My Marlin configs for Fabrikator Mini and CTC i3 Pro B
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

planner.h 19KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541
  1. /**
  2. * Marlin 3D Printer Firmware
  3. * Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
  4. *
  5. * Based on Sprinter and grbl.
  6. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  7. *
  8. * This program is free software: you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation, either version 3 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  20. *
  21. */
  22. /**
  23. * planner.h
  24. *
  25. * Buffer movement commands and manage the acceleration profile plan
  26. *
  27. * Derived from Grbl
  28. * Copyright (c) 2009-2011 Simen Svale Skogsrud
  29. */
  30. #ifndef PLANNER_H
  31. #define PLANNER_H
  32. #include "../Marlin.h"
  33. #include "motion.h"
  34. #if ENABLED(DELTA)
  35. #include "delta.h"
  36. #endif
  37. #if HAS_ABL
  38. #include "../libs/vector_3.h"
  39. #endif
  40. enum BlockFlagBit {
  41. // Recalculate trapezoids on entry junction. For optimization.
  42. BLOCK_BIT_RECALCULATE,
  43. // Nominal speed always reached.
  44. // i.e., The segment is long enough, so the nominal speed is reachable if accelerating
  45. // from a safe speed (in consideration of jerking from zero speed).
  46. BLOCK_BIT_NOMINAL_LENGTH,
  47. // Start from a halt at the start of this block, respecting the maximum allowed jerk.
  48. BLOCK_BIT_START_FROM_FULL_HALT,
  49. // The block is busy
  50. BLOCK_BIT_BUSY
  51. };
  52. enum BlockFlag {
  53. BLOCK_FLAG_RECALCULATE = _BV(BLOCK_BIT_RECALCULATE),
  54. BLOCK_FLAG_NOMINAL_LENGTH = _BV(BLOCK_BIT_NOMINAL_LENGTH),
  55. BLOCK_FLAG_START_FROM_FULL_HALT = _BV(BLOCK_BIT_START_FROM_FULL_HALT),
  56. BLOCK_FLAG_BUSY = _BV(BLOCK_BIT_BUSY)
  57. };
  58. /**
  59. * struct block_t
  60. *
  61. * A single entry in the planner buffer.
  62. * Tracks linear movement over multiple axes.
  63. *
  64. * The "nominal" values are as-specified by gcode, and
  65. * may never actually be reached due to acceleration limits.
  66. */
  67. typedef struct {
  68. uint8_t flag; // Block flags (See BlockFlag enum above)
  69. unsigned char active_extruder; // The extruder to move (if E move)
  70. // Fields used by the Bresenham algorithm for tracing the line
  71. int32_t steps[NUM_AXIS]; // Step count along each axis
  72. uint32_t step_event_count; // The number of step events required to complete this block
  73. #if ENABLED(MIXING_EXTRUDER)
  74. uint32_t mix_event_count[MIXING_STEPPERS]; // Scaled step_event_count for the mixing steppers
  75. #endif
  76. int32_t accelerate_until, // The index of the step event on which to stop acceleration
  77. decelerate_after, // The index of the step event on which to start decelerating
  78. acceleration_rate; // The acceleration rate used for acceleration calculation
  79. uint8_t direction_bits; // The direction bit set for this block (refers to *_DIRECTION_BIT in config.h)
  80. // Advance extrusion
  81. #if ENABLED(LIN_ADVANCE)
  82. bool use_advance_lead;
  83. uint32_t abs_adv_steps_multiplier8; // Factorised by 2^8 to avoid float
  84. #endif
  85. // Fields used by the motion planner to manage acceleration
  86. float nominal_speed, // The nominal speed for this block in mm/sec
  87. entry_speed, // Entry speed at previous-current junction in mm/sec
  88. max_entry_speed, // Maximum allowable junction entry speed in mm/sec
  89. millimeters, // The total travel of this block in mm
  90. acceleration; // acceleration mm/sec^2
  91. // Settings for the trapezoid generator
  92. uint32_t nominal_rate, // The nominal step rate for this block in step_events/sec
  93. initial_rate, // The jerk-adjusted step rate at start of block
  94. final_rate, // The minimal rate at exit
  95. acceleration_steps_per_s2; // acceleration steps/sec^2
  96. #if FAN_COUNT > 0
  97. uint16_t fan_speed[FAN_COUNT];
  98. #endif
  99. #if ENABLED(BARICUDA)
  100. uint8_t valve_pressure, e_to_p_pressure;
  101. #endif
  102. uint32_t segment_time_us;
