected_position.debug("position before");
  1155. vector_3 corrected_position = plan_get_position();
  1156. //corrected_position.debug("position after");
  1157. current_position[X_AXIS] = corrected_position.x;
  1158. current_position[Y_AXIS] = corrected_position.y;
  1159. current_position[Z_AXIS] = corrected_position.z;
  1160. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1161. if (DEBUGGING(LEVELING)) DEBUG_POS("set_bed_level_equation_lsq", current_position);
  1162. #endif
  1163. sync_plan_position();
  1164. }
  1165. #endif // !DELTA
  1166. #else // !AUTO_BED_LEVELING_GRID
  1167. static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
  1168. plan_bed_level_matrix.set_to_identity();
  1169. vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
  1170. vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
  1171. vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
  1172. vector_3 planeNormal = vector_3::cross(pt1 - pt2, pt3 - pt2).get_normal();
  1173. if (planeNormal.z < 0) {
  1174. planeNormal.x = -planeNormal.x;
  1175. planeNormal.y = -planeNormal.y;
  1176. planeNormal.z = -planeNormal.z;
  1177. }
  1178. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1179. vector_3 corrected_position = plan_get_position();
  1180. current_position[X_AXIS] = corrected_position.x;
  1181. current_position[Y_AXIS] = corrected_position.y;
  1182. current_position[Z_AXIS] = corrected_position.z;
  1183. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1184. if (DEBUGGING(LEVELING)) DEBUG_POS("set_bed_level_equation_3pts", current_position);
  1185. #endif
  1186. sync_plan_position();
  1187. }
  1188. #endif // !AUTO_BED_LEVELING_GRID
  1189. static void run_z_probe() {
  1190. /**
  1191. * To prevent stepper_inactive_time from running out and
  1192. * EXTRUDER_RUNOUT_PREVENT from extruding
  1193. */
  1194. refresh_cmd_timeout();
  1195. #if ENABLED(DELTA)
  1196. float start_z = current_position[Z_AXIS];
  1197. long start_steps = st_get_position(Z_AXIS);
  1198. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1199. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("run_z_probe (DELTA) 1");
  1200. #endif
  1201. // move down slowly until you find the bed
  1202. feedrate = homing_feedrate[Z_AXIS] / 4;
  1203. destination[Z_AXIS] = -10;
  1204. prepare_move_raw(); // this will also set_current_to_destination
  1205. st_synchronize();
  1206. endstops_hit_on_purpose(); // clear endstop hit flags
  1207. /**
  1208. * We have to let the planner know where we are right now as it
  1209. * is not where we said to go.
  1210. */
  1211. long stop_steps = st_get_position(Z_AXIS);
  1212. float mm = start_z - float(start_steps - stop_steps) / axis_steps_per_unit[Z_AXIS];
  1213. current_position[Z_AXIS] = mm;
  1214. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1215. if (DEBUGGING(LEVELING)) DEBUG_POS("run_z_probe (DELTA) 2", current_position);
  1216. #endif
  1217. sync_plan_position_delta();
  1218. #else // !DELTA
  1219. plan_bed_level_matrix.set_to_identity();
  1220. feedrate = homing_feedrate[Z_AXIS];
  1221. // Move down until the Z probe (or endstop?) is triggered
  1222. float zPosition = -(Z_MAX_LENGTH + 10);
  1223. line_to_z(zPosition);
  1224. st_synchronize();
  1225. // Tell the planner where we ended up - Get this from the stepper handler
  1226. zPosition = st_get_axis_position_mm(Z_AXIS);
  1227. plan_set_position(
  1228. current_position[X_AXIS], current_position[Y_AXIS], zPosition,
  1229. current_position[E_AXIS]
  1230. );
  1231. // move up the retract distance
  1232. zPosition += home_bump_mm(Z_AXIS);
  1233. line_to_z(zPosition);
  1234. st_synchronize();
  1235. endstops_hit_on_purpose(); // clear endstop hit flags
  1236. // move back down slowly to find bed
  1237. set_homing_bump_feedrate(Z_AXIS);
  1238. zPosition -= home_bump_mm(Z_AXIS) * 2;
  1239. line_to_z(zPosition);
  1240. st_synchronize();
  1241. endstops_hit_on_purpose(); // clear endstop hit flags
  1242. // Get the current stepper position after bumping an endstop
  1243. current_position[Z_AXIS] = st_get_axis_position_mm(Z_AXIS);
  1244. sync_plan_position();
  1245. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1246. if (DEBUGGING(LEVELING)) DEBUG_POS("run_z_probe", current_position);
  1247. #endif
  1248. #endif // !DELTA
  1249. }
  1250. /**
  1251. * Plan a move to (X, Y, Z) and set the current_position
  1252. * The final current_position may not be the one that was requested
  1253. */
  1254. static void do_blocking_move_to(float x, float y, float z) {
  1255. float oldFeedRate = feedrate;
  1256. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1257. if (DEBUGGING(LEVELING)) print_xyz("do_blocking_move_to", x, y, z);
  1258. #endif
  1259. #if ENABLED(DELTA)
  1260. feedrate = XY_TRAVEL_SPEED;
  1261. destination[X_AXIS] = x;
  1262. destination[Y_AXIS] = y;
  1263. destination[Z_AXIS] = z;
  1264. prepare_move_raw(); // this will also set_current_to_destination
  1265. st_synchronize();
  1266. #else
  1267. feedrate = homing_feedrate[Z_AXIS];
  1268. current_position[Z_AXIS] = z;
  1269. line_to_current_position();
  1270. st_synchronize();
  1271. feedrate = xy_travel_speed;
  1272. current_position[X_AXIS] = x;
  1273. current_position[Y_AXIS] = y;
  1274. line_to_current_position();
  1275. st_synchronize();
  1276. #endif
  1277. feedrate = oldFeedRate;
  1278. }
  1279. inline void do_blocking_move_to_xy(float x, float y) {
  1280. do_blocking_move_to(x, y, current_position[Z_AXIS]);
  1281. }
  1282. inline void do_blocking_move_to_x(float x) {
  1283. do_blocking_move_to(x, current_position[Y_AXIS], current_position[Z_AXIS]);
  1284. }
  1285. inline void do_blocking_move_to_z(float z) {
  1286. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z);
  1287. }
  1288. inline void raise_z_after_probing() {
  1289. do_blocking_move_to_z(current_position[Z_AXIS] + Z_RAISE_AFTER_PROBING);
  1290. }
  1291. static void clean_up_after_endstop_move() {
  1292. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1293. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("clean_up_after_endstop_move > ENDSTOPS_ONLY_FOR_HOMING > endstops_not_homing()");
  1294. #endif
  1295. endstops_not_homing();
  1296. feedrate = saved_feedrate;
  1297. feedrate_multiplier = saved_feedrate_multiplier;
  1298. refresh_cmd_timeout();
  1299. }
  1300. #if ENABLED(HAS_Z_MIN_PROBE)
  1301. static void deploy_z_probe() {
  1302. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1303. if (DEBUGGING(LEVELING)) DEBUG_POS("deploy_z_probe", current_position);
  1304. #endif
  1305. if (z_probe_is_active) return;
  1306. #if HAS_SERVO_ENDSTOPS
  1307. // Engage Z Servo endstop if enabled
  1308. if (servo_endstop_id[Z_AXIS] >= 0) servo[servo_endstop_id[Z_AXIS]].move(servo_endstop_angle[Z_AXIS][0]);
  1309. #elif ENABLED(Z_PROBE_ALLEN_KEY)
  1310. feedrate = Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE;
  1311. // If endstop is already false, the Z probe is deployed
  1312. #if ENABLED(Z_MIN_PROBE_ENDSTOP)
  1313. bool z_probe_endstop = (READ(Z_MIN_PROBE_PIN) != Z_MIN_PROBE_ENDSTOP_INVERTING);
  1314. if (z_probe_endstop)
  1315. #else
  1316. bool z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
  1317. if (z_min_endstop)
  1318. #endif
  1319. {
  1320. // Move to the start position to initiate deployment
  1321. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_1_X;
  1322. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_1_Y;
  1323. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_1_Z;
  1324. prepare_move_raw(); // this will also set_current_to_destination
  1325. // Move to engage deployment
  1326. if (Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE != Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE)
  1327. feedrate = Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE;
  1328. if (Z_PROBE_ALLEN_KEY_DEPLOY_2_X != Z_PROBE_ALLEN_KEY_DEPLOY_1_X)
  1329. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_2_X;
  1330. if (Z_PROBE_ALLEN_KEY_DEPLOY_2_Y != Z_PROBE_ALLEN_KEY_DEPLOY_1_Y)
  1331. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_2_Y;
  1332. if (Z_PROBE_ALLEN_KEY_DEPLOY_2_Z != Z_PROBE_ALLEN_KEY_DEPLOY_1_Z)
  1333. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_2_Z;
  1334. prepare_move_raw();
  1335. #ifdef Z_PROBE_ALLEN_KEY_DEPLOY_3_X
  1336. if (Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE != Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE)
  1337. feedrate = Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE;
  1338. // Move to trigger deployment
  1339. if (Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE != Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE)
  1340. feedrate = Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE;
  1341. if (Z_PROBE_ALLEN_KEY_DEPLOY_3_X != Z_PROBE_ALLEN_KEY_DEPLOY_2_X)
  1342. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_3_X;
  1343. if (Z_PROBE_ALLEN_KEY_DEPLOY_3_Y != Z_PROBE_ALLEN_KEY_DEPLOY_2_Y)
  1344. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_3_Y;
  1345. if (Z_PROBE_ALLEN_KEY_DEPLOY_3_Z != Z_PROBE_ALLEN_KEY_DEPLOY_2_Z)
  1346. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_3_Z;
  1347. prepare_move_raw();
  1348. #endif
  1349. }
  1350. // Partially Home X,Y for safety
  1351. destination[X_AXIS] = destination[X_AXIS] * 0.75;
  1352. destination[Y_AXIS] = destination[Y_AXIS] * 0.75;
  1353. prepare_move_raw(); // this will also set_current_to_destination
  1354. st_synchronize();
  1355. #if ENABLED(Z_MIN_PROBE_ENDSTOP)
  1356. z_probe_endstop = (READ(Z_MIN_PROBE_PIN) != Z_MIN_PROBE_ENDSTOP_INVERTING);
  1357. if (z_probe_endstop)
  1358. #else
  1359. z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
  1360. if (z_min_endstop)
  1361. #endif
  1362. {
  1363. if (IsRunning()) {
  1364. SERIAL_ERROR_START;
  1365. SERIAL_ERRORLNPGM("Z-Probe failed to engage!");
  1366. LCD_ALERTMESSAGEPGM("Err: ZPROBE");
  1367. }
  1368. Stop();
  1369. }
  1370. #endif // Z_PROBE_ALLEN_KEY
  1371. #if ENABLED(FIX_MOUNTED_PROBE)
  1372. // Noting to be done. Just set z_probe_is_active
  1373. #endif
  1374. z_probe_is_active = true;
  1375. }
  1376. static void stow_z_probe(bool doRaise = true) {
  1377. #if !(HAS_SERVO_ENDSTOPS && (Z_RAISE_AFTER_PROBING > 0))
  1378. UNUSED(doRaise);
  1379. #endif
  1380. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1381. if (DEBUGGING(LEVELING)) DEBUG_POS("stow_z_probe", current_position);
  1382. #endif
  1383. if (!z_probe_is_active) return;
  1384. #if HAS_SERVO_ENDSTOPS
  1385. // Retract Z Servo endstop if enabled
  1386. if (servo_endstop_id[Z_AXIS] >= 0) {
  1387. #if Z_RAISE_AFTER_PROBING > 0
  1388. if (doRaise) {
  1389. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1390. if (DEBUGGING(LEVELING)) {
  1391. SERIAL_ECHOPAIR("Raise Z (after) by ", (float)Z_RAISE_AFTER_PROBING);
  1392. SERIAL_EOL;
  1393. SERIAL_ECHO("> SERVO_ENDSTOPS > raise_z_after_probing()");
  1394. SERIAL_EOL;
  1395. }
  1396. #endif
  1397. raise_z_after_probing(); // this also updates current_position
  1398. st_synchronize();
  1399. }
  1400. #endif
  1401. // Change the Z servo angle
  1402. servo[servo_endstop_id[Z_AXIS]].move(servo_endstop_angle[Z_AXIS][1]);
  1403. }
  1404. #elif ENABLED(Z_PROBE_ALLEN_KEY)
  1405. // Move up for safety
  1406. feedrate = Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE;
  1407. #if Z_RAISE_AFTER_PROBING > 0
  1408. destination[Z_AXIS] = current_position[Z_AXIS] + Z_RAISE_AFTER_PROBING;
  1409. prepare_move_raw(); // this will also set_current_to_destination
  1410. #endif
  1411. // Move to the start position to initiate retraction
  1412. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_STOW_1_X;
  1413. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_STOW_1_Y;
  1414. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_STOW_1_Z;
  1415. prepare_move_raw();
  1416. // Move the nozzle down to push the Z probe into retracted position
  1417. if (Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE != Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE)
  1418. feedrate = Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE;
  1419. if (Z_PROBE_ALLEN_KEY_STOW_2_X != Z_PROBE_ALLEN_KEY_STOW_1_X)
  1420. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_STOW_2_X;
  1421. if (Z_PROBE_ALLEN_KEY_STOW_2_Y != Z_PROBE_ALLEN_KEY_STOW_1_Y)
  1422. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_STOW_2_Y;
  1423. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_STOW_2_Z;
  1424. prepare_move_raw();
  1425. // Move up for safety
  1426. if (Z_PROBE_ALLEN_KEY_STOW_3_FEEDRATE != Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE)
  1427. feedrate = Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE;
  1428. if (Z_PROBE_ALLEN_KEY_STOW_3_X != Z_PROBE_ALLEN_KEY_STOW_2_X)
  1429. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_STOW_3_X;
  1430. if (Z_PROBE_ALLEN_KEY_STOW_3_Y != Z_PROBE_ALLEN_KEY_STOW_2_Y)
  1431. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_STOW_3_Y;
  1432. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_STOW_3_Z;
  1433. prepare_move_raw();
  1434. // Home XY for safety
  1435. feedrate = homing_feedrate[X_AXIS] / 2;
  1436. destination[X_AXIS] = 0;
  1437. destination[Y_AXIS] = 0;
  1438. prepare_move_raw(); // this will also set_current_to_destination
  1439. st_synchronize();
  1440. #if ENABLED(Z_MIN_PROBE_ENDSTOP)
  1441. bool z_probe_endstop = (READ(Z_MIN_PROBE_PIN) != Z_MIN_PROBE_ENDSTOP_INVERTING);
  1442. if (!z_probe_endstop)
  1443. #else
  1444. bool z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
  1445. if (!z_min_endstop)
  1446. #endif
  1447. {
  1448. if (IsRunning()) {
  1449. SERIAL_ERROR_START;
  1450. SERIAL_ERRORLNPGM("Z-Probe failed to retract!");
  1451. LCD_ALERTMESSAGEPGM("Err: ZPROBE");
  1452. }
  1453. Stop();
  1454. }
  1455. #endif // Z_PROBE_ALLEN_KEY
  1456. #if ENABLED(FIX_MOUNTED_PROBE)
  1457. // Noting to be done. Just set z_probe_is_active
  1458. #endif
  1459. z_probe_is_active = false;
  1460. }
  1461. #endif // HAS_Z_MIN_PROBE
  1462. enum ProbeAction {
  1463. ProbeStay = 0,
  1464. ProbeDeploy = _BV(0),
  1465. ProbeStow = _BV(1),
  1466. ProbeDeployAndStow = (ProbeDeploy | ProbeStow)
  1467. };
  1468. // Probe bed height at position (x,y), returns the measured z value
  1469. static float probe_pt(float x, float y, float z_before, ProbeAction probe_action = ProbeDeployAndStow, int verbose_level = 1) {
  1470. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1471. if (DEBUGGING(LEVELING)) {
  1472. SERIAL_ECHOLNPGM("probe_pt >>>");
  1473. SERIAL_ECHOPAIR("> ProbeAction:", (unsigned long)probe_action);
  1474. SERIAL_EOL;
  1475. DEBUG_POS("", current_position);
  1476. }
  1477. #endif
  1478. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1479. if (DEBUGGING(LEVELING)) {
  1480. SERIAL_ECHOPAIR("Z Raise to z_before ", z_before);
  1481. SERIAL_EOL;
  1482. SERIAL_ECHOPAIR("> do_blocking_move_to_z ", z_before);
  1483. SERIAL_EOL;
  1484. }
  1485. #endif
  1486. // Move Z up to the z_before height, then move the Z probe to the given XY
  1487. do_blocking_move_to_z(z_before); // this also updates current_position
  1488. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1489. if (DEBUGGING(LEVELING)) {
  1490. SERIAL_ECHOPAIR("> do_blocking_move_to_xy ", x - (X_PROBE_OFFSET_FROM_EXTRUDER));
  1491. SERIAL_ECHOPAIR(", ", y - (Y_PROBE_OFFSET_FROM_EXTRUDER));
  1492. SERIAL_EOL;
  1493. }
  1494. #endif
  1495. // this also updates current_position
  1496. do_blocking_move_to_xy(x - (X_PROBE_OFFSET_FROM_EXTRUDER), y - (Y_PROBE_OFFSET_FROM_EXTRUDER));
  1497. #if DISABLED(Z_PROBE_SLED) && DISABLED(Z_PROBE_ALLEN_KEY)
  1498. if (probe_action & ProbeDeploy) {
  1499. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1500. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> ProbeDeploy");
  1501. #endif
  1502. deploy_z_probe();
  1503. }
  1504. #endif
  1505. run_z_probe();
  1506. float measured_z = current_position[Z_AXIS];
  1507. #if DISABLED(Z_PROBE_SLED) && DISABLED(Z_PROBE_ALLEN_KEY)
  1508. if (probe_action & ProbeStow) {
  1509. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1510. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> ProbeStow (stow_z_probe will do Z Raise)");
  1511. #endif
  1512. stow_z_probe();
  1513. }
  1514. #endif
  1515. if (verbose_level > 2) {
  1516. SERIAL_PROTOCOLPGM("Bed X: ");
  1517. SERIAL_PROTOCOL_F(x, 3);
  1518. SERIAL_PROTOCOLPGM(" Y: ");
  1519. SERIAL_PROTOCOL_F(y, 3);
  1520. SERIAL_PROTOCOLPGM(" Z: ");
  1521. SERIAL_PROTOCOL_F(measured_z, 3);
  1522. SERIAL_EOL;
  1523. }
  1524. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1525. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< probe_pt");
  1526. #endif
  1527. return measured_z;
  1528. }
  1529. #if ENABLED(DELTA)
  1530. /**
  1531. * All DELTA leveling in the Marlin uses NONLINEAR_BED_LEVELING
  1532. */
  1533. static void extrapolate_one_point(int x, int y, int xdir, int ydir) {
  1534. if (bed_level[x][y] != 0.0) {
  1535. return; // Don't overwrite good values.
  1536. }
  1537. float a = 2 * bed_level[x + xdir][y] - bed_level[x + xdir * 2][y]; // Left to right.
  1538. float b = 2 * bed_level[x][y + ydir] - bed_level[x][y + ydir * 2]; // Front to back.
  1539. float c = 2 * bed_level[x + xdir][y + ydir] - bed_level[x + xdir * 2][y + ydir * 2]; // Diagonal.
  1540. float median = c; // Median is robust (ignores outliers).
  1541. if (a < b) {
  1542. if (b < c) median = b;
  1543. if (c < a) median = a;
  1544. }
  1545. else { // b <= a
  1546. if (c < b) median = b;
  1547. if (a < c) median = a;
  1548. }
  1549. bed_level[x][y] = median;
  1550. }
  1551. /**
  1552. * Fill in the unprobed points (corners of circular print surface)
  1553. * using linear extrapolation, away from the center.
  1554. */
  1555. static void extrapolate_unprobed_bed_level() {
  1556. int half = (AUTO_BED_LEVELING_GRID_POINTS - 1) / 2;
  1557. for (int y = 0; y <= half; y++) {
  1558. for (int x = 0; x <= half; x++) {
  1559. if (x + y < 3) continue;
  1560. extrapolate_one_point(half - x, half - y, x > 1 ? +1 : 0, y > 1 ? +1 : 0);
  1561. extrapolate_one_point(half + x, half - y, x > 1 ? -1 : 0, y > 1 ? +1 : 0);
  1562. extrapolate_one_point(half - x, half + y, x > 1 ? +1 : 0, y > 1 ? -1 : 0);
  1563. extrapolate_one_point(half + x, half + y, x > 1 ? -1 : 0, y > 1 ? -1 : 0);
  1564. }
  1565. }
  1566. }
  1567. /**
  1568. * Print calibration results for plotting or manual frame adjustment.
  1569. */
  1570. static void print_bed_level() {
  1571. for (int y = 0; y < AUTO_BED_LEVELING_GRID_POINTS; y++) {
  1572. for (int x = 0; x < AUTO_BED_LEVELING_GRID_POINTS; x++) {
  1573. SERIAL_PROTOCOL_F(bed_level[x][y], 2);
  1574. SERIAL_PROTOCOLCHAR(' ');
  1575. }
  1576. SERIAL_EOL;
  1577. }
  1578. }
  1579. /**
  1580. * Reset calibration results to zero.
  1581. */
  1582. void reset_bed_level() {
  1583. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1584. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("reset_bed_level");
  1585. #endif
  1586. for (int y = 0; y < AUTO_BED_LEVELING_GRID_POINTS; y++) {
  1587. for (int x = 0; x < AUTO_BED_LEVELING_GRID_POINTS; x++) {
  1588. bed_level[x][y] = 0.0;
  1589. }
  1590. }
  1591. }
  1592. #endif // DELTA
  1593. #if HAS_SERVO_ENDSTOPS && DISABLED(Z_PROBE_SLED)
  1594. void raise_z_for_servo() {
  1595. float zpos = current_position[Z_AXIS], z_dest = Z_RAISE_BEFORE_PROBING;
  1596. /**
  1597. * The zprobe_zoffset is negative any switch below the nozzle, so
  1598. * multiply by Z_HOME_DIR (-1) to move enough away from bed for the probe
  1599. */
  1600. z_dest += axis_homed[Z_AXIS] ? zprobe_zoffset * Z_HOME_DIR : zpos;
  1601. if (zpos < z_dest) do_blocking_move_to_z(z_dest); // also updates current_position
  1602. }
  1603. #endif
  1604. #endif // AUTO_BED_LEVELING_FEATURE
  1605. #if ENABLED(Z_PROBE_SLED) || ENABLED(Z_SAFE_HOMING) || ENABLED(AUTO_BED_LEVELING_FEATURE)
  1606. static void axis_unhomed_error() {
  1607. LCD_MESSAGEPGM(MSG_YX_UNHOMED);
  1608. SERIAL_ECHO_START;
  1609. SERIAL_ECHOLNPGM(MSG_YX_UNHOMED);
  1610. }
  1611. #endif
  1612. #if ENABLED(Z_PROBE_SLED)
  1613. #ifndef SLED_DOCKING_OFFSET
  1614. #define SLED_DOCKING_OFFSET 0
  1615. #endif
  1616. /**
  1617. * Method to dock/undock a sled designed by Charles Bell.
  1618. *
  1619. * dock[in] If true, move to MAX_X and engage the electromagnet
  1620. * offset[in] The additional distance to move to adjust docking location
  1621. */
  1622. static void dock_sled(bool dock, int offset = 0) {
  1623. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1624. if (DEBUGGING(LEVELING)) {
  1625. SERIAL_ECHOPAIR("dock_sled(", dock);
  1626. SERIAL_ECHOLNPGM(")");
  1627. }
  1628. #endif
  1629. if (z_probe_is_active == dock) return;
  1630. if (!axis_homed[X_AXIS] || !axis_homed[Y_AXIS]) {
  1631. axis_unhomed_error();
  1632. return;
  1633. }
  1634. float oldXpos = current_position[X_AXIS]; // save x position
  1635. if (dock) {
  1636. #if Z_RAISE_AFTER_PROBING > 0
  1637. raise_z_after_probing(); // raise Z
  1638. #endif
  1639. // Dock sled a bit closer to ensure proper capturing
  1640. do_blocking_move_to_x(X_MAX_POS + SLED_DOCKING_OFFSET + offset - 1);
  1641. digitalWrite(SLED_PIN, LOW); // turn off magnet
  1642. }
  1643. else {
  1644. float z_loc = current_position[Z_AXIS];
  1645. if (z_loc < Z_RAISE_BEFORE_PROBING + 5) z_loc = Z_RAISE_BEFORE_PROBING;
  1646. do_blocking_move_to(X_MAX_POS + SLED_DOCKING_OFFSET + offset, current_position[Y_AXIS], z_loc); // this also updates current_position
  1647. digitalWrite(SLED_PIN, HIGH); // turn on magnet
  1648. }
  1649. do_blocking_move_to_x(oldXpos); // return to position before docking
  1650. z_probe_is_active = dock;
  1651. }
  1652. #endif // Z_PROBE_SLED
  1653. /**
  1654. * Home an individual axis
  1655. */
  1656. #define HOMEAXIS(LETTER) homeaxis(LETTER##_AXIS)
  1657. static void homeaxis(AxisEnum axis) {
  1658. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1659. if (DEBUGGING(LEVELING)) {
  1660. SERIAL_ECHOPAIR(">>> homeaxis(", (unsigned long)axis);
  1661. SERIAL_ECHOLNPGM(")");
  1662. }
  1663. #endif
  1664. #define HOMEAXIS_DO(LETTER) \
  1665. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  1666. if (axis == X_AXIS ? HOMEAXIS_DO(X) : axis == Y_AXIS ? HOMEAXIS_DO(Y) : axis == Z_AXIS ? HOMEAXIS_DO(Z) : 0) {
  1667. int axis_home_dir =
  1668. #if ENABLED(DUAL_X_CARRIAGE)
  1669. (axis == X_AXIS) ? x_home_dir(active_extruder) :
  1670. #endif
  1671. home_dir(axis);
  1672. // Set the axis position as setup for the move
  1673. current_position[axis] = 0;
  1674. sync_plan_position();
  1675. #if ENABLED(Z_PROBE_SLED)
  1676. #define _Z_SERVO_TEST (axis != Z_AXIS) // deploy Z, servo.move XY
  1677. #define _Z_PROBE_SUBTEST false // Z will never be invoked
  1678. #define _Z_DEPLOY (dock_sled(false))
  1679. #define _Z_STOW (dock_sled(true))
  1680. #elif SERVO_LEVELING || ENABLED(FIX_MOUNTED_PROBE)
  1681. #define _Z_SERVO_TEST (axis != Z_AXIS) // servo.move XY
  1682. #define _Z_PROBE_SUBTEST false // Z will never be invoked
  1683. #define _Z_DEPLOY (deploy_z_probe())
  1684. #define _Z_STOW (stow_z_probe())
  1685. #elif HAS_SERVO_ENDSTOPS
  1686. #define _Z_SERVO_TEST true // servo.move X, Y, Z
  1687. #define _Z_PROBE_SUBTEST (axis == Z_AXIS) // Z is a probe
  1688. #endif
  1689. if (axis == Z_AXIS) {
  1690. // If there's a Z probe that needs deployment...
  1691. #if ENABLED(Z_PROBE_SLED) || SERVO_LEVELING || ENABLED(FIX_MOUNTED_PROBE)
  1692. // ...and homing Z towards the bed? Deploy it.
  1693. if (axis_home_dir < 0) _Z_DEPLOY;
  1694. #endif
  1695. }
  1696. #if HAS_SERVO_ENDSTOPS
  1697. // Engage an X or Y Servo endstop if enabled
  1698. if (_Z_SERVO_TEST && servo_endstop_id[axis] >= 0) {
  1699. servo[servo_endstop_id[axis]].move(servo_endstop_angle[axis][0]);
  1700. if (_Z_PROBE_SUBTEST) z_probe_is_active = true;
  1701. }
  1702. #endif
  1703. // Set a flag for Z motor locking
  1704. #if ENABLED(Z_DUAL_ENDSTOPS)
  1705. if (axis == Z_AXIS) In_Homing_Process(true);
  1706. #endif
  1707. // Move towards the endstop until an endstop is triggered
  1708. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  1709. feedrate = homing_feedrate[axis];
  1710. line_to_destination();
  1711. st_synchronize();
  1712. // Set the axis position as setup for the move
  1713. current_position[axis] = 0;
  1714. sync_plan_position();
  1715. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1716. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> enable_endstops(false)");
  1717. #endif
  1718. enable_endstops(false); // Disable endstops while moving away
  1719. // Move away from the endstop by the axis HOME_BUMP_MM
  1720. destination[axis] = -home_bump_mm(axis) * axis_home_dir;
  1721. line_to_destination();
  1722. st_synchronize();
  1723. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1724. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> enable_endstops(true)");
  1725. #endif
  1726. enable_endstops(true); // Enable endstops for next homing move
  1727. // Slow down the feedrate for the next move
  1728. set_homing_bump_feedrate(axis);
  1729. // Move slowly towards the endstop until triggered
  1730. destination[axis] = 2 * home_bump_mm(axis) * axis_home_dir;
  1731. line_to_destination();
  1732. st_synchronize();
  1733. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1734. if (DEBUGGING(LEVELING)) DEBUG_POS("> TRIGGER ENDSTOP", current_position);
  1735. #endif
  1736. #if ENABLED(Z_DUAL_ENDSTOPS)
  1737. if (axis == Z_AXIS) {
  1738. float adj = fabs(z_endstop_adj);
  1739. bool lockZ1;
  1740. if (axis_home_dir > 0) {
  1741. adj = -adj;
  1742. lockZ1 = (z_endstop_adj > 0);
  1743. }
  1744. else
  1745. lockZ1 = (z_endstop_adj < 0);
  1746. if (lockZ1) Lock_z_motor(true); else Lock_z2_motor(true);
  1747. sync_plan_position();
  1748. // Move to the adjusted endstop height
  1749. feedrate = homing_feedrate[axis];
  1750. destination[Z_AXIS] = adj;
  1751. line_to_destination();
  1752. st_synchronize();
  1753. if (lockZ1) Lock_z_motor(false); else Lock_z2_motor(false);
  1754. In_Homing_Process(false);
  1755. } // Z_AXIS
  1756. #endif
  1757. #if ENABLED(DELTA)
  1758. // retrace by the amount specified in endstop_adj
  1759. if (endstop_adj[axis] * axis_home_dir < 0) {
  1760. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1761. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> enable_endstops(false)");
  1762. #endif
  1763. enable_endstops(false); // Disable endstops while moving away
  1764. sync_plan_position();
  1765. destination[axis] = endstop_adj[axis];
  1766. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1767. if (DEBUGGING(LEVELING)) {
  1768. SERIAL_ECHOPAIR("> endstop_adj = ", endstop_adj[axis]);
  1769. DEBUG_POS("", destination);
  1770. }
  1771. #endif
  1772. line_to_destination();
  1773. st_synchronize();
  1774. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1775. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> enable_endstops(true)");
  1776. #endif
  1777. enable_endstops(true); // Enable endstops for next homing move
  1778. }
  1779. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1780. else {
  1781. if (DEBUGGING(LEVELING)) {
  1782. SERIAL_ECHOPAIR("> endstop_adj * axis_home_dir = ", endstop_adj[axis] * axis_home_dir);
  1783. SERIAL_EOL;
  1784. }
  1785. }
  1786. #endif
  1787. #endif
  1788. // Set the axis position to its home position (plus home offsets)
  1789. set_axis_is_at_home(axis);
  1790. sync_plan_position();
  1791. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1792. if (DEBUGGING(LEVELING)) DEBUG_POS("> AFTER set_axis_is_at_home", current_position);
  1793. #endif
  1794. destination[axis] = current_position[axis];
  1795. feedrate = 0.0;
  1796. endstops_hit_on_purpose(); // clear endstop hit flags
  1797. axis_known_position[axis] = true;
  1798. axis_homed[axis] = true;
  1799. // Put away the Z probe
  1800. #if ENABLED(Z_PROBE_SLED) || SERVO_LEVELING || ENABLED(FIX_MOUNTED_PROBE)
  1801. if (axis == Z_AXIS && axis_home_dir < 0) {
  1802. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1803. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> SERVO_LEVELING > " STRINGIFY(_Z_STOW));
  1804. #endif
  1805. _Z_STOW;
  1806. }
  1807. #endif
  1808. // Retract Servo endstop if enabled
  1809. #if HAS_SERVO_ENDSTOPS
  1810. if (_Z_SERVO_TEST && servo_endstop_id[axis] >= 0) {
  1811. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1812. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> SERVO_ENDSTOPS > Stow with servo.move()");
  1813. #endif
  1814. servo[servo_endstop_id[axis]].move(servo_endstop_angle[axis][1]);
  1815. if (_Z_PROBE_SUBTEST) z_probe_is_active = false;
  1816. }
  1817. #endif
  1818. }
  1819. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1820. if (DEBUGGING(LEVELING)) {
  1821. SERIAL_ECHOPAIR("<<< homeaxis(", (unsigned long)axis);
  1822. SERIAL_ECHOLNPGM(")");
  1823. }
  1824. #endif
  1825. }
  1826. #if ENABLED(FWRETRACT)
  1827. void retract(bool retracting, bool swapping = false) {
  1828. if (retracting == retracted[active_extruder]) return;
  1829. float oldFeedrate = feedrate;
  1830. set_destination_to_current();
  1831. if (retracting) {
  1832. feedrate = retract_feedrate * 60;
  1833. current_position[E_AXIS] += (swapping ? retract_length_swap : retract_length) / volumetric_multiplier[active_extruder];
  1834. plan_set_e_position(current_position[E_AXIS]);
  1835. prepare_move();
  1836. if (retract_zlift > 0.01) {
  1837. current_position[Z_AXIS] -= retract_zlift;
  1838. #if ENABLED(DELTA)
  1839. sync_plan_position_delta();
  1840. #else
  1841. sync_plan_position();
  1842. #endif
  1843. prepare_move();
  1844. }
  1845. }
  1846. else {
  1847. if (retract_zlift > 0.01) {
  1848. current_position[Z_AXIS] += retract_zlift;
  1849. #if ENABLED(DELTA)
  1850. sync_plan_position_delta();
  1851. #else
  1852. sync_plan_position();
  1853. #endif
  1854. //prepare_move();
  1855. }
  1856. feedrate = retract_recover_feedrate * 60;
  1857. float move_e = swapping ? retract_length_swap + retract_recover_length_swap : retract_length + retract_recover_length;
  1858. current_position[E_AXIS] -= move_e / volumetric_multiplier[active_extruder];
  1859. plan_set_e_position(current_position[E_AXIS]);
  1860. prepare_move();
  1861. }
  1862. feedrate = oldFeedrate;
  1863. retracted[active_extruder] = retracting;
  1864. } // retract()
  1865. #endif // FWRETRACT
  1866. /**
  1867. * ***************************************************************************
  1868. * ***************************** G-CODE HANDLING *****************************
  1869. * ***************************************************************************
  1870. */
  1871. /**
  1872. * Set XYZE destination and feedrate from the current GCode command
  1873. *
  1874. * - Set destination from included axis codes
  1875. * - Set to current for missing axis codes
  1876. * - Set the feedrate, if included
  1877. */
  1878. void gcode_get_destination() {
  1879. for (int i = 0; i < NUM_AXIS; i++) {
  1880. if (code_seen(axis_codes[i]))
  1881. destination[i] = code_value() + (axis_relative_modes[i] || relative_mode ? current_position[i] : 0);
  1882. else
  1883. destination[i] = current_position[i];
  1884. }
  1885. if (code_seen('F')) {
  1886. float next_feedrate = code_value();
  1887. if (next_feedrate > 0.0) feedrate = next_feedrate;
  1888. }
  1889. }
  1890. void unknown_command_error() {
  1891. SERIAL_ECHO_START;
  1892. SERIAL_ECHOPGM(MSG_UNKNOWN_COMMAND);
  1893. SERIAL_ECHO(current_command);
  1894. SERIAL_ECHOPGM("\"\n");
  1895. }
  1896. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  1897. /**
  1898. * Output a "busy" message at regular intervals
  1899. * while the machine is not accepting commands.
