My Marlin configs for Fabrikator Mini and CTC i3 Pro B
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

configuration_store.cpp 30KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986
  1. /**
  2. * Marlin 3D Printer Firmware
  3. * Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
  4. *
  5. * Based on Sprinter and grbl.
  6. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  7. *
  8. * This program is free software: you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation, either version 3 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  20. *
  21. */
  22. /**
  23. * configuration_store.cpp
  24. *
  25. * Configuration and EEPROM storage
  26. *
  27. * IMPORTANT: Whenever there are changes made to the variables stored in EEPROM
  28. * in the functions below, also increment the version number. This makes sure that
  29. * the default values are used whenever there is a change to the data, to prevent
  30. * wrong data being written to the variables.
  31. *
  32. * ALSO: Variables in the Store and Retrieve sections must be in the same order.
  33. * If a feature is disabled, some data must still be written that, when read,
  34. * either sets a Sane Default, or results in No Change to the existing value.
  35. *
  36. */
  37. #define EEPROM_VERSION "V24"
  38. // Change EEPROM version if these are changed:
  39. #define EEPROM_OFFSET 100
  40. #define MAX_EXTRUDERS 4
  41. /**
  42. * V24 EEPROM Layout:
  43. *
  44. * 100 Version (char x4)
  45. * 104 EEPROM Checksum (uint16_t)
  46. *
  47. * 106 M92 XYZE planner.axis_steps_per_mm (float x4)
  48. * 122 M203 XYZE planner.max_feedrate_mm_s (float x4)
  49. * 138 M201 XYZE planner.max_acceleration_mm_per_s2 (uint32_t x4)
  50. * 154 M204 P planner.acceleration (float)
  51. * 158 M204 R planner.retract_acceleration (float)
  52. * 162 M204 T planner.travel_acceleration (float)
  53. * 166 M205 S planner.min_feedrate_mm_s (float)
  54. * 170 M205 T planner.min_travel_feedrate_mm_s (float)
  55. * 174 M205 B planner.min_segment_time (ulong)
  56. * 178 M205 X planner.max_xy_jerk (float)
  57. * 182 M205 Z planner.max_z_jerk (float)
  58. * 186 M205 E planner.max_e_jerk (float)
  59. * 190 M206 XYZ home_offset (float x3)
  60. *
  61. * Mesh bed leveling:
  62. * 202 M420 S status (uint8)
  63. * 203 z_offset (float)
  64. * 207 mesh_num_x (uint8 as set in firmware)
  65. * 208 mesh_num_y (uint8 as set in firmware)
  66. * 209 G29 S3 XYZ z_values[][] (float x9, by default, up to float x 81)
  67. *
  68. * AUTO BED LEVELING
  69. * 245 M851 zprobe_zoffset (float)
  70. *
  71. * DELTA:
  72. * 249 M666 XYZ endstop_adj (float x3)
  73. * 261 M665 R delta_radius (float)
  74. * 265 M665 L delta_diagonal_rod (float)
  75. * 269 M665 S delta_segments_per_second (float)
  76. * 273 M665 A delta_diagonal_rod_trim_tower_1 (float)
  77. * 277 M665 B delta_diagonal_rod_trim_tower_2 (float)
  78. * 281 M665 C delta_diagonal_rod_trim_tower_3 (float)
  79. *
  80. * Z_DUAL_ENDSTOPS:
  81. * 285 M666 Z z_endstop_adj (float)
  82. *
  83. * ULTIPANEL:
  84. * 289 M145 S0 H preheatHotendTemp1 (int)
  85. * 291 M145 S0 B preheatBedTemp1 (int)
  86. * 293 M145 S0 F preheatFanSpeed1 (int)
  87. * 295 M145 S1 H preheatHotendTemp2 (int)
  88. * 297 M145 S1 B preheatBedTemp2 (int)
  89. * 299 M145 S1 F preheatFanSpeed2 (int)
  90. *
  91. * PIDTEMP:
  92. * 301 M301 E0 PIDC Kp[0], Ki[0], Kd[0], Kc[0] (float x4)
  93. * 317 M301 E1 PIDC Kp[1], Ki[1], Kd[1], Kc[1] (float x4)
  94. * 333 M301 E2 PIDC Kp[2], Ki[2], Kd[2], Kc[2] (float x4)
  95. * 349 M301 E3 PIDC Kp[3], Ki[3], Kd[3], Kc[3] (float x4)
  96. * 365 M301 L lpq_len (int)
  97. *
  98. * PIDTEMPBED:
  99. * 367 M304 PID thermalManager.bedKp, thermalManager.bedKi, thermalManager.bedKd (float x3)
  100. *
  101. * DOGLCD:
  102. * 379 M250 C lcd_contrast (int)
  103. *
  104. * SCARA:
  105. * 381 M365 XYZ axis_scaling (float x3)
  106. *
  107. * FWRETRACT:
  108. * 393 M209 S autoretract_enabled (bool)
  109. * 394 M207 S retract_length (float)
  110. * 398 M207 W retract_length_swap (float)
  111. * 402 M207 F retract_feedrate_mm_s (float)
  112. * 406 M207 Z retract_zlift (float)
  113. * 410 M208 S retract_recover_length (float)
  114. * 414 M208 W retract_recover_length_swap (float)
  115. * 418 M208 F retract_recover_feedrate_mm_s (float)
  116. *
  117. * Volumetric Extrusion:
  118. * 422 M200 D volumetric_enabled (bool)
  119. * 423 M200 T D filament_size (float x4) (T0..3)
  120. *
  121. * 439 This Slot is Available!