  103. } block_t;
  104. #define BLOCK_MOD(n) ((n)&(BLOCK_BUFFER_SIZE-1))
  105. class Planner {
  106. public:
  107. /**
  108. * A ring buffer of moves described in steps
  109. */
  110. static block_t block_buffer[BLOCK_BUFFER_SIZE];
  111. static volatile uint8_t block_buffer_head, // Index of the next block to be pushed
  112. block_buffer_tail;
  113. #if ENABLED(DISTINCT_E_FACTORS)
  114. static uint8_t last_extruder; // Respond to extruder change
  115. #endif
  116. static int16_t flow_percentage[EXTRUDERS]; // Extrusion factor for each extruder
  117. static float filament_size[EXTRUDERS], // diameter of filament (in millimeters), typically around 1.75 or 2.85, 0 disables the volumetric calculations for the extruder
  118. volumetric_multiplier[EXTRUDERS]; // Reciprocal of cross-sectional area of filament (in mm^2). Pre-calculated to reduce computation in the planner
  119. // May be auto-adjusted by a filament width sensor
  120. static float max_feedrate_mm_s[XYZE_N], // Max speeds in mm per second
  121. axis_steps_per_mm[XYZE_N],
  122. steps_to_mm[XYZE_N];
  123. static uint32_t max_acceleration_steps_per_s2[XYZE_N],
  124. max_acceleration_mm_per_s2[XYZE_N]; // Use M201 to override
  125. static uint32_t min_segment_time_us; // Use 'M205 B<µs>' to override
  126. static float min_feedrate_mm_s,
  127. acceleration, // Normal acceleration mm/s^2 DEFAULT ACCELERATION for all printing moves. M204 SXXXX
  128. retract_acceleration, // Retract acceleration mm/s^2 filament pull-back and push-forward while standing still in the other axes M204 TXXXX
  129. travel_acceleration, // Travel acceleration mm/s^2 DEFAULT ACCELERATION for all NON printing moves. M204 MXXXX
  130. max_jerk[XYZE], // The largest speed change requiring no acceleration
  131. min_travel_feedrate_mm_s;
  132. #if HAS_LEVELING
  133. static bool leveling_active; // Flag that bed leveling is enabled
  134. #if ABL_PLANAR
  135. static matrix_3x3 bed_level_matrix; // Transform to compensate for bed level
  136. #endif
  137. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  138. static float z_fade_height, inverse_z_fade_height;
  139. #endif
  140. #endif
  141. #if ENABLED(LIN_ADVANCE)
  142. static float extruder_advance_k, advance_ed_ratio;
  143. #endif
  144. private:
  145. /**
  146. * The current position of the tool in absolute steps
  147. * Recalculated if any axis_steps_per_mm are changed by gcode
  148. */
  149. static long position[NUM_AXIS];
  150. /**
  151. * Speed of previous path line segment
  152. */
  153. static float previous_speed[NUM_AXIS];
  154. /**
  155. * Nominal speed of previous path line segment
  156. */
  157. static float previous_nominal_speed;
  158. /**
  159. * Limit where 64bit math is necessary for acceleration calculation
  160. */
  161. static uint32_t cutoff_long;
  162. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  163. static float last_fade_z;
  164. #endif
  165. #if ENABLED(DISABLE_INACTIVE_EXTRUDER)
  166. /**
  167. * Counters to manage disabling inactive extruders
  168. */
  169. static uint8_t g_uc_extruder_last_move[EXTRUDERS];
  170. #endif // DISABLE_INACTIVE_EXTRUDER
  171. #ifdef XY_FREQUENCY_LIMIT
  172. // Used for the frequency limit
  173. #define MAX_FREQ_TIME_US (uint32_t)(1000000.0 / XY_FREQUENCY_LIMIT)
  174. // Old direction bits. Used for speed calculations
  175. static unsigned char old_direction_bits;
  176. // Segment times (in µs). Used for speed calculations
  177. static long axis_segment_time_us[2][3];
  178. #endif
  179. #if ENABLED(LIN_ADVANCE)
  180. static float position_float[NUM_AXIS];
  181. #endif
  182. #if ENABLED(ULTRA_LCD)
  183. volatile static uint32_t block_buffer_runtime_us; //Theoretical block buffer runtime in µs
  184. #endif
  185. public:
  186. /**
  187. * Instance Methods
  188. */
  189. Planner();
  190. void init();
  191. /**
  192. * Static (class) Methods
  193. */
  194. static void reset_acceleration_rates();
  195. static void refresh_positioning();
  196. // Manage fans, paste pressure, etc.