  1900. */
  1901. void host_keepalive() {
  1902. millis_t ms = millis();
  1903. if (busy_state != NOT_BUSY) {
  1904. if (ms < next_busy_signal_ms) return;
  1905. switch (busy_state) {
  1906. case IN_HANDLER:
  1907. case IN_PROCESS:
  1908. SERIAL_ECHO_START;
  1909. SERIAL_ECHOLNPGM(MSG_BUSY_PROCESSING);
  1910. break;
  1911. case PAUSED_FOR_USER:
  1912. SERIAL_ECHO_START;
  1913. SERIAL_ECHOLNPGM(MSG_BUSY_PAUSED_FOR_USER);
  1914. break;
  1915. case PAUSED_FOR_INPUT:
  1916. SERIAL_ECHO_START;
  1917. SERIAL_ECHOLNPGM(MSG_BUSY_PAUSED_FOR_INPUT);
  1918. break;
  1919. default:
  1920. break;
  1921. }
  1922. }
  1923. next_busy_signal_ms = ms + 10000UL; // "busy: ..." message every 10s
  1924. }
  1925. #endif //HOST_KEEPALIVE_FEATURE
  1926. /**
  1927. * G0, G1: Coordinated movement of X Y Z E axes
  1928. */
  1929. inline void gcode_G0_G1() {
  1930. if (IsRunning()) {
  1931. gcode_get_destination(); // For X Y Z E F
  1932. #if ENABLED(FWRETRACT)
  1933. if (autoretract_enabled && !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  1934. float echange = destination[E_AXIS] - current_position[E_AXIS];
  1935. // Is this move an attempt to retract or recover?
  1936. if ((echange < -MIN_RETRACT && !retracted[active_extruder]) || (echange > MIN_RETRACT && retracted[active_extruder])) {
  1937. current_position[E_AXIS] = destination[E_AXIS]; // hide the slicer-generated retract/recover from calculations
  1938. plan_set_e_position(current_position[E_AXIS]); // AND from the planner
  1939. retract(!retracted[active_extruder]);
  1940. return;
  1941. }
  1942. }
  1943. #endif //FWRETRACT
  1944. prepare_move();
  1945. }
  1946. }
  1947. /**
  1948. * G2: Clockwise Arc
  1949. * G3: Counterclockwise Arc
  1950. */
  1951. inline void gcode_G2_G3(bool clockwise) {
  1952. if (IsRunning()) {
  1953. #if ENABLED(SF_ARC_FIX)
  1954. bool relative_mode_backup = relative_mode;
  1955. relative_mode = true;
  1956. #endif
  1957. gcode_get_destination();
  1958. #if ENABLED(SF_ARC_FIX)
  1959. relative_mode = relative_mode_backup;
  1960. #endif
  1961. // Center of arc as offset from current_position
  1962. float arc_offset[2] = {
  1963. code_seen('I') ? code_value() : 0,
  1964. code_seen('J') ? code_value() : 0
  1965. };
  1966. // Send an arc to the planner
  1967. plan_arc(destination, arc_offset, clockwise);
  1968. refresh_cmd_timeout();
  1969. }
  1970. }
  1971. /**
  1972. * G4: Dwell S<seconds> or P<milliseconds>
  1973. */
  1974. inline void gcode_G4() {
  1975. millis_t codenum = 0;
  1976. if (code_seen('P')) codenum = code_value_long(); // milliseconds to wait
  1977. if (code_seen('S')) codenum = code_value() * 1000; // seconds to wait
  1978. st_synchronize();
  1979. refresh_cmd_timeout();
  1980. codenum += previous_cmd_ms; // keep track of when we started waiting
  1981. if (!lcd_hasstatus()) LCD_MESSAGEPGM(MSG_DWELL);
  1982. while (millis() < codenum) idle();
  1983. }
  1984. #if ENABLED(FWRETRACT)
  1985. /**
  1986. * G10 - Retract filament according to settings of M207
  1987. * G11 - Recover filament according to settings of M208
  1988. */
  1989. inline void gcode_G10_G11(bool doRetract=false) {
  1990. #if EXTRUDERS > 1
  1991. if (doRetract) {
  1992. retracted_swap[active_extruder] = (code_seen('S') && code_value_short() == 1); // checks for swap retract argument
  1993. }
  1994. #endif
  1995. retract(doRetract
  1996. #if EXTRUDERS > 1
  1997. , retracted_swap[active_extruder]
  1998. #endif
  1999. );
  2000. }
  2001. #endif //FWRETRACT
  2002. /**
  2003. * G28: Home all axes according to settings
  2004. *
  2005. * Parameters
  2006. *
  2007. * None Home to all axes with no parameters.
  2008. * With QUICK_HOME enabled XY will home together, then Z.
  2009. *
  2010. * Cartesian parameters
  2011. *
  2012. * X Home to the X endstop
  2013. * Y Home to the Y endstop
  2014. * Z Home to the Z endstop
  2015. *
  2016. */
  2017. inline void gcode_G28() {
  2018. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2019. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("gcode_G28 >>>");
  2020. #endif
  2021. // Wait for planner moves to finish!
  2022. st_synchronize();
  2023. // For auto bed leveling, clear the level matrix
  2024. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  2025. plan_bed_level_matrix.set_to_identity();
  2026. #if ENABLED(DELTA)
  2027. reset_bed_level();
  2028. #endif
  2029. #endif
  2030. /**
  2031. * For mesh bed leveling deactivate the mesh calculations, will be turned
  2032. * on again when homing all axis
  2033. */
  2034. #if ENABLED(MESH_BED_LEVELING)
  2035. uint8_t mbl_was_active = mbl.active;
  2036. mbl.active = 0;
  2037. #endif
  2038. setup_for_endstop_move();
  2039. /**
  2040. * Directly after a reset this is all 0. Later we get a hint if we have
  2041. * to raise z or not.
  2042. */
  2043. set_destination_to_current();
  2044. feedrate = 0.0;
  2045. #if ENABLED(DELTA)
  2046. /**
  2047. * A delta can only safely home all axis at the same time
  2048. * all axis have to home at the same time
  2049. */
  2050. // Pretend the current position is 0,0,0
  2051. for (int i = X_AXIS; i <= Z_AXIS; i++) current_position[i] = 0;
  2052. sync_plan_position();
  2053. // Move all carriages up together until the first endstop is hit.
  2054. for (int i = X_AXIS; i <= Z_AXIS; i++) destination[i] = 3 * (Z_MAX_LENGTH);
  2055. feedrate = 1.732 * homing_feedrate[X_AXIS];
  2056. line_to_destination();
  2057. st_synchronize();
  2058. endstops_hit_on_purpose(); // clear endstop hit flags
  2059. // Destination reached
  2060. for (int i = X_AXIS; i <= Z_AXIS; i++) current_position[i] = destination[i];
  2061. // take care of back off and rehome now we are all at the top
  2062. HOMEAXIS(X);
  2063. HOMEAXIS(Y);
  2064. HOMEAXIS(Z);
  2065. sync_plan_position_delta();
  2066. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2067. if (DEBUGGING(LEVELING)) DEBUG_POS("(DELTA)", current_position);
  2068. #endif
  2069. #else // NOT DELTA
  2070. bool homeX = code_seen(axis_codes[X_AXIS]),
  2071. homeY = code_seen(axis_codes[Y_AXIS]),
  2072. homeZ = code_seen(axis_codes[Z_AXIS]);
  2073. home_all_axis = (!homeX && !homeY && !homeZ) || (homeX && homeY && homeZ);
  2074. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  2075. if (home_all_axis || homeZ) {
  2076. HOMEAXIS(Z);
  2077. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2078. if (DEBUGGING(LEVELING)) DEBUG_POS("> HOMEAXIS(Z)", current_position);
  2079. #endif
  2080. }
  2081. #elif defined(MIN_Z_HEIGHT_FOR_HOMING) && MIN_Z_HEIGHT_FOR_HOMING > 0
  2082. // Raise Z before homing any other axes and z is not already high enough (never lower z)
  2083. if (current_position[Z_AXIS] <= MIN_Z_HEIGHT_FOR_HOMING) {
  2084. destination[Z_AXIS] = MIN_Z_HEIGHT_FOR_HOMING;
  2085. feedrate = max_feedrate[Z_AXIS] * 60; // feedrate (mm/m) = max_feedrate (mm/s)
  2086. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2087. if (DEBUGGING(LEVELING)) {
  2088. SERIAL_ECHOPAIR("Raise Z (before homing) to ", (float)(MIN_Z_HEIGHT_FOR_HOMING));
  2089. SERIAL_EOL;
  2090. DEBUG_POS("> (home_all_axis || homeZ)", current_position);
  2091. DEBUG_POS("> (home_all_axis || homeZ)", destination);
  2092. }
  2093. #endif
  2094. line_to_destination();
  2095. st_synchronize();
  2096. /**
  2097. * Update the current Z position even if it currently not real from
  2098. * Z-home otherwise each call to line_to_destination() will want to
  2099. * move Z-axis by MIN_Z_HEIGHT_FOR_HOMING.
  2100. */
  2101. current_position[Z_AXIS] = destination[Z_AXIS];
  2102. }
  2103. #endif
  2104. #if ENABLED(QUICK_HOME)
  2105. if (home_all_axis || (homeX && homeY)) { // First diagonal move
  2106. current_position[X_AXIS] = current_position[Y_AXIS] = 0;
  2107. #if ENABLED(DUAL_X_CARRIAGE)
  2108. int x_axis_home_dir = x_home_dir(active_extruder);
  2109. extruder_duplication_enabled = false;
  2110. #else
  2111. int x_axis_home_dir = home_dir(X_AXIS);
  2112. #endif
  2113. sync_plan_position();
  2114. float mlx = max_length(X_AXIS), mly = max_length(Y_AXIS),
  2115. mlratio = mlx > mly ? mly / mlx : mlx / mly;
  2116. destination[X_AXIS] = 1.5 * mlx * x_axis_home_dir;
  2117. destination[Y_AXIS] = 1.5 * mly * home_dir(Y_AXIS);
  2118. feedrate = min(homing_feedrate[X_AXIS], homing_feedrate[Y_AXIS]) * sqrt(mlratio * mlratio + 1);
  2119. line_to_destination();
  2120. st_synchronize();
  2121. set_axis_is_at_home(X_AXIS);
  2122. set_axis_is_at_home(Y_AXIS);
  2123. sync_plan_position();
  2124. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2125. if (DEBUGGING(LEVELING)) DEBUG_POS("> QUICK_HOME 1", current_position);
  2126. #endif
  2127. destination[X_AXIS] = current_position[X_AXIS];
  2128. destination[Y_AXIS] = current_position[Y_AXIS];
  2129. line_to_destination();
  2130. feedrate = 0.0;
  2131. st_synchronize();
  2132. endstops_hit_on_purpose(); // clear endstop hit flags
  2133. current_position[X_AXIS] = destination[X_AXIS];
  2134. current_position[Y_AXIS] = destination[Y_AXIS];
  2135. #if DISABLED(SCARA)
  2136. current_position[Z_AXIS] = destination[Z_AXIS];
  2137. #endif
  2138. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2139. if (DEBUGGING(LEVELING)) DEBUG_POS("> QUICK_HOME 2", current_position);
  2140. #endif
  2141. }
  2142. #endif // QUICK_HOME
  2143. #if ENABLED(HOME_Y_BEFORE_X)
  2144. // Home Y
  2145. if (home_all_axis || homeY) HOMEAXIS(Y);
  2146. #endif
  2147. // Home X
  2148. if (home_all_axis || homeX) {
  2149. #if ENABLED(DUAL_X_CARRIAGE)
  2150. int tmp_extruder = active_extruder;
  2151. extruder_duplication_enabled = false;
  2152. active_extruder = !active_extruder;
  2153. HOMEAXIS(X);
  2154. inactive_extruder_x_pos = current_position[X_AXIS];
  2155. active_extruder = tmp_extruder;
  2156. HOMEAXIS(X);
  2157. // reset state used by the different modes
  2158. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  2159. delayed_move_time = 0;
  2160. active_extruder_parked = true;
  2161. #else
  2162. HOMEAXIS(X);
  2163. #endif
  2164. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2165. if (DEBUGGING(LEVELING)) DEBUG_POS("> homeX", current_position);
  2166. #endif
  2167. }
  2168. #if DISABLED(HOME_Y_BEFORE_X)
  2169. // Home Y
  2170. if (home_all_axis || homeY) {
  2171. HOMEAXIS(Y);
  2172. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2173. if (DEBUGGING(LEVELING)) DEBUG_POS("> homeY", current_position);
  2174. #endif
  2175. }
  2176. #endif
  2177. // Home Z last if homing towards the bed
  2178. #if Z_HOME_DIR < 0
  2179. if (home_all_axis || homeZ) {
  2180. #if ENABLED(Z_SAFE_HOMING)
  2181. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2182. if (DEBUGGING(LEVELING)) {
  2183. SERIAL_ECHOLNPGM("> Z_SAFE_HOMING >>>");
  2184. }
  2185. #endif
  2186. if (home_all_axis) {
  2187. /**
  2188. * At this point we already have Z at MIN_Z_HEIGHT_FOR_HOMING height
  2189. * No need to move Z any more as this height should already be safe
  2190. * enough to reach Z_SAFE_HOMING XY positions.
  2191. * Just make sure the planner is in sync.
  2192. */
  2193. sync_plan_position();
  2194. /**
  2195. * Set the Z probe (or just the nozzle) destination to the safe
  2196. * homing point
  2197. */
  2198. destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - (X_PROBE_OFFSET_FROM_EXTRUDER));
  2199. destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - (Y_PROBE_OFFSET_FROM_EXTRUDER));
  2200. destination[Z_AXIS] = current_position[Z_AXIS]; //z is already at the right height
  2201. feedrate = XY_TRAVEL_SPEED;
  2202. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2203. if (DEBUGGING(LEVELING)) {
  2204. DEBUG_POS("> Z_SAFE_HOMING > home_all_axis", current_position);
  2205. DEBUG_POS("> Z_SAFE_HOMING > home_all_axis", destination);
  2206. }
  2207. #endif
  2208. // Move in the XY plane
  2209. line_to_destination();
  2210. st_synchronize();
  2211. /**
  2212. * Update the current positions for XY, Z is still at least at
  2213. * MIN_Z_HEIGHT_FOR_HOMING height, no changes there.
  2214. */
  2215. current_position[X_AXIS] = destination[X_AXIS];
  2216. current_position[Y_AXIS] = destination[Y_AXIS];
  2217. // Home the Z axis
  2218. HOMEAXIS(Z);
  2219. }
  2220. else if (homeZ) { // Don't need to Home Z twice
  2221. // Let's see if X and Y are homed
  2222. if (axis_homed[X_AXIS] && axis_homed[Y_AXIS]) {
  2223. /**
  2224. * Make sure the Z probe is within the physical limits
  2225. * NOTE: This doesn't necessarily ensure the Z probe is also
  2226. * within the bed!
  2227. */
  2228. float cpx = current_position[X_AXIS], cpy = current_position[Y_AXIS];
  2229. if ( cpx >= X_MIN_POS - (X_PROBE_OFFSET_FROM_EXTRUDER)
  2230. && cpx <= X_MAX_POS - (X_PROBE_OFFSET_FROM_EXTRUDER)
  2231. && cpy >= Y_MIN_POS - (Y_PROBE_OFFSET_FROM_EXTRUDER)
  2232. && cpy <= Y_MAX_POS - (Y_PROBE_OFFSET_FROM_EXTRUDER)) {
  2233. // Home the Z axis
  2234. HOMEAXIS(Z);
  2235. }
  2236. else {
  2237. LCD_MESSAGEPGM(MSG_ZPROBE_OUT);
  2238. SERIAL_ECHO_START;
  2239. SERIAL_ECHOLNPGM(MSG_ZPROBE_OUT);
  2240. }
  2241. }
  2242. else {
  2243. axis_unhomed_error();
  2244. }
  2245. } // !home_all_axes && homeZ
  2246. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2247. if (DEBUGGING(LEVELING)) {
  2248. SERIAL_ECHOLNPGM("<<< Z_SAFE_HOMING");
  2249. }
  2250. #endif
  2251. #else // !Z_SAFE_HOMING
  2252. HOMEAXIS(Z);
  2253. #endif // !Z_SAFE_HOMING
  2254. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2255. if (DEBUGGING(LEVELING)) DEBUG_POS("> (home_all_axis || homeZ) > final", current_position);
  2256. #endif
  2257. } // home_all_axis || homeZ
  2258. #endif // Z_HOME_DIR < 0
  2259. sync_plan_position();
  2260. #endif // else DELTA
  2261. #if ENABLED(SCARA)
  2262. sync_plan_position_delta();
  2263. #endif
  2264. #if ENABLED(ENDSTOPS_ONLY_FOR_HOMING)
  2265. enable_endstops(false);
  2266. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2267. if (DEBUGGING(LEVELING)) {
  2268. SERIAL_ECHOLNPGM("ENDSTOPS_ONLY_FOR_HOMING enable_endstops(false)");
  2269. }
  2270. #endif
  2271. #endif
  2272. // For mesh leveling move back to Z=0
  2273. #if ENABLED(MESH_BED_LEVELING)
  2274. if (mbl_was_active && home_all_axis) {
  2275. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z;
  2276. sync_plan_position();
  2277. mbl.active = 1;
  2278. current_position[Z_AXIS] = 0.0;
  2279. set_destination_to_current();
  2280. feedrate = homing_feedrate[Z_AXIS];
  2281. line_to_destination();
  2282. st_synchronize();
  2283. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2284. if (DEBUGGING(LEVELING)) DEBUG_POS("mbl_was_active", current_position);
  2285. #endif
  2286. }
  2287. #endif
  2288. feedrate = saved_feedrate;
  2289. feedrate_multiplier = saved_feedrate_multiplier;
  2290. refresh_cmd_timeout();
  2291. endstops_hit_on_purpose(); // clear endstop hit flags
  2292. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2293. if (DEBUGGING(LEVELING)) {
  2294. SERIAL_ECHOLNPGM("<<< gcode_G28");
  2295. }
  2296. #endif
  2297. gcode_M114(); // Send end position to RepetierHost
  2298. }
  2299. #if ENABLED(MESH_BED_LEVELING)
  2300. enum MeshLevelingState { MeshReport, MeshStart, MeshNext, MeshSet, MeshSetZOffset };
  2301. /**
  2302. * G29: Mesh-based Z probe, probes a grid and produces a
  2303. * mesh to compensate for variable bed height
  2304. *
  2305. * Parameters With MESH_BED_LEVELING:
  2306. *
  2307. * S0 Produce a mesh report
  2308. * S1 Start probing mesh points
  2309. * S2 Probe the next mesh point
  2310. * S3 Xn Yn Zn.nn Manually modify a single point
  2311. * S4 Zn.nn Set z offset. Positive away from bed, negative closer to bed.
  2312. *
  2313. * The S0 report the points as below
  2314. *
  2315. * +----> X-axis 1-n
  2316. * |
  2317. * |
  2318. * v Y-axis 1-n
  2319. *
  2320. */
  2321. inline void gcode_G29() {
  2322. static int probe_point = -1;
  2323. MeshLevelingState state = code_seen('S') ? (MeshLevelingState)code_value_short() : MeshReport;
  2324. if (state < 0 || state > 4) {
  2325. SERIAL_PROTOCOLLNPGM("S out of range (0-4).");
  2326. return;
  2327. }
  2328. int ix, iy;
  2329. float z;
  2330. switch (state) {
  2331. case MeshReport:
  2332. if (mbl.active) {
  2333. SERIAL_PROTOCOLPGM("Num X,Y: ");
  2334. SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
  2335. SERIAL_PROTOCOLCHAR(',');
  2336. SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  2337. SERIAL_PROTOCOLPGM("\nZ search height: ");
  2338. SERIAL_PROTOCOL(MESH_HOME_SEARCH_Z);
  2339. SERIAL_PROTOCOLPGM("\nZ offset: ");
  2340. SERIAL_PROTOCOL_F(mbl.z_offset, 5);
  2341. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  2342. for (int y = 0; y < MESH_NUM_Y_POINTS; y++) {
  2343. for (int x = 0; x < MESH_NUM_X_POINTS; x++) {
  2344. SERIAL_PROTOCOLPGM(" ");
  2345. SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
  2346. }
  2347. SERIAL_EOL;
  2348. }
  2349. }
  2350. else
  2351. SERIAL_PROTOCOLLNPGM("Mesh bed leveling not active.");
  2352. break;
  2353. case MeshStart:
  2354. mbl.reset();
  2355. probe_point = 0;
  2356. enqueue_and_echo_commands_P(PSTR("G28\nG29 S2"));
  2357. break;
  2358. case MeshNext:
  2359. if (probe_point < 0) {
  2360. SERIAL_PROTOCOLLNPGM("Start mesh probing with \"G29 S1\" first.");
  2361. return;
  2362. }
  2363. if (probe_point == 0) {
  2364. // Set Z to a positive value before recording the first Z.
  2365. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z;
  2366. sync_plan_position();
  2367. }
  2368. else {
  2369. // For others, save the Z of the previous point, then raise Z again.
  2370. ix = (probe_point - 1) % (MESH_NUM_X_POINTS);
  2371. iy = (probe_point - 1) / (MESH_NUM_X_POINTS);
  2372. if (iy & 1) ix = (MESH_NUM_X_POINTS - 1) - ix; // zig-zag
  2373. mbl.set_z(ix, iy, current_position[Z_AXIS]);
  2374. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z;
  2375. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[X_AXIS] / 60, active_extruder);
  2376. st_synchronize();
  2377. }
  2378. // Is there another point to sample? Move there.
  2379. if (probe_point < (MESH_NUM_X_POINTS) * (MESH_NUM_Y_POINTS)) {
  2380. ix = probe_point % (MESH_NUM_X_POINTS);
  2381. iy = probe_point / (MESH_NUM_X_POINTS);
  2382. if (iy & 1) ix = (MESH_NUM_X_POINTS - 1) - ix; // zig-zag
  2383. current_position[X_AXIS] = mbl.get_x(ix);
  2384. current_position[Y_AXIS] = mbl.get_y(iy);
  2385. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[X_AXIS] / 60, active_extruder);
  2386. st_synchronize();
  2387. probe_point++;
  2388. }
  2389. else {
  2390. // After recording the last point, activate the mbl and home
  2391. SERIAL_PROTOCOLLNPGM("Mesh probing done.");
  2392. probe_point = -1;
  2393. mbl.active = 1;
  2394. enqueue_and_echo_commands_P(PSTR("G28"));
  2395. }
  2396. break;
  2397. case MeshSet:
  2398. if (code_seen('X')) {
  2399. ix = code_value_long() - 1;
  2400. if (ix < 0 || ix >= MESH_NUM_X_POINTS) {
  2401. SERIAL_PROTOCOLPGM("X out of range (1-" STRINGIFY(MESH_NUM_X_POINTS) ").\n");
  2402. return;
  2403. }
  2404. }
  2405. else {
  2406. SERIAL_PROTOCOLPGM("X not entered.\n");
  2407. return;
  2408. }
  2409. if (code_seen('Y')) {
  2410. iy = code_value_long() - 1;
  2411. if (iy < 0 || iy >= MESH_NUM_Y_POINTS) {
  2412. SERIAL_PROTOCOLPGM("Y out of range (1-" STRINGIFY(MESH_NUM_Y_POINTS) ").\n");
  2413. return;
  2414. }
  2415. }
  2416. else {
  2417. SERIAL_PROTOCOLPGM("Y not entered.\n");
  2418. return;
  2419. }
  2420. if (code_seen('Z')) {
  2421. z = code_value();
  2422. }
  2423. else {
  2424. SERIAL_PROTOCOLPGM("Z not entered.\n");
  2425. return;
  2426. }
  2427. mbl.z_values[iy][ix] = z;
  2428. break;
  2429. case MeshSetZOffset:
  2430. if (code_seen('Z')) {
  2431. z = code_value();
  2432. }
  2433. else {
  2434. SERIAL_PROTOCOLPGM("Z not entered.\n");
  2435. return;
  2436. }
  2437. mbl.z_offset = z;
  2438. } // switch(state)
  2439. }
  2440. #elif ENABLED(AUTO_BED_LEVELING_FEATURE)
  2441. void out_of_range_error(const char* p_edge) {
  2442. SERIAL_PROTOCOLPGM("?Probe ");
  2443. serialprintPGM(p_edge);
  2444. SERIAL_PROTOCOLLNPGM(" position out of range.");
  2445. }
  2446. /**
  2447. * G29: Detailed Z probe, probes the bed at 3 or more points.
  2448. * Will fail if the printer has not been homed with G28.
  2449. *
  2450. * Enhanced G29 Auto Bed Leveling Probe Routine
  2451. *
  2452. * Parameters With AUTO_BED_LEVELING_GRID:
  2453. *
  2454. * P Set the size of the grid that will be probed (P x P points).
  2455. * Not supported by non-linear delta printer bed leveling.
  2456. * Example: "G29 P4"
  2457. *
  2458. * S Set the XY travel speed between probe points (in mm/min)
  2459. *
  2460. * D Dry-Run mode. Just evaluate the bed Topology - Don't apply
  2461. * or clean the rotation Matrix. Useful to check the topology
  2462. * after a first run of G29.
  2463. *
  2464. * V Set the verbose level (0-4). Example: "G29 V3"
  2465. *
  2466. * T Generate a Bed Topology Report. Example: "G29 P5 T" for a detailed report.
  2467. * This is useful for manual bed leveling and finding flaws in the bed (to
  2468. * assist with part placement).
  2469. * Not supported by non-linear delta printer bed leveling.
  2470. *
  2471. * F Set the Front limit of the probing grid
  2472. * B Set the Back limit of the probing grid
  2473. * L Set the Left limit of the probing grid
  2474. * R Set the Right limit of the probing grid
  2475. *
  2476. * Global Parameters:
  2477. *
  2478. * E/e By default G29 will engage the Z probe, test the bed, then disengage.
  2479. * Include "E" to engage/disengage the Z probe for each sample.
  2480. * There's no extra effect if you have a fixed Z probe.