  122. *
  123. */
  124. #include "Marlin.h"
  125. #include "language.h"
  126. #include "endstops.h"
  127. #include "planner.h"
  128. #include "temperature.h"
  129. #include "ultralcd.h"
  130. #include "configuration_store.h"
  131. #if ENABLED(MESH_BED_LEVELING)
  132. #include "mesh_bed_leveling.h"
  133. #endif
  134. uint16_t eeprom_checksum;
  135. const char version[4] = EEPROM_VERSION;
  136. void _EEPROM_writeData(int &pos, uint8_t* value, uint8_t size) {
  137. uint8_t c;
  138. while (size--) {
  139. eeprom_write_byte((unsigned char*)pos, *value);
  140. c = eeprom_read_byte((unsigned char*)pos);
  141. if (c != *value) {
  142. SERIAL_ECHO_START;
  143. SERIAL_ECHOLNPGM(MSG_ERR_EEPROM_WRITE);
  144. }
  145. eeprom_checksum += c;
  146. pos++;
  147. value++;
  148. };
  149. }
  150. void _EEPROM_readData(int &pos, uint8_t* value, uint8_t size) {
  151. do {
  152. uint8_t c = eeprom_read_byte((unsigned char*)pos);
  153. *value = c;
  154. eeprom_checksum += c;
  155. pos++;
  156. value++;
  157. } while (--size);
  158. }
  159. /**
  160. * Post-process after Retrieve or Reset
  161. */
  162. void Config_Postprocess() {
  163. // steps per s2 needs to be updated to agree with units per s2
  164. planner.reset_acceleration_rates();
  165. // Make sure delta kinematics are updated before refreshing the
  166. // planner position so the stepper counts will be set correctly.
  167. #if ENABLED(DELTA)
  168. recalc_delta_settings(delta_radius, delta_diagonal_rod);
  169. #endif
  170. // Refresh steps_to_mm with the reciprocal of axis_steps_per_mm
  171. // and init stepper.count[], planner.position[] with current_position
  172. planner.refresh_positioning();
  173. #if ENABLED(PIDTEMP)
  174. thermalManager.updatePID();
  175. #endif
  176. calculate_volumetric_multipliers();
  177. }
  178. #if ENABLED(EEPROM_SETTINGS)
  179. #define DUMMY_PID_VALUE 3000.0f
  180. #define EEPROM_WRITE_VAR(pos, value) _EEPROM_writeData(pos, (uint8_t*)&value, sizeof(value))
  181. #define EEPROM_READ_VAR(pos, value) _EEPROM_readData(pos, (uint8_t*)&value, sizeof(value))
  182. /**
  183. * M500 - Store Configuration
  184. */
  185. void Config_StoreSettings() {
  186. float dummy = 0.0f;
  187. char ver[4] = "000";
  188. int i = EEPROM_OFFSET;
  189. EEPROM_WRITE_VAR(i, ver); // invalidate data first
  190. i += sizeof(eeprom_checksum); // Skip the checksum slot
  191. eeprom_checksum = 0; // clear before first "real data"
  192. EEPROM_WRITE_VAR(i, planner.axis_steps_per_mm);
  193. EEPROM_WRITE_VAR(i, planner.max_feedrate_mm_s);
  194. EEPROM_WRITE_VAR(i, planner.max_acceleration_mm_per_s2);
  195. EEPROM_WRITE_VAR(i, planner.acceleration);
  196. EEPROM_WRITE_VAR(i, planner.retract_acceleration);
  197. EEPROM_WRITE_VAR(i, planner.travel_acceleration);
  198. EEPROM_WRITE_VAR(i, planner.min_feedrate_mm_s);
  199. EEPROM_WRITE_VAR(i, planner.min_travel_feedrate_mm_s);
  200. EEPROM_WRITE_VAR(i, planner.min_segment_time);
  201. EEPROM_WRITE_VAR(i, planner.max_xy_jerk);
  202. EEPROM_WRITE_VAR(i, planner.max_z_jerk);
  203. EEPROM_WRITE_VAR(i, planner.max_e_jerk);
  204. EEPROM_WRITE_VAR(i, home_offset);
  205. #if ENABLED(MESH_BED_LEVELING)
  206. // Compile time test that sizeof(mbl.z_values) is as expected
  207. typedef char c_assert[(sizeof(mbl.z_values) == (MESH_NUM_X_POINTS) * (MESH_NUM_Y_POINTS) * sizeof(dummy)) ? 1 : -1];
  208. uint8_t mesh_num_x = MESH_NUM_X_POINTS,
  209. mesh_num_y = MESH_NUM_Y_POINTS,
  210. dummy_uint8 = mbl.status & _BV(MBL_STATUS_HAS_MESH_BIT);
  211. EEPROM_WRITE_VAR(i, dummy_uint8);
  212. EEPROM_WRITE_VAR(i, mbl.z_offset);
  213. EEPROM_WRITE_VAR(i, mesh_num_x);
  214. EEPROM_WRITE_VAR(i, mesh_num_y);
  215. EEPROM_WRITE_VAR(i, mbl.z_values);
  216. #else
  217. // For disabled MBL write a default mesh
  218. uint8_t mesh_num_x = 3,
  219. mesh_num_y = 3,
  220. dummy_uint8 = 0;
  221. dummy = 0.0f;
  222. EEPROM_WRITE_VAR(i, dummy_uint8);
  223. EEPROM_WRITE_VAR(i, dummy);
  224. EEPROM_WRITE_VAR(i, mesh_num_x);
  225. EEPROM_WRITE_VAR(i, mesh_num_y);