  197. static void check_axes_activity();
  198. /**
  199. * Number of moves currently in the planner
  200. */
  201. static uint8_t movesplanned() { return BLOCK_MOD(block_buffer_head - block_buffer_tail + BLOCK_BUFFER_SIZE); }
  202. static bool is_full() { return (block_buffer_tail == BLOCK_MOD(block_buffer_head + 1)); }
  203. // Update multipliers based on new diameter measurements
  204. static void calculate_volumetric_multipliers();
  205. FORCE_INLINE static void set_filament_size(const uint8_t e, const float &v) {
  206. filament_size[e] = v;
  207. // make sure all extruders have some sane value for the filament size
  208. for (uint8_t i = 0; i < COUNT(filament_size); i++)
  209. if (!filament_size[i]) filament_size[i] = DEFAULT_NOMINAL_FILAMENT_DIA;
  210. }
  211. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  212. /**
  213. * Get the Z leveling fade factor based on the given Z height,
  214. * re-calculating only when needed.
  215. *
  216. * Returns 1.0 if planner.z_fade_height is 0.0.
  217. * Returns 0.0 if Z is past the specified 'Fade Height'.
  218. */
  219. inline static float fade_scaling_factor_for_z(const float &rz) {
  220. static float z_fade_factor = 1.0;
  221. if (z_fade_height) {
  222. if (rz >= z_fade_height) return 0.0;
  223. if (last_fade_z != rz) {
  224. last_fade_z = rz;
  225. z_fade_factor = 1.0 - rz * inverse_z_fade_height;
  226. }
  227. return z_fade_factor;
  228. }
  229. return 1.0;
  230. }
  231. FORCE_INLINE static void force_fade_recalc() { last_fade_z = -999.999; }
  232. FORCE_INLINE static void set_z_fade_height(const float &zfh) {
  233. z_fade_height = zfh > 0 ? zfh : 0;
  234. inverse_z_fade_height = RECIPROCAL(z_fade_height);
  235. force_fade_recalc();
  236. }
  237. FORCE_INLINE static bool leveling_active_at_z(const float &rz) {
  238. return !z_fade_height || rz < z_fade_height;
  239. }
  240. #else
  241. FORCE_INLINE static float fade_scaling_factor_for_z(const float &rz) {
  242. UNUSED(rz);
  243. return 1.0;
  244. }
  245. FORCE_INLINE static bool leveling_active_at_z(const float &rz) { UNUSED(rz); return true; }
  246. #endif
  247. #if PLANNER_LEVELING
  248. #define ARG_X float rx
  249. #define ARG_Y float ry
  250. #define ARG_Z float rz
  251. /**
  252. * Apply leveling to transform a cartesian position
  253. * as it will be given to the planner and steppers.
  254. */
  255. static void apply_leveling(float &rx, float &ry, float &rz);
  256. static void apply_leveling(float raw[XYZ]) { apply_leveling(raw[X_AXIS], raw[Y_AXIS], raw[Z_AXIS]); }
  257. static void unapply_leveling(float raw[XYZ]);
  258. #else
  259. #define ARG_X const float &rx
  260. #define ARG_Y const float &ry
  261. #define ARG_Z const float &rz
  262. #endif
  263. /**
  264. * Planner::_buffer_line
  265. *
  266. * Add a new direct linear movement to the buffer.
  267. *
  268. * Leveling and kinematics should be applied ahead of this.