  2481. * Usage: "G29 E" or "G29 e"
  2482. *
  2483. */
  2484. inline void gcode_G29() {
  2485. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2486. if (DEBUGGING(LEVELING)) {
  2487. SERIAL_ECHOLNPGM("gcode_G29 >>>");
  2488. DEBUG_POS("", current_position);
  2489. }
  2490. #endif
  2491. // Don't allow auto-leveling without homing first
  2492. if (!axis_homed[X_AXIS] || !axis_homed[Y_AXIS]) {
  2493. axis_unhomed_error();
  2494. return;
  2495. }
  2496. int verbose_level = code_seen('V') ? code_value_short() : 1;
  2497. if (verbose_level < 0 || verbose_level > 4) {
  2498. SERIAL_ECHOLNPGM("?(V)erbose Level is implausible (0-4).");
  2499. return;
  2500. }
  2501. bool dryrun = code_seen('D'),
  2502. deploy_probe_for_each_reading = code_seen('E');
  2503. #if ENABLED(AUTO_BED_LEVELING_GRID)
  2504. #if DISABLED(DELTA)
  2505. bool do_topography_map = verbose_level > 2 || code_seen('T');
  2506. #endif
  2507. if (verbose_level > 0) {
  2508. SERIAL_PROTOCOLPGM("G29 Auto Bed Leveling\n");
  2509. if (dryrun) SERIAL_ECHOLNPGM("Running in DRY-RUN mode");
  2510. }
  2511. int auto_bed_leveling_grid_points = AUTO_BED_LEVELING_GRID_POINTS;
  2512. #if DISABLED(DELTA)
  2513. if (code_seen('P')) auto_bed_leveling_grid_points = code_value_short();
  2514. if (auto_bed_leveling_grid_points < 2) {
  2515. SERIAL_PROTOCOLPGM("?Number of probed (P)oints is implausible (2 minimum).\n");
  2516. return;
  2517. }
  2518. #endif
  2519. xy_travel_speed = code_seen('S') ? code_value_short() : XY_TRAVEL_SPEED;
  2520. int left_probe_bed_position = code_seen('L') ? code_value_short() : LEFT_PROBE_BED_POSITION,
  2521. right_probe_bed_position = code_seen('R') ? code_value_short() : RIGHT_PROBE_BED_POSITION,
  2522. front_probe_bed_position = code_seen('F') ? code_value_short() : FRONT_PROBE_BED_POSITION,
  2523. back_probe_bed_position = code_seen('B') ? code_value_short() : BACK_PROBE_BED_POSITION;
  2524. bool left_out_l = left_probe_bed_position < MIN_PROBE_X,
  2525. left_out = left_out_l || left_probe_bed_position > right_probe_bed_position - (MIN_PROBE_EDGE),
  2526. right_out_r = right_probe_bed_position > MAX_PROBE_X,
  2527. right_out = right_out_r || right_probe_bed_position < left_probe_bed_position + MIN_PROBE_EDGE,
  2528. front_out_f = front_probe_bed_position < MIN_PROBE_Y,
  2529. front_out = front_out_f || front_probe_bed_position > back_probe_bed_position - (MIN_PROBE_EDGE),
  2530. back_out_b = back_probe_bed_position > MAX_PROBE_Y,
  2531. back_out = back_out_b || back_probe_bed_position < front_probe_bed_position + MIN_PROBE_EDGE;
  2532. if (left_out || right_out || front_out || back_out) {
  2533. if (left_out) {
  2534. out_of_range_error(PSTR("(L)eft"));
  2535. left_probe_bed_position = left_out_l ? MIN_PROBE_X : right_probe_bed_position - (MIN_PROBE_EDGE);
  2536. }
  2537. if (right_out) {
  2538. out_of_range_error(PSTR("(R)ight"));
  2539. right_probe_bed_position = right_out_r ? MAX_PROBE_X : left_probe_bed_position + MIN_PROBE_EDGE;
  2540. }
  2541. if (front_out) {
  2542. out_of_range_error(PSTR("(F)ront"));
  2543. front_probe_bed_position = front_out_f ? MIN_PROBE_Y : back_probe_bed_position - (MIN_PROBE_EDGE);
  2544. }
  2545. if (back_out) {
  2546. out_of_range_error(PSTR("(B)ack"));
  2547. back_probe_bed_position = back_out_b ? MAX_PROBE_Y : front_probe_bed_position + MIN_PROBE_EDGE;
  2548. }
  2549. return;
  2550. }
  2551. #endif // AUTO_BED_LEVELING_GRID
  2552. #if ENABLED(Z_PROBE_SLED)
  2553. dock_sled(false); // engage (un-dock) the Z probe
  2554. #elif ENABLED(Z_PROBE_ALLEN_KEY) || (ENABLED(DELTA) && SERVO_LEVELING)
  2555. deploy_z_probe();
  2556. #endif
  2557. st_synchronize();
  2558. if (!dryrun) {
  2559. // make sure the bed_level_rotation_matrix is identity or the planner will get it wrong
  2560. plan_bed_level_matrix.set_to_identity();
  2561. #if ENABLED(DELTA)
  2562. reset_bed_level();
  2563. #else //!DELTA
  2564. //vector_3 corrected_position = plan_get_position_mm();
  2565. //corrected_position.debug("position before G29");
  2566. vector_3 uncorrected_position = plan_get_position();
  2567. //uncorrected_position.debug("position during G29");
  2568. current_position[X_AXIS] = uncorrected_position.x;
  2569. current_position[Y_AXIS] = uncorrected_position.y;
  2570. current_position[Z_AXIS] = uncorrected_position.z;
  2571. sync_plan_position();
  2572. #endif // !DELTA
  2573. }
  2574. setup_for_endstop_move();
  2575. feedrate = homing_feedrate[Z_AXIS];
  2576. #if ENABLED(AUTO_BED_LEVELING_GRID)
  2577. // probe at the points of a lattice grid
  2578. const int xGridSpacing = (right_probe_bed_position - left_probe_bed_position) / (auto_bed_leveling_grid_points - 1),
  2579. yGridSpacing = (back_probe_bed_position - front_probe_bed_position) / (auto_bed_leveling_grid_points - 1);
  2580. #if ENABLED(DELTA)
  2581. delta_grid_spacing[0] = xGridSpacing;
  2582. delta_grid_spacing[1] = yGridSpacing;
  2583. float z_offset = zprobe_zoffset;
  2584. if (code_seen(axis_codes[Z_AXIS])) z_offset += code_value();
  2585. #else // !DELTA
  2586. /**
  2587. * solve the plane equation ax + by + d = z
  2588. * A is the matrix with rows [x y 1] for all the probed points
  2589. * B is the vector of the Z positions
  2590. * the normal vector to the plane is formed by the coefficients of the
  2591. * plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  2592. * so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  2593. */
  2594. int abl2 = auto_bed_leveling_grid_points * auto_bed_leveling_grid_points;
  2595. double eqnAMatrix[abl2 * 3], // "A" matrix of the linear system of equations
  2596. eqnBVector[abl2], // "B" vector of Z points
  2597. mean = 0.0;
  2598. int8_t indexIntoAB[auto_bed_leveling_grid_points][auto_bed_leveling_grid_points];
  2599. #endif // !DELTA
  2600. int probePointCounter = 0;
  2601. bool zig = (auto_bed_leveling_grid_points & 1) ? true : false; //always end at [RIGHT_PROBE_BED_POSITION, BACK_PROBE_BED_POSITION]
  2602. for (int yCount = 0; yCount < auto_bed_leveling_grid_points; yCount++) {
  2603. double yProbe = front_probe_bed_position + yGridSpacing * yCount;
  2604. int xStart, xStop, xInc;
  2605. if (zig) {
  2606. xStart = 0;
  2607. xStop = auto_bed_leveling_grid_points;
  2608. xInc = 1;
  2609. }
  2610. else {
  2611. xStart = auto_bed_leveling_grid_points - 1;
  2612. xStop = -1;
  2613. xInc = -1;
  2614. }
  2615. zig = !zig;
  2616. for (int xCount = xStart; xCount != xStop; xCount += xInc) {
  2617. double xProbe = left_probe_bed_position + xGridSpacing * xCount;
  2618. // raise extruder
  2619. float measured_z,
  2620. z_before = probePointCounter ? Z_RAISE_BETWEEN_PROBINGS + current_position[Z_AXIS] : Z_RAISE_BEFORE_PROBING;
  2621. if (probePointCounter) {
  2622. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2623. if (DEBUGGING(LEVELING)) {
  2624. SERIAL_ECHOPAIR("z_before = (between) ", (float)(Z_RAISE_BETWEEN_PROBINGS + current_position[Z_AXIS]));
  2625. SERIAL_EOL;
  2626. }
  2627. #endif
  2628. }
  2629. else {
  2630. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2631. if (DEBUGGING(LEVELING)) {
  2632. SERIAL_ECHOPAIR("z_before = (before) ", (float)Z_RAISE_BEFORE_PROBING);
  2633. SERIAL_EOL;
  2634. }
  2635. #endif
  2636. }
  2637. #if ENABLED(DELTA)
  2638. // Avoid probing the corners (outside the round or hexagon print surface) on a delta printer.
  2639. float distance_from_center = sqrt(xProbe * xProbe + yProbe * yProbe);
  2640. if (distance_from_center > DELTA_PROBEABLE_RADIUS) continue;
  2641. #endif //DELTA
  2642. ProbeAction act;
  2643. if (deploy_probe_for_each_reading) // G29 E - Stow between probes
  2644. act = ProbeDeployAndStow;
  2645. else if (yCount == 0 && xCount == xStart)
  2646. act = ProbeDeploy;
  2647. else if (yCount == auto_bed_leveling_grid_points - 1 && xCount == xStop - xInc)
  2648. act = ProbeStow;
  2649. else
  2650. act = ProbeStay;
  2651. measured_z = probe_pt(xProbe, yProbe, z_before, act, verbose_level);
  2652. #if DISABLED(DELTA)
  2653. mean += measured_z;
  2654. eqnBVector[probePointCounter] = measured_z;
  2655. eqnAMatrix[probePointCounter + 0 * abl2] = xProbe;
  2656. eqnAMatrix[probePointCounter + 1 * abl2] = yProbe;
  2657. eqnAMatrix[probePointCounter + 2 * abl2] = 1;
  2658. indexIntoAB[xCount][yCount] = probePointCounter;
  2659. #else
  2660. bed_level[xCount][yCount] = measured_z + z_offset;
  2661. #endif
  2662. probePointCounter++;
  2663. idle();
  2664. } //xProbe
  2665. } //yProbe
  2666. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2667. if (DEBUGGING(LEVELING)) DEBUG_POS("> probing complete", current_position);
  2668. #endif
  2669. clean_up_after_endstop_move();
  2670. #if ENABLED(DELTA)
  2671. if (!dryrun) extrapolate_unprobed_bed_level();
  2672. print_bed_level();
  2673. #else // !DELTA
  2674. // solve lsq problem
  2675. double plane_equation_coefficients[3];
  2676. qr_solve(plane_equation_coefficients, abl2, 3, eqnAMatrix, eqnBVector);
  2677. mean /= abl2;
  2678. if (verbose_level) {
  2679. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  2680. SERIAL_PROTOCOL_F(plane_equation_coefficients[0], 8);
  2681. SERIAL_PROTOCOLPGM(" b: ");
  2682. SERIAL_PROTOCOL_F(plane_equation_coefficients[1], 8);
  2683. SERIAL_PROTOCOLPGM(" d: ");
  2684. SERIAL_PROTOCOL_F(plane_equation_coefficients[2], 8);
  2685. SERIAL_EOL;
  2686. if (verbose_level > 2) {
  2687. SERIAL_PROTOCOLPGM("Mean of sampled points: ");
  2688. SERIAL_PROTOCOL_F(mean, 8);
  2689. SERIAL_EOL;
  2690. }
  2691. }
  2692. if (!dryrun) set_bed_level_equation_lsq(plane_equation_coefficients);
  2693. // Show the Topography map if enabled
  2694. if (do_topography_map) {
  2695. SERIAL_PROTOCOLPGM(" \nBed Height Topography: \n");
  2696. SERIAL_PROTOCOLPGM(" +--- BACK --+\n");
  2697. SERIAL_PROTOCOLPGM(" | |\n");
  2698. SERIAL_PROTOCOLPGM(" L | (+) | R\n");
  2699. SERIAL_PROTOCOLPGM(" E | | I\n");
  2700. SERIAL_PROTOCOLPGM(" F | (-) N (+) | G\n");
  2701. SERIAL_PROTOCOLPGM(" T | | H\n");
  2702. SERIAL_PROTOCOLPGM(" | (-) | T\n");
  2703. SERIAL_PROTOCOLPGM(" | |\n");
  2704. SERIAL_PROTOCOLPGM(" O-- FRONT --+\n");
  2705. SERIAL_PROTOCOLPGM(" (0,0)\n");
  2706. float min_diff = 999;
  2707. for (int yy = auto_bed_leveling_grid_points - 1; yy >= 0; yy--) {
  2708. for (int xx = 0; xx < auto_bed_leveling_grid_points; xx++) {
  2709. int ind = indexIntoAB[xx][yy];
  2710. float diff = eqnBVector[ind] - mean;
  2711. float x_tmp = eqnAMatrix[ind + 0 * abl2],
  2712. y_tmp = eqnAMatrix[ind + 1 * abl2],
  2713. z_tmp = 0;
  2714. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp);
  2715. NOMORE(min_diff, eqnBVector[ind] - z_tmp);
  2716. if (diff >= 0.0)
  2717. SERIAL_PROTOCOLPGM(" +"); // Include + for column alignment
  2718. else
  2719. SERIAL_PROTOCOLCHAR(' ');
  2720. SERIAL_PROTOCOL_F(diff, 5);
  2721. } // xx
  2722. SERIAL_EOL;
  2723. } // yy
  2724. SERIAL_EOL;
  2725. if (verbose_level > 3) {
  2726. SERIAL_PROTOCOLPGM(" \nCorrected Bed Height vs. Bed Topology: \n");
  2727. for (int yy = auto_bed_leveling_grid_points - 1; yy >= 0; yy--) {
  2728. for (int xx = 0; xx < auto_bed_leveling_grid_points; xx++) {
  2729. int ind = indexIntoAB[xx][yy];
  2730. float x_tmp = eqnAMatrix[ind + 0 * abl2],
  2731. y_tmp = eqnAMatrix[ind + 1 * abl2],
  2732. z_tmp = 0;
  2733. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp);
  2734. float diff = eqnBVector[ind] - z_tmp - min_diff;
  2735. if (diff >= 0.0)
  2736. SERIAL_PROTOCOLPGM(" +");
  2737. // Include + for column alignment
  2738. else
  2739. SERIAL_PROTOCOLCHAR(' ');
  2740. SERIAL_PROTOCOL_F(diff, 5);
  2741. } // xx
  2742. SERIAL_EOL;
  2743. } // yy
  2744. SERIAL_EOL;
  2745. }
  2746. } //do_topography_map
  2747. #endif //!DELTA
  2748. #else // !AUTO_BED_LEVELING_GRID
  2749. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2750. if (DEBUGGING(LEVELING)) {
  2751. SERIAL_ECHOLNPGM("> 3-point Leveling");
  2752. }
  2753. #endif
  2754. // Actions for each probe
  2755. ProbeAction p1, p2, p3;
  2756. if (deploy_probe_for_each_reading)
  2757. p1 = p2 = p3 = ProbeDeployAndStow;
  2758. else
  2759. p1 = ProbeDeploy, p2 = ProbeStay, p3 = ProbeStow;
  2760. // Probe at 3 arbitrary points
  2761. float z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING, p1, verbose_level),
  2762. z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS, p2, verbose_level),
  2763. z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS, p3, verbose_level);
  2764. clean_up_after_endstop_move();
  2765. if (!dryrun) set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
  2766. #endif // !AUTO_BED_LEVELING_GRID
  2767. #if ENABLED(DELTA)
  2768. // Allen Key Probe for Delta
  2769. #if ENABLED(Z_PROBE_ALLEN_KEY) || SERVO_LEVELING
  2770. stow_z_probe();
  2771. #elif Z_RAISE_AFTER_PROBING > 0
  2772. raise_z_after_probing(); // ???
  2773. #endif
  2774. #else // !DELTA
  2775. if (verbose_level > 0)
  2776. plan_bed_level_matrix.debug(" \n\nBed Level Correction Matrix:");
  2777. if (!dryrun) {
  2778. /**
  2779. * Correct the Z height difference from Z probe position and nozzle tip position.
  2780. * The Z height on homing is measured by Z probe, but the Z probe is quite far
  2781. * from the nozzle. When the bed is uneven, this height must be corrected.
  2782. */
  2783. float x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER,
  2784. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER,
  2785. z_tmp = current_position[Z_AXIS],
  2786. real_z = st_get_axis_position_mm(Z_AXIS); //get the real Z (since plan_get_position is now correcting the plane)
  2787. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2788. if (DEBUGGING(LEVELING)) {
  2789. SERIAL_ECHOPAIR("> BEFORE apply_rotation_xyz > z_tmp = ", z_tmp);
  2790. SERIAL_EOL;
  2791. SERIAL_ECHOPAIR("> BEFORE apply_rotation_xyz > real_z = ", real_z);
  2792. SERIAL_EOL;
  2793. }
  2794. #endif
  2795. // Apply the correction sending the Z probe offset
  2796. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp);
  2797. /*
  2798. * Get the current Z position and send it to the planner.
  2799. *
  2800. * >> (z_tmp - real_z) : The rotated current Z minus the uncorrected Z
  2801. * (most recent plan_set_position/sync_plan_position)
  2802. *
  2803. * >> zprobe_zoffset : Z distance from nozzle to Z probe
  2804. * (set by default, M851, EEPROM, or Menu)
  2805. *
  2806. * >> Z_RAISE_AFTER_PROBING : The distance the Z probe will have lifted
  2807. * after the last probe
  2808. *
  2809. * >> Should home_offset[Z_AXIS] be included?
  2810. *
  2811. *
  2812. * Discussion: home_offset[Z_AXIS] was applied in G28 to set the
  2813. * starting Z. If Z is not tweaked in G29 -and- the Z probe in G29 is
  2814. * not actually "homing" Z... then perhaps it should not be included
  2815. * here. The purpose of home_offset[] is to adjust for inaccurate
  2816. * endstops, not for reasonably accurate probes. If it were added
  2817. * here, it could be seen as a compensating factor for the Z probe.
  2818. */
  2819. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2820. if (DEBUGGING(LEVELING)) {
  2821. SERIAL_ECHOPAIR("> AFTER apply_rotation_xyz > z_tmp = ", z_tmp);
  2822. SERIAL_EOL;
  2823. }
  2824. #endif
  2825. current_position[Z_AXIS] = -zprobe_zoffset + (z_tmp - real_z)
  2826. #if HAS_SERVO_ENDSTOPS || ENABLED(Z_PROBE_ALLEN_KEY) || ENABLED(Z_PROBE_SLED)
  2827. + Z_RAISE_AFTER_PROBING
  2828. #endif
  2829. ;
  2830. // current_position[Z_AXIS] += home_offset[Z_AXIS]; // The Z probe determines Z=0, not "Z home"
  2831. sync_plan_position();
  2832. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2833. if (DEBUGGING(LEVELING)) DEBUG_POS("> corrected Z in G29", current_position);
  2834. #endif
  2835. }
  2836. // Sled assembly for Cartesian bots
  2837. #if ENABLED(Z_PROBE_SLED)
  2838. dock_sled(true); // dock the sled
  2839. #elif Z_RAISE_AFTER_PROBING > 0
  2840. // Raise Z axis for non-delta and non servo based probes
  2841. #if !defined(HAS_SERVO_ENDSTOPS) && DISABLED(Z_PROBE_ALLEN_KEY) && DISABLED(Z_PROBE_SLED)
  2842. raise_z_after_probing();
  2843. #endif
  2844. #endif
  2845. #endif // !DELTA
  2846. #ifdef Z_PROBE_END_SCRIPT
  2847. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2848. if (DEBUGGING(LEVELING)) {
  2849. SERIAL_ECHO("Z Probe End Script: ");
  2850. SERIAL_ECHOLNPGM(Z_PROBE_END_SCRIPT);
  2851. }
  2852. #endif
  2853. enqueue_and_echo_commands_P(PSTR(Z_PROBE_END_SCRIPT));
  2854. #if ENABLED(HAS_Z_MIN_PROBE)
  2855. z_probe_is_active = false;
  2856. #endif
  2857. st_synchronize();
  2858. #endif
  2859. KEEPALIVE_STATE(IN_HANDLER);
  2860. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2861. if (DEBUGGING(LEVELING)) {
  2862. SERIAL_ECHOLNPGM("<<< gcode_G29");
  2863. }
  2864. #endif
  2865. gcode_M114(); // Send end position to RepetierHost
  2866. }
  2867. #if DISABLED(Z_PROBE_SLED) // could be avoided
  2868. /**
  2869. * G30: Do a single Z probe at the current XY
  2870. */
  2871. inline void gcode_G30() {
  2872. #if HAS_SERVO_ENDSTOPS
  2873. raise_z_for_servo();
  2874. #endif
  2875. deploy_z_probe(); // Engage Z Servo endstop if available. Z_PROBE_SLED is missed here.
  2876. st_synchronize();
  2877. // TODO: clear the leveling matrix or the planner will be set incorrectly
  2878. setup_for_endstop_move(); // Too late. Must be done before deploying.
  2879. feedrate = homing_feedrate[Z_AXIS];
  2880. run_z_probe();
  2881. SERIAL_PROTOCOLPGM("Bed X: ");
  2882. SERIAL_PROTOCOL(current_position[X_AXIS] + 0.0001);
  2883. SERIAL_PROTOCOLPGM(" Y: ");
  2884. SERIAL_PROTOCOL(current_position[Y_AXIS] + 0.0001);
  2885. SERIAL_PROTOCOLPGM(" Z: ");
  2886. SERIAL_PROTOCOL(current_position[Z_AXIS] + 0.0001);
  2887. SERIAL_EOL;
  2888. clean_up_after_endstop_move(); // Too early. must be done after the stowing.
  2889. #if HAS_SERVO_ENDSTOPS
  2890. raise_z_for_servo();
  2891. #endif
  2892. stow_z_probe(false); // Retract Z Servo endstop if available. Z_PROBE_SLED is missed here.
  2893. gcode_M114(); // Send end position to RepetierHost
  2894. }
  2895. #endif //!Z_PROBE_SLED
  2896. #endif //AUTO_BED_LEVELING_FEATURE
  2897. /**
  2898. * G92: Set current position to given X Y Z E
  2899. */
  2900. inline void gcode_G92() {
  2901. if (!code_seen(axis_codes[E_AXIS]))
  2902. st_synchronize();
  2903. bool didXYZ = false;
  2904. for (int i = 0; i < NUM_AXIS; i++) {
  2905. if (code_seen(axis_codes[i])) {
  2906. float v = current_position[i] = code_value();
  2907. if (i == E_AXIS)
  2908. plan_set_e_position(v);
  2909. else
  2910. didXYZ = true;
  2911. }
  2912. }
  2913. if (didXYZ) {
  2914. #if ENABLED(DELTA) || ENABLED(SCARA)
  2915. sync_plan_position_delta();
  2916. #else
  2917. sync_plan_position();
  2918. #endif
  2919. }
  2920. }
  2921. #if ENABLED(ULTIPANEL)
  2922. /**
  2923. * M0: // M0 - Unconditional stop - Wait for user button press on LCD
  2924. * M1: // M1 - Conditional stop - Wait for user button press on LCD
  2925. */
  2926. inline void gcode_M0_M1() {
  2927. char* args = current_command_args;
  2928. millis_t codenum = 0;
  2929. bool hasP = false, hasS = false;
  2930. if (code_seen('P')) {
  2931. codenum = code_value_short(); // milliseconds to wait
  2932. hasP = codenum > 0;
  2933. }
  2934. if (code_seen('S')) {
  2935. codenum = code_value() * 1000; // seconds to wait
  2936. hasS = codenum > 0;
  2937. }
  2938. if (!hasP && !hasS && *args != '\0')
  2939. lcd_setstatus(args, true);
  2940. else {
  2941. LCD_MESSAGEPGM(MSG_USERWAIT);
  2942. #if ENABLED(LCD_PROGRESS_BAR) && PROGRESS_MSG_EXPIRE > 0
  2943. dontExpireStatus();
  2944. #endif
  2945. }
  2946. lcd_ignore_click();
  2947. st_synchronize();
  2948. refresh_cmd_timeout();
  2949. if (codenum > 0) {
  2950. codenum += previous_cmd_ms; // wait until this time for a click
  2951. KEEPALIVE_STATE(PAUSED_FOR_USER);
  2952. while (millis() < codenum && !lcd_clicked()) idle();
  2953. KEEPALIVE_STATE(IN_HANDLER);
  2954. lcd_ignore_click(false);
  2955. }
  2956. else {
  2957. if (!lcd_detected()) return;
  2958. KEEPALIVE_STATE(PAUSED_FOR_USER);
  2959. while (!lcd_clicked()) idle();
  2960. KEEPALIVE_STATE(IN_HANDLER);
  2961. }
  2962. if (IS_SD_PRINTING)
  2963. LCD_MESSAGEPGM(MSG_RESUMING);
  2964. else
  2965. LCD_MESSAGEPGM(WELCOME_MSG);
  2966. }
  2967. #endif // ULTIPANEL
  2968. /**
  2969. * M17: Enable power on all stepper motors
  2970. */
  2971. inline void gcode_M17() {
  2972. LCD_MESSAGEPGM(MSG_NO_MOVE);
  2973. enable_all_steppers();
  2974. }
  2975. #if ENABLED(SDSUPPORT)
  2976. /**
  2977. * M20: List SD card to serial output
  2978. */
  2979. inline void gcode_M20() {
  2980. SERIAL_PROTOCOLLNPGM(MSG_BEGIN_FILE_LIST);
  2981. card.ls();
  2982. SERIAL_PROTOCOLLNPGM(MSG_END_FILE_LIST);
  2983. }
  2984. /**
  2985. * M21: Init SD Card
  2986. */
  2987. inline void gcode_M21() {
  2988. card.initsd();
  2989. }
  2990. /**
  2991. * M22: Release SD Card
  2992. */
  2993. inline void gcode_M22() {
  2994. card.release();
  2995. }
  2996. /**
  2997. * M23: Open a file
  2998. */
  2999. inline void gcode_M23() {
  3000. card.openFile(current_command_args, true);
  3001. }
  3002. /**
  3003. * M24: Start SD Print
  3004. */
  3005. inline void gcode_M24() {
  3006. card.startFileprint();
  3007. print_job_start();
  3008. }
  3009. /**
  3010. * M25: Pause SD Print
  3011. */
  3012. inline void gcode_M25() {
  3013. card.pauseSDPrint();
  3014. }
  3015. /**
  3016. * M26: Set SD Card file index
  3017. */
  3018. inline void gcode_M26() {
  3019. if (card.cardOK && code_seen('S'))
  3020. card.setIndex(code_value_short());
  3021. }
  3022. /**
  3023. * M27: Get SD Card status
  3024. */
  3025. inline void gcode_M27() {
  3026. card.getStatus();
  3027. }
  3028. /**
  3029. * M28: Start SD Write
  3030. */
  3031. inline void gcode_M28() {
  3032. card.openFile(current_command_args, false);
  3033. }
  3034. /**
  3035. * M29: Stop SD Write
  3036. * Processed in write to file routine above
  3037. */
  3038. inline void gcode_M29() {
  3039. // card.saving = false;
  3040. }
  3041. /**
  3042. * M30 <filename>: Delete SD Card file
  3043. */
  3044. inline void gcode_M30() {
  3045. if (card.cardOK) {
  3046. card.closefile();
  3047. card.removeFile(current_command_args);
  3048. }
  3049. }
  3050. #endif //SDSUPPORT
  3051. /**
  3052. * M31: Get the time since the start of SD Print (or last M109)
  3053. */
  3054. inline void gcode_M31() {
  3055. millis_t t = print_job_timer();
  3056. int min = t / 60, sec = t % 60;
  3057. char time[30];
  3058. sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
  3059. SERIAL_ECHO_START;
  3060. SERIAL_ECHOLN(time);
  3061. lcd_setstatus(time);
  3062. autotempShutdown();
  3063. }
  3064. #if ENABLED(SDSUPPORT)
  3065. /**
  3066. * M32: Select file and start SD Print
  3067. */
  3068. inline void gcode_M32() {
  3069. if (card.sdprinting)
  3070. st_synchronize();
  3071. char* namestartpos = strchr(current_command_args, '!'); // Find ! to indicate filename string start.
  3072. if (!namestartpos)
  3073. namestartpos = current_command_args; // Default name position, 4 letters after the M
  3074. else
  3075. namestartpos++; //to skip the '!'
  3076. bool call_procedure = code_seen('P') && (seen_pointer < namestartpos);
  3077. if (card.cardOK) {
  3078. card.openFile(namestartpos, true, call_procedure);
  3079. if (code_seen('S') && seen_pointer < namestartpos) // "S" (must occur _before_ the filename!)
  3080. card.setIndex(code_value_short());
  3081. card.startFileprint();
  3082. // Procedure calls count as normal print time.
  3083. if (!call_procedure) print_job_start();
  3084. }
  3085. }
  3086. #if ENABLED(LONG_FILENAME_HOST_SUPPORT)
  3087. /**
  3088. * M33: Get the long full path of a file or folder
  3089. *
  3090. * Parameters:
  3091. * <dospath> Case-insensitive DOS-style path to a file or folder
  3092. *
  3093. * Example:
  3094. * M33 miscel~1/armchair/armcha~1.gco
  3095. *
  3096. * Output:
  3097. * /Miscellaneous/Armchair/Armchair.gcode
  3098. */
  3099. inline void gcode_M33() {
  3100. card.printLongPath(current_command_args);
  3101. }
  3102. #endif
  3103. /**
  3104. * M928: Start SD Write
  3105. */
  3106. inline void gcode_M928() {
  3107. card.openLogFile(current_command_args);
  3108. }
  3109. #endif // SDSUPPORT
  3110. /**
  3111. * M42: Change pin status via GCode
  3112. *
  3113. * P<pin> Pin number (LED if omitted)
  3114. * S<byte> Pin status from 0 - 255
  3115. */
  3116. inline void gcode_M42() {
  3117. if (code_seen('S')) {
  3118. int pin_status = code_value_short();
  3119. if (pin_status < 0 || pin_status > 255) return;
  3120. int pin_number = code_seen('P') ? code_value_short() : LED_PIN;
  3121. if (pin_number < 0) return;
  3122. for (uint8_t i = 0; i < COUNT(sensitive_pins); i++)
  3123. if (pin_number == sensitive_pins[i]) return;
  3124. pinMode(pin_number, OUTPUT);
  3125. digitalWrite(pin_number, pin_status);
  3126. analogWrite(pin_number, pin_status);
  3127. #if FAN_COUNT > 0
  3128. switch (pin_number) {
  3129. #if HAS_FAN0
  3130. case FAN_PIN: fanSpeeds[0] = pin_status; break;
  3131. #endif
  3132. #if HAS_FAN1
  3133. case FAN1_PIN: fanSpeeds[1] = pin_status; break;
  3134. #endif
  3135. #if HAS_FAN2
  3136. case FAN2_PIN: fanSpeeds[2] = pin_status; break;
  3137. #endif
  3138. }
  3139. #endif
  3140. } // code_seen('S')
  3141. }
  3142. #if ENABLED(AUTO_BED_LEVELING_FEATURE) && ENABLED(Z_MIN_PROBE_REPEATABILITY_TEST)
  3143. /**
  3144. * This is redundant since the SanityCheck.h already checks for a valid
  3145. * Z_MIN_PROBE_PIN, but here for clarity.
  3146. */
  3147. #if ENABLED(Z_MIN_PROBE_ENDSTOP)
  3148. #if !HAS_Z_PROBE
  3149. #error You must define Z_MIN_PROBE_PIN to enable Z probe repeatability calculation.
  3150. #endif
  3151. #elif !HAS_Z_MIN
  3152. #error You must define Z_MIN_PIN to enable Z probe repeatability calculation.
  3153. #endif
  3154. /**
  3155. * M48: Z probe repeatability measurement function.
  3156. *
  3157. * Usage:
  3158. * M48 <P#> <X#> <Y#> <V#> <E> <L#>
  3159. * P = Number of sampled points (4-50, default 10)
  3160. * X = Sample X position
  3161. * Y = Sample Y position
  3162. * V = Verbose level (0-4, default=1)
  3163. * E = Engage Z probe for each reading
  3164. * L = Number of legs of movement before probe
  3165. * S = Schizoid (Or Star if you prefer)
  3166. *
  3167. * This function assumes the bed has been homed. Specifically, that a G28 command
  3168. * as been issued prior to invoking the M48 Z probe repeatability measurement function.
  3169. * Any information generated by a prior G29 Bed leveling command will be lost and need to be
  3170. * regenerated.