  226. for (uint8_t q = 0; q < mesh_num_x * mesh_num_y; q++) EEPROM_WRITE_VAR(i, dummy);
  227. #endif // MESH_BED_LEVELING
  228. #if !HAS_BED_PROBE
  229. float zprobe_zoffset = 0;
  230. #endif
  231. EEPROM_WRITE_VAR(i, zprobe_zoffset);
  232. // 9 floats for DELTA / Z_DUAL_ENDSTOPS
  233. #if ENABLED(DELTA)
  234. EEPROM_WRITE_VAR(i, endstop_adj); // 3 floats
  235. EEPROM_WRITE_VAR(i, delta_radius); // 1 float
  236. EEPROM_WRITE_VAR(i, delta_diagonal_rod); // 1 float
  237. EEPROM_WRITE_VAR(i, delta_segments_per_second); // 1 float
  238. EEPROM_WRITE_VAR(i, delta_diagonal_rod_trim_tower_1); // 1 float
  239. EEPROM_WRITE_VAR(i, delta_diagonal_rod_trim_tower_2); // 1 float
  240. EEPROM_WRITE_VAR(i, delta_diagonal_rod_trim_tower_3); // 1 float
  241. #elif ENABLED(Z_DUAL_ENDSTOPS)
  242. EEPROM_WRITE_VAR(i, z_endstop_adj); // 1 float
  243. dummy = 0.0f;
  244. for (uint8_t q = 8; q--;) EEPROM_WRITE_VAR(i, dummy);
  245. #else
  246. dummy = 0.0f;
  247. for (uint8_t q = 9; q--;) EEPROM_WRITE_VAR(i, dummy);
  248. #endif
  249. #if DISABLED(ULTIPANEL)
  250. int preheatHotendTemp1 = PREHEAT_1_TEMP_HOTEND, preheatBedTemp1 = PREHEAT_1_TEMP_BED, preheatFanSpeed1 = PREHEAT_1_FAN_SPEED,
  251. preheatHotendTemp2 = PREHEAT_2_TEMP_HOTEND, preheatBedTemp2 = PREHEAT_2_TEMP_BED, preheatFanSpeed2 = PREHEAT_2_FAN_SPEED;
  252. #endif // !ULTIPANEL
  253. EEPROM_WRITE_VAR(i, preheatHotendTemp1);
  254. EEPROM_WRITE_VAR(i, preheatBedTemp1);
  255. EEPROM_WRITE_VAR(i, preheatFanSpeed1);
  256. EEPROM_WRITE_VAR(i, preheatHotendTemp2);
  257. EEPROM_WRITE_VAR(i, preheatBedTemp2);
  258. EEPROM_WRITE_VAR(i, preheatFanSpeed2);
  259. for (uint8_t e = 0; e < MAX_EXTRUDERS; e++) {
  260. #if ENABLED(PIDTEMP)
  261. if (e < HOTENDS) {
  262. EEPROM_WRITE_VAR(i, PID_PARAM(Kp, e));
  263. EEPROM_WRITE_VAR(i, PID_PARAM(Ki, e));
  264. EEPROM_WRITE_VAR(i, PID_PARAM(Kd, e));
  265. #if ENABLED(PID_ADD_EXTRUSION_RATE)
  266. EEPROM_WRITE_VAR(i, PID_PARAM(Kc, e));
  267. #else
  268. dummy = 1.0f; // 1.0 = default kc
  269. EEPROM_WRITE_VAR(i, dummy);
  270. #endif
  271. }
  272. else
  273. #endif // !PIDTEMP
  274. {
  275. dummy = DUMMY_PID_VALUE; // When read, will not change the existing value
  276. EEPROM_WRITE_VAR(i, dummy); // Kp
  277. dummy = 0.0f;
  278. for (uint8_t q = 3; q--;) EEPROM_WRITE_VAR(i, dummy); // Ki, Kd, Kc
  279. }
  280. } // Hotends Loop
  281. #if DISABLED(PID_ADD_EXTRUSION_RATE)
  282. int lpq_len = 20;
  283. #endif
  284. EEPROM_WRITE_VAR(i, lpq_len);
  285. #if DISABLED(PIDTEMPBED)
  286. dummy = DUMMY_PID_VALUE;
  287. for (uint8_t q = 3; q--;) EEPROM_WRITE_VAR(i, dummy);
  288. #else
  289. EEPROM_WRITE_VAR(i, thermalManager.bedKp);
  290. EEPROM_WRITE_VAR(i, thermalManager.bedKi);
  291. EEPROM_WRITE_VAR(i, thermalManager.bedKd);
  292. #endif
  293. #if !HAS_LCD_CONTRAST
  294. const int lcd_contrast = 32;
  295. #endif
  296. EEPROM_WRITE_VAR(i, lcd_contrast);
  297. #if ENABLED(SCARA)
  298. EEPROM_WRITE_VAR(i, axis_scaling); // 3 floats
  299. #else
  300. dummy = 1.0f;
  301. EEPROM_WRITE_VAR(i, dummy);
  302. #endif
  303. #if ENABLED(FWRETRACT)
  304. EEPROM_WRITE_VAR(i, autoretract_enabled);
  305. EEPROM_WRITE_VAR(i, retract_length);
  306. #if EXTRUDERS > 1
  307. EEPROM_WRITE_VAR(i, retract_length_swap);
  308. #else
  309. dummy = 0.0f;
  310. EEPROM_WRITE_VAR(i, dummy);
  311. #endif
  312. EEPROM_WRITE_VAR(i, retract_feedrate_mm_s);
  313. EEPROM_WRITE_VAR(i, retract_zlift);
  314. EEPROM_WRITE_VAR(i, retract_recover_length);
  315. #if EXTRUDERS > 1
  316. EEPROM_WRITE_VAR(i, retract_recover_length_swap);
  317. #else
  318. dummy = 0.0f;
  319. EEPROM_WRITE_VAR(i, dummy);
  320. #endif
  321. EEPROM_WRITE_VAR(i, retract_recover_feedrate_mm_s);
  322. #endif // FWRETRACT
  323. EEPROM_WRITE_VAR(i, volumetric_enabled);
  324. // Save filament sizes
  325. for (uint8_t q = 0; q < MAX_EXTRUDERS; q++) {
  326. if (q < COUNT(filament_size)) dummy = filament_size[q];
  327. EEPROM_WRITE_VAR(i, dummy);
  328. }
  329. uint16_t final_checksum = eeprom_checksum;
  330. int j = EEPROM_OFFSET;