  269. *
  270. * a,b,c,e - target position in mm or degrees
  271. * fr_mm_s - (target) speed of the move (mm/s)
  272. * extruder - target extruder
  273. */
  274. static void _buffer_line(const float &a, const float &b, const float &c, const float &e, float fr_mm_s, const uint8_t extruder);
  275. static void _set_position_mm(const float &a, const float &b, const float &c, const float &e);
  276. /**
  277. * Add a new linear movement to the buffer.
  278. * The target is NOT translated to delta/scara
  279. *
  280. * Leveling will be applied to input on cartesians.
  281. * Kinematic machines should call buffer_line_kinematic (for leveled moves).
  282. * (Cartesians may also call buffer_line_kinematic.)
  283. *
  284. * rx,ry,rz,e - target position in mm or degrees
  285. * fr_mm_s - (target) speed of the move (mm/s)
  286. * extruder - target extruder
  287. */
  288. static FORCE_INLINE void buffer_line(ARG_X, ARG_Y, ARG_Z, const float &e, const float &fr_mm_s, const uint8_t extruder) {
  289. #if PLANNER_LEVELING && IS_CARTESIAN
  290. apply_leveling(rx, ry, rz);
  291. #endif
  292. _buffer_line(rx, ry, rz, e, fr_mm_s, extruder);
  293. }
  294. /**
  295. * Add a new linear movement to the buffer.
  296. * The target is cartesian, it's translated to delta/scara if
  297. * needed.
  298. *
  299. * rtarget - x,y,z,e CARTESIAN target in mm
  300. * fr_mm_s - (target) speed of the move (mm/s)
  301. * extruder - target extruder
  302. */
  303. static FORCE_INLINE void buffer_line_kinematic(const float rtarget[XYZE], const float &fr_mm_s, const uint8_t extruder) {
  304. #if PLANNER_LEVELING
  305. float lpos[XYZ] = { rtarget[X_AXIS], rtarget[Y_AXIS], rtarget[Z_AXIS] };
  306. apply_leveling(lpos);
  307. #else
  308. const float * const lpos = rtarget;
  309. #endif
  310. #if IS_KINEMATIC
  311. inverse_kinematics(lpos);
  312. _buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], rtarget[E_AXIS], fr_mm_s, extruder);
  313. #else
  314. _buffer_line(lpos[X_AXIS], lpos[Y_AXIS], lpos[Z_AXIS], rtarget[E_AXIS], fr_mm_s, extruder);
  315. #endif
  316. }
  317. /**
  318. * Set the planner.position and individual stepper positions.
  319. * Used by G92, G28, G29, and other procedures.
  320. *
  321. * Multiplies by axis_steps_per_mm[] and does necessary conversion
  322. * for COREXY / COREXZ / COREYZ to set the corresponding stepper positions.
  323. *
  324. * Clears previous speed values.
  325. */
  326. static FORCE_INLINE void set_position_mm(ARG_X, ARG_Y, ARG_Z, const float &e) {
  327. #if PLANNER_LEVELING && IS_CARTESIAN
  328. apply_leveling(rx, ry, rz);
  329. #endif
  330. _set_position_mm(rx, ry, rz, e);
  331. }
  332. static void set_position_mm_kinematic(const float position[NUM_AXIS]);
  333. static void set_position_mm(const AxisEnum axis, const float &v);
  334. static FORCE_INLINE void set_z_position_mm(const float &z) { set_position_mm(Z_AXIS, z); }
  335. static FORCE_INLINE void set_e_position_mm(const float &e) { set_position_mm(AxisEnum(E_AXIS), e); }
  336. /**
  337. * Sync from the stepper positions. (e.g., after an interrupted move)
  338. */
  339. static void sync_from_steppers();
  340. /**
  341. * Does the buffer have any blocks queued?
  342. */
  343. static bool blocks_queued() { return (block_buffer_head != block_buffer_tail); }
  344. /**
  345. * "Discards" the block and "releases" the memory.
  346. * Called when the current block is no longer needed.
  347. */
  348. static void discard_current_block() {
  349. if (blocks_queued())
  350. block_buffer_tail = BLOCK_MOD(block_buffer_tail + 1);
  351. }
  352. /**
  353. * The current block. NULL if the buffer is empty.
  354. * This also marks the block as busy.