  3171. */
  3172. inline void gcode_M48() {
  3173. if (!axis_homed[X_AXIS] || !axis_homed[Y_AXIS] || !axis_homed[Z_AXIS]) {
  3174. axis_unhomed_error();
  3175. return;
  3176. }
  3177. double sum = 0.0, mean = 0.0, sigma = 0.0, sample_set[50];
  3178. int8_t verbose_level = 1, n_samples = 10, n_legs = 0, schizoid_flag = 0;
  3179. if (code_seen('V')) {
  3180. verbose_level = code_value_short();
  3181. if (verbose_level < 0 || verbose_level > 4) {
  3182. SERIAL_PROTOCOLPGM("?Verbose Level not plausible (0-4).\n");
  3183. return;
  3184. }
  3185. }
  3186. if (verbose_level > 0)
  3187. SERIAL_PROTOCOLPGM("M48 Z-Probe Repeatability test\n");
  3188. if (code_seen('P')) {
  3189. n_samples = code_value_short();
  3190. if (n_samples < 4 || n_samples > 50) {
  3191. SERIAL_PROTOCOLPGM("?Sample size not plausible (4-50).\n");
  3192. return;
  3193. }
  3194. }
  3195. float X_current = current_position[X_AXIS],
  3196. Y_current = current_position[Y_AXIS],
  3197. Z_current = current_position[Z_AXIS],
  3198. X_probe_location = X_current + X_PROBE_OFFSET_FROM_EXTRUDER,
  3199. Y_probe_location = Y_current + Y_PROBE_OFFSET_FROM_EXTRUDER,
  3200. Z_start_location = Z_current + Z_RAISE_BEFORE_PROBING;
  3201. bool deploy_probe_for_each_reading = code_seen('E');
  3202. if (code_seen('X')) {
  3203. X_probe_location = code_value();
  3204. #if DISABLED(DELTA)
  3205. if (X_probe_location < MIN_PROBE_X || X_probe_location > MAX_PROBE_X) {
  3206. out_of_range_error(PSTR("X"));
  3207. return;
  3208. }
  3209. #endif
  3210. }
  3211. if (code_seen('Y')) {
  3212. Y_probe_location = code_value();
  3213. #if DISABLED(DELTA)
  3214. if (Y_probe_location < MIN_PROBE_Y || Y_probe_location > MAX_PROBE_Y) {
  3215. out_of_range_error(PSTR("Y"));
  3216. return;
  3217. }
  3218. #endif
  3219. }
  3220. #if ENABLED(DELTA)
  3221. if (sqrt(X_probe_location * X_probe_location + Y_probe_location * Y_probe_location) > DELTA_PROBEABLE_RADIUS) {
  3222. SERIAL_PROTOCOLPGM("? (X,Y) location outside of probeable radius.\n");
  3223. return;
  3224. }
  3225. #endif
  3226. bool seen_L = code_seen('L');
  3227. if (seen_L) {
  3228. n_legs = code_value_short();
  3229. if (n_legs < 0 || n_legs > 15) {
  3230. SERIAL_PROTOCOLPGM("?Number of legs in movement not plausible (0-15).\n");
  3231. return;
  3232. }
  3233. if (n_legs == 1) n_legs = 2;
  3234. }
  3235. if (code_seen('S')) {
  3236. schizoid_flag++;
  3237. if (!seen_L) n_legs = 7;
  3238. }
  3239. /**
  3240. * Now get everything to the specified probe point So we can safely do a
  3241. * probe to get us close to the bed. If the Z-Axis is far from the bed,
  3242. * we don't want to use that as a starting point for each probe.
  3243. */
  3244. if (verbose_level > 2)
  3245. SERIAL_PROTOCOLPGM("Positioning the probe...\n");
  3246. #if ENABLED(DELTA)
  3247. // we don't do bed level correction in M48 because we want the raw data when we probe
  3248. reset_bed_level();
  3249. #else
  3250. // we don't do bed level correction in M48 because we want the raw data when we probe
  3251. plan_bed_level_matrix.set_to_identity();
  3252. #endif
  3253. if (Z_start_location < Z_RAISE_BEFORE_PROBING * 2.0)
  3254. do_blocking_move_to_z(Z_start_location);
  3255. do_blocking_move_to_xy(X_probe_location - X_PROBE_OFFSET_FROM_EXTRUDER, Y_probe_location - Y_PROBE_OFFSET_FROM_EXTRUDER);
  3256. /**
  3257. * OK, do the initial probe to get us close to the bed.
  3258. * Then retrace the right amount and use that in subsequent probes
  3259. */
  3260. setup_for_endstop_move();
  3261. probe_pt(X_probe_location, Y_probe_location, Z_RAISE_BEFORE_PROBING,
  3262. deploy_probe_for_each_reading ? ProbeDeployAndStow : ProbeDeploy,
  3263. verbose_level);
  3264. raise_z_after_probing();
  3265. for (uint8_t n = 0; n < n_samples; n++) {
  3266. randomSeed(millis());
  3267. delay(500);
  3268. if (n_legs) {
  3269. float radius, angle = random(0.0, 360.0);
  3270. int dir = (random(0, 10) > 5.0) ? -1 : 1; // clockwise or counter clockwise
  3271. radius = random(
  3272. #if ENABLED(DELTA)
  3273. DELTA_PROBEABLE_RADIUS / 8, DELTA_PROBEABLE_RADIUS / 3
  3274. #else
  3275. 5, X_MAX_LENGTH / 8
  3276. #endif
  3277. );
  3278. if (verbose_level > 3) {
  3279. SERIAL_ECHOPAIR("Starting radius: ", radius);
  3280. SERIAL_ECHOPAIR(" angle: ", angle);
  3281. delay(100);
  3282. if (dir > 0)
  3283. SERIAL_ECHO(" Direction: Counter Clockwise \n");
  3284. else
  3285. SERIAL_ECHO(" Direction: Clockwise \n");
  3286. delay(100);
  3287. }
  3288. for (uint8_t l = 0; l < n_legs - 1; l++) {
  3289. double delta_angle;
  3290. if (schizoid_flag)
  3291. // The points of a 5 point star are 72 degrees apart. We need to
  3292. // skip a point and go to the next one on the star.
  3293. delta_angle = dir * 2.0 * 72.0;
  3294. else
  3295. // If we do this line, we are just trying to move further
  3296. // around the circle.
  3297. delta_angle = dir * (float) random(25, 45);
  3298. angle += delta_angle;
  3299. while (angle > 360.0) // We probably do not need to keep the angle between 0 and 2*PI, but the
  3300. angle -= 360.0; // Arduino documentation says the trig functions should not be given values
  3301. while (angle < 0.0) // outside of this range. It looks like they behave correctly with
  3302. angle += 360.0; // numbers outside of the range, but just to be safe we clamp them.
  3303. X_current = X_probe_location - X_PROBE_OFFSET_FROM_EXTRUDER + cos(RADIANS(angle)) * radius;
  3304. Y_current = Y_probe_location - Y_PROBE_OFFSET_FROM_EXTRUDER + sin(RADIANS(angle)) * radius;
  3305. #if DISABLED(DELTA)
  3306. X_current = constrain(X_current, X_MIN_POS, X_MAX_POS);
  3307. Y_current = constrain(Y_current, Y_MIN_POS, Y_MAX_POS);
  3308. #else
  3309. // If we have gone out too far, we can do a simple fix and scale the numbers
  3310. // back in closer to the origin.
  3311. while (sqrt(X_current * X_current + Y_current * Y_current) > DELTA_PROBEABLE_RADIUS) {
  3312. X_current /= 1.25;
  3313. Y_current /= 1.25;
  3314. if (verbose_level > 3) {
  3315. SERIAL_ECHOPAIR("Pulling point towards center:", X_current);
  3316. SERIAL_ECHOPAIR(", ", Y_current);
  3317. SERIAL_EOL;
  3318. delay(50);
  3319. }
  3320. }
  3321. #endif
  3322. if (verbose_level > 3) {
  3323. SERIAL_PROTOCOL("Going to:");
  3324. SERIAL_ECHOPAIR("x: ", X_current);
  3325. SERIAL_ECHOPAIR("y: ", Y_current);
  3326. SERIAL_ECHOPAIR(" z: ", current_position[Z_AXIS]);
  3327. SERIAL_EOL;
  3328. delay(55);
  3329. }
  3330. do_blocking_move_to_xy(X_current, Y_current);
  3331. } // n_legs loop
  3332. } // n_legs
  3333. /**
  3334. * We don't really have to do this move, but if we don't we can see a
  3335. * funny shift in the Z Height because the user might not have the
  3336. * Z_RAISE_BEFORE_PROBING height identical to the Z_RAISE_BETWEEN_PROBING
  3337. * height. This gets us back to the probe location at the same height that
  3338. * we have been running around the circle at.
  3339. */
  3340. do_blocking_move_to_xy(X_probe_location - X_PROBE_OFFSET_FROM_EXTRUDER, Y_probe_location - Y_PROBE_OFFSET_FROM_EXTRUDER);
  3341. if (deploy_probe_for_each_reading)
  3342. sample_set[n] = probe_pt(X_probe_location, Y_probe_location, Z_RAISE_BEFORE_PROBING, ProbeDeployAndStow, verbose_level);
  3343. else {
  3344. if (n == n_samples - 1)
  3345. sample_set[n] = probe_pt(X_probe_location, Y_probe_location, Z_RAISE_BEFORE_PROBING, ProbeStow, verbose_level); else
  3346. sample_set[n] = probe_pt(X_probe_location, Y_probe_location, Z_RAISE_BEFORE_PROBING, ProbeStay, verbose_level);
  3347. }
  3348. /**
  3349. * Get the current mean for the data points we have so far
  3350. */
  3351. sum = 0.0;
  3352. for (uint8_t j = 0; j <= n; j++) sum += sample_set[j];
  3353. mean = sum / (n + 1);
  3354. /**
  3355. * Now, use that mean to calculate the standard deviation for the
  3356. * data points we have so far
  3357. */
  3358. sum = 0.0;
  3359. for (uint8_t j = 0; j <= n; j++) {
  3360. float ss = sample_set[j] - mean;
  3361. sum += ss * ss;
  3362. }
  3363. sigma = sqrt(sum / (n + 1));
  3364. if (verbose_level > 1) {
  3365. SERIAL_PROTOCOL(n + 1);
  3366. SERIAL_PROTOCOLPGM(" of ");
  3367. SERIAL_PROTOCOL((int)n_samples);
  3368. SERIAL_PROTOCOLPGM(" z: ");
  3369. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
  3370. delay(50);
  3371. if (verbose_level > 2) {
  3372. SERIAL_PROTOCOLPGM(" mean: ");
  3373. SERIAL_PROTOCOL_F(mean, 6);
  3374. SERIAL_PROTOCOLPGM(" sigma: ");
  3375. SERIAL_PROTOCOL_F(sigma, 6);
  3376. }
  3377. }
  3378. if (verbose_level > 0) SERIAL_EOL;
  3379. delay(50);
  3380. do_blocking_move_to_z(current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  3381. } // End of probe loop code
  3382. // raise_z_after_probing();
  3383. if (verbose_level > 0) {
  3384. SERIAL_PROTOCOLPGM("Mean: ");
  3385. SERIAL_PROTOCOL_F(mean, 6);
  3386. SERIAL_EOL;
  3387. delay(25);
  3388. }
  3389. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  3390. SERIAL_PROTOCOL_F(sigma, 6);
  3391. SERIAL_EOL; SERIAL_EOL;
  3392. delay(25);
  3393. clean_up_after_endstop_move();
  3394. gcode_M114(); // Send end position to RepetierHost
  3395. }
  3396. #endif // AUTO_BED_LEVELING_FEATURE && Z_MIN_PROBE_REPEATABILITY_TEST
  3397. /**
  3398. * M104: Set hot end temperature
  3399. */
  3400. inline void gcode_M104() {
  3401. if (setTargetedHotend(104)) return;
  3402. if (DEBUGGING(DRYRUN)) return;
  3403. // Start hook must happen before setTargetHotend()
  3404. print_job_start();
  3405. if (code_seen('S')) {
  3406. float temp = code_value();
  3407. setTargetHotend(temp, target_extruder);
  3408. #if ENABLED(DUAL_X_CARRIAGE)
  3409. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && target_extruder == 0)
  3410. setTargetHotend1(temp == 0.0 ? 0.0 : temp + duplicate_extruder_temp_offset);
  3411. #endif
  3412. if (temp > degHotend(target_extruder)) LCD_MESSAGEPGM(MSG_HEATING);
  3413. }
  3414. if (print_job_stop()) LCD_MESSAGEPGM(WELCOME_MSG);
  3415. }
  3416. #if HAS_TEMP_HOTEND || HAS_TEMP_BED
  3417. void print_heaterstates() {
  3418. #if HAS_TEMP_HOTEND
  3419. SERIAL_PROTOCOLPGM(" T:");
  3420. SERIAL_PROTOCOL_F(degHotend(target_extruder), 1);
  3421. SERIAL_PROTOCOLPGM(" /");
  3422. SERIAL_PROTOCOL_F(degTargetHotend(target_extruder), 1);
  3423. #endif
  3424. #if HAS_TEMP_BED
  3425. SERIAL_PROTOCOLPGM(" B:");
  3426. SERIAL_PROTOCOL_F(degBed(), 1);
  3427. SERIAL_PROTOCOLPGM(" /");
  3428. SERIAL_PROTOCOL_F(degTargetBed(), 1);
  3429. #endif
  3430. #if EXTRUDERS > 1
  3431. for (int8_t e = 0; e < EXTRUDERS; ++e) {
  3432. SERIAL_PROTOCOLPGM(" T");
  3433. SERIAL_PROTOCOL(e);
  3434. SERIAL_PROTOCOLCHAR(':');
  3435. SERIAL_PROTOCOL_F(degHotend(e), 1);
  3436. SERIAL_PROTOCOLPGM(" /");
  3437. SERIAL_PROTOCOL_F(degTargetHotend(e), 1);
  3438. }
  3439. #endif
  3440. #if HAS_TEMP_BED
  3441. SERIAL_PROTOCOLPGM(" B@:");
  3442. #ifdef BED_WATTS
  3443. SERIAL_PROTOCOL(((BED_WATTS) * getHeaterPower(-1)) / 127);
  3444. SERIAL_PROTOCOLCHAR('W');
  3445. #else
  3446. SERIAL_PROTOCOL(getHeaterPower(-1));
  3447. #endif
  3448. #endif
  3449. SERIAL_PROTOCOLPGM(" @:");
  3450. #ifdef EXTRUDER_WATTS
  3451. SERIAL_PROTOCOL(((EXTRUDER_WATTS) * getHeaterPower(target_extruder)) / 127);
  3452. SERIAL_PROTOCOLCHAR('W');
  3453. #else
  3454. SERIAL_PROTOCOL(getHeaterPower(target_extruder));
  3455. #endif
  3456. #if EXTRUDERS > 1
  3457. for (int8_t e = 0; e < EXTRUDERS; ++e) {
  3458. SERIAL_PROTOCOLPGM(" @");
  3459. SERIAL_PROTOCOL(e);
  3460. SERIAL_PROTOCOLCHAR(':');
  3461. #ifdef EXTRUDER_WATTS
  3462. SERIAL_PROTOCOL(((EXTRUDER_WATTS) * getHeaterPower(e)) / 127);
  3463. SERIAL_PROTOCOLCHAR('W');
  3464. #else
  3465. SERIAL_PROTOCOL(getHeaterPower(e));
  3466. #endif
  3467. }
  3468. #endif
  3469. #if ENABLED(SHOW_TEMP_ADC_VALUES)
  3470. #if HAS_TEMP_BED
  3471. SERIAL_PROTOCOLPGM(" ADC B:");
  3472. SERIAL_PROTOCOL_F(degBed(), 1);
  3473. SERIAL_PROTOCOLPGM("C->");
  3474. SERIAL_PROTOCOL_F(rawBedTemp() / OVERSAMPLENR, 0);
  3475. #endif
  3476. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  3477. SERIAL_PROTOCOLPGM(" T");
  3478. SERIAL_PROTOCOL(cur_extruder);
  3479. SERIAL_PROTOCOLCHAR(':');
  3480. SERIAL_PROTOCOL_F(degHotend(cur_extruder), 1);
  3481. SERIAL_PROTOCOLPGM("C->");
  3482. SERIAL_PROTOCOL_F(rawHotendTemp(cur_extruder) / OVERSAMPLENR, 0);
  3483. }
  3484. #endif
  3485. }
  3486. #endif
  3487. /**
  3488. * M105: Read hot end and bed temperature
  3489. */
  3490. inline void gcode_M105() {
  3491. if (setTargetedHotend(105)) return;
  3492. #if HAS_TEMP_HOTEND || HAS_TEMP_BED
  3493. SERIAL_PROTOCOLPGM(MSG_OK);
  3494. print_heaterstates();
  3495. #else // !HAS_TEMP_HOTEND && !HAS_TEMP_BED
  3496. SERIAL_ERROR_START;
  3497. SERIAL_ERRORLNPGM(MSG_ERR_NO_THERMISTORS);
  3498. #endif
  3499. SERIAL_EOL;
  3500. }
  3501. #if FAN_COUNT > 0
  3502. /**
  3503. * M106: Set Fan Speed
  3504. *
  3505. * S<int> Speed between 0-255
  3506. * P<index> Fan index, if more than one fan
  3507. */
  3508. inline void gcode_M106() {
  3509. uint16_t s = code_seen('S') ? code_value_short() : 255,
  3510. p = code_seen('P') ? code_value_short() : 0;
  3511. NOMORE(s, 255);
  3512. if (p < FAN_COUNT) fanSpeeds[p] = s;
  3513. }
  3514. /**
  3515. * M107: Fan Off
  3516. */
  3517. inline void gcode_M107() {
  3518. uint16_t p = code_seen('P') ? code_value_short() : 0;
  3519. if (p < FAN_COUNT) fanSpeeds[p] = 0;
  3520. }
  3521. #endif // FAN_COUNT > 0
  3522. /**
  3523. * M109: Sxxx Wait for extruder(s) to reach temperature. Waits only when heating.
  3524. * Rxxx Wait for extruder(s) to reach temperature. Waits when heating and cooling.
  3525. */
  3526. inline void gcode_M109() {
  3527. bool no_wait_for_cooling = true;
  3528. if (setTargetedHotend(109)) return;
  3529. if (DEBUGGING(DRYRUN)) return;
  3530. // Start hook must happen before setTargetHotend()
  3531. print_job_start();
  3532. no_wait_for_cooling = code_seen('S');
  3533. if (no_wait_for_cooling || code_seen('R')) {
  3534. float temp = code_value();
  3535. setTargetHotend(temp, target_extruder);
  3536. #if ENABLED(DUAL_X_CARRIAGE)
  3537. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && target_extruder == 0)
  3538. setTargetHotend1(temp == 0.0 ? 0.0 : temp + duplicate_extruder_temp_offset);
  3539. #endif
  3540. if (temp > degHotend(target_extruder)) LCD_MESSAGEPGM(MSG_HEATING);
  3541. }
  3542. if (print_job_stop()) LCD_MESSAGEPGM(WELCOME_MSG);
  3543. #if ENABLED(AUTOTEMP)
  3544. autotemp_enabled = code_seen('F');
  3545. if (autotemp_enabled) autotemp_factor = code_value();
  3546. if (code_seen('S')) autotemp_min = code_value();
  3547. if (code_seen('B')) autotemp_max = code_value();
  3548. #endif
  3549. // Exit if the temperature is above target and not waiting for cooling
  3550. if (no_wait_for_cooling && !isHeatingHotend(target_extruder)) return;
  3551. // Prevents a wait-forever situation if R is misused i.e. M109 R0
  3552. // Try to calculate a ballpark safe margin by halving EXTRUDE_MINTEMP
  3553. if (degTargetHotend(target_extruder) < (EXTRUDE_MINTEMP/2)) return;
  3554. #ifdef TEMP_RESIDENCY_TIME
  3555. long residency_start_ms = -1;
  3556. // Loop until the temperature has stabilized
  3557. #define TEMP_CONDITIONS (residency_start_ms < 0 || now < residency_start_ms + (TEMP_RESIDENCY_TIME) * 1000UL)
  3558. #else
  3559. // Loop until the temperature is very close target
  3560. #define TEMP_CONDITIONS (isHeatingHotend(target_extruder))
  3561. #endif //TEMP_RESIDENCY_TIME
  3562. cancel_heatup = false;
  3563. millis_t now = millis(), next_temp_ms = now + 1000UL;
  3564. while (!cancel_heatup && TEMP_CONDITIONS) {
  3565. now = millis();
  3566. if (now > next_temp_ms) { //Print temp & remaining time every 1s while waiting
  3567. next_temp_ms = now + 1000UL;
  3568. #if HAS_TEMP_HOTEND || HAS_TEMP_BED
  3569. print_heaterstates();
  3570. #endif
  3571. #ifdef TEMP_RESIDENCY_TIME
  3572. SERIAL_PROTOCOLPGM(" W:");
  3573. if (residency_start_ms >= 0) {
  3574. long rem = (((TEMP_RESIDENCY_TIME) * 1000UL) - (now - residency_start_ms)) / 1000UL;
  3575. SERIAL_PROTOCOLLN(rem);
  3576. }
  3577. else {
  3578. SERIAL_PROTOCOLLNPGM("?");
  3579. }
  3580. #else
  3581. SERIAL_EOL;
  3582. #endif
  3583. }
  3584. idle();
  3585. refresh_cmd_timeout(); // to prevent stepper_inactive_time from running out
  3586. #ifdef TEMP_RESIDENCY_TIME
  3587. // Start the TEMP_RESIDENCY_TIME timer when we reach target temp for the first time.
  3588. // Restart the timer whenever the temperature falls outside the hysteresis.
  3589. if (labs(degHotend(target_extruder) - degTargetHotend(target_extruder)) > ((residency_start_ms < 0) ? TEMP_WINDOW : TEMP_HYSTERESIS))
  3590. residency_start_ms = millis();
  3591. #endif //TEMP_RESIDENCY_TIME
  3592. } // while(!cancel_heatup && TEMP_CONDITIONS)
  3593. LCD_MESSAGEPGM(MSG_HEATING_COMPLETE);
  3594. }
  3595. #if HAS_TEMP_BED
  3596. /**
  3597. * M190: Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  3598. * Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  3599. */
  3600. inline void gcode_M190() {
  3601. if (DEBUGGING(DRYRUN)) return;
  3602. LCD_MESSAGEPGM(MSG_BED_HEATING);
  3603. bool no_wait_for_cooling = code_seen('S');
  3604. if (no_wait_for_cooling || code_seen('R'))
  3605. setTargetBed(code_value());
  3606. // Exit if the temperature is above target and not waiting for cooling
  3607. if (no_wait_for_cooling && !isHeatingBed()) return;
  3608. cancel_heatup = false;
  3609. millis_t now = millis(), next_temp_ms = now + 1000UL;
  3610. while (!cancel_heatup && isHeatingBed()) {
  3611. millis_t now = millis();
  3612. if (now > next_temp_ms) { //Print Temp Reading every 1 second while heating up.
  3613. next_temp_ms = now + 1000UL;
  3614. print_heaterstates();
  3615. SERIAL_EOL;
  3616. }
  3617. idle();
  3618. refresh_cmd_timeout(); // to prevent stepper_inactive_time from running out
  3619. }
  3620. LCD_MESSAGEPGM(MSG_BED_DONE);
  3621. }
  3622. #endif // HAS_TEMP_BED
  3623. /**
  3624. * M110: Set Current Line Number
  3625. */
  3626. inline void gcode_M110() {
  3627. if (code_seen('N')) gcode_N = code_value_long();
  3628. }
  3629. /**
  3630. * M111: Set the debug level
  3631. */
  3632. inline void gcode_M111() {
  3633. marlin_debug_flags = code_seen('S') ? code_value_short() : DEBUG_NONE;
  3634. const static char str_debug_1[] PROGMEM = MSG_DEBUG_ECHO;
  3635. const static char str_debug_2[] PROGMEM = MSG_DEBUG_INFO;
  3636. const static char str_debug_4[] PROGMEM = MSG_DEBUG_ERRORS;
  3637. const static char str_debug_8[] PROGMEM = MSG_DEBUG_DRYRUN;
  3638. const static char str_debug_16[] PROGMEM = MSG_DEBUG_COMMUNICATION;
  3639. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3640. const static char str_debug_32[] PROGMEM = MSG_DEBUG_LEVELING;
  3641. #endif
  3642. const static char* const debug_strings[] PROGMEM = {
  3643. str_debug_1, str_debug_2, str_debug_4, str_debug_8, str_debug_16,
  3644. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3645. str_debug_32
  3646. #endif
  3647. };
  3648. SERIAL_ECHO_START;
  3649. SERIAL_ECHOPGM(MSG_DEBUG_PREFIX);
  3650. if (marlin_debug_flags) {
  3651. uint8_t comma = 0;
  3652. for (uint8_t i = 0; i < COUNT(debug_strings); i++) {
  3653. if (TEST(marlin_debug_flags, i)) {
  3654. if (comma++) SERIAL_CHAR(',');
  3655. serialprintPGM((char*)pgm_read_word(&(debug_strings[i])));
  3656. }
  3657. }
  3658. }
  3659. else {
  3660. SERIAL_ECHOPGM(MSG_DEBUG_OFF);
  3661. }
  3662. SERIAL_EOL;
  3663. }
  3664. /**
  3665. * M112: Emergency Stop
  3666. */
  3667. inline void gcode_M112() { kill(PSTR(MSG_KILLED)); }
  3668. #if ENABLED(BARICUDA)
  3669. #if HAS_HEATER_1
  3670. /**
  3671. * M126: Heater 1 valve open
  3672. */
  3673. inline void gcode_M126() { ValvePressure = code_seen('S') ? constrain(code_value(), 0, 255) : 255; }
  3674. /**
  3675. * M127: Heater 1 valve close
  3676. */
  3677. inline void gcode_M127() { ValvePressure = 0; }
  3678. #endif
  3679. #if HAS_HEATER_2
  3680. /**
  3681. * M128: Heater 2 valve open
  3682. */
  3683. inline void gcode_M128() { EtoPPressure = code_seen('S') ? constrain(code_value(), 0, 255) : 255; }
  3684. /**
  3685. * M129: Heater 2 valve close
  3686. */
  3687. inline void gcode_M129() { EtoPPressure = 0; }
  3688. #endif
  3689. #endif //BARICUDA
  3690. /**
  3691. * M140: Set bed temperature
  3692. */
  3693. inline void gcode_M140() {
  3694. if (DEBUGGING(DRYRUN)) return;
  3695. if (code_seen('S')) setTargetBed(code_value());
  3696. }
  3697. #if ENABLED(ULTIPANEL)
  3698. /**
  3699. * M145: Set the heatup state for a material in the LCD menu
  3700. * S<material> (0=PLA, 1=ABS)
  3701. * H<hotend temp>
  3702. * B<bed temp>
  3703. * F<fan speed>
  3704. */
  3705. inline void gcode_M145() {
  3706. int8_t material = code_seen('S') ? code_value_short() : 0;
  3707. if (material < 0 || material > 1) {
  3708. SERIAL_ERROR_START;
  3709. SERIAL_ERRORLNPGM(MSG_ERR_MATERIAL_INDEX);
  3710. }
  3711. else {
  3712. int v;
  3713. switch (material) {
  3714. case 0:
  3715. if (code_seen('H')) {
  3716. v = code_value_short();
  3717. plaPreheatHotendTemp = constrain(v, EXTRUDE_MINTEMP, HEATER_0_MAXTEMP - 15);
  3718. }
  3719. if (code_seen('F')) {
  3720. v = code_value_short();
  3721. plaPreheatFanSpeed = constrain(v, 0, 255);
  3722. }
  3723. #if TEMP_SENSOR_BED != 0
  3724. if (code_seen('B')) {
  3725. v = code_value_short();
  3726. plaPreheatHPBTemp = constrain(v, BED_MINTEMP, BED_MAXTEMP - 15);
  3727. }
  3728. #endif
  3729. break;
  3730. case 1:
  3731. if (code_seen('H')) {
  3732. v = code_value_short();
  3733. absPreheatHotendTemp = constrain(v, EXTRUDE_MINTEMP, HEATER_0_MAXTEMP - 15);
  3734. }
  3735. if (code_seen('F')) {
  3736. v = code_value_short();
  3737. absPreheatFanSpeed = constrain(v, 0, 255);
  3738. }
  3739. #if TEMP_SENSOR_BED != 0
  3740. if (code_seen('B')) {
  3741. v = code_value_short();
  3742. absPreheatHPBTemp = constrain(v, BED_MINTEMP, BED_MAXTEMP - 15);
  3743. }
  3744. #endif
  3745. break;
  3746. }
  3747. }
  3748. }
  3749. #endif
  3750. #if HAS_POWER_SWITCH
  3751. /**
  3752. * M80: Turn on Power Supply
  3753. */
  3754. inline void gcode_M80() {
  3755. OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE); //GND
  3756. /**
  3757. * If you have a switch on suicide pin, this is useful
  3758. * if you want to start another print with suicide feature after
  3759. * a print without suicide...
  3760. */
  3761. #if HAS_SUICIDE
  3762. OUT_WRITE(SUICIDE_PIN, HIGH);
  3763. #endif
  3764. #if ENABLED(ULTIPANEL)
  3765. powersupply = true;
  3766. LCD_MESSAGEPGM(WELCOME_MSG);
  3767. lcd_update();
  3768. #endif
  3769. }
  3770. #endif // HAS_POWER_SWITCH
  3771. /**
  3772. * M81: Turn off Power, including Power Supply, if there is one.
  3773. *
  3774. * This code should ALWAYS be available for EMERGENCY SHUTDOWN!
  3775. */
  3776. inline void gcode_M81() {
  3777. disable_all_heaters();
  3778. finishAndDisableSteppers();
  3779. #if FAN_COUNT > 0
  3780. #if FAN_COUNT > 1
  3781. for (uint8_t i = 0; i < FAN_COUNT; i++) fanSpeeds[i] = 0;
  3782. #else
  3783. fanSpeeds[0] = 0;
  3784. #endif
  3785. #endif
  3786. delay(1000); // Wait 1 second before switching off
  3787. #if HAS_SUICIDE
  3788. st_synchronize();
  3789. suicide();
  3790. #elif HAS_POWER_SWITCH
  3791. OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  3792. #endif
  3793. #if ENABLED(ULTIPANEL)
  3794. #if HAS_POWER_SWITCH
  3795. powersupply = false;
  3796. #endif
  3797. LCD_MESSAGEPGM(MACHINE_NAME " " MSG_OFF ".");
  3798. lcd_update();
  3799. #endif
  3800. }
  3801. /**
  3802. * M82: Set E codes absolute (default)
  3803. */
  3804. inline void gcode_M82() { axis_relative_modes[E_AXIS] = false; }
  3805. /**
  3806. * M83: Set E codes relative while in Absolute Coordinates (G90) mode
  3807. */
  3808. inline void gcode_M83() { axis_relative_modes[E_AXIS] = true; }
  3809. /**
  3810. * M18, M84: Disable all stepper motors
  3811. */
  3812. inline void gcode_M18_M84() {
  3813. if (code_seen('S')) {
  3814. stepper_inactive_time = code_value() * 1000;
  3815. }
  3816. else {
  3817. bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS])) || (code_seen(axis_codes[E_AXIS])));
  3818. if (all_axis) {
  3819. finishAndDisableSteppers();
  3820. }
  3821. else {
  3822. st_synchronize();
  3823. if (code_seen('X')) disable_x();
  3824. if (code_seen('Y')) disable_y();
  3825. if (code_seen('Z')) disable_z();
  3826. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  3827. if (code_seen('E')) {
  3828. disable_e0();
  3829. disable_e1();
  3830. disable_e2();
  3831. disable_e3();
  3832. }
  3833. #endif
  3834. }
  3835. }
  3836. }
  3837. /**
  3838. * M85: Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  3839. */
  3840. inline void gcode_M85() {
  3841. if (code_seen('S')) max_inactive_time = code_value() * 1000;
  3842. }
  3843. /**
  3844. * M92: Set axis steps-per-unit for one or more axes, X, Y, Z, and E.