  331. EEPROM_WRITE_VAR(j, version);
  332. EEPROM_WRITE_VAR(j, final_checksum);
  333. // Report storage size
  334. SERIAL_ECHO_START;
  335. SERIAL_ECHOPAIR("Settings Stored (", i);
  336. SERIAL_ECHOLNPGM(" bytes)");
  337. }
  338. /**
  339. * M501 - Retrieve Configuration
  340. */
  341. void Config_RetrieveSettings() {
  342. int i = EEPROM_OFFSET;
  343. char stored_ver[4];
  344. uint16_t stored_checksum;
  345. EEPROM_READ_VAR(i, stored_ver);
  346. EEPROM_READ_VAR(i, stored_checksum);
  347. // SERIAL_ECHOPAIR("Version: [", ver);
  348. // SERIAL_ECHOPAIR("] Stored version: [", stored_ver);
  349. // SERIAL_ECHOLNPGM("]");
  350. if (strncmp(version, stored_ver, 3) != 0) {
  351. Config_ResetDefault();
  352. }
  353. else {
  354. float dummy = 0;
  355. eeprom_checksum = 0; // clear before reading first "real data"
  356. // version number match
  357. EEPROM_READ_VAR(i, planner.axis_steps_per_mm);
  358. EEPROM_READ_VAR(i, planner.max_feedrate_mm_s);
  359. EEPROM_READ_VAR(i, planner.max_acceleration_mm_per_s2);
  360. EEPROM_READ_VAR(i, planner.acceleration);
  361. EEPROM_READ_VAR(i, planner.retract_acceleration);
  362. EEPROM_READ_VAR(i, planner.travel_acceleration);
  363. EEPROM_READ_VAR(i, planner.min_feedrate_mm_s);
  364. EEPROM_READ_VAR(i, planner.min_travel_feedrate_mm_s);
  365. EEPROM_READ_VAR(i, planner.min_segment_time);
  366. EEPROM_READ_VAR(i, planner.max_xy_jerk);
  367. EEPROM_READ_VAR(i, planner.max_z_jerk);
  368. EEPROM_READ_VAR(i, planner.max_e_jerk);
  369. EEPROM_READ_VAR(i, home_offset);
  370. uint8_t dummy_uint8 = 0, mesh_num_x = 0, mesh_num_y = 0;
  371. EEPROM_READ_VAR(i, dummy_uint8);
  372. EEPROM_READ_VAR(i, dummy);
  373. EEPROM_READ_VAR(i, mesh_num_x);
  374. EEPROM_READ_VAR(i, mesh_num_y);
  375. #if ENABLED(MESH_BED_LEVELING)
  376. mbl.status = dummy_uint8;
  377. mbl.z_offset = dummy;
  378. if (mesh_num_x == MESH_NUM_X_POINTS && mesh_num_y == MESH_NUM_Y_POINTS) {
  379. // EEPROM data fits the current mesh
  380. EEPROM_READ_VAR(i, mbl.z_values);
  381. }
  382. else {
  383. // EEPROM data is stale
  384. mbl.reset();
  385. for (uint8_t q = 0; q < mesh_num_x * mesh_num_y; q++) EEPROM_READ_VAR(i, dummy);
  386. }
  387. #else
  388. // MBL is disabled - skip the stored data
  389. for (uint8_t q = 0; q < mesh_num_x * mesh_num_y; q++) EEPROM_READ_VAR(i, dummy);
  390. #endif // MESH_BED_LEVELING
  391. #if !HAS_BED_PROBE
  392. float zprobe_zoffset = 0;
  393. #endif
  394. EEPROM_READ_VAR(i, zprobe_zoffset);
  395. #if ENABLED(DELTA)
  396. EEPROM_READ_VAR(i, endstop_adj); // 3 floats
  397. EEPROM_READ_VAR(i, delta_radius); // 1 float
  398. EEPROM_READ_VAR(i, delta_diagonal_rod); // 1 float
  399. EEPROM_READ_VAR(i, delta_segments_per_second); // 1 float
  400. EEPROM_READ_VAR(i, delta_diagonal_rod_trim_tower_1); // 1 float
  401. EEPROM_READ_VAR(i, delta_diagonal_rod_trim_tower_2); // 1 float
  402. EEPROM_READ_VAR(i, delta_diagonal_rod_trim_tower_3); // 1 float
  403. #elif ENABLED(Z_DUAL_ENDSTOPS)
  404. EEPROM_READ_VAR(i, z_endstop_adj);
  405. dummy = 0.0f;
  406. for (uint8_t q=8; q--;) EEPROM_READ_VAR(i, dummy);
  407. #else
  408. dummy = 0.0f;
  409. for (uint8_t q=9; q--;) EEPROM_READ_VAR(i, dummy);
  410. #endif
  411. #if DISABLED(ULTIPANEL)
  412. int preheatHotendTemp1, preheatBedTemp1, preheatFanSpeed1,
  413. preheatHotendTemp2, preheatBedTemp2, preheatFanSpeed2;
  414. #endif
  415. EEPROM_READ_VAR(i, preheatHotendTemp1);
  416. EEPROM_READ_VAR(i, preheatBedTemp1);
  417. EEPROM_READ_VAR(i, preheatFanSpeed1);
  418. EEPROM_READ_VAR(i, preheatHotendTemp2);
  419. EEPROM_READ_VAR(i, preheatBedTemp2);
  420. EEPROM_READ_VAR(i, preheatFanSpeed2);
  421. #if ENABLED(PIDTEMP)
  422. for (uint8_t e = 0; e < MAX_EXTRUDERS; e++) {
  423. EEPROM_READ_VAR(i, dummy); // Kp
  424. if (e < HOTENDS && dummy != DUMMY_PID_VALUE) {
  425. // do not need to scale PID values as the values in EEPROM are already scaled
  426. PID_PARAM(Kp, e) = dummy;
  427. EEPROM_READ_VAR(i, PID_PARAM(Ki, e));
  428. EEPROM_READ_VAR(i, PID_PARAM(Kd, e));
  429. #if ENABLED(PID_ADD_EXTRUSION_RATE)