  355. */
  356. static block_t* get_current_block() {
  357. if (blocks_queued()) {
  358. block_t* block = &block_buffer[block_buffer_tail];
  359. #if ENABLED(ULTRA_LCD)
  360. block_buffer_runtime_us -= block->segment_time_us; //We can't be sure how long an active block will take, so don't count it.
  361. #endif
  362. SBI(block->flag, BLOCK_BIT_BUSY);
  363. return block;
  364. }
  365. else {
  366. #if ENABLED(ULTRA_LCD)
  367. clear_block_buffer_runtime(); // paranoia. Buffer is empty now - so reset accumulated time to zero.
  368. #endif
  369. return NULL;
  370. }
  371. }
  372. #if ENABLED(ULTRA_LCD)
  373. static uint16_t block_buffer_runtime() {
  374. CRITICAL_SECTION_START
  375. millis_t bbru = block_buffer_runtime_us;
  376. CRITICAL_SECTION_END
  377. // To translate µs to ms a division by 1000 would be required.
  378. // We introduce 2.4% error here by dividing by 1024.
  379. // Doesn't matter because block_buffer_runtime_us is already too small an estimation.
  380. bbru >>= 10;
  381. // limit to about a minute.
  382. NOMORE(bbru, 0xFFFFul);
  383. return bbru;
  384. }
  385. static void clear_block_buffer_runtime(){
  386. CRITICAL_SECTION_START
  387. block_buffer_runtime_us = 0;
  388. CRITICAL_SECTION_END
  389. }
  390. #endif
  391. #if ENABLED(AUTOTEMP)
  392. static float autotemp_min, autotemp_max, autotemp_factor;
  393. static bool autotemp_enabled;
  394. static void getHighESpeed();
  395. static void autotemp_M104_M109();
  396. #endif
  397. private:
  398. /**
  399. * Get the index of the next / previous block in the ring buffer
  400. */
  401. static int8_t next_block_index(int8_t block_index) { return BLOCK_MOD(block_index + 1); }
  402. static int8_t prev_block_index(int8_t block_index) { return BLOCK_MOD(block_index - 1); }
  403. /**
  404. * Calculate the distance (not time) it takes to accelerate
  405. * from initial_rate to target_rate using the given acceleration:
  406. */
  407. static float estimate_acceleration_distance(const float &initial_rate, const float &target_rate, const float &accel) {
  408. if (accel == 0) return 0; // accel was 0, set acceleration distance to 0
  409. return (sq(target_rate) - sq(initial_rate)) / (accel * 2);
  410. }
  411. /**
  412. * Return the point at which you must start braking (at the rate of -'acceleration') if
  413. * you start at 'initial_rate', accelerate (until reaching the point), and want to end at
  414. * 'final_rate' after traveling 'distance'.
  415. *
  416. * This is used to compute the intersection point between acceleration and deceleration
  417. * in cases where the "trapezoid" has no plateau (i.e., never reaches maximum speed)
  418. */
  419. static float intersection_distance(const float &initial_rate, const float &final_rate, const float &accel, const float &distance) {
  420. if (accel == 0) return 0; // accel was 0, set intersection distance to 0
  421. return (accel * 2 * distance - sq(initial_rate) + sq(final_rate)) / (accel * 4);
  422. }
  423. /**
  424. * Calculate the maximum allowable speed at this point, in order
  425. * to reach 'target_velocity' using 'acceleration' within a given
  426. * 'distance'.
  427. */
  428. static float max_allowable_speed(const float &accel, const float &target_velocity, const float &distance) {
  429. return SQRT(sq(target_velocity) - 2 * accel * distance);
  430. }
  431. static void calculate_trapezoid_for_block(block_t* const block, const float &entry_factor, const float &exit_factor);
  432. static void reverse_pass_kernel(block_t* const current, const block_t *next);
  433. static void forward_pass_kernel(const block_t *previous, block_t* const current);
  434. static void reverse_pass();
  435. static void forward_pass();
  436. static void recalculate_trapezoids();
  437. static void recalculate();
  438. };
  439. #define PLANNER_XY_FEEDRATE() (min(planner.max_feedrate_mm_s[X_AXIS], planner.max_feedrate_mm_s[Y_AXIS]))
  440. extern Planner planner;
  441. #endif // PLANNER_H