  3845. * (Follows the same syntax as G92)
  3846. */
  3847. inline void gcode_M92() {
  3848. for (int8_t i = 0; i < NUM_AXIS; i++) {
  3849. if (code_seen(axis_codes[i])) {
  3850. if (i == E_AXIS) {
  3851. float value = code_value();
  3852. if (value < 20.0) {
  3853. float factor = axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
  3854. max_e_jerk *= factor;
  3855. max_feedrate[i] *= factor;
  3856. axis_steps_per_sqr_second[i] *= factor;
  3857. }
  3858. axis_steps_per_unit[i] = value;
  3859. }
  3860. else {
  3861. axis_steps_per_unit[i] = code_value();
  3862. }
  3863. }
  3864. }
  3865. }
  3866. /**
  3867. * M114: Output current position to serial port
  3868. */
  3869. inline void gcode_M114() {
  3870. SERIAL_PROTOCOLPGM("X:");
  3871. SERIAL_PROTOCOL(current_position[X_AXIS]);
  3872. SERIAL_PROTOCOLPGM(" Y:");
  3873. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  3874. SERIAL_PROTOCOLPGM(" Z:");
  3875. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  3876. SERIAL_PROTOCOLPGM(" E:");
  3877. SERIAL_PROTOCOL(current_position[E_AXIS]);
  3878. CRITICAL_SECTION_START;
  3879. extern volatile long count_position[NUM_AXIS];
  3880. long xpos = count_position[X_AXIS],
  3881. ypos = count_position[Y_AXIS],
  3882. zpos = count_position[Z_AXIS];
  3883. CRITICAL_SECTION_END;
  3884. #if ENABLED(COREXY) || ENABLED(COREXZ)
  3885. SERIAL_PROTOCOLPGM(MSG_COUNT_A);
  3886. #else
  3887. SERIAL_PROTOCOLPGM(MSG_COUNT_X);
  3888. #endif
  3889. SERIAL_PROTOCOL(xpos);
  3890. #if ENABLED(COREXY)
  3891. SERIAL_PROTOCOLPGM(" B:");
  3892. #else
  3893. SERIAL_PROTOCOLPGM(" Y:");
  3894. #endif
  3895. SERIAL_PROTOCOL(ypos);
  3896. #if ENABLED(COREXZ)
  3897. SERIAL_PROTOCOLPGM(" C:");
  3898. #else
  3899. SERIAL_PROTOCOLPGM(" Z:");
  3900. #endif
  3901. SERIAL_PROTOCOL(zpos);
  3902. SERIAL_EOL;
  3903. #if ENABLED(SCARA)
  3904. SERIAL_PROTOCOLPGM("SCARA Theta:");
  3905. SERIAL_PROTOCOL(delta[X_AXIS]);
  3906. SERIAL_PROTOCOLPGM(" Psi+Theta:");
  3907. SERIAL_PROTOCOL(delta[Y_AXIS]);
  3908. SERIAL_EOL;
  3909. SERIAL_PROTOCOLPGM("SCARA Cal - Theta:");
  3910. SERIAL_PROTOCOL(delta[X_AXIS] + home_offset[X_AXIS]);
  3911. SERIAL_PROTOCOLPGM(" Psi+Theta (90):");
  3912. SERIAL_PROTOCOL(delta[Y_AXIS] - delta[X_AXIS] - 90 + home_offset[Y_AXIS]);
  3913. SERIAL_EOL;
  3914. SERIAL_PROTOCOLPGM("SCARA step Cal - Theta:");
  3915. SERIAL_PROTOCOL(delta[X_AXIS] / 90 * axis_steps_per_unit[X_AXIS]);
  3916. SERIAL_PROTOCOLPGM(" Psi+Theta:");
  3917. SERIAL_PROTOCOL((delta[Y_AXIS] - delta[X_AXIS]) / 90 * axis_steps_per_unit[Y_AXIS]);
  3918. SERIAL_EOL; SERIAL_EOL;
  3919. #endif
  3920. }
  3921. /**
  3922. * M115: Capabilities string
  3923. */
  3924. inline void gcode_M115() {
  3925. SERIAL_PROTOCOLPGM(MSG_M115_REPORT);
  3926. }
  3927. /**
  3928. * M117: Set LCD Status Message
  3929. */
  3930. inline void gcode_M117() {
  3931. lcd_setstatus(current_command_args);
  3932. }
  3933. /**
  3934. * M119: Output endstop states to serial output
  3935. */
  3936. inline void gcode_M119() {
  3937. SERIAL_PROTOCOLLN(MSG_M119_REPORT);
  3938. #if HAS_X_MIN
  3939. SERIAL_PROTOCOLPGM(MSG_X_MIN);
  3940. SERIAL_PROTOCOLLN(((READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING) ? MSG_ENDSTOP_HIT : MSG_ENDSTOP_OPEN));
  3941. #endif
  3942. #if HAS_X_MAX
  3943. SERIAL_PROTOCOLPGM(MSG_X_MAX);
  3944. SERIAL_PROTOCOLLN(((READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING) ? MSG_ENDSTOP_HIT : MSG_ENDSTOP_OPEN));
  3945. #endif
  3946. #if HAS_Y_MIN
  3947. SERIAL_PROTOCOLPGM(MSG_Y_MIN);
  3948. SERIAL_PROTOCOLLN(((READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING) ? MSG_ENDSTOP_HIT : MSG_ENDSTOP_OPEN));
  3949. #endif
  3950. #if HAS_Y_MAX
  3951. SERIAL_PROTOCOLPGM(MSG_Y_MAX);
  3952. SERIAL_PROTOCOLLN(((READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING) ? MSG_ENDSTOP_HIT : MSG_ENDSTOP_OPEN));
  3953. #endif
  3954. #if HAS_Z_MIN
  3955. SERIAL_PROTOCOLPGM(MSG_Z_MIN);
  3956. SERIAL_PROTOCOLLN(((READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING) ? MSG_ENDSTOP_HIT : MSG_ENDSTOP_OPEN));
  3957. #endif
  3958. #if HAS_Z_MAX
  3959. SERIAL_PROTOCOLPGM(MSG_Z_MAX);
  3960. SERIAL_PROTOCOLLN(((READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING) ? MSG_ENDSTOP_HIT : MSG_ENDSTOP_OPEN));
  3961. #endif
  3962. #if HAS_Z2_MAX
  3963. SERIAL_PROTOCOLPGM(MSG_Z2_MAX);
  3964. SERIAL_PROTOCOLLN(((READ(Z2_MAX_PIN)^Z2_MAX_ENDSTOP_INVERTING) ? MSG_ENDSTOP_HIT : MSG_ENDSTOP_OPEN));
  3965. #endif
  3966. #if HAS_Z_PROBE
  3967. SERIAL_PROTOCOLPGM(MSG_Z_PROBE);
  3968. SERIAL_PROTOCOLLN(((READ(Z_MIN_PROBE_PIN)^Z_MIN_PROBE_ENDSTOP_INVERTING) ? MSG_ENDSTOP_HIT : MSG_ENDSTOP_OPEN));
  3969. #endif
  3970. }
  3971. /**
  3972. * M120: Enable endstops and set non-homing endstop state to "enabled"
  3973. */
  3974. inline void gcode_M120() { enable_endstops_globally(true); }
  3975. /**
  3976. * M121: Disable endstops and set non-homing endstop state to "disabled"
  3977. */
  3978. inline void gcode_M121() { enable_endstops_globally(false); }
  3979. #if ENABLED(BLINKM)
  3980. /**
  3981. * M150: Set Status LED Color - Use R-U-B for R-G-B
  3982. */
  3983. inline void gcode_M150() {
  3984. SendColors(
  3985. code_seen('R') ? (byte)code_value_short() : 0,
  3986. code_seen('U') ? (byte)code_value_short() : 0,
  3987. code_seen('B') ? (byte)code_value_short() : 0
  3988. );
  3989. }
  3990. #endif // BLINKM
  3991. /**
  3992. * M200: Set filament diameter and set E axis units to cubic millimeters
  3993. *
  3994. * T<extruder> - Optional extruder number. Current extruder if omitted.
  3995. * D<mm> - Diameter of the filament. Use "D0" to set units back to millimeters.
  3996. */
  3997. inline void gcode_M200() {
  3998. if (setTargetedHotend(200)) return;
  3999. if (code_seen('D')) {
  4000. float diameter = code_value();
  4001. // setting any extruder filament size disables volumetric on the assumption that
  4002. // slicers either generate in extruder values as cubic mm or as as filament feeds
  4003. // for all extruders
  4004. volumetric_enabled = (diameter != 0.0);
  4005. if (volumetric_enabled) {
  4006. filament_size[target_extruder] = diameter;
  4007. // make sure all extruders have some sane value for the filament size
  4008. for (int i = 0; i < EXTRUDERS; i++)
  4009. if (! filament_size[i]) filament_size[i] = DEFAULT_NOMINAL_FILAMENT_DIA;
  4010. }
  4011. }
  4012. else {
  4013. //reserved for setting filament diameter via UFID or filament measuring device
  4014. return;
  4015. }
  4016. calculate_volumetric_multipliers();
  4017. }
  4018. /**
  4019. * M201: Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  4020. */
  4021. inline void gcode_M201() {
  4022. for (int8_t i = 0; i < NUM_AXIS; i++) {
  4023. if (code_seen(axis_codes[i])) {
  4024. max_acceleration_units_per_sq_second[i] = code_value();
  4025. }
  4026. }
  4027. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  4028. reset_acceleration_rates();
  4029. }
  4030. #if 0 // Not used for Sprinter/grbl gen6
  4031. inline void gcode_M202() {
  4032. for (int8_t i = 0; i < NUM_AXIS; i++) {
  4033. if (code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
  4034. }
  4035. }
  4036. #endif
  4037. /**
  4038. * M203: Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  4039. */
  4040. inline void gcode_M203() {
  4041. for (int8_t i = 0; i < NUM_AXIS; i++) {
  4042. if (code_seen(axis_codes[i])) {
  4043. max_feedrate[i] = code_value();
  4044. }
  4045. }
  4046. }
  4047. /**
  4048. * M204: Set Accelerations in mm/sec^2 (M204 P1200 R3000 T3000)
  4049. *
  4050. * P = Printing moves
  4051. * R = Retract only (no X, Y, Z) moves
  4052. * T = Travel (non printing) moves
  4053. *
  4054. * Also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  4055. */
  4056. inline void gcode_M204() {
  4057. if (code_seen('S')) { // Kept for legacy compatibility. Should NOT BE USED for new developments.
  4058. travel_acceleration = acceleration = code_value();
  4059. SERIAL_ECHOPAIR("Setting Print and Travel Acceleration: ", acceleration);
  4060. SERIAL_EOL;
  4061. }
  4062. if (code_seen('P')) {
  4063. acceleration = code_value();
  4064. SERIAL_ECHOPAIR("Setting Print Acceleration: ", acceleration);
  4065. SERIAL_EOL;
  4066. }
  4067. if (code_seen('R')) {
  4068. retract_acceleration = code_value();
  4069. SERIAL_ECHOPAIR("Setting Retract Acceleration: ", retract_acceleration);
  4070. SERIAL_EOL;
  4071. }
  4072. if (code_seen('T')) {
  4073. travel_acceleration = code_value();
  4074. SERIAL_ECHOPAIR("Setting Travel Acceleration: ", travel_acceleration);
  4075. SERIAL_EOL;
  4076. }
  4077. }
  4078. /**
  4079. * M205: Set Advanced Settings
  4080. *
  4081. * S = Min Feed Rate (mm/s)
  4082. * T = Min Travel Feed Rate (mm/s)
  4083. * B = Min Segment Time (µs)
  4084. * X = Max XY Jerk (mm/s/s)
  4085. * Z = Max Z Jerk (mm/s/s)
  4086. * E = Max E Jerk (mm/s/s)
  4087. */
  4088. inline void gcode_M205() {
  4089. if (code_seen('S')) minimumfeedrate = code_value();
  4090. if (code_seen('T')) mintravelfeedrate = code_value();
  4091. if (code_seen('B')) minsegmenttime = code_value();
  4092. if (code_seen('X')) max_xy_jerk = code_value();
  4093. if (code_seen('Z')) max_z_jerk = code_value();
  4094. if (code_seen('E')) max_e_jerk = code_value();
  4095. }
  4096. /**
  4097. * M206: Set Additional Homing Offset (X Y Z). SCARA aliases T=X, P=Y
  4098. */
  4099. inline void gcode_M206() {
  4100. for (int8_t i = X_AXIS; i <= Z_AXIS; i++) {
  4101. if (code_seen(axis_codes[i])) {
  4102. home_offset[i] = code_value();
  4103. }
  4104. }
  4105. #if ENABLED(SCARA)
  4106. if (code_seen('T')) home_offset[X_AXIS] = code_value(); // Theta
  4107. if (code_seen('P')) home_offset[Y_AXIS] = code_value(); // Psi
  4108. #endif
  4109. }
  4110. #if ENABLED(DELTA)
  4111. /**
  4112. * M665: Set delta configurations
  4113. *
  4114. * L = diagonal rod
  4115. * R = delta radius
  4116. * S = segments per second
  4117. * A = Alpha (Tower 1) diagonal rod trim
  4118. * B = Beta (Tower 2) diagonal rod trim
  4119. * C = Gamma (Tower 3) diagonal rod trim
  4120. */
  4121. inline void gcode_M665() {
  4122. if (code_seen('L')) delta_diagonal_rod = code_value();
  4123. if (code_seen('R')) delta_radius = code_value();
  4124. if (code_seen('S')) delta_segments_per_second = code_value();
  4125. if (code_seen('A')) delta_diagonal_rod_trim_tower_1 = code_value();
  4126. if (code_seen('B')) delta_diagonal_rod_trim_tower_2 = code_value();
  4127. if (code_seen('C')) delta_diagonal_rod_trim_tower_3 = code_value();
  4128. recalc_delta_settings(delta_radius, delta_diagonal_rod);
  4129. }
  4130. /**
  4131. * M666: Set delta endstop adjustment
  4132. */
  4133. inline void gcode_M666() {
  4134. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4135. if (DEBUGGING(LEVELING)) {
  4136. SERIAL_ECHOLNPGM(">>> gcode_M666");
  4137. }
  4138. #endif
  4139. for (int8_t i = X_AXIS; i <= Z_AXIS; i++) {
  4140. if (code_seen(axis_codes[i])) {
  4141. endstop_adj[i] = code_value();
  4142. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4143. if (DEBUGGING(LEVELING)) {
  4144. SERIAL_ECHOPGM("endstop_adj[");
  4145. SERIAL_ECHO(axis_codes[i]);
  4146. SERIAL_ECHOPAIR("] = ", endstop_adj[i]);
  4147. SERIAL_EOL;
  4148. }
  4149. #endif
  4150. }
  4151. }
  4152. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4153. if (DEBUGGING(LEVELING)) {
  4154. SERIAL_ECHOLNPGM("<<< gcode_M666");
  4155. }
  4156. #endif
  4157. }
  4158. #elif ENABLED(Z_DUAL_ENDSTOPS) // !DELTA && ENABLED(Z_DUAL_ENDSTOPS)
  4159. /**
  4160. * M666: For Z Dual Endstop setup, set z axis offset to the z2 axis.
  4161. */
  4162. inline void gcode_M666() {
  4163. if (code_seen('Z')) z_endstop_adj = code_value();
  4164. SERIAL_ECHOPAIR("Z Endstop Adjustment set to (mm):", z_endstop_adj);
  4165. SERIAL_EOL;
  4166. }
  4167. #endif // !DELTA && Z_DUAL_ENDSTOPS
  4168. #if ENABLED(FWRETRACT)
  4169. /**
  4170. * M207: Set firmware retraction values
  4171. *
  4172. * S[+mm] retract_length
  4173. * W[+mm] retract_length_swap (multi-extruder)
  4174. * F[mm/min] retract_feedrate
  4175. * Z[mm] retract_zlift
  4176. */
  4177. inline void gcode_M207() {
  4178. if (code_seen('S')) retract_length = code_value();
  4179. if (code_seen('F')) retract_feedrate = code_value() / 60;
  4180. if (code_seen('Z')) retract_zlift = code_value();
  4181. #if EXTRUDERS > 1
  4182. if (code_seen('W')) retract_length_swap = code_value();
  4183. #endif
  4184. }
  4185. /**
  4186. * M208: Set firmware un-retraction values
  4187. *
  4188. * S[+mm] retract_recover_length (in addition to M207 S*)
  4189. * W[+mm] retract_recover_length_swap (multi-extruder)
  4190. * F[mm/min] retract_recover_feedrate
  4191. */
  4192. inline void gcode_M208() {
  4193. if (code_seen('S')) retract_recover_length = code_value();
  4194. if (code_seen('F')) retract_recover_feedrate = code_value() / 60;
  4195. #if EXTRUDERS > 1
  4196. if (code_seen('W')) retract_recover_length_swap = code_value();
  4197. #endif
  4198. }
  4199. /**
  4200. * M209: Enable automatic retract (M209 S1)
  4201. * detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  4202. */
  4203. inline void gcode_M209() {
  4204. if (code_seen('S')) {
  4205. int t = code_value_short();
  4206. switch (t) {
  4207. case 0:
  4208. autoretract_enabled = false;
  4209. break;
  4210. case 1:
  4211. autoretract_enabled = true;
  4212. break;
  4213. default:
  4214. unknown_command_error();
  4215. return;
  4216. }
  4217. for (int i = 0; i < EXTRUDERS; i++) retracted[i] = false;
  4218. }
  4219. }
  4220. #endif // FWRETRACT
  4221. #if EXTRUDERS > 1
  4222. /**
  4223. * M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  4224. */
  4225. inline void gcode_M218() {
  4226. if (setTargetedHotend(218)) return;
  4227. if (code_seen('X')) extruder_offset[X_AXIS][target_extruder] = code_value();
  4228. if (code_seen('Y')) extruder_offset[Y_AXIS][target_extruder] = code_value();
  4229. #if ENABLED(DUAL_X_CARRIAGE)
  4230. if (code_seen('Z')) extruder_offset[Z_AXIS][target_extruder] = code_value();
  4231. #endif
  4232. SERIAL_ECHO_START;
  4233. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  4234. for (int e = 0; e < EXTRUDERS; e++) {
  4235. SERIAL_CHAR(' ');
  4236. SERIAL_ECHO(extruder_offset[X_AXIS][e]);
  4237. SERIAL_CHAR(',');
  4238. SERIAL_ECHO(extruder_offset[Y_AXIS][e]);
  4239. #if ENABLED(DUAL_X_CARRIAGE)
  4240. SERIAL_CHAR(',');
  4241. SERIAL_ECHO(extruder_offset[Z_AXIS][e]);
  4242. #endif
  4243. }
  4244. SERIAL_EOL;
  4245. }
  4246. #endif // EXTRUDERS > 1
  4247. /**
  4248. * M220: Set speed percentage factor, aka "Feed Rate" (M220 S95)
  4249. */
  4250. inline void gcode_M220() {
  4251. if (code_seen('S')) feedrate_multiplier = code_value();
  4252. }
  4253. /**
  4254. * M221: Set extrusion percentage (M221 T0 S95)
  4255. */
  4256. inline void gcode_M221() {
  4257. if (code_seen('S')) {
  4258. int sval = code_value();
  4259. if (setTargetedHotend(221)) return;
  4260. extruder_multiplier[target_extruder] = sval;
  4261. }
  4262. }
  4263. /**
  4264. * M226: Wait until the specified pin reaches the state required (M226 P<pin> S<state>)
  4265. */
  4266. inline void gcode_M226() {
  4267. if (code_seen('P')) {
  4268. int pin_number = code_value();
  4269. int pin_state = code_seen('S') ? code_value() : -1; // required pin state - default is inverted
  4270. if (pin_state >= -1 && pin_state <= 1) {
  4271. for (uint8_t i = 0; i < COUNT(sensitive_pins); i++) {
  4272. if (sensitive_pins[i] == pin_number) {
  4273. pin_number = -1;
  4274. break;
  4275. }
  4276. }
  4277. if (pin_number > -1) {
  4278. int target = LOW;
  4279. st_synchronize();
  4280. pinMode(pin_number, INPUT);
  4281. switch (pin_state) {
  4282. case 1:
  4283. target = HIGH;
  4284. break;
  4285. case 0:
  4286. target = LOW;
  4287. break;
  4288. case -1:
  4289. target = !digitalRead(pin_number);
  4290. break;
  4291. }
  4292. while (digitalRead(pin_number) != target) idle();
  4293. } // pin_number > -1
  4294. } // pin_state -1 0 1
  4295. } // code_seen('P')
  4296. }
  4297. #if HAS_SERVOS
  4298. /**
  4299. * M280: Get or set servo position. P<index> S<angle>
  4300. */
  4301. inline void gcode_M280() {
  4302. int servo_index = code_seen('P') ? code_value_short() : -1;
  4303. int servo_position = 0;
  4304. if (code_seen('S')) {
  4305. servo_position = code_value_short();
  4306. if (servo_index >= 0 && servo_index < NUM_SERVOS)
  4307. servo[servo_index].move(servo_position);
  4308. else {
  4309. SERIAL_ERROR_START;
  4310. SERIAL_ERROR("Servo ");
  4311. SERIAL_ERROR(servo_index);
  4312. SERIAL_ERRORLN(" out of range");
  4313. }
  4314. }
  4315. else if (servo_index >= 0) {
  4316. SERIAL_ECHO_START;
  4317. SERIAL_ECHO(" Servo ");
  4318. SERIAL_ECHO(servo_index);
  4319. SERIAL_ECHO(": ");
  4320. SERIAL_ECHOLN(servo[servo_index].read());
  4321. }
  4322. }
  4323. #endif // HAS_SERVOS
  4324. #if HAS_BUZZER
  4325. /**
  4326. * M300: Play beep sound S<frequency Hz> P<duration ms>
  4327. */
  4328. inline void gcode_M300() {
  4329. uint16_t beepS = code_seen('S') ? code_value_short() : 110;
  4330. uint32_t beepP = code_seen('P') ? code_value_long() : 1000;
  4331. if (beepP > 5000) beepP = 5000; // limit to 5 seconds
  4332. buzz(beepP, beepS);
  4333. }
  4334. #endif // HAS_BUZZER
  4335. #if ENABLED(PIDTEMP)
  4336. /**
  4337. * M301: Set PID parameters P I D (and optionally C, L)
  4338. *
  4339. * P[float] Kp term
  4340. * I[float] Ki term (unscaled)
  4341. * D[float] Kd term (unscaled)
  4342. *
  4343. * With PID_ADD_EXTRUSION_RATE:
  4344. *
  4345. * C[float] Kc term
  4346. * L[float] LPQ length
  4347. */
  4348. inline void gcode_M301() {
  4349. // multi-extruder PID patch: M301 updates or prints a single extruder's PID values
  4350. // default behaviour (omitting E parameter) is to update for extruder 0 only
  4351. int e = code_seen('E') ? code_value() : 0; // extruder being updated
  4352. if (e < EXTRUDERS) { // catch bad input value
  4353. if (code_seen('P')) PID_PARAM(Kp, e) = code_value();
  4354. if (code_seen('I')) PID_PARAM(Ki, e) = scalePID_i(code_value());
  4355. if (code_seen('D')) PID_PARAM(Kd, e) = scalePID_d(code_value());
  4356. #if ENABLED(PID_ADD_EXTRUSION_RATE)
  4357. if (code_seen('C')) PID_PARAM(Kc, e) = code_value();
  4358. if (code_seen('L')) lpq_len = code_value();
  4359. NOMORE(lpq_len, LPQ_MAX_LEN);
  4360. #endif
  4361. updatePID();
  4362. SERIAL_ECHO_START;
  4363. #if ENABLED(PID_PARAMS_PER_EXTRUDER)
  4364. SERIAL_ECHO(" e:"); // specify extruder in serial output
  4365. SERIAL_ECHO(e);
  4366. #endif // PID_PARAMS_PER_EXTRUDER
  4367. SERIAL_ECHO(" p:");
  4368. SERIAL_ECHO(PID_PARAM(Kp, e));
  4369. SERIAL_ECHO(" i:");
  4370. SERIAL_ECHO(unscalePID_i(PID_PARAM(Ki, e)));
  4371. SERIAL_ECHO(" d:");
  4372. SERIAL_ECHO(unscalePID_d(PID_PARAM(Kd, e)));
  4373. #if ENABLED(PID_ADD_EXTRUSION_RATE)
  4374. SERIAL_ECHO(" c:");
  4375. //Kc does not have scaling applied above, or in resetting defaults
  4376. SERIAL_ECHO(PID_PARAM(Kc, e));
  4377. #endif
  4378. SERIAL_EOL;
  4379. }
  4380. else {
  4381. SERIAL_ERROR_START;
  4382. SERIAL_ERRORLN(MSG_INVALID_EXTRUDER);
  4383. }
  4384. }
  4385. #endif // PIDTEMP
  4386. #if ENABLED(PIDTEMPBED)
  4387. inline void gcode_M304() {
  4388. if (code_seen('P')) bedKp = code_value();
  4389. if (code_seen('I')) bedKi = scalePID_i(code_value());
  4390. if (code_seen('D')) bedKd = scalePID_d(code_value());
  4391. updatePID();
  4392. SERIAL_ECHO_START;
  4393. SERIAL_ECHO(" p:");
  4394. SERIAL_ECHO(bedKp);
  4395. SERIAL_ECHO(" i:");
  4396. SERIAL_ECHO(unscalePID_i(bedKi));
  4397. SERIAL_ECHO(" d:");
  4398. SERIAL_ECHOLN(unscalePID_d(bedKd));
  4399. }
  4400. #endif // PIDTEMPBED
  4401. #if defined(CHDK) || HAS_PHOTOGRAPH
  4402. /**
  4403. * M240: Trigger a camera by emulating a Canon RC-1
  4404. * See http://www.doc-diy.net/photo/rc-1_hacked/
  4405. */
  4406. inline void gcode_M240() {
  4407. #ifdef CHDK
  4408. OUT_WRITE(CHDK, HIGH);
  4409. chdkHigh = millis();
  4410. chdkActive = true;
  4411. #elif HAS_PHOTOGRAPH
  4412. const uint8_t NUM_PULSES = 16;
  4413. const float PULSE_LENGTH = 0.01524;
  4414. for (int i = 0; i < NUM_PULSES; i++) {
  4415. WRITE(PHOTOGRAPH_PIN, HIGH);
  4416. _delay_ms(PULSE_LENGTH);
  4417. WRITE(PHOTOGRAPH_PIN, LOW);
  4418. _delay_ms(PULSE_LENGTH);
  4419. }
  4420. delay(7.33);
  4421. for (int i = 0; i < NUM_PULSES; i++) {
  4422. WRITE(PHOTOGRAPH_PIN, HIGH);
  4423. _delay_ms(PULSE_LENGTH);
  4424. WRITE(PHOTOGRAPH_PIN, LOW);
  4425. _delay_ms(PULSE_LENGTH);
  4426. }
  4427. #endif // !CHDK && HAS_PHOTOGRAPH
  4428. }
  4429. #endif // CHDK || PHOTOGRAPH_PIN
  4430. #if ENABLED(HAS_LCD_CONTRAST)
  4431. /**
  4432. * M250: Read and optionally set the LCD contrast
  4433. */
  4434. inline void gcode_M250() {
  4435. if (code_seen('C')) lcd_setcontrast(code_value_short() & 0x3F);
  4436. SERIAL_PROTOCOLPGM("lcd contrast value: ");
  4437. SERIAL_PROTOCOL(lcd_contrast);
  4438. SERIAL_EOL;
  4439. }
  4440. #endif // HAS_LCD_CONTRAST
  4441. #if ENABLED(PREVENT_DANGEROUS_EXTRUDE)
  4442. void set_extrude_min_temp(float temp) { extrude_min_temp = temp; }
  4443. /**
  4444. * M302: Allow cold extrudes, or set the minimum extrude S<temperature>.
  4445. */
  4446. inline void gcode_M302() {
  4447. set_extrude_min_temp(code_seen('S') ? code_value() : 0);
  4448. }
  4449. #endif // PREVENT_DANGEROUS_EXTRUDE
  4450. /**
  4451. * M303: PID relay autotune
  4452. *
  4453. * S<temperature> sets the target temperature. (default 150C)
  4454. * E<extruder> (-1 for the bed) (default 0)
  4455. * C<cycles>
  4456. * U<bool> with a non-zero value will apply the result to current settings
  4457. */
  4458. inline void gcode_M303() {
  4459. int e = code_seen('E') ? code_value_short() : 0;
  4460. int c = code_seen('C') ? code_value_short() : 5;
  4461. bool u = code_seen('U') && code_value_short() != 0;
  4462. float temp = code_seen('S') ? code_value() : (e < 0 ? 70.0 : 150.0);
  4463. if (e >= 0 && e < EXTRUDERS)
  4464. target_extruder = e;
  4465. KEEPALIVE_STATE(NOT_BUSY); // don't send "busy: processing" messages during autotune output
  4466. PID_autotune(temp, e, c, u);
  4467. KEEPALIVE_STATE(IN_HANDLER);
  4468. }
  4469. #if ENABLED(SCARA)
  4470. bool SCARA_move_to_cal(uint8_t delta_x, uint8_t delta_y) {
  4471. //SoftEndsEnabled = false; // Ignore soft endstops during calibration
  4472. //SERIAL_ECHOLN(" Soft endstops disabled ");
  4473. if (IsRunning()) {
  4474. //gcode_get_destination(); // For X Y Z E F
  4475. delta[X_AXIS] = delta_x;
  4476. delta[Y_AXIS] = delta_y;
  4477. calculate_SCARA_forward_Transform(delta);
  4478. destination[X_AXIS] = delta[X_AXIS] / axis_scaling[X_AXIS];
  4479. destination[Y_AXIS] = delta[Y_AXIS] / axis_scaling[Y_AXIS];
  4480. prepare_move();
  4481. //ok_to_send();
  4482. return true;
  4483. }
  4484. return false;
  4485. }
  4486. /**
  4487. * M360: SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  4488. */
  4489. inline bool gcode_M360() {
  4490. SERIAL_ECHOLN(" Cal: Theta 0 ");
  4491. return SCARA_move_to_cal(0, 120);
  4492. }
  4493. /**
  4494. * M361: SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  4495. */
  4496. inline bool gcode_M361() {
  4497. SERIAL_ECHOLN(" Cal: Theta 90 ");
  4498. return SCARA_move_to_cal(90, 130);
  4499. }
  4500. /**
  4501. * M362: SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  4502. */
  4503. inline bool gcode_M362() {
  4504. SERIAL_ECHOLN(" Cal: Psi 0 ");
  4505. return SCARA_move_to_cal(60, 180);
  4506. }
  4507. /**
  4508. * M363: SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  4509. */
  4510. inline bool gcode_M363() {
  4511. SERIAL_ECHOLN(" Cal: Psi 90 ");
  4512. return SCARA_move_to_cal(50, 90);
  4513. }
  4514. /**
  4515. * M364: SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
  4516. */
  4517. inline bool gcode_M364() {
  4518. SERIAL_ECHOLN(" Cal: Theta-Psi 90 ");
  4519. return SCARA_move_to_cal(45, 135);
  4520. }
  4521. /**
  4522. * M365: SCARA calibration: Scaling factor, X, Y, Z axis
  4523. */
  4524. inline void gcode_M365() {
  4525. for (int8_t i = X_AXIS; i <= Z_AXIS; i++) {
  4526. if (code_seen(axis_codes[i])) {
  4527. axis_scaling[i] = code_value();
  4528. }
  4529. }
  4530. }
  4531. #endif // SCARA
  4532. #if ENABLED(EXT_SOLENOID)
  4533. void enable_solenoid(uint8_t num) {
  4534. switch (num) {
  4535. case 0:
  4536. OUT_WRITE(SOL0_PIN, HIGH);
  4537. break;
  4538. #if HAS_SOLENOID_1
  4539. case 1:
  4540. OUT_WRITE(SOL1_PIN, HIGH);
  4541. break;
  4542. #endif
  4543. #if HAS_SOLENOID_2
  4544. case 2:
  4545. OUT_WRITE(SOL2_PIN, HIGH);
  4546. break;
  4547. #endif
  4548. #if HAS_SOLENOID_3
  4549. case 3:
  4550. OUT_WRITE(SOL3_PIN, HIGH);
  4551. break;
  4552. #endif
  4553. default:
  4554. SERIAL_ECHO_START;
  4555. SERIAL_ECHOLNPGM(MSG_INVALID_SOLENOID);
  4556. break;
  4557. }
  4558. }
  4559. void enable_solenoid_on_active_extruder() { enable_solenoid(active_extruder); }
  4560. void disable_all_solenoids() {
  4561. OUT_WRITE(SOL0_PIN, LOW);
  4562. OUT_WRITE(SOL1_PIN, LOW);
  4563. OUT_WRITE(SOL2_PIN, LOW);
  4564. OUT_WRITE(SOL3_PIN, LOW);
  4565. }
  4566. /**
  4567. * M380: Enable solenoid on the active extruder
  4568. */
  4569. inline void gcode_M380() { enable_solenoid_on_active_extruder(); }
  4570. /**
  4571. * M381: Disable all solenoids
  4572. */
  4573. inline void gcode_M381() { disable_all_solenoids(); }
  4574. #endif // EXT_SOLENOID
  4575. /**
  4576. * M400: Finish all moves
  4577. */
  4578. inline void gcode_M400() { st_synchronize(); }
  4579. #if ENABLED(AUTO_BED_LEVELING_FEATURE) && DISABLED(Z_PROBE_SLED) && (HAS_SERVO_ENDSTOPS || ENABLED(Z_PROBE_ALLEN_KEY))
  4580. /**
  4581. * M401: Engage Z Servo endstop if available
  4582. */
  4583. inline void gcode_M401() {
  4584. #if HAS_SERVO_ENDSTOPS
  4585. raise_z_for_servo();
  4586. #endif
  4587. deploy_z_probe();
  4588. }
  4589. /**
  4590. * M402: Retract Z Servo endstop if enabled
  4591. */
  4592. inline void gcode_M402() {
  4593. #if HAS_SERVO_ENDSTOPS
  4594. raise_z_for_servo();
  4595. #endif
  4596. stow_z_probe(false);
  4597. }
  4598. #endif // AUTO_BED_LEVELING_FEATURE && (HAS_SERVO_ENDSTOPS || Z_PROBE_ALLEN_KEY) && !Z_PROBE_SLED
  4599. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  4600. /**
  4601. * M404: Display or set the nominal filament width (3mm, 1.75mm ) W<3.0>
  4602. */
  4603. inline void gcode_M404() {
  4604. if (code_seen('W')) {
  4605. filament_width_nominal = code_value();
  4606. }
  4607. else {
  4608. SERIAL_PROTOCOLPGM("Filament dia (nominal mm):");
  4609. SERIAL_PROTOCOLLN(filament_width_nominal);
  4610. }
  4611. }
  4612. /**
  4613. * M405: Turn on filament sensor for control
  4614. */
  4615. inline void gcode_M405() {
  4616. if (code_seen('D')) meas_delay_cm = code_value();
  4617. NOMORE(meas_delay_cm, MAX_MEASUREMENT_DELAY);
  4618. if (filwidth_delay_index2 == -1) { // Initialize the ring buffer if not done since startup
  4619. int temp_ratio = widthFil_to_size_ratio();
  4620. for (uint8_t i = 0; i < COUNT(measurement_delay); ++i)
  4621. measurement_delay[i] = temp_ratio - 100; // Subtract 100 to scale within a signed byte
  4622. filwidth_delay_index1 = filwidth_delay_index2 = 0;
  4623. }
  4624. filament_sensor = true;
  4625. //SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  4626. //SERIAL_PROTOCOL(filament_width_meas);
  4627. //SERIAL_PROTOCOLPGM("Extrusion ratio(%):");
  4628. //SERIAL_PROTOCOL(extruder_multiplier[active_extruder]);
  4629. }
  4630. /**
  4631. * M406: Turn off filament sensor for control
  4632. */
  4633. inline void gcode_M406() { filament_sensor = false; }
  4634. /**
  4635. * M407: Get measured filament diameter on serial output
  4636. */
  4637. inline void gcode_M407() {
  4638. SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  4639. SERIAL_PROTOCOLLN(filament_width_meas);
  4640. }
  4641. #endif // FILAMENT_WIDTH_SENSOR
  4642. /**
  4643. * M410: Quickstop - Abort all planned moves
  4644. *
  4645. * This will stop the carriages mid-move, so most likely they
  4646. * will be out of sync with the stepper position after this.