  430. EEPROM_READ_VAR(i, PID_PARAM(Kc, e));
  431. #else
  432. EEPROM_READ_VAR(i, dummy);
  433. #endif
  434. }
  435. else {
  436. for (uint8_t q=3; q--;) EEPROM_READ_VAR(i, dummy); // Ki, Kd, Kc
  437. }
  438. }
  439. #else // !PIDTEMP
  440. // 4 x 4 = 16 slots for PID parameters
  441. for (uint8_t q = MAX_EXTRUDERS * 4; q--;) EEPROM_READ_VAR(i, dummy); // Kp, Ki, Kd, Kc
  442. #endif // !PIDTEMP
  443. #if DISABLED(PID_ADD_EXTRUSION_RATE)
  444. int lpq_len;
  445. #endif
  446. EEPROM_READ_VAR(i, lpq_len);
  447. #if ENABLED(PIDTEMPBED)
  448. EEPROM_READ_VAR(i, dummy); // bedKp
  449. if (dummy != DUMMY_PID_VALUE) {
  450. thermalManager.bedKp = dummy;
  451. EEPROM_READ_VAR(i, thermalManager.bedKi);
  452. EEPROM_READ_VAR(i, thermalManager.bedKd);
  453. }
  454. #else
  455. for (uint8_t q=3; q--;) EEPROM_READ_VAR(i, dummy); // bedKp, bedKi, bedKd
  456. #endif
  457. #if !HAS_LCD_CONTRAST
  458. int lcd_contrast;
  459. #endif
  460. EEPROM_READ_VAR(i, lcd_contrast);
  461. #if ENABLED(SCARA)
  462. EEPROM_READ_VAR(i, axis_scaling); // 3 floats
  463. #else
  464. EEPROM_READ_VAR(i, dummy);
  465. #endif
  466. #if ENABLED(FWRETRACT)
  467. EEPROM_READ_VAR(i, autoretract_enabled);
  468. EEPROM_READ_VAR(i, retract_length);
  469. #if EXTRUDERS > 1
  470. EEPROM_READ_VAR(i, retract_length_swap);
  471. #else
  472. EEPROM_READ_VAR(i, dummy);
  473. #endif
  474. EEPROM_READ_VAR(i, retract_feedrate_mm_s);
  475. EEPROM_READ_VAR(i, retract_zlift);
  476. EEPROM_READ_VAR(i, retract_recover_length);
  477. #if EXTRUDERS > 1
  478. EEPROM_READ_VAR(i, retract_recover_length_swap);
  479. #else
  480. EEPROM_READ_VAR(i, dummy);
  481. #endif
  482. EEPROM_READ_VAR(i, retract_recover_feedrate_mm_s);
  483. #endif // FWRETRACT
  484. EEPROM_READ_VAR(i, volumetric_enabled);
  485. for (uint8_t q = 0; q < MAX_EXTRUDERS; q++) {
  486. EEPROM_READ_VAR(i, dummy);
  487. if (q < COUNT(filament_size)) filament_size[q] = dummy;
  488. }
  489. if (eeprom_checksum == stored_checksum) {
  490. Config_Postprocess();
  491. SERIAL_ECHO_START;
  492. SERIAL_ECHO(version);
  493. SERIAL_ECHOPAIR(" stored settings retrieved (", i);
  494. SERIAL_ECHOLNPGM(" bytes)");
  495. }
  496. else {
  497. SERIAL_ERROR_START;
  498. SERIAL_ERRORLNPGM("EEPROM checksum mismatch");
  499. Config_ResetDefault();
  500. }
  501. }
  502. #if ENABLED(EEPROM_CHITCHAT)
  503. Config_PrintSettings();
  504. #endif
  505. }
  506. #endif // EEPROM_SETTINGS
  507. /**
  508. * M502 - Reset Configuration
  509. */
  510. void Config_ResetDefault() {
  511. float tmp1[] = DEFAULT_AXIS_STEPS_PER_UNIT;
  512. float tmp2[] = DEFAULT_MAX_FEEDRATE;
  513. long tmp3[] = DEFAULT_MAX_ACCELERATION;
  514. LOOP_XYZE(i) {
  515. planner.axis_steps_per_mm[i] = tmp1[i];
  516. planner.max_feedrate_mm_s[i] = tmp2[i];
  517. planner.max_acceleration_mm_per_s2[i] = tmp3[i];
  518. #if ENABLED(SCARA)
  519. if (i < COUNT(axis_scaling))
  520. axis_scaling[i] = 1;
  521. #endif
  522. }
  523. planner.acceleration = DEFAULT_ACCELERATION;
  524. planner.retract_acceleration = DEFAULT_RETRACT_ACCELERATION;
  525. planner.travel_acceleration = DEFAULT_TRAVEL_ACCELERATION;
  526. planner.min_feedrate_mm_s = DEFAULT_MINIMUMFEEDRATE;
  527. planner.min_segment_time = DEFAULT_MINSEGMENTTIME;
  528. planner.min_travel_feedrate_mm_s = DEFAULT_MINTRAVELFEEDRATE;
  529. planner.max_xy_jerk = DEFAULT_XYJERK;
  530. planner.max_z_jerk = DEFAULT_ZJERK;
  531. planner.max_e_jerk = DEFAULT_EJERK;
  532. home_offset[X_AXIS] = home_offset[Y_AXIS] = home_offset[Z_AXIS] = 0;
  533. #if ENABLED(MESH_BED_LEVELING)
  534. mbl.reset();
  535. #endif
  536. #if HAS_BED_PROBE
  537. zprobe_zoffset = Z_PROBE_OFFSET_FROM_EXTRUDER;
  538. #endif
  539. #if ENABLED(DELTA)
  540. endstop_adj[X_AXIS] = endstop_adj[Y_AXIS] = endstop_adj[Z_AXIS] = 0;
  541. delta_radius = DELTA_RADIUS;
  542. delta_diagonal_rod = DELTA_DIAGONAL_ROD;
  543. delta_segments_per_second = DELTA_SEGMENTS_PER_SECOND;
  544. delta_diagonal_rod_trim_tower_1 = DELTA_DIAGONAL_ROD_TRIM_TOWER_1;