  4647. */
  4648. inline void gcode_M410() { quickStop(); }
  4649. #if ENABLED(MESH_BED_LEVELING)
  4650. /**
  4651. * M420: Enable/Disable Mesh Bed Leveling
  4652. */
  4653. inline void gcode_M420() { if (code_seen('S') && code_has_value()) mbl.active = !!code_value_short(); }
  4654. /**
  4655. * M421: Set a single Mesh Bed Leveling Z coordinate
  4656. */
  4657. inline void gcode_M421() {
  4658. float x = 0, y = 0, z = 0;
  4659. bool err = false, hasX, hasY, hasZ;
  4660. if ((hasX = code_seen('X'))) x = code_value();
  4661. if ((hasY = code_seen('Y'))) y = code_value();
  4662. if ((hasZ = code_seen('Z'))) z = code_value();
  4663. if (!hasX || !hasY || !hasZ) {
  4664. SERIAL_ERROR_START;
  4665. SERIAL_ERRORLNPGM(MSG_ERR_M421_REQUIRES_XYZ);
  4666. err = true;
  4667. }
  4668. if (x >= MESH_NUM_X_POINTS || y >= MESH_NUM_Y_POINTS) {
  4669. SERIAL_ERROR_START;
  4670. SERIAL_ERRORLNPGM(MSG_ERR_MESH_INDEX_OOB);
  4671. err = true;
  4672. }
  4673. if (!err) mbl.set_z(mbl.select_x_index(x), mbl.select_y_index(y), z);
  4674. }
  4675. #endif
  4676. /**
  4677. * M428: Set home_offset based on the distance between the
  4678. * current_position and the nearest "reference point."
  4679. * If an axis is past center its endstop position
  4680. * is the reference-point. Otherwise it uses 0. This allows
  4681. * the Z offset to be set near the bed when using a max endstop.
  4682. *
  4683. * M428 can't be used more than 2cm away from 0 or an endstop.
  4684. *
  4685. * Use M206 to set these values directly.
  4686. */
  4687. inline void gcode_M428() {
  4688. bool err = false;
  4689. float new_offs[3], new_pos[3];
  4690. memcpy(new_pos, current_position, sizeof(new_pos));
  4691. memcpy(new_offs, home_offset, sizeof(new_offs));
  4692. for (int8_t i = X_AXIS; i <= Z_AXIS; i++) {
  4693. if (axis_homed[i]) {
  4694. float base = (new_pos[i] > (min_pos[i] + max_pos[i]) / 2) ? base_home_pos(i) : 0,
  4695. diff = new_pos[i] - base;
  4696. if (diff > -20 && diff < 20) {
  4697. new_offs[i] -= diff;
  4698. new_pos[i] = base;
  4699. }
  4700. else {
  4701. SERIAL_ERROR_START;
  4702. SERIAL_ERRORLNPGM(MSG_ERR_M428_TOO_FAR);
  4703. LCD_ALERTMESSAGEPGM("Err: Too far!");
  4704. #if HAS_BUZZER
  4705. buzz(200, 40);
  4706. #endif
  4707. err = true;
  4708. break;
  4709. }
  4710. }
  4711. }
  4712. if (!err) {
  4713. memcpy(current_position, new_pos, sizeof(new_pos));
  4714. memcpy(home_offset, new_offs, sizeof(new_offs));
  4715. sync_plan_position();
  4716. LCD_ALERTMESSAGEPGM(MSG_HOME_OFFSETS_APPLIED);
  4717. #if HAS_BUZZER
  4718. buzz(200, 659);
  4719. buzz(200, 698);
  4720. #endif
  4721. }
  4722. }
  4723. /**
  4724. * M500: Store settings in EEPROM
  4725. */
  4726. inline void gcode_M500() {
  4727. Config_StoreSettings();
  4728. }
  4729. /**
  4730. * M501: Read settings from EEPROM
  4731. */
  4732. inline void gcode_M501() {
  4733. Config_RetrieveSettings();
  4734. }
  4735. /**
  4736. * M502: Revert to default settings
  4737. */
  4738. inline void gcode_M502() {
  4739. Config_ResetDefault();
  4740. }
  4741. /**
  4742. * M503: print settings currently in memory
  4743. */
  4744. inline void gcode_M503() {
  4745. Config_PrintSettings(code_seen('S') && code_value() == 0);
  4746. }
  4747. #if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  4748. /**
  4749. * M540: Set whether SD card print should abort on endstop hit (M540 S<0|1>)
  4750. */
  4751. inline void gcode_M540() {
  4752. if (code_seen('S')) abort_on_endstop_hit = (code_value() > 0);
  4753. }
  4754. #endif // ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  4755. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  4756. inline void gcode_SET_Z_PROBE_OFFSET() {
  4757. SERIAL_ECHO_START;
  4758. SERIAL_ECHOPGM(MSG_ZPROBE_ZOFFSET);
  4759. SERIAL_CHAR(' ');
  4760. if (code_seen('Z')) {
  4761. float value = code_value();
  4762. if (Z_PROBE_OFFSET_RANGE_MIN <= value && value <= Z_PROBE_OFFSET_RANGE_MAX) {
  4763. zprobe_zoffset = value;
  4764. SERIAL_ECHO(zprobe_zoffset);
  4765. }
  4766. else {
  4767. SERIAL_ECHOPGM(MSG_Z_MIN);
  4768. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
  4769. SERIAL_ECHOPGM(MSG_Z_MAX);
  4770. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
  4771. }
  4772. }
  4773. else {
  4774. SERIAL_ECHOPAIR(": ", zprobe_zoffset);
  4775. }
  4776. SERIAL_EOL;
  4777. }
  4778. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  4779. #if ENABLED(FILAMENTCHANGEENABLE)
  4780. /**
  4781. * M600: Pause for filament change
  4782. *
  4783. * E[distance] - Retract the filament this far (negative value)
  4784. * Z[distance] - Move the Z axis by this distance
  4785. * X[position] - Move to this X position, with Y
  4786. * Y[position] - Move to this Y position, with X
  4787. * L[distance] - Retract distance for removal (manual reload)
  4788. *
  4789. * Default values are used for omitted arguments.
  4790. *
  4791. */
  4792. inline void gcode_M600() {
  4793. if (degHotend(active_extruder) < extrude_min_temp) {
  4794. SERIAL_ERROR_START;
  4795. SERIAL_ERRORLNPGM(MSG_TOO_COLD_FOR_M600);
  4796. return;
  4797. }
  4798. float lastpos[NUM_AXIS];
  4799. #if ENABLED(DELTA)
  4800. float fr60 = feedrate / 60;
  4801. #endif
  4802. for (int i = 0; i < NUM_AXIS; i++)
  4803. lastpos[i] = destination[i] = current_position[i];
  4804. #if ENABLED(DELTA)
  4805. #define RUNPLAN calculate_delta(destination); \
  4806. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], destination[E_AXIS], fr60, active_extruder);
  4807. #else
  4808. #define RUNPLAN line_to_destination();
  4809. #endif
  4810. //retract by E
  4811. if (code_seen('E')) destination[E_AXIS] += code_value();
  4812. #ifdef FILAMENTCHANGE_FIRSTRETRACT
  4813. else destination[E_AXIS] += FILAMENTCHANGE_FIRSTRETRACT;
  4814. #endif
  4815. RUNPLAN;
  4816. //lift Z
  4817. if (code_seen('Z')) destination[Z_AXIS] += code_value();
  4818. #ifdef FILAMENTCHANGE_ZADD
  4819. else destination[Z_AXIS] += FILAMENTCHANGE_ZADD;
  4820. #endif
  4821. RUNPLAN;
  4822. //move xy
  4823. if (code_seen('X')) destination[X_AXIS] = code_value();
  4824. #ifdef FILAMENTCHANGE_XPOS
  4825. else destination[X_AXIS] = FILAMENTCHANGE_XPOS;
  4826. #endif
  4827. if (code_seen('Y')) destination[Y_AXIS] = code_value();
  4828. #ifdef FILAMENTCHANGE_YPOS
  4829. else destination[Y_AXIS] = FILAMENTCHANGE_YPOS;
  4830. #endif
  4831. RUNPLAN;
  4832. if (code_seen('L')) destination[E_AXIS] += code_value();
  4833. #ifdef FILAMENTCHANGE_FINALRETRACT
  4834. else destination[E_AXIS] += FILAMENTCHANGE_FINALRETRACT;
  4835. #endif
  4836. RUNPLAN;
  4837. //finish moves
  4838. st_synchronize();
  4839. //disable extruder steppers so filament can be removed
  4840. disable_e0();
  4841. disable_e1();
  4842. disable_e2();
  4843. disable_e3();
  4844. delay(100);
  4845. LCD_ALERTMESSAGEPGM(MSG_FILAMENTCHANGE);
  4846. #if DISABLED(AUTO_FILAMENT_CHANGE)
  4847. millis_t next_tick = 0;
  4848. #endif
  4849. KEEPALIVE_STATE(PAUSED_FOR_USER);
  4850. while (!lcd_clicked()) {
  4851. #if DISABLED(AUTO_FILAMENT_CHANGE)
  4852. millis_t ms = millis();
  4853. if (ms >= next_tick) {
  4854. lcd_quick_feedback();
  4855. next_tick = ms + 2500; // feedback every 2.5s while waiting
  4856. }
  4857. idle(true);
  4858. #else
  4859. current_position[E_AXIS] += AUTO_FILAMENT_CHANGE_LENGTH;
  4860. destination[E_AXIS] = current_position[E_AXIS];
  4861. line_to_destination(AUTO_FILAMENT_CHANGE_FEEDRATE);
  4862. st_synchronize();
  4863. #endif
  4864. } // while(!lcd_clicked)
  4865. KEEPALIVE_STATE(IN_HANDLER);
  4866. lcd_quick_feedback(); // click sound feedback
  4867. #if ENABLED(AUTO_FILAMENT_CHANGE)
  4868. current_position[E_AXIS] = 0;
  4869. st_synchronize();
  4870. #endif
  4871. //return to normal
  4872. if (code_seen('L')) destination[E_AXIS] -= code_value();
  4873. #ifdef FILAMENTCHANGE_FINALRETRACT
  4874. else destination[E_AXIS] -= FILAMENTCHANGE_FINALRETRACT;
  4875. #endif
  4876. current_position[E_AXIS] = destination[E_AXIS]; //the long retract of L is compensated by manual filament feeding
  4877. plan_set_e_position(current_position[E_AXIS]);
  4878. RUNPLAN; //should do nothing
  4879. lcd_reset_alert_level();
  4880. #if ENABLED(DELTA)
  4881. // Move XYZ to starting position, then E
  4882. calculate_delta(lastpos);
  4883. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], destination[E_AXIS], fr60, active_extruder);
  4884. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], lastpos[E_AXIS], fr60, active_extruder);
  4885. #else
  4886. // Move XY to starting position, then Z, then E
  4887. destination[X_AXIS] = lastpos[X_AXIS];
  4888. destination[Y_AXIS] = lastpos[Y_AXIS];
  4889. line_to_destination();
  4890. destination[Z_AXIS] = lastpos[Z_AXIS];
  4891. line_to_destination();
  4892. destination[E_AXIS] = lastpos[E_AXIS];
  4893. line_to_destination();
  4894. #endif
  4895. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  4896. filrunoutEnqueued = false;
  4897. #endif
  4898. }
  4899. #endif // FILAMENTCHANGEENABLE
  4900. #if ENABLED(DUAL_X_CARRIAGE)
  4901. /**
  4902. * M605: Set dual x-carriage movement mode
  4903. *
  4904. * M605 S0: Full control mode. The slicer has full control over x-carriage movement
  4905. * M605 S1: Auto-park mode. The inactive head will auto park/unpark without slicer involvement
  4906. * M605 S2 [Xnnn] [Rmmm]: Duplication mode. The second extruder will duplicate the first with nnn
  4907. * millimeters x-offset and an optional differential hotend temperature of
  4908. * mmm degrees. E.g., with "M605 S2 X100 R2" the second extruder will duplicate
  4909. * the first with a spacing of 100mm in the x direction and 2 degrees hotter.
  4910. *
  4911. * Note: the X axis should be homed after changing dual x-carriage mode.
  4912. */
  4913. inline void gcode_M605() {
  4914. st_synchronize();
  4915. if (code_seen('S')) dual_x_carriage_mode = code_value();
  4916. switch (dual_x_carriage_mode) {
  4917. case DXC_DUPLICATION_MODE:
  4918. if (code_seen('X')) duplicate_extruder_x_offset = max(code_value(), X2_MIN_POS - x_home_pos(0));
  4919. if (code_seen('R')) duplicate_extruder_temp_offset = code_value();
  4920. SERIAL_ECHO_START;
  4921. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  4922. SERIAL_CHAR(' ');
  4923. SERIAL_ECHO(extruder_offset[X_AXIS][0]);
  4924. SERIAL_CHAR(',');
  4925. SERIAL_ECHO(extruder_offset[Y_AXIS][0]);
  4926. SERIAL_CHAR(' ');
  4927. SERIAL_ECHO(duplicate_extruder_x_offset);
  4928. SERIAL_CHAR(',');
  4929. SERIAL_ECHOLN(extruder_offset[Y_AXIS][1]);
  4930. break;
  4931. case DXC_FULL_CONTROL_MODE:
  4932. case DXC_AUTO_PARK_MODE:
  4933. break;
  4934. default:
  4935. dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  4936. break;
  4937. }
  4938. active_extruder_parked = false;
  4939. extruder_duplication_enabled = false;
  4940. delayed_move_time = 0;
  4941. }
  4942. #endif // DUAL_X_CARRIAGE
  4943. /**
  4944. * M907: Set digital trimpot motor current using axis codes X, Y, Z, E, B, S
  4945. */
  4946. inline void gcode_M907() {
  4947. #if HAS_DIGIPOTSS
  4948. for (int i = 0; i < NUM_AXIS; i++)
  4949. if (code_seen(axis_codes[i])) digipot_current(i, code_value());
  4950. if (code_seen('B')) digipot_current(4, code_value());
  4951. if (code_seen('S')) for (int i = 0; i <= 4; i++) digipot_current(i, code_value());
  4952. #endif
  4953. #if PIN_EXISTS(MOTOR_CURRENT_PWM_XY)
  4954. if (code_seen('X')) digipot_current(0, code_value());
  4955. #endif
  4956. #if PIN_EXISTS(MOTOR_CURRENT_PWM_Z)
  4957. if (code_seen('Z')) digipot_current(1, code_value());
  4958. #endif
  4959. #if PIN_EXISTS(MOTOR_CURRENT_PWM_E)
  4960. if (code_seen('E')) digipot_current(2, code_value());
  4961. #endif
  4962. #if ENABLED(DIGIPOT_I2C)
  4963. // this one uses actual amps in floating point
  4964. for (int i = 0; i < NUM_AXIS; i++) if (code_seen(axis_codes[i])) digipot_i2c_set_current(i, code_value());
  4965. // for each additional extruder (named B,C,D,E..., channels 4,5,6,7...)
  4966. for (int i = NUM_AXIS; i < DIGIPOT_I2C_NUM_CHANNELS; i++) if (code_seen('B' + i - (NUM_AXIS))) digipot_i2c_set_current(i, code_value());
  4967. #endif
  4968. #if ENABLED(DAC_STEPPER_CURRENT)
  4969. if (code_seen('S')) {
  4970. float dac_percent = code_value();
  4971. for (uint8_t i = 0; i <= 4; i++) dac_current_percent(i, dac_percent);
  4972. }
  4973. for (uint8_t i = 0; i < NUM_AXIS; i++) if (code_seen(axis_codes[i])) dac_current_percent(i, code_value());
  4974. #endif
  4975. }
  4976. #if HAS_DIGIPOTSS || ENABLED(DAC_STEPPER_CURRENT)
  4977. /**
  4978. * M908: Control digital trimpot directly (M908 P<pin> S<current>)
  4979. */
  4980. inline void gcode_M908() {
  4981. #if HAS_DIGIPOTSS
  4982. digitalPotWrite(
  4983. code_seen('P') ? code_value() : 0,
  4984. code_seen('S') ? code_value() : 0
  4985. );
  4986. #endif
  4987. #ifdef DAC_STEPPER_CURRENT
  4988. dac_current_raw(
  4989. code_seen('P') ? code_value_long() : -1,
  4990. code_seen('S') ? code_value_short() : 0
  4991. );
  4992. #endif
  4993. }
  4994. #if ENABLED(DAC_STEPPER_CURRENT) // As with Printrbot RevF
  4995. inline void gcode_M909() { dac_print_values(); }
  4996. inline void gcode_M910() { dac_commit_eeprom(); }
  4997. #endif
  4998. #endif // HAS_DIGIPOTSS || DAC_STEPPER_CURRENT
  4999. #if HAS_MICROSTEPS
  5000. // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  5001. inline void gcode_M350() {
  5002. if (code_seen('S')) for (int i = 0; i <= 4; i++) microstep_mode(i, code_value());
  5003. for (int i = 0; i < NUM_AXIS; i++) if (code_seen(axis_codes[i])) microstep_mode(i, (uint8_t)code_value());
  5004. if (code_seen('B')) microstep_mode(4, code_value());
  5005. microstep_readings();
  5006. }
  5007. /**
  5008. * M351: Toggle MS1 MS2 pins directly with axis codes X Y Z E B
  5009. * S# determines MS1 or MS2, X# sets the pin high/low.
  5010. */
  5011. inline void gcode_M351() {
  5012. if (code_seen('S')) switch (code_value_short()) {
  5013. case 1:
  5014. for (int i = 0; i < NUM_AXIS; i++) if (code_seen(axis_codes[i])) microstep_ms(i, code_value(), -1);
  5015. if (code_seen('B')) microstep_ms(4, code_value(), -1);
  5016. break;
  5017. case 2:
  5018. for (int i = 0; i < NUM_AXIS; i++) if (code_seen(axis_codes[i])) microstep_ms(i, -1, code_value());
  5019. if (code_seen('B')) microstep_ms(4, -1, code_value());
  5020. break;
  5021. }
  5022. microstep_readings();
  5023. }
  5024. #endif // HAS_MICROSTEPS
  5025. /**
  5026. * M999: Restart after being stopped
  5027. */
  5028. inline void gcode_M999() {
  5029. Running = true;
  5030. lcd_reset_alert_level();
  5031. // gcode_LastN = Stopped_gcode_LastN;
  5032. FlushSerialRequestResend();
  5033. }
  5034. /**
  5035. * T0-T3: Switch tool, usually switching extruders
  5036. *
  5037. * F[mm/min] Set the movement feedrate
  5038. */
  5039. inline void gcode_T(uint8_t tmp_extruder) {
  5040. if (tmp_extruder >= EXTRUDERS) {
  5041. SERIAL_ECHO_START;
  5042. SERIAL_CHAR('T');
  5043. SERIAL_PROTOCOL_F(tmp_extruder, DEC);
  5044. SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
  5045. }
  5046. else {
  5047. target_extruder = tmp_extruder;
  5048. #if EXTRUDERS > 1
  5049. bool make_move = false;
  5050. #endif
  5051. if (code_seen('F')) {
  5052. #if EXTRUDERS > 1
  5053. make_move = true;
  5054. #endif
  5055. float next_feedrate = code_value();
  5056. if (next_feedrate > 0.0) feedrate = next_feedrate;
  5057. }
  5058. #if EXTRUDERS > 1
  5059. if (tmp_extruder != active_extruder) {
  5060. // Save current position to return to after applying extruder offset
  5061. set_destination_to_current();
  5062. #if ENABLED(DUAL_X_CARRIAGE)
  5063. if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE && IsRunning() &&
  5064. (delayed_move_time != 0 || current_position[X_AXIS] != x_home_pos(active_extruder))) {
  5065. // Park old head: 1) raise 2) move to park position 3) lower
  5066. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
  5067. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  5068. plan_buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
  5069. current_position[E_AXIS], max_feedrate[X_AXIS], active_extruder);
  5070. plan_buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS],
  5071. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  5072. st_synchronize();
  5073. }
  5074. // apply Y & Z extruder offset (x offset is already used in determining home pos)
  5075. current_position[Y_AXIS] -= extruder_offset[Y_AXIS][active_extruder] - extruder_offset[Y_AXIS][tmp_extruder];
  5076. current_position[Z_AXIS] -= extruder_offset[Z_AXIS][active_extruder] - extruder_offset[Z_AXIS][tmp_extruder];
  5077. active_extruder = tmp_extruder;
  5078. // This function resets the max/min values - the current position may be overwritten below.
  5079. set_axis_is_at_home(X_AXIS);
  5080. if (dual_x_carriage_mode == DXC_FULL_CONTROL_MODE) {
  5081. current_position[X_AXIS] = inactive_extruder_x_pos;
  5082. inactive_extruder_x_pos = destination[X_AXIS];
  5083. }
  5084. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE) {
  5085. active_extruder_parked = (active_extruder == 0); // this triggers the second extruder to move into the duplication position
  5086. if (active_extruder == 0 || active_extruder_parked)
  5087. current_position[X_AXIS] = inactive_extruder_x_pos;
  5088. else
  5089. current_position[X_AXIS] = destination[X_AXIS] + duplicate_extruder_x_offset;
  5090. inactive_extruder_x_pos = destination[X_AXIS];
  5091. extruder_duplication_enabled = false;
  5092. }
  5093. else {
  5094. // record raised toolhead position for use by unpark
  5095. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  5096. raised_parked_position[Z_AXIS] += TOOLCHANGE_UNPARK_ZLIFT;
  5097. active_extruder_parked = true;
  5098. delayed_move_time = 0;
  5099. }
  5100. #else // !DUAL_X_CARRIAGE
  5101. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  5102. // Offset extruder, make sure to apply the bed level rotation matrix
  5103. vector_3 tmp_offset_vec = vector_3(extruder_offset[X_AXIS][tmp_extruder],
  5104. extruder_offset[Y_AXIS][tmp_extruder],
  5105. extruder_offset[Z_AXIS][tmp_extruder]),
  5106. act_offset_vec = vector_3(extruder_offset[X_AXIS][active_extruder],
  5107. extruder_offset[Y_AXIS][active_extruder],
  5108. extruder_offset[Z_AXIS][active_extruder]),
  5109. offset_vec = tmp_offset_vec - act_offset_vec;
  5110. offset_vec.apply_rotation(plan_bed_level_matrix.transpose(plan_bed_level_matrix));
  5111. current_position[X_AXIS] += offset_vec.x;
  5112. current_position[Y_AXIS] += offset_vec.y;
  5113. current_position[Z_AXIS] += offset_vec.z;
  5114. #else // !AUTO_BED_LEVELING_FEATURE
  5115. // Offset extruder (only by XY)
  5116. for (int i=X_AXIS; i<=Y_AXIS; i++)
  5117. current_position[i] += extruder_offset[i][tmp_extruder] - extruder_offset[i][active_extruder];
  5118. #endif // !AUTO_BED_LEVELING_FEATURE
  5119. // Set the new active extruder and position
  5120. active_extruder = tmp_extruder;
  5121. #endif // !DUAL_X_CARRIAGE
  5122. #if ENABLED(DELTA)
  5123. sync_plan_position_delta();
  5124. #else
  5125. sync_plan_position();
  5126. #endif
  5127. // Move to the old position if 'F' was in the parameters
  5128. if (make_move && IsRunning()) prepare_move();
  5129. }
  5130. #if ENABLED(EXT_SOLENOID)
  5131. st_synchronize();
  5132. disable_all_solenoids();
  5133. enable_solenoid_on_active_extruder();
  5134. #endif // EXT_SOLENOID
  5135. #endif // EXTRUDERS > 1
  5136. SERIAL_ECHO_START;
  5137. SERIAL_ECHO(MSG_ACTIVE_EXTRUDER);
  5138. SERIAL_PROTOCOLLN((int)active_extruder);
  5139. }
  5140. }
  5141. /**
  5142. * Process a single command and dispatch it to its handler
  5143. * This is called from the main loop()
  5144. */
  5145. void process_next_command() {
  5146. current_command = command_queue[cmd_queue_index_r];
  5147. if (DEBUGGING(ECHO)) {
  5148. SERIAL_ECHO_START;
  5149. SERIAL_ECHOLN(current_command);
  5150. }
  5151. // Sanitize the current command:
  5152. // - Skip leading spaces
  5153. // - Bypass N[-0-9][0-9]*[ ]*
  5154. // - Overwrite * with nul to mark the end
  5155. while (*current_command == ' ') ++current_command;
  5156. if (*current_command == 'N' && NUMERIC_SIGNED(current_command[1])) {
  5157. current_command += 2; // skip N[-0-9]
  5158. while (NUMERIC(*current_command)) ++current_command; // skip [0-9]*
  5159. while (*current_command == ' ') ++current_command; // skip [ ]*
  5160. }
  5161. char* starpos = strchr(current_command, '*'); // * should always be the last parameter
  5162. if (starpos) while (*starpos == ' ' || *starpos == '*') *starpos-- = '\0'; // nullify '*' and ' '
  5163. char *cmd_ptr = current_command;
  5164. // Get the command code, which must be G, M, or T
  5165. char command_code = *cmd_ptr++;
  5166. // Skip spaces to get the numeric part
  5167. while (*cmd_ptr == ' ') cmd_ptr++;
  5168. uint16_t codenum = 0; // define ahead of goto
  5169. // Bail early if there's no code
  5170. bool code_is_good = NUMERIC(*cmd_ptr);
  5171. if (!code_is_good) goto ExitUnknownCommand;
  5172. // Get and skip the code number
  5173. do {
  5174. codenum = (codenum * 10) + (*cmd_ptr - '0');
  5175. cmd_ptr++;
  5176. } while (NUMERIC(*cmd_ptr));
  5177. // Skip all spaces to get to the first argument, or nul
  5178. while (*cmd_ptr == ' ') cmd_ptr++;
  5179. // The command's arguments (if any) start here, for sure!
  5180. current_command_args = cmd_ptr;
  5181. KEEPALIVE_STATE(IN_HANDLER);
  5182. // Handle a known G, M, or T
  5183. switch (command_code) {
  5184. case 'G': switch (codenum) {
  5185. // G0, G1
  5186. case 0:
  5187. case 1:
  5188. gcode_G0_G1();
  5189. break;
  5190. // G2, G3
  5191. #if DISABLED(SCARA)
  5192. case 2: // G2 - CW ARC
  5193. case 3: // G3 - CCW ARC
  5194. gcode_G2_G3(codenum == 2);
  5195. break;
  5196. #endif
  5197. // G4 Dwell
  5198. case 4:
  5199. gcode_G4();
  5200. break;
  5201. #if ENABLED(FWRETRACT)
  5202. case 10: // G10: retract
  5203. case 11: // G11: retract_recover
  5204. gcode_G10_G11(codenum == 10);
  5205. break;
  5206. #endif //FWRETRACT
  5207. case 28: // G28: Home all axes, one at a time
  5208. gcode_G28();
  5209. break;
  5210. #if ENABLED(AUTO_BED_LEVELING_FEATURE) || ENABLED(MESH_BED_LEVELING)
  5211. case 29: // G29 Detailed Z probe, probes the bed at 3 or more points.