  545. delta_diagonal_rod_trim_tower_2 = DELTA_DIAGONAL_ROD_TRIM_TOWER_2;
  546. delta_diagonal_rod_trim_tower_3 = DELTA_DIAGONAL_ROD_TRIM_TOWER_3;
  547. #elif ENABLED(Z_DUAL_ENDSTOPS)
  548. z_endstop_adj = 0;
  549. #endif
  550. #if ENABLED(ULTIPANEL)
  551. preheatHotendTemp1 = PREHEAT_1_TEMP_HOTEND;
  552. preheatBedTemp1 = PREHEAT_1_TEMP_BED;
  553. preheatFanSpeed1 = PREHEAT_1_FAN_SPEED;
  554. preheatHotendTemp2 = PREHEAT_2_TEMP_HOTEND;
  555. preheatBedTemp2 = PREHEAT_2_TEMP_BED;
  556. preheatFanSpeed2 = PREHEAT_2_FAN_SPEED;
  557. #endif
  558. #if HAS_LCD_CONTRAST
  559. lcd_contrast = DEFAULT_LCD_CONTRAST;
  560. #endif
  561. #if ENABLED(PIDTEMP)
  562. #if ENABLED(PID_PARAMS_PER_HOTEND) && HOTENDS > 1
  563. HOTEND_LOOP()
  564. #else
  565. int e = 0; UNUSED(e); // only need to write once
  566. #endif
  567. {
  568. PID_PARAM(Kp, e) = DEFAULT_Kp;
  569. PID_PARAM(Ki, e) = scalePID_i(DEFAULT_Ki);
  570. PID_PARAM(Kd, e) = scalePID_d(DEFAULT_Kd);
  571. #if ENABLED(PID_ADD_EXTRUSION_RATE)
  572. PID_PARAM(Kc, e) = DEFAULT_Kc;
  573. #endif
  574. }
  575. #if ENABLED(PID_ADD_EXTRUSION_RATE)
  576. lpq_len = 20; // default last-position-queue size
  577. #endif
  578. #endif // PIDTEMP
  579. #if ENABLED(PIDTEMPBED)
  580. thermalManager.bedKp = DEFAULT_bedKp;
  581. thermalManager.bedKi = scalePID_i(DEFAULT_bedKi);
  582. thermalManager.bedKd = scalePID_d(DEFAULT_bedKd);
  583. #endif
  584. #if ENABLED(FWRETRACT)
  585. autoretract_enabled = false;
  586. retract_length = RETRACT_LENGTH;
  587. #if EXTRUDERS > 1
  588. retract_length_swap = RETRACT_LENGTH_SWAP;
  589. #endif
  590. retract_feedrate_mm_s = RETRACT_FEEDRATE;
  591. retract_zlift = RETRACT_ZLIFT;
  592. retract_recover_length = RETRACT_RECOVER_LENGTH;
  593. #if EXTRUDERS > 1
  594. retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  595. #endif
  596. retract_recover_feedrate_mm_s = RETRACT_RECOVER_FEEDRATE;
  597. #endif
  598. volumetric_enabled = false;
  599. for (uint8_t q = 0; q < COUNT(filament_size); q++)
  600. filament_size[q] = DEFAULT_NOMINAL_FILAMENT_DIA;
  601. endstops.enable_globally(
  602. #if ENABLED(ENDSTOPS_ALWAYS_ON_DEFAULT)
  603. (true)
  604. #else
  605. (false)
  606. #endif
  607. );
  608. Config_Postprocess();
  609. SERIAL_ECHO_START;
  610. SERIAL_ECHOLNPGM("Hardcoded Default Settings Loaded");
  611. }
  612. #if DISABLED(DISABLE_M503)
  613. #define CONFIG_ECHO_START do{ if (!forReplay) SERIAL_ECHO_START; }while(0)
  614. /**
  615. * M503 - Print Configuration
  616. */
  617. void Config_PrintSettings(bool forReplay) {
  618. // Always have this function, even with EEPROM_SETTINGS disabled, the current values will be shown
  619. CONFIG_ECHO_START;
  620. if (!forReplay) {
  621. SERIAL_ECHOLNPGM("Steps per unit:");
  622. CONFIG_ECHO_START;
  623. }
  624. SERIAL_ECHOPAIR(" M92 X", planner.axis_steps_per_mm[X_AXIS]);
  625. SERIAL_ECHOPAIR(" Y", planner.axis_steps_per_mm[Y_AXIS]);
  626. SERIAL_ECHOPAIR(" Z", planner.axis_steps_per_mm[Z_AXIS]);
  627. SERIAL_ECHOPAIR(" E", planner.axis_steps_per_mm[E_AXIS]);
  628. SERIAL_EOL;
  629. CONFIG_ECHO_START;
  630. #if ENABLED(SCARA)
  631. if (!forReplay) {
  632. SERIAL_ECHOLNPGM("Scaling factors:");
  633. CONFIG_ECHO_START;
  634. }
  635. SERIAL_ECHOPAIR(" M365 X", axis_scaling[X_AXIS]);
  636. SERIAL_ECHOPAIR(" Y", axis_scaling[Y_AXIS]);
  637. SERIAL_ECHOPAIR(" Z", axis_scaling[Z_AXIS]);
  638. SERIAL_EOL;
  639. CONFIG_ECHO_START;
  640. #endif // SCARA
  641. if (!forReplay) {
  642. SERIAL_ECHOLNPGM("Maximum feedrates (mm/s):");
  643. CONFIG_ECHO_START;
  644. }
  645. SERIAL_ECHOPAIR(" M203 X", planner.max_feedrate_mm_s[X_AXIS]);
  646. SERIAL_ECHOPAIR(" Y", planner.max_feedrate_mm_s[Y_AXIS]);
  647. SERIAL_ECHOPAIR(" Z", planner.max_feedrate_mm_s[Z_AXIS]);
  648. SERIAL_ECHOPAIR(" E", planner.max_feedrate_mm_s[E_AXIS]);
  649. SERIAL_EOL;
  650. CONFIG_ECHO_START;
  651. if (!forReplay) {
  652. SERIAL_ECHOLNPGM("Maximum Acceleration (mm/s2):");
  653. CONFIG_ECHO_START;
  654. }
  655. SERIAL_ECHOPAIR(" M201 X", planner.max_acceleration_mm_per_s2[X_AXIS]);
  656. SERIAL_ECHOPAIR(" Y", planner.max_acceleration_mm_per_s2[Y_AXIS]);
  657. SERIAL_ECHOPAIR(" Z", planner.max_acceleration_mm_per_s2[Z_AXIS]);
  658. SERIAL_ECHOPAIR(" E", planner.max_acceleration_mm_per_s2[E_AXIS]);
  659. SERIAL_EOL;
  660. CONFIG_ECHO_START;
  661. if (!forReplay) {
  662. SERIAL_ECHOLNPGM("Accelerations: P=printing, R=retract and T=travel");
  663. CONFIG_ECHO_START;
  664. }
  665. SERIAL_ECHOPAIR(" M204 P", planner.acceleration);
  666. SERIAL_ECHOPAIR(" R", planner.retract_acceleration);
  667. SERIAL_ECHOPAIR(" T", planner.travel_acceleration);
  668. SERIAL_EOL;
  669. CONFIG_ECHO_START;
  670. if (!forReplay) {
  671. SERIAL_ECHOLNPGM("Advanced variables: S=Min feedrate (mm/s), T=Min travel feedrate (mm/s), B=minimum segment time (ms), X=maximum XY jerk (mm/s), Z=maximum Z jerk (mm/s), E=maximum E jerk (mm/s)");
  672. CONFIG_ECHO_START;
  673. }
  674. SERIAL_ECHOPAIR(" M205 S", planner.min_feedrate_mm_s);
  675. SERIAL_ECHOPAIR(" T", planner.min_travel_feedrate_mm_s);
  676. SERIAL_ECHOPAIR(" B", planner.min_segment_time);
  677. SERIAL_ECHOPAIR(" X", planner.max_xy_jerk);
  678. SERIAL_ECHOPAIR(" Z", planner.max_z_jerk);
  679. SERIAL_ECHOPAIR(" E", planner.max_e_jerk);
  680. SERIAL_EOL;
  681. CONFIG_ECHO_START;
  682. if (!forReplay) {
  683. SERIAL_ECHOLNPGM("Home offset (mm)");
  684. CONFIG_ECHO_START;
  685. }
  686. SERIAL_ECHOPAIR(" M206 X", home_offset[X_AXIS]);
  687. SERIAL_ECHOPAIR(" Y", home_offset[Y_AXIS]);
  688. SERIAL_ECHOPAIR(" Z", home_offset[Z_AXIS]);
  689. SERIAL_EOL;
  690. #if ENABLED(MESH_BED_LEVELING)
  691. if (!forReplay) {
  692. SERIAL_ECHOLNPGM("Mesh bed leveling:");
  693. CONFIG_ECHO_START;
  694. }
  695. SERIAL_ECHOPAIR(" M420 S", mbl.has_mesh() ? 1 : 0);
  696. SERIAL_ECHOPAIR(" X", MESH_NUM_X_POINTS);
  697. SERIAL_ECHOPAIR(" Y", MESH_NUM_Y_POINTS);
  698. SERIAL_EOL;
  699. for (uint8_t py = 1; py <= MESH_NUM_Y_POINTS; py++) {
  700. for (uint8_t px = 1; px <= MESH_NUM_X_POINTS; px++) {
  701. CONFIG_ECHO_START;
  702. SERIAL_ECHOPAIR(" G29 S3 X", px);
  703. SERIAL_ECHOPAIR(" Y", py);
  704. SERIAL_ECHOPGM(" Z");
  705. SERIAL_PROTOCOL_F(mbl.z_values[py-1][px-1], 5);
  706. SERIAL_EOL;
  707. }
  708. }
  709. #endif
  710. #if ENABLED(DELTA)
  711. CONFIG_ECHO_START;
  712. if (!forReplay) {
  713. SERIAL_ECHOLNPGM("Endstop adjustment (mm):");
  714. CONFIG_ECHO_START;
  715. }
  716. SERIAL_ECHOPAIR(" M666 X", endstop_adj[X_AXIS]);
  717. SERIAL_ECHOPAIR(" Y", endstop_adj[Y_AXIS]);
  718. SERIAL_ECHOPAIR(" Z", endstop_adj[Z_AXIS]);
  719. SERIAL_EOL;
  720. CONFIG_ECHO_START;
  721. if (!forReplay) {
  722. SERIAL_ECHOLNPGM("Delta settings: L=diagonal_rod, R=radius, S=segments_per_second, ABC=diagonal_rod_trim_tower_[123]");
  723. CONFIG_ECHO_START;
  724. }
  725. SERIAL_ECHOPAIR(" M665 L", delta_diagonal_rod);
  726. SERIAL_ECHOPAIR(" R", delta_radius);
  727. SERIAL_ECHOPAIR(" S", delta_segments_per_second);
  728. SERIAL_ECHOPAIR(" A", delta_diagonal_rod_trim_tower_1);
  729. SERIAL_ECHOPAIR(" B", delta_diagonal_rod_trim_tower_2);
  730. SERIAL_ECHOPAIR(" C", delta_diagonal_rod_trim_tower_3);
  731. SERIAL_EOL;
  732. #elif ENABLED(Z_DUAL_ENDSTOPS)
  733. CONFIG_ECHO_START;
  734. if (!forReplay) {
  735. SERIAL_ECHOLNPGM("Z2 Endstop adjustment (mm):");
  736. CONFIG_ECHO_START;
  737. }
  738. SERIAL_ECHOPAIR(" M666 Z", z_endstop_adj);
  739. SERIAL_EOL;
  740. #endif // DELTA
  741. #if ENABLED(ULTIPANEL)
  742. CONFIG_ECHO_START;
  743. if (!forReplay) {
  744. SERIAL_ECHOLNPGM("Material heatup parameters:");
  745. CONFIG_ECHO_START;
  746. }
  747. SERIAL_ECHOPAIR(" M145 S0 H", preheatHotendTemp1);
  748. SERIAL_ECHOPAIR(" B", preheatBedTemp1);
  749. SERIAL_ECHOPAIR(" F", preheatFanSpeed1);
  750. SERIAL_EOL;
  751. CONFIG_ECHO_START;
  752. SERIAL_ECHOPAIR(" M145 S1 H", preheatHotendTemp2);
  753. SERIAL_ECHOPAIR(" B", preheatBedTemp2);
  754. SERIAL_ECHOPAIR(" F", preheatFanSpeed2);
  755. SERIAL_EOL;
  756. #endif // ULTIPANEL
  757. #if HAS_PID_HEATING
  758. CONFIG_ECHO_START;
  759. if (!forReplay) {