  5212. gcode_G29();
  5213. break;
  5214. #endif
  5215. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  5216. #if DISABLED(Z_PROBE_SLED)
  5217. case 30: // G30 Single Z probe
  5218. gcode_G30();
  5219. break;
  5220. #else // Z_PROBE_SLED
  5221. case 31: // G31: dock the sled
  5222. case 32: // G32: undock the sled
  5223. dock_sled(codenum == 31);
  5224. break;
  5225. #endif // Z_PROBE_SLED
  5226. #endif // AUTO_BED_LEVELING_FEATURE
  5227. case 90: // G90
  5228. relative_mode = false;
  5229. break;
  5230. case 91: // G91
  5231. relative_mode = true;
  5232. break;
  5233. case 92: // G92
  5234. gcode_G92();
  5235. break;
  5236. }
  5237. break;
  5238. case 'M': switch (codenum) {
  5239. #if ENABLED(ULTIPANEL)
  5240. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  5241. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  5242. gcode_M0_M1();
  5243. break;
  5244. #endif // ULTIPANEL
  5245. case 17:
  5246. gcode_M17();
  5247. break;
  5248. #if ENABLED(SDSUPPORT)
  5249. case 20: // M20 - list SD card
  5250. gcode_M20(); break;
  5251. case 21: // M21 - init SD card
  5252. gcode_M21(); break;
  5253. case 22: //M22 - release SD card
  5254. gcode_M22(); break;
  5255. case 23: //M23 - Select file
  5256. gcode_M23(); break;
  5257. case 24: //M24 - Start SD print
  5258. gcode_M24(); break;
  5259. case 25: //M25 - Pause SD print
  5260. gcode_M25(); break;
  5261. case 26: //M26 - Set SD index
  5262. gcode_M26(); break;
  5263. case 27: //M27 - Get SD status
  5264. gcode_M27(); break;
  5265. case 28: //M28 - Start SD write
  5266. gcode_M28(); break;
  5267. case 29: //M29 - Stop SD write
  5268. gcode_M29(); break;
  5269. case 30: //M30 <filename> Delete File
  5270. gcode_M30(); break;
  5271. case 32: //M32 - Select file and start SD print
  5272. gcode_M32(); break;
  5273. #if ENABLED(LONG_FILENAME_HOST_SUPPORT)
  5274. case 33: //M33 - Get the long full path to a file or folder
  5275. gcode_M33(); break;
  5276. #endif // LONG_FILENAME_HOST_SUPPORT
  5277. case 928: //M928 - Start SD write
  5278. gcode_M928(); break;
  5279. #endif //SDSUPPORT
  5280. case 31: //M31 take time since the start of the SD print or an M109 command
  5281. gcode_M31();
  5282. break;
  5283. case 42: //M42 -Change pin status via gcode
  5284. gcode_M42();
  5285. break;
  5286. #if ENABLED(AUTO_BED_LEVELING_FEATURE) && ENABLED(Z_MIN_PROBE_REPEATABILITY_TEST)
  5287. case 48: // M48 Z probe repeatability
  5288. gcode_M48();
  5289. break;
  5290. #endif // AUTO_BED_LEVELING_FEATURE && Z_MIN_PROBE_REPEATABILITY_TEST
  5291. #if ENABLED(M100_FREE_MEMORY_WATCHER)
  5292. case 100:
  5293. gcode_M100();
  5294. break;
  5295. #endif
  5296. case 104: // M104
  5297. gcode_M104();
  5298. break;
  5299. case 110: // M110: Set Current Line Number
  5300. gcode_M110();
  5301. break;
  5302. case 111: // M111: Set debug level
  5303. gcode_M111();
  5304. break;
  5305. case 112: // M112: Emergency Stop
  5306. gcode_M112();
  5307. break;
  5308. case 140: // M140: Set bed temp
  5309. gcode_M140();
  5310. break;
  5311. case 105: // M105: Read current temperature
  5312. gcode_M105();
  5313. KEEPALIVE_STATE(NOT_BUSY);
  5314. return; // "ok" already printed
  5315. case 109: // M109: Wait for temperature
  5316. gcode_M109();
  5317. break;
  5318. #if HAS_TEMP_BED
  5319. case 190: // M190: Wait for bed heater to reach target
  5320. gcode_M190();
  5321. break;
  5322. #endif // HAS_TEMP_BED
  5323. #if FAN_COUNT > 0
  5324. case 106: // M106: Fan On
  5325. gcode_M106();
  5326. break;
  5327. case 107: // M107: Fan Off
  5328. gcode_M107();
  5329. break;
  5330. #endif // FAN_COUNT > 0
  5331. #if ENABLED(BARICUDA)
  5332. // PWM for HEATER_1_PIN
  5333. #if HAS_HEATER_1
  5334. case 126: // M126: valve open
  5335. gcode_M126();
  5336. break;
  5337. case 127: // M127: valve closed
  5338. gcode_M127();
  5339. break;
  5340. #endif // HAS_HEATER_1
  5341. // PWM for HEATER_2_PIN
  5342. #if HAS_HEATER_2
  5343. case 128: // M128: valve open
  5344. gcode_M128();
  5345. break;
  5346. case 129: // M129: valve closed
  5347. gcode_M129();
  5348. break;
  5349. #endif // HAS_HEATER_2
  5350. #endif // BARICUDA
  5351. #if HAS_POWER_SWITCH
  5352. case 80: // M80: Turn on Power Supply
  5353. gcode_M80();
  5354. break;
  5355. #endif // HAS_POWER_SWITCH
  5356. case 81: // M81: Turn off Power, including Power Supply, if possible
  5357. gcode_M81();
  5358. break;
  5359. case 82:
  5360. gcode_M82();
  5361. break;
  5362. case 83:
  5363. gcode_M83();
  5364. break;
  5365. case 18: // (for compatibility)
  5366. case 84: // M84
  5367. gcode_M18_M84();
  5368. break;
  5369. case 85: // M85
  5370. gcode_M85();
  5371. break;
  5372. case 92: // M92: Set the steps-per-unit for one or more axes
  5373. gcode_M92();
  5374. break;
  5375. case 115: // M115: Report capabilities
  5376. gcode_M115();
  5377. break;
  5378. case 117: // M117: Set LCD message text, if possible
  5379. gcode_M117();
  5380. break;
  5381. case 114: // M114: Report current position
  5382. gcode_M114();
  5383. break;
  5384. case 120: // M120: Enable endstops
  5385. gcode_M120();
  5386. break;
  5387. case 121: // M121: Disable endstops
  5388. gcode_M121();
  5389. break;
  5390. case 119: // M119: Report endstop states
  5391. gcode_M119();
  5392. break;
  5393. #if ENABLED(ULTIPANEL)
  5394. case 145: // M145: Set material heatup parameters
  5395. gcode_M145();
  5396. break;
  5397. #endif
  5398. #if ENABLED(BLINKM)
  5399. case 150: // M150
  5400. gcode_M150();
  5401. break;
  5402. #endif //BLINKM
  5403. case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  5404. gcode_M200();
  5405. break;
  5406. case 201: // M201
  5407. gcode_M201();
  5408. break;
  5409. #if 0 // Not used for Sprinter/grbl gen6
  5410. case 202: // M202
  5411. gcode_M202();
  5412. break;
  5413. #endif
  5414. case 203: // M203 max feedrate mm/sec
  5415. gcode_M203();
  5416. break;
  5417. case 204: // M204 acclereration S normal moves T filmanent only moves
  5418. gcode_M204();
  5419. break;
  5420. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  5421. gcode_M205();
  5422. break;
  5423. case 206: // M206 additional homing offset
  5424. gcode_M206();
  5425. break;
  5426. #if ENABLED(DELTA)
  5427. case 665: // M665 set delta configurations L<diagonal_rod> R<delta_radius> S<segments_per_sec>
  5428. gcode_M665();
  5429. break;
  5430. #endif
  5431. #if ENABLED(DELTA) || ENABLED(Z_DUAL_ENDSTOPS)
  5432. case 666: // M666 set delta / dual endstop adjustment
  5433. gcode_M666();
  5434. break;
  5435. #endif
  5436. #if ENABLED(FWRETRACT)
  5437. case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
  5438. gcode_M207();
  5439. break;
  5440. case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  5441. gcode_M208();
  5442. break;
  5443. case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  5444. gcode_M209();
  5445. break;
  5446. #endif // FWRETRACT
  5447. #if EXTRUDERS > 1
  5448. case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  5449. gcode_M218();
  5450. break;
  5451. #endif
  5452. case 220: // M220 S<factor in percent>- set speed factor override percentage
  5453. gcode_M220();
  5454. break;
  5455. case 221: // M221 S<factor in percent>- set extrude factor override percentage
  5456. gcode_M221();
  5457. break;
  5458. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  5459. gcode_M226();
  5460. break;
  5461. #if HAS_SERVOS
  5462. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  5463. gcode_M280();
  5464. break;
  5465. #endif // HAS_SERVOS
  5466. #if HAS_BUZZER
  5467. case 300: // M300 - Play beep tone
  5468. gcode_M300();
  5469. break;
  5470. #endif // HAS_BUZZER
  5471. #if ENABLED(PIDTEMP)
  5472. case 301: // M301
  5473. gcode_M301();
  5474. break;
  5475. #endif // PIDTEMP
  5476. #if ENABLED(PIDTEMPBED)
  5477. case 304: // M304
  5478. gcode_M304();
  5479. break;
  5480. #endif // PIDTEMPBED
  5481. #if defined(CHDK) || HAS_PHOTOGRAPH
  5482. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  5483. gcode_M240();
  5484. break;
  5485. #endif // CHDK || PHOTOGRAPH_PIN
  5486. #if ENABLED(HAS_LCD_CONTRAST)
  5487. case 250: // M250 Set LCD contrast value: C<value> (value 0..63)
  5488. gcode_M250();
  5489. break;
  5490. #endif // HAS_LCD_CONTRAST
  5491. #if ENABLED(PREVENT_DANGEROUS_EXTRUDE)
  5492. case 302: // allow cold extrudes, or set the minimum extrude temperature
  5493. gcode_M302();
  5494. break;
  5495. #endif // PREVENT_DANGEROUS_EXTRUDE
  5496. case 303: // M303 PID autotune
  5497. gcode_M303();
  5498. break;
  5499. #if ENABLED(SCARA)
  5500. case 360: // M360 SCARA Theta pos1
  5501. if (gcode_M360()) return;
  5502. break;
  5503. case 361: // M361 SCARA Theta pos2
  5504. if (gcode_M361()) return;
  5505. break;
  5506. case 362: // M362 SCARA Psi pos1
  5507. if (gcode_M362()) return;
  5508. break;
  5509. case 363: // M363 SCARA Psi pos2
  5510. if (gcode_M363()) return;
  5511. break;
  5512. case 364: // M364 SCARA Psi pos3 (90 deg to Theta)
  5513. if (gcode_M364()) return;
  5514. break;
  5515. case 365: // M365 Set SCARA scaling for X Y Z
  5516. gcode_M365();
  5517. break;
  5518. #endif // SCARA
  5519. case 400: // M400 finish all moves
  5520. gcode_M400();
  5521. break;
  5522. #if ENABLED(AUTO_BED_LEVELING_FEATURE) && (HAS_SERVO_ENDSTOPS || ENABLED(Z_PROBE_ALLEN_KEY)) && DISABLED(Z_PROBE_SLED)
  5523. case 401:
  5524. gcode_M401();
  5525. break;
  5526. case 402:
  5527. gcode_M402();
  5528. break;
  5529. #endif // AUTO_BED_LEVELING_FEATURE && (HAS_SERVO_ENDSTOPS || Z_PROBE_ALLEN_KEY) && !Z_PROBE_SLED
  5530. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  5531. case 404: //M404 Enter the nominal filament width (3mm, 1.75mm ) N<3.0> or display nominal filament width
  5532. gcode_M404();
  5533. break;
  5534. case 405: //M405 Turn on filament sensor for control
  5535. gcode_M405();
  5536. break;
  5537. case 406: //M406 Turn off filament sensor for control
  5538. gcode_M406();
  5539. break;
  5540. case 407: //M407 Display measured filament diameter
  5541. gcode_M407();
  5542. break;
  5543. #endif // ENABLED(FILAMENT_WIDTH_SENSOR)
  5544. case 410: // M410 quickstop - Abort all the planned moves.
  5545. gcode_M410();
  5546. break;
  5547. #if ENABLED(MESH_BED_LEVELING)
  5548. case 420: // M420 Enable/Disable Mesh Bed Leveling
  5549. gcode_M420();
  5550. break;
  5551. case 421: // M421 Set a Mesh Bed Leveling Z coordinate
  5552. gcode_M421();
  5553. break;
  5554. #endif
  5555. case 428: // M428 Apply current_position to home_offset
  5556. gcode_M428();
  5557. break;
  5558. case 500: // M500 Store settings in EEPROM
  5559. gcode_M500();
  5560. break;
  5561. case 501: // M501 Read settings from EEPROM
  5562. gcode_M501();
  5563. break;
  5564. case 502: // M502 Revert to default settings
  5565. gcode_M502();
  5566. break;
  5567. case 503: // M503 print settings currently in memory
  5568. gcode_M503();
  5569. break;
  5570. #if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  5571. case 540:
  5572. gcode_M540();
  5573. break;
  5574. #endif
  5575. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  5576. case CUSTOM_M_CODE_SET_Z_PROBE_OFFSET:
  5577. gcode_SET_Z_PROBE_OFFSET();
  5578. break;
  5579. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  5580. #if ENABLED(FILAMENTCHANGEENABLE)
  5581. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  5582. gcode_M600();
  5583. break;
  5584. #endif // FILAMENTCHANGEENABLE
  5585. #if ENABLED(DUAL_X_CARRIAGE)
  5586. case 605:
  5587. gcode_M605();
  5588. break;
  5589. #endif // DUAL_X_CARRIAGE
  5590. case 907: // M907 Set digital trimpot motor current using axis codes.
  5591. gcode_M907();
  5592. break;
  5593. #if HAS_DIGIPOTSS || ENABLED(DAC_STEPPER_CURRENT)
  5594. case 908: // M908 Control digital trimpot directly.
  5595. gcode_M908();
  5596. break;
  5597. #if ENABLED(DAC_STEPPER_CURRENT) // As with Printrbot RevF
  5598. case 909: // M909 Print digipot/DAC current value
  5599. gcode_M909();
  5600. break;
  5601. case 910: // M910 Commit digipot/DAC value to external EEPROM
  5602. gcode_M910();
  5603. break;
  5604. #endif
  5605. #endif // HAS_DIGIPOTSS || DAC_STEPPER_CURRENT
  5606. #if HAS_MICROSTEPS
  5607. case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  5608. gcode_M350();
  5609. break;
  5610. case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  5611. gcode_M351();
  5612. break;
  5613. #endif // HAS_MICROSTEPS
  5614. case 999: // M999: Restart after being Stopped
  5615. gcode_M999();
  5616. break;
  5617. }
  5618. break;
  5619. case 'T':
  5620. gcode_T(codenum);
  5621. break;
  5622. default: code_is_good = false;
  5623. }
  5624. KEEPALIVE_STATE(NOT_BUSY);
  5625. ExitUnknownCommand:
  5626. // Still unknown command? Throw an error
  5627. if (!code_is_good) unknown_command_error();
  5628. ok_to_send();
  5629. }
  5630. void FlushSerialRequestResend() {
  5631. //char command_queue[cmd_queue_index_r][100]="Resend:";
  5632. MYSERIAL.flush();
  5633. SERIAL_PROTOCOLPGM(MSG_RESEND);
  5634. SERIAL_PROTOCOLLN(gcode_LastN + 1);
  5635. ok_to_send();
  5636. }
  5637. void ok_to_send() {
  5638. refresh_cmd_timeout();
  5639. if (!send_ok[cmd_queue_index_r]) return;
  5640. SERIAL_PROTOCOLPGM(MSG_OK);
  5641. #if ENABLED(ADVANCED_OK)
  5642. char* p = command_queue[cmd_queue_index_r];
  5643. if (*p == 'N') {
  5644. SERIAL_PROTOCOL(' ');
  5645. SERIAL_ECHO(*p++);
  5646. while (NUMERIC_SIGNED(*p))
  5647. SERIAL_ECHO(*p++);
  5648. }
  5649. SERIAL_PROTOCOLPGM(" P"); SERIAL_PROTOCOL(int(BLOCK_BUFFER_SIZE - movesplanned() - 1));
  5650. SERIAL_PROTOCOLPGM(" B"); SERIAL_PROTOCOL(BUFSIZE - commands_in_queue);
  5651. #endif
  5652. SERIAL_EOL;
  5653. }
  5654. void clamp_to_software_endstops(float target[3]) {
  5655. if (min_software_endstops) {
  5656. NOLESS(target[X_AXIS], min_pos[X_AXIS]);
  5657. NOLESS(target[Y_AXIS], min_pos[Y_AXIS]);
  5658. float negative_z_offset = 0;
  5659. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  5660. if (zprobe_zoffset < 0) negative_z_offset += zprobe_zoffset;
  5661. if (home_offset[Z_AXIS] < 0) {
  5662. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5663. if (DEBUGGING(LEVELING)) {
  5664. SERIAL_ECHOPAIR("> clamp_to_software_endstops > Add home_offset[Z_AXIS]:", home_offset[Z_AXIS]);
  5665. SERIAL_EOL;
  5666. }
  5667. #endif
  5668. negative_z_offset += home_offset[Z_AXIS];
  5669. }
  5670. #endif
  5671. NOLESS(target[Z_AXIS], min_pos[Z_AXIS] + negative_z_offset);
  5672. }
  5673. if (max_software_endstops) {
  5674. NOMORE(target[X_AXIS], max_pos[X_AXIS]);
  5675. NOMORE(target[Y_AXIS], max_pos[Y_AXIS]);
  5676. NOMORE(target[Z_AXIS], max_pos[Z_AXIS]);
  5677. }
  5678. }
  5679. #if ENABLED(DELTA)
  5680. void recalc_delta_settings(float radius, float diagonal_rod) {
  5681. delta_tower1_x = -SIN_60 * (radius + DELTA_RADIUS_TRIM_TOWER_1); // front left tower
  5682. delta_tower1_y = -COS_60 * (radius + DELTA_RADIUS_TRIM_TOWER_1);
  5683. delta_tower2_x = SIN_60 * (radius + DELTA_RADIUS_TRIM_TOWER_2); // front right tower
  5684. delta_tower2_y = -COS_60 * (radius + DELTA_RADIUS_TRIM_TOWER_2);
  5685. delta_tower3_x = 0.0; // back middle tower
  5686. delta_tower3_y = (radius + DELTA_RADIUS_TRIM_TOWER_3);
  5687. delta_diagonal_rod_2_tower_1 = sq(diagonal_rod + delta_diagonal_rod_trim_tower_1);
  5688. delta_diagonal_rod_2_tower_2 = sq(diagonal_rod + delta_diagonal_rod_trim_tower_2);
  5689. delta_diagonal_rod_2_tower_3 = sq(diagonal_rod + delta_diagonal_rod_trim_tower_3);
  5690. }
  5691. void calculate_delta(float cartesian[3]) {
  5692. delta[TOWER_1] = sqrt(delta_diagonal_rod_2_tower_1
  5693. - sq(delta_tower1_x - cartesian[X_AXIS])
  5694. - sq(delta_tower1_y - cartesian[Y_AXIS])
  5695. ) + cartesian[Z_AXIS];
  5696. delta[TOWER_2] = sqrt(delta_diagonal_rod_2_tower_2
  5697. - sq(delta_tower2_x - cartesian[X_AXIS])
  5698. - sq(delta_tower2_y - cartesian[Y_AXIS])
  5699. ) + cartesian[Z_AXIS];
  5700. delta[TOWER_3] = sqrt(delta_diagonal_rod_2_tower_3
  5701. - sq(delta_tower3_x - cartesian[X_AXIS])
  5702. - sq(delta_tower3_y - cartesian[Y_AXIS])
  5703. ) + cartesian[Z_AXIS];
  5704. /**
  5705. SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);
  5706. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]);
  5707. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]);
  5708. SERIAL_ECHOPGM("delta a="); SERIAL_ECHO(delta[TOWER_1]);
  5709. SERIAL_ECHOPGM(" b="); SERIAL_ECHO(delta[TOWER_2]);
  5710. SERIAL_ECHOPGM(" c="); SERIAL_ECHOLN(delta[TOWER_3]);
  5711. */
  5712. }
  5713. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  5714. // Adjust print surface height by linear interpolation over the bed_level array.
  5715. void adjust_delta(float cartesian[3]) {
  5716. if (delta_grid_spacing[0] == 0 || delta_grid_spacing[1] == 0) return; // G29 not done!
  5717. int half = (AUTO_BED_LEVELING_GRID_POINTS - 1) / 2;
  5718. float h1 = 0.001 - half, h2 = half - 0.001,
  5719. grid_x = max(h1, min(h2, cartesian[X_AXIS] / delta_grid_spacing[0])),
  5720. grid_y = max(h1, min(h2, cartesian[Y_AXIS] / delta_grid_spacing[1]));
  5721. int floor_x = floor(grid_x), floor_y = floor(grid_y);
  5722. float ratio_x = grid_x - floor_x, ratio_y = grid_y - floor_y,
  5723. z1 = bed_level[floor_x + half][floor_y + half],
  5724. z2 = bed_level[floor_x + half][floor_y + half + 1],
  5725. z3 = bed_level[floor_x + half + 1][floor_y + half],
  5726. z4 = bed_level[floor_x + half + 1][floor_y + half + 1],
  5727. left = (1 - ratio_y) * z1 + ratio_y * z2,
  5728. right = (1 - ratio_y) * z3 + ratio_y * z4,
  5729. offset = (1 - ratio_x) * left + ratio_x * right;
  5730. delta[X_AXIS] += offset;
  5731. delta[Y_AXIS] += offset;
  5732. delta[Z_AXIS] += offset;
  5733. /**
  5734. SERIAL_ECHOPGM("grid_x="); SERIAL_ECHO(grid_x);
  5735. SERIAL_ECHOPGM(" grid_y="); SERIAL_ECHO(grid_y);
  5736. SERIAL_ECHOPGM(" floor_x="); SERIAL_ECHO(floor_x);
  5737. SERIAL_ECHOPGM(" floor_y="); SERIAL_ECHO(floor_y);
  5738. SERIAL_ECHOPGM(" ratio_x="); SERIAL_ECHO(ratio_x);
  5739. SERIAL_ECHOPGM(" ratio_y="); SERIAL_ECHO(ratio_y);
  5740. SERIAL_ECHOPGM(" z1="); SERIAL_ECHO(z1);
  5741. SERIAL_ECHOPGM(" z2="); SERIAL_ECHO(z2);
  5742. SERIAL_ECHOPGM(" z3="); SERIAL_ECHO(z3);
  5743. SERIAL_ECHOPGM(" z4="); SERIAL_ECHO(z4);
  5744. SERIAL_ECHOPGM(" left="); SERIAL_ECHO(left);
  5745. SERIAL_ECHOPGM(" right="); SERIAL_ECHO(right);
  5746. SERIAL_ECHOPGM(" offset="); SERIAL_ECHOLN(offset);
  5747. */
  5748. }
  5749. #endif // AUTO_BED_LEVELING_FEATURE
  5750. #endif // DELTA
  5751. #if ENABLED(MESH_BED_LEVELING)
  5752. // This function is used to split lines on mesh borders so each segment is only part of one mesh area
  5753. void mesh_plan_buffer_line(float x, float y, float z, const float e, float feed_rate, const uint8_t& extruder, uint8_t x_splits = 0xff, uint8_t y_splits = 0xff) {
  5754. if (!mbl.active) {
  5755. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  5756. set_current_to_destination();
  5757. return;
  5758. }
  5759. int pix = mbl.select_x_index(current_position[X_AXIS]);
  5760. int piy = mbl.select_y_index(current_position[Y_AXIS]);
  5761. int ix = mbl.select_x_index(x);
  5762. int iy = mbl.select_y_index(y);
  5763. pix = min(pix, MESH_NUM_X_POINTS - 2);
  5764. piy = min(piy, MESH_NUM_Y_POINTS - 2);
  5765. ix = min(ix, MESH_NUM_X_POINTS - 2);
  5766. iy = min(iy, MESH_NUM_Y_POINTS - 2);
  5767. if (pix == ix && piy == iy) {
  5768. // Start and end on same mesh square
  5769. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  5770. set_current_to_destination();
  5771. return;
  5772. }
  5773. float nx, ny, nz, ne, normalized_dist;
  5774. if (ix > pix && TEST(x_splits, ix)) {
  5775. nx = mbl.get_x(ix);
  5776. normalized_dist = (nx - current_position[X_AXIS]) / (x - current_position[X_AXIS]);
  5777. ny = current_position[Y_AXIS] + (y - current_position[Y_AXIS]) * normalized_dist;
  5778. nz = current_position[Z_AXIS] + (z - current_position[Z_AXIS]) * normalized_dist;
  5779. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  5780. CBI(x_splits, ix);
  5781. }
  5782. else if (ix < pix && TEST(x_splits, pix)) {
  5783. nx = mbl.get_x(pix);
  5784. normalized_dist = (nx - current_position[X_AXIS]) / (x - current_position[X_AXIS]);
  5785. ny = current_position[Y_AXIS] + (y - current_position[Y_AXIS]) * normalized_dist;
  5786. nz = current_position[Z_AXIS] + (z - current_position[Z_AXIS]) * normalized_dist;
  5787. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  5788. CBI(x_splits, pix);
  5789. }
  5790. else if (iy > piy && TEST(y_splits, iy)) {
  5791. ny = mbl.get_y(iy);
  5792. normalized_dist = (ny - current_position[Y_AXIS]) / (y - current_position[Y_AXIS]);
  5793. nx = current_position[X_AXIS] + (x - current_position[X_AXIS]) * normalized_dist;
  5794. nz = current_position[Z_AXIS] + (z - current_position[Z_AXIS]) * normalized_dist;
  5795. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  5796. CBI(y_splits, iy);
  5797. }
  5798. else if (iy < piy && TEST(y_splits, piy)) {
  5799. ny = mbl.get_y(piy);
  5800. normalized_dist = (ny - current_position[Y_AXIS]) / (y - current_position[Y_AXIS]);
  5801. nx = current_position[X_AXIS] + (x - current_position[X_AXIS]) * normalized_dist;
  5802. nz = current_position[Z_AXIS] + (z - current_position[Z_AXIS]) * normalized_dist;
  5803. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  5804. CBI(y_splits, piy);
  5805. }
  5806. else {
  5807. // Already split on a border
  5808. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  5809. set_current_to_destination();
  5810. return;
  5811. }
  5812. // Do the split and look for more borders
  5813. destination[X_AXIS] = nx;
  5814. destination[Y_AXIS] = ny;
  5815. destination[Z_AXIS] = nz;
  5816. destination[E_AXIS] = ne;
  5817. mesh_plan_buffer_line(nx, ny, nz, ne, feed_rate, extruder, x_splits, y_splits);
  5818. destination[X_AXIS] = x;
  5819. destination[Y_AXIS] = y;
  5820. destination[Z_AXIS] = z;
  5821. destination[E_AXIS] = e;
  5822. mesh_plan_buffer_line(x, y, z, e, feed_rate, extruder, x_splits, y_splits);
  5823. }
  5824. #endif // MESH_BED_LEVELING
  5825. #if ENABLED(PREVENT_DANGEROUS_EXTRUDE)
  5826. inline void prevent_dangerous_extrude(float& curr_e, float& dest_e) {
  5827. if (DEBUGGING(DRYRUN)) return;
  5828. float de = dest_e - curr_e;
  5829. if (de) {
  5830. if (degHotend(active_extruder) < extrude_min_temp) {
  5831. curr_e = dest_e; // Behave as if the move really took place, but ignore E part
  5832. SERIAL_ECHO_START;
  5833. SERIAL_ECHOLNPGM(MSG_ERR_COLD_EXTRUDE_STOP);
  5834. }
  5835. #if ENABLED(PREVENT_LENGTHY_EXTRUDE)
  5836. if (labs(de) > EXTRUDE_MAXLENGTH) {
  5837. curr_e = dest_e; // Behave as if the move really took place, but ignore E part
  5838. SERIAL_ECHO_START;
  5839. SERIAL_ECHOLNPGM(MSG_ERR_LONG_EXTRUDE_STOP);
  5840. }
  5841. #endif
  5842. }
  5843. }
  5844. #endif // PREVENT_DANGEROUS_EXTRUDE
  5845. #if ENABLED(DELTA) || ENABLED(SCARA)
  5846. inline bool prepare_move_delta(float target[NUM_AXIS]) {
  5847. float difference[NUM_AXIS];
  5848. for (int8_t i = 0; i < NUM_AXIS; i++) difference[i] = target[i] - current_position[i];
  5849. float cartesian_mm = sqrt(sq(difference[X_AXIS]) + sq(difference[Y_AXIS]) + sq(difference[Z_AXIS]));
  5850. if (cartesian_mm < 0.000001) cartesian_mm = abs(difference[E_AXIS]);
  5851. if (cartesian_mm < 0.000001) return false;
  5852. float seconds = 6000 * cartesian_mm / feedrate / feedrate_multiplier;
  5853. int steps = max(1, int(delta_segments_per_second * seconds));
  5854. // SERIAL_ECHOPGM("mm="); SERIAL_ECHO(cartesian_mm);
  5855. // SERIAL_ECHOPGM(" seconds="); SERIAL_ECHO(seconds);
  5856. // SERIAL_ECHOPGM(" steps="); SERIAL_ECHOLN(steps);
  5857. for (int s = 1; s <= steps; s++) {
  5858. float fraction = float(s) / float(steps);
  5859. for (int8_t i = 0; i < NUM_AXIS; i++)
  5860. target[i] = current_position[i] + difference[i] * fraction;
  5861. calculate_delta(target);
  5862. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  5863. adjust_delta(target);
  5864. #endif
  5865. //SERIAL_ECHOPGM("target[X_AXIS]="); SERIAL_ECHOLN(target[X_AXIS]);
  5866. //SERIAL_ECHOPGM("target[Y_AXIS]="); SERIAL_ECHOLN(target[Y_AXIS]);
  5867. //SERIAL_ECHOPGM("target[Z_AXIS]="); SERIAL_ECHOLN(target[Z_AXIS]);
  5868. //SERIAL_ECHOPGM("delta[X_AXIS]="); SERIAL_ECHOLN(delta[X_AXIS]);
  5869. //SERIAL_ECHOPGM("delta[Y_AXIS]="); SERIAL_ECHOLN(delta[Y_AXIS]);
  5870. //SERIAL_ECHOPGM("delta[Z_AXIS]="); SERIAL_ECHOLN(delta[Z_AXIS]);
  5871. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], target[E_AXIS], feedrate / 60 * feedrate_multiplier / 100.0, active_extruder);
  5872. }
  5873. return true;
  5874. }
  5875. #endif // DELTA || SCARA
  5876. #if ENABLED(SCARA)
  5877. inline bool prepare_move_scara(float target[NUM_AXIS]) { return prepare_move_delta(target); }
  5878. #endif
  5879. #if ENABLED(DUAL_X_CARRIAGE)
  5880. inline bool prepare_move_dual_x_carriage() {
  5881. if (active_extruder_parked) {
  5882. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && active_extruder == 0) {
  5883. // move duplicate extruder into correct duplication position.
  5884. plan_set_position(inactive_extruder_x_pos, current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  5885. plan_buffer_line(current_position[X_AXIS] + duplicate_extruder_x_offset,
  5886. current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], max_feedrate[X_AXIS], 1);
  5887. sync_plan_position();
  5888. st_synchronize();
  5889. extruder_duplication_enabled = true;
  5890. active_extruder_parked = false;
  5891. }
  5892. else if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE) { // handle unparking of head
  5893. if (current_position[E_AXIS] == destination[E_AXIS]) {
  5894. // This is a travel move (with no extrusion)
  5895. // Skip it, but keep track of the current position
  5896. // (so it can be used as the start of the next non-travel move)
  5897. if (delayed_move_time != 0xFFFFFFFFUL) {
  5898. set_current_to_destination();
  5899. NOLESS(raised_parked_position[Z_AXIS], destination[Z_AXIS]);
  5900. delayed_move_time = millis();
  5901. return false;
  5902. }
  5903. }
  5904. delayed_move_time = 0;
  5905. // unpark extruder: 1) raise, 2) move into starting XY position, 3) lower
  5906. plan_buffer_line(raised_parked_position[X_AXIS], raised_parked_position[Y_AXIS], raised_parked_position[Z_AXIS], current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  5907. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], raised_parked_position[Z_AXIS], current_position[E_AXIS], min(max_feedrate[X_AXIS], max_feedrate[Y_AXIS]), active_extruder);
  5908. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  5909. active_extruder_parked = false;
  5910. }
  5911. }
  5912. return true;
  5913. }
  5914. #endif // DUAL_X_CARRIAGE
  5915. #if DISABLED(DELTA) && DISABLED(SCARA)
  5916. inline bool prepare_move_cartesian() {
  5917. // Do not use feedrate_multiplier for E or Z only moves
  5918. if (current_position[X_AXIS] == destination[X_AXIS] && current_position[Y_AXIS] == destination[Y_AXIS]) {
  5919. line_to_destination();
  5920. }
  5921. else {
  5922. #if ENABLED(MESH_BED_LEVELING)
  5923. mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], (feedrate / 60) * (feedrate_multiplier / 100.0), active_extruder);
  5924. return false;
  5925. #else
  5926. line_to_destination(feedrate * feedrate_multiplier / 100.0);
  5927. #endif
  5928. }
  5929. return true;
  5930. }
  5931. #endif // !DELTA && !SCARA
  5932. /**
  5933. * Prepare a single move and get ready for the next one
  5934. *
  5935. * (This may call plan_buffer_line several times to put
  5936. * smaller moves into the planner for DELTA or SCARA.)
  5937. */
  5938. void prepare_move() {
  5939. clamp_to_software_endstops(destination);
  5940. refresh_cmd_timeout();
  5941. #if ENABLED(PREVENT_DANGEROUS_EXTRUDE)
  5942. prevent_dangerous_extrude(current_position[E_AXIS], destination[E_AXIS]);
  5943. #endif
  5944. #if ENABLED(SCARA)
  5945. if (!prepare_move_scara(destination)) return;
  5946. #elif ENABLED(DELTA)
  5947. if (!prepare_move_delta(destination)) return;
  5948. #endif
  5949. #if ENABLED(DUAL_X_CARRIAGE)
  5950. if (!prepare_move_dual_x_carriage()) return;
  5951. #endif
  5952. #if DISABLED(DELTA) && DISABLED(SCARA)
  5953. if (!prepare_move_cartesian()) return;
  5954. #endif
  5955. set_current_to_destination();
  5956. }
  5957. /**
  5958. * Plan an arc in 2 dimensions
  5959. *
  5960. * The arc is approximated by generating many small linear segments.
  5961. * The length of each segment is configured in MM_PER_ARC_SEGMENT (Default 1mm)
  5962. * Arcs should only be made relatively large (over 5mm), as larger arcs with
  5963. * larger segments will tend to be more efficient. Your slicer should have
  5964. * options for G2/G3 arc generation. In future these options may be GCode tunable.
  5965. */
  5966. void plan_arc(
  5967. float target[NUM_AXIS], // Destination position
  5968. float* offset, // Center of rotation relative to current_position
  5969. uint8_t clockwise // Clockwise?
  5970. ) {
  5971. float radius = hypot(offset[X_AXIS], offset[Y_AXIS]),
  5972. center_axis0 = current_position[X_AXIS] + offset[X_AXIS],
  5973. center_axis1 = current_position[Y_AXIS] + offset[Y_AXIS],
  5974. linear_travel = target[Z_AXIS] - current_position[Z_AXIS],
  5975. extruder_travel = target[E_AXIS] - current_position[E_AXIS],
  5976. r_axis0 = -offset[X_AXIS], // Radius vector from center to current location
  5977. r_axis1 = -offset[Y_AXIS],
  5978. rt_axis0 = target[X_AXIS] - center_axis0,
  5979. rt_axis1 = target[Y_AXIS] - center_axis1;
  5980. // CCW angle of rotation between position and target from the circle center. Only one atan2() trig computation required.
  5981. float angular_travel = atan2(r_axis0 * rt_axis1 - r_axis1 * rt_axis0, r_axis0 * rt_axis0 + r_axis1 * rt_axis1);
  5982. if (angular_travel < 0) angular_travel += RADIANS(360);
  5983. if (clockwise) angular_travel -= RADIANS(360);
  5984. // Make a circle if the angular rotation is 0
  5985. if (current_position[X_AXIS] == target[X_AXIS] && current_position[Y_AXIS] == target[Y_AXIS] && angular_travel == 0)
  5986. angular_travel += RADIANS(360);
  5987. float mm_of_travel = hypot(angular_travel * radius, fabs(linear_travel));
  5988. if (mm_of_travel < 0.001) return;
  5989. uint16_t segments = floor(mm_of_travel / (MM_PER_ARC_SEGMENT));
  5990. if (segments == 0) segments = 1;
  5991. float theta_per_segment = angular_travel / segments;
  5992. float linear_per_segment = linear_travel / segments;
  5993. float extruder_per_segment = extruder_travel / segments;
  5994. /**
  5995. * Vector rotation by transformation matrix: r is the original vector, r_T is the rotated vector,
  5996. * and phi is the angle of rotation. Based on the solution approach by Jens Geisler.
  5997. * r_T = [cos(phi) -sin(phi);
  5998. * sin(phi) cos(phi] * r ;
  5999. *
  6000. * For arc generation, the center of the circle is the axis of rotation and the radius vector is
  6001. * defined from the circle center to the initial position. Each line segment is formed by successive
  6002. * vector rotations. This requires only two cos() and sin() computations to form the rotation
  6003. * matrix for the duration of the entire arc. Error may accumulate from numerical round-off, since
  6004. * all double numbers are single precision on the Arduino. (True double precision will not have
  6005. * round off issues for CNC applications.) Single precision error can accumulate to be greater than
  6006. * tool precision in some cases. Therefore, arc path correction is implemented.
  6007. *
  6008. * Small angle approximation may be used to reduce computation overhead further. This approximation
  6009. * holds for everything, but very small circles and large MM_PER_ARC_SEGMENT values. In other words,
  6010. * theta_per_segment would need to be greater than 0.1 rad and N_ARC_CORRECTION would need to be large
  6011. * to cause an appreciable drift error. N_ARC_CORRECTION~=25 is more than small enough to correct for
  6012. * numerical drift error. N_ARC_CORRECTION may be on the order a hundred(s) before error becomes an
  6013. * issue for CNC machines with the single precision Arduino calculations.
  6014. *
  6015. * This approximation also allows plan_arc to immediately insert a line segment into the planner
  6016. * without the initial overhead of computing cos() or sin(). By the time the arc needs to be applied
  6017. * a correction, the planner should have caught up to the lag caused by the initial plan_arc overhead.
  6018. * This is important when there are successive arc motions.
  6019. */
  6020. // Vector rotation matrix values
  6021. float cos_T = 1 - 0.5 * theta_per_segment * theta_per_segment; // Small angle approximation
  6022. float sin_T = theta_per_segment;
  6023. float arc_target[NUM_AXIS];
  6024. float sin_Ti;
  6025. float cos_Ti;
  6026. float r_axisi;
  6027. uint16_t i;
  6028. int8_t count = 0;
  6029. // Initialize the linear axis
  6030. arc_target[Z_AXIS] = current_position[Z_AXIS];
  6031. // Initialize the extruder axis
  6032. arc_target[E_AXIS] = current_position[E_AXIS];
  6033. float feed_rate = feedrate * feedrate_multiplier / 60 / 100.0;
  6034. for (i = 1; i < segments; i++) { // Increment (segments-1)
  6035. if (count < N_ARC_CORRECTION) {
  6036. // Apply vector rotation matrix to previous r_axis0 / 1
  6037. r_axisi = r_axis0 * sin_T + r_axis1 * cos_T;
  6038. r_axis0 = r_axis0 * cos_T - r_axis1 * sin_T;
  6039. r_axis1 = r_axisi;
  6040. count++;
  6041. }
  6042. else {
  6043. // Arc correction to radius vector. Computed only every N_ARC_CORRECTION increments.
  6044. // Compute exact location by applying transformation matrix from initial radius vector(=-offset).
  6045. cos_Ti = cos(i * theta_per_segment);
  6046. sin_Ti = sin(i * theta_per_segment);
  6047. r_axis0 = -offset[X_AXIS] * cos_Ti + offset[Y_AXIS] * sin_Ti;
  6048. r_axis1 = -offset[X_AXIS] * sin_Ti - offset[Y_AXIS] * cos_Ti;
  6049. count = 0;
  6050. }
  6051. // Update arc_target location
  6052. arc_target[X_AXIS] = center_axis0 + r_axis0;
  6053. arc_target[Y_AXIS] = center_axis1 + r_axis1;
  6054. arc_target[Z_AXIS] += linear_per_segment;
  6055. arc_target[E_AXIS] += extruder_per_segment;
  6056. clamp_to_software_endstops(arc_target);
  6057. #if ENABLED(DELTA) || ENABLED(SCARA)
  6058. calculate_delta(arc_target);
  6059. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  6060. adjust_delta(arc_target);
  6061. #endif
  6062. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], arc_target[E_AXIS], feed_rate, active_extruder);
  6063. #else
  6064. plan_buffer_line(arc_target[X_AXIS], arc_target[Y_AXIS], arc_target[Z_AXIS], arc_target[E_AXIS], feed_rate, active_extruder);
  6065. #endif
  6066. }
  6067. // Ensure last segment arrives at target location.
  6068. #if ENABLED(DELTA) || ENABLED(SCARA)
  6069. calculate_delta(target);
  6070. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  6071. adjust_delta(target);
  6072. #endif
  6073. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], target[E_AXIS], feed_rate, active_extruder);
  6074. #else
  6075. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feed_rate, active_extruder);
  6076. #endif
  6077. // As far as the parser is concerned, the position is now == target. In reality the
  6078. // motion control system might still be processing the action and the real tool position
  6079. // in any intermediate location.
  6080. set_current_to_destination();
  6081. }
  6082. #if HAS_CONTROLLERFAN
  6083. void controllerFan() {
  6084. static millis_t lastMotorOn = 0; // Last time a motor was turned on
  6085. static millis_t nextMotorCheck = 0; // Last time the state was checked
  6086. millis_t ms = millis();
  6087. if (ms >= nextMotorCheck) {
  6088. nextMotorCheck = ms + 2500; // Not a time critical function, so only check every 2.5s
  6089. if (X_ENABLE_READ == X_ENABLE_ON || Y_ENABLE_READ == Y_ENABLE_ON || Z_ENABLE_READ == Z_ENABLE_ON || soft_pwm_bed > 0
  6090. || E0_ENABLE_READ == E_ENABLE_ON // If any of the drivers are enabled...
  6091. #if EXTRUDERS > 1
  6092. || E1_ENABLE_READ == E_ENABLE_ON
  6093. #if HAS_X2_ENABLE
  6094. || X2_ENABLE_READ == X_ENABLE_ON
  6095. #endif
  6096. #if EXTRUDERS > 2
  6097. || E2_ENABLE_READ == E_ENABLE_ON
  6098. #if EXTRUDERS > 3
  6099. || E3_ENABLE_READ == E_ENABLE_ON
  6100. #endif
  6101. #endif
  6102. #endif
  6103. ) {
  6104. lastMotorOn = ms; //... set time to NOW so the fan will turn on
  6105. }
  6106. // Fan off if no steppers have been enabled for CONTROLLERFAN_SECS seconds
  6107. uint8_t speed = (lastMotorOn == 0 || ms >= lastMotorOn + (CONTROLLERFAN_SECS) * 1000UL) ? 0 : CONTROLLERFAN_SPEED;
  6108. // allows digital or PWM fan output to be used (see M42 handling)
  6109. digitalWrite(CONTROLLERFAN_PIN, speed);
  6110. analogWrite(CONTROLLERFAN_PIN, speed);
  6111. }
  6112. }
  6113. #endif // HAS_CONTROLLERFAN
  6114. #if ENABLED(SCARA)
  6115. void calculate_SCARA_forward_Transform(float f_scara[3]) {
  6116. // Perform forward kinematics, and place results in delta[3]
  6117. // The maths and first version has been done by QHARLEY . Integrated into masterbranch 06/2014 and slightly restructured by Joachim Cerny in June 2014
  6118. float x_sin, x_cos, y_sin, y_cos;
  6119. //SERIAL_ECHOPGM("f_delta x="); SERIAL_ECHO(f_scara[X_AXIS]);
  6120. //SERIAL_ECHOPGM(" y="); SERIAL_ECHO(f_scara[Y_AXIS]);
  6121. x_sin = sin(f_scara[X_AXIS] / SCARA_RAD2DEG) * Linkage_1;
  6122. x_cos = cos(f_scara[X_AXIS] / SCARA_RAD2DEG) * Linkage_1;
  6123. y_sin = sin(f_scara[Y_AXIS] / SCARA_RAD2DEG) * Linkage_2;
  6124. y_cos = cos(f_scara[Y_AXIS] / SCARA_RAD2DEG) * Linkage_2;
  6125. //SERIAL_ECHOPGM(" x_sin="); SERIAL_ECHO(x_sin);
  6126. //SERIAL_ECHOPGM(" x_cos="); SERIAL_ECHO(x_cos);
  6127. //SERIAL_ECHOPGM(" y_sin="); SERIAL_ECHO(y_sin);
  6128. //SERIAL_ECHOPGM(" y_cos="); SERIAL_ECHOLN(y_cos);
  6129. delta[X_AXIS] = x_cos + y_cos + SCARA_offset_x; //theta
  6130. delta[Y_AXIS] = x_sin + y_sin + SCARA_offset_y; //theta+phi
  6131. //SERIAL_ECHOPGM(" delta[X_AXIS]="); SERIAL_ECHO(delta[X_AXIS]);
  6132. //SERIAL_ECHOPGM(" delta[Y_AXIS]="); SERIAL_ECHOLN(delta[Y_AXIS]);
  6133. }
  6134. void calculate_delta(float cartesian[3]) {
  6135. //reverse kinematics.
  6136. // Perform reversed kinematics, and place results in delta[3]
  6137. // The maths and first version has been done by QHARLEY . Integrated into masterbranch 06/2014 and slightly restructured by Joachim Cerny in June 2014
  6138. float SCARA_pos[2];
  6139. static float SCARA_C2, SCARA_S2, SCARA_K1, SCARA_K2, SCARA_theta, SCARA_psi;
  6140. SCARA_pos[X_AXIS] = cartesian[X_AXIS] * axis_scaling[X_AXIS] - SCARA_offset_x; //Translate SCARA to standard X Y
  6141. SCARA_pos[Y_AXIS] = cartesian[Y_AXIS] * axis_scaling[Y_AXIS] - SCARA_offset_y; // With scaling factor.
  6142. #if (Linkage_1 == Linkage_2)
  6143. SCARA_C2 = ((sq(SCARA_pos[X_AXIS]) + sq(SCARA_pos[Y_AXIS])) / (2 * (float)L1_2)) - 1;
  6144. #else
  6145. SCARA_C2 = (sq(SCARA_pos[X_AXIS]) + sq(SCARA_pos[Y_AXIS]) - (float)L1_2 - (float)L2_2) / 45000;
  6146. #endif
  6147. SCARA_S2 = sqrt(1 - sq(SCARA_C2));
  6148. SCARA_K1 = Linkage_1 + Linkage_2 * SCARA_C2;
  6149. SCARA_K2 = Linkage_2 * SCARA_S2;
  6150. SCARA_theta = (atan2(SCARA_pos[X_AXIS], SCARA_pos[Y_AXIS]) - atan2(SCARA_K1, SCARA_K2)) * -1;
  6151. SCARA_psi = atan2(SCARA_S2, SCARA_C2);
  6152. delta[X_AXIS] = SCARA_theta * SCARA_RAD2DEG; // Multiply by 180/Pi - theta is support arm angle
  6153. delta[Y_AXIS] = (SCARA_theta + SCARA_psi) * SCARA_RAD2DEG; // - equal to sub arm angle (inverted motor)
  6154. delta[Z_AXIS] = cartesian[Z_AXIS];
  6155. /**
  6156. SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);
  6157. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]);
  6158. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]);
  6159. SERIAL_ECHOPGM("scara x="); SERIAL_ECHO(SCARA_pos[X_AXIS]);
  6160. SERIAL_ECHOPGM(" y="); SERIAL_ECHOLN(SCARA_pos[Y_AXIS]);
  6161. SERIAL_ECHOPGM("delta x="); SERIAL_ECHO(delta[X_AXIS]);
  6162. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(delta[Y_AXIS]);
  6163. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(delta[Z_AXIS]);
  6164. SERIAL_ECHOPGM("C2="); SERIAL_ECHO(SCARA_C2);
  6165. SERIAL_ECHOPGM(" S2="); SERIAL_ECHO(SCARA_S2);
  6166. SERIAL_ECHOPGM(" Theta="); SERIAL_ECHO(SCARA_theta);
  6167. SERIAL_ECHOPGM(" Psi="); SERIAL_ECHOLN(SCARA_psi);
  6168. SERIAL_EOL;
  6169. */
  6170. }
  6171. #endif // SCARA
  6172. #if ENABLED(TEMP_STAT_LEDS)
  6173. static bool red_led = false;
  6174. static millis_t next_status_led_update_ms = 0;
  6175. void handle_status_leds(void) {
  6176. float max_temp = 0.0;
  6177. if (millis() > next_status_led_update_ms) {
  6178. next_status_led_update_ms += 500; // Update every 0.5s
  6179. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder)
  6180. max_temp = max(max(max_temp, degHotend(cur_extruder)), degTargetHotend(cur_extruder));
  6181. #if HAS_TEMP_BED
  6182. max_temp = max(max(max_temp, degTargetBed()), degBed());
  6183. #endif
  6184. bool new_led = (max_temp > 55.0) ? true : (max_temp < 54.0) ? false : red_led;
  6185. if (new_led != red_led) {
  6186. red_led = new_led;
  6187. digitalWrite(STAT_LED_RED, new_led ? HIGH : LOW);
  6188. digitalWrite(STAT_LED_BLUE, new_led ? LOW : HIGH);
  6189. }
  6190. }
  6191. }
  6192. #endif
  6193. void enable_all_steppers() {
  6194. enable_x();
  6195. enable_y();
  6196. enable_z();
  6197. enable_e0();
  6198. enable_e1();
  6199. enable_e2();
  6200. enable_e3();
  6201. }
  6202. void disable_all_steppers() {
  6203. disable_x();
  6204. disable_y();
  6205. disable_z();
  6206. disable_e0();
  6207. disable_e1();
  6208. disable_e2();
  6209. disable_e3();
  6210. }
  6211. /**
  6212. * Standard idle routine keeps the machine alive
  6213. */
  6214. void idle(
  6215. #if ENABLED(FILAMENTCHANGEENABLE)
  6216. bool no_stepper_sleep/*=false*/
  6217. #endif
  6218. ) {
  6219. manage_heater();
  6220. manage_inactivity(
  6221. #if ENABLED(FILAMENTCHANGEENABLE)
  6222. no_stepper_sleep
  6223. #endif
  6224. );
  6225. host_keepalive();
  6226. lcd_update();
  6227. }
  6228. /**
  6229. * Manage several activities:
  6230. * - Check for Filament Runout
  6231. * - Keep the command buffer full
  6232. * - Check for maximum inactive time between commands
  6233. * - Check for maximum inactive time between stepper commands
  6234. * - Check if pin CHDK needs to go LOW
  6235. * - Check for KILL button held down
  6236. * - Check for HOME button held down
  6237. * - Check if cooling fan needs to be switched on
  6238. * - Check if an idle but hot extruder needs filament extruded (EXTRUDER_RUNOUT_PREVENT)
  6239. */
  6240. void manage_inactivity(bool ignore_stepper_queue/*=false*/) {
  6241. #if HAS_FILRUNOUT
  6242. if (IS_SD_PRINTING && !(READ(FILRUNOUT_PIN) ^ FIL_RUNOUT_INVERTING))
  6243. filrunout();
  6244. #endif
  6245. if (commands_in_queue < BUFSIZE) get_available_commands();
  6246. millis_t ms = millis();
  6247. if (max_inactive_time && ms > previous_cmd_ms + max_inactive_time) kill(PSTR(MSG_KILLED));
  6248. if (stepper_inactive_time && ms > previous_cmd_ms + stepper_inactive_time
  6249. && !ignore_stepper_queue && !blocks_queued()) {
  6250. #if ENABLED(DISABLE_INACTIVE_X)
  6251. disable_x();
  6252. #endif
  6253. #if ENABLED(DISABLE_INACTIVE_Y)
  6254. disable_y();
  6255. #endif
  6256. #if ENABLED(DISABLE_INACTIVE_Z)
  6257. disable_z();
  6258. #endif
  6259. #if ENABLED(DISABLE_INACTIVE_E)
  6260. disable_e0();
  6261. disable_e1();
  6262. disable_e2();
  6263. disable_e3();
  6264. #endif
  6265. }
  6266. #ifdef CHDK // Check if pin should be set to LOW after M240 set it to HIGH
  6267. if (chdkActive && ms > chdkHigh + CHDK_DELAY) {
  6268. chdkActive = false;
  6269. WRITE(CHDK, LOW);
  6270. }
  6271. #endif
  6272. #if HAS_KILL
  6273. // Check if the kill button was pressed and wait just in case it was an accidental
  6274. // key kill key press
  6275. // -------------------------------------------------------------------------------
  6276. static int killCount = 0; // make the inactivity button a bit less responsive
  6277. const int KILL_DELAY = 750;
  6278. if (!READ(KILL_PIN))
  6279. killCount++;
  6280. else if (killCount > 0)
  6281. killCount--;
  6282. // Exceeded threshold and we can confirm that it was not accidental
  6283. // KILL the machine
  6284. // ----------------------------------------------------------------
  6285. if (killCount >= KILL_DELAY) kill(PSTR(MSG_KILLED));
  6286. #endif
  6287. #if HAS_HOME
  6288. // Check to see if we have to home, use poor man's debouncer
  6289. // ---------------------------------------------------------
  6290. static int homeDebounceCount = 0; // poor man's debouncing count
  6291. const int HOME_DEBOUNCE_DELAY = 2500;
  6292. if (!READ(HOME_PIN)) {
  6293. if (!homeDebounceCount) {
  6294. enqueue_and_echo_commands_P(PSTR("G28"));
  6295. LCD_MESSAGEPGM(MSG_AUTO_HOME);
  6296. }
  6297. if (homeDebounceCount < HOME_DEBOUNCE_DELAY)
  6298. homeDebounceCount++;
  6299. else
  6300. homeDebounceCount = 0;
  6301. }
  6302. #endif
  6303. #if HAS_CONTROLLERFAN
  6304. controllerFan(); // Check if fan should be turned on to cool stepper drivers down
  6305. #endif
  6306. #if ENABLED(EXTRUDER_RUNOUT_PREVENT)
  6307. if (ms > previous_cmd_ms + (EXTRUDER_RUNOUT_SECONDS) * 1000)
  6308. if (degHotend(active_extruder) > EXTRUDER_RUNOUT_MINTEMP) {
  6309. bool oldstatus;
  6310. switch (active_extruder) {
  6311. case 0:
  6312. oldstatus = E0_ENABLE_READ;
  6313. enable_e0();
  6314. break;
  6315. #if EXTRUDERS > 1
  6316. case 1:
  6317. oldstatus = E1_ENABLE_READ;
  6318. enable_e1();
  6319. break;
  6320. #if EXTRUDERS > 2
  6321. case 2:
  6322. oldstatus = E2_ENABLE_READ;
  6323. enable_e2();
  6324. break;
  6325. #if EXTRUDERS > 3
  6326. case 3:
  6327. oldstatus = E3_ENABLE_READ;
  6328. enable_e3();
  6329. break;
  6330. #endif
  6331. #endif
  6332. #endif
  6333. }
  6334. float oldepos = current_position[E_AXIS], oldedes = destination[E_AXIS];
  6335. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
  6336. destination[E_AXIS] + (EXTRUDER_RUNOUT_EXTRUDE) * (EXTRUDER_RUNOUT_ESTEPS) / axis_steps_per_unit[E_AXIS],
  6337. (EXTRUDER_RUNOUT_SPEED) / 60. * (EXTRUDER_RUNOUT_ESTEPS) / axis_steps_per_unit[E_AXIS], active_extruder);
  6338. current_position[E_AXIS] = oldepos;
  6339. destination[E_AXIS] = oldedes;
  6340. plan_set_e_position(oldepos);
  6341. previous_cmd_ms = ms; // refresh_cmd_timeout()
  6342. st_synchronize();
  6343. switch (active_extruder) {
  6344. case 0:
  6345. E0_ENABLE_WRITE(oldstatus);
  6346. break;
  6347. #if EXTRUDERS > 1
  6348. case 1:
  6349. E1_ENABLE_WRITE(oldstatus);
  6350. break;
  6351. #if EXTRUDERS > 2
  6352. case 2:
  6353. E2_ENABLE_WRITE(oldstatus);
  6354. break;
  6355. #if EXTRUDERS > 3
  6356. case 3:
  6357. E3_ENABLE_WRITE(oldstatus);
  6358. break;
  6359. #endif
  6360. #endif
  6361. #endif
  6362. }
  6363. }
  6364. #endif
  6365. #if ENABLED(DUAL_X_CARRIAGE)
  6366. // handle delayed move timeout
  6367. if (delayed_move_time && ms > delayed_move_time + 1000 && IsRunning()) {
  6368. // travel moves have been received so enact them
  6369. delayed_move_time = 0xFFFFFFFFUL; // force moves to be done
  6370. set_destination_to_current();
  6371. prepare_move();
  6372. }
  6373. #endif
  6374. #if ENABLED(TEMP_STAT_LEDS)
  6375. handle_status_leds();
  6376. #endif
  6377. check_axes_activity();
  6378. }
  6379. void kill(const char* lcd_msg) {
  6380. #if ENABLED(ULTRA_LCD)
  6381. lcd_setalertstatuspgm(lcd_msg);
  6382. #else
  6383. UNUSED(lcd_msg);
  6384. #endif
  6385. cli(); // Stop interrupts
  6386. disable_all_heaters();
  6387. disable_all_steppers();
  6388. #if HAS_POWER_SWITCH
  6389. pinMode(PS_ON_PIN, INPUT);
  6390. #endif
  6391. SERIAL_ERROR_START;
  6392. SERIAL_ERRORLNPGM(MSG_ERR_KILLED);
  6393. // FMC small patch to update the LCD before ending
  6394. sei(); // enable interrupts
  6395. for (int i = 5; i--; lcd_update()) delay(200); // Wait a short time
  6396. cli(); // disable interrupts
  6397. suicide();
  6398. while (1) {
  6399. #if ENABLED(USE_WATCHDOG)
  6400. watchdog_reset();
  6401. #endif
  6402. } // Wait for reset
  6403. }
  6404. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  6405. void filrunout() {
  6406. if (!filrunoutEnqueued) {
  6407. filrunoutEnqueued = true;
  6408. enqueue_and_echo_commands_P(PSTR(FILAMENT_RUNOUT_SCRIPT));
  6409. st_synchronize();
  6410. }
  6411. }
  6412. #endif // FILAMENT_RUNOUT_SENSOR
  6413. #if ENABLED(FAST_PWM_FAN)
  6414. void setPwmFrequency(uint8_t pin, int val) {
  6415. val &= 0x07;
  6416. switch (digitalPinToTimer(pin)) {
  6417. #if defined(TCCR0A)
  6418. case TIMER0A:
  6419. case TIMER0B:
  6420. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  6421. // TCCR0B |= val;
  6422. break;
  6423. #endif
  6424. #if defined(TCCR1A)
  6425. case TIMER1A:
  6426. case TIMER1B:
  6427. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  6428. // TCCR1B |= val;
  6429. break;
  6430. #endif
  6431. #if defined(TCCR2)
  6432. case TIMER2:
  6433. case TIMER2:
  6434. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  6435. TCCR2 |= val;
  6436. break;
  6437. #endif
  6438. #if defined(TCCR2A)
  6439. case TIMER2A:
  6440. case TIMER2B:
  6441. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  6442. TCCR2B |= val;
  6443. break;
  6444. #endif
  6445. #if defined(TCCR3A)
  6446. case TIMER3A:
  6447. case TIMER3B:
  6448. case TIMER3C:
  6449. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  6450. TCCR3B |= val;
  6451. break;
  6452. #endif
  6453. #if defined(TCCR4A)
  6454. case TIMER4A:
  6455. case TIMER4B:
  6456. case TIMER4C:
  6457. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  6458. TCCR4B |= val;
  6459. break;
  6460. #endif
  6461. #if defined(TCCR5A)
  6462. case TIMER5A:
  6463. case TIMER5B:
  6464. case TIMER5C:
  6465. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  6466. TCCR5B |= val;
  6467. break;
  6468. #endif
  6469. }
  6470. }
  6471. #endif // FAST_PWM_FAN
  6472. void Stop() {
  6473. disable_all_heaters();
  6474. if (IsRunning()) {
  6475. Running = false;
  6476. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  6477. SERIAL_ERROR_START;
  6478. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  6479. LCD_MESSAGEPGM(MSG_STOPPED);
  6480. }
  6481. }
  6482. /**
  6483. * Set target_extruder from the T parameter or the active_extruder
  6484. *
  6485. * Returns TRUE if the target is invalid
  6486. */
  6487. bool setTargetedHotend(int code) {
  6488. target_extruder = active_extruder;
  6489. if (code_seen('T')) {
  6490. target_extruder = code_value_short();
  6491. if (target_extruder >= EXTRUDERS) {
  6492. SERIAL_ECHO_START;
  6493. SERIAL_CHAR('M');
  6494. SERIAL_ECHO(code);
  6495. SERIAL_ECHOPGM(" " MSG_INVALID_EXTRUDER " ");
  6496. SERIAL_ECHOLN((int)target_extruder);
  6497. return true;
  6498. }
  6499. }
  6500. return false;
  6501. }
  6502. float calculate_volumetric_multiplier(float diameter) {
  6503. if (!volumetric_enabled || diameter == 0) return 1.0;
  6504. float d2 = diameter * 0.5;
  6505. return 1.0 / (M_PI * d2 * d2);
  6506. }
  6507. void calculate_volumetric_multipliers() {
  6508. for (int i = 0; i < EXTRUDERS; i++)
  6509. volumetric_multiplier[i] = calculate_volumetric_multiplier(filament_size[i]);
  6510. }
  6511. /**
  6512. * Start the print job timer
  6513. *
  6514. * The print job is only started if all extruders have their target temp at zero
  6515. * otherwise the print job timew would be reset everytime a M109 is received.
  6516. *
  6517. * @param t start timer timestamp
  6518. *
  6519. * @return true if the timer was started at function call
  6520. */
  6521. bool print_job_start(millis_t t /* = 0 */) {
  6522. for (int i = 0; i < EXTRUDERS; i++) if (degTargetHotend(i) > 0) return false;
  6523. print_job_start_ms = (t) ? t : millis();
  6524. print_job_stop_ms = 0;
  6525. return true;
  6526. }
  6527. /**
  6528. * Check if the running print job has finished and stop the timer
  6529. *
  6530. * When the target temperature for all extruders is zero then we assume that the
  6531. * print job has finished printing. There are some special conditions under which
  6532. * this assumption may not be valid: If during a print job for some reason the
  6533. * user decides to bring a nozzle temp down and only then heat the other afterwards.
  6534. *
  6535. * @param force stops the timer ignoring all pre-checks
  6536. *
  6537. * @return boolean true if the print job has finished printing
  6538. */
  6539. bool print_job_stop(bool force /* = false */) {
  6540. if (!print_job_start_ms) return false;
  6541. if (!force) for (int i = 0; i < EXTRUDERS; i++) if (degTargetHotend(i) > 0) return false;
  6542. print_job_stop_ms = millis();
  6543. return true;
  6544. }
  6545. /**
  6546. * Output the print job timer in seconds
  6547. *
  6548. * @return the number of seconds
  6549. */
  6550. millis_t print_job_timer() {
  6551. if (!print_job_start_ms) return 0;
  6552. return (((print_job_stop_ms > print_job_start_ms)
  6553. ? print_job_stop_ms : millis()) - print_job_start_ms) / 1000;
  6554. }