  760. SERIAL_ECHOLNPGM("PID settings:");
  761. }
  762. #if ENABLED(PIDTEMP)
  763. #if HOTENDS > 1
  764. if (forReplay) {
  765. HOTEND_LOOP() {
  766. CONFIG_ECHO_START;
  767. SERIAL_ECHOPAIR(" M301 E", e);
  768. SERIAL_ECHOPAIR(" P", PID_PARAM(Kp, e));
  769. SERIAL_ECHOPAIR(" I", unscalePID_i(PID_PARAM(Ki, e)));
  770. SERIAL_ECHOPAIR(" D", unscalePID_d(PID_PARAM(Kd, e)));
  771. #if ENABLED(PID_ADD_EXTRUSION_RATE)
  772. SERIAL_ECHOPAIR(" C", PID_PARAM(Kc, e));
  773. if (e == 0) SERIAL_ECHOPAIR(" L", lpq_len);
  774. #endif
  775. SERIAL_EOL;
  776. }
  777. }
  778. else
  779. #endif // HOTENDS > 1
  780. // !forReplay || HOTENDS == 1
  781. {
  782. CONFIG_ECHO_START;
  783. SERIAL_ECHOPAIR(" M301 P", PID_PARAM(Kp, 0)); // for compatibility with hosts, only echo values for E0
  784. SERIAL_ECHOPAIR(" I", unscalePID_i(PID_PARAM(Ki, 0)));
  785. SERIAL_ECHOPAIR(" D", unscalePID_d(PID_PARAM(Kd, 0)));
  786. #if ENABLED(PID_ADD_EXTRUSION_RATE)
  787. SERIAL_ECHOPAIR(" C", PID_PARAM(Kc, 0));
  788. SERIAL_ECHOPAIR(" L", lpq_len);
  789. #endif
  790. SERIAL_EOL;
  791. }
  792. #endif // PIDTEMP
  793. #if ENABLED(PIDTEMPBED)
  794. CONFIG_ECHO_START;
  795. SERIAL_ECHOPAIR(" M304 P", thermalManager.bedKp);
  796. SERIAL_ECHOPAIR(" I", unscalePID_i(thermalManager.bedKi));
  797. SERIAL_ECHOPAIR(" D", unscalePID_d(thermalManager.bedKd));
  798. SERIAL_EOL;
  799. #endif
  800. #endif // PIDTEMP || PIDTEMPBED
  801. #if HAS_LCD_CONTRAST
  802. CONFIG_ECHO_START;
  803. if (!forReplay) {
  804. SERIAL_ECHOLNPGM("LCD Contrast:");
  805. CONFIG_ECHO_START;
  806. }
  807. SERIAL_ECHOPAIR(" M250 C", lcd_contrast);
  808. SERIAL_EOL;
  809. #endif
  810. #if ENABLED(FWRETRACT)
  811. CONFIG_ECHO_START;
  812. if (!forReplay) {
  813. SERIAL_ECHOLNPGM("Retract: S=Length (mm) F:Speed (mm/m) Z: ZLift (mm)");
  814. CONFIG_ECHO_START;
  815. }
  816. SERIAL_ECHOPAIR(" M207 S", retract_length);
  817. #if EXTRUDERS > 1
  818. SERIAL_ECHOPAIR(" W", retract_length_swap);
  819. #endif
  820. SERIAL_ECHOPAIR(" F", MMS_TO_MMM(retract_feedrate_mm_s));
  821. SERIAL_ECHOPAIR(" Z", retract_zlift);
  822. SERIAL_EOL;
  823. CONFIG_ECHO_START;
  824. if (!forReplay) {
  825. SERIAL_ECHOLNPGM("Recover: S=Extra length (mm) F:Speed (mm/m)");
  826. CONFIG_ECHO_START;
  827. }
  828. SERIAL_ECHOPAIR(" M208 S", retract_recover_length);
  829. #if EXTRUDERS > 1
  830. SERIAL_ECHOPAIR(" W", retract_recover_length_swap);
  831. #endif
  832. SERIAL_ECHOPAIR(" F", MMS_TO_MMM(retract_recover_feedrate_mm_s));
  833. SERIAL_EOL;
  834. CONFIG_ECHO_START;
  835. if (!forReplay) {
  836. SERIAL_ECHOLNPGM("Auto-Retract: S=0 to disable, 1 to interpret extrude-only moves as retracts or recoveries");
  837. CONFIG_ECHO_START;
  838. }
  839. SERIAL_ECHOPAIR(" M209 S", autoretract_enabled ? 1 : 0);
  840. SERIAL_EOL;
  841. #endif // FWRETRACT
  842. /**
  843. * Volumetric extrusion M200
  844. */
  845. if (!forReplay) {
  846. CONFIG_ECHO_START;
  847. SERIAL_ECHOPGM("Filament settings:");
  848. if (volumetric_enabled)
  849. SERIAL_EOL;
  850. else
  851. SERIAL_ECHOLNPGM(" Disabled");
  852. }
  853. CONFIG_ECHO_START;
  854. SERIAL_ECHOPAIR(" M200 D", filament_size[0]);
  855. SERIAL_EOL;
  856. #if EXTRUDERS > 1
  857. CONFIG_ECHO_START;
  858. SERIAL_ECHOPAIR(" M200 T1 D", filament_size[1]);
  859. SERIAL_EOL;
  860. #if EXTRUDERS > 2
  861. CONFIG_ECHO_START;
  862. SERIAL_ECHOPAIR(" M200 T2 D", filament_size[2]);
  863. SERIAL_EOL;
  864. #if EXTRUDERS > 3
  865. CONFIG_ECHO_START;
  866. SERIAL_ECHOPAIR(" M200 T3 D", filament_size[3]);
  867. SERIAL_EOL;
  868. #endif
  869. #endif
  870. #endif
  871. if (!volumetric_enabled) {
  872. CONFIG_ECHO_START;
  873. SERIAL_ECHOLNPGM(" M200 D0");
  874. }
  875. /**
  876. * Auto Bed Leveling
  877. */
  878. #if HAS_BED_PROBE
  879. if (!forReplay) {
  880. CONFIG_ECHO_START;
  881. SERIAL_ECHOLNPGM("Z-Probe Offset (mm):");
  882. }
  883. CONFIG_ECHO_START;
  884. SERIAL_ECHOPAIR(" M851 Z", zprobe_zoffset);
  885. SERIAL_EOL;
  886. #endif
  887. }
  888. #endif // !DISABLE_M503